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Abstract

In this thesis, we aim to study the clustering properties of galaxies at z ≈ 3 and the

relationship between galaxies and the IGM at these redshift via clustering correlation

functions. We use the combined data from the VLT LBG Survey (Bielby, 2008) and

the Keck survey (Steidel, 2003) to measure the LBG-LBG correlation function. We aim

to estimate the infall parameter, β from the ratio of LBG-LBG correlation function in

redshift space, ξ(s), and in real space, ξ(r). We found agreement with Bielby et al.

(2008) in the ξ(s) result from the VLT data. Our LBG-LBG ξ(s) from the combined

data is consistent with the observed ξ(s) from da Angela et al. (2005), where γ = 1.71

and s0 = 5.1 h−1 Mpc. We also tested the effect of redshift errors by using the z−space

distortions model from da Angela et al. (2005) with our parameters. We found the

peculiar velocities had a smaller effect in the combined data compared to only VLT data.

This may be because smaller redshift errors in Steidel et al. (2003). By computing and

fitting ξ(s)/ξ(r), we get β = 0.14+0.09
−0.05 at z = 3. This gives a bias factor, b = 6.8. This

result agrees with Bielby et al. (2008), β = 0.21+0.13
−0.12, estimated by fitting the power-law

ξ(r) to the measurement of ξ(σ, π) from the combined data.

We then calculate the Lyα-LBG and LBG-CIV correlation function. We attempt to

(a) investigate the effect of feedback on the LBG-Lyα cross correlation, (b) compare the

LBG-CIV cross-correlation with LBG-LBG ξ(s) to see if CIV absorption systems are

distributed like LBGs. We use a different approach to reanalyze the Lyα-LBG ξ(s), with

different ways of estimating the error to compare our result with Bielby et al. (2008). Our

results agree with those of Bielby et al. (2008) but with slightly smaller error bars. Results

from high and low resolution QSO spectra are compared to the results of Adelberger et al.

(2003) and Adelberger et al. (2005). We found a decrease in transmissivity at distances

below 3h−1 Mpc and an increase of < flux/cont > to the mean value at larger scales.



We detected how these results were affected by the LBG velocity dispersion found in

Chapter 3. We also perform CIV-LBG cross correlation. It is consistent with the LBG-

LBG auto-correlation function. This is consistent with CIV systems and LBGs being the

same objects as they show the same clustering behaviour.

We then employed the GIMIC simulations to create synthetic Lyα spectra and Galax-

ies. Our main aims are to study (a) the LBG-LBG ξ(s) to see if we can detect the effects

of peculiar velocities by comparing real and redshift space correlation functions, (b) the

LBG-Lyα ξ(s) to understand more about outflow and feedback. We selected galaxies in

the simulation by stellar mass. From our results, the LBG-LBG correlation functions in

real and redshift space tend to appear as power laws. The effect of peculiar velocities

in redshift space has been detected since the LBG-LBG ξ(s) in redshift space tends to

have lower clustering than ξ(r) in real space at small scales. From the LBG-Lyα ξ(s), we

found a decrease in < flux/cont > at separations below 5 h−1 Mpc. ξ(s) increases and

reaches the mean value at < flux/cont >≈ 0.70 at larger scales. At small distances near

LBGs, we see no effect from the wind from the simulations. The results seem to agree

with Adelberger et al. (2005) rather than Adelberger et al. (2003). Therefore they are

less in agreement with our VLT results which show some evidence for feedback at small

scales.
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Chapter 1
Introduction to

Cosmology and Galaxy

Clustering

In order to pursue the main investigations of this thesis, we need to understand the

model that is used to explain the universe. The cosmological principle is the theoretical

assumption that underpins modern cosmological models. From the cosmological principle,

our universe is assumed to be isotropic and homogeneous on the large-scale. Isotropic

means the universe looks the same in all directions, while homogeneous means the universe

looks the same at each point. From these assumptions, the basic details of the standard

cosmology are presented as follows.

1.1 Ingredients of the standard cosmology

1.1.1 The expanding Universe

Observations show that most galaxies are moving away from us. Hubble’s law gives locally

v = H0d where v is the recession velocity of a galaxy at distance d and H0 is Hubble’s

constant. For small v, the redshift parameter, z is used to parameterise velocity, where

z =
v

c
. This is because to first order the redshift can be explained as a Doppler effect

with λobs = (1 + v/c)λem = (1 + z)λem. Here λobs is the wavelength of an absorption or

emission line redshifted from the the emission wavelength λem. So to first order d =
cz

H0

.

More generally, redshift is related to the scale factor or expansion factor as

1
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1 + z =
λobs
λem

=
a0

a(t)
(1.1)

where the the subscript zero referes to the present time.

The expansion factor a(t) can then be written in terms of a comoving coordinate x̄

and a physical coordinate as

r̄ =
a0

a(t)
x̄ (1.2)

The Robertson-Walker metric is established through the modern cosmology assump-

tion that our universe is isotropic and homogeneous on the large-scale. It is defined as

follows:

ds2 = −dt2 + a(t)2(
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)) (1.3)

Throughout we assume units where the speed of light c =1. ~ is also assumed to be

unity. The curvature parameter k can be +1, 0, -1 for positive curvature (closed universe),

flat universe, and negative curvature (open universe) respectively. a(t) represents the

expansion factor. By applying the Robertson-Walker solution to Einstein’s equations, it

is reduced to Friedmann’s equations which can be used to explain the expansion of the

universe.

H2 = (
ȧ

a
)2 =

8πG

3
ρ− k

a2
(1.4)

and

ä

a
= −4πG

3
(ρ+ 3p) (1.5)

where H is the Hubble constant H =
ȧ

a
, ρ is the overall energy-mass density and p is

the isotropic pressure in its rest frame. G is the gravitational constant.
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1.1.2 Cosmological parameters

The density parameter Ω0

The density of the universe can be specified by the density parameter. From Friedmann’s

equations, the critical value of the energy density in the flat geometry (k=0) is:

ρcrit(t) =
3H2

8πG
(1.6)

The critical density is time-dependent. H0 is 100 h km s−1 Mpc−1 where h = 0.72 ±

0.08. Since G = 6.67 × 10−11m3 kg−1 sec−2, then

ρcrit(t0) = 1.88h2 × 10−26kgm−3 (1.7)

= 2.78h−1 × 1011M�/(h
−1Mpc)3

The critical density is not the real universal density but it is set to be a scale for the

universal density. Furthermore, it is easier to express the true density of the universe, ρ,

to the critical density, called the density parameter Ω.

Ω(t) =
ρ

ρcrit
(1.8)

The Friedmann equations are now expressed in term of density parameter.

H2 =
8πG

3
ρ− k

a2
=

8πG

3
ρcritΩ−

k

a2
= H2Ω− k

a2
(1.9)

Then

Ω− 1 =
k

a2H2
(1.10)
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When k = 0, Ω = 1. In this case, it is often called a critical-density Universe. This

implies the true independent type of the matter that we have in the universe (Liddle,

2007). However, when Ω 6= 1, Friedmann’s equation is very useful for analyzing the

evolution of the density. There are many different types of matter which can be expressed

by the different notation of the density component, for instance, Ωmat , Ωrad. The density

parameter can also be expressed in term of the curvature, k,

Ωk = − k

a2H2
(1.11)

Ω + Ωk = 1 (1.12)

1.1.3 The cosmological constant

Einstein proposed a modification parameter to apply in a static universe. Λ is set to be

a cosmological constant. As a result, the Friedmann equations are modified to :

H2 = (
ȧ

a
)2 =

8πG

3
ρ+

Λ

3
− k

a2
(1.13)

Λ was used to balance the curvature in order to have a static universe. Its unit is

[time]−2. The term Λ also affects the acceleration equation as follow:

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(1.14)

To find a static (ȧ = 0) solution in Einstein static universe, the parameters ρ, p, and Λ

are set to be nonnegative. When Λ is positive, ä will be positive which implies a repulsive

force.
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Cosmological model with Λ

ΩΛ =
Λ

3H2
(1.15)

Λ is constant but ΩΛ is time-dependent due to its dependence on H. Rearranging the

Friedmann equation, we than have

Ω + ΩΛ − 1 =
k

a2H2
(1.16)

In a flat universe (k=0) gives

Ω + ΩΛ = 1 (1.17)

Different values of k and Ω imply different curvatures and fates of the universe.

Open universe ( k = −1): 0 < Ω + ΩΛ < 1 The universe is underdense in this case.

Closed universe ( k = 1): Ω + ΩΛ > 1 This scenario made the overdense universe.

In the ΛCDM model, the Ω value is dominated by the cold dark matter and dark

energy. This model has zero spatial curvature, Ωm = 0 with Ωm = 0.26 ± 0.03, ΩΛ =

0.74± 0.03.

1.1.4 The cosmic microwave background and the growth of large

scale structure

The Big Bang model is used to explain the very beginning state of the Universe. According

to the model, the Universe expands from a very hot and dense state in the past about 15

billion years ago. After 300,000 years of the Big Bang, the temperature of the universe

cooled to T ≈ 4000 K. The matter does not have enough energy to remain ionized in

this state. When photons and electrons bind together, it reduces the cross-section of
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Compton scattering. The radiation then expands and cools to a black body temperature

(2.7 Kelvin). At this temperature, it shows a peak signal at microwave frequencies (≈

1- 1000 GHz) called the Cosmic Microwave Background (CMB). This radiation was first

detected in 1965 by the observations of Arno Penzias and Robert Wilson. In observations

over the sky, it is seen to be the same from all directions. This causes problems. If

the universe is so smooth, what caused the growth on the large-scale structure? It was

suggested to be the effect of density fluctuations in the early universe.

In the observations, any objects further than the particle horizon, the most distant

object that could have affected the observer, are unable to contact with the observer.

From the scattering surface, no physical processes will happen on scales larger than 2

degrees as seen from Earth (Jones, 1998). It is thought that the matter perturbations

are affected by the fluctuations on scales greater than θ ≈ 2 degrees in the recombination

era. Within 10−34 seconds after Big Bang, these fluctuations probably originate in the

quantum fluctuation of a scalar field. The CMB observations allow us to understand the

initial density perturbations from the large-scale universe. We can use it to investigate

the components of the structure as well as the nature of the universe (Harrison, 1970;

Peebles & Yu, 1970; Zel’Dovich, 1970).

The distribution of the mass in the universe can be quantified by the density pertur-

bations as a function of mass densities (ρ):

δ(x) =
ρ(x)− < ρ >

< ρ >
(1.18)

At early times, the perturbation scale depends on the expansion factor a(t).

δ(x) ∝ a(t) (1.19)

where a(t) is the expansion factor. The amplitude of the perturbation is affected

by gravity. For instance, the formation of stars, galaxies and clusters are caused by the

collapse of perturbation structure. The autocorrelation function of the density field which
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can be used to measure the clustering properties of the visible component of the density

field is defined as :

ξ(r) = 〈δ(x)δ(x+ r)〉 (1.20)

r is a separation between two local densities. The clustering of the luminous compo-

nents with the correlation function can link to the evolution of the galaxy. The dominant

peak of the luminous component may extend our understanding of how the dark matter

is distributed. The bias parameter, b, gives information on how dark matter is related to

the galaxy clusters (Kaiser, 1987).

1.2 Galaxy clustering and redshift-space distortions

Observing objects at high redshift provides a precise three-dimensional view of the uni-

verse (Kaiser, 1987). In cosmology, the third dimension is redshift not radial distance.

The measured redshift is not only affected by the expansion of the universe, but also

includes the effect of the peculiar velocities (da Angela, 2005). Redshift-space refers to

a map where radial distance estimates are based on redshifts which include the effect

of peculiar velocity. Real-space refers to the true positions of the measured object. In

an inhomogeneous Friedmann universe, peculiar velocities distort clustering of galaxies

in redshift space (Kaiser, 1987). These distortions are caused by the galaxy motions on

large-scales because the true mass distribution is affected by gravity (Guzzo, 1997).

Due to the effect of the random motions within the objects, the two-point correlation

function in redshift space differs from the correlation in real space. On small scales,

particles at the same distance tend to have a slightly different measured redshift. The

structures along the line-of-sight tend to be extended with respect to the observer, which

is called finger-of-God effect. At large scales, the peculiar motion due to gravitational

infall will make the objects on the far side of an overdensity appear closer and those on
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the near side appear further away, making the cluster appear flattened in the redshift

direction. These effects are called redshift-space distortion.

According to Kaiser et al. (1987), by calculating the infall parameter, β, from the

large-scale clustering in real and redshift space, the clustering of dark matter can be

revealed. The power spectrum distorted by the peculiar velocity field is defined as (Eq.

1.13 -1.17 in da Angela et al. 2005) :

Pgal(ks) = Pgal(kr)(1 + βµ2)2 (1.21)

Here we denote the real space coordinate as r and the redshift space coordinate as s. β

measures the increase in clustering from large-scales caused by redshift space distortions.

The cosine between the line-of-sight vector and velocity vector is defined as µ. The linear

redshift-space distortion derived by Kaiser et al. (1987) can be written as:

ξgal(s) = ξgal(r)(1 +
2

3
β +

1

5
β2) (1.22)

Then β is defined by

β =
f(Ωm(z),Ωλ(z), z)

b
(1.23)

The term bias, b, is related to the luminous matter clustering to the dark matter

(b2 = ξgal/ξmass) (da Angela, 2005).

In the case of flat universe, the growth structure can be defined as :

f ≈ Ωm(z)0.6 +
1

70
(1− 1

2
Ωm(z)(1 + Ωm(z))) (1.24)

or approximately
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f ≈ Ωm(z)0.6 (1.25)

In order to understand more of the effect of z-space distortions, we need to account

for the β parameter. The infall velocities can be derived by starting from Newtonian

Gravitation. Following Kaiser et al. 1987, the acceleration vector is given by

ar ≡
∫
Vr

d3r∆(r)
r

r3
(1.26)

where Vr is the survey volume and ∆(r) (=
δρm
ρm

) is the density contrast. Then from

linear theory, the peculiar velocity of the particle at the origin is

v = −2

3

Gρcrita

H0

f(Ω) (1.27)

Assuming a sphere of radius r for Vr, and
δρm
ρm

is constant in Vr. Solving the two

equations above to find v, the expression for the infall velocity of the biased particles is

v = −1

3
H0r Ω0.6 1

b

δρg
ρ̄g
r̂ (1.28)

Here we have also used ρcrit =
3H2

0

8πG
and

δρm
ρm

=
1

b

δρg
ρ̄g

. Since vHubble = H0r, this gives

vinfall

vHubble

= −1

3

δρg
ρ̄g
βr̂ (1.29)

for the infall velocity of a galaxy at a distance r from a centre of a spherical overdensity.

As pointed out by da Angela et al. (2005), there are several ways to evaluate β. For

instance, we can use the ratio of the correlation function in redshift and real space or we

can use the ratio of the quadrupole to monopole moments of the redshift-space correlation
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function. But in this thesis, we choose the simpler method, substituting ξ(s) and ξ(r)

values into the equation, ξgal(s)/ξgal(r) = (1 +
2

3
β +

1

5
β2). From this equation, the infall

parameter can be derived.



Chapter 2
Galaxy Evolution and

Feedback via Lyman

Break Galaxies

To understand the evolution of the Universe, we need to look back to the initial

state of the Universe which can be linked to what we see today. For instance, we can

observe galaxies at high-redshift to understand their formation and evolution. This will

let us understand more about early star formation activity in the Universe as well as the

physical processes of cosmic reionization in the IGM.

2.1 The Universe at high redshift

In order to examine the evolution of stars and galaxies, we need to observe the young

Universe. It is interesting to study the galaxies at high-redshift. The higher redshift, the

younger the Universe. We will improve our understanding of the formation and evolution

of galaxies if we can actually observe them at high redshift. The problem is, how can we

detect them?. Before the mid 90s, it was difficult to identify the high-redshift galaxies.

Very distant galaxies are faint since they emitted their light at a large distance. Moreover,

it was also hard to recognise their absorption and emission spectral features.

Thanks to the developments in instrumentation, it is now easier to explore star forming

galaxies in the high-redshift Universe. In recent years, we can observe sources at very high-

redshift. As shown in Figure 2.1, the spectrum of a very high-redshift QSO at z = 6.43, a

11
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9. The Universe at High Redshift
In the previous chapter we explained by what means
the cosmological parameters may be determined, and
what progress has been achieved in recent years. This
might have given the impression that, with the deter-
mination of the values for Ωm, ΩΛ, etc., cosmology is
nearing its conclusion. As a matter of fact, for several
decades cosmologists have considered the determina-
tion of the density parameter and the expansion rate of
the Universe their prime task, and now this goal has
seemingly largely been achieved. However, from this
point on, the future evolution of the field of cosmology
will probably proceed in two directions. First, we will
try to uncover the nature of dark energy and to gain new
insights into fundamental physics along the way. Sec-
ond, astrophysical cosmology is much more than the
mere determination of a few parameters. We want to
understand how the Universe evolved from a very prim-
itive initial state into what we are observing around us
today – galaxies of different morphologies, the large-
scale structure of their distribution, clusters of galaxies,
and active galaxies. We seek to study the formation of
stars and of metals, and also the processes that reionized
the intergalactic medium.

The boundary conditions for studying these pro-
cesses are now very well defined. A few years ago,
the cosmological parameters in models of galaxy evo-
lution, for instance, could vary freely because they had

Fig. 9.1. Spectrum of a QSO at the high red-
shift of z = 6.43. Like many other QSOs
at very high redshift, this source was dis-
covered with the Sloan Digital Sky Survey.
The spectrum was obtained with the Keck
telescope. The redshifted Lyα line is clearly
visible, its blue side “eaten” away by in-
tergalactic absorption. Almost all radiation
bluewards of the Lyα line is absorbed, with
only the emission from the Lyβ line still
getting through. For λ ≤ 7200 Å the spectral
flux is compatible with zero; intergalactic
absorption is too strong here

not been determined sufficiently well at that time. Today,
a successful model needs to come up with predictions
compatible with observations, but using the parameters
of the standard model. There is little freedom left in
designing such models. In other words, the stage on
which the formation and evolution of objects and struc-
ture takes place is prepared, and now the cosmic play
can begin.

Progress in recent years, with developments in in-
strumentation having played a vital role, has allowed us
to examine the Universe at very high redshift. An obvi-
ous indication of this progress is the increasingly high
maximum redshift of sources that can be observed; as
an example, Fig. 9.1 presents the spectrum of a QSO at
redshift z = 6.43. Today, we know quite a few galaxies
at redshift z > 6, i.e., we observe these objects at a time
when the Universe had less than 10% of its current age.
Besides larger telescopes, which enabled these deep im-
ages of the Universe, gaining access to new wavelength
domains is of particular importance for our studies of the
distant Universe. This can be seen, for example, from
the fact that the optical radiation of a source at redshift
z ∼ 1 is shifted into the NIR. Because of this, near-
infrared astronomy is about as important for galaxies
at z ! 1 as optical astronomy is for the local Universe.
Furthermore, the development of submillimeter astron-
omy has provided us with a view of sources that are

Figure 2.1: (from Schneider, 2006): Spectrum of a QSO at z = 6.43 which was detected by

the Sloan Digital Sky Survey. We can see the redshifted Lyα line clearly. Most radiation

bluewards of the Lyα line is absorbed but Lyβ emission line still getting through. The

spectral flux is almost zero at the wavelength below 7200 Å. This shows a very strong

absorption due to Lyman limit at 912 Å.

time when the Universe was only ≈ 1 Gyrs old, can be observed (Schneider, 2006). There

are several strategies to detect high-redshift galaxies (Nilsson, 2007). One of the most

useful tools is Lyman Break Galaxy selection.

2.2 The Lyman-Break Method

The Lyman Break technique allows us to understand more about the properties of the

high-redshift galaxy populations (Pettini, 2007), which can be linked to what we have

seen today. Galaxies at interesting redshifts can be chosen by a photo-metric selection

method. It was first measured and used successfully in the mid-1990s by Steidel et al.

(1992) to collect and identify high-redshift quasars (Pettini, 2007). They used this method
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Figure 2.2: (from Schneider, 2006): The histogram shows the synthetic spectrum of a

galaxy at z = 3.15. The spectrum shows a break at λ ≤ 912(1 + z)Å. The transmission

curves of three broad-band filters are illustrated by dotted lines. From Un GR filter,

Lyman Break will have redder colour in show Un-R filter and blue colour in G-R.

to observe galaxies at z ≈ 3 and search for Lyman absorption systems from QSOs line-

of-sight. Galaxies at z ≈ 3 were identified using deep optical imaging in the U, G and R

bands.

From the fact that the most abundant ion in the Universe is neutral hydrogen at

ground state, light at wavelengths shorter than 912 Å is heavily absorbed by hydrogen

and it is very difficult to escape from a galaxy. This absorption makes a break, called a

Lyman Break, in the spectrum of galaxies. We can determine the redshift of the light

from a source by this Lyman break. The cut-off energy represents the ionization from

the single electron of a hydrogen atom. This also happens in intergalactic absorption.

QSO spectrum has a Lyα forest and Lyman-limit absorption features. At λ < 1216Å, the

high-redshift source will emit photons in its continuum and these photons will be neutral

absorbed by intergalactic gas. This also happens to all source photons at λ < 912Å in

the rest-frame wavelength. In conclusion, a break feature in high-redshift galaxy spectra

can be detected at 1216 Å. Moreover, the intergalactic absorption and the interstellar
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Blue Filter Red Filters Redshift range

U B, G, R, V 2.5-3.5

B G, R, V 3.5-4.5

V i, z 4.5-6.0

i z, J 6.0-7.5

Z J, H, Ks 7.5-11.5

J H, Ks 11.5-15.5

Table 2.1: (from Nilsson, 2007): The filters that can be used in Lyman Break technique

at different redshift.

medium absorption from galaxies themselves suppress the fraction of ionizing photons at

λ < 912Å. This is a reason why such a small fraction of this ionizing radiation is detected

(Schneider, 2006).

Using these facts, a detection of galaxies at redshift higher than z = 3 can be made.

Three broad-band filters are usually applied to non-overlaping wavelengths, λ1 ±∆λ1 ≤

λ2 ± ∆λ2 ≤ λ3 ± ∆λ3. If central wavelengths λ1 ≤ (1 + z)912Å ≤ λ2, we should see a

galaxy containing young stars moves bluewards to the filters λ2 and λ3 (see Figure 2.2) and

disappears in λ1 filter because of the absorption (Schneider, 2006). As mentioned above,

galaxies selected like this one are termed Lyman Break Galaxies (LBGs). The Lyman

Break method has been applied to several redshifts as shown in Table 2.1. Different

selections can be made with the different filters.
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Figure 2.3: (from Adelberger, 2003): shows three types of lines to indicate the redshifts.

First, nebular emission lines from hot gas around stars which are detected through the

near-IR spectroscopy of 27 LBGs tend to have higher redshifts than interstellar medium.

Second, interstellar medium absorption lines, which are generated by outflowing, tend to

have lowest redshifts. Third, Lyα has highest redshifts. At the backside of the outflowing

material, Lyα photons that scattered off were detected. Adelberger et al. (2003) suggest

that the true redshifts are indicated by nebular lines since the gas which is depend on

nebular emission and hot stars should be in the same region. The systemic redshift of

the galaxy from its rest-frame spectrum was estimated by using the correlations between

nebular line redshifts and UV spectral characteristics from 27 LBGs.
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Figure 2.4: (from Pettini, 2007): shows the outflows in star-forming galaxies. Interstellar

absorption lines tend to have blue-shift relative to the systemic velocity of the stars since

they may be blown out by the wind. Whereas in emission regions, the Lyα emission line

tend to have the higher redshifts.

2.3 Feedback of Star-Forming Galaxies: winds and

outflows

Observations show that different galaxy absorption and emission lines give different red-

shifts (Pettini, 2007). Lyman-break galaxy (LBG) redshifts can be measured by consid-

ering interstellar absorption, nebular emission, and Lyα emission (see Figure 2.3). The

nebular emission lines from hot gas around stars tend to have the higher redshifts. In-

terstellar medium absorption lines, which are generated by outflowing gas, tend to have
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lowest redshifts or blue-shifted relative to the systemic velocity (see Figure 2.4). The Lyα

emission line and the interstellar absorption line are several hundred kms−1 different in

velocity. This is suggested to be evidence for feedback or modulation of the efficiency

of star formation (Pettini, 2007). Feedback is a key factor of current models of galaxy

formation. Many models need feedback to regulate the star formation activity and also

limit the number of low-mass galaxies production. The cosmological smoothed particle

hydrodynamics (SPH) simulations from Springel & Hernquist (2003) show that galactic

outflow from supernova feedback is the important part to recreate the star formation.

Models without some sort of feedback may produce too small disk galaxies and create too

strong X-Ray background (Theuns 2002 and Bielby 2008).

These large-scale outflows lead us to think about their effects on galaxies and their

surroundings. Some suggest that outflows can be used to explain the metallicity relation

and the relationship between gas fraction and metallicity. More observations may help

us to understand more about how supernova kinetic energy affects the ambient ISM or

what is the relation rate of gas inflow and outflow (Pettini, 2007). Many studies are also

trying to study the effect of galaxy-wide winds on the metal in IGM by looking at the

properties of galaxies seen from line-of-sight of background QSOs.

2.4 Lyα-LBG cross correlation

A survey at redshift z ∼ 3 is interesting for many reasons. Firstly, it is not difficult to

identify the galaxies at z ∼ 3 using deep imaging. Moreover, a strong absorption line

generated by intergalactic gas can be observed from the ground in optical high-resolution

spectra of background QSOs. It has been suggested from Adelberger et al. (2003) that

we may see the supernova-driven wind at high redshift, where galaxies have a higher star

formation rates and were less massive than at low redshift.

Adelberger et al. (2003 and 2005) conducted significant observations to study the
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Figure 2.5: (a : left) Adelberger et al. (2003) illustrates the mean Lyα transmissivity as a

function of comoving distance in Mpc from LBG. The mean flux increases and reaches the

mean transmissivity of 0.67 at r > 6h−1 comoving Mpc. However, in the spectral samples

that lie within 0.5 h−1 comoving Mpc from LBG, the flux decreases. This implies that at

a distance close to LBGs, IGM contain less neutral hydrogen. This lead to the possible

reason that feedback winds may heat up and evacuate the Lyα clouds. (b : right) shows

A05 cross-correlation of Lyα-LBG along the line of sight to 23 QSOs. The flux increases

and reaches the mean transmissivity of 0.765 at r > 6h−1 comoving Mpc. It continues to

decline with respect to more nearly galaxies at r < 2h−1 Mpc.
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effect of galactic winds on the IGM (see Figure 2.5). They used high resolution spectra

of six background QSOs at z ∼ 3 to study the correlation function of LBGs and their

correlation with Lyα and CIV absorption systems. They found a decrease in flux at

the distance near LBGs (r < 0.5h−1 comoving Mpc). These implied a lack of neutral

hydrogen near these galaxies.They claimed this result to be evidence of superwinds from

star-forming galaxies. Two years later, they found a different result using the similar

observations with a better statistical significance. The later result showed strong Lyα

absorption close to LBGs.

Based on Adelberger’s observations, the proximity effect, the lack of Lyα absorption

near the background QSO (Rauch, 1998), is still an issue, since it is still unclear whether

galactic winds have effects on the galaxy and its surroundings or not. This motivation

from the results of Adelberger et al. (2003, 2005) leads us to try to extend their work on

the correlation between QSOs and LBGs at high redshift.

2.5 Thesis outline

In this thesis, we aim to study the clustering properties of galaxies at z ≈ 3 and the

relationship between galaxies and the IGM at these redshift by measuring their correlation

function. The structure of the rest of this thesis is as follows. We have already described

backgrounds of modern cosmology in Chapter 1 and the backgrounds of galaxy evolution

and feedback in this Chapter. In Chapter 3, we use the combination data from the VLT

LBG Survey (Bielby, 2008) and Steidel et al. (2003) to perform LBG-LBG correlation

function. We aim to (a) roughly estimate β from
ξ(s)

ξ(r)
, (b) estimate LBG bias factor in

standard cosmology at z = 3. In Chapter 4, we use Lyα-LBG correlation function and

LBG-CIV correlation function to study the interaction between galaxies and the IGM

at z ∼ 3. We attempt to (a) investigate the effect of feedback on the LBG-Lyα cross

correlation, (b) also look at metal lines in the QSO spectra. We want to compare the

LBG-CIV cross-correlation with LBG-LBG ξ(s) to see if they are distributed like LBG.
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In Chapter 5, we employ simulations to create Lyα spectra and Galaxies in order to

calculate Lyα-LBG cross-correlation using the same method in Chapter 4. Our main

aims in Chapter 5 are therefore to study (a) LBG-LBG ξ(s) to see if we can detect the

effects of peculiar velocities and possibly feedback by comparing real and redshift space

correlation function, (b) LBG-Lyα ξ(s) to understand more about outflow and feedback.

Chapter 6 provides the conclusions from this work.



Chapter 3
LBG-LBG correlation

function

3.1 Introduction

The clustering properties of galaxies at z ≈ 3 and the relationship between galaxies and

the IGM at this redshift are studied by considering their correlation function. We aim to

(a) roughly estimate β from ξ(s)/ξ(r) and hence estimate the LBG bias factor, b, in the

standard cosmology at z = 3.

3.2 The LBG data

The LBGs used in the calculation are obtained from the observation of Bielby et al.

(2008). They observed LBGs that are located around five fields of bright QSOs which

are Q0042-2627 (z = 3.29), SDSS J0124+0044 (z = 3.84), HE0940-1050 (z = 3.05), SDSS

J1201+0116 (z = 3.23) and PKS2126-158 (z = 3.28). The details are summarized in Table

3.1, Table 3.2 and Table 3.3. The complete data can be found in Bielby et al. (2008). In

total we have 1109 LBGs at 2 < z < 3.5. We also included LBGs from the Steidel et al.

(2003) Keck samples. There are 813 LBGs at redshift 2.67≤ z ≤ 3.25 in this sample (see

Table 3.4).

21
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Name R.A. Dec Facility

Q0042-2627 11.1414583 -26.1888611 CTIO/MOSAIC2,

VLT/VIMOS

SDSS J0124+0044 21.0157089 0.7424445 CTIO/MOSAIC2

HE0940-1050 145.722500 -11.0736113 CTIO/MOSAIC2

SDSS J1201+0116 180.434880 1.2698889 KPNO/MOSAIC,

VLT/VIMOS

PKS2126-158 322.300625 -15.644674 CTIO/MOSAIC2

Table 3.1: (from Bielby 2008): The centres of five spectroscopic fields and the imaging

data sources.

3.3 Redshift Space Correlation Function

The probability of finding the clustering of a galaxy population at redshift-space separa-

tions is measured by the redshift-space correlation function, ξ(s).

ξ(s) =
Nr

Ng

< DD(s) >

< DR(s) >
− 1 (3.1)

where < DD(s) > is the average number of LBG-LBG pairs. < DR(s) > is the

number of pairs of LBG-random LBG at the separation, s. The factor Nr/Ng is the ratio

of the number of random and data points.

As mentioned above, we used observed LBG data from Bielby et al. (2008) and Steidel

et al. (2003). The total number of LBGs from both surveys is 1922 in 1.56 deg2. Random

LBGs are also obtained from Bielby et al. (2008). They generated random LBGs for

each field, consistent with the overall observed LBGs. A weight function is applied to DD

pairs at the θ separation within 2
′

to account for slit-slit overlaps in the VIMOS LBG
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Name Sub-field R.A. Dec

Q0042-2627 f1 11.2964163 -26.0727787

Q0042-2627 f2 10.9887505 -26.0727787

Q0042-2627 f3 11.2931252 -26.3185825

Q0042-2627 f4 10.9832087 -26.3211384

SDSS J0124+0044 f1 21.1742496 0.8718889

SDSS J0124+0044 f2 20.8835831 0.8703055

SDSS J0124+0044 f3 20.8803749 0.6172222

SDSS J0124+0044 f4 21.1744175 0.6142778

HE0940-1050 f1 145.53342 -11.1372776

HE0940-1050 f2 145.83971 -11.1430559

HE0940-1050 f3 145.83992 -10.9088335

SDSS J1201+0116 f1 180.55838 1.1527500

SDSS J1201+0116 f2 180.29170 1.1527500

SDSS J1201+0116 f3 180.29184 1.4027222

SDSS J1201+0116 f4 180.55862 1.4022223

PKS2126-158 f1 322.49820 -15.5250559

PKS2126-158 f2 322.19250 -15.5249720

PKS2126-158 f3 322.50171 -15.7884169

PKS2126-158 f4 322.19278 -15.7866392

Table 3.2: (from Bielby 2008): The details of spectroscopic data of sub-fields.
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Field Subfields z >2 galaxies z> 2.0 QSOs z<2 galaxies stars

Q0042-2627 4 343 (0.38deg−2) 1 83 3

SDSS J0124+0044 4 255 (0.28deg−2) 0 51 16

HE0940-1050 3 180 (0.27deg−2) 0 26 33

J1201+0116 4 133 (0.15deg−2) 5 122 63,

PKS2126-158 4 238 (0.27deg−2) 3 24 115

Total 19 1149(0.27deg−2) 9 306 227

Table 3.3: (from Bielby 2008): The summarized observational data of VLT VIMOS LBGs.

observation. After doing this, we obtained the original correlation function at θ ≈ 0.1
′
.

The weighted function is defined in Bielby et al. (2008) as:

W (θ) =
1

1− 0.0738θ−1.052
(3.2)

This was obtained by comparing the 2-D correlation function of the input galaxy

catalog with the correlation function of the galaxies targeted with slits.

3.4 Results

The LBG-LBG ξ(s) from the VLT survey, the Keck survey, and the Bielby et al. (2008)

VLT calculation are shown in Figure 3.1 (a). The error bars are calculated by Poisson

error estimates, as ∆ξ(s) =
1 + ξ(s)√

DD
. Comparing the results from the VLT LBG data,

our calculation (filled circles) shows the same clustering as Bielby et al. 2008 (open

diamonds) especially at the separation s > 8h−1Mpc but it shows slightly lower clustering
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Field Dimensions (arcmin2) Number of LBGs

Q0000-263 3.69 ×5.13 15

CDFa 8.80×8.91 34

CDFb 9.05×9.10 20

Q0201+1120 8.69 ×8.72 21

Q0256-000 8.54×8.46 42

Q0302-003 6.50 ×6.90 40

B20902+34 6.36×6.57 30

Q0933+2854 8.93×9.28 58

HDF-N 8.62×8.73 53

Westphal 15.0×15.1 176

Q1422+2309 7.28×15.5 109

3C 324 6.65×6.63 11

SSA22a 8.74×8.89 50

SSA22b 8.64 ×8.98 35

DSF2237a 9.08×9.08 39

DSF2237b 8.99 ×9.08 42

Q2233+1341 9.25×9.25 38

Total 0.38deg−2 813

Table 3.4: LBG survey of Steidel et al. (2003).
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Figure 3.1: a) top : The LBG-LBG ξ(s) from VLT data (this thesis : filled circles, Bielby

et al. (2008) : open diamonds) and Keck data (asterisks). The dotted line is the fit to the

Keck ξ(s) from da Angela et al. 2005 with γ = 1.71 and s0 = 5.1h−1 Mpc. b) bottom :

The VLT LBG-LBG ξ(s) from our results. The dashed line is ξ(r), fitted from combined

wp(σ) of Bielby et al. 2008 with γ = 1.8 and r0 = 3.63h−1 Mpc. The z−space distortions

model from da Angela et al. (2005), here assuming γ = 1.8, r0 = 3.63h−1 Mpc, β = 0.2,

and < w2
z >

1
2 = 650kms−1, is shown by blue solid line.
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Figure 3.2: a) top : The LBG-LBG ξ(s) from the Keck data (filled circles). The dashed

line is ξ(r) from wp(σ) of da Angela et al. 2005 with γ = 1.76 and r0 = 4.48h−1 Mpc. The

blue solid line shows the z−space distortions model from da Angela et al. (2005), here

assuming γ = 1.76, r0 = 4.48h−1 Mpc, β = 0.25, and < w2
z >

1
2 = 530kms−1. b) bottom :

The combined LBG-LBG ξ(s) (filled circles). The dashed line is ξ(r), fitted from combined

wp(σ) of Bielby et al. 2008 with γ = 1.8 and r0 = 3.63h−1 Mpc. The blue solid line is

plotted by assuming γ = 1.8, r0 = 3.63h−1 Mpc, β = 0.2, and < w2
z >

1
2 = 590kms−1.
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LBG data r0(h−1 Mpc) γ β < w2
z >

1
2 (kms−1)

VLT 3.63 1.8 0.2 650

Keck 4.48 1.76 0.25 530

VLT + Keck 3.63 1.8 0.2 590

Table 3.5: Fitting parameters for z−space distortions model from da Angela (2005).

below 8h−1Mpc. This may be caused by the correction of some LBG redshift estimates.

In our calculation, we use some updated LBGs redshift estimates. We then compared

the result from Keck data (asterisks) with the fit from da Angela et al. 2005 (dotted

line) who used 813 LBGs from Steidel et al. (2003) to calculate ξ(s). The dotted line is

plotted assuming γ = 1.71 and s0 = 5.1h−1 Mpc. At separations below 3h−1 Mpc, our

results show lower clustering than in da Angela et al. (2005) but we see higher clustering

at the distance > 3h−1 Mpc. This difference is possibly caused by the estimator that

we used to calculate ξ(s). We use the simple form of estimator as shown in Eq. (3.1),

while da Angela et al. (2005) used the Landy-Szalay estimator to calculate ξ(s). We also

compared our VLT result with the Keck result. We see lower clustering from the VLT

sample at scales < 10h−1 Mpc. It is possible that our higher redshift errors may cause

this difference. The error bars from the VLT results are higher than in Keck. We then

tested the effect of redshift errors by using the z−space distortions model from da Angela

et al. (2005) with the parameters shown in Table. 3.5. We used a combination of the

error on the spectral feature measurement to estimate the peculiar velocity. We combined

the uncertainties on the estimation of the intrinsic peculiar velocity (≈ 400kms−1), the

measurement error (≈ 150− 300kms−1), and the error caused by outflows (≈ 200kms−1)

respectively. We then have < w2
z >

1
2 =

√
4002 + 2(150)2 + 2(200)2 = 530kms−1 and

< w2
z >

1
2 =

√
4002 + 2(300)2 + 2(200)2 = 650kms−1 for the Keck and the VLT data

respectively. The peculiar velocity for the combined data is averaged from the Keck and

the VLT data which is < w2
z >

1
2 =
√

5302 + 6502 = 590kms−1.
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Figure 3.1 (b) shows our VLT results (filled circles) compared with fitting models.

The dashed line is ξ(r), fitted from combined wp(σ) of Bielby et al. 2008 with γ = 1.8

and r0 = 3.63h−1 Mpc. We plotted the blue solid line by using the z−space distortions

model from da Angela (2005). The model works by adding the effects of coherent large-

scale infall (β) to the real-space correlation function ξ(r) and then more importantly

adding the distribution of the small-scale pairwise peculiar velocities (< w2
z >

1
2 ). From

da Angela (2005), the ξ(σ, π) model is first calculated by using input power-law ξ(r),

infall parameter β and peculiar velocities < w2
z >

1
2 . Then ξ(s) is obtained by computing

the average ξ(σ, π) in constant annuli of radius s. We employed model I of da Angela et

al. (2005) by assuming γ = 1.8, r0 = 3.63h−1 Mpc, β = 0.2, and < w2
z >

1
2 = 650kms−1.

This velocity dispersion including measurement error comes from Bielby et al. (2008).

Similar to Figure 3.2 (a) and (b), we applied the z−space distortions model to the Keck

and the combined data respectively. The blue solid line in Figure 3.2 (a) is plotted by

using the ξ(r) fit of da Angela et al. 2005 with γ = 1.76, r0 = 4.48h−1 Mpc, β = 0.25,

and < w2
z >

1
2 = 530kms−1. Figure 3.2 (b) shows LBG-LBG ξ(s) from the combined data.

We see higher clustering with smaller error bars in the combined data. The blue solid

line is plotted by using γ = 1.8, r0 = 3.63h−1 Mpc, β = 0.2, and < w2
z >

1
2 = 590kms−1.

This average velocity dispersion comes from the peculiar velocity estimation of Keck and

VLT which have the value of < w2
z >

1
2 = 530, 650kms−1 respectively. We see less effects of

the peculiar velocity in the combined data compared to the VLT data because the better

redshift estimation in Steidel et al. (2003).

3.5 Estimating β

We next use the LBG-LBG correlation function in redshift and real space to measure the

infall parameter, β, at z = 3. The ratio of ξ(s)/ξ(r) gives a rough β by using the simpler

form of (da Angela, 2005):
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Figure 3.3: a) top: shows ξ(s) from the combined data (Bielby et al. 2008 and Steidel

et al. 2003) vs ξ(r), fitted from combined wp(σ) of Bielby et al. 2008 with γ = 1.8 and

r0 = 3.63h−1 Mpc. b) bottom : shows ξ(s)/ξ(r)as a function of separation, s.



3. LBG-LBG correlation function 31

ξ(s)

ξ(r)
= (1 +

2

3
β +

1

5
β2) (3.3)

where β ≈ Ω0.6
m /b

ξ(r) is obtained from Bielby et al. (2008) which has a power-law, ξ(r) = ( r
r0

)−γ , with

r0 = 3.63+0.47
−0.61h

−1Mpc and γ = 1.80. They obtained r0 and γ by measuring the projected

correlation function, wp(σ) for the combined data.

ξ(s) vs ξ(r) and ξ(s)/ξ(r) as a function of separation is shown in Figure 3.3. The

ξ(s) is calculated from the LBG combined data. ξ(r) is fitted from the combined wp(σ)

of Bielby et al. 2008 with γ = 1.8 and r0 = 3.63h−1 Mpc. The error bars are calculated

by combining in quadrature the ξ(s) and ξ(r) errors. At the scale 10h−1Mpc, the z-space

contribution is mostly only affected by β(z), the gravitational infall (da Angela, 2005).

Then we used 4 points of ξ(s)/ξ(r) at large scales between 10 - 40 h−1 Mpc to apply a χ2

fit. In Figure 3.3, the dashed line shows the best fit of ξ(s)/ξ(r). The region between the

dashed lines is the 1σ confidence interval in the fit. This fit produces an infall parameter

of β = 0.14+0.09
−0.05 at z = 3. We then have bias factor, b ≈ Ω0.6

m

β
≈ 6.8.

3.6 Conclusions

We have measured the LBG-LBG correlation functions by using LBG data from VLT and

Keck. The total VLT data is 1109 LBGs at 2 < z < 3.5. We also included 813 LBGs

at redshift 2.67≤ z ≤ 3.25 from Steidel et al. (2003) Keck samples. First, we considered

ξ(s) from the VLT data only. Our calculation shows agreement with that of Bielby et

al. (2008) from the same data. We have used some updated redshift estimates and

this might cause the lower clustering below 8h−1 Mpc compared to Bielby et al. (2008).

We then compared LBG-LBG ξ(s) from Keck data with the ξ(s) fit from da Angela et

al. 2005 who used the Steidel et al. (2003) LBG samples. We see lower clustering at

the distance below 3h−1 Mpc but higher clustering at the distance > 3h−1 Mpc. This
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difference is possibly caused by the estimator that we used to calculate ξ(s). We use

the simple form of estimator, ξ(s) = Nr
Ng

<DD(s)>
<DR(s)>

− 1, while da Angela et al. (2005) used

the Landy-Szalay estimator. Finally, we compared our VLT result with Keck result. We

see lower clustering from the VLT sample at scales < 10h−1 Mpc. The error bars from

VLT results are higher than in Keck. It is possible that our higher redshift errors may

contribute to this difference. We tested the effect of redshift errors by using the z−space

distortions model from da Angela et al. (2005) by assuming γ = 1.8, r0 = 3.63h−1 Mpc,

β = 0.2, and < w2
z >

1
2 = 650kms−1. We applied the same z−space distortions model

to the Keck LBG data with a different set of parameters, γ = 1.76, r0 = 4.48h−1 Mpc,

β = 0.25, and < w2
z >

1
2 = 530kms−1. Then we used the combined data from VLT and

Keck to calculate LBG-LBG ξ(s). The result from the combined data is consistent with

the ξ(s) from da Angela et al. (2005), where γ = 1.71 and s0 = 5.1 h−1 Mpc. We also

used the z−space distortions model from da Angela et al. (2005) to see the peculiar

velocity effects in ξ(s) correlation function. We employed this model by using γ = 1.8,

r0 = 3.63h−1 Mpc, β = 0.2, and < w2
z >

1
2 = 590kms−1. Comparing the VLT and the

combined data, we see less effects of the peculiar velocity in the combined data. This

is because of the better redshift estimation in Steidel et al. (2003). We also estimated

the infall parameter, β at z = 3 by using the power-law ξ(r) fitted from the combined

wp(σ) of Bielby et al. (2008) and the ξ(s) measurements from combined LBG data. By

computing and fitting ξ(s)/ξ(r), we get β = 0.14+0.09
−0.05 at z = 3 which gives bias factor

b = 6.8. This result agrees with Bielby et al. (2008) who get β = 0.21+0.13
−0.12 which was

estimated by fitting the power-law ξ(r) to the measurement of ξ(σ, π).



Chapter 4
Interaction between

galaxies and the IGM at

z ∼ 3

4.1 Introduction

In this chapter, we aim to (a) investigate the effect of feedback on the LBG-Lyα cross

correlation, (b) also look at metal lines in the QSO spectra. We also want to compare the

LBG-CIV cross-correlation with LBG-LBG ξ(s) to see if they are distributed like LBG.

4.2 The connection between LBGs and QSO Absorp-

tion Lines

Lyman-break galaxies are used as a powerful tool to study the galaxy-IGM interaction.

By considering the cross-correlation between Lyα-LBG and CIV-LBG, we can study the

effect of the feedback mechanism on large-scale structure evolution and galaxy formation

(da Angela, 2005). The mechanisms of supernova feedback and galactic winds, seem to be

the main reason for the enrichment in IGM (Kawata, 2007). The IGM may be heated by

galactic winds and accelerated to high velocities. Many models need feedback to regulate

the star formation activity (Bielby, 2008) and also limit the number of low-mass galaxies

that are produced (Theuns, 2002).

Based on Adelberger’s (2003 and 2005) observations, the proximity effect, the lack of

33
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Figure 4.1: (from Bielby, 2008): the VLT UVES, the Keck and the SDSS spectra of 6

bright QSOs. The observed spectra are shown as the black line and the continuum level

is indicated by the blue line. The open red stars are the wavelengths of the intrinsic Lyβ

while the filled red stars are the wavelengths of the intrinsic Lyα.

Lyα absorption near the background QSO, is still an open question. It is still unclear

whether galactic winds have effects on the galaxy and its surroundings or not. This

motivation from the results of Adelberger et al. (2003, 2005) leads us to try to extend

their work on the correlation between QSO absorption and LBGs at high redshift by using

VLT LBG data from Bielby et al. (2008). Here we reanalyze the results of Bielby et al.

(2008) by using different methods and error analysis.
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Figure 4.2: (from Bielby, 2008): shows the LBG distributions of five fields; Q0042-2627,

J0124+0044, HE0940-1050, J1201+0116 and PKS2126- 58, in R.A., Declination and red-

shift. The blue filled circles are the spectroscopically confirmed LBGs and the dark red

stars are the known QSOs. The red stars are the QSOs with the low-resolution spectra

from VLT VIMOS and AAT AAOmega and the red crosses are the medium-resolution

spectra from SDSS J1201+0116. The red squares represent QSOs with high-resolution

spectra from VLT UVES, Keck HIRES.
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Name R.A. Dec z Facility

Q0042-2627 11.1414583 -26.1888611 3.29 Keck

[WH09]0043− 265 11.3769999 -26.2860546 3.45 Keck

SDSS J0124+0044 21.0157089 0.7424445 3.83 UVES

HE0940-1050 145.722500 -11.0736113 3.06 UVES

SDSS J1201+0116 180.434880 1.2698889 3.23 SDSS

PKS2126-158 322.300625 -15.644674 3.27 UVES

Table 4.1: (from Bielby, 2008): Bright QSOs with high resolution spectra from the facili-

ties listed.

4.3 QSO Lyα - LBG cross correlation

4.3.1 Observational data

High Resolution QSO Spectra

We use the data from Bielby et al. (2008), who obtained 5 high resolution spectra from

bright QSOs and a medium resolution spectrum as summarised in Table 4.1. Three

QSOs, SDSS J0124+0044, HE0940-1050 and PKS2126-158, were taken by using Ultravi-

olet and Visual Echelle Spectrograph (UVES). A medium resolution spectrum of SDSS

J1201+0116 is taken from the Sloan Digital Sky Survey (SDSS). [WH09]0043− 265 and

Q0042-2627 are obtained by Keck/HIRES. The observed spectra from 6 bright QSOs are

shown in Figure 4.1. The LBG data used in this calculation are described in Chapter 3.

Figure 4.2 shows the distributions of LBGs that are located around five fields of bright

QSOs.
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Figure 4.3: Transmissivity < f
fcon

> of the Lyα forest measured in the high-resolution

spectra of 6 bright QSOs.

Low Resolution QSO Spectra

We use a combination of QSO data from the 6 QSO high-resolution spectra and 22 low-

resolution spectra. In total, we have 28 QSOs data from Bielby et al. (2008) as detailed

in Table 4.2 to calculate cross-correlation for low-resolution spectra. The QSOs spectra

are obtained from several measurements. As mentioned before the high-resolution QSOs

are from UVES, SDSS, and Keck/HIRES. The low-resolution QSOs that lie within 5′ are

obtained from the AAOmega instrument at the Anglo-Australian Observatory (AAO).

The ′Quasars near Quasars′ (QNQ) survey observed with FORS2 on the VLT are also

included.
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Name R.A. Dec z Facility

Q0042-2627 11.14145 -26.18886 3.29 Keck

[WH09]0043− 265 11.37699 -26.28605 3.45 Keck

LBQS 0041-2638 10.92837 -26.36963 3.05 AAT

SDSS J0124+0044 21.01570 0.74244 3.83 UVES

J012351+005958 20.96249 0.99961 2.59 AAT

HE0940-1050 145.72250 -11.07361 3.06 UVES

J094208-112856 145.53412 -11.48238 2.47 AAT

J094220-112215 145.58362 -11.37105 2.81 AAT

J094252-112707 145.71991 -11.45211 3.16 AAT

J094331-111949 146.00662 -11.33036 2.61 AAT

J094342-105231 145.92912 -10.87544 3.02 AAT

J094349-112800 145.95662 -11.46686 3.48 AAT

J094357-105435 145.99025 -10.90975 3.02 AAT

J094400-112732 146.00154 -11.45908 2.56 AAT

J094407-112632 146.03212 -11.44225 2.83 AAT

J094408-105039 146.03392 -10.84441 2.68 AAT

J09425-1048 145.62740 -10.81413 2.32 FORS2

J09427-1121 145.68512 -11.36080 2.96 FORS2

J09434-1053 145.85092 -10.89249 2.76 FORS2

SDSS J1201+0116 180.43488 1.26988 3.23 SDSS

SDSS J120055.77+013430.7 180.23238 1.57519 2.51 AAT

2QZ J120117.1+010045 180.32124 1.01261 2.38 AAT

SDSS J120210.55+011544.2 180.54396 1.26227 2.50 AAT

SDSS J120222.68+010120.1 180.59450 1.02225 2.28 AAT

SDSS J120138.56+010336.1 180.41066 1.06002 3.86 AAT

PKS2126-158 322.30062 -15.64460 3.27 UVES

J212904-160249 322.27042 -16.04694 2.92 AAT

J21301-1533 322.53110 -15.55580 3.49 FORS2

Table 4.2: Details of high-resolution and low-resolution QSO spectra.
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Figure 4.4: Transmissivity < f
fcon

> of the Lyα forest measured in the low-resolution

spectra of 22 bright QSOs.
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Figure 4.4: Transmissivity < f
fcon

> of the Lyα forest measured in the low-resolution

spectra of 22 bright QSOs
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4.3.2 Cross correlation

We use the transmissivity of the Lyα forest to calculate the Ly-LBG cross-correlation

function. We use:

T =
f

fcon
(4.1)

where f is the observed flux and fcon is the continuum in flux level from Lyα forest.

Then, we have to normalize the QSO transmissivities by using equation (6.2) from Bielby

et al. (2008) which was also used by Adelberger et al. (2003).

T̄ = 0.676− 0.220(z − 3) (4.2)

and

Tz =
T

T̄
(4.3)

This normalization is used to correct for the evolution of Lyα transmissivity with

redshift since the transmissivity is higher at low redshift.

We follow Bielby’s way of selecting data, many conditions need to be set before cal-

culating the cross-correlations. Firstly, we need to avoid the effect of contamination of

Lyα absorption lines by cutting out the spectrum below the Lyα emission. The spectrum

between the Lyβ and Lyα are only taken into this calculation. Secondly, to prevent the

proximity effects from the QSOs, the wavelength within 20 Å of the intrinsic Lyα emission

are also excluded. Thirdly, the spectrum of J1201+0116 is cut in the range z = 2.69 since

it contains a damped Lyλ systems. Finally, we also used S/N = fcon/
√
variance < 3 to

exclude poor QSO spectra. Figure 4.3 and Figure 4.4 show the transmissivity from high
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and low resolution spectra respectively. We used these transmissivity to calculate the

Lyα-LBG cross correlation function.

The Lyα-LBG cross correlation function was evaluated from

ξ(s) =
< DT (s) >

N(s)
(4.4)

where < DT (s) > is the number of galaxy-Lyα pairs weighted by the normalized trans-

missivity: Tz, for each separations. N(s) is the number of LBG that contribute in each

pairs. This is a different approach from Bielby et al. (2008) and Adelberger et al. (2003)

who use a correlation function approach based on the Landy-Szalay estimator.

4.3.3 Error estimators

We have considered three ways to estimate the error on the cross-correlation function:

1. The simplest way is the field-to-field standard error as used by Bielby et al. (2008).

The number of DT pairs in each separation are counted. We then obtain a mean value,

x̄, from DT divided by the number of fields. The standard error for mean value can be

defined as: α =
σN−1√
N

where σN−1 =

√√√√∑
i

(xi − x̄)2

N − 1
is the standard deviation. In this

case, x =< DT > and the number of field, N = 6 and 28 for high and low resolution

respectively. The problem of this error estimate is the standard deviation is weighted

depending on field. It is weighted equally for each field which does not take account of

the actual number of LBGs at a given separation.

2. The weighted mean method. Considering the number of pairs in individual fields

at the given separations. Then calculate a mean value, x̄ and standard error. The results

from each field are supposed to be xi ± αxi
. αxi

is the error calculated by standard
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Figure 4.5: The Lyα-LBG ξ(s) error bars calculated by method 1, 2, and 3 respectively.
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deviation in each given separation in each fields. The combined estimate of true value is:

x̄i,j,k,... =

∑
i

xi
αi2∑

i

1

αi2

(4.5)

The standard error is:

1

α2
x̄i,j,k,...

=
∑
i

1

αxi
2

(4.6)

In this case, x =< DT >, αxi
is the error calculated from each field, and N is the

number of fields that contributed to each bin. This method weights the final average

depending on the number of LBG data points that contributes to each bin so there are

no account from the fields that gave zero pair. The advantage of this method is instead

of using the standard deviation calculated from field-to-field variation which weights each

field the same, no matter how many LBGs at a given separation, now we calculate by

the weighted-error method which depends on the actual number of LBGs per field and in

each bin. The problem of this error estimator is the small number of LBG in the inner

bin. We only have 2 LBGs in the first separation bin from different field and this makes

it impossible to obtain αxi
from only 1 LBG.

3. The LBG-LBG error. At each bin, DT are added from all the Lyα transmissivity

pixels and LBGs. To get the average value of < DT >, the summation of DT in each

bin was divided by the number of LBGs. We then used the standard deviation from

LBG-LBG variation which depends on the different numbers of overall LBGs in a bin to

calculate the error bar. That is:

∆ξ(s) =
1√
N

√√√√√∑
i

(xi − x̄)2

N − 1
(4.7)
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where x= DT, x̄ =< DT > and N is the number of LBGs in each bin. This gets rid

of the problem of lower numbers of LBGs in the smallest separation bin in the previous

method.

Figure 4.5 shows the error bars calculated from three methods. Since the LBG-LBG

error method seems to give the best errors particularly at small scales, then generally our

errors will be based on this LBG-LBG error.

4.3.4 Results

From our results Figure 4.6, we present the LBG-Lyα transmissivity correlation function

compared to the results from Adelberger et al. (2003 and 2005). Bielby et al. (2008)

obtained 6 QSO sightlines with high resolution spectroscopy from VLT VIMOS LBG

Survey. The filled circles illustrate VLT VIMOS LBG Survey. The open diamonds show

the results of Adelberger et al. (2003) and Adelberger et al. (2005) in Figure 4.6 (a) and

Figure 4.6 (b), respectively. Our bin size is 0.5 h−1 Mpc and the error bars are calculated

by LBG-LBG error method. At distances greater than 3 h−1 Mpc, we found agreement

with both Adelberger et al. (2003 and 2005). The measured < flux/cont > increases

with separation and reaches the mean value at < flux/cont >≈ 0.65. At separations

below 3 h−1 Mpc, our results seem to have the same trend as Adelberger et al. (2003).

At s < 0.5h−1 Mpc from LBGs , we found a decrease in HI density like Adelberger et al.

(2003). However, there are only 2 LBGs at that separation.

Since we have small number of LBGs at distances within 3 h−1 Mpc, we are looking for

more QSO sightlines which may contribute more pairs at small separations from galaxies.

We therefore combined high and low resolution spectra and employed the same method

applied to obtain Lyα-LBG ξ(s) from 6 QSOs to calculate ξ(s) from 28 QSO spectra. The

results from the combined QSOs sightlines are shown in Figure 4.7. Similar to Figure 4.6,
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Figure 4.6: The Lyα transmissivity-LBG correlation from 6 QSO sightlines with high

resolution spectroscopy from VLT VIMOS LBG Survey. a) top: shows the comparison

with Adelberger et al. (2003). The pink solid line shows ξ(r) fitted to the simulation in

Figure 5.6 (c), with γ = 0.45 and r0 = 0.1h−1 Mpc. The blue solid line is the z−space

distortions model from da Angela et al. (2005), here assuming γ = 0.45, r0 = 0.1h−1 Mpc,

β = 0.2, and < w2
z >

1
2 = 460kms−1.b) bottom: shows the comparison with Adelberger et

al. (2005).
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Figure 4.7: The Lyα transmissivity-LBG correlation from 28 QSO sightlines a) top: shows

the comparison with Adelberger et al. (2003). b) bottom: shows the comparison with

Adelberger et al. (2005).
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Figure 4.8: a) top and b) bottom : The number of LBGs in each separation which

contribute to 6 QSO and 28 QSO sightlines calculation, respectively.
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our result from 28 QSOs is compared to the results of Adelberger et al. (2003) and

Adelberger et al. (2005) in Figure 4.7 (a) and Figure 4.7 (b), respectively. Here, we found

similar trends with the results from only 6 QSOs with high-resolution spectra.

The number of LBGs that contribute to each bin are presented in Figure 4.8 (a) and

(b) for the 6 QSO and 28 QSO calculation respectively. We still have only 2 LBGs in the

first bin and we have no additional LBG from low-resolution spectra to this bin. The low

resolution QSO spectra have only a small effect on the number of LBGs that contribute

to small separations.

We have checked the effect of using the velocity dispersions fitted to the LBG-LBG

ξ(s) to smooth the real space ξ(r) to obtain the z−space ξ(s) in Figure 4.6 (a). The pink

solid line shows a power law fitted with γ = 0.45 and r0 = 0.1h−1 Mpc to the simulation

in Figure 5.6 (c) below as a representation of the real-space cross-correlation function.

The blue solid line is an estimation of the z−space cross-correlation function based on the

real-space fit and the z−space distortion model of da Angela et al. (2005), with velocity

dispersions of < w2
z >

1
2 =

650√
2

= 460kms−1. Since 460kms−1 correspond to 4-5 comoving

Mpc at z = 3, we confirm that the smoothing effect of the velocity dispersions is quite

large at small scales and this will need to be taken into account in any future detailed

interpretation of these data. The question of the strength of the feedback we see in the

data will also be affected by this velocity smoothing but we leave this for later work.

4.4 QSO CIV- LBG cross correlation

Observing the metal absorption from QSO spectra in the Lyman alpha forest allow us to

investigate the impact of feedback on the intergalactic medium. Adelberger et al. (2005)

found that CIV and LBG are in the same part of the Universe and they are suggested

to be the same systems. They found a similar result for the LBG-CIV cross-correlation

function and the LBG-LBG auto-correlation function. These findings also inspired us to

extend their work on the CIV-LBG cross-correlation function.
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4.4.1 Observational data

The data used in the calculation are from Crighton et al. (2009, in preparation). The

CIV systems are contained from AAOmega, Williger, UVES and HIRES spectra. Multiple

systems are often observed in QSOs with the highest S/N and resolution spectra. In total,

we have 176 CIV systems from 60 QSOs as shown in Table 4.3. The summarized details

are shown in Table 4.3. Note that ew. stands for equivalent width.

4.4.2 Correlation function

The correlation function of LBG-CIV is calculated by

ξ(s) =
Nr

Ng

< DCIVDLBG(s) >

< DCIVRLBG(s) >
− 1 (4.8)

where < DCIVDLBG(s) > is the average number of pairs of CIV systems and LBG data.

< DCIVRLBG(s) > is the number of pairs of CIV system and random LBGs at the

separation s. The factor Nr/Ng is the ratio of the number of random and data points.

The error estimate on ξ(s) is calculated by Poisson error estimates, which is defined

as:

∆ξ(s) =
1 + ξ(s)√

< DCIVDLBG(s) >
(4.9)

4.4.3 Results

The results of the CIV-LBG correlation from VLT survey is shown in Figure 4.9. CIV-LBG

ξ(s) and LBG-LBG ξ(s) are presented by filled circles and open diamonds respectively.
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QSO name RA Dec z (QSO ) z (CIV doublet) ew

TS0417 145.6850 -11.3607 2.960 2.488 2.669

TS0417 145.6850 -11.3607 2.960 2.892 2.587

MC065102 145.9566 -11.4668 3.480 2.566 4.665

MC065102 145.9566 -11.4668 3.480 2.578 2.652

MC065102 145.9566 -11.4668 3.480 3.135 2.440

TS0292 145.6272 -10.8141 2.330 1.854 0.923

TS0292 145.6272 -0.8141 2.330 2.321 0.509

MC068682 146.0015 -11.4590 2.558 1.864 0.344

MC068682 146.0015 -11.4590 2.558 1.880 0.658

MC068682 146.0015 -11.4590 2.558 1.947 1.321

MC068682 146.0015 -11.4590 2.558 2.186 0.931

MC068682 146.0015 -11.4590 2.558 2.340 0.840

MC394567 146.0339 -10.8444 2.680 2.254 2.033

MC071514 145.7199 -11.4521 3.147 2.975 3.904

MC071514 145.7199 -11.4521 3.147 3.129 1.034

MC077364 146.0321 -11.4422 2.832 2.811 1.717

MC077364 146.0321 -11.4422 2.832 2.827 0.967

HE0940-1050 145.7229 -11.0738 3.054 2.220 0.991

HE0940-1050 145.7229 -11.0738 3.054 2.330 3.061

HE0940-1050 145.7229 -11.0738 3.054 2.408 0.357

HE0940-1050 145.7229 -11.0738 3.054 2.516 0.082

HE0940-1050 145.7229 -11.0738 3.054 2.613 0.057

HE0940-1050 145.7229 -11.0738 3.054 2.643 0.218

HE0940-1050 145.7229 -11.0738 3.054 2.667 0.641

Table 4.3: details of CIV systems
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QSO name RA Dec z (QSO ) z (CIV doublet) ew

HE0940-1050 145.7229 -11.0738 3.054 2.825 0.678

HE0940-1050 145.7229 -11.0738 3.054 2.826 1.629

HE0940-1050 145.7229 -11.0738 3.054 2.834 1.620

HE0940-1050 145.7229 -11.0738 3.054 2.860 0.085

HE0940-1050 145.7229 -11.0738 3.054 2.916 0.346

HE0940-1050 145.7229 -11.0738 3.054 2.937 0.133

HE0940-1050 145.7229 -11.0738 3.054 3.038 0.091

213054.400-160540 322.7266 -16.0945 2.578 2.230 5.384

212904.900-160249 322.2704 -16.0469 2.905 2.149 0.091

212904.900-160249 322.2704 -16.0469 2.905 2.163 3.747

212904.900-160249 322.2704 -16.0469 2.905 2.356 0.474

212904.900-160249 322.2704 -16.0469 2.905 2.436 0.250

212904.900-160249 322.2704 -16.04694 2.905 2.823 0.375

212904.900-160249 322.2704 -16.0469 2.905 2.847 0.652

[HB89]-2126-158 322.3006 -15.6446 3.268 2.394 1.662

[HB89]-2126-158 322.3006 -15.6446 3.268 2.459 0.316

[HB89]-2126-158 322.3006 -15.6446 3.268 2.485 0.086

[HB89]-2126-158 322.3006 -15.6446 3.268 2.553 0.161

[HB89]-2126-158 322.3006 -15.6446 3.268 2.637 2.277

[HB89]-2126-158 322.3006 -15.6446 3.268 2.678 0.695

[HB89]-2126-158 322.3006 -15.6446 3.268 2.727 0.371

[HB89]-2126-158 322.3006 -15.6446 3.268 2.768 3.366

[HB89]-2126-158 322.3006 -15.6446 3.268 2.819 0.590

[HB89]-2126-158 322.3006 -15.6446 3.268 2.907 0.543

[HB89]-2126-158 322.3006 -15.6446 3.268 2.963 0.313
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QSO name RA Dec z (QSO ) z (CIV doublet) ew

[HB89]-2126-158 322.3006 -15.6446 3.268 2.967 0.354

[HB89]-2126-158 322.3006 -15.6446 3.268 3.098 0.021

[HB89]-2126-158 322.3006 -15.6446 3.268 3.216 0.298

J21301-1533 322.5310 -15.5558 3.463 2.545 0.964

J21301-1533 322.5310 -15.5558 3.463 3.113 1.851

J21301-1533 322.5310 -15.5558 3.463 3.266 1.498

nbc012351+005958 20.9625 0.9996 2.590 2.510 2.154

SDSS-J0124+0044 21.0157 0.7424 3.807 2.833 0.876

SDSS-J0124+0044 21.0157 0.7424 3.807 2.866 0.081

SDSS-J0124+0044 21.0157 0.7424 3.807 2.910 0.701

SDSS-J0124+0044 21.0157 0.7424 3.807 2.942 0.110

SDSS-J0124+0044 21.0157 0.7424 3.807 2.986 1.943

SDSS-J0124+0044 21.0157 0.7424 3.807 3.065 1.500

SDSS-J0124+0044 21.0157 0.7424 3.807 3.148 0.114

SDSS-J0124+0044 21.0157 0.7424 3.807 3.187 0.135

SDSS-J0124+0044 21.0157 0.7424 3.807 3.000 1.186

SDSS-J0124+0044 21.0157 0.7424 3.807 3.548 1.793

SDSS-J0124+0044 21.0157 0.7424 3.807 3.673 2.420

SDSS-J0124+0044 21.0157 0.7424 3.807 3.765 0.660

SDSS-J12013+0103 180.4106 1.0600 3.839 3.794 5.871

2QZ-J120117+01004 180.3213 1.0127 2.380 1.656 2.675

2QZ-J120117+01004 180.3213 1.0127 2.380 2.041 1.125

SDSS-J12014+01161 180.4348 1.2699 3.202 2.515 0.560

SDSS-J12014+01161 180.4348 1.2699 3.202 2.651 0.253

SDSS-J12014+01161 180.4348 1.2699 3.202 2.665 0.855
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QSO name RA Dec z (QSO ) z (CIV doublet) ew

SDSS-J12014+01161 180.4348 1.2699 3.202 2.683 1.293

SDSS-J12014+01161 180.4348 1.2699 3.202 2.788 0.453

LBQS-0042-2627 11.1414 -26.1888 3.289 2.474 0.998

LBQS-0042-2627 11.1414 -26.1888 3.289 2.506 0.281

LBQS-0042-2627 11.1414 -26.1888 3.289 2.728 0.421

LBQS-0042-2627 11.1414 -26.1888 3.289 2.778 0.108

LBQS-0042-2627 11.1414 -26.1888 3.289 2.827 0.288

LBQS-0042-2627 11.1414 -26.1888 3.289 3.101 0.538

LBQS-0042-2627 11.1414 -26.1888 3.289 3.144 0.389

LBQS-0042-2627 11.1414 -26.1888 3.289 3.212 0.272

LBQS-0042-2627 11.1414 -26.1888 3.289 3.235 0.843

LBQS-0041-2638 10.9282 -26.3695 3.053 2.264 1.036

LBQS-0041-2638 10.9282 -26.3695 3.053 2.338 0.618

LBQS-0041-2638 10.9282 -26.3695 3.053 2.568 0.800

LBQS-0041-2638 10.9282 -26.3695 3.053 2.739 1.410

LBQS-0041-2638 10.9282 -26.3695 3.053 2.000 0.000

[WH091]-0043-265 11.3769 -26.2858 3.440 2.719 0.201

[WH091]-0043-265 11.3769 -26.2858 3.440 2.818 2.061

[WH091]-0043-265 11.3769 -26.2858 3.440 3.044 3.086

[WH091]-0043-265 11.3769 -26.2858 3.440 3.120 0.881

[WH091]-0043-265 11.3769 -26.2858 3.440 3.129 0.401

[WH091]-0043-265 11.3769 -26.2858 3.440 3.153 0.180

[WH091]-0043-265 11.3769 -26.2858 3.440 3.254 1.255

SDSS-J12014+01161 180.4348 1.2699 3.202 2.683 1.293

SDSS-J12014+01161 180.4348 1.2699 3.202 2.788 0.453

LBQS-0042-2627 11.1414 -26.1888 3.289 2.474 0.998

LBQS-0042-2627 11.1414 -26.1888 3.289 2.506 0.281

LBQS-0042-2627 11.1414 -26.1888 3.289 2.728 0.421
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QSO name RA Dec z (QSO ) z (CIV doublet) ew

LBQS-0042-2627 11.1414 -26.1888 3.289 2.778 0.108

LBQS-0042-2627 11.1414 -26.1888 3.289 2.827 0.288

LBQS-0042-2627 11.1414 -26.1888 3.289 3.101 0.538

LBQS-0042-2627 11.1414 -26.1888 3.289 3.144 0.389

LBQS-0042-2627 11.1414 -26.1888 3.289 3.212 0.272

LBQS-0042-2627 11.1414 -26.1888 3.289 3.235 0.843

LBQS-0041-2638 10.9282 -26.3695 3.053 2.264 1.036

LBQS-0041-2638 10.9282 -26.3695 3.053 2.338 0.618

LBQS-0041-2638 10.9282 -26.3695 3.053 2.568 0.800

LBQS-0041-2638 10.9282 -26.3695 3.053 2.739 1.410

LBQS-0041-2638 10.9282 -26.3695 3.053 2.000 0.000

[WH091]-0043-265 11.3769 -26.2858 3.440 2.719 0.201

[WH091]-0043-265 11.3769 -26.2858 3.440 2.818 2.061

[WH091]-0043-265 11.3769 -26.2858 3.440 3.044 3.086

[WH091]-0043-265 11.3769 -26.2858 3.440 3.120 0.881

[WH091]-0043-265 11.3769 -26.2858 3.440 3.129 0.401

[WH091]-0043-265 11.3769 -26.2858 3.440 3.153 0.180

[WH091]-0043-265 11.3769 -26.2858 3.440 3.254 1.255

[WH091]-0043-265 11.3769 -26.2858 3.440 3.371 0.452
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Figure 4.9: The comparison of CIV-LBG ξ(s) and LBG-LBG ξ(s), which are represented

by filled circles and open diamonds respectively. The straight line is the power law fit to

CIV-LBG correlation function by Adelberger et al. 2003, γ = 1.60 ± 0.20 and r0 = 3.17±

0.29 Mpc.
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The LBG ξ(s) is from the combined data of Bielby et al. (2008) and Steidel et al. (2003).

We see a similar trend between the auto-correlation function of galaxies with the cross-

correlation function of galaxies with CIV systems. The results show strong clustering at

small separations, although the errors are large for the CIV-LBG ξ(s). Both appear to

be power laws with agreement in fit parameters from Adelberger et al. 2003, γ = 1.60

± 0.20 and r0 = 3.17± 0.29 h−1 Mpc. The error bars are calculated from the Poisson

estimate. The error bars in LBG-LBG ξ(s) are smaller than in CIV-LBG ξ(s) because of

the large number of LBGs than CIV systems.

4.5 Conclusions

In this chapter, we used Lyα-LBG ξ(s) to investigate the interaction between the IGM

and galaxy at z ∼ 3. We calculated ξ(s) from the LBGs and the transmissivity in Lyα

forest from QSOs at high and low resolution spectra. All VLT data are obtained from

Bielby et al. (2008). We use different approaches to reanalyze the Lyα-LBG ξ(s) with

different ways of estimating errors. Instead of using the Landy-Szalay estimator, we use

the simpler form of ξ(s) = <DT (s)>
N(s)

. We have tried three methods of error estimation

as mentioned above and found that LBG-LBG error (method 3) seems to give the best

errors particularly at small scales. Our results are similar to Bielby et al. (2008) but

with slightly smaller error bars. Both results from high and low resolution spectra are

compared to Adelberger et al. (2003) and Adelberger et al. (2005). At small separations

(s < 3h−1 Mpc), our results are in good agreement with Adelberger et al. (2003) which

show a decrease in HI density. However, our results have the same trend as Adelberger

et al. (2003) and Adelberger et al. (2005) at larger scales, the transmissivity increases

and reaches the mean value at < flux/cont >≈ 0.65. There is not much difference in

ξ(s) calculated from high and low resolution QSO spectra. The results at small scale

are interesting since this lack of neutral Hydrogen at close distances to galaxies may

imply the existence of winds from star forming galaxies. However, the number of LBGs
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that contribute to small separations is still small. It is still difficult to state a definitive

conclusion for the effect from winds. More observations and more data are needed.

We also looked at the connection between LBGs and CIV systems. By looking at

CIV-LBG cross correlation and LBG-LBG correlation function, we see consistency from

both results. Both are well fitted by the power law from Adelberger et al. 2003, γ = 1.60

± 0.20 and r0 = 3.17± 0.29 Mpc. This implies that the CIV systems and LBGs may be

the same objects as they show the same clustering behaviour. As found by Adelberger et

al. (2003), the metals in the QSO spectra may be closely connected to the star-forming

galaxies themselves.



Chapter 5
Simulations

We employed gas dynamical simulations to create both Lyα spectra and galaxies

to compare the models with the data. Our main aims are therefore to study (a) the

LBG-LBG ξ(s) to see if we can detect the effects of peculiar velocities and possibly

feedback by comparing real and redshift space correlation function, (b) the LBG-Lyα

ξ(s) to understand more about outflow and feedback.

5.1 GIMIC simulations

The Millennium simulation is one of the largest simulations that contains dark matter

and was created by the Virgo consortium (Springel, 2005). It contains 1010 particles in

a large cube of side, L = 500 h−1 Mpc. This simulation only considers the gravity from

dark matter. However, at smaller scales the effects of baryons, such as feedback, will

be important. Hydrodynamic simulations are introduced to resolve this problem. They

include baryons and gas at small scales. The Galaxies-Intergalactic Medium Interaction

Calculation (GIMIC) simulation combines the Millennium simulation of dark matter at

large scales and hydrodynamic simulations of gas and baryons at small scales.

The idea of GIMIC is to select five regions of different density and then re-simulate the

conditions and densities in the Millennium simulation. GIMIC selects some regions from

the Millennium simulation, with either average, above or below average density. Then

they go back to the original initial conditions for this simulation box and resimulate,

adding many features such as star formation, gas cooling and photoionisation, chemical

and winds feedback (Crain, 2009). This is done at high resolution in the re-simulation

box whereas outside the box the simulation has lower resolution.

59
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There are five density regions of radius 18 h−1 Mpc which each deviate from the cosmic

mean in the GIMIC simulation, by −2σ, −1σ, 0σ, +1σ, and +2σ, where σ is the rms

mass fluctuation on a scale of ∼ 20 h−1 Mpc. The simulation parameters are: Ωm =

0.25, Ωλ = 0.75, Ωb = 0.045, H0 = 100hkms−1 Mpc−1 and h = 0.73. The simulation

contains many features such as star formation, gas cooling and photoionisation, chemical

and winds feedback. The features of the simulations are summarized briefly below.

Star Formation

The relation between star formation rate and gas column density can be observed by

studying nearby galaxies. When the density of gas particles is more than nH = 0.1cm−3,

the star formation algorithm will assume that the gas particles are unstable and then

convert them to stars. The equation of state P ∝ ρ
γeff
g with γeff = 4/3 is applied to these

regions. This change of equation of state is to take into account SNe exploding which will

add extra pressure to the gas. From the Kennicutt-Schmidt law (Kennicutt et al. 1998),

gas particles are converted into stars if their surrounding gas density is high enough. The

number of particles in the simulation is also converted by this means.

Gas cooling and photoionisation

The IGM is heated by a redshift dependent UV background from galaxies and quasars.

In the simulation, they assumed hydrogen reionises at redshift z = 9, and Helium II

reionises at redshift z = 3.5. The radiative cooling rates are computed on an element-

by-element basis. By assuming the gas to be in ionisation equilibrium and optically

thin, they used tables computed with CLOUDY (Ferland et al. 1998) to interpolate the

cooling contribution of 11 elements: H, He, C, N, O, Ne, Mg, Si, S, Ca and, Fe, as a

function of temperature, redshift, and gas density (Wiersma, 2009b). To calculate the

cooling rate, all metals from CLOUDY are summed with the contributions from H, He,

inverse Compton scattering and thermal Bremsstrahlung. During Hydrogen and Helium

II reionisation, the ionisation is assumed to be balanced but the heating rate is increased

to imitate non-equilibrium and radiative-transfer effects.
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Chemical and winds feedback

From many observations (Heckman et al. 1990; Martin et al. 1999; Pettini et al. 2002;

Adelberger et al. 2003; Shapley et al. 2003), feedback is believed to be the key factor of

enriching the IGM with metals. Adelberger et al. (2003) suggested that feedback from

supernovae disrupt the star formation. The simulation also includes the wind model. In

this simulation, they assume a mass-loading of η ≡ ˙mwind/ṁ? = 4 to recreate the peak

in star formation rate and a wind speed of vwind = 600kms−1. They assume that this

escaping wind can eject 80 per cent of heat from the supernova.

5.2 Galaxies from the simulation

The galaxies were made up from the particles that have been identified from the baryonic

content of dark matter haloes. The Friends-of-Friends algorithm (FoF) (Davis et al. 1995;

Lacey & Cole et al. 1994) is applied to group dark matter particles from the simulation

(see Crain et al. 2009 for more details). In the simulation, they then employed the

SUBFIND algorithm (Springel et al. 2001; Dolag et al. 2008) to identify a galaxy as the

set of baryonic particles, ie. gas and stars.

Galaxies are found in an 18 h−1 Mpc radius simulation volume and are defined to have

a stellar mass greater than 1 × 109h−1M� in each redshift snapshot. In this calculation,

we get total 5931 galaxies from snapshot019 (z = 3.06) in the 0σ density region. The

stellar mass is used to select the number of galaxies. We defined the LBGs by selecting

at stellar mass greater than 5 × 1010h−1M� but we only get 7 LBGs. Then we consider

smaller stellar mass to select the LBGs. We then use 4 sets of stellar mass which are

greater than 5 × 109h−1M�, 2 × 109h−1M�, 0.9 × 109h−1M�, and all stellar mass in the

simulation. Finally we get 117, 235, 508, and 5931 LBGs or rather galaxies.

The effect of redshift distortion also affects this simulation as shown in Figure 5.1.
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Figure 5.1: The position of galaxies at z = 3 in the x-z plane and y-z plane. The diamonds

show the position of galaxies in redshift space while the pink asterisk illustrate galaxies

in real space.
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Figure 5.2: a (left-top), b (right-top), c (left-bottom), and d (right-bottom) show average

velocity of galaxies from 117, 235, 508, and 5931 respectively. The average velocity

are 456.33 ± 67.70kms−1, 457.19 ± 94.23kms−1, 456.75 ± 134.77kms−1, and 455.35 ±

136.73kms−1 respectively.
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The diamonds show the position of galaxies in redshift space while the pink asterisks

illustrate galaxies in real space. The peculiar velocity makes the galaxies in redshift space

move to higher positions in z direction. This is because of bulk motion. The velocity

distributions of galaxies are shown in Figure 5.2. The average velocities of vx, xy, vz in

x, y, z direction and standard deviation are 456.33 ± 67.70 kms−1, 457.19 ± 94.23 kms−1,

456.75 ± 134.77 kms−1, and 455.35 ± 136.73 kms−1 for 117, 235, 508, and 5931 LBGs

respectively.

5.3 Lyman alpha absorption lines

In order to calculate the galaxy-Lyα cross-correlation function, we use GIMIC to generate

many sightlines in each snapshot. The sightlines were extracted by using SPECWIZARD

programme performed by J. Schaye, C. Booth and T. Theuns (see Shone, 2009). There are

many parameters in the SPECWIZARD programme such as the metallicity in the IGM,

the scaling of the Haardt and Madau (2001) UV background, that need to be adjusted.

There are 11 elements; H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe, that contribute in this

code. We only use the absorptions from the Lyα transition of H I.

The number of sightlines: we need many sightlines to compare with the observations.

The simulation can generate 675 sightlines in each redshift snapshot. Since the box size

is not big, many sightlines may be oversampled. As a result, we use only 50 sightlines in

our calculations. Figure 5.3 presents the position of random sightlines and galaxies in the

x-y plane.

In the Lyα-LBG ξ(s) calculation, we use the transmissivity of Lyα forest which are

T =
f

fcon
(5.1)

where f is the measured flux and fcon is the continuum in flux level from Lyα forest.
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Element ni/nH Mass Fraction

H 1 0.7065

He 0.1 0.2806

C 2.46 × 10−4 2.07 × 10−3

N 8.51 × 10−5 8.36 × 10−4

O 4.90 × 10−4 5.49 × 10−3

Ne 1.00 × 10−4 1.41 × 10−3

Mg 3.47 × 10−5 5.91 ×10−4

Si 3.47 × 10−5 6.83 × 10−4

S 1.86 × 10−5 4.09 × 10−4

Ca 2.29 × 10−6 6.44 × 10−5

Fe 2.82 × 10−5 1.10 × 10−3

Table 5.1: (from Wiersma 2009b): The contribution of 11 elements to the radiative cooling

at T > 104.

The transmissivities from each sightline are shown in Figure 5.4.

5.4 LBG -LBG ξ(s)

We calculate ξ(s) and ξ(r) from galaxies in redshift and real space respectively. The

correlation function was calculated at z = 3.06 at 0σ. We employed the estimation

methods used in previous chapter.

ξ(s) =
Nr

Ng

< DD(s) >

< DR(s) >
− 1 (5.2)
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Figure 5.3: The position of random sightlines and galaxies in the x-y plane. The filled

circles show the position of 50 sightlines while the pink asterisk illustrate galaxies.

where < DD(s) > is the average number of LBG-LBG pairs. < DR(s) > is the number

of pairs of LBG-random LBGs at the separation s. The factor
Nr

Ng

is the ratio of the

number of random to data points. The errors are estimated by the Poisson error estimate

as described in Chapter 3.

5.4.1 Result

Figure 5.5 shows the LBG-LBG correlation function from our simulations. The error bars

are calculated by Poisson error estimate as mentioned in Chapter 3. The diamonds show

LBG-LBG ξ(s) results from galaxies in redshift space while the pink asterisks illustrate

the results from galaxies in real space. The pink lines are roughly estimated power law
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Figure 5.4: The transmissivity from each sightline.
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Figure 5.4: The transmissivity from each sightline.
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Figure 5.4: The transmissivity from each sightline.

Number of LBGs r0 γ β < w2
z >

1
2

117 4.2 2.1 0.15 55.27

235 4.0 2 0.17 76.91

508 3.9 1.8 0.14 110.06

5931 1.7 1.6 0.014 111.62

Table 5.2: Our ξ(r), infall and pairwise velocity dispersion parameters to be used in the

z−space distortions model from da Angela et al. (2005) for our Lyα-LBG ξ(s) and ξ(r)

in Figure 5.5. < w2
z >

1
2 is the pairwise, 1-D velocity dispersion.
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Figure 5.5: a (top) and b (bottom) show LBG-LBG ξ(s) with 117 and 235 LBGs respec-

tively. The diamonds show results from galaxies in redshift space while the pink asterisks

illustrate the results from galaxies in real space. The pink lines are roughly estimate

power law fit with a) γ = 2.1 and r0 = 4.2 Mpc, b) γ = 2.0 and r0 = 4.0 Mpc. The blue

line is the fit from z−space distortions model from da Angela (2005) using our parameters

from Table 5.2.
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Figure 5.5: c (top) and d (bottom) show LBG-LBG ξ(s) with 508 and 5931 LBGs respec-

tively. The diamonds show results from galaxies in redshift space while the pink asterisks

illustrate the results from galaxies in real space. The pink lines are roughly estimate

power law fit with c) γ = 1.8 and r0 = 3.9 Mpc, d) γ = 1.6 and r0 = 1.7 Mpc. The blue

line is the fit from z−space distortions model from da Angela (2005) using our parameters

from Table 5.2.
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fit with a) γ = 2.1 and r0 = 4.2 Mpc, b) γ = 2.0 and r0 = 4.0 Mpc, c) γ = 1.8 and r0 =

3.9 Mpc, and d) γ = 1.6 and r0 = 1.7 Mpc. The < w2
z >

1
2 and β are shown in Table 5.2.

β comes from the rough estimate ξ(s)/ξ(r) as calculated in Chapter 3. The blue lines are

plotted by using our parameters for the z−space distortions model in da Angela et al.

(2005).

In each plot, ξ(r) in real space and ξ(s) in redshift space show the same trend and

tend to appear as a power law at large scales. At small separations (s < 1h−1Mpc), the

LBG-LBG ξ(s) in redshift space have lower clustering than ξ(r), while ξ(s) at larger scales

appears to have higher clustering. This may imply the main effect in redshift space that

affects the clustering on small scales comes from the peculiar velocity dispersion < w2
z >

1
2 .

As described in Chapter 3, we used our parameters to the z−space distortions model from

da Angela et al. (2005) to test the effects of peculiar velocities at small scales. Figure 5.5

shows that the < w2
z >

1
2 is consistent with ξ(r) and ξ(s).

5.5 Lyα-LBG ξ(s)

As discussed in Chapter 4, Lyα-LBG cross correlation function was evaluated from

ξ(s) =
< DT (s) >

N(s)
(5.3)

where < DT (s) > is the number of galaxy-Lyα pairs weighted by the transmissivity:

T for each separation. N(s) is the number of LBGs that contribute in each pairs. The

LBG-LBG error estimate as described in Chapter 4 was used in this calculation.
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Figure 5.6: a (top) and b (bottom) show Lyα-LBGs ξ(s) from LBG in real space (pink

asterisks) vs LBG in z−space (open diamonds) with 117 and 235 LBGs respectively.
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Figure 5.6: c (top) and d (bottom) show Lyα-LBGs ξ(s) from LBG in real space (pink

asterisks) vs LBG in z−space (open diamonds) with 508 and 5931 LBGs respectively. In

top panel, we fitted ξ(r) (the pink line) by γ = 0.45 and r0 = 0.1h−1 Mpc. The blue solid

line is the z−space distortions model from da Angela et al. (2005), here assuming γ =

0.45, r0 = 0.1h−1 Mpc, β = 0.2, and < w2
z >

1
2 = 80kms−1.
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Figure 5.7: a (top) and b (bottom) show Lyα-LBGs ξ(s) from LBG in real space (pink

asterisks) vs LBG in z−space (open diamonds) with 117 and 235 LBGs respectively. We

added < vz > = 111.72 kms−1 and 112.68 kms−1 to the galaxies (open diamonds) in (a)

and (b) respectively.
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Figure 5.7: c (top) and d (bottom) show Lyα-LBGs ξ(s) from LBG in in real space (pink

asterisks) vs LBG in z−space (open diamonds) with 508 and 5931 LBGs respectively. We

added < vz > = 95.64 kms−1 and 93.89 kms−1 to the galaxies (open diamonds) in (c)

and (d) respectively.



5. Simulations 77

Figure 5.8: a (left-top), b (right-top), c (left-bottom), and d (right-bottom) show the

number of LBGs in each separation which contribute to the Lyα-LBGs ξ(s) calculated

from 117, 235, 508, and 5931 LBGs respectively.
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5.5.1 Result

Figure 5.6 presents the LBG-Lyα transmissivity correlation function from the galaxies

in real vs redshift space. The open diamonds show the results from galaxies in redshift

space while the pink asterisks illustrate the results from galaxies in real space. The lyα

forest only has redshift space for both the diamonds and the asterisks. Our bin size is 0.5

h−1 Mpc. Both results show the same trend. At a distance greater than 5 h−1 Mpc, the

measured < flux/cont > increases and reaches the mean value at < flux/cont >≈ 0.70.

At separation decrease below 5 h−1 Mpc, we found a decrease in HI density. However, it

still hard to see the effect of the wind from the simulation.

Considering the effect of LBGs in real vs redshift space, we can see that in redshift

space < flux/cont > decreases at separations 5 h−1 Mpc. When we added < vz > in

real space, r, for the galaxies, we retrieved the same result as in Figure 5.6. In Figure

5.7 (a) - (c) , at the separations less than 5h−1 Mpc, LBG-Lyα ξ(s) in redshift space

(open diamonds) < flux/cont > is smaller than in real space (pink asterisks) but then

higher at the small separations, s < 2h−1 Mpc. This is due to the small number of

LBGs at the small separations. However we see the same result of LBG-Lyα ξ(s) in real

space vs z−space in Figure 5.7 (d). The similar results in Figure 5.6 and Figure 5.7

means that the dominant effect in producing the different z−space result is in the bulk

motions. Therefore, we have not detected the effect of random peculiar velocities and

winds in these analyses of the simulations. The number of LBGs that contribute to each

bin are presented in Figure 5.8. The effect of LBG peculiar velocities is not expected to be

large. Table 5.2 gives < w2
z >

1
2 = 111.62kms−1 as the maximum velocity dispersion. This

corrects to

√
2× 136.70√

3
= 111.62kms−1 which corresponds to 0.8h−1 Mpc (comoving) at

z = 3. The effect of adding this error into LBG-Lyα ξ(s) in Figure 5.6 will be negligible

at most separations. This is confirmed by Figure 5.6 (c) where we compare the result of

smoothing real-space model by the peculiar velocity calculated from Table 5.2. The two

results are very similar due to the low intrinsic velocity dispersion (compared to Figure
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4.6 (a)).

5.6 Conclusions

We employed the GIMIC simulations to create synthetic Lyα spectra and galaxies. We

calculated the LBG-LBG ξ(s) and LBG-Lyα ξ(s) to check the feedback of real vs z-space

at redshift z ∼ 3. For LBG-LBG ξ(s), we used different number of galaxies, 117, 235, 508,

and 5931 which are selected by their stellar mass. The LBG-LBG ξ(r) and ξ(s) in real

and redshift space appear to be power laws at large scales. They show strong clustering

at small separations. At small distances (s < 1h−1 Mpc), the LBG-LBG ξ(s) in redshift

space tend to have lower clustering than ξ(r) in real space, while at larger scales the LBG-

LBG ξ(s) results appear to have higher clustering. This may imply the main effect in

redshift space that affects the clustering on small scales from peculiar velocity < w2
z >

1
2 .

Figure 5.5 shows that the measured < w2
z >

1
2 can explain the form of ξ(s) based on the

measured ξ(r).

We then measured the LBG-Lyα ξ(s) to study the theoretical relationship between

galaxies and the IGM at z ∼ 3. The LBG-Lyα ξ(s) is also computed with different

number of galaxies (117, 235, 508, and 5931 LBGs). From simulation results, we found

a decrease in < flux/cont > at separation decrease below 5 h−1 Mpc but at the larger

distance (s > 5h−1 Mpc), the measured < flux/cont > increases and reaches the mean

value at < flux/cont >≈ 0.70. At small distances near the LBG, we see no effect of the

wind from simulations. The results seem to agree with Adelberger et al. (2005) rather

than Adelberger et al. (2003). Therefore they are less in agreement with our VLT results

which shows some tentative evidence for feedback at small scales.
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Chapter 6
Conclusions

The interaction between galaxies and the IGM at z ∼ 3 is the main question addressed

by this research. By using the cross-correlation function between galaxies and the Lyα

forest in QSO sight-lines, we can analyze the relationship between galaxies and the IGM

at z ∼ 3. We have used LBG samples and the Lyα forest in QSO sight-lines supplied

by the Bielby et al. (2008) VLT observations. The LBG redshifts have been measured

in the fields of bright z > 3 QSOs from the UVES, Keck and SDSS. Additional QSO

data are also available from the AAT AAOmega spectrograph at lower resolution. The

low-resolution spectra are measured from fainter QSOs at z > 2. In total, we have 6

high-resolution QSO spectra and 22 low-resolution spectra. The total number of LBGs

from VLT data is 1109 LBGs at 2 < z < 3.5. We also included 813 LBGs at redshift

2.67≤ z ≤ 3.25 from the Steidel et al. (2003) Keck samples.

We have measured the LBG-LBG correlation functions by using LBG data from VLT

and Keck. Considering ξ(s) from VLT data only, we see consistency between our result

and that of Bielby et al. (2008). We have used some updated redshift estimates and this

might cause the lower clustering at distances below 8h−1 Mpc compared to Bielby et al.

(2008). We then compared the LBG-LBG ξ(s) from Keck data with the ξ(s) fit from

da Angela et al. 2005 who used the Steidel et al. (2003) LBG samples. We see lower

clustering at distances below 3h−1 Mpc but higher clustering at distances > 3h−1 Mpc.

This difference is possibly caused by the estimator that we used to calculate ξ(s). We use

the simple form of estimator, ξ(s) = Nr
Ng

<DD(s)>
<DR(s)>

− 1, while da Angela et al. (2005) used

the Landy-Szalay estimator. Finally, we compared our VLT result with the Keck result.

We see lower clustering from the VLT sample at scales < 10h−1 Mpc. The error bars

from VLT results are higher than in Keck. It is possible that our higher redshift errors

81
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may make this difference.

We tested the effect of redshift errors by using the z−space distortions model from da

Angela et al. (2005) by assuming γ = 1.8, r0 = 3.63h−1 Mpc, β = 0.2, and < w2
z >

1
2 =

650kms−1 for the VLT data. We used γ = 1.76, r0 = 4.48h−1 Mpc, β = 0.25, and

< w2
z >

1
2 = 530kms−1 for the Keck data. Then we used the combined data from VLT and

Keck to calculate LBG-LBG ξ(s). The result from the combined data is consistent with

the ξ(s) from da Angela et al. (2005), where γ = 1.71 and s0 = 5.1 h−1 Mpc. We also used

the z−space distortions model to the combined data by assuming γ = 1.8, r0 = 3.63h−1

Mpc, β = 0.2, and < w2
z >

1
2 = 590kms−1. Comparing the VLT and the combined data

cases, we see less effects of the peculiar velocity in the combined data. This is because

of the better redshift estimation in Steidel et al. (2003). We also estimated the infall

parameter, β at z = 3 by using the power-law ξ(r) fitted from combined wp(σ) of Bielby

et al. (2008) and the ξ(s) measurements from the combined LBG data. By computing

and fitting ξ(s)/ξ(r), we get β = 0.14+0.09
−0.05, at z = 3 which gives the LBG bias factor

b = 6.8. This result agrees with Bielby et al. (2008) who get β = 0.21+0.13
−0.12 which was

estimated by fitting the power-law ξ(r) to the measurement of ξ(σ, π).

We calculated Lyα-LBG ξ(s) and compared our results with Bielby et al. (2008)

by using different approaches. Instead of using the Landy-Szalay estimator, we use the

simple form of ξ(s) = <DT (s)>
N(s)

. We have tried three methods of error estimation and

found that LBG-LBG error seems to give the best errors particularly at small scales.

Our results are similar to Bielby et al. (2008) but with slightly smaller error bars. Both

results from high and low resolution spectra are compared to Adelberger et al. (2003) and

Adelberger et al. (2005). At distances s < 3h−1 Mpc, our results are in good agreement

with Adelberger et al. (2003) which show a decrease in HI density. However, our results

have the same trend with Adelberger et al. (2003) and Adelberger et al. (2005) at larger

scale, the transmissivity increases and reaches the mean value at < flux/cont >≈ 0.65.

There are not much differences in ξ(s) calculated from high and low resolution QSO
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spectra. The results at small scale are interesting since this lack of neutral Hydrogen

at their close distances to galaxies may imply the existence of winds from star forming

galaxies. However, the number of LBGs that contribute to small separations is still small.

It is still difficult to state the conclusion for the effect from winds. We also looked at

the connection between LBGs and CIV systems. We see consistency from CIV-LBG and

LBG-LBG correlation function. Both are well fitted by the power law from Adelberger et

al. 2003, γ = 1.60 ± 0.20 and r0 = 3.17± 0.29 Mpc. This implies that CIV systems and

LBGs may be the same objects as they show the same clustering behaviour.

We then employed the GIMIC simulations to create Lyα spectra and galaxies. We

calculated LBG-LBG ξ(s) and LBG-Lyα ξ(s) to check the feedback of real vs z-space at

redshift z ∼ 3. For LBG-LBG ξ(s), we used different number of galaxies, 117, 235, 508,

and 5931 which are selected by their stellar mass. ξ(r) in real and ξ(s) in redshift space

appear to be power laws at large scale. They show strong clustering at small separations.

At small distances (s < 1h−1 Mpc), the LBG-LBG ξ(s) in redshift space tends to have

lower clustering than ξ(r) in real space, while the larger scales the LBG-LBG ξ(s) results

appear to have higher clustering. This may imply the main effect in redshift space that

affects the clustering on small scales from peculiar velocity < w2
z >

1
2 . Our result shows

that the < w2
z >

1
2 is consistent between ξ(r) and ξ(s).

The LBG-Lyα ξ(s) are also computed with different number of galaxies. From sim-

ulation results, we found a decrease in < flux/cont > at separation decrease below 5

h−1 Mpc. But at the larger distance (s > 5h−1 Mpc), the measured < flux/cont > is

increased and reached the mean value at < flux/cont >≈ 0.70. At small distances near

LBGs, we see no effect from the wind from simulations. The results seem to agree with

Adelberger et al. (2005) rather than Adelberger et al. (2003). Therefore they are less in

agreement with our VLT results which show some evidence for feedback at small scales.

The evidence of the existence of super-winds, supernovae driven winds at high-redshift

can be shown by many observations (Heckman et al. 1990; Martin 1999; Pettini et al.
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2002; Adelberger et al. 2003; Shapley et al. 2003). The properties of high-redshift

outflows such as the size scale over which absorbing clouds are distributed, mass and

energy outflow rates, driving mechanism, conserved quantities and fate of the outflowing

material are still poor (Shapley, 2003). As mentioned above, most of our results (LBG-

LBG and LBG-CIV correlation function) show consistency with da Angela et al. (2005)

and Bielby et al. (2008). Although our Lyα-LBG ξ(s) agrees with Adelberger et al.

(2003), it shows disagreement with Adelberger et al. (2005) and the simulations. It is

still hard to decide whether the winds have effects on the galaxy and its surroundings or

not since we have small only a number of galaxies in this analysis. In order to understand

properly the effect of feedback, the observations from more LBG-QSO fields and more

QSOs with high S/N moderate resolution spectra are needed.
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