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Abstract

In this thesis, we will investigate the collider phenomenology and cosmological con-

sequences of extensions of the Standard Model (SM) with hidden sectors coupled to

the SM via a Higgs portal coupling. We will explore how models with classical scale

invariance, where all mass scales are dynamically generated, can address the short-

comings of the SM without destabilising the Higgs mass. The matter-antimatter

asymmetry in the Universe and the tiny masses of active neutrinos are addressed

in a U(1)B−L extension of the SM with GeV scale right-handed neutrinos. We then

investigate a range of models with both Abelian and non-Abelian gauge groups in

the hidden sector to show how we can stabilise the Higgs potential and at the same

time provide phenomenologically viable dark matter candidates where all scales in

the theory have a common origin.

For non-Abelian gauge groups in the hidden sector, we also show that hidden

magnetic monopoles can make up a significant fraction of dark matter. The dark

matter in this model, which consists of both magnetic monopoles and gauge bosons,

has long-range self-interactions which could explain the too-big-to-fail-problem at

small scales in the standard cold dark matter scenario. We then study the collider

phenomenology of hidden sector models with dark matter candidates through a

simplified model framework both at the LHC and at a future 100 TeV collider.

Hidden sector extensions of the SM with a Higgs portal coupling give a rich and

predictive model building framework for BSM physics without introducing a large

hierarchy of scales.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is currently our best description of the

fundamental constituents of matter and the forces between them. In this chapter

we will provide a short introduction to the theory of the Standard Model together

with some of its experimental success. Then we will present the main arguments

for why we need to go beyond the Standard Model to explain observed phenomena

such as dark matter and the matter-antimatter asymmetry in the Universe.

1.1 The Standard Model

1.1.1 Introduction to the Standard Model

The Standard Model of particle physics is a quantum field theory with a SU(3)×SU(2)

×U(1) gauge group and a particle content as seen in Table 1.1. The gauge group

and the quantum numbers of the particles together determine the forces between the

particles. The quantum numbers for the particles in the SM can be seen in Table

1.2. The particles consist of fermions and bosons with half integer and integer spin,

respectively. The fermions are divided into quarks, which are charged under the

SU(3) chromodynamic force, and leptons which are not. Both leptons and baryons

come in three families, which are successively heavier copies of particles with the

same gauge quantum numbers. Each gauge group has corresponding gauge bosons

that mediate the forces. In addition to all of the fermions and gauge bosons, there

1



1.1. The Standard Model 2

is one fundamental scalar field in the theory, the Higgs field. The SM Lagrangian,

which describes the interactions between all the particles, is schematically given by

L = −1

4
F µνFµν + iψ /Dψ+ψiyijψjH+ |DµH|2 +m2

hH
†H−λ

(
H†H

)2
+h.c . (1.1.1)

F µν is the field strength tensor for each of the three gauge groups. The first term

describes the kinetic term for the gauge fields and the self-interactions of the two

non-Abelian fields. The second term is the kinetic and gauge interaction term for

the fermions, ψ. H is the Higgs scalar field, and the last three terms give the kinetic

term and potential for it. The remaining term, which is an interaction between the

scalar field and the fermions, is a Yukawa term.

The Lagrangian above is very simplified with all flavour and gauge indices sup-

pressed, and all the gauge interactions hidden in the covariant derivatives Dµ. The

covariant derivative is schematically given by

Dµψ =

(
∂µ −

∑
gauge groups

igAiµt
i,

)
ψ , (1.1.2)

where Aiµ is a gauge field and ti is the generator of the gauge group corresponding

to the representation of the matter field, which can be read of from Table 1.2.

The Strongly Coupled Sector

Quantum Chromodynamics (QCD) is the gauge theory based on the SU(3) gauge

group. Since there are eight generators of the gauge group, QCD has eight gauge

bosons called gluons. The gluons can interact with themselves and have both three

and four-point vertices since SU(3) is a non-Abelian gauge group. There are six

fermions charged under the strong force, the six quarks. They come in two differ-

ent types, the up-type and the down-type. These types have different electroweak

charges, but have the same SU(3) quantum numbers. The quarks are in the fun-

damental representation of SU(3), so they come in three different colours. At low

energy it is impossible to observe free quarks or gluons since QCD is confining: the

QCD force becomes so strong that it binds the quarks into composite colour-neutral

baryons and mesons. The proton and neutron are baryons made out of three quarks,

all of different colour, making the bound state colour neutral. Mesons are made out



1.1. The Standard Model 3

Quarks Leptons

Particle Mass Q

Up quark u 2.3 MeV +2/3

Charm quark c 1.3 GeV +2/3

Top quark t 173 GeV +2/3

Down quark d 4.8 MeV -1/3

Strange quark s 95 MeV -1/3

Bottom quark b 4.2 GeV -1/3

Particle Mass Q

Electron e 0.511 MeV -1

Muon µ 106 MeV -1

Tau τ 1.7 GeV -1

Electron neutrino νe < 2.2 eV 0

Muon neutrino νµ < 0.17 MeV 0

Tau neutrino ντ < 15.5 MeV 0

Bosons

Particle Mass Q

Higgs boson h 125 GeV 0

Photon γ 0 0

Gluons g 0 0

W bosons W± 80.4 GeV ±1

Z boson Z 91.2 GeV 0

Table 1.1: Mass and electric charge, Q, for the particles in the Standard Model

of a quark and an anti-quark of the same colour, making it colour neutral. There

is a whole variety of different mesons and baryons with the lightest being the pion.

Confinement is also the reason why QCD is not directly visible in the macroscopic

world as a long-distance force. QCD is responsible for holding the nuclei of atoms

together, but through the exchange of pions rather than gluons. Since pions have a

mass of around 100 MeV the range of the strong nuclear force is about 10 GeV−1 ≈ 1

fm.

We can explore quarks and gluons experimentally because of asymptotic freedom.

At high energy the strong force becomes weaker, and free coloured particles can exist.

The strength of a gauge force is determined by the gauge coupling constant, g, in

the covariant derivative 1.1.2. When g becomes large, we get confinement and non-

perturbative processes, while a small g leads to perturbative behaviour. Due to the

particle content in QCD, the evolution of g with energy, as seen in Figure 1.2, is
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Field SU(3) SU(2) U(1)Y U(1)EM

LL =

νL
lL

 1 2 -1
0

−1

QL =

uL
dL

 3 2 1/3
2/3

−1/3

lR 1 1 -2 -1

uR 3 1 4/3 2/3

dR 3 1 -2/3 −1/3

H =

φ
h

 1 2 1/2
1

0

Table 1.2: Quantum numbers for the fields of the SM. L and Q are lepton and

quark doublets and l = e, µ, τ , u = u, c, t and d = d, s, b.

such that g is large at small energies and decreases at large energies.

The Electroweak Sector

In the electroweak sector we have a product of two gauge groups SU(2)×U(1). Only

the left-handed fields are charged under the SU(2) part of the gauge group, making

the theory chiral. Both the quarks and the leptons are charged under the elec-

troweak gauge groups as seen in Table 1.2. All the left-handed fields are organised

into SU(2) doublets; the quark doublets have one up-type and one down-type left-

handed field, while the lepton doublets include one electron-like particle and one

neutrino. The Higgs field is a complex scalar doublet charged under the electroweak

gauge groups. Since there is only one long range force in addition to gravity in the

macroscopic world, the electro-magnetic force, the gauge bosons of the SU(2) part

of the electroweak force either have to confine at low energies or be massive. As we

see from Table 1.1, the W± and Z bosons have masses in the 80 − 90 GeV range

which leads to a very short range force. An unbroken gauge theory requires massless

gauge bosons. Therefore, the electroweak symmetry has to be broken to account for

the massive W and Z bosons.
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The breaking of the electroweak symmetry is due to the Brout-Englert-Higgs-

mechanism [6–8]. Without it, we would not have any heavy gauge bosons or masses

for the fermions of the Standard Model. Due to the chiral nature of the SU(2)

gauge group, fermion mass terms that couple left and right-handed fields are not

gauge-invariant, and are therefore forbidden. The Higgs field is introduced to break

the electroweak symmetry and to give masses to fermions and gauge bosons.

As a simple example, we first consider a theory with a U(1) gauge symmetry and

a single complex scalar Φ = 1√
2
(φ1 + iφ2). The Lagrangian is given by

L = −1

4
F µνFµν + |DµΦ|2 − V (Φ) , V (Φ) = −m2Φ†Φ + λ

(
Φ†Φ

)2
. (1.1.3)

The Lagrangian is fully gauge invariant with a covariant derivative Dµ = ∂µ + igAµ.

We can see that the mass-term is negative which would indicate that the scalar field

is a Tachyon. To resolve this, we need to expand the Lagrangian around the true

vacuum state of the theory. First we find the vacuum

dV (Φ)

dΦ
= 0→ 〈Φ〉2 =

m2

λ
= v. (1.1.4)

As Φ is a complex scalar field and the vacuum condition only sets the length of Φ, we

can choose 〈Φ〉 to be real with no imaginary part. We then expand the Lagrangian

around the true vacuum φ1 → φ1 + v,

L ⊃ 1

2
m2φ2

1 +
1

2
(∂µφ1)2 +

1

2
(∂µφ2)2 +

g2v2

2
AµA

µ +
√

2g〈Φ〉Aµ∂µφ2. (1.1.5)

This leads to a massive φ1, a massless φ2 and a massive vector boson with mass

mγ = g〈Φ〉. A massive vector boson has three degrees of freedom while a massless

one only has two. The third degree of freedom of the gauge boson is provided by

the massless Goldstone boson φ2. The shifted Lagrangian has an interaction term

between the gauge field and the Goldstone boson. We can remove this term and

write the Lagrangian in a more canonical form by performing a gauge transformation

to the unitary gauge.

L =
1

2
m2φ2

1 +
1

2
(∂µφ1)2 − 1

4
F µνFµν +

g2v2

2
AµA

µ − V (φ1). (1.1.6)

Here we clearly see that there is one massive scalar field, one massive gauge field

and no Tachyon.
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The Higgs mechanism for a general gauge group works as follows: in the theory

we have a scalar field, φ, which acquires a vacuum expectation value (vev), 〈φ〉,
charged under a gauge group with generators ta. Depending on 〈φ〉, the gauge

group might be completely broken, as in the U(1) example above, or a sub-group

can remain unbroken. All the generators that leave the vacuum invariant

ta〈φ〉 = 0 (1.1.7)

remain unbroken. After the symmetry breaking, the Lagrangian will develop a mass

term for the gauge bosons with a mass matrix given by

m2
ab = g2(ta〈φ〉) · (tb〈φ〉). (1.1.8)

We can see that the gauge bosons corresponding to the unbroken generators remain

massless, and we get one massive gauge boson and one Goldstone mode per broken

generator. As before, the third degree of freedom of each gauge bosons is given by

the corresponding Goldstone mode. The effect of spontaneous symmetry breaking

is therefore that it brakes the original group down to a potentially trivial subgroup

where we get as many massive gauge bosons as broken generators and one remaining

neutral massive scalar degree of freedom, which in the SM is the Higgs boson.

For a given theory, the scalar potential, V (φ), determines the vacuum state, 〈φ〉,
which then determines the pattern of the symmetry breaking. Therefore, different

potentials can break a gauge group in different ways.

In the Standard Model the SU(2)×U(1) gauge group is broken down to the

electro-magnetic (EM) U(1). SU(2)×U(1) has four generators, three from the SU(2)

part and one from the U(1) part. We choose the vacuum state to be electrically

neutral such that the generator for the EM U(1) is unbroken. Since we then have

three broken generators, we get three massive gauge bosons. The original Higgs

doublet was a complex SU(2) doublet which had four degrees of freedom: three of

these become Goldstone modes, while the last becomes the observable neutral Higgs

boson. It is slightly more complicated in the SM since the neutral SU(2) gauge

boson W 0
µ and the hyper-charge boson Bµ will mix and give rise to the Z boson and

the photon γ.
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The massless fermions in the SM also gain masses by the Higgs mechanism. The

Yukawa interactions in the SM Lagrangian provide a mass term for the fermions

when h→ h+ v, as follows

ψiyijψjH → ψi
yij√

2
ψjv + ψi

yij√
2
ψjh. (1.1.9)

The fermion mass is then given by mf =
yf√

2
v. The Higgs mechanism is the final

ingredient to make the SM a phenomenologically viable theory. We have a short-

range weak force due the spontaneous symmetry breaking of the electroweak sector,

a short-range strong force due to confinement, a long-range electro-magnetic force

due to the unbroken U(1) and massive fermions with masses given by their Yukawa

couplings to the Higgs field. We will now move on to look at some of the experimental

successes of the SM.

1.1.2 Overview of Experimental Successes

The Standard Model has been extensively tested experimentally over the last 40

years. It can successfully explain all the collider data we have observed so far. The

discoveries of the W± [9] and Z bosons [10] at UA1 and UA2 at CERN in 1983 and

the gluon at DESY in 1979 [11–14] firmly established the Standard Model as a gauge

theory with non-Abelian gauge groups. With the discovery of the top quark in 1995

at Fermilab [15], the three-family fermion sector was completely discovered. The

one missing piece of the SM matter content, the Higgs Boson, was finally discovered

at the LHC in 2012 by the ATLAS and CMS experiments with a mass of about 125

GeV [16,17].

In addition to discovering the particle content of the Standard Model, we can test

the model by measuring and predicting the results of countless collider experiments.

Since the SM only has 19 free parameters which have now all been measured, we

can make predictions for all collider experiments. There have been no measurements

that deviate significantly (at more than 5σ confidence) from the SM prediction. As

one can see from the latest measurements from CMS in Figure 1.1, the agreement be-

tween observation and prediction is remarkably good over many orders of magnitude

in production cross-section.



1.2. Beyond the Standard Model 8

 [p
b]

σ
P

ro
du

ct
io

n 
C

ro
ss

 S
ec

tio
n,

  

-110

1

10

210

310

410

510

CMS PreliminaryMar 2015

All results at: http://cern.ch/go/pNj7
W 1j≥ 2j≥ 3j≥ 4j≥ Z 1j≥ 2j≥ 3j≥ 4j≥ γW γZ WW WZ ZZ WW

→γγ
qqll
EW γWV tt 1j 2j 3j t-cht tW s-cht γtt ttZ

σ∆ in exp. Hσ∆Th. 

ggH qqH
VBF VH ttH

CMS 95%CL limit

)-1 5.0 fb≤7 TeV CMS measurement (L 

)-1 19.6 fb≤8 TeV CMS measurement (L 

7 TeV Theory prediction

8 TeV Theory prediction

Figure 1.1: Production cross-section for different final states measured at the CMS

experiment at the LHC with SM predictions.

This agreement between experiment and theory extends to all aspects of collider

physics. In many cases, calculations at multi-loop level are required to achieve a

good agreement, as, for example, in the magnetic dipole moment of the electron.

One of the most spectacular tests of loop-level calculations comes from the running

of the coupling constants with energy. At leading order the coupling constants would

not run with energy, but at higher orders they do. One example of the agreement

between the calculated and observed running [18] of the strong coupling constant

αs can be seen in Figure 1.2.

1.2 Beyond the Standard Model

Even though the Standard Model is extremely successful and in agreement with all

collider experiments, there are many questions it cannot answer. These questions

include both observational phenomena that cannot be accommodated in the SM and

unanswered theoretical questions. In this section, we will investigate these short-

comings of the SM to see what they can tell us about physics Beyond the Standard

Model (BSM). First we will consider some of the main observational evidence for
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Figure 1.2: The observed and theoretical running of the strong coupling constant

αs.

BSM physics from dark matter, matter-antimatter asymmetry and the stability of

the Higgs potential. We will then focus on the hierarchy or naturalness problem.

There are many other open questions which we will not cover in any detail. These

include why there are three generation of fermions, why a large mass hierarchy of

fermions exists, the small neutrino masses, the strong CP-problem and, not least,

how to combine the SM with gravity.

1.2.1 Dark Matter

In 1933 Zwicky [19] used the the measured velocity of stars in the Coma galaxy

cluster to calculate the mass of the cluster. He discovered that the mass was around

400 times larger than the mass of the luminous stars. This was the first of many

observations that show that there is a form of matter in the Universe that we can

only detect due to its gravitational effects on visible matter. Zwicky named this

mysterious matter “dark matter”. We now have evidence for dark matter (DM)

from a wide range of length scales, from galaxies to the entire Universe.

At galactic scales, the most compelling evidence comes from rotation curves. The

rotation curve of a galaxy shows the circular velocity of stars and gas as a function
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of their radial distance. Outside the main concentration of mass, the rotation curve

should fall off as 1/
√
r as the Newtonian circular velocity, v(r), is given by

v(r) =

√
GM(r)

r
, (1.2.10)

where M(r) is the mass distribution and r the radial distance. If the mass distribu-

tion of the galaxy were to follow that of the visible stars and gas, we would expect

to see this decrease in circular velocity at the outskirts of a galaxy. Instead we see

flat rotation curves extending far outside the visible stars and gas. This leads to

the conclusion that there exists more matter than we can see with a density profile

ρ ∝ 1/r2 at large radial distances.

In addition to the original evidence of dark matter discovered by Zwicky, there

is a lot of other evidence from galaxy cluster scales. This evidence comes from mea-

suring the mass of galaxy clusters and comparing that to the amount of visible light

from the galaxy. The evidence includes using X-rays to determine the temperature

profile of the gas in the cluster which, when combined with equations of hydrostatic

equilibrium, can provide estimates of the total mass. One can also use gravitational

lensing to determine the mass of a cluster by observing how much it bends light

originating from behind the cluster. All these measurements, including those on

galactic scales, consistently show that there is about five times more mass than can

be accounted for by stars and gas.

There have been suggestions that instead of explaining all of these measurements

by postulating dark matter, one should instead modify the laws of gravity [20]. This

proposal is strongly disfavoured by one of the most spectacular pieces of evidence in

favour for dark matter, the Bullet Cluster [21]. The Bullet Cluster is a system con-

sisting of two galaxy clusters that recently collided with each other. From observing

the system in visible light, one can see that all the stars just passed through each

other as they are too sparsely distributed to interact. X-ray observations show that

the gas, which interacts electromagnetically, is left between the two visible galaxies.

In addition to these observations, there are observations from gravitational lensing

that can tell us how the gravitational mass is distributed. If the only source of mass

were normal matter, we would expect most of the matter to be distributed in the
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same way as the hot gas since gas makes up the majority of the mass of a galaxy.

This would be true even if the laws of gravity were modified to account for the other

evidence for dark matter. The measurements show that the majority of the mass is

not centred around the gas, but around the stars. This shows that dark matter is a

separate form of matter that is, at least mostly, collisionless.

At the cosmological scale, we have evidence for dark matter from the cosmic mi-

crowave background (CMB) radiation. By studying the CMB angular power spec-

trum in combination with data from Big Bang Nucleosynthesis, one can determine

both the density of normal matter (baryons) and the density of dark matter. The

latest results from the Planck Satellite [22] give a dark matter density of ΩDMh
2 =

0.1187±0.0017 while the density of baryons is given by Ωbh
2 = 0.022±0.00028. We

define Ω by

Ω =
ρ

ρcrit

ρcrit =
3H2

8πG
, (1.2.11)

where ρcrit is the critical density which leads to a flat Universe, h = H/(100km/s/Mpc)

and H is the Hubble constant. We know that Ωtot ≈ 1 [22]; therefore dark matter

makes up about 26% of the energy density of the Universe, five times more than the

density of SM baryons.

Having established that dark matter exists, the next question is to determine

what it is. Historically, the two main proposed categories have been particulate

dark matter, often in the form of weakly interacting massive particles (WIMPS),

and massive astrophysical compact halo objects (MACHOS). MACHOS are objects

like brown dwarfs or black holes that are made out baryons, but would not be

visible like stars. They are now disfavoured as an explanation of dark matter both

because the inferred density of baryons is not large enough to support a sufficient

density of these objects, and from limits set by micro-lensing surveys which show

that MACHOS can not make up the majority of dark matter [23, 24]. The most

likely scenario is then that dark matter is made up of weakly interacting particles.

For a particle to be a dark matter candidate, it has to be massive, stable on

cosmological time scales and not interact too strongly with baryons or photons. In

the Standard Model, the only possible dark matter candidate is the neutrino. As we
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will discuss in detail later, its low mass would lead to a very different distribution of

the size and mass of dark matter halos than the observed one. Therefore, there are

no viable DM candidates in the SM. This is one of the most compelling reasons to

investigate BSM physics. We will now investigate what cosmological observations

can tell us about the nature of dark matter, and how to incorporate this information

into particle physics models.

A viable particle physics model of DM needs to be able to reproduce the observed

DM relic density. Different production mechanisms have been discussed in the lit-

erature to achieve this (see for example [25]). Here we will focus on the standard

thermal freeze-out mechanism which is the most common production mechanism.

The discussion follows [26] and [5]. Consider a stable dark matter particle, χ, with

mass, m, that in the early Universe is in thermal equilibrium with the SM. As χ is

stable, the only way to change the number of χ particles is through pair production

or annihilation. As long as the interaction rate of these processes is larger than the

expansion rate given by the Hubble parameter H, these interactions can keep the

particles in thermal equilibrium. As the Universe expands the Hubble parameter

and the interaction rate decreases. When the interaction rate becomes smaller than

the Hubble rate, we get chemical decoupling and freeze-out of dark matter. The

density becomes too small for the annihilations effectively to change the particle

number any more. After freeze-out, the number of dark matter particles will remain

constant and the number density will decrease with the normal expansion of the

Universe. To study this in detail, we consider the annihilation rate, given by

Γa = 〈σv〉neq, (1.2.12)

where 〈σv〉 is the thermally averaged annihilation cross-section and neq is the number

density of dark matter while in thermal equilibrium. The thermally averaged cross-

section can be calculated from the normal 2↔2 scattering cross-section by following

the procedure in [27]. This cross-section together with the mass of the DM particles,

are the only particle physics ingredients in the calculation of the relic density.

The mathematical framework to determine the number density of DM particles

during the evolution of the Universe, taking annihilations into account, is the Boltz-
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mann equation formalism. The Boltzmann equation for a simple DM with only pair

annihilation is given by

ṅ+ 3Hn = −〈σv〉
(
n2 − n2

eq

)
, (1.2.13)

where n is the number density of DM particles. The 3Hn term includes the effect of

the expanding Universe, and the term with the annihilation cross-section describes

the creation and annihilation of DM particles. The evolution with temperature, T ,

of the Hubble constant is given by

H(T ) = 1.67g1/2
?

T 2

Mpl

, (1.2.14)

where g? is the number of relativistic degrees of freedom and Mpl is the Planck mass.

The equilibrium number density can easily be determined from standard statistical

physics and it is neq ∝ T 3 when the DM is relativistic and neq ∝ (MDMT )
3
2 e−T/MDM

when non-relativistic. If we rewrite the equation using y = n/s and x = m/T , where

s is the entropy density, we get

dy

dx
= −−x〈σv〉s

H(m)
(y2 − y2

eq). (1.2.15)

We can see that when 〈σv〉 > H, y and hence the number density are pushed to

their thermal equilibrium value, and that when 〈σv〉 � H, y remains constant with

time. A constant y gives a number density which decreases with T 3 in the same way

as the density for normal matter does.

In general, the Boltzmann equation has to be solved numerically, but a good

approximation of the final density for the case of s-wave annihilation, when 〈σv〉 is

independent of v, can be found (see e.g. [5, 28]),

ΩDM h2 = 1.07× 109 xf GeV−1

(g?s/
√
g?)MPl 〈σv〉

. (1.2.16)

xf corresponds to the freeze-out temperature and is given by

xf = log

(
0.038

g√
g?
MPlm 〈σv〉

)
− 1

2
log log

(
0.038

g√
g?
MPlm 〈σv〉

)
. (1.2.17)

For masses around those of the SM an annihilation cross-section of order

〈σv〉 = 2.3× 1026cm3/s = 2× 10−9GeV−2 (1.2.18)
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will give the observed relic density. This is called the WIMP miracle as weak scale

masses and couplings give the correct relic density. In addition to the hierarchy

problem discussed below, this is one of the strongest hints of new physics at the

weak scale. It should be noted that completely different mass scales can give rise to

viable DM scenarios with the correct relic density. Both models with axions, with

masses as low as ma = 6 × 10−6eV (see e.g [29]), and models with WIMPZILLAS,

with masses as high as 1016 GeV [26], can give the correct relic density.

We can learn more about the nature of dark matter if in addition to the density,

we consider the mass distribution of dark matter halos. The information about the

size and abundance of DM halos is contained in the dark matter halo mass function,

n(M), which determines the number of halos of a certain mass

dN = n(M)dM. (1.2.19)

To predict the present-day halo mass function we need an initial distribution at

early times and must follow the growth of DM halos over time due to gravitational

interactions. The initial distribution can be measured from the CMB1 and is found

to have a power spectrum P (k) ∝ kn, where k is the wave-number and the spectral

index n = 0.9603± 0.0073 [22]. This power spectrum agrees very well with what is

predicted in many inflation models. We then need to determine how the halo mass

function has evolved until today. One can make some progress analytically, e.g. [30],

but the current best predictions come from N-body simulations [31].

The particle physics input into these simulations are the mass and the inter-

actions of DM with itself and with SM particles. Light DM particles have large

free-streaming lengths, which leads to a washing away of small scale structure. This

was one of the early success of the N-body simulation research programme: it al-

lowed the exclusion of neutrinos as DM due to their small mass [32]. Since light

particles will remain relativistic today, they are called hot dark matter (HDM). Most

1We do not measure the exact initial distribution of the Power Spectrum at the CMB, but at

the early time of the CMB we can safely use a linearised theory to calculate the changes from the

initial distribution. This gives us good control on the initial distribution from CMB data.
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models with HDM are excluded2. Particles with masses at the weak scale would be

very non-relativistic today and are called cold dark matter (CDM). Due to their

heavier mass and lower thermal velocities, these models have short free streaming

lengths, and are in agreement with observations of large-scale structure. Figure 1.3

shows the dark matter power spectrum for different dark matter models.

Figure 1.3: Dark matter power spectrum for different classes of dark matter models

from [5]. The plot shows the power of fluctuations of a given size (λ). We see that

hot dark matter has a strong cut-off for small wavelengths, λ due to free streaming.

The WIMP miracle, together with the good experimental agreement with large

scale structure, has made CDM models the leading candidates for dark matter. In

addition to the number and mass of dark matter halos, we can also learn about dark

matter from the density profile and sub-structure of DM halos. We will explore

this in Chapter 5 where we will see that there are some observations that indicate

that either warm dark matter or dark matter with self-interactions fits the data on

dwarf galaxy scales better than standard cold dark matter. The main observational

problem with all of these considerations is of course that we cannot see the DM

halos directly. Most of the information we have comes from the visible baryons

2Axions, even if they are very light, still behave as cold dark matter due their out-of-equilibrium

production [29].
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embedded in the DM halos. There has been a lot of progress in determining how

the visible galaxy relates to the dark halos, and how baryonic physics affects the

halo, see e.g. [33] and references therein.

In addition to cosmological experiments, there are three main experimental av-

enues open to explore dark matter: direct detection, indirect detection and collider

experiments. These processes all depend on the same pair annihilation of dark mat-

ter into SM fermions process. In direct detection, one looks for recoil energy from

collisions between dark matter particles and heavy nuclei, see e.g. [26, 34]. There

has been tremendous progress in sensitivity over the last decade, but no convincing

signals have been found. The current and projected future limits can be seen in

Figure 1.4. For WIMP masses larger than 5-10 GeV, the limits are very strong

and future experiments will be able to cover the entire parameter space above the

neutrino coherent scattering limit. These DM limits are already very constraining

for many models.

Figure 1.4: Current and future limits from direct detection experiments from [35]

adapted from [34]. The current best limits are from the LUX(2013) experiment.

In indirect detection, one looks for high energy photons produced by high energy

SM particles after the dark matter annihilates, see e.g. [26, 36]. The annihilation
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signal is very sensitive to the density of dark matter, so the most promising place

to look would be towards the galactic centre where the DM density is larger. Using

gamma rays from the galactic centre, the Fermi-Lat satellite can set limits that

are getting close to the annihilation cross-sections needed to reproduce the relic

density [37]. In addition to setting limits, using the Fermi-Lat data one can see

an excess towards the galactic centre [38] at energies around 1-3 GeV. This excess

can be explained by dark matter between 10-100 GeV annihilating to various SM

particles with a cross-section around the cross-section that gives the correct relic

density, see e.g. [39].

To look for dark matter at colliders, one would search for signals with missing

energy recoiling against visible objects. Collider search for mono-jets plus missing

energy can give competitive constraints in the low dark matter mass region [40–

42]. In this region direct detection experiments lose sensitivity as the recoil energy

becomes too small. We will look more at collider searches for dark matter in Chapter

6.

In BSM particle physics, there is a zoo of proposed dark matter candidates. A

small selection includes sterile neutrinos, axions, various supersymmetric partners,

composite objects in composite Higgs theories and Kaluza-Klein excitations in extra

dimensional models. The main DM candidates we will investigate in this thesis come

from BSM extensions with hidden sectors that include either scalars, fermions or

vector bosons that couple to the SM via a Higgs portal coupling. Common to all of

these models is that they simultaneously try to address multiple problems with the

SM, not only provide a DM candidate. If one is mainly interested in dark matter,

there are many simple models which include a DM candidate. The simplest such

model comes from adding a real scalar singlet, s, with a Z2 symmetry [43]. The

discrete Z2 symmetry prevents the decay of s. The dark part of the Lagrangian for

this model is

LDM =
1

2
(∂µs)

2 − 1

2
mss

2 − λp
(
H†H

)
s2, (1.2.20)

where H is the SM Higgs doublet. This model is still experimentally viable [44]. One

can also have fairly simple dark matter models where the DM particle is coupled

to a mediator which is then coupled to the SM. One example of these models has
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fermionic dark matter, χ, and a scalar mediator, φ.

LDM =
1

2
(∂µφ)2 − 1

2
mφφ

2 + iχ̄/∂χ−mχχ̄χ − gχ χ̄χφ. (1.2.21)

The mediator could then in general couple to the SM with any or all of following

couplings

Linteraction =

(
κ1W

+
µ W

−µ + κ2ZµZ
µ −

∑
f

κf f̄f

)
φ+ λpφ

2
(
H†H

)
, (1.2.22)

where the fs are the SM fermions and W±, Z the SM gauge bosons. These models

are phenomenologically viable, and in Chapter 6 we consider them as simplified

models for collider searches for DM.

1.2.2 Matter-Antimatter Asymmetry

When we look out into the the Universe, we see a lot of baryons, but no significant

amounts of antibaryons. The trace amounts of antimatter detected in satellite exper-

iments are consistent with all the antimatter in our neighbourhood being produced

by collisions of cosmic rays or in astrophysical sources. One possible explanation

of this asymmetry could be that baryons and antibaryons somehow separated in

the Universe, and large regions of antimatter exist. The problem with this scenario

is that the boundaries between matter and antimatter would be visible due to ra-

diation from annihilations. No such boundaries have been discovered [45], which

leads us to conclude that the entire observed density in baryons is due to a baryon

antibaryon asymmetry. Using data from CMB [46] we find an asymmetry of

ηb =
nb − nb̄
nγ

≈ 6× 10−10, (1.2.23)

where nb, nb̄ and nγ are the number densities of baryons, antibaryons and photons

respectively. In the thermal plasma of the very early Universe one would expect equal

amounts of matter and antimatter. To produce the observed baryon asymmetry we

need a process for baryogenesis that fulfils the Sakharov conditions [47]. They are:

1. Baryon number (B) violation

2. Charge conjugation (C) and charge conjugation and parity (CP) violation
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3. Out of thermal equilibrium processes

To produce a baryon asymmetry, a process that violates baryon number conservation

is clearly needed. Even if such a process exists, the charged conjugated process will

also exist and have the same rate unless C and CP are violated. These conditions

together are still not enough to generate an asymmetry in thermal equilibrium as

any asymmetry will just be washed away by the time-reversed process.

We will start by discussing why baryogenesis is not possible in the SM, before

discussing three possible mechanisms for generating an asymmetry in BSM models.

Perturbatively, baryon number is a symmetry of the SM, but it can be broken by

non-perturbative effects since it is anomalous. Transitions, called Sphalerons, in-

volving transitions between different SU(2) vacua with differing baryon and lepton

(L) numbers [48], exist in the SM, and violate B. The SM therefore fulfils the first

Sakharov condition. In addition, there is a C and CP violation in the quark sector3,

but it is many orders of magnitude too small to explain the observed baryon asym-

metry [49, 50]. The electroweak phase transition could have provided the required

out-of-thermal-equilibrium processes if it was a first order phase transition. To get

a first order phase transition, the Higgs mass needs to be significantly smaller than

the measured 125 Gev [51]. The SM therefore falls short on two out of the three

Sakharov conditions, providing another very strong argument for the existence of

BSM physics.

There are three main strategies in BSM models to achieve successful baryogenesis:

• Electroweak Baryogenesis

In electroweak baryogenesis the baryon asymmetry is generated during the

electroweak phase transition [51,52]. If the phase transition is first-order it will

proceed via bubble nucleation. The bubbles spread out with out-of-equilibrium

CP-violating processes near the bubble walls with B violation provided by the

sphaleron processes. For the asymmetry not to be washed away behind the

bubble wall, the phase transition needs to be strongly first-order. To generate

3And potentially in the lepton sector where the CP phase δ is not constrained.
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the observed baryon asymmetry, the problems with SM electroweak baryoge-

nesis need to be addressed. A first-order phase transition requires changes

to the scalar potential of the Higgs, and new sources of CP violation require

new particles and interactions. Electroweak baryogenesis can be successfully

implemented for example in the two Higgs doublet model [53].

• Grand Unified Baryogenesis

Grand unified theories (GUT), based on unifying the SU(3)×SU(2)×U(1)

group structure to, for example, SU(5) or SO(10), include gauge bosons that

couple leptons to quarks and therefore violate baryon number. GUT models

also include many new sources of CP violation. The unification occurs at the

energy scale where, due to RG-running, the SM coupling constants become

equal. In most models this happens at scales of 1015 − 1016 GeV. The decay

of the heavy, B-violating gauge bosons could happen out of thermal equilib-

rium, thereby fulfilling all of the Sakharov conditions [54]. One of the main

problems with GUT baryogenesis is that GUTs also predict a density of mag-

netic monopoles or gravitinos that would overclose the Universe. This can be

solved if inflation happens after GUT symmetry-breaking as inflation would

then dilute away all the monopoles. Unfortunately for GUT baryogenesis, this

would also dilute away the baryon asymmetry.

• Leptogenesis

Sphaleron processes break both B and L, but not B−L as it is not anomalous

in the SM. Therefore if an asymmetry in L existed before the time of the

electroweak phase transition, it would be transferred into a baryon asymmetry

B = −36

25
L. (1.2.24)

Together with a processes to generate a lepton asymmetry this gives a viable

process for he generation of the baryon asymmetry, called leptogenesis [55].

A lepton asymmetry can be produced by the decay of heavy right-handed

neutrinos.

We will now consider leptogenesis in more detail. The standard leptogenesis sce-

nario is based on the Type 1 see-saw model for neutrino masses with the following
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Lagrangian:

LI = LSM + iNRi
/∂NRi −

(
1

2
MiN c

Ri
NRi + εabYαiNRi`

a
αH

b + h.c.

)
, (1.2.25)

where Ni is a right-handed Majorana neutrino with mass M and Y is the Yukawa

coupling matrix for the neutrinos. In addition to successfully implement leptogen-

esis this model can provide an explanation for the small observed neutrino masses

without extremely small Yukawa couplings via the see-saw mechanism. If we only

consider one generation of neutrinos, we will, after electroweak symmetry breaking,

get a mass matrix for the active and sterile neutrino of the following form

Mν =

 0 y〈H〉
y〈H〉 M

 , (1.2.26)

where y is the Yukawa coupling and 〈H〉 the vev of the Higgs field. The eigenvalues

of this matrix give a mass for the active neutrino of

mν = −y
2〈H〉2
M

. (1.2.27)

With Yukawa couplings of order one and M ∼ 1014, we can get sub-eV scale mass

for the neutrinos in agreement with experiment without small couplings.

In this model leptogenesis proceeds by producing a lepton asymmetry by the out-

of-equilibrium decays of the heavy right-handed neutrinos. The Yukawa coupling

matrix can have complex phases leading to CP-violation, which together with the

lepton number violating Majorana mass term and the electroweak sphalerons will

generate a baryon asymmetry. To calculate the resulting baryon asymmetry we, use

the Boltzmann formalism as we did for dark matter, see e.g. [56,57]. One needs the

cross-sections for the scattering, decay and back reaction of right-handed neutrinos.

In a simple version where we consider only one generation of right-handed neutrinos

giving rise to the lepton asymmetry, we can find a lower bound on the right-handed

neutrino mass to achieve the observed baryon asymmetry [58]

M & 109 GeV. (1.2.28)

One way to lower this bound significantly is to consider two right-handed neutrinos

with almost degenerate mass. Lowering the bound on the right-handed neutrinos
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to the TeV scales requires significant fine-tuning. Another suggestion to achieve

leptogenesis with GeV scale right-handed neutrinos will be explored in detail in

Chapter 3.

1.2.3 Stability of the Higgs Potential

One of the more striking features of quantum field theory (QFT) is the running of the

coupling constants of the theory with energy or distance. If we consider measuring

the electric coupling by measuring the strength of the electro-magnetic interaction

at two distance scales r1 and r2 with r1 > r2, we will find a smaller value of the

coupling constant, e, at the larger distance. This is due to the electron-positron

pairs in the vacuum screening the charge. This change in coupling constants with

scale takes place in all QFTs.

The evolution of coupling constants with energy is related to renormalisation. To

compare QFT calculations with experiment, we need to renormalise the theory. We

fix the coupling constants at a chosen energy µ to match the experimentally mea-

sured value. Physical results should be independent of our choice of scale. We can

therefore write down differential equations that capture the change of the coupling

constants with µ called renormalisation group equations (RGEs).

Consider a theory with couplings gi for i = 1, ..., n. The RGE equation for g1 is

given by
∂g1

∂logµ
= βg1(g1, g2, ..., gn), (1.2.29)

where the β-function is a function of all the coupling constants of the theory. All the

other gis have similar differential equations, and together they form a set of coupled

differential equations. The β-function appears at the one-loop order, so at tree-level

it vanishes. To calculate β-functions one can use the Callan-Symanzik equation. Let

G(n)(x1, ..., xn) be a connected, renormalised n-point Green’s function in a theory

with fields φ and one coupling constant g. The Callan-Symanzik equation is then(
µ
∂

∂µ
+ β(g)

∂

∂g
+ nγ(g)

)
G(n)(x1, ..., xn) = 0, (1.2.30)

where β is the same function as above and γ(g) is the anomalous dimension of

the φ field. By choosing suitable Green’s functions calculated at one loop, one can
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calculate both β and γ at one loop. Once β and γ are known we can evolve the

couplings constants to any required energy scale.

As shown in Figure 1.2, the RG-running in the SM has been verified experimen-

tally. For the gauge couplings in the SM there are two different patterns of evo-

lution depending on the sign of the β-function. Quantum electrodynamics (QED)

has a positive β-function which leads to larger values of e as the energy increases,

while QCD has a negative β-function. This results in confinement at low energies

and asymptotic freedom at large energies. The coupling constant of the weak SU(2)

group also has a negative β-function, but does not confine due to spontaneous break-

ing of electroweak symmetry. With the measurement of the Higgs mass at the LHC,

we now know all the parameters of the SM and can therefore use the RG-equations

to evolve the SM up in energy to discover until what energy scale it is valid. At

energy scales of Mpl, we know that quantum gravity effects become important, but

any problems with the SM before that would be evidence of new physics.

For the SM to be valid up to the Planck scale, it should not have Landau poles

and the scalar potential should be stable. A Landau pole occurs when a coupling

constant becomes infinite at a finite energy. This indicates that either new physics is

needed to tame the growth in the coupling constant, or that the theory completely

changes character in the same way as when QCD confines.

For the potential to be stable, the electroweak vacuum should be the minimum

of the potential. The scalar potential, V (H), determines the vacuum state of the

theory by its minimum. In the SM, the scalar potential in the unitary gauge is given

by

V (h) = −m
2
h

2
h2 +

λH(h)

4
h4, (1.2.31)

where we consider λH(h) to be a function of the field value, in order to take into

account the running of the coupling when we go to large field values. The negative

mass squared gives a minimum away from the origin, and as long as λH(h) is positive

the potential is stable for large values of h. Therefore, for the Higgs potential to

remain stable until the Planck scale we need λH(h) > 0 for h < Mpl. The one-loop
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RGE for λH in the MS-bar renormalisation scheme is given by

(4π)2 dλH
d log µ

= −6y4
t + 24λ2

H + λH

(
12y2

t −
9

5
g2

1 − 9g2
2

)
+

27

200
g4

1 +
9

20
g2

2g
2
1 +

9

8
g4

2, (1.2.32)

where yt is the top Yukawa coupling, g1 is the EM gauge coupling and g2 is the weak

SU(2) coupling. As the top Yukawa coupling is the largest of all the couplings, it

dominates the running. The negative sign of the top Yukawa term will drive the

Higgs coupling towards zero, potentially driving it negative.

The running of the coupling constants in the SM has now been calculated at

next-to-next-to-leading order (NNLO) in [59]. With the currently measured values

of the Higgs mass and the top mass, the scalar potential seems to be in the interest-

ing metastable regime, just in between stability and instability. In the metastable

regime, the electroweak vacuum is a local minimum of the theory, but there is a

lower minimum at large field values of order 109 GeV. Changing the top mass by

about 3σ from its central value could make the potential stable.

A metastable vacuum could still be a problem for the theory. With the scale of

the instability found for the current best measured values of the Higgs and top mass,

the metastable vacuum would have a lifetime long enough not to be excluded [59].

For this to be a viable scenario, one still would need to explain why the Universe

ended up in the metastable vacuum in the first place. There is also a question

about how the the Higgs field behaved during inflation. Potentially, both quantum

and thermal fluctuations could make a Universe with a metastable Higgs non-viable

[60–62]. If the energy scale during inflation is too large, inflation would drive the

Universe into the non-electroweak vacuum and the SM would need an extension to

survive. We will present an extension to the SM that can help stabilise the Higgs

potential in Chapter 4.

1.2.4 Hierarchy Problem

For the last decades the main theoretical question in the SM has been the naturalness

or hierarchy problem. As discovered in 1978 [63], the mass of a scalar field is very
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sensitive to any higher energy scales in the theory due to large quantum corrections.

This sensitivity would tend to push the mass of the scalar fields up to the highest

energy scale in the theory. The Higgs field in the SM is a scalar field, and as such

its mass would also be sensitive to large quantum corrections due to new physics

at high scales. In this section, we will first discuss the hierarchy problem in more

detail and then consider some possible solutions to it.

We will start by considering the quantum corrections to the Higgs mass, m2
h,

from the one loop diagram with an internal top quark. We will start by using a

cut-off scale, Λ, to regularise the loop integral. In this regularisation scheme, the

corrections are given by

∆m2
h ≈
−y2

t

4π2

(
Λ2 +m2

t log

(
Λ2

m2
t

)
−m2

t

)
, (1.2.33)

where yt is the top-Yukawa coupling. The corrections are proportional to the

Yukawa-coupling, which is why the top quark gives the largest contribution of the

SM fermions, and thus we will only consider this contribution. We see that the

quantum corrections are quadratically divergent. The observable or renormalised

Higgs mass will then be given by a sum of the bare mass m0 and the corrections

m2
h = m2

0 + ∆m2
h = m2

0 −
y2
t

8π2
Λ2. (1.2.34)

From LHC experiments, we know that the Higgs has a mass of mh = 125 GeV. If

we now interpret the cut-off Λ as a physical scale and take it to be the Planck scale

Mpl ≈ 1019 GeV, we would need an enormous amount of fine-tuning between m0, Λ

and yt to achieve the observed Higgs mass. Interpreting the cut-off as physical could

mean interpreting it as a maximum momentum or equivalently an inverse lattice

spacing. The Planck scale is where quantum gravity effects become important. We

know that a theory of quantum gravity is needed at this scale, which is why it is

often used to estimate the fine-tuning in the SM, but as we will see below this is not

the most useful way of thinking about the hierarchy problem.

The first question to ask is why the Higgs field has this problem, but none of the

SM fermions do. If we calculate the one-loop correction to the fermion mass, mf ,

we find

δmf ∝ mf log

(
Λ

mf

)
. (1.2.35)
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Even for a large Λ this does not introduce fine-tuning as the mass correction is

proportional to the mass. This is because fermion masses are technically natural

[64]. If a symmetry of the theory is enhanced when a parameter is set to zero, the

parameter is technically natural and can naturally be small without any fine-tuning.

Fermions have chiral symmetry when they are massless which is why fermion masses

are protected from large quantum corrections, and why δmf ∝ mf . Scalars have no

such protection as the symmetries of the SM would not increase when we set the

scalar mass to zero.4

If, instead of using a cut-off regulator, we were to calculate the quantum correc-

tions to the Higgs mass using dimensional regularisation, we would find

∆m2
h ≈
−y2

tm
2
t

4π2

(
2

ε
− γE + log(4π)− logm

2
t

µ2

)
. (1.2.36)

The corrections are still divergent, but the 1/ε pole corresponds to a logarithmic

divergence and not to the quadratic divergence we saw in the cut-off regularisa-

tion scheme. Since physics should be independent of regularisation and subtraction

schemes, we will define the hierarchy problem in terms of real physical threshold ef-

fects, rather than in terms of quadratic divergences. In both regularisation schemes,

we find a contribution proportional to m2
t , which is the threshold contribution. The

standard quadratic divergences signal that these threshold corrections will occur,

but are not a problem by themselves. This shows that dimensional regularisation

does not solve the problem, even if there are no quadratic divergences. The thresh-

old contribution from the top quark is not large enough to require much fine tuning,

but new particles could give large contributions. Any new massive particle with

mass, M , coupling to the Higgs with coupling y will give a threshold contribution

of order y2M2. We therefore say that a theory has a hierarchy problem if it has an

elementary scalar with mass m coupled to a heavy particle with y2M2 � m2.

Another way to understand the same phenomenon is to consider the RG equation

for a scalar mass parameter in a simple model with only one fermion with mass, M ,

4In Chapter 2 we will discuss scale invariance, which could represent an increased symmetry

of the SM with mh = 0.
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coupled to the scalar with a Yukawa coupling, y. The RG equation is given by

(4π)2 ∂m2
h

∂ log µ
= −16M2y2 + 2λhm

2
h, (1.2.37)

where λh is the scalar quartic coupling. We see that the change in Higgs mass

induced by the running from µ0 to µ1, when M � mh, is of the order of

∆m2
h ≈ −

16

(4π)2
y2M2 log

µ1

µ0

. (1.2.38)

As long as the RG equations are evolved over a significant range of energies, this

will require a large fine-tuning to achieve mh �M , leading to the same conclusion

as above.5

An important way to think about the hierarchy problem is to consider the SM

as a low energy effective field theory (EFT) valid up to a cut-off scale Λ. We would

then expect contributions to the squared Higgs mass of order Λ2 as the cut-off

corresponds to a heavy particle we have integrated out. Following [65], we will show

an example which illustrates both that thinking about thresholds is a more useful

way of conceptualising the hierarchy problem, and that some care is needed when

thinking about effective field theories and the cut-off contributions to the Higgs

mass. Let us consider a simple theory with a scalar field φ and two fermions χ and

ψ with the following Lagrangian

L =
1

2
(∂µφ)2− 1

2
mφφ

2 + iχ̄(/∂−mχ)χ+ iψ̄(/∂−mψ)ψ − gχ χ̄χφ − gψ ψ̄ψφ. (1.2.39)

We will consider the situation where the mass of ψ, mψ is much larger than the

masses of φ and χ, respectively mφ and mχ. Comparing this to the SM, we think of

φ as the Higgs, χ as the top quark and ψ as a new unobserved particle with a large

mass. At energy scales below mψ, we can integrate ψ out and consider an effective

field theory for φ and χ. We can estimate the contribution to the scalar mass in this

EFT by

m2
φ = m2

0 + ∆m2
h = m2

0 −
g2
χ

4π2

(
Λ2 +m2

χ log

(
Λ

mχ

)
−m2

χ

)
(1.2.40)

5There is a factor of two difference between Equation (1.2.38) and what one would expect from

(1.2.36) as in the SM the top Yukawa interaction is yt√
2
ht̄t.
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where we would now treat Λ = mψ as a physical scale, the cut-off of the EFT.

Using this procedure, we would then consider the theory to be fine-tuned if m2
φ �

g2
χm

2
ψ. Since we know the UV-completion of this EFT, we can calculate the quantum

corrections in the full theory

m2
ψ = m2

0 + ∆m2
h = m2

0 −
g2
χ

2π2

(
Λ2

1 +m2
χ log

(
Λ2

1

m2
χ

)
−m2

χ

)
−
g2
ψ

2π2

(
Λ2

1 +m2
ψ log

(
Λ2

1

m2
ψ

)
−m2

ψ

)
, (1.2.41)

where Λ1 is a cut-off regulator that we will take to infinity as there are no other

physical scales in the theory. All the divergent pieces are absorbed into the bare

coupling as usual during renormalisation, and the logarithmically divergent terms

cause the running of the coupling constants. After renormalisation we are still left

with mass threshold effects

∆m2
φ =

g2
χ

8π2
m2
χ +

g2
ψ

8π2
m2
ψ. (1.2.42)

As we can see from this example it is not the presence of the quadratic divergences

in the theory, but the mass thresholds that give a hierarchy problem. Another

important aspect is that the magnitude of the quantum corrections due to ψ are

not given by gχ and mψ as estimated when considering the EFT, but by gψ and

mψ. This means that the theory is unnatural or fine-tuned if g2
ψm

2
ψ � m2

φ. Coming

back to the SM, we can see that solutions of the hierarchy problem do not require

top partners [65]. The new threshold effects that would destabilise the Higgs do not

need to have anything to do with the top quark.

The hierarchy problem is therefore only a problem if there are any new large

scales. The Standard Model by itself is not unnatural since there are no large scales

that could destabilise the Higgs mass. If we wanted to extend the SM with, for

example, a grand unified theory without supersymmetry, we would get a hierar-

chy problem, because the large GUT scales couple directly to the Higgs with large

couplings. The hierarchy problem is therefore best thought of as a problem which

proposed BSM theories need to avoid. Any proposed theory that includes large

threshold corrections to the Higgs mass would be unnatural and require fine-tuning.
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We characterise the hierarchy problem as one of the main theoretical challenges in

particle physics since we know that BSM physics is needed and most of the proposed

theories include very large scales coupled to the Higgs with large couplings.

At the Planck scale quantum gravity effects have to become important. If quan-

tum gravity introduces particles with Planck scale masses, e.g micro black holes,

that couple strongly to the Higgs, it will lead to extreme amounts of fine tuning.

Since the theory of quantum gravity is unknown, it is impossible to predict how

gravitational effects would change the Higgs mass. If quantum gravity does not give

large contributions to the Higgs mass and there were no other new heavy thresholds

in the theory, we will not have a hierarchy problem. This could be characterised as a

UV solution to the naturalness problem [66]. We will discuss this possibility further

in Chapter 2 in the context of classical scale invariance. Most proposed solutions

to the hierarchy problem would instead be characterised as solving the problem in

the IR. These theories either do not have elementary scalar fields, or they impose

new symmetries that cancel all the quantum corrections to the Higgs mass above

the scale of the symmetry. The two main frameworks to address the naturalness

problem in the IR are supersymmetry and composite Higgs models. We will now

briefly describe both of these approaches.

Supersymmetry (SUSY) refers to models where Lorentz invariance is extended

to include a symmetry that transforms bosons to fermions and vice versa. This

is the only non-trivial way to extend the Lorentz symmetry of the SM. For an in-

troduction to supersymmetry see [67] and references therein. Supersymmetry gives

every particle of the SM a supersymmetric partner with opposite spin statistics,

identical masses and quantum numbers. The symmetry also makes the couplings of

these new particles match the observed couplings in the SM so that all quadratic

divergences to the Higgs mass would vanish. The top quark would have a scalar

partner, the stop, which would exactly cancel the top contribution. Since we have

not observed any stops or any other supersymmetric partners, supersymmetry would

have to be broken. It is possible to break supersymmetry softly not to reintroduce

the quadratic divergences. If we consider mass threshold effects instead of quadratic

divergences as the source of the hierarchy problem, softly broken SUSY is natu-
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ral since any new heavy particle would have a partner that would cancel out the

threshold effect. SUSY can only solve the naturalness problem if the scale of SUSY

breaking is close to the EW scale. This is often called the little hierarchy problem.

After not discovering any signs of SUSY at the first run of the LHC, many minimal

SUSY models are now under pressure [68,69].

The hierarchy problem arose because the SM Higgs boson is an elementary scalar

field. In composite Higgs models, the Higgs is instead a bound state of some new

fermions, Ψ and Ψ̄, charged under a new confining gauge group. This solves the

hierarchy problem, since the integral used to calculate the Higgs mass quantum

corrections would be cut-off at the scale of confinement, Λc, for the new gauge group.

Above this scale there are no scalars and therefore no hierarchy problem. This

solution to the hierarchy problem, was first proposed in the Technicolor framework

in 1979 [63, 70]. Many approaches have adopted this framework, including those

where the Higgs is a pseudo-Goldstone boson, see e.g [71]. As with supersymmetry,

we see that we have a little hierarchy problem, as the corrections to the squared

Higgs mass would be driven by Λ2
c . If the Higgs is indeed a composite particle, we

would expect to see a whole host of other composite particles as in QCD. None of

these particles have been discovered, driving the scale of confinement higher and

making the little hierarchy problem worse.

There have been other suggested solutions to the hierarchy problem, but an

almost universal feature of all these solutions is that they require new physics at the

TeV scale not to be very fine-tuned. Of course, as mentioned above, the hierarchy

problem itself does not need to be solved at the TeV scale, but if we want to answer

the questions of dark matter, baryogenesis etc. without extremely weakly coupled

physics, we need particles with masses of TeV or below.

1.3 Outline of the Thesis

The main goal of this thesis is to investigate BSM extensions to the SM that can

address the questions about the Standard Model discussed in this introduction. We

will study theoretical model-building aspects and both collider and cosmological
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phenomenology of hidden sector models. These models extend the SM with a new

gauge group which is mainly coupled to the SM via the Higgs portal coupling. In

Chapter 2 we will introduce classical scale invariance (CSI) as a model building

framework for BSM physics. We will see that all scales in such models will have to

be dynamically generated, and that minimal models with few new parameters are

viable and can provide solutions to the SM problems. Chapter 2 also includes an

overview of classically scale-invariant models studied in the literature.

In Chapter 3 we will study a U(1)B−L CSI extension of the SM in detail. The

results presented in this chapter are based on [1]. One appealing feature of this

model is that it includes right-handed neutrinos and can explain the active neu-

trino masses via the see-saw mechanism. The main focus of Chapter 3 will be to

implement leptogenesis via neutrino oscillations as suggested in [72] in a classically

scale-invariant framework. We will show that this model can successfully generate

enough matter-antimatter asymmetry and investigate the available parameter space

for the model.

We move on to discussing two of the other open questions in the SM in Chapter 4,

namely dark matter and the stability of the Higgs potential. In this chapter, based

on [2], we investigate U(1), U(1)B−L and SU(2) CSI extension to the SM. First

we determine the parameter space in which these models can stabilise the Higgs

potential. Without adding extra field content, it is only possible in the SU(2) model

to stabilise the Higgs potential and not to be excluded by LHC constraints. We

therefore also include models with an extra scalar singlet. This scalar singlet can

both stabilise the Higgs potential and be a good and viable dark matter candidate.

The gauge bosons of the SU(2) theory are also good dark matter candidates. We

investigate the available parameter space for all the models where the Higgs potential

is stabilised and we get the correct relic density for dark matter.

In Chapter 5 we consider an SU(2) extension of the SM which can support mag-

netic monopoles based on [3]. A CSI theory with monopoles is interesting as it

gives a parametrically larger scale for the mass of the monopoles than the vacuum

expectation value of the scalar field. We want to determine if magnetic monopoles

in a hidden sector can make up dark matter, and if such models are cosmologi-
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cally viable. Models with magnetic monopoles will also include other dark matter

candidates and dark radiation. We determine the viable parameter space for the

SU(2) SM extension. Due to an unbroken U(1) gauge group, the model has long

range dark matter self-interactions which can help to explain the too-big-too-fail and

core-vs-cusp problems with the standard cold collisionless dark matter paradigm.

Having studied the cosmological consequences of hidden sector models coupled to

the Standard Model via the Higgs portal, in Chapter 6, based on [4], we will consider

what we can learn about these models at the LHC and future colliders. Our main

goal will be to study a simplified dark matter model in the two jets plus missing

energy final state. This is the signature of the vector boson fusion production of

the Higgs or another scalar decaying invisibly. We want to determine the expected

reach of the LHC and a future 100 TeV collider, and see if it is possible to learn

about the parameters of the hidden sector. The mass of the mediator between the

dark sector and the SM is one of the most important parameters at colliders, and we

will investigate how well the kinematic information from the two visible jets allows

us to differentiate between models with different mediator masses.



Chapter 2

Classical Scale Invariance

Models with classical scale invariance (CSI) have been introduced to explain the

shortcomings of the SM in a minimal way, without introducing large scales that

would destabilise the Higgs mass. In this chapter, based partly on material from

[1, 2], we will discuss how to construct classically scale-invariant BSM models. We

will start by discussing scale invariance and what classical scale invariance entails

in Section 2.1. Then we will discuss the Coleman-Weinberg (CW) mechanism used

to generate scales radiatively in these models in Section 2.2. This will show that

the classically scale-invariant SM needs to be extended with extra gauge groups or

field content to be phenomenologically viable. We will present a minimal extension

to the SM, before discussing a wide range of CSI models in Section 2.3.

2.1 Classical Scale Invariance

We will start by considering scale invariance in quantum field theory. Scale trans-

formations transform the coordinates, x, as

x→ x′ = exp(ε)x , (2.1.1)

where ε is a scaling parameter. Scale transformations form an Abelian group with

elements U(ε). They act on the fields, Φ(x), of the theory as

Φ→ Φ′ = U(ε)Φ(x)U(ε)−1 = Φ(x)− ε
(
dΦ + xµ

∂

∂xµ

)
Φ(x) , (2.1.2)

33
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where dφ is the scaling dimension of the field and the last equality is for infinitesimal

ε. In the free theory scalars have scaling dimension dφ = 1, and fermions have

dψ = 3/2. By considering these transformations, we can see that a free massless

theory has a scale-invariant Lagrangian. If we introduce interactions, we find that

the Lagrangian is invariant under scale transformations if the interaction terms are

dimension four. Any dimensionful parameter, as for example a mass term, m2φ2,

will break scale invariance.

A theory invariant under scale transformations will have a conserved Noether

current, Dµ, corresponding to scale transformations. One can find an expression for

this current by using the fact that the symmetric energy momentum tensor can be

defined as

T µν = 2
δ

δgµν

∫
d4xL , (2.1.3)

where gµν is the spacetime metric. Under scale transformations δgµν ∝ gµν , this

gives

∂µD
µ = δS ∝ δgµνT

µν ∝ gµνT
µν = T µµ . (2.1.4)

We see that the conservation of the scaling (dilation) current is given by the trace of

the energy momentum tensor. Therefore, for a theory to be scale invariant T µµ = 0.

Until now, the analysis has been at tree level. One way of including quantum

corrections is to consider the running of the coupling constants, g, of the theory

with energy. A scale transformation would change g → g+ εβ(g), where β(g) is the

normal β-function. Including one-loop effects, we find that

∂µD
µ = T µµ = δL = β(g)

∂

∂g
L . (2.1.5)

For a quantum theory to be scale-invariant, the β-functions have to vanish. If the

Lagrangian is scale-invariant but β(g) 6= 0, scale invariance is anomalously broken,

and the theory is classically scale-invariant.

It is possible to extend the group of scale transformations to the conformal group

by including special conformal transformations. The distinction between conformal

and scale invariance is not important for what follows, and in 4d scale invariance

most likely implies conformal invariance, see e.g. [73]. In the literature classical scale

invariance is sometimes referred to as classical conformal invariance.
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We now turn to classical scale invariance. A theory is classically scale-invariant

if there are no dimensionful parameters in the Lagrangian, but β(g) 6= 0 [74]. This

means that even if scale invariance is not an exact symmetry, it is not broken by an

arbitrary amount. The breaking of scale invariance is only due to the logarithmic

running of coupling constants and the scales this might dynamically generate.1 We

can therefore either view classical scale invariance as softly broken scale invariance

or as a classical symmetry which becomes exact in the classical limit of ~→ 0. When

doing calculations in CSI theories we should not use a cut-off regulator since that

would break scale invariance [75]. We should instead use a regularisation scheme that

does not introduce the UV scale explicitly, for example dimensional regularisation.

We will see that models with classical scale invariance can address the hierarchy

problem, and be interesting BSM theories.

A separate, but related model building approach is to consider theories with an

exact quantum scale invariance of the UV theory, as discussed in [76–78]. Classical

scale invariance of the effective theory below the Planck scale does not necessarily

assume nor is directly related to a hypothesised conformal invariance of the UV em-

bedding of the SM. UV quantum scale invariance is a more ambitious approach that

would make the Higgs mass technically natural and protect it from large quantum

corrections. As a solution of the hierarchy problem, this is similar to Supersymme-

try. Quantum scale invariance requires that all β-functions become zero in the UV,

which requires new physics at the TeV scale. This is because the scale where the

β-functions turn over will give corrections to the Higgs mass, even if there are no

new heavy particles at this scale [76].

2.2 Coleman-Weinberg Mechanism

We will now review the Coleman-Weinberg mechanism [79] for the generation of

scales in a classically massless theory. First, we review the effective action and

potential formalism in Section 2.2.1, and then we calculate the effective potential

1 We will see in detail how scales can be generated in classically scale-invariant theories when

we discuss the Coleman-Weinberg mechanism in Section 2.2.
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for a massless U(1) theory in Section 2.2.2. This will allow us to see how non-

zero vacuum expectation values and masses are generated dynamically by radiative

corrections.

2.2.1 Effective Action and Potential

By defining the effective action and potential, we will be able to study spontaneous

symmetry breaking in a systematic way including quantum corrections. We start

from the generating functional in the path integration formulation of quantum field

theory, which for a theory with a Lagrangian, L, and a source, J(x), is given by

Z[J ] =

∫
Dφ exp

[
i

∫
d4xL[φ] + Jφ

]
. (2.2.6)

One can interpret the generating functional as giving the vacuum-to-vacuum transi-

tion amplitude in the presence of a source. From the generating functional, we can

define the energy functional, W [J ],

eiW [J ] = Z[J ] = 〈Ω|Ω〉J . (2.2.7)

W [J ] corresponds to the vacuum energy in the presence of the source J , and it is

analogous to the Helmholtz free energy in a condensed matter system. We now

define the classical field, φcl, as

φcl =
δW [J ]

δJ(x)
=
〈Ω|φ(x)|Ω〉J
〈Ω|Ω〉J

. (2.2.8)

The classical field is a weighted average over all field configurations and dependent

on the source J(x). The effective action, Γ[φcl] is now given by a Legendre transform

of the energy functional:

Γ[φcl] = W [J ]−
∫
d4xJ(x)φ(x). (2.2.9)

We can expand the effective action in two very useful ways. The first is as a series

of 1PI connected Green’s functions2, Γi,

Γ =
∑
n

1

n!

∫
d4x1...d

4xnΓ(n)(x1, ..., xn)φcl(x1)...φcl(xn). (2.2.10)

21PI Green’s Functions are the sum of all Feynman diagrams which remain connected if one

internal line is cut.
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The second expansion is in powers of momentum

Γ =

∫
d4x

[
−V (φcl) +

1

2
(∂µφcl)

2Z(φcl) + ...

]
. (2.2.11)

V (φcl) is the effective potential, and at tree level it is equal to the normal scalar

potential. From Equation 2.2.9, we can see that

δΓ[φcl]

δφcl
= −J(x). (2.2.12)

We now want to use this relation to study the symmetry breaking properties of our

theory. Symmetry breaking occurs if φcl develops a non-zero vacuum expectation

value when the source J(x) = 0. Therefore, symmetry breaking would happen if

δΓ[φcl]

δφcl

∣∣∣∣
φcl 6=0

= 0. (2.2.13)

From Equation (2.2.11), we can see that, if the theory is translationally invariant,

this reduces to
dV (φcl)

dφcl

∣∣∣∣
φcl 6=0

= 0. (2.2.14)

This shows that the effective potential is very useful for studying the symmetry

breaking properties of a theory. First, the effective potential is calculated to the

desired order in perturbation theory. Then we determine that the symmetry is

broken if the minimum of the effective potential occurs for φcl 6= 0.

2.2.2 One Loop Effective Potential for Classically Massless

U(1)

We will now use the technique in the previous chapter to study spontaneous sym-

metry breaking in a classically massless U(1) theory with a complex, charged scalar

field. At tree level, the potential only has one minimum at the origin of field space

which would leave the U(1) symmetry unbroken. We want to determine if radia-

tive corrections can spontaneously break the U(1) symmetry. This theory has the

Lagrangian

L = (DµΦ)†(DµΦ) +
1

4
F µνFµν −

λ

4!
|Φ|4, (2.2.15)

where the covariant derivative is given by Dµ = ∂µ− eCWAµ and the complex scalar

by Φ = 1/
√

2(φ1 + iφ2). F µν is the normal field strength tensor, and eCW is the
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Figure 2.1: Feynman diagrams for the one-loop effective potential of scalar QED,

including scalar and gauge boson loops.

gauge coupling. Due to gauge invariance, the effective potential only depends on

φ2
cl = φ2

1 + φ2
2.

In this section, we will calculate the effective potential following the original

calculation in [79] using a cut-off regularisation scheme with cut-off Λ. In Section

2.3.2 we will see that we get the same results if we use dimensional regularisation

and the M̄S subtraction scheme.

From Equations 2.2.10 and 2.2.11, we can see that we can calculate the effective

potential as the sum of all 1PI Feynman diagrams with vanishing momentum on the

external lines. We show these Feynman diagrams in Figure 2.1. Calculating and

summing up the infinite number of Feynman diagrams we get

V =
1

4!
λφ4

cl−
1

2
Bφ2

cl−
1

4!
Cφ4

cl+
1

2

∫
d4k

(2π)4
ln

(
1 +

λφ2
cl

2k2

)
+

3

2

∫
d4k

(2π)4
ln

(
1 +

e2
CWφ

2
cl

k2

)
,

(2.2.16)

where B and C are the usual counter-terms needed for renormalisation. We evaluate

the UV divergent integral using a cut-off regularisation with cut-off, Λ, to get

V =
1

4!
λφ4

cl −
1

2
Bφ2

cl −
1

4!
Cφ4

cl +
Λ2φ2

cl

64π2
(λ+ 6e2) (2.2.17)

+
λ2φ4

cl

256π2

(
ln
λφ2

cl

2Λ2
− 1

2

)
+

3λ2φ4
cl

64π2

(
ln
e2
CWφ

2
cl

Λ2
− 1

2

)
We then need to renormalise the theory to remove the divergences. To do this, we

impose the following renormalisation conditions

d2V

dφ2
cl

= 0 ,
d4V

dφ4
cl

∣∣∣∣
M

= λ, (2.2.18)

where the first condition is that of a classically massless theory, and the second

defines the coupling constant at an arbitrary renormalisation scale, M . Combining
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these conditions with Equation 2.2.18, we get an expression for the one loop effective

potential

V =
1

4!
λφ4

cl +

(
λ2

256π2
+

3e4
CW

64π2

)
φ4
cl

(
ln
φ2
cl

M2
− 25

6

)
. (2.2.19)

We now want to investigate the minima of the effective potential to determine if we

get spontaneous symmetry breaking. We will start by considering the pure scalar

φ4 theory by setting eCW = 0. This gives an effective potential of

V =
1

4!
λφ4

cl +
λ2

256π2
φ4
cl

(
ln
φ2
cl

M2
− 25

6

)
. (2.2.20)

It looks as if this potential could develop a minimum away from the origin, but we

can only achieve this minimum for a non-zero φcl if

λ ln
φ2
cl

M2
∼ −32

3
π2. (2.2.21)

This is outside the validity of perturbation theory as each higher order is expected

to come with a factor of λ lnφ2
cl/M

2, and we must therefore view this minimum

as spurious. It would have been possible to anticipate this conclusion as the only

way to get a minimum, at non-zero values of φcl, is to balance the λ-term with the

λ2-term.

For scalar QED, we can get symmetry breaking at perturbative couplings as we

can now balance λ against e4
CW . It is the interactions of the scalar field with the

gauge bosons that will dynamically break the symmetry. As λ ∼ e4
CW is small, we

will for consistency drop the λ2 term. Keeping the λ and the e4
CW -terms gives the

following effective potential

V =
1

4!
λφ4

cl +
3e4

CW

64π2
φ4
cl

(
ln
φ2
cl

M2
− 25

6

)
. (2.2.22)

We choose M = 〈φ〉, and find that there is a minimum for a non-zero value of φcl if

λ =
33

8π
e4
CW . (2.2.23)

Given this relationship between the coupling constants, we get a final effective po-

tential of

V =
3e4

CW

64π2
φ4
cl

(
ln

φ2
cl

〈φ〉2 −
1

2

)
. (2.2.24)
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This potential only depends on e and 〈φ〉, not on λ. We have traded a dimension-

less coupling constant, λ, for a dimensionful parameter 〈φ〉. This phenomenon goes

under the name of dimensional transmutation. Using the Coleman-Weinberg mech-

anism, a scale, 〈φ〉, has been generated from a theory with no input mass scales. It

is now straightforward to calculate the masses of the particles in the theory. We get

one massive vector boson with mass

M2
A = e2

CW 〈φ〉2 , (2.2.25)

and one massive Higgs boson with mass

M2
h =

d2V

dφ2
=

3e4
CW

8π2
〈φ〉2. (2.2.26)

We notice that the Higgs boson mass is parametrically smaller than the gauge boson

mass.

2.2.3 Coleman-Weinberg Mechanism and Renormalisation

Group Running

It can seem like a strange coincidence, or evidence of fine tuning, that we only

get a non-zero vev for φcl when the coupling constants are carefully matched as in

Equation (2.2.23). In fact, there is no fine-tuning in this relationship at all [80]. This

can be understood by studying the renormalisation group running of the couplings

in the U(1) theory considered above. The relevant β-functions are given by [79]

βeCW =
de

dt
=

e3
CW

48π2
, βλ =

dλ

dt
=

1

4π2

(
5

6
λ2 − 3e2

CWλ+ 9e4
CW

)
, (2.2.27)

where t = ln µ
M0

. We will now consider a situation where at a large energy scale,

M0, we set arbitrary values for the couplings eCW (M0) = e0 and λ(M0) = λ0, and

then evolve the couplings down to lower energies. We see that the β-function for

λ is positive such that the value of λ will decrease as energy decreases. When λ

becomes small, the e4-term dominates, and the coupling will continue to decrease

until it eventually becomes negative. At some energy scale, Mc, the value of λ will

be such that

λ(Mc) =
33

8π
eCW (Mc)

4, (2.2.28)
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and this is the scale where symmetry breaking happens. It is the positive β-function

that drives λ negative and induces spontaneous symmetry breaking. This gives

another argument for why we did not get symmetry breaking in the pure scalar field

theory. In this theory we have βλ ∝ λ2 which gives a solution of

λ(t) ∝ 1

t
. (2.2.29)

We can see that this solution does not drive λ negative, and would therefore not be

able to induce symmetry breaking as above.

To implement the CW mechanism successfully, we need a classically massless the-

ory where a coupling is driven negative by the RG running. This triggers symmetry

breaking which dynamically generates scales by dimensional transmutation.

2.3 BSM Models with Classical Scale Invariance

We will now consider how to construct classically scale-invariant models for BSM

physics. First, we will discuss classical scale invariance and the hierarchy problem.

And then we will show how the SM can be extended in a phenomenologically viable

way so that all scales are generated via the CW mechanism in a CSI U(1) extension

to the SM. We will then move on to describe different classes of CSI extensions to

the SM that have been proposed in the literature, before considering some of the

common phenomenological consequences of these models.

2.3.1 Hierarchy Problem in Classically

Scale-Invariant Models

Classically scale-invariant models were introduced to address the hierarchy problem

[75]. In Section 1.2.4, we explained how the hierarchy problem is best thought of

in terms of mass thresholds of massive particles. In CSI models all scales will be

radiatively generated, and in all proposed models there is only one scale. All masses

in the theory will be parametrically related to the generated scale. Therefore, a

classically scale-invariant theory does not have a hierarchy problem as long as this

radiatively generated scale is of the order of the weak scale. For the theory to be
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useful, it needs to address the observational problems in the SM with only this scale.

In CSI theories all scales are connected at tree level, and, as we will see in the next

section, the Higgs mass parameter in the Lagrangian, µSM, will be given by

µ2
SM ∝ λp〈φ〉2 , (2.3.30)

where φ is a field that develops a vacuum expectation value due to the CW mecha-

nism, and λp is its portal coupling to the Higgs. As long as λp〈φ〉2 ∼ v2, the theory

will not destabilise the weak scale. This implies new physics around the weak scale

unless λp is extremely small. A very small λp could be technically natural but un-

appealing unless there is a mechanism to explain such a small coupling constant, as

for example due to shift symmetry in [81].

CSI theories do not introduce a naturalness problem, but they do not protect the

Higgs mass from new large scales that can appear in for example quantum gravity.

This means that any new UV theory beyond the CSI extension needs to be such

that it does not reintroduce large corrections to the Higgs mass. Without such large

corrections, CSI theories will naturally generate scales that are much smaller than

the UV cut-off, ΛUV, of the theory. In the previous section we saw that the scale,

〈φ〉, was generated when

λ(〈φ〉) =
33

8π
eCW (〈φ〉)4. (2.3.31)

By solving the RG equations we find a relationship between 〈φ〉, which fulfils this

relation, and ΛUV [82],

〈φ〉 ≈ ΛUV exp

( −24π2

e2
CW (〈φ〉)

)
. (2.3.32)

The exponential suppression is due to the logarithmic running of the coupling con-

stant. This is completely analogous to why ΛQCD, the QCD confinement scale, can

naturally be much smaller than the Mpl. Dimensional transmutation occurs in QCD

and other gauge theories that become strongly coupled. In QCD we trade αs for

ΛQCD in the same way as we did when trading λ for 〈φ〉 above. Again, the logarith-

mic running of the coupling g will lead ΛQCD to be exponentially suppressed from

the ΛUV.

Classical scale invariance does not solve the hierarchy problem in the same way

as, for example, Supersymmetry. It does require that quantum gravity and any
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other new UV physics do not destabilise the Higgs mass. If that is the case, the

scales of the theory will naturally be generated at scales exponentially smaller than

the UV cut-off, and there will be no fine-tuning.

2.3.2 U(1) CSI Extension of the SM

After the measurement of the mass of the weak vector bosons and the Higgs boson,

it is impossible to implement the CW mechanism in the Higgs sector of the SM.

As we see from Equations (2.2.25) and (2.2.26), the CW mechanism predicts vector

bosons that are significantly heavier than the Higgs bosons, in contradiction with

the experimentally observed values. In 1996, Hempfling [83] suggested a minimal,

phenomenologically viable extension to the SM where all fundamental mass scales

are given by dimensional transmutation. First the SM is made classically massless

by setting the Higgs mass to zero, and then it is extended with a U(1) hidden gauge

group. There is one new complex scalar field, Φ, which is charged under the hidden

gauge group, but is a SM singlet. The hidden sector is coupled to the SM via a

Higgs portal coupling, and we have the following scalar potential

Vcl(H,Φ) = λφ(Φ†Φ)2 + λH(H†H)2 − λP(H†H)(Φ†Φ) . (2.3.33)

The Φ field, charged under the hidden U(1) gauge group, can now develop a vacuum

expectation value via the CW mechanism as described above. The condition relating

the mass of gauge bosons and Higgs bosons now occurs in the hidden sector and

therefore has no experimental constraints. The generated scale is then transmitted

to the SM due to the Higgs portal coupling and gives a negative mass squared to

the SM Higgs

µ2
SM = −λp〈Φ〉2. (2.3.34)

This allows electroweak symmetry breaking (EWSB) to happen as usual in the SM,

giving masses to the fermions and the weak vector bosons. All the masses will be

given in terms of the only mass scale in the theory, 〈Φ〉. We will now study this

example in more detail. We will show how the CW mechanism generates a vev in

the hidden sector, and how this vev gets transmitted to the SM. Since both the

scalars develop vevs, they will mix. We will calculate the mass eigenstates and the
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corresponding mass eigenvalues mh1 and mh2 . In this section we will follow the

approach of Ref. [82] by first considering the one-loop contributions in the hidden

sector before adding the SM corrections at a later stage. We will also use the MS

renormalisation scheme instead of the cut-off scheme calculation presented above.

The complex scalar field, Φ, is given by

Φ =
1√
2

(φ+ iφ2) . (2.3.35)

We have the following tree-level scalar potential

V0(h, φ) = λφ(ΦΦ†)2 + λH(HH†)2 − λPHH
†ΦΦ† . (2.3.36)

After symmetry breaking, we will be left with two real scalars in the unitary

gauge,

H =
1√
2

(0, h) , Φ =
1√
2
φ . (2.3.37)

We start by analysing the scale generation in the hidden sector using the one-loop

effective potential which in the MS scheme reads, cf. [84],

V1(φ;µ) =
λ

(0)
φ

4
φ4 +

3

64π2
e4
CW(µ)φ4

(
log

e2
CW(µ)φ2

µ2
− 5

6

)
. (2.3.38)

The potential depends on the RG scale, µ, that appears both in the logarithm and

also in the one-loop running CW gauge coupling constant eCW(µ). The superscripts

indicate a tree level coupling. The running (or renormalised) self-coupling, λφ, at

the RG scale µ is defined via

λφ(µ) =
1

3!

(
∂4V1(φ;µ)

∂φ4

)
φ=µ

= λ
(0)
φ +

10eCW(µ)4 + 3eCW(µ)4 log (eCW(µ)2)

16π2
.

(2.3.39)

We can now express the effective potential in terms of this renormalised coupling

constant by substituting λ
(0)
φ = λφ − (10e4

CW+3e4
CW log e2

CW)/(16π2) into eq. (2.3.38),

obtaining

V1(φ;µ) =
λφ(µ)φ4

4
+

3eCW(µ)4

64π2
φ4

(
log

(
φ2

µ2

)
− 25

6

)
. (2.3.40)

This is the one-loop effective potential for the hidden sector. It makes the vacuum

occur at 〈φ〉 6= 0.Minimising the potential (2.3.40) with respect to φ at µ = 〈φ〉, gives
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the characteristic Coleman-Weinberg-type λφ ∝ e4
CW relation between the scalar and

the gauge couplings we saw in Section 2.2.2,

λφ =
11

16π2
e4
CW at µ = 〈φ〉 . (2.3.41)

The 3! mismatch between this result and the result in [79] and in Equation (2.2.23)

is due to the difference in definition of λφ in the scalar potential. Compare equations

(2.2.15) and (2.3.36).

Shifting the CW scalar by its vev φ → 〈φ〉 + φ, and expanding the effective

potential in (2.3.40), we find the mass of φ,

m2
φ =

3e4
CW

8π2
〈φ〉2 , (2.3.42)

and the mass of the Z ′ U(1) vector boson,

M2
Z′ = e2

CW〈φ〉2 � m2
φ =

3e4
CW

8π2
〈φ〉2 . (2.3.43)

The MS expressions above are once again identical to those derived in the cut-off

scheme in [79,82].

We now turn to the SM part of the scalar potential (2.3.36), specifically

V0(h) =
λH
4
h4 − λP〈φ〉2

4
h2 . (2.3.44)

The SM scale µ2
SM is generated by the CW vev in the second term,

µ2
SM = λP〈φ〉2 , (2.3.45)

and this triggers electroweak symmetry breaking and the appearance of the Higgs

vev v. We also need to take the portal coupling into account. In the hidden sector

it provides a correction to the CW matching condition (2.3.41) and the CW mass

(2.3.42). By including the last term on the r.h.s of (2.3.36) to the effective potential

in (2.3.38) and (2.3.40), we find a λP-induced correction to the equations (2.3.41)-

(2.3.42), which now read

λφ =
11

16π2
e4
CW + λP

v2

2〈φ〉2 at µ = 〈φ〉 (2.3.46)

m2
φ =

3e4
CW

8π2
〈φ〉2 + λPv

2 (2.3.47)
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We will mainly consider small values of λP, so that these corrections are negligible

as λPv
2/(2〈φ〉2) ∼ λ2

P/(4λH)� 1.

Having calculated the masses in the hidden sector, we now move on to compute

the SM Higgs mass. We perform the usual shift, h(x)→ v+h(x), and represent the

SM scalar potential (2.3.44) as follows,

V (h) =
λ

(0)
H

4
(v + h)4 − µ2

SM

4
(v + h)2 . (2.3.48)

The vev, v, is determined by minimising (2.3.48), and the Higgs mass is given by

the second derivative of (2.3.48),

v2 =
λP

2λ
(0)
H

〈φ〉2 , m2
h = 2λH v

2 . (2.3.49)

The two scalars, h and φ, both have vevs and therefore mix via the mass matrix,

M2 =

 2λH v
2 −

√
2λPλ

(0)
H v2

−
√

2λPλ
(0)
H v2 m2

φ

 , (2.3.50)

where m2
φ is given in (2.3.47) (and already includes the λP correction). The mass

eigenstates are the two Higgs fields, h1 and h2 with mass eigenvalues,

m2
h1,h2

=
1

2

(
2λHv

2 +m2
φ ±

√(
2λHv2 −m2

φ

)2
+ 8λPλHv4

)
. (2.3.51)

It is easy to see that in the limit where the portal coupling, λP, goes to zero, the

mixing between the two scalars h and φ disappears, and we get m2
h and m2

φ as

mass eigenvalues, as one would expect. However, for non-vanishing λP, the mass

eigenstates h1 and h2 are given by h1

h2

 =

 cos θ − sin θ

sin θ cos θ

 h

φ

 , (2.3.52)

with a non-trivial mixing angle θ. The SM Higgs with mass m2
h SM

=' (126 GeV)2

is the eigenstate h1 which is ‘mostly’ the h scalar (i.e. cos θ× the scalar coupled to

the SM electroweak sector) for small values of the mixing angle,

hSM := h1 = h cos θ − φ sin θ , mh1 = 125.66 GeV . (2.3.53)
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In the approximation where (8λPλ
(0)
H v4)/(2λHv

2−m2
φ)2 is small, we can expand the

square root in (4.1.16) to obtain analytical expressions for the scalar masses:

m2
h1

= m2
+ = 2v2λH

(
1 +

λP(λ
(0)
H /λH) v2

2λHv2 −m2
φ

)
, for 2λHv

2 > m2
φ , (2.3.54)

m2
h1

= m2
− = 2v2λH

(
1− λP(λ

(0)
H /λH) v2

m2
φ − 2λHv2

)
, for m2

φ > 2λHv
2 . (2.3.55)

We can see that a U(1) extension of the CSI SM is a phenomenologically viable

BSM model where all the scales are generated via dimensional transmutation. It

includes many of the main features of CSI models. The EW scale is transmitted

to the Higgs via an extended scalar sector coupled with portal couplings. We are

left with two massive neutral scalar fields that mix. It is straightforward to achieve

the correct value of the Higgs mass. With the Higgs mass fixed, this simple viable

model only has two free parameters which we can take to be the gauge coupling,

eCW , and the portal coupling, λp. The model is therefore predictive. In Chapter 4

we will investigate both the Higgs vacuum stability and the collider phenomenology

of this model.

2.3.3 CSI Extensions of the SM

In this section, we will discuss the different CSI models that have been proposed in

the literature. All CSI extensions of the SM start with the SM Lagrangian without

the Higgs mass term. Extra field content and potentially new gauge groups are then

added to generate scales dynamically. This scale can then be transmitted to the

Higgs to trigger electroweak symmetry breaking. There are two main categories of

CSI models divided by the strength of the couplings of the new field content. We have

already seen examples of weakly coupled models where scales are generated by the

CW mechanism, but there are also proposed models where the scale is generated,

as in QCD, by confinement when the coupling becomes large (see [85–90]). In

this thesis, we will focus on the weakly coupled theories. This class has two main

subclasses: one where the CW mechanism is achieved without any extra gauge

groups by extending the scalar sector [74,81,91–108], and another where we extend

the SM with a new gauge group as in the example in the previous section and
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in [1, 2, 82,83,109–123].

If we consider the theories without extra gauge sectors, there are two main ways

to trigger EWSB dynamically. We have already seen that if the SM SU(2) gauge

group were to provide the quantum corrections needed to make the CW mechanism

work, the Higgs boson mass would have to be much smaller than the mass of the W±

and Z bosons. Another problem with the CW mechanism in the SM is that the RG

equation for the Higgs self-coupling is dominated by the top Yukawa, making the

β-function negative. This will ruin the CW symmetry breaking mechanism as the

self coupling will increase with decreasing energy scale and never become negative.

The first approach to CSI model building without extra gauge groups is to add

extra scalars to the Higgs sector, which can provide large positive contributions to

the β-function [74, 91, 93, 96, 98, 102, 103, 105, 124]. In these models, it is a portal

type coupling between the scalars that drives the CW mechanism, and therefore we

do not get the predicted hierarchy between the SU(2) gauge boson masses and the

Higgs mass seen above, making this a phenomenologically viable theory.

As an example, let us consider the approach in Hill [91]. They find that EWSB

can be dynamically achieved when the SM is extended with an extra inert3 Higgs

doublet which is portally coupled to the Higgs. We then get an extra contribution

to the β-function for the Higgs quartic coupling, λH , schematically given by

dλH
dlogµ

∝ λ2
H − y4

t + λhy
2
t + λ2

p... , (2.3.56)

where λp is the portal coupling and yt is the top Yukawa coupling. If λp is large

enough to overcome the negative contribution from the top Yukawa, the CW mech-

anism will generate a vev for the Higgs. This gives a prediction for the ratio between

the two Higgs masses in the same way as we got a prediction for the ratio of the

gauge boson and scalar masses in the U(1) example. The model predicts that the

mass of the second Higgs doublet is mh2 ≈ 376 GeV. This gives a phenomenolog-

ically viable and very predictive model, but due to the large portal coupling the

model will develop a Landau pole at the ∼ 5 TeV scale.

3A SU(2) doublet that does not get a vev.
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In [81, 92, 95, 100, 101, 104, 107, 108] a viable CSI model is achieved by using

the CW mechanism to generate a vev for a new scalar field, not the Higgs boson,

dynamically. This scalar field is then portally coupled to the Higgs boson, and

therefore induces a EWSB by providing a negative mass squared term for the Higgs

similarly to the U(1) example above. For a successful CW mechanism, these models

will need additional field content in addition to the one new scalar field. For example

in [92], there are two new real scalar fields, φ1 and φ2. This gives a scalar potential

of

V (h, φ1, φ2) = λH
1

4
h4+λ1

1

4
φ4

1+λ2
1

4
φ4

2+λH1
1

4
φ2

1h
2+λH2

1

4
φ2

2h
2+λ12

1

4
φ2

1φ
2
2. (2.3.57)

We can now organise the coupling constants so that λ1 will be driven negative at

low energy due to the contribution of a large λ12 to its β-function. This will lead φ1

to develop a vev which will be transmitted to the Higgs via the portal coupling λH1.

The end result is two massive scalars that mix with each other, as in the previous

section, and one additional massive scalar that does not mix. Since the final scalar

does not mix with the Higgs, it does not decay and can therefore be a dark matter

candidate. This class of models is less minimal, but it can easily incorporate DM

and Higgs vacuum stability due to the extra field content.

CSI models with extended gauge sectors differ from each other both in field

content and in gauge structure. The simplest models have a new U(1) gauge group

as shown above. This model has been studied in [2, 82, 83, 116, 118, 121–123], and

we will study Higgs vacuum stability and dark matter in this model in Chapter 4.

A popular extension to this model is to consider the SM extended by a U(1)B−L

gauge group [1,2,114,115,117–120]. All the SM fields are charged under this group

with their charge given by their baryon minus lepton number. To be anomaly free,

these models require three generations of right-handed neutrinos, and have therefore

been studied to explain neutrino mass and leptogenesis as we will see in detail in

Chapter 3. In addition to a U(1) gauge group, extensions with SU(2) groups have

been studied in [2, 3, 111, 112]. As we will discuss in Chapter 4, these models are

very interesting because the SU(2) gauge bosons are good dark matter candidates.

In [113] they consider a hidden sector consisting of SU(2)×U(1). As long as the CW
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mechanism is employed in the hidden sector, these models are phenomenologically

viable and have many interesting applications to BSM physics.

2.3.4 Classically Scale-Invariant BSM Physics

As discussed above, for CSI models not to have a hierarchy problem they need to

solve the observational questions in the SM without introducing new large scales.

Dark matter has been studied in great detail in CSI models, both in the strongly

coupled models [85, 87, 90] and in the weakly coupled models [2, 92, 95, 96, 98, 102,

103,108,111–113,121,122]. In the weakly coupled models, one can implement many

different dark matter scenarios. We can have scalar, fermion or vector boson dark

matter candidates. In most models this dark matter is coupled to the Higgs via a

portal coupling, sometimes directly and sometimes via a scalar mediator. The dark

matter candidate is commonly a standard WIMP thermal relic, but also other pro-

duction mechanisms are possible( see e.g. [103]). If the DM is produced via thermal

freeze-out, this can give interesting constraints for these models. The observed relic

density can give a lower limit on the Higgs portal coupling so as to not overclose

the Universe. The annihilation cross-section, which in many models depends on the

portal coupling, can not be too small as then dark matter will freeze out too soon,

and be too abundant. This constrains the portal coupling from the opposite side to

collider experiments which tends to constrain it form above. In Chapter 4 and 5,

we will investigate CSI models with scalar and vector boson DM, and in Chapter 6

we will discuss LHC phenomenology for models with scalar mediators to fermionic

dark matter.

Generating a matter antimatter asymmetry has been much less studied in the

context of CSI models. Models with a U(1)B−L gauge group and right-handed neu-

trinos would be a good starting point for standard leptogenesis, but as discussed

in Chapter 1 very heavy right-handed neutrinos are needed, which is incompatible

with classical scale invariance. It is possible to reduce the mass of the right-handed

neutrinos by fine-tuning their mass difference. This approach, called resonant lep-

togenesis, has been studied in a CSI framework in [119]. In Chapter 3, we present

a successful approach based on leptogenesis by the oscillation of GeV scale right-
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handed neutrinos.

In CSI models the vacuum should be stable4 up to the Planck scale, without

requiring new field content at large energy scales. We will study this in detail

for U(1), U(1)B−L and SU(2) models in Chapter 4. The Higgs vacuum instability

has also successfully been addressed in [92,95,111,112,116]. In all these models the

Higgs potential is stabilised by positive contributions to the β-functions of the Higgs

self-coupling from portal couplings in an extended Higgs sector.

Inflation has successfully been implemented in CSI models [99, 115, 121, 125].

One example of an inflationary model from [121] is a U(1) CSI extension of the SM

with an additional real scalar singlet. This singlet can then successfully play the

role of both inflaton and dark matter. The strong CP problem has been addressed

in [81, 104]. Axions require a very large scale ∼ 1012 GeV to solve the strong CP

problem. Therefore, a hidden sector that includes an axion has to be extremely

weakly coupled. This can potentially be explained by an approximate shift symme-

try.

CSI models, unlike for example Supersymmetric models, do not protect the Higgs

mass from quantum gravity effects at the Planck scale. Since it is impossible with

today’s knowledge to determine if quantum gravity will give large corrections to the

Higgs mass, this might or might not be considered a problem. There have been some

attempts to consider gravity in a CSI framework [106,120,125,126]. The main idea is

to think of the Planck mass Mpl as the vev of a scalar field, s, that is non minimally

coupled to gravity. The Einstein-Hilbert term in the standard general relativity

(GR) Lagrangian (M2
plR where R is the Ricci scalar curvature) is removed, and we

get a scalar-tensor theory for gravity

L =
√
g
(
− ε

2
s2R + Lm

)
. (2.3.58)

Lm is the normal matter Lagrangian, including kinetic terms for s. If the theory

dynamically generates a vev for s, 〈s〉 = Mpl/
√
ε, we recover the standard GR

Lagrangian. Since Lm will include a portal coupling, λp, between the new scalar s

4It is possible that meta-stability is sufficient as discussed in Chapter 1.
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and the Higgs boson, this will induce a Higgs mass of

M2
h = λp

M2
pl

ε
. (2.3.59)

Getting the observed value for the Higgs mass this requires an extremely small value

of λp. As λp is renormalised multiplicatively, this could be considered to be techni-

cally natural. One of the main questions regarding gravitational corrections to the

Higgs mass is if microscopic black holes with mass around Mpl will give large correc-

tions. In the model discussed in [126], the black holes do not give large contributions

to the Higgs mass, since the black holes have to be significantly heavier than Mpl.

Only black holes with mass just around the Planck scale give a large contribution

as the contribution is exponentially suppressed by the black hole entropy.

Classically scale-invariant models come in many shapes and can successfully be

used to explain many BSM phenomena. Due to the classical scale invariance, these

models often have few new parameters and are predictive. The main consequence

of imposing classical scale invariance is that there can not be any large scales in the

theory. Therefore, grand unification is incompatible with this approach, and so is

standard leptogenesis with right-handed neutrinos with masses of 1012 GeV. A very

compelling feature of CSI models is that all mass scales have to be dynamically gen-

erated. This means that the mass scales of fundamental particles have similar origin

as the mass scales of protons and neutrons. If the Planck scale is also dynamically

generated, all mass scales in the Universe will be due to dimensional transmutation.

2.3.5 Phenomenology of CSI Models

A common feature of all the weakly coupled CSI models is that they require extended

scalar sectors. Either a vacuum expectation value generated for another scalar has

to be communicated to the Higgs, or the Higgs needs large positive contributions to

the β-function from other scalars. This means that all these CSI models have portal

couplings to the Higgs. Higgs portal coupling models have been extensively studied

(see e.g. [127, 128]). If the scalar field, s, coupled to the Higgs via the Higgs portal

coupling develops a vev, it will mix with the Higgs as described above. We get two
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mass eigenstates h1 and h2,

h1 = h cos θ − s sin θ h2 = s cos θ + h sin θ , (2.3.60)

where θ is the mixing angle. This mixing modifies the normal Higgs production cross-

sections with a factor cos2 θ, and it means that h2 can be produced from and decay to

SM fields. This modification of the Higgs coupling allows us to constrain the mixing

angle. The signal strengths for Higgs production gives a bound of sin θ < 0.44 [129].

One can also get a mass dependent bound on θ from the W boson mass, as shown

in Figure 3 in Ref. [129]. The constraint comes from the contributions of the heavy

second Higgs like scalar, h2, to the W-boson mass at loop level. In the mass range

mh2 ∼ 1 TeV, the limit becomes sin θ < 0.3.

If h2 is lighter than half the Higgs mass, mh2 < mh/2 = 62.5 GeV, then h1 can

very efficiently decay into two h2s, giving a large invisible branching ratio of the

Higgs. Current limits on the invisible branching ratio give a limit on the portal

coupling of λp . 10−4 [82] in this regime. If h2 can decay into SM particles, we will

also get limits from the non-observation of a second SM-like Higgs. We will discuss

this further in Chapter 4.

If mh2 > 2mh1 , the h2 → h1h1 decay is kinematically allowed. This process could

then be visible at the 13 TeV LHC [129]. In addition to the extended Higgs sector,

most CSI models also have other phenomenological consequences. For models with

dark matter, one can look for signals of missing energy at colliders (see Chapter

6), and at direct and indirect detection. In models where the SM fermions are

charged under the hidden gauge group as in the U(1)B−L model, one can look for a

Z ′ boson peak, for example, in the dilepton final state. Other extensions of the basic

model will have additional signatures at colliders or at cosmological experiments.

Even if CSI models do not have a smoking gun signature, they are predictive and

discoverable.



Chapter 3

Leptogenesis and Neutrino

Oscillations in the Classically

Scale-Invariant Standard Model

with the Higgs Portal

In this chapter, based entirely on [1], we will show how to generate a matter anti-

matter asymmetry in a classically scale-invariant extension of the Standard Model.

This is an important step in establishing CSI extensions of the SM as viable BSM

theories. As no supersymmety has been discovered and there is no evidence of any

anomalies in the quark flavour sector, the most attractive scenario for generating

the baryon asymmetry of the Universe is arguably leptogenesis. Models of leptogen-

esis also explain neutrino masses elegantly via the see-saw mechanism. As discussed

in Section 1.2.2, in the standard scenario of thermal leptogenesis [55], a lepton

asymmetry is generated by decays of heavy right-handed Majorana neutrinos into

Standard Model leptons at temperatures much above the electroweak scale. The

lepton asymmetry is then reprocessed into the baryon asymmetry by electroweak

sphalerons [52,130] above the electroweak scale.

To generate the observed value of the matter-antimatter asymmetry in the vanilla

version of leptogenesis, it is necessary to have extremely heavy masses for sterile neu-

54
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trinos, M & 109 GeV [58, 131]. If this was the full story, classical scale-invariance

would be ruled out by M ≫ v. Instead, we will adopt an alternative approach to

leptogenesis pioneered in [72], and further developed in [132,133]. In this approach,

the lepton flavour asymmetry is produced by oscillations of the right-handed Majo-

rana neutrinos with masses of the order of the electroweak scale or below. This low

scale is easily accommodated in a classically scale-invariant setup. We will consider

an extension of the SM with a hidden U(1)B−L gauge group which includes GeV

scale right-handed neutrinos. This gives a good CSI realisation of this alternative

approach to leptogenesis.

The chapter is organised as follows: we will start with a brief introduction of

thermal field theory in Section 3.1. Then, in Section 3.2, we set up the U(1)B−L

extension of the SM model which automatically includes sterile right-handed Majo-

rana neutrinos. The formalism of leptogenesis via Majorana neutrino oscillations is

presented in 3.3.1. Section 3.3.2 adapts and applies theses ideas to our classically

scale-invariant models. The matter-antimatter asymmetry is calculated and anal-

ysed in Section 3.4 which also contains multiple benchmark points. Conclusions are

outlined in Section 3.5.

3.1 Brief Review of Thermal Field Theory

To calculate expectation values of operators in a QFT at non-zero temperature, we

consider a system in a grand canonical ensemble where the system can exchange

both energy and particles with a heat reservoir with constant temperature T . When

calculating traces by summing over all the states of such an ensemble, each state

has a weight of e−βH where β = 1/T and H is the Hamiltonian of the system. An

operator A then has the following expectation value

〈A〉 =
Tr[e−βHA]

Tr[e−βH ]
. (3.1.1)

We can calculate these expectation values using normal QFT techniques, but we

evolve the system in imaginary time with periodic or anti-periodic boundary condi-
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tions for bosons and fermions respectively. Implementing periodic boundary condi-

tions for time changes integrals over energy to sums over frequencies,
∫
d3kdωk →∑

ωk

∫
d3k. Using these techniques, one can calculate the thermal one-loop potential

for a theory [84]

V tot
one−loop = V T=0

one−loop + V T
one−loop, (3.1.2)

where V T=0
one−loop is the standard one-loop potential at zero temperature discussed in

Chapter 2 and V T
1loop is the thermal correction given by

V T
one−loop =

1

2π2β4

( ∑
i∈bosons

niJB[m2
iβ

2] +
∑

j∈fermions

njJF [m2
jβ

2]

)
. (3.1.3)

JB and JF are the bosonic and fermionic thermal functions, given by

JB[m2
iβ

2] =

∫ ∞
0

dxx2 log
(

1− e−
√
x2+β2m2

)
, and (3.1.4)

JF [m2
iβ

2] =

∫ ∞
0

dxx2 log
(

1 + e−
√
x2+β2m2

)
. (3.1.5)

At high temperature these function can be expanded as follows,

JB[m2/T 2] = −π
4

45
+
π2

12

m2

T 2
−π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2
+O

(
m6

T 6

)
, and (3.1.6)

JF [m2/T 2] =
π4

360
− π2

24

m2

T 2
− 1

32

m4

T 4
log

m2

afT 2
+O

(
m6

T 6

)
, (3.1.7)

where log ab = 5.4076 and log af = 2.6351. In the high temperature limit, the

scalar potential of theories with a scalar, φ, becomes

V tot(φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

λ(T )

4
φ4 , (3.1.8)

where D, T0, E and λ(T ) are calculable constants for a given field content. Both

fermions and bosons will contribute to all of these constants, except for E which

only gets bosonic contributions due to the m3/T 3 term in (3.1.6). We see that finite

temperature effects induce a thermal correction to the mass squared, proportional

to T 2.
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3.1.1 Phase Transitions

In the SM, we know that only if the mass-squared term of the Higgs, φ, is negative

will we get electroweak symmetry breaking. In the previous section, we saw that

thermal corrections give a positive contribution to the mass. Therefore, at some

temperature in the early Universe, the symmetry is restored and 〈φ〉 = 0. At some

temperature Tft we get a transition between the broken and unbroken phase. Such

phase transitions can occur in two distinct ways called first-order and second-order

phase transitions. At high temperature the minimum of the potential is at φ = 0

and at zero temperature at H = v. The phase transition occurs when these two

local minima have equal energy. For the potential in (3.1.8), this is approximately

the temperature T0. For a first order phase transition, the potential has a barrier

between the two vacua, while for a second order phase transition no such barrier

exists. From equation (3.1.8) we can see that the existence of the barrier depends

on the size of the φ3 term.

Since there is no barrier in a second order phase transition, the minimum at

the origin becomes a maximum, and any displacement will cause the field to roll

down to its new minimum. For a first-order phase transition, the barrier prevents a

smooth and fast transition. The phase transition will instead occur when the field

can tunnel through the barrier at lower temperature, TC . This will lead to bubbles of

the new phase spreading through the Universe at the speed of light. Interactions in

the bubble walls are out of thermal equilibrium and can therefore be very important

for baryogenesis as explained in Section 1.2.2.

One can characterise the strength of the first.order phase transition by φc/Tc.

For the phase transition to be strongly first-order, we require that φc/Tc & 1. In

terms of the potential in equation (3.1.8), the strength of the phase transition is

given by
φc
Tc

=
2E

λTC
. (3.1.9)
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3.2 The B− L Coleman-Weinberg Extension of

the Standard Model

We will now extend the minimal U(1) CSI extension in Section 2.3.2 by giving the

Standard Model fields a charge under the hidden gauge group. An appealing way to

accomplish this to make the hidden U(1) into a U(1)B−L gauge group [109,110,134,

135]. All the fields in the theory will then have a charge, under this gauge group,

given by their baryon-minus-lepton number.

The Coleman-Weinberg mechanism will work exactly as in section 2.3.2 if we

replace eCW with Qφ gB−L, where Qφ is the B − L charge of the scalar field in the

hidden sector. The mass of the scalar is therefore given by

m2
ϕ =

3

8π2
(Qφ gCW )2m2

Z′ � m2
Z′ . (3.2.10)

The massive (& few TeV) Z ′ vector boson now couples to quarks and leptons of

the Standard Model proportionally to their B − L charge. The SM Higgs carries no

baryon or lepton number, and therefore does not couple to the U(1)B−L sector.

The appeal of this model with a local U(1)B−L group is that the cancellation

of gauge anomalies requires the inclusion of three generations of the right-handed

neutrinos, νRi. These neutrinos carry lepton number = 1, and transform under

U(1)B−L, but are sterile under the SM gauge groups. Finally, the Coleman-Weinberg

scalar field φ is assigned the B−L charge = 2. The interactions of the right-handed

neutrinos, νRi, are given by

LνRint = −1

2

(
Y M
ij φ ν

c
RiνRj + Y M †

ij φ† νRiν
c
Rj

)
− Y D

ia νRi(εH) lLa − Y D †
ai lLa(εH)† νR i ,

(3.2.11)

where Y M
ij and Y D

ia are 3×3 complex matrices of the Majorana and Dirac Yukawa cou-

plings respectively. The right-handed neutrinos νRi are SM singlets (often referred to

as sterile neutrinos). They carry lepton number L = +1 and their antiparticles, νRi,

have L = −1. The charge-conjugate anti-particle, νcRi, has the same lepton number

+1 as the state νRi. In the unbroken phase, the lepton number is conserved by all

interactions in (3.2.11) when φ is assigned lepton number −2. The first two terms
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on the right-hand side of (3.2.11) give the only interactions of the CW scalar φ with

matter fields (apart from its small mixing with the Higgs). No other interactions

are possible due to the L = −2 charge for φ.

Spontaneous breaking of the B − L symmetry by the vev 〈|φ|〉 6= 0, generates

Majorana masses

Mij = Y M
ij 〈|φ|〉 , (3.2.12)

which lead to interactions that do not conserve lepton number. Importantly, indi-

vidual lepton flavour is also not conserved: Mij is a complex matrix which induces

CP-violating transitions between lepton flavours i and j of the right-handed neutri-

nos.1

The Majorana mass for the right-handed neutrinos gives the standard see-saw

mass to the left-handed, active neutrinos. Schematically, this gives the left-handed

neutrinos a mass of

mν ≈
(Y D 〈H〉)2

Y M 〈φ〉 = λp 〈φ〉
(Y D)2

Y M
. (3.2.13)

With GeV scale right-handed neutrinos we can achieve the correct, sub eV,

masses for the active neutrinos with Dirac Yukawa couplings of the order 10−7 –

10−8, cf. Table 3.3. This means that the neutrino Yukawa couplings are not much

smaller than the electron Yukawa coupling.

In summary, the single U(1)B−L hidden sector simultaneously incorporates the

Coleman-Weinberg scalar, which triggers EWSB, and includes Majorana sterile neu-

trinos which through the see-saw mechanism give rise to masses of active neutrinos

and neutrino oscillations [109,110]. Furthermore, as will be shown below, the gener-

ation of matter-antimatter asymmetry through leptogenesis now becomes possible

without any fine-tuning.

1This is most easily seen in the “Dirac-Yukawa basis” where the Dirac Yukawa matrices Y D
ia

are diagonalised and real, but not the Majorana ones Y M
ij .
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3.3 Neutrino Oscillations and Leptogenesis

Leptogenesis is the idea that the baryon asymmetry of the Universe has originated

in the lepton, rather than quark sector of the theory. In the standard scenario of

thermal leptogenesis [55], one starts with the see-saw Lagrangian involving right-

handed neutrinos with Majorana mass terms coupled to the Standard Model left-

handed lepton doublets (cf. Eq. (3.2.11)),

LνRint = −1

2

(
Mij νcRiνRj + M †

ij νRiν
c
Rj

)
− Y D

ia νRi(εH) lLa − Y D †
ai lLa(εH)† νR i .

(3.3.14)

It is usually assumed that a lepton asymmetry was generated by decays of heavy

right-handed Majorana neutrinos at temperatures much above the electroweak scale.

These heavy sterile neutrinos were thermally produced during reheating in the early

Universe, and then fell out of thermal equilibrium due to the expansion of the

Universe. Their out-of-equilibrium decays into Standard Model leptons and Higgs

bosons violate lepton number and CP, thus producing lepton asymmetry, which

is then reprocessed into a baryon asymmetry by electroweak sphalerons above the

electroweak scale.

The defining phenomenological signature of these models is that the masses of the

sterile Majorana neutrinos should be M & 109 GeV [58, 131]. Flavour effects [136]

and a resonant enhancement [137] are important and can somewhat lower this bound,

but not by many orders of magnitude2.

3.3.1 Leptogenesis Triggered by Oscillations of Majorana

Neutrinos

Akhmedov, Rubakov and Smirnov (ARS) in [72] proposed an alternative physical

realisation of the leptogenesis mechanism which allows one to circumvent the ∼ 109

GeV lower bound. In fact, the ARS leptogenesis is intended to work with sterile neu-

trinos of sub-electroweak Majorana mass-scale. In this section, we will describe how

2Unless one is willing to fine-tune sterile neutrino masses of different flavours to introduce mass

degeneracy MiMj/|M2
i −M2

j |≫ 1. This is not the approach we will follow.
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leptogenesis in the ARS scenario works in the model defined by Equation (3.3.14),

then we extend this to the classically scale-invariant model in Section 3.3.2.

The generation of matter-antimatter asymmetry proceeds as follows. As in the

original mechanism, the right-handed neutrinos are produced thermally in the early

Universe through their Yukawa interactions with lepton and Higgs doublets. After

being produced, they begin to oscillate, νRi ↔ νRj, between the three different

flavour states i, j = 1, 2, 3 and interact with the left-handed leptons and Higgs

bosons via their Yukawa interactions.

Since the Majorana masses in the ARS scenario are roughly of the electroweak

scale or below, they are much smaller than the relevant temperature, Tosc, in the early

Universe. For this reason, the rate of the total lepton-number violation (i.e. singlet

fermions to singlet anti-fermions, νRi ↔ νRj, induced by their Majorana masses)

is negligible. However, the lepton number of individual flavours is not conserved;

complex non-diagonal Majorana matrices induce CP-violating flavour oscillations

decays,

νRi ↔ νRj → lLj H, (3.3.15)

which are out of equilibrium due to smallness of the Yukawa matrices at Tosc. Fol-

lowing [72], we now require that by the time the temperature cools down to TEW ,

where electroweak sphaleron processes freeze out, two of the neutrino flavours, i.e.

νR2 and νR3, equilibrate with their Standard Model counterparts, lL2,3H, while the

remaining flavour (call it the 1st or e-flavour) does not.3 In terms of the decay rates

for the three sterile neutrino flavours this implies,

Γ2(TEW ) > H(TEW ) , Γ3(TEW ) > H(TEW ) , Γ1(TEW ) < H(TEW ) (3.3.16)

where H is the expansion rate of the Universe given by the Hubble ‘constant’

H(T ) =
T 2

M∗
Pl

, M∗
Pl ≡

MPl√
g∗
√

4π3/45
' 1018 GeV (3.3.17)

3The opposite case where only one flavour equilibrates before the sphaleron freeze-out can be

treated similarly. Essentially, both cases can be treated by not imposing any constraint on Γ2, i.e.

by simply dropping the first equation in (3.3.16).
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and M∗
Pl is the reduced Planck mass. These conditions determine the relevant values

of the Yukawa couplings via,∑
a

Y D
ia Y

D †
ai

γav TEW
H(TEW )

∼ 1 =>
∑
a

Y D
ia Y

D †
ai '

2.0

γav

× 10−16 ' 4× 10−14 .

(3.3.18)

γav is a dimensionless constant depending on the couplings of the theory, see Equa-

tion (3.3.23). As a result of this washout of the second and the third lepton flavours,

the corresponding lepton doublets are processed by electroweak sphalerons into

baryons, while the first flavour of right-handed neutrinos is not transferred to the

active leptons fast enough before the electroweak sphaleron shuts down. (If the

sphaleron had not frozen out below TEW , all three flavours would have had enough

time to thermalise and the net lepton and baryon asymmetry would have been zero.)

In the ARS approach4, the interactions of sterile Majorana neutrinos νRi with

the thermal plasma are described by the 3× 3 density matrix ρij with the evolution

equation [138]

i
dρ

dt
= [H, ρ]− i

2
{Γ, ρ}+ iΓp , (3.3.19)

where H is the Hermitian effective Hamiltonian, and Γ and Γp are the destruction

and production rates of νRi. In the Yukawa basis at temperatures much higher than

the Majorana mass, the effective Hamiltonian, in the ultra relativistic limit T �Mi,

is of the form

H = k(T ) + U
M̂2

2k(T )
U † + V (t) . (3.3.20)

U is the mixing matrix which relates the Yukawa basis with the mass eigenstate basis

where the Majorana masses are diagonal, M̂2 = diag(M̂2
1 , M̂

2
2 , M̂

2
3 ), and k(T ) ' T

is the neutrino momentum.

The first term on the right-hand side of (3.3.20) is the kinetic energy, which in

the relativistic limit is equal for all the neutrinos, and therefore does not contribute

to (3.3.19). The second term is the free Hamiltonian describing sterile neutrino

oscillations. It originates from a tree-level diagram of νRi to νRj propagation with

two helicity flips ∝ (M/2)2 connected by the propagator 2/k(T ). We can also

4Reader primarily interested in the final expression for the lepton asymmetry can skip directly

to Eqs. (3.3.28)-(3.3.31) which summarise the main result as derived in Ref. [133].
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view the first two terms as the ultra-relativistic expansion of E =
√
p2 +m2 ≈

p+m2

2p
. The third term in (3.3.20) is the potential due to coherent forward scattering

processes [72],

V = diag (V1, V2, V3) , Vi =
1

8
(Y D

i )2 T . (3.3.21)

These processes arise from one-loop diagrams with an internal lepton and Higgs

doublet. Such diagrams, c.f Section 3.1, give a thermal correction to the mass

squared M2
T ∝ (Y D)2T 2 which in the relativistic limit gives an effective potential

proportional to M2
T/T .

For the destruction rates of the sterile neutrinos in (3.3.19), ARS take the dom-

inant Higgs-mediated two-to-two processes involving a lepton and a top-anti-top

pair,

Γ = diag (Γ1,Γ2,Γ3) , Γi ∼
9y2

t

64π3
(Y D

i )2 T (3.3.22)

where yt is the top Yukawa. The two-to-two process is dominant as the one-to-two

process is suppressed by M/T . The dimensionful part of the two body decay of

the sterile neutrinos is given by its mass and not T . Taking all the processes into

account, the destruction (or relaxation) rates of sterile neutrinos can be accounted

for as follows [133],

Γi =
∑
a

Y D
ia Y

D †
ai γav T (3.3.23)

Here γav is the dimensionless quantity inferred from the rates tabulated in Ref. [139],

it has a weak dependence on temperature, so that at T = 5×105 GeV, γav ' 3×10−3

while at electroweak temperature, γav(TEW ) ' 5 × 10−3. Following [133], we will

use (3.3.23) for the relaxation rate (we also note that this expression is written in

the basis-independent form).

The final ingredient appearing in the ARS kinetic equation (3.3.19) is the pro-

duction rate Γp which is determined in terms of the destruction rate Γ above and

the equilibrium density matrix, iΓp = iΓρeq = i exp(−k/T ) Γ [72].

The production of the asymmetry starts at the time tosc which corresponds to the

temperature Tosc when the sterile neutrinos have performed at least one oscillation.

This happens when the difference of the eigenvalues of the free Hamiltonian in
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(3.3.20) becomes of the order of the Hubble constant [72],

|M2
i −M2

j |
2Tosc

= 2πH(Tosc) => Tosc =

( |M2
i −M2

j |M∗
Pl

4π

)1/3

(3.3.24)

Lepton flavour asymmetry is converted by electroweak sphalerons to baryon

asymmetry until the process ends at TEW ' 140 GeV, when the sphalerons freeze

out. By this time, two of the three flavours of right handed neutrinos are in equilib-

rium with their left-handed partners while the third flavour is still out of equilibrium,

as in Eq. (3.3.16).

Now, by integrating the kinetic equation for the sterile neutrino density matrix

(3.3.19) between tosc to tEW , the authors of [72] were able to derive an expression

for the number density n1 := ρ11 of the first flavour right-handed neutrinos. The

asymmetry in this unequilibrated flavour, which will be reprocessed into a baryon

asymmetry, is given by nL = n1 − n1̄. Up to an overall numerical factor and

combining the neutrino mixing matrix angles together with the CP phase δ into a

Jarlskog invariant J = s12c12s13c
2
13s23c23 sin δ, the functional form of the generated

lepton asymmetry over the entropy density of the Universe, s, reads schematically5

ARS :
nL
s
∼ J

∆(Y D)2∆(Y D)2∆(Y D)2 (M∗
Pl)

2

|∆M2|1/3|∆M2|1/3|∆M2|1/3 γav (3.3.25)

Seven years after ARS, in Ref. [132], Asaka and Shaposhnikov (AS) extended this

approach by including the back-reaction of active neutrinos on the sterile neutrinos.

Specifically, the authors of [132] have solved the kinetic equation (3.3.19) for the

12 × 12 density matrix whose components describe the mixing of all active and

sterile neutrinos and anti-neutrinos,

ρ =


ρi j ρi j̄ ρi b ρi b̄

ρī j ρī j̄ ρī b ρī b̄

ρa j ρa j̄ ρa b ρa b̄

ρā j ρā j̄ ρā b ρā b̄

 '

ρi j 0 0 0

0 ρī j̄ 0 0

0 0 ρa b 0

0 0 0 ρā b̄

 (3.3.26)

Here the elements of the density matrix which mix sterile with active (anti)-neutrinos

are neglected as they describe correlations between particles of very different masses.

5We will write down a precise and improved expression in Eq. (3.3.31) below.
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Also the elements mixing neutrinos with anti-neutrinos are dropped as they give

lepton number (or helicity) flips. The resulting ρ-matrix is an extension of the

simple 3× 3 sterile-to-sterile density matrix ρi j (and its CP-conjugate ρī j̄) used by

ARS, as reviewed above.

The functional form of the generated lepton asymmetry computed by AS is given

by (cf. Eq. (3.3.25)),

AS :
nL
s
∼ J̃

Y D Y D ∆(Y D)2 (M∗
Pl)

4/3

|∆M2|1/3|∆M2|1/3 γ2
av , (3.3.27)

where J̃ is a certain combination of mixing angles and CP phases.

Quite remarkably, the functional form of the Asaka-Shaposhnikov result in (3.3.27)

was fully reproduced by the recent, more technical derivation of the lepton asymme-

try by Drewes and Garbrecht (DG) in [133]. Their approach is based on a system-

atic application of non-equilibrium QFT methods (the Schwinger-Keldysh formal-

ism [140,141]) to the calculation of the lepton flavour asymmetry (see also [142,143]).

It is this result of [133] (which in the following section will be adapted to the case of

the Coleman-Weinberg B − L model with the 〈φ〉-induced and thermally corrected

Majorana masses) which we will use for our calculation of the resulting matter-

antimatter asymmetry.

Having noted the fact that the non-equilibrium calculation of [133] reproduces

the parametric form (though with a different numerical factor) of the more intuitive

formalism of AS based on the density matrix, we can now proceed to simply state

the equation which determines the generation of lepton asymmetry in [133],

d

dz

nLa
s

=
2Saa
sTEW

, (3.3.28)

where nLa is the produced charge density of active lepton number of flavour a (par-

ticles minus anti-particles), s = 2π2

45
g∗T 3 is the entropy density of the Universe and

the ‘time’ variable z is defined via z := TEW/T . On the right-hand side we have the

source term given by the expression [133],

2Saa
sTEW

= −
∑
c

∑
i 6=j

i
Y D †
ai Y

D
ic Y

D †
cj Y D

ja − Y D t
ai Y

D ∗
ic Y D t

cj Y
D ∗
ja

M2
ii −M2

jj

MPlTEW
z2

γ2
av × 7.3× 10−4 .

(3.3.29)



3.3. Neutrino Oscillations and Leptogenesis 66

To determine the lepton asymmetry, we integrate
∫ 1

zosc
2Saa/(sTEW ) dz using the

expression in (3.3.29). The lower limit, zosc, corresponds to the early temperature

Tosc in (3.3.24) where the oscillations of sterile neutrinos start competing with the

Hubble rate,

z3
osc :=

(
TEW
Tosc

)3

= 8π

√
π3g∗
45

T 3
EW

MPl|M2
ii −M2

jj|
. (3.3.30)

The upper integration limit z = 1 is the electroweak phase transition temperature,

TEW where the sphaleron freezes out. The integral gives the desired lepton asym-

metry, which is the main result of [133],

DG :
nLa
s

= −
∑
c

∑
i 6=j

i
Y D †
ai Y

D
ic Y

D †
cj Y D

ja − Y D t
ai Y

D ∗
ic Y D t

cj Y
D ∗
ja

sign(M2
ii −M2

jj)
(3.3.31)

×
(

M2
Pl

|M2
ii −M2

jj|

) 2
3

γ2
av × 1.2× 10−4 .

3.3.2 Leptogenesis in Classically Massless Models

The focus of this thesis is BSM models with classical scale invariance. In these

models no explicit mass scales are allowed in the Lagrangian as they would break

classical scale invariance, and hence all masses have to be generated dynamically,

e.g. by vacuum expectation values of scalars induced by the Coleman-Weinberg

field.

In the minimal B − L model, Majorana masses Mij for right-handed neutrinos

are generated by the vev 〈φ〉 of the Coleman-Weinberg field6 in Eq. (3.2.12). There

are two effects which need to be taken into account. One is that at temperatures

above the critical temperature TB−L ∼ 〈|φ|〉, the spontaneously broken U(1)B−L

gauge symmetry is restored, so that in the unbroken phase the Coleman-Weinberg

field vev vanishes, 〈|φ|〉 = 0. Secondly, due to interactions of right-handed neutrinos

with φ and with the B − L gauge bosons, Z ′, there are also thermal corrections to

the mass which need to be taken into account, cf. Section 3.1.

6In more general settings, the sterile neutrinos could couple to a different scalar which would

get its vev through a portal coupling to the Coleman-Weinberg field. In this paper we concentrate

on the minimal case where the scalar responsible for the Majorana mass of sterile neutrinos is the

Coleman-Weinberg field itself. Extensions with more scalars are straightforward.
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To do this we write down the effective Hamiltonian (3.3.20) in the form

H =
M2

2T
+ V M(T ) + V D(T ) , (3.3.32)

where the first term is the tree-level effect of Majorana mass insertions as before. It

is now given by

M2

2T
=
|Y M|2ij |〈φ〉|2

2T
Θ(TB−L − T ) ' |Y

M|2ij |〈φ〉|2
2T

Θ(〈|φ|〉 − T ) . (3.3.33)

Here the theta-function accounts for the transition to the unbroken phase at tem-

peratures above TB−L ∼ 〈|φ|〉.
The second term on the right-hand side of (3.3.32) takes into account the thermal

mass, MT , from the new self-energy diagrams for the right-handed neutrino due to

interactions with the Coleman-Weinberg scalar φ and the Z ′ bosons,

V M =
M2

T

2T
=

1

32
|Y M|2ij T +

1

8
g2
B−L δij T . (3.3.34)

The third term, V D, in (3.3.32) is the already accounted for effect of Dirac Yukawa

interactions in (3.3.21)-(3.3.23).

In summary, the new effects on Majorana masses are taken into account auto-

matically by making the substitution in the source term (3.3.29):

M2
ii −M2

jj

2T
−→ 1

2T

(
(|Y M|2ii − |Y M|2jj)(|〈φ〉|2 Θ(〈|φ|〉 − T ) + 2T (V M

ii − V M
jj

)
,

(3.3.35)

which amounts to

∆M2 := ∆M2
0 −→ ∆M2(T ) := ∆|Y M|2

(
|〈φ〉|2 Θ(〈|φ|〉 − T ) +

1

16
T 2

)
,

(3.3.36)

where the zero-temperature contribution is ∆M2
0 , which can also be written as

∆|Y M|2|〈φ〉|2.We further note that the Z ′ contributions to V M are flavour-independent

and cancel out in ∆M2(T ).

In Fig. 3.1(a) we plot the effective ∆M2(T ) given by the right-hand side of

(3.3.36) as a function of temperature. For future convenience we have smoothened

the step-function to account for a more physical behaviour near the phase transition.

Essentially, the non-vanishing mass in the broken phase on the left is connected at



3.3. Neutrino Oscillations and Leptogenesis 68

0 1 2 3 4 5
T/〈φ〉

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

∆
M

2
(G
ev

)2

103 104 105 106 107

〈φ〉(GeV)
103

104

105

106

107

108

109

1010

1011

T
os
c(
G
eV

)

∆M2 =∆Y 2 (〈φ〉2 Θ(〈φ〉−T) +T 2 /16)

∆M2 =∆M 2
0

Tosc=〈φ〉

3.1(a) 3.1(b)

Figure 3.1: Left panel shows the effective thermal mass squared difference ∆M2(T )

given by (3.3.36) with smoothened theta-function (and the initial value taken to be

∆M2
0 = 3 GeV2) as the function of the temperature over 〈|φ|〉 8. On the right panel,

the blue curve sketches the initial temperature Tosc as the function of 〈|φ|〉 showing

the transition between the unbroken (Tosc > 〈|φ|〉) and the broken (Tosc < 〈|φ|〉)
phase. The horizontal green line gives the value of Tosc computed in the regime

of [133] via (3.3.24). On the right of the plot, the blue and green curves coincide.

T/〈|φ|〉 ∼ 1 by a finite-width bubble wall to the unbroken phase where the mass

receives only a thermal contribution.

In the original DG formulation (z = TEW/T ) we integrate the source term

DG :
MPlTEW

∆M2

(∫ 1

zosc

dz

z2

)
. (3.3.37)

In our model, after the substitution (3.3.36), we have two separate regimes that we

need to deal with separately. The first is when Tosc > TB−L = 〈|φ|〉, and the second

is the opposite case when Tosc < TB−L. For the first case we get

MPlTEW
∆|Y M|2

(∫ TEW /〈|φ|〉

zosc

dz

T 2
EW/16

+

∫ 1

TEW /〈|φ|〉

dz

|〈φ〉|2z2 + T 2
EW/16

)
, (3.3.38)

and for the second case

MPlTEW
∆|Y M|2

(∫ 1

zosc

dz

|〈φ〉|2z2 + T 2
EW/16

)
. (3.3.39)

8〈|φ|〉 denotes the vev at zero temperature
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The oscillation temperature is determined in a similar manner to what was done

before in (3.3.24). For the Tosc > 〈|φ|〉 case, it is given by

〈|φ|〉 < Tosc :=
∆|Y M|2M∗

Pl

64π
=

∆|M0|2M∗
Pl

64π 〈|φ|〉2 , (3.3.40)

while for the case with Tosc < 〈|φ|〉, the oscillation temperature is approximately

the same as in (3.3.24) with the mass given by the vev, 〈|φ|〉. The thermal corrections

to the mass are small when T < 〈φ〉,

Tosc =

(
∆|Y M |2〈φ〉2M∗

Pl

4π

)1/3

. (3.3.41)

To calculate the final lepton asymmetry, we integrate the source terms from zosc =

TEW/Tosc. The final result for the lepton flavour asymmetry in both cases is

nLa
s

= −γ2
av × 7.3× 10−4

∑
c

∑
i 6=j

i (Y D †
ai Y

D
ic Y

D †
cj Y D

ja − Y D t
ai Y

D ∗
ic Y D t

cj Y
D ∗
ja ) × Iij,

(3.3.42)

where Iij are the integrals of the source term for the two regimes. When Tosc > 〈|φ|〉,
this integral is given by

Iij =
16∑

k(Y
M †
ik Y M

ki − Y M †
jk Y M

kj )

MPl

〈|φ|〉

(
1− 〈|φ|〉

Tosc

+
1

4
tan−1

(
4〈|φ|〉
TEW

)
− 1

4
tan−1 (4)

)
,

(3.3.43)

The low-temperature case (3.3.38) is treated similarly. We note that in the

case where Tosc approaches 〈|φ|〉 (or falls below it), the first integral in (3.3.38)

disappears, since TEW/〈|φ|〉 → zosc, in agreement with (3.3.39). This is manifested

by the cancellation between the first and the second term inside the brackets in

(3.3.43), so that for Tosc ≤ 〈|φ|〉, we get

Iij =
4∑

k(Y
M †
ik Y M

ki − Y M †
jk Y M

kj )

MPl

〈|φ|〉

(
tan−1

(
4〈|φ|〉
TEW

)
− tan−1

(
4〈|φ|〉
Tosc

))
,

(3.3.44)

with Tosc in this case given by (3.3.24).

The dependence of Tosc on the value of 〈|φ|〉 is plotted on the right panel of

Fig. 3.1 in blue. The red diagonal line is the Tosc = 〈|φ|〉 boundary separating the

broken from the unbroken phase. The horizontal green line gives the value of Tosc
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in the regime of [133] given by (3.3.24). It is valid for low temperatures (high vevs)

Tosc ≤ 〈|φ|〉 i.e. to the right of the diagonal red line where the blue line coincides with

the horizontal green line. On the other hand, at high temperatures, Tosc > 〈|φ|〉, the

blue line depicting Tosc is determined by the right-hand side of Eq. (3.3.40). In the

transitional region where all three lines meet, the blue line of Tosc briefly drops below

the green line prediction of [133]. This dip is a consequence of the local minimum

on Fig. 3.1(a) which corresponds to the drop in the effective mass squared when one

passes from the broken to the unbroken phase.

3.4 Baryon Asymmetry and Phenomenology

Equations derived in the previous section, (3.3.42),(3.3.43), compute the lepton

flavour asymmetry generated in the classically scale-invariant Standard Model ×
U(1)B−L. Electroweak sphalerons process this lepton flavour asymmetry into baryon

asymmetry of the Universe (BAU). As explained in Sec. 3.3.1, in order to achieve

a non-vanishing value of BAU it is required that at the time of electroweak phase

transition two of the flavours of sterile neutrinos are equilibrated with their SM decay

products, but it is essential that the remaining flavour is not. Thus if the inequalities

(3.3.16) are satisfied, a BAU is produced ∼ −nLe. The baryon asymmetry can be

estimated as [133]
nb
s
' − 3

14
× 0.35× nLe

s
. (3.4.45)

The observed value of the asymmetry is nobs
b /s = (8.75± 0.23)× 10−11.

First we would like to determine the range of the parameters in our model for

which the required baryon asymmetry is generated. In the neutrino sector we use the

standard Casas-Ibarra parametrisation [144] of the see-saw Dirac Yukawa couplings,

Y D † = Uν ·
√
mν · R ·

√
M ×

√
2

v
, (3.4.46)

where mν and M are diagonal masses of active and Majorana neutrinos respectively,

and v = 246 GeV. The active-neutrino-mixing matrix Uν is the PMNS matrix which

contains six real parameters, including three measured mixing angles and three CP-

phases. The matrix R is parametrised by three complex angles ωij.
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Figure 3.2: Left panel shows maximal values of Majorana masses in GeV for which

the wash-out bound in Eq. (3.4.47) can be achieved. The panel on the right shows

contours for the baryon asymmetry produced, normalised to the observed value.

Majorana masses used in 3.2(b) are taken from 3.2(a) for each value of Re[ω23] and

Im[ω23]. In both plots we vary Re[ω23] and Im[ω23] keeping other parameters of the

model fixed at indicative values as in Ref. [133], detailed in the Tables 3.1 and 3.2.

In our analysis we will choose and fix the values of mν consistent with the solar

and atmospheric neutrino mass differences. We also choose a generic value for the

three CP-phases. We then vary the unknown complex angles ωij over the parameter

space. To keep things as simple as possible, we will choose a 2-dimensional subspace

on which we vary the real and imaginary parts of the complex angle ω23, while

keeping ω12 and ω13 fixed. For easy comparison, our 2-d slice of the ω-space is the

same as in [133] (it can be read off Scenarios 1-3 and 5-7 in Tables 3.1 and 3.2

below). For completeness, we will also comment on the results of varying the other

complex angles and CP phases of the parameter space.

Different choices of the three Majorana masses will characterise different bench-

mark points. Since in our case the Majorana particle mass (we drop the subscript 0

in what follows) is M = Y M〈φ〉, there is an additional scale 〈φ〉 which we will vary

and specify9.

9Phenomenologically, it makes sense to use 〈φ〉 and M as the two independent parameters,

rather than, say Y M and 〈φ〉.
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Figure 3.3: Superposition of the Majorana mass contours in GeV satisfying the

wash-out bound with the baryon asymmetry produced with shaded regions denoting

the required baryon asymmetry from Fig. 3.2

First we would like to determine the range of allowed values of Majorana masses

for sterile neutrinos. We start by considering the models where Tosc � 〈φ〉 which

is equivalent to the model with a majorana mass term in the Lagrangian. The

wash-out rates for the lepton flavours a = e, µ, τ are given by Γa, and we require

that
Γe

H(TEW )
:=

1

2

∑
i

Y D †
ei Y

D
ie γav

TEW
H(TEW )

< 1 . (3.4.47)

Figure 3.2(a) shows mass contours in GeV of the lightest Majorana neutrino flavour,

such that the wash-out rate =1 is achieved. This can be interpreted as an upper

bound on Majorana masses for which (3.4.47) is satisfied. Quite clearly from this

perspective it is straightforward to realise M in the region from a few 100 MeV to

above 30 GeV, or even up to a TeV. BBN constrains the lower limit to M > 200

MeV, so we have

200 MeV < M . few × 100 GeV . (3.4.48)

For the model to be viable, we also need to produce enough baryon asymmetry.

Figure 3.2(b) plots the ratio nb/n
obs
b . The baryon asymmetry here is computed using

Eq. (3.3.31) derived for the simple Majorana mass model [133], where the values of

M at each point on the parameter space are taken from Fig. 3.2(b). Below we will

also compute the asymmetry in the classically scale-invariant Standard Model ×
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Figure 3.4: The wash-out rate (left panel) and the normalised baryon asymme-

try computed in the classically scale-invariant B − L model. The values of model

parameters are defined in the text.

U(1)B−L. To generate the observed asymmetry we need to be inside the +1 or -1

contours in Fig. 3.2(b).

Figure 3.3 depicts the superposition of the two panels of Fig. 3.2. It can be seen

that the required baryon asymmetry (the area inside the two shaded contours in

Fig. 3.3) is indeed generated in the above mass range.

Figures 3.2 and 3.3 were obtained by varying the real and imaginary parts of ω23

while keeping other parameters fixed. We have also checked that desired amounts

of the wash-out and the baryon asymmetry are produced in sizeable regions of the

parameter space when other complex angles and CP phases are varied. In our

benchmark points described in the tables below, the fixed parameters were chosen

inside these regions.

In Table 3.1 we present our first four benchmark scenarios. The lepton flavour

asymmetry nLa/s with a = e, µ, τ in all four cases in this table is calculated using

Eq. (3.3.31) in the simple Majorana mass model in the formalism of [133]. We also

show the wash-out rates for the three flavours, Γa/H(TEW ) and the value of the

oscillation temperature.

In Scenarios 1, 2 & 3 we vary Majorana masses Mi of sterile neutrinos from ∼ 500

MeV (Scenario 1) through ∼ 4 GeV (Scenario 2) to ∼ 200− 300 GeV (Scenario 3).
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

M1 0.5 GeV 3.6 GeV 200.0 GeV 1.0 GeV

M2 0.6 GeV 4.0 GeV 250.0 GeV 2.0 GeV

M3 0.7 GeV 4.4 GeV 300.0 GeV 3.0 GeV

m1 0.0 meV 0.0 meV 0.0 meV 2.5 meV

m2 8.7 meV 8.7 meV 8.7 meV 9.1 meV

m3 49.0 meV 49.0 meV 49.0 meV 49.0 meV

s12 0.55 0.55 0.55 0.55

s23 0.63 0.63 0.63 0.63

s13 0.16 0.16 0.16 0.16

δ −π/4 −π/4 −π/4 π

α1 0 0 0 −π
α2 −π/2 −π/2 −π/2 π

ω12 1+2.6i 1+2.6i 1+2.6i -1+1.5i

ω13 0.9+2.7i 0.9+2.7i 0.9+2.7i 0.5+2.6i

ω23 0.3-1.5i -1.2i -0.05-0.975i π-2.4i

nLe/(s× 2.5× 10−10) -4.4 -6.7 -5 -8.3

nLµ/(s× 2.5× 10−10) 39 32 108 32

nLτ/(s× 2.5× 10−10) -34 -25 -103 -24

Γe/H(TEW ) 0.68 0.64 0.84 0.59

Γµ/H(TEW ) 68 290 1× 104 410

Γτ/H(TEW ) 220 920 4× 104 150

Tosc 2× 105 GeV 5× 105 GeV 107 GeV 5× 105 GeV

Table 3.1: Four benchmark points corresponding to different ranges of Majorana

masses.

For convenience, the values of active neutrino masses in these three scenarios are

chosen to be the same as in Scenario I in [133]. The same applies to the choices of

mixing angles. The main lesson of these benchmark points is to demonstrate the

range of variation of Majorana masses in (3.4.48).

The fourth Scenario in Table 3.1 is included for completeness as it reproduces
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Figure 3.5: Superposition of the wash-out rate ≤ 1(inside the shaded ellipse) with

the baryon asymmetry produced from Fig. 3.4

Scenario II of [133] and has a different selection of active neutrino mass values from

Scenarios 1-3.

Having established the likely range of Majorana masses, we now proceed to the

analysis of the the classically scale-invariant Standard Model × CWB−L where the

matter-antimatter asymmetry is computed using the formalism of Section 3.3.2.

The right panel of Figure 3.4 shows the baryon asymmetry (normalised to its

observed value) computed using Eqs. (3.3.42)-(3.3.43). The values of Majorana

masses are chosen in the GeV range: M1 = 3.6 GeV, M2 = 4.0 GeV and M3 = 4.4

GeV, precisely as in Scenario 2 in Table 3.1. The value of the Coleman-Weinberg

vev is chosen 〈|φ|〉 = 105 GeV, which corresponds to a Higgs portal coupling of

λP = 1
2

(
125 GeV
〈|φ|〉

)2

' 0.78 × 10−6. To achieve the required BAU we must be either

below the +1 contour or above the -1 curve. This amounts to almost the entire area

of Fig. 3.4(b) being available.

The left plane of Fig. 3.4(a) shows the wash-out rate contours for the same choice

of parameters. Here we have to be inside the +1 ellipse for baryogenesis to succeed.

The superposition of this wash-out ≤ 1 contour with the baryon asymmetry, calcu-

lated and depicted in Fig. 3.4(b), is shown in Fig. 3.5.

In the above example, we chose a relatively large CW vev, 〈|φ|〉 = 105 GeV, not
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Figure 3.6: Baryon asymmetry (normalised by the observed value) as a function of

〈|φ|〉 for masses between 0.7 GeV and 4.7 GeV. The wash-out rates for the electron

neutrino flavour (all less than 1 as required) are also shown in the legend.

much below the value of Tosc = 5 × 105 GeV computed for these GeV-scale values

of Mi’s. As a result, we ended up with a rather small value of the Higgs portal

coupling, λP ∼ 10−6.

A natural and important question to ask is how much freedom we have to lower

〈|φ|〉 (and thus raise λP ) while keeping other parameters, such as the Majorana

masses fixed. Figure 3.6 plots the baryon asymmetry (divided by the observed

value) as the function of 〈|φ|〉 for the range of masses between 0.7 GeV and 4.7

GeV (from bottom to top). The figure also indicates the values of wash-out rates

Γe/H(TEW ) < 1. The flat distributions on the right of the plot correspond to

values of 〈|φ|〉 reaching and exceeding the relevant values of temperature Tosc where

leptogenesis begins. These constant values of the generated baryon asymmetry agree

with those computed using the non-dynamical Majorana masses in the formalism

of [133] reviewed above in Section 3.3.1. To the left of the plateau on Fig. 3.6

there is a small dip followed by a broad peak which emerges largely due to the

first integral in (3.3.38). This integral describes the situation before the symmetry

breaking where the only source of mass for the right-handed neutrinos is due to
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thermal corrections. The smaller mass means that a larger asymmetry is generated.

The small dip is the reflection of the dip in the oscillation temperature Tosc in the

middle of Fig. 3.1(b).

Finally, to the left of the plot on Fig. 3.6, at small values of 〈|φ|〉, all contours

converge and tend to zero uniformly and independently of the values of M ’s. To

understand this point, note that according to (3.3.42),(3.3.43),

nb ∼
(Y D)4

(Y M)2

MPl

〈|φ|〉 ∼
〈|φ|〉m2MPl

v4
→ 0 , as 〈|φ|〉 → 0 , (3.4.49)

independently of M .

As a result, Fig. 3.6 shows that independently of the values of the chosen Majo-

rana masses, the contours cross the observed value of baryon asymmetry (normalised

at 1) for values of 〈|φ|〉 ' 1.2× 104 GeV. This gives λP ' 0.5× 10−4.

Tables 3.2 and 3.3 detail three new benchmark points (Scenarios 5, 6 & 7) where

lepton flavour asymmetry is generated in the classically scale-invariant B−L model

with the Majorana masses in the GeV range. In these scenarios we successively lower

the vev of the Coleman-Weinberg filed 〈|φ|〉 from 105 to 3.4× 103 GeV. The second

column, Scenario 6 gives the values of the portal coupling λP ' 10−5, which is in

agreement with the presently available Higgs data constraints and can be probed by

the future experiments [82].

The third column (Scenario 7) in the Tables 3.2 and 3.3 enters the regime where

λP approaches 10−3. (To achieve this we brought the three Majorana masses closer

together relative to Scenarios 5 and 6, thereby introducing some fine-tuning.) We

also show the values of the Majorana Y M and the average value of the Dirac Yukawa〈
Y D
〉

couplings10 along with the ranges for gB−L, or equivalently, the Z ′ vector boson

mass, and the self-coupling of the CW scalar. The lower bound on the Z ′ mass in

Table 3.3 is the experimental bound MZ′ ≥ 3.5 TeV, which is then translated into

the lower bounds on gB−L via

mZ′ = Qφ · gB−L〈|φ|〉 = 2 gB−L〈|φ|〉 . (3.4.50)

The upper bounds on MZ′ in Table 3.3 follow from the requirement of perturbativity

10The latter is computed as the average of
√

2mM/v.
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Scenario 5 Scenario 6 Scenario 7

〈φ〉 105 GeV 2.5× 104 GeV 3.4× 103 GeV

M1 3.6 GeV 3.6 GeV 3.96 GeV

M2 4.0 GeV 4.0 GeV 4.0 GeV

M3 4.4 GeV 4.4 GeV 4.04 GeV

m1 0.0 meV 0.0 meV 0.0 meV

m2 8.7 meV 8.7 meV 8.7 meV

m3 49.0 meV 49.0 meV 49.0 meV

s12 0.55 0.55 0.55

s23 0.63 0.63 0.63

s13 0.16 0.16 0.16

δ −π/4 −π/4 −π/4
α1 0 0 0

α2 −π/2 −π/2 −π/2
ω12 1+2.6i 1+2.6i 1+2.6i

ω13 0.9+2.7i 0.9+2.7i 0.9+2.7i

ω23 0.3-1.5i -1.2i -0.04-0.976i

nLe/(s× 2.5× 10−10) -18 -5 -6.6

nLµ/(s× 2.5× 10−10) 99 27 41

nLτ/(s× 2.5× 10−10) -81 -22 -34

Γe/H(TEW ) 0.64 0.64 0.67

Γµ/H(TEW ) 290 290 304

Γτ/H(TEW ) 920 920 960

Tosc 106 GeV 7.5× 107 GeV 9.8× 107 GeV

Table 3.2: Three benchmark points in the classically scale-invariant B − L model

corresponding to Majorana masses in the GeV range, with the values of the Coleman-

Weinberg vev 〈|φ|〉 = 105, 2.5× 104 and 3.4× 103 GeV.

in the coupling αB−L ≤ 0.1, which gives gB−L . 1.1. For the CW self-coupling λφ

the lower bounds are determined by the smallest possible value of gB−L,

λφ =
33

8π2
(Qφ · gB−L)4 =

33

8π2
(2 gB−L)4 . (3.4.51)
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Scenario 5 Scenario 6 Scenario 7

〈φ〉 105 GeV 2.5× 104 GeV 3.4× 103 GeV

λp 8× 10−7 10−5 0.7× 10−3

Y M
1 3.6× 10−5 1.4× 10−4 1.2× 10−3

Y M
2 4× 10−5 1.6× 10−4 1.2× 10−3

Y M
3 4× 10−5 1.8× 10−4 1.2× 10−3〈
Y D
〉

4× 10−8 4× 10−8 4× 10−8

MZ′ 3.5 TeV < MZ′ < 220 TeV 3.5 TeV < MZ′ < 56 TeV 3.5 TeV < MZ′ < 7.4 TeV

gB−L 0.0175 < gB−L < 1.1 0.15 < gB−L < 1.1 0.5 < gB−L < 1.1

λφ 5× 10−4 < λφ 0.04 < λφ 0.4 < λφ

Table 3.3: The range of coupling constants corresponding to benchmark points in

Table 3.2.

3.5 Conclusions

In this chapter we have shown that in a U(1)B−L CSI extension of the SM, it is

possible to generate the observed value of the matter-antimatter asymmetry. This

model needs right-handed neutrinos to cancel the anomalies in the new gauge group.

The matter antimatter asymmetry is generated via oscillations of right-handed Ma-

jorana neutrinos with masses in the window roughly between 200 MeV and 500 GeV.

The model also includes a B − L Z ′ boson which has a current exclusion limit of

MZ′ ≥ 3.5 TeV, but with a large discovery potential at the LHC [135].

The presently available Higgs data provide valuable constraints on the parame-

ter space of the model, and future experimental data on Higgs decays will further

constrain model parameters in the Higgs sector [82]. Additional experimental con-

straints will come from searches for sub-TeV-scale sterile neutrinos via a combination

of neutrinoless double beta decay, electroweak precision data, LHC searches and high

intensity frontier experiments (see e.g. [145, 146] for recent reviews). At the high

intensity frontier, one can look for missing energy in meson decay, or in the appear-

ance of leptons at detectors along the beam-line if the right-handed neutrinos are

heavier than a few GeV. At the LHC, one can discover right-handed Majorana neu-
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trinos by looking for same sign dileptons as the Majorana mass term breaks lepton

number. All these experimental signatures and the relatively few new parameters

in the model make this a predictive BSM model.

These results support the BSM model-building strategy which is based on clas-

sically scale-invariant extensions of the SM with portal-type interactions involving

the Higgs field as well as other microscopic scalars. These theories can successfully

address the matter-antimatter asymmetry of the Universe.



Chapter 4

Higgs Vacuum Stability from the

Dark Matter Portal

The main motivation of this chapter, based exclusively on [2], is to study the link

between the stability of the electroweak vacuum and the properties of dark matter

in classically scale-invariant extensions of the Standard Model (CSI ESM). As for

all CSI ESM models, we expect expect a common origin of all mass scales, i.e. the

EW scale relevant to the SM and the scales of new physics. In this chapter we will

investigate extending the SM with a U(1), U(1)B−L or SU(2) gauge group with or

without adding an extra scalar singlet.

On a model by model basis, we will first determine the regions of parameter

space where the SM Higgs vacuum is stabilised and the extended Higgs sector phe-

nomenology is consistent with the LHC exclusion limits. Then we investigate dark

matter phenomenology, compute the relic abundance and impose direct-detection

constraints for vector and scalar components of dark matter from current and future

experiments.

Our discussion and computations in Sections 4.3 and 4.4 are based on the CSI

ESM model-building features and results derived in Section 4.1, and on solving the

renormalisation group equations in Section 4.2.

81
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4.1 CSI ESM Building and Generation of the EW

Scale

In this section we will describe all the CSI ESM models we are considering in this

chapter. We will start with a brief recap of the U(1) model from Section 2.3.2, and

then move on to the U(1)B−L, also considered in Chapter 3. Then we extend the

hidden gauge group to a non-Abelian SU(2) gauge group, before adding a singlet

scalar to the theory. For all these theories we will use the following for the SM scalar

potential

V (H)SM = −1

2
µ2

SMH
†H + λSM(H†H)2 . (4.1.1)

4.1.1 CSI U(1)CW×SM

As we discussed in Section 2.3.2, in the minimal U(1) CSI extension to the SM the

Coleman-Weinberg mechanism dynamically creates a vev for Φ, a complex scalar

field charged under the hidden U(1). This vev is then transmitted to the SM via

the Higgs portal coupling, generating a negative mass-squared term for the Higgs

which will trigger EWSB. This theory is specified by the following tree-level scalar

potential

Vcl(H,Φ) = λφ(Φ†Φ)2 + λH(H†H)2 − λP(H†H)(Φ†Φ) . (4.1.2)

In the unitary gauge we are left with two real singlet scalars

H =
1√
2

(0, h) , Φ =
1√
2
φ , (4.1.3)

and a tree-level scalar potential of

V0(h, φ) =
λ

(0)
φ

4
φ4 +

λ
(0)
H

4
h4 − λ

(0)
P

4
h2φ2 , (4.1.4)

where the superscripts indicate that the corresponding coupling constants are the

tree-level quantities.

The Effective potentials and running couplings in this chapter will always be

computed in the MS scheme. Following Section 2.3.2, we find the one-loop potential
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in the hidden sector

V1(φ;µ) =
λφ(µ)φ4

4
+

3eCW(µ)4

64π2
φ4

(
log

(
φ2

µ2

)
− 25

6

)
. (4.1.5)

This dynamically generates a vev for φ, and we get the characteristic relation be-

tween the scalar and the gauge couplings,

λφ =
11

16π2
e4
CW at µ = 〈φ〉 , (4.1.6)

and the mass of φ and Z ′, the U(1) vector boson

M2
Z′ = e2

CW〈φ〉2 � m2
φ =

3e4
CW

8π2
〈φ〉2 . (4.1.7)

The SM scale µ2
SM is generated by the CW vev in the second term of equation

(4.1.2)

µ2
SM = λP〈φ〉2 , (4.1.8)

and this triggers in turn the appearance of the Higgs vev v.

The presence of the portal coupling in the potential (4.1.4) provides a correction

to the CW matching condition and masses

λφ =
11

16π2
e4
CW + λP

v2

2〈φ〉2 at µ = 〈φ〉 (4.1.9)

m2
φ =

3e4
CW

8π2
〈φ〉2 + λPv

2 (4.1.10)

in full agreement with the results of [82]. In this chapter, we consider small values

of λP so that these corrections are negligible, since λPv
2/(2〈φ〉2) ∼ λ2

P/(4λH)� 1.

Our next task is to compute the Higgs mass including the SM radiative correc-

tions. To proceed, we perform the usual shift, h(x) → v + h(x), and represent the

SM scalar potential as follows,

V (h) =
λ

(0)
H

4
(v + h)4 − µ2

SM

4
(v + h)2 +

1

2
∆m2

h,SM h2 , (4.1.11)

where for overall consistency we have also included one-loop corrections to the Higgs

mass arising in the Standard Model,

∆m2
h,SM =

1

16π2

1

v2

(
6m4

W + 3m4
Z +m4

h − 24m4
t

)
≈ −2200 GeV2 . (4.1.12)
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These corrections are dominated by the top-quark loop and are therefore negative.

The appearance of v2 in the denominator of ∆m2
h,SM is slightly misleading, and it is

better to recast it as

∆m2
h,SM = 2∆λH v

2 , where ∆λH ' −0.018 . (4.1.13)

The vev v is determined from (4.1.11) by minimisation and setting h(x) = 0, and

thus the last term in (4.1.11) does not affect the value of v. However, it does

contribute to the one-loop corrected value of the Higgs mass. We have

v2 =
λP

2λ
(0)
H

〈φ〉2 , m2
h = 2λH v

2 , λH = λ
(0)
H + ∆λH ' λ

(0)
H − 0.018 , (4.1.14)

where λH is the one-loop corrected value of the self-coupling.

As we saw in Section 2.3.2, h and φ both have vevs and hence mix via the mass

matrix,

M2 =

 2λH v
2 −

√
2λPλ

(0)
H v2

−
√

2λPλ
(0)
H v2 m2

φ

 , (4.1.15)

where m2
φ is given in (4.1.10) (and already includes the λP correction).1 The mass

eigenstates are the two Higgs fields, h1 and h2, with the mass eigenvalues,

m2
h1,h2

=
1

2

(
2λHv

2 +m2
φ ±

√(
2λHv2 −m2

φ

)2
+ 8λPλ

(0)
H v4

)
. (4.1.16)

The mass eigenstates h1 and h2 are given by h1

h2

 =

 cos θ − sin θ

sin θ cos θ

 h

φ

 (4.1.17)

with a non-trivial mixing angle θ. The SM Higgs is the scalar that is ‘mostly’ the h

scalar (i.e. cos θ×the scalar coupled to the SM electroweak sector)

hSM := h1 = h cos θ − φ sin θ , mh1 = 125.66 GeV . (4.1.18)

1The mass mixing matrix (4.1.15) is equivalent to the mass matrix derived in [82] which

was of the form: M2 =

 m2
h,0 + ∆m2

h,SM −κm2
h,0

−κm2
h,0 m2

φ,0 + κ2m2
h,0

 in terms of m2
h,0 = 2λ

(0)
H v2 and

m2
φ,0 = 3e4CW〈φ〉2/(8π2), with κ =

√
λP/(2λ

(0)
H ).
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The SM Higgs self-coupling constant, λSM, appearing in the SM Higgs potential

(4.1.1) can be inferred from m2
h1

= 2λSMv
2, but it is not the relevant or primary

parameter in our model, λH is.

In our computations for the RG evolution of couplings and the analysis of Higgs

potential stabilisation carried out in this chapter, we solve the initial condition

(4.1.18) for the eigenvalue problem of (4.1.15) numerically without making analytical

approximations. However, we show some simple analytic expressions to illuminate

our approach.

In the approximation where (8λPλ
(0)
H v4)/(2λHv

2 −m2
φ)2 is small we can expand

the square root in (4.1.16) and obtain:

m2
h1

= m2
+ = 2v2λH

(
1 +

λP(λ
(0)
H /λH) v2

2λHv2 −m2
φ

)
, for 2λHv

2 > m2
φ , (4.1.19)

m2
h1

= m2
− = 2v2λH

(
1− λP(λ

(0)
H /λH) v2

m2
φ − 2λHv2

)
, for m2

φ > 2λHv
2 . (4.1.20)

Note that our requirement of assigning the SM Higgs mass value of 126 GeV to

the ‘mostly h state’ selects two different roots of (4.1.16) in the equations above,

depending on whether the h state or the φ state is lighter. As a result, there is a

‘discontinuity of the SM Higgs identification’ with m2
h1
> 2v2λH in the first equation,

while m2
h1
< 2v2λH in the second equation. Similarly, the value of λH is smaller or

greater than the perceived value of λSM in the SM, in particular,

λSM = λH

(
1− λP(λ

(0)
H /λH) v2

m2
φ − 2λHv2

)
, for m2

φ > 2λHv
2 . (4.1.21)

One concludes that in the case of the CW scalar being heavier than the SM Higgs,

it should be easier to stabilise the SM Higgs potential, since the initial value of λH

here is larger than the initial value of the λSM coupling and as such, it should be

useful in preventing λH from going negative at high values of the RG scale.2

2This point has been noted earlier in the literature in [147,148], [111] in the context of assisting

the stabilisation of the SM Higgs by integrating out a heavy scalar. In our case the second scalar

does not have to be integrated out. In fact, the required stabilising effect arises when the second

scalar is not much heavier than the SM Higgs, which manifests itself in keeping the denominator

in (4.1.21) not much greater than the square of the EW scale.
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On a more technical note, in our computations we also take into account the fact

that the requirement of stability of the Higgs potential at high scales goes beyond

the simple condition λH(µ) > 0 at all values of µ, but should be supplemented by the

slightly stronger requirement emerging from the tree-level stability of the potential

(4.1.4), which requires that λH > λ2
P/(4λφ).

In the following Sections 4.1.2-4.1.4, we extend the construction above to mod-

els with more general hidden sectors. First of all, the GCW Coleman-Weinberg sector

can be extended so that SM fermions are charged under GCW, and secondly GCW

can also be non-Abelian. In addition, these CSI ESM models can include a gauge

singlet with portal couplings to the Higgs and the CW scalar field. In Sections 4.3

and 4.4 we will investigate the combination of constraints arising from the Higgs

vacuum stability, collider exclusions, and dark matter searches and phenomenology.

4.1.2 CSI U(1)B−L×SM

As in Chapter 3, we will extend the simple U(1) hidden sector to the B− L theory

originally introduced in [134]. The U(1)B−L× SM theory is a particularly appealing

CSI ESM realisation, since the gauge anomaly of U(1)B−L cancellation requires that

the matter content of the model automatically includes three generations of right-

handed Majorana neutrinos. All SM matter fields are charged under the U(1)B−L

gauge group with charges equal to their baryon minus lepton number. In addi-

tion, the CW field φ carries a B− L charge of 2 and its vev generates the Majorana

neutrino masses and the mass of the U(1)B−L Z
′ boson. The standard see-saw mech-

anism generates masses of visible neutrinos and also leads to neutrino oscillations.

The scalar field content of the model is the same as before, with H being a

complex doublet and Φ = 1√
2
(φ+ iφ2), a complex singlet under the SM. The tree-

level scalar potential is given by (4.1.2) which in the unitary gauge takes the form

(4.1.4). Our earlier discussion of the mass gap generation in the CW sector, EWSB

and the mass spectrum structure, proceeds precisely as in the previous sections, with

the substitution eCW → 2 eB−L. The one-loop corrected potential (4.1.5) becomes:

V1(φ) =
λφ
4
φ4 +

3

64π2
(2eB−L)4φ4

(
log

4e2
B−Lφ

2

µ2
− 5

6

)
− λP

4
h2φ2 . (4.1.22)
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Minimising it at µ = 〈φ〉 gives the matching condition for the couplings, and the

expansion around the vacuum at 〈φ〉 determines the mass of the CW scalar field

(cf. (4.1.9)-(4.1.10)),

λφ =
11

π2
e4
B−L + λP

v2

2〈φ〉2 at µ = 〈φ〉 (4.1.23)

m2
φ =

6e4
B−L

π2
〈φ〉2 + λPv

2 (4.1.24)

in agreement with [1]. The expressions for the Higgs field vev, v, and the Higgs

mass, mh, are unchanged and given by (4.1.14). The mass mixing matrix is the

same as in (4.1.15) with m2
φ given by (4.1.24).

4.1.3 CSI SU(2)CW×SM

One can also use a non-Abelian extension of the SM in the CSI ESM general frame-

work. In this section we concentrate on the simple case where the CW group is

SU(2), and for simplicity we assume that there are no additional matter fields (apart

from the CW scalar Φ) charged under this hidden sector gauge group. This model

was previously considered in [111] and subsequently in [112]. The novel feature of

this model is the presence of a vector dark matter candidate, the SU(2) Coleman-

Weinberg gauge fields [111].

The classical scalar potential is the same as before,

Vcl(H,Φ) = λφ(Φ†Φ)2 + λH(H†H)2 − λP(H†H)(Φ†Φ) , (4.1.25)

where Φ as well as the Higgs field H are complex doublets of the SU(2)CW and the

SU(2)L respectively. In the unitary gauge for both of the SU(2) factors we have,

H =
1√
2

(0, h) , Φ =
1√
2

(0, φ) . (4.1.26)

The one-loop corrected scalar potential (4.1.5) now becomes

V1(φ) =
λφ
4
φ4 +

9

1024π2
g4
CWφ

4

(
log

g2
CWφ

2

4µ2
− 5

6

)
− λP

4
h2φ2 , (4.1.27)

where gCW is the coupling of the SU(2) CW gauge sector. Minimising at µ = 〈φ〉
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gives:

λφ =
33

256 π2
g4
CW + λP

v2

2〈φ〉2 at µ = 〈φ〉 (4.1.28)

m2
φ =

9

128 π2
g4
CW 〈φ〉2 + λPv

2 . (4.1.29)

The Higgs mass is then again given by Equation (4.1.14).

4.1.4 CSI ESM ⊕ Singlet

All Abelian and non-Abelian CSI extensions of the SM introduced above can be

easily extended further by adding a singlet degree of freedom, a one-component real

scalar field s(x). Such extensions by a real scalar were recently shown in [121] to

be instrumental in generating the slow-roll potential for cosmological inflation when

the scalar s(x) is non-minimally coupled to gravity. The two additional features of

models with the singlet, which are particularly important for the purposes of this

chapter, are that the singlet portal coupling to the Higgs will provide an additional

(and powerful) mechanism for the Higgs stabilisation, and that the singlet s(x) is

also a natural candidate for scalar dark matter.

The gauge singlet s-field is coupled to the ESM models of Sections 4.1.1-4.1.3

via scalar portal interactions with the Higgs and the CW field Φ,

Vcl(H,φ, s) =
λHs
2
H†Hs2 +

λφs
2

Φ†Φs2 +
λs
4
s4 + Vcl(H,Φ) . (4.1.30)

Equations (4.1.2) and (4.1.30) describe the general, renormalisable and gauge-invariant

scalar potential for the three classically massless scalars as required by classical scale

invariance. The coupling constants in the potential (4.1.30) are all taken to be pos-

itive. Thus the potential is stable and the positivity of λHs and λφs ensures that

no vev is generated for the singlet s(x). Instead, the CW vev 〈φ〉 generates a mass

term for the singlet,

m2
s =

λHs
2

v2 +
λφs
2
|〈φ〉|2 . (4.1.31)

In the vacuum state we get the following values for the scalar fields: s = 0, φ = 〈φ〉
and H = v√

2
=
√

λP
λH
|〈φ〉|.
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4.2 RG Evolution

To determine the regions of parameter space where the CSI ESM models have a

stable Higgs vacuum, we need to evolve the couplings in energy using the RG equa-

tions. In this section, we first specify the RG equations for all CSI ESM theories of

interest, with and without the additional singlet, and then fix the initial conditions

for the RG evolution.

Following this more technical build up in the present section, the Higgs vacuum

stability and collider constraints on the Higgs-sector phenomenology will be analysed

in Section 4.3.

4.2.1 Standard Model × U(1)CW

This is the simplest scale-invariant extension of the SM. The hidden sector is an

Abelian U(1) which couples only to the CW scalar (of charge 1) and no other matter

fields. We now proceed to write down the renormalisation group equations for this

model.

The scalar couplings λH , λφ and λP are governed by:

(4π)2 dλH
d log µ

= −6y4
t + 24λ2

H + λ2
P + λH

(
12y2

t −
9

5
g2

1 − 9g2
2 − 3g2

mix

)
+

27

200
g4

1 +
9

20
g2

2g
2
1 +

9

8
g4

2 +
3

4
g2

2g
2
mix

+
9

20
g2

1g
2
mix +

3

8
g4

mix (4.2.32)

(4π)2 dλφ
d log µ

= 20λ2
φ + 2λ2

P − 12λφ e
2
CW + 6e4

CW (4.2.33)

(4π)2 dλP

d log µ
= λP

(
6y2

t + 12λH + 8λφ − 4λP − 6e2
CW (4.2.34)

− 9

10
g2

1 −
9

2
g2

2 −
3

2
g2

mix

)
− 3g2

mixe
2
CW .

(4.2.35)

The RG equation for the top Yukawa coupling, yt, is

(4π)2 dyt
d log µ

= yt

(
9

2
y2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3 −

17

12
g2

mix

)
. (4.2.36)



4.2. RG Evolution 90

Finally, eCW, gmix and gi denote the gauge couplings of the U(1)CW×SM, which obey

(4π)2 deCW

d log µ
=

1

3
e3
CW +

41

6
eCWg

2
mix (4.2.37)

(4π)2 dgmix

d log µ
=

41

6
gmix

(
g2

mix + 2g2
1

)
+

1

3
e2
CWgmix (4.2.38)

(4π)2 dg3

d log µ
= −7g3

3 , (4.2.39)

(4π)2 dg2

d log µ
= −19

6
g3

2 , (4.2.40)

(4π)2 dg1

d log µ
=

41

10
g3

1 . (4.2.41)

A characteristic feature of the Abelian ESM theory is gmix, the kinetic mixing of

the two Abelian factors, U(1)CW×U(1)Y . For a generic matter field ϕ transforming

under both U(1)’s with the charges QCW and QY , the kinetic mixing is defined as

the coupling constant gmix appearing in the the covariant derivative,

Dµϕ = ∂µϕ + i

√
3

5
g1Q

YAYµ + i(gmixQ
Y + eCWQ

CW)ACW

µ . (4.2.42)

Kinetic mixing is induced radiatively in so far as there are matter fields transforming

under both Abelian factors. In what follows, we will for simplicity choose gmix(µ =

Mt) = 0 at the top mass.

4.2.2 Standard Model × U(1)B−L

The RG equations in the B− L theory are the appropriate generalisation of the

equations above. These equations were first derived in [149], and they were also

discussed recently in [109]. In our conventions the RG evolution in the CSI U(1)B−L×
SM theory with the classical scalar potential (4.1.2) is determined by the set of RG

equations below:

(4π)2 dλH
d log µ

= r.h.s. (4.2.32) (4.2.43)

(4π)2 dλφ
d log µ

= 20λ2
φ + 2λ2

P − 48λφ e
2
B−L + 96e4

B−L − Tr[(yM)4]

+8λφTr[(y
M)2] (4.2.44)

(4π)2 dλP

d log µ
= λP

(
6y2

t + 12λH + 8λφ − 4λP − 24e2
B−L −

9

10
g2

1 −
9

2
g2

2 −
3

2
g2

mix

+4Tr[(yM)2]

)
− 12g2

mixe
2
B−L . (4.2.45)
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The Yukawas for the top quark and for the three Majorana neutrinos are evolved

via

(4π)2 dyt
d log µ

= yt

(
9

2
y2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3 −

17

12
g2

mix −
2

3
e2
B−L

−5

3
gmixeB−L

)
(4.2.46)

(4π)2 dyMi
d log µ

= yMi
(
4(yMi )2 + Tr[(yM)2]− 6e2

B−L

)
, (4.2.47)

and the gauge couplings are evolved by Equations (4.2.41) together with

(4π)2 deB−L

d log µ
= 12e3

B−L +
32

3
e2
B−L gmix +

41

6
eB−L g

2
mix (4.2.48)

(4π)2 dgmix

d log µ
=

41

6
gmix

(
g2

mix +
6

5
g2

1

)
+ 2

16

3
eB−L

(
g2

mix +
3

5
g2

1

)
+12e2

B−L gmix . (4.2.49)

4.2.3 Standard Model × U(1)B−L ⊕ Singlet

When discussing the Higgs vacuum stability, we will soon find out that the size of

the available region on the CSI ESM parameter space will depend significantly on

whether or not the theory includes an additional singlet field. We are thus led to

extend the RG equations above with an extra singlet.

The scalar self-couplings and portal couplings in this model are governed by the

following equations,

(4π)2 dλH
d log µ

= r.h.s. (4.2.43) +
1

2
λ2
Hs (4.2.50)

(4π)2 dλφ
d log µ

= r.h.s. (4.2.44) +
1

2
λ2
φs (4.2.51)

(4π)2 dλP

d log µ
= r.h.s. (4.2.45) − λHsλφs (4.2.52)

(4π)2 dλs
d log µ

= 18λ2
s + λ2

φs + 2λ2
Hs (4.2.53)

(4π)2 dλHs
d log µ

= λHs

(
6y2

t + 12λH + 6λs + 4λHs −
9g2

1

10
− 9g2

2

2

)
−2λPλφs (4.2.54)

(4π)2 dλφs
d log µ

= λφs
(
12λφ + 6λs + 4λφs − 18e2

B−L

)
− 4λPλHs . (4.2.55)

The rest of the RG equations are the same as before. The equations for the

Yukawa couplings are given in (4.2.46)-(4.2.47), and the equations for the gauge
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couplings are given by Equations (4.2.41) together with (4.2.48)-(4.2.49). As always,

we set gmix(µ = Mt) = 0.

Note that it is easy to derive a simple formula (Equation (4.2.58) below) which

computes the coefficients in front of scalar couplings on the right-hand sides of the

RG equations. First, let us write the classical scalar potential in the form

V0 =
∑
ϕ

λϕ
4

(~ϕ 2)2 +
∑
ϕ<ϕ′

λϕϕ′

4
(~ϕ 2)(~ϕ ′ 2) , (4.2.56)

where in our case ϕ = {h, φ, s}, and the second sum is understood as a sum over

the three pairs of indices, (h, φ), (h, s) and (φ, s). The notation ~ϕ denotes the

canonically normalised real components of the Higgs, ~h = (h1, . . . , h4), the complex

doublet ~φ = (φ1, . . . , φ4) and the real singlet ~s = s. In general we denote the

number of real components of each of the species of ~ϕ and Nϕ. It is then easy to

derive an expressions for the scalar-coupling contributions to all the self-interactions

by counting the contributing four-point 1PI diagrams involving 2 scalar vertices. For

the beta functions of the self-couplings we get

(4π)2 dλϕ
d log µ

3 2(Nϕ + 8)λ2
ϕ +

∑
ϕ̃

Nϕ̃

2
λ2
ϕϕ̃ , (4.2.57)

and the portal couplings are governed by

(4π)2 dλϕϕ′

d log µ
3
∑
ϕ

2(Nϕ+2)λϕλϕϕ′ +
∑
ϕ′

2(Nϕ′+2)λϕϕ′λϕ′ +
∑
ϕ̃

Nϕ̃ λϕϕ̃λϕ′ϕ̃ + 4λ2
ϕϕ′

(4.2.58)

This formula is valid for all of the CSI ESM examples considered in this chapter.

4.2.4 Standard Model× SU(2)CW

We can also write down the relevant renormalisation group equations for the classi-

cally scale-invariant Standard Model × SU(2)CW theory with a scalar potential given

by Equation (4.1.25). These RG equations were first derived in [111,112]. For scalar
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self-couplings λH and λφ, and the portal coupling λP we have:

(4π)2 dλH
d log µ

= −6y4
t + 24λ2

H + 2λ2
P + λH

(
12y2

t −
9

5
g2

1 − 9g2
2

)
+

27

200
g4

1

+
9

20
g2

2g
2
1 +

9

8
g4

2 (4.2.59)

(4π)2 dλφ
d log µ

= 24λ2
φ + 2λ2

P − 9λφ g
2
CW +

9

8
g4
CW (4.2.60)

(4π)2 dλP

d log µ
= λP

(
6y2

t + 12λH + 12λφ − 4λP −
9

2
g2
CW

− 9

10
g2

1 −
9

2
g2

2

)
, (4.2.61)

where the top Yukawa coupling obeys

(4π)2 dyt
d log µ

= yt

(
9

2
y2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3

)
, (4.2.62)

and gCW, g3,2,1 are the gauge couplings of the SU(2)CW× SU(3) × SU(2) × U(1),

(4π)2 dgCW

d log µ
= −43

6
g3
CW −

1

(4π)2

259

6
g5
CW (4.2.63)

(4π)2 dg3

d log µ
= −7g3

3 (4.2.64)

(4π)2 dg2

d log µ
= −19

6
g3

2 (4.2.65)

(4π)2 dg1

d log µ
=

41

10
g3

1 , (4.2.66)

where for the U(1) coupling we use the normalisation g2
1 = 5

3
g2
Y .

All running couplings are computed in the MS scheme, and furthermore we use

the physical freeze-out condition for the SU(2)CW degrees of freedom at the RG scales

below their mass shell. In other words, the SU(2)CW contributions to the β-functions

for gCW, λφ and λP will be set to zero when µ < MZ′ = 1
2
gCW〈φ〉.

4.2.5 Standard Model × SU(2)CW ⊕ singlet

RG-equations for the three scalar self-couplings now take the form:

(4π)2 dλH
d log µ

= −6y4
t + 24λ2

H + 2λ2
P +

1

2
λ2
Hs + λH

(
12y2

t −
9

5
g2

1 − 9g2
2

)
+

27

200
g4

1 +
9

20
g2

2g
2
1 +

9

8
g4

2 (4.2.67)

(4π)2 dλφ
d log µ

= 24λ2
φ + 2λ2

P +
1

2
λ2
φs − 9λφ g

2
CW +

9

8
g4
CW (4.2.68)

(4π)2 dλs
d log µ

= 18λ2
s + 2λ2

φs + 2λ2
Hs , (4.2.69)
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and for the three portal couplings we have

(4π)2 dλP

d log µ
= λP

(
6y2

t + 12λH + 12λφ − 4λP −
9

2
g2
CW −

9

10
g2

1 (4.2.70)

−9

2
g2

2

)
− λHsλφs

(4π)2 dλHs
d log µ

= λHs

(
6y2

t + 12λH + 6λs + 4λHs −
9

10
g2

1 −
9

2
g2

2

)
(4.2.71)

−4λPλφs

(4π)2 dλφs
d log µ

= λφs

(
12λφ + 6λs + 4λφs −

9

2
g2
CW

)
− 4λPλHs . (4.2.72)

4.2.6 Initial Conditions and Stability Bounds

To solve the RG equations and determine the RG evolution of the couplings of our

models, we first need to specify the initial conditions for all the couplings.

First, we specify the initial conditions for the SM coupling constants at Mt: The

initial values for the top Yukawa coupling yt and the SM gauge couplings are taken

from [59],

yt(µ = Mt) = 0.93558 + 0.00550

(
Mt

GeV
− 173.1

)
+−0.00042

α3(Mz)− 0.1184

0.0007

−0.00042
MW − 80.384 GeV

GeV
± 0.00050th (4.2.73)

g3(µ = Mt) = 1.1666 (4.2.74)

+0.00314
α3(Mz)− 0.1184

0.0007
− 0.00046

(
Mt

GeV
− 173.1

)

g2(µ = Mt) = 0.64822 (4.2.75)

+0.00004

(
Mt

GeV
− 173.1

)
+ 0.00011

MW − 80.384 GeV

GeV

g1(µ = Mt) =

√
5

3

(
0.35761 + 0.00011

(
Mt

GeV
− 173.1

)
− (4.2.76)

0.00021
MW − 80.384 GeV

GeV

)
.

In our numerical analysis we will always assume the central values for Mt and MW .
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The CW portal coupling, λP and the CW gauge coupling are taken as the two

free input parameters specifying the two-dimensional BSM parameter space of our

U(1) or SU(2) × SM theories. When an additional singlet field s(x) is present, the

input parameters also include λHs, λs and λφs.

The input values of the two remaining couplings, the Higgs self-coupling λH , and

the self-coupling of the CW scalar, λφ, are then determined from the value of the

SM Higgs mass and from the CW matching condition, (4.1.9), respectively. To find

λH , we numerically compute the eigenvalues of the mass matrix (4.1.15), and set

mh1 = 125.66 GeV, as was outlined in Equation (4.1.18). We then iteratively solve

for λφ(µ = Mt) by running it from the top mass scale to µ = 〈φ〉, and checking that

we fulfil the CW matching relation (4.1.9) at the latter scale.

Having thus specified the initial conditions for all couplings at the low scale,

µ = Mt, we run them up to the high scale, µ = MPl, by numerically solving the RG

equations. To determine the region of parameter space where the Higgs potential is

stable, we check that the conditions

4λH(µ)λφ(µ) > λ2
P(µ) , λH(µ) > 0 , for all µ ≤MPl , (4.2.77)

arising from the positive definiteness of Equation (4.1.2), are fulfilled. We also

check that the model remains perturbative, requiring that all the scalar and gauge

couplings are bounded by an order-one constant all the way to the Planck scale,

λi(µ) < constO(1) = 3 , (4.2.78)

where for concreteness we chose a conservative numerical value of the upper bound

= 3; in practice our results do not depend significantly on this choice.

4.3 Higgs Physics: Stability and Phenomenology

It is well known that in the Standard Model, the Higgs self-coupling becomes neg-

ative at µ ∼ 109 GeV, making the SM Higgs potential unstable below the Planck

scale [59, 150] (see also [151, 152] for a review of earlier work). This effect can be

seen in Figure 4.1 which shows the solution of RG equations in the limit where all

Higgs portal interactions are switched off.
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Figure 4.1: RG evolution in the Standard Model. The Higgs self-coupling turns neg-

ative at µ & 109 GeV, thus signalling that the SM Higgs potential becomes unstable

below the Planck scale. In this and all other Figures we use Mt = 173.1 GeV.

For our classically scale-invariant extensions of the SM to be meaningful and

practical natural theories valid all the way up to the Planck scale, the Higgs potential

has to be stabilised.3 There are two mechanisms, both relying on the Higgs portal

interactions, to achieve this:

1. The SM Higgs is the mixed mass eigenstate h1 between H and the CW scalar

as dictated by Equation (4.1.18). As we explained at the end of Section 4.1.1,

in the case where the second scalar is heavier than the Higgs, mh2 > mh1 , the

initial value of the Higgs self-coupling λH is larger than in the SM, cf. Equa-

tion (4.1.21), and this helps with the Higgs stabilisation [111,147,148].

2. The portal couplings of other scalars to the Higgs, such as λP and λHs con-

tribute positively to the beta function of λH as can be seen e.g. from the RG

3In this chapter we will concentrate on the more conservative case of absolute stability. An-

other phenomenologically acceptable possibility analysed recently in [59] is that the SM vacuum

is metastable, with a lifetime much greater than the age of the Universe. In that case one would

also have to argue why after reheating the Universe ended up in the metastable vacuum near the

origin, for example following the approach of [153].
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Figure 4.2: RG evolution in CSI ESM theories with (a) E = U(1)B−L, (b) E =

U(1)B−L + s(x), and (c) E = SU(2)CW. With these initial conditions the Higgs

coupling λH stays positive and satisfies the tree-level stability bound (4.2.77).
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equation (4.2.67) in the SU(2)CW + scalar case, where βλH 3 2λ2
P + 1

2
λ2
Hs. This

effect (due in particular to the otherwise unconstrained but still perturbative

λHs coupling) will be instrumental in achieving the Higgs stability in models

with an extra scalar [154,155].

Examples of RG running for some specific input values of parameters for three

different classes of models which result in stable Higgs potential are shown in Fig-

ure 4.2. Cases (a) and (c) give an example of mechanism (1), and the model with

an additional scalar in case (b) is a representative of mechanism (2) at work.

In the rest of this section, we will quantify the regions of the parameter spaces

for individual models where the scalar potential is stabilised. We will also combine

these considerations with the current LHC limits applied to the extended Higgs

sectors of our Higgs portal theories in a model-by-model basis.

4.3.1 CSI U(1)CW×SM

In this theory mechanism (1) is operational for stabilising the Higgs potential in a

region of the two-dimensional parameter space of the model described by λP and the

CW gauge coupling. As shown in Figure 4.3, we get a wedge shaped region inside

the black contour, inside which the Higgs potential is stable.

Higgs stabilisation in this region can be traced to the initial value of λH being

enhanced compared to the SM due to mixing between h and the CW scalar field.

The wedge shape can be understood as follows. The upper edge of the wedge follows

the mass contour where mh2 > mh, since the enhancement of the initial value of λh

only happens when mh2 > mh1 (see (4.1.21)). The mechanism is only effective when

the two masses are not too far from each other (cf. the denominator of the second

term in Equation (4.1.21)). The lower contour of the wedge signifies when the mass

difference becomes too large. The effect is enhanced when the off-diagonal element

is larger as we get more mixing. This explains why the stability wedge in Figure 4.3

is wider for larger values of λP. We get an upper limit on eCW ≈ 0.9 since for larger

values we find a Landau pole before the Planck scale.

Higgs sector phenomenology of this model in the context of LHC, LEP, future

colliders and low energy measurements was analysed recently in [82]. In particular,
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Figure 4.3: Parameter space in the minimal U(1)CW×SM classically scale-invariant

theory. The black wedge-shaped contour shows the region of the (λP, eCW) parameter

space of the model where the Higgs potential is stabilised. The dotted lines represent

contours of fixed values sin2 θ = 0.05, 0.1 and 0.2 of the Higgs mixing angle. Finally,

the colour-coding indicates the mass of the second scalar h2 in GeV.

it was shown there that in the part of the parameter space where the second scalar

is light, 10−4 GeV < mh2 < mh1/2, the presently available Higgs data (and specif-

ically the limits on the invisible Higgs decays) constrain the model quite tightly by

placing an upper limit on the portal coupling at λP . 10−5.

However, from Figure 4.3 we see that the Higgs stability in the minimal model

(and more generally in all portal models without additional scalar s(x), i.e. relying

on the stabilisation mechanism (1)) requires the second scalar to be heavier than the

SM Higgs, mh2 > mh1 (see also Figures 4.4, 4.5). Thus Higgs stability pushes these

models into the region of the parameter space with a heavier second scalar, precisely

where the collider limits on invisible Higgs decays and on the non-observation of

other Higgs-like states are much less stringent.

Collider limits which do constrain the stability region in Figure 4.3 are exclusion

limits on the heavier Higgs production normalised to the expected SM cross-section

at this Higgs mass. In all Higgs portal models we consider in this chapter, the
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expected cross-section for the h2 scalar is given by the SM cross-section multiplied

sin2 θ of the mixing angle. With the currently available ATLAS and CMS data for

the search of the heavier Higgs boson at integrated luminosity of up to 5.1 fb−1 at
√
s = 7 TeV and up to 5.3 fb−1 at

√
s = 8 TeV, the observed signal strength in the

units of the SM cross-section for the heavier Higgs is roughly at the level of 10−1,

or slightly above, as can be seen from plots in [156–158]. This gives an upper limit

on the mixing angle sin2 θ . 0.1.

The contours of constant values of sin2 θ = 0.05, 0.1 and 0.2 are shown on Fig-

ure 4.3 as dotted lines. As we can see for sin2 θ . 0.1, there is no overlap left between

what is allowed by the collider limits and what is consistent with the Higgs stability

in this model. We thus conclude that the combination of the Higgs potential sta-

bilisation and the LHC limits on the heavier Higgs essentially rule out the minimal

U(1)CW× SM theory. This conclusion is based on a one-loop RG analysis with the

methodology we adopted for the initial values, and on the use of the central value

for the top mass. As such there is an intrinsic theoretical uncertainty in the exact

position and size of the wedge. By lowering the top mass from its central value by

1 GeV, the wedge in Figure 4.3 would touch the sin2 θ = 0.1 contour, making the

model viable in a limited corner of parameter space.

Instead, to get a stable viable model with the current central value of the top

mass and without relying upon the sub-leading RG effects, we will simply extend

the theory by adding a singlet s(x) in Sections 4.3.3 and 4.3.5.

4.3.2 CSI U(1)B−L×SM

One way to extend the minimal model is to allow for interactions of the hidden

sector with the SM fermions. As we have seen already, a simple implementation

of this idea is described by the U(1)B−L × SM classically scale-invariant theory. We

proceed to solve the RG equations in this model and search for a region of parameter

space where the scalar potential is stable, with the results shown in Figure 4.4.

The stability region in Figure 4.4 is shorter along the horizontal eB−L–direction

than in the minimal CW model of Figure 4.3 above. This is caused by the slope of the

B− L gauge coupling being steeper than for the minimal U(1)CW× SM theory, due to
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Figure 4.4: Parameter space of the U(1)B−L× SM theory showing the region where

the Higgs potential is stabilised and the sin2 θ contours. The legend is the same as

in Figure 4.3.

the SM quarks and leptons which are now charged under the U(1)B−L gauge group.

We therefore get a Landau pole before the Planck scale if eB−L(µ = mt) & 0.35, and

this shortens the allowed region.

The width of the stability wedge reflects the fact that in the B− L model the

CW scalar φ has a B−L charge of two. Therefore, one would expect that the width

of the stability region for the B− L model at a fixed value of the gauge coupling,

say at eB−L = 0.3, should be of similar size to the stability region of the pure U(1)

CW sector at twice the value of the coupling, i.e. at eCW = 0.6, which is indeed the

case.

Collider exclusion limits of sin2 θ . 0.1 are indicated in Figure 4.4 as before by

the dotted lines showing contours of constant sin2 θ = 0.05, 0.1 and 0.2. We see

that the combination of the Higgs potential stabilisation and the LHC limits on the

heavier Higgs rules out also the U(1)B−L× SM theory without an additional singlet.

In the U(1)B−L model we also have a Z ′ boson which couples to the Standard

Model fermions. The ATLAS and CMS experiments give lower limits for MZ′ of
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about 3 TeV [159,160]. This implies

MZ′ = 2eB−L 〈φ〉 = 2eB−L

√
2λH
λp

v , (4.3.79)

and therefore √
λP <

2v
√

2λH
3 TeV

eB−L =⇒ λp . (0.1 eB−L)2 . (4.3.80)

For eB−L = 0.35 we find that λP . 10−3, which is clearly outside the stability wedge

of the B− L model. Therefore Higgs stabilisation in the minimal U(1)B−L × SM

theory is also not compatible with the collider limits on Z ′.

4.3.3 CSI U(1)B−L×SM ⊕ singlet

When we add a real scalar s(x) to the U(1)CW or U(1)B−L× SM theory, the scalar

potential is stabilised by mechanism (2) which relies on a positive shift in the β-

function for λH ,

βλH 3 +
λHs
2

. (4.3.81)

We have checked that the stabilisation occurs on the entire (λP, e) 2d parameter

space for values of λHs ∼ 0.34 or above, as can be seen from the left table in Table

4.1.

4.3.4 CSI SU(2)CW×SM

Solving RG equations in the non-Abelian CW theory coupled to the SM gives the

Higgs stability region shown in Figure 4.5 together with the sin2 θ exclusion contours.

The stability wedge is now shifted to larger values of gCW, as φ has an equivalent

charge of 1/2. From Figure 4.5, we conclude that the combination of the Higgs

potential stabilisation and the LHC limits on the heavier Higgs leaves a small corner

of the parameter space available in the minimal SU(2)CW× SM theory.

4.3.5 CSI SU(2)CW×SM ⊕ singlet

The Higgs potential in the SU(2)CW× SM model can be stabilised on the entire

2d plane (λP, gCW) by extending the model with a vev-less singlet s(x) portally
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λP eB−L λHs

10−5 0.1 0.34

10−5 0.2 0.34

10−5 0.3 0.33

0.0001 0.1 0.35

0.0001 0.2 0.34

0.0001 0.3 0.33

0.001 0.1 0.35

0.001 0.2 0.29

0.001 0.3 0.33

λP gCW λHs

10−5 0.8 0.35

10−5 1.4 0.35

10−5 2.0 0.35

0.0001 0.8 0.35

0.0001 1.4 0.35

0.0001 2.0 0.35

0.001 0.8 0.34

0.001 1.4 0.35

0.001 2.0 0.35

Table 4.1: Minimal values of λHs needed to stabilise the Higgs potential in the CSI

ESM ⊕ singlet models with λs = 0.1 and λφs = 0.01. Left Table: U(1)B−L. Right

Table: SU(2)CW.
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Figure 4.5: Parameter space of the SU(2)CW×SM theory showing the region where

the Higgs potential is stabilised and the sin2 θ contours. The legend is the same as

in Figure 4.3.

coupled to the Higgs, as in Equation (4.3.81). The table on the right in Table 4.1

shows the critical value of λHs for this stabilisation mechanism to work in the CSI

SU(2)CW × SM ⊕ singlet model.
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Before we conclude this section, we would like to make one further comment. We

have shown that the minimal Higgs portal models without an additional scalar are

largely ruled out by the combination of Higgs (in)stability and the LHC constraints

(except for a small region of the parameter space still available in the non-Abelian

model). At the same time we showed that if these models include an additional

scalar field with a portal coupling λHs ∼ 0.35, the Higgs stability restrictions are

completely lifted and the models are completely viable.

The question arises if this conclusion would also apply to models without an

additional scalar, but instead with a relatively large Higgs-CW portal coupling,

λP ∼ 0.3, so that βλH would instead receive a positive contribution from 2λ2
P. This

approach would not work for the following reason: In order not to get a large mixing

angle sin2 θ > 0.1 in this case, we require that the second scalar is quite heavy,

mh2 > 300 GeV. This in turn requires a large CW gauge coupling of gCW ≈ 3.5. Such

a large gauge coupling leads to a large value for λφ at the scale of 〈φ〉. λφ therefore

develops a Landau pole already at low scales making the theory non-viable.

4.4 Dark Matter Physics: Relic Abundance and

Constraints

Having demonstrated that the Higgs sector can be stabilised and that it is in agree-

ment with all current observations, we now show that this framework can accom-

modate the observed dark matter density of the Universe. In the scenarios that we

have studied, there are two potential dark matter candidates. The first candidate

is a vector dark matter candidate [161–163] given by the triplet of gauge bosons,

Z ′i, of the SU(2)CW sector, considered recently in [111, 112]. These particles have

the same mass, MZ′ , and are stable because of an unbroken global SO(3) ‘custodial

symmetry’ which also ensures that each component has the same relic abundance.

The second candidate is the singlet scalar particle, s, coupled to the Higgs through
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the Higgs portal.4 This is a much studied dark matter candidate [43, 44, 165–170]

that is stable because of an automatic Z2 symmetry of the classically scale-invariant

SM×GCW theory with the real singlet [121].5

Having argued that the vector triplet and scalar particles are stable and there-

fore potential dark matter candidates, we must calculate the relic abundance in

order to show that they can saturate, or form a component of the observed dark

matter abundance. We take ΩDMh
2 = 0.1187 ± 0.0017, the value inferred from

Planck+WP+HighL+BAO data [22]. Owing to reasonable couplings to the Stan-

dard Model particles, the scalar and vector dark matter components are in thermal

equilibrium with the Standard Model degrees of freedom in the early Universe.

Their abundance is therefore determined by the thermal freeze-out mechanism. To

calculate it, we must solve the Boltzmann equation, which is [171,172],

dni
dt

+ 3Hni = −〈σiiv〉
(
n2
i − neq 2

i

)
−
∑
j,k

〈σijkv〉
(
ninj −

nk
neq
k

neq
i n

eq
j

)
, (4.4.82)

where ni is the number density of one component χi of the dark matter abundance,

〈σiiv〉 is the usual annihilation cross-section term for reactions of the form χiχj →
XX, where X is a particle in equilibrium with the thermal bath, and 〈σijkv〉 is the

cross-section for the semi-annihilation reaction χiχj → χkX.

4.4.1 Vector Dark Matter

We first consider the case of vector dark matter only, which is similar to Ham-

bye’s model [161], except that here there are no explicit µ terms. This model is

interesting as it was the first example of a model containing both annihilation and

semi-annihilation processes, as shown in Figure 4.6.

The annihilation cross-section is dominated by the lower four diagrams of Fig-

ure 4.6, which contribute to the process Z
′
iZ
′
i → h2h2. The leading order terms

4Magnetic monopoles are also a possible third dark matter candidate [164]; we will come back

to this possibility in a SU(2) model with an adjoint scalar in Chapter 5.
5The s → −s symmetry of the potential Equation (4.1.30) is an automatic consequence of

scale-invariance and gauge invariance, which does not allow odd powers of H and Φ.
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Figure 4.6: The upper three diagrams show the process Z ′iZ
′
j → Z ′kh2, which

is the dominant contribution to the semi-annihilation cross-section. The process

Z ′iZ
′
j → Z ′kh1 also occurs but is suppressed by tan2 θ. The lower four diagrams show

the processes that dominate the annihilation of Z ′iZ
′
i. Other diagrams are suppressed

by at least one power of sin θ or λP.

contributing to the non-relativistic (s-wave) cross-section from these diagrams are

〈σiiv〉 =
11g4

CW − 60g2
CWλφ + 108λ2

φ

2304π

cos4 θ

M2
Z′

+O
(
m2
h2

M2
Z′
, sin θ, λP

)
. (4.4.83)

In our numerical work, we include all sub-leading terms in this cross-section as

well as the contributions from Z ′iZ
′
i → h1h1, Z ′iZ

′
i → f̄f , Z ′iZ

′
i → W+W− and

Z ′iZ
′
i → Z0Z0, all of which are suppressed by at least one power of sin θ or λP.

The diagrams that contribute to the semi-annihilation process are shown by

the upper three diagrams in Figure 4.6. In the non-relativistic limit, the (s-wave)

cross-section for Z ′iZ
′
j → Z ′kh2 is

〈σijkv〉 =
3g4

CW

128π

cos2 θ

M2
Z′

(
1− m2

h2

3M2
Z′

)−2(
1− 10m2

h2

9M2
Z′

+
m4
h2

9M4
Z′

)3/2

. (4.4.84)

There is also a subdominant process Z ′iZ
′
j → Z ′kh1 whose cross-section is obtained

from Equation (4.4.84) by substituting mh2 → mh1 and cos θ → sin θ. For com-

pleteness, we include this in our numerical work. Comparing Equations (4.4.83)

and (4.4.84), we observe that 〈σijkv〉 ∼ 5〈σijv〉 and therefore the semi-annihilation

processes dominate.

The global custodial symmetry ensures that the vector triplet is degenerate in

mass and each Z ′i contributes one-third to the relic abundance. That is the total

abundance nZ′ is related to the individual components by nZ′ = 3nZ′1 = 3nZ′2 = 3nZ′3 .
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It should also be clear that 〈σ11v〉 = 〈σ22v〉 = 〈σ33v〉 := 〈σv〉ann and 〈σ123v〉 =

〈σ132v〉 = 〈σ213v〉 = 〈σ231v〉 = 〈σ312v〉 = 〈σ321v〉 := 〈σv〉semi−ann. Therefore, the

Boltzmann equation for the total abundance is

dnZ′

dt
+ 3HnZ′ = −〈σv〉ann

3

(
n2
Z′ − neq 2

Z′

)
− 2〈σv〉semi−ann

3
nZ′ (nZ′ − neq

Z′) . (4.4.85)

We solve this equation numerically by the method outlined in [173].

The coloured regions in the upper and lower panels of Figure 4.7 show the total

relic abundance of the vector triplet as a fraction of the observed abundance. For

instance, in the lower left (blue) part of the upper panel, the abundance exceeds the

observed value and is therefore excluded. The thick black wedge indicates the region

where the Higgs potential is stabilised up to the Planck scale (as in Figure 4.5). We

see that for most of the wedge, the vector triplet contributes between 1% and 100%

of the total dark matter abundance. However, when we combine this with the LHC

constraint on sin2 θ, we see from Figure 4.7 that the vector dark matter component

contributes less than 10% to the total relic abundance, and we need to add another

dark matter component. The lower panel in Figure 4.7 shows the dark matter

fraction as a function of MZ′ and mh2 . We see that the MZ′ have to lie between

500 GeV and 1000 GeV for the model to have a stable Higgs vacuum.

Also shown in the upper panel are the direct detection current constraints from

LUX [174] and the projected limits from LZ [34]. At a direct detection experiment,

a vector Z ′i can elastically scatter with a nucleon N via exchange of h1 or h2. The

resulting spin-independent scattering cross-section for this to occur is

σSI
N =

g2
CW sin2 2θ

16π

f 2
Nm

2
Nµ

2
red

v2

(
1

m2
h2

− 1

m2
h1

)2

, (4.4.86)

where fN := 〈N∑qmq q̄q〉N/mN ≈ 0.295 is the Higgs-nucleon coupling [175], mN is

the nucleon mass and µred is the vector-nucleon reduced mass. When setting a limit

from the experimental data, we account for the fact that the the vector triplet forms

a subcomponent of the total dark matter density over much of the parameter space

of interest. We make a scaling ansatz that the fraction of the local dark matter

density ρZ′/ρDM is the same as the fraction of the dark matter relic abundance

ΩZ′/ΩDM. After taking into account this scaling, the limits from LUX and LZ are
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shown in Figure 4.7 by the lines with the appropriate label. In the upper panel, the

regions above and to the left of the lines are excluded.

We have also checked that the when applied to the lower panel, the LUX exclu-

sion limit excludes the entire lower island. Therefore, while the current LUX limits

do not constrain the region where the Higgs potential is stabilised, the projected LZ

limit excludes all of this region.

4.4.2 Singlet Scalar Dark Matter

We have previously motivated the introduction of a real singlet scalar field to allow

the Higgs potential to be stabilised over a much larger range of the parameter space.

Providing a candidate to saturate the observed dark matter abundance provides a

second motivation. The two examples of CSI ESM with a U(1) Coleman-Weinberg

sector, which we have considered in Sections 4.3.1 and 4.3.2, do not have a dark

matter candidate. This is because the U(1)CW gauge boson is unstable, owing to

its kinetic mixing with hypercharge, and the only scalar field present, φCW, mixes

with the SM Higgs. The SU(2)CW sector does have a stable component in the form

of the Z ′i triplet, but we have seen (cf. left panel in Figure 4.7) that after LHC

constraints have been taken into account, the vector triplet can only account for

sub-component of the total dark matter abundance in the region where the Higgs

potential is stabilised. Therefore, in the case of an SU(2) extended Standard Model,

an additional dark matter component is also required.

We first study the case where the singlet forms all of the dark matter (as required

in the U(1) case) before turning to the case where it forms a sub-component (as

required in the SU(2) case).

In the CSI U(1)B−L× SM⊕ singlet model, the ATLAS and CMS limitMZ′ & 3 TeV

implies that λP, and therefore sin θ, is small. As a result, the diagrams that dom-

inantly contribute to the total annihilation cross-section 〈σv〉s,ann are those shown

in Figure 4.8. The Z2 symmetry of this theory ensures that all semi-annihilation

processes vanish, so that the Boltzmann equation describing the evolution of the
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Figure 4.7: The coloured contours and the wedge-shaped regions in black in both

panels indicate when the vector triplet forms more or less than 100%, 10% and 1%

of the observed dark matter abundance, and the parameter values where the Higgs

potential is stabilised respectively. Also shown in the upper panel are the LUX and

projected LZ limits (the region above these lines is excluded), which account for the

fact that the dark matter is a subcomponent of the total density in much of the

parameter space, and the limit sin2 θ = 0.1. The lower panel shows that the vector

mass should lie between 500 GeV and 1 TeV to improve Higgs stability.
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Figure 4.8: The leading contributions to the scalar annihilation cross-section

〈σv〉s,ann. Other diagrams are suppressed by at least one power of sin θ.
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Figure 4.9: Scalar dark matter (ms, λHs) plane in the CSI U(1)B−L× SM ⊕ singlet

model. The solid lines show the fraction of the total DM density the scalar singlet

makes up. The dotted lines show the direct detection constraints from LUX and the

project limits from LZ. In the shaded region the extra singlet does not stabilise the

Higgs potential.

scalar number density ns is the usual one:

dns
dt

+ 3Hns = −〈σv〉s,ann

(
n2
s − neq 2

s

)
. (4.4.87)

The main parameters of our singlet dark matter models are the scalar dark matter

mass, ms, and its coupling, λHs, to the Higgs field. We solve the Boltzmann equation

numerically, and the results are displayed in Figure 4.9 on the (ms, λHs) plane. In

this figure, we have initially fixed eB−L = 0.3 and λP = 5 × 10−4 resulting in a

mixing angle θ ≈ 5× 10−3 and mass MZ′ = 3.6 TeV. When eB−L and λP are chosen

so that MZ′ lies above the bounds from direct searches by ATLAS and CMS, we
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find that the positions of the lines are not sensitive to the values of eB−L and λP.

The coupling constant λφs can be traded in for m2
s (cf. Equation (4.1.31)) so that

the only remaining free parameters are ms and λhs (the quadratic coupling λs plays

no role in the Born-level freeze-out calculation). For each value of ms, the value of

λHs that gives 100%, 10% or 1% of the observed dark matter density ΩDM is shown

in Figure 4.9. The region below λHs ∼ 0.34 is excluded because for these values of

λHs, the real scalar does not help to stabilise the Higgs potential (cf. Table 4.1). We

also impose that λHs . 1 in order that λHs does not develop a Landau pole before

the Planck scale. For the singlet scalar to saturate the observed dark matter density,

we find that its mass should lie in the range between 1 TeV and 3.2 TeV. In this

range, the annihilation channel ss → Z ′Z ′ is not allowed kinematically, justifying

its exclusion from the diagrams in Figure 4.8.

Finally, we also show the current direct detection constraints from LUX and the

projected limits from LZ. The scalar can scatter at a direct detection experiment

through a t-channel exchange of h1 and h2, and the resulting spin-independent

scattering cross-section to scatter off a nucleon N is

σSI
N =

λ2
Hs cos4 θ

4π

f 2
Nm

2
Nµ

2
red

m2
sm

4
h1

[
1− tan θ

(
λφs
λHs
− m2

h1

m2
h2

(
λφs
λHs

+ tan θ

))]2

. (4.4.88)

As in the case of the vector triplet, we account for the fact that the scalar makes

up a sub-component of the dark matter in much of the parameter space. While the

current LUX limit constrains low values of ms where the scalar density Ωs is very

low, the projected LZ limits should constrain the full parameter space of interest.

4.4.3 Scalar and Vector Dark Matter

Finally, we consider the CSI SU(2)CW× SM ⊕ singlet model in which the dark

matter is comprised of both the singlet scalar and vector triplet. In this case we

solve the Boltzmann equations (4.4.85) and (4.4.87) as before, but we now include

the annihilation process ss → Z ′iZ
′
i or the reverse process, depending on which is

kinematically allowed.

Figure 4.10 shows the results on the (gCW, λP) plane for λHs = 0.36 and λHs = 1.0

in the upper and lower panels respectively. The coloured contours indicate the values



4.4. Dark Matter Physics: Relic Abundance and Constraints 112

Figure 4.10: The plots show the available parameter space where the scalar and

vector dark matter together make up the total dark matter density in the CSI

SU(2)CW× SM ⊕ singlet model. The colour-coded regions show the scalar dark

matter mass in GeV. In the white regions the combined density is either larger or

smaller than the observed dark matter density. In the upper plot we fixed λHs =

0.36, and in the lower plot λHs = 1.

ofms that is chosen to give a total density of vector and scalar dark matter saturating

the observed value, i.e. ΩZ′+Ωs = ΩDM. There is a limited portion of the parameter

space in which the vector and scalar make up all of the dark matter, and this region

is smaller in the case where λHs is bigger. These results can be understood with
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reference to Figures 4.7 and 4.9. From Figure 4.7, we observe that in the upper

right corner of the upper panel, the vector density is very small, so that the scalar

should make up most of the density. From the lower panel, we also see that in

this region, MZ′ . 1 TeV, which because g ≈ 2, implies that 〈φ〉 . 1 TeV. Now,

from Figure 4.9, we see that for λHs = 0.36, we require ms ≈ 1 TeV in order that

Ωs ≈ ΩDM. However, given that m2
s ≈ λφs|〈φ〉|2/

√
2 (cf. Equation (4.1.31)), we

see that we cannot achieve ms ≈ 1 TeV unless λφs & 1, in which case it develops

a Landau Pole before the Planck scale. Figure 4.9 also allows us to see why the

parameter space is smaller for a larger λHs. This is because the value of ms that is

required to obtain Ωs ≈ ΩDM is larger for a larger λHs and this is more difficult to

do, again because of the perturbativity restriction on λφs.

Figure 4.11: The region on the mass plane (MZ′ ,mh2) where the combined density

of the scalar and vector dark matter equals the observed dark matter density. The

colours show the scalar dark matter mass in GeV and in the white regions the

combined density is either larger or smaller than the observed dark matter density.

Here, we have fixed λHs = 0.36.

Figure 4.11 shows the vector and Coleman-Weinberg scalar mass, and contours

of the scalar mass in which the total density is saturated. This plot has λHs = 0.36.

We see that both the vector and the scalar are required to be around the TeV scale.



4.5. Conclusions 114

4.5 Conclusions

Classically scale-invariant extensions of the Standard Model constitute a highly pre-

dictive and minimal model building framework. In this CSI ESM set-up, all mass

scales have to be generated dynamically and should therefore have a common origin.

These models have to address all the sub-Planckian shortcomings of the Standard

Model. In this chapter, we have analysed the CSI ESM theories from the perspective

of solving the instability problem of the SM Higgs potential and at the same time

providing viable dark matter candidates.

In simple CSI models with Abelian hidden sectors, we identified regions of pa-

rameter space where the SM Higgs potential is stabilised all the way up to the Planck

scale. These are the wedge-shaped regions in Figures 4.3 and 4.4. When combined

with LHC constraints on heavier Higgs bosons, we found that these regions did not

survive (see dotted lines in Figures 4.3 and 4.4).

In the case of a non-Abelian SU(2) hidden sector in Figure 4.5, a small part of

the parameter space with the stable Higgs potential is compatible with the LHC

constraints.

We then argued that by adding a real scalar singlet with a portal coupling to

the Higgs λHs & 0.35, all of our CSI ESM models have a stable Higgs potential and

are consistent with the LHC exclusion limits on extended Higgs sectors.

For Abelian models the singlet, of mass ms, is the only dark matter candidate,

and Figure 4.9 shows the available parameter space on the (ms, λHs) plane. If this

singlet contributes 100% of the total observed dark matter density, its mass lies

between 1 TeV and 3 TeV. The LUX direct detection limits do not yet constrain the

model, however the projected reach of LZ would cover all of the viable parameter

space.

In non-Abelian models we have two possible components of dark matter: the

singlet and the hidden sector SU(2) gauge bosons, Z ′i. Without the singlet, the

combination of Higgs stability and LHC constraints implies that vector dark matter

contributes less than 10% of the observed relic density, as can be seen in Figure 4.7.

Thus, to saturate the dark matter density and stabilise the Higgs potential, we are

required to have a singlet dark matter component. Finally, we have investigated the
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phenomenology of two-component dark matter. The viable regions of parameter

space are shown in Figures 4.10 and 4.11. Typically, both components have a mass

close to 1 TeV.

We see that CSI ESM models are viable and predictive. They provide a non-

trivial link between the electroweak scale, including the Higgs vacuum stability,

and the nature and origin of dark matter. Furthermore, future dark matter direct

detection and collider experiments will be able to explore a significant fraction of

their parameter space.



Chapter 5

Dark Matter Monopoles, Vectors

and Photons

In this chapter, based on [3], we will continue to investigate models where the SM

is extended with a hidden or dark sector. This sector only couples to the SM via a

Higgs portal, and we are interested in dark sectors that include dark matter particles.

In Chapter 4, we saw examples of scalar and vector boson dark matter candidates.

If the dark sector is of the Georgi-Glashow type, with non-Abelian gauge groups and

adjoint scalars, ’t Hooft-Polyakov monopoles [176, 177] will be part of the particle

spectrum of the theory.

The motivation of this chapter is to investigate the cosmological consequences

of magnetic monopoles in the dark sector. We will determine if monopoles can

contribute to the observed dark matter relic density, and how large their contribution

could be. It will also be very important to discuss which additional features emerge

from a dark sector for it to be able to support monopoles. Therefore, we will consider

the cosmological and phenomenological properties of a minimal and complete model

based on a SU(2) dark sector with an adjoint scalar.

The cosmological production rate of magnetic monopoles and their contributions

to dark matter were discussed previously [178]. We will incorporate these results in

our analysis. More recently, dark sector monopoles and vector bosons were consid-

ered in [179], with the authors of [179] concluding that the monopole contribution to

116
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the dark matter density should be negligible. This does not agree with our findings

in Section 5.2.

The chapter will be organised as follows: in Section 5.1 we introduce the model

with monopoles, and discuss issues regarding dynamic mass generation. The model

will necessarily include massless hidden sector photons. In Section 5.2 we will discuss

cosmological constraints on this dark radiation. We then move on to calculate the

dark matter relic density of both monopole and vector boson dark matter in Section

5.3. Due to the unbroken U(1) remaining in the dark sector, the dark matter will

have long range self interactions. We discuss the inconsistencies at small scales in

the cold collisionless dark matter (CCDM) framework, and how the self-interacting

dark matter in our model could help explain these problems in Section 5.4.

5.1 The Model

Consider the Standard Model extended by a hidden (a.k.a. dark) sector which

contains an SU(2)D gauge group and a scalar field Φ in the adjoint representation

of SU(2)D. 1 The Lagrangian for the dark sector is:

LD = −1

2
TrF ′µνF

′µν + Tr(DµΦ(DµΦ)†)− λφTr(ΦΦ†)2 +m2 Tr(ΦΦ†) , Φ = φa
σa
2
.

(5.1.1)

F ′µν is the field strength of the SU(2)D gauge field A′µ = A
′a
µ
σa
2

, the covariant deriva-

tive is DµΦ = ∂µΦ + igD[A′µ,Φ], where gD is the gauge coupling, and σa=1,2,3 are the

Pauli matrices.

The Φ-field also couples to the SM via the Higgs portal interaction,

LHP = λP(H†H)Tr(ΦΦ†) . (5.1.2)

In the absence of other matter fields in the dark sector, this is the only interaction

between the SM and the dark sector. In particular, there is no kinetic mixing

between the non-Abelian dark sector SU(2)D and the SM gauge groups.

1This is the simplest model containing topologically stable monopoles. More complicated

models with gauge groups of larger rank would be possible, but this simple model captures all the

main features of models with dark matter monopoles
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The scalar potential in our dark-sector Lagrangian (5.1.1) contains a negative

mass-squared term, −m2 Tr(ΦΦ†), for the adjoint scalar. This will lead to a a non-

trivial vacuum 〈Φ〉 6= 0 which breaks the SU(2)D gauge symmetry to U(1)D. Using

gauge freedom, we can set

〈Φ〉 = 〈φ3〉
σ3

2
, where 〈φ3〉 = w = m/

√
λφ . (5.1.3)

After symmetry breaking in the dark sector, we get two massive gauge bosons W ′
±

with mass MW ′ = gDw, one massive scalar mφ =
√

2m and one massless gauge

boson γ′. SU(2)D has been broken, but an unbroken U(1)D gauge group remains.

The effect of symmetry breaking is communicated from the dark sector to the

SM via the Higgs portal interaction (5.1.2), which can generate the µ2
SM term in the

SM effective potential,

V (H)SM = −1

2
µ2
SMHH

† + λSM(HH†)2 . (5.1.4)

If µ2
SM was absent at tree level, the dark sector will generate a contribution µ2

SM =

λP〈|Φ|〉2, and triggers electroweak symmetry breaking with the Higgs vev and mass,

v =
µSM

(2λSM)1/2
' 246 GeV , mh SM = µSM ' 126 GeV . (5.1.5)

In the next section, we will see that the dark sector will include magnetic monopoles.

In addition there are two other components of cosmological significance; dark pho-

tons γ′ and dark massive vector bosons W ′
±. Massless γ′ photons will contribute

to the density of radiation in the Universe, and the massive W ′
± together with the

magnetic monopoles will be the dark matter candidates in our model.

5.1.1 Monopoles

Magnetic monopoles are objects with a net magnetic charge. One can easily extend

Maxwell’s equations to include magnetic charge

∇ · E = 4πρe (5.1.6)

∇ ·B = 4πρm

∇× E = −1

c

∂B

∂t
− 4π

c
Jm

∇×B =
1

c

∂E

∂t
+

4π

c
Je ,
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where E and B are the electric and magnetic field, ρe and ρm the electric and mag-

netic charge density, and Je and Jm the electric and magnetic current. No magnetic

monopoles corresponding to the SM U(1) gauge group have ever been discovered.

In 1931, Dirac [180] introduced the first magnetic monopoles in a quantum theory.

He studied magnetic monopoles in a U(1) gauge theory, and discovered the famous

result that product of magnetic charge, gm, and electric charge, ge, is quantised

gmge = 2πn . (5.1.7)

Dirac’s monopoles are divergent towards the centre of the monopole and there-

fore not well behaved states in QFT. In 1974, Polyakov and ’t Hooft independently

discovered how to get viable magnetic monopoles in quantum field theory by consid-

ering a SU(2) theory with an adjoint scalar [176,177]. At long distances these SU(2)

monopoles behave exactly like the Dirac monopoles, but they have a complicated

SU(2) structure at the centre which smooths out the divergences.

For the potential to be bounded, we need |Φ|2 = m2/
√
λφ at the two-sphere at

infinity. This makes the Higgs field a map from S2 → S2, so it has a conserved

topological charge, N . This topological charge makes the monopoles stable and it

also gives the magnetic charge of the monopoles

gm =
4π

e
N . (5.1.8)

Monopoles are stable, extended particle like field configurations. Their mass is

bounded from below by the Bogomolny bound [181],

Mm ≥
4π

gD
w =

MW ′

αD
, (5.1.9)

When λφ → 0, we get BPS monopoles, which saturates the Bogomolny bound for

the mass. More generally, away from the BPS limit, the monopole mass is given by

Mm =
MW ′
αD

f(λφ/g
2
D) where f is a smooth monotonically increasing function from

f(0) = 1 to f(∞) ' 1.787, see e.g. [182]. We will therefore use the Bogomolny

bound as a reasonable approximation for the monopole mass for all values of λφ.

We will be interested in the possibility that monopoles can make up dark matter.

Some additional applications of monopoles to dark matter physics were discussed
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in [183] where TeV-scale monopoles in a hidden sector gave a decaying dark matter

candidate due to a small kinetic mixing and a hidden photon mass. In our settings

there are no heavy messenger fields between the two sectors to induce the kinetic

mixing and the monopoles are stable. In [184] it was pointed out that there is

a region of parameter space in supersymmetric models where invisible monopoles

can be the dark matter. On the opposite side of the spectrum, [164] considered

galaxy-sized ’t Hooft-Polyakov magnetic monopoles.

5.1.2 Mass-Scale Generation

What is the origin of the m2 term in (5.1.1)?

(1.) We can choose to make the full theory classically scale-invariant (CSI). In

this case all input mass scales of the classical Lagrangian are set to zero, and thus

m2
cl ≡ 0. The vacuum expectation value 〈Φ〉 = w 6= 0 is then generated radiatively

via the Coleman-Weinberg (CW) mechanism [79]. In Section 5.1.3 we outline how

this works in massless Georgi-Glashow theory. The dark gauge symmetry is broken

by 〈Φ〉 and this can be recast as generating an effective m2 term in (5.1.1) in the

CSI Standard Model ×SU(2)D theory. This is a minimal scenario where dynamical

mass generation occurs directly in the dark sector, i.e. we have identified the mass-

scale-generating sector with the dark sector, SU(2)CW = SU(2)D.

(2.) A complementary approach is to keep the mass-scale-generating sector

and the dark sector distinct. Then interactions between the two sectors would

transmit the mass scale from the mass-scale-generating sector to the dark sec-

tor. For example, in CSI settings we can think of a SM ×SU(2)D × GCW model,

where GCW is the Coleman-Weinberg gauge sector which generates the vev 〈ϕCW 〉
for the CW scalar field. This radiatively generated scale is then transmitted to

the dark sector scalar and to the SM Higgs field via scalar portal interactions,

LPortal 3 λCWD |ϕCW |2 Tr(ΦΦ†) + λCWH |ϕCW |2 (H†H) such that λCWD |〈ϕCW 〉|2 = m2

in (5.1.1).2 In the above, GCW is an example of the mass-generating sector. In

2In this scenario the induced SM Higgs mass parameter in (5.1.4) is µ2
SM = λCWH 〈|ϕCW |〉2 +

λP〈|Φ|〉2.
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general, it does not have to be reliant on the CW mechanism, as the mass scale

can arise from any dimensional transmutation-type dynamical argument, including

a strongly coupled sector.

(3.) It is equally possible to treat m2 as an input parameter and not consider

CSI at all, without invalidating any of the cosmological arguments that will follow.

Our reason for distinguishing between the first two classes of models is the effect

on the cosmological production of magnetic monopoles. The monopole production

rate [185, 186] will depend on the nature of the phase transition in the dark sector

when the temperature in the early Universe falls below the critical temperature of

SU(2)D. In the Coleman-Weinberg sector the phase transition is first order, while

in the Standard Model sector the electroweak phase transition is very weakly first

order or second order [84, 187, 188]. The distinction can be traced to the value of

the scalar self-coupling constant: in CW models λ is small relative to the gauge

coupling (resulting in CW scalar masses being one-loop suppressed relative to W ′

masses); in the SM this is not the case, with the Higgs being heavier than W and

Z.

5.1.3 Coleman-Weinberg Mechanism with an Adjoint Scalar

In this section we will show how an adjoint scalar in a SU(2) CSI extension of the

SM will dynamically acquire a vev via the Coleman-Weinberg mechanism [79]. The

classically massless SU(2) theory with an adjoint scalar (5.1.1) was in fact one of

the examples considered in the original paper of Coleman and Weinberg [79]. In a

gauge where φ1,2 = 0, φ3 = φ, they find a contribution from the gauge bosons to the

effective potential of the form

VW ′ =
3g4

D

32π2
φ4

(
log

φ2

〈φ〉2 −
25

6

)
. (5.1.10)

This is twice the result of the Abelian U(1) case as there now two massive vector

bosons, W ′
±. This is also to be compared with the case of SU(2)D with a funda-

mental scalar, considered in Section 4.1.3, where all three gauge bosons got a mass.
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Combining the one-loop expression (5.1.10) with tree level potential we get

V =
λφ
4
φ4 +

3g4
D

32π2
φ4

(
log

φ2

〈φ〉2 −
25

6

)
, (5.1.11)

which has a non-trivial minimum with a vev for φ when

λφ(〈φ〉) =
11

8π2
g4
D(〈φ〉) . (5.1.12)

With the adjoint scalar acquiring a vev, the SU(2)D gauge group is broken to U(1))D,

and we end up with two massive gauge bosons W ′
±, a massless gauge boson γ′, and

one massive scalar field φ = φ3, neutral under U(1)D . The masses are given by

MW ′ = gD〈φ〉 , m2
φ =

3g2
D〈φ〉2
4π2

. (5.1.13)

As for all the other CSI extensions of the SM considered in Chapter 4, the vev of φ

is transmitted via the Higgs portal coupling to the SM, triggering EWSB. The two

neutral scalars will again mix with each other.

5.2 Dark Radiation and Neff

The massless dark photon, γ′, that remains after the breaking of SU(2)D to U(1)D

is a new relativistic particle. In this section we will determine the contribution of

γ′ to the effective number of relativistic degrees of freedom and apply experimental

constraints.

During both Big Bang Nucleosynthesis (BBN) and recombination the evolution

of the Universe depends on the density of relativistic particles,

ρrel = g?(T ) × π2

30
T 4 , (5.2.14)

where g? counts the number of all relativistic degrees of freedom. Following standard

notation (see e.g. [189] for more detail) g? is given by

g?(T ) =
∑
mi<T

Ci gi ×
(
Ti
T

)4

, (5.2.15)

where the sum is over all degrees of freedom, Ti and mi are the temperature and the

mass of particle i, the coefficients are Ci = 1 for bosons and Ci = 7/8 for fermions,
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and gi denotes internal degrees of freedom (e.g. for SM photons gγ = 2, counting

two transverse polarisations, and for each flavour of SM neutrino gν = 2). This

expression is conventionally rewritten in terms of the effective number of neutrinos,

Neff :

g? = gγ +
7

8
gν Neff ×

(
Tν
T

)4

= 2 +
7

8
2Neff

(
4

11

) 4
3

(5.2.16)

∆Neff ' 2.2 ∆g?. (5.2.17)

In the Standard Model, Neff = 3.046 and not Neff = 3, due to non instantaneous

annihilation of electrons and positrons. Any new relativistic particles from BSM

theories would increase Neff , making it a useful probe of new physics. Recently the

Planck Collaboration found Neff = 3.30 ± 0.27 at the time of recombination from

a combination of CMB and Baryon Acoustic Oscillation data [22]. There is also a

limit on Neff from Helium abundance at BBN (T=1MeV), Neff = 3.24± 1.2(95%).

γ′ is a relativistic particle and contributes to Neff . If the dark photon was in

thermal equilibrium with the SM photon, Tγ′ = T , then Equation (5.2.15) would

give ∆g? = 2, leading to ∆Neff ' 4.4, which is ruled out by the Planck data.

However, this is not what happens in our case where the SM and the hidden

sector have no direct mediators and interact only via the Higgs portal. The two

sectors will lose thermal contact after the SU(2)D phase transition to the broken

phase and before BBN. The interactions between dark photons and the SM will have

to proceed through γ′ coupled to virtual W ′ bosons, which in turn are coupled to

virtual scalars φ which have a small mixing with the SM Higgs through the Higgs

portal coupling. This interaction rate will be negligible with respect to the Hubble

constant, Γ < H = T 2/M?
Pl, and the hidden sector will be colder than the SM.

Following [189], we will model this situation in terms of two sectors that had

the same temperature when all the degrees of freedom were relativistic, and then

decoupled at temperature TD. The temperature, TM , is the temperature at either

recombination or BBN. Assuming that entropy is conserved within each sector we

have,
gh?s(T

h
M)T h 3

M

gh?s(TD)T 3
D

=
gsm?s (TM)T 3

M

gsm?s (TD)T 3
D

, (5.2.18)
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where the superscript h refers to the hidden sector and sm to the Standard Model.

The number of relativistic degrees of freedom, g?s, making up the entropy in the

Universe is given by the expression (cf. Equation (5.2.15)),

g?s(T ) =
∑
mi<T

Ci gi ×
(
Ti
T

)3

. (5.2.19)

In the hidden sector gh?s counts only γ′ plus relativistic particles that will decay into

γ′. Hence,

gh?s(TD) = 2 + n and gh?s(T
h
BBN) = gh?s(T

h
CMB) = 2 , (5.2.20)

where n denotes the number of relativistic particles in the hidden sector, in addition

to the two polarisations of γ′, at the time when the two sectors decouple (i.e. before

the phase transition to the broken phase). The number of SM degrees of freedom

at the decoupling temperature is

gsm?s (TD) = 106.75 , (5.2.21)

and at the time of measurements,

gsm?s (TBBN) = 2γ +
7

8
(4e± + (3× 2)ν) = 10.75 , (5.2.22)

gsm?s (TCMB) = 2γ +
7

8
(3.046× 2)ν ×

4

11
= 3.94 . (5.2.23)

From Equations (5.2.17), (5.2.15), (5.2.18) we deduce ∆Neff at the time of mea-

surement (BBN or CMB),

∆Neff(TM) = 2.2 ∆g?(TM) = 2.2× gγ′×
(
T hM
TM

)4

= 4.4×
(
gh?s(TD)

gh?s(T
h
M)

gsm?s (TM)

gsm?s (TD)

)4/3

,

(5.2.24)

so that

∆Neff(TCMB) = 0.022× (2 + n)4/3 (5.2.25)

∆Neff(TBBN) = 0.08× (2 + n)4/3. (5.2.26)

In a model with only a dark photon in the hidden sector, we would have n = 0,

leading to ∆Neff(TCMB) = 0.05 and ∆Neff(TBBN) = 0.2, which is very similar to the

result in [190].
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We can now get a limit on the number of degrees of freedom, n, in the dark

sector which annihilate into γ′.3 Since the neutral scalar, φ, does not couple to the

dark photon, the lowest value of n we can have in the Georgi-Glashow dark sector

is n = 6, given by the three polarisations of W
′±. Additional matter fields or higher

rank gauge groups would increase n appropriately.

From the Planck limit ∆Neff < 0.8(2σ) at TCMB, we get an upper limit n <

14(2σ). A stronger limit n . 7 follows from the data on Helium abundance at BBN.

We conclude that our SU(2)D gauge theory with an adjoint scalar is consistent with

the current available constraints on Neff . At the same time additional degrees of

freedom in the dark sector are disfavoured.

For the minimal case, n = 6, arising from W ′
± contributions (and assuming that

their entropy does not leak to the SM particles4) our model predicts

∆Neff(TCMB) = 0.022× (2 + 6)4/3 = 0.35 , (5.2.27)

which could be ruled out by Planck measurements as the projected sensitivity in

∆Neff is 0.044.

5.3 Dark Matter Relic Density

In our model there are two dark matter candidates. The massive gauge bosons

W ′
± are carriers of (dark) electric charge of the unbroken U(1)D, and as such they

are stable. They provide a vector dark matter (VDM) candidate. The dark mag-

netic (anti)-monopoles M ′
mg± carry topological magnetic charge of U(1)D and serve

as a candidate for monopole dark matter (MDM). The combined contribution of

3Even if some of these particles have a relic density of the right order of magnitude to give

the correct dark matter density, almost all of the entropy in the species will have been transferred,

since freeze-out normally happens at T = M/20. The vector bosons W ′± can annihilate to both γ′

and φ. Since φ mixes with the SM Higgs, this entropy will leak to the Standard Model particles,

which could effectively increase gsm?s (TD). The fraction of the entropy transferred to γ′ is given by

the branching ratio ΓW ′±→γ′ which is assumed to dominate over the entropy transfer to the SM.
4Since φ mixes with the SM Higgs, there is some entropy exchange between the two sectors,

which can increase gsm?s (TCMB).
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Figure 5.1: Diagrams giving the dominant contribution to the W ′
± annihilation

cross-section.

VDM and MDM should amount to (or not exceed) the observed total dark matter

abundance ΩDMh
2 = 0.1187± 0.0017 measured by the Planck Satellite [22].

5.3.1 Dark Gauge Bosons: Sommerfeld Enhancement and

Relic Density

Models of dark matter with non-Abelian dark sectors interacting with the visible

SM sector only weakly, for example via portal interactions, are popular approaches

to dark matter (see e.g. [191–193]). In Chapter 4 and in [111,112], dark matter from

a completely broken dark SU(2) sector was discussed. As the SU(2) group in our

model is broken down to a U(1), we have two vector boson DM candidates, W ′
±. W ′

+

and W ′
− can annihilate into two dark photons γ′ or into two φ scalars. The dominant

contribution to their annihilation is given by the Feynman diagrams in Figure 5.1.

Using these diagrams, we have computed the leading-order non-relativistic s-wave

annihilation cross-section,5

〈σv〉pert =
1579 g4

D

2304πM2
W ′
− 5 g2

D λφ
192πM2

W ′
+

3λ2
φ

64πM2
W ′

. (5.3.28)

This leading order perturbative cross-section is further enhanced at low velocities by

the Sommerfeld effect [194–198], which arises from multiple dark photon exchanges

5For simplicity, in the analytic expression on the r.h.s. of (5.3.28) we have assumed that

mφ � MW ′ . We have checked that the inclusion of effects due to scalar masses does not make a

noticeable change in our numerical results.
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Figure 5.2: Contours of the relic density of vector dark matter.

in the t-channel between the incoming W ′
+ and W ′

−. As a result we have

〈σv〉 = S 〈σv〉pert , (5.3.29)

where the multiplicative Sommerfeld factor [194,198] is

S =
αDπ

v

1

1− exp
[
−αDπ

v

] , (5.3.30)

and becomes relevant in the non-relativistic regime where the ‘perturbative’ factor

αDπ
v

is no longer small.

The relic density of vector dark matter is found by solving the Boltzmann equa-

tions,
dni
dt

+ 3Hni = −〈σv〉 (n2
i − neq 2

i ) , (5.3.31)

where ni for i = 1, 2 is the density of W ′
+ and W ′

− with n1 = n2. Then the combined

W ′
± density, n, is twice that, n = 2n1 = 2n2. It satisfies the equation

dn

dt
+ 3Hn = −〈σv〉eff (n2 − neq 2) , where 〈σv〉eff :=

〈σv〉
2

. (5.3.32)

Using this Boltzmann equation we can now write down the standard s-wave solution

for the dark matter abundance (see e.g. [5, 28]),

ΩV DM h2 = 1.07× 109 xf GeV−1

(g?s/
√
g?)MPl 〈σv〉eff

, (5.3.33)
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where xf := MW ′/Tf and Tf is the freeze-out temperature. The expression for xf is

xf = log

(
0.038

g√
g?
MPlMW ′ 〈σv〉eff

)
− 1

2
log log

(
0.038

g√
g?
MPlMW ′ 〈σv〉eff

)
,

(5.3.34)

where g = 6 is the number of W ′
± degrees of freedom.

The relic density of W ′
±, given by Equations (5.3.33)-(5.3.34), is shown in Fig-

ure 5.2 on the two-dimensional plane (αD, w) of the dark sector parameter space.

In the CW case λφ � αD, and the scalar self-coupling λφ plays no role. We have

also considered a more general case with λφ/αD =fixed, for example = 4 similarly to

the SM value, and continued to scan over αD and 〈φ〉. We have found no noticeable

difference in the relic density behaviour in Figure 5.2.

The relic density curves in Figure 5.2 are seen to be bending at higher values of

αD. This is the consequence of the Sommerfeld enhancement factor in (5.3.30). In

the perturbative regime αDπ
v
� 1, S = 1, but changes to S = αDπ

v
in the regime

of larger gauge coupling or equivalently lower velocities. This gives the bending

of the contours seen in the figure. We estimate the velocity in (5.3.30) by v =√
Tf/MW ′ = 1/

√
xf . In scanning over the parameter space in Figure 5.2, we found

xf changing between 15 and 25, which gave the range of velocities 0.2 . v . 0.25

in the Sommerfeld S factor.

5.3.2 Dark Monopoles

Production of Monopoles

Monopoles are topological defects which are produced during a phase transition in

the early Universe. First we need to determine the order of the phase transition of

the SU(2)D dark sector relevant for the monopole production. At sufficiently high

temperature, the only minimum of the effective potential of the dark sector VD(φ, T )

is at the origin φ = 0 (here φ is the dark sector scalar in the unitary gauge) and the

SU(2)D symmetry is restored. As the Universe expands, a second minimum appears,

and at the critical temperature, T = Tc, the values of VD in the two minima become

equal. The phase transition is of the first order if there is a barrier separating the

two minima at critical temperature. If on the other hand there is no potential barrier



5.3. Dark Matter Relic Density 129

between the minima, the phase transition is of the second order.

As already noted in section 5.1.2, the character of the phase transition depends

on whether the dark sector is of the CW-type or not. We illustrate this point by

writing the one-loop thermal potential from Section 3.1

VD(φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

λT
4
φ4 , (5.3.35)

with the parameters in our case (i.e. the model of (5.1.1)) given by

D =
g2
D

4
, E =

g3
D

2π
, T0 =

1

4D
(
√

2m2 − g4
D

2π
w2) , λT = λφ −

3g4
D

8π2
log

g2
Dw

2

aBT 2

(5.3.36)

and aB ' e3.91. We reach the critical temperature, Tc, when the values of VD in the

two minima become equal,

T 2
c =

T 2
0

1− E2/(λTD)
, φc =

2ETc
λTc

, (5.3.37)

with φc being the value of the field in the second minimum at this instance. The

strength of the first order phase transition is conventionally characterised by the

dimensionless order parameter φc/Tc, which can be thought of as the separation

between the two vacua in units of temperature. We have

φc
Tc

=
2E

λTc
=

g3
D

π(λφ +
3g4D×3.91

8π2 )
. (5.3.38)

Strongly first order phase transitions have φc/Tc & 1. The phase transition is weakly

first order if the vacua at 0 and φc are near each other, and changes to a second

order phase transition for φc/Tc � 1.

To have a second order phase transition we need:

g3
D

π
� λφ +

3g4
D × 3.91

8π2
. (5.3.39)

In the Coleman-Weinberg settings λφ =
11g4D
8π2 , which implies

CW :
φc
Tc

=
1

gD

8π

22.73
=

1

3.2
√
αD
� 1 for αD � 0.1 , (5.3.40)

which gives a strongly first order phase transition for a weakly coupled CW sector,

as expected.
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The production of magnetic monopoles in the early Universe can be estimated

using the Kibble limit [185]. It is a lower limit on the density of magnetic monopoles

created cosmologically, and it is expressed in terms of the horizon volume. As we

will show the limit applies to both a first and second-order phase transition,

nm

T 3
≥

 Tc√
45

4π3g?
MPl

3

. (5.3.41)

First we justify this bound for phase transitions of the second order [182, 185].

During the phase transition, the φa field changes from 0 to |φ|2 = w2. The di-

rection of φa is the same inside a volume ζ3 where ζ is the correlation length. At

the critical temperature ζ diverges, but, due to causality, information can only be

exchanged inside the horizon. The correlation length will therefore be frozen in at

the horizon scale dh ' H−1, and we will get a domain structure with φa in different

domains pointing in different directions. At domain intersection points, the random

orientation of the scalar field, given a non-trivial topology, can give rise to magnetic

monopoles with a probability p close to 1. We can estimate the density of monopoles

created [182]:

nm ∝ p ζ−3 ∼ ζ−3 , where ζ < dh = H−1 , (5.3.42)

and equation (5.3.41) follows.

If the phase transition in the dark sector is first-order, a potential barrier is

formed between the symmetric and the symmetry-breaking vacua. Below the crit-

ical temperature the symmetric vacuum is meta-stable. Bubbles of the symmetry

breaking vacuum will nucleate and expand. Inside each bubble the scalar field will

have a random orientation. When the bubbles collide they can create magnetic

monopoles. The density of magnetic monopoles will therefore be proportional to

the density of bubbles. Since the bubbles cannot propagate faster than the speed

of light, the size of a bubble is limited by the horizon size. We therefore get a very

similar bound [5] on the density of magnetic monopoles as from the Kibble argument

in Equation (5.3.41), enhanced by a logarithmic factor [199]:

first− order ph. tr. :
nm

T 3
≥

 Tc√
45

4π3g?
MPl

log


√

45
4π3g?

MPl

Tc

4


3

. (5.3.43)
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For a second order phase transition, the Kibble bound was refined by Zurek [186]

with an argument relying on a careful analysis of the timescales involved in the phase

transition. A system undergoing a phase transition is characterised by a relaxation

time τ , and a correlation length ζ,

τ =
τ0√
|ε(T )|

, and ζ = ζ0 |ε(T )|−ν , (5.3.44)

where

ε(T ) :=
T − Tc
Tc

, (5.3.45)

and 1/2 and ν are the critical exponents describing the degree of divergence of τ and

ζ in the proximity of the critical temperature Tc. At a time t close to the critical

point, tc, one has t − tc ∝ ε(T ) → 0 where the proportionality constant is the

quenching time-scale,

τQ :=
t− tc
ε(T )

. (5.3.46)

At the time t? when the time interval to the critical point becomes equal to the

relaxation time τ , the system is no longer able to re-adjust to changes in the tem-

perature quickly enough. This leads to the correlation length freezing out at this

time. We have

|t? − tc| = τ(t?) = τ0 |ε(t?)|−1/2 , (5.3.47)

with the l.h.s. being via (5.3.46) also = τQ |ε(t?)|, which implies that

|ε(t?)|3/2 = τ0/τQ , and ζ(t?) = ζ0 |ε(t?)|−ν = ζ0 |τ0/τQ|2ν/3 . (5.3.48)

In our case τQ = H(Tc)
−1 and for the remaining constants, from the Landau-

Ginzburg theory one estimates [178] that ζ0 ' τ0 ∼ 1/(
√
λφTc). The classical value

for the critical exponent ν is 1/2, but quantum corrections can modify this value.

The second equation in (5.3.48) is the correlation length at the freeze-out tem-

perature t?. It is a more accurate replacement of the Kibble-limit estimate ζ <

dh = H(Tc)
−1.

The monopole relic density from the Zurek mechanism today is then given by

the following expression [178, 186] (for conversion factors see Equations (5.3.69)-

(5.3.70)),

second− order ph. tr. :
nm

T 3
' 10−2

(
Mm

1 TeV

)(
30Tc
MPl

) 3ν
1+ν

, (5.3.49)
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or (using numerical conversion Equations (5.3.69)-(5.3.70)),

second− order ph. tr. : Ωm h
2 = 1.5× 109

(
Mm

1 TeV

)(
30Tc
MPl

) 3ν
1+ν

(5.3.50)

Zurek’s argument above is also valid for various condensed matter systems where

the effect has been experimentally confirmed [200,201].

The main difference between Zurek’s result (5.3.49)-(5.3.50) and the Kibble lower

limit (5.3.41) or (5.3.43), is the power p of the (Tc/MPl)
p suppression factor. It

reduces from p = 3 in the Kibble bound to the p = 3ν/(1 + ν) ' pcl = 1 for

νcl = 1/2 in the Zurek bound. This makes it possible for relatively light monopoles

with masses starting in the few hundred TeV range, to contribute significantly to

dark matter, as can be inferred from Figure 5.4 in section 5.3.2. The Kibble bound

would require monopoles to be at least in the 1011 GeV range or above to play a

non-negligible role in the dark matter relic abundance (cf. Figure 5.3).

Evolution of Monopoles

Magnetic monopoles are stable and cannot decay due to conservation of their dark

magnetic charge. Once created, the density of magnetic monopoles can therefore

only be changed by monopole-anti-monopole annihilation.

We will now estimate the density of monopoles taking these annihilations into

account. In the diffusion approach [202–204], the motion of monopoles in a plasma

of electrically charged particles, in our case W ′
±, is described by a Brownian walk

with thermal velocities vT =
√
T/Mm and a mean free path lfree,

lfree = vT tfree =

√
T

Mm

Mm

T
∑

i niσi
, (5.3.51)

where σi is the classical cross-section for large-angle scattering of a light particle

with a monopole,

σi =
g2
mD q

2
i

(4π)2T 2
, (5.3.52)

ni is the number density and the sum is over all spin states. The number density

for relativistic particles is [5]

ni =
ζ(3)

π2
T 3 , (5.3.53)
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and for non relativistic particles of mass Mi the number density is

ni =

(
Mi T

2π

) 3
2

exp

(
−Mi

T

)
. (5.3.54)

It is convenient to define the dimensionless quantity B,

B := T−1
∑
i

niσi , so that : lfree =
1

B

√
T

Mm

Mm

T 2
(5.3.55)

The attractive Coulomb force between the monopoles and antimonopoles makes

them drift towards each other during their random walk in the electric plasma. Their

drift velocity is determined from the balance between the monopole-antimonopole

attraction and the drag force of the plasma. It is given by [204],

vdrift(r) =
1

B

g2
mD

T 2 r2
. (5.3.56)

Monopoles drift toward antimonopoles through the plasma. The drag force dissi-

pates monopole energy, and if the mean free path is less than the capture radius,

lfree ≤ lcapt = g2
mD/(4πT ) , (5.3.57)

a monopole-antimonopole bound state is formed which ultimately annihilates to or-

dinary elementary states. The relevant time scale for the formation of the bound

state is tdrift = r/vdrift = 1/Γdrift. Therefore, the monopole-antimonopole annihila-

tion cross-section is given by,

σ =
Γdrift

nm

=
vdrift(r)

nmr
=

1

B

g2
mD

T 2
. (5.3.58)

The resulting density of monopoles after annihilation is determined by a Boltz-

mann equation [203],

d

dx

nm

s
=

σ

H(x)x

(nm

s

)2

, where x :=
Mm

T
(5.3.59)

with σ on the right hand side given by (5.3.58). The solution is known analytically

[203]. It quickly becomes independent of the initial conditions at x0, resulting in,

nm

s
(x) ' 2πB

g2
mD

√
45

4π3g?
Mm

MPl

1

x
. (5.3.60)
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If following [203], we assume that the the plasma consists of particles that are

relativistic from x0 to xf where xf corresponds to the temperature where lfree and

lcapt become equal,

x−1
f =

(
4π

g2
mD

)2
1

B2
, (5.3.61)

the result for the final number density of monopoles is in agreement with [203],

nm

s
(xf ) '

2π

Bg2
mD

(
4π

gmD

)2

√
45

4π3g?
Mm

MPl

. (5.3.62)

This diffusive capture process is effective only as long as the mean free path is smaller

than the capture radius. At lower temperatures, where lfree exceeds lcapt, the rate

of monopoles-antimonopole annihilation cannot compete with the expansion of the

Universe and the monopole density freezes out at the value at xf .

There is an important difference between the more standard application of the

diffusion method described above, where GUT monopoles were propagating in the

plasma of very light relativistic electrons and positrons, and our model. In our

case the plasma is made up of W ′
± with masses MW ′ = gD 〈φ〉 much closer to the

monopoles of the same dark sector. Thus, the particles in the plasma will become

non-relativistic fairly soon after the phase transition, when

xnr =
Mm

Tnr

=
Mm

MW ′
=

1

αD
=

4π

g2
mD

. (5.3.63)

After xnr the density of the plasma will decrease exponentially, as per (5.3.54), and

the mean free path will therefore exponentially increase. The final monopole density

in our model will thus be cut off at xnr

nm

s
(xnr) '

B

2

√
45

4π3g?
Mm

Mpl

. (5.3.64)

Current Density of Monopoles

To determine the current density in monopoles we first have to determine the type of

the dark sector phase transition, and then compute the initial monopole production

density accordingly. If the initially produced density is lower than the estimated

density after monopole-antimonopole annihilation (5.3.64), the effect of annihilations
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Figure 5.3: The relic density of monopoles produced cosmologically during a first

order phase transition as a function of the dark scalar vev w = 〈φ〉 and for different

values of the dark gauge coupling gD.

is unimportant and the initial monopole density survives. If, on the other hand, the

initial density is higher than the annihilation density, the final monopole density is

set by the monopole-antimonopole annihilations expression.

The conversion from monopole density, nm/s or nm/T , to Ωmh
2 is as normal

given by

Ωmh
2 = ρm

1

ρcrith−2
, (5.3.65)

ρmh =
nm

s
Mm s0 =

nm

T 3
Mm T

3
0 , (5.3.66)

where subscript 0 refers to the current time or temperature and the normalisation

factors are given by

ρcrith
−2 = 1.9× 10−29gcm−3 = 7.53× 10−47 GeV4 , (5.3.67)

s0 =
2π2

45
g?(t = t0)T 3

0 , (5.3.68)

with T0 = TCMB = 2.73 K = 2.35× 10−13 GeV and g?(t = t0) = 2 in the dark sector
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Figure 5.4: The relic density of monopoles after a second order phase transition.

Results are shown on the dark sector gauge-coupling–vev plane for two different

values for the critical exponent, ν = 0.5 (in black) and ν = 0.7 (in blue).

and 3.94 in the SM. Thus

Ωmh
2 =

nm

s
× Mm

1 TeV
× 1.5× 1011 , (5.3.69)

=
nm

T 3
× Mm

1 TeV
× 1.7× 1011 . (5.3.70)

The current relic density of monopoles for a first-order phase transition, com-

puted using (5.3.43), is shown in Fig 5.3. We see that relic density depends strongly

on the dark scalar field vev w = 〈φ〉 as this sets both the mass of the monopoles and

the critical temperature of the phase transition. The density increases with lower

coupling gD as the mass of the monopoles increase.

The current relic density for a second-order phase transition, based on (5.3.49)-

(5.3.50) combined with (5.3.64), is plotted in Figure 5.4 for two values of the critical

exponent, ν = 0.5 and ν = 0.7.

For a second order phase transition we can see that we have two components

of dark matter both with a significant fraction of the observed relic density. The

combined relic density can be seen in Figure 5.5 for ν = 0.5 and in Figure 5.6 for

ν = 0.6.
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Figure 5.5: Combined relic density of vector and monopole components of dark

matter after a second order phase transition with the critical exponent ν = 0.5. The

blue lines show the relative fraction of monopoles.
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Figure 5.6: Combined relic density for monopole and vector dark matter with ν =

0.6. Blue contours show the fraction of monopoles alone.

Dark sector monopoles and vector bosons were also considered recently in [179].

The authors of [179] have concluded based on their Figure 8 that achieving a
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monopole abundance of 10% of the observed dark matter relic density would re-

quire what they describe as a 10−2 % fine-tuning. Our results in Figures 5.5-5.6 do

not support such a conclusion. It follows from our Figure 5.5 that the contour of the

observed relic density value ΩDMh
2 = 0.119 can readily intersect the 10% monopole

abundance contour, and even the 35% monopole abundance contour, and so on.

5.4 Self-Interacting Dark Matter

Due to the unbroken U(1)D symmetry, we will have long-rage forces acting between

the dark matter particles. Vector dark matter is electrically charged under the

U(1)D, while the magnetic monopoles have magnetic charges. This self-interacting

dark matter provides a framework which can solve the cosmological problems of colli-

sionless cold dark matter (CCDM) at small scales [205]. Numerical simulations [206]

based on CCDM are very successful in describing the large scale structure of the Uni-

verse at scales � 1 Mpc. However, observations on galactic and subgalactic scales

. 1 Mpc are in conflict with the structure formation predicted by such simulations.

Collisionless dark matter predicts that density distributions of dwarf galaxy halos

should have a cusp in the centre while observationally flat cores have been found [207,

208]; this is the core-vs-cusp problem. Cold dark matter simulations also predict too

many too large subhalos in the Milky Way halo [209,210]. In particular, simulations

which use collisionless dark matter predict O(10) subhalos with velocities v > 30

km/s, but no halos have been observed with v > 25 km/s. This is known as the

‘too-big-to-fail’ problem, as these large subhalos are too big not to develop visible

galaxies. These discrepancies might still be explained by baryonic effects.

In order to address these problems with small-scale structure, models of self-

interacting dark matter have been proposed and studied in recent literature. Refer-

ences [211–216] considered long-range Yukawa interactions between cold dark matter

mediated by a light vector or scalar bosons. The effects of an unbroken U(1) sym-

metry with a massless force carrier were considered in [28,217,218].

The result of self-interactions is a transfer of energy between dark matter parti-
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cles. This effect is captured by the transfer cross-section defined by,

σT =

∫
dΩ (1− cos θ)

dσ

dΩ
, (5.4.71)

where dσ/dΩ is the usual differential cross-section. The (1− cos θ) factor takes into

account the energy transferred in the collision. Even though our model contains a

microscopically massless force carrier γ′ in a plasma it is described by a Yukawa

potential

V (r) =
αe
r
e−mγ′r , (5.4.72)

where the effective mass of γ′ is due to its interactions with the plasma and given

by the inverse of the Debye length lD,

mγ′ =
1

lD
=

(4παDρ)1/2

MDM v
. (5.4.73)

Here ρ is the dark matter density in a galaxy and v is its velocity. Since the

density ρ is small, the effective mass mγ′ will be small, and we can use the classical

Coulomb limit MDMv/mγ′ � 1 for both the attractive and repulsive potential with

the result [215,219,220],

σT =
16πα2

D

M2
DM v4

log

(
1 +

M2
DM v2

2αDm2
γ′

)
. (5.4.74)

If the energy transfer is large enough, self interacting dark matter could flatten

out the cores of dwarf galaxies and decrease the number of large subhalos by colli-

sional stripping, solving the core-vs-cusp and the too-big-too-fail problems. On the

other hand, if the cross-section is too large, the effects could be seen on larger scales

and would be ruled out.

The limits on this cross-section come from comparing observations to simulations.

One obvious constraint is from the Bullet cluster which gives an upper limit on

the cross-section, σT/MDM < 1.25 cm2/g [221]. Since the transfer cross-section is

very strongly velocity-dependent, it is important that this bound is imposed in the

relevant velocity range v ∼ 1000 km/s. There are also constraints of σT/MDM .

0.1 to 1 cm2/g from Milky Way scales in the velocity range of 200 km/s [215].

These limits come from considering the shape of galaxies. Self-interactions tend to
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Figure 5.7: Vector dark matter transfer cross-section and relic density. The green

region shows the region in parameter space where σT/mDM is in the interval between

0.1 and 10 cm2/g at velocity v = 30 km/s, relevant for solving the core-cusp problem

and the too-big-too-fail problem.
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Figure 5.8: Same as in Figure 5.7 but with additional contours (in red) showing

σT/mDM = 1 at higher velocities: v = 100km/s, v = 500km/s and v = 1000km/s.



5.4. Self-Interacting Dark Matter 141

104 105 106

〈φ〉GeV

10−5

10−4

10−3

10−2

10−1

α
D

v = 30km/s

ν = 0.5

Ω
D
M
h

2
=

0.
00

1
Ω
D
M
h

2
=

0.
01

2
Ω
D
M
h

2
=

0.
11

9
Ω
D
M
h

2
=

1.
18

7

Figure 5.9: Monopole dark matter transfer cross-section and the relic density con-

tours for the critical exponent ν = 0.5. The region in green shows the region in

parameter space where σT/mDM is in the interval between 0.1 and 10 cm2/g at

velocity v = 30 km/s relevant for solving the core-vs-cusp problem and the too-big-

too-fail problem.

make galaxies more spherical, so the observation of elliptical galaxies together with

N-body simulations can give limits on the energy transfer.

To solve the too-big-to-fail problem one needs a cross-section of the order of

σT/MDM ∼ 0.1 − 10 cm2/g [214–216] at the velocity scale of dwarf galaxies (v ∼
10−30 km/s). By comparing this to the limits from larger scale structures one finds

that there might be a small region of parameter space left for a theory with velocity

independent cross-section of around σT/MDM ∼ 0.6 cm2/g [214,215].

In this chapter we consider a velocity-dependent cross-section which, if the cross-

section is around 1 cm2/g at velocities of v ∼ 10− 30 km/s, it will be much smaller

at the velocities relevant for the shapes of galaxies or the bullet cluster. Therefore,

there is no contradiction between the cross-sections needed to solve the too-big-too-

fail problem and the constraints from the ellipticity of galaxies.

In Figure 5.7, we show the region of parameter space of our model where the
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Figure 5.10: Monopole dark matter as in Figure 5.9 with the critical exponent value

ν = 0.6.

transfer cross-section for vector dark matter is in the desired region σT/MDM =

0.1−10 cm2/g at v−30 km/s, which can help solving these problems at dwarf galaxy

scales. This is superimposed with the contours of the relic density for vector dark

matter in our model. In Figure 5.8 we overlay this with the contours of σT/mDM = 1

at other velocities. It readily follows from these considerations that the upper bound

constraint from the Milky Way and from Bullet cluster at v ∼ 200 to km/s are

satisfied by the self-interacting VDM in the regime where the relic density is in

agreement with observations and the dwarf-galaxy-scale problems are addressed.

Monopole self-interactions are obtained by replacing the electric with the mag-

netic Coulomb law, αD → αmD = 1/αD, which gives the limits seen in Figures 5.9

and 5.10 for monopole dark matter produced in a model with a second order phase

transition.

5.5 Conclusions

In this chapter we have investigated a SU(2) dark extension to the SM with an

adjoint scalar. This model includes two dark matter candidates and a new relativistic
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degree of freedom contributing to dark radiation. The dark matter candidates are

heavy vector bosons and magnetic monopoles. Magnetic monopoles are produced

during phase transitions in the early Universe, and we find that they can make up

a significant fraction of dark matter in our model.

The unbroken U(1) subgroup that remains after symmetry breaking in the hid-

den sector contributes to dark radiation and provides long range self-interactions

between the dark matter particles. We found that the minimal model we considered

satisfies the observational constraints on Neff and on the transfer cross-section at

large velocities. At the same time, the self-interacting vector and monopole DM

intrinsic to our model can produce the right size of transfer cross-sections relevant

for addressing problems with CCDM at dwarf galaxy scales. The dark matter in our

model has two components with different self-interactions, and there are interactions

between the two components. To study the cosmological consequences of this in any

more detail would require the use of N-body simulations.



Chapter 6

Spectroscopy of Scalar Mediators

to Dark Matter at the LHC and at

100 TeV

The existence of dark matter is one of the most compelling arguments for BSM

physics. DM candidates have been proposed in many different BSM models and

can have a rich and varying phenomenology. However, assuming dark matter can

be produced at colliders a generic feature is the existence of collider signatures with

missing energy, as stable dark matter particles leave the detector unobserved. In this

chapter, based entirely on [4], we will investigate the two-jets-plus-missing-energy

final state at the LHC and a future 100 TeV collider.

6.1 Introduction

To discover missing energy signals at colliders, the invisibly decaying particle needs

to recoil against reconstructable objects. Searches for mono-jets and mono-photons,

where the dark matter recoils against a visible jet or photon, have been carried out at

Run 1 of the LHC [222–224]. These studies have so far not discovered any evidence

for an excess of missing energy events, but can in parts of the parameter space be

as or more constraining than limits from direct and indirect detection [225–230]. It

is thus important to formulate and extend the searches for dark matter at the LHC

144
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for Run 2 and beyond.

Dark matter can be produced at colliders via an exchange of a mediator particle

which connects the colliding SM partons to the dark sector. A viable and simple

approach to characterise and interpret dark matter searches at colliders relies on

using simplified models with four basic types of mediators: vectors, axial-vectors,

scalars and pseudo-scalars (see white papers [229–231] for early reviews and refer-

ences). The mediator is a dynamical degree of freedom in this approach which is the

correct description for dark matter searches at the LHC as the energy transfer in the

collision can typically exceed the mediator masses. Following the Higgs discovery,

there is a renewed interest in the role of scalar degrees of freedom and the possibil-

ities provided by extended Higgs sectors in searches for new physics. Of particular

interest to dark matter searches are models with scalar and pseudo-scalar mediators

whose reach at the LHC was studied recently in [40–42]. It was found that the LHC

at 14 TeV will provide a complementary coverage to the low-energy experiments

in dark matter searches, and it is the only experiment to probe dark sectors if the

invisible particles produced are not stable at cosmological scales. These studies have

been performed using the mono-jet-plus-missing-energy topology [222–224].

In this chapter, we will study simplified models with scalar mediators in the two-

jets-plus-missing-energy topology to determine their collider limits and discovery

potential by analysing their kinematics of the final state jets. For scalar mediators,

mono-jet searches predominantly rely on the gluon fusion production channel [40,

41]. The presence of a second jet allows for more non-trivial kinematics in the

final state. Using VBF type cuts, one can suppress more of the background and

the contribution from the gluon fusion production channel. This makes the weak

boson fusion processes dominant instead, and allows us to capture mediators with

suppressed couplings to fermions. The kinematic information in the two jets+MET

final state should also allow us to study the mediator mass which will be the main

focus of this chapter. In a slightly different context, the idea of exploring two-jet

kinematics to learn more about the SM–DM interactions has also been implemented

in [232].

We consider a simplified model with a scalar mediator whose SM couplings are
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proportional to the SM Higgs. We start by defining the models in Section 6.2

before briefly considering the DM phenomenology in Section 6.3. We then move on

to consider the phenomenology at the LHC in Section 6.4 and at a future 100 TeV

collider in Section 6.5.

6.2 Models

In the unitary gauge, the Standard Model (SM) contains just a single scalar-field

degree of freedom, the neutral scalar Higgs h. At tree level, h interacts with the mas-

sive vector bosons, W± and Z0 and all the SM fermions, f . The linear interactions

of h with the other SM particles can be written in the form,

LSMh ⊃
(

2M2
W

v
W+
µ W

−µ +
M2

Z

v
ZµZ

µ −
∑
f

mf

v
f̄f

)
h . (6.2.1)

We want to extend the SM by introducing a scalar mediator particle φ which couples

to the SM degrees of freedom as well as to fermionic dark matter particles χ via

Lφ ⊃ −gχ χ̄χ φ . (6.2.2)

For the purpose of this chapter, the spin of the dark matter particle is not relevant,

i.e. the dark matter particle could instead be a vector or a scalar particle. There are

two types of settings where the additional scalar φ can appear in interactions with

the Standard Model. First, it can be an additional Higgs doublet for example coming

from a two-Higgs doublet model or more generally any scalar field transforming non-

trivially under the SU(2)L of the SM. Alternatively, the φ scalar mediator can be a

singlet under the Standard Model. In the latter case it interacts with the SM degrees

of freedom only via the mixing with the SM Higgs, h. The interactions of φ with

the SM are subject to experimental constraints on the mixing angle sin2 θ . 0.15

(see [129,233]) arising from experimental bounds on the SM Higgs to invisible decays

and other Higgs data.

First in section 6.2.1 we consider the more constrained singlet-mixing case, and

then in section 6.2.2 we define the less constrained generic Higgs-like scenario. The

upshot is that both of these cases will be described by the same simplified model of
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Equation (6.2.13) with the scaling parameter κ being either unconstrained κ ∼ 1 or

small κ . 0.15.

6.2.1 The Singlet Mixing Model

In the implementation of the model φ is a Standard-Model singlet neutral scalar,

and the visible SM sector and the ‘invisible’ χ sector are coupled to each other only

via the mixing between the two neutral scalars φ and h, as in the Higgs portal model.

The states of definite masses, h1 and h2, are

h = h1 cos θ + h2 sin θ , φ = −h1 sin θ + h2 cos θ , (6.2.3)

where θ is the mixing angle. Combining Equations (6.2.1)-(6.2.3) we obtain a sim-

plified model for invisible Higgs decays involving two Higgs-like neutral scalars h1

and h2:

Lh1,h2 =
(

2M2
W

v
W+
µ W

−µ +
M2
Z

v
ZµZ

µ − ∑f
mf
v
f̄f
)(

h1 cos θ + h2 sin θ
)

−gχ χ̄χ
(
h2 cos θ − h1 sin θ

)
− 1

2
m2
h1
h2

1 − 1
2
m2
h2
h2

2 − mχχ̄χ . (6.2.4)

The first scalar mass eigenstate, h1, plays the role of the observed SM Higgs boson,

and we also assume that the mediator h2 is always heavier than the SM Higgs,

mh2 > mh1 = 125 GeV . (6.2.5)

If h2 is lighter than h1, h2 will not contribute to the final state with two jets and

missing energy as we discuss below. A light second scalar can be very interesting for

other final states. With this Lagrangian we can produce h2 as in the SM via both

the gluon-fusion and the vector-boson-fusion mechanisms, with the corresponding

SM cross-sections rescaled by sin2 θ. Similarly the h1 production rates are rescaled

relative to the SM by a factor of cos2 θ which is ' 1 for sufficiently small values of

the mixing angle.

If both mediators can be produced on-shell in either channel, the cross-section

for χ̄χ+ two-jet production in the narrow width approximation can be written as,

σ
(i)
DM = σhi Brhi→χ̄χ, (6.2.6)
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where σhi is the production cross-section for hi + two jets and Brhi→χ̄χ are the

branching ratios,

σh1 = σSM cos2 θ , σh2 = σSM sin2 θ , (6.2.7)

Brh1→χ̄χ =
sin2 θ Γφ→χ̄χ

sin2 θΓφ→χ̄χ + cos2 θ Γh→SM

= sin2 θ
Γφ→χ̄χ(mh1)

Γtot
h1

, (6.2.8)

Brh2→χ̄χ =
cos2 θ Γφ→χ̄χ

cos2 θ Γφ→χ̄χ + sin2 θ Γh→SM

= cos2 θ
Γφ→χ̄χ(mh2)

Γtot
h2

, (6.2.9)

where

Γφ→χ̄χ =
g2
χmφ

8π

(
1− 4m2

χ

m2
φ

) 3
2

. (6.2.10)

For dark matter masses below the kinematic threshold of both mediators, 2mχ <

mh1 < mh2 , both mediators can be on-shell, and in principle both channels for the

dark matter production are open. Due to the different size of the decay widths, the

lighter Higgs will dominate, as can be seen from (6.2.6)-(6.2.9),

σ
(1)
DM/σ

(2)
DM ∝

Γtot
h2

Γtot
h1

� 1 . (6.2.11)

The SM Higgs has a very narrow width of 0.0068 GeV, and due to the limits on

the Higgs to invisible branching ratio we know that this width, Γtot
h1

, cannot increase

by more than 35% [234]. The reason the Higgs width is so small is that all the

fermions are coupled to the Higgs via Yukawa couplings, so that we cannot have

light fermions with large couplings coupled to the Higgs. The total decay width of

the second scalar, Γtot
h2

, on the other hand, can easily be large as can be inferred from

Figure 6.1. Even for gχ = 0.1 the total width of h2 will be an order of magnitude

larger than the h1 Higgs width. Hence, for light dark matter only the h1 Higgs

mediator is relevant when both channels are open.

For heavier dark matter, mh1 < 2mχ < mh2 , only the h2 channel is open and it

is efficiently described by the simplified model

L = sin θ

(
2M2

W

v
W+
µ W

−µ +
M2

Z

v
ZµZ

µ −
∑
f

mf

v
f̄f

)
h2 (6.2.12)

− gχ χ̄χh2 −
1

2
m2
h2
h2

2 − mχχ̄χ .

Finally, if dark matter masses are higher than mh2 it cannot be produced via an

on-shell mediator exchange, and the resulting rate of its production is too small to

be observed.
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Figure 6.1: The decay width of h2 into χ̄χ with gDM = 1.

Current limits on sin2 θ mainly come from two sources, the Higgs signal strengths

and the electroweak precision tests, for recent papers see [82, 128, 129, 233, 235].

Limits from Higgs signal strength measurements constrain cos2 θ directly [129]. This

leads to a bound sin θ < 0.44, independent of the mass of h2. The electroweak

precision tests, mainly the W boson mass, give a mass-dependent constraint on

sin θ shown in Figure 3 in [129]. In the mass range around 1 TeV, the limit becomes

sin θ < 0.3. We also note that the limits coming from a non-observation of the

second SM-Higgs-like state are not directly applicable for h2 in our case, due to its

large branching ratio to invisibles.

We will only consider these limits in the context of the singlet-mixing simplified

model with the κ-parameter κ = sin2 θ. In the simplified model framework we do

not know what other particle content there is, and additional degrees of freedom

could modify both the SM Higgs signal and the loop corrections to the W-mass.

Recent discussion of theory models for dark matter based on mass mixing be-

tween the scalar singlet mediator and the SM Higgs can be found in [2,3,88,111–113]

and Chapters 4 and 5.
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6.2.2 Generic Higgs-like Scalar Mediator Model

More generally, scalar mediators to dark sector can also arise from an independent

additional Higgs doublet or Higgs multiplet for example in the two-Higgs-doublet

models. We choose a simplified model for a generic scalar mediator by assuming

that it has the same interactions with the SM vector bosons and fermions as the

SM Higgs, but scaled by an overall scaling factor κ which is a free parameter of the

simplified model,

L =
√
κ

(
2M2

W

v
W+
µ W

−µ +
M2

Z

v
ZµZ

µ −
∑
f

mf

v
f̄f

)
φ (6.2.13)

− gχ χ̄χφ −
1

2
m2
mφ

2 − mχχ̄χ .

In general, the scalar mediator can couple with a different strength to the SM

vector bosons and to SM fermions, thus introducing additional parameters into the

simplified model (6.2.13). For clarity and simplicity, we will use the minimal model

(6.2.13) with a single scaling factor. Here, κ = 1 corresponds to the normal SM

Higgs couplings. In general we consider values of κ . 1 since it is difficult from a

model-building perspective to increase the coupling to gauge bosons with additional

Higgs singlets or doublets. The simplified model for the more constrained singlet

mixing case is described by the same Lagrangian with κ = sin2 θ . 0.15. In this

simplified model framework, we do not introduce a direct coupling between the SM

Higgs and χχ̄, as this interaction can be easily captured with giving φ the same

mass as the Higgs.

6.3 Comments on the Relic Density and Direct

Detection Constraints

Simplified models for dark matter are introduced to capture the main aspects of

dark matter collider phenomenology without being complete models. It is therefore

customary not to impose constraints from relic density or direct detection strin-

gently. Still, the model introduced above in Equation (6.2.13) is a valid model that

could have cosmologically viable dark matter. Therefore, to give an indication of
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constraints for models of this type, we calculate the relic density and direct detection

constraints assuming that

• (i) the dark sector fermions χ̄ χ which enter the simplified model definition

(6.2.13) is cosmologically stable dark matter and not merely one of the dark

sector degrees of freedom which are long-lived on a collider scale;

• (ii) the dark matter particles annihilate predominantly via the mediator inter-

action specified in (6.2.13), and there are no other DM annihilation channels

beyond the simplified model (6.2.13) or that they are highly suppressed.

We stress that if either of these additional assumptions is not satisfied, the relic den-

sity and direct detection-related constraints discussed in this section will not apply.

These are strong assumptions that can easily be evaded in many well motivated DM

models.

We will now require that the dark matter does not overclose the Universe, and

that the direct detection cross-section is sufficiently small not to have been ob-

served so far. We calculate the relic density and direct detection limits using

the MadDM [236, 237] with the simplified model (6.2.13). The computed relic

density is compared to the observed relic density from the Plank Satellite [22] of

Ωh2 = 0.1199± 0.0027, and the direct detection cross-sections are compared to the

limits from the LUX experiment [174].

Figure 6.2 shows the contours of the computed relic density and the direct de-

tection exclusions on the mediator mass – dark matter mass plane and for various

values of gDM and κ. For the direct detection constraint we have assumed that

the DM density interacting with the detector is given by the canonical value, even

if the DM in our model is only a sub-component of the total DM density in this

region of parameter space. Therefore, the direct detection limits on our model are

weaker than what is shown in the figure in the region of parameter space where the

calculated DM density is smaller than the observed value.

As for the collider phenomenology at the LHC and at future colliders, we will be

interested in heavy mediators with the dark matter mass and the dark matter cou-

pling largely unconstrained, as long as the scalar mediators have a large branching
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ratio to dark matter. From Figure 6.2 we can see that all these models easily avoid

direct detection constraints, and as long as the dark matter mass is quite heavy we

can have mediator masses up to 2500 GeV without over-closing the Universe. For

gDM = 4 and a heavy mediator Mmed ' 2.5 TeV, we need mχ & 400 GeV to have

viable dark matter (another way to put it is that only the DM which is more than

6 times lighter than the mediator is constrained here). For smaller couplings the

minimal DM mass increases accordingly (as can be seen from the second and third

plots in Fig. 6.2) not to overclose the Universe for the heaviest mediators, but this

is not a problem for the models we will consider in the rest of the chapter. We will

therefore now turn to collider phenomenology where we will study models which, if

we interpreted as complete models, can provide a viable dark matter candidate.

We conclude that the relic density and direct detection considerations can provide

useful constraints on our simplified model under certain assumptions. This provides

an important complementarity to the collider phenomenology we will now study.

If the LHC or future colliders can resolve and probe the mediator mass-scale and

a signal with missing energy is discovered, one of the main open questions will be

if the signal results in the production of cosmological dark matter and what is its

particle identity.

6.4 Collider Limits on Scalar Mediators with two

Jets and MET at the LHC

To derive collider limits on models with scalar mediators to dark matter sectors,

and to distinguish between models with different mass scales, we will use a search

strategy based on final states with missing transverse energy plus two jets. There are

four main kinematic quantities associated with the /ET -plus-two-jets signatures: the

missing transverse momentum /pT , the jets’ invariant mass Mjj, the azimuthal angle

between the tagging jets ∆φjj and the jets’ pseudo-rapidity difference ∆η = ηj1−ηj2.
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Figure 6.2: Dark matter relic density and direct detection constraints for our

simplified model for dark matter for various values of gDM and κ. The lines give

relic density contours and the grey region shows the area excluded by direct detection

constraints.

In terms of these we impose the VBF cuts [238,239],

/pT > 100 Gev , Mjj > 1200 GeV , ∆φjj < 1 , ∆η > 4.5 , pT,j > 40 GeV ,

(6.4.14)

to separate the signal and background. Here pT,j is the transverse momentum of each

jet defined by using the anti-kt jet algorithm with R = 0.4. We reconstruct jets using

Fastjet [240, 241]. After imposing these cuts, the main production channel of the

scalar mediator is largely reduced to weak vector boson fusion (WBF), leaving only

a small contribution from the gluon fusion (GGF) channel (cf. Table 6.1). Despite

of the relative smallness of the GGF process after cuts (6.4.14), one should not be

tempted to approximate them by the Higgs-gluon effective vertex. The inclusion of

finite top-quark mass effects in the top-loop in the GGF production is known to be
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important (in the context of DM searches at the LHC this was emphasised in [242]),

especially for heavier scalar mediators where the heavy top mass approximation

breaks down. We therefore simulate both the WBF and GGF contributions to the

signal with VBFNLO [243–245], which includes the full top-loop dependence to

GGF.

The background is simulated at leading order using MadGraph [246]. Both signal

and background are then showered with Herwig++ [247]. The main backgrounds

are Z + two jets with the Z decaying to neutrinos and W± + two jets where the W

decays to a neutrino and a missing lepton. We count the lepton as missed if it has

|ηl| > 2.5 or pT < 10 GeV. We have also checked that the t̄t background is negligible

after the cuts. The projected LHC exclusion limits for these final states have been

studied previously in [238,239,248,249] in the context of an invisible branching ratio

for the SM Higgs.

6.4.1 Width Effect on Differential Distributions

In Figure 6.3 we can see the effect of varying the width of the mediator on the

differential distributions of Mjj and ∆φjj, for a mediator with Mmed = 800 GeV.

A smaller width leads to a slightly broader Mjj tail and flatter ∆φjj distribution.

For reasonably small total widths this effect is not very large. We will therefore

use the narrow width approximation where we produce the mediator on-shell with

subsequent decay to χ̄χ, with a branching ratio determined by the coupling constants

and dark matter mass when we simulate the signal.

6.4.2 Exclusion Limit Reach at the LHC

Our first goal is to establish the projected LHC exclusions for models with scalar

mediators based on the two jets and /ET final states. We aim to evaluate the upper

limit on the mediator mass for the model to be within the LHC reach.

The left panel in Table 6.1 shows the cross-sections for the signal at the LHC

at the 13 TeV centre-of-mass energy, assuming a 100% branching ratio of the scalar

mediators to dark matter and κ = 1. The cross-sections for SM backgrounds are
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Figure 6.3: Kinematic distributions for different values of the mediator width at
√
s = 13 TeV when Mmed = 800 GeV.

Mmed VBF GGF Total

125 GeV 89 17 107

250 GeV 61 13 74

500 GeV 26 10 36

750 GeV 12 3 15

1000 GeV 6.0 0.7 6.7

1500 GeV 2.0 0.1 2.1

Background Cross-section(fb)

Zjj 128

W+jj 116

W−jj 40

Table 6.1: Cross-sections (fb) at partonic level after VBF cuts in (6.4.14) at 13 TeV.

shown in the table on the right. Using these one can calculate the simple projected

exclusion limits for these models from a standard cut-and-count procedure.

For our analysis, we will use the differential cross-sections to perform a binned

log-likelihood analysis [250] to compute confidence levels (CLs) for experimental

exclusions [251]. In the four plots of Figure 6.4, we show the normalised differential

distributions for signal and background as functions of the four kinematic variables

Mjj, /pT , ∆η, ∆φjj. These kinematic distributions are plotted for different values of

the mediator mass ranging from Mmed = 125 GeV to 1500 GeV1.

1Compared to differential distributions at e+e− colliders [252, 253], at the LHC differences

between the models are less pronounced and more difficult to exploit.
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Figure 6.4: Kinematic distributions for different values of the mediator mass for

the signal, and for the background at the LHC. Mjj distributions are shown on the

top left panel, /pT is on top right right, ∆η and φjj distributions are on the bottom

left and right panels respectively.

The differences in the shapes of the kinematic distributions for models with

different values of Mmed can be used to differentiate between them. The binned

log-likelihood technique for computing confidence levels is based on regarding each

bin in a histogram for the measured variable as an independent search channel to be

combined with all others. Systematic uncertainty is taken into account by running

many pseudo Monte Carlo experiments where the normalisation of the background

histogram is varied randomly. The significance is then given by the fraction of

these experiments that has a smaller likelihood ratio than that for the expected

background distribution. We use the Mjj distribution (the ∆η distribution gives

similar results) with ten bins both to determine the signal exclusion limits, and

later to distinguish between different signal models.
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Figure 6.5: We characterise the LHC reach for models with different values of Mmed

by computing confidence levels for excluding signals from the SM backgrounds. We

consider models with κ = 1, and on the left panel use a systematic uncertainty of

5%. The panel on the right corresponds to a 10% systematic uncertainty.

In Figures 6.5-6.7, we show the LHC reach for excluding scalar mediator models

for different values of mediator masses. The plots in Figure 6.5 apply to generic

models with κ = 1 and assume a 5% and a 10% level of systematic uncertainty.

Figure 6.6 shows the LHC exclusion contours in the context of the mediator-Higgs

mixing models. We set κ = 0.15 and assume a 1% and a 5% systematic uncertainty.

Plots in Figure 6.7 show the LHC exclusion limits without fixing the κ parameter to

a specific value. Here we allow κ to float so that for each model the computed cross-

section is set equal to a cross-section that corresponds to a 30% invisible branching

ratio for the 125 GeV Higgs.

The conclusions we draw is that, for generic scalar mediator models with κ ' 1,

with the 13 TeV LHC, we can probe models with mediator masses up to Mmed ≈ 750

GeV (assuming a 5% level of systematic uncertainty). For the models with a small

κ, in particular the models associated with the Higgs–singlet-mediator mixing where

κ = sin2 θ . 0.15, we can probe up to Mmed ≈ 500 GeV (with an optimistic 1%

systematic uncertainty). Not surprisingly, the decrease in cross-section at small

values of κ makes it very hard to reach to the higher mediator masses in the Higgs

portal-type mixing model realisations at the LHC.
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Figure 6.6: The LHC reach for different Mmed models with κ = 0.15 in terms of

confidence levels to exclude signal from SM background. On the left panel we use

a systematic uncertainty of 1%, and the panel on the right corresponds to a 5%

systematic uncertainty.
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Figure 6.7: The LHC reach for different Mmed models. We normalise the cross-

sections for all models to the SM Higgs cross-section with Brinv = 30% and a sys-

tematic uncertainty of 5% (left panel) and 10% (right panel).

6.4.3 Distinguishing Between Models with Different Medi-

ator Masses

For the models which are within the LHC reach, i.e. with Mmed below the upper

bounds set to be the exclusion contours in Figures 6.5-6.7, the next step is to be

able to distinguish between different models.

This is achieved by comparing the shapes of the kinematic distributions plotted

in Figure 6.4 for different mediator masses. As we increase Mmed, the visible jets will
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Figure 6.8: Differentiating the models at κ = 1 at the LHC. For each value of Mmed

between 250 and 1500 GeV, the models are compared to the reference model with

a 125 GeV mediator. We assume a systematic uncertainty of 5% (left panel) and

10% (right panel).
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Figure 6.9: Differentiating the models with the floating κ parameter defined as in

the caption of Figure 6.7. Models are compared pairwise to the 125 GeV reference

model.

recoil against a heavier object which will change the distribution of the kinematic

variables. We will use this change to distinguish the models with different mediator

masses by the following procedure. Before we even start comparing different models,

we will need an excess of signal events over the SM background in the data after

the VBF cuts. The cross-section of this signal can be used to infer an upper limit

for the mass of the mediator as a function of κ. The question then becomes if we

can distinguish between the different models that can achieve the measured cross-
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Figure 6.10: Differentiating the κ = 1 models at the LHC. In the left panel we

compare to the reference model with Mmed = 250 GeV, and on the right the reference

model is 500 GeV. We assume a systematic uncertainty of 5% .

section. We will again use a binned log-likelihood method and will be comparing

models pairwise. For each cross-section we select the two extreme models: the first

one with the maximal mass, and the second (reference model) with a 125 GeV

mediator.

In Figure 6.8, we can see how well one can differentiate the models at the LHC

with κ = 1. Specifically, all the models with Mmed = 250, 500 and 750 GeV can

be distinguished from the 125 GeV mediator. Within our approach, this conclusion

is valid even with a relatively high systematic error of 10%. We also note that

for κ = 0.15 it is no longer possible to differentiate any of the models since the

cross-section becomes too small.

So far in Figure 6.8, we have characterised the simplified model signals by fixing

the scaling parameter κ to either 1 or 0.15. Alternatively, we can set the signal

cross-section to a fixed value corresponding to a 30% invisible branching ratio of

the SM Higgs. This is shown in Figure 6.9, which leads one to conclude that the

models with heavier and heavier mediator masses are easier and easier to distinguish

from the reference model. When comparing models with different mediator masses,

there are in general two competing effects: the increased difference in the shape

of differential distributions and the decrease in the cross-section with the increase

of the mediator mass. By fixing the cross-sections in Figure 6.9, the differences

between the models are only due to the shapes of differential distributions, while in
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Figure 6.8 both effects are important. This explains why, for example, the model

with Mmed = 500 GeV is easier to distinguish than the 250 and 750 GeV models in

Figure 6.8.

We also compare models where the reference model is not the 125 GeV Higgs.

The results for using 250 GeV and 500 GeV as reference models are shown in Fig-

ure 6.10. In the same way as for the 125 GeV Higgs, the cross-section for the

reference model is set equal to that of the model we compare it with. We see that

the 500 and 750 GeV models can be distinguished from the 250 GeV model at the

LHC. At the same time, the 750 GeV model (and above) cannot be distinguished

from the 500 GeV reference point.

6.5 Scalar Mediator Models at 100 TeV

We use a similar approach to investigate the model’s reach and the ability to distin-

guish between different models at a future 100 TeV circular proton-proton collider.

The signal and background are simulated in the same way as for the LHC analysis,

and we use the same binned-log likelihood analysis for exclusion and differentiation

of the various models. The main difference is that we use the cuts

/pT > 100 Gev , Mjj > 1200 GeV , ∆φjj < 0.5 , ∆η > 5.5 , pT,j > 110 GeV ,

(6.5.15)

instead of the normal VBF cuts in (6.4.14), as we need to reduce the background

more. We also allow for larger jets by using the anti-kt jet algorithm with R = 0.8.

The left panel in Table 6.2 shows the cross-sections for the signal at a future

100 TeV collider, assuming a 100% branching ratio of the scalar mediators to dark

matter.

We have set κ = 1 and assumed a 100% branching ratio of the mediator to χ̄χ

DM. The cross-sections for SM backgrounds are shown in the table on the right.

Figure 6.11 plots the kinematic distributions for Mjj, /pT , ∆η, ∆φjj for models

with different values of Mmed and the SM background. We first investigate the

exclusion limits at 100 TeV for invisible decays of the 125 GeV Higgs. In Figure 6.12,
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Figure 6.11: Kinematic distributions for different values of the mediator mass for

the signal and for the background at a 100 TeV collider. Mjj distributions are shown

on the top left panel, /pT is on top right right, ∆η and φjj distributions are on the

bottom left and right panels, respectively.

0 20 40 60 80 100

Luminosity [fb−1]

10−4

10−3

10−2

10−1

100

C
L
s

2σ

3σ

Systematic : 0.01

Brinv = 0.05
Brinv = 0.1
Brinv = 0.15

0 20 40 60 80 100

Luminosity [fb−1]

10−4

10−3

10−2

10−1

100

C
L
s

2σ

3σ

Systematic : 0.05

Brinv = 0.05
Brinv = 0.1
Brinv = 0.15
Brinv = 0.2
Brinv = 0.3

Figure 6.12: 100 TeV reach for excluding invisible decays of the 125 GeV Higgs

boson. On the left panel we use a systematic uncertainty of 1%, and the panel on

the right corresponds to a 5% systematic uncertainty
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Figure 6.13: 100 TeV reach for different Mmed models with κ = 1. On the left panel

we use a systematic uncertainty of 1%, and the panel on the right corresponds to a

5% systematic uncertainty.

0 20 40 60 80 100

Luminosity [fb−1]

10−4

10−3

10−2

10−1

100

C
L
s

2σ

3σ

Systematic : 0.01, κ = 0.15

Mmed = 500 GeV
Mmed = 750 GeV
Mmed = 1000 GeV
Mmed = 1500 GeV
Mmed = 2000 GeV
Mmed = 2500 GeV

0 20 40 60 80 100

Luminosity [fb−1]

10−4

10−3

10−2

10−1

100

C
L
s

2σ

3σ

Systematic : 0.05, κ = 0.15

Mmed = 500 GeV
Mmed = 750 GeV
Mmed = 1000 GeV
Mmed = 1500 GeV
Mmed = 2000 GeV
Mmed = 2500 GeV

Figure 6.14: 100 TeV reach for different Mmed models with κ = 0.15. On the left

panel we use a systematic uncertainty of 1%, and the panel on the right corresponds

to 5% systematic uncertainty.

we plot exclusion limits on the branching rations to invisibles and conclude that for

small systematic errors one can exclude Brinv & 10%.

We can now consider simplified models with different values of the mediator

mass. In Figure 6.13 we show the expected reach for a 100 TeV collider for these

models with κ = 1 for a 1% and 5% level of systematic uncertainty. Figure 6.14

gives the expected exclusion limits for models with κ = 0.15. From these figures

we conclude that in the case of small systematic uncertainties, the 100 TeV collider

would provide a very significant increase in the exclusion reach for new physics
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Mmed VBF GGF Total

125 GeV 120 100 220

500 GeV 76 110 185

750 GeV 53 46 99

1000 GeV 40 20 60

1500 GeV 22 5 27

2000 GeV 14 2 16

2500 GeV 8.7 0.6 9.4

Background Cross-section(fb)

Zjj 239

W+jj 298

W−jj 157

Table 6.2: Cross-sections (fb) at partonic level after the cuts (6.5.15) at 100 TeV.

models with mediator masses up to 2.5 TeV. For a larger systematic uncertainty at

the level of 5%, the reach in Mmed is 1 TeV. For the more restricted case of κ = 0.15

Higgs-mixing models, a 100 TeV collider could exclude models with up to 750 GeV.
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Figure 6.15: Differentiating the models at κ = 1 at 100 TeV. For each value of

Mmed between 500 and 2500 GeV, the models are compared to the reference model

with the 125 GeV mediator. We assume a systematic uncertainty of 1% (left panel)

and 5% (right panel).

Finally, as we have done at the LHC energies before, we can use the kinematic

distributions at 100 TeV to differentiate pairwise between models with different

mediator masses. We first compare each model with a reference model with a 125

GeV mediator. The results for this analysis are presented in Figure 6.15 for κ = 1

and Figure 6.16 for the models with κ = 0.15. At κ = 1, we can distinguish all the
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reachable models with mediators up to 2.5 TeV from the 125 GeV reference model.

For the small-κ models in Figure 6.16, we can distinguish between the models up to

1 TeV (this requires higher luminosities up to 600 fb−1).
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Figure 6.16: Differentiating the models at κ = 0.15 at 100 TeV. For each value of

Mmed between 500 and 2500 GeV, the models are compared to the reference model

with the 125 GeV mediator. We assume a systematic uncertainty of 1% (left panel)

and 5% (right panel).
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Figure 6.17: Differentiating the models at κ = 1 at a future 100 TeV Collider. For

each value of Mmed between the reference model mass and 2500 GeV, the models

are compared to the reference model with the 500 GeV mediator in the left panel

and 750 GeV in the right panel. We assume a systematic uncertainty of 5% .

As before, we can also compare to different choices of reference model. In Fig-

ures 6.17-6.18, we plot the results with reference models corresponding to mediator
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masses of 500, 750, 1000 and 1500 GeV. We conclude that for all the reference mod-

els with up to 1 TeV mediator masses we can successfully distinguish all reachable

models with higher mass.
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Figure 6.18: Differentiating the models at κ = 1 at a future 100 TeV Collider. For

each value of Mmed between the reference model mass and 2500 GeV, the models

are compared to the reference model with the 1000 GeV mediator in the left panel

and 1500 GeV in the right panel. We assume a systematic uncertainty of 5% .

6.6 Summary and Conclusions

We have studied collider limits for simplified models of dark matter where the dark

matter is coupled to the Standard Model by a scalar field mediator which interacts

with both the SM fermions and the vector bosons. Our main goal was two-fold: First

to determine the projected reach of the Run 2 LHC and a future circular hadron

collider for excluding such models. Second, to use the kinematic distributions to be

able to extract information on the values of the mediator masses. To achieve this we

focused on the two-jets-plus-missing-transverse-energy final states. In our case both

production mechanisms are important: the gluon fusion process which effectively

probes the coupling of mediators to quarks, and the weak vector boson fusion which

is due to the interactions with vector bosons.

We found that at the 13 TeV LHC, one can probe simplified models of dark

matter with mediator masses up to 750 GeV. At a 100 TeV collider the reach is
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increased to 2.5 TeV mediators. These measurements are dominated by systematic

uncertainties which we have kept relatively small and have varied between the 1%

and 10% level.

In order to ‘measure’ the mediator mass, which is the most relevant new physics

scale of these models at colliders, we have compared the models with different values

of Mmed pairwise. In both cases at 13 and at 100 TeV, we found that we can

differentiate between essentially all the discoverable benchmark models we have

considered. In particular, we can distinguish a 125 GeV reference model from models

with mediator masses of 250, 500 and 750 GeV at the LHC. For the 100 TeV case,

the list of distinguishable models extends to 2.5 TeV.

For the more constrained case of the Higgs portal models where scalar mediators

mix with the SM Higgs and the mixing angle is small, sin2 θ = 0.15, the collider

reach is reduced due to the overall decrease in the signal cross-section. We found

that the LHC reach is 500 GeV for an optimistic 1% systematic uncertainty, and

this is increased to 750 GeV at a 100 TeV collider.



Chapter 7

Conclusions

In this thesis we have investigated the collider and the cosmological phenomenology

of hidden sector extensions to the SM with a Higgs portal coupling. These models

extend the SM by adding a new hidden or dark gauge group with a new scalar degree

of freedom that is coupled to the Higgs. We have mainly been interested in mod-

els with classical scale invariance where all mass scales are generated dynamically

through dimensional transmutation. In Chapter 2, we showed how to construct SM

extensions with CSI. These models come in many shapes: some achieve dimensional

transmutation through confinement as in QCD, while most examples in the litera-

ture generate mass scales at weak coupling via the Coleman-Weinberg mechanism.

In both of these approaches the generated scale is transmitted to the SM via the

Higgs portal coupling. For models with CSI to be interesting and viable extensions

of the SM, they need to solve the observational problems in the SM which include

dark matter, matter-antimatter asymmetry, Higgs stability and neutrino masses,

without introducing any new large scales. Constructing and exploring the physics

of CSI models that could address these problems was the main motivation of this

thesis.

To generate the observed matter-antimatter asymmetry in the Universe we im-

plemented leptogenesis in a CSI model where the SM is extended by a U(1)B−L

gauge group in Chapter 3. Leptogenesis based on right-handed neutrino oscillations

avoids the requirements of very heavy right-handed neutrinos in normal leptogenesis

scenarios. The SM× U(1)B−L model explains the small active neutrino mass via a

168
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type 1 see-saw mechanism, and in sizeable parts of the parameter space, with right-

handed neutrinos at the GeV scale, we achieved the observed matter asymmetry of

the Universe.

We have shown in Chapters 4 and 5 that many different viable dark matter

candidates are possible in these hidden sector extensions to the SM. In this thesis,

we have investigated scalar dark matter, vector boson dark matter and the possibility

to have monopoles of the hidden sector as dark matter. In addition to providing

good dark matter candidates, we find that the models with scalar dark matter can

successfully stabilise the Higgs potential. If the hidden sector is a non-Abelian SU(2)

group, the gauge bosons are stable as there is no kinetic mixing with the SM U(1).

This makes the gauge bosons good dark matter candidates. For all of these dark

matter models, the next generation of direct detection experiments could discover

them or exclude large parts of the parameter space. When the hidden sector gauge

group is SU(2) and we have an adjoint scalar, the gauge group is broken to a U(1)

and Polyakov ’t Hooft monopoles will exist. We have showed that monopoles, which

are produced in phase transitions in the early Universe, can make up a significant

fraction of dark matter in this model. Both the monopoles and the gauge boson dark

matter will have long-range self-interactions which can help to solve the too-big-too-

fail and the core-vs-cusp problems with the standard cold dark matter paradigm.

The collider phenomenology of many of the models with dark matter in the

hidden sector can be characterised by simplified models where the dark matter is

coupled to a mediator that is coupled to the SM quarks and leptons. In Chapter 6,

we showed how it is possible to learn about the mass of a scalar mediator to dark

matter at the LHC and a future 100 TeV collider by using the kinematic distributions

in the two-jets-plus-missing-energy final state. At the LHC one can probe models

with mediator masses of 750 GeV, and at a future 100 TeV collider masses up to 2.5

TeV. With small systematic errors, it would also be possible to distinguish most of

the benchmark models where the difference in mediator mass is of the order of 250

GeV.

The results presented in this thesis show that CSI models, and hidden sector

models more generally, are interesting and viable BSM models. It is possible to
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address the main observational problems of the SM in a minimal way without in-

troducing any new large scales that would destabilise the Higgs mass. Even if the

models do not have any smoking-gun signatures they provide a rich phenomenology

at colliders, direct and indirect detection experiments and for cosmological observ-

ables. With new data from the next run of the LHC and the next generation of DM

and cosmological experiments, there are good possibilities to either discover such

SM extensions, or to exclude large parts of their parameter space.
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