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Abstract

We present a novel shape classification method which is embedded in the Bayesian

paradigm. We focus on the statistical classification of planar shapes by using meth-

ods which replace some previous approximate results by analytic calculations in a

closed form. This gives rise to a new Bayesian shape classification algorithm and

we evaluate its efficiency and efficacy on available shape databases. In addition

we apply our results to the statistical classification of geological sand bodies. We

suggest that our proposed classification method, that utilises the unique geometri-

cal information of the sand bodies, is more substantial and can replace ad-hoc and

simplistic methods that have been used in the past. Finally, we conclude this work

by extending the proposed classification algorithm for shapes in three-dimensions.
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Ιθάκη Ithaka

Σα βγείς στον πηγαιμό για την Ιθάκη, As you set out for Ithaka

να εύχεσαι νάναι μακρύς ο δρόμος, hope that your journey is a long one,

γεμάτος περιπέτειες, γεμάτος γνώσεις. full of adventure, full of discovery.

Τους Λαιστρυγόνας και τους Κύκλωπας, Laistrygonians and Cyclops,

τον θυμωμένο Ποσειδώνα μη φοβάσαι, angry Poseidon - don’t be afraid of them:

τέτοια στον δρόμο σου ποτέ σου δεν you’ll never find things like that on your

θα βρείς, way

αν μέν΄ η σκέψις σου υψηλή, αν εκλεκτή as long as you keep your thoughts raised

συγκίνησις το πνεύμα και το σώμα σου high,

αγγίζει. as long as a rare sensation

Τους Λαιστρυγόνας και τους Κύκλωπας, stirs your spirit and your body.

τον άγριο Ποσειδώνα δεν θα συναντήσεις, Laistrygonians and Cyclops,

αν δεν τους κουβανείς μες στην ψυχή wild Poseidon- you won’t encounter them

σου, unless you bring them along inside your

αν η ψυχή σου δεν τους στήνει εμπρός soul,

σου. unless your soul sets them up in front of

you.

Να εύχεσαι νάναι μακρύς ο δρόμος.

Πολλά τα καλοκαιρινά πρωιά να είναι Hope that your journey is a long one.

που με τι ευχαρίστησι, με τι χαρά May there be many a summer morning

θα μπαίνεις σε λιμένας πρωτοειδωμένους when,

· with what pleasure, what joy,

να σταματήσεις σ΄ εμπορεία Φοινικικά, you come into harbours seen for the first

και τες καλές πραγμάτειες ν΄ αποκτήσεις, time;

σεντέφια και κοράλλια, κεχριμπάρια κ΄ may you stop at Phoenician trading sta-

έβενους, tions

και ηδονικά μυρωδικά κάθε λογής, to buy fine things,

όσο μπορείς πιο άφθονα ηδονικά μυρ- mother of pearl and coral, amber and

ωδικά· ebony,
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σε πόλεις Αιγυπτιακές πολλές να πας, sensual perfume of every kind -

να μάθεις και να μάθεις απ΄ τους as many sensual perfumes as you can;

σπουδασμένους. and may you visit many Egyptian cities

to learn and learn again from their schol-

Πάντα στον νου σου νάχεις την Ιθάκη. ars.

Το φθάσιμον εκεί είν΄ ο προορισμός Keep Ithaka always in your mind.

σου. Arriving there is what you are destined for.

Αλλά μη βιάζεις το ταξείδι διόλου. But do not hurry the journey at all.

Καλλίτερα χρόνια πολλά να διαρκέσει· Better if it lasts for years,

και γέρος πια ν΄ αράξεις στο νησί, so you are old by the time you reach the

πλούσιος με όσα κέρδισες στον δρόμο, island,

μη προσδοκώντας πλούτη να σε δώσει wealthy with all you have gained on the

η Ιθάκη. way,

not expecting Ithaka to make you rich.

Η Ιθάκη σ΄ έδωσε τ΄ ωραίο ταξείδι.

Χωρίς αυτήν δεν θάβγαινες στον δρόμο. Ithaka gave you the marvellous journey.

΄Αλλα δεν έχει να σε δώσει πια. Without her you would not have set out.

She has nothing left to give you now.

Κι αν πτωχική την βρείς, η Ιθάκη δεν

σε γέλασε. And if you find her poor, Ithaka won’t have

΄Ετσι σοφός που έγινες, με τόση πείρα, fooled you.

ήδη θα το κατάλαβες η Ιθάκες τι Wise as you will have become, so full of

σημαίνουν. experience,

you will have understood by then what

these Ithakas mean.

Κωνσταντίνος Καβάφης- 1911
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Chapter 1

Introduction

Whence and what art thou, execrable shape?

John Milton (1667), Paradise Lost II, 631

Our everyday lives and most of our daily activities include interaction with objects

which we are called to recognise through our visual system. Through the evolution of

time, human nature and the advance of our visual systems, we are able to recognise

objects through their boundaries and their variations. Indeed, it is the efficacy of

our visual systems that led us to recognise complicated geometries and invent the

definition of “shape.” The word shape has many meanings; sometimes its meaning

is embedded in the word that describes the object, for example by hearing the word

wheel one can immediately picture a circular object with concentric spokes. Shape

is an important feature of objects we see and one could argue that humans are the

best object and shape identifiers since they are trained to interact with shapes in

nature from their very first days of life. This intellectual ability allows us to also

recognise objects that are connected through complicated mathematical operations.

For instance, were we given two identical objects differing only by a rigid rotation we

would recognise them as the same. The human eye is trained to identify objects that

are related under such transformations. It is this powerful ability that led humans

to make progress in the field of collection, processing, interpretation and analysis

of geometrical information and in particular geometrical information in conjunction

with the concept of shapes.

1
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For the past 20 years a very powerful subject has been established in the area

of mathematics and statistics: shape analysis. The technological bloom and the

combination of computer science, mathematics, physics and statistics has helped

make shape analysis become an integral part of many branches of science such as

computer vision, pattern recognition, shape representation and shape classification.

This has enabled other sciences to also embrace and adopt these developments so

that shape analysis can now be applied from biology to archaeology and many

more. Examples of such developments can be found in medical image analysis [1, 2],

bioinformatics [3], morphometrics [4, 5], text recognition [6, 7], archaeology [8, 9],

anthropology [10] and others.

However, one might ask how do we describe all this using mathematical for-

malisms? Before we proceed and discuss shapes more abstractly, it is imperative

to give the mathematical definition of shape. We follow Kendall [11], one of the

pioneers of statistical shape analysis:

“We here define shape informally to be what is left when the differences which

can be attributed to translations, rotations, and dilatations have been quotiented

out.”

Following Kendall’s definition in a mathematical setting, we expect shapes to

be invariant under the transformations of rotations, scale and translations. This

means that any two realisations of shapes that can be generated from one another

by applying a series of rotations, translations and scalings to be regarded as the

same shape.

Statistical shape analysis is a powerful tool that can be used to solve many

problems such as the shape classification of objects. Shape classification addresses

the following question: given objects that come from a priori known categories, how

can we classify them in their own class? How can we automate the procedure of

the classification of objects into pre-determined classes? Can we give a confidence

level to quantify the probability our classification is correct? This is where shape

classification starts becoming important.
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An important aspect of classification is the representation of the observed shapes.

Although most mathematical methods that have been applied to shape classifica-

tion in the past were based on landmark points (see section [1.3]), these have proved

to be limited. In recent years great progress has been made towards the study of

continuous planar shapes. In this work we focus on the statistical classification of

continuous planar shapes and in particular on their geometric statistical analysis.

To this end we will use a novel shape classification method based on the underlying

geometry of the shapes. To capture this underlying geometry we use the model pre-

sented in [12] and extend it and this will be the core of this thesis. One of our goals is

to model shape variability within and between classes of shapes. Like with any other

population, shape populations show variability and we use probability distributions

to model it; these models can be later used for the classification of shapes. Having

described this variability, we can then obtain samples from shape populations and

classify them in one of the pre-determined classes, assigning a confidence level for

each class. Our approach is to perform Maximum a Posteriori (MAP) determina-

tion of each class given the data. In this thesis we follow the work of Srivastava and

Jermyn [12] and we extend the way that the MAP is performed in a more efficient

way.

To test our methods and our model, we use examples from the KIMIA database

[13] and an alphabet database that we created ourselves. The Kimia database is

comprised of binary images of several types such as animals and objects whereas the

alphabet database is comprised of binary letters of the latin alphabet in 6 different

fonts. Another example where we apply the methods we developed is on geological

data, namely sand bodies. The classification of geological sand bodies is an impor-

tant problem in geology, however current classification methods are characterised

as simplistic and ad-hoc. There has been a need for more efficient, scientific and

statistical classification methods that capture the geometry of the sand bodies since

it is the most important feature that determine their nature, class and oil capacity.

Furthermore, we extend this work to the learning of the parameters that de-

scribe the studied data shapes. By using the learned parameters, we can then
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classify new and previously unobserved data with confidence. In addition, we try

to observe and identify the emergence of new, previously unknown classes of shapes

for a given data set based on some measure of similarity. With the help of the

Expectation-Maximisation algorithm we identify clusters of shapes whose proper-

ties can be inferred and used for future classification of new data.

The structure of this thesis is as follows: the current chapter presents a sample

of the previous work done in shape analysis. We discuss the advances of three

areas of shape analysis: shape pre-processing, shape transformations and shape

classification. We focus on certain aspects of these areas which have been of use in

our work, namely shape acquisition, shape representation and classification.

In the second chapter we introduce the work of Srivastava and Jermyn [12] and

we discuss the methods which they used for the classification of observed shapes.

We refer to the statistical framework they established and how shape spaces are

utilised for the results of the classification methods they used. We then start to

extend their work, presenting the models used for the description of the parameters

capturing the shape variability. One of the important features of the second chapter

is the presentation of our work in which we replace some of Srivastava and Jermyn’s

approximating methods by their analytic equivalents which give rise to our proposed

classification algorithm of continuous, planar shapes.

In the third chapter we evaluate the effectiveness and the accuracy of the pro-

posed algorithm. We present the confidence and success results of the algorithm as

examined in experiments conducted with the help of the Kimia and the alphabet

database. We extend the experiments on evaluating the confidence and classification

results on the geological sand body database which we had to simulate in absence

of any real geological data. For this part of the third chapter we evaluate methods

of supervised learning applied in this case in anticipation to learn the parameters of

the models we utilise.

The fourth chapter is an attempt to compare our suggested method to classifica-

tion methods using clustering. For this comparison, we use the Kimia and alphabet
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databases from which we extract properties that describe each class of shapes. We

form feature vectors that are constructed from properties which, we assume, describe

each of the classes. By using the Expectation-Maximisation (EM) algorithm we try

to infer the number of existing clusters in the data and the statistical properties

that capture the variability of each class. We assume that each of the classes can

be described by a multidimensional Gaussian so that the distribution of the data is

thus explained as a mixture of multidimensional Gaussians. Based on these prop-

erties we classify new, unobserved data in the classes as they were decided by the

EM and compare its accuracy to the results acquired from our proposed algorithm.

The purpose of this experiment is to compare the classification results when using a

classification method that employs the geometrical information of the shape to the

classification method that makes use of less detailed information. The last part of

the fourth chapter presents an attempt at an adapted version of the EM algorithm

in the case of the sand body database where we replace the Gaussian mixtures by

mixtures that use our proposed likelihood and algorithm from chapter [2].

Up to this point we will have focussed on the study of two dimensional planar

shapes. The fifth chapter is an extension of the work presented in the second chapter

for the case of two dimensional surfaces. Some of the methods presented in chapter

[2] are extended for surfaces so that the algorithm can be extended to three dimen-

sions. These methods include the integration of three dimensional translations and

rotations. However, the attempted methods didn’t produce fruitful results and left

open questions for future consideration.

The sixth and final chapter presents a summary and discussion of the results

presented in the previous chapters, a review of the overall attempt and method of

shape classification with a set of open questions posed.
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1.1 Previous work on shape analysis

The heuristic geometrical definition of shape proposed by Kendal [11] is “the geo-

metrical information that remains when the differences which can be attributed to

translations, rotations and dilatations have been quotiented out of an object.” Thus,

we expect shapes to be invariant under the transformations of rotations, scale and

translations. The definition of shape in terms of invariant quantities can be found

extensively in the literature [14, 15]. However there is criticism [16] that these type

of transformations do not specify what an object or a data set is. It has also been

criticised that shapes that have undergone other types of transformations (e.g. affine

transformations), or shapes that could still be recognised as equivalent by humans,

are not explained by similarity transformations. An alternative definition of shape

is given by Costa [16]: “a shape is a single visual entity or object.” The concept

of single, whole, united is also used to describe a shape. Adding to the above the

notion of connectivity, we have a formal definition: a shape is any connected set

of points. This definition includes both continuous and discrete shapes, however

it does not reflect the geometric underpinning of shapes nor the invariance under

similarity transformations. In this thesis we will follow Kendall’s definition since

similarity transformations and geometric invariance play a big role in our study of

shapes.

Shape analysis aims to explain, describe and predict the shapes of objects and is

used as a tool in many sciences. Applications can be found in medical image analysis

[1, 2], bioinformatics [3], morphometrics [4, 5], text recognition [6, 7], archaeology

[8, 9], anthropology [10] and others. Shape analysis is divided into three main classes:

shape preprocessing, shape transformations and shape classification. Figure (1.1)

shows these three classes and their sub-levels [16]. Although this thesis focuses on

novel classification methods we will briefly refer to each of the above categories to

set the ground before we describe how we use them in our work.

Although we already gave an accurate geometrical definition of shapes, for the

next two sections we will consider shape to be a one dimensional line denoting the

boundary of an object and work with this definition for the sake of illustration.
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Figure 1.1: Shape analysis and its sub-categories [16]. The image is used after

permission was granted by the Copyright Clearance Centre.
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1.2 Shape preprocessing

The main goal of shape preprocessing is the acquisition and detection of the bound-

ary of an object from a given image in the presence of noise or other objects. Usually

this is the first step towards the analysis of a shape. This area of research is mostly

addressed by computer science and machine vision. Shape detection and the ex-

traction of shape contours can be done by automated image segmentation and edge

detection algorithms [17]. Image segmentation techniques identify and locate the

boundary of a shape by partitioning the object into smaller segments. Edge de-

tection identifies the outline and boundary of a shape by comparing the contrast

between the image and its background. There are many different approaches and

many different algorithms to the image segmentation and edge detection problem

which we now briefly recapitulate.

The first attempts of image segmentation were done by Attneave [18] who used

spline functions to approximate the boundaries of shapes. Splines functions are

piecewise polynomials which interpolate between fixed points, fulfilling certain con-

tinuity conditions [19]. A different approach was made by Wallace [20] who used

polynomial functions for the approximation of the contour. Marr [21] suggested that

shape edges coincide with changes in the boundary intensity and hence constitute

a primal sketch of the shape in question. Marr [22] also combined his primal sketch

with information such as depth for a more complete representation of the shape

edges. Marr’s primal sketch inspired Asada and Brady [23] for their curvature pri-

mal sketch where they represented curvature changes of the boundary rather than

intensity changes. This was extended to three-dimensional shapes by Ponce and

Brady [24]. Mathematical morphology came to add to the area of edge detection

[25, 26] with the images being analysed based on the description of the boundaries

as sets of points and their logical relationships. Other approaches to edge detection

include Kirsch masks [27], wavelets based approaches [28] and Markov techniques

[29]. Methods that evolved towards the edge detection of shapes also include the

detection of particular features such as corners [30], curves [31, 32] and pattern

analysis [33, 34].
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Although the shape pre-processing category also includes noise filtering and op-

erations, as shown in figure (1.1), we only refer to detection and acquisition since

these are the only methods used in our work. The above mentioned methods, and

many more, can be used for the acquisition of the boundary of the shapes with the

help of edge detection algorithms. We shall use built-in edge detection algorithms

in MATLAB for the purpose of extracting boundaries of some test shapes in chapter

[3]. This will be sufficient since the focus of this thesis is on the classification of the

resulting curves. Having obtained the contour of a shape, we can now choose the

appropriate mathematical representation for it. In the next section we discuss some

of these choices that have been used broadly in the literature.

1.3 Shape transformations

Shape transformations are the second step of shape analysis. Once the boundary

of the shape is available through edge detection then valuable information can be

extracted from it so that the shape can be analysed. Shape transformations can help

towards the extraction of such information which can then be used for classification

purposes. The main aim of shape transformations is to decide how to represent a

shape appropriately and quantify its properties. It also allows us to quantify the

difference between shapes which is vital for the classifications stage of the process.

Since shape representation is an important subject of our work it will be the only

subcategory we will turn our focus on from the category of shape transformations

presented in figure 1.1. Pavlidis [35], suggests that the representation should be

chosen according to either information preserving or information non-preserving

techniques. Information preserving techniques allow the reconstruction of the initial

shape so that different shapes have different representations [16]; non-information

preserving techniques do not allow the reconstruction of the initial shape and in

many cases different shapes can have the same representation. Such techniques are

sometimes used for shape classification as we will see in chapter [3]. This thesis

focuses on the study of planar shapes and since we will treat them as parametrised

curves, there are many possibilities for the choice of the representation. We will
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now present some of the most important representations and we will discuss which

of them we will choose for the purposes of this thesis.

Feature extraction

The representation of a shape can be done by feature extraction (i.e. by extracting

properties that are important for the shape) and we then identify the shape by

those features. A set of features that is usually used are the following: perimeter

[36], area [37, 38], center of mass, major and minor axes, statistical moments [39],

number of holes or even the class that the shapes belongs to. This representation

falls into the non-preserving information techniques because one can represent more

than one shapes with the same area and perimeter etc. Differences between the

features provide a description of the differences between the shapes those features

represent. We shall see an example of these techniques in chapter [4].

Landmarks

One of the most commonly used ways for representing shapes is landmarks. Land-

marks are placed on parametrised curves. These are points of correspondence for

objects that match between and within populations [14, 40]. This selects a finite

set of points to act as a discrete representation of the shape boundary. They play

the role of the minimum adequate representation of a shape from an infinite set of

points that would make the continuous version of the planar shape [41] and they

are regarded as shape features. The collection of all landmarks is referred to as a

configuration. Equally, a configuration can be represented by the polygons that are

created by connecting the landmarks with lines, splines etc. Landmarks are distin-

guished between three types: anatomical, mathematical and pseudo-landmarks. In

this thesis we will only discuss mathematical landmarks which are points that have

been placed on the object based on some geometrical property of it. Landmarks

also come in two sub-types, ordered (or labelled) and free landmarks. Labelled

landmarks come with an associated label so that two shapes can be compared to

one another by comparing their corresponding landmarks. Free landmarks are the

ones where the order of the points is not taken into account.
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Different choices of landmarks offer different representations of the same shape.

Choices of landmarks can be made on different bases; for example at points of

maximum curvature [42], distance from the centroid [43] or any other criterion set

by the experimentalist. One simple approach is the placement of points in equal

intervals around the boundary [44, 45]. Other approaches include landmarks placed

on lines tangent to the boundary; their position is then chosen iteratively by sliding

them forwards or backwards along the tangents and choosing the optimal position

when a cost function (bending energy) is minimised [5, 46, 47]. Another approach

includes the placement of points by following the centroid radii model [48]; this model

places landmarks at points of high curvature. It is clear that using landmarks adds

to the loss of important information from the shape. It is also obvious that a greater

number of landmarks give a better approximation to the true representation of the

shape.

Early attempts of shape analysis have been merely based on the representation

of shapes by landmarks [14]. This approach is referred to as classical shape analy-

sis. The inception of classical shape analysis was made by Thompson [49] but it was

established formally by Kendall [11], Bookstein [50], Dryden and Mardia [14], and

Kent and Mardia [51]. This work offered the basis for the modern theory of shape

by borrowing ideas from differential geometry and gave the first definition of the

idea of the shape space. The common feature in their work is that all shapes are

represented by a certain number of landmarks in R2. Following Kendall’s definition

given at the beginning of this chapter, sets of landmarks that are connected through

similarity transformations represent the same shape. Quotienting out such transfor-

mations creates the shape space for the representation of each class of shapes. This

quotient space is a shape manifold; imposing a metric on the manifold allows the

comparison and quantification of differences between shapes (shape spaces will be

discussed in section [1.5]).

Landmark based techniques have been extended to many applications and used

in several contexts [14, 52] for the accurate representation of shapes. Another big

breakthrough in the representation of shapes is the “snakes or active contour mod-



1.3. Shape transformations 12

els” representation [53]. Snakes are “energy minimising splines guided by external

constraint forces that pull towards the object’s contour.” However, snakes are not

that flexible since some knowledge of the contour is required and they are only useful

in situations where the shape of the object is rather amorphous. Snakes were then

extended to the “active shape models or smart snakes” [54, 55, 56, 57, 58, 59]; an ap-

plication of them is presented in [60]. Active shape models (ASM) represent shapes

by sets of landmarks that are connected by lines and polygons. ASM are learnt

from the training phase of images that have been annotated by an experimental-

ist. They then use principal component analysis [61, 62] on the selected landmarks

to capture the shape variation in the observed samples. The observed samples of

shapes are aligned and then correspondences between equivalent landmarks are es-

tablished. This allows the calculation of the mean position and variation of each of

the landmarks. The main breakthrough of this work is that the model reflects the

patterns of the shapes and the variations of each class however it ignores the non-

linear nature of shape spaces. Similar work was produced by Kervrann and Heinz

[57] who used the equivalent unsupervised approach to learn the deformations of

two dimensional polygonal objects. The three dimensional equivalent was studied

by Pentland [59, 63] who proposed the “finite element model”.

Deformable templates

A different shape representation to the other landmark based approaches is that of

deformable templates. Deformable templates represent classes of shapes which have

been generated by an idealised shape which takes the place of the representative

template of the class. Given a template and an image we can then find the optimum

map between them [64]. Deformation templates have been studied extensively [65,

66, 67, 68, 69, 70]. In this approach shapes are elements of infinite dimensional,

differentiable manifolds and the differences between the shapes are modelled as

action of Lie groups on the manifolds [71]. A drawback of the deformable template

theory is the need to consider the action of diffeomorphisms in R2 and R3. This

is computationally expensive which makes the approach difficult to use when the

shape database is large. In addition, this framework doesn’t provide an appropriate
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distance for comparing shapes in images [72].

Continuous planar curves

The classical shape framework set out by Kendall and Bookstein for the represen-

tation of curves discussed above has contributed largely to the development of the

modern theory of shape. Although this approach has proven to be limited, land-

mark representations have been extensively used in the literature in cases where

landmarks are easily and readily available [14, 73, 74]. However, the usage of land-

marks as shape descriptors for general purposes is a great limitation to statistical

shape analysis since landmarks are a subjective way of defining shapes. Further-

more, automating the choice of landmarks is a hard and unrigorous procedure; there

are many works that study the problem of automatic landmark choice [75, 76] how-

ever the resulting shapes remain dependent on the landmarks. The same drawback

is present in the active shape models too. In many cases, this approach is biased and

although the simplicity of the method is luring, many times it leads to undersampled

or coarsely sampled contours, unsatisfactory interpolations and inaccurate results

since the number of landmarks and their location can totally change the polygonal

shape.

The biggest drawback of the above mentioned representation methods is that

they do not take into account the continuous nature of the boundary of the shape.

They rather represent it by a discretised version of the curve which contributes to

the loss of important information that could be effectively used for shape analysis.

This created the need for a concrete statistical framework for the theory of shapes

that can also be used for efficient computational applications. The demand for

more efficient techniques of shape analysis has initiated the research of the modern

theory of shapes. Thus, modern shape analysis is focusing on the study of shapes

as continuous curves and surfaces by following some of Kendall’s and Bookstein’s

initial framework. There has been a shift in paradigm so there is now extensive

literature that treats shapes as continuous curves (rather than discretised versions

of them). In order to represent continuous curves we need a way of parameterising

their embedding in R2 or R3. Towards this end, one of the early attempts at the
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representation of shapes by curves was done by Raudseps [77]; Raudseps presented

some initial ideas on the representation of shapes by angle functions [78] i.e. that

each point on a shape can be parametrised by the angle of the tangent of the contour

with reference to the x axis. Zahn and Roskies [79] and Bennet and McDonald

[80] compared angle function versus arc length representations. Arkin et al. [81]

used this representation for the comparison of polygonal shapes. Zahn and Rooskies

provided a formal extension of Raudseps’ work by representing shapes by the Fourier

coefficients of the angle functions. These works were the first steps towards the

representation of shapes as planar closed curves.

A common theme in the representation of shapes as closed curves is that of the

shape space. Shape spaces will be discussed in detail in section [1.5], however

we will give a brief definition to ease the reader’s understanding in the context of

closed planar curves. Following Kendall’s definition, the study of shapes is done by

establishing equivalences between them with respect to similarity transformations

i.e. shapes coming from the same class are equivalent up to rotations, scalings and

translations. In all the representations that will be discussed, the construction of

shape spaces is done in two steps. After the representation is chosen we are led to

the pre-shape space. Then, elements of the pre-shape space that belong to the same

orbits of shape similarity transformations are regarded as equivalent. The resulting

quotient space forms the shape space and it is the space of the orbits under the

group actions of the similarity transformations. If the pre-shape space is a manifold

then the shape space inherits the manifold structure and becomes a manifold of

orbits (orbifold). This provides us with a natural way to compare the curves. We

do this by imposing a metric of our choice on the manifold i.e. a measure of the

distances between shapes or orbits of shapes, which is then interpreted as specifying

the similarities and differences between shapes.

Being familiar with the definition of a shape space, we can continue with the

descriptions of continuous curves of the available shapes. This work was initiated by

Younes [82, 83], who defined shape spaces of continuous planar curves and imposed

Riemannian metrics on this spaces measuring the deformations between curves. In
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the same spirit, Klassen et al. [84] studied the shapes of continuous, closed curves

in R2 parametrised by their arc-length without the need for landmarks or any of

the previous frameworks. They were the first to compute geodesics between closed

curves in a diffeomorphism invariant way. This is a very important result since it

treats different parametrisations of the boundary of the shape as the same curve.

Klasen et al. removed similarity transformations from the space of closed planar

curves, imposed a Riemannian metric and took advantage of the geometry to perform

inferences and solve optimisation problems. In particular, this work suggested that

shape representation can be done via angle functions (as Zahn [79] did) or curvature

functions i.e. functions that express the curvature as a function of the contour’s

arc length. Srivastava et al. [85], advanced Klassen et al.’s ideas and developed

the appropriate tools for shape analysis. They applied and tested these ideas on

databases such as the Surrey database [86]. However, their work doesn’t take into

account the elasticity of shapes, resulting in non-optimal shape correspondences.

An extension of this work was studied in [87] where the variational methods used

were faster and more numerically stable.

There have been several studies on the choices of metrics utilised in the spaces

of closed planar curves for the purpose of comparing shapes. Some studies include

Minchor and Mumford [88], Menucci and Yezzi [89] studying choices of different

Riemannian metrics on the space of regular smooth curves and Sundaramoorthi et

al. [90] suggesting a novel metric on the space of closed planar curves. Mumford

and Sharon [91] studied metric spaces using conformal mappings of two dimensional

space.

Mio et al. [92, 93] represented shapes as elastic strings that can be stretched

and bent. They were the first to construct shape spaces with the elastic metric

that incorporated the elastic properties of the shapes. Due to these properties,

they quantified the amount of stretching shapes need to deform into one another.

A drawback of the method is that the algorithms used for the calculation of the

geodesics were cumbersome [72]. In the same spirit, Shah [94] derived geodesics by

using a collection of different elastic metrics and representations of curves. Joshi et
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al. [95, 96] proposed a novel representation of continuous closed curves in Rn by

combining the elastic shape metric and path-straightening methods. In Srivastava et

al. [97], this was presented in more detail. They presented a shape representation for

analysing shapes motivated by the Fisher-Rao metric which is used in the space of

probability densities to impose Riemannian structure. They introduced the square

root velocity (SRV) representation which produces a simpler Euclidean structure

so that geodesics, statistics and distances are simpler to calculate. This work is

similar to the work of Younes [82, 98] but more complete since it applies to curves

in arbitrary dimension. They have also applied and demonstrated the advantages

of the method on 3D shape databases.

The benefits of representing shapes as continuous planar curves are multiple.

Firstly, shapes are analysed as their underlying curves without having a sparse col-

lection of landmarks since there is no need to introduce special points. Shapes are

continuous in nature and the placement of points and landmarks is a man-made

way of analysing shapes. By establishing the continuous curve framework, it is

then easy to develop models for the sampling of these curves and link finite realisa-

tions to infinite-dimensional models. Secondly, all representations (either discrete or

continuous) share the fact that the resulting shape spaces are nonlinear. This non-

linear geometry allows the calculation of statistics and the performance of inferences.

That means though that simple operations like addition, multiplication etc cannot

be performed on such spaces. Thus, one has to perform operations between shapes

on frameworks that allow them. Representing shapes as continuous curves and

establishing nonlinear manifolds allows us to establish full statistical frameworks,

define probability densities on shapes, perform operations such as integration and

differentiation, create priors for our beliefs and use them for operations between

shapes and also Bayesian inferences. Lastly, these methods are not computationally

expensive making them easier to use. Kendall’s approach is similar in nature with

the difference that the study is performed on discretised curves instead of continuous

ones. As mentioned, the use of landmarks complicates and biases the setting up of

the problem. Active shape models are faster than other landmark-based models but

they don’t remove similarity transformations and hence don’t utilise the non-linear
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nature of shape spaces. Grenander’s formalisms are similar to Klassen’s however

are computationally slow for real time applications. Srivastava et al.’s [85] approach

offers a complete framework which can be used in various applications.

What we discussed above is only a small flavour of all the available representa-

tions that one can choose for the purposes of shape analysis. As discussed above,

in our opinion, the representation of shapes as continuous planar curves is the most

natural and the most effective one. This is the representation that we choose to use

for the purpose of this thesis since it will help us treat the problem of classification in

a continuous way. We will discuss the chosen representation and the full statistical

framework we establish in chapter [2].

1.4 Shape classification

After the preprocessing and choosing the appropriate representation, the next step

of shape analysis is classification. Shape classification is a correspondence problem

which compares shapes and is the process of assigning a shape to a category or

vice-versa. Duda et al. [99], describe it as the task of recovering the model that

generated the patterns. There are two types of shape classification: supervised and

unsupervised. The former is used for the assignment of shapes into predetermined

classes. The latter is a more difficult procedure where the object is assigned into un-

known classes which must themselves be inferred from the data. Both classification

types require the comparison of shapes to determine how similar they are, which

was the theme motivating the use of different representations in the previous section.

The similarity comparison is done by comparing corresponding points (these can be

labelled landmarks for example) of the shapes.

The problem of classification in a supervised setting is the main subject of this

thesis. In this setting, we consider samples or templates of the classes that generate

the shapes we have in our data. In particular, in this thesis we will consider the

Bayesian classification which is a powerful approach to classification since, having a

statistical model, Bayes’ laws can supply us with the statistically optimal solution to
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this problem. A common route to statistical classification is to construct a classifier

for the particular problem. The classifier is constructed according to the chosen

shape representation. We will present some examples of such classifiers below.

Nearest neighbour

In the nearest neighbour approach, the classification is achieved by the extraction of

a feature vector. In this case, shapes are represented by a single feature (for exam-

ple their area) or by a commonly used vector of multiple features (for example area,

perimeter, convex hull and others) to describe the shapes that will be classified. If

we impose a metric on the feature space we can then calculate distances between

two feature vectors. Here, we have two categories of shapes: the training shapes (a

database of templates coming from the existing classes) and test shapes (shapes that

come from the same shape population as the training ones) which assess the per-

formance of the classifier. There are many algorithms and classifiers which classify

based on training shapes.

A commonly used classifier in the case of feature spaces is the nearest neighbour

or k-nearest neighbours. The classifier compares the feature of the test shape to

the features of all training sets and finds the k-nearest to it based on a measure of

similarity which is usually calculated using the metric on the feature space. The test

shape is assigned to the most common class amongst the k nearest neighbours and

the classifier outputs the class membership of the particular shape. The k-nearest

neighbours assign the feature vector of the test shape to the k-nearest feature vectors

from the training set and then assigns it to the most common among the k. The

role of k is a smoother since the larger it is the more noise is tolerated from the

training shapes. The classifier assumes that the similarity between all the shapes

can accurately be represented by their feature vectors and hence k-nearest neighbour

is a good classifier to be used [100]. An extension and improvement of the results

of the k-nearest neighbour algorithm is Bayesian Aggregation [100]. The k-nearest

neighbour can also be used in the case that we choose to represent our shape by its

contour; the contour is treated as being the feature that describes the shape. The
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metric is used to find the k-closest elastic closed curves to the test one.

Support vector machines

Support vector machines (SVM) is another popular classification method. The pop-

ularity of the method lies in the fact that it replaces the distances and the inner

products of the shape spaces with those of higher-dimensional spaces. In SVM one

creates new feature spaces that are of much higher dimension than the shape space

itself. Here, we have all the training data being represented as points in this feature

space and then been assigned to one of two categories. Then SVM becomes a non-

probabilistic binary classifier and is trained to assign new shapes into one of the two

pre-determined classes [101].

Firstly, the training shapes are separated into the two categories. SVM con-

structs a hyperplane in the high-dimensional feature space and test shapes can be

mapped to this space. They are mapped to the training shapes so that the separa-

tion between the categories is as clear as possible. In other words, the SVM finds

the best hyperplane that gives the clearest separation between points that belong

to different classes. The best hyperplane is the one that gives the largest margin

(the wider gap) with no interior points, between two classes by classifying new test

shapes on either side of the gap.

Maximum likelihood

Other shape classifiers can be model-based classifiers. In this case, classes of shapes

are assigned a probability distribution. Then, the aim is to use the models of shape

variations so that each test shape is assigned to the class that maximises the value

of the likelihood. A similar in nature classifier is the naive Bayes classifier. The

Bayesian classifier is usually combined with Bayesian decision theory (alternatively

Bayes classification or Bayesian decision rule) and uses strong independence assump-

tions for the features that describe the shapes. In this case, class labels are assigned

to the training shapes which can be represented by certain features making use of
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the fact that certain features of shapes are independent of any other features condi-

tioned on the class. One common approach is when the classifier chooses the class

that maximises the posterior probability of that class given the observed data which

is known as the Maximum a Posteriori rule. Bayesian classification is a powerful

approach; having a good statistical model, Bayesian classification can provide the

statistically optimum solution of classification because they minimise the chance of

misclassification [99].

In this thesis we will make use of a model-based classification technique; we

will assign probabilistic models to the shapes but also to the classes of shapes. We

will then construct a Bayesian classifier and use a Maximum a Posteriori (MAP)

decision rule for the classification of each of the test shapes so that they are assigned

to the class that maximises the posterior probability of the class. We will present

our approach in chapter [2]. Thus, this work has set its own statistical framework

for the study and classification of shape in a Bayesian way.

Before we present in the next chapter the statistical framework chosen for this

thesis and the classification methods used, we will discuss in the next section a very

important theme which is shape spaces.

1.5 Shape spaces

Having an appropriate formulation for classes of shapes, a shape space needs to be

constructed for their study and classification. Whatever the chosen representation

is, the study of shape is done by establishing equivalences between them with respect

to similarity transformations. This firstly includes the construction of the pre-shape

space by imposing appropriate constraints on the chosen representation of curves.

This leaves some elements of the pre-shape space belonging to the same orbits of

shape similarity transformations. The quotient space that comes from this results

in the shape space. If the pre-shape space happens to be a manifold, then the shape

space inherits the Riemannian structure and becomes a Riemannian manifold of

orbits (orbifold). We will explicitly describe how shape spaces are created in the
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Figure 1.2: The shape spaces [102]
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following paragraphs.

Shapes can be described geometrically and it is their geometry that can help

us estimate their properties and use them to make inferences about populations of

shapes. Inferences require us to use probability distributions and appropriate spaces

of shapes to represent them. To obtain the representation of a shape according to

the definition we are following [11], similarity transformations need to be filtered

out so that all shapes are aligned to a common reference coordinate system. We

described how one can acquire such a coordinate system with the Procrustes method

which places shapes into shape spaces.

In order to compare and classify shapes into their respective categories we need to

establish a common coordinate system as motivated by the definition of shape that

we adopted. In this coordinate system, all the shapes will be aligned with similarity

transformations removed. The classical alignment procedure was firstly described

by Kendall [11] which can also be found in [14] and incorporates the aspects of

classical shape analysis which describes shapes by landmark points. The classical

alignment procedure is called Procrustes analysis and has been routinely used in

the literature [5, 14, 103]. Ordinary Procrustes Analysis (OPA) [104] aligns any

two shapes so that they have a common reference coordinate system by minimising

the difference of shapes according to a measure of similarity or a chosen metric.

OPA uses least squares techniques to match the shape configurations with respect

to similarity transformations and is used in the case that only two shapes are to be

considered.

Procrustes analysis removes from shapes all similarity transformations and places

them into the shape space. The imposition of a shape metric turns the space into a

Riemannian manifold. Common shape metrics that have been used are the Hauss-

dorf metric [105] and the Procrustean metric or Procrustean distance [5, 14, 106, 107]

which is the most broadly used and it is the one that we will describe now. The

Procrustean metric aligns the two shapes so that the best correspondence between

the shapes is estimated in the following way: it scales the shapes to have equal size

(for example unitary length), aligns the shapes with respect to their centroid (the
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centre of mass) at the origin and then aligns them with respect to their orientation

by rotating them. A reference rotation is chosen as the rotation of one of the two

shapes and then the other is rotated so that the sum of the squared distances of

the points is minimised. The optimum rotation can also be found by Singular Value

Decomposition (SVD). Now, differences between shapes can be measured by the

Procrustean metric that is the square root of the sum of the squared distances of

the points of the superimposed shapes.

In the case that the comparison involves more than two shapes then the similar-

ity transformation removal is done by the Generalised Procrustes Analysis (GPA)

[108, 109] which in contrary to OPA superimposes optimally rather than to a shape

that was chosen at random. Goodall [110] and Goodall and Bose [111] adapted

it for the particular case of shape analysis. In GPA, translations and scalings are

removed in exactly the same way as in OPA. The only difference between the two

methods is how the rotation is chosen. Rather than arbitrarily aligning the shapes

to a reference rotation GPA finds the optimal rotation. The way GPA finds the

optimal superimposition is: choose an arbitrary shape as a reference (also known as

mean/average shape) and translate all remaining shapes so they are superimposed

to the reference. Then, calculate the Procrustes mean shape (also known as Frecét

or Karcher mean [112, 113, 114]) of the aligned shapes and if its difference from the

reference has changed recalculate the mean shape. Convergence is achieved when

the difference between the mean shapes is less than a threshold.

Kendall [11] was the first to construct the mathematical framework of shape

spaces. Kendall represented shapes as points of a non linear manifold. The use

of differential and Riemannian geometry is the tool used for shape analysis and

it studies shapes as non-linear objects. Since we assume that shapes are objects

invariant to Euclidean similarity transformations we can also use algebra and group

theory to represent their action on shape spaces so that shapes can be described

as orbits of these groups. We will now give the definitions of concepts that will be

useful for the construction of shape spaces.

Definition 1.5.1 Equivalence relation: a relationship denoted by ∼ that satisfies
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a) reflexivity (a ∼ a), b) symmetry (a ∼ b ⇒ b ∼ a) and c) transitivity (a ∼ b and

b ∼ c ⇒ a ∼ c). Then, an equivalence class of a set X under the equivalence ∼ is

[a] = {x ∈X ∣x ∼ a}.

Definition 1.5.2 Quotient space: a quotient space is the set of all equivalence

classes in a set X under a certain relation and is denoted as [X] =X/ ∼.

Definition 1.5.3 Manifold : a manifold is a topological space that is locally Eu-

clidean: there are compatible maps, φ ∶M → Rn, where n is known as the dimension

of the manifold.

Definition 1.5.4 Riemannian metric: a Riemannian metric is a map that satisfies

certain conditions and relates each point on the manifold to points on the tangent

space – a flat approximation of the manifold in question. Metrics allow us to measure

infinitesimal distances on the tangent space.

Definition 1.5.5 Geodesic: The minimum path between point a and point b on

the manifold as measured by the metric is called a geodesic between a and b. The

distance between two finitely separated points on the manifold is then the length of

the geodesic joining them.

Definition 1.5.6 Lie group: a Lie group is a group that has a manifold structure

where the operation of multiplication and the operation of inversion are smooth

maps. Examples of Lie groups include all the Euclidean similarity transformations.

Translations are a manifold Rd and a group equipped with the operation of vector

addition. Similarly, scalings are a manifold R+ and a group equipped with multipli-

cation and rotations SO(3) are a manifold S3 and a Lie group under composition.

If we represent a shape by a set of ordered n-ads in Rm say X = (x1, ..., xn) then

each configuration could be represented into a nm-vector in Rm×n (In this thesis we

will focus on planar shapes in m = 2 dimensions of n points so the configuration

space will be of dimension 2n). The groups that describe the Euclidean similarity

transformations of a configuration are: the group of translations under addition Gt =

Rm where the action is: (t,X) ↦X + t1n = (x1 + t, ..., xn + t). The group of scalings
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Ga = R+ under multiplication where the action is: (a,X) ↦ a ⋅X = (a ⋅ x1, ..., a ⋅ xn)

and finally the group of rotations GR = SO(m) under composition where the action

is: (R,X) ↦ RX = (Rx1, ...,Rxn).

The actions of rotations and scalings do not commute with the action of trans-

lations. That is because Rx + t ≠ R(x + t) for rotations and also a(x + t) ≠ ax + t

for scalings. That means that there are two separate actions: R+ × SO(m) and the

action of Rm but not the action of the whole group as Rm×(R+×SO(m)). However,

we can define the action of the semi-direct product as G = Rm ⋉R+ × SO(m) which

is well defined since R+ × SO(m) acts on translations in the same way as it acts on

the vector space Rm, defined as (t, a,R) ∗x = aRx+ t. The action of the semi-direct

product Rm ⋉R+ × SO(m) on an element is called a rigid motion.

Kendall separated the pre-shape space from the shape space. The former is the

last step before the true shape space; it is the space where scale and translation are

removed from the object with the rotations still present. It is a hypersphere of unit

radius in (n− 1) ×m dimensions and is constituted by configurations that represent

the same shape since rotations have not been filtered out yet. The elements of

the pre-shape space are called pre-shapes and are invariant under translations and

scalings.

In summary, a configuration that has been rotated, scaled and translated can

be represented as: [X] = {aRX + t1n ∶ a ∈ R+,R ∈ SO(m), t ∈ Rm} with G =

Rm ⋉R+ × SO(m). These are called orbits of the three groups and all elements of

[X] describe equivalent shapes. Each equivalence class represents a unique shape

and it is an element of the quotient space Rm×n/(Rm⋉(R+×SO(m))). This quotient

space is the set of all the orbits of Rm ⋉ (R+ × SO(m) in Rm×n and constructs the

shape space of all possible configurations that are the quotient space of the pre-

shape space. If a pre-shape is a Riemannian manifold then the shape spaces inherits

this Riemannian structure and becomes a Riemannian orbifold. An action that

intersects all the orbits of the quotient space is called an orthogonal section.

Kendall’s shape space [11] is based on the coordinates of landmarks which de-

scribe a shape geometrically. The space of all possible landmarks is the configuration



1.5. Shape spaces 26

space [14]. The Shape space [11] is the space of all possible shapes of the object

in question. This space is isomorphic to Rmn which is a differential manifold of

dimension mn and each shape is a point on it. This manifold comes with a natural

Riemannian metric: d(u, v) =
√
∑ni=1 ∣∣ui − vi∣ ∣2, u, v ∈ Rm which is the sum of Eu-

clidean distances in Rm and is invariant under translations and rotations. However,

the metric is not invariant under scalings since it transforms as d(au, av) = a2d(u, v).

Removing translations removes m dimensions leaving nm −m degrees of freedom.

The isotropic non-rigid scaling removes one dimension and the rotations remove

1
2m(m−1). Overall, the dimensionality of the shape space is: nm−m−1− 1

2m(m−1).

This is also known as the “Kendall shape space” [5]. Removing rotational, transla-

tional and scale effects from a shape is known as pose. Kendall’s shape space is a

finite dimensional Riemmanian manifold. Different shapes are different elements of

the manifold and the differences between them are calculated and quantified by the

imposed Riemannian metric one chooses. In these shape manifolds we can define

probability distributions to statistically study shapes’ estimation.

By using OPA or GPA shapes are brought to a common coordinate system and

now the variation of the shape classes can be studied in this framework. Popular

methods for modelling the class variation is Principal Component Analysis (PCA).

PCA is a way of removing redundancy from the dataset and was first introduced

by Pearson [61] and established by Hotelling [62]. It is a way of identifying existing

data structure and explaining their variation. PCA is useful in shape analysis since

it allows dimensional reduction in these high dimensional spaces. Principal compo-

nents can explain in which direction the highest variability of the data lies. Shape

variables usually are not statistically independent so most of the times we expect

them to be correlated. This is because they describe aspects and features of the

shape that are connected in a way; either genetically or mathematically. Here by

the term genetically we mean all shapes that share the same properties due to the

physiology of their shape. For example skulls share certain genetic landmarks that

are identical and act as reference for the experimentalists. The aim of PCA is to

explain this variation and reveal the patterns between the features by transforming

the variables into a set of new ones that are an independent linear combination of
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the old ones. Most of the sample variation can be then explained by only a few prin-

cipal components and make the task of statistical inference much easier. Its deep

goal is to explain the directions of largest proportion of the total variance. Figure

(1.2) shows a diagrammatic relationship between the spaces we have discussed by

now.

To sum up, we have seen all the stages of shape analysis: shape pre-processing,

shape transformations and shape classification. In particular, we have talked about

acquisition and detection, shape representation and classification; we focused only

on these notions since these will be of use for the purposes of this thesis. Shape

acquisition and detection are notions discussed in chapter [3] where we will describe

how these methods help us acquire the boundaries and outlines of the shapes in

question. In chapter [2] we will start building the framework needed for the classi-

fication of the acquired shapes. We will briefly discuss the chosen representations

under which we will perform the shape classification and how the shape spaces come

of use. Then, the big task is to establish and build probability distributions on these

spaces and model the variability of the parameters we chose to describe the shapes.

For the classification of the shapes, we will describe how we utilise the Bayesian

statistical framework and extend the work presented in [12].



Chapter 2

A novel shape classification

method

2.1 Introduction

In this chapter, we introduce a classification method which is the main contribu-

tion of this thesis. We revisit and extend the results presented in Srivastava and

Jermyn [12] by studying the problem of Bayesian classification of planar shapes in

an unbiased way. We utilise the Bayesian statistical framework presented in [12],

however the novelty of our approach is based on the way that the similarity trans-

formations are removed from the shapes in question in such a way that previous

numerical methods are replaced by their equivalent closed form solutions. Unless

stated otherwise, much of the following sections are based on the work presented by

Srivastava and Jermyn [12].

Section [2.2] presents the problem of shape classification and explains the way

we have chosen to treat it in the Bayesian paradigm by employing the results of

[12]. Sections [2.3] to [2.7] present the models we have utilised for the description

of the parameters that take part in the formulation of the problem. In particular,

section [2.7] explains one of the novelties of our approach by presenting the evaluated

Jeffreys prior for the parameters. However, Jeffreys prior introduces irregularities

and divergences of the result. Section [2.8] discusses our method of alleviating the

28
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divergences produced by Jeffreys prior which was done by employing regularisation

methods for the prior. Overall, this section presents the solution of the classification

problem and presents a result which replaces some of the approximating methods

presented in [12]. Section [2.9] presents a comparison between results when using

the method evaluated at section [2.8] and results when using Jeffreys prior of section

[2.7]. Section [2.10] presents the remaining computational methods we used for the

solution of the classification problem . The final result constitutes our proposed

classification algorithm in replacement of the algorithm in [12]. Finally, section

[2.11] presents the concluding remarks of this chapter.

2.2 The problem of classification

As mentioned before, shape is an important feature of objects in question. One

common theme and problem in the study of continuous, closed planar curves is that

in computer simulations one has to deal with noisy and undersampled data where

the use of landmarks and primitives is imperative. Towards this end, we will study

how to classify shapes that are generated by such continuous curves and look how

we can probabilistically classify them into their respective categories; given a set of

pre-determined classes we would like to classify the observed data shapes – we here

define a data shape to be one of the shapes that we observed i.e. an ordered set

of points in R2.

In the approach we take we will represent the objects of interest and their bound-

aries as continuous planar curves (i.e. one-dimensional lines which denote the out-

line of the object) and study their shapes. Our goal is to develop shape models,

statistical procedures and classification methods of continuous planar shapes and

establish the statistical framework needed for their classification. However, since

the testing of our theory involves computer implementation of algorithms, we will

eventually discretise these shapes by sampling their boundaries; however, we follow

the philosophy of discretising as late as possible [115].

The problem of classification is to state how probable it is that a given data
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shape y belongs to a class C. It can be described probabilistically and can be math-

ematically formulated as the posterior probability of the class in question given the

observed data, that is by P(C ∣y) where C ∈ C the class of the object, represented

by the dataset and y ∈ Y is the set of all the observed data shapes i.e. a finite

set of primitives. More specifically, P(Cj ∣yi) is the probability that the observa-

tion yi has been generated by class Cj. For the time being we will study planar

shapes so we can take Y to be Y = R2n for n primitives. In a Bayesian framework,

classification is performed by maximising the posterior probability of the class so

constructing a Bayesian classifier and using the Maximum a Posteriori decision rule,

the classification of the data set y can be done with the help of Bayes theorem:

P(C ∣y) = P(y∣C)P(C)
P(y)

. (2.2.1)

The classification is then achieved by deciding on C̃ = argmaxC P(C ∣y). The

prior probability over the classes P(C) can be freely chosen. Without any evidence

on which to base this prior, we choose it to be uniform and hence give equal chance

of each class to appear in our data. Then, the greatest task is to calculate the

likelihood which describes how likely it is for the data to have been generated by a

fixed class. To calculate the likelihood, we will partition it over nuisance parame-

ters that correspond to the data formation process so that the likelihood describes

how the data are formed by the object class; this is the novelty of the geometrical

approach in [12]. The marginalisation of the likelihood also helps us to break down

its approximation into simpler steps which makes the calculation easier. We now

introduce the variables needed for the partition of the likelihood that provide an

overview of the formation stages and the rise of the algorithm used for the purposes

of classification. Each of the variables will be thoroughly explained in the following

sections.

Let g ∈ G be the group action of rotations, translations and scalings with G =

Rm ⋉ (R+ ×SO(m)), the semi-direct product as described previously in chapter [1],

section [1.5]. Let β ∈ B ≡ Rm×n/(Rm⋉(R+×SO(m))) be a shape which is an object’s

outline modulo Euclidean similarity transformations that from now on we will call
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an example shape; a specific shape outline is then given by gβ. Let s ∈ S, be

a sampling function that places n points around the boundary of the shape. We

will see in section [2.3] that the model of sampling functions is chosen so that it

reflects our belief that samplings should favour the even sampling and vary around

that. Placing these points on the boundary, the continuous curve βs becomes a

set of n discrete landmarks modulo similarity transformations. A particular shape

on which a similarity transformation has acted upon is given by gβs. Lastly, let

b ∶ [0, ...n] → [0, ...m] ∈ B be a bijection relating points from β uniquely to points

of the data shape y. There will also be some inherent noise as part of the data

collection process so we include a parameter σ which represents the variance of this

noise. As this is an unknown parameter, we will integrate over it by imposing a

prior which we introduce in later sections. These parameters can be used for the

marginalisation of the likelihood so that:

P(y∣C) = ∑
b∈B
∫ Dβ Ds Dg dσ P(y∣b, β, s, g, σ)P(b)P(s)P(g)P(σ)P(β∣C) (2.2.2)

The integration measures use calligraphic D to denote their spaces are infinite di-

mensional. In the above expression, in the formulation of the likelihood we have

made the necessary independence assumptions. In particular, b á {β, g,C} as bijec-

tions are conditionally independent of a particular shape, transformation or class.

One can say here that bijections implicitly depend on the samplings s only with

respect to the number of the sample points. Samplings around the boundary of

the shape can be done in many ways, for example with respect to the curvature

of the curve however in our work we take s á {g, β,C} so that samplings have no

dependence on any particular transformation, shape curve or class. For similarity

transformations we take g á β because no curve depends on a particular similarity

transformation and they are thus independent of how the curves were formed. We

will discuss the individual marginal distributions of the nuisance parameters in the

sections to follow.

The difficulty of the classification problem lies in the fact that in order to com-

pute the posterior probability via MAP one must evaluate the integrals and thus
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somehow sum over all possible bijections and integrate over all similarity transfor-

mations, samplings and shape curves. In past work [12, 14, 116] the integration

and summation over all nuisance parameters were approximated by Monte Carlo

integration and Laplace’s approximation (saddle point approximation). In partic-

ular, the integration over the curves β and samplings s were calculated by Monte

Carlo integration. To do so, realisations from the distributions were generated and

the values of the integrand evaluated at these realisations were summed over. The

integration over the similarity group g and the sum over bijections b were carried

out by a Laplace’s approximation which finds the maximal bijection b for the best

transformations g. This used a combination of the Procrustes and the Hungarian

algorithm [117, 118] to find the optimum solution to the combined registration-

transformation problem with the likelihood being the cost function. The solution to

this combined registration-transformation optimisation problem maximises the inte-

grand and the result of these two integration procedures is an approximation of the

value of the likelihood P(y∣C) which, when normalised, gives the MAP estimation

of the posterior probability over the classes given the observed data.

In this thesis, we present in section [2.8] how, under the right choice of priors, the

integration over the nuisance parameters is feasible using analytical methods which

result in closed form solutions. To construct a fully statistical framework, we develop

probability models and computational methods for our choice of probabilistic models

P(β∣C), P(s∣β,C), P(y∣b, gβs) which respectively describe the variability in shape,

samplings and the observation noise.

2.3 Sampling models

In this work, by sampling a continuous, planar curve we mean the placement of a

certain number of ordered points (landmarks) on the curve by a sampling function.

As discussed in chapter [1], the placement of points around a planar curve most often

depends on external factors such as the particular experiment or the experimental-

ist. This action of discretisation of a curve contributes to the loss of information

about the curve that represents the original shape. Samplings generate primitives
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or landmarks by certain procedures such as edge detection or the experimentalist

himself. This makes the position of the landmarks dependent on the chosen sam-

pling method and for this reason we treat samplings in a probabilistic way. In the

next section we describe the sampling model P(s) and the space that such sampling

functions are being generated from.

Representation of samplings

The problem of matching sampled shapes has been discussed in the past [119]

however the mathematical representation of samplings has not been studied ex-

tensively in the literature. Now, a sampling involves the placement of n points on

a curve. To describe this placement mathematically we need a good representation

and parametrisation of the curve. A natural way a sampling can be parametrised is

with respect to its arc length; then the n points can be placed along the length of the

curve i.e. in the interval [0, L], where L is the curve’s Euclidean length. It is usual

practice to standardize lengths so that the points are placed between 0 and 1, which

makes the actual representation of the samplings easier. As stated in the previous

section, the probability of a sampling is independent of the position, orientation or

scale of the curve which is implicit in equation (2.2.2).

The placement of n points in the interval [0,1] is equivalent to partitioning it

into n sub–intervals. The first point to be placed will be assumed to be the origin

τ of the samplings and will become an element of the representation. The partition

of the unit interval by n points can be thought of as a probability mass function

with n elements. This allows consistency between probabilities of samplings with

different number of points which implies that the number of the points and their

placement should be considered as separate actions. We now see how samplings can

be represented.

Let Γ be the set of all increasing differentiable functions from [0,1] to itself

with the constraint for all γ ∈ Γ be: γ(0) = 0 and γ(1) = 1. This is a positive

diffeomorphism of the unit interval. Partitioning uniformly the unit interval in n

sub–intervals we get U = [0,1]/n. A sampling s is then represented by an equivalence
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class [n, τ, γ] ∈ N × S1 × Γ where parameters that lead to the same sampling are

identified. Thus, an equivalence class [n, τ, γ] forms a sampling by the action of

γ on U starting at τ – the diffeomorphisms push forward the points in U to new

positions where we sample. Since diffeomorphisms are increasing functions in the

unit interval they can be thought of as cumulative distribution functions on [0,1].

There is a number of possibilities for the representation of such functions of which

we must choose the most efficient for our applications:

1. Diffeomorphisms: an element of Γ can be represented by itself; as an increas-

ing function in the interval [0,1] such that γ(0) = 0 and γ(1) = 1. The action

of the group of diffeomorphisms is composition which is relatively simple.

2. Probability density: an element of Γ can be represented as a positive prob-

ability density so that p = γ̇ = dγ(τ)
dτ which is a positive function that integrates

to 1.

3. Square-root form: an element of Γ can be represented by the square root

of a probability density so that ψ = √
p with ψ ∈ Ψ and p ∈ P a probabil-

ity density. This representation coincides with the positive functions whose

square integrates to 1; this is the positive orthant of the unit sphere in the

space L2([0,1]). This representation simplifies the form of the functions and

induces a simple natural Riemannian metric on Γ. A big advantage of this

representation and the nature of the underlying space is that geodesics and

exponential maps can be calculated in closed form. In the past the usage of

a different metric was used for the approximation of geodesics by numerical

methods. Srivastava et al. [120] demonstrate the computational superiority of

the square-root form representation.

We must now choose the appropriate representation of sampling functions to

have as much efficiency as possible for our work and applications. As we mentioned

above, one can show that the square-root form of a probability density results in a

simpler manifold, the unit sphere, under the much simpler L2 metric; for the proof
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of this result refer to [120]. For these reasons, the square root form is our chosen

representation and we now discuss how the space Γ of the increasing differential

functions is structured under our chosen representation.

2.3.1 The structure of Γ

Our ultimate goal is to construct probability distributions that represent our trust in

the samplings i.e. the placement of n points on the boundary of an object. The posi-

tive diffeomorphisms on the unit interval form a non-linear manifold on which we can

impose Riemannian structure by choosing an appropriate metric. This allows us to

perform statistics and calculate geodesics between different diffeomorphisms on the

manifold. Thus, we must decide on the choice of the representation of the increasing

differentiable functions and also choose the metric to impose on the manifold.

There are unlimited choices of Riemannian metrics one could impose on Γ.

However, there is a natural choice of metric for the space of probability distri-

butions, the so called Fisher-Rao metric, which defines an inner product on varia-

tions of two probability distributions and has been extensively used in the literature

[121, 122, 123]. The choice of this metric has a geometrical meaning since it is invari-

ant to reparametrisations of the unit interval and the action of the diffeomorphism

group as proved by Čencov [124]. Since, as stated in point 2 of the previous section,

the space of probability distributions P is isomorphic to Γ, Γ inherits this natural

metric which is the one we choose to use. For the proof of the Fisher-Rao metric’s

invariance on Γ refer to [12] or [120].

Under the choice of the probability density representation p for the increasing

differentiable functions, the Fisher-Rao metric takes the following form: the inner

product on variations in probability densities at any point p ∈ Γ is:

⟨δp, δp′⟩ = ∫
1

0
δp(s)δp′(s) 1

p(s)
ds, δp, δp′ ∈ Tp(Γ). (2.3.3)

However, under the square root representation ψ = √
p ∈ Ψ, the metric becomes

significantly simpler and transforms into the L2 metric that appeared as part of the
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constraints on ψ ∈ Ψ, which is:

⟨δψ, δψ′⟩ψ = ∫
1

0
δψ(s)δψ′(s)ds, δψ, δψ′ ∈ Tψ(Ψ). (2.3.4)

Overall, the space Ψ is the positive orthant of the unit sphere and the Fisher-Rao

metric transforms into the L2 Riemannian metric on L2([0,1]) restricted to Ψ.

With this simpler form of the metric, geodesics are great circles on the sphere. The

solution to the geodesic equation for Γ under the Fisher-Rao metric and the L2 inner

product is:

d(γ1, γ2) = cos−1(⟨γ̇1, γ̇2⟩Ψ). (2.3.5)

The geodesics on Ψ between two points ψ1 and ψ2 are given by:

ψ(t) = 1

sin(θ)
[sin((1 − t)θ)ψ1 + sin(tθ)ψ2] (2.3.6)

with ⟨ψ1, ψ2⟩Ψ = cos(θ). Finally, for the desired geodesics in Γ, one can derive that

γ(t)(s) = ∫
s

0 ψ
2(t)(τ)dτ , using that ψi = γ̇1/2. Since Ψ in general is an easier space to

calculate mathematical and statistical quantities, it is easier to compute the wanted

quantities on Ψ and then project the results back to Γ. This is of particular use

for the sampling functions and for constructing the desired probabilities on Γ. For

the projection of the results between Ψ and Γ we need to describe and use the

exponential map.

The exponential map is a map between the tangent space T (Ψ) of the manifold

and the manifold itself which in our case is the L2 unit sphere. We have been

referring to the tangent space in the previous two equations and it is defined in

section [1.5]. The only complication here is that the elements of the manifold are

sampling functions (one possible basis could be Fourier components) so elements of

the tangent space are infinitesimal differences between these functions. The geodesic

on Ψ starting from the point ψ in the direction of v ∈ Tψ(Ψ) is: cos(t)ψ + sin(t) v
∣∣v∣∣

so that the exponential map from the tangent space Tψ(Ψ) of Ψ to Ψ is defined by:

expψ(v) = cos(∣∣v∣∣)ψ+ sin(∣∣v∣∣) v
∣∣v∣∣ . However ∣∣v∣∣ must be restricted in [0, π) to avoid
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negative values of ψ and hence avoid expψ(v) lying outside the manifold Ψ. For any

two ψ1, ψ2 ∈ Ψ the definition of the inverse exponential of ψ2 is v = exp−1
ψ1

(ψ2) which

can be calculated by: u = ψ2 − ⟨ψ2, ψ1⟩ψ1 and v = u cos−1 ( ⟨ψ1,ψ2⟩√
⟨u,u⟩ ).

In summary, the space Γ of increasing differentiable functions is described by a

manifold equipped with a Riemannian metric and we can now construct probability

distributions on it. Srivastava and Jermyn [12] use the fact that a sampling s can

be represented as ⟨n, τ, γ⟩ ∈ N × S1 × Γ. The probability for a sampling s was then

calculated as: P(s∣C) = P(n)P(τ ∣C)P(γ∣τ,C). However, in our work we assume that

P(s) = P(γ), which implies that s is conditionally independent of the class C and we

use a uniform distribution for P(n). For the distribution over the diffeomorphisms

γ the choices are enormous however not arbitrary. For example, the points in s

represent the sample points selected by the person extracting the shape from the

laser cloud data and they tend to be evenly spread. We follow [12] and we use the

generalised Gaussian probability distribution which is:

P(γ) = 1

Z
exp(− 1

2σ2
s

d2(γ̇1/2, ψ0)) (2.3.7)

where d is the geodesic distance calculated under the chosen metric and ψ0 = γ̇0
1/2

the mode of the Gaussian distribution. We now must make a choice for γ0. The

most natural choice one could make is γ0(s) = s and ψ0 = 1 because it favours

uniform samplings of the curve with respect to its arc-length parametrisation1; we

choose a Gaussian distribution that has this uniform sampling as its mean and varies

along that. Of course, other choices are possible which may depend on geometrical

properties such as curvature but we leave this for future consideration.

To simulate from such a probability density we need to generate functions that

satisfy the desired restrictions. To do so, we use the exponential map. We need

to randomly generate a function f ∈ Tψ0(Ψ) such that ∣∣f ∣∣ = 1. We assume that

a function f ∈ Tψ0(Ψ) can be written as an infinite sum of its Fourier components

1The points in U could remain fixed under γ0, so the curve would be split into n points equally

spaced along its length.
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Figure 2.1: Examples of 10 different diffeomorphisms.

i.e. f(t) = ∑∞
−∞Cm exp(2πimt). We chose this representation because although we

could generate a random function in the time domain, its Fourier series’ transform in

the frequency domain offers a greater smoothness. For computational purposes we

take f(t) = ∑N/2−1

−N/2 Cm exp(2πimt) therefore providing an approximation of f . The

complex realisations Cm are generated from a complex Gaussian distribution and

by imposing the constraint C−m = C∗
m we ensure the reality condition of the Fourier

components. To also ensure that f is an element of the tangent space Tψ0(Ψ) of Ψ

and that it integrates to zero, we set C0 = 0. Finally, the function f , is calculated via

the inverse Fourier transform and its normalization by Parseval’s theorem. Then,

we generate a distance x of a normal distribution so that x ∼ N(0, σ2) and compute

a random point ψ(x) = cos(x)ψ0 + sin(x)f via the pushforward. Here, ψ0 represents

the mode of the distribution and the starting point on the manifold. In other words,

a random element of Ψ, which effectively represents a sampling function, can be

calculated as going along the geodesic of Ψ starting from ψ0 in the direction of

f . Finally, the random sampling function we are interested in is calculated by:

γ(s) = ∫
s

0 ψ
2(s′)ds′ which takes us from the square root on Ψ to the functional

representation γ ∈ Γ. Figure (2.2) gives a pictorial explanation of the above and

figure (2.1) shows examples of such generated diffeomorphisms. Figure (2.3) shows

how such a diffeomorphism pushes forward (in red) the sampled points (in blue).
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ψ0

ψ

Geodesic distance between

ψ0 and ψ on the manifold Ψ

Figure 2.2: A pictorial representation of the observation model



2.4. Shape models 40

Figure 2.3: A diffeomorphism pushes forward (in red) the sampled points (in blue)

of the triangle’s boundary.

2.4 Shape models

We now discuss the representation of shapes and how we construct shape models

P(β∣C). These models reflect our belief that objects coming from the same shape

class present natural variability within it. In this thesis, we choose different models

to describe particular shape applications; for example the KIMIA database model is

uniform whereas the geological sand bodies’ model is a Γ distribution on the aspect

ratio (see chapter [3], sections [3.2] and [3.3] respectively for more details). In both

cases we represent shapes as closed planar curves that are parametrised by their

arc-length.

2.5 Bijection models

One of the challenges of the calculation of the marginalised likelihood (2.2.2), is

the summation of all possible bijections. The bijection model P(b) is assumed to
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be discrete uniform and in particular we assume that there are n rather than n!

bijections. This is a point that we will extensively discuss in section [2.10] due to

the irregularities introduced by the closed form results.

2.6 The observation model

In many cases, the data we observe may be found in a noisy environment so that

the observed data points might be different than the corresponding curve points.

Since any data shape point collection introduces uncertainty and errors in the ex-

periment, we need to find a way to include this in the mathematical model that

describes the observed shapes. One way to treat this variability is to introduce ob-

servational noise that perturbs the points from the original boundary of the shape

according to a probability distribution. The choices here are once again enormous.

We choose the probability distribution imposed on the noise to be white and addi-

tive Gaussian for simplicity. In [12] Srivastava and Jermyn also include clutter that

is introduced from the background however this type of noise will not be considered

in our work2. Modelling the noise and dissimilarity between any two shapes via a

Gaussian likelihood the form of the model is:

P(y∣b, β, s, g, σ) = 1

(2π)nσ2n
exp(− 1

2σ2

n

∑
i=1

∣ybi − g ○β(s(b−1
i ))∣2)

= 1

(2π)nσ2n
exp(− 1

2σ2

n

∑
i=1

∣ybi − aRβ(s(b−1
i )) − t∣2) (2.6.8)

which models errors in shape point collection as Gaussian white noise where σ2 is

the noise variance which can be regarded as a free parameter. Varying σ2 changes

the shape of the posterior but not its mode [12]. Depending on the method of

the extraction of the points, our observational points might be different from the

corresponding points on the curves. The noise is taken to be responsible for the

perturbation of the points from their original place. This shows that a given set

of data is supposed to have arisen as a result of a rigid transformation of an ideal

2This reflects the mechanism by which data are provided from geological contexts
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example shape β from a particular class with Gaussian noise added to each sampled

point. To express our ignorance of the transformation between the shapes, the

likelihood will be broken into small parts and in particular it will be partitioned

over the nuisance parameters that will be eventually integrated out.

The likelihood function for the complete data is then:

P(y∣C) = ∑
b∈B
∫ Dβ Ds Dg dσ P(y∣b, β, s, g, σ)P(b)P(s)P(g)P(σ)P(β∣C)

= ∑
b∈B
∫ Dβ Ds Dg dσ exp(− 1

2σ2

n

∑
i=1

∣ybi − aRβ(s(b−1
i )) − t∣2)×

P(b)P(s)P(g)P(σ)P(β∣C) (2.6.9)

The detailed explanation of the above expression is as follows: a particular data

shape ybi can be regarded as coming from one of the representative shapes βi which

comes from one of the classes C. The model assumes that the data shape yi has

arisen by such a representative shape that has been rotated by R, scaled by a and

translated by t; this group action is represented by g. A sampling function s places

N points around the boundary of the shape. Due to data collection errors, Gaussian

noise σ is added which perturbs the points from their original places. To compare

the data to the representative shapes of each class the model assumes a bijection

b ∶ [1, ...n] → [1, ...n] relating each point of the data shape to a unique point of

the idealised example shape. A pictorial explanation of expression (2.6.8) is given in

figure (2.4). Figure (2.5a) shows the comparison between an “observed” rectangle (in

red) and an “idealised” example shape β from the same class. Figure (2.5b) shows

the comparison between an “observed” circle (in red) and an “idealised” rectangle.

β
aRβ + tRβ

aRβ aRβ + t

Figure 2.4: A pictorial representation of the observation model
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(a) Comparison between shapes

of the same class

(b) Comparison between shapes

of different classes

Figure 2.5: A pictorial explanation of the observation model P(y∣b, β, s, g, σ)

By making appropriate changes of variables, it is easy to verify that the complete

likelihood enjoys the following behaviours. It has translational symmetry under

y → y +u for any vector u. It is invariant to rotations over the data shape y → Sy

where S ∈ SO(2) and under a scaling y → λy for λ ∈ R+, the likelihood scales as

λ−2n. We can illustrate these claims by the latter example: to compensate for the

scaling of y one may let σ′ = σ
λ , a′ = a

λ and t′ = t
λ . Then it is easy to check that

the likelihood scales as claimed provided the priors scale in the appropriately. In

particular, with our use of Jeffreys prior, which corresponds to the Haar measure on

the variables, then this behaviour holds. Similar changes of variable (with the same

behaviour of the priors) suffice to show invariance under translations and rotations.

We will soon see the need to regulate divergences by modifying Jeffreys prior which

will spoil the scaling behaviour unless the regulators are removed but translational

and rotational invariance will be preserved throughout. However, when this is used

to calculate the posterior, such scale factors cancel out so as to leave the posterior

to be scale invariant.

There is one important matter to be discussed at this point. Although the

likelihood appears to scale as λ−2n, the posterior is invariant under such scalings i.e.

P(C ∣y) = P(C ∣λy) which follows from the scaling of the likelihood L(y) = λ−2nL(λy).
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In particular, one can see by a change of variables that for a constant b, the likelihood

satisfies the relationship: L(y∣σ/b, a) = bpL(by∣σ, ab) = bp−2nL(y∣σ, ab) where p is

some integer. This shows that changes in the scale of σ can be reinterpreted (up

to a constant scaling of the likelihood) as changes in the scaling parameter, a.

This generates a question as to whether the inclusion of both the scaling and noise

parameters are needed in the model. Perhaps we could remove the scalings and then

take only σ into account or vise versa; in other words we will investigate whether

both parameters are crucial to our analysis. We will ultimately answer this later on

in this chapter when we calculate the posterior.

To investigate the impact of restricting our model to include only one of these

variables, we have to evaluate Jeffreys prior when each of these parameters are

removed from the calculation. We will investigate this in section [2.7.1].

2.7 Similarity transformations and noise model

If we want to describe a configuration that has a particular position, orientation and

scale in space, we need to act on the configuration by a similarity transformation

g ∈ G. Srivastava and Jermyn use a uniform model P(g) on the space G. In

our work, we use a different model to describe similarity transformations and the

noise taking into account our ignorance over them. To reflect our ignorance over

the similarity transformations and the noise variance we chose to model them as

the joint Jeffreys’ prior over this space. Our ignorance in the distribution of these

nuisance parameters stems from the fact that we will not have sufficient information

of the properties of the database that we will discuss in chapter [3]. This is because

we won’t have access to sufficient geological data to form subjective priors. For

this reason, Jeffreys prior is the most appropriate choice as it is unbiased with

respect to the parameters. We shall see later in this chapter, that it is necessary

to modify this slightly by introducing what will appear to be subjective priors to

regulate divergences. However, we will only be interested in a certain limit where

these priors reproduce the result arrived at with the Jeffreys prior we shall derive in

section [2.9].
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It is necessary to explain the choice of the prior model we made for similarity

transformations and the noise variance σ. The prior distribution is the joint Jeffreys

prior and was calculated over this complex joint five dimensional space. Jeffreys’

prior [125] is a locally uniform [126] and non-informative prior whose density can be

calculated as the square root of the determinant of the Fisher information matrix

I(φ) i.e.

J(φ) ∝
√

det(I(φ)) ∝

¿
ÁÁÀdet E [∂ lnL

∂φi

∂ lnL

∂φj
] (2.7.10)

where L is the likelihood function which is differentiated over the parameters φ.

This prior distribution has the special property that it is invariant under re-

parametrizations of φ something that is called “Jeffreys’ invariance” and it is re-

quired for the construction of non-informative priors. Jeffreys’ invariance ensures

that a change in the parametrisation of φ doesn’t change the answer of an integra-

tion and should yield at the same result; this implies invariance under the diffeo-

morphism group because any changes of the parameters is just a diffeomorphism of

that space of variables. Another special property of Jeffreys’ prior is that it always

corresponds to the left Haar measure; it is conventional to use the left Haar mea-

sure because this corresponds to an “active” transformation rather than a “passive”

transformation. The Haar measure is invariant under the action of the group in the

sense that ∫ DU = ∫ D(Uv) for any group element v. For Jeffreys prior we have that

∫ ∣J ∣dx = ∫ ∣J ′∣dx′ where ∣J ′∣ and x′ are the variables in some other parameterisation.

Although Jeffreys prior violates the likelihood principle and is flat relative to

the likelihood function, its choice is useful when we have no a priori knowledge for

our problem and hence used as the most unbiased representative measure whose

geometrical interpretation is in terms of our ignorance of the variables in question.

In addition, Jeffreys prior can be improper for many models and although improper

priors are allowed, they may produce improper posteriors. In the next section we

calculate Jeffreys prior for similarity transformations g ∈ G and the noise parameter

σ.
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2.7.1 Jeffreys prior

In this section we calculate the five dimensional joint Jeffreys prior for the similarity

transformations g ∈ G and the noise parameter σ. To do so, we will form the Fisher

information matrix by differentiating the likelihood function with respect to the

parameters over which the prior is built. These parameters are: the noise σ, the

scalings a, the translations t and the rotations R. Since we are only encountering

two dimensional shapes, we will regard translations to be two dimensional so we

take into account both the x and the y component. This results in a 5 × 5 Fisher

information matrix. The marginalised likelihood is:

P(y∣b, β, s, g, σ) = 1

(2π)nσ2n
exp(− 1

2σ2

n

∑
i=1

∣yi − aRβ(s(b−1
i )) + t∣2)

= 1

(2π)nσ2n
exp(− 1

2σ2

n

∑
i=1

∣yi − aRvi + t∣2) (2.7.11)

where we have substituted vi = β(s(b−1
i )) and ybi = yi for simplicity. The log

marginalised likelihood is then:

L = log(P(y∣b, β, s, g, σ)) = −n log(2π) − 2n log(σ) − 1

2σ2

n

∑
i=1

∣yi − aRvi + t∣2 =

= −n log(2π) − 2n log(σ)

− 1

2σ2

n

∑
i=1

(yi − aRvi + t) ⋅ (yi − aRvi + t)

(2.7.12)

For the calculation of the scores of the Fisher matrix, we will calculate all the

second derivatives of the log likelihood with respect to the parameters φ = {σ, a, t,R}

and then compute the expectation of the derivatives with respect to y. The calcula-

tion of the derivatives will be described in the following sections. We firstly calculate

all the diagonal terms of the Fisher matrix and then proceed to the computation of

the off diagonal terms.
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Derivatives with respect to noise σ

The first term we calculate is the first diagonal entry of Fisher’s matrix. We find the

derivative of the log likelihood (2.7.12) with respect to the noise variance σ. The

derivatives of the marginalised log-likelihood with respect to σ were found to be:

∂L
∂σ

= −2n

σ
+ 1

σ3

n

∑
i=1

∣yi − aRvi + t∣2 (2.7.13)

∂2L
∂σ2

= 2n

σ2
− 3

σ4

n

∑
i=1

∣yi − aRvi + t∣2. (2.7.14)

To complete the calculation of Fisher’s entry we must take the expectation of the

score element (2.7.14) with respect to y. That is:

E(∂
2L
∂2σ

) = ∫ ∏
i

d2yi P(y∣b, β, s, g, σ))
∂2L
∂2σ

= 1

(2π)nσ2n ∫ ∏
i

d2yi
2n

σ2
exp(− 1

2σ2

n

∑
i=1

∣yi − aRvi − t∣2)

− 1

(2π)nσ2n ∫ ∏
i

d2yi
3

σ4

n

∑
i=1

∣yi − aRvi + t∣2 exp(− 1

2σ2

n

∑
i=1

∣yi − aRvi − t∣2)

= 2n

σ2

(2πσ2)n
(2πσ2)n

− 1

(2π)nσ2n

3

σ4 ∫ ∏
j≠i
d2yj exp(− 1

2σ2∑
j≠i

∣yj − aRvj − t∣2)×

∫
n

∑
i=1

∣yi − aRvi − t∣2 exp(− 1

2σ2

n

∑
i=1

∣yi − aRvi − t∣2)

= 2n

σ2
− 1

(2π)nσ2n

3

σ4
(2πσ2)n−1

n

∑
i=1

2 σ2(2πσ2) = 2n

σ2
− 6n

σ2
= −4n

σ2
. (2.7.15)

Thus, the diagonal entry of the Fisher matrix with respect to σ is:

E (∂2L∂2σ) = −
4n
σ2

Derivatives with respect to scalings a

The second term to be calculated is the diagonal term of the Fisher matrix with

respect to a. The derivatives of the marginalised log likelihood with respect to

scalings a were found to be:
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∂L
∂a

= − 1

2σ2

n

∑
i=1

[(−Rvi) ⋅ (yi − aRvi + t) + (−Rvi) ⋅ (yi − aRvi + t)] =

= − 1

2σ2

n

∑
i=1

[(−2Rvi) ⋅ (yi − aRvi + t)] =

= 1

σ2

n

∑
i=1

[(Rvi) ⋅ (yi − aRvi + t)] (2.7.16)

∂2L
∂a2

= 1

σ2

n

∑
i=1

[(Rvi) ⋅ (−Rvi)] = −
1

σ2

n

∑
i=1

(Rvi) ⋅ (Rvi)

= − 1

σ2

n

∑
i=1

∣Rvi∣2 . (2.7.17)

However, because rotations R act as isometries, expression (2.7.17) becomes

− 1
σ2 ∑ni=1 ∣vi∣

2
. To complete the calculation of the Fisher entry one must calculate

the expectation of equation (2.7.17) with respect to y. This is:

E(∂
2L
∂a2

) = − 1

(2π)nσ2n ∫ ∏
i

d2yi
1

σ2

n

∑
i=1

∣vi∣2 P(y∣b, β, s, g, σ)

= − 1

(2π)nσ2n ∫ ∏
i

d2yi
1

σ2

n

∑
i=1

∣vi∣2 exp(− 1

2σ2

n

∑
i=1

∣yi − aRvi + t∣2)

= − 1

σ2

n

∑
i=1

∣vi∣2 . (2.7.18)

Thus, the diagonal entry of the Fisher matrix with respect to scalings a is:

E (∂2L∂a2 ) = −
1
σ2 ∑ni=1 ∣vi∣

2

Derivatives with respect to translations t

We now calculate the diagonal term of the Fisher matrix with respect to transla-

tions. We will calculate the translations’ derivatives with respect to its constituent

components tx and ty. Writing the equation of the marginalised likelihood (2.7.12)

in component form, we have:

L = − 2n log(σ) − 1

2σ2

n

∑
i=1

∣yi − aRvi − t∣2 =

= −2n log(σ) − 1

2σ2

n

∑
i=1

[(yxi − a (Rvi)
x + tx)2 + (yyi − a(Rvi)y + ty)2] (2.7.19)
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Taking the derivatives of equation (2.7.19) with respect to the x component of

translations first:

∂L
∂tx

= − 1

2σ2

n

∑
i=1

2(yxi − aRvxi + tx) =

= − 1

σ2

n

∑
i=1

(yxi − aRvxi + tx) (2.7.20)

∂2L
∂tx

2 = − 1

σ2

n

∑
i=1

1 = − n
σ2
. (2.7.21)

Similarly and by symmetry, the derivative of equation (2.7.19) with respect to the

y component of translations is:

∂L
∂ty

= − 1

2σ2

n

∑
i=1

2(yyi − aRvyi + ty) =

= − 1

σ2

n

∑
i=1

(yyi − aRvyi + ty) (2.7.22)

∂2L
∂ty

2 = − 1

σ2

n

∑
i=1

1 = − n
σ2

(2.7.23)

The expectation of equation (2.7.21) and (2.7.23) enter into the Fisher information

matrix; they are equal and since they are constants, their expectation with respect

to y is also a constant and equal to:

E (∂2L∂t2x
) = E (∂2L∂t2y

) = − n
σ2

Derivatives with respect to rotations R

Rotations can be represented in various ways. However, the calculation of the deriva-

tives of Fisher information matrix with respect to rotations becomes significantly

simpler if we represent rotations R in standard form parametrised by θ:

R =
⎛
⎜
⎝

cos θ − sin θ

sin θ cos θ

⎞
⎟
⎠

Writing equation (2.7.19) in component form including rotations, it becomes:
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L = −2n log(σ) − 1

2σ2

n

∑
i=1

[(yix − a(cos θvi
x − sin θvi

y) + tx)2

+ (yiy − a(sin θvix + cos θvi
y) + ty)2] (2.7.24)

We now find the derivative of equation (2.7.24) with respect to θ which is:

∂L
∂θ

= − 1

2σ2

n

∑
i=1

[2 [yix − a(cos θvi
x − sin θvi

y) + tx] ⋅ [−a(− sin θvxi − cos θvyi )]

+ 2 [yiy − a(sin θvix + cos θvi
y) + ty] ⋅ [−a(cos θvxi − sin θvyi )] ] =

= − 1

σ2

n

∑
i=1

[a [(yix − a (cos θvi
x − sin θvi

y) + tx) (sin θvix + cos θvi
y)]

− a [(yiy − a(sin θvix + cos θvi
y) + ty)(cos θvi

x − sin θvi
y)] ]. (2.7.25)

For simplicity we will differentiate the above expression’s brackets separately and

combine the result. For the first term in square brackets we find that the second

derivative is:

− 1

σ2

n

∑
i=1

[a(a(sin θvix − cos θvi
y))(sin θvix + cos θvi

y)

+ a(ybix − a(cos θvi
x − sin θvi

y) + tx)(cos θvi
x − sin θvi

y))]

= − 1

σ2

n

∑
i=1

[a2(sin θvix + cos θvi
y)2

+ a(yix − a(cos θvi
x − sin θvi

y) + tx)(cos θvi
x − sin θvi

y))]. (2.7.26)

For the second term in the square brackets of equation (2.7.25) the second derivative

with respect to θ is:
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− 1

σ2

n

∑
i=1

[ − a(−a(cos θvi
x − sin θvi

y)(cos θvi
x − sin θvi

y)

− a(yiy − a(sin θvix + cos θvi
y) + ty)(− sin θvi

x − cos θvi
y))] =

= − 1

σ2

n

∑
i=1

[a2(cos vi
x − sin θvi

y)2

+ a(yiy − a(sin θvix + cos θvi
y) + ty)(sin θvix + cos θvi

y))] (2.7.27)

Again, for simplicity we will take the expectations of these two expressions separately

and combine them in the end. The expectation of equation (2.7.26) with respect to

y is:

E( − 1

σ2

n

∑
i=1

[a2(sin θvix + cos θvi
y)2

+ a(yix − a(cos θvi
x − sin θvi

y) + tx)(cos θvi
x − sin θvi

y))] ) =

= − 1

(2π)nσ2nσ2 ∫
n

∏
i=1

d2yi
n

∑
i=1

[a2(sin θvix + cos θvi
y)2+

a(yix − a(cos θvi
x − sin θvi

y) + tx)(cos θvi
x − sin θvi

y))]×

exp(− 1

2σ2

n

∑
i=1

∣yi − aRvi + t∣2) (2.7.28)

However we notice that the second term of the integrand is odd in (yix−a(cos θvix−

sin θviy)+tx) so when integrated against the marginalised likelihood which is an even

function, the result will be zero. Thus, the expectation of the above expression is:

− 1
σ2 ∑ni=1 a

2(sin θvix + cos θviy)2. Similarly, the expectation of the second term which

we calculated in equation (2.7.27) is:
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E( − 1

σ2

n

∑
i=1

a2(cos vi
x − sin θvi

y)2+

a(yiy − a(sin θvix + cos θvi
y) + ty)(sin θvix + cos θvi

y))) =

= − 1

(2π)nσ2nσ2 ∫
n

∏
i=1

d2yi
n

∑
i=1

a2(cos vi
x − sin θvi

y)2+

a (yiy − a(sin θvix + cos θvi
y) + ty)(sin θvix + cos θvi

y))×

exp(− 1

2σ2

n

∑
i=1

∣yi − aRvi + t∣2) . (2.7.29)

The expectation of the second term of the above expression with respect to y is

odd in (yiy − a(sin θvix + cos θviy) + ty)) so when integrated against the marginalised

likelihood (2.6.8), which is an even function, the result will be zero. The result of

the above expression is: − 1
σ2 ∑ni=1 a

2(cos vix − sin θviy)2. Combining the results from

both expressions we have:

E(∂
2L
∂θ2

) = − 1

σ2

n

∑
i=1

a2 [(cos θvi
x − sin θvi

y)2 + (sin θvix + cos θvi
y)2] =

= − 1

σ2

n

∑
i=1

a2((vix)2 + (viy)2) =

= − 1

σ2

n

∑
i=1

a2∣vi∣2 (2.7.30)

Thus the diagonal element of the Fisher information matrix with respect to rotations

θ, which is the last diagonal term to be calculated, is:

E (∂2L∂θ2 ) = −
1
σ2 ∑ni=1 a

2∣vi∣2

Derivatives of cross terms

In this section we carry out the differentiation of the log-likelihood for all the terms

that fill the off diagonals of the Fisher information matrix. To start with, we calcu-

late the score with respect to σ and scalings a. This is:

∂2L
∂σ∂a

= 1

σ3

n

∑
i=1

[(yi − aRvi + t) ⋅ (−Rvi) + (yi − aRvi) ⋅ (−Rvi)] =

= −2

σ3

n

∑
i=1

(yi − aRvi + t) ⋅ (Rvi). (2.7.31)
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The expectation of equation (2.7.31) with respect to y is:

E(−2

σ3

n

∑
i=1

(yi − aRvi + t) ⋅ (Rvi)) = 0, (2.7.32)

because the expression is odd in (yi − aRvi + t) so when integrated against the

likelihood which is an even function, the result will be zero. Thus:

E ( ∂2L
∂σ∂a) = 0

The next calculation is for σ and the x component of translations t:

∂2L
∂σ∂tx

= 1

σ3
[2

n

∑
i=1

(yix − aRvi
x + tx)] (2.7.33)

The expectation of equation (2.7.33) is:

E( ∂2L
∂σ∂tx

) = E( 1

σ3
[2

n

∑
i=1

(yix − aRvi
x + tx)]) = 0. (2.7.34)

The expression is odd in (yix − aRvix + tx) so when integrated against the likelihood

which is an even function, the result will be zero. Similarly and by symmetry for

the y component of translations we have:

∂2L
∂σ∂ty

= 1

σ3
[2

n

∑
i=1

(yiy − aRvi
y + ty)] . (2.7.35)

The expectation of equation (2.7.35) is:

E( ∂2L
∂σ∂ty

) = E( 1

σ3
[2

n

∑
i=1

(yiy − aRvi
y + ty)]) = 0. (2.7.36)

Thus, the expectation of (2.7.33) and (2.7.35) is:

E ( ∂2L
∂σ∂tx

) = ( ∂2L
∂σ∂ty

) = 0



2.7. Similarity transformations and noise model 54

Turning now to the σθ component of the Fisher information matrix, we have:

∂2L
∂σ∂θ

= 2

σ3

n

∑
i=1

[a(yxi − a(cos θvi
x − sin θvi

y) + tx)(sin θvix + cos θvi
y)

−a(yyi −a(sin θvix + cos θvi
y) + ty)(cos θvi

x − sin θvi
y)] (2.7.37)

The expectation of equation (2.7.37) is:

E( 2

σ3

n

∑
i=1

[a(yxi − a(cos θvi
x − sin θvi

y) + tx)(sin θvix + cos θvi
y)

−a(yyi − a(sin θvix + cos θvi
y) + ty)(cos θvi

x − sin θvi
y)] ) = 0. (2.7.38)

The above expectation is zero because it is odd in (yix−a(sin θvix+cos θviy)+tx) and

in (yyi −a(sin θvix+cos θviy)+ ty) so that when integrated against the even likelihood

the result will be zero. Thus:

E ( ∂2L
∂σ∂θ) = 0

The derivative of the log-likelihood with respect to the scalings a and the x

component of translations tx is:

∂2L
∂tx∂a

= − 1

σ2

n

∑
i=1

(−(Rvi)x) =
∑ni=1 Rvxi

σ2
(2.7.39)

The expectation of equation (2.7.39) with respect to y is a constant since it is

independent of y and thus:

E(∑
n
i=1(Rvi)x
σ2

) = ∑
n
i=1 Rvxi
σ2

(2.7.40)

E ( ∂2L
∂tx∂a

) = ∑
n
i=1 Rvxi
σ2

By symmetry, the expression for the y component of the translations ty and the

scalings a is:
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∂2L
∂ty∂a

= − 1

σ2

n

∑
i=1

(−(Rvi)y) =
∑ni=1 Rvyi

σ2
(2.7.41)

The expectation of equation (2.7.41) is a constant since it is independent of y:

E(∑
n
i=1(Rvi)y
σ2

) = ∑
n
i=1 Rvyi
σ2

(2.7.42)

E ( ∂2L
∂ty∂a

) = ∑
n
i=1 Rvyi
σ2

We also note that the second derivative of the likelihood with respect to both

the x and the y component of translations is zero:

∂2L
∂ty∂tx

= 0 (2.7.43)

so that the expectation of this term is also equal to zero.

E ( ∂2L
∂ty∂tx

) = 0

The derivative of the log-likelihood with respect to the x component of transla-

tions and the rotations parametrised by θ is:

∂2L
∂tx∂θ

= ∂

∂tx
[− 1

σ2

n

∑
i=1

a(yix − a(cos θvi
x − sin θvi

y) + tx)(sin θvix + cos θvi
y)] =

= − 1

σ2

n

∑
i=1

a(sin θvix + cos θvi
y) (2.7.44)

The expectation of equation (2.7.44) with respect to y is:

E(− 1

σ2

n

∑
i=1

a(sin θvix + cos θvi
y)) = − a

σ2

n

∑
i=1

(sin θvix + cos θvi
y). (2.7.45)

E ( ∂2L
∂tx∂θ

) = − a
σ2 ∑ni=1(sin θvix + cos θviy)
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Similarly, the derivative of the y component of the translations and the rotations θ

is:

∂2L
∂ty∂θ

= ∂

∂ty
[− 1

σ2

n

∑
i=1

(−a)(yiy − a(cos θvi
y + sin θvi

x) + ty)(cos θvi
x − sin θvi

y)] =

= 1

σ2

n

∑
i=1

a(cos θvi
x − sin θvi

y) (2.7.46)

The expectation of equation (2.7.46) is:

E( 1

σ2

n

∑
i=1

a(cos θvi
x − sin θvi

y)) = a

σ2

n

∑
i=1

(cos θvi
x − sin θvi

y) (2.7.47)

E ( ∂2L
∂ty∂θ

) = a
σ2 ∑ni=1(cos θvix − sin θviy)

Finally, the derivative of the likelihood with respect to the rotations θ and the

scalings a is:

∂2L
∂θ∂a

= − 1

σ2

n

∑
i=1

[ybix − a(cos θvi
x − sin θvi

y) + tx)(cos θvi
y + sin θvi

x)

+a(−(cos θvi
x − sin θvi

y))(sin θvix + cos θvi
y)

−(ybiy − a(sin θvix + cos θvi
y) + ty)(cos θvi

x − sin θvi
y)

+a(sin θvix + cos θvi
y)(cos θvi

x − sin θvi
y)] (2.7.48)

However, we note here that the two expressions (yix − a(cos θvix − sin θviy) + tx)

and (yiy − a(sin θvix + cos θviy) + ty) are odd and when integrated against the even

likelihood they will give zero as a result. The expectation of equation (2.7.48) is

zero overall:

E ( ∂2L
∂θ∂a) = 0

We have calculated and now have all the terms to form Fisher’s information

matrix. For convenience in the equations we denote the variables associated to each

row and column. The matrix I(φ) is:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ a tx ty θ

σ −4n
σ2 0 0 0 0

a 0 −∑
n
i=1 ∣vi∣2
σ2

∑ni=1 cos θvxi −sin θvyi
σ2

∑ni=1 sin θvxi +cos θvyi
σ2 0

tx 0
∑ni=1 cos θvxi −sin θvyi

σ2 − n
σ2 0 −a∑

n
i=1 sin θvxi +cos θvyi

σ2

ty 0
∑ni=1 sin θvxi +cos θvyi

σ2 0 − n
σ2 a

∑ni=1 cos θvxi −sin θvyi
σ2

θ 0 0 −a∑
n
i=1 sin θvxi +cos θvyi

σ2 a
∑ni=1 cos θvxi −sin θvyi

σ2 −a2∑ni=1 ∣vi∣2
σ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In order to calculate Jeffreys’ prior, we have to compute the determinant of I.

This is a long-running calculation and the details can be found in the Appendix.

Here, we present the final result of this calculation. The determinant of Fisher’s

information matrix was found to be:

∣I(φ)∣ = −a
2n3

σ10
Var2(v) (2.7.49)

where Var(v) = Var(β(s(b−1
i )). The overall Jeffrey’s prior is then the square root of

the above expression:

J∝
√
n3aVar(v)

σ5

It is standard practice to only take into account the parameters we partitioned

over and absorb any other factors and constants into normalisation, so Jeffreys prior

is proportional to:

J∝ a Var(v)
σ5

(2.7.50)

To conclude, the model we use for the solution of the classification problem for

similarity transformations and the noise variance is: P(g, σ) ∝ a Var(v)
σ5 . In the next

section, we discuss how Jeffreys prior can be used for the integration over similarity

transformations and the noise variance in order to achieve the desired approximation

of the marginalised likelihood and hence the desired shape classification.
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Before continuing we pause to point out to the reader the different Jeffreys priors

which arise depending upon our choice of variables in the model. We now investigate

what Jeffreys prior is in case we remove either the scalings a or the noise variance

σ as we mentioned in section [2.6]. Keeping a and removing σ Jeffreys prior is

calculated to be n a Var(v). We will keep this result to investigate the behaviour

of the posterior when we perform the integration over the scalings in section [2.8.4].

Similarly, the resulting Jeffreys prior when we keep σ and remove a the calculated

Jeffreys prior is found to be
√

Var(v)
σ3 . We will see the behaviour of the posterior when

using this result in section [2.8.5].

Although the remainder of this thesis is based upon keeping all 5 variables we

will point out how the result of the posterior changes with the choices we mention

above. The effects of removing one of the variables do not seem to be advantageous

which we believe gives weight to the decision to include all five parameters. We will

present these modifications in section [2.8].

2.8 Solving the classification problem

In the previous sections we discussed the models needed to construct the marginalised

likelihood in order to perform the desired classification. The classification of a given

shape in a predetermined class is done by maximising the posterior probability

P(C ∣y) of the class given the data. To perform MAP, one has to integrate over all

nuisance parameters and build the likelihood. To do this we will have to map the

data shapes to the sample shapes of the existing classes and then compare them.

As mentioned before, in previous work, e.g. Dryden and Mardia [14] or Srivas-

tava and Jermyn [12], an algorithmic approach was taken to the integrals over the

group G thus providing an approximation of the posterior probability. In particular,

Monte Carlo integration was used for the integrals over the shape variable β and the

samplings s. In [12], the integral over transformations g and the summation over bi-

jections b, which is the joint registration and alignment problem, finds the optimum

rotation, scaling and translation which minimises the Euclidean distance between

two configurations. The integration over this group was carried out by maximizing
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the integrand over the integration variables by using both the Procrustes and the

Hungarian algorithm to compute a zeroth order Laplace approximation.

The main contribution of this thesis is the analytic calculation of the Bayesian

integrals in expression (2.6.9). In our work, we carry out the geometrical integration

over the similarity transformations’ group, and the integration over the noise param-

eter σ analytically, resulting in a closed form expression. After the transformational

integrations are carried out and the result is in a closed form, the remaining integrals

of the likelihood (2.6.9) are approximated by simple Monte Carlo techniques. In the

next section we will describe how the integration of the rigid transformations was

performed and discuss the results.

2.8.1 Calculation of the posterior

For the calculation of the Maximum a Posteriori approximation we need to calculate

the integrated likelihood which is represented by the model in equation (2.6.9). The

likelihood will be integrated over the nuisance parameters that were marginalised

over and that give rise to the formation of the data. Assuming that we have at our

disposal a set of planar shapes such that each is represented by n two dimensional

points around its boundary the marginalised likelihood is:

P(y∣b, β, s, g, σ) = 1

(2π)nσ2n
exp(− 1

2σ2

n

∑
i=1

∣ybi − aRβ(s(b−1
i )) + t∣2) (2.8.51)

where ( 1
2πσ2 )

n
is the normalization constant for the collection of n points for each

shape. The likelihood for the complete data set is then:

P(y∣C) = ∑
b∈B
∫ Dβ Ds Dg dσ

1

(2π)nσ2n
exp(− 1

2σ2

n

∑
i=1

∣yb(i) − aRβ(s(b−1
i )) + t∣2)×

P(b)P(s)P(g, σ)P(β∣C) (2.8.52)

Of particular interest is the Jeffreys prior we imposed over g ∈ G and the noise

σ. In contrast to expression (2.6.9) the calculation of Jeffreys prior has taught us
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how to combine the priors on σ and g so that the expression is now constructed

to be invariant under reparametrisation of the nuisance parameters. Unfortunately,

the result of integrating the complete likelihood against Jeffreys prior was found to

lead to a divergence which in turn leads to a divergent posterior distribution. It is

worth mentioning that Jeffreys prior is improper with respect to its parameters. To

alleviate the divergence that appeared with the usage of Jeffreys prior, we introduced

regulators that regularise the prior and explicitly calculate the resulting integral.

The regularization of divergent integrals is a common technique that is used to

remove divergences, calculate the integrals and then restore the divergence, hence

the original result, by removing the regulators. The result of the integration should

not depend on the chosen regularization and the way to do so is to parametrize

the integral in terms of the regulators; taking the limit of the regulators must give

back the initial integral. There are many types of regularizations, for example the

momentum cutoff or the dimensional regularization are famous in physics; the choice

really lies within the problem. Nevertheless, they all have the same use: to alleviate

all divergences and give a finite result. We chose our regulators so that the end

result of the integration with respect to the group actions of G and σ in the limit is

the same as the initial result when using Jeffreys prior.

To overcome the divergence we used a regularised version of Jeffreys prior as the

measure for the integration over the group G. We employed prior distributions on

the parameters g ∈ G that would act as regulators of the divergences that Jeffreys

prior introduced and make the integrals converge and also smooth out the domain

of each variable. The particular priors were chosen as reasonable choices that also

reflect our beliefs in these parameters and our knowledge about the objects. For

this reason, a Gaussian prior was introduced for translations which had the effect

of artificially removing the previous translational invariance of the posterior with a

physical interpretation of limiting the size of the 2 dimensional domain R2 in which

the shape points lie. For the rest of the variables, a flat prior was used for rotations,

a Γ prior for the noise parameter σ. A Rayleigh prior was used for scalings a,

which had the effect of breaking the scaling behaviour of the likelihood and thus

braking the scale invariance of the posterior by effectively limiting the range of scales
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considered.

In this thesis we will only work with the regularised version of Jeffreys prior. In

the next section this new route employed will be discussed. We will show how we

can alleviate the divergence with the help of the regulators and how we can return

to the old result by removing them. The geometrical meaning and the origin of the

divergence will also be discussed as a conclusion of the usage of the particular priors.

2.8.2 Integration of translations t with a Gaussian prior

The expression that needs to be integrated with respect to translations is:

P(y∣b, β, s, g, σ) = P(y∣b, β, s, t,R, a, σ)

= 1

(2π)nσ2n
exp(− 1

2σ2

n

∑
i=1

∣yi − aRβ(s(b−1
i )) − t∣2) (2.8.53)

Extracting the translational dependence from expression (2.8.53) one has:

P(y∣b, β, s, t,R, a, σ) = 1

Z
exp(− 1

2σ2

n

∑
i=1

∣yi − aRvi − t∣2) =

= 1

Z
exp(− 1

2σ2

n

∑
i=1

∣Yi − t∣2) (2.8.54)

where we have defined: Yi = yi − aRβ(s(b−1
i )). We had found that integrating

translations against Jeffreys prior produces the first divergence of the result. To

regulate the divergence that the integration of translations introduces we impose a

Gaussian prior which has an effect on the domain of translations. Such a prior has

as an effect to smooth out the divergence and effectively limit the two-dimensional

domain. It provides a cut-off by “concentrating” the favoured translations around

the mean of the prior Gaussian, which is of the form:

P(t) = ( 1√
2πDσ

)
2

exp(− ∣t∣2
2σ2D2

) (2.8.55)
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where D is the regulator we introduced. At the end of the calculation we take the

limit D →∞. Combining equations (2.8.54) and (2.8.55), the expression that needs

to be integrated is:

P(y∣b, β, s,R, a, σ) = ∬ d2t P(y∣b, β, s, t,R, a, σ)P(t) =

= 1

(2π)nσ2n

1

2πD2σ2∬ d2t exp(− 1

2σ2

n

∑
i=1

∣Yi − t∣2) exp(− ∣t∣2
2σ2D2

)

(2.8.56)

We extract the normalization constant of the distributions which is now:

1

Z
= 1

(2π)nσ2n2πD2σ2
= 1

(2π)n+1σ2n+2D2
(2.8.57)

Expression (2.8.56) becomes:

P(y∣b, β, s,R, a, σ) = 1

Z∬
d2t exp(− 1

2σ2

n

∑
i=1

∣Yi − t∣2) exp(− ∣t∣2
2σ2D2

) (2.8.58)

We notice that the expression (2.8.58) is Gaussian on translations t. Taking into

account the exponent only and completing the square on t:

− 1

2σ2

n

∑
i=1

(∣Yi∣
2 + ∣t∣2 − 2Yi ⋅ t) −

∣t∣2
2σ2D2

=

− 1

2σ2

nD2 + 1

D2
∣t − D

2∑ni=1Yi

nD2 + 1
∣
2

− ∑
n
i=1 ∣Yi∣

2

2σ2
+ D2∣∑ni=1Yi∣2

2σ2(nD2 + 1)
(2.8.59)

Setting ñ = nD2+1
D2 , the exponent of the integrand in (2.8.59) becomes:

− ñ

2σ2
∣t − 1

ñ

n

∑
i=1

Yi∣
2

− ∑
n
i=1 ∣Yi∣

2

2σ2
+ ∣∑ni=1Yi∣2

2ñσ2
(2.8.60)

We substitute expression (2.8.60) in the exponent of the integral (2.8.58) and we

continue with its calculation:
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P(y∣b, β, s,R, a, σ) =

= 1

Z∬
d2t exp

⎡⎢⎢⎢⎢⎣
− ñ

2σ2
∣t − 1

ñ

n

∑
i=1

Yi∣
2⎤⎥⎥⎥⎥⎦

exp [∣∑
n
i=1Yi∣2
2ñσ2

− ∑
n
i=1 ∣Yi∣

2

2σ2
] =

= 1

Z
exp [∣∑

n
i=1Yi∣2
2ñσ2

− ∑
n
i=1 ∣Yi∣

2

2σ2
]
⎛
⎝

√
2πσ2

ñ

⎞
⎠

2

(2.8.61)

One notices that the above expression [ (∑ni=1 Yi)2
2ñσ2 − ∑

n
i=1 ∣Yi∣

2

2σ2 ] is similar to the variance

of Y although at this stage this does not have a significant interpretation in terms

of our data. Later, we shall see statistical properties of the data to come naturally

out of our calculations. Now, absorbing all the new constants into our normalisation

we have:

1

Z
= 1

(2π)n+1σ2n+2D2

2πσ2

ñ

= 1

(2π)nσ2nD2

D2

nD2 + 1

= 1

(nD2 + 1)(2π)nσ2n
(2.8.62)

so that the result after integrating translations is:

P(y∣b, β, s,R, a, σ) = 1
Z exp [ ∣∑ni=1 Yi∣2

2ñσ2 − ∑
n
i=1 ∣Yi∣

2

2σ2 ]

2.8.3 Integration of rotations R with a flat prior

The variable to be integrated now is rotations R which we parametrised by θ. For

the integration of rotations we use the flat prior since the space of rotations is

compact so this choice of prior does not introduce any divergences. Furthermore as

we have seen Jeffreys prior does not depend on the rotations R - the group element

in question. This is because the Haar measure for this group is dθ
2π so the expression

that needs to be integrated is:

P(y∣b, β, s,R, a, σ) = 1

Z
exp [∣∑

n
i=1Yi∣2
2ñσ2

− ∑
n
i=1 ∣Yi∣

2

2σ2
] (2.8.63)
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with Yi = y(i) − aRvi. A convenient representation we chose for rotations is R = eiθ

so we will transform everything to the complex plane. The inner product between

two vectors of the complex plane takes the form:

∑
i

∑
j

Yi ⋅Yj =
1

2
∑
i

∑
j

(YiY j) +
1

2
∑
i

∑
j

(Y iYj)

= 1

2
∑
i

∑
j

(YiY j) +
1

2
∑
i

∑
j

(YiY j)

= ∑
i

∑
j

YiY j (2.8.64)

where we relabelled and reordered the second term. For simplicity we study sepa-

rately how each of the terms of the exponent in expression (2.8.63) transforms into

the complex plane. The first term of the exponent becomes:

∣∑
i

Yi∣2 = ∑
i

∑
j

YiY j =

= ∑
i

∑
j

yiyj − āR∑
i

∑
j

vjyi − aR∑
i

∑
j

viyj +∑
i

∑
j

∣a∣2∣R∣2vivj (2.8.65)

Notice that ā = a since a ∈ R and that ∣R∣2 = RR = eiθe−iθ = 1. We now expand the

second term of the exponent of expression (2.8.63):

n

∑
i=1

∣Yi∣
2 =

n

∑
i=1

YiYi =
n

∑
i=1

[yiyi − āRv̄iyi − aRviȳi + ∣a∣2∣R∣2∣vi∣2] =

=
n

∑
i=1

∣yi∣
2 − āR

n

∑
i=1

viyi − aR
n

∑
i=1

viyi + ∣a∣2
n

∑
i=1

∣vi∣
2

(2.8.66)

Combining the two parts of the exponent in (2.8.65) and (2.8.66) the desired quantity

(2.8.63) becomes:

P(y∣b, β, s,R, a, σ) = 1

2σ2
[ 1

ñ
∑
i

∑
j

YiY j −∑
i

∣Yi∣2] =

= 1

2σ2
[ 1

ñ
∑
i

∑
j

yiȳj −∑
i

∣yi∣2 + ∣a∣2 1

ñ
∑
i

∑
j

viv̄j − ∣a∣2∑
i

∣vi∣2

−R( 1

ñ
∑
i

∑
j

aviȳj −∑
i

aviȳi) −R( 1

ñ
∑
i

∑
j

āv̄jyi −∑
i

āv̄iyi)]

(2.8.67)
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Here, we introduce three new quantities because they have an interpretation in

terms of regulated versions of statistical properties of the data and example shapes:

̃Cov(v, y) = 1

ñ
[∑
i

viȳi −
1

ñ
∑
i

∑
j

viȳj] (2.8.68)

Ṽar(v) = 1

ñ
[∑
i

∣vi∣2 −
1

ñ
∑
i

∑
j

viv̄j] (2.8.69)

Ṽar(y) = 1

ñ
[∑
i

∣yi∣2 −
1

ñ
∑
i

∑
j

yiȳj] (2.8.70)

These properties have arisen by introduction of the priors required to regulate di-

vergences. Thus, expression (2.8.67) then becomes:

P(y∣b, β, s,R, a, σ) = 1

2σ2
[−ñṼar(y) − ∣a∣2ñṼar(v) −R( 1

ñ
∑
i

∑
j

aviȳj −∑
i

aviȳi)

−R( 1

ñ
∑
i

∑
j

āv̄jyi −∑
i

āv̄iyi)]

(2.8.71)

Re-labelling and re-ordering the summation of the last term in square brackets we

find that:

P(y∣b, β, s, θ, a, σ) = 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v))

+ 1

2σ2
[−R( 1

ñ
∑
i

∑
j

aviȳj −∑
i

aviȳi) − R̄( 1

ñ
∑
j

∑
i

āv̄iyj −∑
i

āv̄iyi)] =

= 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v))+

+ 1

2σ2
[−(cos θ + i sin θ)k − (cos θ − i sin θ)k̄] (2.8.72)

where we have substituted:

k = 1

ñ
∑
i

∑
j

aviȳj −∑
i

aviȳi (2.8.73)

It is convenient to collect all the terms involving sines and cosines and express

equation (2.8.72) as:
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P(y∣b, β, s, θ, a, σ) = 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v)) + 1

2σ2
[− cos θ(k + k̄) − i sin θ(k − k̄)]

= 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v)) + 1

2σ2
[−2Re(k) cos θ + 2Im(k) sin θ]

= 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v)) + A

2σ2
cos(θ − α) (2.8.74)

where we made use of the following properties:

α = arctan
2Im(k)
−2Re(k)

(2.8.75)

A =
√

(−2Re(k))2 + (2Im(k))2 = 2∣k∣ (2.8.76)

We now return to equation (2.8.74) in order to carry out the integral over the rotation

group with respect to θ:

P(y∣b, β, s, θ, a, σ) = 1

Z
exp [ 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v))] exp [2∣k∣

2σ2
cos(θ − α)]

(2.8.77)

Using a flat prior for θ since the space of rotations is compact we have:

P(y∣b, β, s, a, σ) = ∫
2π

0
dθ P(y∣b, β, s, θ, a, σ)P(θ) =

= 1

Z
exp [ 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v))]×

∫
2π

0

dθ

2π
exp [2∣k∣

2σ2
cos(θ − α)] (2.8.78)

Setting θ − α = z and making use of the periodicity of the cosine function, we now

have:

P(y∣b, β, s, a, σ) = 1

Z
exp [ 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v))]∫

2π−α

−α

dz

2π
exp [ ∣k∣

σ2
cos(z)]

= 1

Z
exp [ 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v))] Io (

∣k∣
σ2

) . (2.8.79)

Recall that:
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k = a ( 1

ñ
∑
i

∑
j

viȳj −∑
i

viȳi) = −añ ̃Cov(v, y) (2.8.80)

Thus, expression (2.8.79) becomes:

P(y∣b, β, s, a, σ) = 1

Z
exp [ 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v))] Io

⎛
⎜
⎝

a ñ ∣ ̃Cov(v, y)∣
σ2

⎞
⎟
⎠

(2.8.81)

where Io is the modified Bessel function of the first kind and of zero-th order. The

result after integrating rotations is:

P(y∣b, β, s, a, σ) = 1
Z exp [ 1

2σ2 (−ñṼar(y) − ∣a∣2ñṼar(v))] Io (
a ñ∣ ̃Cov(v,y)∣

σ2 )

with the overall normalization coefficient 1
Z = 1

(nD2+1)(2π)nσ2n .

Before continuing we return to our choice of prior for rotations. To lend further

weight that dθ is an invariant measure. We can adapt the work of Wood [127] and

Prentice [128] who showed how to integrate over the generators of rotations in a

compact way. Introduce:

x =
⎛
⎜
⎝

cos( z2)

sin( z2)

⎞
⎟
⎠

which satisfies xTx = 1. Then X(x) = e2iz represents a rotation in SO(2). Wood

noted that X is uniform in SO(2) if and only if x is uniform on S1 ⊂ R2 . We can

rewrite the exponential in the integral of expression (2.8.79) as eTr(A xxT )−1 where

A =
⎛
⎜
⎝

1 + ∣k∣
σ2

1 − ∣k∣
σ2

⎞
⎟
⎠

. We then need ∫S1 d[x] eTr(A xxT )−1 which with the uniform measure

can be written in polar coordinates (r = 1):

∫
2π

0

dz

2π
exp(∣k∣

σ2
cos z) (2.8.82)
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as above in equation (2.8.79). So the uniform measure in S1 induces our chosen

prior which is the Haar measure on this space. We will revisit this idea for the more

complicated calculation of the three-dimensional rotations in chapter [5].

Wood has shown how to evaluate the integral in (2.8.82) by diagonalising xxT .

In such a basis the exponent simplifies and we have checked that this method does

indeed reproduce the Bessel function in (2.8.79). This was a useful check for the cal-

culation and is a powerful approach which generalises to higher dimensional spaces.

2.8.4 Integration of scalings a with a Rayleigh prior

Before we proceed to the integration of expression (2.8.3) with respect to scalings

a we will extract part of the integrand that depends on this variable and re-write

everything back in Cartesian coordinates:

P(y∣b, β, s, a, σ) = 1

Z
exp [ 1

2σ2
(−ñṼar(y) − ∣a∣2ñṼar(v))] Io

⎛
⎜
⎝

a ñ ∣ ̃Cov(v,y)∣
σ2

⎞
⎟
⎠
=

= 1

Z
exp( 1

2σ2
(−ñṼar(y))) exp(−∣a∣2 ñṼar(v)

2σ2
)

× Io
⎛
⎜
⎝

a ñ ∣ ̃Cov(v,y)∣
σ2

⎞
⎟
⎠

(2.8.83)

For scalings we introduce a Rayleigh prior which will effectively remove the

scaling invariance of the posterior by limiting the effective domain of the scaling

parameters. The Rayleigh prior also has the advantage of being naturally defined

on positive parameters which is what we want for the scale factor a and decays

exponentially to cut off large values of its argument. Furthermore, it will give the

required linear dependence on a when we remove our regulator B so as to reproduce

Jeffreys prior in that limit. This is true because such a prior is of the form:

P(a∣s) = a

s2
exp [−a

2

2s2
] . (2.8.84)
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We take s ∝ σ so that s = Bσ, where B is the scalings’ regulator that we will to

take to infinity to return to the initial result:

P(a∣Bσ) = a

B2σ2
exp [ −a2

2B2σ2
] . (2.8.85)

We acknowledge this is not the only choice of regulator, nor was our choice of

regulator for translations nor will be our choice for the noise parameter σ. However,

these choices suffice in regularising our divergences and returning the Jeffreys prior

for the appropriate limiting values of the regulators. It is important to note that

our result should be independent of our choice of regulators so that the priors we

have introduced in this section, which appear to be subjective, do not represent

physical information or knowledge of our data but (as we take these limiting values)

are rather mathematical tools enabling us to understand and describe the form of

the divergence that arises in the likelihood.

Integrating expression (2.8.83) with respect to scalings a:

P(y∣b, β, s, σ) = ∫
∞

0
P(y∣b, β, s, a, σ)P(a)

= 1

Z

1

B2σ2
exp( 1

2σ2
(−ñṼar(y)))

∫
∞

0
da a exp [−a2 ( ñṼar(v)

2σ2
+ 1

2B2σ2
)] Io

⎛
⎜
⎝
a
ñ ∣ ̃Cov(v,y)∣

σ2

⎞
⎟
⎠
=

= 1

Z

1

B2σ2
exp( 1

2σ2
(−ñṼar(y)))×

1

2(B2ñṼar(v) + 1)
exp

⎛
⎜⎜
⎝

1

2σ2

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)

⎞
⎟⎟
⎠

(2.8.86)

where we have used the following property [129]:

∫
∞

0
da a exp(−a2E) Io(aF ) = 1

2E
exp(F

2

4E
)
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After integrating the marginalised likelihood with respect to scalings and rear-

ranging the terms, expression (2.8.86) becomes:

P(y∣b, β, s, σ) = 1

Z

1

2(B2ñṼar(v) + 1)
exp

⎛
⎜⎜
⎝

1

2σ2

⎛
⎜⎜
⎝
−ñṼar(y) +

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

(2.8.87)

We again absorb the leading constants in order to make a redefinition of Z:

1

Z
= 1

2(nD2 + 1)(2π)nσ2n

1

(B2ñṼar(v) + 1)
(2.8.88)

The final result of integrating scalings is:

P(y∣b, β, s, σ) = 1
Z exp( 1

2σ2 (−ñṼar(y) +
B2ñ2∣ ̃Cov(v,y)∣

2

(B2ñṼar(v)+1) ))

As we suggested before, we will investigate the scaling behaviour of the likelihood

when either of scalings a or σ is removed from our calculations. As we mentioned in

the previous section when we remove σ then Jeffreys prior becomes n a Var(v). This

has the same dependence on a, so little would have changed up to this point. The

marginalised likelihood when using this prior for the group of the transformations

is easily determined by inspection to be:

P(y∣b, β, s) = 1

Z

1

2(B2ñṼar(v) + 1)
exp

⎛
⎜⎜
⎝

1

2

⎛
⎜⎜
⎝
−ñṼar(y) +

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

(2.8.89)

with Z:

1

Z
= 1

2(nD2 + 1)(2π)n
1

(B2ñṼar(v) + 1)
(2.8.90)

Despite our discussion that it may not be necessary to include both σ and a in

our model, in the case that σ is removed, the integrated likelihood (2.8.89) suffers
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from bad scaling properties under y → λy because the exponent picks up a factor of

λ2; since this scaling component is in the exponent that would imply that even the

posterior would not be scale invariant with this choice. This is not what we wanted

to achieve with our model of the formation of data shapes, as one of the key desires

was that scale should not matter. In the next section we will see what happens with

the choice of removing a and keeping σ.

2.8.5 Integration of σ using a Γ prior

We write the result after integrating scalings as:

P(y∣b, β, s, σ) = 1

Z
exp( 1

2σ2
(−ñṼar(y) +G)) (2.8.91)

with G being:

G =
B2ñ2 ∣ ̃Cov(v,y)∣

2

(B2ñṼar(v) + 1)
(2.8.92)

Expression (2.8.91) needs to be integrated with respect to σ. For this integration we

will be using a Γ(α, ζ) prior on 1
σ2 since σ enters the likelihood with this functional

form so it is the natural variable to use. This is a good distribution to use on

parameters that are positive such as 1
σ2 and has the right asymptotic properties to

limit the effect of large values of the noise parameter. As with the Rayleigh prior it

also gives the correct limiting behaviour which yields Jeffreys prior when we remove

the regulator. This will follow from the additional inverse powers of σ that will be

introduced by this choice of prior, which we can tune to provide the required result.

To make these statement precise, the prior on σ is of the form:

P(σ) = ζα

Γ(α)
( 1

σ2
)
α−1

exp(− ζ
σ2

) d( 1

σ2
) (2.8.93)

whose exponent provides a damping to large values of 1
σ2 . The expression that will

be integrated is:
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P(y∣b, β, s) = ∫
∞

0
P(y∣b, β, s, σ)P(σ) =

= ∫
∞

0
d( 1

σ2
) 1

Z
exp( 1

2σ2
(−ñṼar(y) +G)) ζα

Γ(α)
( 1

σ2
)
α−1

exp(− ζ
σ2

)

(2.8.94)

Extracting the σ dependence from the normalization constant and re-ordering the

expression:

P(y∣b, β, s) = 1

Z ∫
∞

0
d( 1

σ2
) 1

σ2n
exp [(− 1

σ2
)( ñṼar(y) −G

2
)]( 1

σ2
)
α−1

exp(− ζ
σ2

) =

= 1

Z ∫
∞

0
d( 1

σ2
) 1

σ2n+2α−2
exp [(− 1

σ2
)(2ζ + ñṼar(y) −G

2
)] (2.8.95)

where we have stripped the σ dependence out of the normalization so that the

remaining constants are now:

1

Z
= 1

(nD2 + 1)(2π)n
1

(B2ñ ˜Var(v) + 1)
ζα

Γ(α)
(2.8.96)

Consider the integral of (2.8.95) with respect to σ:

P(y∣b, β, s) = 1

Z ∫
∞

0
d( 1

σ2
) 1

σ2(n+α)−2
exp [(− 1

σ2
)(2ζ + ñṼar(y) −G

2
)] (2.8.97)

This can be simplified by changing variables to x = 1
σ2 so that expression (2.8.97)

becomes:

P(y∣b, β, s) = 1

Z ∫
∞

0
dx xn+α−1 exp [(2ζ + ñṼar(y) −G

2
)x] =

= 1

Z
Γ(n + α) [2ζ + ñṼar(y) −G

2
]
−n−α

(2.8.98)

The final expression of the likelihood with the noise σ integrated out is:

P(y∣b, β, s) = 1

Z

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

(2.8.99)
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where we have absorbed the constants into Z for the final time so that:

1

Z
= 1

(nD2 + 1)(2π)n
Γ(n + α)

(B2ñṼar(v) + 1)
ζα

Γ(α)
1

2−n−α
(2.8.100)

We here have to note that the above result does not scale in the same fashion as

the likelihood in (2.6.8) since the prior we have imposed on scalings breaks the scale

behaviour of the model. Only when ζ is taken to zero do we find that the posterior

is scale invariant.

P(y∣b, β, s) = 1
Z [ñṼar(y) −

B2ñ2∣ ̃Cov(v,y)∣
2

(B2ñṼar(v)+1) + 2ζ]
−n−α

This is the final result of the integration over the similarity transformations g ∈ G

and the noise parameter σ which we calculated with the help of the regularised

version of Jeffreys prior. Employing this result, the complete likelihood is:

P(y∣b, β, s) = ∑
b
∫ Dβ Ds P(y∣b, β, s)P(b)P(β)P(s)

= ∑
b∈B
∫ Dβ Ds

1

Z

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

P(b)P(β)P(s)

(2.8.101)

As we have investigated the scaling properties of the likelihood when removing

σ we will also investigate it when we remove a. So if instead, we keep σ and remove

a, then Jeffreys prior is
√

Var(v)
σ3 . To find the marginalised likelihood when removing

a we must integrate (2.8.81) with respect to σ against the Haar measure (which is

Jeffreys prior) on a = 1. The integration leads to a hypergeometric function and

such result exhibits scale invariance; in contrary to when we remove σ and keep a,

the marginalised likelihood scales as λr (where r is some power) which leaves the

posterior invariant. The future simulations in this thesis will be based on including

all five original variables. Given the differences in behaviour that arise when either σ

or a is removed there is an open question as to how to decide upon which parameter

is superfluous. We intend to investigate both of these possibilities in future work in
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order to better understand the consequences of such a choice. Perhaps then it will

be possible to justify which of the variables is needed; for now we proceed with both

and present the results of doing so as a first exploration of our approach to shape

classification.

In the next section we compare the result of expression (2.8.101) to the result

obtained when integrating against Jeffreys prior. In the sections to follow, we discuss

how the remaining integrals of expression (2.8.101) have been calculated and how

they give rise to a classification algorithm.

2.9 Comparison of the two results

To compare the results from the integration of the marginalised likelihood when

using Jeffreys prior and when using its regularised version it suffices to take the limits

of the regulators. Before we do that, we discuss the choice of the regularised priors.

One could argue that many choices of priors could generate the same results as when

integrating against the original Jeffreys prior. However, we chose the ones presented

above not only because they give us the expected result but also because they reflect

our belief in the parameters. In particular, a Gaussian prior on translations shows

our belief that some translations are favoured and are concentrated around the

mean. Such a prior also cuts off very large translations that have small probability

of occurring. The Rayleigh prior on scalings was chosen because it introduces the

extra multiplicative factor of a as in the case of Jeffreys prior but also because only

the positive scalings are included. Lastly, the choice over the Gamma prior on 1
σ2

was chose to reflect our belief that the noise can only be positive. We now state the

result of the calculation of the integral of similarity transformations against Jeffreys

prior:

P(y∣b, β, s) ∝ [nVar(y) − n ∣Cov(v,y)∣2

Var(v)
]
−n− 1

2

(2.9.102)

The result of (2.9.102) can be reproduced by the right choice of the values of the

regulators in expression (2.8.99) and we are in the position to do so. It is straight
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forward to decide on the choice of D and B which are taken to be D →∞, B →∞.

In the case of ζ is also easy to choose ζ → 0 however this is not the case with α. We

take α to be α → 3
2 and the reason behind that is the fact that we do not compare the

chosen prior against Jeffreys prior but we compare the individual priors to Jeffreys

prior when it is thought of as a measure on 1
σ2 . It is easy to see that expression

(2.9.102) corresponds to (2.8.99) when we take the limits of the regulators.

We now discuss the divergence produced by the result in (2.9.102). It is obvi-

ous that the divergence of this distribution is caused when the quantity in square

brackets tends to zero. This is what we investigate now. The vanishing of the

denominator of (2.9.102) occurs when:

Var(y) − ∣Cov(v,y)∣2

Var(v)
= 0

⇔ ∣Cov(v,y)∣2

Var(v)Var(y)
= 1

⇔ Corr(v,y) = ±1 (2.9.103)

That shows us that the divergence appears when Corr(v,y) = ±1 , i.e. when

the data shape y is either positively or negatively correlated with the sample shape

v. It is fairly easy to understand the meaning of the correlation of two random

variables, however in the case of two vector valued random variables it needs a little

thought. When can two vectors be correlated? Since correlation is linked with the

idea of linearity one could say that two vectors are correlated when they are linearly

dependent i.e. when there is a linear transformation that could generate one from

the other. We notice that the correlation is a quantity invariant to translations and

rotations of both y and v. The posterior is also invariant under scalings since the

extra a2 introduced by the covariance in the numerator can be cancelled by the a2

introduced by the variances multiplied in the denominator. Since correlation is in-

variant under similarity transformations, we understand that y and v are correlated

either positively or negatively when one of y or v is generated by the other by some

similarity transformations. This means that the origin of the divergence is apparent
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if and only if y and v are shapes that belong to the same orbit under the action

of the similarity group G. To understand more the geometrical interpretation and

meaning of the particular property we discuss this in the following paragraph.

At this point, it would be useful to introduce a new notation for equation

(2.9.102). The notation is called “bra-ket” and it is a standard notation in quantum

mechanics but is also used to denote abstract vectors in linear algebra. The inner

product of two n-vectors in two dimensions, say x and y, is denoted by xTy = ⟨x∣y⟩

and the outer product is denoted as xyT = ∣x⟩ ⟨y∣. Using this notation, and making

the substitution x′ = x − x̄ and y′ = y − ȳ we can write:

Cov(x′,y′) =
n

∑
i=1

(xi − x̄) ⋅ (yi − ȳ) = x′Ty′ = ⟨x∣y⟩ (2.9.104)

Var(x′,x′) =
n

∑
i=1

(xi − x̄) ⋅ (xi − x̄) = x′Tx′ = ⟨x′∣x′⟩ (2.9.105)

This notation can be very useful for re-writing the result of equation (2.9.102)

as:

P(y∣b, β, s) ∝ [nVar(y′) − n ∣Cov(v′,y′)∣2

Var(v′)
]
−n− 1

2

∝ [⟨y′∣y′⟩ − ⟨y′∣v′⟩ ⟨v′∣y′⟩
⟨v′∣v′⟩

]
−n− 1

2

∝ [⟨y′ ∣I − ∣v′⟩ ⟨v′∣
⟨v′∣v′⟩

∣y′⟩]
−n− 1

2

(2.9.106)

The quantity P = I − ∣v′⟩⟨v′∣
⟨v′∣v′⟩ in equation (2.9.106) is also recognised as the projec-

tion operator that projects orthogonally to v′. Writing the result as such it is easier

to interpret it geometrically and we note that the projection operator acts on the

data y. The quantity in square brackets gives rise to the divergence when it is equal

to zero, i.e. when the projection operator acting on y′ equals zero i.e. P∣y′⟩ = 0.

That happens when y′ is on the orbit of v′ under the action of G i.e. when y′ and

v′ are linked via some similarity transformations so that ∣y′⟩ = g ∣v′⟩ = aR ∣v′⟩ + t.
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One could argue here that it would be useful to remove the divergence by remov-

ing and extracting all such y that produce the divergence i.e. all the data shapes that

are linked to specific example shapes by specific similarity transformations. That

could happen by excluding this hypersurface from the integration region. However,

even doing so doesn’t alleviate the problem. Although we are dealing with continu-

ous shapes, when it comes to simulate such data shapes for computational purposes

the problem will be apparent; there will always be a neighborhood around the region

that we extracted in which the quantity in (2.9.106) will be close to singular which

may lead to numerical errors that are hard to predict. However, such a situation

is difficult to appear even if data and example shapes are linked via such similarity

transformations since the intrinsic Gaussian noise would always make sure to alle-

viate such a problem. For the purposes of simulation we retain the regulators ζ,B

and D, choosing sufficiently large or small values to alleviate the divergence without

changing the classification accuracy.

Here, we should also mention that the primary underlying reason of the cause of

the divergence is the likelihood itself (2.6.8). The reason is that in the case that y

and v are linked via such similarity transformations so that y∗ = aRv + t, then the

likelihood becomes:

P(y∣b, β, s, a,R, t, σ) = 1

Z
exp(− 1

2σ2
∣y∗ − aRβ(s(i)) + t∣2) = 1

Z
(2.9.107)

which must be integrated with respect to t,R, a, σ and β. Equation (2.9.107) is

constant and so independent of the data and any of the parameters. Integrating it

with respect to t for example, over R2 gives rise to the divergence. By default that

shows that choosing the appropriate priors for the integration which smoothed the

integration domain was the correct thing to do.

2.10 The remaining integrals

To obtain the full likelihood we have:
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P(y∣C) = ∑
b
∫ Dβ Ds P(y∣b, β, s)P(b)P(β∣C)P(s). (2.10.108)

For the remaining integrals over sampings s, shape curves β and the summation over

the bijections b we employed numerical techniques and the summation was carried

out exhaustively. These choices are explained below.

For the integration over samplings and shape curves we employed simple Monte

Carlo techniques [130, 131] of the generalised Gaussian prior that we described in

section [2.3.1]. The form of P(y∣b, β, s) is complicated and the integration over

samplings cannot be evaluated explicitly. We thus use Monte Carlo techniques by

generating realisations from the probability distributions of the samplings and the

shape curves and then sum the values of the integrand evaluated at these realisations.

The summation over bijections was carried out exhaustively. In previous work,

where the integration was done numerically, the sum over bijections could be approx-

imated, again in a zeroth order Laplace estimation, using the Hungarian algorithm,

where the summation was treated as a simple linear assignment problem. Our an-

alytic calculation has introduced problems with such a summation. The presence

of the term involving Cov2(β(s(b−1
i )),yi)) complicates the situation and turns the

simple assignment into a quadratic assignment problem. The quadratic assignment

(QAP) [132] is one of the major problems in the branch of optimization and is the

same in nature as the assignment problem; the crucial difference is that the cost

function is quadratic and hence the assignments are not independent. Quadratic

assignment problems are NP-hard [133], which are a class of decision problems with

no known algorithm that solves them to optimality in polynomial time [134]. What

is even more interesting, as proven by Sahni [133], is that any routine that finds

even an ε–approximate solution is also NP-hard, thus making QAP problems “the

hardest of the hard” of all combinatoric problems. One solution could be to actually

calculate all possible bijections but this will take a very big amount of time ( e.g. for

30 points around the boundary there are 30! ≃ 232 bijections) and still be prohibitive

for any brute force simulation.

Instead of using a Laplace approximation we could approximate the full sum-
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mation using Markov Chain Monte Carlo integration. However, we came up with a

more realistic solution for this. Assuming that the points around the boundary are

ordered and (this is the case of labeled landmarks we discussed in chapter [1]) the

summation can be carried out exhaustively. The reason for this is that the number

of ordered bijections is only n, since each map is uniquely fixed by the starting point

out of n possibilities. We based our decision to reflect the fact that in any realistic

situation an experimentalist would choose to place the landmarks around the outline

of the shape in an ordered rather than in a random way. For example, in the case of

geological sand bodies, although the three-dimensional point cloud is obtained by a

laser scanner, the extraction of the three-dimensional curves is done by an experi-

mentalist geologist. Since this task involves human interaction, we would expect a

deterministic approach to the placement of the points around the boundary of the

three-dimensional shapes. It is part of the deterministic nature of human beings

that they would not treat a problem in a random way but rather in a concise and

structured way. Thus, one would expect that an experimentalist geologist or anyone

involved in an experiment of placing points around the boundary of a shape would

do it in order that the end result would be a collection of ordered points.

This sum over cyclic bijections also implies that our choice of starting position

–that is which of the data shape points and which of the example shape point–

is labeled as the first of the set. This is true because every one of the data shape

points will at some point in the sum be associated to every one of the example shape

points after which the remaining points are compared to one another in sequence.

Furthermore, this decision to treat the boundary points in an ordered way allowed

us to exhaustively calculate the summation over bijections and approximate the

remaining integrals by Monte Carlo techniques.

Summing exhaustively over the bijections and integrating over samplings and

shape curves provides an approximation of the complete likelihood P(y∣C). Then

the Monte Carlo estimate for a given class is given by:
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P(Ci∣y) ≈
∑Jj=1∑Kk=1∑Ll=1 P(y∣bj, βk, sl)P(βk∣Ci)P(Ci)
∑i∑Jj=1∑Kk=1∑Ll=1 P(y∣bj, βk, sl)P(βk∣Ci)P(Ci)

(2.10.109)

where k, l are the Monte Carlo iterations of the curves and samplings respectively

and j is the number of bijections. The above forms the Maximum a Posteriori

estimate of a given class given the observed data shapes. Once the posterior is

approximated, its values can be used for classifying y into a shape class by picking

the class that gives the highest posterior. Using this approximation in combination

with the result of (2.8.101), we summarise the steps needed to approximate the

posterior P(Ci∣y) for a given y.

Algorithm:

For j = 1,2,...,J

For k = 1,2,...,K :

For l = 1,2,...,L:

1. Randomly generate a shape class Ci and simulate a shape βk ∼ P(β∣Ci).

2. Generate a sampling function γl ∼ P(γ) and use this to place points on βk.

3. Associate the points of the data to those of the shape βk through the jth

bijection.

4. Approximate the likelihood function P(y∣Ci) by using the result in (2.10.108).

5. Approximate posterior P(Ci∣y) by using (2.10.109).

The above steps constitute our proposed algorithm for the classification of planar

shapes. For testing this result and evaluating the effectiveness and the stability of

the proposed algorithm, we utilize shape databases and present experimental results

in the next chapter.
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2.11 Concluding remarks

We have investigated the problem of classification and how it can be approached and

resolved in the Bayesian paradigm. We have presented a Bayesian approach which

finds shape classes for a given configuration of points in the presence of undersam-

pled shape curves and observational noise. We have presented how this problem can

be constructed and the models we employ for the description of the parameters. We

have seen that the difficulty of the problem lies in the calculation of the likelihood

which had to be marginalised over nuisance parameters that take part in the forma-

tion of the data. This marginalisation introduced the integration and summation

over the nuisance parameters for which we had to employ probability models.

The models we have used for the description of the parameters followed the work

presented in [12]. However, the novelty of our approach was that for some of the

nuisance parameters, namely the similarity transformations and the noise variance,

we have used a different model which in contrary to the methods of [12], enabled

us to evaluate some of the integrals in a closed form. In particular, the model we

employed was the joint Jeffreys prior which has the special property of invariance

under reparametrisations. Although the results were found in a closed form, Jeffreys

prior introduced irregularities and divergences after integrating with respect to the

above parameters. To alleviate the problem, we used a regularised version of the

prior. The effect of the regularisation was to smooth and restrict the domains of

the parameters and at the same time remove the invariances of the likelihood with

respect to these parameters. However, in some sense, the two results can be regarded

as the same since the removal of the regulators by taking their limit to appropriately

big or small values restores the invariance of the likelihood.

After integrating with respect to the similarity transformations and the noise

variance, the remaining integrals were evaluated by simple Monte Carlo techniques.

The final result is the Maximum a Posteriori approximation of a given class and

this gives rise to a new classification algorithm. The above proposed algorithm can

be implemented computationally for the evaluation of its accuracy and its classifi-

cation efficacy and efficiency when given a shape data set. In the next chapter we
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describe experimental results on estimating the posterior probability P(Ci∣y) where

we simulate data y according to the data model and then apply the algorithm. In

the next chapter we also investigate the confidence levels of our algorithm and the

success results it returns for a known shape data set.



Chapter 3

Experimental results

3.1 Introduction

In this chapter we discuss the experimental results that we acquired for the estima-

tion of P(Ci∣y) using the classification algorithm proposed in chapter [2]. For each

experiment we use data that we have simulated according to the data model we chose

for the particular application. We make use of the result of the analytic integration

over similarity transformations and the noise variance that we have presented in

chapter [2] to classify shapes into their respective categories. In this way, we can

evaluate the effectiveness and the confidence we can have for the algorithm. We also

discuss the confidence levels and the success rates of the algorithm when performing

classification. In section [3.2] we present the experimental results we acquired for

the Kimia database. We explain how the data shapes are simulated and discuss the

success rates and the confidence levels of the algorithm for different values of some

of the parameters. We also examine the classification results of the algorithm for

different simulated data sets. In section [3.3] we present the experimental results

acquired for the alphabet database. We perform the same experiments as with the

Kimia database and evaluate the confidence and success results. Section [3.4] poses

the problem of sand body classification. In this section we discuss about the defini-

tion of a geological sand body and their current classification methods. We discuss

how the sand bodies can be extracted and discuss how statistical classification can

be used and our algorithm is utilised so that the underlying geometry of the sand

83
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bodies is included in contrary to existing classification methods. We also discuss the

confidence results and the success rates of the algorithm. In section [3.5], we suggest

a way of learning the parameters of the shape models for a given sand body dataset.

However, the optimisation algorithm employed for the learning of the parameters

doesn’t return particularly confident results and we debate the reasons behind this

occurrence. Although the learned parameters were different to the ones expected

we substitute them with the ones we assume to be correct. Using these parameters

we evaluate the classification results of the proposed algorithm for the sand body

datasets. Finally, section [3.6] presents the concluding remarks of this chapter.

3.2 Experiments on Kimia database

For the experimental results in this section we utilise the Kimia database [12, 13,

135] and in particular the combination of Kimia216 and Kimia99. The database

is comprised of binary images and consists of 22 classes of shapes: birds, bones,

bricks, camels, cars, children, man, elephants, spectacles, faces, forks, fountains,

glasses, hammers, hands, hearts, keys, misks, rabbits, rays, tools and turtles. Each

of the classes contains roughly 12 shapes so in total we had approximately 265

shapes at our disposal. Figure (3.1) shows examples of shapes coming from some of

the classes. The Kimia database was used to evaluate the accuracy of the proposed

algorithm that classifies shapes into a given class. We now describe the process

followed for the experiments.

Figure 3.1: Examples of binary Kimia images
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3.2.1 Acquisition of the shape boundaries

The Kimia database is comprised of binary images of a “.pgm” form. To work with

the shapes i.e. the one dimensional line of each image, we had to extract their

outlines and acquire their boundaries. Although in our work we assume that the

one dimensional boundaries are available to us, following section [1.2] we describe

the method by which the outlines were obtained. For the extraction of the outlines,

we used the “bwboundaries” [136] MATLAB function which can trace the exterior

boundary of a binary image. It implements the Moore–Neighbor tracing algorithm

[137] which finds the contour of a given graph and terminates when it visits the first

visited pixel for the second time. MATLAB uses an improved stopping condition

“Jacob’s stopping criterion” [138] which stops the algorithm when the start pixel

has been visited for the second time in the same direction it was originally entered.

The algorithm returns a matrix which contains the coordinates of the boundary

pixels that constitute the outline of the binary image; this is the one dimensional

outline that represents a particular shape. Figure (3.2) shows examples of obtained

boundaries of shapes coming from the Kimia database which were extracted with

the above method.

Figure 3.2: Extracted outlines with the Moore-Neighbor algorithm
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3.2.2 Generation of data shapes

For the classification of new observed data shapes we simulate a data set with

realisations from random classes of the Kimia database. Since we assume that each

of the acquired observations has been generated by an idealised closed, planar curve

we use these for the generation of the observed data shapes. The process is as follows:

we choose a random binary image from a random class of the KIMIA database. The

boundaries of the chosen images are extracted by the described Moore-Neighbor

algorithm. The extraction method returns the coordinate values of the boundary

pixels which is the discretisation of the underlying closed planar curve that we

chose to represent all our shapes. Since the discretisation of the underlying curve

returns more landmarks than is necessary we randomly select a subset of these to

represent the data shape. We then assign a random rotation, scale and translation

to the chosen landmarks and add isotropic Gaussian noise to each of them. This is

the final result which represents the observed data shape. Figure (3.3) illustrates

examples of generated data shapes from the Kimia database as described above.

Figure 3.3: Examples of data shapes

3.2.3 Generation of example shapes

As we mentioned in the previous chapter, to perform classification of new observed

data shapes the probability of each class has to be evaluated through the approxi-

mation algorithm we proposed. This involves the marginalisation of the likelihood

with respect to nuisance parameters that are involved in the data formation process.
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Although some of the results were found in closed form solutions, we were not as

lucky with the integration of others for which we employed Monte Carlo integra-

tion. One of the nuisance parameters that has to be integrated is the shape curve

Dβ which effectively compares the data shapes to all possible idealised curves of all

available classes under the chosen prior shape model P(β∣C). The shape model is

then used for the integration of the marginalised likelihood over all possible curves

Dβ P(β∣C). Since in the Kimia database we have no prior information about the

curves or any special characteristics that they bear we choose to represent the shape

models by a uniform distribution.

The shapes in the Kimia database are not described by parameters following

a probability distribution; instead each class has a few ideal shapes. To sum over

all curves, the observed data shapes must be compared to the available idealised

example shapes of the given class. For this comparison we need to form all idealised

example shapes of the available classes. Since the Kimia database has 12 images

for every class, we suggest that these can be assumed to be all the representative

idealised shapes of a given class. Then the integration over the curves β is done by

comparing the data shapes to all 12 idealised example shapes of all classes (in total

256 shapes) and in the end by summing over all classes against P(β∣C). For the

generation of the example shape we use the following technique. We firstly extract

the outline of shapes by using the described Moore-Neighbor algorithm. As before,

we randomly choose a subset of the generated landmarks. We linearly interpolate

between each pair of points and then apply a diffeomorphism, as described in section

[2.3.1], so that the diffeormorphism pushes forward the chosen points from their

original place to a new position. The diffeomorphism is applied for practical reasons

so that we can evaluate the Monte Carlo integration of the likelihood for both the

curves β and the samplings s simultaneously. In other words, we generate random

realisations from P(β∣C) and each one of them is evaluated at a different realisation

from P(s). Examples of generated sample shapes are shown in figure (3.4).
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Figure 3.4: Examples of sampled idealised example shapes

3.2.4 Confidence and success results

In this section we investigate the properties of the classification algorithm we pro-

posed in chapter [2]. The posterior probability of a class P(C ∣y) can be approxi-

mated by:

P(C ∣y) ∝ ∑
b∈B
∫ Dβ Ds P(y∣b, β, s)P(b)P(s)P(β∣C)P(C)

where we have analytically integrated over all similarity transformations. To fully

approximate the posterior distribution of a class C one needs to integrate over the

remaining nuisance parameters namely the samplings s, the shape curves β and

sum over all bijections. The summation is calculated exhaustively and we would

like to remind the reader that because we are summing over cyclic bijections the

result is invariant to the choice of the first data point; this is the case for both the

Kimia and the alphabet database. However, the integrals over s and β must be

done by simple Monte Carlo techniques. This increases our uncertainty over the

results due to the randomness of the procedure. For this reason, in this section we

examine the confidence levels and the success rates of the algorithm as we vary these

parameters that can affect the accuracy of the classification results of the algorithm.

In the next subsections we present the results we found for the different values of the

samplings s, the number of landmarks and, in the case of the sand body database,
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the iterations over the curves β; this is not included in the Kimia and the alphabet

databases since they both have a discrete number of idealised curves in each class.

Confidence level for Monte Carlo iterations of samplings

In this section we present the confidence levels of the algorithm and explore how

much they vary as the iterations over the sampling integration increase. To produce

the graphs of the Monte Carlo iterations we used the following process. We simu-

lated a data shape whose underlying shape class was picked randomly with equal

probability. It was created by the method explained in section [3.2.2] with 40 land-

marks around its boundary. The added isotropic Gaussian noise was kept relatively

low at σ
L = 0.3 × 10−2. For comparison, the noise level is given in terms of the arc

length of the curve, L which is usually taken to be equal to 1. That means that if

σ = 0.3 × 10−2 then the observed data shape y is simulated and the noise perturbs

each of the boundary points at 0.3 × 10−2 times the length of the true curve. We

then performed classification by using our proposed algorithm whilst varying the

number of the sampling iterations and keeping other parameters constant. In the

next subsection, we investigate the sensitivity of our results to larger and smaller

values of σ in order to better understand how resilient this approach is to noisy data.

Since we work with the regularised version of the likelihood (3.2.1),

P(y∣b, β, s) = ∑
b
∫ Dβ Ds P(y∣b, β, s)P(b)P(β∣C)P(s)

= ∑
b∈B
∫ Dβ Ds

1

Z

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

P(b)P(β∣C)P(s)

(3.2.1)

we need to choose the values of the regulators. For the following runs the values of

the regulators were chosen to be: B = 105, D = 105, α = 1.5 and ζ = 0.1. The variance

of the generalised Gaussian of the diffeomorphisms (2.3.7) was chosen to be σs = 1.5.

Once we have approximated the posterior probability of the classes P(Ci∣y) the

observed data shape y can be classified into the shape class by ranking the classes
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according to the posteriors and picking the highest. Since the data shape y was

simulated from a known class we can compare the estimated class to the true class.

For the following results the Monte Carlo iterations of the sampling were increased

to 500 for 18 different runs (simulations of the data shape y). A deeper analysis

would ideally involve the study of the dependence of the classification results on

the limiting values chosen for the regulators. It is important that these values are

suitably chosen such that our results are not unduly sensitive to variations in these

parameters which therefore defines how large or small these variables ought to be

taken in any future application of the work in this thesis. We leave this study for

future work in the interests of demonstrating here the validity of our model.

The following graphs provide the confidence levels for 6 out of the 18 different

runs of the algorithm. One notices that the confidence level is stabilised for a

threshold ε = 0.01 after 20 iterations.
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Figure 3.5: Confidence levels against 500 sampling iterations s

In the following 4 graphs the scale of the graphs helps to confirm that the algo-

rithm stabilises after 20 iterations. The confidence levels for the above mentioned

parameters vary from 26 to 46 percent which are relatively small but one has to

bear in mind that the confidence levels are also affected by other parameters such
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as the number of points.

Figure 3.6: Confidence levels against the sampling iterations s

Confidence levels for σ

In this section we present how the confidence levels of the algorithm vary as the

Gaussian noise σ increases. This experiment is important to determine at what

point the noise is too great for the algorithm to perform as intended. To produce the

graphs of the Gaussian noise we used the following process. We simulated 40 data

shapes whose underlying shape class was picked randomly with equal probability

from the Kimia database. They were created by the method explained in section

[3.2.2] with 40 landmarks around their boundary. Starting from the base data shape

with zero noise we have added Gaussian noise in increments of 0.15 × 10−2 to each

of the remaining 39 shapes. We then performed classification using the minimum

number of Monte Carlo iterations needed for the classification. This experiment
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was conducted in order to identify the impact of the observational noise on the

classification results of the generated data shapes.

Figure 3.7: Confidence results against Gaussian noise σ

The graph above represents the average classification rates for each level of noise

added in the 40 data shapes. One notices that the classification levels drop from

25% to 20% as the standard deviation of the added noise increases from 0.2×10−2 to

1.4×10−2. There are two points to make here. Firstly we notice that the classification

levels are relatively low and secondly the increase of the Gaussian noise has the effect

one would expect. As the noise σ increases the classification levels drop by 5%. We

would expect the same behaviour if the noise would increase even more, but have

focused on small increases of σ in the interest of brevity and simulation efficiency.

Success rates for Monte Carlo iterations of samplings

The following graphs present the success rates of the algorithm against the sampling

iterations. The y-axis represents the number of correct classifications for the 20

shapes of each run. For each individual run the data shapes were generated with 25
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points and the noise was kept relatively low at σ = 0.3 × 10−2. One notices that the

success rate stabilises after 20 iterations (in some cases after 10 iterations) and the

success rate ranges from 85 to 90 percent. For simplicity, we present 6 out of the 20

runs.

Figure 3.8: Success rate against the sampling iterations for 20 different shapes

In summary, although the confidence levels of the algorithm against the sampling

iterations remain relatively low, 26 to 46 percent, the algorithm converges to the

level value after 20 iterations. The same behaviour is noted when we examine the

success rates whilst the sampling iterations vary. The success rates range from 85

to 90 percent and the results imply that 20 sampling iterations are enough for such
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a high success rate although the confidence levels are low.

3.2.5 Classification results

To classify the observed data shapes, we evaluate and approximate the posterior

probability for each of the classes via the proposed algorithm in chapter [2]. The

observed data shapes are then classified to the class that assigns the highest posterior

probability to it. Since the data shapes y have been generated by known classes it

is easy to evaluate how the algorithm performs by comparing the estimated classes

to the true classes.

Obtaining the values of the minimum Monte Carlo iterations needed for stable

confidence levels we can now proceed to the classification of observed data shapes.

For the following experiment we simulated 10 different shapes from the same class

for 10 different runs. We then approximated the posterior P(Ci∣y) and picked the

highest posterior which effectively gave the class in which the shapes were classified

which evaluates the performance of the algorithm. The following 10 shapes were

generated from the class of “bones”. The shapes were generated with 30 points and

the noise’s standard deviation was σ = 0.4×10−2. The sampling iterations were fixed

to be 20, the minimum number that is needed for the confidence results to stabilise.

The first graph presents the 10 simulated shapes to be superimposed whereas the

second one shows one example of such a shape. For simplicity, we present 4 out

of 10 classification results. The success rate for these 10 runs was 90 percent with

9 out of 10 shapes being classified into their respective category correctly. For the

correctly classified shapes the confidence levels ranged between 26 to 35 percent with

the average confidence level at 33 percent. In the misclassification case, presented

in the last graph, the observed shape is classified as a “tool.” This is an expected

behaviour since the classes of bones and tools are very similar. However one notices

that although the confidence level for the class tool is 26 percent, the second higher

posterior is for the class of bones with confidence level of 25 percent.
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Figure 3.9: Classification results for the class of bones

The next 10 shapes were simulated from the class of “camel.” For the simulation

of the observed data shapes we used 40 landmarks and the standard deviation of the

added noise was σ = 0.5× 10−2 which is regarded to be high. This is also reflected in

the results where the success rate is 40 percent with only 4 out of 10 shapes classified

in the correct category. The last three graphs present three misclassification rates
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where the data shapes are either classified as face, rabbit or misk. This is due to the

similarity of the classes but also due to the presence of the high noise which causes

the classification levels, even when correct, to be kept quite low between 13 and 23

percent with an average confidence level at 19 percent.

Figure 3.10: Classification results for the class of camels

The next 10 shapes were simulated from the class of “forks.” For their simulation
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we used 40 points and the standard deviation of the observed noise was σ = 0.4×10−2.

Although this run was done with the same number of points as in the previous run,

the presence of the lower noise pushed the success rate to 90 percent; 9 out of 10

shapes were classified correctly. The second highest posterior is usually attributed

in the class of camels as can be seen in the second graph. In addition, in the

one case of misclassification the shape was classified in the class of camel. The

lowest classification level was 23 percent whilst the highest was 90 percent with the

average confidence level to be 58 percent. This shows that the classification levels

are sensitive to the presence of noise and an increase of 10−3 can cause a fall of 70

percent in the confidence.
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Figure 3.11: Classification results for the class of forks

The next 10 shapes were simulated from the class of “hammers.” For the gener-

ation of the data shapes we used 50 points and the standard deviation of the noise

was σ = 0.4×10−2. In this case, the success rate was 80 percent and the classification

levels ranged from 45 to 92 percent with 7 out of 8 correct classifications to have
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confidence more than 60 percent. The average confidence level was 78 percent.

Figure 3.12: Classification results for the class of hammers

The next 10 shapes were simulated from the class of “hands.” For the generation

of the data shapes we used 50 points and the standard deviation of the noise was

σ = 0.8×10−2 which is regarded to be extremely high. The 10 simulated shapes were
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all correctly classified into their respective category with confidence levels ranging

from 26 to 75 percent with the average confidence at 40 percent. Although in 8 out

of 10 cases the confidence levels were close to 30 percent, the highest posterior was

very distinguishable in comparison to the second highest posterior which was close

to 10 percent. Although the noise in this case is extremely high and the number

of points medium, the high success rate of this experiment is due to the fact that

the particular class is quite distinct and recognisable in comparison to other classes

(for example the class of bones is easily mistaken and misclassified as a tool or a

hammer).
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Figure 3.13: Classification results for the class of hands

The last 10 shapes were generated from the category of “tools.” For the simu-

lation of the data shapes we used 80 points and the standard deviation of the noise

was σ = 0.5 × 10−2. There were 9 out of the 10 shapes classified correctly and the

confidence results were in all cases more than 90 percent with the average confidence
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reaching 93 percent. In the misclassification case, the data shape was classified as

a bone with probability almost 80 percent. Although the noise was kept at a high

level we see that the confidence levels are much higher than when the noise was kept

low but the number of point was 40 or 50. It appears that the higher number of

points compensates for the high level of noise.

Figure 3.14: Classification results for the class of tools
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To investigate the classification levels for different numbers of points we classified

data shapes from the same class and with stable noise as the number of points

increased. The experiment was run 10 times with the number of points ranging

from 10 to 100 and the noise being σ = 0.2 × 10−2. The 5 graphs in figure (3.15)

present the results of 5 runs for the class of “tools.” One notices that in the case

of 10 and 20 points the data shapes are misclassified whereas for 30 points the

classification level is 25 percent. For 50 points the classification levels approach 70

percent and for more than 60 points the confidence is more than 90 percent. The

last graph presents the time in hours for a single run as a function of points which

shows that for a large number of points the algorithm is computationally expensive.

The following experiment was run 10 times with the number of points ranging

from 10 to 100 and the noise being σ = 0.2 × 10−2. The 5 graphs in figure (3.16)

present the results of 5 runs for the class of “hands.” One notices that in the case

of 10, 20 and 30 points the data shapes are misclassified whereas for 40 points the

classification level is 45 percent. For 50 points the classification levels approach 68

percent and for more than 60 points the confidence is at 100 percent. The last graph

presents the time in hours for a single run as a function of points which shows a

similar behaviour as in the case of class of tools.

Overall, we performed 10 runs for 10 shapes each. These 100 shapes came

from the classes of bones, camels, forks, glass, hammer, hands, hearts, key, rabbit

and tools. For the 10 runs, the average classification level was µ̂ = 59% ± 7% and

the average success rate was 80% ± 5%. That means that in average 8 out of 10

shapes were classified correctly with an average classification confidence of 59%. The

algorithm is sensitive in the presence of too few points or too high noise however

it seems that a high number of points can compensate the high noise. It is also

noticeable that the algorithm does not perform well when the number of points

is quite small. However, when the number of points increases to 40 points the

classification levels become high and in most cases more than 60 percent. In this

case, the success rates are also quite high and in most cases more than 80 percent.

As soon as the number of points increases to more than 50 the confidence levels
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(a) Classification results for 10 points (b) Classification results for 20 points

(c) Classification results for 30 points (d) Classification results for 40 points

(e) Classification results for 50 points (f) Computational time as a function of the

number of points

Figure 3.15: Classification results for the class of tools
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(a) Classification results for 10 points (b) Classification results for 20 points

(c) Classification results for 30 points (d) Classification results for 40 points

(e) Classification results for 50 points (f) Computational time as a function of the

number of points

Figure 3.16: Classification results for the class of hands
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become almost more than 90 percent depending on the noise. However, when the

number of points becomes more than 50 the algorithm becomes computationally

expensive with the computational time being more than 5.5 hours.

3.3 Experimental results on letters

The second database we used for the experimental results was the alphabet database

which we created ourselves. We made the database as a collection of binary images

of the alphabet. Each class of letters (i.e. each letter of the alphabet) was comprised

of six different types of fonts: tahoma, times new roman, arial, calibri, sans sherif

and courier. In total, the database was comprised of 156 binary images. As with

the Kimia database, the shape models P(β∣C) we employed here are uniform since

we have no prior information about the curves or any special characteristics that

they have. For the generation of the example and the data shapes we used the same

techniques as with the Kimia database which were described in section [3.2.2] and

[3.2.3]. Figure (3.17) shows examples of letters coming from all six fonts of letters

T and W and figure (3.18) shows the extracted boundaries of the letter T with

the Moore-Neighbor algorithm. Figure (3.19) shows examples of sampled example

shapes and figure (3.20) shows examples of generated data shapes. In this instance

of course the application of our algorithm comes with a warning; ordinarily the

orientation of letters is crucial (for example W versus M and C versus U) whereas

our likelihood has been constructed to be invariant under rotations of the data. This

section should be understood as a general test of our algorithm which is used for

demonstrational purposes and not as a serious proposal for recognition of written

letters.

In the next sections we describe the success rates and confidence levels of the al-

gorithm with respect to different varying parameters and we discuss its classification

accuracy.
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Figure 3.17: Examples of binary letters

Figure 3.18: Extracted outlines with the Moore-Neighbor algorithm
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Figure 3.19: Examples of sampled idealised example shapes

Figure 3.20: Examples of data shapes

3.3.1 Confidence and success results

In this section we present the confidence levels and the success results of the algo-

rithm as we vary different parameters. The procedure we followed is the same as for

Kimia database as described in section [3.2.4].
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Confidence levels for Monte Carlo iterations of samplings

In this section we present the confidence levels of the algorithm and how much they

vary as the iterations over the sampling integration increase for the letter database.

To produce the graphs of the Monte Carlo iterations we used the following process.

We simulated a data shape whose underlying shape class was picked randomly with

equal probability from one of the letter classes. It was created by the method

explained in section [3.2.2] with 40 landmarks around its boundary. The added

isotropic Gaussian noise was kept relatively low at σ = 0.2 × 10−2. As explained

previously, the noise level is in terms of the arc length of the curve which means that

if σ = 0.2 × 10−2 then the observed data shape y is simulated and the noise perturbs

each of the boundary points at 0.2 × 10−2 times the length of the true curve. We

then performed classification by using our proposed algorithm whilst varying the

number of the sampling iterations and keeping other parameters constant. Since we

work with the regularised version of the likelihood (3.2.1), we need to choose the

values of the regulators. For the following runs the values of the regulators were:

B = 105, D = 105, α = 1.5 and ζ = 0.1. The variance of the generalised Gaussian of

the diffeomorphisms (2.3.7) was chosen to be σs = 1.5. For the following results the

Monte Carlo iterations of the sampling were increased to 500 for 20 different runs

(simulations of the data shapes y).

The following graphs provide the confidence levels for 6 out of the 20 different

runs of the algorithm. One notices that the confidence level is stabilised for a

threshold ε = 0.02 after 20 iterations as with the case of the Kimia database.
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Figure 3.21: Confidence level against the sampling iterations

In the following 4 graphs the scale helps to confirm that the algorithms stabilises

after 20 iterations. The confidence levels for the above mentioned parameters, vary

from 30 to 90 percent.



3.3. Experimental results on letters 112

Figure 3.22: Confidence level against the sampling iterations

Confidence levels for σ

In this section we present how the confidence levels of the algorithm vary as the

Gaussian noise σ increases. This experiment is important to determine at what

point the noise is too great for the algorithm to perform as intended. To produce

the graphs of the Gaussian noise we used the following process. We simulated 40

data shapes, twice, whose underlying shape class was picked randomly with equal

probability from the letter database. They were created by the method explained in

section [3.2.2] with 40 landmarks around their boundary. Starting from the base data

shape with zero noise we have added Gaussian noise in increments of 0.2 × 10−2 for

figure (3.23a) and increments of 0.5×10−2 for figure (3.23b) in each of the remaining

39 shapes. We then performed classification using the minimum number of Monte

Carlo iterations needed for the classification. This experiment was conducted in
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order to identify the impact of the observational noise on the classification results

of the generated data shapes.

(a) (b)

Figure 3.23: Confidence results against Gaussian noise σ

The graphs above represent the average classification rates for each level of noise

added in each of the two runs of the 40 data shapes. One notices that, as in the case

of the Kimia database, the classification levels presented in figure (3.23a) show that

classification results drop from 90% to 77% as the standard deviation of the added

noise increases from 0.2 × 10−2 to 1.6 × 10−2. The classification levels presented in

figure (3.23b) drop from 80% to 74% as the standard deviation of the added noise

increases from 0.5 × 10−2 to 2.5 × 10−2. As in the case of the Kimia database, the

results are as expected; the increase of the Gaussian noise impacts the classification

results which drop almost 20%.

Success rates for Monte Carlo iterations of samplings

The following graphs present the success rates of the algorithm against the sampling

iterations. The y-axis represents the number of correct classifications for the 20

shapes of each run. For each individual run the data shapes were generated with 30

points and the noise was kept relatively low at σ = 0.3 × 10−2. One notices that the

success rate stabilises after 20 iterations and the success rate ranges from 45 to 75

percent. For simplicity, we present 6 out of the 20 runs.
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Figure 3.24: Success rates against the sampling iterations
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Figure 3.25: Success rate against the number of points

3.3.2 Classification results

To classify the observed data shapes, we evaluate and approximate the posterior

probability for each of the classes via the proposed algorithm in chapter [2]. The

observed data shapes are then classified to the class that assigns the highest posterior

probability to it. Since the data shapes y have been generated by known classes it

is easy to evaluate how the algorithm performs by comparing the estimated classes

to the true classes.

As in the case of the Kimia database, for the following experiment we simulated

10 different shapes coming from the same class for each of the 10 runs. We then

approximated the posterior P(Ci∣y) and picked the highest posterior which effec-

tively gave the class in which the shapes were classified. We can then evaluate the

performance of the algorithm since the shapes are generated from a known class.

The following 10 shapes were generated from the letter “B”. The shapes were gen-

erated with 30 points and the noise’s standard deviation was σ = 0.4 × 10−2. The

sampling iterations were fixed to be 20, the minimum number that is needed for the

confidence results to stabilise. The first graph presents the 10 simulated shapes to

be superimposed whereas the second one shows one example of such a shape. For

simplicity, we present 4 out of 10 classification results. The success rate for these

10 runs was 70 percent with 7 out of 10 shapes being classified into their respective

category correctly. For the correctly classified shapes the confidence levels ranged
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between 38 to 68 percent with the average confidence level at 52 percent. In the

misclassification cases, the letter B is classified either as a D or an O. The data

shapes are created with 30 points in the presence of noise so this is an expected

behaviour since these classes are very similar. One notices that even in the cases

that the data shapes were classified correctly, the two higher posteriors after class

B belong to class D and class O.
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Figure 3.26: Classification results for the letter B

The next 10 shapes were simulated for letter E. For their simulation we used 50

points and the standard deviation of the observed noise was σ = 0.7 × 10−2 which is

considered to be relatively high. The success rate for this run was 90 percent with 9

out of 10 shapes classified correctly.The classification levels for the letter E ranged
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from 60 to 100 percent with an average classification level of 87 percent. One should

mention that the high confidence levels are mainly due to the fact that letter E is

quite distinguishable in comparison to other classes of letters.

Figure 3.27: Classification results for the letter E

The next 10 shapes were simulated for the letter G. For their simulation we used
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50 points and the standard deviation of the observed noise was σ = 0.6× 10−2 which

is lower than the noise used in the case of letter E of the previous run. Although

this run was done with the same number of points as in the previous run and in

the presence of lower noise the success rate was 70 percent. In the misclassification

cases, 2 shapes were classified as a C and one as an F. In the case where letter G

was correctly classified, the next higher posterior was for letter C which shows that

the two classes of letters are quite similar and not easily distinguishable. The lowest

classification level for letter G was 55 percent whilst the highest was 98 percent with

the average confidence level to be 74 percent.
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Figure 3.28: Classification results for the letter G

The next 10 shapes were simulated from the letter Q. For their simulation we

used 40 points and the standard deviation of the observed noise was σ = 0.6 × 10−2.

The success rate was 40 percent since letter Q is very similar to letter O or letter D.

In all misclassification cases letter Q was classified either as an O or a D. In the case
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of correct classifications, the confidence level ranges from 30 to 88 percent with the

average confidence being 55 percent which makes letter Q in the threshold of being

distinguished from other letters.

Figure 3.29: Classification results for the letter Q

The next 10 shapes were simulated from the letter T. For their simulation we
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used 40 points and the standard deviation of the observed noise was σ = 0.5 × 10−2.

Although in this run we used the same number of points and lower noise than for

letter Q the success rate was 60 percent. The confidence level ranged from 43 to

98 percent with the average being 81 percent. The choice of a more distinguishable

class of letter increases the confidence for about 30 percent.

Figure 3.30: Classification results for the letter T
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The last 10 shapes were generated for letter Y. For the simulation of the data

shapes we used 80 points and the standard deviation of the noise was σ = 0.8× 10−2

which is considered to be extremely high. There were 5 out of the 10 shapes classified

correctly and the confidence results were in all cases more than 90 percent with the

average confidence reaching 99 percent. In the misclassification case, the data shape

was classified as an A or a V. Although the success rate is only 50 percent, we

see that in the case of correct classifications the confidence levels is extremely high

something that happens due to the fact that the number of points is relatively high.
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Figure 3.31: Classification results for the letter Y

To investigate the classification levels for different numbers of points we classified

data shapes from the same class and with stable noise as the number of points

increased. The experiment was run 10 times with the number of points ranging

from 10 to 100 and the noise being σ = 0.2 × 10−2. The following 5 graphs present
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the results of 5 runs for letter B. One notices that in the case of 10, 20 and 30 points

the data shapes are misclassified whereas for 40 points the classification level is 45

percent. For more than 50 points the confidence reaches more than 90 percent. The

last graph presents the time in hours for a single run as a function of points which

shows that for a large number of points the algorithm is computationally expensive.

The next 5 graphs present the results of 5 runs for letter E. This experiment was

run 10 times with the number of points ranging from 10 to 100 and the noise being

σ = 0.2 × 10−2. One notices that in the case of 10 to 40 points the data shapes are

misclassified whereas for 50 points the classification level is more than 90 percent.

The last graph presents the time in hours for a single run as a function of points

which shows a similar behaviour as in the case of letter B.
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(a) Classification results for 10 points (b) Classification results for 20 points

(c) Classification results for 30 points (d) Classification results for 40 points

(e) Classification results for 50 points (f) Computational time as a function of the num-

ber of points

Figure 3.32: Classification results for letter B
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(a) Classification results for 10 points (b) Classification results for 20 points

(c) Classification results for 30 points (d) Classification results for 40 points

(e) Classification results for 50 points (f) Computational time as a function of the num-

ber of points

Figure 3.33: Classification results for letter E

Overall, we performed 10 runs for 10 shapes each. These 100 shapes came from
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the classes of letters B, T, G, P, Q, J, I, E, D, Y. For the 10 runs, the average

success rate was µ̂ = 73% ± 6% and the average classification level was 77% ± 5%.

That means that on average 7 out of shapes were classified correctly with an average

classification confidence of 77%. We can see that in the alphabet database, the

algorithm returned slightly better classification confidence levels than the Kimia

database but the success rates were comparable. The algorithm is sensitive in the

presence of too few points or too high noise however it seems that a high number

of points can’t compensate the high noise as in the case of the Kimia database. It

is worth mentioning that the number of classes is higher as well as the number of

classes that are similar to each other. It is also noticeable that when the success rate

is not that high the classification levels for the correct classifications are usually more

than 80 percent especially when the number of points increases to more than 50.

However, when the number of points becomes more than 40 the algorithm becomes

computationally expensive with the computational time being more than 5 hours.

3.4 Geological sand bodies

In this section we describe the motivation behind the choice of the sand body

database which we created ourselves. We describe the geological definitions needed

for the study of the database and we discuss current classification schemes that are

inadequate to capture the variation of sand body classes. We then propose the sta-

tistical classification of sand bodies and examine the experimental results for this

database.

3.4.1 Definition of a sand body and geological classification

According to the Geology dictionary [139] a palaeocurrent is a current which existed

during the deposition of a sediment at some period of geological history. A pale-

ochannel is a subterranean remnant of an inactive river or paleocurrent or stream

channel that has been filled or buried by younger sediment. Other terms used to de-

scribe such paleocurrents or paleochannels is sand bodies or sandstone bodies. The

sandy nature of sand bodies makes them very porous which in turn makes them
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the best oil and hydrocarbon reservoirs. For this reason, sand bodies have become

extremely important for both geology and the petroleum industry; in particular,

their cross-sectional shapes and their morphology help determine their oil-bearing

capacity and porosity.

A different definition of sand bodies comes from Potter [140]. Potter in his

review states that “it is not possible to define rigorously a sand body but one might

define a sand body as a single, interconnected mappable body of sand.” The term

interconnected is used to take into account of the branching patterns of many sand

bodies and the superposition of sand bodies of different cycles. The term mappable

is used to distinguish them from most single beds1 [141]. Classification of sand

bodies’ cross-sectional shapes is an important problem to study, however current

classification schemes for sand body shapes are qualitative, simplistic, and ad hoc.

Thus, there is a need for a quantitative analysis with the help of statistical models.

Roughly speaking there are two classes of sand bodies, ribbons and sheets. Figure

(3.35) shows the two categories of shapes as the geologists distinguish them. In

the section to follow we discuss how geologists established this classification scheme

based on experimental observations.

For the classification of the sand bodies we need to define the paleoflow. Pale-

oflow, paleocurrent direction or paleodirection is the direction of flow of the water or

wind at the time the rocks were deposited as sediments [142]. Sedimentologists can

deduce this flow direction from sedimentary structures on the rocks such as their

ripple marks. Geologists need to know the paleoflow direction because it is one of

the parameters they use to define the shape of a sand body. It also enables them

to classify them and helps them to understand the environment of the sand bodies’

deposition. Another parameter that helps geologists with the classification of sand

bodies is their dip angle. The dip angle is the angle a sand body makes with the

plane of the horizon. One can think of it as the inclination of a sand body towards

the centre of the earth. These two parameters define the plane of projection for a

1A bed is a layer that is distinctly separated from other layers. It is the smallest division of a

geological formation.
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three-dimensional sand body to its equivalent planar. This cross section of the sand

body can then be used for classification purposes. We will describe these in detail

in the next section.
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Figure 3.34: Types of sandbodies
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(a) A ribbon (b) A sheet

Figure 3.35: The two classes of sandbodies [143]

Early classification attempts were done by Rich [144] who focused on the length

and the width of the sand bodies as a combination of longitudinal and cross sectional

measures [141]. Potter [145] states that the terms used by Rich [144] are a mixture

of the descriptive and the genetic; the descriptive terms are usually geometric and

the genetic ones are land form names. Following that, experimentalists have intro-

duced the terms blanket and sheet for equidimensional sand bodies and have used

descriptive names such as shoestring, pod and belt [144] for elongated sand bodies

whose dimension is 2 to 100 times greater than the width.

Kryinine [146] recognized the utility of a new classification scheme, different to

the one proposed by Rich and Potter, the width–to–thickness ratio (W/T) because

the ratio was a good means of estimating the sand bodies’ area–volume ratio. Us-

ing the W/T ratio Kryinine classified sand bodies into four categories. Although

Kryinine’s classification depended on the size experimentalists preferred to simply

use the dimensions and thickness of the sand bodies. McGugan [147] modified this

approach by introducing the persistence factor but according to Potter [140] the

factor is useful in some studies but does not differentiate elongate and equant sand

bodies of equal area and thickness so it hasn’t been as widely used as the W/T.

Collinson [148] classifies sand bodies according to their channel types: meandering,

sinuous and others. Moody-Stuart [149] recognised only these two types of sand

body shapes - sinuous and meandering. Friend [150] states that little is known

about the process forming the two dimensional or three-dimensional geometry of a

sand body and that channels that have lateral migration should be distinguished

from those that are characterized by lateral stability. Friend refers to Potter [140]
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using his definition of sand bodies and he finally classifies them into sheets and in

the second type which is “of elongate form” [145]. Friend characterises the elongate

ones ribbons, using a distinguishing value of the W/T of 15:1. As he states: When

applying this distinction care must be taken that the width is estimated perpendic-

ular to the local elongation of the sediment body. His work in the Ebro basin has

demonstrated a major distinction between ribbons and sheets, formed by laterally

stable channels and sheets formed by channels that migrate laterally (also referred

in Allen [151]).

The division made by Friend has been generally accepted and accords with the

aspect ratio of modern channels [141]. Friend’s original choice of 15 as a W/T

discriminator was based on channel–body dimensions in the Ebro basin coupled with

information from Schumm [152] (P.Friend’s written communication with Gibling in

2000 [141]). Friend also investigated the shape properties of sand bodies in the Ebro

basin. In the Ebro basin, because of the lack of thick vegetation and soil cover, the

bodies weather out and erode so that unusually complete geometrical information is

available at outcrop. Atkinson [153] revises Friend’s ratio to 25:1 and Nadon [154]

revises the ribbon/sheet ratio to 30:1.

Hirst [143] classifies sand bodies after a study in the Huesca system observing

that ribbon sand bodies formed when paleochannels became plugged with sediment

prior to any lateral migration and have been defined as having W/T<15. His ob-

servations in Huesca indicate typical W/T values between 5 and 10. Sheet sand

stones have W/T>15 and often W/T>100. In this paper Hirst states that W/T are

measured perpendicular to the paleoflow. Ribbons become more prevalent distantly.

Here, for the first time we have the clear definitions of the sand body classification

and a clear distinction where he suggests the following categorisation.

The first established category is ribbons: these are elongated in plan form and

defined by the relatively small W/T of less than 15. When the width is measured we

have to make sure not include the thin wings (levees) and to estimate the width per-

pendicular to the long axis of the ribbon often measured by the paleoflow indicators

in the sand body.
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The second established category is sheets: these sand bodies are defined as

having greater W/T ratio than 15 where width is measured perpendicular to the

paleoflow. The major difference between the two types: Ribbons are a result of a

major episode of channel incision.

This classification scheme has been used in a qualitative way to classify the sand

bodies as having risen by meandering (ribbons) or braided (sheets) river systems as

observed by Bridge and Tye [155]. However, the most commonly used classification

scheme even nowadays is the one one proposed by Hirst, where the discrimination

between the two classes occurs at the W/T threshold of 15. Hirst established the

existing classification scheme which classifies sand bodies into ribbons and sheets.

Modern sedimentologists and geologists still use Friend’s classification system. One

can argue that although this method is based on observations of experimental geolo-

gists, is still quite simplistic and ad–hoc since it does not lend itself to a quantitative

analysis. Our goal is to provide a more advanced, scientific and statistical classi-

fication scheme which can be based purely on the geometrical deformations and

nature of the particular sand body shapes. We describe our methodology in the

next sections.
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Figure 3.36: W/T experimental observations by J.P.P Hirst [143]

3.4.2 Geological extraction of sand body shapes

Terrestrial laser scanning (also known as ground based lidar) is a remote sensing

technique that can be used to acquire a point cloud in three-dimensional space.

The scanner emits a laser pulse, which is reflected back from a surface, in this case

the geological outcrop. The length of time taken for the reflected pulse to reach

the scanner is then used to calculate the distance between the scanner and the

surface and to produce a point cloud. A camera mounted on top of the scanner is

used to take colour images of the scanned location, allowing the point cloud to be

coloured realistically. In addition, GPS data is acquired to enable geo-referencing

of the scanned point cloud. These scans can be combined into a single coordinate

system using common reflector points seen in several scans. The point cloud is then

coloured using the photographs corresponding to each scan, making it easier to pick
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out sedimentological characteristics and sand body geometries from the dataset.

To extract the sand body geometries, three-dimensional polylines (i.e. the three-

dimensional boundary line) are drawn manually around the sand body areas, which

can be seen in the laser scan point cloud in figure (3.37). The sand bodies are

identified using a combination of photographs and graphic logs of the section, along

with the colour and 3D shape of the point cloud. In some cases it is difficult to

identify the edge of the sand body due to the presence of vegetation or shadow. In

the case of vegetation, the laser cannot hit the sand body because it is occluded

by bushes or trees. In the case of shadow, a section of the point cloud contains no

points because the laser is not able to reach around the back of large sand bodies,

some of which protrude several metres into the air from the hillside. Where the

edge of the sand body is uncertain, several different sand body shapes can be picked

in order to capture the range of possible channel geometries. The shape extraction

stage thus produces a chain of 3D points for each sand body, representing a curve

around the sand body boundary.

In order to characterize the variability in sand body shape in more detail than

the W/T ratio, it is necessary to obtain two-dimensional shape boundaries corre-

sponding to these cross-sections from the three-dimensional data. To do this, each

three-dimensional chain of points is projected onto the plane perpendicular to the

measured paleocurrent direction and defined by the dip angle. Where measured

paleocurrent data is not available, paleocurrent directions can be estimated. The

projection procedure produces meaningful boundaries, together with uncertainty

measures, from which shape properties can be computed.

In this work, we will classify sand bodies based on an analysis of how “similar”

two shapes are. This formalism can be used to carry out a full statistical analysis,

avoiding the loss of information inherent in choosing a few special shape properties

such as the W/T ratio. By building statistical models of sand body shape, we can

study the differences of clusters ribbons and sheets, refine these descriptions, and

study the links between sand body shape and geological properties in a rigorous

way. Due to the fact that the expected geological data were never available to us,
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we simulated a sand body database based on the information we had.

Figure 3.37: Extraction of sand body shapes

3.4.3 Statistical classification of sand bodies

The three-dimensional geometry of fluvial channel sand bodies has received con-

siderably less attention than their internal sedimentological structure, despite the

inherent importance of sandstone body geometry for subsurface reservoir modelling.

The aspect ratio (width/thickness) of fluvial channels is widely used to characterise

the geometry of channel sand bodies, with end members of “ribbon” and “sheet”

sands. However, these approaches do not typically provide a full characterization of

fluvial sand body shape, as a single W/T allows many different channel geometries.

Furthermore, using the W/T ratio still requires choosing a classification boundary

between “ribbon-like” and “sheet-like”, and there can be significant overlap be-

tween these values [141]. Over- or under-estimating the cross-sectional area of a

sand body can have significant implications for reservoir models and hydrocarbon

volume predictions. There is thus a clear need for versatile, quantitative, statistics-

based models of sand body shape. The aim of this study is to demonstrate how a

new, statistics-based approach provides quantitative data for constraining stochastic

fluvial reservoir models.

In order to describe the statistical classification of sand bodies, we need to have

a mathematical model for each of the classes. Figure (3.35) shows the two existing

classes of sand bodies as reported by [143]. In absence of any geological data however,
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we will have to assume that the three-dimensional point cloud, its equivalent three-

dimensional polyline (as in figure 3.37) and the corresponding palleocurrent direction

and dip angle for each sand body are available to us. In this way, we assume that

we know the true projection plane of each sand body and we can thus extract the

cross-section of all sand body shapes. In the next section we describe the shape

models for ribbons and sheets.

Shape models for sheets

As described by Hirst [143], sheets are usually elongated objects with W/T ratio

of more than 15. For this reason, we model the idealised sample sheet shapes as

rectangles. Since sand bodies are characterised by their W/T ratio, we propose

to model sheet curves by their aspect ratio γ which can be drawn from a Γ(κ, θ)

distribution since such values will always be positive. From experimental results

we know that sheets have W/T ratio bigger than 15. To reflect these values in our

analysis, for the moment we assume that aspect ratios are generated by γ ∼ Γ(50,0.4)

so that we can capture the variability of the aspect ratios with a mean W/T to be

µ = κ ⋅ θ = 20. To avoid generating zeroes, the generated aspect ratios are shifted

by 1. We choose the generated shapes to be centred at zero and have unitary

length. Figure (3.39b) shows such an idealised sample sheet and figure (3.38) shows

the probability density function of the Gamma distribution that the sheets’ aspect

ratios are generated from.

Shape models for ribbons

Ribbons are very similar to sheet shapes and we choose to model them as elongated

objects with a triangular bump in the middle. To generate such a shape, we assume

that the rectangular part’s W/T ratio is generated in a similar way as the sheets’

W/T. We assume that the height of the triangular bump is placed uniformly between

U(0.25,0.75) of the total height. From experimental results we know that ribbons

have W/T ratio smaller than 15. To capture this in the analysis, for the moment

we generate ribbons’ aspect ratios from a γ ∼ Γ(7.5,1) with mean µ = κ ⋅ θ = 7.5. To

avoid generating zeroes, the generated aspect ratios are shifted by 1 and we choose
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the generated shapes to be centred at zero and have unitary length. Figure (3.39a)

shows an idealised sample ribbon and figure (3.38) shows the Gamma distribution

that generates the ribbons’ aspect ratios.

To summarise, we model idealised sand body shapes with their aspect ratio

coming from two different Γ distributions; in this way, the sand body curve β is

specified uniquely by its aspect ratio γ. This is reflected in the computational

calculation of the likelihood as described by equation (3.2.1) where we implicitly take

Dβ P(β) → dγ Γ(γ;κ, θ). The explicit calculation of the integral over the curves β

is replaced by an implicit Monte Carlo integral over all aspect ratios that specify

sand body curves and are being drawn by a Γ distribution with hyperparameters κ

and θ.

Figure 3.38: Γ(7.5,1) and Γ(50,0.4) the distributions ribbons’ and sheets’ aspect

ratios

(a) An idealised ribbon (b) An idealised sheet

Figure 3.39: Simulated sand bodies
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Generation of sand body data set

In absence of real geological data the sand body data set was simulated. For the

generation of simulated sand bodies we use the idealised sheets and ribbons (gener-

ated in the way described in the previous section) as the underlying curves which

we randomly and uniformly choose for the construction of the data set. We choose

a random number of points to assign around the boundary of the generated shape

and assign a random rotation, translation and scaling to transform the shape. Fi-

nally, we add isotropic Gaussian noise to each of the points that perturbs them from

their original place. Figure (3.40) shows examples of such simulated sand bodies

with the idealised equivalent ones superimposed. With a complete sand body data

set, we can now investigate the confidence levels and the success results of the pro-

posed algorithm. We can then proceed to the statistical classification results of the

algorithm for given sand body data shapes and evaluate its effectiveness.

Figure 3.40: Examples of sampled sandbodies
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3.4.4 Confidence and success results

In this section we investigate the properties of the classification algorithm as in the

case of the Kimia and the alphabet database. We examine the confidence levels and

the success rates of the algorithm as we vary the parameters that can affect the

accuracy of the classification results of the algorithm for the different values of the

samplings s and the iterations over the curves β.

Confidence levels for Monte Carlo iterations of samplings

In this section we present the confidence levels of the algorithm and how much

they vary as the iterations over the sampling integration increase. To produce the

graphs of the Monte Carlo iterations we used the following process. We simulated

a data shape whose underlying shape class was picked randomly with equal proba-

bility. It was created by the method explained in section [3.4.3] with 30 landmarks

around its boundary. The added isotropic Gaussian noise was kept relatively low at

σ = 0.2 × 10−2. We then performed classification by using our proposed algorithm

whilst varying the number of the sampling iterations and keeping other parameters

constant. The values of the regulators and the noise of the generalised Gaussian

used for the diffeomorphisms were kept the same as for the previous databases.

The idealised example shapes for the integration over the curves were generated

with aspect ratios generated by the Gamma distributions discussed in section [3.4.3]

and [3.4.3]. However, unlike the two previous studied databases, the number of all

possible sand body curves is not discrete and hence we cannot sum over all class

curves since all curves are generated implicitly by a Gamma distribution. Sand

body curves are described by their aspect ratio so in this case we implicitly take

Dβ P(β) → dγ Γ(γ;κ, θ) replacing the explicit integration by an implicit Monte

Carlo integration. For the confidence levels against the Monte Carlo iterations of

the saplings, the Monte Carlo iterations of the curves were chosen to be 250. For the

following results the Monte Carlo iterations of the sampling were increased to 1000

for 20 different runs (simulations of the data shape y). The data shapes y coming

from the class of sheets were generated in the way described in section [3.4.3] with

their aspect ratio drawn from a Gamma distribution Γ(49,0.3) i.e. close to the
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anticipated values.

The following graphs provide the confidence levels for 6 out of the 20 different

runs of the algorithm when the data shapes come from the class of sheets. One no-

tices that the confidence level is stabilised for a threshold ε = 0.02 after 20 iterations.

Figure 3.41: Confidence levels against the sampling iterations for sheets
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In the following 2 graphs the scale helps to confirm that the algorithm stabilises

after 20 iterations for the 20 different runs. The confidence levels for the above

mentioned parameters, vary from 55 to 62 percent which implies that the data

shapes are distinguishable from the class of ribbons for the chosen values of the

varying parameters.

Figure 3.42: Confidence levels against the sampling iterations for sheets

The following graphs present 6 out of the 20 different runs’ results of the confi-

dence levels against the sampling iterations for the class of ribbons. The data shapes

for this class were generated with 30 points and noise equal to σ = 0.2 × 10−2 an the

aspect ratio of the data shapes was drawn from a Gamma distribution Γ(7,0.9)

close to the “real” values. One notices that the confidence level is stabilised for a

threshold ε = 0.02 after 20 iterations as in the case of sheets.
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Figure 3.43: Confidence level against the sampling iterations for ribbons

The scale of the following graphs for the 20 different runs for ribbons helps to

confirm that the algorithm stabilises after 20 iterations. The confidence levels for the

above mentioned parameters, vary from 53 to 74 percent which implies as previously

that the data shapes are distinguishable from the class of sheets for the chosen values
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of the varying parameters.

Figure 3.44: Confidence level against the sampling iterations for ribbons

Confidence levels for Monte Carlo iterations of curves

In this section we perform the same experiment whilst we keep all the parameters

constant and vary the Monte Carlo iterations of the curves. For the integration of

expression (3.2.1) over the curves β we implicitly take Dβ P(β) → dγ Γ(γ;κ, θ).

The explicit calculation of the integral over the curves β is replaced by an implicit

Monte Carlo integral over all aspect ratios that specify sand body curves and are

being drawn by a Γ distribution with hyperparameters κ and θ. Here, we examine

the confidence levels that the algorithm returns as we vary the Monte Carlo iterations

of the curves. The Monte Carlo iterations of the samplings were chosen to be 250.

The following graphs present the confidence levels when the data shapes are sheets

whose aspect ratio was drawn from a Gamma distribution Γ(35,0.2) and the noise

σ = 0.2 × 10−3. The confidence level is stabilised for a threshold ε = 0.02 after 20

iterations.
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Figure 3.45: Confidence level against the iterations over the curves for sheets

The scale of the following graphs for the 20 different runs for sheets helps to

confirm that the algorithm stabilises after 20 iterations. The confidence levels for the

above mentioned parameters, vary from 51 to 66 percent which implies as previously

that the data shapes are distinguishable from the class of ribbons.
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Figure 3.46: Confidence level against the sampling iterations for sheets

The following graphs present 6 out of the 20 different runs’ results of the confi-

dence levels against the sampling iterations for the class of ribbons. The data shapes

for this class were generated with 30 points and noise equal to σ = 0.2 × 10−2 and

the aspect ratio of the ribbon data shapes was drawn from a Gamma distribution

Γ(6,0.5). One notices that the confidence level is stabilised for a threshold ε = 0.02

after 20 iterations as in the case of sheets.
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Figure 3.47: Confidence level against the iterations over the curves for ribbons

The scale of the following graphs for the 20 different runs for sheets helps to

confirm that the algorithm stabilises after 20 iterations. The confidence levels for

the above mentioned parameters, vary from 56 to 83 percent. Once again, the

confidence levels show that the class of ribbons is distinguishable from the class of
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sheets.

Figure 3.48: Confidence level against the sampling iterations for ribbons

Success results for Monte Carlo iterations of samplings

In this section we evaluate the success results of the algorithm as we vary the Monte

Carlo iterations of the sampling and the curves. The following graphs present the

success rates against the sampling iterations. The y-axis represents the number of

correct classifications for the 20 shapes of each run. For each individual run the sheet

data shapes were generated with 30 points and the noise was kept relatively low at

σ = 0.3 × 10−2. The Monte Carlo iterations of the curves were chosen to be 250 and

the aspect ratios of the sheet data shapes y were drawn from a Gamma distribution

Γ(49,0.3). One notices that the success rate stabilises after 20 iterations (in some

cases after 10 iterations) and the success rate ranges from 85 to 100 percent. For

simplicity, we present 6 out of the 20 runs.
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Figure 3.49: Success rates against the sampling iterations for sheets

The following graphs present the results for the success rates for 20 runs of the

class of ribbons. For each individual run the sheet data shapes were generated with

30 points and the noise was kept relatively low at σ = 0.3 × 10−2. The Monte Carlo

iterations of the curves were chosen to be 250 and the aspect ratios of the ribbon
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data shapes y were drawn from a Gamma distribution Γ(7,0.9). One notices that

the success rate stabilises after 20 iterations and the success rate ranges from 55 to

100 percent. For simplicity, we present 6 out of the 20 runs.

Figure 3.50: Success rates against the sampling iterations for ribbons
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Success rates for Monte Carlo iterations of the curves

In this section we evaluate the success results of the algorithm as we vary the Monte

Carlo iterations of the curves β. For each of the 20 runs the sheet data shapes were

generated with 30 points and the noise was kept relatively low at σ = 0.3×10−2. The

Monte Carlo iterations of the saplings were chosen to be 250 and the aspect ratios

of the sheet data shapes y were drawn from a Gamma distribution Γ(49,0.3). One

notices that the success rate stabilises after 20 iterations and the success rate ranges

from 85 to 100 percent. For simplicity, we present 6 out of the 20 runs.
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Figure 3.51: Success rates against the sampling iterations for sheets

The following graphs present the results for the success rates for 20 runs of the

class of ribbons. For each individual run the sheet data shapes were generated with

30 points and the noise was kept relatively low at σ = 0.3 × 10−2. The Monte Carlo

iterations of the curves were chosen to be 250 and the aspect ratios of the data
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shapes y were drawn from a Gamma distribution Γ(7,0.9). One notices that the

success rate stabilises after 20 iterations and the success rate ranges from 40 to 85

percent. For simplicity, we present 6 out of the 20 runs.

Figure 3.52: Success rates against the iterations over the curves for ribbons
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3.5 Learning the hyperparameters

The classification of the sand body data set would require us to maximise the poste-

rior distribution of a class P(C ∣y). To approximate the posterior one has to decide

how “similar” a given data shape is to one of the two classes of sheets and ribbons.

The comparison is done via our proposed algorithm which utilises a Monte Carlo

integration over the shape curves. However, this procedure requires us to know the

hyperparameters that generate example shapes from these classes since the shape

models are Gamma distributions from which we randomly draw the aspect ratio of a

sand body. In the results of the previous section, where we examined the confidence

levels and success results, we assumed that the hyperparameters were already known

to us. Based on the field results of the sedimentologists and geologists we assumed

that such idealised sand bodies’ aspect ratios are generated by two Γ(κ, θ) distri-

butions with the ribbons’ distribution being Γ(7.5,1) and the sheets’ distribution

being Γ(50,0.4).

In a realistic situation however and had one had real geological data, the param-

eters of the shape models would be learnt from the available data sets and then used

for the classification of new data shapes. The goal would be to learn the parameters

so that they can be used to predict the values and the characteristics of a class

attribute. Usually this task is called supervised learning. Using supervised learning

we can learn a classification model from the existing data (also called training data)

which we know they are labelled with pre-defined classes. We can then use the

learned model to predict the classes of new, unseen data (also called test data) into

these pre-determined classes. The accuracy of the learned model can be tested as

the ratio of the number of the correct classifications over the total number of test

cases. One of the fundamental assumptions of learning however is that the distribu-

tion of the training data is the same as the distribution of the test data. In practice,

this assumption is violated quite often leading to poor classification accuracy. Such

an assumption and good classification results could be satisfied in the case that the

training data sufficiently represent the test data. In the absence of true geological

data, we will generate data to play the role of the training data set and assume that



3.5. Learning the hyperparameters 156

they sufficiently represent the test data on which we will test the accuracy of the

model.

To learn the parameters of the model we will perform MAP and maximise the

posterior probability distribution with respect to the parameters that we want to

learn. This is:

{κmax, θmax} = argmaxκ,θP(C ∣y) (3.5.2)

Maximising this posterior probability would require us to evaluate the scores

of the posterior with respect to the parameters we are maximising over. However,

the derivatives were complicated and there was no closed formed expression for the

evaluation of the maximum. To perform MAP then, we need to utilise an optimi-

sation algorithm that maximises the target cost function; we used the method of

gradient ascent. The gradient ascent (descent) is a generalised first-order optimi-

sation algorithm that finds the maximum (minimum) of a given function. It starts

searching for the optimal solution by some initial guessed values and calculates the

gradient of the function at that point (this is the reason it is a first order optimiser;

it uses only the first derivative). Then the algorithm takes proportional small steps

in the positive (negative) direction of the gradient in order to maximise the function

and the process is repeated until convergence. Convergence is achieved either when

the derivative of the function is zero or after a certain number of iterations. For

example, our cost function is f(x) and we want to find its maximum. Given initial

estimate x0 for x we can find the direction in which the function is maximised. This

is done by taking small steps proportional to ∇f in all dimensions of x. We take

steps proportional to the gradient because it gives the slope of the curve at the point

x and its direction shows where the function increases. We change x:

xk+1 = xk + ε ∇f(xk) (3.5.3)

The parameter ε > 0 is a small number that forces the algorithm to take small

steps towards the direction of the derivative and also keeps the algorithm stable. In

our case the gradient ascent algorithm is performed as follows:
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{κn+1, θn+1} = {κn, θn} + ε ∇κ,θ P(C ∣y) (3.5.4)

However, since we perform MAP we know that P(C ∣y) ∝ P(y∣C)P(C) so:

{κn+1, θn+1} = {κn, θn} + ε ∇κ,θ P(y∣C)P(C) (3.5.5)

The above simplifies even more in our case since the prior distribution over the

available classes is uniform so that the gradient ascent simplifies to the following:

{κn+1, θn+1} = {κn, θn} + ε ∇κ,θ P(y∣C) (3.5.6)

In other words, since the prior distribution over the classes is uniform the model

will be maximised when the likelihood is maximal with respect to the parameters

we want to learn. From chapter [2], we discussed about the partitioning of the

likelihood over the nuisance parameters that give rise to the formation of a planar

shape. The likelihood function of the complete data is thus given by:

P(y∣C) = ∑
b

Dβ Ds
1

Z

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

P(β)P(s) (3.5.7)

1

Z
= 1

(nD2 + 1)(2π)n
Γ(n + α)

(B2ñṼar(v) + 1)
ζα

Γ(α)
1

2−n−α
(3.5.8)

As mentioned, in our case performing Maximum a Posteriori is equivalent to

performing Maximum Likelihood (MLE). To perform MLE we assume that the

observations that comprise the training data set are all independent and will work

under this assumption. This is:

{κmax, θmax} = maxκ,θP(y∣C) = maxκ,θ∏
i

P(yi∣C) (3.5.9)
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It is common practice to maximise the log-likelihood function instead of max-

imising the likelihood function because the logarithm is often easier to work with.

The logarithm, as an increasing function, is maximised at the same points as the

function so it makes the calculations of maximisation easier and straight forward.

This transforms equation (3.5.9) to:

{κmax, θmax} = maxκ,θ log(∏
i

P(yi∣C))

= maxκ,θ∑
i

log (P(yi∣C)) (3.5.10)

To perform gradient ascent we need to differentiate the above expression with

respect to the hyperparameters that we want to maximise and learn [156]. The

derivatives of expression the log-likelihood (3.5.10) are:

∇(log(P(y∣C))) = (∂ ∑i log (P(yi∣C))
∂κ

,
∂ ∑i log (P(yi∣C))

∂θ
)

= (∑
i

∂ (P(yi∣C)) /∂κ
(P(yi∣C))

,∑
i

∂ (P(yi∣C)) /∂θ
(P(yi∣C))

) (3.5.11)

To make the calculation easier we calculate the numerators of expression (3.5.11)

i.e. the partial derivatives of the likelihood with respect to the hyperparameters

separately. The derivative of the likelihood with respect to κ is:

∂ (P(yi∣C))
∂ κ

= ∂

∂ κ
(∑
b
∫ Dβ Ds P(yi∣β, s, b)P(β)P(s)) (3.5.12)

We should note here, that the likelihood implicitly depends on the κ and θ

parameters since these generate the aspect ratio γ on which the likelihood depends

on. The planar curves of the sand bodies are specified by their aspect ratios so

for computational reasons we substitute: Dβ P(β) → dγ Γ(γ;κ, θ) with Γ(γ;κ, θ) =
γκ−1 e

− γ
θ

θκΓ(κ) . The partial derivative of the likelihood with respect to κ is thus:
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∂ (P(yi∣C))
∂ κ

= ∂

∂ κ
(∑
b
∫ Dγ Ds P(yi∣β, s, b)Γ(γ;κ, θ)P(s))

= ∂

∂ κ
(∑

b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

×

Γ(γ;κ, θ)P(s))

(3.5.13)

However, the above expression has an implicit κ dependence in the likelihood

but has an explicit κ dependence only through the Γ prior on the aspect ratio. The

derivative of a Γ distribution with respect to κ is:

∂

∂ κ
(Γ(γ;κ, θ)) = ∂

∂ κ

γκ−1 e−
γ
θ

θκΓ(κ)

= e−
γ
θ

Γ(κ)
∂

∂ κ
(θ−κγκ−1)

= e
− γ
θ θ−κγκ−1

Γ(κ)
(log(γ) − log(θ) − log(ψ))

= Γ(γ;κ, θ) (log(γ) − log(θ) − log(ψ)) (3.5.14)

where ψ is the digamma function which is defined as ψ(x) = Γ′(x)
Γ(x) . Expression

(3.5.14) enters the derivative of the likelihood with respect to κ (3.5.13) which

becomes:

∂ (P(yi∣C))
∂ κ

=
⎛
⎜⎜
⎝
∑
b
∫ dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

P(s)×

Γ(γ;κ, θ)(log(γ) − log(θ))) (3.5.15)
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The derivative of the likelihood with respect to θ is:

∂ (P(yi∣C))
∂ θ

= ∂

∂ θ
(∑
b
∫ Dβ Ds P(yi∣β, s, b)P(β)P(s)) (3.5.16)

The partial derivative of the likelihood with respect to θ is thus:

∂ (P(yi∣C))
∂ θ

= ∂

∂ θ
(∑
b
∫ dγ Ds P(yi∣β, s, b)Γ(γ;κ, θ)P(s))

= ∂

∂ θ
(∑

b
∫ dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

×

Γ(γ;κ, θ)P(s))

(3.5.17)

Similarly, the above expression has an implicit θ dependence in the likelihood but

has an explicit θ dependence only through the Γ prior on the aspect ratio. The

derivative of a Γ distribution with respect to θ is:

∂

∂ θ
(Γ(γ;κ, θ)) = ∂

∂ θ

γκ−1 e−
γ
θ

θκΓ(κ)

= γκ−1

Γ(κ)
∂

∂ θ
(θ−κe−

γ
θ )

= γ
κ−1e−

γ
θ θ−κ

Γ(κ)
( γ
θ2

− κθ−1)

= Γ(γ;κ, θ) ( γ
θ2

− κθ−1) (3.5.18)

Expression (3.5.18) enters the derivative of the likelihood with respect to θ

(3.5.17) which becomes:

∂ (P(yi∣C))
∂ θ

=
⎛
⎜⎜
⎝
∑
b
∫ dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

P(s)×

Γ(γ;κ, θ) ( γ
θ2

− κθ−1))

(3.5.19)
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Combining expressions (3.5.19) and (3.5.15), the overall gradient of the log-likelihood

function with respect to the hyperparameters is:

∇(log(P(y∣C))) ∣
κ

= (∑
i

∂ (P(yi∣C)) /∂κ
(P(yi∣C))

)

= ∑
i

(∑b ∫
dγ Ds P(yi∣β, s, b)P(s)Γ(γ;κ, θ) (log(γ) − log(θ))
∑b ∫ dγ Ds P(y∣β, s, b)P(s)Γ(γ;κ, θ)

)

(3.5.20)

∇(log(P(yi∣C))) ∣
θ

= (∑
i

∂ (P(yi∣C)) /∂θ
(P(yi∣C))

)

= ∑
i

⎛
⎝
∑b ∫ dγ Ds P(yi∣β, s, b)P(s)Γ(γ;κ, θ) ( γ

θ2 − κθ−1)
∑b ∫ dγ Ds P(yi∣β, s, b)P(s)Γ(γ;κ, θ)

⎞
⎠

(3.5.21)

In the above derivatives, one notices that the expressions in the numerators are

similar to the ones in the denominators and involve the same type of integration like

with expression (3.2.1). For the calculation of the integrals and hence the calculation

of the derivatives, we use the same techniques as with the calculation of expression

(3.2.1). The integrals with respect to the aspect ratio γ are evaluated by simple

Monte Carlo integration by drawing discrete values of γ from a Γ distribution.
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In the next section, we present some of the results we acquired from the gradient

ascent optimisation. The learning of the parameters was done for both ribbons and

sheets.

3.5.1 Parameters for sheets

For the learning of the parameters for the class of sheets, we used ten data shapes

which were generated as described in section [3.4.3]. We then used the gradient

ascent algorithm for four different sets of starting values of κ and θ. Each set of

initial starting values was run 10 separate times and the chosen value of ε was

chosen to be ε = 0.0025. For all runs of the gradient ascent, the algorithm converged

either after the maximum number of iterations was achieved or after the value the

Euclidean distance d =
√
dκ2 + dθ2 was smaller than a threshold which was chosen

to be equal to 0.0002. The following table presents the data acquired:

Starting values Mean convergent values

κ0 = 45, θ0 = 0.3 κ = 45.013 ± 8 × 10−4 , θ = 1.133 ± 3.5 × 10−3

κ0 = 53, θ0 = 0.5 κ = 53.010 ± 7 × 10−4 , θ = 1.133 ± 3.3 × 10−1

κ0 = 20, θ0 = 1 κ = 20.040 ± 1.8 × 10−3 , θ = 1.653 ± 19 × 10−2

κ0 = 60, θ0 = 0.1 κ = 60.002 ± 1.5 × 10−4 , θ = 1.4816 ± 16 × 10−2

The following graphs present the results for the four different sets of starting

values, each evaluated for one run.
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Figure 3.53: The convergence results for the four sets of starting values of the

gradient ascent for sheets

3.5.2 Parameters for ribbons

The same procedure was followed in the case of ribbons. Ten ribbon data shapes

were used for the estimation of the hyperparameters of the Gamma distribution.

The gradient ascent was run for four different sets of starting values whilst ε was

chosen to be ε = 0.0025. For each set of starting values the algorithm was run 10

separate times and it converged either after the maximum number of iterations was

achieved or after the value the Euclidean distance d =
√
dκ2 + dθ2 was smaller than

a threshold which was chosen to be equal to 0.0002. The following table presents

the data acquired:
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Starting values Mean convergent values

κ0 = 6.5, θ0 = 0.4 κ = 6.731 ± 5 × 10−3 , θ = 1.693 ± 1.3 × 10−4

κ0 = 7, θ0 = 1.5 κ = 7.039 ± 3 × 10−3 , θ = 1.622 ± 9 × 10−3

κ0 = 2, θ0 = 0.1 κ = 3.41 ± 2 × 10−3 , θ = 2.93 ± 1 × 10−3

κ0 = 20, θ0 = 5 κ = 19.999 ± 4 × 1−5 , θ = 4.996 ± 1 × 10−3

The following graphs present the results for the four different sets of starting

values, each evaluated for one run.

Figure 3.54: The convergence results for the four sets of starting values of the

gradient ascent for ribbons

3.5.3 Discussion of the results

It is clear from the tables above that the gradient ascent algorithm does not converge

to the desired values of κ and θ for both ribbons and sheets and we now discuss the
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reasons behind this behaviour. Firstly, the threshold for convergence was chosen

at the outset of the experiment, and one may ask whether reducing this parameter

may improve the experimental outcome. However, as with any application of a basic

gradient ascent procedure, the form of the function being maximised is of great

importance. Although the algorithm may find a stationary point of the function

in question, it is not possible to guarantee that this will not be a local (rather

than global) maximum of the function. In particular, it is often necessary to carry

out a number of different simulations with different starting values κ0 and θ0. As

presented in the tables above for both sheets and ribbons, the values at which the

parameters converged were different for each set of starting values. This suggests

that the gradient ascent is becoming “trapped” in one of several local maxima of the

likelihood surface which in turn implies that the surface itself may be quite uneven

and unsmooth. A way to overcome this obstacle would be to examine the value of

the likelihood at the convergent point and choose the set of values for which the

convergent likelihood was the highest. However, for three out of the four sets of

starting values the values of the likelihood at the convergent points are comparable

which makes the choice even harder; the convergent value of the likelihood of the

fourth set was too small to be considered. This motivates us to consider a scan of

the parameter region in order to identify the rough form of the likelihood within

the domain in question (note that the nature of Monte-Carlo integration means

that for each simulation the likelihood surface will differ, perhaps substantially).

This was achieved by evaluating the likelihood on a (20 × 20) grid on the region

[2.5,12.5] × [0.1,5.1] for ribbons and the result of this simulation can be seen in

figure (3.55a). Figure (3.55b) shows the likelihood evaluated on a (20 × 20) grid

on the region [7,8] × [0.25,1.25]. Figure (3.55c) and figure (3.55d) both show the

evaluation of the likelihood on a (20 × 20) grid on the region [49,51] × [0.2,0.6].
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(a) Likelihood surface for 10 ribbons (b) Likelihood surface for 10 ribbons

(c) Likelihood surface for 10 sheets (d) Likelihood surface for 10 sheets

Figure 3.55: Likelihood surfaces

The plot (3.55a) shows an extreme spike in the likelihood around the point

k = 4, θ = 4.35, but is otherwise comparatively flat. However, the gradient ascent

algorithm may not be initialised close to this peak, in which case the form of the

surface makes it relatively hard to find. The plot (3.55b) shows an big spike in

the likelihood around the point k = 7.95, θ = 0.6, where lots of stationary points

can be seen, in any of which the algorithm could get stuck. Similarly for sheets

in figures (3.55c) and (3.55d), the big spikes can be found at the points k = 50.3,

θ = 0.5 and k = 50.4, θ = 0.34 respectively however in a similar fashion there are

multiple stationary points at which the gradient ascent could get trapped. For both

ribbons and sheets, we restricted attention to the regions [6.8,7.8] × [0.1,2.1] and

[49,50] × [0.2,0.6] and scanning the likelihood surface more closely on a (50 × 50)
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grid the following plots show the results in more detail:

(a) Likelihood surface for 10 ribbons (b) Likelihood surface for 10 sheets

Figure 3.56: Likelihood surfaces

In both plots there is a huge spike at the points k = 7.48, θ = 0.86 and k = 49.64,

θ = 0.94. However, as we mentioned above the gradient ascent algorithm was either

not initialised close to these peaks (which are relatively close to the true, expected

values) or the algorithm was trapped on a local maximum and hence for different

starting values, it converged to a different point. This is likely what is happening in

tables (3.5.2) and (3.5.1) and we suggest that it is responsible for the less positive

results presented there. Although the results were not as encouraging as expected,

we proceeded to the classification of generated sand bodies using the “known” values

of the hyperparameters. We discuss this in the next section.

3.5.4 Classification results

As we discussed in the previous section, the results produced by the gradient ascent

were unsatisfactory and hence the learning of the parameters wasn’t fruitful. This

would mean than the classification of the sand bodies using the learned parameters

wasn’t possible. In absence of these data and wanting to evaluate the efficacy of

the algorithm in classifying sand body data shapes, we performed classification by

using the known parameters. This means that for each classification run, the data
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shapes would be compared against example shapes that have been generated with

aspect ratios coming from Gamma distributions with the same parameters as the

ones that generated the data shapes themselves. Hence the Monte Carlo integration

over shape curves would be evaluated by comparing the data shapes to example

shapes that their aspect ratios have been generated by Γ(7.5,1) for ribbons and

Γ(50,0.4) for sheets. For the following classification results, the sampling Monte

Carlo iterations and the Monte Carlo iterations over the curves were both fixed to

be 20, the minimum number that is needed for the confidence results to stabilise.

For the following runs we use the same values of the regulators as in the Kimia and

the alphabet case. The values of the regulators were chosen to be: B = 105, D = 105,

α = 1.5 and ζ = 0.1. The variance of the generalised Gaussian of the diffeomorphisms

(2.3.7) was chosen to be σs = 1.5.

In the next figure we present the classification results for 10 ribbons and 10 sheets

that were generated under the same parameters. For their simulation we used 30

points and the standard deviation of the observed noise was σ = 0.4×10−2. For both

ribbons and sheets, the success rate was found to be 70% with the average confidence

level 77% for ribbons and 88% for sheets. The lowest classification level was 52%

for ribbons and 68% for sheets whilst the highest was 95% and 100% respectively.

Although the number of the points is considered to be quite low, the confidence

levels and the success rates for both classes are particularly high.
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(a) Classification results for 10 ribbons (b) Classification results for 10 sheets

Figure 3.57: Classification results for two classes

In the next figure we present the classification results for 10 ribbons and 10 sheets

that were generated with 40 points and the standard deviation of the observed noise

was σ = 0.5 × 10−2. For ribbons, the success rate was 70%, the lowest classification

level was 90% whilst the average classification level was 97%. For sheets, the suc-

cess rate was 80% with the lowest classification level 58% and the highest 100%.

The average classification level for sheets was found to be 84%. Again, although the

number of the points is considered to be quite low and the variance of the noise rela-

tively big, the confidence levels and the success rates for both classes are particularly

high.
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(a) Classification results for 10 ribbons (b) Classification results for 10 sheets

Figure 3.58: Classification results for two classes

In the next figure we present the classification results for 10 ribbons and 10 sheets

that were generated with 50 points and the standard deviation of the observed noise

was σ = 0.8× 10−2 which is considered to be high. Although for ribbons, the success

rate was 60%, the lowest classification level was 90% whilst the average classification

level was 97%. For sheets, the success rate was 100% with the lowest classification

level 70% and the average classification level being 89%. The noise variance is

extremely high, however the classification levels are high too and the algorithm

seems to distinguish the differences between classes consistently.



3.5. Learning the hyperparameters 171

(a) Classification results for 10 ribbons (b) Classification results for 10 sheets

Figure 3.59: Classification results for two classes

In the next figure we present the classification results for 10 ribbons and 10 sheets

that were generated with 60 points and the standard deviation of the observed noise

was σ = 0.7 × 10−2 which is considered quite high. For ribbons, the success rate was

70%, the lowest classification level was 90% whilst the average classification level

was 96%. For sheets, the success rate was 100% with the lowest classification level

70% and the average classification level being 99%.
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(a) Classification results for 10 ribbons (b) Classification results for 10 sheets

Figure 3.60: Classification results for two classes

In the next figure we present the classification results for 10 ribbons and 10 sheets

that were generated with 80 points and the standard deviation of the observed noise

was σ = 0.9 × 10−2. For ribbons, the success rate was 90%, the lowest classification

level was 70% whilst the average classification level was 85%. For sheets, the success

rate was 90% with the lowest classification level 65% and the average classification

level being 93%. One can see that the the classification rates and levels are extremely

high and it seems that the high number of points contemplates the high noise added

to the points.
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(a) Classification results for 10 ribbons (b) Classification results for 10 sheets

Figure 3.61: Classification results for two classes

To test the accuracy of the algorithm not only for these two classes, we compared

ribbons and sheets against a third class which was chosen to be triangles. The

simulated triangles were generated to be isosceles, with their height equal to 1 and

their base equal to γ ∼ Γ(κ, θ), with the hyperparameters to be: κ = 60, θ = 2
3 . In

the next figure we present the classification results for 10 ribbons, 10 sheets and

10 triangles that were generated with 40 points and the standard deviation of the

observed noise was σ = 0.8× 10−2. For ribbons, the success rate was 70%, the lowest

classification level was 45% whilst the average classification level was 82%. For

sheets, the success rate was 80% with the lowest classification level 48% and the

average classification level being 76%. For triangles, the success rate was 80% with

the lowest classification level 52% and the average classification level 78%. One

notices that the algorithm recognises the classes as distinct which is reflected by the

high success rates and even higher classification levels.
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(a) Classification results for 10

ribbons

(b) Classification results for 10

sheets

(c) Classification results for 10

triangles

Figure 3.62: Classification results for three classes

In the next figure we present the classification results for 10 ribbons, 10 sheets

and 10 triangles that were generated with 50 points and the standard deviation of

the observed noise was σ = 0.6 × 10−2. For ribbons, the success rate was 60%, the

lowest classification level was 95% whilst the average classification level was 98%.

For sheets, the success rate was 80% with the lowest classification level 65% and the

average classification level being 88%. For triangles, the success rate was 100% with

the lowest classification level 62% and the average classification level 89%.

(a) Classification results for 10

ribbons

(b) Classification results for 10

sheets

(c) Classification results for 10

triangles

Figure 3.63: Classification results for three classes

In the next figure we present the classification results for 10 ribbons, 10 sheets

and 10 triangles that were generated with 70 points and the standard deviation of
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the observed noise was σ = 0.8 × 10−2. For ribbons, the success rate was 80%, the

lowest classification level was 68% whilst the average classification level was 95%.

For sheets, the success rate was 90% with the lowest classification level 50% and the

average classification level being 90%. For triangles, the success rate was 100% with

the lowest classification level 55% and the average classification level 93%.

(a) Classification results for 10

ribbons

(b) Classification results for 10

sheets

(c) Classification results for 10

triangles

Figure 3.64: Classification results for three classes

To investigate the classification levels for different numbers of points we classified

data shapes from the same class and with stable noise as the number of points

increased. The experiment was run 10 times with the number of points ranging

from 10 to 100 and the noise being σ = 0.2 × 10−2. The following 5 graphs present

the results of 5 runs for the class of ribbons. One notices that in the case of 10

and 20 points the 50 and 60 percent of the data shapes are misclassified whereas

for 30 points the success rate is 60 percent and the classification levels at least 60

percent. For 50 points the classification levels approach 70 percent and for more

than 60 points the confidence is more than 90 percent. The last graph presents the

time in hours for a single run as a function of points which shows that for a large

number of points the algorithm is computationally expensive.
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(a) Classification results for 10 points (b) Classification results for 20 points

(c) Classification results for 30 points (d) Classification results for 40 points

(e) Classification results for 50 points (f) Computational time as a function of the num-

ber of points

Figure 3.65: Classification results for 10 different ribbons
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The following experiment was run 10 times with the number of points ranging

from 10 to 100 and the noise being σ = 0.2 × 10−2. The next 5 graphs present the

results of 5 runs for the class of “sheets.” One notices that in the case of 10 and 20

points 70 percent of the data shapes are correctly classified whereas for 30 points

90% is correctly classified and for 40 points 70% is correctly classified. For 50 points

or more the classification is definite. The last graph presents the time in hours for

a single run as a function of points.
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(a) Classification results for 10 points (b) Classification results for 20 points

(c) Classification results for 30 points (d) Classification results for 40 points

(e) Classification results for 50 points (f) Computational time as a function of the num-

ber of points

Figure 3.66: Classification results for 10 different sheets



3.6. Concluding remarks 179

Overall, we performed 10 runs for 30 ribbons, 30 sheets and 30 triangles each.

For the class of ribbons, the average success rate was 67% ± 3% and the average

classification level was 90% ± 2%. That means that 7 out of 10 were classified

correctly with a classification confidence of 90%. In the case of sheets, the average

success rate was 80% ± 3% with an average classification confidence of 82% ± 2%.

For triangles, the average success rate was found to be 87% ± 3% with the average

classification confidence to be 91%±1%. It is also noticeable that when the number

of the points is small (10 or 20) the misclassification rate is 50 or 60% but when

the number of points increases to 30 or more, then the success rate is more than

60% and the confidence level in most cases is higher than 80 percent. The high

success rates and confidence levels, show that our proposed algorithm is a very

powerful tool for the classification of geological sand bodies and not only these

specific shapes. One of the big advantages of our proposed algorithm is that it

captures more geometrical information than other classification methods such as

the width-to-thickness ratio. We compare such classification methods with our own

classification method in chapter [4].

3.6 Concluding remarks

In this chapter we have evaluated the efficiency and efficacy of our proposed algo-

rithm. We have evaluated the success results and the classification levels that our

algorithm produces with the help of three different databases.

Firstly, we tested our algorithm with the help of the Kimia database. Since the

evaluation of some of the integrals involve Monte Carlo integration we have examined

the number of the iterations needed for the stabilisation of the algorithm and we

have concluded that 20 iterations for the integration over samplings are sufficient

for its stabilisation. Using this number of minimum Monte Carlo iterations we have

proceeded to the classification of randomly generated shapes of the Kimia database

where we have found that the average classification confidence was µ̂ = 59% ± 7%

and the average success rate was 80%±5%. To evaluate the impact of the Gaussian

noise on the classification results we tested how the algorithm behaves when the
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noise increases. The Gaussian noise was increased by 0.15 × 10−2 for each of the

data shapes and we noted that the classification levels drop from 25% to 20% as the

standard deviation of the added noise increases from 0.2× 10−2 to 1.4× 10−2. As the

noise σ increases the classification levels drop by 5%. This is a behaviour that one

would expect.

Secondly, we have repeated the same experiments with the alphabet database

where we have concluded that 20 Monte Carlo iterations over samplings are sufficient

for the stabilisation of the algorithm. Classifying randomly simulated letters we have

found that the average success rate was µ̂ = 73%± 6% and the average classification

level was 77% ± 5%. As with the Kimia database, we tested how the algorithm

behaves in the case of the letter database when the noise increases. Adding noise in

increments of 0.2×10−2 and increments of 0.5×10−2 we noticed that the classification

results drop from 90% to 77% as the standard deviation of the added noise increases

from 0.2 × 10−2 to 1.6 × 10−2. The classification levels presented in figure (3.23b)

drop from 80% to 74% as the standard deviation of the added noise increases from

0.5 × 10−2 to 2.5 × 10−2.

In the final section of this chapter we have presented the geological sand bodies

database. We discussed some of the geological definitions and the existing geological

classification schemes. We suggested that our method is more rigorous, quantitative

and complete since it encapsulates information that define the geometrical nature of

each shape. Having this in mind, we attempted to perform supervised learning and

estimate the parameters of a given sand body data set (a simulated one due to the

absence of a real one). This required us to maximise our likelihood function over the

parameters we wanted to estimate which in turn introduced difficulties. The scores

could not be evaluated in a closed form and for this we had to employ an optimisation

algorithm (gradient ascent) which due to the unsmoothness of the likelihood surface

was trapped to local maxima and could not converge. However, although the results

from the learning were unsatisfactory, we performed classification with the known

parameters of each class assuming that these would be returned by the gradient

ascent in any other case. The classification results returned were very high with the
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average success rate of ribbons being 67% ± 3% and the average classification level

was 90% ± 2%. For the class of sheets, the average success rate was 80% ± 3% with

an average classification confidence of 82% ± 2%. The above results prove that our

proposed algorithm is a very powerful tool which is successful more than 80% of

the times. One of the reasons for these high results is the fact that our observation

model captures the geometrical information of each of the shapes and “explains” the

formation of the data themselves in contrast to the current classification methods

that are simplistic and don’t employ geometrical information per se.

In the next chapter, we evaluate similar methods to the width-to-thickness ratio

in the case of the Kimia and the alphabet databases. We compare the classification

results returned from these methods to the ones produced by our proposed algorithm.



Chapter 4

Experimental results using EM

4.1 Introduction

In this chapter we discuss the experimental results acquired when using the Expectation-

Maximisation algorithm for both classification and the identification of clusters of

shapes in the dataset. The Expectation-Maximisation (EM) algorithm is used as

Maximum Likelihood Estimator (MLE) or Maximum a Posteriori (MAP) estimator

of the parameters of an underlying distribution from a given data set when the data

has missing values or when the data set is incomplete [157, 158]. The EM algorithm

is usually used for two main applications. One application is to data sets with miss-

ing values which were induced during the observation. The second application is

when the optimisation of the likelihood function is intractable but it can be sim-

plified when we assume the existence of latent variables which without we have an

incomplete data set.

As a Maximum Likelihood Estimator, the EM algorithm has quite broad ap-

plications but the most widely used is the mixture-density parameter estimation

problem. The most common mixture-density that EM is applied to is the Gaus-

sian mixture models (GMM). GMM are superpositions i.e. linear combinations of

a number of Gaussian distributions with adjusted means and covariances as well as

mixing coefficients. In section [4.1.1] we present the derivation of the EM in the

case of GMM and in section [4.2] we present a way of using the EM algorithm when

182



4.1. Introduction 183

irregularities such as singularities are present in the data. In section [4.3] we discuss

classification results of the Kimia and the alphabet database using the EM algo-

rithm. In particular, we use feature vectors of the data to infer whether there exists

clustering based on the features and based on these results we classify new data.

This is a way to compare the results given by the classification algorithm presented

in chapter [2]. In section [4.5] we present an adaptation of the EM algorithm in the

case of the sand body database. For this adaptation instead of using a mixture of

Gaussians we utilise a mixture of the observation model we presented in chapter [2].

Finally, section [4.6] discusses the concluding remarks of this chapter.

4.1.1 Derivation of EM algorithm for Gaussian mixtures

We assume that we are given K multivariate Gaussian distributions N(µk,Σk) with

k = 1, ...,K. Then the linear combination of K Gaussians can be formulated as

probabilistic models known as mixture distributions [159]. A mixture of Gaussians

is a distribution that draws with probability πk from the k-th component and is

given by

f(y∣Θ) =
K

∑
k=1

πkN(y∣µk,Σk) (4.1.1)

where Θ = (π1, ..., πK−1, µ1, .., µK ,Σ1, ...,ΣK) is the vector of parameters we would

like to estimate. Here, each of the yi is a n×D vector, each of the µk isD×1 vector and

each of the Σk is aD×D matrix. Also, N(y∣µk,Σk) = 1
(2π)D/2∣Σ∣1/2 exp{−1

2(y −µk)TΣ−1(y −µk)}

which is the normal probability distribution with mean µk and covariance Σk eval-

uated at y.

Given some data (in our case data shapes) yi, with i = 1, ..., n, we wish to obtain

an estimator Θ̂ of the parameters Θ. The values of the estimators can be found with

the help of the EM algorithm. These estimates are based on some starting values Θ0

which are found by the EM when it alternates between the E-step and the M-step

until convergence is reached. We now describe the derivation of the EM algorithm

for the case of Gaussian mixture models.
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4.1.2 Complete likelihood

Given some data shapes yi, with i = 1, ..., n, we wish to obtain an estimator Θ̂ of the

parameters Θ = (π1, ..., πK−1, µ1, .., µk,Σ1, ...,Σk). Let G be a random vector which

draws a class k ∈ {1...K}. We know that P(G = k) = πk. We here denote:

fik = P(y∣G = k) = N(y∣µk,Σk)

We also know that the joint probability of y and G is:

P(yi,G = k) = P(yi∣G = k)P(G = k) = fikπk (4.1.2)

We now assume that for an observation yi, the value of G is known so that we

know in which of the K components, the i-th observation belongs to. To express

this knowledge we utilise an indicator variable:

Gik =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if observation i is belongs to component k,

0 otherwise.

By combining all the above, the complete data (yi,Gi1, ...,GiK) is given by:

P(yi,Gi1, ...,GiK) =
K

∏
k=1

(fikπk)Gik (4.1.3)

We can then form the corresponding likelihood function, which is also called the

complete likelihood in the following way:

L(Θ∣y1, ..., yn) =
n

∏
i=1

K

∏
k=1

(πkfik)Gik (4.1.4)

The log-likelihood is thus formed as:

L = log(L(Θ∣y1, ..., yn)) = ∑
i

∑
k

(Gik logπk +Gik log fik) (4.1.5)

As mentioned previously, to estimate the parameter described by Θ the EM algo-

rithm alternates between the E-step and the M-step. We now evaluate both steps

particularly for the case of Gaussian mixtures.
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E-step

One notices that in expression (4.1.5), the values of Gik are unknown; this is a

condition required by the formation of the complete likelihood. We can thus replace

them by their conditional expectations so that:

Wik ≡ E(Gik∣yi) = P(Gik = 1∣yi) = P(G = k∣yi) (4.1.6)

Then by using Bayes’ theorem one has:

Wik = P(G = k∣yi) =
P(G = k)P(yi∣G = k)
∑l P(G = l)P(yi∣G = l)

= πkfik

∑l πlfil
(4.1.7)

which are the membership probabilities

Wik = P(observation i belongs to component k) or as they are called in the Bayesian

framework the responsibilities i.e. the responsibility that the k-th component takes

for explaining the observation yi). Substituting this back to the log-likelihood (4.1.5)

one has:

L = ∑
i

∑
k

(Wik logπk +Wik log fik) (4.1.8)

which is the expression that we will maximise over the parameters that we want to

estimate.

M-step

Having the responsibilities evaluated from the E-step we can now obtain the esti-

mates of the parameters Θ = {µj, σj, πj}. This can be done by setting the derivatives

of the log-likelihood (4.1.8) with respect to the parameters equal to zero. We now

present these derivatives for the case of Gaussian mixtures. We will firstly maximise

(4.1.8) with respect to the mixing coefficients πk. Here, one must take into account

that the mixing coefficients πk are subject to the constraint ∑k=Kk=1 πk = 1 which re-

quires them to sum up to one. This can be achieved by using a Lagrange multiplier

and by maximising the following:
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∂

∂ πj
[L − λ∑

k

πk + λ] = 0

∂

∂ πj
L − λ∑

k

δkj = 0

∂

∂ πj
L − λ = 0 (4.1.9)

The above instructs us to calculate the derivative of the log-likelihood with respect

to πj:

d

d πj

⎡⎢⎢⎢⎣
∑
i,k

Wik logπk +Wik log fik
⎤⎥⎥⎥⎦
=

= ∑
i,k

Wik
d

d πj
logπk + (logπk + log fik)

d

d πj
Wik

= ∑
i,k

Wik
d

d πj
logπk (4.1.10)

We should note here, that the derivative of the responsibilities Wik with respect

to any of the parameters is zero since Wik is the conditional expectation of the

class labels that we acquired from the E-step and hence it is a constant. Thus, the

derivative of expression (4.1.10) differentiates to:

∑
i,k

Wik
d

d πj
logπk = ∑

i,k

Wik

πk
δkj = ∑

i

Wij

πj
(4.1.11)

so overall the maximisation over the mixing coefficients using the Lagrange multiplier

of expression (4.1.9) is:

∑
i

Wij

πj
− λ = 0

∑
i

Wij = λπj

∑
i,j

Wij = λ

⇒ λ = n (4.1.12)
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Finally, substituting this back into the top line the estimated mixing coefficients

are:

π̂j = 1
n ∑iWij

which is the average posterior probability for component j.

The derivation of the estimators for µk and Σk are quite lengthy and complicated

so we only present the final results. For their explicit derivation one can refer to

[158]. The estimators for the remaining parameters are thus:

µ̂k = ∑
n
i=1Wikyi
∑ni=1Wik

Σ̂k = 1
∑ni=1Wik

∑ni=1∑Kk=1Wik(yi −µk)(yi −µk)T

The iterations between the E-step and the M-step are continuing until conver-

gence is reached which was proven in [157, 160]. It is worth it here, emphasising

some of the problems one encounters by the use of the EM algorithm associated with

the maximisation of the parameters in the Gaussian mixture case. To illustrate the

point, consider a Gaussian mixture with all components having equal covariance ma-

trices Σk = σ2
kI, with I the identity matrix. Assuming that one of the components,

say the i-th component, has its mean equal to one of the data points i.e. µi = yn for

some value of n, then this data point contributes to the likelihood:

N(yn∣µi, σ2
i I) =

1

(2π)1/2 1
σ2
i

(4.1.13)

Taking the limit σi → 0 then this term tends to infinity which causes the likeli-

hood to diverge. One could say that the maximisation of the log likelihood function

is an ill posed problem because such singularities are unavoidable whenever one or

more of the Gaussian components collapses to a single point. There are several ways

of alleviating the problem. One example is to use certain heuristics e.g. detecting

the singularities and resetting the mean of the Gaussian at a random value and

resetting the covariance to some big value. In the Bayesian framework the problem
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is alleviated by performing MAP and hence including a prior distribution over the

components [158]. However, this is not aligned with the philosophy of the EM algo-

rithm, a purely Maximum Likelihood Estimator algorithm. A different way to treat

singularities is the nonparametric maximum likelihood (NPML) which utilises the

help of an Aitchinson-Aitken kernel. We discuss this approach in the next section

since it is the approach taken for the experimental results of the current chapter.

4.2 A version of EM-based NPML

Nonparametric maximum likelihood is a tool usually used in the case of fitting

generalised linear models with random effects. The term nonparametric refers to

the case where there is no parametric specification of the random effect distribution.

In NPML usually the marginal likelihood can be approximated by a finite mixture

model of which the model parameters can be calculated by the EM algorithm.

We employ the use of a version of the EM-based NPML [161, 162] to avoid the

so called likelihood spikes [158, 163] which are caused by the Gaussian components

collapsing to a single point and in turn cause the likelihood to diverge. Likelihood

spikes is a common phenomenon when unequal variances are used for the Gaussian

mixtures. This allows the components to have independent variances which can

freely vary at any values. The problem can be modified with the use of a smoothing

component for the mixtures’ variances which employs a discrete kernel [164] which

we now describe.

Suppose we want to fit a Gaussian mixture with unequal variances σ2
k with

k = 1, ...,K and we want to employ the smoothing of the components. The smoothing

is performed by the following discrete kernel:

w(x, y∣λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ if y = x,

1−λ
K−1 if y ≠ x.

(4.2.14)

with 1/K ≤ λ ≤ 1. Here, x and y denote the class memberships i.e. the component

index and thus range from 1 to K. The kernel assigns the smoothing parameter
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equal to λ when the running index equals the component index. When the indices

are unequal then the kernel assigns the smoothing parameter equal to 1−λ
K−1 . Setting

the smoothing parameter λ = 1/K corresponds to the maximum smoothing possible

which is equivalent to the case of equal variances. When λ = 1 then all the variances

are decoupled and calculated within the components so that all components have

independent variances.

The EM algorithm is implemented as in any other case; it alternates between the

E-step and the M-step by evaluating the estimators for the parameters πk, µk, σk.

The only difference is the kernel which is used to update the estimated variances

which are set equal to:

Σnew = w(x, y∣λ) Σold (4.2.15)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Σ1

Σ2

⋮

Σk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

new

= w(x, y∣λ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Σ1

Σ2

⋮

Σk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

old

(4.2.16)

with Σnew the adapted vector of the variances and Σold the variances as estimated

by the M-step and presented in section [4.1.2]. The above expressions show that in

order to avoid the likelihood spikes, the adapted variances are a linear combination

of all the component variances as estimated in the M-step. When λ ≈ 1 then this

adds to each variance a small ε-correction, with ε ∼ 1−λ
K−1 , and forces the components

to be dependent. The use of the kernel imposes this inter-component connection

that is needed so that if one of the variances is close to singular then it is forced to

artificially “increase” by a small amount and avoid the divergence of the likelihood.

It is worth mentioning here that these singularities provide another example of

the severe over-fitting that can occur in a maximum likelihood approach. One can

argue that these singularities do not occur in a Bayesian approach. In this approach,

the EM algorithm is used to find the Maximum a Posteriori estimate instead of the

maximum likelihood for the model with a prior P(Σ) defined over the variance. In
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this case, the E-step remains the same whereas the difference is on the M-step which

maximises a slightly different quantity. Suitable choices for the particular prior will

remove such pathological situations. However, as we mentioned previously, this is

not aligned with the philosophy of the EM algorithm, a purely Maximum Likelihood

Estimator algorithm.

In the next two sections we describe experimental results that were acquired

by the use of the EM algorithm for the Kimia and the alphabet database. Due

to the variations of the different existent classes in our data, in our first attempts

of running the EM algorithm for these two databases we encountered problems.

Such singularities were present in our data and the likelihood was divergent. For

this reason, for all the following results we employed the EM-based NPML which

allowed us to alleviate the divergences and conclude with our classification results.

4.3 Adaptation of EM on the Kimia and alphabet

database

As mentioned in chapter[1], there are classification schemes that are based on special

features of the shape. In this case, the characterisation of a class of shapes and its

differentiation from other classes can be done in terms of some of its properties (also

called features or shape descriptors). Shape descriptors are used as a measure of

similarity between shapes represented by their features. Usually simple geometrical

features such as area and perimeter are used to describe the shapes however such fea-

tures usually fail to describe shapes with small differences. In other words there can

be more than one classes that can be described by the same features. Our proposed

classification algorithm from chapter [2] classifies purely based on the geometrical

properties of the observed shapes. In the next section, we discuss how we used the

EM algorithm to infer the existence of clusters of data based on their features. We

estimate their properties and then perform classification based on these. Finally,

we compare the results of this classification procedure to the ones acquired by the

algorithm presented in chapter [2].
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4.3.1 EM on Kimia database

In this section we present the results obtained by the EM algorithm for the Kimia

database. For this task, we assume that we have at our disposal two data sets:

a training and a test data set. We assume that each shape of either of the two

data bases can be described by a feature vector of some extracted shape descriptors.

We assume that the description of each of the classes is sufficient by these feature

vectors. We also assume that each of the classes’ features represents a cluster or that

classes with similar features will be combined in a single cluster. Each of the clusters

can thus be sufficiently represented as a multidimensional Gaussian distribution of

which the mean and the covariance matrix we will learn by using the EM algorithm.

We can then use this information to classify new, unobserved data from the test

data set in the inferred classes.

For this task, we assumed that the training data set is comprised by the idealised

example shapes of the Kimia database. For the generation of the example shapes

we extracted the boundaries in the way described in section [3.2.1]. The test data

for this task were generated as follows: a random number of Kimia data shapes were

generated in the way described in section [3.2.2]. For all the data shapes the feature

properties of shape factor, roundness, convexity and solidity were extracted. These

features were used as the new, unobserved values based on which the data shapes

would be classified. The class labels associated to each of the shapes were retained

to enable us to evaluate the results of the EM algorithm by a comparison to its class

assignments.

The feature extraction for both the training and the test data set was done

in the following way: for all 256 Kimia shapes we extracted the perimeter, area,

convex hull perimeter, convex hull area, shape factor, roundness, convexity and

solidity. In particular, the convex hull of a shape is defined as the smallest convex

set that contains the shape i.e. a minimum bounding polygon. The shape factor is

defined as 4π Area
perimeter2

, the roundness is defined as 4π Area
convex perimeter2

, the convexity

as convex perimeter
perimeter , and the solidity as area

convex area [165, 166]. The extracted features

of each shape form its feature vector and the collection of all feature vectors can
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be used for the inference of existent cluster. However, the final feature vector was

only comprised by the shape factor, roundness, convexity and solidity since the

other properties differ in dimensionality whereas the chosen four properties are all

dimensionless. Since each data shape is represented by these four properties, we

assume that each class of shapes can be represented by a four-dimensional Gaussian

which is characterised by a certain mean and covariance matrix. The EM algorithm

was used to estimate the values of the mean and the covariance matrix of each of

the clusters.

One of the drawbacks of the EM algorithm is the fact that the number of compo-

nents K must be known a priori. Since we have a priori knowledge of the number of

classes present in the data, for the first run we chose the number of components to

be the same as the number of the existing classes which is K = 21; in the Bayesian

framework this would be expressed as imposing a delta function as a prior on the

number of the present classes namely δK,21. The algorithm was allowed to run un-

til convergence with an appropriate threshold and was found to be maximised for

λ = 0.941 (see equations (4.2.14) and (4.2.16)). Since the data were simulated, it is

possible for us to check how well the EM algorithm worked. One would expect, that

the distinct types of shape would lead to unique clusters. For example we would

expect all “hands” to form a single cluster and to be differentiated from “tools.”

To evaluate the efficiency of the clustering produced by the algorithm we exam-

ined the final values of the Wik. We split the Wik in parts so as to compare the

responsibilities of the shapes on a class by class basis. For each of the 21 classes

of simulated data we evaluated the mode assignment determined by the maxima

of the Wjk for those j associated to the given class. This mode was then taken as

the class label for that cluster. For example Table [4.1] shows some partial data

highlighting how the assignment was compared to the data label. Specifically, all of

the shapes in the top two rows were known to have been simulated from the class

of spectacles. The most frequent value of k which maximised the responsibilities of

these shapes was k = 8. However, as can be seen not all of the shapes in this subset

were labelled in class 8 so we then evaluated the percentage of shapes classified in
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Data label 11 8 8 8 15 11 11 11 11 8 8 8 11 8. . .

Assignment 8 8 8 8 8 8 8 8 8 8 8 8 8 8. . .

Data label 6 6 6 6 6 10 10 10 10 6 10 6 6 4. . .

Assignment 6 6 6 6 6 6 6 6 6 6 6 6 6 6. . .

Data label 13 13 13 13 4 4 4 9 13 4 4 14 14 14. . .

Assignment 13 13 13 13 13 13 13 13 13 13 13 13 13 13. . .

Table 4.1: The MAP assignment of data shapes, yi, into classes, determined by the

maximum over k of Wik. Each row represents a subset of the shapes belonging to a

single class (Spectacles, Tools, Hands). The assignment label is fixed by the mode

over the data labels in each class.

each subset mode. Across all shapes, this was found to be 65 percent; this means

that on average, 65 percent of the shapes were classified into the mode of the class

memberships.

Having the estimators of the mixing coefficients, the mean and the covariance

matrix that the EM returned for each of the clusters we then classified new, un-

observed data which were obtained from the test data set. This was an important

task since it allows us to examine how well the EM-based approach can classify new

shapes at the end of its learning period. For this we generated 1000 data shapes,

in the way described in section [3.2.2], coming from random classes of the Kimia

database and extracted the four features for each one of them. For each of the 1000

shapes we performed MAP to evaluate in which cluster it is classified. This was then

compared to the class labels supplied by the EM algorithm in its determination of

clusters. For example, the shapes on the top row of Table [4.1] were spectacles;

the EM algorithm assigned most of the data from this class into class 8; a correct

classification of future data shapes generated from the spectacles class would be into

class 8. In a way similar to the MAP performed in chapter [3] we evaluated:

P(Ci∣y) ∝ P(y∣C)P(C) (4.3.17)
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where in this case the observation model is a four dimensional Gaussian distribution.

The average success rate of this classification procedure is: 62.9%± 4.1%. However,

this approach did uncover a problem. Rather than providing us with 21 unique

class assignments, the EM algorithm returned class modes totalling only 13. To

investigate further we repeated the experiment with the EM initiated to K = 13

components. Repeating the same process as before, the percentage of shapes clas-

sified in the subset modes was found to be 76 percent which shows an increase of

the result found for 21 components. We then performed classification of 1000 data

shapes which were randomly generated from the classes of the Kimia database. Us-

ing MAP classification for each of the data shapes we found that the average success

rate for this classification was 72.7%± 4.5%. Although this increases the success (at

least as measured by the procedure outlined above) of the algorithm, it is not in

agreement with our expectation of 21 distinct classes. We will return later on to

explore whether our more geometric approach can offer a better outcome.

4.3.2 EM on alphabet database

For completion, we repeated the above experiment for the alphabet database we

first introduced in chapter [3]. As with the Kimia database, for all 156 letters we

extracted the feature vectors comprising of the shape factor, roundness, convexity

and solidity. Having a priori knowledge that the existent classes of letters are 26, we

imposed a delta prior on the number of classes δK,26 and we run the EM algorithm

with K = 26 components. To evaluate the efficiency of the clustering that EM

returned, we evaluated the class modes as in the Kimia database. The percentage

of shapes classified in their subset mode was found to be 55 percent. We then

evaluated the success rate of the returned clustering. We generated 1000 data shapes

coming from random letter classes and performed MAP. The success rate of the

classification was 33.1% ± 5.6%. However, as in the case of the Kimia database,

the class memberships returned from the EM algorithm were not all unique. We

repeated the experiment with the number of components equal to the number of

unique class modes determined by the EM algorithm which was initiated with K =

17 components. Repeating the same process as before, the percentage of shapes
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classified in the subset mode was found to be 60 percent which shows a slight increase

of the previous result with 26 components. We then classified 1000 data shapes

which were randomly generated from all letter classes. Classifying through the

MAP procedure we found that the average success rate for this classification was

37.3% ± 5.4%.

4.3.3 Discussion of the results

The purpose of introducing the model which is the subject of this thesis is that

we had hoped it would yield a more accurate classifier. We must therefore com-

pare the results found above – which use older and more established techniques –

with the classification rate achieved using our new technique which we presented in

chapter [3]. First we consider the Kimia database. The success rate of 80% that

was produced with our method is slightly better than the 62.9% and 72.7% noted

above. The numbers are comparable (the K = 13 result is within experimental error

of the result arising with our new approach) however we must recall the approach

developed above did not lead to an EM algorithm which correctly separates the

training data into the correct number of distinct classes. This is a huge drawback

of the an EM-based approach based on the information non-preserving [35] feature

extraction. Similarly, in the case of the alphabet data set, our work in chapter [3]

led to a success rate of 73% which is indeed much better than the rates of 33% and

37% found with K = 26 components and K = 17 components respectively.

In contrast to the classification based on our geometrical method presented in

chapter [2], there is big difference between the success rates of the Kimia database

and the letter database when using the EM approach. We suggest that such be-

haviour can be understood as signaling that the features extracted for the letters

show far greater similarity than the shapes of the Kimia database. Indeed, many of

the alphabet letters are fairly similar (for example C and G or B and D) whereas

the Kimia shapes show much greater diversity. This goes somewhere to explaining

why fewer mixtures than expected were present when the algorithm had decided on

its clusters.
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It is probably not too surprising that the approach used above is not able to

separate the training data into the classes that we anticipated, since much of the

geometrical information is being lost. No distinguishing data related to the shapes’

boundaries or curvature is being used in either the EM algorithm or in classification.

Instead these data are being diluted as they are combined into the chosen features.

The approach of chapter [3] prefers to retain much more of this information which

then plays an active role in building the likelihood function. Furthermore, our model

easily encompass shapes which are generated from parameters drawn from a given

distribution, such as our description of the aspect ratios of sand bodies which follow

a Γ-distribution.

To investigate the applicability of our proposed model further it seems appropri-

ate to develop it in the context of unsupervised learning. In this way we hope to find

out whether or not our new marginalised likelihood can be used to discover clusters,

to learn their parameters and eventually to classify new data into these classes. For

this reason we now turn to the development of an EM procedure based upon our

new likelihood. Our hope is that with this approach, the algorithm will converge

to parameter estimations which separate out the training data into the expected

clusters and eventually be used to recognise differences between real world shapes

(such as, for example, geological sand bodies).

4.4 Adaptation of the EM for sand bodies

The adapted EM algorithm is an attempt to find clusters in the data by using our

observation model of section [2.6] as the mixture model. In any other case, one

could use a mixture of Gaussian or Gamma distributions to find the clusters that

describe the data by their properties, for example the mean and the covariance ma-

trix of the Gaussian distributions or the shape and scale parameter of the Gamma

distributions. Clusters can be identified by the properties that described them and

then new observations can be classified to their respective clusters according to their

properties. The question we are faced with is: can we describe clusters by their un-

derlying geometry and then classify new observations according to how similar they
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are to the clusters? The answer to that is that one would have to use a mixture of

distributions that reflects the belief that clusters can be identified geometrically. For

this reason, we assume that clusters of shapes can be described by their underlying

geometry and the identification of them will be done with a mixture of distributions

that describe the likelihood of a certain shape belonging to a particular class.

We assume that we are given K distributions which in our case can be seen as

the assumed existent classes in which the data shapes can be partitioned to. Each

of the distributions can be described by the likelihood P(y∣Ck) and as we have seen

in the case of the sand bodies each sand body class can be described by its own

parameters {κ, θ} that define its aspect ratio. A finite mixture is a distribution

which draws with probability πk from the k-th likelihood distribution. The density

of a finite likelihood mixture is given by:

P(y∣Θ) =
K

∑
k=1

πkP(y∣Ck) (4.4.18)

with k = 1, ...,K the number of mixture components, Θ = {π1, ..., πK−1

, κ1, ..., κK , θ1, ..., θK} the vector of the parameters. Since we want to investigate

the clustering of the classes based on their underlying geometry, the likelihood

P(y∣Ck) is the marginalised likelihood presented in expression (3.2.1) which has

been marginalised over the nuisance parameters and the similarity transformations

have been integrated out:

P(y∣Ck) = ∑
b∈B
∫ Dβ Ds Dg Dσ P(y∣b, β, s, g, σ)P(b)P(s)P(g)P(σ)P(β∣Ck)

= ∑
b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

Γ(γ;κk, θk)P(s)

(4.4.19)

which is the probability that a given data shape y comes from a class which can be

described by its aspect ratio γ and its parameters {κk, θk} which is captured by the

prior distribution Γ(γ;κk, θk). One should note here that πK = 1 −∑K−1
k=1 πk. In the

next section, we discuss the derivation of the EM algorithm in the case of the finite

likelihood mixture.
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4.5 Derivation of EM algorithm for finite likeli-

hood mixture

To obtain an estimator Θ̂ of the parameters Θ we use the EM algorithm. The

EM algorithm alternates between the E-step and the M-step until convergence is

reached. We now describe the derivation of the EM algorithm for the finite likelihood

mixture.

4.5.1 Complete likelihood

In this section, we construct the complete likelihood for our mixture model as we

did in section (4.1.2). The derivation of the EM algorithm for the E-step of our

adapted version is the same as in the Gaussian mixture case so for its calculation

one can refer to (4.1.2). However, the difference is in the model we employ so we

will here denote:

fik = P(y∣Ck) = ∑
b∈B
∫ Dβ Ds Dg Dσ P(y∣b, β, s, g, σ)P(b)P(s)P(g)P(σ)P(β∣Ck)

= ∑
b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

Γ(γ;κk, θk)P(s)

(4.5.20)

In our adapted version of EM, the difference lies in derivation of the M-step

which we present in the next section. Before that, we remind the readers that the

expression that needs to be maximised in the M-step is:

L = ∑
i

∑
k

Wik logπk +Wik log fik (4.5.21)

M-step

Having the responsibilities Wik evaluated from the E-step we can now obtain the

estimates of the parameters Θ = {κj, θj, πj}. This can be done by setting the deriva-

tives of the log-likelihood (4.5.21) with respect to the parameters equal to zero. We
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firstly maximise (4.5.21) with respect to the mixing coefficients πk. Since the max-

imisation of these coefficients is independent of fik, the result is exactly the same as

in the case of Gaussian mixtures which we present here:

π̂j = 1
n ∑iWij

To obtain the estimators for {κj, θj} we set the derivatives of the log-likelihood

(4.5.21) with respect to these parameters equal to zero. We start with the derivative

of the log-likelihood with respect to κj:

∂

∂ κj
L = ∑

i

∑
k

(logπk + log fik)
∂

∂ κj
Wik +Wik

∂

∂ κj
log fik

= ∑
i

∑
k

Wik
∂

∂ κj
log fik

= ∑
i

∑
k

Wik

∂
∂ κj

fik

fik
(4.5.22)

We should again note here, that the derivative of the responsibilities Wik with

respect to any of the parameters is zero since Wik is the conditional expectation of

the class labels that we acquired from the E-step and hence it is considered to be

constant. One notices that in the above calculation the term that gets differentiated

with respect to κj is the observation model fik. We will now examine the evaluation

of this derivative and then substitute it back to expression (4.5.22). As we mentioned

in chapter [3], the planar curves of the sand bodies are specified by their aspect

ratios so for computational reasons we substitute: Dβ P(β) → dγ Γ(γ;κ, θ) with

Γ(γ;κ, θ) = γκ−1 e
− γ
θ

θκΓ(κ) . Having this in mind, the partial derivative of the likelihood

with parameters {κk, θk} with respect to κj is thus:

∂ fik
∂ κj

= ∂

∂ κj
(∑
b
∫ Dβ Ds P(yi∣b, β, s)P(β)P(s))

= ∂

∂ κj
(∑
b
∫ Dγ Ds P(yi∣b, β, s)Γ(γ;κk, θk)P(s))

= ∂

∂ κj

⎛
⎜⎜
⎝
∑
b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

Γ(γ;κk, θk)P(s)
⎞
⎟⎟
⎠

(4.5.23)
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However, the above expression has an implicit κ dependence in the likelihood

but has an explicit κ dependence only through the Γ prior on the aspect ratio. We

have seen in chapter [3], section [3.5] that the derivative of a Γ distribution with

respect to κ is:

∂

∂ κ
Γ(γ;κ, θ) = Γ(γ;κ, θ) (log(γ) − log(θ) − log(ψ(κ))) (4.5.24)

Since expression (4.5.23) is only dependent on the derivative of κ through the Γ

prior we have:

∂ fik
∂ κj

= ∂

∂ κj

⎛
⎜⎜
⎝
∑
b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

Γ(γ;κk, θk)
⎞
⎟⎟
⎠
P(s)

= ∑
b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

∂

∂ κj
Γ(γ;κk, θk)P(s)

= ∑
b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

P(s)×

δkj Γ(γ;κk, θk) (log(γ) − log(θk) − log(ψ(κk)))

= δkjF (κ)
ik (4.5.25)

where we have substituted:

F
(κ)
ik = ∑

b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

P(s)×

Γ(γ;κk, θk) (log(γ) − log(θk) − log(ψ(κk)))

(4.5.26)

and the upper index denotes the parameter the derivative was found with respect

with. The above enters expression (4.5.22) in the following way:
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∂

∂ κj
L = ∑

i

∑
k

Wik

∂
∂ κj

fik

fik

= ∑
i

∑
k

Wik

δkjF
(κ)
ik

fik

= ∑
i

Wij

F
(κ)
ij

fij
(4.5.27)

∂
∂ κj

L = ∑iWij
F
(κ)
ij

fij

which is the derivative of the log-likelihood with respect to κj. In order to find the

estimator for κj we have to set the above expression equal to zero. Before that, we

will evaluate the derivative of the log-likelihood with respect to θj and then evaluate

both estimators. We now evaluate the derivative of the log-likelihood (4.5.21) with

respect to θj:

∂

∂ θj
L = ∑

i

∑
k

(logπk + log fik)
∂

∂ θj
Wik +Wik

∂

∂ θj
log fik

= ∑
i

∑
k

Wik
∂

∂ θj
log fik

= ∑
i

∑
k

Wik

∂
∂ θj

fik

fik
(4.5.28)

Once again, we see that the the term that gets differentiated with respect to θj

is fik. We will now examine the evaluation of this derivative and then substitute

it back to expression (4.5.28). However, as with κ, the likelihood has an implicit θ

dependence in fik but has an explicit θ dependence only through the Γ prior on the

aspect ratio. We have seen in chapter [3], section [3.5] that the derivative of a Γ

distribution with respect to θ is:

∂

∂ θ
(Γ(γ;κ, θ)) = Γ(γ;κ, θ) ( γ

θ2
− κθ−1) (4.5.29)

Thus, the derivative of fik with respect to θ is:
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∂ fik
∂ θj

= ∂

∂ θj

⎛
⎜⎜
⎝
∑
b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

Γ(γ;κk, θk)P(s)
⎞
⎟⎟
⎠

= ∑
b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

∂

∂ θj
Γ(γ;κk, θk)P(s)

= ∑
b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

P(s)×

δkjΓ(γ;κk, θk)(
γ

θ2
k

− κkθ−1
k )

= δkjF (θ)
ik (4.5.30)

where we have substituted:

F
(θ)
ik = ∑

b
∫ Dγ Ds

⎡⎢⎢⎢⎢⎢⎣
ñṼar(y) −

B2ñ2 ∣ ̃Cov(v,y)∣
2

(B2ñṼar(v) + 1)
+ 2ζ

⎤⎥⎥⎥⎥⎥⎦

−n−α

P(s)×

Γ(γ;κk, θk)(
γ

θ2
k

− κkθ−1
k ) (4.5.31)

and the upper index denotes the parameter the derivative was found with respect

with. Thus, the derivative of the log-likelihood in expression (4.5.28) with respect

to θj is:

∂

∂ θj
L = ∑

i

∑
k

Wik
∂

∂ θj
log fik

= ∑
i

∑
k

Wik

∂
∂ θj

fik

fik

= ∑
i

∑
k

Wik

δkjF
(θ)
ik

fik

= ∑
i

Wij

F
(θ)
ij

fij
(4.5.32)

∂
∂ θj

L = ∑iWij
F
(θ)
ij

fij
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Having the derivatives of the log-likelihood, we can now find the estimators for

the parameters {κj, θj} over which we want to maximise the log likelihood. For the

maximisation of the parameters, one would have to set the derivatives in expressions

(4.5.27) and (4.5.32) equal to zero. One notices that the expressions are quite

complicated and thus there is no closed formed solution for the evaluation of the

maximum in both cases. However, the solution for this is to utilise an optimisation

algorithm such as the gradient ascent which has an equivalent effect. Finding the

maximum of a function by setting its derivative to zero is equivalent to finding the

maximum via gradient ascent. The only difference though is that that by using the

gradient ascent, one must have some knowledge of the parameters since the algorithm

needs a set of initial values. Another difficulty of using the gradient ascent is the fact

that the algorithm is sensitive to these initial values and it can easily get trapped in

a local maximum if the likelihood surface is uneven and unsmooth, something that

makes the finding of the global maximum a tedious job.

In a similar fashion as it was discussed in chapter [3], section [3.5], the evaluation

of the maximum via the gradient ascent will be done in the following way:

{κn+1, θn+1} = {κn, θn} + ε ∇κ,θ L (4.5.33)

where ∇κ,θ L is the derivative of the log-likelihood as was evaluated in expressions

(4.5.27) and (4.5.32). We have seen in chapter [3], section [3.5] that the evaluation

of F κ
ik and F θ

ik can be achieved by using Monte Carlo integration.

We now describe the results we acquired for our adapted version of the EM

algorithm for the estimation of the hyperparameters of the Gamma distributions. To

evaluate the algorithm in more detail we created a third class of shapes that would be

used to make the differences between classes even more distinct and distinguishable.

The third class of shapes was chosen to be triangles that were generated to be

isosceles, with its height equal to 1 and its base equal to γ ∼ Γ(κ, θ). For this

class, we chose the hyperparameters to be: κ = 60, θ = 2
3 . For each run of the EM

algorithm, we simulated 15 shapes of which the first five were ribbons with their

aspect ratios generated by Γ(γ; 7.5,1), the next five were sheets with their aspect
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Ribbons Sheets Triangles

πK 0.9017 0.0353 0.0630

κK 4.8748 48.8974 59.2832

θK 5.6898 24.4812 22.1817

Ribbons Sheets Triangles

πK 0.8491 0.1353 0.0157

κK 4.3567 49.5937 59.2898

θK 4.5306 12.7205 16.9104

Ribbons Sheets Triangles

πK 0.9647 0.0159 0.0194

κK 3.4118 47.6232 58.9301

θK 5.6326 46.1990 711.7743

Ribbons Sheets Triangles

πK 0.9176 0.0112 0.0712

κK 5.1487 48.4691 57.6410

θK 5.5970 43.1922 13.2641

Table 4.2: The results of the parameters as estimated by the EM algorithm for four

different runs.

ratios generated by Γ(γ; 50,0.4) and the last five were triangles with their base

generated by Γ(γ; 60,2/3). We then initiated the EM algorithm for some starting

values of the parameters κ and θ and since we have a priori knowledge on the

number of the components we imposed a delta prior over their number namely δK,3.

In this adapted version of the EM, the M-step is calculated by the gradient ascent

of which the value of ε of expression (4.5.33) was chosen to be ε = 1. The M-step

was evaluated either after its maximum number of iterations was achieved or after

the value the Euclidean distance d =
√
dκ2 + dθ2 was smaller than a threshold which

was chosen to be equal to 0.005. The following tables present the data acquired

for 4 different runs of the EM algorithm with the starting values of the parameters

being [π1, π2, π3] = [1/3,1/3,1/3], [κ1, κ2, κ3] = [6,49,58], [θ1, θ2, θ3] = [0.4,0.3,0.5]:

Table [4.2] illustrates the failure of the EM algorithm to estimate the true values

of the hyperparameters as well as the mixing coefficients for 4 different runs. As we

discuss in the next section, this is problem that is introduced by the unsmoothness

and unevenness of the likelihood surface. This is the reason for the gradient ascent

and effectively the EM algorithm to not converge to the expected values of the

hyperparameters. The estimated responsibilities were equally disappointing since
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the estimated values of the parameters were not even close to the expected ones.

We discuss this in the next section.

4.5.2 Discussion of the results

As can be seen from the results presented above, the gradient ascent and hence

the EM algorithm have not converged to the anticipated values. Although for four

parameters it is not possible to include a plot of the likelihood hypersurface, we

already have experience of some of its properties. We have seen in section [3.5]

that it displays a very prominent peak (which is what we are searching for with

the gradient ascent algorithm) but suffers from having many stationary points away

from this point. For this reason it is very likely that the algorithm will become stuck

at one of the local maxima, rather than finishing at the global maximum. For the

EM algorithm to work properly the maximisation step needs to correctly find the

values of the parameters which give the greatest value of the likelihood based on the

currently computed assignments of the mixing coefficients.

We suggest that it is this unfortunate behaviour of the likelihood hypersurface

which is responsible for the failure of the EM-algorithm to learn the class parameters

accurately. This is the same problem that was encountered in section [3.5] where

we discussed the learning of the parameters for labelled data. This is a severe

obstacle which needs to be overcome in order to apply the model we propose to the

problem of parameter estimation. The use of gradient ascent was forced upon us

by little hope that the vanishing of (4.5.32) and (4.5.27) could be solved in closed

form for θj and κj. Progress in an analytic solution to this problem, or a numerical

approach which overcomes the drawbacks of the gradient ascent algorithm, would

be very welcome in future work. There are several algorithms which could be used

for the maximisation of the likelihood with respect to the parameters of interest.

We briefly refer to the simulated annealing [167, 168] and the stochastic gradient

ascent [169, 170]. The former is an adaptation of the Metropolis-Hasting [171, 172]

algorithm but is generally slow. The later is a hill-climbing algorithm which avoids

the evaluation of the gradient for the whole training set but rather evaluates it for
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one sample (or small number of samples). The stochastic nature of the algorithm

makes it able to avoid getting stuck on local extrema. We leave these algorithms for

future consideration as an extension of the analysis presented in this thesis.

Although we were unlucky with the exploration of the EM for a finite likelihood

mixtures, we had however applied our model in chapter [3] to the problem of clas-

sification when such parameters are known, where we have had much success. We

believe that this shows that our new approach has the potential to become a power-

ful alternative approach to shape classification making use of much more geometrical

information than previous formalisms.

4.6 Concluding remarks

We have investigated the results of a different classification method to the one we

proposed in chapter [2]. In section [4.3] we assumed that any data shape can be

represented by a feature vector that it is comprised by certain geometrical proper-

ties. We assumed that each of the classes of shapes of the Kimia and the alphabet

database, can be represented by a multivariate Gaussian distribution of which the

mean and covariance matrix we estimated with the help of the EM algorithm. To

avoid divergences and singularities generated by the covariances collapsing to a sin-

gle point during the estimation, we used the EM-based non-parametric maximum

likelihood algorithm which utilises a smoothing kernel. We then used the estimated

parameters for classification of new, unobserved data that we simulated for this pur-

pose. For the Kimia database, we found that the classification results are slightly

better with our presented method of chapter [2] but are comparable to the method

introduced in this chapter since they are within experimental error of the result

arising with our new approach. In the case of the alphabet data set, our work in

chapter [3] led to a much better success rate almost 40% better than the classification

method presented in this chapter.

We concluded that the results of the approach presented in this chapter are not

surprising since most of the geometrical information is lost by the feature extraction.
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The approach of chapter [3] retains much more of this information which plays role

in the building the likelihood function. Furthermore, our proposed method reflects

the fact that we can include prior information about the data shapes (for example

the description of the aspect ratios of sand bodies which follow a Γ-distribution).

For the investigation of the applicability of our proposed model we developed it

in the context of unsupervised learning. We developed an EM procedure based upon

our new likelihood which would find clusters in the data by using our observation

model of section [2.6] as the mixture model. We were anticipating that with this

approach, the algorithm would converge to parameter estimations which separate

out the training data into the expected clusters and eventually recognise differences

between real world shapes. Our adapted version of the EM algorithm was used for

the estimation of the hyperparameters of the Gamma distributions that generate

the shape curves of each class of shapes. For experimental purposes we generated

an extra class of triangles of which the shape curves were also generated from a

Gamma distribution. Our goal was to use the estimated values for the classification

of new shapes. However, the evaluation of the M-step didn’t allow us to calculate

the scores of the likelihood in a closed form and thus an optimisation algorithm

had to be employed for this task. The M-step of the EM was evaluated by using

the gradient ascent algorithm and, due to this fact, the EM didn’t converge to the

anticipated values. This was a somehow expected behaviour because, as we saw in

section [3.5] the use of gradient ascent is ill-used and ill-behaved since the likelihood

hypersurface is probably uneven and unsmooth. A solution that overcomes this

problem would be the use of an analytic solution or a numerical approach.



Chapter 5

The three dimensional case

5.1 Introduction

For the past four chapters we have treated shapes as continuous planar curves i.e. a

collection of points in R2. The classification of the planar curves was achieved by the

maximisation of the posterior probability P(C ∣y). For the classification of the sand

bodies’ data set, we assumed that information about the three dimensional point

clouds such as their corresponding paleodirections and dip angles were available to

us. This information was sufficient to know the plane on which to project the three

dimensional point cloud in order to acquire the two dimensional planar shapes which

would constitute the data set for classification purposes. One of the questions that

rose during this research was what happens in the case that the paleodirection and

even more the dip angle of a sand body data set is not available. In particular, in

the absence of the dip angle one wouldn’t know the projection plane of the three

dimensional point cloud and would have to estimate it as an extra parameter. In

section [5.2] we discuss the solution to this problem in case that information about

the true projection plane was unavailable. This gives rise to the problem of three-

dimensional classification which we discuss that can be treated using the Bayesian

paradigm and solved in the same fashion as in the two-dimensional case. We present

how the algorithm of chapter [2] can be upgraded for three dimensional case and

we focus on the integration of similarity transformations as we discussed in section

[2.8]. Although in chapter [2], we integrated over all similarity transformations

208
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we didn’t have the same luck in the three-dimensional case and we only achieved

integration over translations and rotations. In section [5.3], we present the results

of the integration over three dimensional translations which are similar to the two-

dimensional case; they differ in the normalisation constants. Integrating over three-

dimensional rotations is a complicated problem for which we had to choose their

representation so that integration is more straight forward. In section [5.4] we discuss

the chosen representation of three-dimensional rotations which is quaternions. We

present the properties of quaternions and how they can be used for the desired

integration and in section [5.5] we present the results of the integration over the

three-dimensional rotations using quaternions. Finally, section [5.6] presents the

concluding remarks of this chapter.

5.2 Classification of three-dimensional shapes

A problem we encountered during this research due to the absence of real geological

data, was the fact that the paleodirection or the dip angle wouldn’t always be

available to us. One could argue that could be a real situation that a geologist may

encounter whilst gathering data from the field. These two parameters are vital for

the classification of sand bodies since they define the projection plane of the three-

dimensional point cloud. The solution that we came up with was to treat the sand

body as a complete three dimensional object, which is to be classified by comparison

to non-planar example shapes.

For the simulation of example shapes we could begin with an idealised planar

sand body, x, assumed to be cut perpendicular to the paleoflow. Adding isotropic

Gaussian white noise each point is perturbed to yi = xi +νi where the {ν} ∼ N(0,Σ)

and Σ = ( σ
2 0 0

0 σ2 0
0 0 σ2

). To then compare this to the data shape we follow our previous

construction and consider all shapes that are related to this by rigid similarity

transformations. This requires the integration over the group of rotations in three

dimensions, SO(3). As in the case of planar curves and following the Bayesian

paradigm the posterior probability of a class is:
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P(C ∣y) ∝ P(y∣C)P(C)

∝ ∑
b∈B
∫ Dβ Ds Dg dσ P(y∣b, β, s, g, σ)P(β∣C)P(s)P(g)P(σ)P(C) (5.2.1)

To maximise the posterior probability C̃ = argmaxCP(C ∣w) and perform the de-

sired classification we marginalise the likelihood over the same nuisance parameters

and utilise the same probability models that we described in chapter [2] for the case

of planar curves. To perform the classification we marginalise over the nuisance

parameters that give rise to a particular shape: similarity transformations g which

are namely translations t, rotations R and also bijections b, curves β and samplings

s. Note that for the three dimensional case we don’t take into account scalings a for

reasons explained in the end of this chapter. Hence of particular interest as in the

case of planar curves is the observation model which, by returning to our previous

notation now is:

P(y∣b, β, s, g, σ) = exp(− 1

2σ2

N

∑
i=1

∣ybi − g ○β(s(b−1
i ))∣2)

= exp(− 1

2σ2

N

∑
i=1

∣ybi −Rβ(s(b−1
i )) − t∣2)

= exp(− 1

2σ2

N

∑
i=1

∣ybi −Rvi − t∣2) (5.2.2)

where we have substituted v = β(s(b−1
i )) for simplicity and in this case y, t and R

in R3. For the calculation of the Maximum a Posteriori approximation we need to

calculate the integrated likelihood which is described by model (5.2.2). We will inte-

grate over all nuisance parameters in the same way we did for the two-dimensional

case in chapter [2]. It is worth mentioning here, that for the integration of both

translations and rotations we didn’t make use of Jeffreys prior. In the next sections,

we describe the integration over these parameters in detail.
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5.3 Integration of translations t

As we have seen in chapter [2], the integration over translation is quite straightfor-

ward. Since we are in R3 we have a single data shape y = (y1, y2, y3) and translations

t = (t1, t2, t3). We have:

P(y∣b, β, s,R, σ) = 1

(2πσ)3n/2∭ d3t exp(− 1

2σ2

N

∑
i=1

∣ybi −Rvi − t∣2)

= 1

Z∭
d3t exp(− 1

2σ2

N

∑
i=1

∣Yi − t∣2) (5.3.3)

where we have defined Yi = ybi − Rvi and 1
Z = 1

(2πσ)3n/2 . For the integration over

translations we have:

P(y∣b, β, s,R, σ) = 1

Z∭
d3t exp(− 1

2σ2

N

∑
i=1

∣Yi − t∣2)

= 1

Z
(2πσ2

n
)

3/2
exp(n ∣∑Ni Yi∣2

2σ2
− ∑

N
i ∣Yi∣2
2σ2

) (5.3.4)

Notice that the exponent of expression (5.3.4) is the variance of Y , hence we can

write:

P(y∣b, β, s,R, σ) = 1

Z
(2πσ2

n
)

3/2
exp(− n

2σ2
Var[Y ])

= 1

Z
(2πσ2

n
)

3/2
exp(− n

2σ2
[Y 2 −Y 2])

= 1

Z
(2πσ2

n
)

3/2
exp(− n

2σ2
[∑
i

∣Yi∣2 −
1

n
∑
i

∑
j

YiYj]) (5.3.5)

This result is in the same form as in the case of integration of two dimensional

translations with a flat prior with different normalisation constants. To integrate

expression (5.3.5) over rotations we need to choose the appropriate representation

of three-dimensional rotations. The space over three-dimensional rotations is quite

complicated since the integration domain is a 3-ball i.e. rotations about θ, φ, r. To

perform such integration one should also choose the appropriate measure; usually one

chooses the left and right invariant Haar measure. This was one of the most difficult
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challenges of the task. There were quite a few attempts over the representation of

rotations and the calculation of the induced measure. The most, relatively, simple

representation was the one we describe in the next section, that of quaternions.

5.4 Quaternions

The integration of rotations for two-dimensional shapes is a quite straight-forward

calculation since the space of two dimensional rotations is compact. In this case,

we chose to represent rotations parametrised by θ in the complex plane as R = eiθ

so that a complex arithmetic is used for a geometric operation. The step to three-

dimensional shapes is quite large since the rotation group become that of SO(3).

Since the three dimensional integration over rotations is fairly more complicated

we chose to represent them by the three-dimensional equivalent complex arithmetic

which is quaternions. Quaternions are a four-dimensional algebra and the quater-

nionic space is defined as: H = {a + bi + cj + dk ∶ a, b, c, d ∈ R} with i2, j2 and k2 are

equal to −1 and ij = k = −ji, jk = i = −kj, ki = j = −ik with i, j, k the three special

unit imaginary quaternions.

Quaternions are represented by a scalar part (we will call this body) and a vector

part (we will call this the soul): vo+v1i+v2j +v3k = (v0,v) with v = (v1, v2, v3). The

product of quaternions is found to be: (v0,v)(wo,w) = (v0w0−v⋅w, v0w+w0v+v×w).

The length of a quaternion v = (v0, v) is defined by its norm which is defined, as

with complex numbers, as the square root of the product of the quaternion by its

conjugate v∗ = (v0,−v). This is: ∣v∣ =
√
vv∗ =

√
v2

0 + v2
1 + v2

2 + v2
3.

Consider the three-dimensional space as purely quaternionic so that: R3 = {xi +

yj+zk}, x, y, z ∈ R. Just like complex numbers, three-dimensional rotations are done

by using unit quaternions like for example cos θ + i sin θ, cos θ + j sin θ, cos θ + k sin θ

by analogy to Euler’s formula. However, i, j, k are just three special unit imaginary

quaternions and one can construct much more unit quaternions than these. Let

a unit vector be u = u1i + u2j + u3k, then cosφ + u sinφ is also a unit quaternion

which by analogy to Euler’s formula can be written as euφ. Unit quaternions form a
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special group which is: Spin(3) = {q ∈ H ∶ ∣q∣2 = 1} and has the special property that

is isomorphic to SU(2) ≅ S3. To understand rotations by quaternions we present the

following theorem.

Theorem 1 If u is a unit vector and v is any vector, the expression euφve−uφ.

gives the result of rotating v about the axis parallel to u by 2φ degrees.

Thus, any three-dimensional rotation in the quaternionic representation can be

written as R = qvq̄ with the help of a unit vector that is multiplied by the left by

the quaternion we want to rotate by and to the right by its conjugate. For the proof

of the above theorem refer to [173, 174].

An important point about quaternions, in contrary to complex numbers, is the

fact that they do not commute. The basis quaternions anti-commute and they

provide a representation of SU(2) so [i, j] = 2k etc. For two arbitrary quaternions

the value of the commutator is [y, q] = 2 y × q, with y, q quaternions and y,q their

vectorial parts. This is something we take into account for the calculations to follow.

To proceed with the calculation of the integral over rotations of expression (5.3.5)

we need to utilise the quaternionic representation of rotations and write it into its

quaternionic equivalent. Let y = (0, y1, y2, y3), q = (qo, q1, q2, q3), v = (0, v1, v2, v3)

the quaternionic expressions for a data shape y, a rotation by q and an idealised

example curve v. Note that y and v contain only the vectorial quaternionic part

since they are in R3 and q is the quaternion by which we want to rotate.

5.5 Integration of rotations

Although we have found the simplest representation of three-dimensional rotations,

we only need to take into account a small subset of the quaternionic space since

rotations are represented only by unit quaternions. For this reason, we choose to

integrate over the full quaternionic space R4 and impose a constraint that takes

into account only unit quaternions. Since unit quaternions live on the surface of

the unit 3-sphere, we impose the constraint δ(∣q∣2 − 1) = δ(qq∗ − 1) where q∗ is the



5.5. Integration of rotations 214

quaternionic conjugate of q. This δ function is invariant under the action of SU(2)

on the parameters since rotations do not change the length of the quaternion. Before

we continue with the integration over rotations we will bring expression (5.3.5) in

an appropriate form. In particular, we work with the exponent:

− 1

2σ2
(∑

i

∣Yi∣2 −
1

n
∑
i

∑
j

YiYj) =

= −( 1

2σ2
)∑

i

(yi −Rvi)T (yi −Rvi) −
1

n
∑
ij

(yi −Rvi)T (yj −Rvj)

= −( 1

2σ2
)[∑

i

yi
Tyi −∑

i

yi
TRvi −∑

i

(Rvi)Tyi +∑
i

(Rvi)TRvi

− 1

n
∑
ij

yi
Tyj +

1

n
∑
ij

yi
TRvj +

1

n
∑
ij

(Rvi)Tyj −
1

n
∑
ij

(Rvi)TRvj]

= ( 1

2σ2
) [−n yTy + n yTRy + n vTRTy − n vTRTRv

+n y2 − n yTRv − n vTRTy + n y2]

= ( 1

2σ2
) [−n (yTy − y2) − n (vTv − v2)

+n (vTRTy − vTRTy) + n (yTRv − yTRv)]

= ( 1

2σ2
) [−n Var(y) − n Var(v)] + n [(y − ȳ)TR(v − v̄) + (v − v̄)TRT(y − ȳ)]

(5.5.6)

We make a change of variables so that ŷ = y − ȳ and v̂ = v − v̄ and expression

(5.5.6) now is:

( 1

2σ2
) [−n Var(ŷ) − n Var(v̂)] + n [ŷTRv̂ + (Rv̂)Tŷ] (5.5.7)

This is the exponent of expression (5.3.5). Substituting the exponent back, expres-

sion (5.3.5) becomes:
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P(y∣b, β, s,R, σ) = 1

Z
(2πσ2

n
)

3/2
×

exp( 1

2σ2
[−n Var(ŷ) − n Var(v̂)] + n [ŷTRv̂ + (Rv̂)Tŷ])

= 1

Z
exp( 1

2σ2
[−n Var(ŷ) − n Var(v̂)] + n [ŷTRv̂ + (Rv̂)Tŷ])

(5.5.8)

where we have absorbed all the constants into the normalisation coefficient. To

be able to integrate the above expression with respect to rotations, we will have

to do some work and extract the quaternionic dependence of the exponent. Since

the variance of y and the variance of v are independent of quaternions we will only

work with the second term of the exponent. The expression in the exponent is a

real number so the final term of expression (5.5) must be a real number too. We

also make use of the following quaternionic property that for any q and t, we have:

qt∗ + tq∗ = 2 q ⋅ t with q, t the souls of the two quaternions. The first term in the

square brackets becomes:

ŷTRv̂ = 1

2
(ŷT(Rv̂)∗ + (Rv̂)Tŷ∗) = 1

2
(ŷT(qv̂q∗)∗ + qv̂Tq∗ŷ∗)

= 1

2
(ŷT(qv̂∗q∗) + qv̂Tq∗ŷ∗) (5.5.9)

We know that the commutator for two quaternions is [q, t] = 2 q × t, i.e. the cross

product of their souls. This gives us: ŷTq = qŷT+2 ŷT×q and q∗ŷ∗ = ŷ∗q∗−2 ŷ∗×q∗.

We now work with expression (5.5.9) and we remove the expectational overbars to

make the calculation easier for the reader. Then expression (5.5.9) is:

(qŷT + 2 ŷT × q)v̂∗q∗ + qv̂T(ŷ∗q∗ − 2 ŷ∗ × q∗) =

q(ŷTv̂∗ + v̂Tŷ∗)q∗ + 2 (ŷT × q)v̂∗q∗ − 2 qv̂T(ŷ∗ × q∗) (5.5.10)

We know that (ŷTv̂∗ + v̂Tŷ∗) = 2 ŷ ⋅ v̂, ∈ R. This expression must be real and it

only has a body but not a soul; we transform the other terms to bring them in the

desired form. Making use of the following properties:
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v̂∗q∗ = qv̂ − 2 q × v̂ − 2qov̂ (5.5.11)

qv = −q ⋅ v̂ + qov̂ + q × v̂ (5.5.12)

v̂∗ × q∗ = v̂ × q (5.5.13)

expression (5.5.10) becomes:

q(2 ŷ ⋅ v̂)q∗ + 2 [−q ⋅ v̂ (ŷT × q) − (ŷT × q) (q × ŷ) − qo(ŷT × q)b̂)]

+ 2 [q ⋅ v̂T(ŷ × q) − qov̂T(ŷ × q) − (q × v̂T)(ŷ × q)] (5.5.14)

Since the final result must be real we keep only the parts that are real from expression

(5.5.14) and drop any parts that are purely quaternionic. The first term is real since

it can be written as: 2 (ŷ ⋅ v̂)qq∗ = 2 ŷ ⋅ v̂ and is kept. The term −q ⋅ v̂ (ŷT × q) from

the first square bracket will be dropped since it is bodyless; the same stands for the

term in the second bracket: q ⋅ v̂T(ŷ × q). Thus, expression (5.5.14) now becomes:

2 ŷ ⋅ v̂ + 2 [(ŷT × q) ⋅ (q × v̂) + qo(ŷT × q) ⋅ b̂)] + 2 [(q × v̂T) ⋅ (ŷ × q) + qoq ⋅ (v̂T × ŷ)]

= 2 ŷ ⋅ v̂ + 2 [(ŷT ⋅ q)(q ⋅ v̂) − (ŷT ⋅ v̂)(q ⋅ q) + qoq ⋅ (v̂ × ŷT)]

+ 2 [(q ⋅ ŷ)(v̂T ⋅ q) − (q ⋅ q)(v̂T ⋅ ŷ) + qoq ⋅ (v̂T × ŷ)] =

= 2 ŷ ⋅ v̂ + 4 [(q ⋅ ŷ)(v̂T ⋅ q) − (q ⋅ q)(v̂T ⋅ ŷ) + qoq ⋅ (v̂T × ŷ)] (5.5.15)

We know take an overall factor of a 1
2 as we should from expression (5.5.9), expression

(5.5.15) becomes:

ŷ ⋅ v̂ + 2 [(q ⋅ ŷ)(v̂T ⋅ q) − (q ⋅ q)(v̂T ⋅ ŷ) + qoq ⋅ (v̂T × ŷ)] (5.5.16)

which constitutes the first term in square brackets of expression (5.5). We now work

on the second term of the exponent in expression (5.5). By using the same analysis

as above, the term becomes:
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(Rv̂)Tŷ∗ = 2 ŷ ⋅ v̂ + 2 [(ŷT ⋅ q)(q ⋅ v̂) − (ŷT ⋅ v̂)(q ⋅ q) + qoq ⋅ (v̂ × ŷT)]

+ 2 [(q ⋅ ŷ)(v̂T ⋅ q) − (q ⋅ q)(v̂T ⋅ ŷ) + qoq ⋅ (v̂T × ŷ)] =

= 2 ŷ ⋅ v̂ + 4 [(q ⋅ ŷ)(v̂T ⋅ q) − (q ⋅ q)(v̂T ⋅ ŷ) + qoq ⋅ (v̂T × ŷ)] (5.5.17)

Taking an overall factor of a 1
2 as with the first term, expression (5.5.17) becomes:

ŷ ⋅ v̂ + 2 [(q ⋅ ŷ)(v̂T ⋅ q) − (q ⋅ q)(v̂T ⋅ ŷ) + qoq ⋅ (v̂T × ŷ)] (5.5.18)

which constitutes the second term in square brackets of expression (5.5). Finally,

replacing the expectational overbars and replacing the terms (5.5.16) and (5.5.18)

to the exponent of expression (5.5), the exponent becomes:

( 1

2σ2
) [−n Var(y) − n Var(v)]

+ 2n [ŷ ⋅ v̂ + 2 ((q ⋅ ŷ)(v̂T ⋅ q) − (q ⋅ q)(v̂T ⋅ ŷ) + qoq ⋅ (v̂T × ŷ))] (5.5.19)

We extracted the quaternionic dependence from the exponent of the marginalised

likelihood in (5.3.5) and we can now perform the integration over the quaternionic

space with respect to rotations imposing the δ-function for the unit quaternions.

P(y∣b, β, s, σ) =

= 1

Z ∫
d4q δ(qq∗ − 1) exp(∣∑Ni Yi∣2

2nσ2
− ∑

N
i ∣Yi∣2
2σ2

) = (5.5.20)

= 1

Z
exp [( 1

2σ2
) [−n Var(ŷ) − n Var(v̂)] + 2n ŷ ⋅ v̂]×

∫ d4q δ(qq∗ − 1) exp(4n [((q ⋅ ŷ)(v̂T ⋅ q) − (q ⋅ q)(v̂T ⋅ ŷ) + qoq ⋅ (v̂T × ŷ))])

(5.5.21)

For the convenience of the reader, we will ignore the constant terms and the normal-

isation constants in front of the rotational integral and study how the integration

over quaternions will be carried out. To perform the integration we replace the
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δ-function restriction by its Fourier equivalent which introduces a second integral.

That is:

δ(qq∗ − 1) = 1

2π ∫
dk′ exp (ik′(∣q∣2 − 1)) (5.5.22)

The result of integrating over k will then supply the Haar measure on the space of

unit quaternions and restrict our parameters q to this surface. We will discuss this

in more detail presently – see eq. (5.5.24). Now, expression (5.5.21) becomes:

1

2π∬
dk′ d4q exp (ik′(∣q∣2 − 1))×

exp(4n [((q ⋅ ŷ)(v̂T ⋅ q) − (q ⋅ q)(v̂T ⋅ ŷ) + qoq ⋅ (v̂T × ŷ))]) (5.5.23)

One notices that the integrand can be written in the form of a Gaussian dis-

tribution, so that the exponent can be expressed as qTM(k) q, where Mij(k) =

ik′δij + δoi(v̂T × y)i + (1 − δoi)(1 − δoi) [(ŷT ⊗ v̂)ij − δij(v̂Tŷ)] is the 4 × 4 matrix of

the q components. We will now write the matrix M(k) explicitly:

M(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ik′
4 v̂T × y

0 ik′
4 1 + ŷ

T ⊗ v̂ − v̂Tŷ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will substitute ik′
4 = ik and we will symmetrise the matrix since in the case of

Gaussian distributions it should be a symmetric, positive definite covariance matrix.

The symmetrised matrix M is:

M(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ik 1
2(v̂ × ŷ)x

1
2(v̂ × ŷ)y

1
2(v̂ × ŷ)z

1
2(v̂ × ŷ)x ik + v̂1ŷ1 − v̂ ⋅ ŷ 1

2(ŷ1v̂2 + ŷ2v̂1) 1
2(ŷ1v̂3 + ŷ3v̂1)

1
2(v̂ × ŷ)y

1
2(ŷ2v̂1 + ŷ1v̂2) ik + v̂2ŷ2 − v̂ ⋅ ŷ 1

2(ŷ2v̂3 + ŷ3v̂2)

1
2(v̂ × ŷ)z

1
2(ŷ3v̂1 + ŷ1v̂3) 1

2(ŷ3v̂2 + ŷ2v̂3) ik + v̂3ŷ3 − v̂ ⋅ ŷ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where (v̂ × ŷ)x , (v̂ × ŷ)y, (v̂ × ŷ)z are the x, y, z components of the cross product of

y and v. Now, expression (5.5.23) can be written as:

1

2π∬
dk d4q exp (−ik′) exp (4n [qTM(k) q]) (5.5.24)

At this point we return to discuss the integral over the quaternionic parameters

that generate the SO(3) rotations. We have chosen to use the δ-function to enforce

the constraint that these quaternions are of unit length. In analogy to our discussion

of the two-dimensional rotations, we suggest here an alternative approach advocated

by Wood [127] which has the benefit of offering another perspective on how our

expression above does not favour one rotation over another.

By diagonalising M(0) we can rewrite expression (5.5.24) as in [127] in the form:

∫
S3

exp(∑
i

λiq̃
2
i ) d[q̃] (5.5.25)

Here, the q̃i generate rotations in SO(3) which will be uniformly distributed if and

only if the q̃ are uniform on a unit hemisphere in R4. Choosing the usual uniform

measure on S3 for dq̃ induces the Haar measure on the space of rotations. This is

what (5.5.24) represents only we have chosen to integrate over all quaternions and to

impose the constraint through a δ-function. However, an equally valid alternative

would be to follow [127] in changing variables to four-dimensionsional spherical

polars for which the Jacobian of the transformation would provide the measure

on these variables after which we would set the radial component equal to 1 and

integrate over the remaining angular variables.

This has been done in [127] in the calculation for the normalisation constant of

the Bingham distribution, although his final answer is left in integral form. In this

thesis we explore the determination of (5.5.24) as it stands which requires us to find

the determinant of the matrix M rather than explicit expression for its eigenvalues.

The relationship between (5.5.24) and (5.5.25), however, shows that our choice of
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measure on the quaternions is unbiased. This in fact shows that our choice of

measure on R4 induces the correct measure on SO(3).

Returning on our choice of representation and expression (5.5.24), we assume that

the eigenvalues of matrix M are negative and thus the evaluation of the quaternionic

integral of this multivariate Gaussian distribution is:

1

2π ∫
dk exp(−ik′) 4 n π2

√
det(M)

(5.5.26)

and the marginalised likelihood of expression (5.5.21) is:

P(y∣b, β, s, σ) = 1

Z
exp [( 1

2σ2
) [−n Var(ŷ) − n Var(v̂)] + 2n ŷ ⋅ v̂]×

1

2π ∫
dk exp(−ik′) 4 n π2

√
det(M)

(5.5.27)

The eigenvalues of the matrix M(k) came in pairs of whom one pair was negative

and one pair was positive. This means that the integral of the Gaussian form diverges

for some values of the data y. However, we can still perform the integration with the

help of analytic continuation. Analytic continuation is a technique for the extension

of the domain of a given function; it is also used to define values where the function

is divergent for example in the case of the Gamma function. In our case we can

do this because the domain of integration is compact and the original integrand is

finite. The extra integration over k was introduced artificially and we only need to

find a region of the input data for which this integral converges and the final result

must take the same form for any input data. We proceed by calculating the integral

for the region of the parameter space for which the eigenvalues are negative and

extend this answer to the rest of that space. We will calculate the determinant by

expanding it by its first column and write it in terms of a finite power series in k

but because the calculations are extremely complicated we will firstly write the four

sub-determinants and their results.

Of particular interest is the first sub-determinant because it contributes to the

maximum power of the power series of k. To make the calculation of the whole
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determinant easier we choose to firstly change our coordinate system and align the

z component of the (v̂ × ŷ)z with the z axis i.e. all the other components of the cross

product are zero. Our goal is to write the result in terms of invariant quantities so

that the coordinate system plays no role. We evaluate the first sub-determinant of

M1 = ik ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ik + v̂1ŷ1 − v̂ ⋅ ŷ 1
2(ŷ1v̂2 + ŷ2v̂1) 1

2(ŷ1v̂3 + ŷ3v̂1)

1
2(ŷ2v̂1 + ŷ1v̂2) +ik + v̂2ŷ2 − v̂ ⋅ ŷ 1

2(ŷ2v̂3 + ŷ3v̂2)

1
2(ŷ3v̂1 + ŷ1v̂3) 1

2(ŷ3v̂2 + ŷ2v̂3) ik + v̂3ŷ3 − v̂ ⋅ ŷ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expanding the sub-determinant, we have:

det(M1) = k4 + 2 i k3 v̂ ⋅ ŷ+

+ k2 [1

4
(ŷ2v̂3 + ŷ3v̂2)2 + 1

4
(ŷ1v̂2 + ŷ2v̂1)2 + 1

4
(ŷ1v̂3 + ŷ3v̂1)2

−(ŷ2v̂2 − v̂ ⋅ ŷ)(ŷ3v̂3 − v̂ ⋅ ŷ) + (ŷ1v̂1 − v̂ ⋅ ŷ)(ŷ1v̂1 + v̂ ⋅ ŷ)]

ik [−1

4
(ŷ2v̂3 + ŷ3v̂2)2(ŷ1v̂1 − v̂ ⋅ ŷ) −

1

4
(ŷ2v̂1 + ŷ1v̂2)2(ŷ3v̂3 − v̂ ⋅ ŷ)

−1

4
(ŷ3v̂1 + ŷ1v̂3)2(ŷ2v̂2 − v̂ ⋅ ŷ)

+1

4
(ŷ3v̂1 + ŷ1v̂3)(ŷ2v̂1 + ŷ1v̂2)(ŷ3v̂2 + ŷ2v̂3)

+(ŷ1v̂1 − v̂ ⋅ ŷ)(ŷ2v̂2 − v̂ ⋅ ŷ)(ŷ3v̂3 − v̂ ⋅ ŷ)]

(5.5.28)

In the same way, we are going to express all the sub-determinants as finite power

series of k and then combine the results to form the final result of the determinant of

M . The second sub-determinant with respect to the second term of the first column

of M is:
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M2 = −1
2(v̂ × ŷ)x ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2(v̂ × ŷ)x

1
2(v̂ × ŷ)y

1
2(v̂ × ŷ)z

1
2(ŷ2v̂1 + ŷ1v̂2) ik + v̂2ŷ2 − v̂ ⋅ ŷ 1

2(ŷ2v̂3 + ŷ3v̂2)

1
2(ŷ3v̂1 + ŷ1v̂3) 1

2(ŷ3v̂2 + ŷ2v̂3) ik + v̂3ŷ3 − v̂ ⋅ ŷ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Evaluating the second sub-determinant, we have:

det(M2) =
1

4
(v̂ × ŷ)2

x k
2 + ik [1

4
(v̂ × ŷ)2

x(ŷ1v̂1 + v̂ ⋅ ŷ) +
1

8
(v̂ × ŷ)x(v̂ × ŷ)y(ŷ1v̂2 + ŷ1v̂2)

+1

8
(v̂ × ŷ)x(v̂ × ŷ)z(ŷ1v̂3 + ŷ3v̂1)]

− 1

2
(v̂ × ŷ)2

x [
1

2
(ŷ2v̂2 − v̂ ⋅ ŷ)(ŷ3v̂3 − v̂ ⋅ ŷ) −

1

8
(ŷ2v̂3 + ŷ3v̂2)2]

− 1

2
(v̂ × ŷ)x(v̂ × ŷ)y [−

1

4
(ŷ2v̂1 + ŷ1v̂2)(ŷ3v̂3 − v̂ ⋅ ŷ)

+1

8
(ŷ2v̂3 + ŷ3v̂2)(ŷ1v̂3 + ŷ3v̂1)]

− 1

2
(v̂ × ŷ)x(v̂ × ŷ)z [−

1

4
(ŷ3v̂1 + ŷ1v̂3)(ŷ2v̂2 − v̂ ⋅ ŷ)

+1

8
(ŷ2v̂1 + ŷ1v̂2)(ŷ2v̂3 + ŷ3v̂2)] (5.5.29)

The last two sub-determinant are related by cyclicity to M2. Thus, the third

sub-determinant is:

M3 = 1
2(v̂ × ŷ)y ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2(v̂ × ŷ)x

1
2(v̂ × ŷ)y

1
2(v̂ × ŷ)z

ik + v̂1ŷ1 − v̂ ⋅ ŷ 1
2(ŷ2v̂1 + ŷ1v̂2) 1

2(ŷ2v̂3 + ŷ3v̂2)

1
2(ŷ3v̂1 + ŷ1v̂3) 1

2(ŷ3v̂2 + ŷ2v̂3) ik + v̂3ŷ3 − v̂ ⋅ ŷ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expanding this sub-determinant, we have:
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det(M3) =
1

4
(v̂ × ŷ)2

y k
2 + ik [1

8
(v̂ × ŷ)2

y(ŷ2v̂2 + v̂ ⋅ ŷ) +
1

8
(v̂ × ŷ)x(v̂ × ŷ)y(ŷ1v̂2 + ŷ1v̂2)

+1

8
(v̂ × ŷ)y(v̂ × ŷ)z(ŷ2v̂3 + ŷ3v̂2)]

+ 1

2
(v̂ × ŷ)2

y [−
1

2
(ŷ1v̂1 − v̂ ⋅ ŷ)(ŷ3v̂3 − v̂ ⋅ ŷ) +

1

8
(ŷ1v̂3 + ŷ3v̂1)2]

+ 1

2
(v̂ × ŷ)x(v̂ × ŷ)y [

1

4
(ŷ2v̂1 + ŷ1v̂2)(ŷ3v̂3 − v̂ ⋅ ŷ)

−1

8
(ŷ2v̂3 + ŷ3v̂2)(ŷ1v̂3 + ŷ3v̂1)]

+ 1

2
(v̂ × ŷ)y(v̂ × ŷ)z [

1

4
(ŷ3v̂2 + ŷ2v̂3)(ŷ1v̂1 − v̂ ⋅ ŷ)

−1

8
(ŷ2v̂1 + ŷ1v̂2)(ŷ1v̂3 + ŷ3v̂1)] (5.5.30)

The last sub-determinant of the matrix M is:

M4 = −1
2(v̂ × ŷ)z ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2(v̂ × ŷ)x

1
2(v̂ × ŷ)y

1
2(v̂ × ŷ)z

ik + v̂1ŷ1 − v̂ ⋅ ŷ 1
2(ŷ2v̂1 + ŷ1v̂2) 1

2(ŷ1v̂3 + ŷ3v̂1)

1
2(ŷ2v̂1 + ŷ1v̂2) ik + v̂2ŷ2 − v̂ ⋅ ŷ 1

2(ŷ3v̂2 + ŷ2v̂3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The evaluation of the sub-determinant is:

det(M4) =
1

4
(v̂ × ŷ)2

z k
2 + ik [1

4
(v̂ × ŷ)2

z(ŷ3v̂3 + v̂ ⋅ ŷ) +
1

8
(v̂ × ŷ)x(v̂ × ŷ)z(ŷ1v̂3 + ŷ3v̂1)

+1

8
(v̂ × ŷ)y(v̂ × ŷ)z(ŷ2v̂3 + ŷ3v̂2)]

− 1

2
(v̂ × ŷ)2

z [
1

2
(ŷ1v̂1 − v̂ ⋅ ŷ)(ŷ2v̂2 − v̂ ⋅ ŷ) −

1

8
(ŷ2v̂1 + ŷ1v̂2)2]

− 1

2
(v̂ × ŷ)y(v̂ × ŷ)z [−

1

4
(ŷ2v̂1 + ŷ1v̂2)(ŷ3v̂3 − v̂ ⋅ ŷ)

+1

8
(ŷ2v̂3 + ŷ3v̂2)(ŷ1v̂3 + ŷ3v̂1)]

− 1

2
(v̂ × ŷ)x(v̂ × ŷ)z [−

1

4
(ŷ3v̂1 + ŷ1v̂3)(ŷ2v̂2 − v̂ ⋅ ŷ)

+1

8
(ŷ2v̂1 + ŷ1v̂2)(ŷ2v̂3 + ŷ3v̂2)] (5.5.31)

We will write the overall result of the expansion of the determinant of the matrix

M(k) as a finite series of k. We now collect all the powers of k and in order to
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make the derivation of the calculation easier we make the following substitution:

zij = 1
2(ŷiv̂j + ŷj v̂i) and z2 = v̂ ⋅ ŷ. We start with the highest terms of the expansion:

k4 + 2 i k3 v̂ ⋅ ŷ (5.5.32)

We follow with the k2 terms:

k2 [1

4
(v̂ × ŷ)2

x +
1

4
(v̂ × ŷ)2

y +
1

4
(v̂ × ŷ)2

z +
1

4
z2

23 +
1

4
z2

12 +
1

4
z2

13 − z22z33 + z22z
2 + z33z

2

−z4 + z2
11 + z11z

2 − z2z11 − z4]

(5.5.33)

Making use of the property that ziizjj − 1
4z

2
ij = ziizjj − 1

4z[ij] − viyjvjyi =

= −1
4(v×y)ij +

1
2(v×v)ij(y×y)ij, where z[ij] = zij −zji is the antisymmetrisation over

the indices of z and thus expression (5.5.33) becomes:

k2 [−∣Cov(v, y)∣2 + 1

2
∣v̂ × ŷ∣2 − 1

2
∑
ij

(v̂i × v̂j) ⋅ (ŷi × ŷj)] (5.5.34)

which has now been written in a manifestly rotationally invariant way. We now

examine the first order terms, i.e. all the terms with respect to k:

ik [1

4
z2 [(v̂ × ŷ)2

x + (v̂ × ŷ)2
y + (v̂ × ŷ)2

z]

−z2 (z11z22 −
1

4
z2

12 + z22z33 −
1

4
z2

23 + z11z33 −
1

4
z2

13)

+1

4
z13(v̂ × ŷ)x(v̂ × ŷ)z +

1

4
z23(v̂ × ŷ)y(v̂ × ŷ)z +

1

4
z12(v̂ × ŷ)x(v̂ × ŷ)y +

1

4
z33(v̂ × ŷ)z

+1

4
z22(v̂ × ŷ)y +

1

4
z11(v̂ × ŷ)x −

1

4
z11z

2
23 −

1

4
z22z

2
13 −

1

4
z33z

2
12 +

1

4
z12z13z23 + z11z22z33]

A long calculation allows us to write the above in terms of invariant quantities so

that expression (5.5.35) becomes:

ik [1

2
∣Cov(v̂, ŷ)∣2∣v̂ × ŷ∣2 − 1

2
Cov(v̂, ŷ)∑

ij

(v̂i × v̂j) ⋅ (ŷi × ŷj)

+1

6
∑
ijk

v̂i ⋅ (v̂j × v̂k) ŷi ⋅ (ŷj × ŷk)
⎤⎥⎥⎥⎦

(5.5.35)
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Lastly, we collect from all the sub-determinants all constant terms with no k depen-

dence:

− 1

2
(v̂ × ŷ)x(v̂ × ŷ)z [

1

4
z12z23 −

1

2
z13z22 +

1

2
z2z13]

− 1

2
(v̂ × ŷ)y(v̂ × ŷ)z [

1

4
z13z12 −

1

2
z23z11 +

1

2
z2z23]

− 1

2
(v̂ × ŷ)x(v̂ × ŷ)y [

1

4
z32z13 −

1

2
z12z33 +

1

2
z2z12]

− 1

2
(v̂ × ŷ)2

x [−
1

8
(v̂ × ŷ)2

x +
1

4
((v̂i × v̂j)x ⋅ (ŷi × ŷj))x +

1

2
z2z11]

− 1

2
(v̂ × ŷ)2

y [−
1

8
(v̂ × ŷ)2

y +
1

4
((v̂i × v̂j)y ⋅ (ŷi × ŷj))y +

1

2
z2z22]

− 1

2
(v̂ × ŷ)2

z [−
1

8
(v̂ × ŷ)2

z +
1

4
((v̂i × v̂j)z ⋅ (ŷi × ŷj))z +

1

2
z2z33] (5.5.36)

Writing the above in terms of invariant quantities, we have:

−1

4
Cov(ŷ, v̂) [v̂ ⋅ (v̂ × ŷ) ŷ ⋅ (v̂ × ŷ)] + 1

16
∣v̂ × ŷ∣2 ⋅ ∣v̂ × ŷ∣2

−1

8
[(v̂ × ŷ) ⋅ (v̂ × v̂)] [(v̂ × ŷ) ⋅ (v̂ × v̂)] (5.5.37)

Collecting all invariant terms and all powers of k, the final result of the determinant

of the matrix M is:

det(M) = k4 − 2 Cov(ŷ, v̂) ik3 − k2 [∣Cov(ŷ, v̂)∣2 − 1

2
∣v̂ × ŷ∣2 + 1

2
(v̂ × v̂) ⋅ (ŷ × ŷ)]

+1

2
ik [Cov(ŷ, v̂) ∣v̂ × ŷ∣2 −Cov(ŷ, v̂)(v̂ × v̂) ⋅ (ŷ × ŷ) + 1

3
v̂ ⋅ (v̂ × v̂) ŷ ⋅ (ŷ × ŷ)]

+ 1

16
∣v̂ × ŷ∣4 − 1

8
(v̂ × ŷ) ⋅ (v̂ × v̂) (v̂ × ŷ) ⋅ (ŷ × ŷ) − 1

4
Cov(ŷ, v̂) v̂ ⋅ (v̂ × ŷ) ŷ ⋅ (v̂ × ŷ)

(5.5.38)

Thus, we can now evaluate the integral over the quaternionic space, which from

expression (5.5.27) is:

P(y∣b, β, s, σ) = 1

Z
exp [( 1

2σ2
) [−n Var(ŷ) − n Var(v̂)] + 2n ŷ ⋅ v̂]×

1

2π ∫
dk exp(−ik′) 4 n π2

√
det(M)

(5.5.39)
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with det(M) the evaluated determinant of expression (5.5.38) which has k depen-

dence and is invariant to rotations of both y and v since it has been written in a

manifestly rotationally invariant way. It is common practice to evaluate integrals

of this form by contour integration. For this we would have to promote k to the

complex plane and choose an appropriate path in the k-plane. The residue theorem

is a tool for evaluating such integrals and requires finding the poles of the function

i.e. the points at which the function diverges as 1
k−k0 . The presence of the square

root in the denominator however instead of turning points at which the denominator

of (5.5.39) vanishes into poles, it turns them into branch cuts making the integration

over these extremely difficult. The expression of the determinant is not a perfect

square and thus contour integration cannot be of help and the integral over k cannot

be done analytically. One of our attempts was the evaluation of the integral by a

Laplace approximation. To do so, we would have to bring expression (5.5.39) into

the following form:

1

2π ∫
dk exp(−ik′) 4 n π2

√
det(M)

= 2 n π ∫ dk exp(−ik′ − 1

2
log(detM(k)))

≈ exp(−4ik0 −
1

2
log(detM(k0)))

¿
ÁÁÀ 2π

∣(4ik0 + 1
2 log(detM(k0)))′′∣

(5.5.40)

where we would have to evaluate the roots k0 of the denominator and the second

derivative of the exponent. Although the roots were intractable and impossible to

be found in a closed form one could always evaluate them numerically. However,

we came up with a more realistic solution which was the “analytic” evaluation by

Taylor expanding the square root of the determinant. This is the approach that we

present next.

To Taylor expand the square root of the determinant, we write it in the form
√
det(M) =

√
C2 +D so that:
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1√
det(M)

= 1√
C2(k) +D(k)

= 1

C(k)
√

1 +D(k)/C2(k)

= 1

C(k)
[1 − 1

2

D(k)
C2(k)

] = 1

C(k)
− 1

2

D(k)
C3(k)

+ .... (5.5.41)

so that expression (5.5.39) becomes:

P(y∣b, β, s, σ) = 1

Z
exp [( 1

2σ2
) [−n Var(ŷ) − n Var(v̂)] + 2n ŷ ⋅ v̂]×

4 n π2

2π ∫ dk [exp (−ik′)
C(k)

− 1

2

D(k) exp (−ik′)
C3(k)

+ ....]

(5.5.42)

For the Taylor expansion of the determinant, we complete the square of the

result in (5.5.38) and subtract all extra terms that have arisen from completing the

square. We now write expression (5.5.38) as:

C2(k) = k4 − 2 Cov(ŷ, v̂) ik3 − k2 [∣Cov(ŷ, v̂)∣2 − 1

2
∣v̂ × ŷ∣2 + 1

2
(v̂ × v̂) ⋅ (ŷ × ŷ)]

+ 1

2
ik [Cov(ŷ, v̂) ∣v̂ × ŷ∣2 −Cov(ŷ, v̂)(v̂ × v̂) ⋅ (ŷ × ŷ)]

+ 1

16
∣v̂ × ŷ∣4 + 1

4
[(v̂ × v̂) ⋅ (ŷ × ŷ)]

2
− 1

8
∣v̂ × ŷ∣2(v̂ × v̂) ⋅ (ŷ × ŷ) =

= (k2 − ikA +B)2 (5.5.43)

with A = Cov(ŷ, v̂) and B = 1
2 ∣v̂ × ŷ∣2 −

1
2(v̂ × v̂) ⋅ (ŷ × ŷ). We now subtract/add the

extra terms of the completion. For D now, we have:

D(k) = 1

6
ik v̂ ⋅ (v̂ × v̂) ŷ ⋅ (ŷ × ŷ) − 1

16
[(v̂ × v̂) ⋅ (ŷ × ŷ)]

2
+ 1

8
∣v̂ × ŷ∣2 [(v̂ × v̂) ⋅ (ŷ × ŷ)]

− 1

8
(v̂ × ŷ) ⋅ (v̂ × v̂) (v̂ × ŷ) ⋅ (ŷ × ŷ) − 1

4
Cov(ŷ, v̂) v̂ ⋅ (v̂ × ŷ) ŷ ⋅ (v̂ × ŷ)

(5.5.44)

For calculational simplicity and to illustrate the idea, we choose to only include

terms up to second order of the Taylor expansion. Having the expression written
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as such, we will be able to carry out the integral with respect to k by employing

contour integration techniques. To do so, we choose the appropriate contour for our

integration. Before we proceed, we introduce some aspects of contour integration.

Contour integration allows us to carry out integrals in the complex plain around

a chosen contour. The evaluation of the integrals is done by summing the values

of the residues inside the contour which according to the Residue Theorem can be

calculated by:

∫
C
f(z) dz = 2 π i ∑

zo

Res(z → zo) (5.5.45)

where Res(f) = a−1 of the Laurent expansion of f about the point z = zo which is

also called a pole and a−1 is the coefficient of (z − zo)−1 of the Laurent expansion.

Contour integrals are calculated by enclosing the poles inside the contour and then

summing their residues. The residue at a pole of order n is calculated by:

Res = 1

(n − 1)!
dn−1

dzn−1
(z − z0)n f(z) ∣

z=zo
(5.5.46)

Now that our integral is in an appropriate form for contour integration we need

to find, according the Residue Theorem, the poles i.e. the roots of the denominators

of expression (5.5.42). Firstly we evaluate the roots of expression (5.5.43). The

roots are:

ko,1 =
iA ± i

√
A2 − 4B

2
=
i Cov2(v̂, ŷ) ± i

√
Cov2(v̂, ŷ) − ∣v̂ × ŷ∣2 +(v̂ × v̂) ⋅ (ŷ × ŷ)

2

(5.5.47)

We would now have to evaluate the poles of the second term of the contour

integral in (5.5.42), however we notice that the poles are the same as with the first

term but of order 3. We now evaluate the contour integral and we choose to close

the contour on the lower half plane so that the integral converges as k → −i∞, then

−ik → −∞. Its evaluation is then:
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∫ dk [exp (−ik′)
C(k)

− 1

2

D(k) exp (−ik′)
C3(k)

+ ....] = e−ik1

(k1 − k0)
− 1

2

d2

dk2

D(k) (e−ik)
(k − k0)3

∣
k=k1

(5.5.48)

We now evaluate the derivatives involved in the evaluation of the contour integral

of expression (5.5.48). The first derivative of the second term of expression (5.5.48)

is:

d

dk
[ D(k) (e−ik)

(k − k0)3
] = d

dk
[D(k) (e−ik)] 1

(k − k0)3
− 3 D(k) (e−ik)

(k − k0)4
=

= [−i D(k) (e−ik) + e−ik D′(k)] 1

(k − k0)3
− 3 D(k) (e−ik)

(k − k0)4

(5.5.49)

with D′(k) = 1
6 i v̂ ⋅ (v̂ × v̂) ŷ(ŷ × ŷ)

The second derivative of the second term in (5.5.48) is:

d

dk
[[−i D(k) (e−ik) + e−ik D′(k)] 1

(k − k0)3
− 3 D(k) (e−ik)

(k − k0)4
] =

= −3

(k − k1)4
[−i D(k) (e−ik) + e−ik D′(k)] + 1

(k − k0)3
[− D(k) (e−ik) − 2 i e−ik D′(k)]

+ 12 D(k) (e−ik)
(k − k0)5

− 3

(k − k0)4
[−i D(k) (e−ik) + e−ik D′(k)] (5.5.50)

Overall, we combine expressions (5.5.49) and (5.5.50) of expression (5.5.48) and

form the integral over the quaternionic space and k. The derivatives will have to be

evaluated at k = k1. The final integral over rotations evaluates at this order in the

Taylor expansion as:
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P(y∣b, β, s, σ) = 1

Z
exp [( 1

2σ2
) [−n Var(ŷ) − n Var(v̂)] + 2n ŷ ⋅ v̂]×

1

2π ∫
dk exp (−ik′) 4 π n2

√
det(M)

= 1

Z
exp [( 1

2σ2
) [−n Var(ŷ) − n Var(v̂)] + 2n ŷ ⋅ v̂]×

4 n π2

2π ∫ dk [exp (−ik′)
C(k)

− 1

2

D(k) exp (−ik′)
C3(k)

+ ....]

= 2 n π

Z
exp [( 1

2σ2
) [−n Var(y) − n Var(v)] + 2n Cov(v̂, ŷ)]×

[ i e−ik1

(k1 − k0)
+ 3

2

1

(k1 − k0)4
(−i D(k) (e−ik1) + e−ik1 D′(k))

+ 1

(k1 − k0)3
(− D(k) (e−ik1) − 2 i e−ik1 D′(k))

+12 D(k) (e−ik1)
(k1 − k0)5

− 3

(k1 − k0)4
(−i D(k) (e−ik1) + e−ik1 D′(k))]

(5.5.51)

However we notice that k1−k0 = −
√
A2 − 2B, where A = Cov(ŷ, v̂) and B = 1

2 ∣v̂ × ŷ∣2−
1
2(v̂ × v̂) ⋅ (ŷ × ŷ). We make the substitution in the result above so that:

P(y∣b, β, s, σ) = 2 n π

Z
exp [( 1

2σ2
) [−n Var(y) − n Var(v)] + 2n Cov(v̂, ŷ)]×

[ i e−ik1

(−
√
A2 − 2B)

+ 3

2

1

(−
√
A2 − 2B)4

(−i D(k) (e−ik1) + e−ik1 D′(k))

+ 1

(−
√
A2 − 2B)3

(− D(k) (e−ik1) − 2 i e−ik1 D′(k))

+12 D(k) (e−ik1)
(−

√
A2 − 2B)5

− 3

(−
√
A2 − 2B)4

(−i D(k) (e−ik1) + e−ik1 D′(k))]

(5.5.52)

with the following being:
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D(k) = 1

6
ik v̂ ⋅ (v̂ × v̂) ŷ ⋅ (ŷ × ŷ) − 1

16
[(v̂ × v̂) ⋅ (ŷ × ŷ)]

2

+ 1

8
∣v̂ × ŷ∣2 [(v̂ × v̂) ⋅ (ŷ × ŷ)] − 1

8
(v̂ × ŷ) ⋅ (v̂ × v̂) (v̂ × ŷ) ⋅ (ŷ × ŷ)

− 1

4
Cov(ŷ, v̂) v̂ ⋅ (v̂ × ŷ) ŷ ⋅ (v̂ × ŷ) (5.5.53)

D′(k) = 1

6
i v̂ ⋅ (v̂ × v̂) ŷ(ŷ × ŷ) (5.5.54)

k1 =
i Cov2(v̂, ŷ) − i

√
Cov2(v̂, ŷ) − ∣v̂ × ŷ∣2 +(v̂ × v̂) ⋅ (ŷ × ŷ)

2
(5.5.55)

The result above constitutes the final result of the integration of likelihood with

respect to both translations and rotations. This result would then be used for the

approximation of the complete likelihood as:

P(y∣C) =∝ ∑
b∈B
∫ Dβ Ds dσ P(y∣b, β, s, σ)P(β∣C)P(s)P(σ)P(C) (5.5.56)

by evaluating the remaining integrals with respect to bijections, curves (which in

this case would be two dimensional surfaces), samplings and the noise parameter

σ. Had we taken scalings a into consideration for the similarity transformations, we

would also have to integrate over scalings as well. Forming the approximation of the

likelihood, we could then then perform MAP and classify three dimensional shapes

into their respective categories.

5.6 Concluding remarks

To summarise, the above constitutes the final result of the integration over transla-

tions and rotations of the marginalised likelihood. The space of three dimensional

rotations is extremely complicated and so is the result of the integration over it.

Due to these complications, our attempts over the analytic calculation of the inte-

grals of similarity transformations have stopped and we weren’t able to complete

the Maximum a Posteriori of expression (5.5.56). This is one of the reasons we did
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not include scalings in our initial formulation of the three-dimensional observation

model in (5.2.2), only because including one extra parameter would complicate the

calculations even more. However, being able to integrate over three-dimensional ro-

tations is a very interesting result on its own although we did not reach our desired

result of integrating all similarity transformations. It is worth mentioning here, that

although we achieved to integrate over three-dimensional rotations, the result of the

integration is just an approximation since we have Taylor expanded the integrand.

This approximation depends on the data y since in their turn depend on the terms

C(k) and D(k) of which we don’t know the magnitude. We suggest that this could

constitute future expansion of the current work.



Chapter 6

Discussion, open questions and

conclusion

In this chapter we give an overview of the results presented in this work, we discuss

the computational results and present some open questions and suggestions for fu-

ture work. We have only initiated a study of classification techniques especially in

the case of three dimensions. Since this work has not been completed properly there

is still much to consider for future work. We can only be encouraged by the results

and hope in further success in the future.

In chapter [2] of this work we have presented previous work that has been done

in the classification of continuous, planar shapes by Srivastava and Jermyn [12]. In

their work, they perform classification by maximising the posterior probability of

a class given the observed data P(C ∣y) under the assumption that the likelihood

P(y∣C) can be broken down into components. The process involves the marginalisa-

tion of the likelihood with respect to nuisance parameters that are involved into the

data formation process imposing prior distributions on these parameters; however,

the marginalisation of the likelihood introduces complex integrals and sums over the

nuisance parameters. In [12], the integrations and summations of the marginalised

likelihood and hence the maximisation of the posterior are evaluated by using ap-

proximation algorithms. In this work, we have presented a way of evaluating some of

the integrals in a closed form; in particular, we integrated over similarity transforma-

233
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tions namely translations, scalings and rotations. To evaluate this five dimensional

integral we imposed a Jeffreys prior that reflect our ignorance on the space of the

parameters we integrate over. The result of the integration however was found to

be divergent due to the nature of the likelihood but also due to the fact that Jef-

freys prior was improper. To alleviate the problem that the integration introduced

we regularised Jeffreys prior. This meant that we made an appropriate choice of

combined priors that both reflected our beliefs about the parameters over which we

imposed them but also the end result of the integration was of the same form as the

result of the integration against Jeffreys prior. To interchange between the results

one needs to remove the regulators by taking their limit to appropriate values. The

regularisation allowed us to firstly overcome the divergences and secondly to arrive

to a closed form solution that could be used as a computational algorithm for the

classification of observed data shapes.

In chapter [3] we have presented the experimental results of the algorithm pro-

posed in chapter [2]. To evaluate the confidence results and success rates of the

algorithm we simulated data coming from three different databases: the Kimia, the

alphabet and the sand body database. For each of the databases we examined the

confidence results the algorithm gives when varying different parameters such as the

Monte Carlo iterations of the saplings or the Monte Carlo iterations of the curves.

For the Kimia database we found that for 10 runs of 10 shapes each, the average

classification level was µ̂ = 59% ± 7% with the average success rate being more than

80%±5%. We also concluded that as soon as the number of points increases to more

than 50 the confidence levels become almost 90 percent. For the alphabet database,

we repeated the experiment for the same number of runs, and found that the aver-

age classification level was µ̂ = 77% ± 5% with the average success rate 73% ± 6%.

We also concluded that when the number of points increases to more than 50 the

classification levels are more than 80%. We have also identified that the algorithm

is sensitive in the presence of too few points or too high noise however it seems that

a high number of points can contemplate the high noise. The high computational

cost is also one of the drawbacks of the algorithm since for the minimum value of

sampling iterations and more than 50 points the computational time can take more
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than 5.5 hours. In the last part of this chapter we made use of the sand body

database. To perform classification of sand bodies, we tries to learn the parameters

of the models through a set of training data. The learning was done via the max-

imisation of the log likelihood with respect to the parameters we wanted to learn.

Due to the nature of the log likelihood for the maximisation we had to employ an

optimisation algorithm for which case we chose the gradient ascent. However, the

gradient ascent was trapped in several local maxima which implied that the likeli-

hood surface was quite uneven and unsmooth. Due to the unsatisfactory results of

the learning of the parameters, to test the classification efficacy of the algorithm in

the case of the sand bodies we used the parameters by which we assume that the

data shapes are generated. The classification results were the following: in the case

of ribbons the average success rate was 67%± 3% with the average confidence levels

90% ± 2%. In the case of sheets, the average success rate was 80% ± 3% with an

average classification confidence of 82% ± 2%. Lastly, for the third simulated class

of triangles, the average success rate was found to be 87% ± 3% with the average

classification confidence to be 91% ± 1%. One can conclude that the behaviour of

our algorithm is extremely satisfactory since the classification levels and the success

rates are more than 80%. This illustrates the importance of the fact that our algo-

rithm incorporates the geometry of each of the shapes since this is the feature that

purely characterises them. The results also illustrate that our algorithm is a very

powerful tool for the classification of geological sand bodies and considering the ex-

perimental results presented in chapter [4], where we present a classification method

similar in nature to the width-to-thickness ratio, we conclude that our algorithm

excels current geological classification methods.

In chapter [4], we compared our classification method to the classification of the

data shapes when only using a small subset of features that explain each class of

shapes. For each shape we extracted the following features: shape factor, roundness,

convexity and solidity. These four features constituted the feature vector of each

of the shapes. Assuming that each of the classes can be described by a multidi-

mensional Gaussian so that the distribution of the data can explained as a mixture

of multidimensional Gaussians. By using the Expectation-Maximisation (EM) al-
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gorithm we inferred the number of existing clusters in the data and the statistical

properties that describe each class. Based on these properties we classified new,

unobserved data in the classes as they were decided by the EM. The average suc-

cess rate of this process in the case of the Kimia database was 62.9% ± 4.1% for

21 components and 72.7% ± 4.5% for 13 components. In the case of the alphabet

database, the success rates were 33.1% ± 5.6% for 26 components and 37.3% ± 5.4%

for 17 components. Although the success rates of this classification method seem

high and comparable to the results we acquired with our proposed method, in the

Kimia case, it fails to capture the variability of each individual class since through

this one cannot distinguish the differences between different classes since they are

found to be described by the same properties. In the case of sand bodies, we sug-

gested an adaptation of the EM algorithm which employs our method and assumes

that the available classes can be described by a mixture of our observational model.

However, the scores could not be maximised in a closed form and thus once again

an optimisation algorithm had to be utilised. The gradient ascent algorithm re-

turned the same unsatisfactory results as in chapter [4] due to the unevenness of the

likelihood hypersurface.

The final chapter, chapter [5], was an attempt to extend the work of chapter [2]

in three dimensions. In particular, we tried to perform classification through MAP

of a class which as in chapter [2] could be approximated via the marginalisation of

the likelihood over the nuisance parameters that take part in the data formation

process. To follow the steps of the two dimensional case, we tried to integrate

over similarity transformations. The integration of translations has brought similar

results as the two dimensional case. The difficulty was the integration of three

dimensional rotations. To perform the integration we chose to represent rotations by

unit quaternions and performed the integration over the isomorphic R4 by imposing

a delta function that only encounters the unit quaternions that live on the surface of

the unit 3-ball. Although the integral over quaternions could be evaluated up to a

point, the final step was impossible due to the form of the integrand which prohibited

the use of contour integration. However, we came up with a realistic solution which

was the “analytic” evaluation by a Taylor expansion of the integrand which allowed
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us to perform the desired contour integration and reach the final result over three

dimensional rotations.

An overall note and conclusion is that the proposed algorithm is a powerful tool

for the classification of planar shapes and gives extremely accurate results had cer-

tain parameters chosen to be above a certain threshold. A problem that could be

examined in the future is the maximisation of the likelihood with respect to some

of the parameters in the case of the sand body database. A suggestion would be

the employment of other optimisation algorithms or the scanning of the likelihood

surface more closely or in a different way. With regards to the results of the final

chapter, although we have gone far with the evaluation of the integrals over transla-

tions and rotations and the result is interesting on its own, we have not completed

the integration over all similarity transformations and our attempts have stopped

before we completed the classification process. Classification of three dimensional

shapes is an interesting branch of shape analysis and has recently expanded quite

rapidly. There are many open questions left from this problem. Firstly, one could

encounter the integration of scalings of three-dimensional shapes. Furthermore, a

more interesting problem is to tackle the sampling of two dimensional surface in the

same manner as in the case of two dimensions. That would suggest the use of a

similar integration technique and a similar generalised Gaussian prior that “favours”

even samplings of surfaces. In addition, an intriguing problem to solve would be

the summation of bijections for the three-dimensional case if one bears in mind the

complexity this part has even in the two-dimensional case. The problem we posed

in chapter [5] remains open and incomplete and thus we believe that it is one of

our future works and expansions of the present thesis in hope that will offer to the

problem of classification of three-dimensional shapes since it is a problem of great

importance and of great interest in the present days.
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A.0.1 Expansion of the determinant for Fisher information

matrix

In this section we will calculate the determinant of Fisher’s information matrix. The

matrix is:

I(φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ a cx cy θ

σ −4n
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where we have substituted: viy
′ = (sin θvix + cos θviy) and vix

′ = (cos θvix − sin θviy.

Expanding by the first row the determinant of the above matrix is:
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(A.0.1)

Expanding the determinant by the first row, the first expanded term will be:
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238



Appendix A. 239
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The second expanded term will be:
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Expanding the determinant and its third term:
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Combining terms one,two and three the complete expansion of the determinant is:
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Here, we introduce a new quantity as in chapter [2]:
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so that equation (A.0.5) becomes:

−4n a2n2

σ10
Var2(v) (A.0.7)

The overall Jeffrey’s prior is then the square root of the above expression:

J ∝
√

4n a nVar(v)
σ5

(A.0.8)

Taking into account only the parameters we are interested in and ignoring all the

constants, Jeffreys prior is proportional to:

J ∝ a Var(v)
σ5

(A.0.9)

where Var(v) = Var(βi(s(b−1)).

A.0.2 Laplace’s approximation

Laplace’s method is a relatively simple idea that is used to approximate integrals

of the form ∫
b

a exp(Mf(x)). We usually treat the integrand as an unnormalised

probability density and we assume that f is maximised at a point xo which is not

an endpoint in the integration interval and that f ′′(xo) < 0. We can then Taylor

expand the function f as follows:

f(xo) = f(xo) + f ′(xo)(x − xo) +
1

2
f ′′(xo)(x − xo)2 +O((x − xo)3) (A.0.10)

We assumed that f is maximised at xo and because the maximum is not an

endpoint, then f ′(xo) vanishes at xo. Thus, the function can be approximated up

to its quadratic term as:

f(xo) ≃ f(xo) +
1

2
∣f ′′(xo)∣ (x − xo)2 (A.0.11)
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The integral that we want to approximate can then be written as:

∫
b

a
exp(Mf(x)) ≃ exp(Mf(xo))∫

b

a
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2
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One notices that this integral is now Gaussian if we take the integral bounds to

infinity. Doing so, the desired integral can be approximated by:
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This is the Laplace approximation which can be generalised for more than one

dimensions. Physicists also call this approximation the saddle-point approximation.
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