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Abstract

This dissertation is made up of two independent parts. In Part I we consider
the Pestov Identity, an identity stated for smooth functions on the tangent bundle
of a manifold and linking the Riemannian curvature tensor to the generators of the
geodesic flow, and we lift it to the bundle T*M of k-tuples of tangent vectors over
a compact manifold M of dimension n. We also derive an integrated version over
the bundle P¥M of orthonormal k-frames of M as well as a restriction to smooth
functions on such a bundle. Finally, we present a dynamical application for the par-
allel transport of G (M), the Grassmannian of oriented k-planes of M. In Part II
we consider a family of compact and connected n-dimensional manifolds X, called
graph-like manifold, shrinking to a metric graph as ¢ — 0. We describe the asymp-
totic behaviour of the eigenvalues of the Hodge Laplacian acting on differential forms
on X. in the appropriate limit. As an application, we produce manifolds and fam-
ilies of manifolds with arbitrarily large spectral gaps in the spectrum of the Hodge

Laplacian.
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Chapter 1

Introduction

The Pestov Identity is an identity stated for smooth functions on the tangent bundle
of a Riemannian manifold M. It links the generator of the geodesic flow with the
Riemannian curvature tensor and other geometrically motivated differential operators
and, therefore, it can be considered as a dynamical Weitzenbock identity on the
tangent bundle.

It was first introduced by Pestov and Sharafudtinov in [PS88] to derive useful
estimates on symmetric tensor fields and to give an answer to the question whether
a smooth symmetric tensor field can be uniquely recovered from the knowledge of all
its integrals along geodesics. Since then, it has been widely used to solve Geometric
Inverse Problems such as tensor tomography, the boundary rigidity problem and
spectral rigidity.

In this dissertation we lift this identity to the space of k-tuples of tangent vectors
over a compact n-dimensional manifold M and we restrict it to the principal bundle of
orthonormal k-frames. As an application, we use it to obtain an invariance property

of smooth functions on Grassmannians under the parallel transport.

1.1 The Pestov Identity and its applications

Let (M, g) be a compact manifold of dimension n and let TM and SM be its tangent
bundle and unit tangent bundle, respectively. Let 7 : T'"M — M be the canonical

projection of T'M onto M. TM is a 2n-dimensional manifold whose tangent space

2



1.1. The Pestov Identity and its applications 3

at v € T'M splits as
TITM=H,®V, =T,M xT,M,

where H, and V, are called horizontal and vertical distributions at the point v,
respectively. In fact, let X : (—e,e) — T'M be a curve in T'M with X (0) = v, and
let mo X be its footpoint curve on M. Then,

(o X)(1), 2

T,TM 5 X'(0) = (i =
t=0

dt

X().

t=0

where % is the covariant derivative along 7o X.

Hence, we define the two distributions as follows.

H, = {X'(0) e T,TM | %

X(t) =0} = {(w,0) | we TryM} = TryM,

t=0

(moX)(t) =0} = {(0,w) | we TryM} = TryM.

t=0

V, = {X'(0) e T,TM | %

Therefore, every vector & € T, T M splits uniquely as & = " + £¥ with ¢" € H, and
&Y eV, called horizontal and vertical component, respectively.

We equip T'M with the Sasaki metric [Dom62, GuKa02], defined as

Emyrra = E " + €0 D (1.1.1)

The structure of TT'M gives rise to horizontal and vertical differential operators,
defined below.

Let ¢ € C*(T'M) and denote by wu,(t) the parallel transport of the vector u along
the geodesic ¢, : (—¢,e) —> M with starting point ¢,,(0) = 7(w) and starting vector
¢! (0) = w. The gradient of ¢ at v € T'M is given by gradiy(v) = (grgdw(v), grildzﬁ(v))

where horizontal and vertical component are define intrinsically as

grdv(),w = 2 o) and i) w = 5| oo+ tw)

In other words, they describe the derivative of ¢ along the horizontal curve t —
Uy (t) and along the vertical curve ¢ — v + tw.

Let X : TM — T'M be a semi-basic vector field, i.e., an element of X(7*(T'M)),
7*(T M) being the pullback bundle of the vector bundle T'M over M via the projection
m: TM — M. The horizontal and vertical covariant derivative of X are given by

D v

%wX(v)zatoX(vw(t)) and  VoX(0) X (v + tw).

 dtli=o
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Consequently, the horizontal and vertical divergence of X are

divX(r) = YV X(0)e)  and  divX(0) = YAV X(0), e,

i=1 i=1

where ¢€;,. .., e, is an orthonormal basis of T,M for p = m(v).
Finally, we define the geodesic flow on TM. Let ¢, : (—&,&) —> M be the geodesic

with initial vector ¢, (0) = v. The geodesic flow is the map
¢ TM — TM, such that ¢'(v) =, (t), (1.1.2)
and its generator is the vector

dy d
= Gt = (g

i.e., Xg(v) is a horizontal vector.

lle

Xo(v) (72 ¢)(0),0) = (v,0)

t=0

Theorem 1.1.1 (The Pestov Identity, [Kni02]). Let M be a compact n-dimensional
Riemannian manifold. For all ¢ € C*(TM), we have

2gradip(v), grad (X (1)) = [gradi(v)[? + divy (o) + divZ(v) (1.13)

B <R(gr3d¢(v>a U>/Ua gfad?ﬁ(’”)%
where
h v h v
Y(v) = (gradip(v), gradip(v) v — (v, grady (v) grady(v),
and
h h h
Z(v) = Xatp(v) - gradip(v) = (v, gradip(v))gradiy(v).

The reader will find a coordinate-free proof in [Kni02, Appendix| and the original
coordinate-based proof in [PS88] or [Sha94], both presented for manifolds of any
dimension.

Most of the applications use the integrated version of this identity, where integra-

tion is performed over SM with respect to the Liouville measure duy .

Theorem 1.1.2 (Integrated Pestov’s Identity, [Kni02]). Let M be a compact n-

dimensional Riemannian manifold and ¢ € C*(TM). Then,
h v
2| (grady(v), gradXey(v)) duy =
SM

|, teradu )P dps+ 0= 1) | (Xawto)? di (114)

SM

+ J <%UZ(U>, vy dpg, — <R(gr3d@/1(v), v)v, grgd@/)(v» dur,
SM SM
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where Z(v) is as in Theorem 1.1.1.

The proof can be found in [Kni02, Theorem 1.1, Appendix]. It is based on the fact
that the horizontal divergence vanishes under integration over SM while integration
of the vertical divergence produces the second and third terms in the RHS (see [Kni02,
Lemma 1.2, Appendix]).

The dynamical component of (1.1.3) and (1.1.4) lies in the presence of the gen-
erator of the geodesic flow, which is linked to the sectional curvature of the plane
span{ grgdw(v), v}. This indicates a close connection between properties of the geodesic
flow and the curvature of the manifold. Such a connection is already well known in
relation to ergodicity of the geodesic flow, see for example [Bal95].

Moreover, since the norm of the horizontal gradient (the first term in the RHS
of (1.1.3)) is related to parallel transport, Theorems 1.1.1 and 1.1.2 provide a link
between curvature conditions and invariant properties of functions under the action
of the geodesic flow and under parallel transport.

Despite the strong dynamical flavour of these identities, their main applications
are not in the field of pure Dynamics but in Integral Geometry and Inverse Problems.
Below, we present a brief overview of three problems where the Pestov Identity plays

a key role for the solution.

Tensor tomography. The material here presented has been extracted from [PSU13,
PSU14a].

Tensor tomography is a subfield of integral geometry that studies how to recover a
function or a tensor field by the knowledge of its integrals along curves. The simplest
example is the X-ray (or Radon) transform in the plane, which aims at recovering a
function f in R? studying the integral of f along straight lines, i.e., geodesics in R2.
This classical problem is nowadays well-known and well-studied. We refer the reader
to [Helll] for its properties and further information.

In the context of Riemannian manifolds, the problem of tensor tomography, or
the geodesic ray transform problem, is posed as follows.

Let (M, g) be a compact, oriented Riemannian manifold of dimension n > 2 with

boundary, and let v be the unit outer normal to the boundary dM of M. Let SM
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be its unit tangent bundle and let (p,v) be a point in SM, i.e., v e S,M, then
ASM) = 0, (SM)|_Jo_(SM),

where 0. (SM) = {(p,v) € d(SM) | F{v(p),v) = 0}.

Without loss of generality, we think of M as embedded into a compact n-dimensional
manifold N without boundary. The exit time 7 : SM — [0, ] of a unit speed N-
geodesic y(p,v) is 7(p,v) = inf{t > 0 | v(p,v) € N\M}. If the geodesic v;(p, v) never
leaves the manifold M, we define 7(p,v) = co. In the case y;(p,v) < o0, the manifold
M is called non-trapping and the geodesic ray transform of a function f € C*(SM)

is then defined as

7(p,v)

1f(p.v) = j F@ ) dt, (pv) € 04 (SM),

0

where ¢' is the geodesic flow on M, and the geodesic ray transform on a symmetric
m-tensor F'is defined as I,,,F' := I f,,, where f,, is the function on SM arising from
the tensor F' via f,,(p,v) = F((p,v),...,(p,v)).

Given a smooth function f or a smooth m-tensor F', the geodesic ray transform
problem explores what properties of f or F' can be recovered from the knowledge of
Iforl,F.

It is known [Sha94] that a sufficiently smooth tensor field ' can be composed into
a solenoidal and potential part, denoted by f* and dp, respectively, i.e., F' = f*+ dp,
where f* is a divergence free m-tensor field and p is a smooth (m — 1)-tensor field
vanishing at the boundary.

Using integration by parts and the fact that p vanishes on the boundary, it is
easy to see that the geodesic ray transform of dp, the potential part of f, vanishes.
Therefore, we can only aim at recovering the solenoidal part of f, which justifies
the notion of s-injectivity, defined as follows. The X-ray transform on symmetric m-
tensor fields, m > 1, is s-injective if I,,F' = 0 implies f® = 0 for any smooth m-tensor
F. If m =0, i.e., in the case of functions, I is s-injective if Ipf = 0 implies f = 0
for any fe C*(SM).

A number of results are known about s-injectivity. I, and I; are s-injective
[Muk77, AR97]. I, is s-injective for all m on simple surfaces [PSU13], i.e., surfaces

with strictly convex boundary and such that for any two points there exists a unique



1.1. The Pestov Identity and its applications 7

geodesic joining them and depending smoothly on the end-points. Moreover, I, is
known to be s-injective on manifolds of negative curvature [PS88], under other curva-
ture restrictions [Sha94|, or on higher dimensional simple or Anosov manifolds with
certain conditions on modified Jacobi fields [PSU15]. I is s-injective for manifolds
of any dimension equipped with simple metrics including real-analytic ones [SU05b].
We remind the reader that a manifold M is said Anosov if the linearisation D¢? of its
geodesic flow splits the tangent bundle of SM into tree invariant subspaces: a one-
dimensional subspace tangent to the direction of the flow, and two other subspaces
on which D¢' acts uniformly contracting and expanding, respectively.

In addition, tensor tomography has also been studied in other contexts. For ex-
ample, it has been considered in the presence of an attenuation factor [SU11,PSU12],
in the presence of a magnetic field (see [DP05, Ainl3] and references therein), and for
thermostats [DPO7].

The main idea of the injectivity proof lies in observing that the transport equa-

tion Xgu = —f in SM with wgsn) = 0 is solved by the function w(x,v) =

ST(x,v)

o f(¢'(x,v))dt. Therefore, it is enough to prove that u is constant, as this al-

ready implies f = 0 by the boundary condition. Then, the Pestov Identity enters
the game giving an estimate of | Xqul?> that, together with other tools, allows us to

conclude that u = 0.

The boundary rigidity problem. The material presented in this paragraph has
been extracted from [SU05a].

The boundary rigidity problem addresses the question whether it is possible to
recover uniquely the metric of a Riemannian manifold from the knowledge of the
geodesic distance between any two points on the boundary. This problem arises in
geophysics in an attempt to determine the inner structure of the Earth by measuring
the travel times of seismic waves.

We observe that one can construct a metric g on a manifold M with boundary and
find a point zg € M such that dy(zo, 0M) > sup, ,eon dg(,y). For such a metric,
d, is independent of a change of ¢ in a small enough neighbourhood of z, [Uhl].

Therefore, it is natural to pose restrictions on the metric we want to recover. In 1981
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Michel [Mic81] conjectured that every simple manifold is boundary rigid. Pestov and
Uhlmann [PUO5] proved the conjecture for simple two-dimensional manifolds with
no restriction on the curvature. For higher dimensional manifolds, results are known
for flat metrics, conformal metrics, and for locally symmetric spaces with negative
curvature. We refer the reader to the survey [SUO5a] and references therein.

There is a strong link between the boundary rigidity problem and the operator
I, introduced in the previous paragraph. In fact, the linearisation of the boundary
rigidity problem near a simple metric g is given by showing that I, is s-injective on
symmetric 2-tensor fields [Sha94]. Therefore, the Pestov Identity is a tool often used
in proofs in a fashion similar to the one described in the previous paragraph (see for
example [SU00] and [Dar06]).

As for tensor tomography, the boundary rigidity problem has been considered for
other types of dynamics such as the magnetic flow. For results in this direction, we

refer the reader to [DPSU07] and references therein.

Spectral rigidity. The material presented here has been extracted from [CS98|.

Let (M, g) be a closed Riemannian manifold without boundary and let {g;}ie[—< ]
be a family of metrics with gy = ¢ and smoothly depending on ¢ such that the spectra
of the Laplacian on (M, ¢;) coincide. Such a family is called isospectral deformation.
Spectral rigidity is concerned with the question whether every isospectral deformation
comes from a family of diffeomorphisms ¢! : M — M such that ¢©° = id and
g: = (p")*go. The manifold M is spectrally rigid if for all isospectral deformations
{g:}: there exists a family of diffeomorphisms ¢' : M — M smoothly depending on
t and such that ¢" = id and g; = (©")*go.

This problem was initially posed by Guillemin and Kazhdan in [GK80a] where
they proved that a two-dimensional, closed and negatively curved manifold is spec-
trally rigid. In a subsequent paper, they extended this result to manifolds of any di-
mension under a curvature pinching assumption [GK80b]. In both papers, the claim
follows from the s-injectivity of /. Min-Oo [Min86] proved it for manifolds with neg-
ative definite curvature operator. These three results were proved without the use

of the Pestov Identity. However, it appeared as a key feature in [CS98] where Croke
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and Sharafutdinov used it to prove that any closed negatively curved manifold of di-
mension n is spectrally rigid. Their result is again a consequence of the s-injectivity
of the operator I,,, on compact manifold of negative curvature as in [GK80a, GK80b],
but they give an alternative proof of s-injectivity using the Pestov Identity.

Spectral rigidity has also been considered for a wider class of manifolds, namely,
Anosov manifolds. Sharafutdinov and Uhlmann [SU00] proved that an Anosov surface
with no focal points is spectrally rigid. This result relies on the s-injectivity of
I, for Anosov surfaces with no focal points. More recently, Paternain, Salo and
Uhlmann [PSU14b] extended this result to all closed oriented Anosov surfaces. Again,
this is a consequence of the fact that Iy is s-injective on a closed oriented Anosov

surface.

1.2 Aim and main results

The aim of our investigation is to derive a Pestov-type identity for smooth functions
on the bundle TFM of k-tuples of tangent vectors over a compact n-dimensional
manifold M and restrict it to the principal bundle P¥M of orthonormal k-frames,
which we think of as a subspace of T*M.

More precisely, the two bundles are defined as (see also Section 2.1)

M = | JT,M x ... x T,M,

>
e M g
P k—times

PkM = {(Ula cee avk) € TkM ‘ <'UZ',U]'> = 5”} C TkM

In particular, it is possible to describe Ty T* M, f € T*M, mocking the splitting of
T'T'M into horizontal and vertical component. This also apply to the tangent space of
P*M , where the splitting appears naturally (see Section 2.1 or [KN63] for a general
overview on principal bundles).

This allows us to define horizontal and vertical differential operators following the
description of Section 1.1 (see Section 2.3). Regarding the dynamics we use, it is
given by the frame flows, the lifts of the geodesic flow, defined in the following way.

Let f = (vi,...,v,) € T*M and choose the vector v; for some i. The i-th frame flow,
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t=1,...,k, is the map that parallel transports f along the geodesic c,, with starting
vector v;, i.e., every vector v; component of f is parallel transported along c,,.

Such a framework allows us to state the Lifted Pestov Identity (Theorem 3.1.4,
Section 3.1), and its integrated version (Theorem 3.2.3, Section 3.2) for smooth func-
tions on T*M. For sake of brevity we do not restate them here.

However, the real new results are the restriction of Theorem 3.2.3 to smooth
functions on the principal bundle P*M (Theorem 3.2.4, Subsection 3.2.1) and an
equality for smooth functions on P¥M being invariant under one of the frame flows
(Corollary 3.2.6, Subsection 3.2.1), where only the L?-norm of the generators of the
frame flows and the Riemannian curvature tensor are involved.

In particular, Corollary 3.2.6 is the key identity for our applications. In fact, it
appears that if the manifold M is negatively curved, then any function invariant under
one of the frame flows might also be invariant under the remaining ones. This is true
when M is a two-dimensional negatively curved manifold or M is a n-dimensional
manifold with constant sectional curvature (see Section 4.1).

However, the main application is for smooth functions on oriented k-th Grass-
mannians GX (M), k = 1,...,n, i.e., Grassmannians where the k-planes come with
an intrinsic orientation (for a precise definition we refer the reader to Section 4.2).
The bundle P"M projects canonically onto G* (M) and every function on G% (M)
can be lifted to a function on P"M.

Moreover, on oriented Grassmannians we distinguish between intrinsic and non-
intrinsic parallel transport of oriented k-planes. The parallel transport of an oriented
k-plane A,, is called intrinsic if it is along a geodesic ¢, with starting vector v € A,,,
it is called non-intrinsic, otherwise (see also Definition 4.2.2 in Section 4.2). Due
to the projection of P"M onto G¥ (M), every smooth function on G¥ (M) invariant
under the parallel transports has a smooth lift on P"M which is invariant under the
first £ frame flows.

This link allows us to prove the following theorem via Corollary 3.2.6.

Theorem 1.2.1. Let M be a compact n-dimensional Riemannian manifold with non-
positive curvature operator (R < 0). Let 1 < k < n and p € C°(GE (M)). If ¢ is

mvariant under all the intrinsic parallel transports then it is also invariant under all
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parallel transports.

For the definition of the curvature operator, we refer the reader to (4.2.2) in
Section 4.2.

We also point out that for k = 1, GL (M) = SM, the intrinsic parallel transport
corresponds to the geodesic flow and the non-positivity of the curvature operator of
M relaxes to the non-positivity of the curvature of M. Therefore, our result yields

the following, which recovers an unpublished result of Knieper [Kni].

Corollary 1.2.2. Let M be a compact Riemannian manifold with non-positive cur-
vature. Let ¢ € C*(SM) invariant under the geodesic flow, then ¢ is also invariant

under parallel transport.

Finally, combining the above theorem with Berger’s holonomy classification, we

obtain the following proposition.

Proposition 1.2.3. Let M be a non-flat, compact Riemannian manifold with non-

positive curvature operator R. Then, the following statements hold:

(1) If M s either a Kdhler or a Quaternion-Kdhler manifold of real dimension
2n = 4 or 4n = 8, respectively, or a locally symmetric space of non-constant
curvature (i.e., not the real hyperbolic space), then there exist smooth, non-
constant functions on G2 (M) or G (M) which are invariant under all intrinsic

parallel transports.

(11) If M is not one of the exceptions in (i), then, for all k < dim M, any smooth
function on G* (M) which is invariant under intrinsic parallel transport is nec-

essarily constant.

1.3 Overview of the text

The material is organized as follows. In Chapter 2 we describe the bundles T*M
and P*M together with their differential operator and the frame flows. In Chapter
3 we present our main results. In Sections 3.1 and 3.2 we state and prove the Lifted

Pestov Identity and the Integrated Lifted Pestov Identity, respectively. Moreover, in
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Subsection 3.2.1, we restrict the Integrated Lifted Pestov Identity to smooth functions
on P*M. In Chapter 4 we present dynamical applications on smooth functions on
P"M over a two-dimensional manifold of negative sectional curvature and over a n-
dimensional manifold of constant sectional curvature invariant under one of the frame
flows, and on smooth functions on oriented Grassmannian invariant under intrinsic

parallel transports.



Chapter 2

A new framework

We here introduce the two spaces we will work with in the next chapter, together
with some of their features, the description of their differential operators and the
dynamics we equip it with. The new spaces are the bundles T*M and P¥M already
introduced in Section 1.2.

This chapter is structured as follows. In Section 2.1 we describe the bundles
T*M and P*M, their tangent spaces and the chosen metric on them. In Section 2.2
we explain how the geodesic flow and the frame flows are related and we describe
the generators of the latter. Finally, in Section 2.3 we describe the geometrically
motivated differential operators related to the structure of the tangent spaces of
T*M and P*M, namely, horizontal and vertical gradient, covariant derivative and

divergence.

2.1 The bundles T*M and P*M

2.1.1 The new bundle T*M

Let (M,g) be a compact Riemannian manifold of dimension n. Let T'M be its
tangent bundle and 7 : TM — M, v — p if v € T,M, be the canonical projection.
Let 1 < k < n, we define the space of k-tuples of tangent vectors over M as

TEM = | T,M x ... x T,M .

J
e M e
P k—times

13
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This space projects canonically onto M via 7% : T*M — M, f = (uy, ..., u;) —
pif p=mn(u;) foralli=1,...k.

T*M is a manifold of dimension kn + n (for more details on its geometry, see
Appendix A).

Let f = (vi,...,v) € T*"M and let X = (Vi,...V}) : (—e,6) — T*M be a
curve on T*M such that X (0) = f and that the V;’s are all vector fields on M along
the footpoint curve 7% o X on M. Then,

d D D
k / o k .
TyT"M > X'(0) = (—dt‘tzo(ﬂ o X)(t); o tzoh(t), cen dt’t:ovk(ﬂ)'

Therefore, the tangent space of T*M at f is given by

TyT*M = ToepyM x ... x Ty M . (2.1.1)

(k1) —times
We call the first T« )M copy in T} T*M horizontal distribution and the product
of the remaining k copies of Ty p M vertical distribution. Consequently, any vector
x € Ty TFM is written as the sum of & = (20;0,...,0) and & = (0; 21, ..., x), called
horizontal and vertical component, respectively. This construction allows us to define
a Sasaki-type metric on TFM.
Let © = (zo; 71, 2%),y = (Yo; Y1, - - -, yx) € Ty T*M. Then,

k
<$7 ?J>Tf ThA P <$o, y0>Tﬁk(f>M + Z;<ZL‘Z, yi>Tﬂk(f)M. (2.1.2)

Consequently, the horizontal and vertical distribution are pairwise orthogonal.

2.1.2 The frame bundle P*M

Let (M, g) be as in Subsection 2.1.1. The frame bundle of orthonormal k-frames over

M is denoted by
P"M = {(vi,...,0) € T"M | (vi,v5) = 6y} < T"M.

The orthogonal group O(k) acts on the right on this space.

As for T*M, P*M projects canonically onto M and the projection map is again
denoted by 7*. This map is a fibration where the fibre F), is the Stiefel manifold of
orthonormal k-frames over R, i.e., F, = O(n)/O(n — k).
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In particular, for k = 1 we have P*M = SM, where SM denotes the unit tangent
bundle of M. On the other hand, when k£ = n, P"M is a principal bundle with fibre
isomorphic to O(n).

Let f = (vy,...,vx) € PPM. Any curve in P¥M through the point f is given
by X = (Vi,..., Vi) : (—&,6) —> P*M where the V;’s are orthonormal vector fields
along the footpoint curve 7% o X with V;(0) = v;. X'(0) € Ty P*M is described as in

(2.1.1) with an additional condition on the 2| _V;(¢)’s. Since (V(t),V;(t)) = d;; for

dtlt=0
all ¢, differentiation at ¢t = 0 yields

Vj(t)ﬁ Ui>'

=0

dt ‘ t),v5) = <

Therefore, the tangent space of P¥M at f is given by
T, P*M = {(u;wl, o wg) € T,M x ... x TyM ( (Cwi, ), € o(k)}, (2.1.3)

with o(k) the Lie algebra of O(k), i.e, the set of skew-symmetric real matrices of
dimension k x k. Ty P*M splits orthogonally into a horizontal and a vertical distri-

bution, Hf and V', described below.
HY = {(w:0,...,0) € T,M x ... x T,M} = T,M,

Vi = {(O;wl,...,wk) e T,M x ...xT,M ) (Cwi,vp)),, € o(k)}.

We observe that for k£ = n, the vertical distribution is isomorphic to o(n).

Consequently, any vector u € Ty P*M splits as u = % + u where e 'HJ]? and
U= (051, ... ,ug) € Vf called again horizontal and vertical component, respectively.

We point out that vectors on T*M are not automatically vectors on P*M, as
they do not satisfy the constrain in (2.1.3). To obtain a vector on P*M from a vector
on T*M, we need to perform an orthogonal projection of the vertical components
of the latter onto Ty P*M, or more precisely, onto the Lie algebra o(k). We give an
example below.

Let f = (vi,...,v) € PPM and (X(f);Yi(f),...,Yi(f)) € Ty T*M. Then, the
vector (X (f); Yio(f),---,Yeo(f)) € Ty P*M is defined component-wise as follows.

Yief) i= Yilf) - ﬁ( 1), 033 + (0,0 ). (2.1.4)

Jj=1

1
2
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It is easy to check that the matrix ((Yio(f), Uj>)ij is skew-symmetric.
Finally since P¥M is a submanifold of T%M, it inherits the metric described in

(2.1.2) and horizontal and vertical component are again pairwise orthogonal.

2.2 Frame Flows

We now introduce the frame flows F}, i =1,... k.

The first frame flow F}' on T*M is the lift of the geodesic flow and, more generally,
the i-th frame flow F} on T*M is the parallel transport of the frame f = (vy,...,v;)
along the geodesic ¢,, with starting vector v;.

The precise definition of the frame flows is given below.

Let f = (vi,...,v) € TyT*M, and let ¢,, be the geodesic on M such that
¢y (0) = 7%(f) and ¢, (0) = v;. The i-th frame flow, i = 1,... k, is the map

Fl':T"M — T"M
f= (v om) = fo,(8) = (1), (E), - (k) ()

where f,.(t) denotes the parallel transport of the frame f along the geodesic ¢,,, i.e.
every vector v; of f is parallel transported along c¢,,. In particular, (v;),, (t) = ¢'(v;),
where ¢ is the geodesic flow on T'M (see (1.1.2)).

Its infinitesimal generator is given by

d

¢ =2 mo=(S

tzocvi(t);o, o ,0) = (v;;0,...,0),

t=0
i.e., G'(f) is a horizontal vector of Ty T*M for all i = 1,... k.

The frame flows act on the frame bundle P*M as well, and their generators are
again horizontal vector on P¥M. The first frame flow on P*M has been extensively

studied in relation to ergodicity. Below, we list the conditions for which F}! is ergodic.

(i) If M is a manifold of odd dimension different from 7 with negative curvature

[BGSO).

(ii) For the set of metrics with negative curvature that is open and dense in the C*

topology [Br75].
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(iii) If M is a manifold of even dimension different from 8 with pinched negative

curvature, pinching constant bigger than 0.93 [BK84].

(iv) If M is a manifold of dimension 7 or 8 with pinched negative curvature, pinching

constant bigger than 0.99023... [BP03].

However, in this dissertation, we are not interested in studying the ergodicity of
the frame flows further. Our goal is to study a related property, namely, invariance
properties of smooth functions on the frame bundle under the action of the frame

flows.

2.3 Differential Operators

As in the classical case of Riemannian manifolds, we have differential operators on
T*M and P*M such as the gradient of a smooth function, the covariant derivative
and the divergence. However, here we need to distinguish between the horizontal and
vertical distribution when defining these operators.

In what follows, all inner products are with respect to the metric on M, unless
stated otherwise.

First, we introduce the notion of semi-basic vector field. We define the pullback
bundle 7*(T*M) = {(v, f) e TM x T*M | n(v) = 7*(f)} which is a vector bundle
over T*M. A semi-basic vector field is an element of X(7*(T*M)) = {X : T"M —
TM smooth | X(f) € ToupM Vfe TFM}.

An example of semi-basic vector field is the vector field V; : TFM — TM such
that f = (v1,...,v;) — v;. It will appear extensively in the next chapter.

Let o : T*M — R be a smooth function and let f = (vy,...,v) € T*M with

7%(f) = p. The gradient of ¢ with respect to the metric on T*M is

v, v,k
grade(f) = (grade(f); gradg(f), . .., grade(f)) € Ty THM.

The horizontal and vertical component, called horizontal and i-th vertical gradi-
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ent, are described intrinsically as follows. Let u € T),M, then

d

(aradil(f), ) = 5| (D),

v,1 d
<gradgp(f), U> = E t:090</017 ce s Vi1, U F B Vg 7Uk)7

i.e., the horizontal and i-th vertical gradient of ¢ are the derivatives of ¢ along the
horizontal curve ¢t — f,(t) in T*M and along the vertical curve ¢t ~— v; + tu in the
i-th T,M copy of T*M, respectively. We remind the reader that f,(¢) is the parallel
transport of the frame f along the geodesic ¢, starting at ¢,(0) = 7%(f) with initial
speed ¢, (0) = u.

h v,
We observe that grady and grady are semi-basic vector fields.

If f e P*M, gradp(f) defined as above is not an element of T;P*M, as we
explained in Subsection 2.1.2. According to (2.1.4), the orthogonal projection of
gradp(f) into Ty P¥M for f = (vy,..., vy) is

v,0 v, k
grad,o(f) := gradp(f) — % Z (<grad90 ;) + <grad¢(f) >> v;. (2.3.5)

h v,1 v,k
Then, (grade(f); grad,p(f), ..., grad,¢(f)) € Ty P*M.
Let X : TFM —> TM be a semi-basic vector field. The horizontal and i-th

vertical covariant deriwative of X with respect to u € T,M are given by

VuX() = 2| X0,
D

As the definitions of these two operators rely on the usual notion of covariant

. OX(Uh Vi1, U R, Vi, V).

derivative, they satisfy additivity and the product rule, namely,
O Vu[X(H) +Y ()] = VuX(f) + VLY (),

(i) Vu(eX)(f) = o(f)VuX(f) + grade(f)X(f),
for all X,Y semi-basic vector fields and for all p € C*®(T*M).

Finally, we introduce the horizontal and i-th vertical divergence of a semi-basic

vector field. They are defined as follows.

d}ilVX Z<V X(f), e and dvli/X(f) - Z<VeiX(f)7 ei),



2.3. Differential Operators 19

where e1,. .., e, is an orthonormal basis of T,M for p = 7*(f).
As a consequence of (i) and (ii) above, these operators are additive and satisfy

the product rules

div(X)(f) = p(F)dvX (f) + (grade(f), X (). (2.3.6)
div(X)(f) = o(F)dvX(F) + madi (), X (). (23.7)

for all X,Y semi-basic vector fields and for all p € C*(T*M).
We conclude the section giving an example of how to calculate the horizontal and
i-th vertical covariant derivative and divergence of a very special semi-basic vector

field, which we will use in the next chapter.

Example 2.3.1. Let V; : T*M — TM be a semi-basic vector field such that

f = (v1,...,v;) — v;. Then, we have the followings.
h D D
(f) — (£ (1)) = (1) =
V.Vi(f) dt t:()‘/;(fu< ) dt t=0(vZ)U( ) =0,

v,J d
VUVZ(f) = %Lzovi + 5Utu = 5Uu
Consequently,

d}ilvl/;(f) — 0, (2.3.8)

divVi(f) = né,,. (2.3.9)



Chapter 3

The Pestov Identity on Frame
Bundles

In this chapter we state the main results of Part I.

In Section 3.1 we present the Lifted Pestov Identity, a Pestov-type identity for
smooth functions defined on T*M, whose proof follows the steps of a coordinate
free-proof given by Knieper in [Kni02]. In Section 3.2, we integrate the Lifted Pestov
Identity over the frame bundle P¥M obtaining the Integrated Pestov Identity. More-
over, we restrict it to smooth functions defined on P*M and we derive a new identity
for smooth functions invariant under one of the frame flows.

We remind the reader that all the inner product are with respect to the metric

on M, unless specified.

3.1 The Lifted Pestov Identity

We first prove some useful relations between the horizontal and vertical differential

operators introduced in the previous chapter.

Lemma 3.1.1. Let p € C*(T*M), f € T*M and u,w € T,M with p = 7*(f). Let
1=1,...,k, then

V,% h h V,%
(Vaugradg(f), u) = (Vugrade(f), ). (3.1.1a)
In particular, it follows
v, h h v
divgradp(f) = divgrade(f). (3.1.1b)

20
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Proof. Using the definitions of horizontal and i-th vertical covariant derivative and

gradient we have
v, h d h
(Vygrade(f),u) = %lt70<grad<p(vl, e U1, U F W, Vi, e U)W

T2 o(@uls) s (0als) + E@)al8). -, (0)a(5)

- a t:O% s=0
d v,1
- £‘520<grad%0(fu(3))7w>

= <%ug;;d90(f)7 w>,

which proves (3.1.1a).
Equation (3.1.1b) follows by taking the trace. O

Lemma 3.1.2. Let p € C°(T*M), f = (vi,...,v) € T*M and u,w € T,M with
p=7"(f). Then

Ao h ho ok k vy
(Vugradp(f), u) = (Vugradg(f), wy = 3 (R(grade(f), vi)w, ), (3.1.2a)
and i
v,l
G'Go(f) — GGo(f) = D (R(gradp(f), v)vi, v;). (3.1.2b)

=1
Proof. We first prove (3.1.2a) since (3.1.2b) follows as a consequence.

Let H(t,s) = (fu(t)), " (5) be a variation in T*M i.e., H(t,s) = (H,(t,s),..., H.(t,s))

where H;(t,s) = ((vi)w(t))uw(t)(s). Then,
(Vugradg(f),u) = S|~ Garadi(fu(0),mal0)
= % t_oé S:Ow((fw(t))uw(t)(8)>
o )

Now, using (2.1.2), the definition of horizontal and i-th vertical component, and

the definition of horizontal covariant derivative, we obtain

Sl - | Gmaco. [5]_me]
%l <:koH><t 5)
+ %Lzoi <g§§d¢(H(o, 5)), [% (G s)]”’i>
=1 . ~ v
Bt
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D h h P i

= (= S:Ogradw(H(O,S)),wH<gradso(f),d—s‘ Bl ™ o )
%‘t:()[% oo Cuw (1) (8)=0
k .
v, D _D _D
- de(H(0,s), — t,0 d Hi t,
+;<d _ gradp(H( ’S)’dt o H;(t, )>+<gra o(f), - (t, 5))
B @u()=0

h h D

= (Vygradp(f),w) +Z<gradgp ol Odt)t ; i(t,5)),

where ¢, )(s) is the footpoint curve of H (¢, s).

Finally,
D D D D
T hoco gt Hilts) = | | Hi(t,s)
0 L 0 . B
* R(%L:ow ° H)(0,3), %LO(W ° HQ(t,O))HZ-(o,o) = R(u,w)v;.
Hence,

(Voradg(f), u) — (Vaugrade(f), wy = 3 (R, w)os, grade(f)).

i=1

We now prove (3.1.2b). First we observe that

. d ,
G = Ff = (grad Ty Tk M
o) = 2| _e(Fi () <gh o), 5| F Dy, .
— (gradp(f), vy,
Therefore,
G'Glo(f) = Gigrad(f),vy) = | aradiolfu b)), (07)0 (1)

= (2| gradelf(0), 1) = (Vugrade(f), ),

and GIGip(f) = (V. grado(f),v3).

Choosing u = v; and w = v; in (3.1.2a), we obtain (3.1.2b). O

Lemma 3.1.3. Let ¢ € C*(T*M), f = (vi,...,v) and w € T,M with p = 7*(f).
Then,
hoo h k vl
(gradGIop(f), w) = G {gradep(f), wy + Y (R(gradp(f),v)w,v;),  (3.1.4a)
=1

(gradCo(f), wy = G¥{grade(f),w) + 6, (grade(f), w). (3.1.4b)
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In particular,
(gradGp(f),u) = GHaradi(f), v) + 0,G' ). (3.1.4¢)

Proof. We first prove (3.1.43). Using (3.1.3) and (3.1.2a) we obtain,

o (fult)

jt\ Caradg(fult)), (0)u(0)

= <ngrad90(f)a vj>

hoo
(gradGo(f), w) =

ho h k v,l
= (Vy,grade(f), w) + Y (R(gradea(f), v)w, v;)

=1

Caradi(f, (1), (w), (0) + Y R(Erad(f), v, v,)

=1

. h k v,l
= G{gradp(f), w) + Y (R(grade(f), v)w, v;).

T dth

=1
We now prove (3.1.4b). Using (3.1.3) and (3.1.1a), we have
v,0 . d .
<gradG]cp(f),w>= I G]@(Ul,...,ﬂi—Ftw,...,Uk)
d

<gradg0(v1, VbW, L ), v Ogitw)

— (Vugrade(f), v;) + b;(grade(f), w)
— (V,, grade(f),w) + bilrade(f), w)
= 2| @il (1)), (), (1)) + G Camada (1), w)

K h
= G/ (gradyp(f), w) + di;(grade(f), w).
Setting w = wv;, in the last equality above, the second term of the RHS is

<gr};xdgo(f),vl> = Glo(f) by (3.1.3), and we obtain (3.1.4c). O

We are now ready to prove the Lifted Pestov Identity. We recall that the proof
can be compared with [Kni02, Theorem 1.1 in Appendix].

Theorem 3.1.4 (Lifted Pestov Identity). Let o € C*(T*M), Then,
v, . h . h 9
divZ'(f) + divY?*(f) + d;5|grade(f) | =

k v,J v,J .
— SUR(gradi(f), w)vi, grade( ) + grade(f), grad G (f), (3.15)

=1
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where
Yii(f) = (gradg(f), gradg(f))v; — (Gl (f))rad(f),
and
Z(f) = (G'(f))grade(f),

foralli,7=1,... k.

Proof. Using equations (2.3.7) and (3.1.3) and the definitions of horizontal and j-th

vertical gradient and covariant derivative, we have

divZi(f) = div(GPo( ) eradi( )
= Glp(f)diveradg(f) + (gradGlo(f), radp(f))

) v,j h
= G'o(f)divgrade(f)
h h
dt <gradgo(v1, v+ tgrade(f), ..., uk), v + 0itgrade(f))
) v,J h h
— Gl f)divgradi(f) + V iy TP ) 00 + Oy lgrade ().

In the same way, using (2.3.6) in the second equality and (3.1.1b) in the third

equality, we obtain

divYi(f) = div((grade(f), gradp(f)v) — div(Gio(ferade(f))

— (gradip(f), gradip(f)) divVi(f) +erad((grade(f), gradp(f))), vi)
——

=0 by (2.3.8)

— Gp(f)diveradg(f) — (erad G (f), srade (1))

"

= ’tzoGi”(fggg@(f)(t))

(eradp( fu (), grade(fu (£))) — Gip(f)divarade(f)

<gr P(f s (0), (Vi) vs (1))

dth grade(f) grade(f)
h v,] h h v,
= <Vvigrads0(f), grads@(f)> + (gradep(f), V,,grade(f))
h

~ Gip(f)divarado(f) — (V ., grade(f), v,

grade(/)

= il
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Hence, summing these two divergences and using (3.1.1a) in the second equality

and (3.1.2a) in the third equality, we have

U.’j . h = h h v,J h h

divZ'(f) + divY”*(f) = (Vy,gradp(f), gradp(f)) — <Vg«;gd¢ (f)gradw(f ), viy

h h v,J v, h h 9
+ [(grade(f), Ve,grade(f)) + <Vgr*;d¢ ( f)gradw(f ), vip] + dijlgrade(f)]|
h h v,J h h
= (Vy,gradp(f), grade(f)) — <Vg¥;fd@ (f)gradw(f ), Uiy
h v,J h h 9

+ 2{V,,gradp(f), gradep(f)) + 6;;|grade(f)|

v, k v,l v,]
— b Jaradg( /)| + 2V, grade(f), gradg(f)) + 3 (R(aradg(f), v)vi, arade(f)).

=1

Finally, using the definition of horizontal and vertical gradient, we have

2gradi( ), gradGia(f)) = Agradg(f), grad (grade, Vi) ()
d d tzog@((m)vi(s), vy (v + t(grgdw(f))vi(s)), e (00) 0, (5))

- E S:OE
h
+ dijllgrade(f)|?

d h h h
= 2%L:0<gradgp(v1, 05+ tgrade(f), ..., vk), v + 0itgrade(f))

v,7 h h
= AV, grade(f), grade(f)) + 26, |grade(f) .

Substituting this expression in the previous identity we obtain the theorem. [

3.2 The Integrated Pestov Identity

We now prove the integrated version of (3.1.5) over the frame bundle P*M with
respect to the measure du,(f) = dvol(p) dv,(f) where dv is the measure on the fibre
F, of P*M and dvol is the measure on M.

Before integrating, we show the behaviour of the horizontal divergence and of the

generators of the frame flows under integration.

Lemma 3.2.1. Let X : TFM — TM be a semi-basic vector field, then

LkM divX (f) dp(f) — JM L divX (f)dvol(p)du(f) = 0. (3.2.6)
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Proof. We first recall that F, =~ O(n)/O(n — k). To prove the Lemma, it suffices to

show

L VX 0y duy(f) = (Y [ X () dup(f), 0. (3.27)

Fp
In fact, from the above it follows

| X () () = div | X(f) duy(f).
O(n)/O(n—k) 0O(n)/O(n—k)

Then, due to the compactness of M we obtain (3.2.6).

Let us prove (3.2.7).

We define o : P"M — PKM with o((vy,...,v,)) = (vi,...,v). In particular,
o0: F, —» F, where F, = O(n) is the fibre of the principal bundle P"M with O(n)
right action.

On the fibre O(n)/O(n—k) there exists a unique (up to scalar) left O(n)-invariant
Haar measure (see, e.g., [Fer98, Thereom 8.1.8|) obtained in the following way.

Fix fy € F, and let g € O(n), Then, there exists ¢, : O(n)/O(n — k) — F, such
that g - O(n — k) — o(g - fo), canonical diffeomorphism. The pullback ¥7 (v,) =
00(n)/o(n—k) gives the measure on O(n)/O(n — k).

In what follows, we drop the arguments of the measure and the subscript of 8 to

ease the notation.

We have,

J, vxwanin = | Gl X v

_J d
N dett:

X(fo(t) = X(o(fu(t)) = X(e(g - (fo)u(£)) = X ((s0)01)(9))-

CXULA0). 0 (1),

Note that for f =g-fo€ Fp)

Then,

J dt‘ X (o®) o) dv(f) :J

_ J d
0(n)/O(n—k t=0

a j (X (Dot (9))s () dB(g - O(n — k)
t=0Jo(n)/0(n—k)

1o (0m)/O(n—k)) dt’ X (fo(£)), ¢ (v)) dup(f)

X W10).0(9)) ' (0)) A5, (9)

T dthe
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d
_ 4 O<J“ X ($(g0u(9)) 40, ¢' (v) )
=Y JO(n)/O(n—k)

D
dt

X a0 |
Y I (XL

D
E t=0 JF;; X(f> d]/p(f) 7U>7

which concludes the proof. m

Lemma 3.2.2. Let o, € C*°(T*M), then

NG A== | elNG ) du (329

PkM

h h
Proof. We observe that G'o(f) = (gradp(f), v;) = div(¢V;)(f) by equations (3.1.3),
(2.3.6) and (2.3.8). Therefore, §,,,, G'¢(f)dp = 0 by Lemma 3.2.1. This fact and

the Leibniz rule prove the Lemma. O
We are now ready to state the integrated version of (3.1.5).

Theorem 3.2.3 (Integrated Pestov Identity). Let o € C*(T*M), then

U7j
535 leradel 2o pens) — f 2<R grade(F), v)vs, gradeo( £)) du —

- LW@”WU)’ gradGp(f) + (gradGho(f), grade () dp. (32.9)

Proof. Consider equation (3.1.5). Under integration over P¥M the horizontal diver-

gence vanishes and the remaining non-zero terms are
v.,j ; h 9 h v,J ;
f divZ'(f) du + Oyl grade(f) [1e(prary = QJ (grade(f), gradG'y(f)) dp
PkM PkM
v,J
f Z<R arady (), v, gvade(f)ydpe. (3.2.10)
P

M=y

We have
’U,j . ’U,] . h
| dvznan= | div@otemde) i
PEM PkM
h v,J ) . v,j h
- LkM<grad<p(f ), gradG'o(f)) + G'o(f)divgradp(f) du

h v,J ) ) v,J
= LkM<grad<p(f ), gradG'o(f)) + G’so(f)dlfvgradw(f )dp
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= | Coradiol) g6 ) — CeradGlpl ), srade(P) dpt
+ J d}iLV(Giw(f)g;;dw(f)) du
PkM
h vj ho v,
- || Grade().madGi(£) — (aradGio( ), grade (1) dp.

Substituting into (3.2.10) we have the theorem. O

3.2.1 Restriction to functions on the frame bundle P*M

Theorem 3.2.3 can be restricted to smooth functions on P¥M. Below, we present its

formulation.

Theorem 3.2.4. Let o€ C*(P*M) and f = (v1,...,v;) € PEM. Then

kE+1 ; vsi
klgradg|Ze — 211 2 IGigl2, — f 3 CRlghadye (1), vp)us ghads 1)) dis —

1] 1
X . h . v,
- Zf (arade(f), erad,Gip())) + (gradGip(f), aradop(F)y dp, (32.11)
where L? stands for the L?-space on P*M.

Proof. Let ¢ be a smooth extension of ¢ on T*M and consider equation (3.2.9).

Setting 7 = ¢ and summing over ¢ = 1,...,k we obtain

Flgradg] s — f S (R(ghad (), o) ghadd () dp —

zll

= LkM Z<grad<,5(f), g;};dG"sb(f» + <grhadGi95( 1), ggd@( fdp. (3.2.12)

We consider the RHS and using equations (2.3.5) and (3.1.3) we obtain
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and

f <g5§d¢<f>,gr3d6i¢<f>>du=f (arad,3(f), grad G 3 (f)) dy
PEM P

kM
: v.J . V,%
- % 2. f G'G@(f) grad@(f),viy + G'G'@(f){grad@(f), v;) du
j=1 PkM
(k+1)
2

- | | G p () () dn+ S IG

k ,% . ) v,j )
30| GG (). ) + GG ), v
j=1 PkM
(3.2.14)

where we used Lemma 3.2.2 and 3.1.3 for the second equality.
Adding (3.2.13) and (3.2.14) and taking the sum over i, the RHS of (3.2.12)

becomes

k vyt . . v,0
[ Y ermdpr), grad G + (arad G (), grad,5() d

R
+—— G @2, (3.2.15)

i=1

Finally, using (2.3.5) and the antisymmetry of R, we have

> CRiarade(f), v)ve aradg(1)) = 3 (Reradyp(f), v)us gradypl)). - (3:2.16)

3,j=1 1,7=1

Substituting (3.2.15) and (3.2.16) into (3.2.12) proves the theorem. O

The form of the previous theorem allows us to derive a new identity assuming
the function ¢ to be invariant under one the frame flows. The new formula contains
only three terms, the Riemannian curvature tensor, the L? norms of the generators
of the frame flows, and the L? norm of the horizontal gradient. Therefore, it shows a
close connections between curvature properties of the manifold and properties of the

frame flows.

Corollary 3.2.5. Let o € C*(P*M) and assume it is invariant under the i-th frame
flow, i.e., Gio(f) =0 for all f e P*M, and let f = (vq,...,vx) € P*M. Then
1 k ' n—~k h n
3 2 IGl +2 ), [Gradg (D elir = X [ (Rlws, o wddi, (3217
=1 j=1v0"

j=lj#i
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v,j
where (V1. .., Uk, €1,...,6n k) is an orthonormal basis of TrrpyM, w; = grad,o(f),

and L? stands for the L?-space on P*M.

Proof. We prove the theorem for ¢ = 1. The other cases follow in the same way.
Let f = (v1,...,v,) € P"M and ¢ a smooth extension of ¢ on T"M and let
(v1,..., U, €1,...,e, ) be an orthonormal basis of T,M, p = 7*(f).

We first observe that due to equation (2.3.5), we have

(grad, 3(f), i) = (erada(f), e, Vi—1,....n—k. (3.2.18)

We consider equation (3.2.11) and we aim at rewriting the horizontal gradient
and its RHS in terms of L?-norms of the generators of the frame flows and in terms
of the Riemannian curvature tensor.

First of all, we observe that

h . n - n—k h .
gradp(f) = Z G'o(f)v; + Z<gradgo(f), eer, (3.2.19a)
i=1 =1
h k . n—k h
Jerad@l2s = Y IG 312 + 3 [erad@(f), el (3.2.19b)
i=1 =1

We now look at the RHS of (3.2.11). From (2.3.5), we derive

.0

vy = £ (@radp(f),vy) — (rad@(f).0)),  Yi=1..k  (3220)

(wy, ey = (grad@(f),e),  VIi=1,...n—Fk (3.2.21)
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Using these equations, Lemma 3.1.3 and equation (3.2.19a), we have

K h v,i )
Cl~ d GZ D d GJ d Gz ) d
;JPkM@ra SO(f)7gra 0 So(f)> n = JP s Z <gra ( ),vj> I

J=2,j#1i

JP Z<grad<,0 el><gradG o(f ),el>du]

M
v,] o
- 2 [ SR [macer). ) ~ (aiadG3(). )] an
k n—k i
e | g, en|rda(f),e) + G (Carads (), )] dn
=2 [=1
k o |
— Z . §GJ G1<grad<p( )7Uj>—Gi<grzid<ﬁ(f),vi>+GJ<ﬁ(f)] du
1,]=2,7#1
k n—k
+ZZ <grad90 ), enG (<grad90( ),e)dp + (k —2) Z H<grad90 ), en 72
=2 [=1
k . .
B z}jg;j#i JP’CM —GER ) vg) dp + 2 Z G2
n—k h ' v n—k
£ | Cerda (), edGiCarada(f),en) du+ (k~2) ) ICerad(f), )z,
i=2 |=1 YP*M -
(3.2.22)
and
- h v,
ZJ <gradG ( ) grad >dﬂ Z Z f <gradG ),vj><vj,gradogé(f)>du
i=2 Y P*M 1=2j=1,j#1
k n—k vi
i Zf (arad G f), ) er erad 7))
=2 [=1

G B o+ Y |, ceatw.

0,]=2,7#1

3 ], € Caradat).conEmmaz (). oy

> Z<R (rad (), vy o e0)grad (), ey, (3.2:23)
=1 JPEM

Summing (3.2.22) and (3.2.23), using (3.1.2b), (3.2.8) and the skew-symmetry of

the matrix ((w;,v;)); j, we have
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Zj (aradp(f), grad,Gip( ) + (gradGip( f), gradyp(f)) dyt =

n—k

= —ZHG%OHL# (k—2) )] Kerad3(£), en)2:

=1
k

+Zf G G @(f) v, wi dp + Z J (GFGH — GGNG(f) vj, w:)dp

1,J=2,17#] PkM

k n—k
- Z Z J Z<R gl"ad@(f) V) Vi, 6z><gradg0( ), e dp
k n—k vi ' o
+) <grads5(f ), eG' ({grad@(f), e)) + GZ(<grad¢( 1), e grad@(f), e dp

i=2 =1 YP*M

/
~

Spras G (<grad<p( ), el><gradgo( ),e1») du=0 (see proof of Lemma 3.2.2)

k
=—§ IG°@|7> + (k —2) E H<grad90 ),enlie — f E §<R w;, vp) Vg, wi) dpt.
PEM

=2 ]=1
(3.2.24)

Substituting (3.2.19b) and (3.2.24) into (3.2.11) concludes the proof. O

For k = n ,the above corollary simplifies as follows.

Corollary 3.2.6. Let ¢ € C*(P"M) and assume it is invariant under the i-th frame
flow, i.e., Gio(f) =0 for all f € P"M, and let f = (vi,...,v,) € P"M. Then

n

1
3 Z |G )3 = ZJ R(w;, vj)vi, w;)du, (3.2.25)

J=Lj#i

v,j
where w; = grad,o(f) and L* stands for the L?-space on P"M.



Chapter 4

Dynamical Applications

In this chapter we present two dynamical consequences of Corollary 3.2.6 under cur-
vature assumptions on the base manifold M. In Section 4.1 we consider the principal
bundle over a n-dimensional compact manifold with non-positive constant curvature,
and over a 2-dimensional manifold of non-positive curvature proving that any smooth
functions invariant under one of the frame flows is also invariant under the remaining
ones. In Section 4.2 we consider the Grassmannians of oriented k-planes over M
with non-positive curvature operator and we show an invariance property of smooth

functions on such Grassmannians under the action of the parallel transport.

4.1 An invariance property of smooth functions on
frame bundles

Corollary 3.2.6 in Chapter 3 hints that if the curvature of the manifold could be non-
positive, then function ¢ would also be invariant under the remaining frame flows.
This is true in two cases, for 2-dimensional manifolds of non-positive curvature and

for higher dimensional manifolds of non-positive constant curvature.

Corollary 4.1.1. Let M be a 2-dimensional manifold of non-positive curvature. Let
© be a smooth function on the principal bundle P*M . If ¢ is invariant under the i-th
frame flow, 0 < i < 2, i.e., G'o(f) = 0 for all f € C*(P*M), then it is invariant

under the remaining frame flow.

33
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Proof. Consider equation (3.2.25) for k = 2 and assume ¢ = 1, the case i = 2 being
the same. Writing the vertical gradients in the RHS according to the orthonormal

basis vy, vy, we obtain

1 v,1
§HG2<PH%2 = J (R(vz, v1)vr, vz ){grady(f), v2)” dpe < 0.
P2M
Hence, [G?¢|3. = 0 and therefore ¢ is also invariant under G O

Corollary 4.1.2. Let M be a n-dimensional manifold of non-positive constant sec-
tional curvature K. Let ¢ be a smooth function on the principal bundle P"M . If © is
invariant under one of the i-th frame flows, i.e., G'p(f) = 0 for all f € C*(P"M),

then it is invariant under the remaining frame flows.

Proof. We first notice that in case of constant sectional curvature K, the Riemannian

curvature tensor decomposes as

(R(v1,v2)v3, v4) = K ({01, v4){2, v3) — {1, v3){v2, 04)).

Substituting this expression into the RHS of (3.2.25) we obtain

1 n A n
5 Z ||G]90||L2 = J:D y Z K((wj, U)Z> — <wj, vi><wi, Uj>) d,LL = Ksz”L2 < 0.
n j=1

j=1,j#1i

Hence, ) |G| z2 = 0. This implies that each term of the sum is zero as

n
=1
they must all be non-negative. Therefore, ¢ is invariant under the remaining frame

flows. L]

4.2 An invariance property of smooth functions on
oriented Grassmannians

Another consequence of Corollary 3.2.6 is for smooth functions on oriented Grass-
mannians. We begin explaining the relation between oriented Grassmannians and

frame bundles.
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4.2.1 Oriented Grassmannians and Parallel Transport

The oriented k-th Grassmannian of M, G* (M) for 1 < k < n = dim M, is the union
of all k-planes of T,,M for all p € M together with an intrinsic orientation, i.e.,

Ga (M) = | J {Aor | A= T,M,dim A = k},

peM

where A,, is a subspace of T, /M with an additional choice of intrinsic orientation.
This is a 2-fold of the non-oriented k-th Grassmannian. We observe that for £ = 1
we have G! (M) = SM, the unit tangent bundle of M.
Gk (M) is linked to the principal bundle P"M by the canonical projection

w:P"M — Gh (M)
f=(v1,...,0,) — (span{vl,...,vk}, (vl,...,vk)),

where (vy, ..., v;) stands for intrinsic orientation.
The existence of this projection implies that any function ¢ € C*(G* (M)) can
be extended to a function ¢ € C*(P"M) by setting ¢ = ¢ o 7. The function ¢ has

two important properties. Firstly, since ¢ is invariant under the action of SO(k), ¢ is

o . : SO(k) 0
invariant under the action of matrices of the form . Secondly,
0 SO(n — k)

its vertical gradients satisfy the following conditions.
Lemma 4.2.1. Let ¢ € C*(GE (M)) and ¢ = ¢ o 7€ C°(P"M). Then,
(i) grédogb(f) € span{vy, ..., vg} ifi = k+1;

(11) g;);d‘,(b(f) € span{vgy1, ..., v} ifi=1,.. k.
Proof. To prove (i) and (i7), we need to show that <g;;dogb(f), vjy=0fori,j > k+1
and <g§gdogb(f), vjy = 0 for i, j < k, respectively.
Let ¢ be a smooth extension of ¢ on T"M constructed as follows.
Let h : T"M — [0,0] be such that h(ws,...,w,) = det({w;,w;));; and let
Y {(wy,...,wy,) lin. indep} — P"M be the Gram-Schmidt process. We define the
cut off function H : [0,0] — [0,1] be a cut off function such that H(z) = 0 for

r< i

s, H(z)=1forz>2%and 0 < H(z) < 1for 3 <z <3. Then

H(h(wy,...,wy)) (o) (wr,...,w,) {wi,...,w,} lin. indep.

0 otherwise

gg(wl,...,wn) =
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Note that qg(wl,...,wl—l—twj,...,wn) = o(wy,...,wy,) forall I =k + 1.

This implies that, for i, j > k + 1, we have
.0 1 v 1 v, .
Cgrad,¢(f), v;) = 5<erade(f), v;) — ;<gradd(f), vi)

1d ~
— Eatzo(qﬁ(vl,...,vk,...,vi+tvj,...,vn)—Qﬁ(vl,...,vk,...,vj+tvi,...,vn)> =0,

which proves (i).
Part (7i) follows from the fact that ¢ depends only on the plane spanned by the
first k& vectors. L

Another consequence of the existence of 7 is a correspondence between the gener-
ators of the frame flows on P"M and the parallel transport on G (M) along special
directions.

In fact, let ¢ = @ o7 € C®(P"M) with p € C*(GF.(M)), f = (v1,...,v,) € P*M
and A,, = (span{vl, cey UL (V1 - ,vk)) = 7(f), then

Gof) = Glpom(f) = 5| _(omfu®) = 5| o)) (421)

Definition 4.2.2. Let (A,,),(t) denote the parallel transport of the oriented k-plane

t=0

Ay € GY (M) along a curve ¢, on M with ¢ (0) = v. The parallel transport is called

intrinsic if the vector v belongs to A,,, and non-intrinsic otherwise.

AOT
Aor

Figure 4.1: From left to right: example of intrinsic and non-intrinsic parallel transport

of a plane A,, along the geodesic c,.

The above definition and equation (4.2.1) implies the following.
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Corollary 4.2.3. Let 7 : P"M — G~ (M) be the canonical projection, p € C*(GE (M),

and ¢ = porr € CP(P"M). Then, @ is invariant under all intrinsic parallel transports

if and only iof ¢ is invariant under the i-th frame flows, fori=1,... k.

4.2.2 Invariance Property

We now assume that M has non-positive curvature operator R. The curvature oper-

ator is a linear operator R : A2(TM) — A?(T'M) defined as
<R<X A Y), Z A W>A2(TM) = <R(X, Y)VV, Z>TM (422)

for all vector fields X,Y, Z, W on M.

The curvature operator R is symmetric and we say that R is non-positive (R < 0)
if all of its real eigenvalues are non-positive.

A manifold M with non-positive curvature operator has non-positive curvature.

However, the inverse implication is not true, for details on this topic we refer the

reader to [AF04] and [Aral0)].

Theorem 4.2.4. Let M be a compact n-dimensional Riemannian manifold with non-
positive curvature operator (R < 0). Let 1 < k < n and p € C*(GE (M)). If ¢ is
wmvariant under all the intrinsic parallel transports then it is also invariant under all

parallel transports.

Proof. Let ¢ = pome C®(P"M).
Since ¢ is invariant under intrinsic parallel transports, ¢ is invariant under G*, ..., G*
due to (4.2.1).

Considering equation (3.2.25) and summing over i = 1,..., k we obtain

k n ) k n
9 Z “G]¢‘|%2(P"M) = JP MZ Z<R<wj7 Uj)Ui,wz'> dp
j=1 "

i=1j=1

' ) (4.2.3)
— J <R(2w3 /\1@-),2% A\ Ui>A2(TM) d,u,
"M j=1 i=1

where w; = gréxdoqb(f).
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Since the matrix ((w;,v;)). . is skew-symmetric and making use of Lemma 4.2.1,

1]
we obtain
n n n k n n k
ij AVj = Z Z (wj, v, A v = Z Z (wy, vpvp A v + Z Z<w]~,vl>vl A Vj
j=1 J=11=1,1%j j=11=k+1 j=k+11=1

k
= Qij A V.
j=1

Since R < 0, the RHS of (4.2.3) is non-positive forcing the LHS to be zero. We
conclude that ¢ is invariant under all frame flows, and so ¢ is invariant under all

parallel transports. O

For k = 1 the theorem above allows us to recover an unpublished result of Knieper
[Kni] on the geodesic flow. In fact, G!. (M) = SM, the intrinsic parallel transport
corresponds to the geodesic flow and the assumption on the non-positivity of the
curvature operator can be weakened to the non-positivity of the sectional curvature,

as it is clear from the proof of Theorem 4.2.4. Therefore, we can state the following.

Corollary 4.2.5. Let M be a compact Riemannian manifold with non-positive cur-
vature. Let ¢ € C*(SM) invariant under the geodesic flow, then ¢ is also invariant

under parallel transport.

In view of Theorem 4.2.4, it is natural to investigate density properties of orbits
of k-planes A, under all intrinsic parallel transports. In fact, let 1(A,.) be the set
of all k-planes obtained by finitely many moves along intrinsic parallel transport
and G(A,,) be the set of all k-planes obtained by finitely many moves along general
parallel transport. Theorem 4.2.4 suggests that even though there might be many
k-planes A, such that I(A,,) is much smaller and not dense in G(A,,), there might
always be a k-plane A! = arbitrarily close to A,, such that I(A] ) is dense in G(A,).
This is at least true in the case of the flat torus and in the case of constant negative
curvature. In the general case, this seems to be a difficult question to answer.

However, we can give an answer to the related, easier question, whether a smooth

function ¢ invariant under all intrinsic parallel transports is necessarily constant.

Proposition 4.2.6. Let M be a non-flat, compact Riemannian manifold with non-

positive curvature operator R. Then the following statements hold:
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(1) If M s either a Kdhler or a Quaternion-Kdhler manifold of real dimension
2n = 4 or dn = 8, respectively, or a locally symmetric space of non-constant
curvature (i.e., not the real hyperbolic space), then there exist smooth, non-
constant functions on G2 (M) or G2 (M) which are invariant under all intrinsic

parallel transports.

(11) If M is not one of the exceptions in (i), then, for all k < dim M, any smooth
function on G* (M) which is invariant under intrinsic parallel transport is nec-

essarily constant.

Proof. (i) Let M be a Kahler manifold of dimension 2n > 4. The almost complex
structure J is parallel and it gives rise to a smooth function ¢ on oriented 2-planes,
which is invariant under parallel transports but it is not constant. This function
is defined via @(A,.) = {v1, Juy) where vy, vy is an oriented orthonormal basis of
Ay € G2 (M).

Now, let M be a Quaternion-Kahler manifold of real dimension 4n > 8 with
non-positive curvature operator. The canonical 4-forms 2 (see for example [Ish74] or
[Gray69]) globally defined on M is parallel. This gives rise to the smooth function ¢ :
Gt (M) — R, via ¢(A,,) = Q,(v1, ..., v4) where vy, ..., vy is an oriented orthonormal
basis of A,. € G (M) and A,. € T,M. This function is invariant under parallel
transports and non constant.

Finally, let M be a locally symmetric space of non-constant non-positive curva-
ture, then M is a compact quotient of a symmetric space with non-constant curva-
ture and its Riemannian curvature tensor is parallel. We define ¢ € C*(G2.(M))
as ©(Ay) = (R(v1,v2)ve,v1) where vy, vy is an oriented orthonormal basis of A, €
G2 (M). Now, ¢ is invariant under all parallel transports but it is not constant.

(17) If M is a n-dimensional manifold which is not one of the exceptions above,
the holonomy group of M is SO(n) (see [Ber93] or [Bes87]). Therefore, any smooth
function on G* (M) invariant under all intrinsic parallel transports is also invariant
under the non-intrinsic parallel transports by Theorem 4.2.4 and, hence, is constant

due to the transitive action of SO(n) on oriented k-planes in the tangent space. [

Remark 4.2.7. It seems to be an open question whether there exist compact non-
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locally symmetric Quaterion-Kéhler manifolds with non-positive curvature operator.
We refer the reader to [CDL14,CNS13,LeB91,LeB88]| for an overview concerning this

question.
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Chapter 5

Introduction

A graph-like manifold is a family of compact, oriented and connected Riemannian
manifolds { X.}.-¢ made of building blocks according to the structure of metric graph
Xo. Roughly speaking, a metric graph is a graph where every edge e is associated
to a length ¢.. The manifold X. has the property that it shrinks to the metric
graph in the limit ¢ — 0. More precisely, a graph-like manifold is made up of edge
neighbourhoods X, . = [0, £.] x Y. . and vertex neighbourhoods X. , according to the
structure of the underlying metric graph. The parameter £ can be considered as the
radius of the edge neighbourhoods. X, . and X., are n-dimensional manifolds with
boundary whose intersection is a boundary-less (n — 1)-dimensional manifold Y. . if
the edge e emanates from the vertex v. Y. . is called the transversal manifold (see
Section 6.4 for a complete description).

Graph-like manifolds are widely used in Mathematics as well as in Physics. In
Mathematics, they are used to prove spectral properties of manifolds. The main
example is given by Colin de Verdier [CdV86] who proved that the first non-zero
eigenvalue of a compact manifold of dimension n > 3 can have arbitrarily large mul-
tiplicity. Other authors used them to prove the existence of metric with arbitrarily
large eigenvalues. Gentile and Pagliara [GP95] proved that any manifolds of dimen-
sion n > 4 admits a metric such that the first non-zero eigenvalues of the Hodge
Laplacian acting on differential forms is arbitrarily large. Similar results were also
proved in [CM10] and [CG14] where the authors analysed the first non-zero eigen-

value of the Hodge Laplacian on surfaces with boundary and of the rough Laplacian
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on differential forms on manifolds of any dimension, respectively. The key feature of
these ‘spectral engineering’ articles is to modify the manifolds with shrinking ‘pieces’
without affecting its topology and carry out the analysis on the new manifold, that
can then be considered as a graph-like manifold. In Physics, graph-like manifolds, or
more concrete, small neighbourhoods of metric graphs embedded in R3, are used to
model electronic and optic nano-structures. The natural question arising is whether
the underlying graph is a good approximation for the graph-like manifold. This
leads to the study of the asymptotic behaviour of the eigenvalues of the manifold.
In this direction, the convergence of the Laplacian on functions on graph-like man-
ifolds, the scalar Laplacian, has been analysed in details, and the convergence of
various objects such as resolvents, spectrum, etc. is established in many contexts

(see [EP05], [Pos12], [EP13] and references therein).

Related work. Graph-like manifolds can also be considered as collapsing manifold
with no curvature control. In this context, the focus is on understanding how well the
manifold approaches its limit space. An example is given in [AC95] where the authors
considered manifolds with shrinking handles. Similar partial collapsing have also been
considered in [AT12] and [AT14], where the authors studied the limit spectrum of
the Hodge-Laplacian of the collapsing of one part of a connected sum.

Another research line for collapsing manifolds is to study the collapse under cur-
vature bounds. In general, this assumption gives rise to extra structures, we refer the

reader to [Jam05], [Lot02], [Lot14] for a detailed overview.

5.1 Aim and main results

The aim of our investigation is to describe the behaviour of the eigenvalues of the
Hodge Laplacian A% acting on differential p-forms on a compact n-dimensional
graph-like manifold X, forp=1,...,n—1ase — 0.

The main idea beyond our description is that any p-forms can be orthogonally
decomposed into three components: a harmonic one; an exact one; and a co-exact
one (see [deR5H5] or [McG93] and references therein or Section 6.5). Consequently, the

spectrum of A% is the union of the spectra of the AL™ and of A%L™™**, the Hodge
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Laplacian acting on exact and co-exact forms, respectively, hence it is sufficient to
describe the eigenvalues of these two operators in the limit ¢ — 0 to obtain a full
description of the asymptotic behaviour of the eigenvalues of the Hodge Laplacian
acting on p-forms on X.. We will denote the j-th eigenvalue, counted with multiplicity,
of AR and AR by N(X.) and j\f (X.), respectively. For short, we will call
them exact and co-exact p-form eigenvalues. By Hodge duality and the fact that
the exterior derivative d and its adjoint d* are isomorphisms between the space of
exact and co-exact eigenforms (see also end of Section 6.5), the exact and co-exact

eigenvalues are related as follows.
_ — ~ _— '
N(X)=XN"(X.) and  N(X)=NP(X)  Vix1 (5.1.1)

Hence, the asymptotic behaviour of the exact p-form eigenvalues up to the middle
degree gives the description of all the eigenvalues of A% . We observe that for a
graph-like manifold of dimension two, the spectrum of the Laplacian in all degree
forms is entirely determined by its spectrum on functions. Since the convergence of
the function eigenvalues on X, has already been established [Pos12, EP13], we easily
conclude the converge of the eigenvalues of the Laplacian on X. for all degree forms
by (5.1.1) (see Section 7.2, in particular Corollary 7.2.3). For higher dimensional
graph-like manifolds, we still have convergence for the 1-form eigenvalues, but it is
not sufficient to describe the form eigenvalues in higher degrees: by Hodge duality we
only obtain the convergence of the co-exact (n — 1)-form eigenvalues. The remaining
p-form eigenvalues are all divergent under the hypothesis that X. is transversally
trivial (Theorem 7.3.3), i.e., the transversal manifolds Y, have trivial p-th cohomology
groups for p = 1,...,n — 2. This is proved using the natural structure of X, and the
McGowan Lemma stated in Proposition 6.6.4. Removing the topological assumption,
we have divergence for some of the higher form eigenvalues, namely, for eigenvalues
indexed by j = N, where N depends on the dimension of the cohomology of Y, for
all e € E' (Theorem 7.3.5).

We summarise our results as follows.

Theorem 5.1.1. Let X. be a compact n-dimensional Riemannian graph-like mani-

fold and let Xy be its associated metric graph. The following statements are true.
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(i) The 0-form eigenvalues, or equivalently the exact 1-form eigenvalues, of X. con-

verge to the eigenvalues of Xy, i.e.,

MN(Xo) = N(Xo) — N\(Xe) Vi1

e—0
(i1) Let n = 3 and 2 < p < n — 1 and that X, is a transversally trivial manifold.

Then, the first exzact p-form (co-exact (p — 1)-form) eigenvalues diverge, i.e,

)‘Ilj(Xa) = ;‘?_I(Xa) —> 00,

e—0
and so do all the exact p-form (co-exact (p — 1)-form) eigenvalues.
(i1i) Let n = 3 and 2 < p < n — 1. Then, j-th exact p-form (co-exact (p — 1)-form)
eigenvalues diverge, i.e.,

(X)) = AH(XL) — o, for N =1+2) dimH"\(Y,),
eeE
and so does all the j-th exact and co-exact form eigenvalues (in the right dimension)

for j = N.

We also asked ourselves about the relation between spectral gaps in the spectrum
of the Laplacian acting on 1-forms on X, and Xy. The interval (a,b) is a spectral gap
for the Laplacian if it does not belong to its spectrum. Our asymptotic description,

in particular Theorem 7.2.2 and Corollary 8.1.1, yields the following.

Corollary 5.1.2. Assume that the graph-like manifold X is transversally trivial and
suppose that (ag, by) is a spectral gap for the metric graph Xo, then there exist a., b.
with a. — ag and b. — by such that (a.,b.) is a spectral gap for the Hodge Laplacian
on X, in all degrees, i.c., 0(A%.) N (as,b.) = &.

In all our applications (presented in Chapter 8) we assume a. = a = 0, hence
the interval (0, b.) is a spectral gap (0 is always an eigenvalue). Considering a single
graph-like manifold with constant volume, we are able to recover a result of Gentile
and Pagliara [GP95] on the divergence of the first non-zero p-form eigenvalue (see
Proposition 8.2.1, Section 8.2). Moreover, we consider families of graph-like manifolds
arising from families of either Ramanujan graphs or general graphs. In this setting,
we manage to find spectral gap properties in relation to volume properties of the

manifolds (Section 8.3).
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5.2 Overview of the text

The material is organised as follows. In Chapter 6 we present all the necessary
preliminaries to our analysis. We describe metric graphs and graph-like manifolds
together with their associate Laplacians. We also review some basic facts about the
Hodge-Laplacian acting on differential forms on a manifold and we state the Mc-
Gowan Lemma (Proposition 6.6.4), the key ingredient in our proofs. In Chapter 7 we
state the main results, namely we prove convergence for the exact 1- form eigenvalues
and divergence for higher dimensional degree form eigenvalues. For completeness, we
also discuss the dimension of the space of harmonic forms. Finally, in Chapter 8 we
present some applications. We establish the existence of spectral gaps for graph-like
manifolds with underlying metric graph having a spectral gap in the spectrum of its
Laplacian. Moreover, we construct examples of (family of) manifolds with (upper or

lower) bounds on the first eigenvalues of the Laplacian acting on functions or forms.



Chapter 6

Preliminaries

We here introduce all the basic notions needed in the next chapters and we set the
notation.

In Section 6.1 we define discrete graphs and introduce their discrete Laplacians.
These definitions are the basis to treat metric graphs and the corresponding Lapla-
cians, defined in Section 6.2. In Section 6.3 we describe discrete and metric Ra-
manujan graphs, which will be used to construct families of manifolds with “special”
spectral gap (see Section 8.3). Section 6.4 is dedicated to the definition of graph-like
manifolds and to a brief description of their Hodge Laplacian on differential 1-forms.
In Sections 6.5 and 6.6 we recall some facts about the Hodge Laplacian acting on
forms and its eigenvalues. In particular, we describe how eigenvalues behave under
scaling and we present the McGowan Lemma, an eigenvalue estimate from below.
This lemma will be crucial in the proof of the divergence behaviour of the 1-form

eigenvalues (see Section 7.3).

6.1 Graphs and their Laplacians

A finite discrete graph is a triple G = (V, E,0) where V = V(G) and E = E(G) are
finite sets, called vertices and edges sets respectively, and ¢: E — V x V is such that
e — (0_e,d,e) associates to an edge its initial and terminal vertex. This map fixes
an orientation for the graph, crucial when working with 1-forms. In what follows, we

will assume, without stating it each time, that all discrete graphs are connected.

47
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For a vertex v € V' we denote by
Ef ={ee F|ose = v}
the set of incoming and outgoing edges at a vertex v, and with
E,=E, vES

(disjoint union) the set of edges emanating from v. The degree of a vertex is the

number of emanating edges, i.e.,
degv := |E,|.

In our graphs, we allow loops, i.e., edges e such that ¢_e = d,e = v, and each
loop is counted twice in degv and it appears twice in F,, due to the disjoint union.
We also allow multiple edges, i.e., edges e; # es with the same starting and ending
point.

To consider various types of discrete Laplacian, it is convenient to introduce edge

and vertex weights, defined as follows.

p=pg: E—(0,+0), e pe >0,

p=py:V — (0,+00), v iy > 0.

The graph (G, p) is called weighted discrete graph. There are two natural choices
for the weights, the combinatorial weight and the standard weight. The combinatorial
weight is defined such that u. = 1 and p, = 1, while the standard weight is such that
te = 1 and p, = degw.

Throughout this dissertation, we will consider the following weights.
pe =011 E— (0,+o0), e (>0,
py =deg: V. — (0, 400), v — degv.
In particular, we define the function ¢ : E — (0, +o0) such that e — /. as one
over weight and we call it the length function associated to G.

Given a function F' : V — C on the vertex space of G , the discrete Laplacian

on functions is defined as

BaP)(e) =~ 3 7 (F(o) = F),

degv hon
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where v, is the vertex on the opposite side of v on e € F,.

We observe that A¢ can also be defined as Ag = df.dg where
dg : lo(V,deg) —> lo(E, 071), such that (dgF). = F(0ye) — F(0-e),
and where (5(V,deg) = CV and ly(E, (') = CF carry the norms given by
1
F B vaeg = 3 IF@)Pdegu and [l gy = 3 P
veV eck €
respectively, and where df, is its adjoint operator with respect to the corresponding

inner products.

We can equally define a Laplacian on 1-forms by A}, := dgdy,, acting on lo(E, ¢71).

Remark 6.1.1. For a general weighted graph (G, i), the weighted discrete Laplacian

is defined as

AapF®) = = 3 pe(F(v) — F(v)).

Hew ecE,

acting on the space £(V. 1) = {F = (F(0))uev | |F 4y = Shoey | F(0) 20, < 0},

For further readings on discrete graphs and discrete Laplacians we refer the reader

to [Pos12, Section 2.1]

6.2 Metric Graphs and their Laplacians

Let G = (V, E, 0) be a discrete graph and let ¢ : E'— (0, 0) be the associated length
function introduced in the previous section.
A metric graph X, associated to the discrete graph G is the quotient
Xo =) I/~
eely

where I, := [0, {.] and ~ is the relation identifying the end points of the intervals I,
according to the graph, i.e., x ~ y if and only if )(z) = ¢ (y) where

0el,— 0_e,
?ﬂiUIe*V, EGEIEH5+€,

ecell
T € Joep(0,0e) — .



6.2. Metric Graphs and their Laplacians 50

An alternative way to describe a metric graph is to think of G as a topological
graph where each edge e € E (topologically an interval) is associated to a length
l, > 0.

Metric graphs carry a natural measure on each interval, the Lebesgue measure
ds.. This allows us to define a natural Hilbert space of functions and 1-forms by

(Xo) =@ L) and  L*(A'(Xo)) = P L*(AY(I
ccE ceE
with norms given by
||fH%2(X0) = Z er||%2(18) and ||04H%2(A1(x0)) = Z HO‘eH%%Al(Ie))
eeE eeE

for functions f: Xog — C, f = (fe)eer and l-forms a = (@)ecr = (ge dSe)ecp ON
Xo, respectively. We remark that functions on I, can be identified with 1-forms via
fe — fods., the difference of forms and functions appears only in the domain of the
corresponding differential operators below.

We define the exterior derivative d = dx, on X, as the operator
d: domd — L*(A'(Xy))  suchthat  d(f.)eer = (f dse)ecr
whose domain is
domd = H'(X,) n C(Xy),

where H'(Xo) = {f € L2(Xo) | f' = (Feer € LA(X0)} = @,epp H'(LL) and C(Xo)
denotes the space of continuous functions on Xj.

It is not difficult to see that d = dx, is a closed operator with adjoint given by

d*<046)eeE = _(a/e)eeE>
with domain
domd*z{aeHl (A'(X, ‘Zae —O}
ecell

where H'(A'(Xy)) = {@ = (g.dsc)ecr € L*(AY(Xy))|g. € L*(1.)} and a is the
oriented evaluation of a, i.e.,
— _ge(o)a v=20_¢

ae(v) =
ge(ge)y v = 6-&-6'
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The (metric) Laplacians acting on functions and 1-forms defined on X, are the

operators

A%, =d*d and Ak, = dd*,

respectively. The domains of A% and A} are

dom A%, = {f € domd|df € domd*},

dom Ay = {a e domd* |d*a € domd},

respectively.
Writing the vertex conditions for the Laplacian on functions explicitly, we obtain
the conditions

fe(0>7 v=_0_¢ ~
fe(v) := is independent of e € E, and Z fi(v) =0, (6.2.1)

fe(le), v=20qe €k,
called standard or Kirchhoff vertex conditions. The first condition can be rephrased
as continuity of f on the metric graph, while the second is interpreted as a flux
conservation where the 1-form df = (f!). is considered as a vector field (we remind
the reader that there is one-to-one correspondence between vector fields and 1-forms
through the musical isomorphism [GHL90, p.75]).

As for the discrete Laplacian, it is possible to define a weighted metric Laplacian.
We do not give details of this operator and of the various types of metric Laplacians
here as we do not treat them. For further details we refer the reader to [Ku04, Ku05]
and references therein.

The Laplacians Ag(o and Ako are both self-adjoint and non-negative operators
and, since X is compact, they have purely discrete spectrum [Pos12, Proposition
2.2.10, and 2.2.14]. Moreover, they fulfil a supersymmetry condition in the sense
of [Pos09, Sec. 1.2], as explained below.

Set H = HoDH1, a Hilbert space, then d has supersymmetry if d : dom d — H;
and domd < Hy. In our case, Hy = L*(Xy) and H; = L*(A'(Xy)), and so d = dx,
has supersymmetry.

As a consequence, the spectra of Ag(o and A}(O away from zero coincide including

multiplicity, i.e., let AY(Xo) and Aj(Xj) denote the eigenvalues of A% and Ak in



6.3. Ramanujan Graphs 52

increasing order and repeated according to their multiplicity, then
A (Xo) = X (Xo) V=1 (6.2.2)

A general proof of this fact can be found in [Pos09, Proposition 1.2].

We conclude this section presenting a relation between discrete and metric Lapla-
cian for equilateral graphs [Nic85, Cat97].

A graph is said to be equilateral if {, = {y for all e € E and the spectra of its
discrete and metric Laplacian on functions (or 0-forms) satisfy the following.

Let ¥ := {(j7/ly)* | 7 = 1,2, ...} be the Dirichlet spectrum of the interval [0, {5],
then

Aeo(Ay,)  ifandonly if  p(N) =1 cos(leV)\) € 0(Ag) (6.2.3)

for all \ ¢ 3.

As a consequence of the supersymmetry condition mentioned above, the same
relation holds for the spectra of discrete and metric Laplacian on 1-forms.

There is also a relation at the bottom of the spectrum of Ag and Ay, for general
(not necessarily equilateral) metric graphs for which we refer to [Pos09, Sec. 6.1]

or [Pos12, Sec. 2.4.2] for more details.

6.3 Ramanujan Graphs

A discrete graph G is k-regular, if all its vertices have degree k. For ease of notation
we assume here that the graph G = (V| E,0) is simple, and we write v ~ w for

adjacent vertices.

Definition 6.3.1. Let G be a k-regular discrete graph with n vertices and let Ag be
its (normalised) discrete Laplacian. The graph G is said to be Ramanujan if

2vk -1

max{[l = pul[peo(Aa)} < —

We remark that many authors use the eigenvalues of the adjacency matrix Ag as
the spectrum of a graph. The adjacency matriz is given by (Ag)vw = 1 if v ~ w and

(A¢)vw = 0 otherwise. As v ~ w is equivalent with w ~ v, the adjacency matrix is
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symmetric. For more details about the adjacency matrix and its spectra we refer the

reader to [BH12]. For a k-regular graph, we have the relation
1
AG = k‘(ld —Ag), or, AG =id _EAG (634)

with the discrete graph Laplacian (with length function ¢, = 1). We observe that
0(Ag) < [k, k] and o(Ag) < [0,2]. Moreover, k and 0 are always eigenvalues of
Ag and Ag, respectively, as well as —k and 2 are always eigenvalues of Ag and Ag,
respectively, if and only if the graph is bipartite (recall that we assume that G is a
finite graph).

We define the (maximal) spectral gap length of a discrete graph by

Y(G) :=min{p,2 — p|peo(Ac)\{0,2}} =1 - %max{|a| | e o(Ac), o] < kY,
(6.3.5)
i.e., (@) is the distance of the non-trivial spectrum of the Laplacian Ag from the
extremal points 0 and 2. Hence, a graph is Ramanujan if its spectral gap length has

size at least

It has been shown that the lower bound is optimal, i.e., for any k-regular graph (or
even for any graph with maximal degree k) with diameter large enough, the spectral
gap length is smaller than 1 — 2v/k — 1/k + 7, where 1/ is of the same order as
the diameter (see [Nil91, Thm. 1] and references therein). In this sense, Ramanujan
graphs are optimal expanders, i.e., optimal highly connected sparse graphs. Expander
graphs have been characterised in several ways in a number of different contexts and
are used in a number of applications in pure mathematics as well as in computer
science. For a survey on expander graphs we refer the reader to [HLWO06, Lub10,
Lub12] and references therein.

The existence of infinite families {G*};cy of k-regular Ramanujan graphs has been
shown whenever k is a prime or a power of a prime (see e.g. [LPS88, Mar88, Mor94]).
The existence of infinite families of bipartite k-regular Ramanujan graphs for every
k > 2 has been proved in [MSS15a] by showing that any bipartite Ramanujan graph
has a 2-lift which is again Ramanujan, bipartite and has twice as many vertices.

Recently, the same authors proved the existence of bipartite Ramanujan graphs of
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every degree and every number of vertices [MSS15b] by showing that a random m-
regular bipartite graph, obtained as a union of m random perfect matchings across a
bipartition of an even number of vertices, is Ramanujan with nonzero probability.

Let {G'}ien be a family of Ramanujan graphs such that
v = |V(G")| — (6.3.6)

and consider the associated family of equilateral metric graphs {X{}ien of length /.

By (6.2.3), the metric graph Laplacians A x; all have a spectral gap

2(1 - 2—”];;_1> >0 (637

h
(ag,bo) = (O, £—2> with h = hy := arccos
0

at the bottom of the spectrum.

6.4 Graph-like Manifolds and their Hodge Lapla-
cian

A graph-like manifold associated with a metric graph X, is a family of oriented
and connected n-dimensional Riemannian manifolds (X.)o<c<s, (€0 small enough)

shrinking to Xy as € — 0 in the following sense. We assume that X. decomposes as

Xo={JX.o X (6.4.8)

ecE veV
where X., and X, . are called edge and vertex neighbourhood, respectively. More
precisely, we assume that X. , and X. . are closed subsets of X, such that

Y.. e€kE,
Xa,v M Xa,e =

g et by,

with Y, . a boundaryless smooth connected Riemannian manifold of dimension n —1

(see Figure 6.1). We will often refer to Y. . as the transversal manifold.
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Xo

Figure 6.1: An example of a two dimensional graph-like manifold X. with associated

graph Xj.

Furthermore, we assume that the manifolds (X ,,g.,) and (Y. ., h..) are con-
formally equivalent to the Riemannian manifolds (X,, ¢g,) and (Y, h.), respectively,

with (constant) conformal factor €2, i.e.,
G = €29, and hee = 2he. (6.4.9)

For short, we will write X, , =X, and Y., =¢ Y..
Moreover, we assume that X. . is isometric to the product I, x ¢ Y.. Let g..

denotes the metric on X, ., it satisfies
Gee = ds® + %he. (6.4.10)

We often refer to a single manifold X. as graph-like manifold instead of the family
(X.)e as in the definition above.

Throughout this dissertation, we will assume that vol,_; Y, = 1 for all e €
E, for simplicity. The general case would lead to the weighted vertex condition
Dees, (Vol, 1 Ye)ﬁ(v) = 0 instead of (6.2.1) for the metric graph Laplacian (see
[Pos12, EP09] for details).

We call a graph-like manifold X, transversally trivial if all transversal manifolds
Y. are Moore spaces, i.e., if H?(Y,) = O for all 1 < p < n—2 and all e € E,
where HP(-) denotes the p-th cohomology group. We observe that a member of a
transversally trivial graph-like manifold X, is not necessarily homotopy equivalent to

the metric graph Xy, as the vertex neighbourhoods do not need to be contractible.
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Below, we give an example of how to construct a transversally trivial graph-like

manifold.

Example 6.4.1. Let n > 2. For each vertex v fix a manifold X,. Remove deg v
open balls from X, hence the resulting manifold X, has a boundary consisting of
deg v many components each diffeomorphic to a (n — 1)-sphere S"~. For e¢ € E,, let
Y, = S"~! with a metric such that its volume is 1. As (unscaled) edge neighbourhood,
we choose X . := [0, (] xY, with the product metric. Then we can construct a graph-
like (topological) manifold X; with a canonical decomposition as in (6.4.8) (for ¢ = 1)
by identifying the e-th boundary component of X, with the corresponding end of the
edge neighbourhood X .. By a small local change we can assume that the resulting
manifold X is smooth. The corresponding family of graph-like manifolds (X.).~¢ is

now given as above by choosing the metric accordingly.

Remark 6.4.2. Given a closed (i.e., compact and boundaryless) manifold X and a
metric graph X, it is possible to turn X into a graph-like manifold with underlying
metric graph being X,. As an example, we assume X, to be a metric finite tree
graph, then X turns into a graph-like manifold letting the tree “grow” out of the
original manifold. More formally, we construct a graph-like manifold according to a
tree graph and leave one cylinder of a leaf (a vertex of degree 1) “uncapped”. Then,
we glue the original manifold X with one disc removed together with the free cylinder.
Obviously, the resulting manifold is homeomorphic to the original manifold X and

can be turned into the a graph-like manifold by the above choice of metric.

We can now define on X, the corresponding Hodge Laplacian A = dd+0d acting
on differential p-forms. The operators d and ¢ are the classical exterior derivative
and its formal adjoint on manifolds, as unbounded operators in the corresponding L?
spaces.

We give further details on the Hodge Laplacian on manifolds in the next section.
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6.5 Hodge Theory

Let (M, g) be a compact, oriented and connected n-dimensional Riemannian mani-

fold. The Riemannian metric ¢ induces the L?-space of p-forms
L*(AP(M, g)) = {w: M — C‘ HwHQLQ(AI,(M’g) = JM w2 dvoly, M < oo}
where

lwl1Z2ap(ar0)) = (Ws WYL2(ar(arg)) == JM |wl? dvoly, M = wa A W,

and * denotes the Hodge star operator (depending on the metric g).

The Laplacian on p-forms on M is formally defined as

AP

gy = A7 = d6 + 8d,

where d is the classical exterior derivative and § = (—1)"*""1xdx is its formal adjoint
with respect to the inner product induced by g.

If M has no boundary, then ¢ is the L?-adjoint of d and AP? is a non-negative self-
adjoint operator with discrete spectrum denoted by /\;7 (M, g) (repeated according to
multiplicity).

We allow the manifold M to have a boundary dM, itself a smooth manifold of
dimension n—1. As in the function case, it is possible to impose boundary conditions
for functions in the domain of the Hodge Laplacian, called absolute and relative
boundary conditions. To do so, we first decompose a p-form w in its tangential and
normal components on dM, i.e., W = Wian + Wnorm Where wi,, can be considered as a
form on dM while wyoym = dr A w' with w' being a form on dM and r being the
distance from oM.

Absolute boundary conditions require that w satisfies
Wnorm = 0 and  (dw)norm = 0
while relative boundary conditions require
Wian = 0 and  (0w)an = 0.

These boundary conditions give rise to two unbounded and self-adjoint operators

A?> and A with discrete spectrum, the Hodge Laplacians with absolute and relative
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boundary conditions, respectively (see e.g. [Cha84] or [McG93]). We remark that
for functions, the absolute correspond to Neumann while the relative correspond to
Dirichlet boundary conditions.

Furthermore, since the Hodge star operator exchanges absolute and relative bound-
ary conditions, there is a correspondence between the spectrum of A" and the spec-
trum of A™, which allows us to study just one of them to cover both cases. In
the sequel, we will only consider absolute boundary conditions if the manifold has a
boundary, and hence we will mostly suppress the label (-)2" for ease of notation.

In an L?-framework, we consider d and &, as unbounded operators, defined as the

closures d and &y of d and Jy on

domd = {w e C*(A"(M, g))|dw e L*(A"*"(M, g))},
dom 6y = {w € C*(AP(M, g)) | ow € L*(A"" (M, g)), Wnorm = 0},

respectively. The Hodge Laplacian with absolute boundary condition is then given
by
A =A™ = d 5+ dod.
For this operator, Hodge Theory is still valid. In particular, the de Rham theorem
holds (see [deR55] or [McG93, Sec. 2.1] and references therein), i.e.,

HP(M, g) = H(M),

where HP(M, g) is the space of harmonic p-forms (with absolute boundary conditions
if the boundary is non-empty) and HP?(M) is the p-th de Rham cohomology, and
any p-form w € L*(AP(M, g)) can be orthogonally decomposed into an exact (dw),

co-exact (0w) and harmonic (wg) component, i.e.,
w = dw + 0w + wy, (6.5.11)

where @ € domd is a (p—1)-form, & € dom &, is a (p+1)-form and wy is a harmonic p-
form. Moreover, the Hodge Laplacian leaves these spaces invariant and maps p-forms
into p-forms. In particular, we can consider the Hodge Laplacian acting on exact and
co-exact p-forms as the operators d 9y and dyd, respectively. We call their respective

eigenvalues exact and co-exact (absolute) p-form eigenvalues, and we denote them by

N(M, g) and N;(M, g), respectively.
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Let EP(A) = ker(ddy — A) and EP(\) = ker(dod — \) denote the eigenspaces of
exact and co-exact p-forms with eigenvalue A (as the eigenforms are smooth by elliptic

regularity, we can omit the closures). Since d is an isomorphism between qu()\)

and EP()\), we have
_ - .
M(Xo) = N7 (Xo), Vji=1. (6.5.12)
In addition, due to Hodge duality, i.e., the star operator interchanges absolute

and relative boundary conditions, the following relation holds

N(X.) = N P(X) V=1 (6.5.13)

6.6 Some useful facts about eigenvalues

We finally collect some useful facts about the eigenvalues of the Hodge Laplacian on
a Riemannian manifold. In particular, we describe their behaviour under scaling of

the metric, their characterization, and we present a crucial estimate from below.

Scaling behaviour

We consider a manifold (M., g.) conformally equivalent to (M, g) with conformal
factor €% (meaning that g. = €%g). Again for short, we write M. = M (see also
Section 6.4).

We have the following result for L? norms of p-forms on M and M and for the

eigenvalues of the Hodge Laplacian on M and M.
Lemma 6.6.1. Let w be a p-form on a n-dimensional Riemannian manifold M with
metric g, and let eM be the Riemannian manifold (M,%g), then we have
|l eanerry = €@l ooy and (6.6.14a)
No(eM) = e N)(M). (6.6.14b)
Proof. The first assertion follows from the fact that we have |w|%, = e*|wl[} and

dvol.2y M = €™ dvol, M pointwise. The second follows from the variational character-

isation of the j-th eigenvalue of Proposition 6.6.2, as we have the scaling behaviour

Hn”%Q(AP(sM)) _ 5n_2p“77“%2(Ap(M)) 9 HUH%?(Ap(M))
Heﬂiz(/\p—l(gM)) gn—2p=1) HQH%Z(AP—l(M)) HeHiz(Ap—l(M))
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Note that the condition n = df is independent of the metric, see Proposition 6.6.2.
O

Eigenvalue characterisation

Here we present a useful characterisation of eigenvalues of the Hodge Laplacian acting
on p-forms due to Dodziuk [Dod82, Prop. 3.1], whose proof can be found in [McG93,
Prop. 2.1]. Its advantage is that it does not make use of the adjoint ¢ of the exterior
derivative, and hence no derivation of the metric g or of its coefficients are needed.
The metric g enters only via the L? norms.

We remind the reader that a form w satisfies absolute boundary conditions when

Whorm = 0 and (dw),orm = 0 on the boundary (see also p.57, Section 6.5).

Proposition 6.6.2. Let M be a compact Riemannian manifold, then the spectrum of
the Laplacian 0 < X! < M) < ... on ezact p-forms on M satisfying absolute boundary

conditions can be computed by

< . <777 77>L2(AP(M))
M (M) = inf su e V\{0} such that n = df,
(1) = igtsup{ 7T [y € Vo) n = do}

where V; ranges over all j-dimensional subspaces of smooth exact p-forms and 0 is a

smooth (p — 1)-form.
As a consequence we have (see [Dod82, Prop. 3.3] or [McG93, Lem. 2.2]),

Proposition 6.6.3. Assume that g and § are two Riemannian metrics on M such

that ¢*g < § < g for some constants 0 < c_ < ¢y < @0, i.e.,

9:(6,6) <Gu(&,8) < A gu(&,E) forallée T*M and x € M,

then the eigenvalues of exact p-forms w with absolute boundary conditions fulfil

1 /e \n+2p_ B N 1 /¢ n+2p _
S (5)" g < vy < 5 (2) T R0 g)

e \cq i \co

forall j = 1.

As a result, the eigenvalues /_\§ (M, g) depend continuously on g in the sup-norm
defined, e.g., in [Pos12, Sec. 5.2]. In particular, this proposition allows us to consider
also perturbation of graph-like manifolds. For a discussion of possible cases we refer

to [Pos12, Sec. 5.2-5.6]).
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An estimate from below for exact eigenvalues

Finally, we introduce a simplified but useful version of an estimate from below on the
first eigenvalue of the exact p-form Laplacian on a manifold by McGowan ( [McG93,
Lemma 2.3]) also used by Gentile and Pagliara in [GP95, Lemma 1].

Let (M, g) be a n-dimensional compact Riemannian manifold without boundary
and let {U;}I", be an open cover of M such that U;; = U; n U; have a smooth

boundary. Moreover, we denote by
L={je{l,....i—1i+1,....m}|UinU; # &}

the index set of neighbours of U;. We say that the cover {U;}; has no intersection of
degree r if and only if U;, n -+ nU;, = ¢ for any r-tuple (iy,...,4,) with 1 < iy <
iy < -+ < i, < m. We choose a fixed partition of unity {p;}7-, subordinate to the
dpi(z)|y-

Furthermore, we denote by A" (U) the first positive eigenvalue on exact p-forms

open cover and we set ||dp|, = max; sup,.y,

on U satisfying absolute boundary conditions on 0U. Finally, denote by H?(U,;) the
p-th cohomology group of Uj;.

Proposition 6.6.4. Let M and {U;}1*, be as above and let p = 2. Assume that the
open cover has no intersection of degree higher than 2 and H?~*(U;) = 0 for all i,j.
Then, the first positive eigenvalue of the Laplacian acting on exact p-forms (without

boundary conditions) on M satisfies

_ 23
M) > - 1 [dp|? 1 1
Cﬂ, [O 0
\ p.abs + (_—pas +1><_as +_as )>
; (A’f’ P ]Zz NTH(U) M) N (Uy)

(6.6.15)

where ¢y, 15 a combinatorial constant depending only on p and n.

We remark that these assumptions impose a topological restriction on the mani-
fold as such an open cover does not necessarily exist. Actually, the following general

version holds for higher exact eigenvalues.

Proposition 6.6.5. Let M and {U;}; be as above and let p = 2. Assume that the open
cover has no intersection of degree higher than 2. We set Ny = >, - dim HP Y (Uy)
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and N = Ny + 1. Then, the N-th eigenvalue of the Laplacian on exact p-forms on M

satisfies

Ny (M) =
N 1 [dpl > ( 1 1 )
- + — +1 = + =
; (A?a“(Ui) 2, (Afl’abS(Ui») M) AU

JEL;

The proof of this proposition uses the same argument of the proof of McGowan’s
lemma (Lemma 2.3 in [McG93]). The first step is to consider A}, (M) as characterised
in Proposition 6.6.2 and observe that A% (M) = % for n one of its eigenform and
0 a (p — 1)-form such that § = dn. The second and main step is to construct 6
such that its L?norm can be bounded from above. The construction is local and
uses the knowledge of eigenvalues on the pieces U; and on the double intersections
U;; extracted from the Cech-de Rham sequence [BT82, Chapter 2], a generalised
Meyer-Vietoris sequence. The argument is then completed using a partition of unity.

The generalisation to p-forms is trivial since we have particular assumptions on
the cover, i.e., no intersections of degree higher than 2 (see the remark after Lemma

2.3 in [McG93)).



Chapter 7

Asymptotic behaviour

We now present the main result of Part II, namely, the asymptotic behaviour of the
(non-trivial) spectrum of the Hodge Laplacian of a graph-like manifold. To obtain
a full description, it is sufficient to analyse the spectrum of the Laplacian acting
on exact (resp. co-exact forms) away from zero, due to the orthogonal splitting in
(6.5.11). We remark that the dimension of the class of harmonic forms depends on the
topological properties of the manifold, and this is the reason why we always consider
the non-trivial spectrum.

This chapter is organised as follows. In Section 7.1 we describe the space of
harmonic forms on a graph-like manifold. In Section 7.2 we review the convergence
result for the spectrum of the scalar Laplacian, i.e., the Laplacian acting on functions,
from which we will recover a convergence result for the Hodge Laplace spectrum for
exact 1-forms. We will then focus on the spectrum of the Hodge Laplacian acting
on co-exact 1-forms (see Section 7.3), which is divergent in the limit. To show this
behaviour, we will make use of Proposition 6.6.4, assuming the cohomology of the
transversal manifolds Y, to be non-trivial, together with asymptotic estimates on the
building blocks. The same proposition allows us to study the asymptotic behaviour
of the spectrum of the Hodge Laplacian on p-forms for 2 < p < n — 2 under the same
assumption. Finally, we will briefly explain how the same argument works, when no

assumptions on Y, are made, using a result of McGowan (see Proposition 6.6.5).

63
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7.1 Harmonic forms

We first analyse the dimension of the class of harmonic forms, eigenforms for the
zero (trivial) eigenvalue, for graph-like manifolds. We have already explained in the
introduction that this dimension depends on topological properties of the manifold. In
particular, the de Rham Theorem (Section 6.5) establishes an isomorphism between
the class of harmonic p-forms on X and the p-th cohomology group of X.. Therefore,
it is sufficient to calculate the cohomology groups of the graph-like manifold, to know
the dimension of the class of its harmonic forms in all degrees.

Since the graph-like manifold X, arises from Xy, it is intuitive that X, will inherit
some topological properties of the graph. We will see that for a general graph-like
manifold, the dimension of its first cohomology group is the sum of the first Betti
number of the graph (also equal to the dimension of its first cohomology gruop) and
of the dimension of a subset of the first cohomology group of | J, . Xc.o-

For transversally trivial graph-like manifolds, i.e., HP(Y,) =0for 1 <p<n —2

and for all e € E, the following lemma holds.

Lemma 7.1.1. Let X, be a transversally trivial graph-like manifold of dimension n

with underlying metric graph Xo. Then, the cohomology groups of X. are given by

-

R ke {0,n}

HYX) = { Doy HU(X) D HY(Xy) ke {ln—1)

\@veVHk(Xv) kE{Q,,n—Q}

Proof. We use the natural decomposition of X, in (6.4.8) and the Mayer-Vietoris
sequence. Set A = (J.cp Xe = Upep le X Ye and B =,y X, and fix ¢ = 1. Then,
our graph-like (topological) manifold is X;. Note that we have avoided any reference
to the metric carried by each space as they do not enter into the topological argument.

The Mayer-Vietoris sequence in dimension k is
.— H¥X,) — H"(A)® H*(B) — H*(An B) — ...

We have H*(A) =~ @, H*(Y.) and, by the assumption on the transversal man-
ifolds, H*(A) =0for k=1,...,n —2, and H°(A) = H"'(A) = R



7.2. Convergence for functions and exact 1-forms 65

We also have H*(B) =~ @, H*(X,). In particular, H°(B) ~ RIVI.

Finally, A n B = J,eyy U,ep, Ye. Hence, H*(A n B) =~ R**l for k € {0,n — 1},
and H*(A n B) = 0 otherwise.

By compactness, we derive H°(X;) =~ R. Then, since the long exact sequence
splits into short exact sequences, we obtain H*(X1) = @, H*(X,) for2 < k < n-—1.
A dimensional argument yields H*(X;) = @, H'(X,) @ H'(Xo).

The use of Poincaré duality concludes the claim. O]

We observe that this computation agrees with the results in [AC95] where the
authors considered a manifold with shrinking handles, i.e., a graph-like manifold
where the shrinking parameter involves only the edge neighbourhood.

We also remark that, although the dimension of the class of harmonic 0-forms on
X. coincides with the dimension of the ones on the graphs (H°(X,) = Z since the
graph is connected), for harmonic forms of higher degree this is not valid. The class
of the harmonic p-forms on X, is larger than the graph’s one, both in the transversal
trivially case and in the general case.

When some or all of the Y, have non-trivial p-th cohomology groups for 1 < p <
n — 2, we do not have a general formula. In this case, the Mayer-Vietoris sequence
and a dimensional argument only allows us to deduce the dimension of the first
cohomology group of X., equal to b;(Xy) + g where by(Xy) = |E| —|V| + 1 is the first
Betti number of X and ¢ is the dimension of a subset of @, _,, H'(X,). However,
it is possible to compute the cohomology groups explicitly for concrete examples of

edge and vertex neighbourhoods.

7.2 Convergence for functions and exact 1-forms

The Laplacian on functions on graph-like manifolds has been analysed in details in
a series of papers [EP05, EP09, EP13, Pos06, Pos12] where the convergence of several
objects has been established. For the proof of the eigenvalues convergence we par-
ticularly refer to [EP05] (see also [Pos12]) where the authors proved the following
(based on the results [KuZ01, RS01]).
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Proposition 7.2.1 ( [EP05,Pos12]). Let X. be a compact graph-like manifold asso-
ciated with a metric graph Xy and let \;(X.) and X\;(Xo) denote the eigenvalues (in
increasing order, repeated according to their multiplicity) of the Laplacian acting on

functions on X. and on Xo. Then we have
IN(X) = \(Xo)| = OEV2 /) forallj =1,

where by = mijg{ﬁe, 1} > 0 denotes the truncated minimal edge length. Moreover, the
ee

error depends only on j, and the building blocks X, Y. of the graph-like manifold.

The proof in [EP05] is based on two sides eigenvalue estimates obtained by an av-
erage process on the vertex neighbourhoods X. , which corresponds to projection onto
the lowest (constant) eigenvalue using the variational principle or min-max principle
as in Proposition 6.6.2.

In following works, the convergence of the resolvents (in a suitable sense), spectral
projections, eigenfunctions, and discrete and essential spectrum has been proved using
an abstract setting that deals with operators acting in different Hilbert spaces (first
used in [Pos06] without requiring compactness of the manifold). The basic idea is
that we need to define a “distance” between the operators Ay, and Ay, with suitable
identification operators. For a detailed overview and proofs of these techniques we
refer to the reader to [Pos06] and [Pos12, Ch. 4].

We have already noticed in (6.2.2) and (6.5.12), that the exact 1-form eigenvalues
equal the O-form (function) eigenvalues both on the graph X, and on the graph-like
manifold X.. Therefore, the previous result immediately gives the convergence for

exact 1-forms, using a simple supersymmetry argument as in [Pos09, Sec. 1.2].

Theorem 7.2.2. Let X. be a graph-like manifold with underlying metric graph Xg.
Denote by M(X.) and X}(Xo) the j-th ezact 1-form eigenvalue on X. and X, respec-
tively. Then,

A (X)) — A (X) forall j = 1.

J e—0
Proof. We will just show that the eigenspaces for non-zero eigenvalues of A}XS = Al =

dd* and A = A® = d*d are isomorphic (the argument works for e > 0 and € = 0 as

well). Then, the convergence result follows immediately from Proposition 7.2.1.
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As isomorphism, we choose
d: ker(A” — \) — ker(A' — \)
for A # 0. First, note that if f € ker(A° — )), then
AYdf = dd*df = dA°f = \df,

i.e., df € ker(A' — \), hence the above map is properly defined. The map d as above
is injective. If df = 0 for f € ker(A® — \) then A\f = A%f = d*df = 0. As X\ # 0 we
have f = 0. For the surjectivity, let o € ker(A! — )). Set f := A"'d*a (we use again
that A # 0). Then,

df = d(\'d*a) = A A'a = a,

i.e., d as above is surjective. In particular, we have shown that the spectrum of A°

and Al away from 0 is the same, including multiplicity. O]

We remark that if n = dim X. = 2, the above theorem is sufficient to determine the
spectra of Laplacian in all degree forms. In fact, by (6.5.12) and (6.5.13), the exact 1-
form eigenvalues coincide with the O-form eigenvalues, the co-exact 1-form eigenvalues
coincide with the (exact) 2-form eigenvalues, and these eigenvalues coincide with the

0-form eigenvalues. Therefore, we can state the following.

Corollary 7.2.3. Let X, be a graph-like Riemannian compact manifold of dimension
2 associated to a metric graph Xy. Then,
5‘31(X6> ;)) AJ(X(J)a
_ (7.2.1)
)‘;<X€) = )‘?(Xs> = )‘j(Xs) ;)’ )\j(XO)a
for all j = 1.

In addition, by Hodge duality (see (6.5.13)), Theorem 7.2.2 gives convergence for

n-forms on graph-like manifolds of any dimension.

7.3 Divergence for co-exact p-forms

If n > 3, the behaviour of the co-exact p-forms for 1 < p < n — 2 cannot be known

using duality. In order to study their limit behaviour, we analyse the limit behaviour
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of the exact (p + 1)-forms eigenvalues, due to (6.5.12). In particular, we first give
some eigenvalue asymptotics for eigenvalues of exact p-forms with absolute boundary
conditions on the building blocks of the graph-like manifold, which are needed to

make use of Proposition 6.6.4 and Proposition 6.6.5.

7.3.1 Eigenvalue asymptotics on the building blocks

A vertex neighbourhood X., is conformally equivalent to X, by definition. As a

result of Lemma 6.6.1, we have the following corollary.

Corollary 7.3.1. Let X., be a vertex neighbourhood of a graph-like manifold X..
Then, the smallest positive eigenvalue of the Laplacian acting on exact p-forms on

X, with absolute boundary conditions satisfies
M(X.,) =2 N(X,). (7.3.2)

To describe the asymptotic behaviour of the edge neighbourhood, there is a bit
more work to do. We recall that the edge neighbourhood X . is isomorphic to /. x Yz .
with the product metric. However, we cannot make use of the product structure as

it does not respect exact and co-exact forms.

Proposition 7.3.2. Let X, . be an edge neighbourhood of a n-dimensional graph-like
manifold X.. Then, the smallest eigenvalue of the Laplacian acting on exact p-forms

(2 < p <n—1) with absolute boundary conditions satisfies
M(X..) =e%cy(e), (7.3.3)

where c,(g) — N(Y,) > 0 as ¢ — 0, and where \}(Y,) denotes the first eigenvalue

of the Laplacian acting on exact p-forms on Y.

Proof. By Proposition 6.6.2 we have to analyse the quotient |n|?/[6|* for an exact
p-form 7 and a (p — 1)-form € such that n = df. Recall that X. . = I. x ¢ Y, (i.e,
I. x Y, with metric g. . = ds®+&%h,). Then, the (p—1)-form 6 on X, . can be written
uniquely as

0 =06, Ands+ 0, (734)
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where ¢, and 0y are a (p — 2)-form and (p — 1)-form on Y., respectively. Using the

scaling behaviour of the metric in a similar way as in Lemma 6.6.1, we have

H9”2L2(AP—1(X5’6)) = JX |9|§m dvol X, .

= J f (e72P72)9, |7 + 720 V|0,)2 Y dsdvol YV, (7.3.5)

_ €n2p+lf J (£2(61]7. + [657.) ds dvol Ve,
e Ye

where the e factor appears due to the scaled metric e2h.. The decomposition of df

according to (7.3.4) is given by
df = (dyﬁl + 6592) A ds + dyeQQ. (736)

Hence,

081 o = [ 16 dvol X,

€

= J f (e72P |y, 0, + 0,05[5. + e *|dy, 0|7, )" dsdvol Y,

= sn‘zp‘lf J (€% dy.0r + Osbsl5, + |dy.02]7,) ds dvol Y .
(7.3.7)

In particular, if we substitute (7.3.5) and (7.3.7) into the quotient |n]?/|0|* we
conclude
|90 22 ao ) _ o1 Sy (214700 + Ol + |dy. Bl ) ds dvol Ve
10172 a1 x. ) §, 5y (21612, +102]2,) dsdvol Y,

In particular, together with Proposition 6.6.2 this yields
/_\Il)(Xs,e) = 5_2017(5)

with

0 =0, Ands+0y #0,
01 (p — 2)-form,

05 (p — 1)-form

§. 3y, €(ldy.01 + 0s0af + |dy, 0} ) ds dvol Y
SIE SYe (52‘91‘ie + ’92!%6) dsdvol Y,

cp(e) = sup {

In the limit ¢ — 0, this constant tends to a number ¢,(0) given by

0 S[e Sye ’dY592|;216 ds dvol Ye
0= Sze Sye |92|%e dsdvol Y,

6y #0 (p— 1)—form}.
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This constant is the min-max characterisation of the first eigenvalue of the opera-
tor id @A, acting on L?(1.)® L*(AP(Y.)), whose spectrum agrees with the spectrum
of AR, (see e.g. [RS78, Thm. XIII.34]). Hence, we have ¢,(0) = A{(Y,). O

7.3.2 Main theorems

We are now ready to prove the divergence behaviour of the spectrum of the co-exact
p-forms, for 1 < p < n — 2, on a n-dimensional graph-like manifold X.. For the rest
of this section we assume that n > 3, as the 2-dimensional case has been already
explained in Corollary 7.2.3. We remind the reader that by (6.5.12), we analyse the
exact p-forms for 2 <p<n—1.

We first analyse the case when X, is transversally trivial, making use of Proposi-

tion 6.6.4. Let

U. = {Ua,v}veV Y {Ua,e}eeE
be an open cover of X., where U., and U, . are open e-neighbourhoods of X, , and
X. . in X, respectively, or in other words, a slightly enlarged vertex and edge neigh-
bourhoods to ensure that U/ is an open cover.

It is easy to see that U. has intersections up to degree 2 only (three or more
different sets of U. have always trivial intersection). The intersections of degree 2 are
given by X, ,. = U., nU.. which is empty if e ¢ F, or otherwise isometric to the
product (0,¢) x Y. ., hence conformally equivalent to the product (0,1) x Y. with
conformal factor £2, as we enlarged X., by an e-neighbourhood. Moreover, X, , . is

homeomorphic to (0,1) x Y., and hence homotopy equivalent to Y,. In particular,

HP"Y(X.,.) = H7Y(Y,).

Theorem 7.3.3. Let X. be a graph-like manifold of dimension n = 3 with underlying
metric graph Xo. Assume that 2 < p < n—1 and that the (p—1)-th cohomology group
of the transversal manifold Y. vanishes for all e € E, i.e., HP7Y(Y,) = 0. Then, the

first eigenvalue of the Hodge Laplacian acting on exact p-forms on X. satisfies

AN(X.) = Tpa’Q,

where 1, > 0 is a constant depending only on the building blocks X, and Y. of the

graph-like manifold, the truncated minimal length {4 = mi}gl{fe, 1}, and p. In particu-
ee
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lar, all eigenvalues X?(XE) of exact p-forms and all eigenvalues X?il(XE) of co-exact

(p — 1)-forms tend to o0 as e — 0.

Proof. We apply Proposition 6.6.4 as the cover U. has no intersections of degree
higher than 2 and H? (X, ,.) = H?"*(Y.) = 0.

We first look at the denominator of the right hand side of the estimate in Propo-
sition 6.6.4. We note that our open cover U, is labelled by v € V and e € F and
therefore, the sum over ¢ = 1,..., m of the estimate in Proposition 6.6.4 becomes a
sum over v € V and e € E. Moreover, the sum over the edges can easily be rewritten
as a sum over the vertices taking care of some appearing extra factors. Using these

observations and equations (7.3.2) and (7.3.3), we obtain

Candng2 ) ( 1 1 >
+ +1 | < + <
;V (A” ZE (A” H(Xoe) (X)) A(X)

CnplldpeZ ) ( 1 1 )
+ =5, <~ t+t1])|= + <
;; (Ap Xepe) Uza:+e ()\’f H(Xee) N(Xew)  M(Xee)
1 degv ( Cnpldpe|% > ( 1 1 )
= = + +1)( =< + =
v; (A’l’(Xs,v) X (X ZE: AN X e) N(Xew)  M(Xee)
I dego <cnp€2dpa|§o >< 1 1 ) 2
=€ +2 —T - T1l])|= + =:e°Cp(e),
1;/ <)\P c(€) eév A 1<Xv,e) AN (Xo)  o(e) s

where the extra term with degv and the factor 2 are due to the transformation of
the sum over the edges into a sum over the vertices.

We now analyse the constant C,(c) as ¢ — 0.

First, we have seen in Proposition 7.3.2 that c,(g) — A/(Y,) > 0. Moreover, the
norm of the derivative of the partition of unit norm depends on ¢ as these functions
have to change from 0 to 1 on a length scale of order £ on the vertex neighourhoods
and on a length scale of order ¢3 on the edge neighourhood, hence the derivative is
of order 6™ + (5" and £2|dp.|% = O(1) + O((/4y)?). In particular, C,(g) — C,(0)
as ¢ — 0 provided ¢//y remains bounded, where C},(0) depends only on some data of
the building blocks.

Therefore, by Proposition 6.6.4 we can conclude

M(X) = 2
T 20 (e)

which proves the theorem. O
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We observe that, by duality and supersymmetry (see (6.5.12) and (6.5.13)), The-
orem 7.3.3 gives divergence for the spectrum of p-forms for 2 < p <n — 2.

We also point out that Theorem 7.2.2 and Theorem 7.3.3 for p = 2 gives a
complete description of the behaviour of the spectrum on 1-forms, and by duality
we also have a description of the spectrum on (n — 1)-forms. We remark that this
spectrum is partially convergent (exact eigenvalues) and partially divergent (co-exact

eigenvalues). Hence, we can state the following.

Corollary 7.3.4. Let X, be a graph-like Riemannian compact manifold of dimension
n = 3 associate to a metric graph Xo. Assume that all transversal manifolds Y. have

trivial cohomology forp=1,...,n — 2. Then,

N X) = AN(XL) — o, (7.3.8)

forallj=1and2<p<n-—2,

We remark that the case n = 2 has been treated in Corollary 7.2.3.
Removing the assumption of vanishing cohomology groups of the transversal man-

ifolds, the following theorem holds.

Theorem 7.3.5. Let X, be a graph-like manifold of dimension n = 3 with underlying
metric graph Xo. Then, the N-th eigenvalue of the Laplacian acting on exact p-forms
on X. satisfies

Mo(XD) = T2

where T, > 0 is as before and where
N=1+> > dimH"'(Y,) =1+2) dim H"7\(Y,).
veV eekb, ee

Its proof follows the line of the previous one with the difference that we use

Proposition 6.6.5 to estimate a higher eigenvalue for exact p-forms on X..

Remark 7.3.6. We point out that the first N — 1 eigenvalues of the theorem above

are strictly positive since we consider the spectrum away from zero. The theorem
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states that A(X.) = j\z(”j_l)(XE) are divergent for j > N in the limit ¢ — 0. However,
it remains an open question how the first (N — 1) eigenvalues behave asymptotically

as € — 0.



Chapter 8

Manifolds with spectral gap

In this chapter we discuss some applications of the asymptotic behaviours described
in Chapter 7. We will state some general facts about the existence of spectral gaps
in the spectrum of the Hodge-Laplacian on a graph-like manifold X, in relation to
existing spectral gaps in the spectrum of the Laplacian on its associated metric graph
Xo. Moreover, we will construct manifolds and families of manifolds with spectral
gaps.

In Section 8.1 we define the Hausdorff convergence and we state a weaker version
of Corollary 7.3.4 in relation to this definition (see Corollary 8.1.1). Moreover, we
give the definition of spectral gap and a general result on how to produce graph-like
manifolds with spectral gaps in their spectrum. In Section 8.2 we construct manifolds
with constant volume and arbitrarily large form eigenvalues, i.e., manifolds with an
arbitrarily large spectral gap in their Hodge-Laplacian on p-forms for 2 <p <n — 1.
In Section 8.3 we construct families of manifolds with spectral gaps arising from

families of Ramanujan graphs and of arbitrary graphs.

8.1 Hausdorff convergence of the spectrum and
spectral gaps
Let A, B < R be two compact sets. The Hausdorff distance of A and B is defined as

d(A, B) := max{supd(a, B),supd(b, A)}, where d(a,B):=infla—bl. (8.1.1)
acA beB beB
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A sequence (A,), of compact sets A,, = R converges in Hausdorff distance to Ay
if and only if d(A,,A) — 0 as n — c. In particular, d(A,, Ag) — 0 if and only if
for all \g € Ay there exists A\, € A, such that |\g — A\,| — 0 and for all z € R\ A,
there exists > 0 such that [z —n,x + n] n A, = & for n sufficiently large (see
e.g. [Pos12, Proposition A.1.6]).

In view of this definition, a weaker result than Corollary 7.3.4 is as follows.

Corollary 8.1.1. Let X. be a transversally trivial graph-like manifold with associated
metric graph Xo. Then, for all Ay > 0 we have that c(A%_) N [0, Xo] converges in
Hausdorff distance to o(Ax,) n [0, Ao].

In fact, in a compact interval [0, o], eventually all divergent eigenvalues from
higher forms leave this interval, and the remaining ones converge.

Furthermore, we asked ourselves about the relation between spectral gaps in the
spectrum of the Laplacian acting on 1-forms on X, and Xy, i.e., about intervals (a, b)
not belonging to the spectrum. More precisely, a spectral gap of an operator A = 0

is a non-empty interval (a,b) such that
o(A) N (a,b) =&.

As a consequence of the asymptotic description of the spectrum in Theorems
7.2.2, 7.3.3 and in Corollary 8.1.1, we have the following result on spectral gaps (i.e.,

intervals disjoint with the spectrum).

Corollary 8.1.2. Assume that the graph-like manifold X is transversally trivial and
suppose that (ag, by) is a spectral gap for the metric graph Xy, then there exist a., b,
with a. — ag and b. — by such that (a.,b.) is a spectral gap for the Hodge Laplacian
on X in all degree forms, i.c., 0(A%) N (ac,be) = .

Examples of manifolds with spectral gaps can be generated in different ways.
In [Pos03, LP08] the authors constructed (non-compact) abelian covering manifolds
having an arbitrary large number of gaps in their essential spectrum of the scalar
Laplacian, and in [ACP09], the analysis was extended to the Hodge Laplacian on

certain cyclic covering manifolds.
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One can construct metric graphs with spectral gaps, and hence graph-like man-
ifolds with spectral gaps, with a technique called graph decoration that works as
follows. We consider a finite metric graph X, and a second finite metric graph )?0.
For each v € V (X)), let Xo % {v} be a copy of a finite metric graph Xo. Fix a vertex
¥ of Xo. Then the graph decoration of Xy with the graph X, is the graph obtained
from X, by identifying the vertex ¥ of X, x {v} with v. This decoration opens up a
gap in the spectrum of the Laplacian on function on Xy as described in [Ku05] and
therefore in its 1-form Laplacian. Consequently, the associated graph-like manifold
has a spectral gap in its 1-form Laplacian, and no spectrum away from 0 for higher
forms, as all the form eigenvalues diverge.

More examples of manifolds with spectral gap and family of manifolds with a

spectral gap are given in the next sections.

8.2 Manifolds with arbitrarily large spectral gap

Let (X.)c~0 be a graph-like manifold constructed from a metric graph X, with under-
lying (discrete) graph (V, E, 0). We assume the graph-like manifold to be transversally
trivial (i.e., H?(Y,) =0 for all 1 <p <n —2 and for all e € E).
For simplicity, we assume that X is equilateral, i.e., all edge lengths are given by
a number ¢ > 0. The result can be easily extended to the case when c¢_¢ < {, < ¢,/
for all e € E and some constants ¢4 > 0.
We write
a. < b, a. = b, a. ~ b, (8.2.2)
if
a. < const b, a. = const_ b,, const_ a. < b, < const, a, (8.2.2")
for all € > 0 small enough and constants const, independent of ¢.
We first summarise the asymptotic spectral behaviour of a graph-like manifold
X, and its dependence on the parameters ¢, ¢, |V|, and |E|. In particular, for the

volume, the 0-forms (functions), and the exact p-forms and co-exact (p — 1)-forms,
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we have

vol X, = e"|V| + " Y| E| (8.2.3a)
21/2 _
IA)(Xo) — X Xo)| < o (lo = min{¢, 1}) (8.2.3b)

> 2<p<n-—1, 8.2.3
2[E[(1 +22/) psmn (8.2.3¢)

where the constants in < etc. depend only on the building blocks X, and Y, of the
(unscaled, i.e, € = 1) graph-like manifold. Equation (8.2.3a) is a direct consequence
of the structure of the graph-like manifold described in (6.4.8). Equation (8.2.3b) is
a direct consequence of Proposition 7.2.1. Equation (8.2.3c) follows from analysing
the lower bound constant 7, in Theorem 7.3.3 (or Theorem 7.3.5). We see that the

constant C,(g) in its proof is bounded from above by
Coe) = (VI + |EI(1+£%/€%)) < |E|(1+ /%),

where again the constants in < depend only on the building blocks and where we
used |V| < >, ., degv = 2|E| for any graph G, assuming that there are no isolated
vertices, i.e., vertices of degree 0.

We now assume that ¢ = ¢, = &7 depends on ¢ for some v € R (negative 7’s are
not excluded). In particular, X, now also depends on ¢, and we write 7 X, for a
metric graph with all edge lengths multiplied by £7. If we plug ¢ = £7 into equations
(8.2.3a)—(8.2.3¢), we observe the following.

(i) In (8.2.3a), the dominant term is " for v > 1 and it is €"~'*7 otherwise.
(i) For the metric graph eigenvalues, we have AY(e7Xo) = e > AY(Xo).

(iii) In (8.2.3b) we need v < 1/2 for convergence to hold, as the error term is of
order €'/2/min{e?, 1} = ¢!/2~max{30} " We also need v > —1/4 for the metric
graph eigenvalue (of order £ 27) to be dominant with respect to the error (of

order gl/2-max{7.0}),

(iv) In (8.2.3c) we need v < 2 for divergence to hold. Moreover, &2 is the dominant

term in the denominator of the RHS for v < 1, and it is £*~%7 otherwise.
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Therefore, equations (8.2.3a)—(8.2.3¢) become

e B, y<1
vol X, = "V | + " "ME| = (8.2.32)

e"V|, v =1,

A(X) ~e N, —1/4<y(<1/2) (8.2.30)

<sel? v < —1/4,

N(X.) = (8.2.3¢")

These equations and statements (i)—(iv) give the existence of manifolds with con-
stant volume and arbitrarily large form eigenvalues, i.e, manifolds with an arbitrarily
large spectral gap in their form spectrum. Our proposition below states an analogous
result than the one in [GP95, Theorem 1], where the authors state that for any closed
manifold M of dimension n > 4 there exits a metric of volume 1 such that the first
non-zero p-form eigenvalue A (M) is unbounded. In particular, they give an answer to
a question of Tanno [Tan83], whether there exists a constant k(M) such that the first
non-zero p-form eigenvalue satisfies ¥ (M) < k(M) (vol(M, g))~™? for all Riemannian
metrics g on M. The same question was previously posed by Berger [Ber73] on the
first non-zero function eigenvalue and answered positively (see [GP95] and references
therein for further contributions). We observe that the construction of Gentile and
Pagliara in [GP95] corresponds to a simple graph with one edge and two vertices.

Therefore, we conclude the following.

Proposition 8.2.1. On any transversally trivial graph-like manifold of dimension
n = 3 there exists a family of metrics g. of volume 1 such that for the first eigenvalue

on exact p-forms we have

N(X,g.) — o ase — 0

for 2 < p < n—1. Moreover, the function (p = 0) and exact 1-form spectrum

converges to 0, 1.e.,

MN(X,5.) = M(X,5.) =0 ase — 0.
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Proof. Let g. be the metric of the graph-like manifold as constructed in Section 6.4.

For any v < 1, we have
MN(X, g-)(vol(X, )2/ 2 e 22—t/ — =20=0/n _, o ase — 0
by (8.2.3¢”) and (8.2.32). Set now §. := vol(X, g.)">"g., then vol(X,3.) = 1 and
MN(X,5.) = vol(X, g )" No(X, g.) = e 200/ s o0 as e — 0.

If —1/4 < v < 1/2, then the O-form (and exact 1-form) eigenvalues of the metric

graph and the manifold are close and A\}(X, g.) =~ =27, hence
/\?(X, g-) = vol(X, gE)Q/"/\?(X, ge) ~ g2n=14)/ng=2y - Z2n-1(1-v)/n _, O

We observe that for manifolds as constructed in the proof, the transversal length
scale (the one of the transversal manifolds Y,) is e!=7/" — 0, while the longitudinal
length scale (the one of the metric graph edges I..) is e~ (71?07 — o0 as ¢ — 0.
This implies that the edge neighbourhoods become thinner but longer in the limit.

Unfortunately, we cannot extend the result of [GP95] to the case n = 3 and

1-forms, as the exact 1-form spectrum converges.

8.3 Families of manifolds with special spectral prop-
erties arising from families of graphs

We now consider families of graph-like manifolds constructed according to a sequence
of graphs {G'};cy. We assume for simplicity that the vertex degree is uniformly
bounded, say by ko € N. Then, if there are no isolated vertices, we have
V(G < )} deggiv=2/E(GY)] < 2k|V(G7)],
veV (G1)

ie., v = |V(G")| ~ |E(GY)]| as i — .

We begin with a general statement about the spectral convergence. We assume
that {G'}ey is a family of discrete graphs and that {X{};cy is the family of associated
equilateral metric graphs, each graph X{ having edge lengths equal to ¢; (for the

definition of equilateral graph, see Section 6.2). Accordingly, we construct a family
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of graph-like manifolds {X};cy where the building blocks X, and Y, are isometric
to a given number of prototypes (independent of i), such that Y, all have trivial
cohomology for 1 < p < n — 2 (see Example 6.4.1), so that all graph-like manifolds

X are transversally trivial and hence our estimates (8.2.3a)—(8.2.3c) are uniform in

the building blocks and (8.2.3c) holds for the first exact eigenvalue. We call such a
family of graph-like manifolds uniform.
We now assume that €; and ¢; are dependent on the number of vertices v; of G
Specifically, we set
g =v and 0 =v " (8.3.5)

for some @ > 0 and 3 € R (negative values of 3 are not excluded). In particular, X}
now also depends on ¢, and we write v, B X} for the metric graph X with all edge
lengths being v;”. Substituting conditions (8.3.5) into equations (8.2.3a)(8.2.3b),

we observe the following.

fnoHrl +

(i") The volume is now given by vol X! = v; y; (mmHemfL

7

(ii") For the metric graph eigenvalue, we have \(v; " Xg) = 127X (X}).

)

(ili") In (8.2.3b) we need max{3,0} < «/2, for the convergence to hold, as the error

term is of order e/*/min{¢;, 1} = v, **™*5% (Figure 8.1 (a) below). We also

need 5 > —«a/2 and = 0, or f > —a/4 and § < 0, for the metric graph
eigenvalue (of order v°) to be dominant with respect to the error (of order

V‘fa/2+max{5,0}) (Figure 8.1 (b) belOW)-

)

(iv’) In (8.2.3c), we need a« > 1/2 (resp. 2a > 1 + f3), for the divergence to hold.

Moreover, if & > 3 the dominant term in the denominator of the RHS is v 29+,

it is =4 +28+1 otherwise (Figure 8.1 (c) below).

Therefore, in view of the above statements, we can rewrite (8.2.3a)—(8.2.3c) as

—(n—1)a—pF+1
Vi 9 « > 67

vol X! = (8.2.3a7)
V;noﬂrl’ Q < 5

e ~vPN(XE), (B=—a/2,8=0)or (B> —a/4,B <0), £.2.357)

1 )

otherwise.
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POYE) > for2<p<n-—1 8.2.3¢”
M(XL) = or2<p<n-—1 (8.2.3¢")
4a—28-1
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Figure 8.1: (a) Region where the O-form eigenvalue convergence in (8.2.3b) holds
(max{B,0} < a/2); (b) Region where A\%(X? ) = v"\;(X{) (B> —a/2,3=00r 8 >
—a/4, B < 0); (c) Region where (X ) diverges. (a > 1/2,a > for da—28—1 > 0,
a < (); (d) Blue region: all eigenvalues diverge. Green region: the form eigenvalues
diverge and the function eigenvalues converge to 0. Above the red dotted line the

volume tends to 0, below it tends to oo.

We now discuss some examples using statements (i’)—(iv’) and equations (8.2.3a” )—
(8.2.3¢”).
Families of manifolds arising from a sequence of Ramanujan graphs

We consider a sequence of discrete Ramanujan graph (G?); with v; = |[V(G")| many

vertices and the associate sequence of equilateral metric graphs (X@); with all edge
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lengths equal to 1 (for a formal definition see Section 6.3). Then, the (metric) graph
Laplacians have a common spectral gap (0, k) (see (6.3.7)). Accordingly, we construct
a uniform family of graph-like manifolds (X gz)zv as described at the beginning of this
section, and assuming conditions (8.3.5) for the parameters ¢; and ¢;. Consequently,
the edge length of the sequence of metric graphs becomes v~# and the common
spectral gap is now dependent on ¢;, i.e., it is given by (0, h;) where h; = h/(? (see
again (6.3.7)).

If we choose (a, ) from the blue region of picture (d) we have the following.

Proposition 8.3.1. There is a uniform family of graph-like manifolds (X;)Z con-
structed as above such that the Hodge Laplacian in all degree forms has an arbitrarily

min{23,2a—1}

large spectral gap, i.e., there exists h; =~ v,

— o0 such that

o(A%; ) n (0, k) = &,

and such that the volume shrinks to 0, more precisely, vol X! ~ Vi_(n_l)a_ﬂﬂ.

In particular, if 8 =0, i.e, if ; = 1 for all i, then there exists a common spectral
gap (0, h) of the Hodge Laplacian. If, additionally, n = 3, then the volume decay can

be made arbitrarily small as « \, 1/2, i.e., of order Vi_%““l.

Proof. The proof follows from considerations (i’)—(iv’) above and choosing («, ) such
that « > 1/2, f > 0 and 8 < a/2 (see Figure 8.1 (d)). We observe that for a sequence
of Ramanujan graphs, there exists A > 0 such that the first non-zero eigenvalue of
the metric graph Laplacian with unit edge length fulfils A\;(X}) > h for all i, hence

we can conclude divergence from the first line of (8.2.3b”). [

We observe that the length scale of the underlying metric graphs is of order v, g ,

but the radius is of order ; = v; “, which is smaller; hence the injectivity radius of
X! is of order ; = v;®, and the curvature is of order e;° 2=

It is also possible to construct families of manifolds with fixed volume arising
from families of Ramanujan graphs. In order to do so, we need to rescale the metric.
We set §; := (vol(X!, g,))"%"g.,) and we consider Xi= (X! ,5;). Then, the latter

manifold has volume 1. Unfortunately, we cannot have divergence at all degrees at

the same time. In fact, for n = 3 the conditions are 5 > « — 1/2 for divergence of the
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eigenvalues of degree 0, while 5 < o — 1/2 is needed for divergence of exact 2-forms.

But we can have divergence of O-forms and higher degree forms separately.

Proposition 8.3.2. For all n > 2 there exists a family of graph-like manifolds ()?Z)Z
of volume 1 with underlying Ramanujan graphs such that the first non-zero eigenvalue

on functions (0-forms) diverges.

Proof. The rescaling factor 7; = (vol(X{ , g.,)) /" is of order l/i(l_l/n)aJrﬁ/n_l/n. The

rescaled eigenvalue on functions fulfils

M(XT) = 720X = 7 2PN (X)) = PPN (XG),  (8.3.6)

)

and the latter exponent is positive if and only if 8 > a — 1/(n — 1). The allowed
parameters (a, () lie inside the triangle (0,0), (4,—1)/(5(n — 1)), (2,1)/(n — 1) such
that A\ (X7) =~ v /n= (see Figure 8.2). The difference 8 — a approaches its maximum
on this triangle at the vertex (0,0). Hence for any § > 0 there exists («, [3) inside the

triangle such that A (X7) = v/ O

Figure 8.2: Parameter region where the rescaled 0-form eigenvalue )\(1]()2' ! ) diverges,
i.e., region where max{f, 0} < a/2 and A)(X! ) = v?° X\ (X{) are both satisfied. Above

the dotted lines, the exponent in (8.3.6) is positive and the eigenvalue diverges.

In particular, for n = 2 Proposition 8.3.2 yields the following corollary.

Corollary 8.3.3. There exists a sequence of graph-like surfaces ()? “; of area 1 and

genus 7(;(1) with underlying Ramanujan graphs such that the first non-zero eigenvalue
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on functions diverges. Moreover, for any 6 > 0 there exists a sequence ()?Z)l such
that
N(X) = 1K)

Proof. We have to choose Y, = S! here, moreover we let the vertex neighbourhood
be a sphere with & discs removed (as in Example 6.4.1). In this case, the genus of
the surface X' is given by 1 — y(G?) where x(G?) is the Euler characteristic of the
graph G, and hence

~. . , k k

as ¢ — o0 as k > 3 for a Ramanujan graph. In particular, 7()@) ~ ;. O

Family of manifolds arising from a sequence of arbitrary graphs

We now consider a sequence of arbitrary discrete graphs (G*), with v; = |[V(G")| — o
as 1 — oo and with degrees bounded by k, and the associated sequence of metric
graphs (X});. Then, we construct a sequence of graph-like manifolds with underlying
metric graph X! as explained at the beginning of the section assuming (8.3.5) for
g; and ¢;. We show the existence of families of manifolds with constant volume,
arbitrarily large form spectrum and convergent function spectrum, hence we do not
need that the underlying graphs are Ramanujan. To obtain manifolds with constant
volume we again set §; = (vol(XZ,))"2/"g.,) so that the manifolds X’ equipped with
the metric §° will have constant volume 1.

We immediately have the following result.

Proposition 8.3.4. For all n = 3 there exists a family of graph-like manifolds ()?Z)l
of volume 1, constructed as described above, such that the first eigenvalue on exact p-
forms diverges (2 < p <n—1). Moreover, the first non-zero eigenvalue on functions

CONVETgES.

Proof. The rescaled eigenvalue on p-forms fulfils

)ﬁ()?l) = 7-;25\€(ng) = 72201 — V'2(a—5+1)/n,1

(2 K3 (2 Y
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(as a = 3, see (8.2.3¢”)) and the latter exponent is positive if and only if g <
a — (n/2 —1). The allowed parameters («, ) lie below this line (see Figure 8.3
below).

For the first non-zero eigenvalue on functions, note first that A;(X}) (the first
non-zero eigenvalue of the unilateral metric graph X() can be bounded from above
by 72, this follows immediately from the spectral relation (6.2.3). Therefore, we
conclude from (8.3.6) that A2(X?) — 0 as i — o0 as 8 < a — (n/2 — 1) implies that
2/n—2(1—-n)(a—pB)<0. O

Actually, comparing the speed of divergence and convergence, we obtain
— ~ . 7”2 ~ . n2

M(XY) z v/ N (X)) 10D

confirming again that we cannot have divergence for both function and form eigen-

values with our construction.

Aﬁ n=23

Figure 8.3: Above the dotted lines the p-forms eigenvalues diverge (2 < p <n —1),

depending on the dimension.

In the special case that our family of graphs consists only of trees, we can mod-
ify any given manifold X to become a graph-like manifold (see Remark 6.4.2). In

particular, we can show the following corollary.
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Corollary 8.3.5. On any compact manifold X of dimension n = 3, there exists a
sequence of metrics g; of volume 1 such that the infimum of the (non-zero) function

spectrum converges to 0, while the exact p-form eigenvalues (2 < p <n — 1) diverge.



Appendix A

Geometry of T kv

We here describe the space T*M introduced in Chapter 2. We have already noticed
that vectors on T®M can be decomposed into horizontal and vertical components,
resembling the structure of the tangent spaces of TM. In this Appendix we will
analyse the Lie brackets and the covariant derivative of horizontal and vertical vectors,
and we will look at curvature properties of 7%M in relation to the curvature of the
base manifold M.

The reader will find it useful to compare these results with the ones in [Dom62,
GuKa02, KS05] and references therein. In [Dom62, GuKa02], the authors describe
the geometry of T'M equipped with the Sasaki metric, while in [KS05], the authors
describe the geometry of the linear frame bundle LM over a manifold equipped with
a Sasaki-type metric. In both articles, the authors use local coordinates in their
geometric descriptions of T'M and LM. Moreover, they also discuss other types of
metric on T'M and LM.

Let (M, g) be a compact n-dimensional manifold with tangent bundle 7'M, and
let 7 : TM — M be the canonical projection. We remind the reader that for
k=1,...,n, TFM is defined as

T"M = [ J{f = (o1, o0) € M x .. x T,M | w(v) =p Vi=1,... .k},

peM

and that there is a canonical projection 7% : T*M — M such that 7*(f) = p if
v;e T,M foralli=1,... k.

87
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T*M is a manifold of dimension n +nk and its tangent space at a point f is given
by
Ty T"M = T,M x ... x T,M.

p
_

~
(k+1)—times

In fact, any tangent vector on T*M is described as

4
dt

D

o X)) =)

X0 = ( V), 3], ),

t:O(

where X = (Vi,..., Vi) : (—g,6) — T*M is a curve on TFM. In view of this,

and having in mind the decomposition of vectors on T'M into horizontal and vertical
: h

component, we consider any vector v on T*M as the sum of u = (ug;0,...,0) and

v
u = (0;uq,...,uxr). Moreover, we define

Hr= |J {u|ueTyT*M} = Ty M and
feTkMm
Vi= | {ulueTyT"M} = Ty M x ... x TounM

S
cTkM h
! k—times

to be the horizontal and vertical distributions at the point f. Consequently,
Ty TEM = Hy + Vs

We also remind the reader that we equip T5M with the Sasaki-type metric

k
Gy (u, w) = gp(ug, wo) + ng(ui,wz’),
=1

for every u = (up;uy,...,u;) and w = (wo;ws,...,wy) vectors in TpT*M with

7*(f) = p. Hence, horizontal and vertical components are pairwise orthogonal.

A.1 Horizontal and vertical lifts

Let f € TFM with 7%(f) = p, and let v = (ug;uy,...,ux) € TyT*M. For all
1 =0,...,k, we define the map

mi Ty T"M — T,M such that m;(u) = u,.
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Definition A.1.1. Let w € T,M. The horizontal lift of w to a point f € TFM is
the unique vector w" € Ty T*M such that mo(w") = w and m;(w") = 0 for i # 0, i.e.,
wh = (w;0,...,0).

The horizontal lift of a vector field X on M is the unique vector field X" on T#M
such that mo(X") = X(p) € T,M and 7;(X") = 0 for i # 0 for all f € T*M with

m™(f) = p.

Definition A.1.2. Let w € T,M. The j-th vertical lift of w to a point f € T*M

is the unique vector w? such that m;(w7) = w and m;(wj) = 0 for i # j, i.e., wj =

J

(0;0,...,0, w ,0,...,0).
——
j-th place
The j-th vertical lift of a vector field X on M is the unique vector field X7 on
T*M such that 7;(X?) = X(p) € T,M and m;(X?) = 0 for i # j for all f e TFM

with 78(f) = p.

We observe that the maps w — w" and w wj for all j are vector isomorphisms
between T, M and H ¢ and between T, M and the j-th copy of T,,M in V¢, respectively.
Therefore, the horizontal and vertical component of any vector z € Ty T*M can be

interpreted as horizontal and vertical lift, i.e., we have
. k
v h v .
2=2z+2=2 —i—Zzi = (205215 -+, 2k)-
i=1

Therefore, it is sufficient to look at the horizontal and vertical lifts to recover the
behaviour of the horizontal and vertical component of a vector on T#M.

We also note that for every h € C*(M) and every w € TyT*M, we have
w'( hor® ) =wy(h) and wi(ho ™) =0, (A.1.1)
€Co(Tk M)
while for every H € C*(T*M), we have

d

w'(H)(f) = pri R ON (A.1.2)

w(H)() = 5 HU + I w), (A13)

J

where J : TT*M — T*M is such that J(u) = J((uo;us,...,ux)) = (U, ..., ug).

In fact, we can think of w” and wj to be the generators of the local 1-parameter
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groups @:(f) = fu(t) and @i(f) = f +tJ(w}) = (v1,...,vj-1,0; + tw, vjq1,. .., V)
for f = (vy,..., k).

We also point out that (A.1.2) and (A.1.3) correspond to the definition of horizon-
tal and j-th vertical gradient of a smooth function on 7*M as introduced in Section

2.3.

A.2 Lie Brackets

Proposition A.2.1. Let X,Y be vector fields on M and consider Xh,X;’,Yh,Y}”
their horizontal and j-th vertical lifts for j = 1,... k. Then, for all f = (vy,...,vx) €
TFM and 7*(f) = p, we have

X y"h (X, Y)vy)y
[ 1) = ([X Z o
([X VI =Ryl X, Y )on, o, = Ry(X, Y o)
(X" Y1(f) = (Vxpy)s = (0;0,... Vx@Y,0....0), (A.2.5)
(X7, Y!(f)=0 Vij=1..k (A.2.6)

where R, is the Riemannian curvature tensor on M evaluated at the point p.

Proof. Let J : TyT*"M — T,M x ... x T,M be such that J(ug;us,...,u) =
(up,...,ug). Let s, @5 and ¢y, @y be local 1-parameter groups associated to )N(h, )N(;’

and }N/h, }N/j“, respectively, i.e.,
0 :Rx TFM — TFM P :Rx TFM — T*M
(s,.f) = fx@(s) (s, f) = |+ sJ(XF(f)),
the same for ¢, @; associated to ?h, 17]7’, respectively.

Note that ;! = ¢_,.
Using [KN63, Proposition 1.9], we have

(X2 YPI(f) = lim ~ (Y"(f) — (des(Y)(F))-

s—0 S
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Then,
e TN = 2| (propoe )
= U el D))
d
= (s ls)

where ¢ = ¢(t), and ¢ is the geodesic with starting vector Y (p).
We now define the variation H(s,t) = (fy () (t))X(q)(s) = (Hi(s,t),..., Hy(s,t))
where H;(s,t) = ((vj)y(p)(t))x(g(s). Then,

0 0

(oY) = 2| H(st)= (o] @oms,tyi| (s, 2] Hils.1).

Since Y"(f) = (Y(p);0,...,0) = (%‘tzo(ﬁk o H)(0,t);0,...,0), we have

[Xh,yh](f):(nml(2 (7% 0 H)(0,t) — %‘ (WkoH)(s,t)>;

s—0 s \ 0t lt=0 ot o
. 1D
_LI_I}%EE ( 7t)7 ,_hm—— k(s,t))
D D D D
= ([X7 Y](p>7 _E S:OE t:OHl(S’t)’ R _% S:OE t:OHk(S, t))
Now,
b D = 0 k 0 N
dslodt :OHi<S,t) - R(_ tzo(ﬂ > H)(0,1), 05 lo= 0(7T o H)(s, 0))H(0 0)
Dy, D
= 2| His,t
_ dtli=odsls=0 (s z
7%|t:0(vi)y(z7)(t):0
= RP(Y>X)UZ'-
Hence,
(X" Y"(f) = (X, Y](f); —Ry(X, Yoy, ..., =Ry (X, Y )up),

which proves (A.2.4).
To prove (A.2.5), we proceed as before using the local 1-parameter groups ¢4 and

©; generating X" and 37]7’, respectively. Then, we have

DX, YF1() = lim — (V7 (F) = (de) (V) (£)

s—0 S
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and
(o) = 5| (a0 piow ()
= O] puloa() + BT ()
= Y (0—s()) x(atos(r) (5)-
Therefore,

X8 Y1) = T~ (V7 (o) = 7 (o) o (5)
= (Zo()): 2a(D)s - Zelf)

where Z;(f) = 0 for all i # j and

Zi(f) = 1im1(Y(7fk(900(f))) — Y (7" (oo () x(rr(os () (3)) = Vi)Y

s—0 S
Finally, we consider the local 1-parameter groups @, ¢; to prove (A.2.6). It is easy
to see that @, and @, commute. Therefore, by [KN63, Corollary 1.11] we conclude
[XPYP]=0foralli,j=1,... k. ]

177

A.3 Covariant Derivative

Let V,V be the Levi-Civita connection on (M, g) and (T*M, g) respectively. We re-
call that for any V, U, W vector fields on T* M, Kozul formula holds [Sak96, Equation
1.13, p. 28].

9;(VyUW) = S(V(g,(UW)) + U(g,(V.W)) = W(g,(V.U))

N | —

— 9 (V.[UW]) =g, (U, [V.W]) = g, (W, [U,V])) (A3.7)

Using the formula above, we are able to compute the covariant derivatives of

horizontal and vertical lifts.

Proposition A.3.1. Let X,Y be two vector fields on M, X" Y" be their horizontal
lifts on T*M and X7,Y}? be their j-th and i-th vertical lifts fori,5 =1,... k. Then,
for all f = (vy,...,vx) € TEM with 7 (f) = p, we have

VY =0, (A.3.8)
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Vi)Y' =(VxpY)" - (Ry(X,Y)wi);

DO |
ngke

=1 (A39)
1 1
— (VY i =5 Rl XY o, =5 Ry (XY o)
1
VxnpY = (§Rp(vi, Y)X) + (VxpY)y
1 (A.3.10)
— (§Rp(’0i, Y)X, 0, e ,0, vX(p)Y> 0, e ,O),
_ 1 1
VyenX" = §(Rp(vi,Y)X)h = <§Rp(vi,Y)X;07 . ,0>- (A.3.11)

Proof. Let W = Vf[L/ + I;I}/ = (Wo; Wy,..., W) be a vector field on T*M. In order to
understand the horizontal and vertical components of the vectors in (i)—(iv), we take
their inner products against I/}Il/ and the [-th component of V[v/, denoted by VT[}/Z. In
what follows, we will make use of the definition of g, Proposition A.2.1 and equations
(A.1.1) and (A.3.7).

We have

gf(ﬁx;_)y;v’ W) = (X}}@f(y;v, W) + Y (g, (X5, W) — Wi(g,(X7,Y;"))

DO | —

— (X0 VP W) — OV (XY, W) — (W, [V, XP])) = 0,

2

and
_ h 1 h h h
95 (T W) = S (X307 W) + ¥ (g, (X0, W)~ W, (X7, 7))
X YR W) — g(vE [X2 W) — gV [YE X))
= 5 (= Wolgp(X;, Y) + 95X, Vir¥i) + (Vs Vi X,)).

If 2 # 7, then each term of the above formula is zero due to the definition of g. If
© = 7, then the above sum is zero due to the Riemannian property of V. This proves
(A.3.8).

Now, we prove (A.3.9). As before,

G, (T Y™ W) = £ (X (g, (Y™, W) + Y™ (g, (X*, W) — oshW (g, (X", Y"))

N | —

g (X YR ) — g, (0 (X)) — g, OV [V X))
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= (X gV, W0)) + Y (g, (X, TW0)) — Wil (X, V)

— (X, [V, Wa]) — g, (Y, [X, Wa]) — g, (Wo, [V, XT))

:gp(vXY> Wo),
and

G (VY W) = = (XM(G, (0" W) + YR(G, (X" W) — WG, (X", V7))

DO | —

- gf(Xh> [Yh’ Wl]) - gf(Yha [Xha Wl]) - §f<Wl7 [Yh7 Xh]))
1 v
= _§§f(Wl7 [V, X")
1
= §gp(m, R(Y, X)Ul).
Hence, the I-th vertical component of VY™ is LR(Y (p), X (p))v, for all | =

1,...k, and so (A.3.9) is proved.
Now, we look at (A.3.10). Again,

(X (g, (Y2, W) + VPG, (X W) — W(g, (X", ¥))

DO | —

. h
gf(VXh}/;U7W> =
= h v h — v h h — h v h
1 h
= _ng(Y'LU7 [XhJWD
1
= 591)(}/;>R(X> Wo)vi)

1
= igp(R(Uia Y;)Xa W0)7
and

(XM(F (V2 W) + Y2 (G, (X W) — WG, (X", 7))

N | —

gf(thY;v7 Wl) =
=g (X" [V W) = g, (Y [X" oWa]) — g, (W, [V, X))

= XM W) (7 (X T — 7, [, X))

1
= 50u(X (o (Y. W) = g,(V. VW) + g,(Wi, VxY))

= ilgp(vX}/;h VVl)a

where the last equality is due to the Riemannian property of V. Therefore, (A.3.10)

is proved since the only non-zero component is the i-th (I = ).
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Finally, we look at (A.3.11). Using (A.2.5) and (A.3.10), we obtain.
VyepX" = VY = X5 Y1)

1 h
= (§ReY)X) + (VxpV)} = (VY

_ (%Rp(vi,y)xy,

which concludes the proof. m

We analyse the Levi-Civita connection of the horizontal and i-th vertical lift of a
semi-basic vector field. We remind the reader that a semi-basic vector field is a map

F: TFM — TM such that F(f) e T,M if 7*(f) = p (see also Section 2.3).

Definition A.3.2. Let F': T*M — T M be a semi-basic vector field. The horizontal
and i-th vertical lift of F are the maps

F'o TEM — TTM,  F"(f) = (F(f))

and

EY:T*M — TTM,  F(f) = (F(f));

7

We now consider a very special semi-basic vector field. We define P; : T*M —
T'M such that P;(f) = v; for every f = (vy,...,v), i.e., P; is the projection of f on
the i-th component of T*M, and we consider G : TM — T'M, an endomorphism on
TM. Then, H = (G o P,) is a semi-basic vector field on T#M. We have the following

result.

Proposition A.3.3. Let H be the semi-basic vector field defined above. Let Xh,X;-’
be the horizontal and j-th vertical lift of X € X(M) and let V be the Levi-Civita

connection on T*M. Then, for all f = (vy,...,v), we have
VxnpyH" = Vxnpy(H o V)", (A.3.12)
VxnpHY = Vxnpy(Ho V), (A.3.13)
Vs = (HIXI))' (A3.14)
Vg H" = (HUIXH) + 5 Ryloy, X)H()', (A3.15)

where V.= (Vi, ..., Vi) is a realization of f, i.e., f =V (f) = (Vi(p),...,Vi(p)), and
J:TyTEM — T,M x ... x T,M is such that J(ug;uy, ... ug) = (ur, ..., ug).
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Proof. We consider the curve ¢, generating X", i.e., pi(f) = fx(t). Then,

_HUxw ()"
HV (fxp ()"

=2 ((HoV) o))

which proves (A.3.12).

Equation (A.3.13) follows from the same considerations.

To prove (A.3.14) and (A.3.15), we first observe that for v; = > _, d:va(vi)%}p,

we have

a=1 =1
Therefore,
v C J k v
HI(f) = Y dra) (G o 5—o7*(f)).
a=1 o ¢
and
H'(f) = Y dea(o9) (G o5 o7 (F))
a=1 @
Hence,

= Y (X3(r)) (1) (G 0 5 o 7)), + dra(w) TG 0 2 07
- =0 by (A.2.6) ’
Since X7 (f) is generated by o (f) = f +tJ(X](f)), we have
X5 (dza)(f) = (X7 () (dza(Pi(£)))
= | dra(PAF + HICX3 ()
=0 (A.3.16)
— 2| dza(P()) + tdaa(PUICKS ()
= dra (P (),

where the third and fourth equality are due to the fact that dx, and P; are linear.
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Hence, we conclude

Vi = Y dea (UGN (G0 50 7(0) " = (HIX)..

0%y,

which proves (A.3.8).
We proceed in the same way to prove (A.3.11).

Vi H" = O; Vi) (dra(G o aia om*)")
= 3 (X)) (1) (G0 2 0 7)) + 09Ty (G o 5 07
= Z j « a[lfa a\Vi) V. XV(f) a[lfa
1 h
= HOOG )" + (R0 OH(S))
where the last equality is due to (A.3.16) and (A.3.11). O

A.4 The Riemannian curvature tensor

Let R and R be the Riemannian curvature tensor on T%M and M, respectively,
and let Ef,Rp be their evaluations at the point f and p, respectively. For any
V,W,U € X(T*M), we have

R(V, W)U = Vy(nVwinU = Vir(n VvipU = VivwinU- (A.4.17)

Proposition A.4.1. Let X,Y € X(M) and consider their horizontal and vertical
lifts, denoted as usual. Let f = (vy,...,vp) € TEM with 7 (f) = p. Then,

Ry(XPYD)ZP =0 Yijl=1,....k (A.4.18)

— 1 1 h
Ry(X" Y2 = (= 1Bo(vs, 2)(Byl01, 2)X) = SRy (V. 2)X ) (A419)

5} v v ]'
By(X2 Y7 2" = (0B (X,Y)Z + { Ry(vr, X) (Ry (v, Y)2)
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v

_ 1 h
Ry (X", Yz = §(vx \R(v, Z)Y) = VyR(u, Z)X) + (R,,(X, Y)Z)

>

1=1

l

( (Y, R(v, Z)X)v; — Ry(X, R(u, Z)Y)vi)v, (A.4.22)

i

A~ =

_ 1
R(X", yMzh = (R,,(X, Y)Z + 7 Y Rylvs, RIX, Z)0)Y

i=1

h
— Ry(vi, R(Y, Z)v)) X + 2R, (i, R(X, Y)vi)Z)

k
_ %Z (vz(p) R(X, y)vi)i. (A.4.23)
=1

Proof. We will make use of (A.4.17) to prove the proposition.

Equation (A.4.18) is an easy consequence of (A.4.17), (A.2.6), and (A.3.8).

Before proving the remaining equations, we observe that the map F(f) = F(vy,...,vx) =
R(v;, X (p))Y (p) is a semi-basic vector field for any X,Y € X(M) and any index 7. In
particular, Lemma A.3.3 applies to such a map.

We now prove (A.4.19). Using (A.2.5), Proposition A.3.1 and Lemma A.3.3, we

have
Ry(X" Y2} =Ny Vyen 2 = Vvp(nVaninZi = Vixnyon 2
= ~VyrnVxrn 2

1— _
= =5 Vypin (R(u, Z)X)" = Vo)V 2)F

-7

~~

=0

- _% <5ﬂRp(y, 2)X — %Rp(vj, V) (By (v, Z)X>h-
To prove (A.4.20), we use the Bianchi Identity and (A.4.19). Then,
Ry(X{Y7)ZN(F) = ~Rp(Z" XY} = Ry}, 2K
= —Ry(Z", X))Y + Ry(Z" Y)) X}
= (3B (X.V)Z + L Ry(01, X) Ry, V) 2)
R0, V) (R0, X)2))
Now,

Ry(X" Y Z" =V xun Vv Z" = Vye) Vann 2" = Vixnyoin 2"
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1— - 1o ,
=5 Vaxr( (B(v3, Y)X)" = Vv (Vi) Y)" + 35 Vv (R(X, Z)va);
i=1

h
- V(VX@)V)? Z

1 1¢ v
=5 (Vxg R(v;, Y ZZ ( UJ»Y)Z)UOZ, - §(Rp(vj,Y)(VX(p)Z))h
=1
1 1
+ 5 (Bp(v), Vx)Y) 2)" + 5 (Byp(X, 2)Y);
1 heol 1 v
=5 (VxR 1)Z) + 5 (Ry(X, 2 ) Z;( By(v, Y)2)w)

which proves (A.4.21).
We again use the Bianchi Identity to prove (A.4.22).

Rp(X"YMZ = —Rp(Z), X")Y" = R;(Y", Z7) X"
R (XM XY R (", 2) X

1 h )

-3 (VxR 2)Y = Vy R, 2)X) + (Ry(X,Y)2);

3 <Rp(Y, Ry(vi, Z)Y )vi — Ry(X, Ry (1, Z)Y)vi> .

i=1 !

Ll
4

Finally, we prove (A.4.23).
Ef(Xh, Yh)Zh - th(f)vyh(f)Zh - th(f)th(f)Zh - v[Xh7yh](f)Zh

k k
= Vi (Vv 2)" - %Z(RP(Y, 2)0)) = Vynip (Vi 2)" - %Z(RP(X, Z));)

i=1 i=1

=

— V [X,Y](p)" Z (Rp(X, Y)vl)“

k
Z (X,Vy p)Z)Ul) (Vy(p Vxp) )

DR (Y, Vxp) Z)0i)! — EZ ((Rp(% Ry (Y, Z)vi) X )" + 2(V x R(Y, Z)vi)é’)

i=1 =1
1 k
+ 320 ((Bolv, By(X, 2)0)Y )" + 2Ty RIX. 2)00)}) = (Vi Z)"

45 SURMIX Y] 20 + 5 DRyl By(X,Y)u0)2)!

i=1 i=1
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:(R

Aklr—‘

k
Z (0, Ry(X, Z)03)Y — Ry(vi, Ry(Y, Z)vi) X

Zk: < )Uz‘y-

=1 !

+ 2R, (v, Ry(X,Y )

l\DI»—l

A.5 Curvature

Let K, Ric, S be the sectional curvature, the Ricci curvature and the scalar curvature

on T"M, respectively. For any v,w € Ty T*M we have

Gr (R(v, w)w,v)

K({v,w}) = = , A.5.24
D) = Bl =700 20

n(k+1)
Ric(v,0) = Y| K({v,e:}), (A.5.25)

i=1
+

Z R_ cles, ), (A.5.26)
where {v,w} is the plane spanned by v and w, and where ey,...,e,p41) is an or-

thonormal basis of Ty T* M.

Proposition A.5.1. Let X, Y € X(M) be two unitary vector fields and consider their
horizontal and vertical lifts as usually denoted. The sectional curvature K of T*M

with respect to the Sasaki-type metric satisfies the followings.

K{XP(f), Y (H) =0 Vij=1,..k (A.5.27)
KX (), Y7 () = 31 R Y 0) X0 (A.5.25)
(X (). V() = K(X(P). Y (0)}) ——ZHR XYl (A529)

Proof. To prove the proposition we plug in (A.5.24) X" Y XV, Yy
Equation (A.5.27) holds due to (A.4.18).
Since, X,Y are unitary, then [X"[* = [Y|> = |[Y"|?* = 1. Using (A.4.19), we

have
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K{X"(f),Y7 (N} =g,(RX" Y)Y, X")

= — 1R (23, V) ({3, Y)X), X) = Sgy(R(Y V)X, X)

[
-l
&
/\
s

Y)X|?,

which proves (A.5.28).
Finally, using (A.4.22), we obtain

K{X"(£).Y"(H}

gf(ﬁ(xh, Yhyh Xt

»Jklk—‘ S

J(R(X,Y)Y, X)

k

Z ( (vi, ROX, Y)0)Y, X) — gy(vs R, Y )u)) X, X)
+29(R,(vi, R(X,Y)v,)Y, X))

— K({X(p),Y(p)} — —ZHR (X, Y)uil?,

=1

which proves (A.5.29). O

From the above proposition, we derive some relations between the curvature of

Tk M and M.

Proposition A.5.2. Let (M, g) be a Riemannian manifold and let (T*M,q) be the
bundle of k-frames on M equipped with a Sasaki-type metric. Then, T*M is flat if
and only if M is.

Proof. Statement (i) is a direct consequence of Proposition A.5.1 or of Proposition

(A1) O

Proposition A.5.3. Let (M, g) and (T*M,q) be as in the above proposition. Then,

the following statements are true.
(i) If T*M has bounded sectional curvature, then it is flat,

(ii) If T*M has bounded sectional curvature, then M is flat.
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Proof. By contradiction, we assume that T*M is not flat. Then, M is not flat by
Proposition A.5.2. Hence, there exist a point p € M and a pair of orthonormal
vectors up,us € T,M such that R,(ui,u2)V # 0 for some V vector field on M.
Then, K({u?,ul}) = K({ui,us}) — %ZL IRy (w1, ug)v;|?* for uf,ul the horizontal
lifts of u;,up at the point f = (vy,...,vy) such that 7%(f) = p. Since the set of v;
satisfying this condition is unbounded, so is the set of f which has v; has one of the
components. In a similar way, we show that K ({u},u}}) is unbounded from above
using the (A.5.28). This proves statement (7).

Statement (i7) is a consequence of statement (i) and of Proposition A.5.2. O

We now look at the Ricci and scalar curvature of T%M. We fist observe that given

e1,...,e, an orthonormal basis for T, M, then el, ... el is an orthonormal basis for

e n

Hyand (e1)?,...(e,)y for i = 1,...,k is an orthonormal basis for V.

Corollary A.5.4. Letel, ... e} be an orthonormal basis for Hy, (e;)? fori=1,... k
and j = 1,...,n be an orthonormal basis for V; as described above. Let u",u} be
the horizontal and l-th vertical lifts of w € T,M at the point f = (vy,...,v;) with
7*(f) = p. Then,

Ric(u", u") = Ric(u, u) — —ZZ IR, (e, vi)ul?, (A.5.30)
i=17=1
Ric(u}, u}) Z |R(vy, u)es|?. (A.5.31)

Proof. We apply Proposition A.5.1. Then,

n

]:

I
-
=
T:“

Ric(u", u")

<
Il
—

k

K({u,e;}) — ZZ (u, € le ZZ | Ry (v, €5)ul?
=1 z 15=1
n k
+ 20 qIR
J= =1

We now observe that for v; = >, vfe, and u = Y, we;, we have

I

D=

=
w

<.
Il
—

3
p(vis e5)ull” = | By, e5)vil”

»J;Ir—‘
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n

D IRy (uye)uil* = Y 1D wvf Ryler, ¢j)eal?
7 L

Jj+1

= > wufvl g (Rler €))ea, e5)gp(Rleq, €5)es, €5)

7,q,l,a,8,s

= Y wuf ol (Rienscalers e)gp(Bleg e.)egsc)
7,q,l,a,8,8

= Z uluqvf‘viﬁgp(R(Gj, ea)er, (e, e5)eq)
Jala,B

= > [ Roleg, vi)ul*
j

Therefore,

Ric(u", u™) = Ric(u, u) ——ZZHR ej, vi)ul?,

i=17=1

which proves (A.5.30).
Equation (A.5.31) is an easy consequence of (A.5.28). O

Corollary A.5.5. Let e, ... el and let (e;)? fori=1,...,k and j =1,...,n be as
above. Let f = (vy,...,v), then

n k
2 Z (e, v)eq (A.5.32)

Proof. This a consequence of the deﬁmtlon of scalar curvature and of Corollary A.5.4.

]

Aklr—‘

Proposition A.5.6. Let (M,g) be a Riemannian manifold and let T*M equipped
with the Sasaki-type metric g. Then, (T*M,q) has constant scalar curvature if and

only if M 1is flat.
Proof. This is a direct consequence of Corollary A.5.5. [

Corollary A.5.7. Let M, T*M as above. Then, T*M has constant scalar curvature

with respect to the metric g if and only if the scalar curvature is zero.
Proof. This corollary is a consequence of Propositions A.5.6 and A.5.2. O

Corollary A.5.8. Let M, T*M as above. Then, T*M is Finstein with respect to

the metric g if and only if it is flat.

Proof. Again, this is a direct consequence of Proposition A.5.6. m
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