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Abstract

This dissertation is made up of two independent parts. In Part I we consider

the Pestov Identity, an identity stated for smooth functions on the tangent bundle

of a manifold and linking the Riemannian curvature tensor to the generators of the

geodesic flow, and we lift it to the bundle T kM of k-tuples of tangent vectors over

a compact manifold M of dimension n. We also derive an integrated version over

the bundle PkM of orthonormal k-frames of M as well as a restriction to smooth

functions on such a bundle. Finally, we present a dynamical application for the par-

allel transport of GkorpMq, the Grassmannian of oriented k-planes of M . In Part II

we consider a family of compact and connected n-dimensional manifolds Xε, called

graph-like manifold, shrinking to a metric graph as ε Ñ 0. We describe the asymp-

totic behaviour of the eigenvalues of the Hodge Laplacian acting on differential forms

on Xε in the appropriate limit. As an application, we produce manifolds and fam-

ilies of manifolds with arbitrarily large spectral gaps in the spectrum of the Hodge

Laplacian.
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Chapter 1

Introduction

The Pestov Identity is an identity stated for smooth functions on the tangent bundle

of a Riemannian manifold M . It links the generator of the geodesic flow with the

Riemannian curvature tensor and other geometrically motivated differential operators

and, therefore, it can be considered as a dynamical Weitzenböck identity on the

tangent bundle.

It was first introduced by Pestov and Sharafudtinov in [PS88] to derive useful

estimates on symmetric tensor fields and to give an answer to the question whether

a smooth symmetric tensor field can be uniquely recovered from the knowledge of all

its integrals along geodesics. Since then, it has been widely used to solve Geometric

Inverse Problems such as tensor tomography, the boundary rigidity problem and

spectral rigidity.

In this dissertation we lift this identity to the space of k-tuples of tangent vectors

over a compact n-dimensional manifoldM and we restrict it to the principal bundle of

orthonormal k-frames. As an application, we use it to obtain an invariance property

of smooth functions on Grassmannians under the parallel transport.

1.1 The Pestov Identity and its applications

Let pM, gq be a compact manifold of dimension n and let TM and SM be its tangent

bundle and unit tangent bundle, respectively. Let π : TM ÝÑ M be the canonical

projection of TM onto M . TM is a 2n-dimensional manifold whose tangent space

2



1.1. The Pestov Identity and its applications 3

at v P TM splits as

TvTM “ Hv ‘ Vv – TpM ˆ TpM,

where Hv and Vv are called horizontal and vertical distributions at the point v,

respectively. In fact, let X : p´ε, εq ÝÑ TM be a curve in TM with Xp0q “ v, and

let π ˝ X be its footpoint curve on M . Then,

TvTM Q X 1p0q –
´ d
dt

ˇ̌
ˇ
t“0

pπ ˝ Xqptq, D
dt

ˇ̌
ˇ
t“0
Xptq

¯
,

where D
dt

is the covariant derivative along π ˝ X.

Hence, we define the two distributions as follows.

Hv “
 
X 1p0q P TvTM

ˇ̌ D
dt

ˇ̌
ˇ
t“0
Xptq “ 0

(
– tpw, 0q | w P TπpvqMu – TπpvqM,

Vv “
 
X 1p0q P TvTM

ˇ̌ d
dt

ˇ̌
ˇ
t“0

pπ ˝ Xqptq “ 0
(

– tp0, wq | w P TπpvqMu – TπpvqM.

Therefore, every vector ξ P TvTM splits uniquely as ξ “ ξh ` ξv with ξh P Hv and

ξv P Vv, called horizontal and vertical component, respectively.

We equip TM with the Sasaki metric [Dom62,GuKa02], defined as

xξ, ηyTTM “ xξh, ηhyTM ` xξv, ηvyTM . (1.1.1)

The structure of TTM gives rise to horizontal and vertical differential operators,

defined below.

Let ψ P C8pTMq and denote by uwptq the parallel transport of the vector u along

the geodesic cw : p´ε, εq ÝÑ M with starting point cwp0q “ πpwq and starting vector

c1
wp0q “ w. The gradient of ψ at v P TM is given by gradψpvq “ p

h

gradψpvq,
v

gradψpvqq
where horizontal and vertical component are define intrinsically as

x
h

gradψpvq, wy “ d

dt

ˇ̌
ˇ
t“0
ψpvwptqq and x

v

gradψpvq, wy “ d

dt

ˇ̌
ˇ
t“0
ψpv ` twq.

In other words, they describe the derivative of ψ along the horizontal curve t ÞÑ
vwptq and along the vertical curve t ÞÑ v ` tw.

Let X : TM ÝÑ TM be a semi-basic vector field, i.e., an element of Xpπ˚pTMqq,
π˚pTMq being the pullback bundle of the vector bundle TM overM via the projection

π : TM ÝÑ M . The horizontal and vertical covariant derivative of X are given by

h

∇wXpvq “ D

dt

ˇ̌
ˇ
t“0
Xpvwptqq and

v

∇wXpvq “ D

dt

ˇ̌
ˇ
t“0
Xpv ` twq.
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Consequently, the horizontal and vertical divergence of X are

h

divXpvq “
nÿ

i“1

x
h

∇eiXpvq, eiy and
v

divXpvq “
nÿ

i“1

x
v

∇eiXpvq, eiy,

where ei, . . . , en is an orthonormal basis of TpM for p “ πpvq.
Finally, we define the geodesic flow on TM . Let cv : p´ε, εq ÝÑ M be the geodesic

with initial vector c1
vp0q “ v. The geodesic flow is the map

φt : TM ÝÑ TM, such that φtpvq “ c1
vptq, (1.1.2)

and its generator is the vector

XGpvq “ d

dt

ˇ̌
ˇ
t“0
φtpvq –

´ d
dt

ˇ̌
ˇ
t“0

pπ ˝ φtqpvq, 0
¯

“ pv, 0q,

i.e., XGpvq is a horizontal vector.

Theorem 1.1.1 (The Pestov Identity, [Kni02]). Let M be a compact n-dimensional

Riemannian manifold. For all ψ P C8pTMq, we have

2x
h

gradψpvq,
v

gradpXGψpvqqy “ }
h

gradψpvq}2 `
h

divY pvq `
v

divZpvq

´ xRp
v

gradψpvq, vqv,
v

gradψpvqy,
(1.1.3)

where

Y pvq “ x
h

gradψpvq,
v

gradψpvqyv ´ xv,
h

gradψpvqy
v

gradψpvq,

and

Zpvq “ XGψpvq ¨
h

gradψpvq “ xv,
h

gradψpvqy
h

gradψpvq.

The reader will find a coordinate-free proof in [Kni02, Appendix] and the original

coordinate-based proof in [PS88] or [Sha94], both presented for manifolds of any

dimension.

Most of the applications use the integrated version of this identity, where integra-

tion is performed over SM with respect to the Liouville measure dµL.

Theorem 1.1.2 (Integrated Pestov’s Identity, [Kni02]). Let M be a compact n-

dimensional Riemannian manifold and ψ P C8pTMq. Then,

2

ż

SM

x
h

gradψpvq,
v

gradXGψpvqy dµL “
ż

SM

}
h

gradψpvq}2 dµL ` pn ´ 1q
ż

SM

pXGψpvqq2 dµL

`
ż

SM

x
v

∇vZpvq, vy dµL ´
ż

SM

xRp
v

gradψpvq, vqv,
v

gradψpvqy dµL,

(1.1.4)



1.1. The Pestov Identity and its applications 5

where Zpvq is as in Theorem 1.1.1.

The proof can be found in [Kni02, Theorem 1.1, Appendix]. It is based on the fact

that the horizontal divergence vanishes under integration over SM while integration

of the vertical divergence produces the second and third terms in the RHS (see [Kni02,

Lemma 1.2, Appendix]).

The dynamical component of (1.1.3) and (1.1.4) lies in the presence of the gen-

erator of the geodesic flow, which is linked to the sectional curvature of the plane

spant
v

gradψpvq, vu. This indicates a close connection between properties of the geodesic

flow and the curvature of the manifold. Such a connection is already well known in

relation to ergodicity of the geodesic flow, see for example [Bal95].

Moreover, since the norm of the horizontal gradient (the first term in the RHS

of (1.1.3)) is related to parallel transport, Theorems 1.1.1 and 1.1.2 provide a link

between curvature conditions and invariant properties of functions under the action

of the geodesic flow and under parallel transport.

Despite the strong dynamical flavour of these identities, their main applications

are not in the field of pure Dynamics but in Integral Geometry and Inverse Problems.

Below, we present a brief overview of three problems where the Pestov Identity plays

a key role for the solution.

Tensor tomography. The material here presented has been extracted from [PSU13,

PSU14a].

Tensor tomography is a subfield of integral geometry that studies how to recover a

function or a tensor field by the knowledge of its integrals along curves. The simplest

example is the X-ray (or Radon) transform in the plane, which aims at recovering a

function f in R
2 studying the integral of f along straight lines, i.e., geodesics in R

2.

This classical problem is nowadays well-known and well-studied. We refer the reader

to [Hel11] for its properties and further information.

In the context of Riemannian manifolds, the problem of tensor tomography, or

the geodesic ray transform problem, is posed as follows.

Let pM, gq be a compact, oriented Riemannian manifold of dimension n ě 2 with

boundary, and let ν be the unit outer normal to the boundary BM of M . Let SM
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be its unit tangent bundle and let pp, vq be a point in SM , i.e., v P SpM , then

BpSMq “ B`pSMq
ď

B´pSMq,

where B˘pSMq “ tpp, vq P BpSMq | ¯ xνppq, vy ě 0u.
Without loss of generality, we think ofM as embedded into a compact n-dimensional

manifold N without boundary. The exit time τ : SM ÝÑ r0,8s of a unit speed N -

geodesic γtpp, vq is τpp, vq “ inftt ą 0 | γtpp, vq P NzMu. If the geodesic γtpp, vq never
leaves the manifold M , we define τpp, vq “ 8. In the case γtpp, vq ă 8, the manifold

M is called non-trapping and the geodesic ray transform of a function f P C8pSMq
is then defined as

Ifpp, vq “
ż τpp,vq

0

fpφtpp, vqq dt, pp, vq P B`pSMq,

where φt is the geodesic flow on M , and the geodesic ray transform on a symmetric

m-tensor F is defined as ImF :“ Ifm, where fm is the function on SM arising from

the tensor F via fmpp, vq “ F ppp, vq, . . . , pp, vqq.
Given a smooth function f or a smooth m-tensor F , the geodesic ray transform

problem explores what properties of f or F can be recovered from the knowledge of

If or ImF .

It is known [Sha94] that a sufficiently smooth tensor field F can be composed into

a solenoidal and potential part, denoted by f s and dp, respectively, i.e., F “ f s ` dp,

where f s is a divergence free m-tensor field and p is a smooth pm ´ 1q-tensor field

vanishing at the boundary.

Using integration by parts and the fact that p vanishes on the boundary, it is

easy to see that the geodesic ray transform of dp, the potential part of f , vanishes.

Therefore, we can only aim at recovering the solenoidal part of f , which justifies

the notion of s-injectivity, defined as follows. The X-ray transform on symmetric m-

tensor fields, m ě 1, is s-injective if ImF “ 0 implies f s “ 0 for any smooth m-tensor

F . If m “ 0, i.e., in the case of functions, I0 is s-injective if I0f “ 0 implies f “ 0

for any f P C8pSMq.
A number of results are known about s-injectivity. I0 and I1 are s-injective

[Muk77,AR97]. Im is s-injective for all m on simple surfaces [PSU13], i.e., surfaces

with strictly convex boundary and such that for any two points there exists a unique
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geodesic joining them and depending smoothly on the end-points. Moreover, Im is

known to be s-injective on manifolds of negative curvature [PS88], under other curva-

ture restrictions [Sha94], or on higher dimensional simple or Anosov manifolds with

certain conditions on modified Jacobi fields [PSU15]. I2 is s-injective for manifolds

of any dimension equipped with simple metrics including real-analytic ones [SU05b].

We remind the reader that a manifoldM is said Anosov if the linearisation Dφt of its

geodesic flow splits the tangent bundle of SM into tree invariant subspaces: a one-

dimensional subspace tangent to the direction of the flow, and two other subspaces

on which Dφt acts uniformly contracting and expanding, respectively.

In addition, tensor tomography has also been studied in other contexts. For ex-

ample, it has been considered in the presence of an attenuation factor [SU11,PSU12],

in the presence of a magnetic field (see [DP05,Ain13] and references therein), and for

thermostats [DP07].

The main idea of the injectivity proof lies in observing that the transport equa-

tion XGu “ ´f in SM with u|BpSMq “ 0 is solved by the function upx, vq “
şτpx,vq

0
fpφtpx, vqq dt. Therefore, it is enough to prove that u is constant, as this al-

ready implies f “ 0 by the boundary condition. Then, the Pestov Identity enters

the game giving an estimate of }XGu}2 that, together with other tools, allows us to

conclude that u “ 0.

The boundary rigidity problem. The material presented in this paragraph has

been extracted from [SU05a].

The boundary rigidity problem addresses the question whether it is possible to

recover uniquely the metric of a Riemannian manifold from the knowledge of the

geodesic distance between any two points on the boundary. This problem arises in

geophysics in an attempt to determine the inner structure of the Earth by measuring

the travel times of seismic waves.

We observe that one can construct a metric g on a manifoldM with boundary and

find a point x0 P M such that dgpx0, BMq ą supx,yPBM dgpx, yq. For such a metric,

dg is independent of a change of g in a small enough neighbourhood of x0 [Uhl].

Therefore, it is natural to pose restrictions on the metric we want to recover. In 1981
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Michel [Mic81] conjectured that every simple manifold is boundary rigid. Pestov and

Uhlmann [PU05] proved the conjecture for simple two-dimensional manifolds with

no restriction on the curvature. For higher dimensional manifolds, results are known

for flat metrics, conformal metrics, and for locally symmetric spaces with negative

curvature. We refer the reader to the survey [SU05a] and references therein.

There is a strong link between the boundary rigidity problem and the operator

Im introduced in the previous paragraph. In fact, the linearisation of the boundary

rigidity problem near a simple metric g is given by showing that I2 is s-injective on

symmetric 2-tensor fields [Sha94]. Therefore, the Pestov Identity is a tool often used

in proofs in a fashion similar to the one described in the previous paragraph (see for

example [SU00] and [Dar06]).

As for tensor tomography, the boundary rigidity problem has been considered for

other types of dynamics such as the magnetic flow. For results in this direction, we

refer the reader to [DPSU07] and references therein.

Spectral rigidity. The material presented here has been extracted from [CS98].

Let pM, gq be a closed Riemannian manifold without boundary and let tgtutPr´ε,εs

be a family of metrics with g0 “ g and smoothly depending on t such that the spectra

of the Laplacian on pM, gtq coincide. Such a family is called isospectral deformation.

Spectral rigidity is concerned with the question whether every isospectral deformation

comes from a family of diffeomorphisms ϕt : M ÝÑ M such that ϕ0 “ id and

gt “ pϕtq˚g0. The manifold M is spectrally rigid if for all isospectral deformations

tgtut there exists a family of diffeomorphisms ϕt : M ÝÑ M smoothly depending on

t and such that ϕ0 “ id and gt “ pϕtq˚g0.

This problem was initially posed by Guillemin and Kazhdan in [GK80a] where

they proved that a two-dimensional, closed and negatively curved manifold is spec-

trally rigid. In a subsequent paper, they extended this result to manifolds of any di-

mension under a curvature pinching assumption [GK80b]. In both papers, the claim

follows from the s-injectivity of I0. Min-Oo [Min86] proved it for manifolds with neg-

ative definite curvature operator. These three results were proved without the use

of the Pestov Identity. However, it appeared as a key feature in [CS98] where Croke
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and Sharafutdinov used it to prove that any closed negatively curved manifold of di-

mension n is spectrally rigid. Their result is again a consequence of the s-injectivity

of the operator Im on compact manifold of negative curvature as in [GK80a,GK80b],

but they give an alternative proof of s-injectivity using the Pestov Identity.

Spectral rigidity has also been considered for a wider class of manifolds, namely,

Anosov manifolds. Sharafutdinov and Uhlmann [SU00] proved that an Anosov surface

with no focal points is spectrally rigid. This result relies on the s-injectivity of

I2 for Anosov surfaces with no focal points. More recently, Paternain, Salo and

Uhlmann [PSU14b] extended this result to all closed oriented Anosov surfaces. Again,

this is a consequence of the fact that I2 is s-injective on a closed oriented Anosov

surface.

1.2 Aim and main results

The aim of our investigation is to derive a Pestov-type identity for smooth functions

on the bundle T kM of k-tuples of tangent vectors over a compact n-dimensional

manifold M and restrict it to the principal bundle PkM of orthonormal k-frames,

which we think of as a subspace of T kM .

More precisely, the two bundles are defined as (see also Section 2.1)

T kM :“
ď

pPM

TpM ˆ . . . ˆ TpMloooooooooomoooooooooon
k´times

,

PkM “ tpv1, . . . , vkq P T kM
ˇ̌

xvi, vjy “ δiju Ă T kM.

In particular, it is possible to describe TfT
kM , f P T kM , mocking the splitting of

TTM into horizontal and vertical component. This also apply to the tangent space of

PkM , where the splitting appears naturally (see Section 2.1 or [KN63] for a general

overview on principal bundles).

This allows us to define horizontal and vertical differential operators following the

description of Section 1.1 (see Section 2.3). Regarding the dynamics we use, it is

given by the frame flows, the lifts of the geodesic flow, defined in the following way.

Let f “ pv1, . . . , vkq P T kM and choose the vector vi for some i. The i-th frame flow,
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i “ 1, . . . , k, is the map that parallel transports f along the geodesic cvi with starting

vector vi, i.e., every vector vj component of f is parallel transported along cvi .

Such a framework allows us to state the Lifted Pestov Identity (Theorem 3.1.4,

Section 3.1), and its integrated version (Theorem 3.2.3, Section 3.2) for smooth func-

tions on T kM . For sake of brevity we do not restate them here.

However, the real new results are the restriction of Theorem 3.2.3 to smooth

functions on the principal bundle PkM (Theorem 3.2.4, Subsection 3.2.1) and an

equality for smooth functions on PkM being invariant under one of the frame flows

(Corollary 3.2.6, Subsection 3.2.1), where only the L2-norm of the generators of the

frame flows and the Riemannian curvature tensor are involved.

In particular, Corollary 3.2.6 is the key identity for our applications. In fact, it

appears that if the manifoldM is negatively curved, then any function invariant under

one of the frame flows might also be invariant under the remaining ones. This is true

when M is a two-dimensional negatively curved manifold or M is a n-dimensional

manifold with constant sectional curvature (see Section 4.1).

However, the main application is for smooth functions on oriented k-th Grass-

mannians GkorpMq, k “ 1, . . . , n, i.e., Grassmannians where the k-planes come with

an intrinsic orientation (for a precise definition we refer the reader to Section 4.2).

The bundle PnM projects canonically onto GkorpMq and every function on GkorpMq
can be lifted to a function on PnM .

Moreover, on oriented Grassmannians we distinguish between intrinsic and non-

intrinsic parallel transport of oriented k-planes. The parallel transport of an oriented

k-plane Aor is called intrinsic if it is along a geodesic cv with starting vector v P Aor,
it is called non-intrinsic, otherwise (see also Definition 4.2.2 in Section 4.2). Due

to the projection of PnM onto GkorpMq, every smooth function on GkorpMq invariant

under the parallel transports has a smooth lift on PnM which is invariant under the

first k frame flows.

This link allows us to prove the following theorem via Corollary 3.2.6.

Theorem 1.2.1. LetM be a compact n-dimensional Riemannian manifold with non-

positive curvature operator (R ď 0). Let 1 ď k ď n and ϕ P C8pGkorpMqq. If ϕ is

invariant under all the intrinsic parallel transports then it is also invariant under all



1.3. Overview of the text 11

parallel transports.

For the definition of the curvature operator, we refer the reader to (4.2.2) in

Section 4.2.

We also point out that for k “ 1, G1
orpMq “ SM , the intrinsic parallel transport

corresponds to the geodesic flow and the non-positivity of the curvature operator of

M relaxes to the non-positivity of the curvature of M . Therefore, our result yields

the following, which recovers an unpublished result of Knieper [Kni].

Corollary 1.2.2. Let M be a compact Riemannian manifold with non-positive cur-

vature. Let ϕ P C8pSMq invariant under the geodesic flow, then ϕ is also invariant

under parallel transport.

Finally, combining the above theorem with Berger’s holonomy classification, we

obtain the following proposition.

Proposition 1.2.3. Let M be a non-flat, compact Riemannian manifold with non-

positive curvature operator R. Then, the following statements hold:

(i) If M is either a Kähler or a Quaternion-Kähler manifold of real dimension

2n ě 4 or 4n ě 8, respectively, or a locally symmetric space of non-constant

curvature (i.e., not the real hyperbolic space), then there exist smooth, non-

constant functions on G2
orpMq or G4

orpMq which are invariant under all intrinsic

parallel transports.

(ii) If M is not one of the exceptions in piq, then, for all k ď dimM , any smooth

function on GkorpMq which is invariant under intrinsic parallel transport is nec-

essarily constant.

1.3 Overview of the text

The material is organized as follows. In Chapter 2 we describe the bundles T kM

and PkM together with their differential operator and the frame flows. In Chapter

3 we present our main results. In Sections 3.1 and 3.2 we state and prove the Lifted

Pestov Identity and the Integrated Lifted Pestov Identity, respectively. Moreover, in
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Subsection 3.2.1, we restrict the Integrated Lifted Pestov Identity to smooth functions

on PkM . In Chapter 4 we present dynamical applications on smooth functions on

PnM over a two-dimensional manifold of negative sectional curvature and over a n-

dimensional manifold of constant sectional curvature invariant under one of the frame

flows, and on smooth functions on oriented Grassmannian invariant under intrinsic

parallel transports.



Chapter 2

A new framework

We here introduce the two spaces we will work with in the next chapter, together

with some of their features, the description of their differential operators and the

dynamics we equip it with. The new spaces are the bundles T kM and PkM already

introduced in Section 1.2.

This chapter is structured as follows. In Section 2.1 we describe the bundles

T kM and PkM , their tangent spaces and the chosen metric on them. In Section 2.2

we explain how the geodesic flow and the frame flows are related and we describe

the generators of the latter. Finally, in Section 2.3 we describe the geometrically

motivated differential operators related to the structure of the tangent spaces of

T kM and PkM , namely, horizontal and vertical gradient, covariant derivative and

divergence.

2.1 The bundles T kM and PkM

2.1.1 The new bundle T kM

Let pM, gq be a compact Riemannian manifold of dimension n. Let TM be its

tangent bundle and π : TM ÝÑ M , v ÞÑ p if v P TpM , be the canonical projection.

Let 1 ď k ď n, we define the space of k-tuples of tangent vectors over M as

T kM :“
ď

pPM

TpM ˆ . . . ˆ TpMloooooooooomoooooooooon
k´times

.

13
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This space projects canonically onto M via πk : T kM ÝÑ M , f “ pu1, . . . , ukq ÞÑ
p if p “ πpuiq for all i “ 1, . . . k.

T kM is a manifold of dimension kn ` n (for more details on its geometry, see

Appendix A).

Let f “ pv1, . . . , vkq P T kM and let X “ pV1, . . . Vkq : p´ε, εq ÝÑ T kM be a

curve on T kM such that Xp0q “ f and that the Vi’s are all vector fields on M along

the footpoint curve πk ˝ X on M . Then,

TfT
kM Q X 1p0q “

´ d
dt

ˇ̌
ˇ
t“0

pπk ˝ Xqptq; D
dt

ˇ̌
ˇ
t“0
V1ptq, . . . , D

dt

ˇ̌
ˇ
t“0
Vkptq

¯
.

Therefore, the tangent space of T kM at f is given by

TfT
kM “ TπkpfqM ˆ . . . ˆ TπkpfqMloooooooooooooomoooooooooooooon

pk`1q´times

. (2.1.1)

We call the first TπkpfqM copy in TfT
kM horizontal distribution and the product

of the remaining k copies of TπkpfqM vertical distribution. Consequently, any vector

x P TfT kM is written as the sum of
h
x “ px0; 0, . . . , 0q and

v
x “ p0; x1, . . . , xkq, called

horizontal and vertical component, respectively. This construction allows us to define

a Sasaki-type metric on T kM .

Let x “ px0; x1, . . . , xkq, y “ py0; y1, . . . , ykq P TfT kM . Then,

xx, yyTfTkM :“ xx0, y0yT
πkpfq

M `
kÿ

i“1

xxi, yiyT
πkpfq

M . (2.1.2)

Consequently, the horizontal and vertical distribution are pairwise orthogonal.

2.1.2 The frame bundle PkM

Let pM, gq be as in Subsection 2.1.1. The frame bundle of orthonormal k-frames over

M is denoted by

PkM “ tpv1, . . . , vkq P T kM
ˇ̌

xvi, vjy “ δiju Ă T kM.

The orthogonal group Opkq acts on the right on this space.

As for T kM , PkM projects canonically onto M and the projection map is again

denoted by πk. This map is a fibration where the fibre Fp is the Stiefel manifold of

orthonormal k-frames over Rn, i.e., Fp – Opnq{Opn ´ kq.
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In particular, for k “ 1 we have P1M “ SM , where SM denotes the unit tangent

bundle of M . On the other hand, when k “ n, PnM is a principal bundle with fibre

isomorphic to Opnq.
Let f “ pv1, . . . , vkq P PkM . Any curve in PkM through the point f is given

by X “ pV1, . . . , Vkq : p´ε, εq ÝÑ PkM where the Vi’s are orthonormal vector fields

along the footpoint curve πk ˝ X with Vip0q “ vi. X
1p0q P TfPkM is described as in

(2.1.1) with an additional condition on the D
dt

ˇ̌
t“0
Viptq’s. Since xViptq, Vjptqy “ δij for

all t, differentiation at t “ 0 yields

xD
dt

ˇ̌
ˇ
t“0
Viptq, vjy “ ´xD

dt

ˇ̌
ˇ
t“0
Vjptq, viy.

Therefore, the tangent space of PkM at f is given by

TfP
kM “

!
pu;w1, . . . , wkq P TpM ˆ . . . ˆ TpM

ˇ̌
ˇ
`
xwi, vjy

˘
ij

P opkq
)
, (2.1.3)

with opkq the Lie algebra of Opkq, i.e, the set of skew-symmetric real matrices of

dimension k ˆ k. TfP
kM splits orthogonally into a horizontal and a vertical distri-

bution, HP
f and VPf , described below.

HP
f “

!
pu; 0, . . . , 0q P TpM ˆ . . . ˆ TpM

)
– TpM,

VPf “
!

p0;w1, . . . , wkq P TpM ˆ . . . ˆ TpM
ˇ̌
ˇ
`
xwi, vjy

˘
ij

P opkq
)
.

We observe that for k “ n, the vertical distribution is isomorphic to opnq.
Consequently, any vector u P TfP

kM splits as u “ h
u ` v

u where
h
u P HP

f and
v
u “ p0; u1, . . . , ukq P VPf called again horizontal and vertical component, respectively.

We point out that vectors on T kM are not automatically vectors on PkM , as

they do not satisfy the constrain in (2.1.3). To obtain a vector on PkM from a vector

on T kM , we need to perform an orthogonal projection of the vertical components

of the latter onto TfP
kM , or more precisely, onto the Lie algebra opkq. We give an

example below.

Let f “ pv1, . . . , vkq P PkM and pXpfq;Y1pfq, . . . , Ykpfqq P TfT
kM . Then, the

vector pXpfq;Y1,opfq, . . . , Yk,opfqq P TfPkM is defined component-wise as follows.

Yi,opfq :“ Yipfq ´ 1

2

kÿ

j“1

´
xYipfq, vjy ` xYjpfq, viy

¯
vj. (2.1.4)
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It is easy to check that the matrix
`
xYi,opfq, vjy

˘
ij
is skew-symmetric.

Finally since PkM is a submanifold of T kM , it inherits the metric described in

(2.1.2) and horizontal and vertical component are again pairwise orthogonal.

2.2 Frame Flows

We now introduce the frame flows F i
t , i “ 1, . . . , k.

The first frame flow F 1
t on T kM is the lift of the geodesic flow and, more generally,

the i-th frame flow F i
t on T kM is the parallel transport of the frame f “ pv1, . . . , vkq

along the geodesic cvi with starting vector vi.

The precise definition of the frame flows is given below.

Let f “ pv1, . . . , vkq P TfT
kM , and let cvi be the geodesic on M such that

cvip0q “ πkpfq and c1
vi

p0q “ vi. The i-th frame flow, i “ 1, . . . , k, is the map

F i
t : T

kM ÝÑ T kM

f “ pv1, . . . , vkq ÞÑ fviptq “ ppv1qviptq, . . . , pvkqviptqq

where fviptq denotes the parallel transport of the frame f along the geodesic cvi , i.e.

every vector vj of f is parallel transported along cvi . In particular, pviqviptq “ φtpviq,
where φt is the geodesic flow on TM (see (1.1.2)).

Its infinitesimal generator is given by

Gipfq “ d

dt

ˇ̌
ˇ
t“0
F i
t pfq –

´ d
dt

ˇ̌
ˇ
t“0
cviptq; 0, . . . , 0

¯
“ pvi; 0, . . . , 0q,

i.e., Gipfq is a horizontal vector of TfT
kM for all i “ 1, . . . , k.

The frame flows act on the frame bundle PkM as well, and their generators are

again horizontal vector on PkM . The first frame flow on PkM has been extensively

studied in relation to ergodicity. Below, we list the conditions for which F 1
t is ergodic.

(i) If M is a manifold of odd dimension different from 7 with negative curvature

[BG80].

(ii) For the set of metrics with negative curvature that is open and dense in the C3

topology [Br75].



2.3. Differential Operators 17

(iii) If M is a manifold of even dimension different from 8 with pinched negative

curvature, pinching constant bigger than 0.93 [BK84].

(iv) IfM is a manifold of dimension 7 or 8 with pinched negative curvature, pinching

constant bigger than 0.99023... [BP03].

However, in this dissertation, we are not interested in studying the ergodicity of

the frame flows further. Our goal is to study a related property, namely, invariance

properties of smooth functions on the frame bundle under the action of the frame

flows.

2.3 Differential Operators

As in the classical case of Riemannian manifolds, we have differential operators on

T kM and PkM such as the gradient of a smooth function, the covariant derivative

and the divergence. However, here we need to distinguish between the horizontal and

vertical distribution when defining these operators.

In what follows, all inner products are with respect to the metric on M , unless

stated otherwise.

First, we introduce the notion of semi-basic vector field. We define the pullback

bundle π˚pT kMq “ tpv, fq P TM ˆ T kM | πpvq “ πkpfqu which is a vector bundle

over T kM . A semi-basic vector field is an element of Xpπ˚pT kMqq “ tX : T kM Ñ
TM smooth | Xpfq P TπkpfqM @f P T kMu.

An example of semi-basic vector field is the vector field Vi : T
kM ÝÑ TM such

that f “ pv1, . . . , vkq ÞÑ vi. It will appear extensively in the next chapter.

Let ϕ : T kM ÝÑ R be a smooth function and let f “ pv1, . . . , vkq P T kM with

πkpfq “ p. The gradient of ϕ with respect to the metric on T kM is

gradϕpfq “ p
h

gradϕpfq;
v,1

gradϕpfq, . . . ,
v,k

gradϕpfqq P TfT kM.

The horizontal and vertical component, called horizontal and i-th vertical gradi-
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ent, are described intrinsically as follows. Let u P TpM , then

x
h

gradϕpfq, uy “ d

dt

ˇ̌
ˇ
t“0
ϕpfuptqq,

x
v,i

gradϕpfq, uy “ d

dt

ˇ̌
ˇ
t“0
ϕpv1, . . . , vi´1, vi ` tu, vi`1, . . . , vkq,

i.e., the horizontal and i-th vertical gradient of ϕ are the derivatives of ϕ along the

horizontal curve t ÞÑ fuptq in T kM and along the vertical curve t ÞÑ vi ` tu in the

i-th TpM copy of T kM , respectively. We remind the reader that fuptq is the parallel

transport of the frame f along the geodesic cu starting at cup0q “ πkpfq with initial

speed c1
up0q “ u.

We observe that
h

gradϕ and
v,i

gradϕ are semi-basic vector fields.

If f P PkM , gradϕpfq defined as above is not an element of TfP
kM , as we

explained in Subsection 2.1.2. According to (2.1.4), the orthogonal projection of
v,i

gradϕpfq into TfP
kM for f “ pv1, . . . , vkq is

v,i

gradoϕpfq :“
v,i

gradϕpfq ´ 1

2

kÿ

j“1

´
x

v,i

gradϕpfq, vjy ` x
v,j

gradϕpfq, viy
¯
vj. (2.3.5)

Then, p
h

gradϕpfq;
v,1

gradoϕpfq, . . . ,
v,k

gradoϕpfqq P TfPkM .

Let X : T kM ÝÑ TM be a semi-basic vector field. The horizontal and i-th

vertical covariant derivative of X with respect to u P TpM are given by

h

∇uXpfq “ D

dt

ˇ̌
ˇ
t“0
Xpfuptqq,

v,i

∇uXpfq “ D

dt

ˇ̌
ˇ
t“0
Xpv1, . . . , vi´1, vi ` tu, vi`1, . . . , vkq.

As the definitions of these two operators rely on the usual notion of covariant

derivative, they satisfy additivity and the product rule, namely,

(i)
¨

∇u

“
Xpfq ` Y pfq

‰
“

¨

∇uXpfq `
¨

∇uY pfq,

(ii)
¨

∇upϕXqpfq “ ϕpfq
¨

∇uXpfq `
¨

gradϕpfqXpfq,

for all X, Y semi-basic vector fields and for all ϕ P C8pT kMq.
Finally, we introduce the horizontal and i-th vertical divergence of a semi-basic

vector field. They are defined as follows.

h

divXpfq “
nÿ

i“1

x
h

∇eiXpfq, eiy and
v,i

divXpfq “
nÿ

i“1

x
v,i

∇eiXpfq, eiy,
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where e1, . . . , en is an orthonormal basis of TpM for p “ πkpfq.
As a consequence of piq and piiq above, these operators are additive and satisfy

the product rules

h

divpϕXqpfq “ ϕpfq
h

divXpfq ` x
h

gradϕpfq, Xpfqy, (2.3.6)

v,i

divpϕXqpfq “ ϕpfq
v,i

divXpfq ` x
v,i

gradϕpfq, Xpfqy, (2.3.7)

for all X, Y semi-basic vector fields and for all ϕ P C8pT kMq.
We conclude the section giving an example of how to calculate the horizontal and

i-th vertical covariant derivative and divergence of a very special semi-basic vector

field, which we will use in the next chapter.

Example 2.3.1. Let Vi : T kM ÝÑ TM be a semi-basic vector field such that

f “ pv1, . . . , vkq ÞÑ vi. Then, we have the followings.

h

∇uVipfq “ D

dt

ˇ̌
ˇ
t“0
Vipfuptqq “ D

dt

ˇ̌
ˇ
t“0

pviquptq “ 0,

v,j

∇uVipfq “ d

dt

ˇ̌
ˇ
t“0
vi ` δijtu “ δiju.

Consequently,

h

divVipfq “ 0, (2.3.8)

v,j

divVipfq “ nδij . (2.3.9)



Chapter 3

The Pestov Identity on Frame

Bundles

In this chapter we state the main results of Part I.

In Section 3.1 we present the Lifted Pestov Identity, a Pestov-type identity for

smooth functions defined on T kM , whose proof follows the steps of a coordinate

free-proof given by Knieper in [Kni02]. In Section 3.2, we integrate the Lifted Pestov

Identity over the frame bundle PkM obtaining the Integrated Pestov Identity. More-

over, we restrict it to smooth functions defined on PkM and we derive a new identity

for smooth functions invariant under one of the frame flows.

We remind the reader that all the inner product are with respect to the metric

on M , unless specified.

3.1 The Lifted Pestov Identity

We first prove some useful relations between the horizontal and vertical differential

operators introduced in the previous chapter.

Lemma 3.1.1. Let ϕ P C8pT kMq, f P T kM and u, w P TpM with p “ πkpfq. Let

i “ 1, . . . , k, then

x
v,i

∇w

h

gradϕpfq, uy “ x
h

∇u

v,i

gradϕpfq, wy. (3.1.1a)

In particular, it follows
v,i

div
h

gradϕpfq “
h

div
v,i

gradϕpfq. (3.1.1b)

20
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Proof. Using the definitions of horizontal and i-th vertical covariant derivative and

gradient we have

x
v,i

∇w

h

gradϕpfq, uy “ d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpv1, . . . , vi´1, vi ` tw, vi`1, . . . , vkq, uy

“ B
Bt
ˇ̌
ˇ
t“0

B
Bs

ˇ̌
ˇ
s“0

ϕppv1qupsq, . . . , pviqupsq ` tpwqupsq, . . . , pvkqupsqq

“ d

ds

ˇ̌
ˇ
s“0

x
v,i

gradϕpfupsqq, wy

“ x
h

∇u

v,i

gradϕpfq, wy,

which proves (3.1.1a).

Equation (3.1.1b) follows by taking the trace.

Lemma 3.1.2. Let ϕ P C8pT kMq, f “ pv1, . . . , vkq P T kM and u, w P TpM with

p “ πkpfq. Then

x
h

∇w

h

gradϕpfq, uy ´ x
h

∇u

h

gradϕpfq, wy “
kÿ

i“1

xRp
v,i

gradϕpfq, viqw, uy, (3.1.2a)

and

GiGjϕpfq ´ GjGiϕpfq “
kÿ

l“1

xRp
v,l

gradϕpfq, vlqvi, vjy. (3.1.2b)

Proof. We first prove (3.1.2a) since (3.1.2b) follows as a consequence.

LetHpt, sq “
`
fwptq

˘
uwptq

psq be a variation in T kM , i.e.,Hpt, sq “ pH1pt, sq, . . . , Hkpt, sqq
where Hipt, sq “

`
pviqwptq

˘
uwptq

psq. Then,

x
h

∇w

h

gradϕpfq, uy “ d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpfuptq, uwptqy

“ B
Bt
ˇ̌
ˇ
t“0

B
Bs

ˇ̌
ˇ
s“0

ϕ
´

pfwptqquwptqpsq
¯

“ B
Bt
ˇ̌
ˇ
t“0

B
Bs

ˇ̌
ˇ
s“0

ϕpHpt, sqq.

Now, using (2.1.2), the definition of horizontal and i-th vertical component, and

the definition of horizontal covariant derivative, we obtain

B
Bs

ˇ̌
ˇ
s“0

B
Bt
ˇ̌
ˇ
t“0
ϕpHpt, sqq “ B

Bs
ˇ̌
ˇ
s“0

@ h

gradϕpHp0, sqq,
” B

Bt
ˇ̌
ˇ
t“0
Hpt, sq

ıh
loooooooomoooooooon

B
Bt

ˇ̌
t“0

pπk˝Hqpt,sq

D

` B
Bs

ˇ̌
ˇ
s“0

kÿ

i“1

@ v,i

gradϕpHp0, sqq,
” B

Bt
ˇ̌
ˇ
t“0
Hpt, sq

ıv,i
looooooooomooooooooon

D
dt

ˇ̌
t“0

Hipt,sq

D
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“ xD
ds

ˇ̌
ˇ
s“0

h

gradϕpHp0, sqq, wy ` x
h

gradϕpfq, D
ds

ˇ̌
ˇ
s“0

B
Bt
ˇ̌
ˇ
t“0

pπk ˝ Hqpt, sq
looooooooooooooomooooooooooooooon

D
dt

ˇ̌
t“0

B
Bs

ˇ̌
s“0

cuwptqpsq“0

y

`
kÿ

i“1

xD
ds

ˇ̌
ˇ
s“0

v,i

gradϕpHp0, sq, D
dt

ˇ̌
ˇ
t“0
Hipt, 0q

looooooomooooooon
D
dt

ˇ̌
t“0

pviqwptq“0

y ` x
v,i

gradϕpfq, D
ds

ˇ̌
ˇ
s“0

D

dt

ˇ̌
ˇ
t“0
Hipt, sqy

“ x
h

∇u

h

gradϕpfq, wy `
kÿ

i“1

x
v,i

gradϕpfq, D
ds

ˇ̌
ˇ
s“0

D

dt

ˇ̌
ˇ
t“0
Hipt, sqy,

where cuwptqpsq is the footpoint curve of Hpt, sq.
Finally,

D

ds

ˇ̌
ˇ
s“0

D

dt

ˇ̌
ˇ
t“0
Hipt, sq “ D

dt

ˇ̌
ˇ
t“0

D

ds

ˇ̌
ˇ
s“0

Hipt, sq

` R
´ B

Bs
ˇ̌
ˇ
s“0

pπk ˝ Hiqp0, sq, B
Bt
ˇ̌
ˇ
t“0

pπk ˝ Hiqpt, 0q
¯
Hip0, 0q “ Rpu, wqvi.

Hence,

x
h

∇w

h

gradϕpfq, uy ´ x
h

∇u

h

gradϕpfq, wy “
kÿ

i“1

xRpu, wqvi,
v,i

gradϕpfqy.

We now prove (3.1.2b). First we observe that

Giϕpfq “ d

dt

ˇ̌
ˇ
t“0
ϕpF i

t pfqq “
@
gradϕpfq, d

dt

ˇ̌
ˇ
t“0
F i
t pfq

D
TfTkM

“ x
h

gradϕpfq, viy.
(3.1.3)

Therefore,

GiGjϕpfq “ Gix
h

gradϕpfq, vjy “ d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpfviptqq, pvjqviptqy

“ xD
dt

ˇ̌
ˇ
t“0

h

gradϕpfviptqq, vjy “ x
h

∇vi

h

gradϕpfq, vjy,

and GjGiϕpfq “ x
h

∇vj

h

gradϕpfq, viy.
Choosing u “ vj and w “ vi in (3.1.2a), we obtain (3.1.2b).

Lemma 3.1.3. Let ϕ P C8pT kMq, f “ pv1, . . . , vkq and w P TpM with p “ πkpfq.
Then,

x
h

gradGjϕpfq, wy “ Gjx
h

gradϕpfq, wy `
kÿ

l“1

xRp
v,l

gradϕpfq, vlqw, vjy, (3.1.4a)

x
v,i

gradGjϕpfq, wy “ Gjx
v,i

gradϕpfq, wy ` δijx
h

gradϕpfq, wy. (3.1.4b)
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In particular,

x
v,i

gradGjϕpfq, vly “ Gjx
v,i

gradϕpfq, vly ` δijG
lϕpfq. (3.1.4c)

Proof. We first prove (3.1.4a). Using (3.1.3) and (3.1.2a) we obtain,

x
h

gradGjϕpfq, wy “ d

dt

ˇ̌
ˇ
t“0
Gjϕpfwptqq

“ d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpfwptqq, pvjqwptqy

“ x
h

∇w

h

gradϕpfq, vjy

“ x
h

∇vj

h

gradϕpfq, wy `
kÿ

l“1

xRp
v,l

gradϕpfq, vlqw, vjy

“ d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpfvjptqq, pwqvjptqy `
kÿ

l“1

xRp
v,l

gradϕpfq, vlqw, vjy

“ Gjx
h

gradϕpfq, wy `
kÿ

l“1

xRp
v,l

gradϕpfq, vlqw, vjy.

We now prove (3.1.4b). Using (3.1.3) and (3.1.1a), we have

x
v,i

gradGjϕpfq, wy “ d

dt

ˇ̌
ˇ
t“0
Gjϕpv1, . . . , vi ` tw, . . . , vkq

“ d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpv1, . . . , vi ` tw, . . . , vkq, vj ` δijtwy

“ x
v,i

∇w

h

gradϕpfq, vjy ` δijx
h

gradϕpfq, wy

“ x
h

∇vj

v,i

gradϕpfq, wy ` δijx
h

gradϕpfq, wy

“ d

dt

ˇ̌
ˇ
t“0

x
v,i

gradϕpfvjptqq, pwqvjptqy ` δijx
h

gradϕpfq, wy

“ Gjx
v,i

gradϕpfq, wy ` δijx
h

gradϕpfq, wy.

Setting w “ vl, in the last equality above, the second term of the RHS is

x
h

gradϕpfq, vly “ Glϕpfq by (3.1.3), and we obtain (3.1.4c).

We are now ready to prove the Lifted Pestov Identity. We recall that the proof

can be compared with [Kni02, Theorem 1.1 in Appendix].

Theorem 3.1.4 (Lifted Pestov Identity). Let ϕ P C8pT kMq, Then,
v,j

divZipfq `
h

divY j,ipfq ` δij}
h

gradϕpfq}2 “

“
kÿ

l“1

xRp
v,l

gradϕpfq, vlqvi,
v,j

gradϕpfqy ` 2x
h

gradϕpfq,
v,j

gradGiϕpfqy, (3.1.5)
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where

Y j,ipfq “ x
h

gradϕpfq,
v,j

gradϕpfqyvi ´
`
Giϕpfq

˘ v,j

gradϕpfq,

and

Zipfq “
`
Giϕpfq

˘ h

gradϕpfq,

for all i, j “ 1, . . . , k.

Proof. Using equations (2.3.7) and (3.1.3) and the definitions of horizontal and j-th

vertical gradient and covariant derivative, we have

v,j

divZipfq “
v,j

div
`
Giϕpfq

˘ h

gradϕpfq

“ Giϕpfq
v,j

div
h

gradϕpfq ` x
v,j

gradGiϕpfq,
h

gradϕpfqyloooooooooooooomoooooooooooooon
d
dt

ˇ̌
t“0

Giϕpv1,...,vj`t
h

gradϕpfq,...,vkq

“ Giϕpfq
v,j

div
h

gradϕpfq

` d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpv1, . . . , vj ` t
h

gradϕpfq, . . . , vkq, vi ` δijt
h

gradϕpfqy

“ Giϕpfq
v,j

div
h

gradϕpfq ` x
v,j

∇ h

gradϕpfq

h

gradϕpfq, viy ` δij}
h

gradϕpfq}2.

In the same way, using (2.3.6) in the second equality and (3.1.1b) in the third

equality, we obtain

h

divY j,ipfq “
h

divpx
h

gradϕpfq,
v,j

gradϕpfqyviq ´
h

divpGiϕpfq
v,j

gradϕpfqq

“ x
h

gradϕpfq,
v,j

gradϕpfqy
h

divVipfqlooomooon
“0 by (2.3.8)

`x
h

gradpx
h

gradϕpfq,
v,j

gradϕpfqyq, viy

´ Giϕpfq
h

div
v,j

gradϕpfq ´ x
h

gradGiϕpfq,
v,j

gradϕpfqyloooooooooooooomoooooooooooooon
d
dt

ˇ̌
t“0

Giϕ

`
f v,j
gradϕpfq

ptq
˘

“ d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpfviptqq,
v,j

gradϕpfviptqqy ´ Giϕpfq
v,j

div
h

gradϕpfq

´ d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpf v,j

gradϕpfq
ptq, pviq v,j

gradϕpfq
ptqy

“ x
h

∇vi

h

gradϕpfq,
v,j

gradϕpfqy ` x
h

gradϕpfq,
h

∇vi

v,j

gradϕpfqy

´ Giϕpfq
v,j

div
h

gradϕpfq ´ x
h

∇ v,j

gradϕpfq

h

gradϕpfq, viy.
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Hence, summing these two divergences and using (3.1.1a) in the second equality

and (3.1.2a) in the third equality, we have

v,j

divZipfq `
h

divY j,ipfq “ x
h

∇vi

h

gradϕpfq,
v,j

gradϕpfqy ´ x
h

∇ v,j

gradϕpfq

h

gradϕpfq, viy

` rx
h

gradϕpfq,
h

∇vi

v,j

gradϕpfqy ` x
v,j

∇ h

gradϕpfq

h

gradϕpfq, viys ` δij}
h

gradϕpfq}2

“ x
h

∇vi

h

gradϕpfq,
v,j

gradϕpfqy ´ x
h

∇ v,j

gradϕpfq

h

gradϕpfq, viy

` 2x
h

∇vi

v,j

gradϕpfq,
h

gradϕpfqy ` δij}
h

gradϕpfq}2

“ δij}
h

gradϕpfq}2 ` 2x
h

∇vi

v,j

gradϕpfq,
h

gradϕpfqy `
kÿ

l“1

xRp
v,l

gradϕpfq, vlqvi,
v,j

gradϕpfqy.

Finally, using the definition of horizontal and vertical gradient, we have

2x
h

gradϕpfq,
v,j

gradGiϕpfqy “ 2x
h

gradϕpfq,
v,j

gradpx
h

gradϕ, Viyqpfqy

“ 2
d

ds

ˇ̌
ˇ
s“0

d

dt

ˇ̌
ˇ
t“0
ϕ
`
pv1qvipsq, . . . , pvj ` tp

h

gradϕpfqqvipsqq, . . . , pvkqvipsq
˘

` δij}
h

gradϕpfq}2

“ 2
d

dt

ˇ̌
ˇ
t“0

x
h

gradϕpv1, . . . , vj ` t
h

gradϕpfq, . . . , vkq, vi ` δijt
h

gradϕpfqy

“ 2x
h

∇vi

v,j

gradϕpfq,
h

gradϕpfqy ` 2δij}
h

gradϕpfq}2.

Substituting this expression in the previous identity we obtain the theorem.

3.2 The Integrated Pestov Identity

We now prove the integrated version of (3.1.5) over the frame bundle PkM with

respect to the measure dµppfq “ dvolppq dνppfq where dν is the measure on the fibre

Fp of P
kM and dvol is the measure on M .

Before integrating, we show the behaviour of the horizontal divergence and of the

generators of the frame flows under integration.

Lemma 3.2.1. Let X : T kM ÝÑ TM be a semi-basic vector field, then

ż

PkM

h

divXpfq dµpfq “
ż

M

ż

Fp

h

divXpfq dvolppq dνppfq “ 0. (3.2.6)
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Proof. We first recall that Fp – Opnq{Opn ´ kq. To prove the Lemma, it suffices to

show ż

Fp

x
h

∇vX, vy dνppfq “ x∇v

ż

Fp

Xpfq dνppfq, vy. (3.2.7)

In fact, from the above it follows
ż

Opnq{Opn´kq

h

divXpfq dνppfq “ div

ż

Opnq{Opn´kq

Xpfq dνppfq.

Then, due to the compactness of M we obtain (3.2.6).

Let us prove (3.2.7).

We define ̺ : PnM Ñ PkM with ̺ppv1, . . . , vnqq “ pv1, . . . , vkq. In particular,

̺ : F̃p Ñ Fp where F̃p – Opnq is the fibre of the principal bundle PnM with Opnq
right action.

On the fibre Opnq{Opn´kq there exists a unique (up to scalar) left Opnq-invariant
Haar measure (see, e.g., [Fer98, Thereom 8.1.8]) obtained in the following way.

Fix f0 P F̃p and let g P Opnq, Then, there exists ψf0 : Opnq{Opn ´ kq Ñ Fp such

that g ¨ Opn ´ kq ÞÑ ̺pg ¨ f0q, canonical diffeomorphism. The pullback ψ˚
f0

pνpq “
θOpnq{Opn´kq gives the measure on Opnq{Opn ´ kq.

In what follows, we drop the arguments of the measure and the subscript of θ to

ease the notation.

We have,

ż

Fp

x
h

∇vXpfq, vy dνppfq “
ż

Fp

xD
dt

ˇ̌
ˇ
t“0
Xpfvptqq, vy dνppfq

“
ż

Fp

d

dt

ˇ̌
ˇ
t“0

xXpfvptqq, vy dνppfq.

Note that for f̃ “ g ¨ f0 P F̃p,

Xpfvptqq “ Xp̺pf̃vptqqq “ Xp̺pg ¨ pf0qvptqqq “ Xpψpf0qvptqpgqq.

Then,
ż

Fp

d

dt

ˇ̌
ˇ
t“0

xXpfvptqq, vy dνppfq “
ż

ψf0

`
Opnq{Opn´kq

˘
d

dt

ˇ̌
ˇ
t“0

xXpfvptqq, φtpvqy dνppfq

“
ż

Opnq{Opn´kq

d

dt

ˇ̌
ˇ
t“0

xXpψpf0qvptqpgqq, φtpvqy dpψ˚
f0
νpqpgq

“ d

dt

ˇ̌
ˇ
t“0

ż

Opnq{Opn´kq

xXpψpf0qvptqpgqq, φtpvqy dθpg ¨ Opn ´ kqq
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“ d

dt

ˇ̌
ˇ
t“0

x
ż

Opnq{Opn´kq

Xpψpf0qvptqpgqq dθ , φtpvq y

“ xD
dt

ˇ̌
ˇ
t“0

ż

Opnq{Opn´kq

Xpψf0pgqq dθ , v y

“ xD
dt

ˇ̌
ˇ
t“0

ż

Fk
p

Xpfq dνppfq , vy,

which concludes the proof.

Lemma 3.2.2. Let ϕ, ψ P C8pT kMq, then
ż

PkM

ψpfqGiϕpfq dµ “ ´
ż

PkM

ϕpfqGiψpfq dµ. (3.2.8)

Proof. We observe that Giϕpfq “ x
h

gradϕpfq, viy “
h

divpϕViqpfq by equations (3.1.3),

(2.3.6) and (2.3.8). Therefore,
ş
PkM

Giϕpfq dµ “ 0 by Lemma 3.2.1. This fact and

the Leibniz rule prove the Lemma.

We are now ready to state the integrated version of (3.1.5).

Theorem 3.2.3 (Integrated Pestov Identity). Let ϕ P C8pT kMq, then

δij}
h

gradϕ}2L2pPkMq ´
ż

PkM

kÿ

l“1

xRp
v,l

gradϕpfq, vlqvi,
v,j

gradϕpfqy dµ “

“
ż

PkM

x
h

gradϕpfq,
v,j

gradGiϕpfqy ` x
h

gradGiϕpfq,
v,j

gradϕpfqy dµ. (3.2.9)

Proof. Consider equation (3.1.5). Under integration over PkM the horizontal diver-

gence vanishes and the remaining non-zero terms are

ż

PkM

v,j

divZipfq dµ ` δij}
h

gradϕpfq}2L2pPkMq “ 2

ż

PkM

x
h

gradϕpfq,
v,j

gradGiϕpfqy dµ

`
ż

PkM

kÿ

l“1

xRp
v,l

gradϕpfq, vlvi,
v,j

gradϕpfqy dµ. (3.2.10)

We have

ż

PkM

v,j

divZipfq dµ “
ż

PkM

v,j

divpGiϕpfq
h

gradϕpfqq dµ

“
ż

PkM

x
h

gradϕpfq,
v,j

gradGiϕpfqy ` Giϕpfq
v,j

div
h

gradϕpfq dµ

“
ż

PkM

x
h

gradϕpfq,
v,j

gradGiϕpfqy ` Giϕpfq
h

div
v,j

gradϕpfq dµ
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“
ż

PkM

x
h

gradϕpfq,
v,j

gradGiϕpfqy ´ x
h

gradGiϕpfq,
v,j

gradϕpfqy dµ`

`
ż

PkM

h

divpGiϕpfq
v,j

gradϕpfqq dµ

“
ż

PkM

x
h

gradϕpfq,
v,j

gradGiϕpfqy ´ x
h

gradGiϕpfq,
v,j

gradϕpfqy dµ.

Substituting into (3.2.10) we have the theorem.

3.2.1 Restriction to functions on the frame bundle PkM

Theorem 3.2.3 can be restricted to smooth functions on PkM . Below, we present its

formulation.

Theorem 3.2.4. Let ϕ P C8pPkMq and f “ pv1, . . . , vkq P PkM . Then

k}
h

gradϕ}2L2 ´ k ` 1

2

kÿ

i“1

}Giϕ}2L2 ´
ż

PkM

kÿ

i,j“1

xRp
v,j

gradoϕpfq, vjqvi,
v,i

gradoϕpfqy dµ “

“
kÿ

i“1

ż

PkM

x
h

gradϕpfq,
v,i

gradoG
iϕpfqy ` x

h

gradGiϕpfq,
v,i

gradoϕpfqy dµ, (3.2.11)

where L2 stands for the L2-space on PkM .

Proof. Let ϕ̃ be a smooth extension of ϕ on T kM and consider equation (3.2.9).

Setting j “ i and summing over i “ 1, . . . , k we obtain

k}
h

gradϕ̃}2L2 ´
ż

PkM

kÿ

i,l“1

xRp
v,l

gradϕ̃pfq, vlqvi,
v,i

gradϕ̃pfqy dµ “

“
ż

PkM

kÿ

i“1

x
h

gradϕ̃pfq,
v,i

gradGiϕ̃pfqy ` x
h

gradGiϕ̃pfq,
v,i

gradϕ̃pfqy dµ. (3.2.12)

We consider the RHS and using equations (2.3.5) and (3.1.3) we obtain

ż

PkM

x
h

gradϕ̃pfq,
v,i

gradGiϕ̃pfqy dµ “
ż

PkM

x
h

gradϕ̃pfq,
v,i

gradoG
iϕ̃pfqy dµ

` 1

2

kÿ

j“1

ż

PkM

Gjϕ̃pfqx
v,i

gradGiϕ̃pfq, vjy ` Gjϕ̃pfqx
v,j

gradGiϕ̃pfq, viy dµ, (3.2.13)
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and
ż

PkM

x
v,i

gradϕ̃pfq,
h

gradGiϕ̃pfqy dµ “
ż

PkM

x
v,i

gradoϕ̃pfq,
h

gradGiϕ̃pfqy dµ

` 1

2

kÿ

j“1

ż

PkM

GjGiϕ̃pfqx
v,j

gradϕ̃pfq, viy ` GjGiϕ̃pfqx
v,i

gradϕ̃pfq, vjy dµ

“
ż

PkM

x
v,i

gradoϕ̃pfq,
h

gradGiϕ̃pfqy dµ ` pk ` 1q
2

}Giϕ̃pfq}2L2

´ 1

2

kÿ

j“1

ż

PkM

Giϕ̃pfqx
v,i

gradGjϕ̃pfq, vjy ` Giϕ̃pfqx
v,j

gradGjϕ̃pfq, viy dµ,

(3.2.14)

where we used Lemma 3.2.2 and 3.1.3 for the second equality.

Adding (3.2.13) and (3.2.14) and taking the sum over i, the RHS of (3.2.12)

becomes

ż

PkM

kÿ

i“1

x
h

gradϕ̃pfq,
v,i

gradoG
iϕ̃pfqy ` x

h

gradGiϕ̃pfq,
v,i

gradoϕ̃pfqy dµ

` k ` 1

2

kÿ

i“1

}Giϕ̃}2L2 . (3.2.15)

Finally, using (2.3.5) and the antisymmetry of R, we have

kÿ

i,j“1

xRp
v,j

gradϕpfq, vjqvi,
v,i

gradϕpfqy “
kÿ

i,j“1

xRp
v,j

gradoϕpfq, vjqvi,
v,i

gradoϕpfqy. (3.2.16)

Substituting (3.2.15) and (3.2.16) into (3.2.12) proves the theorem.

The form of the previous theorem allows us to derive a new identity assuming

the function ϕ to be invariant under one the frame flows. The new formula contains

only three terms, the Riemannian curvature tensor, the L2 norms of the generators

of the frame flows, and the L2 norm of the horizontal gradient. Therefore, it shows a

close connections between curvature properties of the manifold and properties of the

frame flows.

Corollary 3.2.5. Let ϕ P C8pPkMq and assume it is invariant under the i-th frame

flow, i.e., Giϕpfq “ 0 for all f P PkM , and let f “ pv1, . . . , vkq P PkM . Then

1

2

kÿ

j“1,j‰i

}Gjϕ}2L2 ` 2
n´kÿ

l“1

}x
h

gradϕ̃pfq, ely}L2 “
nÿ

j“1

ż

PnM

xRpwj, vjqvi, wiy dµ, (3.2.17)
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where pv1, . . . , vk, e1, . . . , en´kq is an orthonormal basis of TπkpfqM , wj “
v,j

gradoϕpfq,
and L2 stands for the L2-space on PkM .

Proof. We prove the theorem for i “ 1. The other cases follow in the same way.

Let f “ pv1, . . . , vnq P PnM and ϕ̃ a smooth extension of ϕ on T nM and let

pv1, . . . , vk, e1, . . . , en´kq be an orthonormal basis of TpM , p “ πkpfq.
We first observe that due to equation (2.3.5), we have

x
v,i

gradoϕ̃pfq, ely “ x
v,i

gradϕ̃pfq, ely, @l “ 1, . . . , n ´ k. (3.2.18)

We consider equation (3.2.11) and we aim at rewriting the horizontal gradient

and its RHS in terms of L2-norms of the generators of the frame flows and in terms

of the Riemannian curvature tensor.

First of all, we observe that

h

gradϕ̃pfq “
nÿ

i“1

Giϕ̃pfqvi `
n´kÿ

l“1

x
h

gradϕ̃pfq, elyel, (3.2.19a)

}
h

gradϕ̃}2L2 “
kÿ

i“1

}Giϕ̃}2L2 `
n´kÿ

l“1

}x
h

gradϕ̃pfq, ely}2L2 . (3.2.19b)

We now look at the RHS of (3.2.11). From (2.3.5), we derive

xwi, vjy “ 1

2

`
x

v,i

gradϕ̃pfq, vjy ´ x
v,j

gradϕ̃pfq, viy
˘
, @ j “ 1, . . . k. (3.2.20)

xwi, ely “ x
v,i

gradϕ̃pfq, ely, @ l “ 1, . . . , n ´ k. (3.2.21)
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Using these equations, Lemma 3.1.3 and equation (3.2.19a), we have

kÿ

i“2

ż

PkM

x
h

gradϕ̃pfq,
v,i

gradoG
iϕ̃pfqy dµ “

kÿ

i“2

” ż

PkM

kÿ

j“2,j‰i

Gjϕ̃pfqx
v,i

gradoG
iϕ̃pfq, vjy dµ

`
ż

PkM

n´kÿ

l“1

x
h

gradϕ̃pfq, elyx
v,i

gradGiϕ̃pfq, ely dµ
ı

“
kÿ

i,j“2,j‰i

ż

PkM

1

2
Gjϕ̃pfq

”
x

v,i

gradGiϕ̃pfq, vjy ´ x
v,j

gradGiϕ̃pfq, viy
ı
dµ

`
kÿ

i“2

n´kÿ

l“1

`
ż

PkM

x
h

gradϕ̃pfq, ely
”
x

h

gradϕ̃pfq, ely ` Gipx
v,i

gradϕ̃pfq, elyq
ı
dµ

“
kÿ

i,j“2,j‰i

ż

PkM

1

2
Gjϕ̃pfq

”
Gix

v,i

gradϕ̃pfq, vjy ´ Gix
v,j

gradϕ̃pfq, viy ` Gjϕ̃pfq
ı
dµ

`
kÿ

i“2

n´kÿ

l“1

ż

PkM

x
h

gradϕ̃pfq, elyGipx
v,i

gradϕ̃pfq, elyq dµ ` pk ´ 2q
n´kÿ

l“1

}x
h

gradϕ̃pfq, ely}2L2

“
kÿ

i,j“2,j‰i

ż

PkM

´GiGjϕ̃pfqxwi, vjy dµ ` k ´ 2

2

kÿ

i“2

}Giϕ̃}2L2

`
kÿ

i“2

n´kÿ

l“1

ż

PkM

x
h

gradϕ̃pfq, elyGipx
v,i

gradϕ̃pfq, elyq dµ ` pk ´ 2q
n´kÿ

l“1

}x
h

gradϕ̃pfq, ely}2L2 ,

(3.2.22)

and

kÿ

i“2

ż

PkM

x
h

gradGiϕpfq,
v,i

gradoϕpfqy dµ “
kÿ

i“2

kÿ

j“1,j‰i

ż

PkM

x
h

gradGiϕ̃pfq, vjyxvj,
v,i

gradoϕ̃pfqy dµ

`
kÿ

i“2

n´kÿ

l“1

ż

PkM

x
h

gradGiϕ̃pfq, elyxel,
v,i

gradoϕ̃pfqy dµ

“
kÿ

i“2

ż

PkM

G1Giϕ̃pfqxv1, wiy dµ `
kÿ

i,j“2,j‰i

ż

PkM

GjGiϕ̃pfqxwi, vjy dµ

`
kÿ

i“2

n´kÿ

l“1

ż

PkM

Gipx
h

gradϕ̃pfq, elyqx
v,i

gradϕ̃pfq, ely dµ

´
kÿ

i“2

n´kÿ

l“1

ż

PkM

kÿ

j“1

xRp
v,j

gradϕ̃pfq, vjqvi, elyx
v,i

gradϕ̃pfq, ely dµ. (3.2.23)

Summing (3.2.22) and (3.2.23), using (3.1.2b), (3.2.8) and the skew-symmetry of

the matrix pxwi, vjyqi,j, we have
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kÿ

i“1

ż

PkM

x
h

gradϕpfq,
v,i

gradoG
iϕpfqy ` x

h

gradGiϕpfq,
v,i

gradoϕpfqy dµ “

“ k ´ 2

2

kÿ

i“2

}Giϕ̃}2L2 ` pk ´ 2q
n´kÿ

l“1

}x
h

gradϕ̃pfq, ely}2L2

`
kÿ

i“2

ż

PkM

G1Giϕ̃pfqxv1, wiy dµ `
kÿ

i,j“2,i‰j

ż

PkM

pGjGi ´ GiGjqϕ̃pfqxvj, wiy dµ

´
kÿ

i“2

n´kÿ

l“1

ż

PkM

kÿ

j“1

xRp
v,j

gradϕ̃pfq, vjqvi, elyx
v,i

gradϕ̃pfq, ely dµ

`
kÿ

i“2

n´kÿ

l“1

ż

PkM

x
h

gradϕ̃pfq, elyGipx
v,i

gradϕ̃pfq, elyq ` Gipx
h

gradϕ̃pfq, elyqx
v,i

gradϕ̃pfq, ely dµ
loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

ş
PkM

Gipx
h

gradϕ̃pfq,elyx
v,i

gradϕ̃pfq,elyqdµ“0 (see proof of Lemma 3.2.2)

“ k ´ 2

2

kÿ

i“2

}Giϕ̃}2L2 ` pk ´ 2q
n´kÿ

l“1

}x
h

gradϕ̃pfq, ely}2L2 ´
ż

PkM

kÿ

i“2

kÿ

l“1

xRpwi, vlqvi, wiy dµ.

(3.2.24)

Substituting (3.2.19b) and (3.2.24) into (3.2.11) concludes the proof.

For k “ n ,the above corollary simplifies as follows.

Corollary 3.2.6. Let ϕ P C8pPnMq and assume it is invariant under the i-th frame

flow, i.e., Giϕpfq “ 0 for all f P PnM , and let f “ pv1, . . . , vnq P PnM . Then

1

2

nÿ

j“1,j‰i

}Gjϕ}2L2 “
nÿ

j“1

ż

PnM

xRpwj, vjqvi, wiy dµ, (3.2.25)

where wj “
v,j

gradoϕpfq and L2 stands for the L2-space on PnM .



Chapter 4

Dynamical Applications

In this chapter we present two dynamical consequences of Corollary 3.2.6 under cur-

vature assumptions on the base manifold M . In Section 4.1 we consider the principal

bundle over a n-dimensional compact manifold with non-positive constant curvature,

and over a 2-dimensional manifold of non-positive curvature proving that any smooth

functions invariant under one of the frame flows is also invariant under the remaining

ones. In Section 4.2 we consider the Grassmannians of oriented k-planes over M

with non-positive curvature operator and we show an invariance property of smooth

functions on such Grassmannians under the action of the parallel transport.

4.1 An invariance property of smooth functions on

frame bundles

Corollary 3.2.6 in Chapter 3 hints that if the curvature of the manifold could be non-

positive, then function ϕ would also be invariant under the remaining frame flows.

This is true in two cases, for 2-dimensional manifolds of non-positive curvature and

for higher dimensional manifolds of non-positive constant curvature.

Corollary 4.1.1. Let M be a 2-dimensional manifold of non-positive curvature. Let

ϕ be a smooth function on the principal bundle P2M . If ϕ is invariant under the i-th

frame flow, 0 ă i ď 2, i.e., Giϕpfq “ 0 for all f P C8pP2Mq, then it is invariant

under the remaining frame flow.

33
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Proof. Consider equation (3.2.25) for k “ 2 and assume i “ 1, the case i “ 2 being

the same. Writing the vertical gradients in the RHS according to the orthonormal

basis v1, v2, we obtain

1

2
}G2ϕ}2L2 “

ż

P2M

xRpv2, v1qv1, v2yx
v,1

gradoϕpfq, v2y2 dµ ď 0.

Hence, }G2ϕ}2L2 “ 0 and therefore ϕ is also invariant under G2.

Corollary 4.1.2. Let M be a n-dimensional manifold of non-positive constant sec-

tional curvature K. Let ϕ be a smooth function on the principal bundle PnM . If ϕ is

invariant under one of the i-th frame flows, i.e., Giϕpfq “ 0 for all f P C8pPnMq,
then it is invariant under the remaining frame flows.

Proof. We first notice that in case of constant sectional curvature K, the Riemannian

curvature tensor decomposes as

xRpv1, v2qv3, v4y “ K
`
xv1, v4yxv2, v3y ´ xv1, v3yxv2, v4y

˘
.

Substituting this expression into the RHS of (3.2.25) we obtain

1

2

nÿ

j“1,j‰i

}Gjϕ}L2 “
ż

PnM

nÿ

j“1

K
`
xwj, wiy ´ xwj, viyxwi, vjy

˘
dµ “ K}wi}L2 ď 0.

Hence,
řn

j“1,j‰i }Gjϕ}L2 “ 0. This implies that each term of the sum is zero as

they must all be non-negative. Therefore, ϕ is invariant under the remaining frame

flows.

4.2 An invariance property of smooth functions on

oriented Grassmannians

Another consequence of Corollary 3.2.6 is for smooth functions on oriented Grass-

mannians. We begin explaining the relation between oriented Grassmannians and

frame bundles.
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4.2.1 Oriented Grassmannians and Parallel Transport

The oriented k-th Grassmannian of M , GkorpMq for 1 ď k ď n “ dimM , is the union

of all k-planes of TpM for all p P M together with an intrinsic orientation, i.e.,

GkorpMq “
ď

pPM

 
Aor

ˇ̌
A Ă TpM, dimA “ k

(
,

where Aor is a subspace of TpM with an additional choice of intrinsic orientation.

This is a 2-fold of the non-oriented k-th Grassmannian. We observe that for k “ 1

we have G1
orpMq “ SM , the unit tangent bundle of M .

GkorpMq is linked to the principal bundle PnM by the canonical projection

π̃ : PnM ÝÑ GkorpMq

f “ pv1, . . . , vnq ÞÑ
`
spantv1, . . . , vku, pv1, . . . , vkq

˘
,

where pv1, . . . , vkq stands for intrinsic orientation.

The existence of this projection implies that any function ϕ P C8pGkorpMqq can

be extended to a function φ P C8pPnMq by setting φ “ ϕ ˝ π̃. The function φ has

two important properties. Firstly, since ϕ is invariant under the action of SOpkq, φ is

invariant under the action of matrices of the form

¨
˝ SOpkq 0

0 SOpn ´ kq

˛
‚. Secondly,

its vertical gradients satisfy the following conditions.

Lemma 4.2.1. Let ϕ P C8pGkorpMqq and φ “ ϕ ˝ π̃ P C8pPnMq. Then,

(i)
v,i

gradoφpfq P spantv1, . . . , vku if i ě k ` 1;

(ii)
v,i

gradoφpfq P spantvk`1, . . . , vnu if i “ 1, . . . k.

Proof. To prove piq and piiq, we need to show that x
v,i

gradoφpfq, vjy “ 0 for i, j ě k`1

and x
v,i

gradoφpfq, vjy “ 0 for i, j ď k, respectively.

Let φ̃ be a smooth extension of φ on T nM constructed as follows.

Let h : T nM ÝÑ r0,8s be such that hpw1, . . . , wnq “ detpxwi, wjyqij and let

ψ : tpw1, . . . , wnq lin. indepu ÝÑ PnM be the Gram-Schmidt process. We define the

cut off function H : r0,8s ÝÑ r0, 1s be a cut off function such that Hpxq “ 0 for

x ď 1
2
, Hpxq “ 1 for x ě 3

4
and 0 ď Hpxq ď 1 for 1

2
ď x ď 3

4
. Then

φ̃pw1, . . . , wnq “

$
&
%

H
`
hpw1, . . . , wnq

˘
pφ ˝ ψqpw1, . . . , wnq tw1, . . . , wnu lin. indep.

0 otherwise
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Note that φ̃pw1, . . . , wl ` twj, . . . , wnq “ φ̃pw1, . . . , wnq for all l ě k ` 1.

This implies that, for i, j ě k ` 1, we have

x
v,i

gradoφpfq, vjy “ 1

2
x

v,i

gradφ̃pfq, vjy ´ 1

2
x
v,j

gradφ̃pfq, viy

“ 1

2

d

dt

ˇ̌
ˇ
t“0

´
φ̃pv1, . . . , vk, . . . , vi ` tvj, . . . , vnq ´ φ̃pv1, . . . , vk, . . . , vj ` tvi, . . . , vnq

¯
“ 0,

which proves piq.
Part piiq follows from the fact that φ̃ depends only on the plane spanned by the

first k vectors.

Another consequence of the existence of π̃ is a correspondence between the gener-

ators of the frame flows on PnM and the parallel transport on GkorpMq along special

directions.

In fact, let φ “ ϕ ˝ π̃ P C8pPnMq with ϕ P C8pGkorpMqq, f “ pv1, . . . , vnq P PkM

and Aor “
`
spantv1, . . . , vku, pv1, . . . , vkq

˘
“ π̃pfq, then

Giφpfq “ Gipϕ ˝ π̃qpfq “ d

dt

ˇ̌
ˇ
t“0

pϕ ˝ π̃qpfviptqq “ d

dt

ˇ̌
ˇ
t“0
ϕppAorqviptqq. (4.2.1)

Definition 4.2.2. Let pAorqvptq denote the parallel transport of the oriented k-plane
Aor P GkorpMq along a curve cv on M with c1

vp0q “ v. The parallel transport is called

intrinsic if the vector v belongs to Aor, and non-intrinsic otherwise.

Aor

cv

v

Aor

v

cv

Figure 4.1: From left to right: example of intrinsic and non-intrinsic parallel transport

of a plane Aor along the geodesic cv.

The above definition and equation (4.2.1) implies the following.
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Corollary 4.2.3. Let π̃ : PnM ÝÑ GkorpMq be the canonical projection, ϕ P C8pGkorpMqq,
and φ “ ϕ˝π̃ P C8pPnMq. Then, ϕ is invariant under all intrinsic parallel transports

if and only if φ is invariant under the i-th frame flows, for i “ 1, . . . , k.

4.2.2 Invariance Property

We now assume that M has non-positive curvature operator R. The curvature oper-

ator is a linear operator R : Λ2pTMq ÝÑ Λ2pTMq defined as

xRpX ^ Y q, Z ^ W yΛ2pTMq “ xRpX, Y qW,ZyTM (4.2.2)

for all vector fields X, Y, Z,W on M .

The curvature operator R is symmetric and we say that R is non-positive (R ď 0)

if all of its real eigenvalues are non-positive.

A manifold M with non-positive curvature operator has non-positive curvature.

However, the inverse implication is not true, for details on this topic we refer the

reader to [AF04] and [Ara10].

Theorem 4.2.4. LetM be a compact n-dimensional Riemannian manifold with non-

positive curvature operator (R ď 0). Let 1 ď k ď n and ϕ P C8pGkorpMqq. If ϕ is

invariant under all the intrinsic parallel transports then it is also invariant under all

parallel transports.

Proof. Let φ “ ϕ ˝ π̃ P C8pPnMq.
Since ϕ is invariant under intrinsic parallel transports, φ is invariant underG1, . . . , Gk

due to (4.2.1).

Considering equation (3.2.25) and summing over i “ 1, . . . , k we obtain

k

2

nÿ

j“1

}Gjφ}2L2pPnMq “
ż

PnM

kÿ

i“1

nÿ

j“1

xRpwj, vjqvi, wiy dµ

“
ż

PnM

xR
´ nÿ

j“1

wj ^ vj

¯
,

kÿ

i“1

wi ^ viyΛ2pTMq dµ,

(4.2.3)

where wi “
v,i

gradoφpfq.
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Since the matrix
`
xwi, vjy

˘
i,j

is skew-symmetric and making use of Lemma 4.2.1,

we obtain

nÿ

j“1

wj ^ vj “
nÿ

j“1

nÿ

l“1,l‰j

xwj, vlyvl ^ vi “
kÿ

j“1

nÿ

l“k`1

xwj, vlyvl ^ vj `
nÿ

j“k`1

kÿ

l“1

xwj, vlyvl ^ vj

“ 2
kÿ

j“1

wj ^ vj.

Since R ď 0, the RHS of (4.2.3) is non-positive forcing the LHS to be zero. We

conclude that φ is invariant under all frame flows, and so ϕ is invariant under all

parallel transports.

For k “ 1 the theorem above allows us to recover an unpublished result of Knieper

[Kni] on the geodesic flow. In fact, G1
orpMq “ SM , the intrinsic parallel transport

corresponds to the geodesic flow and the assumption on the non-positivity of the

curvature operator can be weakened to the non-positivity of the sectional curvature,

as it is clear from the proof of Theorem 4.2.4. Therefore, we can state the following.

Corollary 4.2.5. Let M be a compact Riemannian manifold with non-positive cur-

vature. Let ϕ P C8pSMq invariant under the geodesic flow, then ϕ is also invariant

under parallel transport.

In view of Theorem 4.2.4, it is natural to investigate density properties of orbits

of k-planes Aor under all intrinsic parallel transports. In fact, let IpAorq be the set

of all k-planes obtained by finitely many moves along intrinsic parallel transport

and GpAorq be the set of all k-planes obtained by finitely many moves along general

parallel transport. Theorem 4.2.4 suggests that even though there might be many

k-planes Aor such that IpAorq is much smaller and not dense in GpAorq, there might

always be a k-plane A1
or arbitrarily close to Aor such that IpA1

orq is dense in GpA1
orq.

This is at least true in the case of the flat torus and in the case of constant negative

curvature. In the general case, this seems to be a difficult question to answer.

However, we can give an answer to the related, easier question, whether a smooth

function ϕ invariant under all intrinsic parallel transports is necessarily constant.

Proposition 4.2.6. Let M be a non-flat, compact Riemannian manifold with non-

positive curvature operator R. Then the following statements hold:
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(i) If M is either a Kähler or a Quaternion-Kähler manifold of real dimension

2n ě 4 or 4n ě 8, respectively, or a locally symmetric space of non-constant

curvature (i.e., not the real hyperbolic space), then there exist smooth, non-

constant functions on G2
orpMq or G4

orpMq which are invariant under all intrinsic

parallel transports.

(ii) If M is not one of the exceptions in piq, then, for all k ď dimM , any smooth

function on GkorpMq which is invariant under intrinsic parallel transport is nec-

essarily constant.

Proof. piq Let M be a Kähler manifold of dimension 2n ě 4. The almost complex

structure J is parallel and it gives rise to a smooth function ϕ on oriented 2-planes,

which is invariant under parallel transports but it is not constant. This function

is defined via ϕpAorq “ xv1, Jv2y where v1, v2 is an oriented orthonormal basis of

Aor P G2
orpMq.

Now, let M be a Quaternion-Kähler manifold of real dimension 4n ě 8 with

non-positive curvature operator. The canonical 4-forms Ω (see for example [Ish74] or

[Gray69]) globally defined onM is parallel. This gives rise to the smooth function ϕ :

G4
orpMq Ñ R, via ϕpAorq “ Ωppv1, . . . , v4q where v1, . . . , v4 is an oriented orthonormal

basis of Aor P G4
orpMq and Aor P TpM . This function is invariant under parallel

transports and non constant.

Finally, let M be a locally symmetric space of non-constant non-positive curva-

ture, then M is a compact quotient of a symmetric space with non-constant curva-

ture and its Riemannian curvature tensor is parallel. We define ϕ P C8pG2
orpMqq

as ϕpAorq “ xRpv1, v2qv2, v1y where v1, v2 is an oriented orthonormal basis of Aor P
G2
orpMq. Now, ϕ is invariant under all parallel transports but it is not constant.

piiq If M is a n-dimensional manifold which is not one of the exceptions above,

the holonomy group of M is SOpnq (see [Ber93] or [Bes87]). Therefore, any smooth

function on GkorpMq invariant under all intrinsic parallel transports is also invariant

under the non-intrinsic parallel transports by Theorem 4.2.4 and, hence, is constant

due to the transitive action of SOpnq on oriented k-planes in the tangent space.

Remark 4.2.7. It seems to be an open question whether there exist compact non-
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locally symmetric Quaterion-Kähler manifolds with non-positive curvature operator.

We refer the reader to [CDL14,CNS13,LeB91,LeB88] for an overview concerning this

question.
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Chapter 5

Introduction

A graph-like manifold is a family of compact, oriented and connected Riemannian

manifolds tXεuεą0 made of building blocks according to the structure of metric graph

X0. Roughly speaking, a metric graph is a graph where every edge e is associated

to a length ℓe. The manifold Xε has the property that it shrinks to the metric

graph in the limit ε Ñ 0. More precisely, a graph-like manifold is made up of edge

neighbourhoods Xε,e “ r0, ℓes ˆYε,e and vertex neighbourhoods Xε,v according to the

structure of the underlying metric graph. The parameter ε can be considered as the

radius of the edge neighbourhoods. Xε,e and Xε,v are n-dimensional manifolds with

boundary whose intersection is a boundary-less pn ´ 1q-dimensional manifold Yε,e if

the edge e emanates from the vertex v. Yε,e is called the transversal manifold (see

Section 6.4 for a complete description).

Graph-like manifolds are widely used in Mathematics as well as in Physics. In

Mathematics, they are used to prove spectral properties of manifolds. The main

example is given by Colin de Verdièr [CdV86] who proved that the first non-zero

eigenvalue of a compact manifold of dimension n ě 3 can have arbitrarily large mul-

tiplicity. Other authors used them to prove the existence of metric with arbitrarily

large eigenvalues. Gentile and Pagliara [GP95] proved that any manifolds of dimen-

sion n ě 4 admits a metric such that the first non-zero eigenvalues of the Hodge

Laplacian acting on differential forms is arbitrarily large. Similar results were also

proved in [CM10] and [CG14] where the authors analysed the first non-zero eigen-

value of the Hodge Laplacian on surfaces with boundary and of the rough Laplacian
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on differential forms on manifolds of any dimension, respectively. The key feature of

these ‘spectral engineering’ articles is to modify the manifolds with shrinking ‘pieces’

without affecting its topology and carry out the analysis on the new manifold, that

can then be considered as a graph-like manifold. In Physics, graph-like manifolds, or

more concrete, small neighbourhoods of metric graphs embedded in R
3, are used to

model electronic and optic nano-structures. The natural question arising is whether

the underlying graph is a good approximation for the graph-like manifold. This

leads to the study of the asymptotic behaviour of the eigenvalues of the manifold.

In this direction, the convergence of the Laplacian on functions on graph-like man-

ifolds, the scalar Laplacian, has been analysed in details, and the convergence of

various objects such as resolvents, spectrum, etc. is established in many contexts

(see [EP05], [Pos12], [EP13] and references therein).

Related work. Graph-like manifolds can also be considered as collapsing manifold

with no curvature control. In this context, the focus is on understanding how well the

manifold approaches its limit space. An example is given in [AC95] where the authors

considered manifolds with shrinking handles. Similar partial collapsing have also been

considered in [AT12] and [AT14], where the authors studied the limit spectrum of

the Hodge-Laplacian of the collapsing of one part of a connected sum.

Another research line for collapsing manifolds is to study the collapse under cur-

vature bounds. In general, this assumption gives rise to extra structures, we refer the

reader to [Jam05], [Lot02], [Lot14] for a detailed overview.

5.1 Aim and main results

The aim of our investigation is to describe the behaviour of the eigenvalues of the

Hodge Laplacian ∆p
Xε

acting on differential p-forms on a compact n-dimensional

graph-like manifold Xε for p “ 1, . . . , n ´ 1 as ε Ñ 0.

The main idea beyond our description is that any p-forms can be orthogonally

decomposed into three components: a harmonic one; an exact one; and a co-exact

one (see [deR55] or [McG93] and references therein or Section 6.5). Consequently, the

spectrum of ∆p
Xε

is the union of the spectra of the ∆p,ex
Xε

and of ∆p,co´ex
Xε

, the Hodge
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Laplacian acting on exact and co-exact forms, respectively, hence it is sufficient to

describe the eigenvalues of these two operators in the limit ε Ñ 0 to obtain a full

description of the asymptotic behaviour of the eigenvalues of the Hodge Laplacian

acting on p-forms on Xε. We will denote the j-th eigenvalue, counted with multiplicity,

of ∆p,ex
Xε

and ∆p,co´ex
Xε

by λ̄
p
jpXεq and

“

λ
p
jpXεq, respectively. For short, we will call

them exact and co-exact p-form eigenvalues. By Hodge duality and the fact that

the exterior derivative d and its adjoint d˚ are isomorphisms between the space of

exact and co-exact eigenforms (see also end of Section 6.5), the exact and co-exact

eigenvalues are related as follows.

λ̄
p
jpXεq “

“

λ
p´1
j pXεq and λ̄

p
jpXεq “

“

λ
n´p
j pXεq @ j ě 1. (5.1.1)

Hence, the asymptotic behaviour of the exact p-form eigenvalues up to the middle

degree gives the description of all the eigenvalues of ∆p
Xε
. We observe that for a

graph-like manifold of dimension two, the spectrum of the Laplacian in all degree

forms is entirely determined by its spectrum on functions. Since the convergence of

the function eigenvalues on Xε has already been established [Pos12,EP13], we easily

conclude the converge of the eigenvalues of the Laplacian on Xε for all degree forms

by (5.1.1) (see Section 7.2, in particular Corollary 7.2.3). For higher dimensional

graph-like manifolds, we still have convergence for the 1-form eigenvalues, but it is

not sufficient to describe the form eigenvalues in higher degrees: by Hodge duality we

only obtain the convergence of the co-exact pn´ 1q-form eigenvalues. The remaining

p-form eigenvalues are all divergent under the hypothesis that Xε is transversally

trivial (Theorem 7.3.3), i.e., the transversal manifolds Ye have trivial p-th cohomology

groups for p “ 1, . . . , n´ 2. This is proved using the natural structure of Xε and the

McGowan Lemma stated in Proposition 6.6.4. Removing the topological assumption,

we have divergence for some of the higher form eigenvalues, namely, for eigenvalues

indexed by j ě N , where N depends on the dimension of the cohomology of Ye for

all e P E (Theorem 7.3.5).

We summarise our results as follows.

Theorem 5.1.1. Let Xε be a compact n-dimensional Riemannian graph-like mani-

fold and let X0 be its associated metric graph. The following statements are true.
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(i) The 0-form eigenvalues, or equivalently the exact 1-form eigenvalues, of Xε con-

verge to the eigenvalues of X0, i.e.,

λjpXεq “ λ̄1jpXεq ÝÑ
εÑ0

λjpX0q @ j ě 1.

(ii) Let n ě 3 and 2 ď p ď n ´ 1 and that Xε is a transversally trivial manifold.

Then, the first exact p-form (co-exact pp ´ 1q-form) eigenvalues diverge, i.e,

λ̄
p
1pXεq “

“

λ
p´1
1 pXεq ÝÑ

εÑ0
8,

and so do all the exact p-form (co-exact pp ´ 1q-form) eigenvalues.

(iii) Let n ě 3 and 2 ď p ď n ´ 1. Then, j-th exact p-form (co-exact pp ´ 1q-form)

eigenvalues diverge, i.e.,

λ̄
p
NpXεq “

“

λ
p´1
N pXεq ÝÑ

εÑ0
8, for N “ 1 ` 2

ÿ

ePE

dimHp´1pYeq,

and so does all the j-th exact and co-exact form eigenvalues (in the right dimension)

for j ě N .

We also asked ourselves about the relation between spectral gaps in the spectrum

of the Laplacian acting on 1-forms on Xε and X0. The interval pa, bq is a spectral gap

for the Laplacian if it does not belong to its spectrum. Our asymptotic description,

in particular Theorem 7.2.2 and Corollary 8.1.1, yields the following.

Corollary 5.1.2. Assume that the graph-like manifold Xε is transversally trivial and

suppose that pa0, b0q is a spectral gap for the metric graph X0, then there exist aε, bε

with aε Ñ a0 and bε Ñ b0 such that paε, bεq is a spectral gap for the Hodge Laplacian

on Xε in all degrees, i.e., σp∆‚
Xε

q X paε, bεq “ H.

In all our applications (presented in Chapter 8) we assume aε “ a “ 0, hence

the interval p0, bεq is a spectral gap (0 is always an eigenvalue). Considering a single

graph-like manifold with constant volume, we are able to recover a result of Gentile

and Pagliara [GP95] on the divergence of the first non-zero p-form eigenvalue (see

Proposition 8.2.1, Section 8.2). Moreover, we consider families of graph-like manifolds

arising from families of either Ramanujan graphs or general graphs. In this setting,

we manage to find spectral gap properties in relation to volume properties of the

manifolds (Section 8.3).
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5.2 Overview of the text

The material is organised as follows. In Chapter 6 we present all the necessary

preliminaries to our analysis. We describe metric graphs and graph-like manifolds

together with their associate Laplacians. We also review some basic facts about the

Hodge-Laplacian acting on differential forms on a manifold and we state the Mc-

Gowan Lemma (Proposition 6.6.4), the key ingredient in our proofs. In Chapter 7 we

state the main results, namely we prove convergence for the exact 1- form eigenvalues

and divergence for higher dimensional degree form eigenvalues. For completeness, we

also discuss the dimension of the space of harmonic forms. Finally, in Chapter 8 we

present some applications. We establish the existence of spectral gaps for graph-like

manifolds with underlying metric graph having a spectral gap in the spectrum of its

Laplacian. Moreover, we construct examples of (family of) manifolds with (upper or

lower) bounds on the first eigenvalues of the Laplacian acting on functions or forms.



Chapter 6

Preliminaries

We here introduce all the basic notions needed in the next chapters and we set the

notation.

In Section 6.1 we define discrete graphs and introduce their discrete Laplacians.

These definitions are the basis to treat metric graphs and the corresponding Lapla-

cians, defined in Section 6.2. In Section 6.3 we describe discrete and metric Ra-

manujan graphs, which will be used to construct families of manifolds with “special”

spectral gap (see Section 8.3). Section 6.4 is dedicated to the definition of graph-like

manifolds and to a brief description of their Hodge Laplacian on differential 1-forms.

In Sections 6.5 and 6.6 we recall some facts about the Hodge Laplacian acting on

forms and its eigenvalues. In particular, we describe how eigenvalues behave under

scaling and we present the McGowan Lemma, an eigenvalue estimate from below.

This lemma will be crucial in the proof of the divergence behaviour of the 1-form

eigenvalues (see Section 7.3).

6.1 Graphs and their Laplacians

A finite discrete graph is a triple G “ pV,E, Bq where V “ V pGq and E “ EpGq are

finite sets, called vertices and edges sets respectively, and B : E Ñ V ˆV is such that

e ÞÑ pB´e, B`eq associates to an edge its initial and terminal vertex. This map fixes

an orientation for the graph, crucial when working with 1-forms. In what follows, we

will assume, without stating it each time, that all discrete graphs are connected.

47
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For a vertex v P V we denote by

E˘
v “ te P E | B˘e “ vu

the set of incoming and outgoing edges at a vertex v, and with

Ev “ E´
v ŸE`

v

(disjoint union) the set of edges emanating from v. The degree of a vertex is the

number of emanating edges, i.e.,

deg v :“ |Ev|.

In our graphs, we allow loops, i.e., edges e such that B´e “ B`e “ v, and each

loop is counted twice in deg v and it appears twice in Ev, due to the disjoint union.

We also allow multiple edges, i.e., edges e1 ‰ e2 with the same starting and ending

point.

To consider various types of discrete Laplacian, it is convenient to introduce edge

and vertex weights, defined as follows.

µ “ µE : E ÝÑ p0,`8q, e ÞÑ µe ą 0,

µ “ µV : V ÝÑ p0,`8q, v ÞÑ µv ą 0.

The graph pG, µq is called weighted discrete graph. There are two natural choices

for the weights, the combinatorial weight and the standard weight. The combinatorial

weight is defined such that µe “ 1 and µv “ 1, while the standard weight is such that

µe “ 1 and µv “ deg v.

Throughout this dissertation, we will consider the following weights.

µE “ ℓ´1 : E ÝÑ p0,`8q, e ÞÑ ℓ´1
e ą 0,

µV “ deg : V ÝÑ p0,`8q, v ÞÑ deg v.

In particular, we define the function ℓ : E ÝÑ p0,`8q such that e ÞÑ ℓe as one

over weight and we call it the length function associated to G.

Given a function F : V ÝÑ C on the vertex space of G , the discrete Laplacian

on functions is defined as

p∆GF qpvq “ ´ 1

deg v

ÿ

ePEv

1

ℓe

`
F pveq ´ F pvq

˘
,
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where ve is the vertex on the opposite side of v on e P Ev.
We observe that ∆G can also be defined as ∆G “ d˚

GdG where

dG : ℓ2pV, degq ÝÑ ℓ2pE, ℓ´1q, such that pdGF qe “ F pB`eq ´ F pB´eq,

and where ℓ2pV, degq “ C
V and ℓ2pE, ℓ´1q “ C

E carry the norms given by

}F }2ℓ2pV,degq “
ÿ

vPV

|F pvq|2 deg v and }η}2ℓ2pE,ℓ´1q “
ÿ

ePE

|η|2 1
ℓe
,

respectively, and where d˚
G is its adjoint operator with respect to the corresponding

inner products.

We can equally define a Laplacian on 1-forms by ∆1
G :“ dGd

˚
G, acting on ℓ2pE, ℓ´1q.

Remark 6.1.1. For a general weighted graph pG, µq, the weighted discrete Laplacian

is defined as

∆pG,µqF pvq “ 1

µv

ÿ

ePEv

µepF pveq ´ F pvqq,

acting on the space ℓ2pV, µq “ tF “ pF pvqqvPV | }F }2ℓ2pV,µq :“
ř
vPV |F pvq|2µv ă 8u.

For further readings on discrete graphs and discrete Laplacians we refer the reader

to [Pos12, Section 2.1]

6.2 Metric Graphs and their Laplacians

Let G “ pV,E, Bq be a discrete graph and let ℓ : E Ñ p0,8q be the associated length

function introduced in the previous section.

A metric graph X0 associated to the discrete graph G is the quotient

X0 :“
ď̈

ePE

Ie{∼,

where Ie :“ r0, ℓes and ∼ is the relation identifying the end points of the intervals Ie

according to the graph, i.e., x „ y if and only if ψpxq “ ψpyq where

ψ :
ď̈

ePE

Ie Ñ V,

$
’’’&
’’’%

0 P Ie ÞÑ B´e,

ℓe P Ie ÞÑ B`e,

x P Ť̈
ePEp0, ℓeq ÞÑ x.
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An alternative way to describe a metric graph is to think of G as a topological

graph where each edge e P E (topologically an interval) is associated to a length

ℓe ą 0.

Metric graphs carry a natural measure on each interval, the Lebesgue measure

dse. This allows us to define a natural Hilbert space of functions and 1-forms by

L2pX0q “
à

ePE

L2pIeq and L2pΛ1pX0qq “
à

ePE

L2pΛ1pIeqq

with norms given by

}f}2L2pX0q :“
ÿ

ePE

}fe}2L2pIeq and }α}2L2pΛ1pX0qq :“
ÿ

ePE

}αe}2L2pΛ1pIeqq

for functions f : X0 ÝÑ C, f “ pfeqePE and 1-forms α “ pαeqePE “ pge dseqePE on

X0, respectively. We remark that functions on Ie can be identified with 1-forms via

fe ÞÑ fe dse, the difference of forms and functions appears only in the domain of the

corresponding differential operators below.

We define the exterior derivative d “ dX0
on X0 as the operator

d : dom d ÝÑ L2pΛ1pX0qq such that dpfeqePE “ pf 1
e dseqePE

whose domain is

dom d “ H1pX0q X CpX0q,

where H1pX0q “ tf P L2pX0q | f 1 “ pf 1
eqePE P L2pX0qu “ À

ePE H
1pIeq and CpX0q

denotes the space of continuous functions on X0.

It is not difficult to see that d “ dX0
is a closed operator with adjoint given by

d˚pαeqePE “ ´pα1
eqePE,

with domain

dom d˚ “
!
α P H1pΛ1pX0qq

ˇ̌
ˇ
ÿ

ePE

ñ

αepvq “ 0
)
,

where H1pΛ1pX0qq “ tα “ pge dseqePE P L2pΛ1pX0qq | g1
e P L2pIequ and

ñ

α is the

oriented evaluation of α, i.e.,

ñ

αepvq “

$
’&
’%

´gep0q, v “ B´e

gepℓeq, v “ B`e.
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The (metric) Laplacians acting on functions and 1-forms defined on X0 are the

operators

∆0
X0

“ d˚d and ∆1
X0

“ dd˚,

respectively. The domains of ∆0
X0

and ∆1
X0

are

dom∆0
X0

“ tf P dom d | df P dom d˚u,

dom∆1
X0

“ tα P dom d˚ | d˚α P dom du,

respectively.

Writing the vertex conditions for the Laplacian on functions explicitly, we obtain

the conditions

fepvq :“

$
’&
’%

fep0q, v “ B´e

fepℓeq, v “ B`e

is independent of e P Ev and
ÿ

ePEv

ñ

f 1
epvq “ 0, (6.2.1)

called standard or Kirchhoff vertex conditions. The first condition can be rephrased

as continuity of f on the metric graph, while the second is interpreted as a flux

conservation where the 1-form df “ pf 1
eqe is considered as a vector field (we remind

the reader that there is one-to-one correspondence between vector fields and 1-forms

through the musical isomorphism [GHL90, p.75]).

As for the discrete Laplacian, it is possible to define a weighted metric Laplacian.

We do not give details of this operator and of the various types of metric Laplacians

here as we do not treat them. For further details we refer the reader to [Ku04,Ku05]

and references therein.

The Laplacians ∆0
X0

and ∆1
X0

are both self-adjoint and non-negative operators

and, since X0 is compact, they have purely discrete spectrum [Pos12, Proposition

2.2.10, and 2.2.14]. Moreover, they fulfil a supersymmetry condition in the sense

of [Pos09, Sec. 1.2], as explained below.

Set H “ H0 ‘H1, a Hilbert space, then d has supersymmetry if d : dom d ÝÑ H1

and dom d Ă H0. In our case, H0 “ L2pX0q and H1 “ L2pΛ1pX0qq, and so d “ dX0

has supersymmetry.

As a consequence, the spectra of ∆0
X0

and ∆1
X0

away from zero coincide including

multiplicity, i.e., let λ0jpX0q and λ1jpX0q denote the eigenvalues of ∆0
X0

and ∆1
X0

in
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increasing order and repeated according to their multiplicity, then

λ1jpX0q “ λ0jpX0q @ j ě 1. (6.2.2)

A general proof of this fact can be found in [Pos09, Proposition 1.2].

We conclude this section presenting a relation between discrete and metric Lapla-

cian for equilateral graphs [Nic85,Cat97].

A graph is said to be equilateral if ℓe “ ℓ0 for all e P E and the spectra of its

discrete and metric Laplacian on functions (or 0-forms) satisfy the following.

Let Σ :“ tpjπ{ℓ0q2 | j “ 1, 2, . . . u be the Dirichlet spectrum of the interval r0, ℓ0s,
then

λ P σp∆0
X0

q if and only if φpλq :“ 1 ´ cospℓ0
?
λq P σp∆Gq (6.2.3)

for all λ R Σ.

As a consequence of the supersymmetry condition mentioned above, the same

relation holds for the spectra of discrete and metric Laplacian on 1-forms.

There is also a relation at the bottom of the spectrum of ∆G and ∆X0
for general

(not necessarily equilateral) metric graphs for which we refer to [Pos09, Sec. 6.1]

or [Pos12, Sec. 2.4.2] for more details.

6.3 Ramanujan Graphs

A discrete graph G is k-regular, if all its vertices have degree k. For ease of notation

we assume here that the graph G “ pV,E, Bq is simple, and we write v „ w for

adjacent vertices.

Definition 6.3.1. Let G be a k-regular discrete graph with n vertices and let ∆G be

its (normalised) discrete Laplacian. The graph G is said to be Ramanujan if

max
 

|1 ´ µ|
ˇ̌
µ P σp∆Gq

(
ď 2

?
k ´ 1

k
.

We remark that many authors use the eigenvalues of the adjacency matrix AG as

the spectrum of a graph. The adjacency matrix is given by pAGqv,w “ 1 if v „ w and

pAGqv,w “ 0 otherwise. As v „ w is equivalent with w „ v, the adjacency matrix is
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symmetric. For more details about the adjacency matrix and its spectra we refer the

reader to [BH12]. For a k-regular graph, we have the relation

AG “ kpid´∆Gq, or, ∆G “ id´1

k
AG (6.3.4)

with the discrete graph Laplacian (with length function ℓe “ 1). We observe that

σpAGq Ă r´k, ks and σp∆Gq Ă r0, 2s. Moreover, k and 0 are always eigenvalues of

AG and ∆G, respectively, as well as ´k and 2 are always eigenvalues of AG and ∆G,

respectively, if and only if the graph is bipartite (recall that we assume that G is a

finite graph).

We define the (maximal) spectral gap length of a discrete graph by

γpGq :“ min
 
µ, 2 ´ µ

ˇ̌
µ P σp∆Gqzt0, 2u

(
“ 1 ´ 1

k
max

 
|α|

ˇ̌
α P σpAGq, |α| ă k

(
,

(6.3.5)

i.e., γpGq is the distance of the non-trivial spectrum of the Laplacian ∆G from the

extremal points 0 and 2. Hence, a graph is Ramanujan if its spectral gap length has

size at least

γpGq ě 1 ´ 2
?
k ´ 1

k
.

It has been shown that the lower bound is optimal, i.e., for any k-regular graph (or

even for any graph with maximal degree k) with diameter large enough, the spectral

gap length is smaller than 1 ´ 2
?
k ´ 1{k ` η, where 1{η is of the same order as

the diameter (see [Nil91, Thm. 1] and references therein). In this sense, Ramanujan

graphs are optimal expanders, i.e., optimal highly connected sparse graphs. Expander

graphs have been characterised in several ways in a number of different contexts and

are used in a number of applications in pure mathematics as well as in computer

science. For a survey on expander graphs we refer the reader to [HLW06, Lub10,

Lub12] and references therein.

The existence of infinite families tGiuiPN of k-regular Ramanujan graphs has been

shown whenever k is a prime or a power of a prime (see e.g. [LPS88,Mar88,Mor94]).

The existence of infinite families of bipartite k-regular Ramanujan graphs for every

k ą 2 has been proved in [MSS15a] by showing that any bipartite Ramanujan graph

has a 2-lift which is again Ramanujan, bipartite and has twice as many vertices.

Recently, the same authors proved the existence of bipartite Ramanujan graphs of
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every degree and every number of vertices [MSS15b] by showing that a random m-

regular bipartite graph, obtained as a union of m random perfect matchings across a

bipartition of an even number of vertices, is Ramanujan with nonzero probability.

Let tGiuiPN be a family of Ramanujan graphs such that

νi :“ |V pGiq| Ñ 8 (6.3.6)

and consider the associated family of equilateral metric graphs tX i
0uiPN of length ℓ0.

By (6.2.3), the metric graph Laplacians ∆Xi
0
all have a spectral gap

pa0, b0q “
´
0,
h

ℓ20

¯
with h “ hk :“ arccos2

´
1 ´ 2

?
k ´ 1

k

¯
ą 0 (6.3.7)

at the bottom of the spectrum.

6.4 Graph-like Manifolds and their Hodge Lapla-

cian

A graph-like manifold associated with a metric graph X0 is a family of oriented

and connected n-dimensional Riemannian manifolds pXεq0ăεďε0 (ε0 small enough)

shrinking to X0 as ε Ñ 0 in the following sense. We assume that Xε decomposes as

Xε “
ď

ePE

Xε,e Y
ď

vPV

Xε,v , (6.4.8)

where Xε,v and Xε,e are called edge and vertex neighbourhood, respectively. More

precisely, we assume that Xε,v and Xε,e are closed subsets of Xε such that

Xε,v XXε,e “

$
’&
’%

Yε,e e P Ev

H e R Ev,

with Yε,e a boundaryless smooth connected Riemannian manifold of dimension n´ 1

(see Figure 6.1). We will often refer to Yε,e as the transversal manifold.
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Xe

Ye

Xv

ε Xε

X0

Figure 6.1: An example of a two dimensional graph-like manifold Xε with associated

graph X0.

Furthermore, we assume that the manifolds pXε,v , ge,vq and pYε,e , hε,eq are con-

formally equivalent to the Riemannian manifolds pXv , gvq and pYe , heq, respectively,
with (constant) conformal factor ε2, i.e.,

gε,v “ ε2gv and hε,e “ ε2he. (6.4.9)

For short, we will write Xε,v “ εXv and Yε,e “ εYe .

Moreover, we assume that Xε,e is isometric to the product Ie ˆ εYe . Let gε,e

denotes the metric on Xε,e , it satisfies

gε,e “ ds2 ` ε2he. (6.4.10)

We often refer to a single manifold Xε as graph-like manifold instead of the family

pXεqε as in the definition above.

Throughout this dissertation, we will assume that voln´1 Ye “ 1 for all e P
E, for simplicity. The general case would lead to the weighted vertex condition
ř
ePEv

pvoln´1Yeq
ñ

f 1
epvq “ 0 instead of (6.2.1) for the metric graph Laplacian (see

[Pos12,EP09] for details).

We call a graph-like manifold Xε transversally trivial if all transversal manifolds

Ye are Moore spaces, i.e., if HppYeq “ 0 for all 1 ď p ď n ´ 2 and all e P E,

where Hpp¨q denotes the p-th cohomology group. We observe that a member of a

transversally trivial graph-like manifold Xε is not necessarily homotopy equivalent to

the metric graph X0, as the vertex neighbourhoods do not need to be contractible.
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Below, we give an example of how to construct a transversally trivial graph-like

manifold.

Example 6.4.1. Let n ě 2. For each vertex v fix a manifold X̂v. Remove deg v

open balls from X̂v hence the resulting manifold Xv has a boundary consisting of

deg v many components each diffeomorphic to a pn ´ 1q-sphere S
n´1. For e P Ev let

Ye “ S
n´1 with a metric such that its volume is 1. As (unscaled) edge neighbourhood,

we chooseX1,e :“ r0, ℓesˆYe with the product metric. Then we can construct a graph-

like (topological) manifold X1 with a canonical decomposition as in (6.4.8) (for ε “ 1)

by identifying the e-th boundary component of Xv with the corresponding end of the

edge neighbourhood X1,e. By a small local change we can assume that the resulting

manifold X1 is smooth. The corresponding family of graph-like manifolds pXεqεą0 is

now given as above by choosing the metric accordingly.

Remark 6.4.2. Given a closed (i.e., compact and boundaryless) manifold X and a

metric graph X0, it is possible to turn X into a graph-like manifold with underlying

metric graph being X0. As an example, we assume X0 to be a metric finite tree

graph, then X turns into a graph-like manifold letting the tree “grow” out of the

original manifold. More formally, we construct a graph-like manifold according to a

tree graph and leave one cylinder of a leaf (a vertex of degree 1) “uncapped”. Then,

we glue the original manifold X with one disc removed together with the free cylinder.

Obviously, the resulting manifold is homeomorphic to the original manifold X and

can be turned into the a graph-like manifold by the above choice of metric.

We can now define on Xε the corresponding Hodge Laplacian ∆p
Xε

“ dδ`δd acting
on differential p-forms. The operators d and δ are the classical exterior derivative

and its formal adjoint on manifolds, as unbounded operators in the corresponding L2

spaces.

We give further details on the Hodge Laplacian on manifolds in the next section.
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6.5 Hodge Theory

Let pM, gq be a compact, oriented and connected n-dimensional Riemannian mani-

fold. The Riemannian metric g induces the L2-space of p-forms

L2pΛppM, gqq “
!
ω : M ÝÑ C

ˇ̌
ˇ }ω}2L2pΛppM,gq “

ż

M

|ω|2g dvolgM ă 8
)

where

}ω}2L2pΛppM,gqq “ xω, ωyL2pΛppM,gqq :“
ż

M

|ω|2g dvolgM “
ż

M

ω ^ ˚ω,

and ˚ denotes the Hodge star operator (depending on the metric g).

The Laplacian on p-forms on M is formally defined as

∆p

pM,gq “ ∆p “ dδ ` δd,

where d is the classical exterior derivative and δ “ p´1qnp`n`1˚d˚ is its formal adjoint

with respect to the inner product induced by g.

If M has no boundary, then δ is the L2-adjoint of d and ∆p is a non-negative self-

adjoint operator with discrete spectrum denoted by λpjpM, gq (repeated according to

multiplicity).

We allow the manifold M to have a boundary BM , itself a smooth manifold of

dimension n´1. As in the function case, it is possible to impose boundary conditions

for functions in the domain of the Hodge Laplacian, called absolute and relative

boundary conditions. To do so, we first decompose a p-form ω in its tangential and

normal components on BM , i.e., ω “ ωtan ` ωnorm where ωtan can be considered as a

form on BM while ωnorm “ dr ^ ωK with ωK being a form on BM and r being the

distance from BM .

Absolute boundary conditions require that ω satisfies

ωnorm “ 0 and pdωqnorm “ 0

while relative boundary conditions require

ωtan “ 0 and pδωqtan “ 0.

These boundary conditions give rise to two unbounded and self-adjoint operators

∆abs and ∆rel with discrete spectrum, the Hodge Laplacians with absolute and relative
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boundary conditions, respectively (see e.g. [Cha84] or [McG93]). We remark that

for functions, the absolute correspond to Neumann while the relative correspond to

Dirichlet boundary conditions.

Furthermore, since the Hodge star operator exchanges absolute and relative bound-

ary conditions, there is a correspondence between the spectrum of ∆abs and the spec-

trum of ∆rel, which allows us to study just one of them to cover both cases. In

the sequel, we will only consider absolute boundary conditions if the manifold has a

boundary, and hence we will mostly suppress the label p¨qabs for ease of notation.

In an L2-framework, we consider d and δ0 as unbounded operators, defined as the

closures d and δ0 of d and δ0 on

dom d “
 
ω P C8pΛppM, gqq

ˇ̌
dω P L2pΛp`1pM, gqq

(
,

dom δ0 “
 
ω P C8pΛppM, gqq

ˇ̌
δω P L2pΛp´1pM, gqq, ωnorm “ 0

(
,

respectively. The Hodge Laplacian with absolute boundary condition is then given

by

∆ “ ∆abs “ d δ0 ` δ0d.

For this operator, Hodge Theory is still valid. In particular, the de Rham theorem

holds (see [deR55] or [McG93, Sec. 2.1] and references therein), i.e.,

HppM, gq – HppMq,

where HppM, gq is the space of harmonic p-forms (with absolute boundary conditions

if the boundary is non-empty) and HppMq is the p-th de Rham cohomology, and

any p-form ω P L2pΛppM, gqq can be orthogonally decomposed into an exact (dω̄),

co-exact (δ
“
ω) and harmonic (ω0) component, i.e.,

ω “ dω̄ ` δ
“
ω ` ω0, (6.5.11)

where ω̄ P dom d is a pp´1q-form,
“
ω P dom δ0 is a pp`1q-form and ω0 is a harmonic p-

form. Moreover, the Hodge Laplacian leaves these spaces invariant and maps p-forms

into p-forms. In particular, we can consider the Hodge Laplacian acting on exact and

co-exact p-forms as the operators d δ0 and δ0d, respectively. We call their respective

eigenvalues exact and co-exact (absolute) p-form eigenvalues, and we denote them by

λ̄
p
jpM, gq and

“

λ
p
jpM, gq, respectively.
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Let Ēppλq “ kerpd δ0 ´ λq and
“

Eppλq “ kerpδ0d ´ λq denote the eigenspaces of

exact and co-exact p-forms with eigenvalue λ (as the eigenforms are smooth by elliptic

regularity, we can omit the closures). Since d is an isomorphism between
“

Ep´1pλq
and Ēppλq, we have

λ̄
p
jpXεq “

“

λ
p´1
j pXεq, @ j ě 1. (6.5.12)

In addition, due to Hodge duality, i.e., the star operator interchanges absolute

and relative boundary conditions, the following relation holds

λ̄
p
jpXεq “

“

λ
n´p
j pXεq @ j ě 1. (6.5.13)

6.6 Some useful facts about eigenvalues

We finally collect some useful facts about the eigenvalues of the Hodge Laplacian on

a Riemannian manifold. In particular, we describe their behaviour under scaling of

the metric, their characterization, and we present a crucial estimate from below.

Scaling behaviour

We consider a manifold pMε, gεq conformally equivalent to pM, gq with conformal

factor ε2 (meaning that gε “ ε2g). Again for short, we write Mε “ εM (see also

Section 6.4).

We have the following result for L2 norms of p-forms on M and εM and for the

eigenvalues of the Hodge Laplacian on M and εM .

Lemma 6.6.1. Let ω be a p-form on a n-dimensional Riemannian manifold M with

metric g, and let εM be the Riemannian manifold pM, ε2gq, then we have

}ω}2L2pΛppεMqq “ εn´2p}ω}2L2pΛppMqq and (6.6.14a)

λ̄
p
jpεMq “ ε´2λ̄

p
1pMq. (6.6.14b)

Proof. The first assertion follows from the fact that we have |w|2ε2g “ ε´2p|w|2g and

dvolε2gM “ εn dvolgM pointwise. The second follows from the variational character-

isation of the j-th eigenvalue of Proposition 6.6.2, as we have the scaling behaviour

}η}2L2pΛppεMqq

}θ}2
L2pΛp´1pεMqq

“
εn´2p}η}2L2pΛppMqq

εn´2pp´1q}θ}2
L2pΛp´1pMqq

“ ε´2
}η}2L2pΛppMqq

}θ}2
L2pΛp´1pMqq

.



6.6. Some useful facts about eigenvalues 60

Note that the condition η “ dθ is independent of the metric, see Proposition 6.6.2.

Eigenvalue characterisation

Here we present a useful characterisation of eigenvalues of the Hodge Laplacian acting

on p-forms due to Dodziuk [Dod82, Prop. 3.1], whose proof can be found in [McG93,

Prop. 2.1]. Its advantage is that it does not make use of the adjoint δ of the exterior

derivative, and hence no derivation of the metric g or of its coefficients are needed.

The metric g enters only via the L2 norms.

We remind the reader that a form ω satisfies absolute boundary conditions when

wnorm “ 0 and pdωqnorm “ 0 on the boundary (see also p.57, Section 6.5).

Proposition 6.6.2. Let M be a compact Riemannian manifold, then the spectrum of

the Laplacian 0 ă λ̄
p
1 ď λ̄

p
2 ď . . . on exact p-forms on M satisfying absolute boundary

conditions can be computed by

λ̄
p
jpMq “ inf

Vj
sup

! xη, ηyL2pΛppMqq

xθ, θyL2pΛp´1pMqq

ˇ̌
ˇ η P Vjzt0u such that η “ dθ

)
,

where Vj ranges over all j-dimensional subspaces of smooth exact p-forms and θ is a

smooth pp ´ 1q-form.

As a consequence we have (see [Dod82, Prop. 3.3] or [McG93, Lem. 2.2]),

Proposition 6.6.3. Assume that g and rg are two Riemannian metrics on M such

that c2´g ď rg ď c2`g for some constants 0 ă c´ ď c` ă 8, i.e.,

c2´gxpξ, ξq ď rgxpξ, ξq ď c2`gxpξ, ξq for all ξ P T ˚
xM and x P M,

then the eigenvalues of exact p-forms ω with absolute boundary conditions fulfil

1

c2´

´c´

c`

¯n`2p

λ̄
p
jpM, gq ď λ̄

p
jpM, rgq ď 1

c2`

´c`

c´

¯n`2p

λ̄
p
jpM, gq

for all j ě 1.

As a result, the eigenvalues λ̄pjpM, gq depend continuously on g in the sup-norm

defined, e.g., in [Pos12, Sec. 5.2]. In particular, this proposition allows us to consider

also perturbation of graph-like manifolds. For a discussion of possible cases we refer

to [Pos12, Sec. 5.2–5.6]).
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An estimate from below for exact eigenvalues

Finally, we introduce a simplified but useful version of an estimate from below on the

first eigenvalue of the exact p-form Laplacian on a manifold by McGowan ( [McG93,

Lemma 2.3]) also used by Gentile and Pagliara in [GP95, Lemma 1].

Let pM, gq be a n-dimensional compact Riemannian manifold without boundary

and let tUiumi“1 be an open cover of M such that Uij “ Ui X Uj have a smooth

boundary. Moreover, we denote by

Ii :“ tj P t1, . . . , i ´ 1, i ` 1, . . . ,mu |Ui X Uj ‰ Hu

the index set of neighbours of Ui. We say that the cover tUiui has no intersection of

degree r if and only if Ui1 X ¨ ¨ ¨ X Uir “ H for any r-tuple pi1, . . . , irq with 1 ď i1 ă
i2 ă ¨ ¨ ¨ ă ir ď m. We choose a fixed partition of unity tρjumj“1 subordinate to the

open cover and we set }dρ}8 :“ maxi supxPUi
|dρipxq|g.

Furthermore, we denote by λ̄p,abs1 pUq the first positive eigenvalue on exact p-forms

on U satisfying absolute boundary conditions on BU . Finally, denote by HppUijq the

p-th cohomology group of Uij.

Proposition 6.6.4. Let M and tUiumi“1 be as above and let p ě 2. Assume that the

open cover has no intersection of degree higher than 2 and Hp´1pUijq “ 0 for all i, j.

Then, the first positive eigenvalue of the Laplacian acting on exact p-forms (without

boundary conditions) on M satisfies

λ̄
p
1pMq ě 2´3

mÿ

i“1

˜
1

λ̄
p,abs
1 pUiq

`
ÿ

jPIi

ˆ
cn,p}dρ}28
λ̄
p´1,abs
1 pUijq

` 1

˙ˆ
1

λ̄
p,abs
1 pUiq

` 1

λ̄
p,abs
1 pUjq

˙¸

(6.6.15)

where cn,p is a combinatorial constant depending only on p and n.

We remark that these assumptions impose a topological restriction on the mani-

fold as such an open cover does not necessarily exist. Actually, the following general

version holds for higher exact eigenvalues.

Proposition 6.6.5. LetM and tUiui be as above and let p ě 2. Assume that the open

cover has no intersection of degree higher than 2. We set N1 “ ř
i,j dimHp´1pUijq
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and N “ N1 ` 1. Then, the N -th eigenvalue of the Laplacian on exact p-forms on M

satisfies

λ̄
p
NpMq ě 1

mÿ

i“1

˜
1

λ̄
p,abs
1 pUiq

`
ÿ

jPIi

ˆ }dρ}p8
λ̄
p´1,abs
1 pUijq

` 1

˙ˆ
1

λ̄
p,abs
1 pUiq

` 1

λ̄
p,abs
1 pUjq

˙¸

The proof of this proposition uses the same argument of the proof of McGowan’s

lemma (Lemma 2.3 in [McG93]). The first step is to consider λ̄pNpMq as characterised
in Proposition 6.6.2 and observe that λ̄pNpMq ě pη,ηq

pθ,θq
for η one of its eigenform and

θ a pp ´ 1q-form such that θ “ dη. The second and main step is to construct θ

such that its L2-norm can be bounded from above. The construction is local and

uses the knowledge of eigenvalues on the pieces Ui and on the double intersections

Uij extracted from the Cech-de Rham sequence [BT82, Chapter 2], a generalised

Meyer-Vietoris sequence. The argument is then completed using a partition of unity.

The generalisation to p-forms is trivial since we have particular assumptions on

the cover, i.e., no intersections of degree higher than 2 (see the remark after Lemma

2.3 in [McG93]).



Chapter 7

Asymptotic behaviour

We now present the main result of Part II, namely, the asymptotic behaviour of the

(non-trivial) spectrum of the Hodge Laplacian of a graph-like manifold. To obtain

a full description, it is sufficient to analyse the spectrum of the Laplacian acting

on exact (resp. co-exact forms) away from zero, due to the orthogonal splitting in

(6.5.11). We remark that the dimension of the class of harmonic forms depends on the

topological properties of the manifold, and this is the reason why we always consider

the non-trivial spectrum.

This chapter is organised as follows. In Section 7.1 we describe the space of

harmonic forms on a graph-like manifold. In Section 7.2 we review the convergence

result for the spectrum of the scalar Laplacian, i.e., the Laplacian acting on functions,

from which we will recover a convergence result for the Hodge Laplace spectrum for

exact 1-forms. We will then focus on the spectrum of the Hodge Laplacian acting

on co-exact 1-forms (see Section 7.3), which is divergent in the limit. To show this

behaviour, we will make use of Proposition 6.6.4, assuming the cohomology of the

transversal manifolds Ye to be non-trivial, together with asymptotic estimates on the

building blocks. The same proposition allows us to study the asymptotic behaviour

of the spectrum of the Hodge Laplacian on p-forms for 2 ď p ď n´ 2 under the same

assumption. Finally, we will briefly explain how the same argument works, when no

assumptions on Ye are made, using a result of McGowan (see Proposition 6.6.5).

63
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7.1 Harmonic forms

We first analyse the dimension of the class of harmonic forms, eigenforms for the

zero (trivial) eigenvalue, for graph-like manifolds. We have already explained in the

introduction that this dimension depends on topological properties of the manifold. In

particular, the de Rham Theorem (Section 6.5) establishes an isomorphism between

the class of harmonic p-forms on Xε and the p-th cohomology group of Xε. Therefore,

it is sufficient to calculate the cohomology groups of the graph-like manifold, to know

the dimension of the class of its harmonic forms in all degrees.

Since the graph-like manifold Xε arises from X0, it is intuitive that Xε will inherit

some topological properties of the graph. We will see that for a general graph-like

manifold, the dimension of its first cohomology group is the sum of the first Betti

number of the graph (also equal to the dimension of its first cohomology gruop) and

of the dimension of a subset of the first cohomology group of
Ť
vPV Xε,v .

For transversally trivial graph-like manifolds, i.e., HppYeq “ 0 for 1 ď p ď n ´ 2

and for all e P E, the following lemma holds.

Lemma 7.1.1. Let Xε be a transversally trivial graph-like manifold of dimension n

with underlying metric graph X0. Then, the cohomology groups of Xε are given by

HkpXεq “

$
’’’’’&
’’’’’%

R k P t0, nu
À

vPV H
1pXvqÀH1pX0q k P t1, n ´ 1u

À
vPV H

kpXvq k P t2, . . . , n ´ 2u.

Proof. We use the natural decomposition of Xε in (6.4.8) and the Mayer-Vietoris

sequence. Set A “ Ť
ePE Xe – Ť

ePE Ie ˆ Ye and B “ Ť
vPV Xv and fix ε “ 1. Then,

our graph-like (topological) manifold is X1. Note that we have avoided any reference

to the metric carried by each space as they do not enter into the topological argument.

The Mayer-Vietoris sequence in dimension k is

. . . ÝÑ HkpX1q ÝÑ HkpAq ‘ HkpBq ÝÑ HkpA X Bq ÝÑ . . .

We have HkpAq – À
ePE H

kpYeq and, by the assumption on the transversal man-

ifolds, HkpAq “ 0 for k “ 1, . . . , n ´ 2, and H0pAq “ Hn´1pAq – R
|E|.
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We also have HkpBq – À
vPV H

kpXvq. In particular, H0pBq – R
|V |.

Finally, A X B – Ť
vPV

Ť
ePEv

Ye . Hence, HkpA X Bq – R
2|E| for k P t0, n ´ 1u,

and HkpA X Bq “ 0 otherwise.

By compactness, we derive H0pX1q – R. Then, since the long exact sequence

splits into short exact sequences, we obtainHkpX1q – À
vPV H

kpXvq for 2 ď k ď n´1.

A dimensional argument yields H1pX1q – À
vPV H

1pXvqÀH1pX0q.
The use of Poincaré duality concludes the claim.

We observe that this computation agrees with the results in [AC95] where the

authors considered a manifold with shrinking handles, i.e., a graph-like manifold

where the shrinking parameter involves only the edge neighbourhood.

We also remark that, although the dimension of the class of harmonic 0-forms on

Xε coincides with the dimension of the ones on the graphs (H0pX0q “ Z since the

graph is connected), for harmonic forms of higher degree this is not valid. The class

of the harmonic p-forms on Xε is larger than the graph’s one, both in the transversal

trivially case and in the general case.

When some or all of the Ye have non-trivial p-th cohomology groups for 1 ď p ď
n ´ 2, we do not have a general formula. In this case, the Mayer-Vietoris sequence

and a dimensional argument only allows us to deduce the dimension of the first

cohomology group of Xε, equal to b1pX0q ` q where b1pX0q “ |E| ´ |V | ` 1 is the first

Betti number of X0 and q is the dimension of a subset of
À

vPV H
1pXvq. However,

it is possible to compute the cohomology groups explicitly for concrete examples of

edge and vertex neighbourhoods.

7.2 Convergence for functions and exact 1-forms

The Laplacian on functions on graph-like manifolds has been analysed in details in

a series of papers [EP05,EP09,EP13,Pos06,Pos12] where the convergence of several

objects has been established. For the proof of the eigenvalues convergence we par-

ticularly refer to [EP05] (see also [Pos12]) where the authors proved the following

(based on the results [KuZ01,RS01]).
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Proposition 7.2.1 ( [EP05,Pos12]). Let Xε be a compact graph-like manifold asso-

ciated with a metric graph X0 and let λjpXεq and λjpX0q denote the eigenvalues (in

increasing order, repeated according to their multiplicity) of the Laplacian acting on

functions on Xε and on X0. Then we have

|λjpXεq ´ λjpX0q| “ Opε1{2{ℓ0q for all j ě 1,

where ℓ0 “ min
ePE

tℓe, 1u ą 0 denotes the truncated minimal edge length. Moreover, the

error depends only on j, and the building blocks Xv, Ye of the graph-like manifold.

The proof in [EP05] is based on two sides eigenvalue estimates obtained by an av-

erage process on the vertex neighbourhoods Xε,v which corresponds to projection onto

the lowest (constant) eigenvalue using the variational principle or min-max principle

as in Proposition 6.6.2.

In following works, the convergence of the resolvents (in a suitable sense), spectral

projections, eigenfunctions, and discrete and essential spectrum has been proved using

an abstract setting that deals with operators acting in different Hilbert spaces (first

used in [Pos06] without requiring compactness of the manifold). The basic idea is

that we need to define a “distance” between the operators ∆Xε
and ∆X0

with suitable

identification operators. For a detailed overview and proofs of these techniques we

refer to the reader to [Pos06] and [Pos12, Ch. 4].

We have already noticed in (6.2.2) and (6.5.12), that the exact 1-form eigenvalues

equal the 0-form (function) eigenvalues both on the graph X0 and on the graph-like

manifold Xε. Therefore, the previous result immediately gives the convergence for

exact 1-forms, using a simple supersymmetry argument as in [Pos09, Sec. 1.2].

Theorem 7.2.2. Let Xε be a graph-like manifold with underlying metric graph X0.

Denote by λ̄1jpXεq and λ̄1jpX0q the j-th exact 1-form eigenvalue on Xε and X0, respec-

tively. Then,

λ̄1jpXεq ÝÑ
εÑ0

λ̄1jpX0q for all j ě 1.

Proof. We will just show that the eigenspaces for non-zero eigenvalues of ∆1
Xε

“ ∆1 “
dd˚ and ∆0

Xε
“ ∆0 “ d˚d are isomorphic (the argument works for ε ą 0 and ε “ 0 as

well). Then, the convergence result follows immediately from Proposition 7.2.1.
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As isomorphism, we choose

d : kerp∆0 ´ λq ÝÑ kerp∆1 ´ λq

for λ ‰ 0. First, note that if f P kerp∆0 ´ λq, then

∆1df “ dd˚df “ d∆0f “ λdf,

i.e., df P kerp∆1 ´ λq, hence the above map is properly defined. The map d as above

is injective. If df “ 0 for f P kerp∆0 ´ λq then λf “ ∆0f “ d˚df “ 0. As λ ‰ 0 we

have f “ 0. For the surjectivity, let α P kerp∆1 ´ λq. Set f :“ λ´1d˚α (we use again

that λ ‰ 0). Then,

df “ dpλ´1d˚αq “ λ´1∆1α “ α,

i.e., d as above is surjective. In particular, we have shown that the spectrum of ∆0

and ∆1 away from 0 is the same, including multiplicity.

We remark that if n “ dimXε “ 2, the above theorem is sufficient to determine the

spectra of Laplacian in all degree forms. In fact, by (6.5.12) and (6.5.13), the exact 1-

form eigenvalues coincide with the 0-form eigenvalues, the co-exact 1-form eigenvalues

coincide with the (exact) 2-form eigenvalues, and these eigenvalues coincide with the

0-form eigenvalues. Therefore, we can state the following.

Corollary 7.2.3. Let Xε be a graph-like Riemannian compact manifold of dimension

2 associated to a metric graph X0. Then,

λ̄1jpXεq ÝÑ
εÑ0

λjpX0q,
“

λ1jpXεq “ λ2jpXεq “ λjpXεq ÝÑ
εÑ0

λjpX0q,
(7.2.1)

for all j ě 1.

In addition, by Hodge duality (see (6.5.13)), Theorem 7.2.2 gives convergence for

n-forms on graph-like manifolds of any dimension.

7.3 Divergence for co-exact p-forms

If n ě 3, the behaviour of the co-exact p-forms for 1 ď p ď n ´ 2 cannot be known

using duality. In order to study their limit behaviour, we analyse the limit behaviour
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of the exact pp ` 1q-forms eigenvalues, due to (6.5.12). In particular, we first give

some eigenvalue asymptotics for eigenvalues of exact p-forms with absolute boundary

conditions on the building blocks of the graph-like manifold, which are needed to

make use of Proposition 6.6.4 and Proposition 6.6.5.

7.3.1 Eigenvalue asymptotics on the building blocks

A vertex neighbourhood Xε,v is conformally equivalent to Xv by definition. As a

result of Lemma 6.6.1, we have the following corollary.

Corollary 7.3.1. Let Xε,v be a vertex neighbourhood of a graph-like manifold Xε.

Then, the smallest positive eigenvalue of the Laplacian acting on exact p-forms on

Xε,v with absolute boundary conditions satisfies

λ̄
p
1pXε,vq “ ε´2λ̄

p
1pXvq. (7.3.2)

To describe the asymptotic behaviour of the edge neighbourhood, there is a bit

more work to do. We recall that the edge neighbourhood Xε,e is isomorphic to IeˆYε,e

with the product metric. However, we cannot make use of the product structure as

it does not respect exact and co-exact forms.

Proposition 7.3.2. Let Xε,e be an edge neighbourhood of a n-dimensional graph-like

manifold Xε. Then, the smallest eigenvalue of the Laplacian acting on exact p-forms

(2 ď p ď n ´ 1) with absolute boundary conditions satisfies

λ̄
p
1pXε,eq “ ε´2cppεq, (7.3.3)

where cppεq Ñ λ̄
p
1pYeq ą 0 as ε Ñ 0, and where λ̄p1pYeq denotes the first eigenvalue

of the Laplacian acting on exact p-forms on Ye .

Proof. By Proposition 6.6.2 we have to analyse the quotient }η}2{}θ}2 for an exact

p-form η and a pp ´ 1q-form θ such that η “ dθ. Recall that Xε,e “ Ie ˆ εYe (i.e.,

IeˆYe with metric gε,e “ ds2`ε2he). Then, the pp´1q-form θ on Xε,e can be written

uniquely as

θ “ θ1 ^ ds ` θ2 (7.3.4)
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where θ1 and θ2 are a pp ´ 2q-form and pp ´ 1q-form on Ye , respectively. Using the

scaling behaviour of the metric in a similar way as in Lemma 6.6.1, we have

}θ}2L2pΛp´1pXε,eqq “
ż

Xε,e

|θ|2gε,e dvolXε,e

“
ż

Ie

ż

Ye

`
ε´2pp´2q|θ1|2he ` ε´2pp´1q|θ2|2he

˘
εn´1 ds dvolYe

“ εn´2p`1

ż

Ie

ż

Ye

`
ε2|θ1|2he ` |θ2|2he

˘
ds dvolYe ,

(7.3.5)

where the ε factor appears due to the scaled metric ε2he. The decomposition of dθ

according to (7.3.4) is given by

dθ “ pdYe
θ1 ` Bsθ2q ^ ds ` dYe

θ2. (7.3.6)

Hence,

}dθ}2L2pΛppXε,eqq “
ż

Xε,e

|dθ|2gε,e dvolXε,e

“
ż

Ie

ż

Ye

`
ε´2pp`1q|dYe

θ1 ` Bsθ2|2he ` ε´2p|dYe
θ2|2he

˘
εn´1 ds dvolYe

“ εn´2p´1

ż

Ie

ż

Ye

`
ε2|dYe

θ1 ` Bsθ2|2he ` |dYe
θ2|2he

˘
ds dvolYe .

(7.3.7)

In particular, if we substitute (7.3.5) and (7.3.7) into the quotient }η}2{}θ}2 we

conclude

}dθ}2L2pΛppXε,eqq

}θ}2
L2pΛp´1pXε,eqq

“ ε´2

ş
Ie

ş
Ye

`
ε2|dYe

θ1 ` Bsθ2|2he ` |dYe
θ2|2he

˘
ds dvolYeş

Ie

ş
Ye

`
ε2|θ1|2he ` |θ2|2he

˘
ds dvolYe

.

In particular, together with Proposition 6.6.2 this yields

λ̄
p
1pXε,eq “ ε´2cppεq

with

cppεq “ sup

#ş
Ie

ş
Ye
ε2
`
|dYe

θ1 ` Bsθ2|2he ` |dYe
θ2|2he

˘
ds dvolYeş

Ie

ş
Ye

`
ε2|θ1|2he ` |θ2|2he

˘
ds dvolYe

ˇ̌
ˇ̌
ˇ

θ “ θ1 ^ds`θ2 ‰ 0,

θ1 pp ´ 2q-form,

θ2 pp ´ 1q-form

+
.

In the limit ε Ñ 0, this constant tends to a number cpp0q given by

cpp0q “ sup

#ş
Ie

ş
Ye

|dYe
θ2|2he ds dvolYeş

Ie

ş
Ye

|θ2|2he ds dvolYe

ˇ̌
ˇ̌
ˇ θ2 ‰ 0 pp ´ 1q-form

+
.
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This constant is the min-max characterisation of the first eigenvalue of the opera-

tor idb∆̄p
Ye

acting on L2pIeqbL2pΛppYeqq, whose spectrum agrees with the spectrum

of ∆̄p
Ye

(see e.g. [RS78, Thm. XIII.34]). Hence, we have cpp0q “ λ̄
p
1pYeq.

7.3.2 Main theorems

We are now ready to prove the divergence behaviour of the spectrum of the co-exact

p-forms, for 1 ď p ď n ´ 2, on a n-dimensional graph-like manifold Xε. For the rest

of this section we assume that n ě 3, as the 2-dimensional case has been already

explained in Corollary 7.2.3. We remind the reader that by (6.5.12), we analyse the

exact p-forms for 2 ď p ď n ´ 1.

We first analyse the case when Xε is transversally trivial, making use of Proposi-

tion 6.6.4. Let

Uε “ tUε,vuvPV Y tUε,euePE

be an open cover of Xε, where Uε,v and Uε,e are open ε-neighbourhoods of Xε,v and

Xε,e in Xε, respectively, or in other words, a slightly enlarged vertex and edge neigh-

bourhoods to ensure that Uε is an open cover.

It is easy to see that Uε has intersections up to degree 2 only (three or more

different sets of Uε have always trivial intersection). The intersections of degree 2 are

given by Xε,v ,e “ Uε,v XUε,e which is empty if e R Ev or otherwise isometric to the

product p0, εq ˆ Yε,e , hence conformally equivalent to the product p0, 1q ˆ Ye with

conformal factor ε2, as we enlarged Xε,v by an ε-neighbourhood. Moreover, Xε,v ,e is

homeomorphic to p0, 1q ˆ Ye , and hence homotopy equivalent to Ye . In particular,

Hp´1pXε,v ,eq “ Hp´1pYeq.

Theorem 7.3.3. Let Xε be a graph-like manifold of dimension n ě 3 with underlying

metric graph X0. Assume that 2 ď p ď n´1 and that the pp´1q-th cohomology group

of the transversal manifold Ye vanishes for all e P E, i.e., Hp´1pYeq “ 0. Then, the

first eigenvalue of the Hodge Laplacian acting on exact p-forms on Xε satisfies

λ̄
p
1pXεq ě τpε

´2,

where τp ą 0 is a constant depending only on the building blocks Xv and Ye of the

graph-like manifold, the truncated minimal length ℓ0 “ min
ePE

tℓe, 1u, and p. In particu-
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lar, all eigenvalues λ̄pjpXεq of exact p-forms and all eigenvalues
“

λ
p´1
j pXεq of co-exact

pp ´ 1q-forms tend to 8 as ε Ñ 0.

Proof. We apply Proposition 6.6.4 as the cover Uε has no intersections of degree

higher than 2 and Hp´1pXε,v ,eq “ Hp´1pYeq “ 0.

We first look at the denominator of the right hand side of the estimate in Propo-

sition 6.6.4. We note that our open cover Uε is labelled by v P V and e P E and

therefore, the sum over i “ 1, . . . ,m of the estimate in Proposition 6.6.4 becomes a

sum over v P V and e P E. Moreover, the sum over the edges can easily be rewritten

as a sum over the vertices taking care of some appearing extra factors. Using these

observations and equations (7.3.2) and (7.3.3), we obtain

ÿ

vPV

˜
1

λ̄
p
1pXε,vq `

ÿ

ePEv

ˆ
cn,p}dρε}28
λ̄
p´1
1 pXε,v ,eq

` 1

˙ˆ
1

λ̄
p
1pXε,vq ` 1

λ̄
p
1pXε,eq

˙¸

`
ÿ

ePE

˜
1

λ̄
p
1pXε,eq `

ÿ

v“B˘e

ˆ
cn,p}dρε}28
λ̄
p´1
1 pXε,v ,eq

` 1

˙ˆ
1

λ̄
p
1pXε,vq ` 1

λ̄
p
1pXε,eq

˙¸

“
ÿ

vPV

˜
1

λ̄
p
1pXε,vq ` deg v

λ̄
p
1pXε,eq ` 2

ÿ

ePEv

ˆ
cn,p}dρε}28
λ̄
p´1
1 pXε,v ,eq

` 1

˙ˆ
1

λ̄
p
1pXε,vq ` 1

λ̄
p
1pXε,eq

˙¸

“ε2
ÿ

vPV

˜
1

λ̄
p
1pXvq ` deg v

cppεq
` 2

ÿ

ePEv

ˆ
cn,pε

2}dρε}28
λ̄
p´1
1 pXv,eq

` 1

˙ˆ
1

λ̄
p
1pXvq ` 1

cppεq

˙¸
“: ε2Cppεq,

where the extra term with deg v and the factor 2 are due to the transformation of

the sum over the edges into a sum over the vertices.

We now analyse the constant Cppεq as ε Ñ 0.

First, we have seen in Proposition 7.3.2 that cppεq Ñ λ̄
p
1pYeq ą 0. Moreover, the

norm of the derivative of the partition of unit norm depends on ε as these functions

have to change from 0 to 1 on a length scale of order ε on the vertex neighourhoods

and on a length scale of order ℓ0 on the edge neighourhood, hence the derivative is

of order ε´1 ` ℓ´1
0 and ε2}dρε}28 “ Op1q ` Oppε{ℓ0q2q. In particular, Cppεq Ñ Cpp0q

as ε Ñ 0 provided ε{ℓ0 remains bounded, where Cpp0q depends only on some data of

the building blocks.

Therefore, by Proposition 6.6.4 we can conclude

λ̄
p
1pXεq ě 2´3

ε2Cppεq
,

which proves the theorem.
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We observe that, by duality and supersymmetry (see (6.5.12) and (6.5.13)), The-

orem 7.3.3 gives divergence for the spectrum of p-forms for 2 ď p ď n ´ 2.

We also point out that Theorem 7.2.2 and Theorem 7.3.3 for p “ 2 gives a

complete description of the behaviour of the spectrum on 1-forms, and by duality

we also have a description of the spectrum on pn ´ 1q-forms. We remark that this

spectrum is partially convergent (exact eigenvalues) and partially divergent (co-exact

eigenvalues). Hence, we can state the following.

Corollary 7.3.4. Let Xε be a graph-like Riemannian compact manifold of dimension

n ě 3 associate to a metric graph X0. Assume that all transversal manifolds Ye have

trivial cohomology for p “ 1, . . . , n ´ 2. Then,

“

λn´1
j pXεq “ λ̄1jpXεq ÝÑ

εÑ0
λ0jpX0q,

λ̄n´1
j pXεq “

“

λ1jpXεq ÝÑ
εÑ0

8,

λ
p
jpXεq ÝÑ

εÑ0
8,

(7.3.8)

for all j ě 1 and 2 ď p ď n ´ 2,

We remark that the case n “ 2 has been treated in Corollary 7.2.3.

Removing the assumption of vanishing cohomology groups of the transversal man-

ifolds, the following theorem holds.

Theorem 7.3.5. Let Xε be a graph-like manifold of dimension n ě 3 with underlying

metric graph X0. Then, the N -th eigenvalue of the Laplacian acting on exact p-forms

on Xε satisfies

λ̄
p
NpXεq ě rτpε´2,

where rτp ą 0 is as before and where

N “ 1 `
ÿ

vPV

ÿ

ePEv

dimHp´1pYeq “ 1 ` 2
ÿ

ePE

dimHp´1pYeq.

Its proof follows the line of the previous one with the difference that we use

Proposition 6.6.5 to estimate a higher eigenvalue for exact p-forms on Xε.

Remark 7.3.6. We point out that the first N ´ 1 eigenvalues of the theorem above

are strictly positive since we consider the spectrum away from zero. The theorem
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states that λ̄pjpXεq “
“

λ
p

pj´1qpXεq are divergent for j ě N in the limit ε Ñ 0. However,

it remains an open question how the first pN ´ 1q eigenvalues behave asymptotically

as ε Ñ 0.



Chapter 8

Manifolds with spectral gap

In this chapter we discuss some applications of the asymptotic behaviours described

in Chapter 7. We will state some general facts about the existence of spectral gaps

in the spectrum of the Hodge-Laplacian on a graph-like manifold Xε in relation to

existing spectral gaps in the spectrum of the Laplacian on its associated metric graph

X0. Moreover, we will construct manifolds and families of manifolds with spectral

gaps.

In Section 8.1 we define the Hausdorff convergence and we state a weaker version

of Corollary 7.3.4 in relation to this definition (see Corollary 8.1.1). Moreover, we

give the definition of spectral gap and a general result on how to produce graph-like

manifolds with spectral gaps in their spectrum. In Section 8.2 we construct manifolds

with constant volume and arbitrarily large form eigenvalues, i.e., manifolds with an

arbitrarily large spectral gap in their Hodge-Laplacian on p-forms for 2 ď p ď n´ 1.

In Section 8.3 we construct families of manifolds with spectral gaps arising from

families of Ramanujan graphs and of arbitrary graphs.

8.1 Hausdorff convergence of the spectrum and

spectral gaps

Let A,B Ă R be two compact sets. The Hausdorff distance of A and B is defined as

dpA,Bq :“ maxtsup
aPA

dpa,Bq, sup
bPB

dpb, Aqu, where dpa,Bq :“ inf
bPB

|a ´ b|. (8.1.1)

74
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A sequence pAnqn of compact sets An Ă R converges in Hausdorff distance to A0

if and only if dpAn, Aq Ñ 0 as n Ñ 8. In particular, dpAn, A0q Ñ 0 if and only if

for all λ0 P A0 there exists λn P An such that |λ0 ´ λn| Ñ 0 and for all x P RzA0

there exists η ą 0 such that rx ´ η, x ` ηs X An “ H for n sufficiently large (see

e.g. [Pos12, Proposition A.1.6]).

In view of this definition, a weaker result than Corollary 7.3.4 is as follows.

Corollary 8.1.1. Let Xε be a transversally trivial graph-like manifold with associated

metric graph X0. Then, for all λ0 ą 0 we have that σp∆‚
Xε

q X r0, λ0s converges in

Hausdorff distance to σp∆X0
q X r0, λ0s.

In fact, in a compact interval r0, λ0s, eventually all divergent eigenvalues from

higher forms leave this interval, and the remaining ones converge.

Furthermore, we asked ourselves about the relation between spectral gaps in the

spectrum of the Laplacian acting on 1-forms on Xε and X0, i.e., about intervals pa, bq
not belonging to the spectrum. More precisely, a spectral gap of an operator ∆ ě 0

is a non-empty interval pa, bq such that

σp∆q X pa, bq “ H.

As a consequence of the asymptotic description of the spectrum in Theorems

7.2.2, 7.3.3 and in Corollary 8.1.1, we have the following result on spectral gaps (i.e.,

intervals disjoint with the spectrum).

Corollary 8.1.2. Assume that the graph-like manifold Xε is transversally trivial and

suppose that pa0, b0q is a spectral gap for the metric graph X0, then there exist aε, bε

with aε Ñ a0 and bε Ñ b0 such that paε, bεq is a spectral gap for the Hodge Laplacian

on Xε in all degree forms, i.e., σp∆‚
Xε

q X paε, bεq “ H.

Examples of manifolds with spectral gaps can be generated in different ways.

In [Pos03, LP08] the authors constructed (non-compact) abelian covering manifolds

having an arbitrary large number of gaps in their essential spectrum of the scalar

Laplacian, and in [ACP09], the analysis was extended to the Hodge Laplacian on

certain cyclic covering manifolds.
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One can construct metric graphs with spectral gaps, and hence graph-like man-

ifolds with spectral gaps, with a technique called graph decoration that works as

follows. We consider a finite metric graph X0 and a second finite metric graph rX0.

For each v P V pX0q, let rX0 ˆ tvu be a copy of a finite metric graph rX0. Fix a vertex

rv of rX0. Then the graph decoration of X0 with the graph rX0 is the graph obtained

from X0 by identifying the vertex rv of rX0 ˆ tvu with v. This decoration opens up a

gap in the spectrum of the Laplacian on function on X0 as described in [Ku05] and

therefore in its 1-form Laplacian. Consequently, the associated graph-like manifold

has a spectral gap in its 1-form Laplacian, and no spectrum away from 0 for higher

forms, as all the form eigenvalues diverge.

More examples of manifolds with spectral gap and family of manifolds with a

spectral gap are given in the next sections.

8.2 Manifolds with arbitrarily large spectral gap

Let pXεqεą0 be a graph-like manifold constructed from a metric graph X0 with under-

lying (discrete) graph pV,E, Bq. We assume the graph-like manifold to be transversally

trivial (i.e., HppYeq “ 0 for all 1 ď p ď n ´ 2 and for all e P E).
For simplicity, we assume that X0 is equilateral, i.e., all edge lengths are given by

a number ℓ ą 0. The result can be easily extended to the case when c´ℓ ď ℓe ď c`ℓ

for all e P E and some constants c˘ ą 0.

We write

aε À bε, aε Á bε, aε h bε (8.2.2)

if

aε ď const` bε, aε ě const´ bε, const´ aε ď bε ď const` aε (8.2.2’)

for all ε ą 0 small enough and constants const˘ independent of ε.

We first summarise the asymptotic spectral behaviour of a graph-like manifold

Xε and its dependence on the parameters ε, ℓ, |V |, and |E|. In particular, for the

volume, the 0-forms (functions), and the exact p-forms and co-exact pp ´ 1q-forms,
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we have

volXε h εn|V | ` εn´1ℓ|E| (8.2.3a)

|λ0jpXεq ´ λ0jpX0q| À ε1{2

ℓ0
pℓ0 “ mintℓ, 1uq (8.2.3b)

λ̄
p
1pXεq “

“

λ
p´1
1 pXεq Á 1

ε2|E|p1 ` ε2{ℓ2q 2 ď p ď n ´ 1, (8.2.3c)

where the constants in À etc. depend only on the building blocks Xv and Ye of the

(unscaled, i.e, ε “ 1) graph-like manifold. Equation (8.2.3a) is a direct consequence

of the structure of the graph-like manifold described in (6.4.8). Equation (8.2.3b) is

a direct consequence of Proposition 7.2.1. Equation (8.2.3c) follows from analysing

the lower bound constant τp in Theorem 7.3.3 (or Theorem 7.3.5). We see that the

constant Cppεq in its proof is bounded from above by

Cppεq À
`
|V | ` |E|p1 ` ε2{ℓ2q

˘
À |E|p1 ` ε2{ℓ2q,

where again the constants in À depend only on the building blocks and where we

used |V | ď ř
vPV deg v “ 2|E| for any graph G, assuming that there are no isolated

vertices, i.e., vertices of degree 0.

We now assume that ℓ “ ℓε “ εγ depends on ε for some γ P R (negative γ’s are

not excluded). In particular, X0 now also depends on ε, and we write εγX0 for a

metric graph with all edge lengths multiplied by εγ. If we plug ℓ “ εγ into equations

(8.2.3a)–(8.2.3c), we observe the following.

(i) In (8.2.3a), the dominant term is εn for γ ě 1 and it is εn´1`γ otherwise.

(ii) For the metric graph eigenvalues, we have λ0jpεγX0q “ ε´2γλ0jpX0q.

(iii) In (8.2.3b) we need γ ă 1{2 for convergence to hold, as the error term is of

order ε1{2{mintεγ, 1u “ ε1{2´maxtγ,0u. We also need γ ą ´1{4 for the metric

graph eigenvalue (of order ε´2γ) to be dominant with respect to the error (of

order ε1{2´maxtγ,0u).

(iv) In (8.2.3c) we need γ ă 2 for divergence to hold. Moreover, ε2 is the dominant

term in the denominator of the RHS for γ ď 1, and it is ε4´2γ otherwise.
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Therefore, equations (8.2.3a)–(8.2.3c) become

volXε h εn|V | ` εn´1`γ|E| h

$
’&
’%

εn´1`γ|E|, γ ď 1

εn|V |, γ ě 1,

(8.2.3a’)

λ0jpXεq

$
’&
’%

h ε´2γ, ´1{4 ă γ pă 1{2q

À ε1{2, γ ď ´1{4,
(8.2.3b’)

λ̄
p
1pXεq Á

$
’&
’%

ε´2, γ ď 1

ε´4`2γ, 1 ď γ pă 2q.
(8.2.3c’)

These equations and statements (i)–(iv) give the existence of manifolds with con-

stant volume and arbitrarily large form eigenvalues, i.e, manifolds with an arbitrarily

large spectral gap in their form spectrum. Our proposition below states an analogous

result than the one in [GP95, Theorem 1], where the authors state that for any closed

manifold M of dimension n ě 4 there exits a metric of volume 1 such that the first

non-zero p-form eigenvalue λp1pMq is unbounded. In particular, they give an answer to

a question of Tanno [Tan83], whether there exists a constant kpMq such that the first

non-zero p-form eigenvalue satisfies λp1pMq ď kpMqpvolpM, gqq´n{2 for all Riemannian

metrics g on M . The same question was previously posed by Berger [Ber73] on the

first non-zero function eigenvalue and answered positively (see [GP95] and references

therein for further contributions). We observe that the construction of Gentile and

Pagliara in [GP95] corresponds to a simple graph with one edge and two vertices.

Therefore, we conclude the following.

Proposition 8.2.1. On any transversally trivial graph-like manifold of dimension

n ě 3 there exists a family of metrics rgε of volume 1 such that for the first eigenvalue

on exact p-forms we have

λ̄
p
1pX, rgεq Ñ 8 as ε Ñ 0

for 2 ď p ď n ´ 1. Moreover, the function (p “ 0) and exact 1-form spectrum

converges to 0, i.e.,

λ01pX, rgεq “ λ̄11pX, rgεq Ñ 0 as ε Ñ 0.
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Proof. Let gε be the metric of the graph-like manifold as constructed in Section 6.4.

For any γ ă 1, we have

λ̄
p
1pX, gεqpvolpX, gεqq2{n Á ε´2ε2pn´1`γq{n “ ε´2p1´γq{n Ñ 8 as ε Ñ 0

by (8.2.3c’) and (8.2.3a’). Set now rgε :“ volpX, gεq´2{ngε, then volpX, rgεq “ 1 and

λ̄
p
1pX, rgεq “ volpX, gεq2{nλ̄

p
1pX, gεq Á ε´2p1´γq{n Ñ 8 as ε Ñ 0.

If ´1{4 ă γ ă 1{2, then the 0-form (and exact 1-form) eigenvalues of the metric

graph and the manifold are close and λ0jpX, gεq h ε´2γ, hence

λ0jpX, rgεq “ volpX, gεq2{nλ0jpX, gεq h ε2pn´1`γq{nε´2γ “ ε2pn´1qp1´γq{n Ñ 0.

We observe that for manifolds as constructed in the proof, the transversal length

scale (the one of the transversal manifolds Ye) is ε
p1´γq{n Ñ 0, while the longitudinal

length scale (the one of the metric graph edges Ie) is ε´p1´1{nqp1´γq Ñ 8 as ε Ñ 0.

This implies that the edge neighbourhoods become thinner but longer in the limit.

Unfortunately, we cannot extend the result of [GP95] to the case n “ 3 and

1-forms, as the exact 1-form spectrum converges.

8.3 Families of manifolds with special spectral prop-

erties arising from families of graphs

We now consider families of graph-like manifolds constructed according to a sequence

of graphs tGiuiPN. We assume for simplicity that the vertex degree is uniformly

bounded, say by k0 P N. Then, if there are no isolated vertices, we have

|V pGiq| ď
ÿ

vPV pGiq

degGi v “ 2|EpGiq| ď 2k0|V pGiq|,

i.e., νi :“ |V pGiq| » |EpGiq| as i Ñ 8.

We begin with a general statement about the spectral convergence. We assume

that tGiuiPN is a family of discrete graphs and that tX i
0uiPN is the family of associated

equilateral metric graphs, each graph X i
0 having edge lengths equal to ℓi (for the

definition of equilateral graph, see Section 6.2). Accordingly, we construct a family
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of graph-like manifolds tX i
ε uiPN where the building blocks Xv and Ye are isometric

to a given number of prototypes (independent of i), such that Ye all have trivial

cohomology for 1 ď p ď n ´ 2 (see Example 6.4.1), so that all graph-like manifolds

X i
ε are transversally trivial and hence our estimates (8.2.3a)–(8.2.3c) are uniform in

the building blocks and (8.2.3c) holds for the first exact eigenvalue. We call such a

family of graph-like manifolds uniform.

We now assume that εi and ℓi are dependent on the number of vertices νi of G
i.

Specifically, we set

εi “ ν´α
i and ℓi “ ν

´β
i (8.3.5)

for some α ą 0 and β P R (negative values of β are not excluded). In particular, X i
0

now also depends on ε, and we write ν´β
i X i

0 for the metric graph X i
0 with all edge

lengths being ν´β
i . Substituting conditions (8.3.5) into equations (8.2.3a)–(8.2.3b),

we observe the following.

(i’) The volume is now given by volX i
ε h ν´nα`1

i ` ν
´pn´1qα´β`1
i .

(ii’) For the metric graph eigenvalue, we have λ0jpν´β
i X i

0q “ ν
2β
i λ

0
jpX i

0q.

(iii’) In (8.2.3b) we need maxtβ, 0u ă α{2, for the convergence to hold, as the error

term is of order ε
1{2
i {mintℓi, 1u “ ν

´α{2`maxtβ,0u
i (Figure 8.1 (a) below). We also

need β ě ´α{2 and β ě 0, or β ě ´α{4 and β ď 0, for the metric graph

eigenvalue (of order ν2βi ) to be dominant with respect to the error (of order

ν
´α{2`maxtβ,0u
i ) (Figure 8.1 (b) below).

(iv’) In (8.2.3c), we need α ą 1{2 (resp. 2α ą 1 ` β), for the divergence to hold.

Moreover, if α ě β the dominant term in the denominator of the RHS is ν´2α`1,

it is ν´4α`2β`1 otherwise (Figure 8.1 (c) below).

Therefore, in view of the above statements, we can rewrite (8.2.3a)–(8.2.3c) as

volX i
ε h

$
’&
’%

ν
´pn´1qα´β`1
i , α ě β,

ν´nα`1
i , α ď β.

(8.2.3a”)

λ0jpX i
εq

$
’&
’%

h ν
2β
i λjpX i

0q, pβ ě ´α{2, β ě 0q or pβ ě ´α{4, β ď 0q,

À ν
´α{2
i , otherwise.

(8.2.3b”)
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λ̄
p
1pX i

εi
q Á

$
’&
’%

ν2α´1
i , α ě β,

ν
4α´2β´1
i , α ď β,

for 2 ď p ď n ´ 1. (8.2.3c”)
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Figure 8.1: (a) Region where the 0-form eigenvalue convergence in (8.2.3b) holds

(maxtβ, 0u ă α{2); (b) Region where λ0jpX i
εi

q h ν
2β
i λjpX i

0q (β ą ´α{2, β ě 0 or β ą
´α{4, β ď 0); (c) Region where λ̄p1pX i

εi
q diverges. (α ą 1{2, α ě β or 4α´2β´1 ą 0,

α ď β); (d) Blue region: all eigenvalues diverge. Green region: the form eigenvalues

diverge and the function eigenvalues converge to 0. Above the red dotted line the

volume tends to 0, below it tends to 8.

We now discuss some examples using statements (i’)–(iv’) and equations (8.2.3a”)–

(8.2.3c”).

Families of manifolds arising from a sequence of Ramanujan graphs

We consider a sequence of discrete Ramanujan graph pGiqi with νi “ |V pGiq| many

vertices and the associate sequence of equilateral metric graphs pX i
0qi with all edge
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lengths equal to 1 (for a formal definition see Section 6.3). Then, the (metric) graph

Laplacians have a common spectral gap p0, hq (see (6.3.7)). Accordingly, we construct
a uniform family of graph-like manifolds pX i

εi
qi, as described at the beginning of this

section, and assuming conditions (8.3.5) for the parameters εi and ℓi. Consequently,

the edge length of the sequence of metric graphs becomes ν´β and the common

spectral gap is now dependent on ℓi, i.e., it is given by p0, hiq where hi “ h{ℓ2i (see

again (6.3.7)).

If we choose pα, βq from the blue region of picture (d) we have the following.

Proposition 8.3.1. There is a uniform family of graph-like manifolds pX i
εi

qi con-
structed as above such that the Hodge Laplacian in all degree forms has an arbitrarily

large spectral gap, i.e., there exists hi h ν
mint2β,2α´1u
i Ñ 8 such that

σp∆‚
Xi

εi

q X p0, hiq “ H,

and such that the volume shrinks to 0, more precisely, volX i
εi
h ν

´pn´1qα´β`1
i .

In particular, if β “ 0, i.e, if ℓi “ 1 for all i, then there exists a common spectral

gap p0, hq of the Hodge Laplacian. If, additionally, n “ 3, then the volume decay can

be made arbitrarily small as α Œ 1{2, i.e., of order ν´2α`1
i .

Proof. The proof follows from considerations (i’)–(iv’) above and choosing pα, βq such
that α ą 1{2, β ě 0 and β ď α{2 (see Figure 8.1 (d)). We observe that for a sequence

of Ramanujan graphs, there exists h ą 0 such that the first non-zero eigenvalue of

the metric graph Laplacian with unit edge length fulfils λ1pX i
0q ě h for all i, hence

we can conclude divergence from the first line of (8.2.3b”).

We observe that the length scale of the underlying metric graphs is of order ν´β
i ,

but the radius is of order εi “ ν´α
i , which is smaller; hence the injectivity radius of

X i
εi
is of order εi “ ν´α

i , and the curvature is of order ε´2
i “ ν2αi .

It is also possible to construct families of manifolds with fixed volume arising

from families of Ramanujan graphs. In order to do so, we need to rescale the metric.

We set rgi :“ pvolpX i
εi
, gεiqq´2{ngεi) and we consider rX i :“ pX i

εi
, rgiq. Then, the latter

manifold has volume 1. Unfortunately, we cannot have divergence at all degrees at

the same time. In fact, for n “ 3 the conditions are β ą α´ 1{2 for divergence of the
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eigenvalues of degree 0, while β ă α ´ 1{2 is needed for divergence of exact 2-forms.

But we can have divergence of 0-forms and higher degree forms separately.

Proposition 8.3.2. For all n ě 2 there exists a family of graph-like manifolds p rX iqi
of volume 1 with underlying Ramanujan graphs such that the first non-zero eigenvalue

on functions (0-forms) diverges.

Proof. The rescaling factor τi “ pvolpX i
εi
, gεiqq´1{n is of order ν

p1´1{nqα`β{n´1{n
i . The

rescaled eigenvalue on functions fulfils

λ01p rX iq “ τ´2
i λ01pX i

εi
q h τ´2

i ν
2β
i λ

0
1pX i

0q h ν
2{n´2p1´1{nqpα´βq
i λ01pX i

0q, (8.3.6)

and the latter exponent is positive if and only if β ą α ´ 1{pn ´ 1q. The allowed

parameters pα, βq lie inside the triangle p0, 0q, p4,´1q{p5pn´ 1qq, p2, 1q{pn´ 1q such

that λ1p rX iq h ν
2{n´δ
i (see Figure 8.2). The difference β´α approaches its maximum

on this triangle at the vertex p0, 0q. Hence for any δ ą 0 there exists pα, βq inside the
triangle such that λ1p rX iq h ν

2{n´δ
i .

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

β
n “ 4

α

n “ 3

n “ 2

Figure 8.2: Parameter region where the rescaled 0-form eigenvalue λ01p rX i
εi

q diverges,

i.e., region where maxtβ, 0u ă α{2 and λ01p rX i
εi

q h ν2βλ1pX i
0q are both satisfied. Above

the dotted lines, the exponent in (8.3.6) is positive and the eigenvalue diverges.

In particular, for n “ 2 Proposition 8.3.2 yields the following corollary.

Corollary 8.3.3. There exists a sequence of graph-like surfaces p rX iqi of area 1 and

genus γp rX iq with underlying Ramanujan graphs such that the first non-zero eigenvalue
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on functions diverges. Moreover, for any δ ą 0 there exists a sequence p rX iqi such
that

λ01p rX iq h γp rX iq1´δ.

Proof. We have to choose Ye “ S
1 here, moreover we let the vertex neighbourhood

be a sphere with k discs removed (as in Example 6.4.1). In this case, the genus of

the surface rX i is given by 1 ´ χpGiq where χpGiq is the Euler characteristic of the

graph Gi, and hence

γp rX iq “ 1 ´ |V pGiq| ` |EpGiq| “ 1 ´ νi ` k

2
νi “ 1 `

´k
2

´ 1
¯
νi Ñ 8

as i Ñ 8 as k ě 3 for a Ramanujan graph. In particular, γp rX iq h νi.

Family of manifolds arising from a sequence of arbitrary graphs

We now consider a sequence of arbitrary discrete graphs pGiq, with νi “ |V pGiq| Ñ 8
as i Ñ 8 and with degrees bounded by k, and the associated sequence of metric

graphs pX i
0qi. Then, we construct a sequence of graph-like manifolds with underlying

metric graph X i
0 as explained at the beginning of the section assuming (8.3.5) for

εi and ℓi. We show the existence of families of manifolds with constant volume,

arbitrarily large form spectrum and convergent function spectrum, hence we do not

need that the underlying graphs are Ramanujan. To obtain manifolds with constant

volume we again set rgi “ pvolpX i
εi

qq´2{ngεiq so that the manifolds rX i equipped with

the metric rgi will have constant volume 1.

We immediately have the following result.

Proposition 8.3.4. For all n ě 3 there exists a family of graph-like manifolds p rX iqi
of volume 1, constructed as described above, such that the first eigenvalue on exact p-

forms diverges (2 ď p ď n´ 1). Moreover, the first non-zero eigenvalue on functions

converges.

Proof. The rescaled eigenvalue on p-forms fulfils

λ̄
p
1p rX iq “ τ´2

i λ̄
p
1pX i

εi
q Á τ´2

i ν2α´1
i h ν

2pα´β`1q{n´1
i ,
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(as α ě β, see (8.2.3c”)) and the latter exponent is positive if and only if β ă
α ´ pn{2 ´ 1q. The allowed parameters pα, βq lie below this line (see Figure 8.3

below).

For the first non-zero eigenvalue on functions, note first that λ1pX i
0q (the first

non-zero eigenvalue of the unilateral metric graph X i
0) can be bounded from above

by π2, this follows immediately from the spectral relation (6.2.3). Therefore, we

conclude from (8.3.6) that λ01p rX iq Ñ 0 as i Ñ 8 as β ă α ´ pn{2 ´ 1q implies that

2{n ´ 2p1 ´ nqpα ´ βq ă 0.

Actually, comparing the speed of divergence and convergence, we obtain

λ̄
p
1p rX iq Á ν

n2

2pn´1q

i λ1p rX iq´ n2

4pn´1q ,

confirming again that we cannot have divergence for both function and form eigen-

values with our construction.

0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

α

n “ 5

n “ 4

n “ 3
β

Figure 8.3: Above the dotted lines the p-forms eigenvalues diverge (2 ď p ď n ´ 1),

depending on the dimension.

In the special case that our family of graphs consists only of trees, we can mod-

ify any given manifold X to become a graph-like manifold (see Remark 6.4.2). In

particular, we can show the following corollary.
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Corollary 8.3.5. On any compact manifold X of dimension n ě 3, there exists a

sequence of metrics gi of volume 1 such that the infimum of the (non-zero) function

spectrum converges to 0, while the exact p-form eigenvalues (2 ď p ď n´ 1) diverge.



Appendix A

Geometry of T kM

We here describe the space T kM introduced in Chapter 2. We have already noticed

that vectors on T kM can be decomposed into horizontal and vertical components,

resembling the structure of the tangent spaces of TM . In this Appendix we will

analyse the Lie brackets and the covariant derivative of horizontal and vertical vectors,

and we will look at curvature properties of T kM in relation to the curvature of the

base manifold M .

The reader will find it useful to compare these results with the ones in [Dom62,

GuKa02, KS05] and references therein. In [Dom62, GuKa02], the authors describe

the geometry of TM equipped with the Sasaki metric, while in [KS05], the authors

describe the geometry of the linear frame bundle LM over a manifold equipped with

a Sasaki-type metric. In both articles, the authors use local coordinates in their

geometric descriptions of TM and LM . Moreover, they also discuss other types of

metric on TM and LM .

Let pM, gq be a compact n-dimensional manifold with tangent bundle TM , and

let π : TM ÝÑ M be the canonical projection. We remind the reader that for

k “ 1, . . . , n, T kM is defined as

T kM “
ď

pPM

tf “ pv1, . . . , vkq P TpM ˆ . . . ˆ TpM | πpviq “ p @ i “ 1, . . . , ku,

and that there is a canonical projection πk : T kM ÝÑ M such that πkpfq “ p if

vi P TpM for all i “ 1, . . . , k.

87
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T kM is a manifold of dimension n`nk and its tangent space at a point f is given

by

TfT
kM “ TpM ˆ . . . ˆ TpMloooooooooomoooooooooon

pk`1q´times

.

In fact, any tangent vector on T kM is described as

X 1p0q “
´ d
dt

ˇ̌
ˇ
t“0

pπk ˝ Xqptq; D
dt

ˇ̌
ˇ
t“0
V1ptq, . . . , D

dt

ˇ̌
ˇ
t“0
Vkptq

¯
,

where X “ pV1, . . . , Vkq : p´ε, εq ÝÑ T kM is a curve on T kM . In view of this,

and having in mind the decomposition of vectors on TM into horizontal and vertical

component, we consider any vector u on T kM as the sum of
h
u “ pu0; 0, . . . , 0q and

v
u “ p0; u1, . . . , ukq. Moreover, we define

Hf “
ď

fPTkM

thu | u P TfT kMu – TπkpfqM and

Vf “
ď

fPTkM

tvu | u P TfT kMu – TπkpfqM ˆ . . . ˆ TπkpfqMloooooooooooooomoooooooooooooon
k´times

to be the horizontal and vertical distributions at the point f . Consequently,

TfT
kM “ Hf ` Vf .

We also remind the reader that we equip T kM with the Sasaki-type metric

gf pu, wq “ gppu0, w0q `
kÿ

i“1

gppui, wiq,

for every u “ pu0; u1, . . . , ukq and w “ pw0;w1, . . . , wkq vectors in TfT
kM with

πkpfq “ p. Hence, horizontal and vertical components are pairwise orthogonal.

A.1 Horizontal and vertical lifts

Let f P T kM with πkpfq “ p, and let u “ pu0; u1, . . . , ukq P TfT
kM . For all

i “ 0, . . . , k, we define the map

πi : TfT
kM ÝÑ TpM such that πipuq “ ui.
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Definition A.1.1. Let w P TpM . The horizontal lift of w to a point f P T kM is

the unique vector wh P TfT kM such that π0pwhq “ w and πipwhq “ 0 for i ‰ 0, i.e.,

wh “ pw; 0, . . . , 0q.
The horizontal lift of a vector field X onM is the unique vector field Xh on T kM

such that π0pXhq “ Xppq P TpM and πipXhq “ 0 for i ‰ 0 for all f P T kM with

πkpfq “ p.

Definition A.1.2. Let w P TpM . The j-th vertical lift of w to a point f P T kM

is the unique vector wvj such that πjpwvj q “ w and πipwvj q “ 0 for i ‰ j, i.e., wvj “
p0; 0, . . . , 0, wloomoon

j-th place

, 0, . . . , 0q.

The j-th vertical lift of a vector field X on M is the unique vector field Xv
j on

T kM such that πjpXv
j q “ Xppq P TpM and πipXv

j q “ 0 for i ‰ j for all f P T kM

with πkpfq “ p.

We observe that the maps w ÞÑ wh and w ÞÑ wvj for all j are vector isomorphisms

between TpM and Hf and between TpM and the j-th copy of TpM in Vf , respectively.

Therefore, the horizontal and vertical component of any vector z P TfT
kM can be

interpreted as horizontal and vertical lift, i.e., we have

z “ h
z ` v

z “ zh0 `
kÿ

i“1

zvi “ pz0; z1, . . . , zkq.

Therefore, it is sufficient to look at the horizontal and vertical lifts to recover the

behaviour of the horizontal and vertical component of a vector on T kM .

We also note that for every h P C8pMq and every w P TfT kM , we have

whp h ˝ πkloomoon
PC8pT kMq

q “ w0phq and wvj ph ˝ πkq “ 0, (A.1.1)

while for every H P C8pT kMq, we have

whpHqpfq “ d

dt

ˇ̌
ˇ
t“0
Hpfwptqq, (A.1.2)

wvj pHqpfq “ d

dt

ˇ̌
ˇ
t“0
Hpf ` tJpwvj qq, (A.1.3)

where J : TT kM ÝÑ T kM is such that Jpuq “ Jppu0; u1, . . . , ukqq “ pu1, . . . , ukq.
In fact, we can think of wh and wvj to be the generators of the local 1-parameter
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groups ϕtpfq “ fwptq and rϕtpfq “ f ` tJpwvj q “ pv1, . . . , vj´1, vj ` tw, vj`1, . . . , vkq
for f “ pv1, . . . , vkq.

We also point out that (A.1.2) and (A.1.3) correspond to the definition of horizon-

tal and j-th vertical gradient of a smooth function on T kM as introduced in Section

2.3.

A.2 Lie Brackets

Proposition A.2.1. Let X, Y be vector fields on M and consider Xh, Xv
j , Y

h, Y v
j

their horizontal and j-th vertical lifts for j “ 1, . . . , k. Then, for all f “ pv1, . . . , vkq P
T kM and πkpfq “ p, we have

rXh, Y hspfq “ prX, Y sppqqh ´
kÿ

i“1

pRppX, Y qviqvi

“
´

rX, Y spfq;´RppX, Y qv1, . . . ,´RppX, Y qvk
¯
,

(A.2.4)

rXh, Y v
j spfq “ p∇XppqY qvj “ p0; 0, . . . ,∇XppqYloomoon

j-th place

, 0 . . . , 0q, (A.2.5)

rXv
j , Y

v
i spfq “ 0 @ i, j “ 1 . . . , k, (A.2.6)

where Rp is the Riemannian curvature tensor on M evaluated at the point p.

Proof. Let J : TfT
kM ÝÑ TpM ˆ . . . ˆ TpM be such that Jpu0; u1, . . . , ukq “

pu1, . . . , ukq. Let ϕs, rϕs and ϕt, rϕt be local 1-parameter groups associated to rXh, rXv
j

and rY h, rY v
j , respectively, i.e.,

ϕs : R ˆ T kM ÝÑ T kM rϕs : R ˆ T kM ÝÑ T kM

ps, fq ÞÑ fXppqpsq ps, fq ÞÑ f ` sJp rXv
j pfqq,

the same for ϕt, rϕt associated to rY h, rY v
j , respectively.

Note that ϕ´1
‚ “ ϕ´‚.

Using [KN63, Proposition 1.9], we have

rXh, Y hspfq “ lim
sÑ0

1

s

`
Y hpfq ´ pdϕspY hqqpfq

˘
.
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Then,

pdϕsprY hqqpfq “ d

dt

ˇ̌
ˇ
t“0

pϕs ˝ ϕt ˝ ϕ´1
s qpfq

“ d

dt

ˇ̌
ˇ
t“0
ϕsppϕ´spfqqY ppqqptq

“ d

dt

ˇ̌
ˇ
t“0

pfY ppqptqqXpqqpsq,

where q “ cptq, and c is the geodesic with starting vector Y ppq.
We now define the variation Hps, tq “

`
fY ppqptq

˘
Xpqq

psq “ pH1ps, tq, . . . , Hkps, tqq
where Hjps, tq “ ppvjqY ppqptqqXpqqpsq. Then,

pdϕspY hqqpfq “ B
Bt
ˇ̌
ˇ
t“0
Hps, tq “

´ B
Bt
ˇ̌
ˇ
t“0

pπk˝Hqps, tq; D
dt

ˇ̌
ˇ
t“0
H1ps, tq, . . . ,

D

dt

ˇ̌
ˇ
t“0
Hkps, tq

¯
.

Since Y hpfq “ pY ppq; 0, . . . , 0q “
`

B
Bt

ˇ̌
t“0

pπk ˝ Hqp0, tq; 0, . . . , 0
˘
, we have

rXh, Y hspfq “
´
lim
sÑ0

1

s

´ B
Bt
ˇ̌
ˇ
t“0

pπk ˝ Hqp0, tq ´ B
Bt
ˇ̌
ˇ
t“0

pπk ˝ Hqps, tq
¯
;

´ lim
sÑ0

1

s

D

dt

ˇ̌
ˇ
t“0
H1ps, tq, . . . ,´ lim

sÑ0

1

s

D

dt

ˇ̌
ˇ
t“0
Hkps, tq

¯

“
´

rX, Y sppq;´D

ds

ˇ̌
ˇ
s“0

D

dt

ˇ̌
ˇ
t“0
H1ps, tq, . . . ,´D

ds

ˇ̌
ˇ
s“0

D

dt

ˇ̌
ˇ
t“0
Hkps, tq

¯
.

Now,

´D

ds

ˇ̌
ˇ
s“0

D

dt

ˇ̌
ˇ
t“0
Hips, tq “ R

´ B
Bt
ˇ̌
ˇ
t“0

pπk ˝ Hqp0, tq, B
Bs

ˇ̌
ˇ
s“0

pπk ˝ Hqps, 0q
¯
Hip0, 0q

´D

dt

ˇ̌
ˇ
t“0

D

ds

ˇ̌
ˇ
s“0

Hips, tqloooooooooooomoooooooooooon
´ D

dt

ˇ̌
t“0

pviqY ppqptq“0

“ RppY,Xqvi.

Hence,

rXh, Y hspfq “ prX, Y spfq;´RppX, Y qv1, . . . ,´RppX, Y qvkq,

which proves (A.2.4).

To prove (A.2.5), we proceed as before using the local 1-parameter groups ϕs and

rϕt generating rXh and rY v
j , respectively. Then, we have

rXh, Y v
j spfq “ lim

sÑ0

1

s

`
Y v
j pfq ´ pdϕsqpY v

j qpfq
˘



A.3. Covariant Derivative 92

and

pdϕsqpY v
j qpfq “ d

dt

ˇ̌
ˇ
t“0

pϕs ˝ rϕt ˝ ϕ´1
s qpfq

“ d

dt

ˇ̌
ˇ
t“0
ϕspϕ´spfq ` tJpY v

j pϕ´spfqqqq

“ Y v
j pϕ´spfqqXpπkpϕ´spfqqqpsq.

Therefore,

rXh, Y v
j spfq “ lim

sÑ0

1

s

`
Y v
j pϕ0pfqq ´ Y v

j pϕ´spfqqXpπkpϕ´spfqqqpsq
˘

“ pZ0pfq;Z1pfq, . . . , Zkpfqq

where Zipfq “ 0 for all i ‰ j and

Zjpfq “ lim
sÑ0

1

s
pY pπkpϕ0pfqqq ´ Y pπkpϕ´spfqqXpπkpϕ´spfqqqpsqq “ ∇XppqY.

Finally, we consider the local 1-parameter groups rϕs, rϕt to prove (A.2.6). It is easy
to see that rϕs and rϕt commute. Therefore, by [KN63, Corollary 1.11] we conclude

rXv
i , Y

v
j s “ 0 for all i, j “ 1, . . . , k.

A.3 Covariant Derivative

Let ∇,∇ be the Levi-Civita connection on pM, gq and pT kM, gq respectively. We re-

call that for any V, U,W vector fields on T kM , Kozul formula holds [Sak96, Equation

1.13, p. 28].

gf p∇VU,W q “ 1

2

`
V pgf pU,W qq ` Upgf pV,W qq ´ W pgf pV, Uqq

´ gf pV, rU,W sq ´ gf pU, rV,W sq ´ gf pW, rU, V sq
˘

(A.3.7)

Using the formula above, we are able to compute the covariant derivatives of

horizontal and vertical lifts.

Proposition A.3.1. Let X, Y be two vector fields on M , Xh, Y h be their horizontal

lifts on T kM and Xv
j , Y

v
i be their j-th and i-th vertical lifts for i, j “ 1, . . . , k. Then,

for all f “ pv1, . . . , vkq P T kM with πkpfq “ p, we have

∇Xv
j pfqY

v
i “ 0, (A.3.8)
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∇XhpfqY
h “p∇XppqY qh ´ 1

2

kÿ

i“1

`
RppX, Y qvi

˘v
i

“
´
∇XppqY ;´1

2
RppX, Y qv1, . . . ,´

1

2
RppX, Y qvk

¯
,

(A.3.9)

∇XhpfqY
v
i “

`1
2
Rppvi, Y qX

˘h ` p∇XppqY qvi

“ p1
2
Rppvi, Y qX; 0, . . . , 0,∇XppqY, 0, . . . , 0q,

(A.3.10)

∇Y v
i pfqX

h “ 1

2
pRppvi, Y qXqh “

´1
2
Rppvi, Y qX; 0, . . . , 0

¯
. (A.3.11)

Proof. Let W “
h

W `
v

W “ pW0;W1, . . . ,Wkq be a vector field on T kM . In order to

understand the horizontal and vertical components of the vectors in (i)–(iv), we take

their inner products against
h

W and the l-th component of
v

W , denoted by
v

W l. In

what follows, we will make use of the definition of g, Proposition A.2.1 and equations

(A.1.1) and (A.3.7).

We have

gf p∇Xv
j
Y v
i ,

v

W lq “ 1

2

` rXv
j pgf pY v

i ,
v

W lqq ` Y v
i pgf pXv

j ,
v

W lqq ´
v

W lpgf pXv
j , Y

v
i qq

´ gf pXv
i , rY v

j ,
v

W lsq ´ gpY v
j , rXv

j ,
v

W lsq ´ gp
v

W l, rY v
i , X

v
j sq

˘
“ 0,

and

gf p∇Xv
j
Y v
i ,

h

W q “ 1

2

`
Xv
j pgf pY v

i ,
h

W qq ` Y v
i pgf pXv

j ,
h

W qq ´
h

W pgf pXv
j , Y

v
i qq

´ gf pXv
i , rY v

j ,
h

W sq ´ gpY v
j , rXv

j ,
h

W sq ´ gp
h

W, rY v
i , X

v
j sq

˘

“ 1

2

`
´ W0pgppXj, Yiqq ` gppXj,∇WYiq ` gppYi,∇WXjq

˘
.

If i ‰ j, then each term of the above formula is zero due to the definition of g. If

i “ j, then the above sum is zero due to the Riemannian property of ∇. This proves

(A.3.8).

Now, we prove (A.3.9). As before,

gf p∇XhY h,
h

W q “ 1

2

`
Xhpgf pY h,

h

W qq ` Y hpgf pXh,
h

W qq ´ oshW pgf pXh, Y hqq

´ gf pXh, rY h,
h

W sq ´ gf pY h, rXh,
h

W sq ´ gf p
h

W, rY h, Xhsq
˘
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“1

2

`
XpgppY,W0qq ` Y pgppX,W0qq ´ W0pgppX, Y qq

´ gppX, rY,W0sq ´ gppY, rX,W0sq ´ gppW0, rY,Xsq
˘

“gpp∇XY,W0q,

and

gf p∇XhY h,
v

W lq “ 1

2

`
Xhpgf pY h,

v

W lqq ` Y hpgf pXh,
v

W lqq ´
v

W lpgf pXh, Y hqq

´ gf pXh, rY h,
v

W lsq ´ gf pY h, rXh,
v

W lsq ´ gf p
v

W l, rY h, Xhsq
˘

“ ´1

2
gf p

v

W l, rY h, Xhsq

“ 1

2
gppWl, RpY,Xqvlq.

Hence, the l-th vertical component of ∇XhpfqY
h is 1

2
RpY ppq, Xppqqvl for all l “

1, . . . k, and so (A.3.9) is proved.

Now, we look at (A.3.10). Again,

gf p∇XhY v
i ,

h

W q “ 1

2

`
Xhpgf pY v

i ,
h

W qq ` Y v
i pgf pXh,

h

W qq ´
h

W pgf pXh, Y v
i qq

´ gf pXh, rY v
i ,

h

W sq ´ gf pY v
i , rXh,

h

W sq ´ gf p
h

W, rY v
i , X

hsq
˘

“ ´1

2
gf pY v

i , rXh,
h

W sq

“ 1

2
gppYi, RpX,W0qviq

“ 1

2
gppRpvi, YiqX,W0q,

and

gf p∇XhY v
i ,

v

W lq “ 1

2

`
Xhpgf pY v

i ,
v

W lqq ` Y v
i pgf pXh,

v

W lqq ´
v

W lpgf pXh, Y v
i qq

´ gf pXh, rY v
i ,

v

W lsq ´ gf pY v
i , rXh, vWlsq ´ gf p

v

W l, rY v
i , X

hsq
˘

“ 1

2

`
Xhpgf pY v

i ,
v

W lqq ´ gf pY v
i , rXh, vWlsq ´ gf p

v

W l, rY v
i , X

hsq
˘

“ 1

2
δil
`
XpgppY,Wlq ´ gppY,∇XWlq ` gppWl,∇XY q

˘

“ δilgpp∇XYi,Wlq,

where the last equality is due to the Riemannian property of ∇. Therefore, (A.3.10)

is proved since the only non-zero component is the i-th (l “ i).
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Finally, we look at (A.3.11). Using (A.2.5) and (A.3.10), we obtain.

∇Y v
i pfqX

h “ ∇XhpfqY
v
i ´ rXh, Y v

i spfq

“
´1
2
Rppvi, Y qX

¯h
` p∇XppqY qvi ´ p∇XppqY qvi

“
´1
2
Rppvi, Y qX

¯h
,

which concludes the proof.

We analyse the Levi-Civita connection of the horizontal and i-th vertical lift of a

semi-basic vector field. We remind the reader that a semi-basic vector field is a map

F : T kM ÝÑ TM such that F pfq P TpM if πkpfq “ p (see also Section 2.3).

Definition A.3.2. Let F : T kM ÝÑ TM be a semi-basic vector field. The horizontal

and i-th vertical lift of F are the maps

F h : T kM ÝÑ TT kM, F hpfq “
`
F pfq

˘h

and

F v
i : T kM ÝÑ TT kM, F v

i pfq “
`
F pfq

˘v
i

We now consider a very special semi-basic vector field. We define Pi : T
kM ÝÑ

TM such that Pipfq “ vi for every f “ pv1, . . . , vkq, i.e., Pi is the projection of f on

the i-th component of T kM , and we consider G : TM ÝÑ TM , an endomorphism on

TM . Then, H “ pG ˝Piq is a semi-basic vector field on T kM . We have the following

result.

Proposition A.3.3. Let H be the semi-basic vector field defined above. Let Xh, Xv
j

be the horizontal and j-th vertical lift of X P XpMq and let ∇ be the Levi-Civita

connection on T kM . Then, for all f “ pv1, . . . , vkq, we have

∇XhpfqH
h “ ∇XhpfqpH ˝ V qh, (A.3.12)

∇XhpfqH
v
i “ ∇XhpfqpH ˝ V qvi , (A.3.13)

∇Xv
j pfqH

v
i “

`
HpJpXv

j pfqqq
˘v
i
, (A.3.14)

∇Xv
j pfqH

h “
`
HpJpXv

j pfqqq ` 1

2
Rppvj, XqHpfq

˘h
, (A.3.15)

where V “ pV1, . . . , Vkq is a realization of f , i.e., f “ V pfq “ pV1ppq, . . . , Vkppqq, and
J : TfT

kM ÝÑ TpM ˆ . . . ˆ TpM is such that Jpu0; u1, . . . , ukq “ pu1, . . . , ukq.
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Proof. We consider the curve ϕt generating X
h, i.e., ϕtpfq “ fXppqptq. Then,

∇XhpfqH
h “ d

ds

ˇ̌
ˇ
s“0

HpfXppqpsqqh

“ d

ds

ˇ̌
ˇ
s“0

HpV pfXppqpsqqqh

“ d

ds

ˇ̌
ˇ
s“0

ppH ˝ V q ˝ ϕspfqqqh

“ ∇XhpfqpH ˝ V qh,

which proves (A.3.12).

Equation (A.3.13) follows from the same considerations.

To prove (A.3.14) and (A.3.15), we first observe that for vi “ řn

α“1 dxαpviq B
Bxα

ˇ̌
p
,

we have

Hpfq “ pG ˝ Piqpfq “ Gpviq “
nÿ

α“1

aαppqG
´ B

Bxα

ˇ̌
ˇ
p

¯
“

nÿ

α“1

dxαpviqG
´ B

Bxα

ˇ̌
ˇ
p

¯
.

Therefore,

Hv
i pfq “

nÿ

α“1

dxαpviq
´

pG ˝ B
Bxα

˝ πkpfq
¯v
i

and

Hhpfq “
nÿ

α“1

dxαpviq
´

pG ˝ B
Bxα

˝ πkqpfq
¯h
.

Hence,

∇Xv
j pfqH

v
i “

nÿ

α“1

∇Xv
j pfq

`
dxαpG ˝ B

Bxα
˝ πkqvi

˘

“
nÿ

α“1

`
Xv
j pdxαq

˘
pfq

´
pG ˝ B

Bxα
˝ πkqpfq

¯v
i

` dxαpviq∇Xv
j pfqpG ˝ B

Bxα
˝ πkqvilooooooooooooomooooooooooooon

“0 by (A.2.6)

Since Xv
j pfq is generated by ϕtpfq “ f ` tJpXv

j pfqq, we have

Xv
j pdxαqpfq “

`
Xv
j pfq

˘
pdxαpPipfqqq

“ d

dt

ˇ̌
ˇ
t“0
dxα

`
Pipf ` tJpXv

j pfqqq
˘

“ d

dt

ˇ̌
ˇ
t“0
dxαpPipfqq ` tdxαpPipJpXv

j pfqqqq

“ dxα
`
PipJpXv

j pfqqq
˘
,

(A.3.16)

where the third and fourth equality are due to the fact that dxα and Pi are linear.
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Hence, we conclude

∇Xv
j pfqH

v
i “

nÿ

α“1

dxα
`
PipJpXv

j pfqqq
˘´

pG ˝ B
Bxα

˝ πkqpfq
¯v
i

“
`
HpJpXv

j pfqqq
˘v
i
,

which proves (A.3.8).

We proceed in the same way to prove (A.3.11).

∇Xv
j pfqH

h “
nÿ

α“1

∇Xv
j pfq

`
dxαpG ˝ B

Bxα
˝ πkqh

˘

“
nÿ

α“1

`
Xv
j pdxαq

˘
pfq

´
pG ˝ B

Bxα
˝ πkqpfq

¯h
` dxαpviq∇Xv

j pfqpG ˝ B
Bxα

˝ πkqh

“ HpJpXv
j pfqqqh `

´1
2
Rppvj, XqHpfq

¯h
,

where the last equality is due to (A.3.16) and (A.3.11).

A.4 The Riemannian curvature tensor

Let R and R be the Riemannian curvature tensor on T kM and M , respectively,

and let Rf , Rp be their evaluations at the point f and p, respectively. For any

V,W,U P XpT kMq, we have

Rf pV,W qU “ ∇V pfq∇W pfqU ´ ∇W pfq∇V pfqU ´ ∇rV,W spfqU. (A.4.17)

Proposition A.4.1. Let X, Y P XpMq and consider their horizontal and vertical

lifts, denoted as usual. Let f “ pv1, . . . , vkq P T kM with πkpfq “ p. Then,

Rf pXv
i , Y

v
j qZv

l “ 0 @ i, j, l “ 1, . . . , k, (A.4.18)

Rf pXh, Y v
j qZv

l “
´

´ 1

4
Rppvj, ZqpRppvl, ZqXq ´ 1

2
δjlRppY, ZqX

¯h
, (A.4.19)

Rf pXv
i , Y

v
j qZh “

´
δijRppX, Y qZ ` 1

4
Rppvi, XqpRppvj, Y qZq

´ 1

4
Rppvj, Y qpRppvi, XqZq

¯h
, (A.4.20)

Rf pXh, Y v
j qZh “ 1

2

´
∇XppqRpvj, Y qZ

¯h
` 1

2

´
RppX,ZqY

¯v
j

´ 1

4

kÿ

i“1

´
RppX,Rppvj, Y qZqvi

¯v
i
, (A.4.21)
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Rf pXh, Y hqZv
l “ 1

2

´
∇XppqRpvl, ZqY q ´ ∇Y ppqRpvl, ZqX

¯h
`
´
RppX, Y qZ

¯v
l

kÿ

i“1

1

4

´
RppY,Rpvl, ZqXqvi ´ RppX,Rpvl, ZqY qvi

¯v
i
, (A.4.22)

RpXh, Y hqZh “
´
RppX, Y qZ ` 1

4

kÿ

i“1

Rppvi, RpX,ZqviqY

´ Rppvi, RpY, ZqviqX ` 2Rppvi, RpX, Y qviqZ
¯h

´ 1

2

kÿ

i“1

´
∇ZppqRpX, Y qvi

¯v
i
. (A.4.23)

Proof. We will make use of (A.4.17) to prove the proposition.

Equation (A.4.18) is an easy consequence of (A.4.17), (A.2.6), and (A.3.8).

Before proving the remaining equations, we observe that the map F pfq “ F pv1, . . . , vkq “
Rpvi, XppqqY ppq is a semi-basic vector field for any X, Y P XpMq and any index i. In

particular, Lemma A.3.3 applies to such a map.

We now prove (A.4.19). Using (A.2.5), Proposition A.3.1 and Lemma A.3.3, we

have

Rf pXh, Y v
j qZv

l “ ∇Xhpfq∇Y v
j pfqZ

v
l ´ ∇Y v

j pfq∇XhpfqZ
v
l ´ ∇rXh,Y v

j spfqZ
v
l

“ ´∇Y v
j pfq∇XhpfqZ

v
l

“ ´1

2
∇Y v

j pfqpRpvl, ZqXqh ´ ∇Y v
j pfqp∇XppqZqvllooooooooomooooooooon

“0

“ ´1

2

´
δjlRppY, ZqX ´ 1

2
Rppvj, Y qpRppvl, ZqX

¯h
.

To prove (A.4.20), we use the Bianchi Identity and (A.4.19). Then,

Rf pXv
i , Y

v
j qZhqpfq “ ´Rf pZh, Xv

i qY v
j ´ Rf pY v

j , Z
hqXv

i

“ ´Rf pZh, Xv
i qY v

j ` Rf pZh, Y v
j qXv

i

“
´
δijRppX, Y qZ ` 1

4
Rppvi, XqpRppvj, Y qZq

´ 1

4
Rppvj, Y qpRppvi, XqZq

¯h
.

Now,

Rf pXh, Y v
j qZh “ ∇Xhpfq∇Y v

j pfqZ
h ´ ∇Y v

j pfq∇XhpfqZ
h ´ ∇rXh,Y v

j spfqZ
h
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“1

2
∇XhpfqpRpvj, Y qXqh ´ ∇Y v

j pfqp∇XppqY qh `
kÿ

i“1

1

2
∇Y v

j pfqpRpX,Zqviqvi

´ ∇p∇XppqV qvj
Zh

“1

2
p∇XppqRpvj, Y qZqh,´1

4

kÿ

i“1

´
RppX,Rppvj, Y qZqvi

¯v
i

´ 1

2
pRppvj, Y qp∇XppqZqqh

` 1

2
pRppvj,∇XppqY qZqh ` 1

2
pRppX,ZqY qvi

“1

2

´
∇XppqRpvj, Y qZ

¯h
` 1

2

´
RppX,ZqY

¯v
j

´ 1

4

kÿ

i“1

´
RppX,Rppvj, Y qZqvi

¯v
i
,

which proves (A.4.21).

We again use the Bianchi Identity to prove (A.4.22).

Rf pXh, Y hqZv
l “ ´Rf pZv

l , X
hqY h ´ Rf pY h, Zv

l qXh

“ Rf pXh, Xv
l qY h ´ Rf pY h, Zv

l qXh

“ 1

2

´
∇XppqRpvl, ZqY ´ ∇Y ppqRpvl, ZqX

¯h
` pRppX, Y qZqvl

` 1

4

kÿ

i“1

´
RppY,Rppvl, ZqY qvi ´ RppX,Rppvl, ZqY qvi

¯v
i
.

Finally, we prove (A.4.23).

Rf pXh, Y hqZh “ ∇Xhpfq∇Y hpfqZ
h ´ ∇Y hpfq∇XhpfqZ

h ´ ∇rXh,Y hspfqZ
h

“ ∇Xhpfq

´
∇Y ppqZqh ´ 1

2

kÿ

i“1

pRppY, Zqviqvi
¯

´ ∇Y hpfq

´
∇XppqZqh ´ 1

2

kÿ

i“1

pRppX,Zqviqvi
¯

´ ∇prX,Y sppqqh
rZh `

kÿ

i“1

∇pRppX,Y qviqvi
Zh

“ p∇Xppq∇Y ppqZqh ´ 1

2

kÿ

i“1

pRppX,∇Y ppqZqviqvi ´ p∇Y ppq∇XppqZqh

` 1

2

kÿ

i“1

pRppY,∇XppqZqviqvi ´ 1

4

kÿ

i“1

´
pRppvi, RppY, ZqviqXqh ` 2p∇XppqRpY, Zqviqvi

¯

` 1

4

kÿ

i“1

´
pRppvi, RppX,ZqviqY qh ` 2p∇Y ppqRpX,Zqviqvi

¯
´ p∇rX,Y sppqZqh

` 1

2

kÿ

i“1

pRpprX, Y s, Zqviqvi ` 1

2

kÿ

i“1

pRppvi, RppX, Y qviqZqh
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“
´
RppX, Y qZ ` 1

4

kÿ

i“1

“
Rppvi, RppX,ZqviqY ´ Rppvi, RppY, ZqviqX

` 2Rppvi, RppX, Y qviqZ
‰¯h

´ 1

2

kÿ

i“1

´
∇ZppqRpX, Y qvi

¯v
i
.

A.5 Curvature

Let K,Ric, S be the sectional curvature, the Ricci curvature and the scalar curvature

on T kM , respectively. For any v, w P TfT kM we have

Kptv, wuq “ gf pRpv, wqw, vq
}v}2}w}2 ´ gf pv, wq , (A.5.24)

Ricpv, vq “
npk`1qÿ

i“1

Kptv, eiuq, (A.5.25)

S “
npk`1qÿ

i“1

Ricpei, eiq, (A.5.26)

where tv, wu is the plane spanned by v and w, and where e1, . . . , enpk`1q is an or-

thonormal basis of TfT
kM .

Proposition A.5.1. Let X, Y P XpMq be two unitary vector fields and consider their

horizontal and vertical lifts as usually denoted. The sectional curvature K of T kM

with respect to the Sasaki-type metric satisfies the followings.

KptXv
i pfq, Y v

j pfquq “ 0 @ i, j “ 1, . . . , k, (A.5.27)

KptXhpfq, Y v
j pfquq “ 1

4
}Rpvi, Y ppqqXppq}2, (A.5.28)

KptXhpfq, Y hpfquq “ KptXppq, Y ppquq ´ 3

4

kÿ

i“1

}RppX, Y qvi}2. (A.5.29)

Proof. To prove the proposition we plug in (A.5.24) Xh, Y h, Xv
i , Y

v
j .

Equation (A.5.27) holds due to (A.4.18).

Since, X, Y are unitary, then }Xh}2 “ }Y v
j }2 “ }Y h}2 “ 1. Using (A.4.19), we

have
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KptXhpfq, Y v
j pfquq “ gf pRpXh, Y v

j qY v
j , X

hq

“ ´1

4
gppRpvj, Y qpRpvj, Y qXq, Xq ´ 1

2
gppRpY, Y qX,Xq

“ 1

4
}Rppvi, Y qX}2,

which proves (A.5.28).

Finally, using (A.4.22), we obtain

KptXhpfq, Y hpfquq “ gf pRpXh, Y hqY h, Xhq

“ gppRpX, Y qY,Xq

` 1

4

kÿ

i“1

´
gppRpvi, RpX, Y qviqY,Xq ´ gppvi, RpY, Y qviqX,Xq

` 2gpRppvi, RpX, Y qviqY,Xq
¯

“ KptXppq, Y ppqu ´ 3

4

kÿ

i“1

}RppX, Y qvi}2,

which proves (A.5.29).

From the above proposition, we derive some relations between the curvature of

T kM and M .

Proposition A.5.2. Let pM, gq be a Riemannian manifold and let pT kM, gq be the

bundle of k-frames on M equipped with a Sasaki-type metric. Then, T kM is flat if

and only if M is.

Proof. Statement piq is a direct consequence of Proposition A.5.1 or of Proposition

(A.4.1).

Proposition A.5.3. Let pM, gq and pT kM, gq be as in the above proposition. Then,

the following statements are true.

(i) If T kM has bounded sectional curvature, then it is flat,

(ii) If T kM has bounded sectional curvature, then M is flat.
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Proof. By contradiction, we assume that T kM is not flat. Then, M is not flat by

Proposition A.5.2. Hence, there exist a point p P M and a pair of orthonormal

vectors u1, u2 P TpM such that Rppu1, u2qV ‰ 0 for some V vector field on M .

Then, Kptuh1 , uh2uq “ Kptu1, u2uq ´ 3
4

řk

i“1 }Rppu1, u2qvi}2 for uh1 , u
h
2 the horizontal

lifts of u1, u2 at the point f “ pv1, . . . , vkq such that πkpfq “ p. Since the set of vi

satisfying this condition is unbounded, so is the set of f which has vi has one of the

components. In a similar way, we show that Kptuh1 , uh2uq is unbounded from above

using the (A.5.28). This proves statement piq.
Statement piiq is a consequence of statement piq and of Proposition A.5.2.

We now look at the Ricci and scalar curvature of T kM . We fist observe that given

e1, . . . , en an orthonormal basis for TpM , then eh1 , . . . , e
h
n is an orthonormal basis for

Hf and pe1qvi , . . . penqvi for i “ 1, . . . , k is an orthonormal basis for Vf .

Corollary A.5.4. Let eh1 , . . . , e
h
k be an orthonormal basis for Hf , pejqvi for i “ 1, . . . , k

and j “ 1, . . . , n be an orthonormal basis for Vf as described above. Let uh, uvl be

the horizontal and l-th vertical lifts of u P TpM at the point f “ pv1, . . . , vkq with

πkpfq “ p. Then,

Ricpuh, uhq “ Ricpu, uq ´ 1

2

kÿ

i“1

nÿ

j“1

}Rppej, viqu}2, (A.5.30)

Ricpuvl , uvl q “ 1

4

nÿ

i“1

}Rpvl, uqei}2. (A.5.31)

Proof. We apply Proposition A.5.1. Then,

Ricpuh, uhq “
nÿ

j“1

Kptuh, ehj uq `
nÿ

j“1

kÿ

i“1

Kptuh, pejqvi uq

“
kÿ

j“1

`
Kptu, ejuq ´ 3

4

kÿ

l“1

}Rppu, ejqvl}2
˘

` 1

4

kÿ

i“1

nÿ

j“1

}Rppvi, ejqu}2

“ Ricpu, uq `
nÿ

j“1

kÿ

i“1

1

4
}Rppvi, ejqu}2 ´ 3

4
}Rppu, ejqvi}2.

We now observe that for vi “ řn

α“1 v
α
i eα and u “ řn

l“1 ulel, we have
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nÿ

j`1

}Rppu, ejqvi}2 “
ÿ

j

}
ÿ

l,α

ulv
α
i Rppel, ejqeα}2

“
ÿ

j,q,l,α,β,s

uluqv
α
i v

β
i gppRpel, ejqeα, esqgppRpeq, ejqeβ, esq

“
ÿ

j,q,l,α,β,s

uluqv
α
i v

β
i gppRpes, eαqel, ejqgppRpeβ, esqeq, ejq

“
ÿ

j,q,l,α,β

uluqv
α
i v

β
i gppRpej, eαqel, Rpej, eβqeqq

“
ÿ

j

}Rppej, viqu}2.

Therefore,

Ricpuh, uhq “ Ricpu, uq ´ 1

2

kÿ

i“1

nÿ

j“1

}Rppej, viqu}2,

which proves (A.5.30).

Equation (A.5.31) is an easy consequence of (A.5.28).

Corollary A.5.5. Let eh1 , . . . , e
h
k and let pejqvi for i “ 1, . . . , k and j “ 1, . . . , n be as

above. Let f “ pv1, . . . , vkq, then

S “ S ´ 1

4

nÿ

i,j“1

kÿ

l“1

}Rppej, vlqei}2 (A.5.32)

Proof. This a consequence of the definition of scalar curvature and of Corollary A.5.4.

Proposition A.5.6. Let pM, gq be a Riemannian manifold and let T kM equipped

with the Sasaki-type metric g. Then, pT kM, gq has constant scalar curvature if and

only if M is flat.

Proof. This is a direct consequence of Corollary A.5.5.

Corollary A.5.7. Let M,T kM as above. Then, T kM has constant scalar curvature

with respect to the metric g if and only if the scalar curvature is zero.

Proof. This corollary is a consequence of Propositions A.5.6 and A.5.2.

Corollary A.5.8. Let M,T kM as above. Then, T kM is Einstein with respect to

the metric g if and only if it is flat.

Proof. Again, this is a direct consequence of Proposition A.5.6.
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