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Abstract 

Cities often experience a distinct climate compared to the surrounding area characterized by 

differences in air temperature, humidity, wind speed and direction, and amount of precipitation. 

Thus far, research on the urban heat island (UHI) effect has focused on cool temperate, 

Mediterranean and tropical climatic regions, whereas less attention has been given to the study of 

arid regions where the daytime surface temperature can be extremely high. This study concerns the 

Al Ahsa oasis, Saudi Arabia, which is a rapidly developing urban centre in an arid region. The aim 

of this study is to analyze the effect of land cover on the urban and sub-urban environment using 

ground data and multi-scale and multi-temporal satellite thermal imagery.  

 

Land surface temperatures derived from satellite thermal imagery are compared with observations 

from ground-based fixed and mobile temperature and relative humidity logging stations for periods 

in February and July. Thermal radiometers from different sensors, Landsat 7 ETM+ and MODIS, 

were used to measure the outgoing radiation budget at specific locations within the urban 

landscape. Fieldwork was undertaken contemporary with satellite overpasses to measure the 

diurnal air temperatures and relative humidity across different land cover types including 

agriculture, urban, water, exposed rock surfaces, sabkha and sand dunes. These data provide the 

most complete experiment so far conducted to test and refine models of the thermal radiation 

budget of the arid zone at the sub-city scale.  

 

The findings of this study have emphasized the effectiveness of combining the two methods, 

ground and satellite data, to investigate the relationship between land cover and UHI intensity. 

Results reveal a significant relationship between UHI spatial distribution and land cover using the 

two methods: mobile traverses and remote sensing. The UHI intensity is higher during the summer 

than the winter and at night-time than in the day. The highest UHI intensity, (10.5 °C), is located 

over the two major cities in the oasis (Al Hufuf and Al Mubarraz) while the lowest temperatures (- 

6.4 °C below UHI), are recorded in the small villages and vegetated areas during summer at night. 

The outcome of this thesis will help future urban development and planning projects and provide a 

framework for implementing rules and regulations by local government agencies for a sustainable 

urban development approach. 
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 Introduction Chapter 1:

 Applied Climatology and Urban Climate 1.1

 

The development of applied climatology goes back more than sixty years. It focuses on three 

interactive functional areas. The first area is the inner core of applied climatology, including 

the development of instrumentation and keeping of climate records. The second area is the 

interpretation and generation of climate data, generally based on interactions with users. The 

third area consists of the use and application of climatology products. In addition, the 

application of climate information fall into four classes: 1) the design of structures and 

planning activities; 2) evaluations of current and past conditions including the assessment of 

extreme events; 3) review of the relationships between weather and climate conditions; and 4) 

operation of weather-sensitive systems that involve climatic data to make policy and other 

decisions (Changnon, 1995).  

 

The field of urban climate studies has been growing in association with an increase in the 

number of urban inhabitants globally, and the profound effects of cities and their inhabitants on 

the atmosphere and vice versa. The topics covered in urban climate studies vary and include 

the need to know more about the fundamental physics, biology and chemistry of the urban 

atmosphere, and integrate this understanding into operational weather forecasting and air 

quality models; increase awareness of environmental sustainability and the desire to plan 

settlements and build houses that are more friendly to the environment; address concerns about 

environmental health, whether related to air quality, heat stress, ‘homeland security’; 

understand the consequences of the dispersion of toxic substances in cities. 

 

Example of papers that have been published in urban climatology during the last ten years 

cover varies topics, for example, analysing methodologies (Kanda, 2006), scale models 

(Grimmond, 2006), measurements (Masson, 2006), numerical models (Best, 2006), forecasting 

and numerical models, and (Voogt and Oke, 2003) thermal remote sensing. The spatial patterns 
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of urban climate (e.g., urban heat islands), energetics and dynamics (e.g., surface energy 

balance), and modelling (e.g., simulating the surface energy balance model (SEB)) have been 

important topics in the urban climatology field in recent years (Souch and Grimmond, 2006).  

 Urban Heat Islands 1.2

1.2.1 Definition and Background 

 

Most urban and suburban areas record elevated temperatures compared with their rural 

surroundings and this difference in air and surface temperature is what establishes the heat 

island phenomenon (Gartland, 2008). The annual mean air temperature of a city with one 

million or more people can be 1 to 3 °C warmer than its surroundings (Oke, 1997)  and on a 

clear, calm night, this temperature difference can be as much as 12 °C (Oke, 1987).  

 

Even smaller cities and towns will produce heat islands, though the effect decreases as city size 

decreases (Oke, 1982). In another words, the urban heat island (UHI) is the name given to 

describe the characteristic warmth of both the atmosphere and surfaces in urban areas 

compared with their non-urbanised surrounding areas (Voogt, 2004). Figure  1-1 shows the 

variation in surface and atmospheric temperatures over different land use areas during the day- 

and night-time. Surface temperature differs more than air temperatures during the day, but they 

both are fairly similar at night.  
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Figure 1-1 Sketch of an urban heat island temperature profile 

 

Source: (EPA, 2013). 

 

The climatic differences between urban and rural environments have been recognised for 

almost 200 years, of which the variation in temperature is the most obvious (Taha, 1997, Unger 

et al., 2001). The differences in temperatures between urban centres and their surrounding 

country sides were first documented by Luke Howard in 1818 in his book ‘The Climate of 

London’. Over a nine-year period, he showed that for London, the night-time temperature was 

3.70 ºC warmer and day time 0.34 ºC cooler in the city than in the countryside (Mills, 2008). 

 

UHIs develop when a large fraction of the natural land cover in an area is replaced by built 

surfaces that trap incoming solar radiation during the day and then re-radiate it at night (Clarke, 

1972, Oke, 1982, Quattrochi, 2000). The change of land use types from natural land covers to 

build structures results in changes to the natural surface of the Earth. Man-made structures 

affect the airflow, reducing the heat transfer away from the urban environment (Ojima, 1990). 

The microclimate caused by the UHI results in increasing the demand for cooling energy in 

both commercial and residential buildings (Crutzen, 2004). 

 

UHIs occur when changes to surface features modify the urban thermal climate, usually 

leading to warmer temperatures than in surrounding rural areas (Voogt and Oke, 2003). The 

intensity of temperature differences is dependent on the turbulent exchange of heat and 

modified radiant flux budgets (Landsberg, 1981). Energy exchanges and surface conditions in 
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the urban environment do not have fully predictable variables, meaning that UHI 

characteristics may differ between occurrences and may be caused under different 

microclimatic energy flux processes (Arnfield, 2003). Even a change as small as a new 

building may affect the microclimate and could contribute to the UHI effect (Landsberg, 1981). 

 

There are some commonalities in UHI research that are well accepted. In general, UHI will 

exhibit higher temperatures in a city centre, which gradually decrease towards suburbs, before 

falling dramatically in rural areas (Critchfield, 1983). Under UHI conditions, temperature 

differences are greatest at night because of a decrease in the diurnal range in urban areas, as 

compared to rural areas  (Critchfield, 1983). UHI conditions are maximised during calm, clear 

weather conditions and may exhibit seasonal fluctuations (Landsberg, 1981). The size of the 

UHI will often coincide with the extent of urban development, though the location and 

intensity of landscape features also affect UHI conditions (Critchfield, 1983). Modifying the 

heat budget and increasing warmth in an urban area will cause energy exchange by the mixing 

of overlying atmospheric layers (Arnfield, 2003). Recognising the interchange of energy 

between these two levels introduces the concept of scale to the UHI study. 

1.2.2 Types of Urban Heat Islands 

 Surface Urban Heat Islands  1.2.2.1

 

Surface Urban Heat Island SUHI, Figure  1-2, refers to the relative warmth of urban surfaces. 

During the summer season, urban surfaces such as roads, roofs, and pavements can be heated 

by the sun to 27 °C to 50 °C hotter than the air (Berdahl and Bretz, 1997), while the shaded or 

moist surfaces, often in more rural surroundings, remain close to air temperatures. Surface 

urban heat islands are classically present day and night, but tend to be strongest during the day 

when the sun is radiating. On average, the difference in daytime surface temperatures between 

urban and countryside areas is about 10 °C to 15 °C; while it ranges from 5 °C to 10 °C in the 

night-time (Roth et al., 1989, Voogt and Oke, 2003). The size and intensity of surface urban 

heat islands vary with season, due to changes in the sun’s intensity as well as differences in 

ground cover types and weather. As a result of such variation, surface urban heat islands are 

typically largest in the summer (Oke, 1982).  
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 Atmospheric Urban Heat Islands 1.2.2.2

 

The atmospheric urban heat island effect can be defined as warmer air in urban areas compared 

to cooler air in nearby rural surrounding areas. Atmospheric urban heat islands can be divided 

into two different types. The first one is canopy layer heat island CLHI, which extends from 

the ground to below the tops of trees and roofs. The second type of atmospheric urban heat 

islands is boundary layer heat island (BLHI), which starts from the rooftop and treetop level 

and extends up to the point where urban landscapes no longer influence the atmosphere 

(Figure  1-2). This region typically extends no more than one mile (1.5 km) above the surface. 

Atmospheric urban heat islands are often weak during the late morning and throughout the day 

and become more pronounced after sunset due to the slow release of heat from urban 

infrastructure. The timing of this peak, however, depends on the properties of the urban and 

rural surfaces, season, and prevailing weather conditions (Oke, 1982).  

 

Figure 1-2 Urban heat islands types: Urban boundary layer, canopy layer heat island, and surface heat island 

 

Source: (Oke, 1997). 
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 Microclimates and the Urban Heat Island 1.3

The urban climate is considered to be composed of three variables: the large mesoscale 

climate, proximity to surface features and modifications caused by urbanisation. The effect of 

urbanisation is the summed responses of the various microscale urban surface features. 

According to Critchfield (1983): “Any change in albedo, water capacity and retention, 

evaporation, transpiration, or surface roughness may produce a change in climate, but the 

results are complex, difficult to measure, and not easily predicted.” Figure  1-3 shows the urban 

heat islands processes in scale of mesoscale and microscale.  

 

Lo and Quattrochi (2003) cities land use change, vegetation cover change, low urban albedo 

and increased pollution as factors that create the UHI. Taha (1997) estimated that a modest 

increase in urban albedo could reduce air temperature by as much as 2ºC. Cotton (1995) also 

noted the importance of albedo as well as the amount of latent heat as variables in urban 

climate modification. Other authors have linked deforestation and the introduction of 

impervious surfaces to the causes of UHI (LO et al., 1997). The intensity of the UHI may vary 

seasonally due to plant phenology, fuel use, solar angle (Roth et al., 1989) and topography 

(Landsberg, 1981). Together, these variables can cause urban modifications in climate that may 

lead to the formation of a UHI. 
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Figure 1-3 Urban heat islands processes in scale of mesoscale and microscale: Urban Boundary Layer (UBL), 

Rural Boundary Layer (RBL), and Urban Canopy layer (UCL) 

 

Source: (Voogt, 2000). 

 

Topographical features are considered to constitute the relative surface roughness. Cities create 

extremely rough surface elements and can affect certain aerodynamic processes including 

surface drag, shearing stress, wind profile forms and turbulence characteristics (Arnfield, 

2003). The surface roughness of cities as a whole can alter mesoscale winds, slowing them and 

causing them to flow around the city (Cotton, 1995). At the microscale, tall features on the 

urban surface create disturbances in the energy fluxes and create a roughness sub layer 

(Arnfield, 2003). 

 

The absorption of energy will raise the temperature, meaning that the amount of energy 

reflected significantly affects UHI intensity. Urban surfaces reflect in a different manner than 

rural, vegetated surfaces. This makes albedo a primary factor in the urban energy flux (Small, 

2006). Albedo is the hemispherically and wavelength-integrated reflectivity with typical urban 

ranges from 0.10 to 0.20 (Taha, 1997). Dark materials with low albedo absorb more energy and 

can enhance the UHI (Gluch et al., 2006).  
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During urbanisation, vegetated areas are replaced with impervious surfaces. These surfaces, 

such as asphalt, store heat and cause an increase in surface temperature. Impervious surfaces 

also do not allow the infiltration of rainwater into the soil profile. Instead, impervious surfaces 

collect water, quickly and efficiently removing it from urban features. The reduced presence of 

water in urban areas reduces evaporation, or latent heat transfer, from the heat budget and 

increases the amount of energy absorbed by urban features (Landsberg, 1981). Similarly, the 

removal of vegetation in urban areas will lower the capacity for precipitation interception 

(Critchfield, 1983) and increase the sensible heat. An increase in urban vegetation, on the other 

hand, will increase the latent heat required for evapotranspiration and lower sensible heat in the 

heat budget. 

1.3.1 The formation of urban heat islands 

 

There are several factors contributing to the formation of urban heat islands. These factors are 

reduced vegetation cover, urban material properties, urban geometry, anthropogenic heat 

emissions, weather conditions and geographical location (Wong et al., 2011). Below is a brief 

discussion of these factors and how they contribute to the urban energy balance to create urban 

heat islands.  

 Reduced vegetation cover in urban areas 1.3.1.1

 

Vegetation and open land typically dominate the landscape in rural areas, and trees and 

vegetation provide shade, which helps to lower the surface temperature. In addition, trees and 

vegetation also help to reduce the air temperature by evapotranspiration when releasing water 

to the surrounding air, dissipating ambient heat (Goggins, 2009). However, urban areas are 

characterized by dry, impervious surfaces, such as roofs, sidewalks, roads, and parking lots. 

Changes in ground cover will cause less shading and moisture to keep the urban areas cool 

(Wong et al., 2011). Therefore, the built-up area will elevated the air temperature, as there is 

less evaporation (Figure  1-4).  
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Figure 1-4 Impervious surface and reduced evapotranspiration 

 

Note: Highly developed urban areas (right), which are characterized by 75%-100% impervious surfaces, have 

less surface moisture available for evapotranspiration than natural ground cover, which has less than 10% 

impervious cover (left). This characteristic contributes to higher surface and air temperatures in urban areas. 

Source: (Wong et al., 2011).  

 

 Properties of urban materials 1.3.1.2

 

Properties of urban materials, particularly solar reflectance, thermal emissivity, and heat 

capacity, also affect urban heat island formation, as they determine how the sun’s energy is 

reflected, emitted, and absorbed. When looking at the solar energy that reaches the Earth’s 

surface on a clear summer day, we see three types of short-wave radiation (Figure  1-5), in 

different percentages: ultraviolet 5%, visible light 43% and infrared 52%  Energy in all of these 

wavelengths contributes to the creation and formation of urban heat islands. In addition, the 

albedo, which is the percentage of the solar energy reflected by the surface, is another 

important factor that influences the development of urban heat islands. Dark surfaces usually 

have lower solar reflectance values than light surfaces (Wong et al., 2011).  
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Figure 1-5 Solar energy versus wavelength reaching earth's surface 

 

Note: Solar energy intensity varies over wavelengths from about 250 to 2500 nanometres. Source: (Wong et al., 

2011).  

 

 Urban geometry 1.3.1.3

 

Another factor that influences the development of an urban heat island is urban geometry, 

particularly at night. Urban geometry is defined as the dimensions of and spacing between 

buildings, which influences the wind flow, energy absorption, and the ability of building 

surfaces to emit long-wave radiation to the space. It can be summarised as narrow streets lined 

by tall buildings. Moreover, urban geometry, or the ‘sky view factor’ (SVF), has an effect on 

urban heat islands (Wong et al., 2011, Zhu et al., 2013). For example, an open parking lot has 

fewer obstructions and a large SVF value close to 1, while an urban canyon in a city centre 

area where tall buildings are densely packed has a low SVF value close to zero. Tall buildings 

can create shade, reducing surface and air temperatures. On the other hand, when the sunlight 

reaches the surfaces, the sun’s energy is reflected and absorbed by the building walls, which 

further lowers the city’s albedo and then increase the temperature (Zhu et al., 2013).  
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 Radiation and energy budget 1.3.1.4

 

Solar radiation is defined as the energy radiation receives from the sun in electromagnetic 

waves including visible and ultraviolet light and infrared radiation (Oke, 1987, Santamouris, 

2013). The radiation balance can be expressed in a budget equation, composed of different 

terms that each represents a radiation transport or conversion process, as presented in the 

following equation (Oke, 1987): 

Q∗ = (K ↓ −K ↑) + (L ↓ −L ↑) 

= K∗ + L∗ 

where is: 

Q∗: net all-wave radiation 

K∗ : net shortwave radiation 

K ↓: incoming shortwave radiation 

K ↑: outgoing shortwave radiation 

L∗: net longwave radiation 

L ↓: incoming longwave radiation 

L ↑: outgoing longwave radiation  

 

The balance of incoming and outgoing energy flows, or fluxes, provides an equation that 

quantifies the energy budget (Figure  1-6). The surface energy budgets of urban areas and their 

rural surroundings will differ based on the differences in land cover, surface characteristics, 

and human activity levels. These differences will affect the generation and transfer of heat, 

which can lead to different surface and air temperatures in urban and rural urban areas (Wong 

et al., 2011). Different elements of the budget include the following: 

1.3.1.4.1 Short-wave radiation 

 Short-wave radiation can be defined as ultraviolet, visible light and near-infrared radiation 

coming from the sun that reaches the Earth. This energy is the main factor that drives urban 

heat islands (Oke, 1982). Urban surfaces such as concrete and asphalt reflect less radiation 

back to the atmosphere than natural ground cover such as vegetation or sand. On other words, 
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man-made ground surfaces absorb and store more energy from radiation, thus raising the area’s 

temperature and helping to create an urban heat island.    

1.3.1.4.2 Thermal storage 

Thermal storage increases in urban areas due to less solar reflectance and is influenced by the 

thermal properties of different materials and urban geometry. Urban geometry can also cause 

some short-wave radiation within the canyon level to then be reflected on to nearby surfaces 

such as building walls and other surfaces, where it is absorbed rather than escaping into the 

atmosphere (Oke, 1982, Wong et al., 2011) (Figure  1-6). 

 

Figure 1-6 Urban surface energy budge 

 

 

 

Source: (David, 2007). 

 

Similarly, urban geometry can block the release of long-wave, or thermal infrared, radiation 

into the atmosphere. The buildings or other objects in urban areas absorb incoming short-wave 

radiation; then they can radiate that energy as long-wave energy or heat. However, during the 

night, due to the dense infrastructure in some urbanized areas that have low sky view factors, 

which prevents long-wave radiation to the cooler, open sky, this trapped heat contributes to the 
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creation of urban heat islands (Zhu et al., 2013). Another factor that affects the urban energy 

balance is evapotranspiration, which can be described as the transformation of latent heat and 

felt as the humidity that emits from the Earth’s surface to the air via evaporating water. Due to 

the nature of urban surfaces, the level of evapotranspiration is lower in such areas, which 

makes built-up areas dry and impervious urban infrastructure can reach very high surface 

temperatures, contributing to higher air temperatures (Wong et al., 2011). 

  Anthropogenic heat 1.3.1.5

 

Anthropogenic heat is produced by human activities and contributes to the air in urban heat 

islands. There are several sources of anthropogenic heat: running appliances, transportation and 

industrial processes. Therefore, more activities mean more heat, especially in urban areas 

where heat can significantly contribute to heat island formation (Voogt, 2002, Shahmohamadi 

et al., 2011). A recent study by Shahmohamadi et al. (2011) investigated the impact of 

anthropogenic heat on formation of urban heat island (UHI) and also determined which factors 

could directly affect energy use in the city. The study found that there is strong evidence that 

the average temperature of the Earth’s surface is rising because of increased energy 

consumption helping to form the urban heat islands (Shahmohamadi et al., 2011).  

 Weather conditions and geographical location 1.3.1.6

 

Other factors that influence the formation of urban heat islands are the weather and 

geographical location, which communities have little control over, but residents can benefit 

from understanding the role they play. Wind (speed and direction) and cloud cover are the two 

important factors affecting urban heat island development. Urban heat islands form and 

become stronger when winds are calm and on clear days due to the maximum amount of solar 

energy reaching the surface and the minimum amount of heat that can be convected away, 

while strong winds and cloud cover supress urban heat islands (Oke, 1973). In addition, the 

geographical location including topography and climate can affect the formation of urban heat 

islands. For example, large bodies of water moderate the local temperature and help to generate 

wind, convecting the heat away from urban areas. Mountains also have an effect on urban 

island areas, as they can either block wind from reaching such areas or create wind patterns 

that pass through cities (Wong et al., 2011).  
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All climatic variables such air temperature, humidity, air pressure, wind speed, and 

precipitation are affected by each other (Givoni, 1976). The air temperature variation affects 

the evaporation and air capacity, leading to the change in air humidity. Furthermore, the air 

temperature differences between different locations will also create different air masses that 

will lead to different air pressures systems, which in turn would produce air movement, thereby 

wind and gusts. This variation in humidity and wind speed and direction affects rainfall 

(Valsson and Bharat, 2011). Air temperature and humidity are important properties of the UHI, 

and have effects on health and thermal comfort. Thermal comfort depends on both factors: air 

temperature and humidity (Escobedo, 2014). Relative humidity is used to measure the amount 

of the water vapour in the air. It is defined as the amount of water in the air relative to 

saturation amount the air can hold at given temperature multiplied by 100. The relationship 

between temperature and relative humidity is that when the temperature decreases the relative 

humidity goes up, while when the temperature increases the relative humidity goes down 

(Valsson and Bharat, 2011).      

 Measuring Urban Heat Islands 1.4

1.4.1 Ground Data Applications  

 

It has been reported that UHI can be examined using a fixed weather station at the city scale or 

on a small university campus such as National University of Singapore (Wong and Jusuf, 

2007). With different numbers of fixed weather stations, urban heat island intensity can be 

investigated and modelled. This number of fixed weather station can be two stations, such Kim 

and Baik (2002), or six like Hoffmann et al. (2012), or up to 31 weather stations (Kim and 

Baik, 2005). The comparison between the urban site and rural site is the most common method 

to calculate the UHI intensity and its magnitude based on ground data (Oke, 1987). Urban heat 

island was investigated in Hamburg, Germany using several weather stations to predict the 

future relationship between different meteorological variables (wind speed, cloud cover, 

relative humidity, pressure, and water vapour pressure) and UHI. The study found that there is 

no significant changes based on the regional model while there is moderate increase and strong 

UHI days can be predicted based on climate local model (Hoffmann et al., 2012).  
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Similar study from Seoul using two meteorological observatories, urban and rural sites, for 

period of 23 years found that there is an effect of the wind speed, relative humidity, and cloud 

cover on the UHI intensity. The study indicated that the UHI is weakest in the summer and 

strong during the autumn and winter and also higher during the night-time than the daytime 

(Kim and Baik, 2002). Also, another study from Seoul, using 31 automatic weather stations for 

one year from March 2001 to February 2002, found the similar (Kim and Baik, 2005) results. 

The study found that the spatial distribution of UHI intensity varies according to the location 

and the topography of the local region. The UHI intensity during the night-time is stronger than 

the day time and when the wind speed is increased and cloud cover is decreased. Also, the 

study found that the UHI intensity is stronger during the weekdays than the weekends, while 

might refer to the intensities of the human activities and traffic (Kim and Baik, 2005).     

 

A study by Sofer and Potchter (2006) using ground-based data showed the development of a 

moderate UHI located around the most intensive area of human activity: the city business 

centre and dense hotel belt. The UHI is more significant at midday during the summer period, 

while early morning inversions in winter have a weakening effect on the UHI intensity. Eilat is 

located in an extremely hot and arid zone on the northern coast of the Red Sea. The study used 

diurnal predawn and early afternoon measurements from the winter and summer seasons for 

two consecutive years. The data demonstrated that UHI is more significant at midday during 

the summer period, while early morning inversions in winter have a weakening effect on its 

intensity. Also, it was found that the topography and wind regime have a dominant effect on 

the location and intensity of the UHI, while the sea appeared to have a very marginal effect. 

This study suggests that information to better define the spatial patterns of UHIs, particularly in 

the summer months, is needed to understand heat stress in arid cities (Sofer and Potchter, 

2006).  

 

The spatial and temporal aspects of the urban heat island in the small, arid city of Casa Grande, 

Arizona were studied by Hedquist (2005). Meteorological data such as temperature, dew point, 

and wind speed were collected through a combination of fixed station and two mobile routes 

over a short period, on four separate clear and calm nights. The results of this study showed 

that a maximum heat difference of 4.7 °C was recorded along an east to west route across the 

city and increased in the far eastern areas where the commercial corridor was located. 

However, the far southern and western areas of the city were cooler than other regions due to 
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the higher density of rural agricultural fields. The main finding of this study determined that 

wind speed has a significant effect on the urban heat island intensity of the study area. Due to 

very light wind speeds during the study period, surface thermal properties and land cover may 

have played the main role in determining heat islands. In addition to this conclusion, thermal 

imagery of Landsat taken of the study area at night-time, similar to transect time, confirmed the 

same results that surface thermal material properties may play a large role in determining heat 

island characteristics near the ground in the absence of strong winds (Hedquist, 2005). 

 

In a recent study by Charabi and Bakhit (2011), the impact of the rapid growth of Muscat city 

from 1970 to 2003 was observed in relation to the regional climate and air quality. The study 

investigated the effects of topography, mesoscale circulation, urban form, and landscape 

variability on urban heat islands that exist in an extreme hot and tropical arid area and complex 

topography located on the coast of the Sea of Oman. Spatio-temporal variability of air 

temperature at the meso- and microscale were recorded using mobile traverses for one year. In 

addition, fixed meteorological stations were installed to record air temperature in rural, 

suburban, and urban areas. The results of this study indicate that the peak of the urban heat 

island occurs about 6 to 7 hours after sunset and it is best established during the summer 

season. The highlighted portion of the study area represents the warmer core of the urban heat 

island, which may reflect the nature topography of this area, along a narrow valley 

characterised by low ventilation, high business activities, multi-storied buildings, and heavy 

road traffic. Moreover, these mountainous areas play a main role in increasing the regional 

temperature by absorbing the short radiation waves through dark-coloured rocks and isolating 

the area from the cooling effect of the land–sea breeze circulation during the day time. In the 

lowlands of the study area, the urban density and land breeze circulation affect the thermal 

pattern among urban and suburban areas.  

 

Alghannam and Al-Qahtnai (2012) investigated the relationship between the urban micro-

climate and density of the vegetation to estimate the cooling effect imposed by the rural 

environment in Al Ahsa oasis. The heat flux behaviour was observed in four surrounding 

locations with different densities of trees using hourly data recorded for three months. The 

outcome of this study indicated that the urban areas such as Al Hofuf city were the warmest 

compared with Al Qurain village, whose surroundings have a high density of palm trees. The 
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study also found that the north and north-west of the oasis, which has a high density of 

vegetation, were colder than the south region, which is mostly urban area. 

 

Other examples of heat islands in arid environments include studies on Phoenix and Tucson, 

Arizona (Balling, 1986, Hsu, 1984, Jr and Brazel, 1987, Tarleton and Katz, 1995), Kuwait City 

(Nasrallah et al., 1990); Eilat City (Sofer and Potchter, 2006); and Dammam City, in the east 

province of Saudi Arabia (Habib, 2007). The Arizona studies, mainly based on ground-based 

observations, show that the UHI intensity was highest during summer nights. However, the 

UHI for Kuwait City was poorly developed. Explanations suggested include the proximity of 

the city to the coast and the effect of the Arabian Gulf sea breeze; low average building height 

in both the commercial and residential areas; and the extensive use of local building materials 

that have thermal characteristics similar to those of the surrounding uninhabited area. 

Moreover, UHI distributions in Dammam City were analysed using two Landsat images of the 

study area in July and November 2001. The study estimated the surface and atmosphere heat 

islands using ground data and remote sensing techniques in relation with different land cover 

and use within the city. The outcome of the study suggests that there is a need to establish more 

green areas such as local parks and add more trees on the streets to help reduce the 

temperatures in the centre and industrial areas of the study area (Habib, 2007).     

 

Wong and Yu (2005) used a mobile survey to explore both the intensity of the UHI effect and 

cooling impact of green areas at the macro-level in Singapore. The temperature distribution 

was mapped relying on data derived from the mobile survey. The outcome of this study 

suggested that there is a strong correlation between the decrease in temperature and the 

appearance of large green areas in the city. Summarily, mobile traverses were used in Tokyo, 

Japan by Yokobori and Ohta (2009) and in Utrecht, the Netherlands by Brandsma and Wolters 

(2012) to conduct air temperature to clarify the effect of different land cover on the UHI 

intensity. The air temperature measurement took place using a bicycle at different times of the 

day before sunrise and after noon. In general, the results suggest that there are seasonal 

variations in UHI intensity among different land cover. The maximum UHI intensity was 

recorded under the calm and cloudless conditions during all seasons of the years examined. 

 

The ground-data method (weather stations) represents one of the most popular methods to 

investigate the temperature and temperature changes around the world. In a recent study by 
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Rohde et al. (2013), a new mathematical framework is presented for mapping temperature 

changes in large-scale averages obtained from weather station thermometers data. The study 

uses the Kriging statistical method to interpolate the data from stations to arbitrary locations on 

the Earth. The new framework applies to the Global Historical Climatology Network (GHCN) 

monthly land temperature dataset and derives a new global land temperature record from 1800 

to the present. The outcomes of this study were in close agreement with earlier estimates made 

by the groups at NOAA, NASA and at the Hadley Centre/Climate Research Unit in the UK. 

The study found that the global land mean temperature had increased by 0.89 ᵒC ± 0.06 ᵒC in 

the difference of the Jan 2000-December 2009 average from the January 1950-December 1959 

average (95% confidence for statistical and spatial uncertainties) (Rohde et al., 2013).      

1.4.2 Remote Sensing Applications   

 

Thermal remote sensing approach is the most common detection tool to estimate the surface 

temperatures (Voogt and Oke, 2003). Different satellites images with different temporal and 

spatial resolutions have been utilized including Landsat, the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER), Advanced Thermal and Land Applications 

Sensor (ATLAS), and the Advanced Very High Resolution Radiometer (AVHRR).  

 

In 1978, the satellite sensor for the Heat Capacity Mapping Mission (HCMM) was first used to 

map Earth surface temperature. The HCMM sensor, Table  1-1, gathered thermal infrared 

(10.5–12.5μm) radiance data in support of studies to determine the feasibility of using remote 

sensing to compute the thermal inertia of the Earth's surface (Chen and Allen Jr, 1987, 

Vukovich, 1984). Also, Landsat/Thematic Mapper data sets collected over the metropolitan 

area of Washington, DC were used to investigate the urban heat island. Surface energy 

composites of five surface categories were analysed by combining the derived spectral albedos 

and temperatures. The results indicate that urban heating is attributable to a large excess of heat 

from the rapidly heating urban surfaces consisting of buildings, asphalt, bare-soil and short 

grasses. In summer, the symptoms of diurnal heating begin to appear by mid-morning and can 

be about 10 °C warmer than nearby woodlands (Kim, 1992).  

 

In 1989, NOAA AVHRR (Table  1-1) infrared satellite data were used to display the surface 

radiant temperature heat islands of Vancouver, British Columbia, Seattle, Washington, and Los 
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Angeles, California. Despite the low spatial resolution of the satellite imagery, the study found 

that the heat island intensities were largest in the day-time and in the warm season, while might 

be because of the location of these cities and the effect of sea breeze systems which are very 

common in such cities. In addition, the results showed that daytime intra-urban thermal 

patterns were strongly correlated with land use; e.g. industrial areas were warmer than 

vegetated, riverine, or coastal areas (Roth et al., 1989). Similar results in a study by Pinho and 

Orgaz (2000), on the city of Aveiro in Portugal, showed that building density, weather and 

coastal proximity influence the UHI effect.  Therefore, good urban planning is important to 

help mitigate this effect.  

 

Table 1-1 Satellites launch date, thermal bands, wavelength, and spatial resolution 

Sensor Launch 

Date 

Thermal Band Wavelength Range Spatial Resolution Revisit 

HCMM 1978 1,2, and 3 10.5-12.5µm 500m 16 days 

NOAA- AVHRR 1978 4 and 5 11-12µm 1.1km 1-2 days 

MODIS 1999 20-23 0.4 -14.4µm 250-1000m 1-2 days 

AATSR 1991 2 and 3 10.8-12µm 1000m 16 days 

NASA-Landsat5 TM  1984 6 10.4-12.5µm 30m 16 days 

NASA-Landsat7 ETM+ 1999 6 10.4-12.5µm 15m 16 days 

NASA-Landsat8 LDCM 2013 10 and 11 10.60-11.19 µm 

11.50-12.51 µm 

15m 16days 

 

Source: Adapted from (WDC-RSA, 2010) and the USGS website. 

 

The energy balance of urban areas used to be measured in situ using traditional processes to 

quantify the heat flux, but these represent only a small local scale within the heterogeneous 

urban environment. For this reason, remote sensing approaches are very useful tools to explain 

and collect more spatially widespread information. Xu et al. (2008) used hyperspectral imagery 

from a new airborne sensor, the Operative Modular Imaging Spectrometer, along with a survey 

map and meteorological data, to derive the land cover information and surface parameters 

required to map spatial variations in the turbulent sensible heat flux of the centre of Shanghai, 

China. Two spatially explicit flux retrieval methods were applied to the study area: (1) the 

Local-scale Urban Meteorological Parameterization Scheme; and (2) an Aerodynamic 

Resistance Method. Based on the two different methods, sensible heat fluxes were determined 

at 6 m spatial resolution, and then the results were applied to 30 and 90 m spatial resolutions. 

The study suggested that the use of much lower spatial resolution space borne imagery data, for 

example from Advanced Space Borne Thermal Emission and Reflection Radiometer (ASTER), 

is likely to be a practical solution for heat flux determination in urban areas.  
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Multiple sets of UHI measurements spanning several years (for example satellite 

measurements of Houston, USA, by (Streutker, 2003) can be used to measure the relative 

increase in surface temperature of urban areas. Such studies have measured a mean temperature 

increase in magnitude of 0.8 K, with an increase in the mean UHI area of up to 650 km² 

depending on the method of analysis. It is will be helpful if ASTER thermal data are combined 

with ground data such as mobile traverses to examine models of UHI and identify its main 

cause (Nichol et al., 2009).   

 

Thermal infrared satellite data provide better spatial coverage than ground-based observations 

and are widely used for estimating surface albedo and evapotranspiration estimates required in 

studies related to surface energy balance. A recent study by Badarinath et al. (2005) describes 

the analysis of day and night AATSR sensor data for urban heat island and surface thermal 

inertia. Field campaigns were conducted simultaneously with the AATSR data to validate the 

remote surface temperature estimation, and it was found that satellite derived surface 

temperature values were within ±1 °C of ground measured values. Heat island formations in 

urban regions of Hyderabad and environs can be clearly seen in the night-time AATSR data 

with core urban regions showing high temperatures (Badarinath et al., 2005). A study using 

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data over 

Southern Africa led to the conclusion that the reflectance, emissivity and surface temperature 

were derived within ±0.015, ±0.01 and ±1 K, respectively. A direct application of the MODIS 

mid-infrared surface reflectances can be applied to the fire detection problem and the results 

compare well with higher spatial resolution Landsat 7 data (Petitcolin and Vermote, 2002). 

 

The thermal channels of the MODIS satellite have been used to investigate the UHI intensity 

during extreme weather events and heatwaves. It has been determined that ASTER and 

MODIS thermal bands provide similar results if the atmospheric correction and calculation of 

emissivity calculated with high accuracy (Akhoondzadeh and Saradjian, 2008). Cheval et al. 

(2009) explored the characteristics of the air and land surface temperature in Bucharest, 

Romania during the extreme high temperatures that affected the region in July 2007. The study 

integrates thermal data supplied by MODIS sensors and meteorological data ground-based 

weather stations. The main finding of this study is that the correlations between the air 

temperature measured at the weather stations and the corresponding surface temperature show 

significant values either under “normal” conditions or under “extreme” temperature. That 
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suggests that MODIS sensor is a useful instrument for air and surface temperature validation 

and investigate the UHI intensity during the extreme weather conditions.  Combination of 

MODIS and ground measurements of air temperature was studied in Birmingham, United 

Kingdom between 2003 and 2009 including the heatwave period event in 2006. The outcomes 

of this study quantify the local UHI intensity as well as the impact of atmospheric stability on 

UHI development. During the high atmospheric stability, the UHI intensity reached a peak 

value of 5 °C in the central business district of the city. The lowest value of the urban heat 

island was recorded at the park site of up to 7 °C lower than the city centre (Tomlinson et al., 

2012).  

 

The Pearl River Delta (PRD) in southern China is experiencing rapid urbanisation resulting in 

a remarkable UHI effect, which may impact the regional climate, environment, and socio-

economic development (Chen et al., 2006). In this study, Landsat TM and ETM+ images from 

1990 to 2000 in the PRD were selected to retrieve information on brightness, temperatures and 

land use. The analysis showed that the highest temperatures in the UHI are located in a 

scattered pattern, related to certain land-cover types. Kardinal et al. (2007) identified land use 

types that have the most influence on ambient temperature in Singapore. Remote sensing data 

and geographical information systems (GIS) were used to obtain a large-scale view of 

Singapore and carry out both qualitative and quantitative analysis showing that the land 

management practice had a clear influence on urban temperature.   

 

MODIS, ASTER, and Landsat 7 ETM+ have been used to estimate the surface temperature in 

the desert city area of Abu Dhabi. MODIS with high revisiting time was used to analysis the 

daily variation, medium resolution data from ASTER and Landsat 7 ETM+ has been used to 

evaluate the local urban heat island in more details in district level. The results of these studies 

show cold urban heat island over the downtown during the daytime and high or positive UHI 

intensity during the night-time in general and during the summer season in particular (Nichol et 

al., 2009, Lazzarini et al., 2013).  

 

In a recent study, the upward long-wave radiation flux density from urban surfaces was 

analysed using a high-resolution thermal-infrared (TIR) camera and meteorological 

measurements in the city of Berlin, Germany (Meier, 2010). Spatial-temporal patterns of the 

difference between upward long-wave radiation flux density from courtyard surfaces and the 
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roof were reported. For temporal analysis, the TIR camera recorded one TIR image per minute 

over a period of two days from 3rd to 5th May 2007. Three hourly averaged thermal patterns 

showed persistence effects due to shadow, sky-view factor (SVF) distribution in the courtyard, 

thermal properties of the surface materials, human activities and turbulence characteristics of 

the surface–atmosphere interface. Shadow caused by temporarily parked cars results in a lower 

upward long-wave radiation flux density compared to the non-shadowed surface close to it. 

Immediately after car departure, this difference decreases. As a result of this study, a method to 

derive the thermal admittance of a concrete surface based on TIR data from this attenuation 

process was proposed. This study found that ground-based high-resolution TIR imagery is 

highly suitable to investigate surface thermal properties and the dynamic processes controlling 

thermal patterns within a complex three-dimensional (3D) urban structure (Meier, 2010). 

 

The US National Research Council Decadal Survey (2008) indicated a need for a TIR sensor 

that has adequate revisit times or multiple thermal spectral bands to provide the information 

needed to model UHI dynamics and its impact on humans and the adjacent environment 

(NASA, 2008). As a response to this need, NASA plans to launch the Hyperspectral Infrared 

Imager (HyspIRI) before 2020 (Weng, 2009). This multispectral thermal infrared imaging 

instrument will have a return time, spectral characteristics, and nighttime viewing capabilities 

that will greatly enhance our knowledge of UHI’s form, spatial extent, and temporal 

characteristics for urban areas across the globe. Additionally, HyspIRI will provide a high 

spatial resolution that is currently not available from previous Earth-observation satellites for 

assessing how urbanization affects adjacent ecosystems. HyspIRI is well suited for deriving 

land cover and other biophysical attributes for urban climate and environmental studies. 

However, it will not be launched soon enough to influence the study proposed here. 

 

This review demonstrates that, while some progress has been made, the thermal remote sensing 

of urban areas has been slow to advance beyond qualitative description of thermal patterns and 

simple correlations. Advances in the application of thermal remote sensing of natural surfaces 

suggest insights into possible methods to advance techniques over urban areas. Improvements 

in satellite resolution provide more detailed measurements of urban surfaces and the 

availability of low-cost, high-resolution portable thermal scanners will allow progress in the 

study of the climate of urban areas (Voogt and Oke, 2003). In a recent study by Good (2015), a 

method for estimating daily Tmin and Tmax at the pixel scale using geostationary satellite data 



 

23 

 

 

has been tested. This study has developed a model based on the dynamic multiple linear 

regression between geostationary satellite data and co-located station observations using daily 

minimum and maximum land surface temperature, fraction of vegetation, distance from the 

coast, latitude, urban fraction, and elevation as predictors. The method is applied over Europe 

for 2 years 2012-2013; estimation with station observations indicates a mean satellite-minus-

station bias of 0.0 °C to 0.5 °C with a root-mean-square difference of 2.3 °C to 2.7 °C. The 

study also found that the satellite surface temperature data have larger uncertainties comparing 

with in situ data sets; however, the satellite surface data can cover more spatial details than the 

ground station can provide (Good, 2015).  

 

There are some points can be summarized from the above literature review of urban 

climatology in general and urban heat islands studies in particular. Although more information 

on the form and dynamics of the UHI is available for climatic zones that are located in 

temperate regions, it is also now available for climate zones outside these regions but there is 

still a need for more understanding of the UHI in different regions such arid regions (Arnfield, 

2003). The majority of the studies required to measure and investigate the energy balance are 

focused in suburban areas ; however, sampling and measurement of height and other 

observation are needed for the city centre which is more difficult to meet compared to the 

suburban area because the high-rise buildings. Urban heat islands are “well described but rather 

poorly understood” (Oke, 1982). Nevertheless, simple methods that used to investigate UHI 

intensity are still needed within the urban areas as a function of time, weather conditions and 

structural attributes, for applied applications such as road climatology, phenology, energy 

conservation, and weather forecasting. There is a strong recommendation to use methods that 

link both small scale and mesoscale to study and examine the UHI intensity (Arnfield, 2003). 

For example, Voogt and Grimmond (2000) used remote sensing estimation of the surface 

temperature and sensible heat flux and (Masson, 2000) employed concepts of canyon geometry 

to estimate the surface energy budgets in mesoscale of the urban area. 

 

In summary, the majority of the urban heat islands studies using remote sensing have been 

applied in Temperate, Mediterranean, and humid and cool regions. Examples of these studies 

investigating the relationship between meteorological features and green distribution area Saito 

et al. (1990) in Kumamoto city in Japan, Kawashima (1990) in the Tokyo Metropolis, Jauregui 

(1990) in Mexico city, Jeffrey K. Sonne (2000) in Melbourne and Florida, Avissar (1996) in 
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Colorado, and in Singapore by Tso (1996) and Wong and Yu (2005). Moreover, urban heat 

islands have been reported in many other countries, states, and cities around the world. A 

recent review study of urban heat islands and its relation to death rate around the world, Wong 

et al. (2013) listed about 50 cities; these cities are located in different climate zones, polar, 

temperate, arid, tropical, and Mediterranean. However; the majority of these cities are not 

located in arid regions where the temperature is extremely high and the urbanization growth is 

at the high levels. Combining fixed weather stations, mobile traverses, and remote sensing 

methods will allow more understanding in order to model and examine the UHI from the large 

to the small scale. Therefore, this study investigates the effect of different land cover types on 

urban heat islands in arid zones using ground and different temporal and spatial scales of the 

satellite images.   

 Significance of this Research 1.5

 

The Urban Heat Island is an important phenomenon to be studied in general and in urban 

climate studies in particular. Urban Heat Islands are related to many problems around the 

world, for example, global warming, energy use, air quality, human health and comfort, and 

water quality. 

1.5.1 Global Warming 

 

Global warming has achieved much attention because the global mean surface temperature has 

increased since the late 19th century. Figure  1-7 indicates a time series of global land and 

marine surface temperature from 1850 to 2011. It shows that the 2011 was the twelfth warmest 

year. Since more than 50% of the human population lives in cities, urbanization has become an 

important contributor to global warming (Chen et al., 2006). Global warming can occur from a 

variety of causes, both natural and human induced. In common usage, “global warming” often 

refers to the warming that can occur as a result of increased emissions of greenhouse gases 

from human activities. The impacts from urban heat islands and global climate change (or 

global warming) are often similar. For example, some communities may experience longer 

growing seasons due to either or both phenomena. Urban heat islands and global climate 

change can both also increase energy demand, particularly summertime air conditioning 
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demand, and associated air pollution and greenhouse gas emissions, depending on the electric 

power system fuel mix (Grimmond, 2007). 

 

Figure 1-7 Combined of global land and marine surface temperature record from 1850 to 2011 

 

Source: The key reference for this time series is (Morice et al., 2012) available online: http://www.cru.uea.ac.uk/  

 

1.5.2 Land Cover Change 

 

Land cover change, especially from green areas to urban areas, may increase land surface 

temperature (LST) in semi-arid regions such as the study area that is represented here. The land 

cover of Al Ahsa has changed continually during the last 30 years, especially with the 

development of the oil industry since the 1970s (Ait Belaid, 2002, Mufareh, 2002). A study by 

Mufareh (2002) compared the land cover of Al Ahsa between 1987 and 2001 and found that 

the urban land area has increased by 5,326 ha in 2001, from which 2,746 ha were converted 

from sabkha
1
, 1,500 ha from open space (urban planning), 972 ha from sand dunes and 513 ha 

from agricultural lands in 1987 (Figure  1-8). The urban heat island is a climatic pattern that 

occurs in which “surface and atmospheric modifications due to urbanization will generally lead 

to a modified thermal climate that is warmer than the surrounding non-urbanized area” (Voogt 

                                                 

 

 

 

1
 The area which is characterised by a crusty surface consisting of evaporated deposits (including salt, gypsum and 

calcium carbonate), windblown sediments and tidal deposits. (Fryberger et al.,1983).  

http://www.cru.uea.ac.uk/
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and Oke, 2003). Therefore, it is important to map and quantify changes in land cover and 

identify its impacts on the surface temperature regime in the Al Ahsa oasis study area. 

 

Figure 1-8 Land cover change of Al Ahsa oasis between 1987 (left) and 2001 (right) 

  

Source: (Ait Belaid, 2002). 

 

1.5.3 Energy Use 

 

Due to the high temperature during the summertime, the energy demand for cooling will 

increase in the cities. Studies indicate that electricity needs for cooling increase 1.5% to 2.0% 

for every 0.6 °C increase in air temperature, starting from 20 °C to 25 °C, suggesting that 

around 5% to 10% of the community demand  for electricity is used to compensate for the heat 

island effect (Akbari, 2005)  Figure  1-9 shows the relation between the electricity load and the 

temperature increase in New Orleans.   
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Figure 1-9 Increase of electrical load when temperatures exceed about 20 °C  to 25 °C in New Orleans 

 

Source: (Sailor, 2002).  

 

In hot arid regions such Al Ahsa oasis, especially in the summer season when air temperature 

can reach around 50 °C in July and August months, the demand on electricity is very high for 

cooling systems, lights, and appliances. In addition, during extreme heat events, which are 

exacerbated by urban heat islands, the resulting demand for cooling can overload systems and 

require that a utility institute controlled, rolling brownouts or blackouts to avoid power 

outages. 

 

1.5.4 Air Quality 

 

As a result of the high demand on electricity during the summer season, companies that 

produce electricity typically rely on fossil fuel power plants to meet that demand, which means 

an increase in air pollution and greenhouse gas emissions. An example of some pollutant gases 

are sulphur dioxide (SO2), nitrogen oxides (NOx), particulate matter (PM), and carbon 

monoxide (CO). These pollutants can be very harmful to human health. Also, these gases can 

play a major role in contributing to air quality problems such as the formation of ground level 

ozone (smog), fine particulate matter, and acid rain. Moreover, an increase in fossil fuel 
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powered plant use can lead to an increase in the emissions of greenhouse gases, such as carbon 

dioxide (CO2), which contribute to global climate change (EPA, 2013). 

1.5.5 Human Health and Comfort  

 

UHIs have the potential to directly influence the health and welfare of urban residents. Within 

the United States alone, an average of 1,000 people die each year due to extreme heat 

(Changnon et al., 1996). As UHIs are characterised by increases in temperature, they have the 

potential to increase the magnitude and duration of heat waves within cities. Research has 

found that the mortality rate during a heat wave increases exponentially with the maximum 

temperature, an effect that is exacerbated by the UHI (Buechley et al., 1972, Zaitchik, 2006). If 

the temperature in day time increases, the night time cooling will decrease. A high level of 

pollution is linked with urban heat islands and can affect  human health by causing general 

discomfort, respiratory difficulties, heat cramps and exhaustion, non-fatal heat stroke, and heat-

related mortality (EPA, 2013).  

 

Heat islands can also aggravate the impact of the heat waves, which are defined as abnormally 

hot weather. Children, older adults, and people with existing health conditions are at risk from 

such events. A previous study done in Toronto found that there is a relationship between death 

rates of different age groups and hot waves in the summer season (Smoyer-Tomic and 

Rainham, 2001). Similar results were found in different countries such as the United States, 

Canada, the People's Republic of China and Egypt. The results of the studies suggest that heat-

related mortality is estimated to rise significantly in all four countries if the earth warms, with 

the greatest impacts in China and Egypt (Kalkstein and Smoyer, 1993). Moreover, increases in 

air temperatures and heat wave events can result in the urban heat islands effect, which can 

have severe human health impacts and create more severe droughts and related environmental 

problems (Zaitchik, 2006). Table  1-2 shows the impact of heat waves and droughts 

experienced in selected cities.  
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Table 1-2 Some of the heat waves events and droughts around the world  

Event  Year  Location Impact 

Heat wave  1987  Athens Estimated 900 deaths 

Heat wave  1995  Chicago Estimated 700 deaths 

Heat wave and drought  2002  Australia Poor crop yield 

Drought  2002  SW, USA Poor crop yield 

Heat wave and drought  2003  France Estimated 15,000 deaths 

Poor crop yield,  

Down 4-10% by yield 

Drought  2005  Illinois, USA Poor crop yield 

 

Modified after: Committee on Earth Science and Applications from Space, 2007; (Zaitchik et al., 2006). 

1.5.6 Water Quality 

 

Storm water can be heated when the surface of pavements and rooftops is high. One study has 

shown that pavements that are 38 °C can raise initial rainwater temperature from roughly 21 ºC 

to over 35 ºC (James, 2002). Another study in Arlington, Virginia, showed the same results; 

increases in surface temperature can increase water temperature as high as 4 °C in 40 minutes 

after heavy summer rains (Roa-Espinosa et al., 2003). This heated storm water generally 

becomes runoff, which drains into storm sewers and raises water temperatures as it is released 

into streams, rivers, ponds, and lakes. When the water temperature rises above normal, it will 

affect all aspects of aquatic life, especially the metabolism and reproduction of many aquatic 

species (EPA, 2013). 

 Research Questions, Aims and Objectives 1.6

1.6.1 Research Questions 

 

1) Is there a direct relationship between the urban expansion and spatial and temporal 

pattern of radiative energy flux in the study area?  

2) Do urban heat islands develop in arid zone cities?  

3) Do local land cover classes have a direct influence on determining local UHIs and their 

dynamics? 

4) Will combining thermal data obtained from satellite images and ground measurements 

help to scale up models of UHIs over arid regions, such as Al Ahsa oasis, from the local 

to the city-scale? 
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1.6.2 The Aim 

 

The aim of this study is to analyse the variations in the thermal environment that exists 

throughout Al Ahsa oasis due to different land cover conditions.  Satellite remote sensing data 

and statistical study of ground-based observations will provide quantitative baseline data and 

recommendations to local governmental agencies for the planning of sustainable urban 

development. 

 

1.6.3 The Research Objectives 

 

1) To investigate the influence of various land cover types on the air and surface 

temperatures and UHI intensity by using a combination of ground data and remote 

sensing; 

2) To compare field observations to a remote sensing-based model of UHI intensity in arid 

regions ; 

3) To study the air and surface temperatures and UHI distribution across the different land 

cover types at different scales from small to large using ground data and satellite 

images.    

 Thesis Structure  1.7

 

The second chapter of this thesis provides a definition of the study area and a detailed 

description including its location, microclimate, demographics, and land use patterns. Also, 

this chapter discusses the spatial variables that affect the thermal structure of the study area. 

Chapter Three describes the research data and its sources including the fixed weather stations, 

mobile data, satellite images of Landsat and MODIS. In this chapter, data pre-processing and 

methodology used is given for fixed weather stations, mobile data, and satellite images. The 

data set and processing of satellite images of Landsat 7 ETM+ and MODIS during winter and 

summer seasons are described. A detailed description of images calibration, processing, 

classification, mapping the emissivity, and estimating surface temperature using remote 

sensing is also given. Chapter Four describes the seasonal distribution of the local urban heat 

islands in the study area. Air and surface temperatures, relative humidity, and wind and gust 
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speed are presented among different land covers. UHI intensity and different land cover data 

are statistically tested during the winter and summer seasons. Chapter Five includes the spatial 

and temporal distribution of the local urban heat island among different land cover. In this 

chapter also, UHI intensity based on mobile data is statistically tested among different land 

covers and the distribution of UHI intensity is mapped during both seasons and at the night-

time and after sunset. Chapter Six provides a detailed estimation of the regional surface 

temperature using the remote sensing technique and different satellite sensors (Landsat 7 

ETM+ and MODIS). The land covers classification results using different data sets and 

software is given. Also, comparison between the air temperature, fixed weather station and 

mobile data, and brightness temperature obtained from the different satellite images is 

examined. Finally, in this chapter the relationship between the land cover and urban heat island 

intensity is statistically tested and graphically described. Chapter Seven includes reviews of 

previous urban heat islands studies and provides a detailed approach to quantifying and 

mapping this phenomenon in arid regions. It compares previous results with the findings in this 

research and discusses any differences. The main findings, evaluation of the aim and 

objectives, conclusions, and recommendations and directions of the future research are 

highlighted.  
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 Description of the Study Area Chapter 2:

 Introduction 2.1

 

This chapter is concerned with two important features of the study area. The first section 

describes its geographical features with regard to its location, topography and climatology. The 

second section examines various spatial variables which might affect the thermal 

characteristics of the study area, i.e. land cover/use patterns, population density, housing 

pattern and building type.  The reasons for choosing this location as the study area are included 

at the end of this chapter.   

 Geographical location and background  2.2

 

Saudi Arabia covers approximately 80% of the total area of the Arabian Peninsula, extending 

from longitude 34° east at its northernmost point (Ras Al-Sheikh Humeid) to 56° at its south-

eastern border, and from latitude 16° to 32° north (MP, 1992) (Figure  2-1). There are three 

large deserts in Saudi Arabia; the Ad-Dahna Desert, Rub- Alkhali Desert (Empty Quarter) and 

An-Nafud Desert (Figure  2-2). 
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Figure 2-1 The location of Saudi Arabia 

 
Source: (Union, 2009). 

 

Al Ahsa oasis, the study area, is located in the eastern province of Saudi Arabia, forming part 

of the Rub-Alkhali Desert. It is located between longitudes 49°33' and 49°46' east and latitudes 

25°21' and 25°42' north. Al Ahsa oasis stretches from the Arabian Gulf to the Ad-Dahna and 

Oman deserts, bordering Qatar, the United Arab Emirates, and the Sultanate of Oman (Al-

Mass, 1999). The total arable land is approximately 20,000 hectares in size, in an L-shape that 

extends over an area of 10 × 17 km east–west and 6 × 24 km north–south (Hussain, 1982) 

(Figure  2-3). 

 

Figure 2-2 The location of the three main deserts in Saudi Arabia 

 

Note: (1) Ad-Dahna.(2) Rub-Alkhali. (3) An-Nafud. Modified after (Glennie and Singhvi, 2002). 
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The Al Ahsa oasis region is considered to be possibly one of the oldest existing agricultural 

areas in the world. Both Pliny, in his “Natural History”, and Strabo, in his “Geography of the 

Roman Empire”, referred to Al Ahsa as an agricultural production centre almost two thousand 

years ago. Strabo also reported the existence of a permanent river originating in Al Ahsa and 

flowing to Al-Uqair seaport, an ancient harbour on the Arabian (Persian) Gulf located about 

75 km east of Al-Hofuf city (Humaidan, 1980). At this time, Al Ahsa was a very important 

stop-over for merchants travelling between India and the Mediterranean. 

 

Over the years, many scholars from a variety of countries and backgrounds have travelled 

through Al Ahsa oasis and written about the area and its people. The list includes such 

scholarly authors as Sadlier (1823), Ibn Battutah (1854), Palgrave (1865), Khosrau (1881), 

Zwemer (1900), Lorimer (1908), Raunikiaer (1916), Cheesman (1926), Twitchel (1947) and 

Vidal (1953). All referred to the relative economic importance of Al Ahsa, both as a food-

producing area and as a trading centre (Humaidan, 1980). 
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Figure 2-3 Map of Al Ahsa oasis location (study area), Saudi Arabia 

 

Source: (King Abdulaziz City for Science and Technology, 2010). 

 

Al Ahsa oasis one of the largest date producing regions in Saudi Arabia It also produces wheat, 

rice and some vegetables, such as tomatoes, cucumbers, onions, and carrots and some fruit 
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(watermelons, melons). Alfalfa, pomegranates, grapes and figs are also common in Al Ahsa 

(Al-Omeer, 1987). Palm trees are the most common arboreal species in this oasis (Figure  2-4). 

 

Figure 2-4 Palm trees farms in Al Ahsa oasis. View from the top of Al Qarah Mountain 

 

 Topography 2.3

 

Al Ahsa oasis located on a plain, generally sloping gently to the east and northeast. The 

elevation ranges from 150 m above sea level in the south to 110 m -125 m in the north. There 

are four main topographic features in the study area, Aeolian formations, sabkha deposits, 

gravel deposits and erosional hills and mesas. 

2.3.1 Aeolian formations 

 

Aeolian formations result from very fine sand and silt deposited by the wind (Binda, 1983, 

Fryberger et al., 1983) (Figure  2-5). Al Ahsa is completely surrounded by sand and sand dunes 

in four directions. However, the active belt of drifting sand extends from the north to the 

northern border of the east villages. The dunes are high in this area, reaching up to 15 m in 

height (Abolkhair, 1981). The main sources of the sand for these dunes are the Al Nafud 
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desert, in the north, Al Dahna desert to the west and Al Jafura desert, which surrounds the 

study area to the north. 

 

Figure 2-5 The main topographic features in Al Ahsa oasis 

 

Note: (a) Aeolian formed sand dune. (b) Sabkha deposits. (c) Gravel deposits. (d) Erosional hills and mesas (Al 

Qarah Mountain). 

 

2.3.2 Sabkha deposits 

 

Sabkha is an Arabic term for a low-lying flat area, usually in arid regions, found in coastal and 

inland areas. It is characterised by a crusty surface consisting of evaporated deposits (including 

salt, gypsum and calcium carbonate), windblown sediments and tidal deposits (Fryberger et al., 

1983, Sabtan and Shehata, 2003, Al-Farraj, 2005). Figure  2-5(b) shows salty and muddy wet 

sand in a sabkha site located east of the study area. There are a number of sabkha areas; Sabkha 

Umm Hishah, about 30 km northeast, Sabkha Murayqip, about 20 km east are the largest one 

located to the east of  Al Hofuf city. 

 

Abolkhair (1981) and Al-Taher (1999) have suggested that there are several reasons for the 

formation of the sabkha in the study area: (1) the flat nature of the Al Ahsa landscape so that 
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irrigation and rainfall water remains near the surface; (2) the movement of the sand from the 

north to the south of the oasis. These sand dunes prevent the drainage of water along the 

general slope to the east and north east; (3) the nature of the groundwater, which is found near 

the surface in the majority of the study area; (4) the movement of water from groundwater to 

the surface through capillary action and; (5) the existence of a hard pan-layer in the study area 

keeping the water near the surface. 

2.3.3 Gravel deposits 

 

The gravel plains, in the eastern province of Saudi Arabia, can be divided into two areas. The 

first is Dibdiba of Wadi al Batin, which is located in the northern part of Al Ahsa, southwest of 

Kuwait. The second area is Hidiba, in the southern Al Ahsa region. In both areas the gravel 

layers include pebbles from a crystalline basement complex or from interior limestone plateau 

formations (Abolkhair, 1981). The gravel sizes range between 25 mm and 125 mm in diameter 

and were mainly formed as a result of massive erosion effects in the central Arabian Peninsula 

and from the local erosion of the eastern edge of the Assumman and Shedgum plateaus 

(Powers et al., 1966) (Figure  2-5). 

2.3.4 Hills and Mesas 

 

Hills and mesas, known locally as Jabal, are one of the major topographic features in Al Ahsa 

oasis. The average height of these hills and mesas is about 220 m above sea level. They are 

characterised by sink holes, solution cavities and caves. Jabal Al Qarah, Buraiga, Shabah, 

Kanzan and Dukhnah are examples of these isolated erosional remnants (Abolkhair, 1981) 

(Figure  2-5). 

 Local Climate 2.4

 

According to the Köppen world climate classification system, Saudi Arabia, including the Al 

Ahsa oasis study area, is located in a BWh zone (arid desert, hot temperature) (Peel et al., 

2007). The following sections examine the seasonal air temperature, relative humidity, sea 

level pressure, wind speed and rainfall in the study area over the last twenty-eight years, from 

1985 to 2012. 
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2.4.1 Air Temperature 

 

The air temperature in the study area over the four seasons of the year is directly related to the 

amount of solar irradiation. When the amount of sunlight increases and the sky is clear, the 

temperature increases. Conversely, when the days shorten and it is cloudy (i.e. in the winter), 

the temperature decreases (Al-Omeer, 1987). Between 1985 and 2012, the monthly maximum 

air temperature ranged from 21 °C to 29 °C in the winter and 41 °C to 45 °C in the summer. 

Over the same period the monthly mean for the minimum air temperature ranged from 8 °C to 

15 °C in the winter and 24 °C to 29 °C in the summer. Based on the above figures, the monthly 

mean air temperature ranged between 14 °C and 22 °C in the winter season and 33 °C and 37 

°C in the summer (Figure  2-6).  

 

Figure 2-6 Monthly mean maximum, mean minimum and mean air temperatures in the Al Ahsa oasis region for 

the period 1985 to 2012 

 

Source: (Presidency of Meteorology and Environment, 2011). 

 Summer and winter temperatures 2.4.1.1

 

According to the meteorological calendar, summer starts in June and finishes in August. 

However, the summer season of the study area extends over five months of the year, starting in 

May and finishing at the end of September (Al-Abdeen, 1986). Table  2-1 shows the season 

times in the region by month compared with the common meteorological calendar. The average 

of air temperature during the summer is 40 °C, with a maximum average of 45 °C during July 



 

40 

 

 

and August. The maximum absolute temperature may reach more than 50 °C. A temperature of 

52 °C was recorded in July 1969, and 51°C in August of the same year (Leichtweiss, 1978). 

The minimum temperature during the summer in the region is still high, with a yearly average 

of 22 °C, climbing to an average of 24 °C during July and August (Al-Omeer, 1987). 

 

Winter starts in November and continues until the end of March. It is mild, with a mean 

maximum temperature of 21 °C and a mean minimum of 8 °C. Sometimes, however, the 

absolute temperature drops to below the 0 °C. For example, on December 23, 1971, a 

temperature of (- 4 °C) was recorded. The region is subject to rare frosts, occurring 

approximately every fifteen years (Leichtweiss, 1973). 

 

Table 2-1 Season times in the study area compared to the common meteorological calendar 

Season Meteorological calendar Study area season 

Winter December Winter 

January Winter 

February Winter 

Spring March Winter 

April Spring 

May Summer 

June Summer 

Summer July Summer 

August Summer 

Autumn September Summer 

October Autumn 

November Winter 
 

Adapted from (Al-Omeer, 1987). 

 

 Spring and autumn temperatures 2.4.1.2

 

Based on the climatic conditions seen in this region, spring only lasts for one transitional 

month (April) and autumn equates with October. Temperatures during these two seasons 

fluctuate between the typical summer and winter temperatures. In summary, the Al Ahsa oasis 

region has the highest air temperatures in Saudi Arabia, with a maximum mean air temperature 

of about 37 °C and minimum mean of approximately 18 °C. Generally, the average annual air 

temperature is 26 °C. The average spring/autumn temperature fluctuates between 12 °C in 

January and 19 °C in September (Al-Taher, 1999) (Figure  2-6). 
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 Relative humidity 2.4.1.3

 

In study of geographical of Al Ahsa by Al-Taher (1999) the average relative humidity of the 

study area was 38% over the period 1985–2012. The monthly relative humidity level varies 

from month to month and from season to season. The monthly mean relative humidity ranges 

between 31 % and 55 % in the winter and 21 % and 29 % in the summer season (Figure  2-7). 

Relative humidity is at its lowest in May, June and July at an average of 23 %, with its highest 

levels in January and December, averaging 55 %. This might be due to the high air temperature 

during the summer season and the different pressure systems that affect the wind patterns in the 

study area from season to season (Al-Taher, 1999). 

 

Figure 2-7 Monthly mean relative humidity from 1985 to 2012 

 

Source: (Presidency of Meteorology and Environment in Saudi Arabia) 

 

 Synoptic systems and wind patterns in the study area 2.4.1.4

 

Surface pressure is considered to be the most important factor affecting the climate in the study 

area. Solar radiation, temperature, relative humidity, evaporation, rain and winds are linked 

strongly to air pressure, especially in terms of horizontal and vertical air flow (Al-Taher, 1999). 

Pressure systems also play a vital role in determining the path of air masses, and thus 

temperature patterns, in the study area. The following is a brief summary regarding pressure 

and wind systems during the summer and winter periods in the study area. 



 

42 

 

 

2.4.1.4.1 Pressure systems and winds in the winter 

 

High pressure systems dominate Al Ahsa oasis in November and extend through to March. 

Over the period 1985–2012, the monthly mean sea level pressure in November was 

1016.33 mb and 1013.79 mb in March (Figure  2-8). During this period, Al Ahsa oasis falls 

within the extension of the Siberian high pressure region which covers south west Asia and is 

connected to a group of high pressure centred on Armenia, Anatolia and in the northern part of 

Iraq. It is also connected to the high-pressure region in the north and middle of the Arabian 

Peninsula. This high-pressure area affects the climate of the eastern parts of the Arabian 

Peninsula by acting as a barrier restricting the eastern movement of air masses (Al-Taher, 

1999). 

 

Figure 2-8 Monthly means of sea level pressure and wind speed from 1985 to 2012 

 

Source: (Presidency of Meteorology and Environment, 2011). 

 

The region is also affected by the extension of the Atlantic sub-tropical high pressure systems, 

which extend eastward and cover the northern part of Africa and the Red Sea (Figure  2-9). It is 

also influenced by low pressure regions that affect the Arabian Gulf waters. Based on these 

pressure distributions, the Arabian Gulf region, of which the study area is a part, receives 

continental and relatively cold winds from the middle of Asia in the winter (Al-Taher, 1999). 

Figure  2-8 indicates that the monthly mean wind speed was 1.68 ms
-1

 in November and 2.13 

ms
-1

 in March over the period 1985-2012. It is also important to note that the pressure regions 
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mentioned above result in north and northeast winds that are dry and cold during this season. 

These are interrupted by changes caused by storms coming from Icelandic low pressure centre 

via the Mediterranean (Judah, 1989). Al-Taher (1999) report that the wind direction in Saudi 

Arabia during the winter is changeable, but is generally north-easterly. These winds bring cool 

winds over Saudi Arabia, especially the eastern region, which includes the study area. The 

wind direction may shift to become northerly as a result of low pressure centred on the 

Mediterranean, the Black Sea, the Red Sea and the Arabian Gulf. The Arabian Gulf borders the 

study area to the east for about 70 km (Humaidan, 1980). 

 

Figure 2-9 Sea level air pressure means in January 

 
 

Source: (Kalnay et al., 1996). Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/ 

2.4.1.4.2 Pressure systems and winds in the summer 

 

High pressure regions in the study area start to be replaced with low pressure regions by the 

end of March. The study area comes under the influence of low air pressure (less than 

1012 mb) from April to October (Al-Taher, 1999). The pressure is lowest during July and 

August; the average pressure reached 996 mb during July 2012 (Figure  2-10). 

 

http://www.esrl.noaa.gov/psd/
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One of the key low pressure zones in the region is the seasonal Indian low which appears in 

July. In a similar way, the region is affected by high pressure centred in the centre of the 

Atlantic, sometimes extending to the southeast of Europe and the east of the Mediterranean. 

This high pressure area causes an acceleration in the northwest winds and the occurrence of 

sand and dust storms (Al-Taher, 1999). The effect of the tropical low pressure system may 

extend to affect the study area, reaching the southern parts of the Arabian Peninsula. During 

this season, local low pressure increase the flow of dry air, dust, and sands from the Rub-

Alkhali desert (Empty Quarter) to the south (Judah, 1989). 

 

Figure 2-10 Sea level pressure mean in July 

 
 

Source: (Kalnay et al., 1996). Image provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado 

from their Web site at http://www.esrl.noaa.gov/psd/  

 

2.4.2 Rainfall 

 

Al Ahsa oasis located in the region of lowest rainfall in Saudi Arabia. The rainfall total varies 

greatly from year to year. For example, the annual total rainfall in 1995 was recorded as 

266 mm while in 2008 it was only 14 mm (Figure  2-11). The mean annual rainfall over the 

years 1985–2012 was 85 mm. Most of the rain falls in the winter and spring seasons. The 

monthly mean rainfall for the winter and spring seasons over the period 1985–2012 were 6.02, 

20.86, 15.05, 10.92, 15.81 and 12.71 mm for November, December, January, February, March 

http://www.esrl.noaa.gov/psd/
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and April, respectively (Presidency of Meteorology and Environment, 2011). The monthly 

mean for the summer and autumn seasons over the same period were 0.53, 3.15, 0.01, 0.05, 

0.08 and 0.00 mm for October, May, June, July, August and September, respectively 

(Figure  2-12). 

 

Figure 2-11 Annual total rainfall for the period from 1985 to 2012 

 

Source: (Presidency of Meteorology and Environment, 2011). 

 

Figure 2-12 Monthly mean total rainfall from 1985 to 2012 

 

Source: (Presidency of Meteorology and Environment, 2011). 
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 Population 2.5

 

Al Hofuf, Al Mubarraz, Al Omaran and Al Uyon are the principal large cities in the oasis area, 

with approximately 48 additional villages scattered throughout the 320 km
2
 area (Humaidan, 

1980). The population of the East province of Saudi Arabia, (where the study area is located), 

and the Al Ahsa oasis area has grown rapidly since 1972. According to the 1974, 1992, 2004 

and 2010 population censuses, and several demographic research bulletins, the population of 

Saudi Arabia grew from 7 million in 1972 to 27 million in 2010. Similarly, in the eastern 

province of Saudi Arabia the population grew from 2 million in 1992 to 4 million in 2010. The 

population of the study area itself grew from 244,000 in 1974 to 937,000 in 2010 (Al-Taher, 

1999, Ministry of Economy and Planning, 2010). Figure  2-13, Figure  2-14, and Figure  2-15 

show the population growth in Saudi Arabia, the East province and the Al Ahsa oasis area, 

respectively. 

 

Figure 2-13 Population of Saudi Arabia 1972–2010 

 
Source: (Ministry of Economy and Planning, 2010). 
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Figure 2-14 East Province population 1972–2010 

 
Source: (Ministry of Economy and Planning, 2010). 

 

Figure 2-15 Al Ahsa oasis population from 1905 to 2010 

 
Note: 1905 to1952 figures are estimated based on demographic research bulletins and previous studies (Al-Taher, 

1999). 1974–2010 are based on official population censuses and demographic research bulletins 

 Variables affecting the thermal characteristics of the study area 2.6

 

Over the last sixty years, urbanisation has been a common phenomenon across almost every 

Middle East country, including Saudi Arabia, with the rapid growth of settlements, towns and 

cities (Al-But’hie and Eben Saleh, 2002). Since the discovery of oil in 1938, modern 
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urbanisation came to Saudi Arabia and Al Ahsa, with developments in the fields of education, 

business, health care and politics (Al-Mubarak, 1999). Several cities in the eastern province of 

Saudi Arabia, such as Jubail, Yanbu and Abqaiq, grew rapidly over a short period of time, and 

became some of the biggest industrials cities in the world. This development has an effect on  

the cities and the villages within the study area, leading to changes in land use (Al-But’hie and 

Eben Saleh, 2002). 

 

As has been mentioned previously (Chapter One), the recent changes in land cover and use 

may have a key influence on air and surface temperature in cities around the world (Hu and Jia, 

2009, Kim, 2009, Laras et al., 2012). Further studies are required to examine the impact of 

changes in land cover and use on the thermal environment as a result of developing residential, 

commercial, and industrial patterns within the study area. 

 

The land use in Al Ahsa can be classified into five main classes: (1) residential; (2) 

agricultural; (3) recreational; (4) industrial; and (5) commercial (Figure  2-16). Agriculture 

accounts for most land use in the study area. Arable land in the oasis area covered about 

20,000 hectares in the early 19
th

 century. This has changed over time, with 8000, 7070, 5907, 

7096, 10,351 and 8000 hectares being used for this purpose in the years 1963, 1968, 1974, 

1980, 1985 and 1990, respectively (Al-Taher, 1999). Agricultural areas have been replaced by 

other land use, such as residential, industrial and commercial. It can be seen by comparing data 

from 1987 and 2011 that the number of licences issued to open new shops (e.g. grocers, 

general businesses, industrial, auto-maintenance and petrol stations) has increased in the 

Eastern Province of Saudi Arabia (Ministry of Municipal and Rural Affairs, 2013)  

(Figure  2-17). This increase indicates that these activities might have a direct and indirect 

effect on the local thermal pattern driven by the land use changes during that period. 
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Figure 2-16 Main land use in the Al Ahsa oasis area 

 
 

Note: (a) Al Mubarraze city centre (residential), (b) Rice field (agriculture), (c) Mahasan park (recreational), (d) 

Cement factory (industrial), (e) and (f) Main street (commercial). 

 

Figure 2-17 Number of licenses issued by the Ministry of Municipal and Rural Affairs to open new shops in the 

Eastern Province of Saudi Arabia for the years 1987 and 2011 

 
 
Source: (Ministry of Municipal and Rural Affairs, 2013). 
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In addition, population density, housing, traffic, air conditioners, power consumption and fossil 

fuel use have had an impact on the thermal environment in the cities (Shahmohamadi et al., 

2010). The general movement of the population from the suburbs and villages to the urban 

areas and cities has led to acceleration in urbanisation and an increase in city populations. The 

relationship between the intensity of urban heat islands and city size is examined by Oke (Oke, 

1973, Oke, 1982). The density of population and housing in the study area is highest in the city 

centre of the capital Al Hufof and in the second major city Al Mubarraze. 

 

The shape of houses, as well as their height and roof types, varies across Al Ahsa oasis. 

Figure  2-18 shows the different densities and heights of the housing in different parts of the 

study area. Figure (a1) shows the random planning with narrow streets and metal roofs that 

exists in the centre of the city of Al Mubarraze. In contrast, (b1) and (c1) indicate the lower 

housing density in the suburbs of the city, with tiled roofs, different heights and a modern 

planning shape.  

 

Figure 2-18 Different types and densities of housing in the study area 

 
 

Note: (a1), (b1) and (c1) represent Google views. (a2), (b2) and (c2) represent digital images for the same area. 
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Moreover, the sky view factor as mentioned in Chapter One is one of the most important 

explanatory variables for estimating the UHI intensity. There is a strong relationship between 

the maximum observed UHI intensity and the mean value of the sky view factor in the central 

part of the city (Oke, 1981). The study area has different shapes of houses and streets and 

different height of buildings that might influence the sky view factor and the wind regime and 

have an effect on the formation of the local UHI. Figure  2-19 shows the different houses and 

streets in the old and new city centre which affect the local climate and contribute to the local 

UHI. 

     

Figure 2-19 Different types of houses and streets in the old and new city centre of the study area 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Note: (a) and (b), narrow streets with less sky view in the old city centre, (c) and (d) wide streets and different 

height of buildings in new residential area, and  (e) and (f) an example of the high buildings of the study area.   
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Most of the buildings in the study area were built using concrete for beams and bricks for the 

walls. However, the building roofs varied. The four main roof types are tile; marble, metal and 

concrete (Figure  2-20). Different building materials will affect the heat budget of the city as 

they absorb the heat during the day and reemit it overnight (Shahmohamadi et al., 2010). The 

thermal conductivity of the major building materials in Saudi Arabia have been studied and 

compared to the results with the data reported in the handbooks. The study used seven types of 

clay bricks, one type of sand lime bricks, five types of concrete blocks and one type of 

prefabricated. The results of this study suggests that although the thermal conductivities of 

these materials lie within the range of the values reported in the handbook, these materials are 

classified in the high side range. The study recommends that as the thermal conductivity of 

these materials increase with the material temperature, it is more appropriate to use higher 

values when designing buildings and air-conditioning systems in hot countries like Saudi 

Arabia (Abdelrahman et al., 1990). A simulate investigation of the different buildings materials 

used in a typical residential house, and their effects on energy consumption and air 

conditioning systems, was carried out in Saudi Arabia. The study found that more than half of 

the total peak cooling load establishes the thermal transmission through the walls and roof in 

the base house. Also, the study found that houses built with gypsum blocks consumed up to 

13% less energy than a basic house (Ahmad, 2004).  

  

Figure 2-20 Different types of roofs in the study area 

 
 

Note: (a) Marble, (b) Concrete, (c) Tile. (d) Metal.  
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 Summary 2.7

 

The study area of Al Ahsa includes the largest oasis in Saudi Arabia; one of the largest oases in 

the world. The importance of Al Ahsa relates to its geography, with more than three millions 

palm trees and thousands of spring wells (Al-Taher, 1999). In addition, there are hundreds of 

oil and gas fields located in the Al Ahsa oasis area. The Al Ghawar oil field, located in the 

southwest of the study area, is the largest oil field in the world (Edgell, 1992). 

 

In recent years, the study area has faced several geographical problems such as sand dune 

movements, increasing soil salinity, shortening of the optimal growing season for some local 

crops and a decrease in available ground water (Sharaf, 1997). All of these problems might be 

linked to the increasing air temperature and the urban heat island phenomenon in relation to 

global warming problem. Moreover, previous studies have determined changes in the land 

coverage of Al Ahsa, dating back to 2001 (Mufareh, 2002). The study area offers a unique 

environment for the evaluation of heat islands because of the different land uses previously 

mentioned. In addition, the use of differing types of roof and building materials in the region 

which might affect thermal patterns. 
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 Data Sources and Methodology Chapter 3:

 Introduction 3.1

 

The study of the urban climate requires a variety of data sets and instruments, especially with 

regard to the examination of urban heat islands. Based on the literature review detailed in 

Chapter One, the most common approaches used to measure and model SUHI intensity are 

remote sensing, aerial thermal imaging and fixed weather stations. Each of these methods has 

advantages and disadvantages. For example, airborne surveys and fixed weather stations 

provide accurate measurements of air and surface temperature, with a degree of spatial 

resolution, but can only cover a small area. On the other hand, surface temperature can be 

estimated over a large area through the use of remote sensing, but only with low temporal and 

other spatial resolutions (Voogt and Oke, 2003). 

 

This study attempts to use methods with high temporal and spatial resolutions to measure the 

two types of urban heat islands intensity, SUHI and CLHI, with relation to land cover in an 

arid region such as Al Ahsa oasis. Surface temperature results from the higher-resolution 

Landsat satellite system, as well as from regional to global sensors, such as the Moderate 

Resolution Imaging Spectroradiometer (MODIS), were compared with surface temperature 

measurements obtained during fieldwork in a variety of different land cover classes. This 

calibration allowed accurate application of satellite and sensor results over a variety of surface 

types. In addition, the ground results included data for the two selected periods covering both 

day and night, which helped to provide an accurate temporal scale for this study. In this 

chapter, data sources and preparation, research procedure and methodology are discussed.  
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 Data sources 3.2

 

Two main sources of data were used in this study; that obtained from fieldwork and that 

acquired from satellites. Published meteorological data, fixed and mobile weather station 

results, and thermal and satellite images were all used. The following instruments were used to 

collect the data: five HOBO data loggers, a Global Positioning System sensor (GPS Garmin 

Oregon 300), a laptop and a thermal camera (FLIR Systems P65), provided by Durham 

University, Geography Lab. What follows is a description of the data sources used and the 

preparation for the study. 

3.2.1 Published meteorological records 

 

The Presidency of Meteorology and Environment in Saudi Arabia was the first source for study 

data. The data were obtained directly from the Al Ahsa airport weather station, which is 

located southwest of the study area outside of the urban zone (Figure  3-1). The data are a daily 

record of the mean minimum, maximum and overall mean of air temperature, relative humidity 

and sea level atmospheric pressure, over the last twenty-eight years (1985 to 2012). Wind 

strength, direction and gust speed, as well as total rainfall, were also obtained from the same 

weather station for the same period. In addition, air temperature, relative humidity, and wind 

and gust speed were obtained for selected winter and summer months (21/01/2011–28/02/2011 

and 26/07/2011–31/08/2011, respectively). Al Ahsa airport weather station uses a standard 

mixture of instruments and high accuracy sensors including those for solar radiation, wind 

speed and direction, air pressure, relative humidity, and dry and wet bulb air temperatures 

(Figure  3-1). The data were used to create historical graphs of the study area, to compare it 

with fixed weather station data, located in the urban area and to validate satellite data. 
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Figure 3-1 Al Ahsa airport weather station location  

 
 

Source: (a) Google Earth and (b), (c), (d), and (e) were taken during fieldwork in August 2011. 

 

3.2.2 Fixed weather station data 

 

Five fixed weather stations were established in this study under standard conditions (Skye 

Instruments Limited, 2013). They were all built on flat open areas, with radiation shields 

protecting the sensors from direct sunlight. The air and relative humidity sensors were mounted 

at a height of 1.5 m (Oke, 1973), while the surface temperature probe was placed directly on 

the ground and shielded from direct sunlight with a small piece of wood. This arrangement was 

tested during the pilot fieldwork and found to be a satisfactory data collection method 

(Escobedo, 2014). The wind-speed probe was mounted level or slightly above the highest 

surrounding object using an 11 m extension cable. The farm wind-speed probe was placed 

above the level of surrounding palm trees, which were about 8 m high. 

 

The locations of the fixed weather stations were selected according to the main land cover/use 

existing in the study area, at secure sites. Pilot fieldwork was therefore required to find suitable 

locations and arrange with local government offices for the establishment of these micro-
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stations. The selected locations were designated as ‘farm’, ‘factory’, ‘city centre’, ‘sabkha’ and 

‘park’ (Figure  3-2). The purpose of establishing five fixed weather stations were: (1) to collect 

data from the main land cover types found in the study area; (2) to compare the data with the 

only weather station, which is located outside the urban area and; (3) to help calibrate satellite 

observations and mobile measurements made during the study period. 

 

The data were collected by five small purpose-built weather stations (HOBO Data Loggers), 

equipped with three sensors and one radiation shield, provided by Durham University, 

Geography Department Lab. Figure  3-3 and Figure  3-4 show one of the fixed-weather stations 

(farm site), including the data logger and sensor specifications. The thermometer was mounted 

at a height of 1.5 m (Oke, 1973), in common with the airport weather station sensor, and fitted 

inside a radiation shield. The surface temperature sensor was shielded from direct sunlight by a 

piece of wood. Hourly air and surface temperatures, relative humidity, wind and gust speed 

results were collected over a sample winter and summer period (21/01/2011–28/02/2011 and 

26/07/2011–31/08/2011, respectively). 
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Figure 3-2 Fixed weather stations locations in the study area. 
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Figure 3-3 HOBO data logger with general specifications 

 

Modified from (Onset Hobo Data Loggers Company, 2013). 

 

 

Figure 3-4 Farm fixed micro-station and instrument specifications 

 

 

ID Sensor 
Measurement 

Range 
Accuracy Resolution Response Time 

(b) 
Air temperature 

and RH 

Temp: - 40 °C to 75 

°C 

RH: 0 – 100 % 

Temp: +/- 0.21 °C from 

0 °C to 50 °C 
RH: +/- 2.5 % from 10 

% to 90 % 

Temp: 0.02 °C at 25 

°C 

RH: 0.1 % at 25 °C 

Temp: 5 minutes in 
air moving 1 m/sec 

RH: 5 minutes in air 

moving 1 m/sec with 
protective cap 

(c) 
Surface 

temperature 
- 40 °C to 100 °C 

< ± 0.2 °C from 0 °C to 
50 °C 

< ± 0.03 °C from 0 
°C to 50 °C 

< 3 minutes typical to 

90% in 1 m/sec air 

flow 
< 30 seconds typical 

to 90% in stirred 

water 

(d) 
Wind and gust 

speed 
0 to 45 m/s ± 1.1 m/s 0.38 m/s - 

 

Note: (a) Data logger. (b) Surface sensor. (c) Wind speed probe. (d) Temperature and relative humidity sensor. 

Images (c), (d),  and specifications obtained from (Onset Hobo Data Loggers Company, 2013). 
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The fixed weather stations were positioned to take near simultaneous measurements of surface 

and air temperature, relative humidity, and wind and gust speeds across weather gradients to 

assess the peak times for the formation of urban heat islands and the influence of land 

cover/use on temperature across the study area. The data were analysed to look for any 

statistically significant differences between the mean temperatures at the different fixed 

weather stations. Results from each fixed micro-station were compared both with the airport 

weather station records and also with the readings from the other micro-stations. The fixed 

weather data were used to calibrate the satellite images with regard to ground temperature. 

3.2.3 Mobile temperature and relative humidity data 

 

Temperature and relative humidity sensors were mounted on a vehicle to collect air 

temperature and relative humidity data. A system was designed to allow HOBO thermal and 

relative humidity probes to be placed inside a radiation shield linked to a data logger. The 

radiation shield was used to stabilise wind flow from all directions when the vehicle was 

moving. The speed of the vehicle was maintained in the range 15–30 km/h (4.1 to 8.3 m s
-1

) 

(Oke, 1973) to further minimise the effect of the wind on the sensors. The system allowed 

weather and GPS data to be collected simultaneously every 30 seconds. The data logger used 

HOBO software, installed on a laptop (Figure  3-5). 

 

Figure 3-5 Mobile thermometer and Garmin Oregon 300 GPS device used during the mobile experiments. 
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Data were collected twice daily over the winter and summer seasons of 2011 – immediately 

after sunset and during the night time. The reason for this method of data collection was to 

identify the variation and peak of CLHI occurrence during the day and night time, and to see 

how different land cover and use affected the results (Janet, 2005, Van Weverberg et al., 2008). 

The experiments were therefore repeated at the same times (after sunset and at night) and on 

the same routes to increase the likelihood of passing the same point each time the 

measurements were taken. During the fieldwork phase, twenty-six experiments (day and night 

time) were completed during January and February (Table  3-1) and twenty experiments during 

August ( 

Table  3-2). An example of the GPS tracking points from the mobile experiments carried out 

during the winter season (night and after sunset measurements) is shown in (Figure  3-6). 

 

Table 3-1 Mobile traverses schedule during January and February 2011 (night and after sunset)  

 

 

Note: Sunrise and sunset times obtained from the weather underground Inc. website: 

http://www.wunderground.com/ 

 

 

 

27/Jan 
After sunset 17:34:15 19:43:45 02:09:30 06:27  17:22  
Night 01:50:52 03:55:52 02:05:00 

02/Feb 
After sunset 17:59:50 19:12:12 01:12:22 

06:24  17:26  
Night 02:57:37 04:43:07 01:45:30 

06/Feb 
After sunset 18:18:43 20:23:13 02:04:30 

06:22  17:29  
Night 02:28:53 04:41:53 02:13:00 

08/Feb 
After sunset 18:10:38 20:04:09 01:53:31 

06:21  17:31  
Night 03:25:37 05:16:35 01:50:58 

12/Feb 
After sunset 18:15:52 20:04:22 01:48:30 

06:19  17:33  
Night 02:15:50 04:05:50 01:50:00 

15/Feb 
After sunset 18:22:38 20:39:38 02:17:00 

06:17  17:35  
Night 00:10:35 02:18:05 02:07:30 

18/Feb 
After sunset 18:10:27 19:50:57 01:40:30 

06:14  17:37  
Night 03:47:45 05:24:15 01:36:30 

19/Feb 
After sunset 17:57:32 20:23:02 02:25:30 

06:14  17:38  
Night 01:16:05 03:29:35 02:13:30 

20/Feb 
After sunset 18:22:15 20:13:45 01:51:30 

06:13  17:38  
Night 00:04:49 01:48:49 01:44:00 

21/Feb 
After sunset 18:42:38 21:04:08 02:21:30 

06:12  17:39  
Night 00:00:39 02:12:09 02:11:30 

22/Feb 
After sunset 18:44:14 21:09:14 02:25:00 

06:11  17:39  
Night 00:16:05 02:42:35 02:26:30 

23/Feb 
After sunset 18:53:53 22:44:23 03:50:30 

06:10  17:40  
Night 00:01:14 03:59:14 03:58:00 

24/Feb 
After sunset 20:06:04 20:57:34 00:51:30 

06:10  17:41  
Night 03:24:43 04:12:43 00:48:00 

http://www.wunderground.com/
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Table 3-2 Mobile traverses schedule during August 2011 (night and after sunset) 

Date Period Starting time Ending time Duration Sunrise Sunset 

02/Aug 
After sunset 18:33:59 20:58:36 02:24:37 

05:09  18:27  
Night 01:47:15 04:43:28 02:56:13 

07/Aug 
After sunset 19:00:45 20:52:35 01:51:50 

05:11  18:23  
Night 02:45:17 04:21:04 01:35:47 

09/Aug 
After sunset 19:14:31 21:29:31 02:15:00 

05:12  18:22  
Night 02:11:05 04:25:05 02:14:00 

12/Aug 
After sunset 18:56:47 21:25:17 02:28:30 

05:14  18:19  
Night 02:28:29 04:48:59 02:20:30 

16/Aug 
After sunset 19:01:16 20:48:46 01:47:30 

05:15  18:16  
Night 02:27:41 04:03:11 01:35:30 

18/Aug 
After sunset 18:58:01 21:31:31 02:33:30 

05:16  18:14  
Night 02:20:07 04:47:07 02:27:00 

20/Aug 
After sunset 18:48:41 21:10:11 02:21:30 

05:17  18:13  
Night 02:35:50 04:39:50 02:04:00 

23/Aug 
After sunset 18:54:54 21:15:54 02:21:00 

05:18  18:10  
Night 02:27:06 04:24:06 01:57:00 

25/Aug 
After sunset 18:57:27 20:57:57 02:00:30 

05:19  18:08  
Night 02:26:52 04:28:52 02:02:00 

28/Aug 
After sunset 18:43:38 19:58:08 01:14:30 

05:20  18:05  
Night 02:45:51 04:20:21 01:34:30 

 

Note: Sunrise and sunset times obtained from the weather underground Inc. website: 

http://www.wunderground.com/ 

 

 

Figure 3-6 Mobile experiment and GPS tracking points in the winter (night and after sunset traverses) 

 

 

http://www.wunderground.com/
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The purpose of mobile data collection was to capture the geographic and temporal patterns of 

air temperature and relative humidity ranges related to differing land cover/use and to try to 

synchronize these ground measurements with data from satellites passing over the study area. 

This would help validate the satellite data and test its accuracy. 

 

3.2.4 Accuracy and uncertainty of ground-based measurements  

 

As mentioned above, six data loggers were used to collect air and surface temperatures, relative 

humidity, and wind and gust speeds. There are three points which need to be considered when 

using these data loggers: the accuracy of the sensors, the response time of the sensors, and the 

influence of the prolonged time period of the mobile traverses. These sensors are not calibrated 

against each other; however, they are tested by the company and the accuracy of the air 

temperature is +/- 0.21 and < ± 0.2 from 0 °C to 50 °C for the surface temperature sensors, and 

+/- 2.5% from 10% to 90% for relative humidity. For more details on the accuracy and respond 

time of these sensors see Figure  3-4.  To more accurately test this conclusion, both mobile 

logger and fixed weather stations data were compared with each others when they were 

matched closely in the time and the location. The result of this comparison is mentioned in 

Chapter 5 section (5.6).  

 

Another issue here relating to the sensors measurements of mobile traverses data is the duration 

of each traverse and the change of the air temperature and relative humidity within the traverse 

time. Therefore, errors in measurements might occur because the change in the air and relative 

humidity within the duration of the traverses. Moreover, errors might be also due to the type of 

the solar radiation shield used with HOBO data loggers. A recent study by da Cunha (2015) 

examined the HOBO data sensors in different solar radiation shields and found that the HOBO 

data loggers are inaccurate when used without shelter or under shelters that do not meet the 

World Meteorological Organization (WMO) requirements. The study also recommended that 

the gill-type (multi-plate prototype plastic) shelter is the most sufficient type to be used when 

measurement the air and surface temperature or relative humidity with HOBO data sensors (da 

Cunha, 2015).   
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3.2.5 Remote sensing datasets 

 

Satellites images differ in terms of spatial and temporal factors. Therefore, this study used three 

different satellite images: GeoEye-1 imagery, MODIS and Landsat Enhanced Thematic 

Mapper Plus (Landsat7 ETM+). The Landsat data were used in two main analyses to classify 

the land cover and to derive the surface temperature as it has a 30 m spatial and 60 m thermal 

resolution. MODIS data were used to provide daily surface temperature figures over the day 

and night during the study period. Finally, GeoEye-1 imaging was used to classify the different 

surfaces and roofs to calculate the emissivity values in order to estimate surface temperature.  

 

 Landsat 7 ETM+ source and sets 3.2.5.1

 

Landsat 7 was successfully launched on April 15, 1999 from the Western Test Range of 

Vandenberg Air Force Base, California. Landsat 7 is one of the most accurate Earth observing 

satellites. Its measurements are very accurate when compared to the same measurements made 

on the ground. For that reason this satellite sensor has been called “the most stable, best 

characterized Earth observation instrument ever placed in orbit”. The satellite is in sun-

synchronous orbit, about 705 km above the earth. It collects data across a 185 km band. It 

revisits each area every 16 days. The Landsat ETM+ bands 1–5 and 7 are of 30 × 30 m spatial 

resolution, while the thermal infrared band 6 (10.40–12.50 µm) and band 8 (panchromatic) 

have spatial resolutions of 60 × 60 m and 15 × 15 m, respectively. The thermal band includes 

two thermal imagers; low gain (6 L) and high gain (6 H) (Jensen, 2005a). 

 

The satellite mission ran flawlessly until May 2003 when a hardware component failure left 

wedge-shaped data gaps. Even though the data gaps affect about 78% of the image pixels the 

data from this satellite are still some of the most geometrically and radiometrically accurate of 

all civilian satellite data in the world. A number of methods have been developed to fill these 

gaps and create an image that is suitable for scientific interpretation and analysis. The method 

that is used to fill the gaps is routinely applied in data pre-processing (NASA, 2013a). Since 

2008 the Landsat 7 data has been free to the public and can be downloaded from the United 

State Geological Survey (USGS) website (USGS Global Visualization Viewer available at 

http://glovis.usgs.gov/).  

http://glovis.usgs.gov/
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Landsat 7 ETM+ images for February and August 2011, with Universal Transverse Mercator 

UTM projection and covering zone 39 north, were downloaded as free data from the USGS 

website (Figure  3-7). In addition, some images were obtained from the King Abdulaziz City 

for Science and Technology – Space Research Institute in Saudi Arabia (Table  3-3). 

 

Figure 3-7 Figure 3 9 USGS global visualization viewer (GloVis) 

 
 

Source: (United State Geological Survey, 2011). 

 

Table 3-3 Landsat 5 TM and Landsat 7 ETM+ information and sources 

Sensor WRS 
Acquisition date Acquisition time 

(GMT) 
Cc Image source 

Spatial 

resolution 

5TM 

P
at

h
 1

6
4
 a

n
d
 R

o
w

 4
2

 

07-30-1984 06:40:08  

USGS 

Multi-spectral (MS) – 30 m 

& 

Thermal infra-red – (TIF) 

120 m for Landsat 5TM 

 

 

 

 

Multi-spectral (MS) – 30 m 

& 

Thermal infra-red – (TIF) 

60 m for Landsat 7 ETM+ 

5TM 06-15-1985 06:40:59  

5TM 08-16-1990 06:30:51  

5TM 05-31-1991 06:33:34  

KACST 

5TM 07-05-1998 06:49:02  

5TM 01-29-1999 06:49:56  

7ETM+ 06-30-1999 07:03:34  

7ETM+ 01-24-2000 07:03:41 1% 

7ETM+ 07-02-2000 07:02:32  

5TM 07-26-2000 06:47:59 10% 

7ETM+ 07-05-2001 07:00:15  USGS 

7ETM+ 01-13-2002 06:59:39 2% 

KACST 

7ETM+ 06-06-2002 06:59:28  

7ETM+ 01-16-2003 06:59:20 62% 

7ETM+ 02-01-2003 06:59:26 1% 

7ETM+ 05-24-2003 06:59:34  

7ETM+ 02-07-2011 07:04:18 2% 

USGS 
7ETM+ 02-23-2011 07:04:23 5% 

7ETM+ 08-18-2011 07:04:17  

7ETM+ 05-03-2013 07:06:48  

 

GMT = Greenwich Mean Time. USGS = United State Geological Survey. KACST = King Abdulaziz City for 

Science and Technology. WRS = Worldwide Reference System. Cc = Cloud Cover.  
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 MODIS source and sets 3.2.5.2

 

The MODIS was launched in December 1999 and is one of the best satellites in terms of 

temporal resolution. The MODIS instrument operates on both the Terra and Aqua spacecraft, 

providing continuous global coverage every 1–2 days. Its detectors measure 36 spectral bands 

in the range 0.405–14.385 µm. The first two bands (1–2) have a resolution of 250 m; five 

bands (3–7) have a resolution of 500 m. The remaining bands (8–36) have a resolution of 

1000 m (Roy et al., 2002, NASA, 2012). The MODIS data are, (MYD11A1) and 

(MYD021KM), also available as free public data which can be downloaded from the USGS 

website, or directly from Reverb, GloVis, Data Pool, or the Earth Explorer search tools. Daily 

images from February and August 2011 were obtained from the GloVis data search website to 

estimate the surface temperature and calculate the UHI intensity in daily bases. (Figure  3-7). 

Also, the daily MODIS data were examined with the land cover types either statistically or 

graphically to investigate the effect of land cover in daily cycle.   

 GeoEye-1 image source and sets 3.2.5.3

 

The third set of satellite images used in this study is GeoEye-1 images. The satellite was 

launched in September 2008 from Vandenberg Air Force Base in California, and has the 

world’s highest spatial resolution. GeoEye-1 imagery has a resolution of about 0.5 m, which 

enables an object on the ground of approximately 0.41 m × 0.41 m to be seen in four bands 

(Jablonsky, 2013). Table  3-4 shows more details and specifications for GeoEye-1 images. The 

image that used in this study was obtained from the Al Ahsa Municipality in Saudi Arabia. The 

image obtained in 2012 only included three bands; blue, green and red. The image was used to 

provide high resolution details of surfaces and roof covers so that emissivity could be 

calculated and the urban heat islands of the study area modelled. 
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Table 3-4 GeoEye-1 image specifications 

Imaging mode Panchromatic Multispectral 

Spatial resolution 0.41 m GSD at Nadir 1.65 m GSD at Nadir 

Spectral range 450–900 nm 450–520 nm (blue); 520–600 nm (green); 

625–695 nm (red); 760–900 nm (near IR) 

Swath width 15.2 km 

Off-Nadir imaging Up to 60 degrees 

Dynamic range 11 bits per pixel 

Mission life Expectation > 10 years 

Revisit time Less than 3 days 

Orbital altitude 681 km 

Nodal crossing 10:30 am 

 

Source: (LAND INFO Worldwide Mapping, 2013). GSD = Ground sample distance.  

 Data processing packages 3.3

 

Several software packages were used to process the study data. Fieldwork data was collected 

by HOBO data loggers using Hobo ware software and processed by GPS Utility, ArcGIS 10 

software, Stata 12.1 and Excel software. The satellite images were processed in three different 

remote sensing packages; ERDAS Imagine 11.0, Environment for Visualization Images 

(ENVI) 5.0 and Definiens Professional 5.0. Finally, thermal research basic software was used 

to analyse the thermal images of different land cover and sites. 

3.3.1 GPS utility 5.03 

 

GPS utility software is useful for mapping, managing and manipulating GPS waypoints, routes 

and track information. It is also used to transfer data between GPS devices and PCs. The 

program can convert between many different map data and coordinate formats. In addition, the 

software supports a variety of import and export file formats (GPS Utility, 2013). The software 

was used to read the GPS points and convert them to a suitable format to be opened on 

ArcMap software, where it could be analysed. 

3.3.2 Stata version 12.1 

 

Stata is a statistical software package created in 1985 by the StataCorp Company. It is one of 

the most powerful statistical software packages with regard to the management and analysis of 

data. Stata version 12.1 was used in this study to analyse the distribution of the study data and 

run specific analyses and tests. Fixed weather station data, mobile experiment data and satellite 
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pixel values were analysed using the Stata software. Stata and Excel software were additionally 

used to create study graphs and run some statistical tests, e.g. Linear Regression and two-way 

ANOVA analyses. 

3.3.3 ArcGIS 

 

ArcGIS 10 software includes a set of tools designed for geographic analysis, data editing, data 

management, visualization and geo-processing. The software has three applications; ArcMap 

for map production and analysis; ArcCatalog for managing data and; ArcToolbox for data 

conversion and analysis. In this study, the mapping, visualization and editing aspects of 

fieldwork data analysis were performed using ArcGIS software 10. ArcCatalog 10 was used for 

data management. ArcGIS software was used to convert the GPS data collected during the 

fieldwork into the shapefile format. The software was also used to prepare the data for spatial 

analysis by combining data from both the satellite images and fieldwork.  

3.3.4 ERDAS Imagine 

 

Earth Resource Data Analysis System (ERDAS 11.0) Imagine software can be used for image 

mapping, visualization, enhancement, geocorrection and reprojection, including remote sensing 

analysis and spatial modelling. The software has two methods of data format access; direct 

access or import and export. In this study, Landsat images were reprojected and geocorrected 

using the basic image manipulation tools of the ERDAS software. 

3.3.5 ENVI 

 

The third software package that was used to process the data in this study was the Environment 

for Visualization Images (ENVI) software. The software allows the user to access and work 

with images in different formats and from a variety of sources. ENVI software was used in this 

study to analysis MODIS and Landsat data in estimating surface temperature. In addition, the 

software was used to process unsupervised and supervised classification methods for different 

satellites images. 
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3.3.6 Definiens Professional software 

 

Definiens 5.0 is one of the best software packages for classifying different images based on an 

object-oriented technique using a segmentation method, instead of single pixel classification. 

In this study, this software was used to classify the Landsat 7 ETM+ satellite images based on 

the colours and textures of the images objects. This enabled the classification of different 

surfaces to help in developing models of surface urban heat island SUHI.  

 Data pre-processing and analysis  3.4

3.4.1 Micro-station data 

 

As mentioned before, the ground data were collected from fixed micro-stations, the airport 

weather station and from the mobile experiments during the winter and summer months in 

2011. The data that were collected at the five fixed weather stations were exported from the 

HOBO data logger format into Excel format, using the option available in the HOBO software. 

The data represent hourly measurements of the air and surface temperature and relative 

humidity. However, because there was only one wind speed probe available, this sensor was 

moved between stations every five days during the fieldwork period. The data loggers were 

disconnected while the wind sensor was installed or removed, but restarted again within an 

hour to ensure continuity of the data logger record. Every time this process was repeated the 

data were exported and saved in Excel format. 

 

The downloaded fixed weather station data were organized using Microsoft Excel 2010, using 

the same methods that were employed for the airport weather station data. Descriptive statistics 

such as hourly means and standard deviations were calculated to allow comparison of the 

selected sites. The most commonly used technique to detect an urban climatic effect is to 

measure the differences in the temperature between representative urban and rural weather 

stations (Yagüe et al., 1991, Jauregui et al., 1992, Karaca et al., 1995). In this study, the airport 

weather station was used as a control because of its location outside the city boundary while 

the fixed weather stations (city centre, sabkha, park, farm, and factory) were used to represent 

different land cover types within the urban area. The hourly means of air temperature, surface 

temperature, relative humidity, and wind and gust speed from all the fixed weather stations, 
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including the one at the airport, were analysed to measure and assess the presence and intensity 

of any CLHI effect. 

3.4.2 Statistical modelling 

 Normality test of the data distribution 3.4.2.1

 

It is most important to test the statistical distribution of primary data to evaluate central 

tendency and distribution of the data in order to select the most appropriate statistical 

procedures for further analysis (parametric or non-parametric). A parametric method assumes 

the data are normally distributed, while non-parametric statistics can be more appropriate when 

the data do not meet the distribution requirements of parametric methods (Altman and Bland, 

2009). A good complete normality analysis should consider the use of both procedures plots 

and statistical tests (D'Agostino et al., 1990).   

 

Using the Stata 12.1 package, the probability distribution plots of air temperature, surface 

temperature, and relative humidity during summer and winter seasons were created. Air 

temperature, surface temperature, and relative humidity either during the winter and summer 

seasons showed that these data are not normally distributed. There is some skewness seen in 

the tails of these data distributions.  Moreover, the Stata 12.1 package was used also to test the 

data normality statistically. For a sample of size 𝑛; 𝑥1, 𝑥2, … … … , 𝑥𝑛 the sample estimates of 

skewness (√𝛽1) and kurtosis (𝛽2) are respectively (Pearson, 1895): 

 

√𝑏1 =
𝑚3

𝑚2

3
2⁄⁄  

and 𝑏2 =
𝑚4

𝑚2
2⁄  

where 𝑚𝑘 =
∑(𝑥𝑖 − �̅�)𝑘

𝑛⁄  and �̅�(𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛) =
∑ 𝑥𝑖

𝑛⁄  

As descriptive statistics values of √𝑏1 and 𝑏2 close to 0 and 3, respectively, indicate that the 

data are normally distributed. D'Agostino et al. (1990) suggest these values as 0 and 3(𝑛 −

1)/(𝑛 + 1) to more precisely estimate normality. Values different from these estimates of 

skewness (√𝑏2 > 0) and kurtosis (𝑏2 > 3(𝑛 − 1)/(𝑛 + 1) provide a robust indicators of non-

normality.  
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 Non-parametric methods 3.4.2.2

 

Because the study data did not meet the basic conditions of the parametric method such the 

normality distribution, a non-parametric method was used to compare between the medians of 

more than two samples to determine whether the samples have come from different 

populations. The Kruskal-Wallis H test was used as a nonparametric statistic to compare more 

than two populations (Vargha and Delaney, 1998). The sample values of air temperature, 

surface temperature, and relative humidity were tested by comparing the population group 

medians instead of one-way analysis of variance (ANOVA) (Davis, 2002). To test the 

equivalency of air temperature, surface temperature, and relative humidity in different land 

cover (City centre, Sabkha, Park, Farm, Factory, and Airport) has been derived by Kruskal and 

Wallis 𝐻-statistic (Kruskal and Wallis, 1952): 

 

𝐻 = [
12

𝑁(𝑁 + 1)
∗ ∑

𝑅𝑘
2

𝑛𝑘

𝑘

𝑗=1
] − 3(𝑁 + 1) 

 

where, 𝑅𝑘 = ∑ 𝑅(𝑥𝑖𝑘);
𝑛𝑘
𝑖=1 𝑅(𝑥𝑖𝑘) represents the rank of the 𝑖th observation in the 𝑘th sample. 

The total number of observations is𝑁 = ∑ 𝑛𝑘
𝑘
𝑗=1 , where 𝑛𝑘is the number of observations in the 

𝑘th sample. 𝐻0 leads rejection for higher values of𝐻at 𝑑𝑓 = 𝑘 − 1. If the samples comes from 

identical continuous populations and 𝑛𝑘 are not too small, distribution of 𝐻follows𝜆2(𝐶 − 1), 

permitting use of readily available tables of 𝜆2. Post-hoc median comparison between groups 

was tested when Kruskal-Wallis H test gave significant results using adjusted P value. 

3.4.3 Mobile data  

 

The mobile experimental data, which were collected every 30 seconds using the Garmin 

Oregon 300 GPS device, simultaneously with the data logger, were downloaded directly from 

the GPS and data logger devices to the PC in different formats. The GPS data were stored as 

coordinates points in a GPX format, while the logger saved the air temperature and relative 

humidity in the HOBO format. The GPS data were opened using the GPS Utility software and 

then exported as text files. These were then opened using Excel software and exported in Excel 

spread sheet format. The logger data files were exported directly from the logger as Excel files. 
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In order to create the shape file, the data logger and GPS points were linked, based on the time 

of recording, by adding the air temperature and relative humidity as new columns and then 

saved as Excel files. The Excel files were opened with ArcMap10 software and X/Y 

information used to incorporate the data into the study area projection. This was then saved in 

shape file format. Figure  3-8 shows an example of the shape file output. The Figure shows the 

air temperature and relative humidity at night and after sunset on 2
nd

 February 2011. This 

process was repeated for all the mobile experimental data collected during the winter and 

summer seasons after sunset and at night traverses. 

 

Figure 3-8 An example of mobile traverse of air temperature (left) and relative humidity (right) recorded using 

HOBO and Garmin GPS 300 on 2
nd

 February 2011 

  
 

Note: air temperature in (°C) and relative humidity in (%).  

 

The data shown in Figure  3-8 represent mobile points at different distances from each other 

during the night and after sunset collection runs. According to this shapefile, the distances 

between the night and after sunset points ranged between 2.23 and 115.43 m. Further analysis 

was carried out so as to include only the closest points to give more accurate results. Within the 

ArcMap software, the ‘selection by location’ option was used to select the points which fell 

within 35 meters of each other. The 35 meters distance was chosen after conducting several 

analyses and found to produce more appropriate results. Initially, the after sunset shapefile was 
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selected as the target layer and the night layer as the source layer for proximity analysis, then 

vice versa. The selected points from both layers were edited and saved in joint attribute tables. 

An example of this analysis is shown in Figure  3-9. The Figure illustrates the results of this 

analysis for part of the second experiment on 2
nd

 February, during the winter at the night and 

the sunset periods.      

 

Figure 3-9 An example of mobile points which fall within 35 meter of each other for air temperature (left) and 

relative humidity (right), recorded using HOBO and Garmin GPS 300 on 2
nd

 February 2011. 

  
 

Note: air temperature in (°C) and relative humidity in (%).  

 

The above analysis was applied to all the mobile experimental data collected during both 

seasons during the night and after sunset periods. Following classification of the land cover 

types found within the study area, these spatial databases were used to determine the 

relationship between CLHI and different land coverage.  

 Calculation of local UHI intensity based on mobile data   3.4.3.1

 

In order to calculate the UHI intensity of the study area Al Ahsa oasis the difference between 

representative urban and rural station is used to describe the local UHI intensity. This method  

(ΔT u-r) has been identified by (Oke, 1973) and applied in several studies e.g. (Yagüe et al., 
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1991, Jauregui et al., 1992, Karaca et al., 1995, Hoffmann et al., 2012). This technique is used 

to detect the influence of the different land cover and urbanization on the local UHI intensity. 

The different between the represented mobile data (at night and after sunset) and the airport 

weather station identified the UHI intensity. For more accurate of measurements, the time of 

each mobile data is considered to match or at least fall in the same hour of the traverses. All the 

mobile traverses are overlaid over the classified image map of the study area and extract the 

value of the land cover of each pointe to investigate the relationship between the different land 

cover and UHI intensity graphically and statistically.       

 Interpolation of mobile traverses   3.4.3.2

 

The forty six mobile traverses during the summer and winter are used to calculate the CLHI 

intensity at the night and after sunset. The mobile data as mentioned in data sources are 

completed during twenty three days and the average of each traverse is about one and half 

hour. Therefore, inverse distance weighted interpolation method is used in this step to map the 

distribution of UHI intensity during these days over the different land cover. The goal of this 

analysis is to show the distribution of the UHI intensity over the different land cover during the 

night and after sunset in the study area scale. This method has been used widely by the earth 

scientists (Ware et al., 1991) to map the UHI distribution such as (Montávez et al., 2000, 

Vicente Serrano et al., 2005).  

 Land cover percentage within a MODIS pixel 3.4.3.3

 

The Figure  3-10 shows the major steps followed to calculate the major land cover pixels (30m) 

within sample spatially located MODIS pixel. Landsat 7 ETM+ 18 August 2011 imagery has 

classified using supervised maximum likelihood imagery under five major land cover classes; 

Sabkha, Sand, Urban (built-up area), Vegetation, and Water body. The classification vector of 

each resultant class has been converted to 30m-pixel raster format which then converted to 

point data. The points under each land cover classes were spatially estimated using a vector 

1km-grid layer which derived from 1km-MODIS imagery to estimate the percentage of each 

class spatially located within each MODIS pixel size grid.   
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Figure 3-10 The steps followed to calculate the land cover percentage of MODIS and Landsat 7 ETM+ pixels 

 

3.4.4 Remote sensing data 

 Georeferencing of Landsat 7 ETM+ Data 3.4.4.1

 

In order to analyse the remote sensing datasets, it was necessary to ensure that the data were 

correctly georeferenced, both with respect to the ‘real world’ and, ultimately, with the GPS 

datasets. Comparative analysis between ground survey data and thermal imagery data requires 

spatial accuracy in both datasets (Malleswara Rao et al., 1986) and so special emphasis was 

given to matching spatial locations in both Landsat 7 ETM+ imagery and mobile datasets. 

 

As a result, geometric correction of the Landsat image was necessary, based on the GeoEye 

image and mobile points, in order to enhance the accuracy and match of both images. 

Geometric correction was performed using a first-order polynomial transformation on both 

Landsat 7 ETM+ satellite images in order to achieve data integrity (Figure  3-11). Geometric 

correction of the August Landsat image was performed using the ground control points 

(GCPs), which were collected during the fieldwork, as the reference data. GCPs were 

distributed across the Landsat image of the study area, and used in the correction stage. The 

February Landsat image was then compared to the corrected August Landsat scene in an 

image-to-image analysis. In addition, GCPs were selected from across the February Landsat 

image and then the corresponding reference points identified on the August Landsat image. 

 

 

Step 1 

• Landsat image preparation 

• Superised classification: maximum likelihood 

Step 2 

• Major class-based vector conversion 

• Polygon to raster (30 m) conversion 

Step 3 
• Raster to point using GIS analysis 

Step 4 

• Spatial join of point under each MODIS pixel (1km) 
size polygons 
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Figure 3-11 Geometric correction model used for image geo-correction of Landsat scenes 

 
 

The accuracy obtained by overlaying the mobile points on the GeoEye image is acceptable, 

with the error falling in a range of 4–6 m. Figure  3-12 shows an example of mobile points 

overlaid on the GeoEye image of the study area. In addition, the mobile points were also 

overlaid on the Landsat 7 ETM+ to test the accuracy and match of these points with ground 

datasets. The accuracy was found to be lower with a shift between some points of 

approximately 15–20 m. 

 



 

77 

 

 

Figure 3-12 Positional accuracy of ground-based GPS tracks overlaid on the GeoEye 

 
 

 Georeferencing of MODIS data 3.4.4.2

 

MODIS data of the study area are obtained in Sinusoidal projection. In order to overlay the 

mobile traverses and other images of the study area e.g. GeoEye and Landsat 7 ETM+, it is 

important to project MODIS images to the local projection. Therefore, MODIS images 

including the bands 7, 4, and 3 for classification stage and 31 and 32 to estimate surface 

temperature, are projected to the study area projection, which is WGS 1984 UTM Zone 39N 
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using ArcMap 10.2 software. Figure  3-13 shows an example of MODIS images before and 

after the projecting process.  

 

Figure 3-13 MODIS data before projected (left) and after projected to the study area projection (right) 

  

 Estimating surface temperature based on satellite data 3.5

 

Satellites have been used to infer land surface temperatures in different regions across the 

world. Even though the satellites examine the intensity of different wavelength bands rather 

than directly measuring surface temperature this has proved a successful method to estimate 

land surface temperature and detect SUHI. Two different satellites datasets were used in this 

study to estimate the surface temperatures; Landsat 7 ETM+ and MODIS (Table  3-5). 

 

Table 3-5 Satellites imageries used to estimate the surface temperature 

Sensor WRS Resolution Spectral bands Date Source Cc 

Landsat 

7 ETM+ 

Path164/Row42 60 m 6 7/02/11 

23/02/11 

18/08/11 

USGS 2% 

5% 

0% 

MODIS H/22 V/6 1000 m 20–25 

27–36 

21/01/11 to 

28/02/11 

26/07/11 to 

31/08/11 

USGS Vary 

 

Note: WRS = Worldwide Reference System. H/V = horizontal and vertical. USGS = United State Geological 

Survey. Cc = Cloud cover. 
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The investigation of land cover/use and its relationship with surface temperature has been a 

common theme in the study of SUHI using a remote sensing approach (Chen et al., 2006, Qian 

et al., 2006, Stathopoulou and Cartalis, 2007, Yokobori and Ohta, 2009). The nature and 

materials used in land coverage alter the surface emissivity. Therefore, a system of land cover 

classification is necessary to identify the different types of land cover/use when creating an 

emissivity map for the purpose of estimating the surface temperature. Emissivity is defined as 

the ratio of absorbed radiation energy to the total incoming radiation energy, compared to a 

perfect black body and is thus a measure of absorption. 

3.5.1 Supervised classification 

 

The multispectral bands from the Landsat 7 ETM+ imagery, taken in February 2011, of the 

study area were classified based on supervised classification using ERDAS and ENVI 

software. Different classes – e.g. vegetation areas (palm trees), urban areas, bodies of water, 

flat sand, sabkha and sand dunes – were considered in this study to be classified. A sample of 

known pixels was extracted from the texture images as regions of interest (ROI) from each 

class to generate the supervised classification method. As the spatial resolution of the 

multispectral bands of Landsat is only 30 m, different classes might fall within that pixel area, 

but be classified as one class. Therefore, using high resolution spatial data such as that obtained 

from GeoEye-1, with a resolution of 0.5 m, would provide more logical classification of land 

cover. GeoEye-1 images were classified using the Definiens software to create a detailed map 

of the study area land cover. 

 

A maximum likelihood classifier algorithm was used in this study to apply the supervised 

classification, this being one of the most popular methods of classification (Bailly et al., 2007, 

Jensen, 2005b, Lillesand, 2000, Xiuping and Richards, 1999). The maximum likelihood 

classifier allocates each pixel to a class according to the highest probability of a match. This 

involves the calculation of the discriminant functions for each pixel in the image, using the 

following formula (Jensen, 2005a). 

 

pi. p(ω
i
) =  loge 𝑝(𝜔𝑖) − 1

2⁄ loge|𝑉𝑖| − [1
2⁄ (𝑋 − 𝑀𝑖)𝑇𝑉𝑖

−1(𝑋 − 𝑀𝑖)] 

where: 

𝜔𝑖 = classes 
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p(ωi) = probability function of class 𝜔𝑖 

𝑋 = unknown measurement vector 

𝑉𝑖 = covatiance matrix of class 𝑖 

𝑀 = mean vector of class 𝑖 

pi = probability of class 𝑖 

 

The goal of the classification process is identifying the land cover type so as to be able to use 

the emissivity value of each class or objects to estimate surface temperatures in the summer 

and winter seasons (Janet, 2009). In addition, the images, once classified, provided spatial data 

of help in analysing the effect of the different land cover types and could be used for the air 

and surface temperatures of the study area. More details and results of classifications will be 

discussed in chapter five. 

 

Landsat 7 ETM+ also is classified using Definiens Professional 5.0 which involves 

segmentation and object-based processing. Two stages were taken in order to classify the 

image. The first step involves image data segmentation, which segments the image into a 

network of homogeneous image objects. The second stage is object-oriented, whereby land 

cover classes are related to the segmented image objects.  

 

Also, MODIS images including bands 7, 4, and 3 are classified using the same mentioned 

method above then the results are exported as vector. The decision of different classes and sub-

classes of MODIS data is considered the urban climate zones scheme described by Oke (2006). 

The urban climate zone (UCZ), is not only describes each site or class as individual district but 

also consider the capacity to modify the local climate and the potential transitions to different 

urban climate zones (Oke, 2006). Table  3-4 shows the urban climate zones classification in the 

order of the ability to impact the local climate. Using ArcMap 10.2 software and XTools Pro 

option the fishnet of the study area image are created based on MODIS pixel size which is 

1000 metres. From joins and relates options, both data the classified image and the fishnet are 

joined. New field is added for emissivity values for each land cover then exported as map in 

order to estimate the surface temperature for the study area. In the following section more 

details about how the brightness temperature is estimated from both sensors Landsat 7 ETM+ 

and MODIS.   
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Table 3-4 Simplified classification of distinct urban forms arranged in approximate decreasing order of their 

ability to impact local climate 

Urban Climate Zone1 

 

Image 

 

Rough-

ness 

class2 

Aspect 

ratio3 

% Built 

(imperm-

eable)4 

Intensely developed 

detached close-set high-rise 

building, e.g. downtown 

towers 

 

8 >2 > 90 

Intensely developed high 

density urban with 2 – 5 

storey, attached or very 

close-set buildings often of 

brick or stone, e.g. old city 

core 

 

7 1.0 – 2.5 > 85 

Highly developed, medium 

density urban with row or 

detached but close-set 

houses, stores & apartments 

e.g. urban housing 

 

7 0.5 – 1.5 70 – 85 

Highly developed, low or 

medium density urban with 

large low buildings & paved 

parking, e.g. shopping mall, 

warehouses 

 

5 0.05 – 0.2 70 – 95 

Medium development, low 

density suburban with 1 or 2 

storey houses, e.g. suburban 

housing  

 

 
6 

0.1 – 0.6, 

up to >1 

with trees 

35 – 65 

Mixed use with large 

building in open landscape, 

e.g. institutions such as 

hospital, university, airport 

 

5 

0.1 – 0.5, 

depends 

on trees 

< 40 

Semi-rural development, 

scattered houses in natural 

or agricultural area, e.g. 

farm, estates 

 

4 

> 0.05, 

depends 

on trees 

< 10 

 

 

1. A simplified set of classes that includes aspects of the schemes of (Auer, 1978) and (Ellefsen, 1991) plus physical 

measures relating to wind, thermal and moisture controls (columns at right). Approximate correspondence 

between UCZ and Ellefsen’s urban terrain zones is: 1(Dc1, Dc8), 2 (A1-A4, Dc2), 3 (A5, Dc3-5, Do2), 4 (Do1, 

Do4, Do5), 5 (Do3), 6 (Do6), 7 (none). 

2. Effective terrain roughness according to the Davenport classification (Davenport et al., 2000). 

3. Aspect ratio = zH/W is average height of the main roughness elements (buildings, trees) divided by their average 

spacing, in the city centre this is the street canyon height/width. This measure is known to be related to flow 

regime types (Oke, 1987) and thermal controls (solar shading and longwave screening (Oke, 1981). Tall trees 

increase this measure significantly. 

4. Average proportion of ground plan covered by built features (buildings, roads, paved and other impervious areas) 

the rest of the area is occupied by pervious cover (green space, water and other natural surfaces). Permeability 

affects the moisture status of the ground and hence humidification and evaporative cooling potential. 

 

The table is Modified after (Oke, 2006).  

Key to image symbols:    

 

Buildings; 

 

Vegetation; 

 

  Impervious ground;    Pervious ground. 



 

82 

 

 

3.5.2 Mappingtheemissivity(εσ) 

 

In order to estimate the surface temperature of the study area, it is important to map the 

emissivity value after the classification and accuracy assessment steps. The emissivity, as 

defined in the literature review and methodology chapters, is the ratio of the absorbed radiation 

energy to the total incoming radiation energy compared to a perfect emitter (black body), and 

thus is a measure of absorptivity (Becker and Li, 1995). Based on the emissivity values in 

previous studies of arid regions (Table  3-5) and on lookup tables of emissivity values of 

different materials and land covers  (Zhang, 2011), emissivity maps of the Al Ahsa oasis are 

produced by integrating the emissivity values of each land cover class after the classification 

step using ENVI software (Shunlin, 2001, Janet, 2009, Sobrino et al., 2012).  

 

Table 3-5 Emissivity values of different land cover of the study area, based on previous studies of arid regions 

 

ID Class name Description of the class Emissivity 

Reference (1)* 

Emissivity 

Reference (2) and 

(3)* 25 °C 45 °C 

1 Vegetation (1) Palm trees .97 .97 .99 

2 Vegetation (2) Grass (Park) .96 .96 .98 

3 Sabkha Wet sand .95 .95 .90 

4 Water Water .98 .98 .99 

5 Sand1 Sand dunes .93 .94 .89 

6 Sand2 Sandstone .92 .93 .88 

7 Sand3 Red sand .93 .94 .89 

8 Built-up (1) Houses and concrete .95 .95 .94 

9 Built-up (2) Asphalt and  pavement .96 .96 .96 

 

*Reference (1) (Qina et al., 2005) and reference (2) and (3) (Ogawa et al., 2008, Sobrino et al., 2012).  

 

3.5.3 Estimating surface temperature using Landsat 7 ETM+  

 

It is possible to map the surface temperature of the study area by capturing emitted thermal 

radiation from the surface of the Earth. Planck's blackbody radiation equation relates spectral 

radiance and wavelength with the radiant temperature of an object. The radiation values of a 

Landsat image are stored in images by pixel or digital number (DN) value. The thermal 

temperature is calculated from the DN value. The thermal band (band 6) of Landsat 7 ETM+ 

image pixels were converted into units of absolute radiance. The calculation can be carried out 

using the following three steps: 
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(Step 1): Conversion of the DN values of the satellite images to spectral radiance values using 

equation (1): 

Radiance = gain × DN + offset                                                                          (1) 

 

The radiance can also be expressed as the following (Markham and Barker, 1986): 

 

𝐿𝜆 =
𝐿max(𝜆) − 𝐿min(𝜆)

(𝑄𝑐𝑎𝑙max)
× (𝑄𝑐𝑎𝑙) + 𝐿min(𝜆)                                                          (2) 

where: 

𝐿𝜆 = spectral radiance, (watts m2.⁄ sr. μm)  

𝑄clamax = maximum grey level (255) 

𝑄𝑐𝑎𝑙 = digital number or grey level of analysed pixel 

𝐿min(𝜆) = minimum detected spectral radiance (0.0 in low gain, 3.2 in high gain) 

𝐿𝑚𝑎𝑥(𝜆) = maximum detected spectral radiance (17.04 in low gain, 12.65 in high gain) 

 

For the low-gain of the band-6 data, equation (2) can be converted to 

 

𝐿𝜆𝑙 = 6.682 × 10−2 × 𝐷𝑁                                                                                 (3a) 

 

For the high-gain of the band-6 data, equation (2) can be converted to; 

 

𝐿𝜆ℎ = 3.706 × 10−2 × 𝐷𝑁 + 3.2                                                                               (3b) 

where: 

𝐿𝜆𝜄 = spectral radiance in low gain 

𝐿𝜆ℎ = spectral radiance in high gain 

𝐷𝑁 = digital number of pixel 

A relation can be obtained between DNs and radiance through calculation using equations (3a) 

and (3b) (Mishra et al., 2011). 

 

(Step 2): Conversion of the spectral radiance to radiant temperatures by using the following 

equation (4) (Gupta, 2005): 

𝑇𝑅 =
𝐾2

𝑙𝑛 (
𝐾1

𝐿𝜆
+ 1)

                                                                                                   (4) 

http://www.sciencedirect.com/science/article/pii/S0166516210002600#fo0010
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where: 

𝑇𝑅 = radiant temperature (Kelvin) 

𝐾1 = alibration constant for Landsat7 ETM + sensor (666.09 watts m2.⁄ sr. μm) 

𝐾2 = 𝑐alibration constant for Landsat 7 ETM + sensor (1282.71 degree Kelvin) 

 

(Step 3): Changing the brightness temperature to the surface temperature based on 

equations (5) and (6). 

𝑇𝑘 = 𝑇𝑅 × 𝜀
𝜆

−1
4⁄

                                                                                                       (5) 

𝑇𝑘′ = 𝑇𝑘 − 273                                                                                                        (6)  

where: 

𝑇𝑘 = surface temperature (Kelvin) 

𝑇𝑘′ = surface temperature (Celsius) 

𝜀𝜆 = emissivity (0.97) 

 

As this study attempted to map the surface temperature based on different emissivity values, 

the emissivity map produced was considered as providing the most accurate method of 

deriving surface temperature when using satellite data and remote sensing approaches. Through 

this analysis the thermal structure of the study area was evaluated and examined against the 

spatial data regarding land cover types. This method also helped to identify the intensity of the 

SUHI and their distribution in the region. Chapters 6 and 7 discuss in more detail the processes 

that followed from this approach and its outcome.   

 

Surface temperature maps can then be created for the study area for different parts of the study 

period. These maps will show the location and densities of the SUHI at the different scales 

seen by the Landsat and MODIS sensors. Finally, the ground surface temperature data for the 

60-days (January and July) can be compared to satellite imagery to test its accuracy. 

3.5.4 Estimating surface temperature using MODIS data 

 

It is possible to estimate the surface temperature using the thermal bands of MODIS and 

investigate the UHI intensity and its relationship to the land cover. The split-window method is 

one of the several methods to estimate the surface temperature and has been used by several 

authors in many studies such as (Wan et al., 2002, Wan et al., 2004, Coll et al., 2005, Wan, 

http://www.sciencedirect.com/science/article/pii/S0166516210002600#fo0030
http://www.sciencedirect.com/science/article/pii/S0166516210002600#fo0035
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2008). The split-window method algorithms are found as the correct for atmospheric effect 

including (absorption and emission) and emissivity by using 36 bands of MODIS sensor. That 

addresses several problems which associated with remote sensing measurements of surface 

temperature such as emissivity assumptions and unknown atmospheric effects (Zhengming and 

Dozier, 1996, Tomlinson et al., 2012). 

 

In order to estimate the surface temperature using MODIS, the study area is projected to the 

local projection, land cover is identified and the emissivity is mapped. Conversion of the scaled 

integer (SI) values of Aqua/MODIS band 31 and 32 data refer to the observed spectral radiance 

(Lλ) requires both the lower and upper original rescaling factors  𝑅scale and 𝑅offset. In order to 

convert the scaled integer of the observed spectral radiance the calibration constants of the 

thermal bands of Aqua/MODIS data have been used (Table  3-6). The conversion is calculated 

using the equation (7) (Anonymous, 2006, Oguro et al., 2011):  

 

Table 3-6 Calibration constants of Aqua/MODIS thermal bands for converting scaled integer to observed spectral 

radiance 

Band Rscaleλ 

(W/(m
2
.sr.μm)) 

Roffsetλ 

 

31 0.0006.5080720 2035.9332 

32 0.0005.7100126 2119.0845 

        

𝐿𝜆 = 𝑅scale 𝜆(𝑆𝐼𝜆 −  𝑅offset 𝜆)                                                                                         (7) 

where  𝑅scale 𝜆 =
𝐿max 𝜆−𝐿min 𝜆

32767
 and 𝑅offset 𝜆 =

32767 ×𝐿min 𝜆

𝐿max 𝜆−𝐿min 𝜆
 

 

where Lλ is observed spectral radiance in W/(m
2
.sr.μm),  

SIλ is scaled integer value of 16 bits unsigned integer data in dimensionless, 

Lmin λ is observed spectral radiance scaled to 0 in W/(m
2
.sr.μm), 

Lmax λ is observed spectral radiance scaled to 32767 in W/(m
2
.sr.μm), 

Rscale λ is radiance rescaling gain factor in W/(m
2
.sr.μm), 

Roffset λ is radiance rescaling offset factor in dimensionless, 

 

The second stage to estimate the surface temperature using MODIS data is to convert the 

thermal data of 31 and 32 bands from observed spectral radiance (Lλ) to observed BT applying 

the Planck’s law of blackbody radiation. The conversion is calculated using the equation (8) 

(Anonymous, 2006, Oguro et al., 2011):  
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𝑇 =
ℎ𝑐 𝑘𝜆⁄

ln(2ℎ𝑐2 (𝐿𝜆𝜆5 × 106) + 1⁄
                                                                                    (8) 

 

where T is observed brightness temperature (BT) in Kelvin,  

h is Plank constant (6.62606896 x 10
-34

J.s),  

c is speed of light (2.99792458* 10
+8

m/s) 

k is Boltzmann constant (1.3806504*10
-23 

J/k) 

λ is centre wavelength in meter, and 

Lλ is observed spectral radiance in W/(m
2
.sr.μm). 

 Methodological framework 3.6

 

The model which is followed in this study to measure and estimate the SUHI and CLHI 

intensity is shown in Figure  3-14. The model includes both data set that have been used in this 

study, the ground and remote sensing data in order for better understanding of the effect of the 

land cover on SUHI intensity.  
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Figure 3-14: The study model of urban heat island 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Summary 3.7

 

This chapter has described the nature of the data used in this study. Ground data, fixed weather 

stations and mobile data, and remote sensing, Landsat 7 ETM+ and MODIS data were the main 

dataset used to measure and estimate the SUHI and CLHI intensity. Data pre-processing and 

analysis are included in this chapter with explanations of some of the limitations encountered 

and the methods used to overcome them. The estimation of surface temperature using different 

satellite images is addressed. Finally, the methodological framework of this study is 

summarised. The results of data pre-processing and further data processing, along with study 

data evaluation, are discussed in the following chapters. 
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 Seasonal Distribution of  Chapter 4:

Air and Surface UHI 

 Introduction 4.1

 

This chapter will discuss the nature of CLHI, in relation to variations in air temperature, 

surface temperature and relative humidity, and their variations during two seasons (summer 

and winter) in 2011. The aim of this chapter is to investigate the existence of CLHIs at both 

seasonal and diurnal scales during the selected period, using data from fixed weather stations 

located in different land cover types. The six weather stations are located at: 1) the city centre 

where the intensity of built-up area is the greatest; 2) a farm where the intensity of vegetation 

and palm trees is the greatest; 3) a park, which represents a green area located in the urban 

area; 4) sabkha, which is the most common land cover of the area studied, representing a low-

lying area wet sand; 5) a factory, where industrial activities are located in the urban area; and 

6) the airport weather station which is located outside the urban area, included as a control 

station  (Figure  4-1). The fixed weather stations recorded hourly data of air and surface 

temperatures, relative humidity, and wind and gust speed using HOBO data loggers for two 

periods: winter (January and February) and summer (July and August) 2011 (see appendix 4.1 

for mean and stander deviation of air and surface temperatures and relative humidity of each 

site). (For more details see data sources and methodology chapter section 3.4.1) The significant 

differences between the median groups of the fixed weather station data were investigated 

using non-parametric statistical methods, as the primary data showed that the distribution is not 

normal, especially during the summer season. Local CLHIs were addressed and defined. The 

average of air and surface temperatures and relative humidity were calculated and compared 

between the rural station (airport weather station) and the other fixed station data relating to the 

different urban land covers (park, sabkha, factory, city centre, and farm). (Figure  4-1)  
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Figure 4-1 The location of the fixed weather stations built during winter and summer season fieldwork (January, 

February, July, and August) in the study area Al Ahsa.  

 

 Fixed weather stations data distribution 4.2

 

Histograms of air temperature, surface temperature, and relative humidity of different land 

cover areas (City centre, Sabkha, Park, Farm, Factory, and Airport) indicated some 

resemblance to a normal distribution during winter, but not a normal distribution during 

summer (Figure  4-2, Figure  4-4, and Figure  4-6). Probability distribution plots also showed the 

same types of data distribution for air temperature, surface temperature, and relative humidity 

during both winter and summer seasons (Figure  4-3, Figure  4-5, and Figure  4-7). The 

probability plots showed some skewness in the tail of the data distributions for all the variables 

in both seasons, but especially during summer (see also appendix 4.2). 

 

 
Fixed weather station in sabkha site 

 
 

 
Fixed weather station in farm site 
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Overall, the highest air temperatures were observed in the city centre; then, in descending 

order: factory, park, airport, sabkha, and farm sites, both in winter and summer (Figure  4-2). 

The two peaks of the data distributions during the summer season for all variables (air 

temperature, surface temperature, and relative humidity), might indicate the CLHI effects that 

occur in the study area. The mean air temperature of the city centre was 18.9 °C during winter 

and 39.2 °C during summer. The lowest air temperature was recorded at the farm site, both in 

the winter (16.3 °C) and summer (33.3 °C). The differences in mean air temperature between 

different fixed weather station data are greater in the summer than the winter. 

 

Figure 4-2 Frequency distribution of hourly air temperature in the different land-cover areas studied 

 
(a) 

 
(b) 

 

Note: (a) Winter season - January and February 2011 (b) Summer season - July and August 2011. D=density, 

KD= kernel density, ND=normal density. The reference line indicates the mean value. 
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Figure 4-3 Probability distribution plots of air temperature (°C) during summer (27July to 31August 2011) and 

winter (21 January to 28 February 2011) for different land cover areas 

 

 

These statistics also indicate that air temperature, surface temperature, relative humidity, wind 

speed, and gust speed data are not normally distributed. The result of Skewness/Kurtosis tests 

showed a fail to accept null hypothesis  which is the air temperature, surface temperature, 

relative humidity, wind speed, and gust speed are normally distrusted at P<0.05 level in 

different land cover areas during both winter (21/01 to 28/02/2011) and summer (26/07 to 

31/08/2011). Statistically, the air temperature data in both seasons are not normally distributed 

(Table  4-1). Although some individual locations showed a normal distribution, such as Sabkha, 

Park, and Airport during the summer season, the histograms and plots showed that these are 

not in fact normally distributed. Deciding on normality was based on both methods (graphical 

and statistical) to meet the good complete normality test (D'Agostino et al., 1990). 
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Table 4-1 Results of Skewness/Kurtosis tests for normality (air temperature (°C) during winter (21/01 to 

28/02/2011) and summer (26/07/2011 to 31/08/2011)  

Season Location Obs Pr (Skewness) Pr (Kurtosis) Chi
2 
(2) Pr>chi

2 

W
in

te
r 

City centre  936 0.000 0.197 50.81 0.000 

Sabkha 936 0.000 0.173 22.05 0.000 

Park 936 0.000 0.667 31.69 0.000 

Farm 936 0.003 0.002 18.50 0.000 

Factory 936 0.000 0.199 29.27 0.000 

Airport  936 0.000 0.683 40.13 0.000 

S
u

m
m

er
 

City centre  888 0.031 0.000 263.04 0.000 

Sabkha 888 0.678 . . . 

Park 888 0.329 0.000 552.79 0.000 

Farm 888 0.020 0.000 3543.58 0.000 

Factory 888 0.002 0.000 335.31 0.000 

Airport  888 0.662 0.000 800.34 0.000 

 

The surface temperature shows a similar data distribution to the air temperature in the different 

land cover areas during both winter and summer (Figure  4-4). Histograms for surface 

temperature show a near-normal distribution during the winter season, but not in the summer 

season. The surface temperature data showed a bimodal distribution during the summer season 

in all locations. The mean surface temperatures of the city centre and factory stations during 

winter and summer were 20.4 °C and 21.8 °C, while the maxima were 42.0 °C and 40.1 °C 

respectively. The lowest surface temperature was recorded at the farm and park sites, both in 

winter and summer - 15.9 °C, 16.5 °C and 31.8 °C, 36.7 °C respectively (Figure  4-4). 
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 Figure 4-4 Frequency distribution of hourly surface temperature in different land cover areas studied 

  
 

Note: Winter season - January and February 2011(left). Summer season - July and August 2011 (right). 

D=density, KD= kernel density, ND=normal density. The reference line indicates the mean value. 

 

The probability distribution plots of surface temperature showed the same pattern as raw data 

distribution histograms (Figure  4-5). The probability plots also indicate skewness in the tail of 

the data distributions for all the locations in both seasons, especially during summer. Statistical 

tests indicate that surface temperature data are not normally distributed. The result of a 

Skewness/Kurtosis test showed that the null hypothesis cannot be accepted at P<0.05 level for 

surface temperature in different land cover areas during both winter (21/01 to 28/02/2011) and 

summer (26/07 to 31/08/2011) (Table  4-2). Although at some locations histograms appear to 

show normal distributions of temperature data, such as the Park in the winter and the Farm in 

the summer with P=0.084 and 0.408 respectively, the histograms and plots show that these are 

not in fact normally distributed. 
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Figure 4-5 Probability distribution plots of surface temperature (°C) during summer (27July to 31August 2011) 

and winter (21 January to 28 February 2011) at different land cover areas 

 
 
 

Table 4-2 Results of Skewness/Kurtosis tests for normality (Surface temperature (°C) during winter (21/01/2011 

to 28/02/2011) and summer (26/07/2011 to 31/08/2011) 

Season Location Obs Pr (Skewness) Pr (Kurtosis) Chi
2 
(2) Pr>chi

2 

W
in

te
r 

City centre  936 0.000 0.5265 65.31 0.000 

Sabkha 936 0.000 0.0772 63.03 0.000 

Park 936 0.084 0.0000 40.92 0.000 

Farm 936 0.000 0.0225 19.58 0.000 

Factory 936 0.000 0.0216 33.19 0.000 

S
u

m
m

er
 

City centre  888 0.002 0.000 268.44 0.000 

Sabkha 888 0.046 0.000 4346.91 0.000 

Park 888 0.002 0.000 397.29 0.000 

Farm 888 0.408 0.000 91.55 0.000 

Factory 888 0.000 0.469 52.03 0.000 

 

Histograms of Relative humidity data show differences among the different land cover areas 

and between the winter and summer periods. Mean relative humidity was higher in winter than 

in summer. The mean relative humidity levels are 45%, 50%, 51%, 54%, and 63% in the city 

centre, airport, park, sabkha, and farm respectively. The mean relative humidity ranges 

between 21% and 29% during summer at all locations, except the farm which averages 44% 

(Figure  4-6). 
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Figure 4-6 Frequency distribution of hourly relative humidity in different land cover areas studied 

  
 

Note: Winter season-January and February 2011 (left). Summer season-July and August 2011 (right). D=density, 

KD= kernel density, ND=normal density. The reference line indicates the mean value. 

 

The probability distribution plots of relative humidity show the same results as the data 

distribution histograms (Figure  4-7). The probability plots show skewness in the tail of the data 

distributions for all the locations in both summer and winter periods. Relative humidity data for 

all locations, except for the Sabkha and Farm sites in the winter, are not normally distributed. 

The result of the Skewness/Kurtosis test showed that the null hypothesis cannot be accepted at 

P<0.05 level for relative humidity in different land cover areas during both winter (21/01 to 

28/02/2011) and summer (26/07 to 31/08/2011) (Table  4-3). Although some locations seem to 

show a normal distribution, such as the Sabkha and Farm in the winter with P=0.838 and 0.087 

respectively, the histograms and plots show that these data are not normally distributed.  
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Figure 4-7 Probability distribution plots of relative humidity (%) during summer (27 July to 31 August 2011) and 

winter (21 January to 28 February 2011) at different land cover areas 

 

 

Table 4-3 Results of Skewness/Kurtosis tests for normality (relative humidity (%) during winter (21/01/2011 to 

28/02/2011) and summer (26/07/2011 to 31/08/2011) 

Season Location Obs Pr (Skewness) Pr (Kurtosis) Chi
2 
(2) Pr>chi

2 

W
in

te
r 

City centre  936 0.000 0.000 84.86 0.000 

Sabkha 936 0.838 0.000 366.01 0.000 

Park 936 0.000 0.000 118.74 0.000 

Farm 936 0.087 0.000 946.43 0.000 

Factory 936 0.000 0.022 33.19 0.000 

Airport 936 0.001 0.000 186.13 0.000 

S
u

m
m

er
 

City centre  888 0.000 0.000 278.52 0.000 

Sabkha 888 0.000 0.269 99.31 0.000 

Park 888 0.000 0.000 236.13 0.000 

Farm 888 0.001 0.000 226.07 0.000 

Factory 888 0.000 0.000 257.42 0.000 

Airport 888 0.000 0.000 276.38 0.000 

 

Box plots (Figure  4-8 and Figure  4-9) show the distribution of the wind and gust speed among 

the different land cover areas during the winter (January and February) and summer (July and 

August) periods. The median of the wind speed ranges between 0 to 13 km/h in the summer 

and 0 to 9 km/h during the winter period. While the median of the gust speed ranges between 4 

to 18 km/h in the summer and 7 to 18 km/h in the winter (Figure  4-9). The maximum wind 

speed during both seasons was recorded in the Airport weather station 39 km/h in the winter 

and 43 km/h in the summer. While the minimum wind speed during both seasons was observed 
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in the most of the fixed weather station however the farm and city centre fixed weather stations 

are the most locations to record low wind speed and observe the calm status of 0 km/h 

(Figure  4-8).    

 

Figure 4-8 Box plot of wind speed (km/h) during winter and summer seasons 

 

Note: The graph shows the medians (central lines) and inner quartile ranges (boxes) at land cover. 

 

Figure 4-9 Box plot of gust speed (km/h) during winter and summer seasons 

 

Note: The graph shows the medians (central lines) and inner quartile ranges (boxes) at land cover. 

 

The probability distribution plots of the wind and gust speed during the summer and winter 

seasons show skewness in the tail of the data distributions for all the fixed weather stations 
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including the Airport weather station. Moreover, the quantile distribution plots also show the 

same results that the wind and gust speed data distribution is not normal (see the appendix 

figures 23 and 24).  

 

The result of the Skewness/Kurtosis test showed that the null hypothesis, which is the wind and 

gust speed data distribution is normally distributed, cannot be accepted at P<0.05 level for 

wind and gust speed in different land cover areas during both seasons winter (21/01/2011 to 

28/02/2011) and summer (26/07/2011 to 31/08/2011) ( 

Table  4-4 and Table  4-5). Although some locations seem to show a normal distribution, such as 

the city centre and sabkha in the winter with P=0.353 and 0.593 respectively, the histograms 

and plots show that these data are not normally distribute.  

 

Figure 4-10 Probability distribution plots of wind and gust speed during summer (27 July to 31 August 2011) at 

different land cover areas 
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Figure 4-11 Probability distribution plots of wind and gust speed during winter (21 January to 28 February 2011) 

at different land cover areas 

 

 

Table 4-4 Results of Skewness/Kurtosis tests for normality (Wind speed (km/h) during winter (21/01/2011 to 

28/02/2011) and summer (26/07/2011 to 31/08/2011) 

Season Location Obs Pr (Skewness) Pr (Kurtosis) Chi
2 
(2) Pr>chi

2 

W
in

te
r 

City centre  128 0.0000 0.0023 33.82 0.0000 

Sabkha 168 0.0086 0.0000 23.66 0.0000 

Park 132 0.0000 0.0014 36.93 0.0000 

Farm 366 0.0000 0.0000 . 0.0000 

Factory 142 0.0002 0.0212 15.35 0.0005 

Airport 936 0.0000 0.0316 . 0.0000 

S
u

m
m

er
 

City centre  174 0.0000 0.0000 45.19 0.0000 

Sabkha 145 0.0058 0.0000 24.94 0.0000 

Park 142 0.0002 0.0001 23.08 0.0000 

Farm 265 0.0000 0.0000 . 0.0000 

Factory 169 0.0000 0.0224 31.39 0.0000 

Airport 895 0.0000 0.5356 52.19 0.0000 
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Table 4-5 Results of Skewness/Kurtosis tests for normality (Gust speed (km/h) during winter (21/01/2011 to 

28/02/2011) and summer (26/07/2011 to 31/08/2011) 

Season Location Obs Pr (Skewness) Pr (Kurtosis) Chi
2 
(2) Pr>chi

2 

W
in

te
r 

City centre  128 0.3530 0.0031 8.56 0.0139 

Sabkha 168 0.5931 0.0000 17.02 0.0002 

Park 132 0.0054 0.0067 12.64 0.0018 

Farm 366 0.0005 0.0000 67.20 0.0000 

Factory 142 0.1613 0.0005 11.94 0.0026 

Airport 936 0.0000 0.6037 52.87 0.0000 

S
u

m
m

er
 

City centre  174 0.0024 0.3596 8.99 0.0112 

Sabkha 145 0.4621 0.0000 56.29 0.0000 

Park 142 0.0671 0.0000 . 0.0000 

Farm 265 0.0000 0.5341 19.83 0.0000 

Factory 169 0.0199 0.0021 12.64 0.0018 

Airport 895 0.0000 0.6499 31.97 0.0000 

 Relationship between surface and air temperature   4.3

There is a strong relationship between the surface and air temperature especially in the canopy 

layer, which is closest to the surface. The influence of the surface temperature has a significant 

impact on the air and near-surface temperature. For example, parks and vegetated areas, which 

have cooler surface temperature, lead to cooler air temperature, while the built-up areas, on the 

other hand, lead to warmer air temperature. Pearson correlation tests between surface and air 

temperature during the August and February shows a significant relationship with correlation 

values of (0.863) for August and (0.883) for February (Figure  4-12).  

 

Figure 4-12 Correlation between the surface and air temperature during August and February 2011 
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 Seasonal variations of meteorological data in different land cover 4.4

A non-parametric test of the median values for air temperature, surface temperatures, relative 

humidity, wind speed, and gust speed of each land cover area (City centre, Sabkha, Park, Farm, 

Factory, and Airport) for both seasons (winter and summer), showed that there is a statistically 

significant difference among these groups. The results of a Kruskal–Wallis test for median 

comparison of air temperatures, surface temperatures, relative humidity, wind speed, and gust 

speed indicates λ2=150.16 with (5) d.f. P=0.0001, λ2=1100.003 with (4) d.f. P=0.0001, 

λ
2
=2052.331 with (5) d.f. P=0.0001, λ

2
= 686.358 with (5) d.f. P=0.0001, and λ

2
=135.208 with 

(5) d.f. P=0.0001 respectively during the winter. While the results of a Kruskal–Wallis test for 

median comparison of air temperatures, surface temperatures, relative humidity, wind speed, 

and gust speed indicates λ2=471.726 with (5) d.f. P=0.0001, λ2=1743.199 with (4) d.f. 

P=0.0001, λ2=793.541 with (5) d.f. P=0.0001, λ2=775.140 with (5) d.f. P=0.0001, and 

λ2=259.283 with (5) d.f. P=0.0001 respectively during the summer (Table  4-6, Table  4-7, 

Table  4-8, Table  4-9, and Table  4-10). 

 

Table 4-6 Kruskal–Wallis test for median comparison of air temperature during winter and summer seasons 

Season Location Obs  Rank sum  Summary of the test result 

W
in

te
r 

City centre 936 2.94e+06 

λ2 = 150.16 with (5) d.f. P=0.0001  

 

λ2 with ties = 150.16 with (5) d.f. P=0.0001 

Sabkha 936 2.44e+06 

Park 936 2.64e+06 

Farm 936 2.25e+06 

Factory 936 2.93e+06 

Airport  936 2.58e+06 

S
u

m
m

er
 

City centre 888 2.80e+06 

λ2= 471.726 with (5) d.f. P=0.0001  

 

λ2 with ties = 471.727 with (5) d.f. P=0.0001 

Sabkha 888 2.17e+06 

Park 888 2.48e+06 

Farm 888 1.59e+06 

Factory 888 2.74e+06  

Airport 888 2.42e+06 

 

Table 4-7 Kruskal–Wallis test for median comparison of surface temperature during winter and summer seasons 

Season Location Obs  Rank sum  Summary of the test result 

W
in

te
r 

City centre 936 2.64e+06 
λ2= 1100.003 with (4) d.f. P=0.0001  

 

λ2 with ties = 1100.008 with (4) d.f. 

P=0.0001 

Sabkha 936 2.13e+06 

Park 936 1.57e+06 

Farm 936 1.52e+06 

Factory 936 3.10e+06 

S
u

m
m

er
 

City centre 888 2.82e+06 
λ2= 1743.199 with (4) d.f. P=0.0001 

 

λ2 with ties = 1743.204 with (4) d.f. 

P=0.0001 

Sabkha 888 2.05e+06 

Park 888 1.78e+06 

Farm 888 733627.00 

Factory 888 2.47e+06 
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Table 4-8 Kruskal–Wallis test for median comparison of relative humidity during winter and summer seasons 

Season Location Obs  Rank sum  Summary of the test result 

W
in

te
r 

City centre 936 2.58e+06 
λ

2
= 2052.331 with (5) d.f. P=0.0001 

 

 

λ
2
 with ties = 2052.340 with (5) d.f. 

P<0.0001 

Sabkha 936 3.10e+06 

Park 936 2.92e+06 

Farm 936 3.62e+06 

Factory 936 703541.00 

Airport 936 2.85e+06 

S
u

m
m

er
 

City centre 888 2.09e+06 

λ2= 793.541 with (5) d.f. P=0.0001  

 

 

λ2 with ties = 793.559 with (5) d.f. P=0.0001 

Sabkha 888 2.59e+06 

Park 888 2.15e+06 

Farm 888 3.44e+06  

Factory 888 2.04e+06 

Airport 888 1.89e+06 

 

Table 4-9 Kruskal–Wallis test for median comparison of wind speed during winter and summer seasons 

Season Location Obs  Rank sum  Summary of the test result 

W
in

te
r 

City centre 128 65250.00 

λ
2
= 686.358 with (5) d.f. P=0.0001 

 

 

λ
2
 with ties = 726.173 with (5) d.f. P<0.0001 

Sabkha 168 180625.00 

Park 132 68090.00 

Farm 366 178474.50 

Factory 142 118437.00 

Airport 936 1.14e+06 

S
u

m
m

er
 

City centre 174 82602.50 

λ2= 775.140 with (5) d.f. P=0.0001  

 

 

λ2 with ties = 829.803 with (5) d.f. P=0.0001 

Sabkha 145 136156.00 

Park 142 97959.50 

Farm 265 100015.50 

Factory 169 106090.50 

Airport 895 1.08e+06 

 

Table 4-10 Kruskal–Wallis test for median comparison of gust speed during winter and summer seasons 

Season Location Obs  Rank sum  Summary of the test result 

W
in

te
r 

City centre 128 105817.00 

λ
2
= 135.208 with (5) d.f. P=0.0001 

 

 

λ
2
 with ties = 136.031 with (5) d.f. P<0.0001 

Sabkha 168 202228.50 

Park 132 91787.00 

Farm 366 274915.00 

Factory 142 154795.50 

Airport 936 923585.00 

S
u

m
m

er
 

City centre 174 130490.00 

λ2= 259.283 with (5) d.f. P=0.0001  

 

 

λ2 with ties = 260.680 with (5) d.f. P=0.0001 

Sabkha 145 155983.00 

Park 142 119731.00 

Farm 265 129357.50 

Factory 169 145184.50 

Airport 895 922199.00 
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4.4.1 Air temperature variation  

 

The distribution of air temperature is presented in Figure  4-13. The median, maximum, 

minimum, and first and third quartiles of air temperature data vary among the different land 

cover areas in the study area during the winter and summer. In general, the farm, park, and 

sabkha sites have the lowest air temperature, due to the shading and transpiration of the trees 

and vegetation in the farm and park and due to the evaporation effect in the sabkha site. This 

effect on the maximum temperature is caused by palm trees at the farm, and trees and grass at 

the park, channelling the solar gain into latent heat. However, the opposite distribution of air 

temperature was seen at the city centre and factory sites during both winter and summer. High 

temperatures may be explained in the city by emissions from roads and concrete buildings, 

which are the most common features in this location; and by industrial activities at the factory 

site. 

 

There are statistically significant differences in air temperature between each pair of land cover 

areas during both winter and summer (Table  4-11). The Kruskal-Wallis test showed that the air 

temperature at all locations is significantly different, with P=0.000. That difference might be 

referred to the different of the nature surfaces of these locations, e.g. (between city centre and 

sabkha), which might affect the reflected radiation and the reflected heat balance. However, 

there is no statistically significant differences in air temperature between city centre and 

factory (P=0.852 in winter and P=0.262 in summer); sabkha and park (P=0.003), farm 

(P=0.007), and airport (P=0.033) in winter; and park and airport (P=0.384 in winter and 

P=0.281 in summer). The equal medians of the above mentioned sites might be explained by 

the similarity of the conditions between, for example, city centre and factory on one hand, and 

park and farm on the other. These results strongly indicate the presence of a heat island effect 

in the study area during the study periods. 
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Figure 4-13 Box plot of hourly air temperature (°C) during winter and summer seasons 

 
 

Note: The graph shows the medians (central lines) and inner quartile ranges (boxes) at land cover. 

 

Table 4-11 A result of the Kruskal–Wallis test of air temperature during winter and summer between each pair of 

land cover areas 

Location Season City centre Sabkha Park Farm Factory Airport 

City centre  
       

       

Sabkha 
Winter ≠(0.000)      

Summer ≠(0.000)      

Park  
Winter ≠(0.000) =(0.003)     

Summer ≠(0.000) ≠(0.000)     

Farm  
Winter ≠(0.000) =(0.007) ≠(0.000)    

Summer ≠(0.000) ≠(0.000) ≠(0.000)    

Factory  
Winter =(0.852) ≠(0.000) ≠(0.000) ≠(0.000)   

Summer =(0.262) ≠(0.000) ≠(0.000) ≠(0.000)   

Airport   
Winter ≠(0.000) =(0.033) =(0.384) ≠(0.000) ≠(0.000)  

Summer ≠(0.000) ≠(0.000) =(0.281) ≠(0.000) ≠(0.000)  

 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). Values in 

parentheses indicate calculated P values. Adjusted probability (P´=0.0033). 

 

4.4.2 Surface temperature variation  

 

There is clear variation in surface temperature distribution during both seasons at different land 

covers (Figure  4-14). The median, maximum, minimum, and first and third quartiles of surface 
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temperature data vary among the different land covers in the study area during both winter and 

summer. Overall, the farm and park sites had the lowest surface temperatures during both 

seasons, which can be explained by the irrigation water used and by the shade of trees and 

palms at both sites. The shade and irrigation water have an impact on the rate of cooling, and 

accelerate the loss of heat which was absorbed during the daytime. However, the opposite 

distribution of surface temperature can be found at the city centre, factory, and sabkha sites 

during both seasons. Factors that might increase surface temperatures here may include the 

extensive use of concrete in buildings, roads and in emissions from industrial activities and 

factories.  

 

There are statistically significant differences in surface temperature between each land cover 

area during both seasons (Table  4-12). The Kruskal-Wallis test showed that the surface 

temperature at all locations is significantly different between each pair (P=0.000). The 

exception is between the park and farm sites, which indicate no significant difference 

(P=0.360). Equal median temperatures at the farm and park sites may be explained by the 

similarity of the surface land cover - irrigated shadowed land in the farm area, and wet grass 

land in the park.  

 

Figure 4-14 Hourly surface temperature distributions in different land cover areas during winter and summer 
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Table 4-12 Results of the Kruskal–Wallis test for surface temperature during winter and summer seasons between 

each pair of land cover areas 

Location Season City centre Sabkha Park Farm Factory 

City centre  
      

      

Sabkha 
Winter ≠(0.000)     

Summer ≠(0.000)     

Park  
Winter ≠(0.000) ≠(0.000)    

Summer ≠(0.000) ≠(0.000)    

Farm  
Winter ≠(0.000) ≠(0.000) =(0.360)   

Summer ≠(0.000) ≠(0.000) ≠(0.000)   

Factory  
Winter ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000)  

Summer ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000)  

 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). Values in 

parentheses indicate calculated P values. Adjusted probability (P´=0.005). 

 

4.4.3 Relative humidity variation  

 

Relative humidity data distributions for all locations during winter and summer are shown in 

Figure  4-15. Overall, it is clear that relative humidity measurements were lower in summer 

than in winter. That could be explained by the different atmospheric circulation systems that 

affect the study area in summer, as mentioned in Chapter Two (Study Area, section 2.4). The 

maximum relative humidity is observed in the farm area during the winter and summer. 

However, the city centre and factory show the opposite data distribution to the farm, with the 

lowest median of relative humidity. The park, sabkha, and airport showed different 

distributions during the winter and summer. 

 

The Kruskal–Wallis test between pairs shows that there is a significant difference between 

each pairs of relative humidity measurements with (P=0.000) during both winter and summer 

seasons (Table  4-13). However, the park and city centre sites indicate no significant difference 

in relative humidity during summer (P=0.483). This might be explained by the close proximity 

of the park and city centre sites to one another. 
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Figure 4-15 Hourly relative humidity distributions in the different land cover areas during winter and summer 

 
 

Table 4-13 Results of Kruskal–Wallis tests of relative humidity during winter and summer seasons between each 

pair of land cover areas 

Location Season City centre Sabkha Park Farm Factory Airport 

City centre  
       

       

Sabkha 
Winter ≠(0.000)      

Summer ≠(0.000)      

Park  
Winter ≠(0.000) ≠(0.000)     

Summer =(0.483) ≠(0.000)     

Farm  
Winter ≠(0.000) ≠(0.000) ≠(0.000)    

Summer ≠(0.000) ≠(0.000) ≠(0.000)    

Factory  
Winter ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000)   

Summer =(0.278) ≠(0.000) =(0.085) ≠(0.000)   

Airport   
Winter ≠(0.000) ≠(0.000) =(0.371) ≠(0.000) ≠(0.000)  

Summer ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.010)  

 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). Values in 

parentheses indicate calculated P values. Adjusted probability (P´=0.0033).  
 

4.4.4 Wind and gust speed variation 

 

There are statistically significant differences in wind and gust speed among different land 

cover during the winter and the summer season. Table  4-14 and Table  4-15 indicate the result 

of Kruskal-Wallis test between each pair in order of the wind and gust speed during both 
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seasons. The Kruskal-Wallis test shows that the wind and gust speed at all locations are 

significantly different between each pair (P=0.000). However, some of the locations indicate 

no significant difference of the wind and gust speed such as between city centre and park; farm 

and park; and city centre and farm with (P=0.902, P=0.432, and P=0.360) during winter 

respectively. While, the equal locations of the gust speed included between city centre and park 

in the summer; city centre and farm in the winter; and farm and park in the winter with 

(P=0.356, P=0.032, and P=0.955) respectively. That might be explained by the similarity of 

the canopy level of these locations for example the height of the trees might interrupt the wind 

and gust speed in the farm and park. 

 

Table 4-14 Results of Kruskal–Wallis tests of wind speed during winter and summer seasons between each pair of 

land cover areas 

Location Season City centre Sabkha Park Farm Factory Airport 

City centre  
       

       

Sabkha 
Winter ≠(0.000)      

Summer ≠(0.000)      

Park  
Winter =(0.902) ≠(0.000)     

Summer ≠(0.001) ≠(0.000)     

Farm  
Winter =(0.360) ≠(0.000) =(0.432)    

Summer ≠(0.000) ≠(0.000) ≠(0.000)    

Factory  
Winter ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000)   

Summer ≠(0.000) ≠(0.000) =(0.152) ≠(0.000)   

Airport   
Winter ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000)  

Summer ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000)  

 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). Values in 

parentheses indicate calculated P values. Adjusted probability (P´=0.0033).  
 

Table 4-15 Results of Kruskal–Wallis tests of gust speed during winter and summer seasons between each pair of 

land cover areas 

Location Season City centre Sabkha Park Farm Factory Airport 

City centre  
       

       

Sabkha 
Winter ≠(0.000)      

Summer ≠(0.000)      

Park  
Winter =(0.003) ≠(0.000)     

Summer =(0.356) ≠(0.000)     

Farm  
Winter =(0.032) ≠(0.000) =(0.955)    

Summer ≠(0.000) ≠(0.000) ≠(0.000)    

Factory  
Winter ≠(0.000) =(0.021) ≠(0.000) ≠(0.000)   

Summer =(0.029) ≠(0.000) =(0.689) ≠(0.000)   

Airport   
Winter ≠(0.000) ≠(0.000) ≠(0.000) ≠(0.000) =(0.039)  

Summer ≠(0.000) =(0.180) ≠(0.001) ≠(0.000) ≠(0.000)  

 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). Values in 

parentheses indicate calculated P values. Adjusted probability (P´=0.0033).  
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4.4.5 Intensity of local CLHIs 

 Air temperature  4.4.5.1

 

The means of air temperature during January and February in 2011 range from 11.4 °C at the 

Farm site at 6am, to 24.5 °C at the Factory site at 3pm. Conversely, air temperature mean 

values range from 25.2 °C at the Farm site at 6am to 47.7 °C at the Factory at 2pm during July 

and August in 2011. All the selected land cover types (City centre, Factory, Farm, Park, 

Sabkha, and Airport) show a similar pattern during both winter and summer - lowest air 

temperature at night, starting to increase around 7am to reach a maximum temperature around 

2 to 3pm, and then starting to decrease again after sunset, around 5pm in the winter and 

6:30pm in the summer (Figure  4-16). 

 

The intensity of local CLHIs can be measured by the difference between the rural and urban 

stations (Yagüe et al., 1991, Jauregui et al., 1992, Karaca et al., 1995). The difference between 

the mean air temperature of the urban sites from the mean of the airport weather station, 

located in a rural area, show that the city centre and factory sites were the highest compared to 

the airport weather station in both winter and summer. The farm and park sites show the 

opposite result, having the lowest difference compared to the airport site. Through Figure  4-17 

we can see that the local CLHI effect appears weaker during winter than in summer. In general, 

the difference in mean air temperature is greater during the night and becomes smaller during 

the day. The difference in mean air temperature from the airport mean is largest at the farm site 

(-7.9 °C at 7 a.m. in the summer and -2.2 °C at 6 p.m. in the winter) during the summer and 

winter and at the farm and park respectively. However, the lowest difference of the mean from 

the airport mean is reported in the city centre during the summer season (4 °C) and at the 

factory site during the winter season (2.2 °C) (Figure  4-17). 
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Figure 4-16 Hourly mean air temperature at fixed weather stations during winter and summer 

 
 

Figure 4-17 Hourly difference in air temperature means from the airport weather station during winter and 

summer 

 

 Surface temperature 4.4.5.2

 

During the winter, the mean surface temperature reaches a maximum at the city centre site 

(27.9 °C at 1pm) while the minimum value is recorded at the farm site (13.1 °C at 6am). 

However, during the summer, the maximum mean surface temperature is recorded at the city 

centre and sabkha sites (48.2 °C at 2pm), while the lowest value is observed at the farm site 

(28.4 °C at 6am). All sites show a similar diurnal pattern of surface temperature variation, 

dropping at night time and increasing after sunrise to reach a maximum around 1 to 2pm. 
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The farm and park sites show the lowest surface temperatures compared to the sabkha, factory, 

and city centre sites (Figure  4-18). This might relate to differences between land cover types, 

such as concrete, asphalt, grass, and wet sand. In addition, vegetation plays a major role in 

regulating temperature, since at the farm site incoming radiation energy can be converted into 

latent heat during the daytime. Thus, the sensible heat flux will be lower than at the factory and 

city centre sites, which are covered by asphalt or concrete (Wilmers, 1990, Jonsson, 2004). 

Also, the shade of palm trees at the farm site and the reflection of solar radiation from the 

surface vegetation reduce radiant absorption at the ground (Oke, 1987). At night, a farm or 

park with short plants or an area of open bare ground such as the sabkha may cool rapidly due 

to a higher radiative cooling rate (Spronken-Smith and Oke, 1999), whereas a built-up area, 

such as the city centre and factory sites, with a relatively low sky view factor may cool more 

slowly (Oke, 1981). We can see in Figure  4-19 that the differences in mean surface 

temperature from the overall mean varied between locations, in terms of the different land 

covers (farm, sabkha, park, factory, and city centre). The difference in mean surface 

temperature from the total mean of all sites shows the city centre and factory sites with the 

highest value compared to the farm, park, and sabkha sites.  

 

  Figure 4-18 Hourly of mean surface temperature at fixed weather stations during winter and summer 

 
  
 

The biggest difference in mean surface temperature from the total mean is recorded in the farm 

site (-9 °C below the total mean at 12pm) and in the city centre (7.2 °C above the total mean at 
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8am) during the summer. During the winter, the mean surface temperature in the park has the 

lowest value (-4.8 °C below the total mean at 1am), while the city centre site has the highest 

difference of 5 °C above the total mean at 1am. 

 

Figure 4-19 Hourly mean surface temperature difference from total mean during winter and summer 

 

 Relative humidity 4.4.5.3

 

In general, mean relative humidity shows the opposite relationship to air and surface 

temperature during both seasons. When the temperature increases, the relative humidity 

decreases. Mean relative humidity at all the sites shows an increase during the night hours and 

starts to drop around 7am, to reach a minimum value at 2pm either in the winter and summer 

seasons. The relative humidity value is affected by the pressure and wind systems that impact 

the whole region, as mentioned in Chapter Two (Section 2.4.1.4). The maximum mean relative 

humidity value is recorded at the farm site, with 80% and 70.7% at 7am in the winter and 

summer respectively, whilst the minimum value during winter is recorded at the factory site 

with 17% at 6am, and during summer with 9.6% at 3pm in the airport weather station 

(Figure  4-20). 
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Figure 4-20 Hourly graph of mean relative humidity at fixed weather stations during winter and summer 

 

Figure 4-21 Hourly mean relative humidity difference from airport weather station during winter and summer 

 

By comparing the mean relative humidity at the airport weather stations and other sites, it is 

seen that the biggest negative difference occurs at the city centre and factory sites, while the 

largest positive difference was at the farm and park sites. The city centre shows a difference in 

mean relative humidity which is greater during the night and early morning, but reduces 

between sunrise and sunset in the winter season (Figure  4-21). During the summer season, the 

difference between the airport and all urban locations is very small except for the farm site, 

which indicates a positive difference, especially during the night and early morning. 
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 Summary 4.5

 

This chapter presents data on variations in air temperature, surface temperature, and relative 

humidity during two seasons (summer and winter) in 2011 and how they vary among key 

urban land cover types. In general terms, the data shows the existence of CLHI and SUHI 

effect in the study area at both seasonal and diurnal scale during the selected period, using data 

from fixed weather stations collected in different land cover types. Statistically, there is a 

significant difference between the median groups of air temperature, surface temperature, and 

relative humidity data from the fixed weather stations during the winter and summer seasons. 

The local urban heat island effect is stronger in the summer than in the winter, and more clear 

at night and early in the morning than during the day time. The average of air and surface 

temperatures and relative humidity indicated variation between the rural station (airport 

weather station) and the other fixed stations, factoring in the different urban land covers (park, 

sabkha, factory, city centre, and farm). The greatest intensity of urban heat islands is seen in 

the city centre and factory sites during both seasons, while the farm and park sites represented 

the lowest intensity of heat islands in the study area. 
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 Spatial and Temporal  Chapter 5:

Distribution of Air UHI 

 Introduction 5.1

 

This chapter discusses the spatial and temporal distributions of local CLHIs. The aim of this 

chapter is to investigate the effect of land cover types on the air temperature and relative 

humidity of the study area. The main land covers found in the study area are sabkha, sand, 

built-up areas, vegetation, and water. The main land covers types are classified using the 

Landsat 8 image of 2013. Mobile air temperature and relative humidity were measured over the 

course of 46 traverses through the study area of Al Ahsa during January and February (winter) 

and August (summer) of 2011. 

 Summer mobile data 5.2

 

During the summer season (August 2011), twenty traverses were carried out in the study area. 

The air temperature and relative humidity were collected every 30 seconds, twice a day. The 

first traverse was made at night, approximately two to three hours before sunrise, while the 

second was after sunset. The duration of each traverse was between one and 2.5 hours. Each 

traverse took the same path during the night and after sunset, to pass through the same land 

covers as much as possible. Table  5-1 shows the date, period, start and end times, duration, and 

times of sunrise and sunset during the summer traverses. 
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Table 5-1 Mobile traverses schedule during August 2011 (after sunset and night-time) 

Date Period Starting time Ending time Duration Sunrise Sunset 

02/Aug 
After sunset 18:33:59 20:58:36 02:24:37 

05:09  18:27  
Night 01:47:15 04:43:28 02:56:13 

07/Aug 
After sunset 19:00:45 20:52:35 01:51:50 

05:11  18:23  
Night 02:45:17 04:21:04 01:35:47 

09/Aug 
After sunset 19:14:31 21:29:31 02:15:00 

05:12  18:22  
Night 02:11:05 04:25:05 02:14:00 

12/Aug 
After sunset 18:56:47 21:25:17 02:28:30 

05:14  18:19  
Night 02:28:29 04:48:59 02:20:30 

16/Aug 
After sunset 19:01:16 20:48:46 01:47:30 

05:15  18:16  
Night 02:27:41 04:03:11 01:35:30 

18/Aug 
After sunset 18:58:01 21:31:31 02:33:30 

05:16  18:14  
Night 02:20:07 04:47:07 02:27:00 

20/Aug 
After sunset 18:48:41 21:10:11 02:21:30 

05:17  18:13  
Night 02:35:50 04:39:50 02:04:00 

23/Aug 
After sunset 18:54:54 21:15:54 02:21:00 

05:18  18:10  
Night 02:27:06 04:24:06 01:57:00 

25/Aug 
After sunset 18:57:27 20:57:57 02:00:30 

05:19  18:08  
Night 02:26:52 04:28:52 02:02:00 

28/Aug 
After sunset 18:43:38 19:58:08 01:14:30 

05:20  18:05  
Night 02:45:51 04:20:21 01:34:30 

Note: Sunrise and sunset times obtained from the Weather Underground Inc. website: 

http://www.wunderground.com/ 

 Winter mobile data 5.3

 

In the winter season (January and February 2011), twenty six traverses were considered in the 

study area. The air temperature and relative humidity were collected every 30 seconds, twice a 

day. The first time was at night, approximately two to four hours before sunrise, while the 

second was immediately after sunset. The duration of each traverse was between one and 2.5 

hours. The path of each traverse was the same during the night and after sunset, so as to pass 

through the same land covers as much as possible. Table  5-2 shows the date, period, start and 

end times, duration, and times of sunrise and sunset during the winter traverses. 

 

 

 

 

 

 

 

http://www.wunderground.com/
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Table 5-2 Mobile traverses schedule during January and February 2011 (after sunset and night-time)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Note: Sunrise and sunset times obtained from the Weather Underground Inc. website: 

http://www.wunderground.com/    

 Land cover types from Landsat data 5.4

 

The first source of land cover types of the study area is the Landsat data. The Landsat 8 Image 

2013 classified using two different programmes: ENVI and Definiens Professional-5. As a 

result of the classification, both forms of software show accurate depictions of the main land 

cover types of the study area (Sabkha, Sand, Urban, Vegetation, and Water). However, the 

Definiens Professional-5 software shows more details of these classes, especially for Urban 

and Sabkha areas (Figure  5-1). 

 

 

 

 

 

Date Period Starting time Ending time Duration Sunrise Sunset 

27/Jan 
After sunset 17:34:15 19:43:45 02:09:30 

06:27  17:22  
Night 01:50:52 03:55:52 02:05:00 

02/Feb 
After sunset 17:59:50 19:12:12 01:12:22 

06:24  17:26  
Night 02:57:37 04:43:07 01:45:30 

06/Feb 
After sunset 18:18:43 20:23:13 02:04:30 

06:22  17:29  
Night 02:28:53 04:41:53 02:13:00 

08/Feb 
After sunset 18:10:38 20:04:09 01:53:31 

06:21  17:31  
Night 03:25:37 05:16:35 01:50:58 

12/Feb 
After sunset 18:15:52 20:04:22 01:48:30 

06:19  17:33  
Night 02:15:50 04:05:50 01:50:00 

15/Feb 
After sunset 18:22:38 20:39:38 02:17:00 

06:17  17:35  
Night 00:10:35 02:18:05 02:07:30 

18/Feb 
After sunset 18:10:27 19:50:57 01:40:30 

06:14  17:37  
Night 03:47:45 05:24:15 01:36:30 

19/Feb 
After sunset 17:57:32 20:23:02 02:25:30 

06:14  17:38  
Night 01:16:05 03:29:35 02:13:30 

20/Feb 
After sunset 18:22:15 20:13:45 01:51:30 

06:13  17:38  
Night 00:04:49 01:48:49 01:44:00 

21/Feb 
After sunset 18:42:38 21:04:08 02:21:30 

06:12  17:39  
Night 00:00:39 02:12:09 02:11:30 

22/Feb 
After sunset 18:44:14 21:09:14 02:25:00 

06:11  17:39  
Night 00:16:05 02:42:35 02:26:30 

23/Feb 
After sunset 18:53:53 22:44:23 03:50:30 

06:10  17:40  
Night 00:01:14 03:59:14 03:58:00 

24/Feb 
After sunset 20:06:04 20:57:34 00:51:30 

06:10  17:41  
Night 03:24:43 04:12:43 00:48:00 

http://www.wunderground.com/
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Figure 5-1 Supervised classification of Landsat 8 using ENVI (left) and Definiens professional software (right) 

  

 Land cover types from GeoEye data 5.5

 

The second source of land cover data of the study area is the GeoEye image. The GeoEye data 

at a spatial resolution of 0.5 metres shows more detail of land cover in the study area. The data 

set was used with mobile data to present the local CLHI profile and validate the classification 

results of the Landsat 8 image. The main land covers of the study area as mentioned before are: 

sand, sabkha, vegetation, built-up area, and water. However, to understand the effect of the 

different land covers on the air temperature and CLHIs intensity, the built-up of the study area 

are identified to sub-classes using GeoEye image as high resolution image (Oke, 2006). These 

classes are classified based on the intensity of the houses, vegetation, sand, and sabkha. 

Moreover, the classes and sub-classes are (1) vegetation (palm trees), class (2) water 

(evaporation lakes), class (3) sabkha, class (4) houses with vegetation, class (5) sand, class (6) 

sabkha mixed houses, class (7) sand with houses, class (8) low density of houses, and class (9) 

most the area is houses (Figure  5-2). 
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Figure 5-2 Sub-classes of the main land covers of the study area 

 
(Vegetation) 

 
(Water) 

 
(Sabkha) 

 
(Build-up with vegetation) 

 
(Sand) 

 
(Built-up with sabkha) 

 
(Built-up with sand) 

 
(Low built-up area) 

 
(Built-up) 

 

 Descriptive statistics and accuracy of mobile data  5.6

 

Table 5-3 summarises air temperature and relative humidity during the night-time and after-

sunset traverses in both winter and summer. In both traverses during both seasons, the 

difference between maximum, minimum, and mean air temperatures between night-time and 

after-sunset ranges from 4 °C to 7 °C. Meanwhile, the difference between maximum, 

minimum, and mean relative humidity between night-time and after-sunset ranges from 4% to 

17%. Relative humidity percentages during winter were higher than in summer. Maximum 

relative humidity was 89.1% in the winter, compared to 77.1% in the summer. Also, relative 

humidity was higher at night-time than after sunset in both seasons (Table  5-3). 
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Table 5-3 Statistics summary of air temperature and relative humidity for mobile data during winter  

Variable 

Night  

Temperature (°C) 

Sunset  

Temperature (°C) 

Night 

RH (%) 

Sunset 

RH (%) 

Winter Summer Winter Summer Winter Summer Winter Summer 

Maximum 19.31 36.33 25.13 41.64 89.10 77.10 85.00 59.70 

Minimum 8.56 23.88 13.16 30.95 28.10 16.40 19.60 9.70 

Mean 14.60 30.85 19.94 36.87 54.94 34.32 37.37 24.87 

Median 14.55 30.90 19.96 37.04 53.65 32.50 31.00 21.30 

SD* 2.54 2.50 2.60 2.21 16.45 14.37 15.61 12.46 

Range 10.75 12.45 11.97 10.69 61.00 60.70 65.40 50.00 

Skewness -.06 -.18 -.11 -.20 .46 1.07 1.32 0.97 

Kurtosis  2.30 2.34 2.49 2.20 2.15 3.68 3.82 3.15 

Note: SD = Standard deviation 

 

The accuracy of mobile traverses data are examined by comparing them with fixed weather 

stations data when they match closely in time and location during the winter and summer 

seasons. The comparison shows close agreements between data measured by HOBO data 

loggers and mobile or fixed weather station data. During the winter the mean different between 

mobile data and fixed weather stations of air temperature is 0.28 °C at night and 0.43 °C after 

sunset and -2.1% at night and -1.0% after sunset for the relative humidity (Table  5-4). During 

the summer the mean difference in air temperature between mobile data and fixed weather 

station data is 0.05 °C at night and 0.10 °C after sunset and -0.7% at night and -0.4% after 

sunset for the relative humidity (Table  5-5).    
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Table 5-4 Air and relative humidity comparison between mobile and fixed weather stations data during winter at night and after sunset 

Date Time of observation Air temperature in (ᵒC) Relative humidity (%)    

 Night After sunset Night After sunset Night After sunset    

 MB FWS MB FWS MB FWS DI MB FWS DI MB FWS DI MB FWS DI WSL LCT DFFWS 

27/01/11 02:14 02:00 17:49 20:00 15.99 15.80 0.19 20.41 18.41 2.00 87.6 94.6 -7.0 82.5 90.3 -7.8 FAR BUP 480 

02/02/11 03:54 04:00 18:58 19:00 13.16 12.94 0.22 18.49 19.63 -1.14 80.2 84.0 -3.8 59.1 51.1 8.0 SAB SAB 421 

06/02/11 03:37 04:00 19:12 19:00 14.58 12.97 1.61 15.77 14.96 0.81 78.0 80.6 -2.6 56.8 59.5 -2.7 PAR BUP 1,457 

08/02/11 03:53 04:00 18:34 19:00 10.86 10.08 0.78 23.64 22.71 0.93 52.0 56.8 -4.8 29.5 34.0 -4.5 FAC VEG 949 

12/02/11 03:08 03:00 19:11 19:00 12.27 12.05 0.22 17.51 18.39 -0.88 58.1 63.7 -5.6 34.2 35.0 -0.8 FAC BUP 201 
 03:21 03:00 19:21 19:00 12.05 12.05 0.00 17.37 18.39 -1.02 60.9 63.7 -2.8 36.7 35.0 1.7 CC BUP 155 

15/02/11 02:01 02:00 20:14 20:00 13.21 12.12 1.09 18.87 18.65 0.22 38.6 40.3 -1.7 28.3 19.7 8.6 CC BUP 1,538 

 00:53 01:00 19:17 19:00 12.82 11.47 1.35 20.10 18.3 1.80 37.5 45.1 -7.6 24.9 31.6 -6.7 FAC BUP 1,741 

18/02/11 05:18 05:00 19:45 20:00 15.27 15.06 0.21 20.82 19.51 1.31 57.6 58.0 -0.4 30.6 32.9 -2.3 CC BUP 238 

 05:16 05:00 19:42 20:00 15.37 15.06 0.31 20.72 19.51 1.21 57.4 58.0 -0.6 30.7 32.9 -2.2 CC BUP 339 

19/02/11 02:24 02:00 19:21 19:00 09.04 08.92 0.12 16.94 14.82 2.12 88.5 88.3 0.2 50.0 55.1 -5.1 FAR VEG 1,407 

20/02/11 00:55 01:00 19:11 19:00 14.12 15.80 -1.68 23.18 23.93 -0.75 46.4 41.4 5.0 20.7 21.0 -0.3 CC BUP 1,186 

21/02/11 01:54 02:00 20:45 21:00 19.27 18.94 0.33 22.25 20.94 1.31 29.1 30.1 -1.0 25.9 28.8 -2.9 CC BUP 2,339 

22/02/11 01:21 02:00 19:42 20:00 18.44 17.92 0.52 20.60 20.15 0.45 37.4 39.5 -2.1 32.9 34.9 -2.0 CC BUP 531 

 02:14 02:00 20:36 20:00 18.08 17.92 0.16 19.65 20.15 -0.50 37.9 39.5 -1.6 34.6 34.9 -0.3 CC BUP 595 

23/02/11 01:02 01:00 19:28 20:00 16.87 16.42 0.45 21.15 21.41 -0.26 45.2 45.3 -0.1 28.7 27.4 1.3 CC BUP 2,051 

24/02/11 03:29 03:00 20:11 20:00 15.68 16.82 -1.14 24.68 24.97 -0.29 39.1 38.4 0.7 27.6 27.6 0.0 PAR BUP 2,482 

Minimum       -1.68   -1.14   -7.6   -7.8    

Maximum       1.61   2.12   5.0   8.6    

Mean       0.28   0.43   -2.1   -1.0    

 

Note: MB = Mobile, FWS = Fixed weather station, DI = Different, WSL = Weather station location, LCT = Land cover type, DFFWS = Distant from weather station, FAR = 

Farm, SAB = Sabkha, BUP = Built-up area, VEG = Vegetation, CC = City centre, FAC = Factory.
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Table 5-5 Air and relative humidity comparison between mobile and fixed weather stations data during summer at night and after sunset 

Date Time of observation Air temperature in (ᵒC) Relative humidity (%)    

 Night After sunset Night After sunset Night After sunset    

 MB FWS MB FWS MB FWS DI MB FWS DI MB FWS DI MB FWS DI WSL LCT DFFWS 

02/08/11 04:28 04:00 20:43 21:00 34.05 35.8 -1.75 40.00 40.03 -0.03 34.2 33.0 1.2 15.4 16.7 -1.3 CC BUP 48 

 02:13 02:00 18:56 19:00 25.82 26.82 -1.00 38.39 37.32 1.07 68.5 67.6 0.9 25.6 28.2 -2.6 FAR VEG 1,400 

 02:29 03:00 19:07 19:00 26.26 28.05 -1.79 39.12 40.43 -1.31 46.9 55.2 -8.3 18.8 21.4 -2.6 SAB SAB 20 

07/08/11 03:34 03:00 19:52 20:00 25.28 26.52 -1.24 34.62 34.26 0.36 64.3 60.7 3.6 29.0 30.8 -1.8 FAR VEG 262 

09/08/11 02:18 02:00 19:21 19:00 35.69 35.00 0.69 38.81 39.63 -0.82 17.5 18.7 -1.2 17.2 17.4 -0.2 PAR BUP 1,574 

 04:18 04:00 21:21 21:00 34.15 35.61 -1.46 35.00 38.95 -3.95 19.4 17.9 1.5 30.9 29.4 1.5 CC BUP 2,761 

12/08/11 04:38 05:00 21:12 21:00 32.18 31.07 1.11 39.66 37.40 2.26 35.0 39.6 -4.6 12.6 14.2 -1.6 PAR BUP 241 

 03:57 04:00 20:29 20:00 31.13 30.87 0.26 39.63 38.31 1.32 36.8 39.4 -2.6 14.6 13.5 1.1 PAR VEG 1,700 

16/08/11 03:23 03:00 20:00 20:00 34.89 34.78 0.11 40.66 40.80 -0.14 18.0 17.8 0.2 10.6 10.4 0.2 CC BUP 97 

 03:08 03:00 19:46 20:00 30.75 31.82 -1.07 39.32 40.03 -0.71 21.2 19.7 1.5 11.2 10.6 0.6 FAC BUP 608 

 02:36 03:00 19:09 19:00 34.12 32.00 2.12 40.06 39.94 0.12 18.8 19.8 -1.0 9.90 9.30 0.6 PAR BUP 353 

18/08/11 03:56 04:00 20:33 21:00 34.78 34.68 0.10 37.84 37.07 0.77 19.0 19.5 -0.5 19.7 21.1 -1.4 CC BUP 141 

 04:34 04:00 21:18 21:00 34.6 34.05 0.55 37.48 36.88 0.60 19.3 19.5 -0.2 20.0 20.5 -0.5 FAC BUP 579 

 03:02 03:00 19:34 19:00 31.23 31.40 -0.17 37.07 39.30 -2.23 21.0 19.0 2.0 20.0 19.0 1.0 AIP SAN 1,466 

20/08/11 04:35 05:00 21:04 21:00 32.51 32.38 0.13 34.20 35.85 -1.65 23.5 23.7 -0.2 34.2 37.5 -3.3 CC BUP 655 

23/08/11 02:27 02:00 18:55 19:00 33.89 33.00 0.89 37.51 37.89 -0.38 62.7 69.7 -7.0 29.3 29.5 -0.2 CC BUP 1,370 

25/08/11 04:28 04:00 20:57 21:00 27.75 26.63 1.12 32.95 29.67 3.28 57.5 57.3 0.2 53.1 49.1 4.0 FAR VEG 1,622 

28/08/11 04:17 04:00 19:56 20:00 25.45 25.02 0.43 31.31 31.64 -0.33 38.3 37.5 0.8 23.4 24.4 -1.0 FAR VEG 1,381 

Minimum       -1.79   -3.95   -8.3   -3.3    

Maximum       2.12   3.28   3.6   4.0    

Mean       -0.05   -0.10   -0.7   -0.4    
 

Note: MB = Mobile, FWS = Fixed weather station, DI = Different, WSL = Weather station location, LCT = Land cover type, DFFWS = Distant from weather station, FAR = 

Farm, SAB = Sabkha, BUP = Built-up area, VEG = Vegetation, CC = City centre, FAC = Factory, SAN = Sand, AIP = Airport.
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 Summer and winter mobile data distribution  5.7

 

The mobile data distribution for both seasons indicates that the air temperature and relative 

humidity data are not normally distributed, either in the night-time or after-sunset periods. 

Probability plots (Figure  5-3 and Figure  5-4) as well as quantile distribution plots (also see 

appendix 5.1) clearly show skewness of the data in the tail and the centre of the mobile data 

distribution, for both air temperature and relative humidity in both seasons. In addition, the 

data skewness is greater during the winter for both variables. The log temperature and square 

root transformation methods of both air temperature and relative humidity indicate the same 

result, that the data is not normally distributed (Figure  5-3 and Figure  5-4). The Figure  5-3 and 

Figure  5-4 indicate that the data distribution of both air temperature and relative humidity are 

not normally distributed. The normal probability plot is generally not straight with two distinct 

peaks and that sort as curvature evinces bimodality.   

 

Statistically, the air temperature and relative humidity based on original data, log temperature 

and square root transformation methods are not normally distributed. Skewness/Kurtosis tests 

showed “fail to accept” for the null hypothesis (“Air temperature and relative humidity 

observations at night and after sunset are normally distributed”) at P<0.05 level, for both air 

temperature and relative humidity for the three different methods in both seasons (Table  5-6 

and Table  5-7). Although some individual variables show a statistically normal distribution, 

such as air temperature during winter, the probability and Quantile distribution plots indicate 

that these are not in fact normally distributed. The decision to reject normal distribution was 

thus based on both graphic and statistical methods, to meet the good complete normality test 

(D'Agostino et al., 1990). 
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Figure 5-3 Probability distribution plots of air temperature (°C) during winter traverses 

 
(a) Winter season 

 
(b) Summer season 

 

Note: at night and after sunset (a) and during summer traverses at night and after sunset (b). Original data left, log 

temperature in the middle, and square root transformation of air temperature right. 
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Figure 5-4 Probability distribution plots of relative humidity (%) during winter traverses 

 
(a) Winter 

 
(b) Summer 

 

Note: at night and after sunset (a) and during traverses at night and after sunset (b). Original data left, log relative 

humidity in the middle, and square root transformation of relative humidity right. 

 

 

 

 

 



 

126 

 

 

Table 5-6 Air temperature Skewness/Kurtosis tests for normality during winter and summer 

Season Air temperature Obs 
Pr 

(Skewness) 
Pr (Kurtosis) 

Adj chi2 

(2) 
Prob>chi2 

W
in

te
r 

Original data at night 972 0.4417 0.0000 40.29 0.0000 

Original data after sunset 972 0.1405 0.0000 18.30 0.0001 

Log at night 972 0.0000 0.0496 28.40 0.0000 

Log after sunset 972 0.0000 0.0853 25.73 0.0000 

SQRT at night 972 0.0020 0.0000 26.78 0.0000 

SQRT after sunset 972 0.0008 0.0016 18.74 0.0001 

S
u

m
m

er
 

Original data at night 698 0.0494 0.0000 26.96 0.0000 

Original data after sunset 698 0.0271 0.0000 47.17 0.0000 

Log at night 698 0.0002 0.0003 22.81 0.0000 

Log after sunset 698 0.0009 0.0000 36.60 0.0000 

SQRT at night 698 0.0047 0.0000 24.16 0.0000 

SQRT after sunset 698 0.0056 0.0000 41.54 0.0000 

 

Table 5-7 Relative humidity Skewness/Kurtosis tests for normality during winter and summer seasons  

Season Relative Humidity Obs 
Pr 

(Skewness) 

Pr 

(Kurtosis) 

Adj chi2 

(2) 
Prob>chi2 

W
in

te
r 

Original data at night 972 0.0000 0.0000 . 0.0000 

Original data after sunset 972 0.0000 0.0001 . 0.0000 

Log at night 972 0.9760 0.0000 . 0.0000 

Log after sunset 972 0.0000 0.0131 65.22 0.0000 

SQRT at night 972 0.0024 0.0000 . 0.0000 

SQRT after sunset 972 0.0000 0.3637 . 0.0000 

S
u

m
m

er
 

Original data at night 698 0.0000 0.0029 . 0.0000 

Original data after sunset 698 0.0000 0.3627 65.65 0.0000 

Log at night 698 0.0011 0.0000 40.54 0.0000 

Log after sunset 698 0.0402 0.0000 66.20 0.0000 

SQRT at night 698 0.0000 0.3701 37.66 0.0000 

SQRT after sunset 698 0.0000 0.0002 39.94 0.0000 

5.7.1 Seasonal variation of mobile data in different land cover 

 

A non-parametric test of the median values for air temperature and relative humidity of each 

land cover area (Sabkha, Sand, Urban, and Vegetation) for both seasons (winter and summer) 

showed that there is a statistically significant difference among these groups. The results of a 

Kruskal–Wallis test for median comparison of air temperatures and relative humidity indicates 

λ2=47.128 with (3) d.f. P=0.0001 and λ2=62.263 with (3) d.f. P=0.0001 respectively during the 

winter, while the same test during summer indicates λ2=127.477 with (3) d.f. P=0.0001 and 

λ2=60.432 with (3) d.f. P=0.0001 respectively. 
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5.7.2 Air temperature variation 

 

There are statistically significant differences in air temperature between each pair of land 

covers during both seasons (Table  5-8 and Table  5-9). The Kruskal-Wallis test shows that the 

air temperature at all land covers is significantly different, with P=0.000 except between sand 

and sabkha; P=0.015 during summer at night and P=0.134 during winter after sunset. Also, 

there are no significant differences between urban and sand land covers, with P=0.300 during 

summer after sunset, P=0.648 during winter at night, and P=0.709 after sunset. Neither are 

there significant differences between vegetation and sabkha during summer after sunset with 

P=0.409 (Table  5-8 and Table  5-9). The equal medians of air temperature over land covers 

mentioned above can be explained by the similarity of conditions between them; for example, 

between vegetation and sabkha on one hand, and sand and sabkha on the other. However, the 

equal medians between urban and sand areas might be also be explained by the location of 

most areas classified as sand inside the urban areas. In summary, these results strongly support 

the effect of land cover on air temperature during both winter and summer. 

 

Table 5-8 A result of the Kruskal–Wallis test of air temperature at night and after sunset during summer between 

each pair of land covers of mobile data 

Time  Variable Sand Urban Vegetation 

 

At night 

Sabkha =(0.015) ≠(0.000) ≠(0.000) 

Sand  ≠(0.000) ≠(0.000) 

Urban   ≠(0.000) 

 

After sunset 

 

Sabkha ≠(0.000) ≠(0.000) =(0.409) 

Sand  =(0.300) ≠(0.000) 

Urban   ≠(0.000) 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). Values in 

parentheses indicate calculated P values. Adjusted probability (P´=0.0083). 

 

Table 5-9 A result of the Kruskal–Wallis test of air temperature at night and after sunset during winter between 

each pair of land covers of mobile data 

Time  Variable Sand Urban Vegetation 

 

At night 

Sabkha ≠(0.000) ≠(0.000) ≠(0.000) 

Sand  =(0.648) ≠(0.000) 

Urban   ≠(0.000) 

 

After sunset 

 

Sabkha =(0.134) ≠(0.000) ≠(0.000) 

Sand  =(0.709) ≠(0.000) 

Urban   ≠(0.000) 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). Values in 

parentheses indicate calculated P values. Adjusted probability (P´=0.0083). 
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5.7.3 Relative humidity variation 

 

There are also statistically significant differences in relative humidity between each pair of 

land covers during both seasons (Table  5-10 and Table  5-11). The Kruskal-Wallis test indicates 

that relative humidity over all land covers is significantly different with P=0.000. However, 

there are statistically no differences in relative humidity between the vegetation and sabkha 

during both seasons, with P=0.055 during summer after sunset, P=0.040 during winter at night, 

and P=0.095 during winter after sunset. Neither are there significant differences between urban 

and sand areas during winter, with P=0.312 at night and P=0.284 after sunset (Table  5-10 and 

Table  5-11). The equal medians for relative humidity between the vegetation and sabkha on 

one hand, and urban and sand on the other, is due to the similarity of conditions between these 

land covers areas. For example, vegetation and sabkha are similar as both locations feature 

include wet sand, an irrigation method used in farms and also a natural feature of sabkha land. 

Sabkha areas also contain large areas of sand. Similarly, the equal medians found in urban and 

sand measurements might be explained by the location of most sand areas inside urban areas, 

classified as sand. 

 

Table 5-10 A result of the Kruskal–Wallis test of relative humidity at night and after sunset during summer 

between each pair of land covers of mobile data 

Time  Variable Sand Urban Vegetation 

 

At night 

Sabkha ≠(0.000) ≠(0.000) ≠(0.000) 

Sand  ≠(0.000) ≠(0.000) 

Urban   ≠(0.000) 

 

After sunset 

 

Sabkha ≠(0.000) ≠(0.000) =(0.055) 

Sand  ≠(0.000) ≠(0.000) 

Urban   ≠(0.000) 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). Values in 

parentheses indicate calculated P values. Adjusted probability (P´=0.0083). 

 

Table 5-11 A result of the Kruskal–Wallis test of relative humidity at night and after sunset during winter between 

each pair of land covers of mobile data 

Time  Variable Sand Urban Vegetation 

 

At night 

Sabkha ≠(0.000) ≠(0.000) =(0.040) 

Sand  =(0.312) ≠(0.000) 

Urban   ≠(0.000) 

 

After sunset 

 

Sabkha ≠(0.000) ≠(0.000) =(0.095) 

Sand  =(0.284) ≠(0.000) 

Urban   ≠(0.000) 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). Values in 

parentheses indicate calculated P values. Adjusted probability (P´=0.0083). 
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 Seasonal air temperature and relative humidity profiles 5.8

 

The mobile data from the summer traverses show variations in air temperature and relative 

humidity between the different land cover areas. Most of the mobile traverses (see appendix 

5.2) show an increase in air temperature in the urban areas and decreases in the sand, sabkha, 

and vegetation areas. For example, during day two (2
nd

 August 2011) of the summer traverses, 

the maximum air temperature in the built-up area was 34 °C and the minimum air temperature 

was 25 °C in the vegetation area at night, while the maximum air temperature in the built-up 

area was 42 °C and the minimum air temperature was 36 °C in the vegetation area after the 

sunset. Therefore, the different between daytime and night-time air temperatures for the same 

day is 17 °C. Figure  5-5 shows an example of one day of data from summer traverses, with the 

tracking points overlaid on the GeoEye image. 

 

Similarly, day eight of the summer traverses supports the influence of different land covers on 

air temperature. The data from this traverse show the stability of air temperature during both 

day-time and night-time as we move through the urban areas. The maximum air temperature 

during the night-time was 33 °C and the minimum was 30 °C, while the air temperature ranged 

from 35 °C to 37 °C after sunset. Hence, the range of air temperatures in urban areas over both 

day and night is only 7 °C.  

 

The relative humidity data show a strong and clear relationship with air temperature. When the 

air temperature increases, the relative humidity decreases (Lawrence, 2005). The levels of 

relative humidity are high in both vegetation and sabkha sites, while it is less in the urban and 

sand areas. On day two of the summer traverses, maximum relative humidity was 64% at night 

and 29% after sunset in the vegetation areas, while the minimum relative humidity was 

recorded as 29% at night and 17% after sunset. For day eight, relative humidity ranged from 

77% at night to 28% after sunset; most the land cover of this traverse was urban areas 

(Figure  5-5). 
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 Figure 5-5 Air temperature, relative humidity, and land cover profile chart of the mobile traverse day two during 

summer season (7 August 2011) 

 

 
 

Note: GeoEye data below shows the tracking of the same traverse. 
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Data from the winter traverses also indicate that air temperature and relative humidity differed 

over the various land cover areas. The mobile data from the winter traverses also show 

increases in air temperature as we move in or around the built-up areas, while air temperature 

decreases in the vegetation, sand, and sabkha areas (see appendix 5.2). An example of the air 

temperature and relative humidity profile is shown in Figure  5-6. During day eight (19
th

 

February 2011) both air temperature and relative humidity were clearly fluctuated among 

different land covers types. The maximum air temperature during this traverse was observed in 

built-up areas (14 °C at night and 21 °C after sunset), while the minimum air temperature was 

recorded in vegetation areas of 8 °C at night and 13 °C after sunset. Therefore, the range of air 

temperatures for the same day’s traverses was 13 °C (Figure  5-6). 

 

The relative humidity data in the winter also showed a clear relationship with both air 

temperature and land cover. When the air temperature decreases, relative humidity increases 

(Lawrence, 2005, Valsson and Bharat, 2011). The highest relative humidity values are recorded 

at vegetation and sabkha sites, while it is lower in urban and sand areas. During day eight of 

the winter traverses, maximum relative humidity reached 83% at night and 60% after sunset in 

the vegetation areas, while minimum relative humidity was recorded as 54% at night and 26% 

after sunset (Figure  5-6). 
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 Figure 5-6 Air temperature, relative humidity, and land cover profile chart of the mobile traverse day eight during 

winter season (19 February 2011) 

 

 
 

Note: GeoEye data below shows the tracking of the same traverse. 
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 Intensity of summer CLHIs 5.9

 

The intensity of CLHIs is described as the difference in temperature between pairs of fixed 

weather stations, with the first one representing an “urban” area and the second a “rural” area 

(Oke, 1998). In this study, data from the mobile traverses (night and after sunset) during both 

winter and summer recorded in different land cover areas were compared two times. First time 

is with the fixed weather station located at the palm tree farm, which represents an oasis 

situation and second with airport weather station, which is located outside the urban area.  

 

All the mobile data, comparing with both stations (Airport and Farm), show high intensity of 

CLHIs in the built-up areas (classes 4, 6, 7, and 9), and low or negative heat islands in the 

vegetation, sabkha, mixed building and vegetation class, and sand areas during summer 

(Figure  5-7). The intensity of CLHIs is higher during the night in the built-up areas than after 

sunset and similar or close in  other land covers based on the farm fixed weather station and 

airport weather station as control variables. The different in the air temperature, during the 

summer, between mobile data in different land covers and from fixed weather station ranges 

between +9.1 °C to -1.0 °C at night and +8.0 °C to -2.5 °C after sunset (Figure  5-7). While the 

different in the air temperature between, during the summer, mobile data in different land 

covers and airport fixed weather station ranges between +6.1 °C to -5.7 °C at night and +2.6 °C 

to -7.2 °C after sunset (Figure  5-8).  



 

134 

 

 

Figure 5-7 CLHI intensity among different land covers for day one during summer (02 August 2011) based on 

farm as control 

 
Note: 1=Vegetation, 3=Sabkha, 4=Built-up 1, 5=Sand, 6=Built-up 2, 7=Built-up 3, and 9=Built-up 5. Night-time 

between 01:49:29am and 04:42:29am and Sunset-time between 18:36:05pm and 20:58:36pm. 

 

Figure 5-8 CLHI intensity among different land covers for day one during summer (02 August 2011) based on 

airport as control 

 
Note: 1=Vegetation, 3=Sabkha, 4=Built-up 1, 5=Sand, 6=Built-up 2, 7=Built-up 3, and 9=Built-up 5. Night-time 

between 01:49:29am and 04:42:29am and Sunset-time between 18:36:05pm and 20:58:36pm.  
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The intensity of CLHIs during summer indicates the same temporal pattern in both night-time 

and after-sunset traverses for all the mobile data comparing with the farm and airport weather 

stations. All the traverses during the night and after sunset, based on the farm or airport as 

control, show the same patterns that UHI intensity is higher at night than after sunset and 

associated with different land covers. The highest CLHIs exist in built-up areas especially at 

the class 5 of the built-up area which represents the high intensity of building and population. 

While the minimum or negative CLHIs occur at the vegetation and sabkha which have less 

building and more trees with wet soils.  For example, the maximum of UHI intensity based on 

farm and airport control variables, in the day selected below (August 2
nd

 2011) (Figure  5-9 and 

Figure  5-10 ), is +9.0 °C to +8.0 °C and +6.0 °C to +3.0 °C at night and after sunset, 

respectively. While the minimum or negative UHI intensity, observed in same day, is -1.0 °C 

to -3.0 °C and -6.0 °C to -7.0 °C at night and after sunset, respectively.  

 

Figure 5-9 Temporal CLHI intensity on day one among different land cover areas 

 

Note: (night and after-sunset traverses during summer) (Farm as control). Reference lines indicate time of sunrise 

(05:09am) and sunset (18:27pm). 
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Figure 5-10 Temporal CLHI intensity on day one among different land cover areas 

 

Note: (night and after-sunset traverses during summer) (Airport as control). Reference lines indicate time of 

sunrise (05:09am) and sunset (18:27pm). 

 

 

The spatial distribution of CLHI intensity during summer traverses at night and after sunset is 

shown in (Figure  5-11 and Figure  5-12). Based on the range of CLHI intensity, local urban 

heat islands can be divided into three different categories: hot, mild, and cool heat islands 

according to both methods of identifying UHI intensity (farm and airport weather stations). 

During summer traverses (August), the hot zone of CLHIs is clearly visible in the western 

region of the study area over the largest cities in the study area: Al Hufuf and Al Mubarraz, 

which have a population of 660,788 in 2010 (Ministry of Economy and Planning, 2010).  

 

The intensity of CLHIs in the hot zone ranges from +5.1 °C to +10.5 °C at night and +3.7 °C to 

+10.4 °C after sunset as farm site is the control, and ranges from +2.5 °C to +4.8 °C at night 

and +0.6 °C to +2.6 °C after sunset as airport weather station is the control. The hot zone of the 

CLHIs also appears in the north, east, and north-east of the study area at night. This zone 

includes the cities and villages that have less population and housing intensity. Examples of 

these cities are Al Uyun in the north, Al Killabiyah in the north-east, and Al Umran in the east 

of the study area with populations of 33,042, 16,984, and 17,410 respectively.  
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The mild zone of local CLHIs covers most of the study area, including within the boundaries of 

the hot zone mentioned above. Most settlements located in the east, southeast, and north of the 

study area represent the mild CLHIs zone. The mild region includes most the small villages 

such as Al Qaraah, Al Fadooel, and Al Mutayrifi with 9702, 6609, and 6371 inhabitants 

respectively (Ministry of Economy and Planning, 2010). The intensity of CLHIs in the mild 

zone ranges from +1.0 °C to +5.1 °C at night and +0.2 °C to +3.7 °C after sunset as farm site is 

the control, and ranges from +1.3 °C to +2.5 °C at night and -0.5 °C to +0.6 °C after sunset as 

airport weather station is the control.  

 

The third category of CLHIs is the cool zone. This zone is found on the edges of the mild zone 

and over the vegetation areas which extend from the north and north-east to the south and 

south-east of the study area. The intensity of CLHIs in the cool zone ranges from -1.0 °C to 

+1.0 °C at night and -2.5 °C to +0.2 °C after sunset as farm site is the control, and ranges from 

-6.4 °C to 1.3 °C at night and -7.2 °C to -0.5 °C after sunset as airport weather station is the 

control (Figure  5-11 and Figure  5-12). 

 

Figure 5-11 Distribution of CLHIs for the mobile data during summer season August 2011at night-time and after 

sunset where Farm as control 

  
(a) At night 

 
(b) After sunset 
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Figure 5-12 Distribution of CLHIs for the mobile data during summer season August 2011 at night-time and after 

sunset where Airport as control 

  
(a) At night 

 
(b) After sunset 

 Intensity of winter CLHIs 5.10

 

During winter, data from the mobile traverses (night and after sunset) in different land covers 

are compared with the fixed weather station located in the farm site and with the airport 

weather station located outside the urban area. Comparison indicates the presence of CLHIs 

during winter season based on both control variables farm and airport but with less intensity 

compared to summer season. The mobile data indicates high CLHI intensity in the built-up 

areas (class 4, 8, and 9), and low or negative heat islands in the vegetation and sabkha areas 

during winter based on both control variables farm and airport (Figure  5-13). The intensity of 

CLHIs shows similarity of the different in the air temperature during the night and after sunset 

in the winter. The different in the air temperature during winter between mobile data in 

different land covers and farm fixed weather station ranges between +4.9 °C to -0.1 °C at night 

and +4.8 °C to -0.2 °C after sunset (Figure  5-13). While the difference in the air temperature 

during winter between mobile data in different land covers and airport fixed weather station 

ranges between +2.5 °C to -3.1 °C at night and +2.1 °C to -5.0 °C after sunset (Figure  5-14).  
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Figure 5-13 CLHI intensity among different land cover areas for day eight of winter (19 February 2011) based on 

farm as control 

 
Note: 1=Vegetation, 3=Sabkha, 4=Built-up 1, 8=Built-up 4, and 9=Built-up 5. Night-time between 01:17:35am 

and 03:25:35am and Sunset-time between 20:06:34pm and 20:57:34pm.    

 

Figure 5-14 CLHIs intensity among different land cover areas for day eight of winter (19 February 2011) based on 

airport as control 

 
Note: 1=Vegetation, 3=Sabkha, 4=Built-up 1, 8=Built-up 4, and 9=Built-up 5. Night-time between 01:17:35am 

and 03:25:35am and Sunset-time between 20:06:34pm and 20:57:34pm.    
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The intensity of CLHIs during winter show the same temporal pattern in both night-time and 

after-sunset traverses for all the mobile data comparing with the farm and airport weather 

stations. All the mobile data during the night and after sunset traverses, based on the farm or 

airport as control, indicate that CLHI intensity is higher at night than after sunset and related 

with different land covers classes. Moreover, the maximum CLHIs intensity exists in built-up 

areas which have high intensity of building and population. While the minimum or negative 

CLHIs occur at the vegetation and sabkha areas which have less building and more trees with 

wet soils.  For example, the maximum of UHI intensity based on farm and airport control 

variables, in the day selected below (February 19th 2011) (Figure  5-15 and Figure  5-16), is 

+5.0 °C to +4.5 °C and +2.3 °C to +2.2 °C at night and after sunset, respectively. While the 

minimum or negative UHI intensity, observed in same day, is -0.1 °C to -0.2 °C and -3.0 °C to 

-5.0 °C at night and after sunset, respectively. 

 

Figure 5-15 Temporal CLHI intensity on day eight among different land cover areas 

 

Note: (night and after-sunset traverses during winter). (Farm as control). Reference lines indicate time of sunrise 

(05:09am) and sunset (18:27pm). 
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Figure 5-16 Temporal CLHI intensity on day eight among different land cover areas 

 

Note: (night and after-sunset traverses during winter). (Airport as control). Reference lines indicate time of sunrise 

(06:14am) and sunset (17:38pm). 

 

The spatial distribution of CLHI intensity during winter traverses at night and after sunset is 

shown in (Figure  5-17 and Figure  5-18). Also, based on the range of CLHI intensity, the local 

CLHIs can be divided into three different zones: warm, mild, and cool heat islands. During the 

winter traverses (February), the warm zone of CLHIs is centred over the largest cities of the 

study area, Al Hufuf and Al Mubarraz. However, in this season the peak of CLHIs moved 

slightly to the south, both at night and after sunset and based on the farm or airport as control. 

The intensity of CLHIs in the warm zone ranges from +3.1 °C to +7.8 °C at night and +2.1 °C 

to +7.3 °C after sunset as farm site is the control, and ranges from +1.8 °C to +4.8 °C at night 

and +1.3 °C to +3.4 °C after sunset as airport weather station is the control (Figure  5-17 and 

Figure  5-18). 

 

The majority of the study area is classified under the mild zone of CLHIs, which is located 

between the two zones the edges of the warm and cool zones. The villages and small 

settlements e.g. Al Qaraah, Al Fadooel, and Al Mutayrifi are examples of the mild zone areas. 

The formation of the mild zone of heat islands refers to the size of the area and population of 

these villages comparing with the main and large cities of the study area areas. The intensity of 

urban heat islands in the mild zone ranges from +1.0 °C to +3.1 °C at night and +0.1 °C to +2.1 
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°C after sunset as farm site is the control, and ranges from +0.6 °C to +1.8 °C at night and +0.4 

°C to +1.3 °C after sunset as airport weather station is the control.   

 

The third category of CLHIs is the cool region. This zone is recognized on the edges of the 

study area and over the vegetation region which extends from the north and north-east to the 

south and south-east of the study area. The intensity of CLHIs in the cool zone ranges from -

2.1 °C to +1.0 °C at night and -3.5 °C to +0.1 °C after sunset as farm site is the control, and 

ranges from -3.1 °C to +0.6 °C at night and -4.9 °C to +0.4 °C after sunset as airport weather 

station is the control (Figure  5-17 and Figure  5-18).  

 

Figure 5-17 Distribution of CLHIs for the mobile data during winter (February) 2011, night-time and after sunset 

where Farm as a control 

 
(a) At night 

 
(b) After sunset 
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Figure 5-18 Distribution of CLHIs for the mobile data during winter (February) 2011, night-time and after sunset 

where Airport as a control 

 
(a) At night 

 
(b) After sunset 

 Summary  5.11

 

In this chapter, temporal and spatial distributions of CLHIs are addressed. There are 

statistically significant differences in both air temperature and relative humidity during the 

winter and summer seasons among the different land cover types. The differences in air 

temperature suggest the existence of urban heat islands in the study area during both winter and 

summer. There is a strong relationship between air temperature, relative humidity, and the 

different land covers (sabkha, sand, built-up areas, vegetation, and water).  

 

The spatial distribution of CLHIs intensity during both winter and summer, based on the farm 

or airport as control variables, shows a clear link between air temperature and land cover type. 

There are four zones of CLHIs over the study area during the winter and summer: hot, warm, 

mild, and cool zones. The hot and warm zones are recognized in the largest cities of the study 

area (Al Hufuf and Al Mubarraz). The mild zone was observed in the small settlements and 

villages such as Al Qaraah, Al Fadooel, and Al Mutayrifi. Finally, the cool zone of CLHIs was 

located in the farm regions, extending from the north and north-east to the south and south-east 
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of the study area during winter and summer and based on both methods. Finally, more 

discussions of these results will be included in Chapter Seven. 
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 Estimating Surface Temperature  Chapter 6:

 Introduction 6.1

 

This chapter addresses the regional surface temperature of the study area using the 

remote sensing approach during the winter (February) and summer (August) seasons 

in 2011. The aim of this chapter is to present estimations of surface temperature 

using satellite data from the Landsat 7 ETM+ and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensors in order to measure the effect of (SUHIs) in the 

study area in both winter (February) and summer (August) in 2011. The use of 

different satellite data allows an understanding of the effect of local (SUHIs) at 

different spatial and temporal scales. The surface temperature obtained from the 

satellite data is used to evaluate the effect of land cover type on local surface 

temperatures. Also, where appropriate, the estimated surface temperature is 

compared with the temperature data obtained from mobile sensors described in 

chapter five to validate the accuracy of the satellites-derived surface temperatures. 

Representations of the surface temperatures and (SUHIs) are presented graphically 

using ArcMap 10.2 and statistically using Stata 12. Finally, the relationship between 

land cover type and SUHI intensity is presented and discussed for the day and night 

data. 

 Satellite data 6.2

 

Three types of satellite data at different spatial resolutions are used in this study for 

different purposes. The satellites are the Landsat 7 Landsat7 ETM+, MODIS and 

GeoEye-1. The Landsat 7 ETM+ images for February and August 2011 were 

obtained free of charge from the USGS website (Figure  6-1). The various bands of 

the Landsat 7 ETM+ are used for different purposes. Bands 1, 2, 3, 4 and 5, as multi-
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spectral bands with 30 metres each of pixel resolution (NASA, 2013b) are used to 

classify the main land cover types of the study area for February and August 2011, 

while band 6 is the thermal band used to estimate the surface temperature, with a 

spatial resolution of 60 metres, resampled to 30 metres, for each pixel (Chander et 

al., 2009, United States Geological Survey, 2010).    

 

Figure 6-1 USGS global visualization viewer (GloVis) 

 
 

Source: (United States Geological Survey, 2011).  

 

The MODIS (Figure  6-2) data are used to obtain quantitative data of land cover 

based on MODIS pixel size and to estimate the surface temperature of the study area 

to estimate the SUHI intensity. MODIS data can also be obtained free of charge from 

the USGS website. Daily MODIS images for February and August 2011, that are a 

product of MOY11A1 Aqua, at 1000 m spatial resolution, are used to estimate the 

surface temperature of the study area. The data and data preparation of the MODIS 

images are described in detail in chapter three (methodology).     
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Figure 6-2 Moderate Resolution Imaging Spectroradiometer (MODIS) of the study area 

 
 

Source: (NASA, 2013b).  

 

The third source of satellite data used in this study is from the GeoEye-1 sensor 

(Figure  6-3). The data were obtained with permission from the Al Ahsa Municipality 

in Saudi Arabia. GeoEye-1 data has a high spatial resolution of 0.5 metres and is 

used to validate the accuracy of the Landsat 7 ETM+ and MODIS land cover 

mapping. These data are also used to provide details of the surfaces and roof covers 

and to create the emissivity map in order to estimate the surface temperature and 

calculate the SUHI intensity of the study area.         

 

 

 

 

 

 

 

 

 

 



 

148 

Figure 6-3 GeoEye-1 satellite image of the Al Ahsa Oasis in 2010 

 
 

Image obtained from Al Ahsa Municipality in Saudi Arabia, 2010.  

 Land cover classification  6.3

 

Mapping land cover is an important step in obtaining the quantitative data needed to 

test the effect of the land cover on surface temperature (Chen et al., 2006, Adinna et 

al., 2009). Supervised classification is a well-established and reliable method 

typically used to classify the land cover types. It has been shown to provide accurate 

results, particularly when two or more scenes that are captured on different dates are 

used (Mas, 1999). The results of the maximum likelihood method for the Landsat7 

ETM, with a spatial resolution of 30 m for each pixel, are presented in Figure  6-4 

below. The main land cover types in the study area are sabkha, sand, vegetation 

(palm trees and parks), residential areas, and water (evaporation lakes).  
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However, some of these classes are sub-divided in order to provide more precision 

about the land cover of the study area and to create a more specific emissivity map. 

Estimating emissivity is a vital step in determining land surface temperature using 

satellite data. These sub-classes of the main land cover types are sand dunes, 

sandstone, red sand, a built-up area (1) where most of the area consists of houses, 

built-up  areas (2) where most of the area is asphalt (e.g. parking lots and streets), 

vegetation (1), consisting of palm trees, and vegetation (2) where the most of the 

area is grass (e.g. parks, football fields and irrigated crop fields) (Figure  6-5).  

 

Figure 6-4 The main land cover type classifications of the study area, using Landsat7 ETM+ 18
th

 

August 2011 

 
 

Note: Built-up area (1) mostly houses and concrete; Built-up (2) most of the area is asphalt; 

Vegetation (1) palm trees; Vegetation (2) parks and irrigated crop fields.  
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Figure 6-5 Samples of the main and sub-classes of land cover types of the study area 

 
Sabkha 

 
Sand dunes 

 
Sandstone 

 
Red sand 

 
Residential area 

 
Parking lots (asphalt) 

 
Palm trees 

 
Irrigated crop land 

 
Water 

 

MODIS satellite images are also used to map the land cover of the study area at 

1000 m resolution, to provide quantitative data and create an emissivity map to 

estimate the surface temperature. In order to investigate the thermal characteristics of 

different land cover types, every pixel in each of the images is classified with respect 

to the common land cover schema (Bradley et al., 2002) and considered the land 

cover details of each pixel (Oke, 2006, Owen et al., 2006). Figure  6-6 shows the 

maximum likelihood results used to classify each pixel of the MODIS image; then 

each pixel was edited based on main and sub-classes of the study area land covers 

(Figure  6-7). The classified image was edited based on the common land cover of 

each pixel and consider the pixel details, such as the density of the buildings, sand, 

sabkha, and vegetation area, in the sub-classes step (Oke, 2006, Owen et al., 2006), 

then each pixel was validated with a high spatial resolution image (GeoEye-1 

image).   

 

        
0 150 Meters ±
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Figure 6-6 Land cover types of the study area (Al Ahsa oasis) based on MODIS data      

 
 

Note: (1) Sabkha, (2) Sand dunes, (3) Mixed area 1 (vegetation, buildings, sand, and sabkha), (4) 

Mixed area 2 (sabkha, sand, buildings, and vegetation), (5) Sand and buildings, (6) Low density of 

buildings, (7) Built-up area (houses and asphalt), (8) Vegetation area (farm).  
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Figure 6-7 Samples of the main and sub-classes of land cover types of the study area based on 

MODIS pixel 1 km X 1 km resolution.  

 
Sabkha 

 
Sand dunes 

 
Mixed area 1 

 
Mixed area 2 

 
Sand and buildings 

 
Low density of buildings 

 
Built-up area 

 
Vegetation area (farm) 

 

 

Note: Mixed area 1 - vegetation, buildings, sand and sabkha; and mixed area 2 - sabkha, sand, 

buildings and vegetation. 

 Accuracy assessment of the classification  6.4

 

The step following classification is the accuracy assessment. The land cover 

classification results from Landsat 7 are tested using real-world land cover data using 

high spatial resolution images (GeoEye-1 and Google Earth images). The accuracy 

assessment used a simple random sampling (SRS) framework and the results 

indicates that 438 of 500 random sample points are identical with those of the real 

world, while only 62 sample points show a dissimilarity to the reference points 

(GeoEye-1 and Google Earth images) (Table  6-1). In other words, the accuracy 

assessment of the land cover classification using the Landsat 7 data for the study area 

is 87% accurate against the reference data. Moreover, the most errors of the 

classification results appear among the sand and sabkha classes. That refers to the 

close similarity of both classes, which represent sand surfaces but the sabkha 

includes some wet salty surfaces.   An example of the random sample units is shown 

in Figure  6-8.  
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Table 6-1 Error matrices comparing, on a class-by-class basis 

 Reference map data (GeoEye and Google Earth image) 

 Classes Sabkha Sand Vegetation Built-up  Water Total (%) 

C
la

ss
if

ie
d

  

m
ap

 d
at

a 

Sabkha 20 13 3 6 0 42 48% 

Sand 5 193 8 0 0 206 94% 

Vegetation 1 14 95 1 0 111 86% 

Built-up  5 5 1 129 0 140 92% 

Water  0 0 0 0 1 1 100% 

Total  31 225 107 136 1 500  

 (%)  65% 86% 89% 95% 100%  87% 

 

Note: The relationship between known reference data (ground true GeoEye and Google Earth data) 

and the corresponding results of the classification procedure for the study area. 

 

Figure 6-8 An example of random sample points of classified images with the decision about being 

identical to or dissimilar from the real world 

Class name Google Earth GeoEye Classified  Decision 

 

 

Vegetation   

   

 

 

Identical 

 

 

Built-up area 

   

 

 

Identical 

 

 

Sabkha and sand 

   

 

 

Identical 

 

 

Vegetation and sand 

   

 

 

Dissimilar 

 

Note: Green = vegetation, Brown = built-up area, Purple = sabkha, and Yellow = sand. The real scale 

of each image is 180 m width and 180 m height.  

 Mappingtheemissivity(εσ) 6.5

 

Mapping the emissivity values is the next step followed the supervised classification 

in order to estimate the surface temperature using Landsat 7 ETM+ and MODIS 

thermal data. The emissivity value of each land cover class is identified after 

classification step based on look up tables and previous studies of the emissivity 

values in arid region (Zhang, 2011). Each class in the Landsat 7 ETM+ and MODIS 
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classified images integrates its own emissivity value using the ENVI software to 

produce the emissivity map (Shunlin, 2001, Janet, 2009, Sobrino et al., 2012). The 

results of the emissivity maps using both images Landsat 7 ETM+ and MODIS is 

shown in (Figure  6-9 and Figure  6-10). The emissivity value ranges between 0.95 

and 0.99 during the summer (18 August 2011) and between 0.93 and 0.98 during the 

winter (7 February 2011) for the Landsat 7 ETM+. While the emissivity value ranges 

between 0.94 and 0.97 during the summer (1 July 2011) and between 0.93 and 0.98 

during the winter (1 February 2011) (Figure  6-9 and Figure  6-10).  

 

 Figure 6-9 Emissivity values of different land covers of the study area, using Landsat 7 ETM+  

  
 

Note: Left: during the summer (18 August 2011); Right: during the winter (7 February 2011). 
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Figure 6-10 Emissivity values of different land covers of the study area using MODIS data 

  
 

Note: Left: during the summer (1 July 2011); Right: during the winter (1 February 2011). 

 Estimating surface temperature using Landsat7 ETM+ 6.6

 

The Landsat 7 ETM+ thermal band 6 data refer to the gain value and settings when 

the data are acquired. The thermal band is acquired in two different gain values high 

and low then stored in two different channels 61 for lower radiometric resolution and 

sensitivity and 62 for higher radiometric resolution and sensitivity (Barsi et al., 

2003). Following the previous steps of classification and emissivity, it is possible to 

estimate the surface temperature by converting the digital numbers to radiance 

values using published parameters (Coll et al., 2010). (See chapter three: Data 

sources and Methodology-section 3.5 for more details with respect to the estimation 

of the surface temperatures from spectral radiance data). 

 

The surface temperature is estimated seasonally during the winter and summer 2011. 

The surface temperature estimation result is shown in Figure  6-11. During the winter 

season (7 February 2011) the surface temperature of the study area, Al Ahsa Oasis, 



 

156 

ranged between 12 °C and 31 °C at 11:00 AM, while the surface temperature ranged 

between 28 °C and 58 °C during the summer season (18 August 2011).  

 

The surface temperature in the study area can be classified into four categories: cool, 

mild, high and extremely high. The first category includes the surface temperature 

ranging from 12 °C to 20 °C during the winter and from 28 °C to 42 °C during the 

summer. This category is located at the green vegetated areas and the area that is 

close to the palm tree farms. The second category represents the mild zone, where 

the surface temperature ranges from 20 °C to 22 °C during the winter and from 

42 °C to 46 °C during the summer; this zone extends between the green area and the 

built-up area. The third category is the high zone, where the surface temperatures 

range between 22 °C and 24 °C during the winter and between 46 °C and 48 °C 

during the summer. The last category is the extremely high area, which is located on 

the sand and sabkha sites during either the winter or the summer season. The surface 

temperature in this area ranges from 24 °C to 31 °C in the winter and from 48 °C to 

58 °C in the summer (Figure  6-11).  

 

These previous results for the surface temperature were expected due to the time of 

the satellite overpass, which is 11:00 AM, and from estimating the surface 

temperature during the period of direct sun during the day (Mildrexler et al., 2011). 

The nature of the surface temperature in the desert regions, where sand is the main 

land cover, is that it quickly heats up to high temperatures during the daytime and 

drops rapidly during the night, which explains the results for the surface temperature 

of the study area (Alavipanah et al., 2007).  
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Figure 6-11 Surface temperature of the study area estimated from Landsat7 ETM+ 2011 

  
 

Note: 7 February (left) 18 August (right) at 11:00 AM local time). The two images are in different 

scales.    

 Estimating surface temperature using MODIS data 6.7

 

Another method of estimating the surface temperature using MODIS data is to use a 

generalized split-window LST algorithm (Zhengming and Dozier, 1996, Wan et al., 

2002). Although the MODIS data do not have a high spatial resolution, being 

1000 m compared to the Landsat 7 ETM+ at 60 m, they have a high temporal 

resolution, as the data are available on a daily basis for both day and night (Roy et 

al., 2002). The surface temperature of the study area during the winter (February) 

and summer (August) was estimated daily, for the day and the night. An example of 

the brightness temperature, estimated using MODIS data, is shown in Figure  6-12 for 

both day- and night-time on two selected days in each season, 4 and 20 February and 

4 and 20 August. 
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Figure 6-12 Night-time and daytime brightness temperature of the study area using MODIS data 

during February and August in 2011 

 

 

 

Both brightness temperature images during the daytime and night-time indicate the 

presence of SUHI in the study area. The maximum surface temperature during the 

two selected days, presented in a light colour, is distributed outside and on the open 

sand and sabkha areas during the day, while it is centred on the built-up area and 
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residential area during the night. However, the minimum surface temperature, 

presented in the dark colour, was observed over the vegetated areas and water bodies 

during the day and became cooler during the night in the same area, including the 

sand covered area. The difference between the maximum and minimum surface 

temperatures during the two selected days is 15 °C in the day and 6 °C in the night in 

February and is 10 °C in both day and night in August.  

 Comparison between ground and satellite surface temperature estimates 6.8

 

The results of surface temperature obtained from the Landsat 7 ETM+ and MODIS 

satellites were compared to the real-time ground temperature measurements, 

recorded at six fixed weather stations and from mobile data. Thist allows satellite 

surface temperature estimates to be compared against ground (Orhan et al., 2014). 

The comparison of the results of Landsat with those of the fixed weather stations, 

including the airport, indicates a close agreement, ranging between 1 °C and 6 °C 

during August and between 1 °C and 5 °C during winter (Figure  6-13), while the 

comparison of results between mobile and MODIS data shows that agreement 

ranged between 0.03 °C and 4.16 °C during the winter and summer selected days (2 

August and 19 February 2011) (Figure  6-14 and Figure  6-15). These differences or 

disagreements between fixed weather stations and Landsat 7 ETM+ observations 

might refer to the sensitivity of the method that used to estimate the surface 

temperature by converting the radiation to brightness temperature comparing with 

ground-based method and to the small sample of the points which are presenting in 

this comparison. The largest different between the satellite and fixed weather stations 

observations occurred on the sabkha and farm sites and that supports the argument 

about the sensitivity of the measurements especially if we consider the time of the 

satellite overpass which is about 11am. The disagreement between MODIS and 

mobile observations might refer to the pixel size of MODIS which covers 1000 

metres and represents different land covers compared to mobile data. That might be 

confirmed by the largest disagreement between both MODIS and mobile 

observations being recorded in mixed areas in both seasons (Figure  6-14 and 

Figure  6-15).      
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Figure 6-13 Relationships between real-time (in situ) fixed weather station and land surface temperatures calculated from Landsat-7 thermal infrared band 

 

Winter (February) 2011 

 

 

 

Summer (August) 2011 

 

 

  
Note: (real-time measurements were collected on 7 February 2011 and 18 August 2011 (11:00 AM), GMT+3). Landsat-7 overpass: (07:04 AM).  
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Figure 6-14 Comparison between real-time (in situ) mobile data and brightness surface temperature 

estimated from MODIS image on 2nd August 2011 

 

Note: (real-time of mobile data at 01:47 AM and MODIS overpass at 01:40 AM). 

 

 

Figure 6-15 Comparison between real-time (in situ) mobile data and brightness surface temperature 

estimated from MODIS image on 19th February 2011 

 
Note: (real-time of mobile data at 01:16 AM and MODIS overpass at 01:10 AM). 
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 The relationship between SUHI intensity and different land cover  6.9

 

Land cover change is one of the most important factors of urban climate change, 

usually presented as (SUHIs) (Laras et al., 2012). After estimating the brightness 

temperature using Landsat 7 and MODIS thermal band data, the SUHI intensity is 

calculated by subtracting the pixel value of the rural area (the airport area) from the 

urban area of the study area (Oke, 1998). The relationship between the UHI intensity 

and different land cover types is tested two times based on two different spatial 

resolutions, first with Landsat at 60 metres and second with MODIS at 1000 metres 

of spatial resolution. 

6.9.1 Landsat 7 ETM+   

 

The SUHI intensity data distribution indicates a significant relationship among 

different land cover types based on Landsat 7 data. Although the Landsat overpass 

time was 11:00 AM local time, when the SUHI intensity was weak (Oke, 1982),  

there is a clear picture of the effect of the different land cover types on the (SUHIs). 

The median of the SUHI intensity ranged between -7 °C and 1 °C during February 

and between -18 °C and 2 °C during August at the water body and sabkha sites and 

at the water body and residential areas, respectively. The minimum of SUHI 

intensity is observed at the water body, palm tree sites, residential areas, and 

irrigated areas during February, while the maximum is recorded in the sabkha, 

sandstone, residential areas, and parking lot and asphalt areas during August. For 

example, the minimum value of SUHI intensity was recorded in the residential areas 

during February (-10 °C) and in the water bodies during August (-18 °C), while the 

maximum values were observed at the sandstone area (8 °C) during February and at 

the parking lot and asphalt areas during August (10 °C) (Figure  6-16). These results 

are expected, because the time of the satellite overpass is 11.00 AM local time, when 

the surface is receiving direct sunlight. Moreover, different materials on the Earth’s 

surface absorb solar radiation differently. For example, water heats up more slowly 

and to a lower temperature than other materials such as sand or sabkha areas (Bland 

et al., 2004).  
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Figure 6-16 Summary of SUHI intensity distribution during February and August among different 

land cover types  

 

 
 

Note: 7 February (top) and 18 August (bottom). SAB = Sabkhas, SDU = Sand dunes, SST = 

Sandstone, SRE = Red Sand, RAC = Resident area (most of it buildings), PLA = Parking lot area 

(most of it asphalt), PTA = Palm tree areas, ICF = irrigated crop fields, and WAT = water. 

 

Similarly, Figure  6-17 shows the intensity of (SUHIs) in the study area, Al Ahsa 

Oasis, during February and August. Through the images, we can divide the (SUHIs) 

into three categories: 1) cool (SUHIs), which range between -10 °C and 0 °C during 

February and from -18 °C to 0 °C during August; 2) a no SUHI zone, which is at 

0 °C during February and August; and 3) hot (SUHIs), which range between 0 °C 

and 8 °C during February and from 0 °C to 12 °C during August. The cool category 

centres on the water, palm trees and irrigated areas, while the hot zone is located on 
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the three types of sands (sand dunes, sandstone and red sand areas), including the 

sabkha sites; however, the no SUHI zone is located between the hot and cool zones 

and is made up of the areas close to the vegetation and the edges of the urban and 

resident areas.   

 

Figure 6-17 SUHI intensity of the study area using Landsat 7 ETM+ data 

 

 

Note: 7 February (winter), left, and 18 August (summer), right. The overpass of the satellite is 11:00 

AM local time. 

 

Statistical test indicates that heat islands intensity data are not normally distributed 

based on Landsat 7 ETM+ data. The result of a Skewness/Kurtosis test showed that 

the null hypothesis cannot be accepted at P<0.05 level for HII in different land cover 

areas during both February and August. A non-parametric test of the median values 

for HII among different land cover area (Sabkha, Sand dunes, Sandstone, Red Sand, 

Resident area, Parking lots, Palm tree areas, Irrigated crop fields, and water) for both 

seasons (February and August), showed that there is a statistically significant 

difference among these groups. The results of a Kruskal–Wallis test for median 
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comparison of HII indicates λ2 = 1.15e+05 with (8) d.f. P=0.0001 for February and 

λ2 = 1.29e+05 with (8) d.f. P=0.0001 for August. There are statistically significant 

differences in HII between each pair of land cover areas during both February and 

August (Table  6-2). The Kruskal-Wallis test showed that the HII at all locations is 

significantly different, with (P=0.0001) except between Sandstone and Parking lots 

areas during August (P=0.0025). The equal medians of these mentioned sites might 

be explained by the similarity of the conditions between them as the parking lots area 

represent asphalt while the other site is the sand mixed with stones. These results 

strongly indicate the effect of the land cover types on the SUHI intensity during both 

seasons based on Landsat 7 ETM+ data. 

 

Table 6-2 A result of the Kruskal–Wallis test of SUHI intensity between each pair of land cover areas 

during February and August based on Landsat 7 ETM+ data. 

Land cover Season SAB SDU SST SRE RAC PLA PTA ICF 

SDU 
Feb. ≠        

Aug. ≠ ≠       

SST 
Feb. ≠ ≠       

Aug. ≠ ≠       

SRE  
Feb. ≠ ≠ ≠      

Aug. ≠ ≠ ≠      

RAC 
Feb. ≠ ≠ ≠ ≠     

Aug. ≠ ≠ ≠ ≠     

PLA 
Feb. ≠ ≠ ≠ ≠ ≠    

Aug. ≠ ≠ = ≠ ≠    

PTA 
Feb. ≠ ≠ ≠ ≠ ≠ ≠   

Aug. ≠ ≠ ≠ ≠ ≠ ≠   

ICF 
Feb. ≠ ≠ ≠ ≠ ≠ ≠ ≠  

Aug. ≠ ≠ ≠ ≠ ≠ ≠ ≠  

WAT 
Feb. ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ 

Aug. ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ 

 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). 

Values in parentheses indicate calculated P values. Adjusted probability (P´=0.001). SAB = Sabkhas, 

SDU = Sand dunes, SST = Sandstone, SRE = Red Sand, RAC = Resident area (most of it buildings), 

PLA = Parking lot area (most of it asphalt), PTA = Palm tree areas, ICF = irrigated crop fields, and 

WAT = water.   

 

6.9.2 MODIS data 

 

MODIS data, with a 1000-metre pixel size and daily revisits (day and night), are 

used to investigate the relationship between SUHI intensity and land cover type. The 

land cover types are divided into seven classes, based on the majority land cover 
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type evaluated over the area of a MODIS pixel size (1000 m): sabkha, sand, 

vegetation, mixed area, sand and buildings, low density of buildings, and built-up 

area. The land cover is classified, using a grid overlaid on a high spatial resolution 

image (GeoEye-1) in order assess the precise area of each type of land within each 

grid (Oke, 2006). These results indicate a significant relationship between the land 

cover type and SUHI intensity, based on MODIS data during February and August, 

for both day and night observations. For the sand and residential land cover types, 

the median of the SUHI intensity ranged between 1 °C and 2 °C respectively during 

the day and between 0.30 °C and 3 °C at night, during the nine selected days of 

February. For the vegetation, sabkha, sand land cover types, the median of the SUHI 

intensity ranged from -1.30 °C to 1.50 °C in daytime and from 0.65 °C to 2.40 °C at 

night during for the same nine days The minimum SUHI intensity is observed over 

the vegetated areas (-10 °C) and the sand areas (-3 °C) during February daytime and 

night-time, respectively. The maximum HII is recorded over the sand (11 °C) and 

mixed area (7 °C) land cover types during February. The minimum SUHI intensity is 

observed over the vegetated areas (-12 °C) and sabkha areas (-10 °C) during August 

daytime and night-time, respectively, while the maximum is recorded in the sand 

(6 °C) and residential areas (7 °C) during August daytime and night-time, 

respectively (Figure  6-18). 
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Figure 6-18 Summary of SUHI intensity distribution among different land cover in the nine selected 

days of 31 days during August and of 28 days of February 2011 

  Daytime                                                                            Night-time 

 

 
Note: February (top) and August (bottom), in daytime (left) and night-time (right). SAB = Sabkha, 

SAN = Sand, VEG = Vegetation, MIX = Mixed area, SB = Sand and buildings, LDB = Low density 

of buildings, and BUA = Built-up areas.  

 

An example of mapping SUHI intensity using MODIS imagery is shown in 

Figure  6-19. The figure indicates that during the night the positive SUHI intensity is 

centred over the residential area, which represents the main two urbanized centres of 

the oasis (Al Hufuf and Al Mubarraz), and the weaker heat islands are centred over 

the vegetated area and water body during the day and over the sand at night during 

both seasons, February and August 2011.  



 

168 

Figure 6-19 SUHI intensity of the study area using MODIS data 

 

 

Note: during 20 February and 4 February (winter), top, and 20 August and 4 August (summer), 

bottom. The overpass of the satellite is at 13:00 and 01:10 local time during February and is at 13:20 

and 01:40 local time during August, day- and night-time, respectively.  
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The distribution of MODIS data indicates that heat islands intensity data are not 

normally distributed. The result of a Skewness/Kurtosis test shows that the null 

hypothesis cannot be accepted at P<0.05 level for HII in different land cover areas 

during both February and August at the day and night data based on MODIS data. A 

non-parametric test of the median values for HII among different land cover area 

(Sabkha, Sand, Vegetation, Mixed area, Sand and buildings, Low density of 

buildings, and built-up area) for both seasons (February and August) during the day 

and night,  indicates that there is a statistically significant difference among these 

groups. The results of a Kruskal–Wallis test for median comparison of HII are λ2 = 

1979.409 with (6) d.f. P=0.0001, λ2 = 2779.990 with (6) d.f. P=0.0001, λ2 = 

1363.365 with (6) d.f. P' =0.0001, and λ2 = 3035.303 with (6) d.f. P=0.0001 during 

February and August at the day and night respectively.  

 

Moreover, comparing each pair of land cover during both periods also indicates that 

there are statistically significant differences of the heat island intensity among these 

land covers. The Kruskal-Wallis test shows that the HII at most of the sites is 

significantly different, with P=0.0001 except between some of the land covers 

classes. These classes that include the equal medians, are sand and buildings with 

mixed area, and vegetation; low density of buildings with sabkha, mixed area, sand 

and buildings, and vegetation during February; and sand with sabkha, vegetation 

with mixed area, low density of buildings with sabkha, sand and buildings, mixed 

area, and vegetation, and finally mixed area with built-up area during August 

(Table  6-3 and Table  6-4). The equal medians of these mentioned sites might be 

refer to the effect of the differences of the spatial resolution between MODIS (1000 

meter), which represent several land covers within each pixel, comparing with 

Landsat 7 ETM+ (30 meter). Overall, the statistic outcomes support the effect of the 

land covers types on the (SUHIs) intensity based on MODIS data for both seasons at 

the day and night time. 
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Table 6-3 A result of the Kruskal–Wallis test of SUHI intensity between each pair of land cover areas 

during February (nine selected days) at the day and night-time based on MODIS data. 

Land 

cover  
Time SAB SAN VEG MIX SB LDB 

SAN 
Day ≠(0.0001)      

Night ≠(0.0001)      

VEG 
Day ≠(0.0001) ≠(0.0001)     

Night ≠(0.0001) ≠(0.0001)     

MIX 
Day ≠(0.0001) ≠(0.0001) ≠(0.0001)    

Night ≠(0.0001) ≠(0.0001) ≠(0.0004)    

SB  
Day ≠(0.0001) ≠(0.0001) ≠(0.0001) =(0.4892)   

Night ≠(0.0001) ≠(0.0001) =(0.0251) =(0.6730)   

LDB 
Day =(0.1269) ≠(0.0001) ≠(0.0001) ≠(0.0001) ≠(0.0001)  

Night ≠(0.0001) ≠(0.0001) =(0.2710) =(0.1648) =(0.2524)  

BUA 
Day ≠(0.0001) ≠(0.0001) ≠(0.0001) ≠(0.0001) =(0.9658) ≠(0.0001) 

Night ≠(0.0001) ≠(0.0001) ≠(0.0001) ≠(0.0001) ≠(0.0001) ≠(0.0001) 

 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). 

Values in parentheses indicate calculated P values. Adjusted probability (P´=0.002).   

 

Table 6-4 A result of the Kruskal–Wallis test of SUHI intensity between each pair of land cover areas 

during August (nine selected days) at the day and night-time based on MODIS data. 

Land 

cover  
Time SAB SAN VEG MIX SB LDB 

SAN 
Day ≠(0.0001)      

Night =(0.0021)      

VEG 
Day ≠(0.0001) ≠(0.0001)     

Night ≠(0.0001) ≠(0.0001)     

MIX 
Day ≠(0.0001) ≠(0.0002) ≠(0.0001)    

Night ≠(0.0001) ≠(0.0001) =(0.5713)    

SB  
Day =(0.0033) ≠(0.0001) ≠(0.0001) ≠(0.0001)   

Night ≠(0.0001) ≠(0.0001) ≠(0.0001) ≠(0.0001)   

LDB 
Day =(0.4488) ≠(0.0001) ≠(0.0001) ≠(0.0001) =(0.0518)  

Night ≠(0.0001) ≠(0.0001) =(0.0030) =(0.0035) =(0.0044)  

BUA 
Day ≠(0.0001) ≠(0.0012) ≠(0.0001) =(0.9848) ≠(0.0001) ≠(0.0001) 

Night ≠(0.0001) ≠(0.0001) ≠(0.0001) ≠(0.0001) ≠(0.0001) ≠(0.0001) 

 

Note: ‘=’ indicates no difference (accept – H0) and ‘≠’ indicates significant difference (accept - H1). 

Values in parentheses indicate calculated P values. Adjusted probability (P´=0.002).   

 

The SUHI intensity is higher during the daytime in both February and August. The 

SUHI intensity ranged between -7 °C and 10 °C and between -9 °C and 4 °C in 20th 

of February and 20th of August respectively at the daytime. While, the SUHI 

intensity ranged from -2 °C to 6 °C and from -4 °C to 6 °C in 4th of February and 

4th of August respectively at the night-time (Figure  6-19). Similarly to Landsat 7 

observations, the MODIS thermal data also shows a similar pattern, relating land 

cover type and SUHI intensity. Three zones of SUHI intensity can be identified. The 

first zone is the sabkha and sand areas, which heat up quickly during the daytime and 
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cool down rapidly at night. The second zone is the vegetated and water body areas, 

which show a stable relationship with SUHI intensity during both day and night; this 

zone can be classified as the lowest zone of SUHI intensity values. The third zone is 

the built-up areas, which include the zone that receives energy and heat during the 

day and releases it during the night; this applies to both seasons, February and 

August (Figure  6-19).   

 

The daily distribution of SUHI intensity among different land cover types either 

during February or August at day or night indicates a fluctuating distribution, 

especially during February daytime. Figure  6-20 shows that the median HII in the 

areas of sand and low density of buildings during the daytime ranged between 

0.30 °C and 3.65 °C. The minimum HII values were recorded over low density 

buildings and sand areas on different days during February. For example, at -4 °C on 

2 February for the low density buildings; at -9 °C on 22 February for sand; at -10 °C 

on 27 February for vegetation. The maximum values were observed over sand on 4 

February at 11 °C; 6 °C over sand and buildings on 19 February; 7 °C over sabkha 

on 20 February (Figure  6-20).  

 

However, the medina HII in the regions of sand and built-up during the night ranged 

between -0.40 °C and 4 °C. The minimum HII values were observed at also different 

land covers during February. For example, at -4 °C on 2 February for the sand area, -

3 °C on 15 February for the sabkha area and at -2 °C on 11 February for the sand and 

buildings areas. The maximum HII values were recorded over built-up and low 

density of buildings areas on 22 February at 8 °C and 7 °C over the mixed area site 

on 19 February (Figure  6-20).     
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Figure 6-20 The data distribution of the SUHI intensity among the different land cover types on the nine selected days of 28 days during February 2011 

 

  
 

Note: Daytime (left) and night-time (right). SAB = Sabkha, SAN = Sand, VEG = Vegetation, MIX = Mixed area, SB = Sand and buildings, LDB = Low density of buildings, 

and BUA = Built-up areas.  
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During August, the daily distribution of urban HII values among different land cover 

types fluctuates, especially during the day. The night data, however, show a more 

stable pattern with less variation among the land cover types. Figure  6-21 shows that 

the median night HII values ranged between -3 °C and 3 °C at the vegetation and 

sabkha areas, respectively, and between -2 °C and 4 °C at the sabkha and built-up 

areas, respectively. The minimum HII values were recorded over different land cover 

types on different days (Figure  6-21).  

 

At August night the land cover shows a clear effect on the pattern (SUHIs) intensity. 

The distribution of the minimum, maximum, and the median of (SUHIs) indicate an 

increase starting from the first land cover sabkha to reach the peak value at the built-

up area during the night-time. The minimum values of SUHI intensity during the 

night were also noted in different land covers and on different days during this 

month, for example, at -10 °C on 23 August at the sabkha area, at -6 °C on 18 

August at the sand area and at -5 °C on 18 August at the vegetation areas. However, 

the maximum values were observed in the built-up area class on 20 August at 8 °C, 

at the low density of buildings area on 20 August
 
at 7 °C and at the sand and 

buildings site on 23 August at 6 °C (Figure  6-21). 
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Figure 6-21 The data distribution of the SUHI intensity among the different land cover types on the nine selected days of 31 days during August 2011 

 

  

 

Note: Daytime (left) and night-time (right) during August 2011. SAB = Sabkha, SAN = Sand, VEG = Vegetation, MIX = Mixed area, SB = Sand and buildings, LDB = Low 

density of buildings, and BUA = Built-up areas.
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Another way to determine the effect of land cover on UHI intensity is to compare the 

percentage of land cover for each class with the UHI intensity values derived from 

satellite observation (Yokobori and Ohta, 2009). The percentage of each land cover 

class is calculated based on both MODIS and Landsat pixel sized classified images. 

For more details about this analysis, see the methodology chapter (section 3.4.3.3). 

The relationship between the percentages of different land cover types and UHI 

intensity for the selected days of February and August is shown in Figure  6-22 and 

Figure  6-23. During the daytime, the UHI intensity increases as the area of sabkha 

cover increases.  On the other hand, there is a strong decrease in UHI intensity as the 

percentage of vegetation cover increases. During the night, the UHI intensity 

increases as area of built-up area increases. Also, during the night, the percentage of 

sand and vegetation appear to have an influence on UHI intensity which can be 

summarized as an inverse relationship (the more sand, the less SUHI intensity), 

(Figure  6-22and Figure  6-23).  

 

The above-mentioned results are logically consistent with the expected thermal 

behaviour of desert land cover types;  sabkha and sand usually heat up quickly 

during under strong direct sunlight and cool down rapidly at night (Bland et al., 

2004). Vegetation is a typical land cover type in many oases and plays a major role 

in surface cooling both during the day and the night. Moreover, the built-up area 

shows a significant relationship with UHI intensity at night; as the percentage of 

built-up areas increases, the UHI intensity values increase. This refers to the concrete 

and asphalt as the most commons materials in the modern cities, which make a 

primary contribution to increase the city temperature by absorbing a large percentage 

of solar heat during the daytime and emit it at night-time (Gore, 2008). 
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Figure 6-22 The relationship between the percentage of the land cover types and SUHI intensity on 

the nine selected days during February 2011 

  

  

  

  
 

Note: The land cover types are (vegetation, built-up area, sand and sabkha) and daytime (left) and 

night-time (right). 
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Figure 6-23 The relationship between the percentage of the land cover types and SUHI intensity on 

the nine selected days during August 2011 

  

  

  

  
  
Note: The land cover types are (vegetation, built-up area, sand and sabkha) and daytime (left) and 

night-time (right). 
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 Summary  6.10

 

In this chapter, the surface temperature (brightness temperature), using two different 

satellite sensors, the Landsat 7 ETM+ and the Moderate Resolution Imaging 

Spectroradiometer (MODIS), is estimated from the thermal bands of each satellite.  

The results indicate that the highest surface temperatures were estimated using 

Landsat 7 ETM+ are located outside the built-up areas over the sabkha and sand 

areas; they range between 12 °C and 31 °C during February and between 28 °C and 

58 °C during and August. Also, the highest surface temperature which is estimated 

using the MODIS data are located over the sand and sabkha areas during both season 

at the day, while, located over the built-up area during both season at the night-time. 

The lowest surface temperatures which are estimated using both sensors, (Landsat 7 

ETM+ and MODIS), centred over the water bodies and vegetation during both 

season at the day and night; however, the sand area is added to the lowest land 

covers at night which is determined using MODIS data. Therefore, the Landsat 7 

ETM+ data are useful to estimate the surface temperature as high spatial resolution 

but limited with day time observation. On other hand, the MODIS data are useful to 

estimate the surface temperature tow times day and night but with 1000-metre spatial 

resolution.             

 

The SUHI intensity using Landsat 7 ETM+ ranges between -10 °C and 8 °C during 

February and between -18 °C and 12 °C during August lowest at the water and 

vegetation and highest at the sabkha and sand areas. While based on MODIS data 

UHI intensity ranges between -7 °C and 10 °C and between -9 °C and 4 °C during 

the day and between -2 °C and 6 °C and between -4 °C and 6 °C during the night in 

February and August, respectively. Also, the highest UHI located over the sabkha 

and sand during the day and over the built-up area during the night, while the lowest 

centred over the water, vegetation, and sand at the night.    

 

Statistically, there are significant differences of the heat island intensity among most 

of the land covers. The Kruskal-Wallis test shows that the UHI intensity at most of 

the sites is significantly different, with P=0.0001 of both data from Landsat 7 ETM+ 

and MODIS except some of the land covers classes. These differences indicate that 
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there is effect of land cover types on the (SUHIs) intensities in the study area. The 

SUHI intensity distribution among the different land covers indicates a strong 

relationship between them in both seasons and during both the day and night. The 

percentage of each class of land cover also shows a clear effect of the land cover on 

the (SUHIs) during both day and night. More discussion of details about the results 

can be found in the following chapter (discussion chapter). 
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 Discussions and Conclusions  Chapter 7:

 Introduction  7.1

 

Different data sets including five fixed weather stations, the airport weather station, 

mobile data, and satellites images (MODIS and Landsat 7 ETM+), were used to map 

and investigate (SUHIs) in the arid region Al Ahsa oasis, Saudi Arabia. The lack of 

investigations at high temporal and spatial resolution provided the need for this type 

of research for more understanding of the urban heat island phenomenon in arid 

regions such as Al Ahsa oasis. Moreover, less attention has been paid to urban heat 

islands in arid zones compared to the humid tropical and mid-latitude regions 

(Figure  7-1). This study has several unique features in relation to the investigation of 

the effect of different land covers on UHI intensity. Besides its location in the arid 

region where the temperature is extremely high, the study area is located on a flat 

area which limits the effect of topography on near-surface temperature. Also, the 

study area has different land covers, sand, sabkha, vegetation, water, and built-up 

area, help to identify the effect on the UHI, Thus, this thesis is the first study to 

attempt to provide high temporal and spatial resolution of an arid-zone urban heat 

island. The results should assist local government agencies to mitigate the urban heat 

island effect.  

 

The multi-sensor data used in this study, along with the assessment of methods for 

processing MODIS and Landsat7 ETM+ imagery for mapping (SUHIs) (chapters 4, 

5, and 6), has demonstrated a methodology for using remote sensing to improve our 

understanding of (SUHIs) in arid regions at high temporal and spatial resolutions.  
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Figure 7-1 Distribution of world cities that UHI has reported overlaid over world climate zone  

 
 

Note: The cities is based on the last review of the world UHI by (Wong et al., 2013) and the climate zone map 

modified after (Kottek et al., 2006).     

 Structure of the local urban heat islands  7.2

 

The evaluation of the spatial variability of different climate factors such as air and 

surface temperatures, wind, relative humidity, and precipitation are important aspects 

in order to understand the patterns and structure of microclimates of an urban area. 

One of the simplest methods to study urban heat islands is the fixed weather station 

(Oke, 2006, Gartland, 2008). The benefits of using fixed stations in this study are:   

 

(1) To quantify the urban heat island intensity; 

(2) To compare results with mobile and satellite data; 

(3) To determine the effect of different land cover on the urban heat island; 

(4) To investigate seasonal variation in the urban heat island.   

 

Five micro stations were established in different locations. The locations of these 

fixed weather stations were chosen based on the main land covers which represents 

the nature of the study area. These locations are farm, park, sabkha, factory, and city 
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centre (Figure  7-2). In addition to these fixed weather stations, the airport weather 

station was used as reference to calculate the magnitude of CLHIs in this study as it 

is located outside the urban area of the study area (Voogt, 2000, Kim and Baik, 

2005). The data obtained from theses fixed weather stations are hourly air and 

surface temperature, relative humidity, and wind and gust speed of each location for 

the period of the study (January and February for winter season) and (July and 

August for summer season) in 2011. More details on these fixed weather stations are 

mentioned in Chapter 3, (Data Sources and Methodology) section 3.2.1 for airport 

weather station and 3.2.2 for fixed weather stations.  

 

Figure 7-2 The location of the fixed and airport weather stations among the urban and rural areas of 

the study area Al Ahsa Oasis 

 

7.2.1 Evaluation of the air and surface temperature variation   

 

The data distribution analysis of the fixed and airport weather stations indicates the 

variations of air temperature, surface temperature, relative humidity, and wind and 
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gust speed between each location during both periods of the study (January and 

February for winter) and (July and August for summer) in 2011. The histograms and 

probability distribution of all the variables indicate that the data are not normally 

distributed in either summer or winter. On the other hand, the results show that the 

air and surface temperatures in the city centre and factory are the highest during both 

periods of the study while, the farm and park locations are the lowest. However, the 

sabkha location is between these two categories during the summer and winter 

seasons. The city centre, factory, and airport weather stations represent the lowest 

locations for relative humidity while the farm, park, and sabkha are the highest. The 

highest wind and gust speeds are recorded at the airport and sabkha locations while 

the lowest are observed in the city centre, farm, and park.       

 

These results are expected because the high density of concrete and buildings in the 

city centre and industrial activities in the factory locations affect the air and surface 

temperatures, and relative humidity. The changing of the Earth’s surface by 

replacing the natural vegetation with non-evaporating and non-transpiring surface 

such as asphalt, metal, and concrete will increase the solar radiation amount in the 

city centre and factory locations which is stored by the surface materials during the 

day and released by night (Weng, 2001). However, vegetated areas (palm trees farm 

in this study) and parks areas behave in the opposite way by cooling down the area 

and represent the lowest patterns and locations of air and surface temperature and 

relative humidity. The high leaf area and canopy thickness of the vegetation cover 

can be an important  factor that influences air and surface temperature due to the  

effect of vegetation on relative humidity because of traditional irrigation used in the 

study area (Figure  7-3) and the wet surfaces (Zoulia et al., 2009, Al-ghannam and 

Al-Qahtnai, 2012). It is also expected that the vegetation will influence wind speed 

and gust speeds in and around the farms, city centre, and park areas due to the height 

and density of the buildings in the city centre and to the trees and palm trees in the 

park and farm locations respectively. Also,  higher wind speeds and gusts levels 

were expected at the airport and sabkha locations because both locations are located 

in open areas (Heisler, 1990).    
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Figure 7-3 The irrigation method used to irrigate the farms in the study area 

 

   

Looking at the seasonal variations of the fixed weather stations data within each land 

cover in statistical terms, there is a significant difference between the median groups 

of air temperature, surface temperature, and relative humidity during the winter and 

summer seasons. More details of the significant values are mentioned in chapter 4 

sections 4.3, 4.3.1, 4.3.2, 4.3.3, and 4.3.4. Therefore, the results of the analysis 

support the existence of an urban heat island effect in the study area at both seasonal 

and diurnal scale during the selected period, using fixed weather stations data which 

are collected in different land cover types.  

 

Comparison of the hourly air temperature means between the reference weather 

stations (airport) and others fixed weather stations quantifies the local CLHIs 

intensity. The results show that the highest difference between the two means of air 

temperature is in the city centre and factory 4°C in the summer and 2.2°C in the 

winter respectively while the lowest is in the farm -7.9°C in the summer and -2.2°C 

in the winter (Figure  7-4). These results are similar to the previous studies where city 

centre and industrial areas present the hottest zones due to the tallest and the highest 

density of buildings with less green space  heat emissions  from traffic and 

commercial activities (Pinho and Orgaz, 2000, Saaroni et al., 2000). This study 
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found the similar results to  previous studies carried out in arid regions: the intensity 

of CLHIs is weaker during winter than summer season (Sofer and Potchter, 2006). 

This may relate to the differential of the amount of solar gain during both seasons.        

  

 Figure 7-4 Hourly difference in air temperature means from the airport weather station during winter 

and summer. 

 

7.2.2 Advantages and limitations of fixed weather stations 

 

Although the fixed weather stations are one of the most useful tools for measuring 

urban heat islands, there are some limitations using this method. These can be 

summarized in the following points: 

1. The cost of these stations; 

2. The numbers of the stations needed;  

3. The spatial coverage of these stations.       

In other words, it is impossible to establish enough fixed weather stations to cover 

the whole study area such Al Ahsa oasis because the cost and the effort needed. 

Therefore, mobile data collection is another tool that can be used to investigate the 

spatial and temporal distribution of the local urban heat islands.  
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 The profile of local and seasonal UHIs  7.3

 

Forty six traverses were carried out in this study during February and August (2011) 

to investigate the distribution of the local UHIs at the local scale. The forty six 

traverses covered almost the whole study area (Figure  7-5) and were not only limited 

to just a few transects (Yokobori and Ohta, 2009, Charabi and Bakhit, 2011, 

Brandsma and Wolters, 2012). The number of mobile traverses and the ability to 

revisit the same locations (at night and immediately after sunset), helped to give 

better understanding of the temporal and spatial distribution of the local UHIs and to 

investigate the effect of the land cover on the UHI intensity (Gartland, 2008).   

 

To understand the local UHI and its distribution at the local scale, the land cover 

conditions needed to be identified. The high spatial resolution obtained from GeoEye 

image [give the pixel size here] of the study area were used to classify each pixel by 

its dominant land cover for the whole study area. It has been reported that the 

cooling effect of different land cover types cannot be detected at less than 150metre 

resolution (Yokohari et al., 2001). Therefore, sub-classes of different main land 

covers were created based on GeoEye imagery especially for the built-up area. For 

example, the area that is located close to the vegetation or is mixed with other classes 

such sabkha or sand need to be classified in separate class in order to understand of 

the effect of different land cover on the UHI (Oke, 2006, Hart and Sailor, 2009). In 

this study, the distance between each point of the mobile data at night and after 

sunset is considered to be within the range of 35 metres to ensure that each point of 

the mobile data properly represents the same land cover type.            
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Figure 7-5 The tracking of the mobile transect during February 2011 after sunset and at the night-time     

 

 

Seasonally, the UHI intensity is higher in the summer than winter season. The 

maximum UHI intensity during the summer ranged between 6 °C and 9 °C at night 

and between 3 °C and 8 °C after sunset based on the farm and airport as reference 

respectively. The maximum UHI intensity during the winter ranged between 2.5 °C 

and 5 °C at night and between 2 °C and 5 °C after sunset based on the farm and 

airport as reference respectively. The UHI intensity is weak during the winter and 

strong during the summer and that might be related to the amount of the radiative 

cooling which is higher during the winter than summer and to the influence of the 

different of the seasonal solar period which is longer in the summer than winter.   

Therefore, UHI intensity during the summer and winter season has a tendency to be 

stronger at night.  
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7.3.1 UHI intensity during the day and night  

 

Diurnal variations of the UHIs intensity during the winter (February) and summer 

(August) have been observed in this study using data from 46 traverses; at night 

before sunrise and soon after sunset. It has been reported that the maximum of the 

UHI intensity occurs approximately 3 to 5 hours after sunset (Oke, 1987). Some 

recent studies have found that the maximum UHI intensity occurs around midnight 

(Runnalls and Oke, 2000, Chow and Roth, 2006) or shortly before sunrise (Erell and 

Williamson, 2007). The UHI intensity has been also found to be negative during the 

daytime (Chow and Roth, 2006, Erell and Williamson, 2007) which is then named as 

an urban cool island.  

 

Similarly to previous studies mentioned above, this study found that the maximum 

UHI intensity occurs during the night compared with the daytime in both seasons 

(Figure  7-6 and Figure  7-7). This is due to the rapid cooling of the sand area, 

vegetation, and sabkha sites at night compared to the built-up area which releases 

heat energy and long-wave radiation at this time to create the heat island. In addition, 

UHI intensity is higher when the farm is used as reference to calculate the UHI 

intensity compared to the airport weather station. 
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Figure 7-6 Urban heat island intensity among different land covers for day one during summer (02 

August 2011) where farm is control 

 

Note: 1=Vegetation, 3=Sabkha, 4=Built-up 1, 5=Sand, 6=Built-up 2, 7=Built-up 3, and 9=Built-up 5. 

Night-time between 01:49:29am and 04:42:29am and Sunset-time between 18:36:05pm and 

20:58:36pm.   

 

Figure 7-7 Urban heat island intensity among different land cover areas for day eight of winter (19 

February 2011) where airport is control 

 

Note: 1=Vegetation, 3=Sabkha, 4=Built-up 1, 8=Built-up 4, and 9=Built-up 5. Night-time between 

01:17:35am and 03:25:35am and Sunset-time between 20:06:34pm and 20:57:34pm.    
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7.3.2 The relationship between land cover and UHIs intensity  

 

The effects of land cover on ambient air temperatures has been reported in many 

previous studies (Saito et al., 1990, Eliasson, 1996, Upmanis and Chen, 1999, Unger 

et al., 2001, Jonsson, 2004, Bottyán et al., 2005, Hart and Sailor, 2009). In this study, 

as shown in Figure  7-6 and Figure  7-7, the UHI intensity varied significantly 

according to different land cover types. The UHI intensity is higher in the built-up 

area (class 9 which represent the most common area: buildings) and lower in the 

vegetation, sabkha, sand, and sub-classes of built-up area. In other words, the built-

up areas are warming due to an increase in non-natural land covers, and the 

vegetated areas have moderating effects on ambient air temperatures. In general, the 

moderating effects were slightly stronger in August than February. Therefore, it 

seems that the moderating effect produced by a higher cooling rate in the vegetated 

area at night during the summer could be larger than that produced by 

evapotranspiration and the blocking of incident solar radiation during the day. This 

might relate to the stability of the air temperature during the night rather than the 

advection (Yokobori and Ohta, 2009). 

7.3.3 The spatial distribution of local UHI 

 

The surrounding rural areas, such as the airport (sand area), the farm (palm tree 

area), and the sabkha area, are more open to the sky than the built-up area. This led 

to a rapid cooling during the night for these land cover types. However, there is 

increase of the UHI intensity as we move through the built-up sub-classes, which 

regulate long-wave radiative heat loss at the same time (Oke, 1981, Oke, 1982).  As 

a result, there is a large UHI intensity difference between the built-up and the 

references (airport and farm). In this study, the UHI intensity at night in the 

vegetation, sabkha, and sand during both seasons is lower than the temperatures in 

the both references the airport and the farm, due to the high rate of radiative cooling. 

Similarly, (Spronken-Smith and Oke, 1998, Hedquist, 2005, Yokobori and Ohta, 

2009) found night maximum cooling in vegetation and open grass parks areas, due to 

low thermal effect, compared to built-up area and mixed area. In addition, the farm 
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site with tree canopy cover has a daytime maximum cooling due to a combination of 

shade and evapotranspiration effect. 

 

Location, topography and wind direction - all together can play a significant role to 

effect on the UHI intensity and its spatial distribution (Charabi and Bakhit, 2011). 

Figure  7-8 (top) shows the state of UHI affected by topography and land cover in 

Muscat measured by mobile traverse. The warmest UHI intensity zones include: 

Wadi Al-Kabir and in Ruwi, Matrah, Bait Al-Falaj and Darsit that are located in 

narrow valleys in the high lands (Figure  7-8 top). These are the locations of business 

centres in Muscat where high buildings those trap heat and increase the effect of the 

UHI. The outcomes of their study in terms of the UHI spatial distribution revealed a 

similar pattern with the current study but with a higher value of UHI intensity and 

influence of vegetation in controlling UHI as mentioned above (Figure  7-8 below). 

During the summer seaso, the UHI intensity can reach a maximum of 7.5 °C at night 

and 5.2 °C after sunset for Al Ahsa oasis while, 4.8 °C at night and 3.5 °C at the 

daytime for Muscat. According to this comparison, along with distance from the 

urban centres, topography and wind direction (Charabi and Bakhit, 2011), vegetation 

cover played an influential factor in reducing UHI intensity in the study area.   
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Figure 7-8 Thermal difference between mobile traverses and the reference point in Muscat city (top) 

Oman and the study area Al Ahsa oasis (bottom) during summer    

 

 

Note: Source of Muscat map: (Charabi and Bakhit, 2011).  
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The maximum UHI intensity has been linked to the city size which can be measured 

by its population (Oke, 1973, Oke, 1981, Oke, 1982, Fukuoka, 1983). Oke (1973) 

indicated that maximum UHI intensity was related to the size of the population of 

many North American and European settlements. As mentioned before, a maximum 

UHI intensity of nearly 10°C was observed in the two main settlements of the study 

area (Al Hufuf and Al Mubarraz), which have populations of about 660,788  based 

on 2010 residential census  (Ministry of Economy and Planning, 2010). In a similar 

study in Tokorozawa, Japan, (Yokobori and Ohta, 2009) also found a maximum UHI 

intensity of nearly 10 °C  in a study area with 40 000 population and an area of 

approximately 10 km
2
. In a recent study in an arid region, Muscat, Oman,(Charabi 

and Bakhit, 2011) found that maximum UHI intensity ranged between 4 °C and 6 

°C. However, the low value of UHI intensity might be due to the effect of the 

topography and coastal location of this city (Muscat) compared to these capital cities 

of the study area (Al Ahsa oasis) which are located on a flat, inland area. Finally, the 

spatial distribution of maximum UHI intensity is clearly linked to the size of the 

settlements and villages of Al Ahsa oasis as suggested in previous studies such as 

(Oke, 1973).  

 

The maximum UHI intensity is recorded in the large cities of the study area during 

both seasons and the UHI decreases in the small cities such as Al Uyun in the north, 

Al Killabiyah in the north-east, and Al Umran in the east of the study area with 

populations of 33,042, 16,984, and 17,410 respectively. Moreover, the effect of the 

vegetation on the UHI intensity during both seasons at the night and day-time is 

clearly identified by the low UHI intensity in the small villages such as the Al 

Qaraah, Al Julijlah, and Al Shibah, which are surrounded by the palm trees from 

almost every direction (Figure  7-9). 
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Figure 7-9 Distribution of urban heat islands for the mobile data during summer season August 2011, night-time left and after sunset right. (Farm as control) 
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7.3.4 Advantages and limitations of mobile traverses  

 

Mobile sensor data are another method to measure the UHI. It is an economical method to 

investigate the UHI of an urban area and its suburban and rural area,  whether  walking or 

cycling in a small area (Spronken-Smith and Oke (1998) or by public transportation or car for 

large area (Chandler, 1960, Hutcheon et al., 1967, Yamashita, 1996, Stewart, 2000). This 

method also can be carried out at any time day or night, although sometimes this is dependent 

upon local factors such as traffic.  

 

The limitation of the mobile traverses can be highlighted by the difficultly of making 

simultaneous measurements at different locations. It is possible to overcome this issue by using 

two or more sets of equipment at the same time but this will be expensive compared to the 

fixed weather station method. Another limitation of this method is the time of the traverses 

which dependent on the traffic conditions which can vary. Finally, the recorded temperature 

usually needs to be adjusted to a reference time either by comparing the data with other 

measurements or to a fixed weather station (Gartland, 2008).    

 Mapping the UHIS in arid regions using remote sensing   7.4

 

Remote sensing can be used to investigate the characteristics of the surface temperature such as 

the roofs, pavements, vegetation, and bare ground by measuring the reflected and emitted 

energy for each pixel in an image. Special equipment is used to capture imagery at both visible 

and infrared (reflected and emitted) wavelengths. Also, there are several types of satellite 

sensors with varying spatial resolution orbiting the Earth (Gartland, 2008). In this study, two 

different satellites sensors were used: Landsat 7 ETM+ and MODIS. These two sensors were 

selected because of their high spatial resolution (Landsat 7 ETM+) and their high temporal 

resolution (MODIS) beside the availability as public data. 

 

The detail of the land cover of the study area is an important factor for modelling the UHI for 

two main reasons. The first is to identify the appropriate emissivity values in order to estimate 

the surface temperature using the satellite data (Zhengming and Dozier, 1996, Li et al., 2013). 

The second is to investigate the effect of land cover type on the local UHI intensity (Voogt and 
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Oke, 2003). There is no difficulty in integrating the emissivity value of Landsat 7 ETM+ or 

MODIS for the pixels that present one land cover. However, the emissivity of mixed classes of 

the land cover pixels especially for MODIS where the pixel size is about 1000 metres is 

problematic and is normally calculated based on the average of each land cover (Zhengming 

and Dozier, 1996). Mapping the emissivity of the study area was based on an approach that 

used a look-up table of emissivity values derived from a land cover classification.  This 

approach was designed to reduce errors or uncertainties based on crude assumption of 

emissivity values for arid and semi-arid regions (Gillespie et al., 1999, Li et al., 2013).        

 

In this study, satellite images were used to investigate the UHI magnitude and determine the 

effect of different land cover type on the local UHI intensity at the city scale including the 

urban, sub-urban, and the surroundings areas of the study area. The results largely support 

findings from previous studies (Hu and Jia, 2009, Rajasekar and Weng, 2009, Kaya et al., 

2012, Laras et al., 2012, Jamil et al., 2012, Tomlinson et al., 2012, Effat et al., 2014) which can 

be summarized as a strong relationship between UHI intensity and the different land covers. 

The outcomes of the satellite data analysis support the findings based on the ground data and 

fixed weather stations method. The surface temperature of different land cover varies and 

reflects the effect of the different land cover on the surface temperature. 

 

When comparing the land cover of the study area with UHI intensity, the results indicates 

similar outcomes to Tomlinson et al. (2012). The UHI magnitude increases across the land 

cover in the order 8 (woodland/open land), 3 (light suburban), 1 (villages/farms), 7 (light 

urban/open water), 2 (suburban), 4 (dense suburban), 6 (urban), 5 (urban/transport) 

(Figure  7-10) (Tomlinson et al., 2012). This study found a similar results which indicates that 

the UHI intensity median increases in the following order sand, sabkha, vegetation, mixed area, 

low density of buildings, sand and buildings, and built-up areas at the night-time. However, in 

the day time this order is slightly different vegetation, sand, mixed area, built-up area, sand and 

buildings, low density of buildings, and sabkha (Figure  7-11). This conclusion suggests that the 

land covers respond in different ways between day and night. For example, the sand and 

sabkha areas in a desert region heat up during the day time and cool down very quickly at 

night. Also, the results bring to our attention that even though night images more appropriate 

for land surface temperature as Rigo et al. (2006) suggest, the day time also might help for 

more understanding of the response of the different land covers.  
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Figure 7-10 SUHI Magnitude for each Pasquill-Gifford class, distributed by Owens land and plotted in order of 

ascending mean SUHI magnitude 

 

Note: 1 (villages/farms), 2 (suburban), 3 (light suburban), 4 (dense suburban), 5 (urban/transport), 6 (urban), 7 

(light urban/open water), 8 (woodland/open land). (Tomlinson et al., 2012). 

 

Figure 7-11 August urban heat island intensity distribution among different land cover types on the nine selected 

days, in daytime (left) and night-time (right) 

 

Note: SAB = Sabkha, SAN = Sand, VEG = Vegetation, MIX = Mixed area, SB = Sand and buildings, LDB = Low 

density of buildings, and BUA = Built-up areas. 
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The distribution of the UHI intensity shows a clear response of the different land cover and the 

city size as well as the location of the small villages and settlements in the study area. The 

relationship between the land cover and the surface temperature is determined in similar study 

in Atlanta city (Quattrochi, 2009) Figure  7-12 (d). The relationship between UHI intensity and 

land cover using Landsat 7 ETM+ is limited to the day time only; however, the results 

indicates a significant response of the different land covers  during the summer and winter. The 

UHI intensity can be divided to three categories, first hot UHI located over the sand and sabkha 

areas, cool UHI centred over the water and vegetation, and mild UHI represented over the 

built-up area Figure  7-12 (a), (b), and (c).  

 

Night-time images of MODIS are the most appropriate solutions to calculate the UHI intensity 

(Oke, 1987). MODIS land surface temperature is more accurate at night than day time (Rigo et 

al., 2006) because at night there is no incoming solar radiation to affect the surface radiation 

budget. The distribution of the maximum UHI intensity found over the two main cities of the 

study area are similar to another study has been done in Birmingham, UK (Tomlinson et al., 

2012).  

 

Figure  7-13 shows both aspects the land cover and UHI intensity of Birmingham and the 

current study. It is clear that similar results have been achieved, but the maximum of UHI 

intensity is higher in the Al Ahsa oasis (10 °C) than in Birmingham (5 °C), which might relate 

to the different of the locations and effect of the density of the trees and vegetation. That also 

indicates the important of studying and focusing on the UHI in the arid regions which might be 

a larger effect than in humid tropical or mid-latitude regions.  
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Figure 7-12 UHI intensity using Landsat data during February (a) and August (b) and corresponding land cover 

responses of the study area (c) and comparing to Atlanta, GA results using similar data (d) 

(a) (b) 

 
(c) (d) 

 

 

 

 
 

 

 

Note: Surface temperature and land cover of Atlanta, GA (d) obtained from (Quattrochi, 

2009). 
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Figure 7-13 Comparison of UHI magnitude between Al Ahsa oasis and Birmingham city with land cover data 

 (a) (b) 

  
(c) (d) 

  
 

Note: Spatial distribution of Owens land classification across Birmingham (a) and SUHI magnitude of 

Birmingham during heatwave event 18 July 2006 (b) and land cover classification of the study area (c) and 

corresponding UHI intensity of the study area during 4 August 2011(d). (a) and (b) obtained from (Tomlinson et 

al., 2012).   
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7.4.1 Advantages and limitations of remote sensing  

 

One of the most important advantages of using remote sensing to investigate the UHI is its 

power to visualize the surface temperature over a large area. However, this is offset by the long 

time between revisiting the same area and the short period of overpass time e.g. 16 days revisit 

for Landsat 7 ETM+ and only few minutes to overpass small selected study areas such as the 

one presented here. Moreover, some satellites’ overpass is only available during the day time 

which is limited to measure UHI during the day time only.  In addition, remote sensing shows 

only the urban temperature as a birds’-eye view leaving out the temperatures of walls and 

vegetation and the temperature under the trees. This information is also important to fully study 

the urban heat island and there is some work that has been done to cover this issue such in 

Vancouver, British Columbia (Voogt and Oke, 1997). Also, the spatial resolution of the 

thermal data of different satellites is one of the limitations in order to estimate and measure the 

urban heat island. While the Landsat 7 ETM+ has 60 metre of the thermal data and resampled 

to 30 metre, the MODIS has poor thermal spatial resolution.    

 UHI and some of related environment issues   7.5

 

These days, the Ministry of Housing in Saudi Arabia is planning and establishing new housing 

projects, Figure  7-14, at all Saudi Arabia districts and cities (Table  7-1). One of these districts 

is the study area (Al Ahsa oasis), which is located in the eastern province, five projects with a 

total number of 9017 units (Ministry of Housing of Saudi Arabia, 2014). These houses will be 

built of cement and concrete and the projects will establish new networks (roads) which mean 

more asphalt and pavement. Therefore and according to the outcome of this study, the thermal 

budget and the balance of the heat will be affected by these materials and contribute to building 

the local urban heat island. In addition, these units and houses will be provided with air 

conditioning which leads to heat emission especially during the summer season when the air 

temperature reaches about 50 °C and make the UHI even worse.    
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Figure 7-14 An example of the new house project of ministry of housing in Saudi Arabia 

 
 

Source: (Ministry of Housing of Saudi Arabia, 2014).  
        

Table 7-1 The number of the new projects and unites in the main Saudi Arabia regions.  

Region Province Project Unite 

Makkah 10 23 56926 

Al Madinah 7 15 17581 

Al Riyadh 21 21 18083 

Eastern region 10 17 43256 

Al Qassim 12 26 21979 

Hail 8 9 12289 

Tabuk 6 10 10399 

Northern region 4 7 8301 

Al Jouf 4 8 4084 

Al Baha 7 13 7381 

Asir 10 20 21200 

Najran 4 5 7184 

Total 103 174 228663 

 

Source: (Ministry of Housing of Saudi Arabia, 2014). 

 

Moreover, this brings to our attention the important of studying the urban heat islands in arid 

region in term of the global warming issue. Although there is a big debate whether there is link 

between the urban heat island and the global warming (Alcoforado and Andrade, 2008), the air 

temperature of the study area has been investigated by Nasrallah and Balling (1993) who found 

there is increase of the air temperature in the Middle East. The air temperature of the Middle 

East region over the period 1950-1990 increases of 0.07 °C per decade. Most of the increase 
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has occurred in the spring season, with moderate amount of warming recorded in the summer 

and fall seasons, and weak no warming during the winter (Nasrallah and Balling, 1993).  

 

Another environment problem that related to the urban heat island is the human health and 

stress issue. The extreme heat waves and heat island has been reported in different places in the 

world and at different climate regions e.g. Tel-Aviv, Israel, Los Angeles, USA, Istanbul, 

Turkey, Muscat, Oman, Moscow, Russia, London, UK, Bangkok, Thailand, Brisbane, 

Australia, Hong Kong, China, Bangladesh, and Delhi, India (Wong et al., 2013). In addition, 

the urban heat island intensity is recorded in Shanghai, Bangkok, Beijing, Tel-Aviv, and Tokyo 

of 3.5 °C to 7.0 °C, 3.0 °C to 8.0 °C, 5.5 °C to 10 °C, 10 °C, and 12°C, respectively (Wong et 

al., 2013). Moreover, the mortality rates and human health problems have been linked to the 

increase and events of the heat weaves and heat islands phenomenon in several places in the 

world. e.g. the mortalities rates increased from 4.1% to 5.8% per 1 °C over a temperature 

threshold of about 29 °C in cities such as Hong Kong, Bangkok, and Delhi (Wong et al., 2013).   

 

Extremely high temperatures have caused excess deaths in Europe, North-eastern, and United 

States. More than 4,780 deaths were reported in United States between the period of 1979-

2002 due to heat weaves condition (CDC, 2006).  During the summer 2003, the heat wave 

caused up to 70,000 deaths over four months in Central and Western Europe (Brucker, 2005, 

Sardon, 2007, Robine et al., 2008) and an estimated death of 55,000 was reported again in 

2010 for the same reason in the Eastern Europe (Barriopedro et al., 2011). Most the deaths 

among these people are from the elderly, e.g. there were about extra deaths of 600 people all of 

the age in London (Ken Livingstone, 2006). These days, more than 2,300 are death in India 

and some of the roadways in Delhi were melted due to the recent heat waves that hit the region 

and the country (Figure 7-15) (Sean Breslin, 2015).        
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Figure  7-15 Some of the roadways in India are melting because of the recent heat waves that hit the regions  

 

Source: (Sean Breslin, 2015).    

 

According to the above environmental problems, it is important to bring the importance of the 

urban heat island issue to the local government’s agencies in order of planning and 

developments the local cities and communities in a friendly environments ways. This research 

is the first study in the region and might provide baseline for other similar studies in the near 

future in the region to achieve its recommendations.    

 Main findings 7.6

 

The main findings of this study can be summarized in the following points: 

 

1. There are statistical differences in the hourly air temperature, surface temperature, 

relative humidity, and wind and gust speed between different fixed weather stations and 

the airport weather station, which indicate the existence of the local urban heat island in 

the study area during the summer (July) and winter (February). 

 

2. The hourly analysis of the differences during both seasons, whether from the airport 

weather station values or from the calculated means of the air temperature, surface 

temperature, relative humidity, and wind and gust speed indicates similar pattern during 
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the early morning and midday for all the fixed weather stations; however, the city 

centre, factory, and sabkha show an increase of the air and surface temperature both 

seasons especially during the summer.      

 

3. There is a statistically significant difference between the air temperature and relative 

humidity data, based on mobile method, among different land cover (Sabkha, Sand, 

Urban, and Vegetation) during winter and summer at night and or after sunset. 

  

4. The profile of the air temperature and relative humidity shows a strong effect of 

different land covers on air temperature and relative humidity during both seasons at 

night and after sunset, either based on the farm site or airport as control. 

 

5. The temporal urban heat island intensity, based on mobile method, appears to be 

highest 2 to 3 hours before the sunrise and after the sunset; however, it is stronger 

during the summer than winter and at night than after sunset.  

 

6. The highest UHI intensity is located over the largest settlements, Al Hufuf and Al 

Mubarraz, while the mild UHI intensity is centred on the smaller towns and villages 

that are surrounded by the farms and vegetation, and the last type of UHI intensity is 

recorded over the vegetation region which extends from the north and north-east to the 

south and south-east of the study area during both seasons at the night and after the 

sunset.   

 

7. The spatial distribution of the surface temperature using the remote sensing method 

either by Landsat 7 ETM+ or MODIS indicate promising results to investigate the UHI 

in the large scale comparing with ground data whether fixed stations or mobile data.  

 

8. Although there is a temporal limitation of Landsat 7 ETM+, which is a daytime 

observation about 11:00am local time, the surface temperature varies between different 

land cover; however, MODIS covers both day and night which is important time for 

observing and investigating the UHI. 
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9. Statistically, there is a significant difference between the median of UHI intensity and 

land covers based on both sensors during winter and summer, which suggests the effect 

of the land cover on the UHI intensity.    

 

10. The highest UHI intensity appears over the built-up area in general and at night time in 

particular; while the lowest area of UHI intensity is represented as the vegetation and 

mixed area during the day and sabkha, sand, vegetation, and mixed area at the night-

time. 

 

11. The percentage of different land covers during the day and night-time is linked with the 

UHI intensity; e.g. with the percentage of built-up also increases the UHI intensity 

increases especially at night and when the percentage of the sand area increases the 

UHI intensity decreases at the night.       

 Evaluation of Aim and Objectives 7.7

 

This study has confirmed that combined remote sensing and ground data including fixed 

weather stations and mobile traverses are important method to investigate and study the effect 

of land cover on urban heat island in general and in arid regions in particular. There are two 

main conclusions can be drawn from this study: 

 

1. In this study an integrates between remote sensing (satellite images) and ground data 

(fixed weather station and mobile data) has been developed and confirmed for 

estimating the air and surface temperature in order to investigate and study urban heat 

island in arid regions.  

 

2. The present study has demonstrated that there is a strong relationship between 

different land cover and urban heat island intensity and its temporal and spatial 

distribution during both seasons winter and summer and at day and night-time; 

however, this relationship appears to be stronger during the summer and at the night.   
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3. The study confirms the benefit of investigating UHI intensity and its spatial 

distribution using different scales to provide better understanding of the UHI 

phenomenon in arid regions as presented in this study.         

 Conclusions  7.8

 

Al Ahsa oasis, which has more than 2 million palm trees, is one of the main regions in Saudi 

Arabia that has a rapid development of urbanization. That brings to our attention the important 

of studying UHI in such oases and investigating the effect of this change on the thermal budget 

of the study area. This thesis has investigated the effect of different land cover on the urban 

heat island intensity in the arid region Al Ahsa oasis, Saudi Arabia during winter and summer 

seasons. Less attention has been paid to UHIs in arid regions, where daytime surface and air 

temperatures can be extremely high, and to investigate the effect of different land cover on 

UHI intensity using ground data and multi-scale and multi-temporal satellite thermal imagery. 

Moreover, this study have used a high spatial resolution image (GeoEye) to identify the ground 

data in order to investigate the effect of the different land covers on UHI intensity.  

 

The findings of this study have emphasized the effectiveness of combining ground and 

satellites data to investigate the relationship between the land cover and UHI intensity. 

Studying UHI needs high-resolution thermal data in two aspects, spatial and temporal. Fixed 

weather stations and mobile traverses provide continuation observations of air and surface 

temperatures and link the data with high spatial resolution (GeoEye) for better understanding 

of the effect of the land cover of UHI intensity. The cost of fixed weather stations and mobile 

data is an issue here, but this cost may be out-weighted as it provides the good quality data 

needed and also it is a low cost when compared to the cost of some satellite images such as 

ASTER or SPOT per unit for long period of time. Different satellite sensors with high spatial 

resolution (Landsat 7 ETM+) and high temporal resolution (MODIS) seems to be the best 

option to map the UHI in the large scale. 

 

The local UHI intensity is determined using ground data as a rural reference (airport weather 

station) and at the farm site. Both methods show the same results but the intensity of the UHI is 

higher with the farm, which is to be expected because of the effect of the vegetation. There is a 
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significant relationship between distribution of the UHI and land cover by using the mobile 

traverses and the remote sensing approaches. The UHI intensity is higher during the summer 

than the winter and at the night-time than the daytime. The highest UHI intensity is located 

over the two major cities in the oasis (Al Hufuf and Al Mubarraz) while the lowest UHI is 

recorded over the small villages and vegetated areas. The outcomes of this thesis can be used in 

future urban development and planning projects and draw the framework for implementing 

rules and regulations by government agencies for a sustainable urban development approach. 

 Recommendations and directions for future study  7.9

 

The aim of this study was to integrate both methods remote sensing and ground based data 

including the fixed weather stations and mobile data for better understating of the effect of the 

different land cover on urban heat island; however, the research project was challenging. 

According to the main limitations of both methods, studying urban heat island needs tools that 

have high resolution in both temporal and spatial information at the same time.  

 

The ground data seem to be more accurate and easier to calibrate in order to study urban heat 

islands; however, this method needs large numbers of fixed weather stations and several 

mobile traverses day and night to gather the data needed and that costs a lot of money. But 

according to this study, it is recommended the large cities should have at least enough numbers 

of these fixed weather stations established on different locations to predict the heat waves and 

minimise the risk of urban heat island.  

 

Remote sensing is a very good method to estimate the surface temperature and investigates the 

urban heat island at a large scale. However, there are a number of limitations, which have been 

mentioned before, which need to be improved in two aspects, the temporal and the spatial 

resolution. The two satellites images that used in this study are the highest temporal and spatial 

resolution available to study the UHI in the present study area Al Ahsa oasis. The Landsat 7 

ETM+ has two thermal bands of 60 metres of spatial resolution and resampled to 30 metres 

and MODIS with daily revisit day and night but with poor spatial resolution. 
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Future studies should consider using ground-based thermal images for better understanding of 

the different land cover responses during the day and night-time. These thermal images will 

provide detailed surfaces temperatures with high temporal and spatial resolution to quantify the 

outgoing radiation budget at specific locations (Figure  7-16). These thermal images have some 

limitations related to the spatial coverage of small areas compared with the satellite 

observations. Moreover, if we need to collect data for several sites at the same time, it will 

need more thermal cameras but that will increase the cost.       

 

NASA organized a workshop, which was held on October, 2008 in Monrovia, California in 

United States, to confirm and clarify the science requirements for the new Hyperspectral 

Infrared Imager (HyspIRI) mission (Figure  7-17). The HyspIRI will be launched between 

2013-2016 and have eight spectral bands of which seven of them are located in the thermal 

infrared part of the spectrum between 7 and 13 μm, while the last band in located in the mid 

infrared part with electromagnetic spectrum of 4 um. The TIR instrument will have a swath 

width of 600 km with 60 meters spatial resolution and temporal revisit of 5 days. Moreover, 

the instrument will capture images over the entire surface of the earth during the day and night 

time (NASA, 2010). Therefore, this satellite will help to collect day and night observations 

with high spatial resolution which will allow better investigation and understanding of urban 

heat islands at different scales.   
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Figure 7-16 Thermal images of city centre site with snapshot of the location and thermal data during the morning 

and afternoon of February 6
th

 and 7
th

 2011 

 
Digital snapshot of the site 

 
7-Feb-2011. 7:55 AM-Spot (1=16) (2=15) (3=9) (4=11) (5=8) (6=7) (7=9)   

 
6-Feb-2011. 4:15PM-Spot (1=25) (2=30) (3=23) (4=24) (5=17) (6=19) (7=21) 
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Figure 7-17 Image and thermal infrared measurement characteristics of HyspIRI 

 

 

 

 
 

 

Spectral 

Bands (8) μm 3.98 μm, 7.35 μm, 8.28 μm, 8.63 μm, 9.07 μm, 

10.53 μm, 11.33 μm, 12.05 μm 

Bandwidth 0.084 μm, 0.32 μm, 0.34 μm, 0.35 μm, 0.36 
μm, 0.54 μm, 0.54 μm, 0.52 μm 

Accuracy  <0.01 μm 

Spatial 

IFOV 60 m 

  

Swath Width 600 km (±25.5° at 623 km altitude) 

  

Swath Length 15.4 km (± 0.7 degrees at 623 km altitude) 

Temporal 

Orbit Crossing 11 a.m. Sun synchronous descending 

Global Land Repeat 5 days at Equator 

Data Collection 

Time Coverage Day and Night 

Land Coverage Land surface above sea level 

Water Coverage Coastal zone minus 50 m and shallower 

Open Ocean Averaged to 1-km spatial sampling 

 

Source: (NASA, 2010, NASA, 2015).  

 

 

This study recommends the following recommendations in order of future study and research:  

 

1. Establish more of micro weather stations in different land covers in the study area (Al 

Ahsa oasis) to record high temporal meteorological data including air and surface 

temperatures, relative humidity, sun radiation, wind and gust speed, and precipitation to 

help investigate the current and future local urban heat islands and the heat waves.  

 

2. Investigate the effect of different land cover types on the local urban heat island using 

high spatial and temporal sensors that have multispectral bands such as Hyperspectral 

Infrared Imager (HyspIRI) for more understanding and studying the urban heat island. 

 

3. Increase the awareness of the local government agencies about the urban heat island 

issue by establishing research centres, such Environmental Protection Agency, that 

provide the information needed and encourage the future research of related problems 

of heat island.  

 

4. As the main findings of this study is that the built-up areas are the highest in UHI 

intensity, it is important to investigate more and in details of the different roofs, roads, 

pavements, and buildings materials which effects the heat balance of the city and that 

need special tools such as Hyperspectral Infrared Imager (HyspIRI) or thermal camera.   
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5. The effect of vegetation, in relation to evaporation and shading the surface from the 

sun’s rays, helps keep the area cool (Gartland, 2008). Therefore, it is important to keep 

the existing palm trees in the oasis and increase the numbers of the trees in desert cities 

and built-areas to minimise the air and surface temperatures and the UHI intensity. 

Moreover, the vegetation has a key role to play in contributing to the overall 

temperature of the cities. The trees and green spaces can reduce the UHI and cool the 

air by between 2 °C and 8 °C, which leads to reduced heat-related stress and human 

deaths during extreme temperature events (Doick and Hutchings, 2013).      
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  Appendices 7.11

 

Appendix 4.1: 

 

Mean and Standard Deviation of Air Temperature at Farm Site from 21/1/2011 to 28/2/2011. 

 

 

Mean and Standard Deviation of Surface Temperature at Farm Site from 21/1/2011 to 

28/2/2011. 
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Mean and Standard Deviation of Relative Humidity at Farm Site from 21/1/2011 to 28/2/2011. 

 

 

Mean and Standard Deviation of Air Temperature at Sabkha Site from 21/1/2011 to 28/2/2011. 
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Mean and Standard Deviation of Surface Temperature at Sabkha Site from 21/1/2011 to 

28/2/2011. 

 

 

Mean and Standard Deviation of Relative Humidity at Sabkha Site from 21/1/2011 to 

28/2/2011. 
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Mean and Standard Deviation of Air Temperature at Park Site from 21/1/2011 to 28/2/2011. 

 

 

Mean and Standard Deviation of Surface Temperature at Park Site from 21/1/2011 to 

28/2/2011. 
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Mean and Standard Deviation of Relative Humidity at Park Site from 21/1/2011 to 28/2/2011. 

 

 

Mean and Standard Deviation of Air Temperature at Factory Site from 21/1/2011 to 28/2/2011. 
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Mean and Standard Deviation of Surface Temperature at Factory Site from 21/1/2011 to 

28/2/2011. 

 

 

Mean and Standard Deviation of Relative Humidity at Factory Site from 21/1/2011 to 

28/2/2011. 
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Mean and Standard Deviation of Air Temperature at City Centre Site from 21/1/2011 to 

28/2/2011. 

 

 

Mean and Standard Deviation of Surface Temperature at City Centre Site from 21/1/2011 to 

28/2/2011. 
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Mean and Standard Deviation of Relative Humidity at City Centre Site from 21/1/2011 to 

28/2/2011. 

 

 

Mean and Standard Deviation of Air Temperature at Airport Weather Station 21/1/2011 to 

28/2/2011. 
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Mean and Standard Deviation of Relative Humidity at Airport Weather Station 21/1/2011 to 

28/2/201 
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Appendix 4.2: 

 

 

Quantile and probability distribution plots of air temperature (°C) during summer season (27 

January 2011 to 31 August 2011) at different land use types.  
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Quantile distribution plots of wind and gust speed (km/h) during summer (July and August 

2011).  
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Quantile distribution plots of wind and gust speed (km/h) during winter (January and February 

2011). 
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Appendix 4.3: 

 

Results of Skewness/Kurtosis tests for normality (Air temperature (°C) during winter season) 

(21/01/2011 to 28/02/2011) 

H0 = Air temperature (°C) values in different land use have standard normal distribution 

H1 = Air temperature (°C) values in different land use does not have standard normal 

distribution 

Variable Obs Pr (Skewness) Pr (Kurtosis) chi2 (2) Prob>chi2 

City 

centre  

936 0.000 0.197 50.81 0.000 

Sabkha 936 0.000 0.173 22.05 0.000 

Park 936 0.000 0.667 31.69 0.000 

Farm 936 0.003 0.002 18.50 0.000 

Factory 936 0.000 0.199 29.27 0.000 

Airport  936 0.000 0.683 40.13 0.000 

 

Decision: Fail to accept null hypothesis at P<0.05 level. So, air temperature (°C) values in 

different land use have lack of normal distribution. 

 

Kruskal–Wallis test for median comparison of air temperature (°C) among different land use 

types during winter (21/01/2011 to 28/02/2011) at P≥0.05 level. 

H0 = Median values of air temperature (°C) in different land use are equal i.e. median (city 

centre) = median (sabkha) = median (park) = median (farm) = median (factory) = median 

(airport) 

H1 = Median values of air temperature (°C) in different land use are not equal or identical i.e. 

median (city centre) ≠ median (sabkha) ≠ median (park) ≠ median (farm) ≠ median (factory) ≠ 

median (airport) 

Location Observations  Rank sum  

City centre 936 2.94e+06 

Sabkha 936 2.44e+06 

Park 936 2.64e+06 

Farm 936 2.25e+06 

Factory 936 2.93e+06 

Airport  936 2.58e+06 

 

λ
2 

=   150.16 with (5) d.f. with P=0.0001  

λ
2 

with ties =   150.16 with (5) d.f. P=0.0001   
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Decision: Fail to accept H0 at P≥0.05 level. So, significant difference exists in air temperature 

(°C) median values of at least one pair of land use types. To identify significant difference 

between groups from possible pairs, need to perform further post-hoc test on median 

comparison between different land use groups. 

 

Results of Kruskal–Wallis test of air temperature during winter season between each two land 

use. 

H0 = between different land uses within a pair have identical distributions i.e. median values air 

temperature (°C) in different land use are equal or identical. For example, median air 

temperature (°C) of city centre = median air temperature (°C) of sabkha with respect to 

adjusted P´ value less than (<) 0.0033 

H1 = between different land uses within a pair have different distributions i.e. median values air 

temperature (°C) in different land use are not equal. For example, median air temperature (°C) 

of city centre ≠ median air temperature (°C) of sabkha with respect to adjusted P´ value greater 

than (>) 0.0033 

Land use City centre Sabkha  Park  Farm  Factory  Airport  

City centre  
 

 

     

Sabkha ≠ (0.000)      

Park  ≠ (0.000) = (0.003)     

Farm  ≠ (0.000) = (0.007) ≠ (0.000)    

Factory  = (0.852) ≠ (0.000) ≠ (0.000) ≠ (0.000)   

Airport   ≠ (0.000) = (0.033) = (0.384) ≠ (0.000) ≠ (0.000)  

 

Note: ‘≠’ indicates significant difference (fail to reject - H1), ‘=’ indicates insignificant 

difference (fail to reject – H0) and values in paransethesis indicates calculated P values. 

Adjusted probability (P´):  

𝑃΄ =
𝑃

𝐾(𝐾 − 1)
2⁄

 

where, P =0.05 and K is the number of groups in sample. So, P ´ = 0.0033 @ K = 6 (no. of 

land use = 6)  
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Results of Skewness/Kurtosis tests for normality (Air temperature (°C) during summer season 

(26/07/2011 to 31/08/2011) 

H0 = Air temperature (°C) values in different land use have standard normal distribution 

H1 = Air temperature (°C) values in different land use does not have standard normal 

distribution 

Variable Obs Pr (Skewness) Pr (Kurtosis) chi2 (2) Prob>chi2 

City centre  888 0.031 0.000 263.04 0.000 

Sabkha 888 0.678 . . . 

Park 888 0.329 0.000 552.79 0.000 

Farm 888 0.020 0.000 3543.58 0.000 

Factory 888 0.002 0.000 335.31 0.000 

Airport  888 0.662 0.000 800.34 0.000 

 

 Decision: Fail to accept null hypothesis at P<0.05 level. So, air temperature (°C) values in 

different land use have lack of normal distribution. 

 

Kruskal–Wallis test for median comparison of air temperature (°C) among different land use 

types during summer (26/07/2011 to 31/08/2011) at P≥0.05 level. 

H0 = Median values of air temperature (°C) in different land use are equal i.e. median (city 

centre) = median (sabkha) = median (park) = median (farm) = median (factory) = median 

(airport) 

H1 = Median values of air temperature (°C) in different land use are not equal or identical i.e. 

median (city centre) ≠ median (sabkha) ≠ median (park) ≠ median (farm) ≠ median (factory) ≠ 

median (airport) 

Location Observations  Rank sum  

City centre 888 2.80e+06 

Sabkha 888 2.17e+06 

Park 888 2.48e+06 

Farm 888 1.59e+06 

Factory 888 2.74e+06  

Airport 888 2.42e+06 

 

λ
2
=   471.726 with (5) d.f. P=0.0001  

λ
2
 with ties =   471.727 with (5) d.f. P=0.0001     

Decision: Fail to accept H0 at P≥0.05 level. So, significant difference exists in air temperature 

(°C) median values of at least one pair of land use types. To identify significant difference 
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between groups from possible pairs, need to perform further post-hoc test on median 

comparison between different land use groups. 

Results of Kruskal–Wallis test of air temperature during summer season between each two land 

use. 

H0 = between different land uses within a pair have identical distributions i.e. median values air 

temperature (°C) in different land use are equal or identical. For example, median air 

temperature (°C) of city centre = median air temperature (°C) of sabkha with respect to 

adjusted P´ value less than (<) 0.0033 

H1 = between different land uses within a pair have different distributions i.e. median values air 

temperature (°C) in different land use are not equal. For example, median air temperature (°C) 

of city centre ≠ median air temperature (°C) of sabkha with respect to adjusted P´ value greater 

than (>) 0.0033 

Land use City centre Sabkha  Park  Farm  Factory  Airport  

City centre  
 

 

     

Sabkha ≠ (0.000)      

Park  ≠ (0.000) ≠ (0.000)     

Farm  ≠ (0.000) ≠ (0.000) ≠ (0.000) ≠ (0.000)   

Factory  = (0.262) ≠ (0.000) ≠ (0.000) ≠ (0.000)   

Airport   ≠ (0.000) ≠ (0.000) = (0.281) ≠ (0.000) ≠ (0.000)  

 

Note: ‘≠’ indicates significant difference (fail to reject - H1), ‘=’ indicates insignificant 

difference (fail to reject – H0) and values in paransethesis indicates calculated P values. 

Adjusted probability (P´):  

𝑃΄ =
𝑃

𝐾(𝐾 − 1)
2⁄

 

where, P =0.05 and K is the number of groups in sample. So, P ´ = 0.0033 @ K = 6 (no. of 

land use = 6) 
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Results of Skewness/Kurtosis tests for normality (surface temperature (°C) during winter 

season) (21/01/2011 to 28/02/2011) 

H0 = Surface temperature (°C) values in different land use have standard normal distribution 

H1 = Surface temperature (°C) values in different land use does not have standard normal 

distribution 

Variable Obs Pr (Skewness) Pr (Kurtosis) chi2 (2) Prob>chi2 

City centre  936 0.000 0.5265 65.31 0.000 

Sabkha 936 0.000 0.0772 63.03 0.000 

Park 936 0.084 0.0000 40.92 0.000 

Farm 936 0.000 0.0225 19.58 0.000 

Factory 936 0.000 0.0216 33.19 0.000 

 

Decision: Fail to accept null hypothesis at P<0.05 level. So, surface temperature (°C) values in 

different land use have lack of normal distribution. 

Kruskal–Wallis test for median comparison of surface temperature (°C) among different land 

use types during winter (21/01/2011 to 28/02/2011) at P≥0.05 level. 

H0 = Median values of surface temperature (°C) in different land use are equal i.e. median (city 

centre) = median (sabkha) = median (park) = median (farm) = median (factory) = median 

(airport) 

H1 = Median values of surface temperature (°C) in different land use are not equal or identical 

i.e. median (city centre) ≠ median (sabkha) ≠ median (park) ≠ median (farm) ≠ median 

(factory) ≠ median (airport) 

Location Observations  Rank sum  

City centre 936 2.64e+06 

Sabkha 936 2.13e+06 

Park 936 1.57e+06 

Farm 936 1.52e+06 

Factory 936 3.10e+06 

 

λ
2
=   1100.003 with (4) d.f. P=0.0001  

λ
2
 with ties =   1100.008 with (4) d.f. P=0.0001 

Decision: Fail to accept H0 at P≥0.05 level. So, significant difference exists in surface 

temperature (°C) median values of at least one pair of land use types. To identify significant 

difference between groups from possible pairs, need to perform further post-hoc test on median 

comparison between different land use groups. 
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Results of Kruskal–Wallis test of surface temperature during winter season between each two 

land use. 

H0 = between different land uses within a pair have identical distributions i.e. median values 

surface temperature (°C) in different land use are equal or identical. For example, median 

surface temperature (°C) of city centre = median surface temperature (°C) of sabkha with 

respect to adjusted P´ value less than (<) 0.005 

H1 = between different land uses within a pair have different distributions i.e. median values 

surface temperature (°C) in different land use are not equal. For example, median surface 

temperature (°C) of city centre ≠ median surface temperature (°C) of sabkha with respect to 

adjusted P´ value greater than (>) 0.005 

Land use City centre Sabkha  Park  Farm  Factory  

City centre       

Sabkha ≠ (0.000)     

Park  ≠ (0.000) ≠ (0.000)    

Farm  ≠ (0.000) ≠ (0.000) = (0.360)   

Factory  ≠ (0.000) ≠ (0.000) ≠ (0.000) ≠ (0.000)  

 

Note: ‘≠’ indicates significant difference (fail to reject - H1), ‘=’ indicates insignificant 

difference (fail to reject – H0) and values in paransethesis indicates calculated P values. 

Adjusted probability (P´):  

𝑃΄ =
𝑃

𝐾(𝐾 − 1)
2⁄

 

where, P =0.05 and K is the number of groups in sample. So, P ´ = 0.005 @ K = 5 (no. of land 

use = 5) 
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Results of Skewness/Kurtosis tests for normality (Surface temperature (°C) during summer 

season) (26/07/2011 to 31/08/2011) 

H0 = Surface temperature (°C) values in different land use have standard normal distribution 

H1 = Surface temperature (°C) values in different land use does not have standard normal 

distribution 

Variable Obs Pr (Skewness) Pr (Kurtosis) chi2 (2) Prob>chi2 

City centre  888 0.002 0.000 268.44 0.000 

Sabkha 888 0.046 0.000 4346.91 0.000 

Park 888 0.002 0.000 397.29 0.000 

Farm 888 0.408 0.000 91.55 0.000 

factory 888 0.000 0.469 52.03 0.000 

 

Decision: Fail to accept null hypothesis at P<0.05 level. So, surface temperature (°C) values in 

different land use have lack of normal distribution. 

Kruskal–Wallis test for median comparison of surface temperature (°C) among different land 

use types during summer (26/07/2011 to 31/08/2011) at P≥0.05 level. 

H0 = Median values of surface temperature (°C) in different land use are equal i.e. median (city 

centre) = median (sabkha) = median (park) = median (farm) = median (factory) = median 

(airport) 

H1 = Median values of surface temperature (°C) in different land use are not equal or identical 

i.e. median (city centre) ≠ median (sabkha) ≠ median (park) ≠ median (farm) ≠ median 

(factory) ≠ median (airport) 

Location Observations  Rank sum  

City centre 888 2.82e+06 

Sabkha 888 2.05e+06 

Park 888 1.78e+06 

Farm 888 733627.00 

Factory 888 2.47e+06 

 

λ
2
=   1743.199 with (4) d.f. P=0.0001 

λ
2
 with ties =   1743.204 with (4) d.f. P=0.0001  

Decision: Fail to accept H0 at P≥0.05 level. So, significant difference exists in surface 

temperature (°C) median values of at least one pair of land use types. To identify significant 

difference between groups from possible pairs, need to perform further post-hoc test on median 

comparison between different land use groups. 
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Results of Kruskal–Wallis test of surface temperature during summer season between each two 

land use. 

H0 = between different land uses within a pair have identical distributions i.e. median values 

surface temperature (°C) in different land use are equal or identical. For example, median 

surface temperature (°C) of city centre = median surface temperature (°C) of sabkha with 

respect to adjusted P´ value less than (<) 0.005 

H1 = between different land uses within a pair have different distributions i.e. median values 

surface temperature (°C) in different land use are not equal. For example, median surface 

temperature (°C) of city centre ≠ median surface temperature (°C) of sabkha with respect to 

adjusted P´ value greater than (>) 0.005 

Land use City centre Sabkha  Park  Farm  Factory  

City centre  
 

 

    

Sabkha ≠ (0.000)     

Park  ≠ (0.000) ≠ (0.000)    

Farm  ≠ (0.000) ≠ (0.000) ≠ (0.000)   

Factory  ≠ (0.000) ≠ (0.000) ≠ (0.000) ≠ (0.000)  

  

Note: ‘≠’ indicates significant difference (fail to reject - H1), ‘=’ indicates insignificant 

difference (fail to reject – H0) and values in paransethesis indicates calculated P values. 

Adjusted probability (P´):  

𝑃΄ =
𝑃

𝐾(𝐾 − 1)
2

⁄
 

where, P =0.05 and K is the number of groups in sample. So, P ´ = 0.005 @ K = 5 (no. of land 

use = 5) 

  



 

247 

 

 

Results of Skewness/Kurtosis tests for normality (relative humidity (%) during winter season) 

(21/01/2011 to 28/02/2011) 

H0 = relative humidity (%) values in different land use have standard normal distribution 

H1 = relative humidity (%) values in different land use does not have standard normal 

distribution 

Variable Obs Pr (Skewness) Pr (Kurtosis) chi2 (2) Prob>chi2 

City centre  936 0.000 0.000 84.86 0.000 

Sabkha 936 0.838 0.000 366.01 0.000 

Park 936 0.000 0.000 118.74 0.000 

Farm 936 0.087 0.000 946.43 0.000 

Factory 936 0.000 0.022 33.19 0.000 

Airport 936 0.001 0.000 186.13 0.000 

 

Decision: Fail to accept null hypothesis at P<0.05 level. So, relative humidity (%) values in 

different land use have lack of normal distribution. 

Kruskal–Wallis test for median comparison of relative humidity (%) among different land use 

types during winter (21/01/2011 to 28/02/2011) at P≥0.05 level. 

H0 = Median values of relative humidity (%) in different land use are equal i.e. median (city 

centre) = median (sabkha) = median (park) = median (farm) = median (factory) = median 

(airport) 

H1 = Median values of relative humidity (%) in different land use are not equal or identical i.e. 

median (city centre) ≠ median (sabkha) ≠ median (park) ≠ median (farm) ≠ median (factory) ≠ 

median (airport) 

Location Observations  Rank sum  

City centre 936 2.58e+06 

Sabkha 936 3.10e+06 

Park 936 2.92e+06 

Farm 936 3.62e+06 

Factory 936 703541.00 

Airport 936 2.85e+06 

 

λ
2
=   2052.331 with (5) d.f. P=0.0001 

λ
2
 with ties =   2052.340 with (5) d.f. P<0.0001    

Decision: Fail to accept H0 at P≥0.05 level. So, significant difference exists in relative 

humidity (%) median values of at least one pair of land use types. To identify significant 

difference between groups from possible pairs, need to perform further post-hoc test on median 

comparison between different land use groups.  
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Results of Kruskal–Wallis test of relative humidity during winter season between each two 

land use. 

H0 = between different land uses within a pair have identical distributions i.e. median values 

relative humidity (%) in different land use are equal or identical. For example, median relative 

humidity of city centre = median relative humidity (%) of sabkha with respect to adjusted P´ 

value less than (<) 0.0033 

H1 = between different land uses within a pair have different distributions i.e. median values 

relative humidity (%) in different land use are not equal. For example, median relative 

humidity of city centre ≠ median relative humidity of sabkha with respect to adjusted P´ value 

greater than (>) 0.0033 

Land use City centre Sabkha  Park  Farm  Factory Airport  

City centre        

Sabkha ≠ (0.000)      

Park  ≠ (0.000) ≠ (0.000)     

Farm  ≠ (0.000) ≠ (0.000) ≠ (0.000)    

Factory  ≠ (0.000) ≠ (0.000) ≠ (0.000) ≠ (0.000)   

Airport ≠ (0.000) ≠ (0.000) = (0.371) ≠ (0.000) ≠ (0.000)  

 

Note: ‘≠’ indicates significant difference (fail to reject - H1), ‘=’ indicates insignificant 

difference (fail to reject – H0) and values in paransethesis indicates calculated P values. 

Adjusted probability (P´):  

𝑃΄ =
𝑃

𝐾(𝐾 − 1)
2

⁄
 

where, P =0.05 and K is the number of groups in sample. So, P ´ = 0.0033 @ K = 6 (no. of 

land use = 6) 
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Results of Skewness/Kurtosis tests for normality (relative humidity (%) during summer season) 

(26/07/2011 to 31/08/2011) 

H0 = relative humidity (%) values in different land use have standard normal distribution 

H1 = relative humidity (%) values in different land use does not have standard normal 

distribution 

Variable Obs Pr (Skewness) Pr (Kurtosis) chi2 (2) Prob>chi2 

City centre  888 0.000 0.000 278.52 0.000 

Sabkha 888 0.000 0.269 99.31 0.000 

Park 888 0.000 0.000 236.13 0.000 

Farm 888 0.001 0.000 226.07 0.000 

Factory 888 0.000 0.000 257.42 0.000 

Airport 888 0.000 0.000 276.38 0.000 

 

Decision: Fail to accept null hypothesis at P<0.05 level. So, relative humidity (%) values in 

different land use have lack of normal distribution. 

Kruskal–Wallis test for median comparison of relative humidity (%) among different land use 

types during summer (26/07/2011 to 31/08/2011) at P≥0.05 level. 

H0 = Median values of relative humidity (%) in different land use are equal i.e. median (city 

centre) = median (sabkha) = median (park) = median (farm) = median (factory) = median 

(airport) 

H1 = Median values of relative humidity (%) in different land use are not equal or identical i.e. 

median (city centre) ≠ median (sabkha) ≠ median (park) ≠ median (farm) ≠ median (factory) ≠ 

median (airport) 

Location Observations  Rank sum  

City centre 888 2.09e+06 

Sabkha 888 2.59e+06 

Park 888 2.15e+06 

Farm 888 3.44e+06  

Factory 888 2.04e+06 

Airport 888 1.89e+06 

 

λ
2
=   793.541 with (5) d.f. P=0.0001  

λ
2
 with ties =   793.559 with (5) d.f. P=0.0001  

Decision: Fail to accept H0 at P≥0.05 level. So, significant difference exists in relative 

humidity (%) median values of at least one pair of land use types. To identify significant 

difference between groups from possible pairs, need to perform further post-hoc test on median 

comparison between different land use groups. 
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Results of Kruskal–Wallis test of relative humidity during summer season between each two 

land use 

H0 = between different land uses within a pair have identical distributions i.e. median values 

relative humidity (%) in different land use are equal or identical. For example, median relative 

humidity (%) of city centre = median relative humidity (%) of sabkha with respect to adjusted 

P´ value less than (<) 0.0033 

H1 = between different land uses within a pair have different distributions i.e. median values 

relative humidity (%) in different land use are not equal. For example, median relative 

humidity of city centre ≠ median relative humidity of sabkha with respect to adjusted P´ value 

greater than (>) 0.0033 

Land use City centre Sabkha  Park  Farm  Factory Airport  

City centre  
 

 

     

Sabkha ≠ (0.000)      

Park  = (0.483) ≠ (0.000)     

Farm  ≠ (0.000) ≠ (0.000) ≠ (0.000)    

Factory  = (0.278) ≠ (0.000) = (0.085) ≠ (0.000)   

Airport  ≠ (0.000) ≠ (0.000) ≠ (0.000) ≠ (0.000) ≠ (0.000)  

 

Note: ‘≠’ indicates significant difference (fail to reject - H1), ‘=’ indicates insignificant 

difference (fail to reject – H0) and values in paransethesis indicates calculated P values. 

Adjusted probability (P´):  

𝑃΄ =
𝑃

𝐾(𝐾 − 1)
2⁄

 

where, P =0.05 and K is the number of groups in sample. So, P ´ = 0.0033 @ K = 6 (no. of 

land use = 6) 
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Appendix 5.1: 

  
Quantile distribution plots of air temperature (°C) during winter traverses at night and after 

sunset. Original data left, log temperature in the middle, and square root transformation of air 

temperature right. 
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Quantile distribution plots of air temperature (°C) during summer traverses at night and after 

sunset. Original data left, log temperature in the middle, and square root transformation of air 

temperature right. 
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Quantile distribution plots of relative humidity (%) during winter traverses at night and after 

sunset. Original data left, log temperature in the middle, and square root transformation of air 

temperature right. 
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Quantile distribution plots of Relative humidity (%) during summer traverses at night and after 

sunset. Original data left, log temperature in the middle, and square root transformation of air 

temperature right. 
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Appendix 5.2: 

 

The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 1). 

 

The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 2). 
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The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 3). 

 

The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 4). 
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The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 5). 

 

The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 6). 
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The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 7). 

 

The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 8). 
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The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 9). 

 

 

The relation between air temperature, relative humidity, and land cover types during summer 

season August 2011 (Mobile traverses day 10). 
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The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 1). 

 

 

The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 2). 
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The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 3). 

 

The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 4). 
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The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 5). 

 

The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 6). 
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The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 7). 

 

The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 8). 
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The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 9). 

 

The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 10). 
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The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 11). 

 

The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 12). 
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The relation between air temperature, relative humidity, and land cover types during winter 

season February 2011 (Mobile traverses day 13). 


