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Abstract

Muds and mudstones are the most abundant sediments in sedimentary basins and can

control fluid migration and pressure. In petroleum systems, they can also act as source,

reservoir or seal rocks. More recently, the sealing properties of mudstones have been

used for nuclear waste storage and geological CO2 sequestration. Despite the growing

importance of mudstones, their geological modelling is poorly understood and clear

quantitative studies are needed to address 3D lithology and flow properties distribution

within these sediments. The key issues in this respect are the high degree of

heterogeneity in mudstones and the alteration of lithology and flow properties with time

and depth. In addition, there are often very limited field data (log and seismic), with

lower quality within these sediments, which makes the common geostatistical modelling

practices ineffective.

In this study we assess/capture quantitatively the flow-important characteristics of

heterogeneous mud-rich sequences based on limited conventional log and post-stack

seismic data in a deep offshore West African case study. Additionally, we develop a

practical technique of log-seismic integration at the cross-well scale to translate 3D

seismic attributes into lithology probabilities. The final products are probabilistic

multiattribute transforms at different resolutions which allow prediction of lithologies

away from wells while keeping the important sub-seismic stratigraphic and structural

flow features. As a key result, we introduced a seismically-driven risk attribute (so-

called Seal Risk Factor "SRF") which showed robust correspondence to the lithologies

within the seismic volume. High seismic SRFs were often a good approximation for

volumes containing a higher percentage of coarser-grained and distorted sediments, and

vice versa.

We believe that this is the first attempt at quantitative, integrated characterisation of

mud-rich overburden sediment sequences using log and seismic data. Its application on

modern seismic surveys can save days of processing/mapping time and can reduce

exploration risk by basing decisions on seal texture and lithology probabilities.
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1.1 Rationale

Muds and mudstones are the commonest sediment types and considerably

control the fluid flow in sedimentary basins. In a petroleum system they can be a

source rock, a shale gas reservoir, a seal, and determine the primary and secondary

migration processes in most geological contexts. Furthermore, by restricting fluid

flow, they can influence the development of overpressure in sedimentary basins (e.g.

Aplin et al., 1999). In addition, the sealing properties of mudstones have been

recently used for clay-lined landfill sites and carbon capture storage (CCS) to restrict

the leakages over centuries. Despite the growing importance of mudstones, their

subsurface geological properties are still poorly understood and clear quantitative

studies are needed to address reservoir-modelling-scale heterogeneities in their

lithology and flow properties.

The key issues in this respect are the high degree of small-scale (<5 m)

vertical heterogeneity in mudstones and the alteration of lithology and flow

properties with time and depth by physical or chemical processes and fluid-rock

interactions. It has been common practice in the last decade to build geomodels

according to a two-step process: geostatistical facies modelling followed by

geostatistical petrophysical property modelling. This approach requires that the

facies are understood in terms of their mutual genetic-spatial relationships and

accurately characterised as far as their relevant petrophysical properties are

concerned (Ruvo et al., 2005). In mudstones, thin, mm-sized alternating horizons of

silt and clay cannot be resolved by conventional wireline logs. In order to

petrophysically characterise such kinds of logfacies it is usually necessary to also

define, for instance, the net-to-gross (NTG) which is an important but difficult

parameter for geostatistical simulations, depending strongly on the choice of cut-off

parameters (e.g. Martin, 2008).

In the framework of quantitative seismic interpretation, quality control is

important to analyse data loading parameters, SEGY brick format, noise and spatial

resolution, and it is desirable to improve signal by filtering or by wavelet

modifications. For instance, thin-bed spectral inversion is a novel way of removing

the wavelet from the seismic data and extracting reflectivity. For data with a high

signal-to-noise ratio, thicknesses far below tuning can be resolved. The highly
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resolved seismic data retrieved in the form of reflectivity data is very useful for

making accurate quantitative interpretations and for seismic-log integration (Chopra

et al., 2006). On the contrary, the spectral decomposition techniques are not

applicable to mudstones because of low acoustic impedance contrasts (White et al.,

2015), and mud-rich sequences have to be interpreted in full seismic bandwidth.

Therefore, a physically sound quantitative interpretation paradigm is needed to

address these technical issues and to control the quality of subsequent geomodelling.

There has been always a gap of incompatible resolution between core, well

log and seismic data. This is especially challenging in mudstone sequences where

there are considerable small scale petrophysical and sedimentological

heterogeneities. To date, there is no well-known approach for log-seismic integration

in mud-rich sequences. Stochastically building synthetic data sets with compatible

resolution based on both log and seismic data can be helpful (Doyen, 2008; Ruvo et

al., 2005). In addition, high or ultra-high density seismic datasets can facilitate the

integration problem in this context.

The overall objectives in this study were to analyse quantitatively the fluid-

flow-related characteristics of heterogeneous mud-rich sequences based on post-

stack seismic attributes, to study attributes-well tie with mud-rich logfacies and to

develop a step-wise technique for creating facies probability cubes which capture the

stratigraphic and structural features that influence flow in mud-rich context at the

subseismic-scale. In this project we aimed to perform explicit probabilistic modelling

which could address the limitation of log and seismic data quality and availability in

seal formations. We focussed on the pick-trough time interval scale (defined by

successive picks and troughs along seismic amplitude traces) as the way of bridging

the scales in 1D (vertical direction) between different data types (i.e. core, log and

seismic). The final products, 3D facies probability models, can be used for studying

the impact of reservoir-modelling-scale heterogeneities on basin-modelling-scale

flow mechanisms, i.e. leakage, migration or recovery. The work presented in this

thesis has been carried out on sample, core, log and seismic data from an offshore oil

field in West Africa, where deep-water sandstone reservoirs are encased in

hemipelagites and mass-transport deposits.
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1.2 Background

1.2.1 Logfacies recognition in heterogeneous mudstones

A sedimentary facies that is characterised by a set of electrical responses

extracted from wireline measurements is called an electrofacies or logfacies (Serra

and Abbott, 1982). Several approaches to logfacies recognition have been applied

using multiple log and core data. These include artificial intelligence methods:

artificial neural networks (ANN) (Qi and Carr, 2006; Ma 2011; Tang et al., 2011),

and fuzzy logic (Wong et al., 1997; Cuddy, 2000; Siripitayananon et al., 2001;

Saggaf and Nebrija, 2003). Multivariate statistical classification methods include

discriminant and cluster analysis, regression analysis (Lee et al., 2002; Tang et al.,

2004; Tang and White, 2008; Enikanselu and Ojo 2012), statistical tree-based

analysis (Perez et al., 2005), and Bayesian analysis (John et al., 2005; Li and

Anderson-Sprecher, 2006; Lindberg et al., 2014). In addition to these conventional

approaches, other researchers transformed well log responses into signal form and

applied signal processing techniques to recognise patterns of logfacies (Alvarez et

al., 2003; Maiti and Tiwari 2005; Hruska et al., 2009). In contrast to the conventional

approaches, these techniques are systematic and self-determining, but they require

manipulation of raw data (Soliman et al., 2003) and are not suitable recognition tools

where the quality of the wireline response is poor.

Given the importance of shale in unconventional reservoirs, facies

interpretations of fine-grained sediments using  sample, core and log analysis has

recently received more attention (Dawson and Almon, 2002, 2006; Passey et al.,

2010; Mitra et al., 2010; Hammes and Frebourg, 2012; Wang and Carr, 2012, Gould

et al., 2014). Nevertheless, despite several facies interpretation studies in mud-rich

sediments, there is still very little research aimed at logfacies pattern recognition in

these sediments.

Variants of multifractal techniques have been introduced that can be adapted

to different sedimentary contexts by changing fractal properties (Khue et al., 2002;

Lopez and Aldana, 2007; Hernandez-Martinez et al., 2013). However, their facies

prediction results showed no meaningful relation with seismic. More recently, Grana

et al. (2014) applied the Expectation Maximisation (EM) statistical algorithm to

classify facies in the Marcellus Shale in the Appalachian Basin, using well log data.
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The facies classifications were checked against regional stratigraphy. Despite the

promising result, the method is based on Gaussian mixture models of petroelastic

properties and relies on availability of both well log and rock physics analysis data.

In this study a modified SOM algorithm, the so-called Indexed and

Probabilised Self-Organising Map (IPSOM), is used to achieve a core and

seismically correlatable logfacies recognition result. The basic SOM or Kohonen

network method was introduced by Kohonen (1982, 1984) for speech recognition.

Numerous variants of SOM have been widely developed for data exploration

purposes to analyse the experimentally derived high-dimensional data (Kaski et al.,

1998; Oja et al., 2003; Pöllä et al., 2007). In petroleum geoscience, the SOM is also

one of the most effective unsupervised pattern recognition techniques for the

automatic identification and mapping of seismic-scale facies in different depositional

contexts (Matos et al., 2007; Roy et al., 2010, 2013; Chopra and Marfurt, 2014). The

IPSOM can outperform the EM algorithm in computation and learning speed (Chang

and Chong-xiu, 2013) and can improve the decisiveness of the model complexity

(Yin, 2008).

1.2.2 3D seismic texture analysis in heterogeneous mudstones

Seismic attributes are properties that can be quantitatively extracted

from seismic data to filter or illustrate geological and geophysical characteristics of

the subsurface (Chopra and Marfurt, 2005). In the 1960s, 1970s and 1980s, attribute

technology gradually developed by introducing several 2D attributes (and

applications) to help geoscientists in petroleum exploration: reflector dip attribute

(Picou and Utzman, 1962; Simpson et al., 1967), bright-spot (Churlin and Sergeyev,

1963), seismic opacity (Balch, 1971), seismic inversion (Lavergne, 1975; Lindseth,

1976), seismic stratigraphy (Taner and Sheriff, 1977; Vossler,1988), complex trace

attributes (Taner et al., 1979), seismic attenuation (Taner et al., 1979), and interval

attributes (Dalley et al., 1989; Sonneland et al., 1989). In the 1980s, attributes

proliferated and became popular, but 2D seismic stratigraphy was not still successful

in many cases (e.g. in chaotic features such as slump and turbidites, or subtle

discontinuities) because of the 3D nature of geological features and artefacts (Love

and Simaan, 1984).
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The emergence of 3D seismic technology led to the development of

volumetric attributes which made significant subsurface interpretational and

characterisation impacts: coherency attribute (Bahorich and Farmer, 1995), texture

attribute (Vinther et al., 1995; West et al., 2002; Gao, 2004), pattern recognition

attributes (Russell et al., 1997), spectral decomposition (Peyton et al., 1998; Partyka

et al., 1999) and elastic inversion (Connolly 1999; Whitcombe, 2002).

As the very first seismic textural analysis in the 2D domain, Sangree and

Widmier (1976) demonstrated the relationship between seismic-signal pattern and

constituent sediments of geobodies; later, Love and Simaan (1984) extracted textural

patterns using 2D amplitude templates. In the 1990s, the development of volumetric

attributes, multi-attribute techniques (Russell et al., 1997) and statistical measures

(Vinther, 1997; Whitehead et al., 1999; West et al., 2002; Gao, 2004) opened new

perspectives for the classification of textures. By far, the majority of seismic texture

detection efforts have been focused on delineating the distribution, quality and

connectivity of reservoir pay zones in different sedimentological environments: deep

marine (e.g. Prather, et al., 1998; Gao, 2007, 2008), fluvial deposits (e.g. Yenugo and

Marfurt, 2010; de Matos et al., 2011), carbonates (e.g. Carrillat, et al., 2002),

submarine turbidites (e.g. Gao, 2004), etc. Seismic texture analysis has not been

commonly applied to fine-grained sediment sequences and the research has often

been limited to either qualitative seismic facies analysis (e.g. Droz et al., 2003;

Power et al., 2014), bypass detection (e.g. Heggland et al., 1999; Meldhal et al.,

2001; Tingdahl et al., 2001) or semi-quantitative classification at the geobody scale

(e.g. Corradi et al., 2009). In this work, an automatic, quantitative approach is

proposed to link seal quality with the 3D seismic texture of mud-rich sequences by

setting a physically sound, a priori texture model (Gao, 2004). In fact this work

extends the recent study by Alves et al. (2014) in which multiple surface attributes

were used to delineate different MTD textures.

1.2.3 Lithofacies modelling in heterogeneous mudstones

Lithofacies modelling requires an integrated approach, and the use of seismic

attributes can reduce the uncertainty of spatial modelling and sometimes provides

direct information about the distribution of sedimentary bodies such as channels

(Biver et al., 2002, 2009; Hass and Formery, 2002) and mass transport deposits
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(Frey-Martinez et al., 2006; Moscardelli and Wood, 2008; Alves et al., 2010).

Discrete facies parameters must therefore be constrained with continuous seismic

attribute results. This is conducted by either deterministic or stochastic geostatistical

methods. Deterministic approaches (Chiles and Delfiner, 1999; Coleou, 2002; Xu et

al., 2010) apply kriging principles to interpolate facies data. They are good at

honouring the statistics, but often poor at capturing the sedimentary bodies (Amour

et al., 2012; Park and Jang, 2014). In contrast, stochastic facies modelling -

conditional simulation - generates models representing more realistic depositional

features and honouring the existing data and/or the a priori model (Dubrule et al.,

1998, 2003; Falivene et al., 2006).

Both Bortoli et al. (1992) and Haas and Dubrule (1994) introduced

geostatistical inversion (GI), which generates joint realisations of facies and acoustic-

impedance, all directly constrained by seismic data. GI is largely dependent on

seismic quality; thus the algorithm was used in the case of a faulted reservoir (Lamy

et al., 1998; Rowbotham et al., 2000) and a salt tectonised region (Shrestha and

Boeckmann, 2002) to discriminate facies and link the uncertainty to seismic quality

variations. Despite these advances in geostatistical simulations, the relatively

homogeneous, low signal:noise seismic data in fine-grained sediment sequences

limits the efficiency of GI in modelling seal facies. The alternative conditional

simulation approaches are probabilistic and constrained by facies occurrence

probabilities derived from seismic attributes at well locations. The algorithms are not

controlled by seismic quality or assumptions used for statistical relationships

between facies and seismic attributes (Dubrule, 2003). Macdonald et al. (1995),

Skare et al. (1996) and Yarus et al. (2000) also described an application of this

method to stochastically model the distribution of bar and channel facies bodies

within a shaly background in a Tertiary reservoir in the Gulf of Thailand. Although

constraining object-based models with seismic data can effectively capture

geological bodies with characteristic geometries such as crevasse splays and

channels (Haldorsen and Damsleth, 1990), it is less useful for predicting more subtle

variation of facies in laterally extensive, muddy seal units.

Gomez-Hernandez and Journel (1990) and Doyen et al. (1994) proposed

probabilistic pixel-based approaches that generalise the indicator simulation

methodology developed for continuous variables to be used for discrete variables.
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Doyen et al. (1994) successfully applied the methodology in the Ness formation of

the Oseberg field (North Sea) to find channel deposits using reflection strength

amplitude. Lo and Bashore (1999) proposed a similar approach to obtain a 3D

density model and translate it into probabilities of various facies. Insalaco et al.

(2001) presented an application of this approach to detailed modelling of a West

African turbidite deposit. Due to the increase in interest in shale gas resources, there

are also recent case studies utilising similar probabilistic conditional simulations

(Wang and Carr, 2012, 2013) to predict shale lithofacies on a regional scale. In this

study, the proposed algorithm extended the conventional probabilistic indicator

simulation for channel deposits (Doyen et al., 1994) and turbidites (Insalaco et al.,

2001) to fine-grained seal deposits. Classic multivariate analysis (Fournier and

Derain, 1995; Hart and Balch, 2000) and Bayesian (Buland et al., 2008) techniques

have been utilised to establish the likelihood functions of seal facies based on

multiple textural attributes with limited well control.

1.3 Thesis structure

This thesis is written in publication style rather than as a monograph, so that

individual technical chapters (Chapters 2-4) have their own introduction, aims, data,

methods, results, discussion, conclusions and references sections. Thus, materials

may repeat in some cases to keep individual technical chapters readable as stand-

alone works. In the big-picture view, the technical chapters comprise different steps

of an approach to generate lithofacies models in heterogeneous mudstones from

limited core, log and seismic data. In this work we utilised all the sample, core, log

and seismic data available in a West Africa case study (and partly used sample and

seismic data from a North Africa case study for comparison purposes). The second

chapter demonstrates a novel neural network approach for logfacies recognition in

mud-rich sediment sequences with limited core and log data. In chapter three, we

introduce a seal texture model and analyse the corresponding 3D attributes. Finally,

in chapter four, the outcomes of logfacies recognition and textural attribute analysis

are integrated at the pick-trough time interval scale (in West Africa case study ~ 10

m) to generate a probabilistic seal lithofacies cube in heterogeneous mudstones.
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The result of this research work have been partly presented in two

international conferences. The first paper has received among the highest ratings

from its reviewers and has invited for full paper publication in First Break:

 Karimi, S., Aplin, A.C., Kurtev, K.D. and Kets, F., 2013, Seismic

characterization of seal quality using volume attributes. In Proceedings: 75th

EAGE Conference & Exhibition incorporating SPE EUROPEC 2013,

London. Extended abstract. DOI: 10.3997/2214-4609.20130773.

 Karimi, S., Aplin, A.C., Kurtev, K.D. and Kets, F., 2014, Seismic

characterisation of mud-rich sediments - application to seal risk. In

Proceedings: Fourth EAGE Shale Workshop, Porto. Extended abstract. DOI:

10.3997/2214-4609.20140031.

1.4 Caprocks project

The research project was embedded in the Caprocks Project (Phase 3), a

collaboration of international petroleum companies, the UK Department for

Business, Enterprise and Regulatory Reform and researchers at Durham/Newcastle,

Cardiff, Heriot-Watt and Leeds Universities. The Caprocks project focused on the

fine-grained section of sedimentary basins and developed insights to the related

processes of petroleum trapping and leakage. The project was conducted by different

teams (in different universities) on various scales of study. Table 1.1 shows the

timeline of Caprocks project and Table 1.2 indicates the contribution of different

teams in Phase 3 and how my research work fits in the framework of the Caprocks

project.

Table 1.1: Caprocks project timeline

Project phase Period Team Research theme

Phase 1 2003-2007 Newcastle, Leeds,

Cardiff Universities

Mudstone petrophysics: physical

properties and log response

Phase 2 2007-2010 Newcastle, Heriot-Watt,

Cardiff Universities

Upscaled, effective flow properties of

mud-rich, heterolithic rock types
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Phase 3 2010-2013 Newcastle/Durham,

Leeds, Cardiff and

Heriot-Watt Universities

Workflows for basin-scale flow models

and seal capacity risking

Table 1.2: Caprocks project teams and their contribution in Phase 3

Scale of study Team Research theme

Core-scale Leeds

University

Experimental analysis of flow properties in low

permeability mudstones

Log-scale Durham

/Newcastle

University

Analytical modelling of effective flow properties /

logfacies recognition in mudstones

Seismic (voxelgrid)-

scale

Durham

/Newcastle

University

Seismic attribute analysis / seismic-well tie

analysis / facies probability cube generation in

heterogeneous mud-rich seal sequences

Genetic unit-scale Heriot-Watt

University

Numerical modelling of fluid flow / upscaling of

effective flow properties in mudstones

Regional-scale Cardiff

University

Geological interpretation of seal capacity and

migration process in mudstones / MTD Atlas

My PhD study focused mainly on the seismic-scale and partly on the log-

scale studies in Caprocks “phase 3”. The aim was to integrate the small-scale

sedimentological and petrophysical work at Newcastle University (done in phase 1

and 2) with the seismic-scale work at Cardiff University (done in phase 1 and 2) to

define the 3D architecture of seal sequences at reservoir-modelling-scale for

upscaling and the use in basin-scale flow simulators at Heriot-Watt University. In the

log-scale part of the research, Dr Kuncho Kurtev significantly contributed to perform

the IPSOM operations in Techlog software and to analyse the available core and

sample studies from phase 1 and 2. The horizon surfaces used in this research are

mixture of operator mappings and primary mappings at Cardiff University by Prof

Joe Cartwright, Dr Mads Huuse (currently Manchester University) and Dr Tiago

Alves.

M
y 

Ph
D 

Re
se

ar
ch
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Caprocks “phase 3” was funded by: Anadarko, BHP Billiton, BP, Chevron,

ConocoPhillips, ENI, Petrobras, StatoilHydro, Total and BG Group. The case study

datasets were provided by the sponsors of the Caprocks project. Due to the

confidentiality agreement, the specifications of geological settings and datasets

cannot be fully disclosed. Therefore, in this study the aliases are used for the well

and surface names, and literature and company names are not stated in the geological

settings and data sections.
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2.1 Introduction

A sedimentary facies is the set of lithological, geometrical, structural,

biological and geochemical features of a sedimentary rock and its depositional

environment (Reading, 2009). Individual facies have distinct petrophysical,

mechanical and hydraulic characteristics, and the prediction and mapping of

sedimentary facies plays an important role in subsurface characterisation in a

sedimentary basin. Facies recognition is thus a foundation for the inference of the

physical properties of sedimentary sequences (e.g. Gill et al., 1993; Chang et al.,

2002).

Facies can be defined using different types of data resources including core,

outcrop, seismic and logs. A sedimentary facies that is characterised by a set of

electrical responses extracted from wireline measurements is called an electrofacies

or logfacies (Serra and Abbott, 1982). The identification of logfacies is carried out by

comparing or training pattern recognition with sedimentary interpretation derived

from core analysis (John et al., 2005). In exploration and development of a petroleum

reservoir, logfacies mapping can help to reduce the risk of drilling a dry well or to

improve the efficiency of a production well by delineating reservoir, source and seal

sequences (Alvarez et al., 2003).

Several approaches to logfacies recognition have been applied using multiple

log and core data, mainly developed to map different reservoir rock types where

good quality core and log data are readily available. As an initial approach, Serra and

Abbott (1982) applied a clustering technique for logfacies prediction that gave very

limited information about real rock properties. Subsequently, various more

sophisticated approaches have been developed for logfacies pattern recognition

which can be classified into two main groups: artificial intelligence and multivariate

analysis (statistical) methods. Artificial intelligence methods include artificial neural

networks (ANN) (Qi and Carr, 2006; Ma 2011; Tang et al., 2011), and fuzzy logic

(Derek et al., 1990; Chang et al., 1997; Wong et al., 1997; Cuddy, 2000;

Siripitayananon et al., 2001; Bhatt and Helle, 2002; Saggaf and Nebrija, 2003).

Multivariate statistical classification methods include discriminant and cluster
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analysis, regression analysis (Delfiner et al., 1987; Sakurai and Melvin, 1988; Avseth

et al., 2001; Lee et al. 2002; Tang et al., 2004; Guo et al., 2007; Tang and White,

2008; Enikanselu and Ojo 2012), statistical tree-based analysis (Perez et al., 2005),

and Bayesian analysis (John et al., 2005; Li and Anderson-Sprecher, 2006; Lindberg

et al., 2014). In addition to these conventional approaches, other researchers

transformed well log responses into signal form and applied signal processing

techniques to recognise patterns of logfacies (Alvarez et al., 2003; Maiti and Tiwari

2005; Hruska et al., 2009). In contrast to the conventional approaches, these

techniques are systematic and self-determining, but they require smoothing of the

raw signals and retention of the details (Soliman et al., 2003). Thus, they are not

suitable recognition tools where the quality of the electrical (wireline) response is

poor.

Although the development of pattern recognition methods has greatly

contributed to the automation of lithology prediction in reservoir rocks, little

logfacies prediction work has been undertaken in mud-rich sediments or top seal

sequences. The rarity of core acquisition and complete log suites in mud-rich

overburden sediment sequences forces us here to look for a new approach to identify

fine-grained logfacies. The result can be an important asset for flow properties

modelling relevant to seal analysis and basin modelling. Previous research has

established sedimentary facies models for fine-grained depositional environments

including deep water (Stow and Piper, 1984; Stow, 1985; Pickering et al., 1986;

Stow, 1994), turbidites (Porebski et al., 1991; Shanmugam, 2000, 2001; Camacho et

al., 2002; Sumner et al., 2012) and fluvial systems (Jackson, 1981; Fielding et al.,

2009; Jackson et al., 2013). These studies qualitatively interpreted and modelled the

complex distribution of sedimentary facies and architectures based on flow evolution

and deposit morphology controls derived from the analysis of outcrop, seismic or

physical experiments. Given the importance of shale in unconventional reservoirs,

facies interpretations of fine-grained sediments using sample, core and log analysis

has recently received more attention (Dawson and Almon, 2002, 2006; Passey et al.,

2010; Mitra et al., 2010; Hammes and Frebourg, 2012; Wang and Carr, 2012, Gould

et al., 2014). Nevertheless, despite several facies interpretation studies in mud-rich

sediments, there is still very little research aimed at logfacies pattern recognition in

these sediments.
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Variants of multifractal techniques have been introduced that can be adapted

to different sedimentary contexts by changing fractal properties (Turcotte, 1997;

Khue et al., 2002; Lopez and Aldana, 2007; Hernandez-Martinez et al., 2013). For

example, Lopez and Aldana (2007) suggested that a wavelet-based multifractal

analysis of mud-dominated zones could be associated with well logs with fractal

dimensions of greater than 1.2; nevertheless, the logfacies recognition results

obtained from these methods could not correlated with seismic. Moreover, as a signal

processing method, subtle electrical responses in mud-rich sediments are very

susceptible to the manipulation of raw data in multifractal approaches. More

recently, Grana et al. (2014) applied the Expectation Maximisation (EM) statistical

algorithm to classify facies in the Marcellus Shale in the Appalachian Basin, using

well log data. The proposed method was based on Gaussian distribution of petro-

elastic properties and has been only verified against logs and regional stratigraphic

data. In this study we focus on a novel artificial neural network (ANN) technique to

achieve a core and seismically correlatable logfacies recognition result.

The objective here is to develop a step-by-step, unsupervised Self-Organising

Map (SOM) approach to predict lithological variations along wellbores within cored

and uncored mud-rich, overburden sediments. The basic SOM or Kohonen network

method was introduced by Kohonen (1982, 1984) for speech recognition to explain

the spatial organization of the brain's functions. Numerous variants of SOM have

been widely developed for data exploration purposes to analyse the experimentally

derived high dimensional data (Kaski et al., 1998; Oja et al., 2003; Pöllä et al., 2007).

In petroleum geoscience, the SOM is also one of the most effective unsupervised

pattern recognition techniques for the automatic identification and mapping of

seismic-scale facies in different depositional contexts (Kohonen, 2001; Matos et al.,

2007; Roy et al., 2010, 2013; Chopra and Marfurt, 2014). Here the aim is to use a

modified SOM algorithm, the so-called Indexed and Probabilised Self-Organising

Map (IPSOM), to show how mud-rich electrofacies can be recognised on logs.

The IPSOM approach integrates SOM principles, nonlinear Principal

Component Analysis (PCA) rules and a maximum likelihood probability approach

(Yin, 2008) to improve computation time and the decisiveness of model complexity.

Moreover, the IPSOM outperformed the above-mentioned EA algorithm in

computation and learning speed (Chang and Chong-xiu, 2013). In this study, the
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IPSOM algorithms have been iteratively applied on mud-rich logfacies defined using

different classification schemes based on key sedimentological and/or physical

properties. The successful algorithm generates correlatable knowledge about the

vertical variability of logfacies which can then be incorporated into a seismic-scale

analysis of mud-rich sequences, thus defining and upscaling flow properties. In

addition, this method has the advantage of avoiding the manipulation of real log data

in mud-rich sediments. On the weak side, similar to other artificial intelligent

methods, the approach is subjective and requires parameter tweaking by the

interpreter. Moreover, to train a reliable network a complete conventional log suite is

required, which is not always possible in mud-rich overburden intervals. Here, we try

to optimise the procedure by setting up the parameterisation rules and also reducing

the requirement for log data. The approach is checked against core, seismic and log

data from a regional seal formation in a case study from offshore West Africa.

Nevertheless, we expect that the methodology and all the rules derived from the

work can be applied as a generic approach to the recognition of mud-rich logfacies,

using any ANN-based tool with functionality for unsupervised recognition using

multi-layer inputs with elements having linear transformation functions and which

use self-organizing maps based on Kohonen algorithms.

The chapter is organised as follows. First, an overview of the terminologies

widely used in the chapter is presented in Section 2.1.1. In Section 2.2 an overview

of the geological settings of case study area is given, which is followed by detailed

descriptions of analysed data in Section 2.3. In Section 2.4, the proposed IPSOM

methodology is explained. The approach is organised into three basic modules: Data

Preparation, Data Quality Control (QC), Corrections and Facies Recognition. Each

module is presented with a brief theory description and the reasoning for the

presence of its sub-steps and their importance. In addition, parameterisation and

optimisation rules are given to illustrate how to perform each module. In Section 2.5,

the application of proposed IPSOM approach in different wellbores of West Africa

case study is explained. Finally, discussion remarks and common conclusions on

recognising mud-rich logfacies from conventional logs are presented in Section 2.6.
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2.1.1 Terminology:
Throughout this chapter we use the terms facies, texture and lithology. Here,

we provide our working definitions of those terms:

Complete Conventional Log Suite: Typically it is a set of wireline logs that

contains responses from conventional logging tools including spontaneous potential,

gamma ray, resistivity, acoustic, neutron, and density logs.

Electrofacies (Logfacies): A sedimentary facies that is characterised by a specific

set of electrical responses extracted from wireline measurements.

Facies Classification Scheme: A way of grouping sedimentary facies according to

one or more of their lithological, textural and physical (/flow) properties.

Lithology: A relatively homogeneous and visually distinctive volume of sediment

formed from sedimentary particles with a given grain size distribution. Lithology is a

facies attribute and controls the physical properties (e.g. porosity, permeability,

compaction behaviour) of sub-domains of the facies.

Sedimentary Facies: A visually distinguishable volume of sediment with a pattern

of variability which is the combined product of sediment supply, deposition, re-

working and diagenesis. It has a characteristic set of lithological, geometrical,

sedimentary structural, biological and geochemical features.

Texture: A visually distinguishable spatial architecture of sediments built from one

or more lithological sub-domains. Texture is a facies attribute and represents its

“lithological geometry”. The generalisation of the texture of a given sediment

volume defines the anisotropy of its lithological and physical properties.

2.2 Geological setting
Case study A is located approximately 140 km off the coast in one of the

major deep offshore petroleum exploration and development blocks in West Africa.

In the area of study, the average water depth is 1350 m. It has proven reserves of

over 500 million barrels equivalent of oil in two prominent oil field discoveries

associated with deep water, Tertiary channel sands. The hydrocarbons are mainly

charged from Upper Cretaceous–Tertiary marine shales and accumulated in Miocene

and Oligocene slope channel sandstone reservoirs associated with evolving river

systems. The reservoir sedimentary facies are mainly turbidite channel and sheet

sand deposits. Structurally, the case study is located in a regional-scale turtle
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structure with global 5-10° southward structural dip associated with movement of

Aptian salt. There are sets of normal faults, mainly north-east and south-east

trending, cutting most of the Tertiary and Upper Cretaceous sediments. Thus both

structural and stratigraphic elements control trap formation and fluid flow movement.

There are five regional seal units within the Tertiary, numbered 1 to 5 (mixture of

operator mapping and primary mapping at Cardiff University by Caprocks team in

“Phase 1, 2 and 3”). The seal units, comprising hemipelagic shale and mass transport

deposit (MTD) successions, are fine to coarse mudstone sediments with a range of

sedimentary textures. In this study, we analysed electrofacies in regional seal unit 4

because it is located between the reservoir channels of two major oil field

discoveries, so that defining the vertical variability of facies can contribute in

understanding potential hydrocarbon migration between the accumulations.

Moreover, conventional log suites were typically acquired along this seal unit. Seal

unit 4 was deposited in the Aquitanian, has an average thickness of 150-200 m and a

range of seismic and sedimentary textures (Huuse and Cartwright, 2007 (Caprocks

“Phase 1”)).

Figure 2.1: Overview of the regional seal units in West Africa case study: seal unit 1 to 4
(seal unit 5 is out of the section scope). Black lines represent the major normal faults
crossing the seal units. Well W31 does not cross seal unit 4 and an equivalent fine-grained
depth-interval is used as analogue for seal unit 4. The gamma ray and P-sonic logs are
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shown by red and blue curves, illustrating the problem of availability of wireline records
along the seal unit intervals (after Huuse and Cartwright, 2007 (Caprocks “Phase 1”))

2.3 Data
Case study A contains 11 wells with wireline measurements. The well logs were all

acquired by logging tools of the same service company, Schlumberger, in the late

1990s. In this research, the log suite includes gamma ray (GR), resistivity (RT), p-

wave sonic (DT), neutron porosity (NPHI) and bulk density (RHOB). The list of well

log availabilities throughout seal unit 4 interval is given in Table 2.1, with wireline

measurement gaps highlighted. The wellbores of W41 and W42 with complete

conventional log suites are used to perform pilot studies for the proposed facies

recognition algorithm. All original log measurements were subjected to quality

control, core gamma ray matching and detrending processes prior to facies

recognition analysis. These processes will be explained in detail in Sections 2.4.2 and

2.4.3.

Here, the functionality of conventional well log tools are briefly explained

according to Theys (1991) with a focus on their potential ability for fine-grained

sediment characterisation. The gamma ray log (GR) measures the background natural

electromagnetic radiation from minerals or fluid(s) in the rock. This is mainly due to

existence of three radioactive isotopes in the rocks: Potassium (40K), Uranium (238U)

and Thorium (232Th). There is usually a tendency to have concentration of 238U in the

clay-rich rocks deposited in reducing environments or 40K in smectite/illite-rich

sediments; however, clean sandstone with feldspars, silicates and heavy minerals

(e.g. Zirconium, Titanium, Thorium, etc.) or even with 40K17Cl in the fluid content

can be radioactive. Therefore, the GR log cannot be directly used as a measure of

clay content. The vertical resolution of GR log is also variable and depends on the

logging speed due to fluctuation of minerals’ radiation.

The resistivity log (RT) is the inverse of the electrical conductivity of the

rock. Since most minerals are electrically resistant, the RT log is usually used to

indicate fluid type and saturation. However, RT log also reflects a relative estimation

of rock permeability by considering drilling fluid invasion effects (providing the well

is drilled with a conductive fluid). Moreover, the geometry of the rock can change

the orientation of conductive elements and hence resistivity. Thus, in the fine-grained
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context, the RT log might be an effective tool in discriminating silty and muddy

facies and/or layered and distorted muddy facies.

The sonic transit time log (DT) is an estimate of the travel time of a

compressional wave through the rock along the wellbore. The log resolution varies

according to the spacing of the first and last receivers in the logging tool. In contrast

to the electrical current, the compressional wave is mainly sensitive to the rock’s

solid phases so that the DT log can reflect lithology and also the pore pressure of the

rock. Moreover, there are several empirical relationships to calculate porosity using

DT log in different sediments. At a specified cementation and compaction degree in

clean, coarse-grained sediments, there are often non-linear inverse relationships

between DT log and porosity (e.g. Raymer et al., 1980; Dvorkin and Nur, 1996).

However, the presence of significant clay, with higher transit time, in fine-grained

sediments, can result in an overestimation of porosity from DT logs. Apart from clay

volume, the distribution of clays also affects transit time. The presence of clay can be

corrected for neutron porosity, density, spontaneous potential and gamma ray logs

prior to any direct porosity estimation using DT log in fine-grained sediments (e.g.

Fertl, 1981). Therefore, in mud-rich sediments DT log is expected to be a reliable

measure only for the qualitative prediction of the contribution of acoustically fast

components (sand, silt, heavy minerals and carbonates).

The bulk density log (RHOB) measures electron density in the sedimentary

rock as an estimation of bulk density. As a nuclear logging tool, the measurement is

based on transformation of emitted high energy gamma rays to low energy signals

according to Compton scattering phenomena. The neutron porosity log (NPHI) has a

similar design but identifies the hydrogen density, indicating liquid-filled porosity in

clean formations. The NPHI tool emits fast neutrons into the formation and the

sensors measure the difference of resulting slowed down thermal neutrons. The

vertical resolution of both tools is variable and depends on receiver spacing. In fine-

grained sediments, the integration of NPHI and RHOB can give significant

lithological information. Negative (inverse) RHOB-NPHI separation commonly

indicates interbedded sandy/silty units in a muddy matrix. Similarly, the amount of

positive RHOB-NPHI separation characterises the clay content of fine-grained

sediments.
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In addition to logs, cores were acquired in six wells (W31, W41, W42, W43,

W44 and W45) at and close to reservoir intervals (Table 2.1). Since core was taken

mainly within reservoir intervals, there is a general lack of fine-grained sediments,

increasing the uncertainty of logfacies recognition results. Moreover, the fine-grained

facies are often reworked in the examined cores. For this reason, we focus on the

wellbores having the most complete conventional log suite in seal unit 4 interval and

core description data in the reservoir level, i.e. wells W41 and W42. Although well

W31 is not crossing seal unit 4, an equivalent depth-interval (fine-grained) of well

W31 (2373.0-2540.5 m TVDSS, 2443.0-2656.0 m MD) has been considered as an

analogue for seal unit 4 in this study because it is the best placed well in the dataset

for the purpose of seismic facies calibration (Huuse and Cartwright, 2007 (Caprocks

“Phase 1”)) and located in the vicinity of wells W41 and W42, and has high quality

sample, core and log data. The derived IPSOM approach can be extended/cross-

validated to uncored wellbores with incomplete log suites within the seal interval,

with a higher degree of uncertainty.

Table 2.1: Core and wireline availability at seal unit 4 in West Africa case study (*Note:
Well W31 is not crossing seal unit 4 and an equivalent fine-grained depth-interval is used as
an analogue for seal unit 4)

Well
Seal interval

(m TVDSS)

Core data

(m TVDSS)
Wireline measurements

Wellbore

type

W31 2373.0-2540.5* 2215-2376.2 out of wireline range * Deviated

W41 2372.9-2506.9 2598-2624.35 complete log suite vertical

W42 2306.6-2527.3
2002-2214,

2681-2738.8
complete log suite vertical

W43_PH 2291.1-2518.2 2129.5-2300 out of wireline range
highly

deviated

W44_G 2416.3-2598.5 2196.1- 2242.4 out of wireline range deviated

W45_PH

W45_G
2471.2-2634.5 2319-2342.5 no DT log at seal unit 4 interval

highly

deviated

W71 2282.4-2398.5 no core data
complete log suite with missed

interval at hemipelagite-4
vertical

W71-01 2124.0-2394.9 no core data
no log measurement at

hemipelagite-4

slightly

deviated

W72_B 2199.8-2358.4 no core data out of wireline range deviated
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W101 2288.3-2441.2 no core data complete log suite vertical

W102 2193.1-2387.0 no core data complete log suite deviated

The sedimentologists/petrophysicists of the operating company (a sponsor of

Caprocks project) undertook comprehensive core analysis on over 800 m of core

including lithology, grain size, physical structure, fracture, diagenesis and X-ray

analysis. They described sedimentary facies based on the core and sample data

analysis and established a 16 facies scheme, of increasing depositional energy

(Insalaco et al., 2001). The scheme subdivisions are in accordance with the most

popular turbidite classifications (Bouma, 1962; Stow, 1984). A brief

sedimentological description of the facies, along with their characteristic log

signatures and potential role in the petroleum system, are presented in Table 2.2.

Table 2.2: Sedimentary facies descriptions given by sedimentologists/petrophysicists of the
operating company (a sponsor of Caprocks project; Insalaco et al., 2001) are based on
core/sample analysis at reservoir levels in six wells (W31, W41, W42, W43, W44 and W45)
in West Africa case study.

Sedimentary facies Sedimentological description Log signatures

Potential

role in the

petroleum

system

1
Hemipelagic

shales

hemipelagic muds; in dark green

colour; interbedded with muddy

turbiditie deposits constituting

decametric intercalations of silts

-very high GR (due

to increase in 238U)

-very low RT

-large separation of

RHOB-NPHI

-high PEF

at reservoir

scale:

continuous

seal

2

Mud turbidites

LP: Lower

part of

complete

turbidite

sequence (~T4,

T5 and T6 units

in Stow’s

sequence (Stow,

1984))

graded muddy to silty/muddy thin

layers including indistinct or wispy or

millimetric silt or laminae or lenses

-GR > 60° API

-large RHOB-NPHI

separation

-low RT

-PEF < 3.5
at reservoir

scale:

waste-zone

3
Mud turbidites

UP: Upper

graded silty/muddy layers including

plurimillimetric basal very fine sand

-GR > 60° API

-large RHOB-NPHI

at reservoir

scale:
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part of

complete

turbidite

sequence (~ T0,

T1, T2 and T3

in Stow’s

sequence (Stow,

1984))

to silt laminae (~ T0, T1, T2 and T3

in Stow’s sequence)

separation

-PEF < 3.5

-low RT

-good contrast in

oil-based mud dip-

meter (OBDT)

curves

waste-zone

4

Thin-bedded,

cross-

laminated silts

very thin-bedded (centimetric or

pluricentimetric scale) silty facies

with sharp base and ripples, a

traction- / fall-out dominated facies

-too thin to detect

individually on

conventional logs

(e.g. if intercalated

with mud turbidites

shows a good

organisation of

OBDT curve,

change in GR and

RT values and

larger DT)

very thin

and

intercalated

with other

elements

5

Silty low-

density

turbidites

classical graded silt-dominated

turbidites, showing the complete

Bouma succession; the thickness of

beds ranges from 5 to 50 cm; they

occur with the thick muddy turbidites

intervals

-easily identifiable

on conventional

logs

-appears as isolated

silty beds in a shaly

interval

-good contrast in

OBDT images

poor

reservoir

6

Thin-bedded,

cross-

laminated

sands

very thin-bedded facies (centimetric

or pluricentimetric scale) fine to

medium sandy facies with sharp base

and ripples, a traction- / fall-out

dominated facies

-too thin to detect

individually on

conventional logs

(e.g. if intercalated

with mud turbidites

shows a good

organisation of

OBDT curve,

change in GR and

RT values and

larger DT)

very thin

and

intercalated

with other

elements

7
Sandy low-

density

classical graded sand-dominated

turbidites, showing the complete

-easily identifiable

on conventional

poor

reservoir
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turbidites Bouma succession; the thickness of

beds ranges from 5 to 50 cm; they

occur with the thick muddy turbidites

intervals

logs

-appears as isolated

sandy beds in a

shaly interval

-good contrast in

OBDT images

8

Massive sandy

high-density

turbidites

(massive m-f

TB sands)

high-density well-sorted homogenous

sandy turbidite with sharp base and

top and without any internal visible

structure; pluridecimetric to metric to

scale

-low GR<60°

-inverse RHOB-

NPHI difference

-PEF<2

-no visible dips

very good

reservoir

9

Laminated

sandy high-

density

turbidites

(laminated m-f

sands)

similar to facies 8 but with planar

parallel laminations

-low GR

-large RHOB-NPHI

separation

-low sonic velocity

-low PEF

-no visible dips

very good

reservoir

10

Massive

gravelly high-

density

turbidites

(laminated C-

Arac TB sands)

poorly sorted coarse sands, often

exhibiting a bimodal grain-size; beds

are amalgamated, often showing an

eroded base underlined by mud-clasts

and reworked sideritic pseudo-

nodules; without internal visible

structures; pluridecimetric to metric

to scale

-low GR<60°

-inverse RHOB-

NPHI difference

-low DT

-PEF<2

-frequent low RT

peaks

-no visible dips

good

reservoir

11

Laminated

gravelly high-

density

turbidites

(laminated C-

Arav sands)

sandy facies with crude planar

laminations, sometimes with reverse

grading

-low GR

-large RHOB-NPHI

separation

-low velocity

-low PEF

-no visible dips

good

reservoir

12
Muddy debris-

flow deposits

heterolithic muddy facies with

disorganised shaly matrix (mud

supported); large thickness (metric to

plurimetric scale); interbedded with

facies 2

-very high GR

(close to facies 1)

-low and irregular

DT

-low RT

at reservoir

scale:

moderate

seal

13

Muddy-sandy

debris-flow

deposits

heterolithic muddy/sandy facies with

disorganised shaly matrix (mud

supported); large thickness (metric to

plurimetric scale); interbedded with

-moderate GR

-very low and

irregular DT

-low RT

at reservoir

scale: poor

seal
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facies 2

14
Sandy debris-

flow deposits

heterolithic sandy facies with

disorganised shaly matrix (grain

supported); large thickness (metric to

plurimetric scale); interbedded with

facies 2

-moderate GR

-very low and

irregular DT

-low RT

at reservoir

scale: poor

seal

15

Conglomeratic

basal lags

remnant facies made of clast

supported conglomerates located at

the erosive base of channel

sequences; includes armoured clasts

-similar to facies

12,13 or 14, but

thinner (metric

scale)

-high GR

-low PEF

-high variability in

RHOB, NPHI and

OBDT logs due to

extraclasts

poor

reservoir

16 Sand injectite

homogeneous medium to find

sandstone, very well sorted

heterometric; with abnormal contracts

and occasional mud clasts

if thick enough:

-low GR

-negative RHOB-

NPHI difference

-low DT

good

reservoirs

with

limited

extension

In Caprocks “Phase 2”, the sixteen facies were reclassified into ten and seven

electrofacies by Newcastle University team based on (a) coarseness and (b)

parameters controlling fluid flow. The new facies classifications and their

interrelationship with the original sedimentological facies classification – described

on the reservoir cores - are shown in Table 2.3. The reclassification was done for

purpose of modelling the flow properties of facies at log-scale because

sedimentological facies may not be directly identifiable on conventional logs (e.g.

facies 4 and 6), where they share the same characteristics as electrofacies. In this

study, all three facies classifications are used and evaluated for the logfacies

recognition and seismic facies calibration.



Chapter 2 Recognition of Logfacies in Mud-Rich …

33

Table 2.3: Three facies classification schemes and their interrelationships; the original
sedimentological facies are unified based on based on the distinct sedimentological features
which influence fluid flow (Kurtev et al., 2010 (Caprocks “Phase 2”)).

Original sedimentological

facies

(a) Coarseness-based

facies
(b) Flow facies

1 Hemipelagic shales 1 Hemipelagic shales 3 Isotropic

2 Mud turbidites LP 2 Mud turbidites LP 2 Discontinuous beds

3 Mud turbidites UP 3 Mud turbidites UP 1 Continuous beds

4
Thin-bedded, cross-

laminated silts
4 Cross-laminated silts 4

Small vertical

structures

5 Silty low-density turbidites 5 Graded silts 1 Continuous beds

6
Thin-bedded, cross-

laminated sands

9 Sands 6 Sands

7
Sandy low-density

turbidites

8
Massive sandy high-density

turbidites

9
Laminated sandy high-

density turbidites

10
Massive gravelly high-

density turbidites

11
Laminated gravelly high-

density turbidites

12
Muddy debris-flow

deposits
6 Muddy debris flow 4 Small vertical

structures

13
Muddy-sandy debris-flow

deposits
7 Sandy debris flow

5
Large vertical

structures
14 Sandy debris-flow deposits

15 Conglomeratic basal lags 10 Conglomerate 7 Conglomerate

16 Sand injectite 8 Sand injections 5
Large vertical

structures

2.4 Methods
Our aim is to develop a Kohonen algorithm approach that can predict

logfacies in mud-rich overburden sediments with minimal wireline and core data

requirement. The method will generate knowledge about the vertical variability of
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mudstones at the log scale, in order to evaluate seal capacity or fluid flow properties.

In fact, we are extending the IPSOM approach that is widely used for reservoir

logfacies prediction, modifying it with stepwise conditioning, parameterisation and

post-processing operations. This is required to address the data limitation and

geological subtlety typically observed in fine-grained sediments. In reservoir studies,

petrophysicists usually use over 20-30 log curves and reliable reservoir core

descriptions for detailed logfacies recognition, whereas the focus in this methodology

is to perform the recognition with minimal conventional log data (five to ten log

curves) and extrapolated core data from the reservoir interval. A flowchart

illustrating the methodology is shown in Figure 2.2, comprising three main parts:

pre-processing, recognition operation, and validation.
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3. Validation

Figure 2.2: The methodology flowchart for logfacies recognition in fine-grained seal
intervals using a supervised probabilistic self-organizing map (IPSOM) approach

The pre-processing or data preparation and quality control significantly

increases the efficiency of the recognition algorithm by controlling the tuning of

input data and design of IPSOM algorithm. In contrast to the conventional

recognition, the system training here is facilitated by using both knowledge-driven

and data-driven information. This includes (a) decisions on the electrofacies

classification, (b) core-log depth matching, (c) decisions on the number and type of
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predictor log curves, and (d) an initial estimation of clay (%) and silt (%) in mud-rich

facies. These are time-consuming but critical precursors to subsequent data analysis.

The logfacies recognition operation attempts to elucidate features or patterns

that reflect the nature of well logs. In this study, the probabilistic patterns of

logfacies are defined by generating index self-organising maps (MOP), which are

two-dimensional, discretized representations of multiple conventional log curves.

This approach is based on unsupervised learning from input log curves which have

undergone a thorough detrending analysis within fine-grained intervals, prior to

mapping. With reference to the research done by Kohonen (1982, 2001) and

Pospelov (1988), a brief description of the indexed and probabilised self-organising

map (IPSOM) theory is given in Section 2.4.1. The approach can be applied in both

cored and uncored wells, but with different validation tasks. In local calibration

cases, recognition results are checked by studying confusion matrices, whereas in

blind recognition cases, the validation will be guided by seismic data. Both

approaches are explained in more detail in Section 2.4.4.

2.4.1 The indexed and probabilised self-organising map (IPSOM) theory:

Despite the numerous advantages, the basic self-organising map (SOM)

theory is mathematically cumbersome and only the one-dimensional case has been

solved completely by Fort (2006). Thus the SOM is usually adapted for the specified

problem (e.g. log facies recognition) by considering modifications and

simplifications in the original mathematical theory. It is also recommended to avoid

using self-coded software to extend/modify SOM since there are many delicate

topological criteria which would affect the convergence, orientation and stability of

the results (Pöllä et al., 2007). In the current study, we utilise the commercial

“indexed and probabilised self-organising map (IPSOM)" module provided in

Techlog software1. Further to the advantages of SOM for seal logfacies recognition,

IPSOM utilises the linear step index function for the input neurons which prevents

generating recognition results in a black-box iterative process. Moreover, the method

uses the ANN trained clustering where we can design the optimum clustering

parameters (e.g. number of clusters and weighting factor) according to our objective,

core descriptions and facies variability.

1 A Schlumberger software
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The IPSOM algorithm was initially developed by Pospelov (1988) by

introducing the “method of K average” in order to simplify the basic SOM. Later

Chashkov and Kiselev (2011) extended the “method of K average” in order to use it

for log data interpretation in IPSOM module of Techlog software. In this approach,

the input is a sample set, x, consisting of multiple log responses from “s” log types. x

is in a vector space (sD space) where each coordinate is associated with a log type.

The dimension of x in each coordinate is determined by the number of log responses,

t. In the “method of K average”, x is split into the given K (an IPSOM design

parameter determined by the user) clusters where the intra-cluster and inter-cluster

variability are minimum and maximum, respectively. In the present study, we try to

use the optimum number of clusters to be able to compartmentalise the main fine-

grained lithological/flow features observable using the log-core interrelationships.

On the other hand, a large number of clusters could also increase the risk of

contributing the prevalent noise/technical logging features in mud-rich units as the

geological features. Therefore, K is an important IPSOM design parameter which

should be carefully chosen according to the log/core quality and variability of fine-

grained sediments at core and seal intervals.

After defining the number of clusters, each entry of the input sample set, xi, is

assigned a random probability Pji, indicating its parent j cluster (j=1,2,…,K). Based

on the random probabilities, the centre of mass of each cluster, Mj, is computed

(Chashkov and Kiselev, 2011):

= ∑ Equation 2.1

Where: M: Centre of masses of clusters (a K×1 vector)

P: Probability matrix indicating how likely each sample entry belongs to

different clusters (a K×t matrix)

x: Input log sample set (a t×1 vector – in each coordinate)

W is the weighting factor for amplifying the effect of the entries closer to Mj.

Chashkov and Kiselev (2011) suggest using the default weighting factor of 1.2.

Afterward, the new probabilities are re-calculated, Pmn, based on the knowledge of
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clusters’ centre of masses, Mj. The new probabilities indicates how likely the data

entry xn belongs to the cluster m (Chashkov and Kiselev, 2011):

= ∑ Equation 2.2

and r = ‖ − ‖ , r = ‖ − ‖
The rmi and rmn are distance measures between the input data entries and

cluster’s centre of mass in a sD space. Then Pji and Pmn are compared, and if

different, Pmn are returned to Equation 2.1 for re-calculating/updating the centre of

mass of the clusters, Mj. This iterative process continues until reaching the

convergence between Pji and Pmn. Finally the converged probabilities Pmn are used

for prediction of logfacies along the logging interval. By changing the input design

parameters the recognition results may change; thus the best recognition results

ought to be obtained through a re-iterative parameter changing, recognition and

validation processes. Since there are many different facies classifications, input logs,

design parameters and quality control steps, the ordinary process could take few

weeks for seal logfacies recognition of wellbores in a typical producing field. To

avoid this time-consuming process, we propose a generic stepwise recognition

approach which can result in optimum seal logfacies recognition results in fewer

iterations without disregarding the key flow features.

2.4.2. Pre-processing

2.4.2.1 Selection of the facies classification scheme

In the recognition process for mud-rich sediments, the number of facies and

the type of classification scheme depend on the final aim, which ranges from

leakage/secondary migration to enhanced oil recovery (EOR). The correct choice of

classification is essential not only to recognise facies from logs, but also to achieve

subsequent geological models which adequately capture the sedimentological

variability of fine-grained sediments. Whilst a greater range of facies will represent

the finer-scale heterogeneities more accurately, the level of recognition uncertainty is

likely to increase. On the other hand, minimising the number of facies does not

always lead to a better recognition. Thus it is important to determine in advance the

criteria for minimising the number of facies. In this study (including the next
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chapters, 3 and 4), we aim in detecting lithological and flow property changes within

mud-rich overburden sediments at the pick-trough time interval scale (defined by

successive picks and troughs along seismic amplitude traces; in case study A ~ 10

m). Therefore, the favourable facies classification scheme would be based on the

distinct sedimentological features which most influence fluid flow at the pick-trough

time interval scale.

The original sedimentological facies are entirely defined by the depositional

factors derived from sample and core analysis, whereas the coarseness-based and

flow facies are respectively implicating the dominant lithology, and dominant texture

and orientation of the more permeable sedimentological structures. The latter

classifications unify various sandy facies into a single sand facies (facies 9 in the

coarseness-based scheme and facies 6 in the flow facies scheme), with the focus on

lithological variations in fine-grained sediments. In the coarseness-based facies

scheme, the facies number increases as the dominant grain size of facies becomes

coarser. Similarly in the flow facies classification, facies represented with larger

numbers possess higher vertical permeabilities and thus represent a higher risk of

leakage. In this study, the seal logfacies recognition process is applied on all three

facies classification schemes and the results are compared to evaluate the effect of

scheme selection. Therefore, for each recognition process, specific training tables are

prepared, which includes: facies top/bottom depth and facies name and number for

each member of the selected classification scheme. In this study, we describe the

unpreserved core sections as null values to ignore their uncertainty during the

training of IPSOM algorithm.

2.4.2.2 Block (interval) depth-matching of core and log data

Since beds are often thin in fine-grained sediments, it is important to depth-

match core and logs accurately in order to deliver the highest quality core and log

inputs for electrofacies recognition.

A range of techniques have been used in reservoirs to depth-match cores and

logs, for example image logs. However, these data are often unavailable in seal

intervals. In the current study, Core Gamma Ray-Gamma Ray log (COGR-GR)

matching (Morton-Thompson and Woods, 1993) is used which remains

exceptionally useful for wells, especially older wells, when only conventional logs
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are available. It uses the fact that COGR is performed on the wall of the core while

GR is done on the wall of the well. In the wireline operation, the tension and

extension of logging tools are accurately calculated and corrected at the well site

whilst core displacement and preservation are major issues. Having conventional log

data sets in fine-grained seal intervals, COGR-GR matching is used to establish core

depth shifts, intervals of core extensions and intervals of core pseudo compaction (as

in the case of core mass loss and its representation as shorter core intervals). The

core-depth matching process includes three steps: resampling, vertical shifting and

biasing the COGR values. This is done with the aid of a tool based on Visual Basic

for Applications’ (VBA) code (Kurtev, 2003 (Caprocks “Phase 1”)). The tool

compares the similarity of the average trend of local extremes at each COGR

intervals with the corresponding GR local extreme trend. The resampling and vertical

shift steps are essential for the recognition purpose, but biasing the COGR curve only

modifies its values appropriate to the subsurface condition. The template of the VBA

tool is represented in Figure 2.3, where the vertical bulk shift is applied on a

resampled COGR result. We implement a practical rule in order to make the best use

of COGR and to achieve core depth shift corrections with an accuracy of ±3 cm. We

resample COGR with the sampling step smaller by a factor of two than the

conventional GR sampling step. For example, in wells W31, W41 and W42, the GR

sampling rate is 0.1524 m, so that COGR curves are resampled with sampling steps

of 8 cm. In the current case study, the COGR resampling steps range from 8 to 10

cm.
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Figure 2.3: The template of the VBA tool for calculation of vertical bulk shift in COGR after
resampling by step smaller by a factor of two than the GR sampling step (after Kurtev, 2003
(Caprocks “Phase 1”))

Although COGR-GR is a powerful technique to depth-match core with

conventional logs, it can be adversely influenced by factors such as drying of the

core, core ageing, core loss, etc. To avoid this issue – as described in Section 2.4.2.1

- we ignore the core descriptions in unpreserved intervals.

2.4.2.3 Sensitivity analysis of minimum and optimum log requirements

The quality control (pre-processing) step also includes a sensitivity analysis

for the choice of minimum and optimum sets of logs to be used for the recognition of

fine-grained logfacies. Although the number of conventional logs is limited, not all

are acquired within seal intervals. This step therefore considers the availability of

logs as well as the reliability of the resulting recognition. We introduce two sets of

log data inputs to recognise fine-grained logfacies: minimum and optimum log

suites. The minimum log suite includes the conventional logs which are often

acquired within non-reservoir intervals in most modern wellbores and, with local

core calibration, can result in the IPSOM recognition in a seal interval of ~ 60-70%

or more. Based on our sensitivity analysis, the choice of minimum log suite is

presumed to be independent of the context, as they form the essential dimensions of

IPSOM maps. We believe the minimum log suite required for mud-rich electrofacies
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recognition must include: gamma-ray (GR), compressional slowness (DTCO) and

bulk density (RHOB). On the other hand, the recognition can be improved by

incorporating further log curves in the mapping process. This new log set is called

optimum log suite. The optimum log suite depends on the geological setting and can

further improve the local core calibration/blind recognition within a seal interval.

In the wellbores of West Africa case study, within seal unit 4 interval, we

have 15 different conventional log types: bulk density (RHOB), compressional wave

slowness (DTCO), gamma-ray (GR), gamma-spectrometry (GR-U, Th and K),

neutron porosity (NPHI), photo-electric factor (PEF), porosity - effective (PHIE),

porosity - total (PHIT), shear wave slowness (DTSM), resistivity – deep (AHT10),

resistivity - shallow (AHT90), deep-induction (ILD) logs. According to the

sensitivity analysis at recognition targets of two short intervals in hemipelagite-4 and

MTD-4 in the cored wells, we categorise the effective log curves as illustrated in

Table 2.4. Therefore, given the availability of logs in the well, we apply the

appropriate log suite over the full range of seal unit 4 interval. The wellbores without

the minimum log suite along seal unit 4 are also removed from the recognition

process. Moreover, in the optimum log suite we use the gamma spectrometry (GR -

U, Th and K) logs to evaluate their effect on fine-grained facies recognition.

Table 2.4: Minimum and optimum log suites for IPSOM logfacies recognition at seal unit 4
in West Africa case study (based on the sensitivity analysis on pilot intervals of the cored
wells)

Log suite Log data Remarks

Minimum

log suite

GR, DTCO, DTSM,

RHOB

can work without DTSM,

but the results are less

accurate

Optimum

log suite

GR, DTCO, DTSM,

RHOB

AHT90, AHT10, NPHI,

PEF

the log suite includes

gamma spectrometry

(GR - U, Th and K) logs

2.4.2.4 Initialisation of clay and silt percentages of mud-rich facies

In this step, we impose an additional lithological constraint to facilitate the

recognition process. Although fine-grained facies have a range of clay:silt:sand
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ratios, the ratios can still be correlated to the input log suite to steer the recognition

process. Since the proportion of sand is complementary to the silt and clay contents,

we only use the two curves of clay and silt contents to avoid excessive calculation.

The clay content curve is estimated from the input log suite using the in-house

ShaleQuant tool (Yang et al., 2004). On other hand, we have the MICP and

SediGraph measurements on 126 core samples, presented in terms of facies groups.

The measurements were performed by Newcastle University team in Caprocks

“Phase 1 and 2”. We cross-plot the clay and silt percentages from the sample data at

fine-grained facies to derive their non-linear trend (second-order polynomial)

function. Then the silt ratio can be calculated at given log-estimated clay content by

applying the established non-linear sample clay-silt correlation. We use a VBA tool

(Kurtev, 2007 (Caprocks “Phase 1”)) to automate the calculation of the silt content

curve. The VBA tool can be adapted to be used for any new group of samples with

measured clay% and silt% (Figure 2.4). As a result of this step, we have two

knowledge-driven auxiliary curves to increase the robustness of the IPSOM

recognition within seal intervals.

Figure 2.4: The template of the VBA tool for estimation of silt% from non-linear silt/clay
correlation at given ShaleQuant clay content (After Kurtev, 2007 (Caprocks “Phase 1”)).
The silt/clay correlation is based on core sample analysis performed by Newcastle
University team in Caprocks “Phase 1 and 2”.
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2.4.3 Recognition operation

2.4.3.1 Parameterisation and tuning of the self-organising map (SOM)

There are several SOM parameters which control the quality of the facies

recognition from logs. These include the recognition method, size of the 2D SOM,

weight factor, number of learning wells in the log dataset, choice of log data set, etc.

Tuning of each of these parameters influences the final quality of facies recognition.

The input log suite and the choice of learning wells were discussed earlier in Section

2.4.2. In this step, we only focus on selecting the IPSOM method, map size and

weighting factors within fine-grained contexts.

Selecting the grid size is the essential parameter for the IPSOM operation,

since the grid modification can provide totally different results with even similar

indexation options. In an ideal case (e.g. reservoir studies), a rectangular grid is

favourable for visual inspection, since the edges of the array have to be rectangular

rather than square (Kohonen, 2001). Moreover, the dimensions of the grid are also

expected to be at least equal to the major dimensions (e.g. the principal components)

of the distribution of the target parameter/variable. Here we assume that there is no

distinct lithological trend along the wellbore from reservoir to seal, so that there is an

equi-dimensional distribution of logfacies with respect to logs. We therefore suggest

a square grid with dimensions greater than the number of original core facies

descriptions. We examine two grid sizes: 50×50 and 16×16 where each grid

contains the learning samples with similar rose-diagrams of the input log signals. The

bigger map should give higher resolution by achieving good separation of the facies

by the input log signals. According to our original core facies descriptions, the grids

of size smaller than 16×16 are not recommended as they will be smaller than the

major dimensions of the facies.

The SOM can be generated in both supervised and unsupervised manners. If a

rich input log database (i.e. ~30-50 log curves along the target) is available, the

unsupervised manner will be more generic and effective. Here we utilise the IPSOM

as a supervised approach, because the number of learning bases is lower than the

number of neurons due to limited input logs within seal intervals. Three different

supervised approaches are evaluated to determine the best approach for the
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recognition of fine-grained facies: (a) the “quantitative classification” method, which

is a more instantaneous pattern detector and the (b) “minimal distance” and (c)

“majority vote” approaches which are more sensitive to local-scale pattern changes.

By keeping similar all other indexation parameters, the recognition results of these

supervised approaches are expected to be complementary.

Finally, we can weight various input logs to generate the best SOM. With the

aid of weighting factors, we can honour the most useful logs at each index for equi-

probability circumstances. We suggest applying the weighting factors only one curve

at a time in order to understand and control the effect. In the present study we

individually apply a weighting factor of 1.2 on both the RHOB and PHIT/PHIE log

curves, since their log responses are less affected by the mud cake, invasion,

wellbore damage and other logging artefacts within muddy seal intervals. In fact, the

application of the weighting factor depends on the desired outcome, input logs,

context and target. The weighting factor can be also used to magnify or decrease the

effect of logs by considering their acquisition and processing quality. The well logs

in West Africa case study have undergone similar resampling and environmental

corrections and acquired by logging tools of one Service Company.

2.4.3.2 Log detrending effect on the IPSOM recognition of fine-grained facies

Log detrending is an important processing step and is often advised prior to

logfacies analysis, for example using neural networks in reservoirs (Delfiner et al.,

1987; Roger, 1992). It can be especially helpful to improve the long-range (>300-500

m) cross correlations between well logs (e.g. for seal facies recognition based on the

reservoir core descriptions), since it provides the wireline characteristics/fluctuations

of lithology which are not associated with the normal compaction trend (Magara,

1986). Therefore we used detrending techniques prior to the generation of IPSOM. In

the present study, the linear detrending technique was applied on the minimum log

suite including density, p-wave sonic, s-wave sonic and neutron porosity logs. For

this purpose, we utilise “detrend” function in the “statistics and random numbers”

tool box of Matlab. The function removes the average or the best least-squares fit

line from the selected log data. This detrending allows us to subtract the systematic

increase/decrease from the log responses which are due to the compaction effect.

Moreover, this function is a useful tool for detrending multiple logs as it individually
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treats different log columns in one go. The tool box offers four different detrending

functions:

y = detrend(x) Equation 2.3a

y = detrend(x,'constant') Equation 2.3b

y = detrend(x,'linear',bp) Equation 2.3c

y = detrend(x,'constant',bp) Equation 2.3d

where y (a n×1 vector) and x (a n×1 vector) are the detrended and original log

values, respectively. n is the number of log samples in a selected interval. Equation

(2.3a) removes the best least-squares fit linear trend from the log responses, while

Equation (2.3b) only subtracts the mean of the log responses at the given interval.

These two equations are useful for intra-litho-unit detrending where the lithology

does not change dramatically. However, we can perform similar detrendings using

Equations (2.3c) and (2.3d), but within predefined segments by a vector ‘bp’. This is

illustrated in Figure 2.5 with a full range GR log at well W31. Thus we utilise

Equation 2.3c for detrending the minimum input log suite, because it is more

effective for the long-range cross correlation between well logs in uncored seal

intervals. The break points vector is defined by visual inspection of lithological units

which show different local compaction trends. We ignore break points for highly

anomalous local trends as this increases the risk of falsifying the input log data. In

the default circumstance, we assume that the lithologically-caused log fluctuations

are large enough to compensate for the effect of trend removal, so that detrending

can improve the long-range cross-correlations between logs. Otherwise, the Mann-

Kendall (MK) test for monotonic trend should be performed as described by Gilbert

(1987). Hirsch et al. (1982) indicated that this is the most appropriate way to evaluate

the significance of removing a monotonic trend from input data. Therefore, in the

subtle cases where a compaction trend is not visually clear, detrending was advised

only if the MK test statistic (ZMK) was lower than 10.
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Figure 2.5: Demonstration of the linear log detrending by using the “detrend” function in
Matlab while defining the break points by vectors “bp” at different local compaction trends
(Total spectral GR log (HSGR) is represented by the red line along the full wireline range of
well W31 which crosses reservoir level A, the analogue seal unit and reservoir level B,
respectively).

2.4.3.3 IPSOM generation

An indexed and probabilised self-organizing map (IPSOM) is an ANN-based

method based on the Kohonen algorithm that can be used to predict and propagate

facies/rock classifications. The method has been developed over the last decade (e.g.

Chashkov and Kiselev, 2011) and been widely used in predicting categorical

properties (log and core processing). Here we use the standard algorithm as available

in Techlog software. It gives an indexed self-organised map as a result of the log-

sample training at cored reservoir interval which is later used to recognise facies at

uncored seal interval. In our approach, the results are refined through an iterative
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process after the next step, the validation phase. The main steps of the IPSOM

operations are briefly described below and illustrated in Figure 2.6:

1. Generation of the initial, unsorted SOM with given parameterisations

(including grid size, weighting factor, supervised method and the input log

suite)

2. Organisation and sorting of the grid of nodes

3. a) Indexation of grids with facies core descriptions, i.e. a facies as a code is

assigned to each neural unit (the key operation); b) Projection (colour coding)

of the indexed samples within the SOM nodes (thus transition facies should

be clearly identified);

4. Sketching the probability of occurrence of the predicted facies at each depth

Figure 2.6: Schematic steps of IPSOM generation (Snapshots are taken from Techlog
Manual which are the snapshots available for illustration of algorithm steps)

2.4.4 Validation

The recognition process is applied on seal units of both cored and uncored

wells; thereby the validation of recognition results at different wells is separately

handled based on the core availability:

2.4.4.1 Cored wells (local calibration cases):

Although validation of the recognition results with the aid of their

corresponding core data or image logs are the most reliable and accurate approaches,

mudstone cores and image logs are rarely taken in the overburden formations. Thus

our local calibrations in the cored wells are inevitably based on the comparison of the

recognition results with the core descriptions at mud-rich sections of the

overlying/underlying reservoirs. In both training and validation process, we presume
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there is no radical change in the nature of the fine-grained sediments at the

juxtaposed reservoir and seal unit.

In local calibration cases, we establish a comparison table, so-called

confusion matrix, which allows us to compare quickly two categorical variables (i.e.

logfacies). In order to automate the validation of IPSOM recognition results, a VBA

tool (Kurtev et al., 2013 (Caprocks “Phase 3”)) was used. The template of the tool is

represented in Figure 2.7 comprising the input section, VBA action button and

confusion matrix. We provide the depth and core/recognition facies data in the input

section and by pressing “Calculate Statistics” button, the VBA code computes the

entries of confusion matrix. The code compares core facies and recognised logfacies

at overlapping depths, calculates the frequencies and provides the relative positive

correlations (%) of core-recognised facies for each core facies. The higher diagonal

values in the confusion matrix implies the better recognition results. In other words,

more core facies are recognised correctly at their overlapping intervals.

The confusion matrix is also very useful tool for analysis of the IPSOM

process, since it can illustrate the logfacies with similar characteristics in the SOM

(hard to discriminate); or it can be used to compare the effect of different SOM

parametrisation, log detrending/QC and logfacies classification schemes. Therefore,

in an iterative process, the confusion matrices will be analysed to tune the IPSOM

parameters and inputs.
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Figure 2.7: The “confusion matrix” template used for validation of the IPOSM results at
local calibration cases (after Kurtev et al., 2013 (Caprocks “Phase 3”)). The template is
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supplied by a VBA code which computes the relative positive correlations (%) of core facies
with recognised facies at each facies.

2.4.4.2 Uncored wells (blind recognition cases):

Blind recognition means (i) we do not have core facies descriptions along the

wellbore even at reservoir level. Therefore, the neural network of IPSOM is trained

based on the core descriptions of the nearby well(s). Moreover, (ii) in the cored

wells, the blind recognition can be also used to evaluate the efficiency of non-linear

correlations derived by the local calibration. An efficient neural network should

reproduce acceptable facies recognition results with training set from the adjacent

well(s). Validation of case (ii) can be handled by analysis of the confusion matrices

and the available core facies descriptions, explained in Section 2.4.4.1. But the

question here is how to validate the logfacies recognition results in case (i) where

there are not any local core facies descriptions. In the current study, at uncored wells,

we utilise seismic responses as the guide for both selecting the training wells and

also validating the logfacies recognition results. We believe that there is a qualitative

link between the variability of the seismic amplitude and the vertical variability of

log facies in finegrained seal intervals, which is a useful for the interpretation of the

nature and heterogeneity of these sediments. In addition, the strength of seismic

amplitude should implicate the coarseness of the sediments, providing noise, pore-

pressure and fluid effects are minimal. Thereby, in case (i) we use the seismic

amplitude and frequency to qualitatively validate the trend of the logfacies

recognition results and iteratively tune the IPSOM parameters and input training

wells. In the mud-rich seal context with marginal effects from pressure and fluid, a

reliable facies recognition should honour seismic anomalies as well as the trend of

major seismic characteristics. The hypothesis is discussed in more detail in Chapter 3

and 4, where the volumetric seismic attributes are used to predict leakage risk and

lithology at fine-grained seal units.

2.5 Results and discussion

The seal facies recognition methodology has been applied on all the wells in

West Africa case study with the minimum log suite (Table 2.4) along seal unit 4 (and

the analogue seal unit). They are wells W31, W41, W42, W71, W101 and W102, in

which the wells W31, W41 and W42 have core data at the reservoir interval (Table
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2.1). The fine-grained zones of the cored intervals comprise the training sets for the

seal logfacies recognition process (the original/unshifted core depths are provided in

Table 2.1). In the present study, the three cored wells are the pilot studies for the

recognition with local calibration as well as training sets for the blind recognition

networks.

We have implemented the recognition procedure while using three pre-

defined facies classification schemes: original sedimentological facies, coarseness-

based facies and flow facies (Table 2.3). We compared their logfacies recognition

results to evaluate the effect of the facies numbers and unification. As an initial step,

all core facies descriptions were tabulated, so that at each core description depth

interval, three facies numbers and names were provided corresponding to three

different facies classification schemes (sample table for cores K2 and K3 of well

W41 is available in Table 2.5). The unpreserved core intervals are ignored by

assigning them null values. These intervals are described as core sections where the

facies boundaries are not clear in the core images. In these intervals, we used the GR

log curve for identifying the facies description boundaries.

Table 2.5: Tabulated core facies descriptions in three classification schemes for cores K2
and K3 of well W41: the IPSOM algorithm can only work with codes/numbers
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In the next step, we have prepared the input log curves according to the

wireline availability along seal intervals. We have not used wells W43, W44, W45,

W71_01 and W72 in this study, since they do not have the minimum log suite along

the seal units for the recognition process. For the rest of the wells, we have plotted all

the log curves to make a visual inspection of the log data quality. We can usually

have several log curves of the same types, thus we only keep the best quality log

curve out of a log family to avoid excessive calculation in the ANN network (due to

their linear dependency). Moreover, different log curves can have different sampling

intervals which require to be unified prior to the recognition process. Otherwise, the

log curves will be automatically resampled during the IPSOM process which can

adversely affect the log correlations. As a rule of thumb, we used the best

conventional GR log curve in each well as the log reference curve and resampled the

rest of the input logs (if different) with GR reference curve sampling depth. This is

because we presume the GR log is the most informative conventional log and less

affected by the environmental and logging tool features in the fine-grained

sediments.

COGR-GR block depth-matching

As explained earlier in Section 2.4.2.2, we apply COGR-GR depth matching

technique to put in correspondence the core facies and the recorded input log signals.

This is an important step as shifting core training sets can significantly affect the

orientation of the topological space in the IPSOM models. We have focused on

vertical block shifting of COGR and presumed there is no additional misfit between

the GR and the rest of the conventional input logs. We have input the GR and COGR

data into the VBA template (Figure 2.3). The algorithm is designed to start from top

to bottom so that the bottom part of the COGR curve moves as a block without

deformation. This is because the coarser core intervals are located at the upper level

in wells W31, W41 and W42 where COGR-GR depth matching is more robust due to

larger changes in GR values. Figure 2.8 illustrates the result of COGR-GR depth

matching for six core intervals at well W41 in a sandy (Figure 2.8a) and a muddy

(Figure 2.8b) sections. In this figure, the red and dotted black curves represent the

COGR and GR logs. The misfit between the curves is reduced by applying vertical

block shift of COGR; however, they are not completely fitted. This is because first

the COGR is acquired at laboratory/surface condition whilst GR responds to the
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formation at subsurface condition. Second, we avoid biasing the COGR values, since

gamma ray changes in the finer core intervals are smoother than the core scale and

COGR value changes can manipulate vertical depth-matching process which is

essential for the IPSOM. Table 2.6 illustrates the effect of COGR biasing in

increasing the average block misfits along the cored intervals in the studied wells. As

shown in the table, the effect of COGR biasing is rather local and it can increase the

misfit between COGR and GR curves; hence the risk of wrong correspondence

between log signals and core facies (in particular in mud-rich sections).

Figure 2.8: COGR-GR depth match result in sand-rich (a) and mud-rich (b) cored sections
in well W41. Only vertical bulk shift is applied, thus minor misfits are expected, mainly in the
coarser parts. The red and dotted lines represent the COGR and GR logs.
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Table 2.6: Average COGR-GR block misfits within the wireline intervals in the pilot wells
(W31, W41 and W42)

Wells W31 W41 W42

Total core length (m) 189.32 111.06 210.42

Average COGR-GR block misfit (m) –

only vertical shift applied
5.11 0.81 1.49

Average COGR-GR block misfit (m) –

vertical shift and COGR biasing applied

(depth-matched in Techlog)

5.31 0.98 2.03

Estimation of clay and silt percentages of mud-rich facies

In the proposed IPSOM process, the clay and silt curves are added into the

input log suite as two knowledge-driven auxiliary curves. For this purpose, we used

the sample measurement results (done by Newcastle University team in Caprocks

“Phase 1 and 2”) at the fine-grained facies. In other words, we only used the results

for 40 samples out of the total 126 samples, i.e. 19, 13 and 8 samples from wells

W31, W41 and W42. In Table 2.7, the selected core sample analysis (SediGraph

analysis) are presented including clay:silt:sand ratios. We have shifted the original

sample depths according to the bulk shift obtained during the COGR-GR depth-

matching. Then the parent facies of each sample was determined by comparing the

sample depth and the core interval description. As indicated in Table 2.7, although

the facies can have ranges of clay:silt:sand ratios, they are correlated and we think

the mean and variance of the clay/silt contents for each facies help with clustering

the log signal-facies correspondence during the IPSOM process.

We cross-plotted the silt content versus clay content using 40 samples (from

wells W31, W41 and W42) and derive a second-order polynomial correlation

function (Figure 2.9) for the pilot study. We then compared the results with the

silt/clay correlation derived in a case study from North Africa, in which 92 fine-

grained samples from nine wells had been analysed (by Newcastle University team

in Caprocks “Phase 1 and 2”). Although the depositional environment for North

Africa case study is deltaic with higher depositional energy, both correlations have

approximately similar trend slope (Figure 2.9). Despite of the robustness of the

clay/silt correlation (R2: ~ 0.92) within the pilot area (at proximity of wells W31,
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W41 and W42), application of the correlation on full size case study would require

further sample information from other wells.

On the other hand, we have derived estimated clay content curve for each

well by using the in-house ShaleQuant solution. And finally we have entered the clay

content curve and the clay/silt correlation detail in the VBA template (Figure 2.4) to

calculate the silt content curve along the pilot wellbores. Figure 2.10 illustrates how

the silt content curve was calculated in well W42, in which calculated silt (using

sample-based correlation) and clay (using ShaleQuant) contents are represented by

pink and blue curves. In this figure, the clay and silt curves clearly indicate two

reservoir zones (interval ~1870-1890 m and ~2020-2035 m) and minor lithological

changes within the intermediary non-reservoir sequences.

Table 2.7: Sand:Silt:Clay ratios derived from core sample analysis (SediGraph analysis) of
40 mud-rich samples in wells W31, W41 and W42 (the facies numbers are  based on the core
descriptions)

Well

name

Shifted sample

depth (m)

Facies

number

Sand

(%)

Silt

(%)

Clay

(%)

W31 2278.06 2 2.06 18.85 79.10
W31 2278.7 2 4.33 19.26 76.41
W31 2279.43 2 12.14 38.45 49.41
W31 2283.35 14 8.96 21.71 69.33
W31 2288.59 13 8.70 36.60 54.71
W31 2291.56 2 0.47 21.04 78.49
W31 2297.51 2 0.56 18.05 81.40
W31 2301.85 12 28.33 26.69 44.98
W31 2326.62 8 3.05 14.40 82.54
W31 2342.73 2 2.24 14.72 83.05
W31 2361.81 2 15.44 20.81 63.75
W31 2378.28 1 3.16 17.83 79.01
W31 2388.66 3 2.99 15.35 81.66
W31 2401.54 12 0.98 30.84 68.18
W31 2406.62 2 0.13 13.72 86.15
W31 2406.72 2 2.39 57.93 39.68
W31 2410.4 2 0.93 24.08 74.99
W31 2416.73 3 3.14 43.29 53.57
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W31 2432.74 2 3.52 16.44 80.04
W41 2279.65 2 1.87 13.69 84.45
W41 2340.35 13 43.23 17.25 39.53
W41 2347.9 12 1.46 14.00 84.54
W41 2358.87 7 0.18 13.17 86.65
W41 2364.9 3 0.21 22.48 77.31
W41 2369.9 10 3.36 14.92 81.72
W41 2599.56 1 0.25 15.78 83.98
W41 2601.45 1 0.38 12.82 86.80
W41 2608.24 1 0.38 14.19 85.43
W41 2613.35 2 0.22 19.85 79.93
W41 2618.16 2 0.17 15.42 84.41
W41 2619.38 2 0.59 17.23 82.18
W41 2623.12 2 0.98 8.10 90.92
W42 2005.58 2 3.85 14.73 81.42
W42 2013.33 12 1.08 15.31 83.60
W42 2016.48 2 0.10 14.51 85.39
W42 2039.57 2 0.15 12.17 87.68
W42 2056.65 1 0.13 12.53 87.34
W42 2173.59 13 1.43 33.36 65.21
W42 2183.4 13 15.53 35.25 49.23
W42 2198.54 2 0.35 14.50 85.15
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Figure 2.9: Silt-Clay content correlations in West Africa (Blue) and North Africa (red) case
studies. The trend lines have approximately similar slope, and the scatter plots is based on
the sand:silt:clay ratios derived from laboratory analysis of mud-rich samples (West Africa:
40 samples; North Africa: 92 samples). The SediGraph measurements were performed by
Newcaslte University team in Caprocks “Phase 1 and 2”.
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Figure 2.10: Estimation of Silt (%) from non-linear silt/clay correlation (Figure 2.9) at
given ShaleQuant clay contents in well W42. The blue and pink curves represent the
ShaleQuant-derived Clay(%) and Silt (%). The silt-rich zones co-exist with sand-rich zones,
indicating reservoir level A and B (intervals: ~1870-1890 m and ~2020-2035 m).

Log detrending / removing the compaction trend

The linear segmented log detrending was applied on seven wells (W31,

W41, W42, W71, W101, and W102), in which we have got the minimum input log

requirement. The DTCO, DSTM, RHOB, PHIT (if available) and PHIT (if available)

logs were detrended as they are expected to be more sensitive to the burial

compaction. The operation was coded in the “statistics and random variable” tool

box in Matlab. The code includes a step of MK testing in which we determine the

significance of removing compaction trend (detrending) in each curve. As a result,

the detrending operation was performed on the log curves only if the MK test

statistic (ZMK) was greater than 10. In addition, we input the break points vectors

“bp” into the code which were visually defined by considering major trend changes

in each curve. The “bp” vectors allow segmented (non-linear) detrending in order to
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honour different compaction trends through the reservoir to seal unit 4. After

obtaining the detrended curves, we performed pilot logfacies recognitions in wells

W31, W41 and W42 using original and detrended log curves. This is to evaluate the

effect of curves detrending on IPSOM process within seal unit 4 (and the analogue

seal unit in well W31).

The detrending operation in well W31 is illustrated in Figure 2.11. In

Figure 2.11a, the original log curves (including: DTCO, DTSM, PHIT and RHOB)

and the established compaction trends are represented along the full range wireline

interval (~500 m). The MK test statistic (ZMK) was 8.1 (<10) for PHIT, thus we

operated the detrending only on DTCO, DTSM and RHOB curves. In Figure 2.11b,

the result of detending is shown for the DTCO curve, in which the DTCO curve

partly bears negative values. Since IPSOM has limited capability in handling

negative data, we have shifted any negative-value bearing, detrended curve by

adding an appropriate constant value to all log samples (in this case: +30 μs/ft). The

pilot IPSOM operations in wells W31, W41 and W42 indicated that the detrending

operation generally has negative effect on logfacies recognition in mud-rich intervals

(Table 2.8). Detrending of PHIT and DTCO curve created an unrealistic tendency in

recognising finer-grained logfacies such as hemipelagic shale and mud turbidites. In

contrast, detrending of RHOB caused over estimation of sandy and silty facies within

the seal units. Only one exception was established for very clay-rich (dominated by

hemipelagic shale and mud turbidites facies) seal unit 4 (e.g. in W42) in which

RHOB de-trending coupled with a positive constant shift could improve facies

recognition results in average by ~20% (Table 2.8).

Worsening of logfacies recognition could possibly be explained by two facts:

first, in IPSOM, ANN input neurons use linear transformation functions whilst the

non-linear (segmented) log trend contributes to a broader spread of the log signals on

the 2D SOM which effectively leads to a resolution contrast in the topological space

of data. Second, the log responses in mud-rich zones often have very short-range

variations, hence very susceptible to detrending subtractions and the following shift.

Our work clearly showed that removing compaction trend (detrending) from logs

such as DTCO, DTSM, PHIE, PHIT and RHOB worsens logfacies recognition

within the seal units in most of the wells, thus the a priori assumption in Section

2.4.3.2 is not valid in a mud-rich environment.
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(a) (b)

Figure 2.11: Detrending of logs at well W31: a) the original DTCO, DTSM, PHIT and
RHOB log curves are represented with their established compaction trends (red lines). b)
detrended DTCO log curve bears negative values; positive shift is proposed applied to avoid
adverse effect on the IPSOM (Note that in well W31 an equivalent fine-grained depth-
interval is used as an analogue for seal unit 4).

After the pre-processing steps, the input log and core data are ready to import

in Techlog software and implement the IPSOM module. We have created logfacies

recognition datasets in two ways: (i) local calibration, where we trained and indexed

SOM using the reservoir core descriptions of the same well; (ii) blind recognition,

where core descriptions are not available and training/indexing was carried out based

on the core data from neighbouring wellbore(s).

Positive
Shift

2443.0 m

2656.0 m

Analogue seal unit
interval in well W31



Chapter 2 Recognition of Logfacies in Mud-Rich …

62

2.5.1 IPSOM recognition of seal logfacies using local calibration

The local calibration of IPSOM was carried out in wells W31, W41 and W42,

in which we have both minimum log suite and reservoir core descriptions. The input

data includes: table of reservoir core facies descriptions (such as in Table 2.5), block

shifted non-detrended optimum log suite and clay/silt content curves. The core

descriptions were considered as the indexation input and the latter two inputs as the

predictors. For the purpose of sensitivity analysis we have run tens of IPSOM

iterations and established the optimum parameters of IPSOM which could provide

the most efficient recognition of mudstone facies. Figure 2.12 describes the most

important parameters in IPSOM recognition of mud-rich facies. For example, we

started with SOM size of 50×50, since the bigger maps provide a higher resolution,

hence a good separation of the facies by log signals. However, the map size should

be proportional to the number of logfacies, number of input log curves and interested

resolution. Thereby, we chose the grid size accordingly between 50×50 to 16×16.

As recommended (Kohonen, 2001; Kohonen and Somervuo, 2002), the size of SOM

cannot be smaller than the distribution dimensions of the input array (facies) i.e. 16.

We used the equi-dimensional maps since there is presumably no major lithological

trend within the reservoir and seal unit. In addition, the common weighting factor of

1.2 (Equations 2.1, 2.2) was also well accepted in recognition of mud-rich facies.

Figure 2.12 illustrates how to set up the optimum IPSOM options/parameters in the

“input” and “indexation” panels when recognising mud-rich facies in a local

calibration case.
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Figure 2.12: Optimum input and indexation parameters for IPSOM local calibration cases
(long range cross-correlations including reservoir and mud-rich units): the most important
parameters are highlighted by red rectangles. The grid size, tolerance and number of
clusters can change according to the core/log data quality and the number of facies.

By clicking on “learn” the module calculates an initial unsorted SOM,

organises the SOM grids’ models and indexes them with core facies data. Depending

on the number of input curves and the grid size, the learning process could take up to

few minutes. By pressing “save and display” the SOM map is visually displayed in

which we can set the number of clusters (K). As explained in Section 2.4.1, this is a

parameter which significantly controls the recognition quality/resolution and needs to

be proportional to the input data quality and the number of defined facies. Using a

high number of clusters could provide a higher recognition resolution, but it also

requires high quality core/log data input. In West Africa case study, we have used

four to seven clusters depending on well log/core data quality and the applied facies

classification scheme. The initial unsorted SOM grid for a local calibration case in

well W31 is represented in Figure 2.13, in which the core facies data based on flow

facies classification is used for the training. Each cell is the representation of a

learning sample, embeds the rose-diagram of log signals for the learning sample, and

is indexed/color-coded with core facies data. In addition, the black dots in each cell

are the representation of the learning samples with similar rose-diagrams of log

signals. The size of the SOM grid is determined by the design parameters. Here we

used similar design parameters as in Figure 2.12 and applied seven clusters. In this

step, there is a “re-index” option which we used it for IPSOM iterations/sensitivity

analysis to optimise the design parameters, hence the SOM trained network, prior to

logfacies prediction in the full wireline range.
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Figure 2.13: Schematic representation of the initial unsorted SOM grid for a local
calibration case in well W31 when using the flow facies classification (7-facies) scheme:
each cell is a learning sample, embeds the rose-diagram of log signals for the learning
sample, and is indexed/color-coded with core facies data.

Finally, the generated probabilistic-clustered SOM, IPSOM, was applied to

the full wireline range in order to create a logfacies recognition dataset. The

recognition dataset covers the whole wireline range including reservoir and non-

reservoir formations. In local calibration cases, the validity of generated recognition

dataset was evaluated using analysis of the confusion matrix. The confusion matrix

provided the ability to compare categorical interval variables, i.e. core facies

description and facies recognised by IPSOM. In the matrices, the percentage values

in the main diagonal implicated the success of IPSOM and parameterisation. In other

words, the ideal confusion matrix would be 100.In, where In is an identity matrix of

size n. However, this was not possible and we focused on relative accuracy

improvement in recognition of fine-grained facies by optimising the inputs and the

SOM grid properties. Then we compared the average of diagonal values in different

IPSOM runs as a measure of “recognition accuracy”.
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In Figures 2.14 and 2.15, the logfacies prediction results and confusion

matrices are represented for two local calibration recognitions in well W41. The

confusion matrices and their statistics have been computed using the VBA-supported

template (Section 2.4.4.1). The IPSOM trainings were also operated under the same

parameterisations as given in Figure 2.12. In the first operation, Figure 2.14, we

applied the flow facies classification scheme, in which the recognition accuracy was

approximately 91%. In the other IPSOM operation, Figure 2.15, the coarseness-

based facies classification was used and the accuracy of the recognition was slightly

reduced by increasing the number of facies in the SOM. Similar efforts under the

same IPSOM parameterisation conditions were performed on the other wells while

using different classification scheme and log detrendings. In Table 2.8, we provided

the average recognition accuracy for the key local calibration recognitions in the

three pilot wells (i.e. W31, W41 and W42). In spite of log data quality and core

availability issues, in the local calibration cases we have achieved IPSOM

recognition accuracy of more than 75% for the key IPSOM operations. In most of the

cases, the recognitions with non-detrended logs provided the facies predictions with

better core calibration, though the differences are not considerable. The exception

was in the highly clay-dominated context (i.e. well W42) where IPSOM recognition

with RHOB-detrended input provided better local calibration with original and

coarseness-based facies classification scheme. Furthermore, we have not noticed any

meaningful dependency between the number of facies (or facies classification

scheme) and the recognition accuracy. In other words, the quality of facies

classification effect on IPSOM is determined by the geological context at the well

location. For example, in well W31, the sedimentary sequences within the wireline

line interval (including the cored zone) are relatively coarser with more distinct log

responses, thus the unification of the coarse facies in the new facies classification

schemes reduced the overall logfacies prediction quality at its fine-grained zones.

Thereby the original 16 sedimentological facies provided the best recognition dataset

and vice versa for well W42 which is located at much finer-grained sequence.
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Figure 2.14: Recognition of flow facies in well W41 using optimum IPSOM parameters with
50×50 grid and non-detrended optimum well log suite. The confusion matrix gives an
average recognition accuracy of ~91% which can be visually checked at the well section (at
the bottom of the figure) by comparing the recognition data set and the core descriptions
along the cored interval.
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Figure 2.15: Recognition of coarseness-based facies in well W41 using optimum IPSOM
parameters with 50×50 grid and non-detrended optimum well log suite. The confusion
matrix gives an average recognition accuracy of ~88%. The increase in the number of facies
slightly reduced the recognition accuracy due to uncertainty growth in clustering.
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Table 2.8: Summary of the best recognition results in wells W31, W41 and W42 using the
proposed IPSOM approach in the local calibration cases: when using three classification
schemes and three different detrending practices.

Well name
Detrended log

input(s)

Average recognition accuracy (%)

Original

sedimentological

facies (16-facies)

Coarseness-

based facies (10-

facies)

Flow facies

(7-facies)

W31

Non-detrended 89% 77% 78%

RHOB detrended 86% 74% 75%

RHOB, PHIT,

PHIE detrended
83% 77% 76%

W41

Non-detrended 87% 88% 91%

RHOB detrended 83% 84% 86%

RHOB, PHIT,

PHIE detrended
84% 85% 83%

W42

Non-detrended 81% 86% 79%

RHOB detrended 85% 73% 81%

RHOB, PHIT,

PHIE detrended
79% 78% 79%

Overall, the log detrending and facies classification scheme have not played

critical roles in the accuracy of IPSOM recognition of seal facies in the local

calibration cases. Instead, the quality of IPSOM recognitions was mainly controlled

by specific pre-processing operations (i.e. core shifting and input log selection),

SOM grid parametrisation (grid size and number of clusters) and inter-cluster

variability of log responses within the seal unit interval. For example, in well logs of

well W42, we had the least distinction in the log responses within seal unit 4 and

hence achieved the least accuracy for the recognition of mud-rich electrofacies. In

another case, we applied an inappropriate input log suite in well W41, which

includes spectral gamma ray log (K-U-TH). The improper input log selection

imposed a strong negative effect on the recognition of mud-rich facies. The effect is

clearly illustrated in Figure 2.16, where we used the optimum IPSOM

parameterisation as well as two different classification schemes. In the coarseness-

based facies classification case, although the decrease in the accuracy is just 4%, the
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application of spectral gamma ray log critically changed the orientation of the

topological space and mis-assigned coarse facies within the mud-rich intervals, e.g.

muddy debris flow facies replaced the hemipelagic shales at the top seal interval.

Furthermore, in the flow facies classification case, the application of this input log

suite led to a bigger mistake. The contribution of spectral gamma ray in the input log

suite caused the dominant lithology in the top seal changes from isotropic/continuous

bed facies to facies with small vertical features. This changed dramatically the

preferable flow direction within the seal unit from horizontal to vertical hence could

mis-represent the seal risk/quality of seal unit 4 at well W41. The log observations

showed that the spectral gamma ray logs respond differently to fine-grained facies in

reservoir and mud-rich units; therefore the core (facies)-log interrelationships

(IPSOM training) at reservoir cored interval could not be replicated correctly in seal

unit 4.
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Figure 2.16: Recognition of coarseness-based and flow facies in well W41 using optimum
IPSOM parameters with 50×50 grid and non-detrended spectral gamma ray logs. The
average recognition accuracies did not significantly reduce but the qualitative evaluation
illustrates the severe mis-assignment of coarser-grained facies to mud-rich units. This is
because the spectral gamma ray logs respond differently to reservoir and mud-rich units.
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2.5.2 Blind IPSOM recognition of seal logfacies

In local calibration cases, we have achieved overall accuracy of 75% to 90%

for recognition of mud-rich and reservoir logfacies. Although IPSOM contains a

probabilistic algorithm, it has a neural network basis. Therefore, as an ANN

approach, we have inspected the reliability/robustness of the local calibration results

(derived in Section 2.5.1) using blind recognition (or cross-validation). In the first

instance, we carried out the blind recognitions on the pilot wells (wells W31, W41

and W42). We ignored the core descriptions of the target well; instead we trained and

indexed the SOM based on the core descriptions from the other wells. The trained

SOM was then used for recognition of seal/reservoir logfacies at the target well. We

compared the match of blind recognition results with the real core facies descriptions

at the target well using confusion matrix. As an ANN approach, the accuracy of blind

recognition is directly proportional to the number of training sets (cored wells). Since

we worked with few distant wellbores (~5-10 km well spacing), the blind

recognitions with moderate accuracy could be promoted as good recognitions hence

their local calibrations as robust recognitions.

In Figure 2.17, the “Input Panel” of IPSOM is shown where log and core

data from wells W41 and W42 set to learn and index the SOM for prediction of

logfacies in well W31. The indexation parameters remained the same as in Figure

2.12 and the optimum SOM parameters were used: supervised quantitative

classification with four clusters (K) and weighting factor (W) of 1.2. In Figures 2.18,

2.19, 2.20, the results of the blind IPSOM recognition are illustrated when using

different facies classification schemes.
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Figure 2.17: Optimum input and indexation parameters for IPSOM blind recognition cases
(long range lateral- and cross-correlations including reservoir and mud-rich units): the most
important parameters are highlighted by red rectangles. The choice of learn/index training
sets can significantly influence on the recognition accuracy and robustness.

In Figure 2.18, from top to bottom, you can see the local calibration

recognition results for the training wells W41 and W42 (in which only their own core

descriptions were used for their recognition) and the blind recognition result for well

W31, when using the original sedimentological facies classification scheme. The

average recognition accuracies were calculated using the confusion matrices in the

VBA-supported template (Figure 2.7). In this case, the single-core local calibrations

had acceptable recognition accuracy of 60-70%, whilst the average blind recognition

accuracy at well W31 was approximately 20% which is far from the acceptance

criteria. Similarly, the results for the other two classification schemes are represented

in Figures 2.19 and 2.20. Applying the unified facies classification schemes slightly

increased the blind recognition accuracy, but with no major improvement. In fact, the

application of flow facies classification scheme mainly improved the single-core

local calibrations in wells W41 and W42, whilst using coarseness-based facies

classification scheme increased the blind recognitions accuracy (in W31) by 6%.

Since the learning and indexation were carried out using neighbouring well

data with different measurements, we repeated the blind recognition operations at

well W31 with normalised input logs. The reason was to reduce the effect of

potential discrepancies in settings/functionalities of logging tools at different wells.

The normalisation of log inputs could solve the problem caused by difference in the
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preliminary calibration of logs in the wells. An example of blind recognition with

normalised log input is illustrated in Figure 2.21, in which the original

sedimentological facies classification scheme was applied. Comparing Figures 2.18

and 2.21, the normalisation of input log suite not only improved the blind recognition

but also increased the recognition accuracy in the single-core local calibrations at

wells W41 and W42. Thereby, we can say IPSOM would prefer input curves sharing

the same range of values.
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Figure 2.18: Blind Recognition of original facies in wells W31 and W41 using optimum
IPSOM parameters with 50×50 grid and non-detrended optimum well log suite. The SOMs
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are learned and indexed according to corefacies-log correlation in well W42. Successful
blind recognition in well W41 suggests similar geological characteristics between reservoir
and seal intervals of wells W41 and W42; vice versa for well W31.

Figure 2.19: Blind Recognition of coarseness-based facies in wells W31 using optimum
IPSOM parameters with 50×50 grid and non-detrended optimum well log suite. The SOM is
learned and indexed according to corefacies-log correlations in wells W41 and W42.
Difference in lithological characters of training sets and the target interval caused poor
blind recognitions.

Av
er

ag
e 

re
co

gn
iti

on
 a

cc
ur

ac
y:

~ 
65

%
~ 

68
%

~ 
26

%

Ap
pl

ie
d

Le
ar

ni
ng

/I
nd

ex
in

g
Le

ar
ni

ng
/I

nd
ex

in
g



Chapter 2 Recognition of Logfacies in Mud-Rich …

76

Figure 2.20: Blind Recognition of flow facies in wells W31 using optimum IPSOM
parameters with 50×50 grid and non-detrended optimum well log suite. The SOM is learned
and indexed according to corefacies-log correlations in wells W41 and W42. Similar to local
calibration cases, the number of facies had intangible effect on blind recognition accuracy.
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Figure 2.21: Blind Recognition of original facies in wells W31 using optimum IPSOM
parameters with 50×50 grid and non-detrended/normalised optimum well log suite. The
SOM is learned and indexed according to corefacies-log correlations in wells W41 and W42.
Similar to number of facies, conventional normalisation of log input suite did not
significantly improve the blind recognition accuracy.

The summary of the cross-validation (blind recognition) efforts are given in

Table 2.9 while applying three different facies classification schemes, and

normalised/original input log suite. Although the overall recognition accuracy has
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slightly improved by the normalisation of input logs, the blind recognition results

were still very poor. There could be several reasons behind the poor blind

recognitions such as the low number of training sets (available logs and cores) and

inappropriate selection of training wells. The first point is inevitable as in the

majority of seal studies we have very few wells with complete log suite coverage

along the seal intervals. Therefore, the selection of training wells for blind

recognition of seal logfacies could be a delicate and challenging task. In this study,

we used seismic as a guide to select the training wells. In other words, in the training

process of a blind recognition, we only incorporated the training well(s) which

shared similar seismic characters as the target well in both core and seal intervals. In

fact, seismic responses are used as a backward calibration of data. In West Africa

case study, the reservoirs (cores) are located in complex/structured sand-rich

channels and the reflection seismic data has approximately similar amplitude and

frequency characters within these intervals. However, the seismic character (hence

sedimentology) changes from seal unit 4 (in wells W41 and W42) to analogue seal

unit interval (in well W31). In fact, it is coarsening toward the Southeast, North and

Northwest margins of the survey. In Figure 2.22, the NE-SW seismic seal sections at

the vicinity of the three pilot wellbores are represented. Seal unit 4 at wells W41 and

W42 has similar seismic character, i.e. poor amplitude, and poorly resolved and

chaotic reflections, whilst in well W31 the analogue seal unit partly contains

blocky/local layered features with moderate amplitude. As a result, we expected

incorporation of well W31 for training of blind recognition of W41 and W42 reduces

the accuracy of the recognitions. In order to prove it we performed the blind

recognitions using single-well training sets. In Figure 2.23, the blind facies

recognition in well W41 is shown where we learned and indexed normalised input

logs from well W31. As expected, poor blind recognition results were achieved even

with normalisation of input log suite. Similar blind IPSOM recognition was carried

out on wells W31 and W41, in which we trained the SOM based on the core and log

data from well W42 (Figure 2.24). The average recognition accuracy significantly

increased compared to the blind recognition case which incorporated well W31 as a

training well (Figure 2.21). In contrast, the blind recognition in well W31 remained

poor with almost the same accuracy. The same practices were performed using the

other training wells and the results are summarised in a clustered column chart in
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Figure 2.25. Each column cluster (bin) refers to the core training practices used to

recognise the original logfacies along a target wellbore. As expected, the local

calibration cases resulted in more accurate logfacies recognition in all wells. In

addition, the results confirmed that in a limited well database, we are required to

refer to the seismic characters at well locations (throughout the whole cross-

correlation interval) prior selecting the training wells for a long-range blind IPSOM

recognition of logfacies. Here, for instance well W31 has different seismic character

within the analogue seal unit interval, therefore this well should not be used in blind

recognition practices (either as training set or target) with W41 and W42 or similar

wells. The acceptance criteria could also be used for the blind IPSOM recognition of

seal logfacies at non-cored wells; however without core data the validation of their

recognition results is not possible. In summary, in a blind IPSOM recognition of seal

logfacies, the training wells must pass through all analysed formations and pass

through seismic sections having similar characters/variability as that at the

target/non-cored well in which facies are to be recognised.

Table 2.9: Summary of the best blind recognition results in wells W31, W41 and W42 using
the proposed IPSOM approach: when using three classification schemes, normalised /non-
detrended input log suites and different training wells.

Target

well

Training

wells
Normalised

log input

Average recognition accuracy (%)

Original

sedimentological

facies (16-facies)

Coarseness-

based facies (10-

facies)

Flow facies

(7-facies)

W31 W41 and

W42

No 16 % 26 % 28 %

Yes 20 % 28 % 31 %

W41 W31 and

W42

No 29 % 32% 33 %

Yes 29 % 35 % 34 %

W42 W31 and

W41

No 28 % 27 % 29 %

Yes 29 % 28 % 31 %
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Figure 2.22: NE-SW seismic section views from three pilot wellbores W31, W41 and W42:
In blind recognition of seal logfacies, we suggest using seismic guide (similarity in
amplitude and frequency between training and target wells) for selecting training wells; this
helps to compensate data limitation issues by integrating knowledge-driven information from
another source, i.e. seismic. Pink, cyan and pale green mapped horizons indicate top
hemipelagite-4, top MTD-4 and bottom MTD-4. In the reservoir intervals, all three wells
share similar channel-related seismic characters, however in seal unit intervals only wells
W41 and W42 show similar seismic characters (seismic reflections are better resolved in
analogue seal unit in well W31 and have relatively higher amplitudes).
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Figure 2.23: Blind Recognition of original facies in wells W41 and W31 using optimum
IPSOM parameters with 50×50 grid and non-detrended optimum well log suite. The SOM is
learned and indexed according to corefacies-log correlations in wells W42.
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Figure 2.24: Blind Recognition of original facies in wells W31 and W41 using optimum
IPSOM parameters with 50×50 grid and non-detrended/normalised optimum well log suite.
The SOM is learned and indexed according to corefacies-log correlations in wells W42. The
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recognition accuracy in well W41 was significantly improved whilst in well W31 the
accuracy still remained poor. The results agreed with the proposed seismic-guided selection
of training wells.

Figure 2.25: Summary of average recognition accuracies in practices used for recognition
of the original logfacies in wells W31, W41 and W42: using optimum IPSOM parameters
with 50×50 grid and non-detrended/normalised optimum well log suite. Each column cluster
refers to different training sets used for recognition in a target well. Note that the analogue
seal unit in well W31 has different seismic character; therefore this well should not be used
in blind recognition practices (neither as training nor target) with W41 and W42 or any
similar wells.

2.6 Conclusions

In this chapter, we have presented a new supervised recognition approach

which can effectively recognise seal logfacies with different classification schemes

and using limited log and reservoir core data. The proposed methodology aimed to

supply the IPSOM engine with series of pre-processing, design constraints and

validation techniques to offset the core data limitation and log data quality in the

fine-grained contexts. The main advantage of the method is that it is applicable to

any ANN-based tool with functionality for supervised recognition using multi-layers

input with elements having linear transformation functions and which uses self-

organizing maps based on Kohonen algorithms. Furthermore, the method gives the
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flexibility to combine the data-driven information with knowledge-driven inputs to

overcome the seal data limitation issue. As a very first quantitative recognition

approach in the seal context, it can be significantly useful to improve our

understanding from subsurface lithological distribution within mud-rich sequences,

in particular for property modelling hence basin-scale flow simulation.

The method is demonstrated on a deep offshore case study in West Africa

where overall recognition accuracy of local calibration and blind recognition cases

reached up to 80-90% and 60-70%. The analysis suggested the success of a blind

recognition strongly depends on the similarity of seismic character in the target and

training wells. Thus qualitative relationships exist between the type and degree of

heterogeneity of the vertical distribution of logfacies in mud-rich sections of wells

and the amplitude and frequency of seismic at the well location. The link will be

investigated further in Chapters 3 and 4.

In addition, the analysis indicated that the typical processes in logfacies

recognition in sandstone/reservoir context may not be applicable in the mud-rich

environment. The polynomial detrending and the proposed segmented nonlinear

detrending changed the nature of log responses and worsened the logfacies

recognition results within the seal formations. The inclusion of the spectral gamma

log in the input log suite also reduced the predictive power of the IPSOM, resulting

in strong coarsening trend in the recognition results. Moreover, the normalization of

the log signals only slightly improved the quality of blind recognition cases. The so-

obtained recognition method can significantly be improved by incorporating special

log inputs, in particular image logs and dip meter information.
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3.1 Introduction

Seismic attributes are properties that can be quantitatively extracted

from seismic data to filter or illustrate different geological and geophysical

characteristics of the subsurface (Chopra and Marfurt, 2005). Seismic attributes were

initially extracted from analogue seismic data to optimise the filter settings

(Rummerfeld, 1954). Later adopting magnetic analogue recording allowed the

production of corrected cross sections and measurement of the basic structural

elevation, dip, thickness and discontinuities attributes (Anstey, 2005). By the

emergence of digital recording in 1963 and development of the velocity spectrum

concept, the most basic attribute in seismic inversion, the interval velocity attribute,

was introduced (Taner and Koehler, 1969). In the 1960s, 1970s and 1980s, attribute

technology gradually developed by introducing new 2D attributes (and applications)

to help geoscientists in petroleum exploration: reflector dip (Picou and Utzman,

1962; Simpson et al., 1967), bright-spot (Churlin and Sergeyev, 1963), seismic

opacity (Balch, 1971), acoustic impedance (Lavergne, 1975; Lindseth, 1976),

complex trace (Taner et al., 1979), seismic stratigraphic (Taner and Sheriff, 1977;

Taner et al., 1979), seismic attenuation (Taner et al., 1979), response (Bodine, 1984),

and interval (Dalley et al., 1989; Sonneland et al., 1989) attributes. In the 1980s,

attributes proliferated and became popular because they could simplify the

interpretation of acoustic impedance data and also the stratigraphic/structural

framework. 2D seismic stratigraphic attributes were developed for the interpretation

of depositional processes (Vail et al., 1977); however, they were not successful in

many cases (e.g. in chaotic features: slump and turbidites or subtle discontinuities)

due to the 3D nature of geological features and their strong dependencies to S/N ratio

(Love and Simaan, 1984).

In the 1990s, 3D seismic imaging revitalised the seismic attribute world by

introducing the concept of 3D (volumetric) attributes (Dalley et al., 1989; Rijks and

Jauffred, 1991). The emergence of 3D technology led to development of volumetric

attributes which is considered to be the most successful exploration technology so far

and made significant subsurface interpretational and characterisation impacts:

coherency attribute (Bahorich and Farmer, 1995), texture attribute (Vinther et al.,
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1995; Whitehead et al., 1999; West et al., 2002; Gao, 2003, 2004), pattern

recognition attributes (Russell et al., 1997), spectral inversion (Partyka et al., 1999;

Peyton et al., 1998) and elastic inversion (Connolly, 1999; Whitcombe, 2002).

As the very first seismic textual analysis, in the 2D domain, Sangree and

Widmier (1977) demonstrated the relationship between seismic-signal pattern and

constituent sediments of geobodies; later, Love and Simaan (1984) extracted textural

patterns using 2D amplitude templates. In spite of automation of texture analysis

using soft computing techniques, 2D textural analysis was not successful due to the

3D nature of the textural features. In the 1990s, the development of volumetric

attributes, multi-attribute techniques (Russell et al., 1997) and statistical measures

(Vinther et al., 1995; Vinther, 1997; Whitehead et al., 1999; West et al., 2002; Gao,

2003, 2004) opened new perspectives for the classification of textures. By far, the

majority of seismic texture detection efforts have been focused on delineating the

distribution, quality and connectivity of reservoir pay zones (Chopra and Marfurt,

2007) in different sedimentological environments: e.g. deep marine (Gao, 2007,

2008), fluvial deposits (Yenugo and Marfurt, 2010; de Matos et al., 2011),

carbonates (Carrillat et al., 2002), and submarine turbidites (Gao, 2004). Seismic

texture analysis has not been commonly applied to fine-grained sediment sequences

and the research has often been limited to either qualitative seismic facies analysis

(e.g. Droz et al., 2003; Power et al., 2014), bypass detection (e.g. Heggland et al.,

1999; Meldahl et al., 1999, 2001; Tingdahl et al., 2001) or semi-quantitative

classification at the geobody scale (e.g. Corradi et al., 2009). In this work, we aimed

to automatically and quantitatively link seal quality (or leakage risk) with the 3D

seismic texture of heterogeneous mud-rich sequences by introducing an a priori seal

texture model (Gao, 2004). We believe that this is the first attempt at quantitative 3D

seal risk analysis and includes an understanding of the main geological leakage risk

elements and their relationships with the volumetric seismic attributes. The proposed

procedure generates a seal risk probability cube, delineating suitable seismic seals as

well as possible matrix-related leak points and eventually migration scenarios. In fact

this study extends the recent work by Alves et al. (2014) in which multiple surface

attributes were used to delineate different MTD textures. Similar to any textural

analysis, seal texture model and seismic resolution control the pattern detection.
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The proposed procedure has been applied on a case study from offshore West

Africa with a high-density seismic volume. The pilot cubes contain both regional

seals and reservoirs. The structure of this chapter is as follows: introduction, aims,

hypothesis, geological settings and dataset, methods, results, discussion, conclusions

and references.

3.2 Aims

In the previous chapter, we mainly analysed and predicted different fine-

grained facies using core and log datasets; here, the general aim is to capture the

lithology and internal texture of sealing units at a seismic scale and to develop a

workflow for quantitatively assessing the risk of leakage through the matrix of the

seal units. We aim to capture the seismic characteristics important for fluid flow. The

study objectives can be divided into three main goals:

1) Signal / noise ratio improvement using trace-based attributes: although

mud-rich sediments are often transparent and poorly resolved in the original seismic

data, attribute volumes may have better signal content due to the nature of their

computation. Therefore, it is important to find the most appropriate attributes which

can help with improving signal continuity and identifying structural/stratigraphic

features in fine-grained sediment sequences.

2) Seismic estimation of seal risk: find a procedure to automatically estimate

seal risk from seismic data based on a conceptual seal texture model and the

combination of 3D attributes in the poorly resolved fine-grained seal units.

3) The final objective is to evaluate the results obtained in (2) by correlating

the seal risk attribute with the recognised fine-grained log facies at well locations

(Chapter 2).

3.3 Hypothesis: Potential seismic characteristics for sealing quality

Cap rocks or seal rocks are sedimentary units with very low permeability that

locally or basin-wide restrict or compartmentalise fluid flow in the sedimentary

basin. The common seal unit lithologies are mudstone, unfractured carbonates and

anhydrites (Kearey, 2001). In this study evaporitic seals have been ignored, since

their seismic reflection profiles are extremely poor due to their homogeneous nature,
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and hence not feasible for seismic attribute analysis. The main focus here is on

siliciclastic seal units. In sedimentary basin analysis, continuous, homogenous, thick,

clay-rich mudstones are usually considered as typical good seals, and structured,

dipping, thin coarse mudstone and siltstone units as poor seals (Bahorich and Farmer,

1995; Cartwright et al., 2007; Loseth et al., 2009; Seebeck et al., 2015). In this study,

a seal texture model (seal quality scheme) has been proposed based on physical

reasoning of fluid dynamics (Table 3.1). The scheme is also in accordance with

hemipelagite, mass transport deposit (MTD) and leakage atlases recently prepared by

Omeru (2014) in different sedimentary basins. In fact, the scheme introduces the

potential seal quality components that can link between geological and seismic

characters. This is exemplified with seismic sections and their outcrop analogues in

Figure 3.1 (Note: the outcrop analogues may not be the exact interpretation of the

seismic sections).

Table 3.1: The scheme of potential sealing quality components (seal texture scheme)

Seal component Geological character Seismic character

1 Sediment sandiness Reflection strength

2 Sediment verticality Reflection dip

3 Sediment heterogeneity Reflection chaoticness

The breach of a seal unit may have a cause that cannot be captured by the

seismic data, such as diagenesis, chemical process or sub-seismic feature. Moreover,

a seal sequence can be breached through a bypass system such as faults, intrusions

and pipes which are out of the scope of this study. The proposed scheme is designed

to summarise the seismically observable textural characters in the seals which may

link to fluid flow process in these sediments. The focus of this study is on capturing

these characteristics using a set of volumetric attributes in fine-grained sediments.

We assume the seismic characteristics are mainly controlled by the corresponding

geological characteristics. For example, the chaotic nature of reflections is assumed

to be only due to the sediments’ heterogeneities (Figure 3.1b) and similarly for

Reflection Intensity (Figure 3.1a). This may not be a suitable assumption at reservoir

environment, but considering the seismic quality limitations for mud-rich units and

the required resolution for exploration and basin modelling studies, it cannot be far
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from reality in the regional seal units which are laterally uniform and widespread,

and show little AVO (Amplitude Versus Offset) effect. At the end of this chapter, we

correlate logfacies data with seismic seal risk result to evaluate the geological

validity of the current seal texture scheme and the above-mentioned assumption.

Figure 3.1: Illustration of potential seal quality components with seismic sections from
West Africa case study and the outcrop analogues. Pink and cyan lines are interpretation
lines for top hemipelagite and top MTD in the regional seal unit, respectively. We have
assumed (a) seismic intensity is controlled by sandiness (channel sandstone and clay-rich
deposit sequence, Taranaki Basin, north of New Zealand, Omeru, 2014) where (b)
reflection chaoticness depends on sediment heterogeneity (heterogeneous sand_limestone
rich MTD in shaly matrix, early Cretaceous MTD, West Portugal, Omeru, 2014).

3.4 Geological Settings and Dataset

This study uses a high-density 3D seismic (HD3D) volume (bin size: 6.25m× 6.25m) from block X in offshore West Africa (case study A). The block X is

operated by a sponsor of Caprocks project and the HD3D seismic were acquired by

(a)
Channel Sandstone

Clay-Rich Deposits

(b)

100 m

50 m
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CGG in 1999, followed by re-processings in 2001 and 2002. The acquisition and

processing parameters are given in Table 3.2. A high-density seismic survey in the

oil and gas industry refers to a survey that benefits from tighter array (typical HD3D

array parameters in offshore: spread length ~ 1000 m, receiver group length ~ 6.25

m, receiver group interval ~ 6.25 m, airgun displacement ~ 723 in), shorter shot-

point interval (~ 12.5 m) and larger source bandwidth (~ 30-150 Hz) than a

conventional 3D survey (Boardman and Walker, 1995). The high-density seismic

data enables us to interpret the sedimentary facies on a finer level and understand

better the internal architecture of the chaotic facies (because of having better

spatial/temporal resolutions and preserving the high frequencies) (Calvert et al.,

2003). Moreover, the HD3D data can provide a better platform to do seismic well-tie

and attribute analysis in a higher resolution.

Table 3.2: The acquisition and processing parameters of the HD3D volume of case study A

HD3D volume (case study A)
Spread type Orthogonal

Area 402 km2

Nominal 3D trace density 1,382,400 traces/km2

Number of streamers 8
Streamers length and depth 2500 m, 4 m

Streamer separation 50 m
Receiver group length 6.25 m

Receiver group interval 6.25 m
Airgun array 2 × 1510 in3

Airgun depth 3.5 m
Shot interval 12.5 m

Processing procedures

CGG fast-track processing,
DMO, standard post-stack
migration, geostatistical

analysis, high-resolution tau-p
demultiple, 4th order NMO

Time sampling 2 ms
Bin size 6.25 m × 6.25 m

Vertical resolution 5 - 10 m
Bandwidth at seal unit 4 level 30 – 110 Hz
S/N ratio at seal unit 4 level 7 - 9 dB

Case study A is located in the flat crest of a Neogene turtle structure in the

West African continental margin with a background of active salt tectonics. The

liquid hydrocarbon accumulation is significant in its Tertiary deposits and the

regional seal units are incised by a set of faults and channels. In addition to the
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HD3D seismic volume, reliable mappings (mixture of operator mapping and primary

mapping at Cardiff University by Caprocks team in “Phase 1, 2 and 3”) and good log

suites are provided for the key regional seal unit intervals.

In case study A with approximate dimensions of 23 km by 22 km, there are

five main regional seal units. Figure 3.2 reviews the seismic characteristics of the

regional seals. Seal units 1, 2, 3 and 5 (located in deeper section) are often out of the

wireline range or have very little wireline coverage. This study focuses on seal unit 4

which is laterally extensive and crossed by most of the wellbores. It has the complete

log suite coverage in four wells (W41, W42, W101 and W102) and partial log suite

coverage in three wells (W45, W71 and W71_01) out of 11 wells (Table 3.3). More

importantly, seal unit 4 is located between the two main hydrocarbon accumulations.

Note that well W31 does not cross the seal unit 4, however an equivalent fine-

grained depth-interval in this well is considered as analogue for the seal unit 4

because it is the best placed well in the case study for seismic facies calibration and

has the best quality core and log data.

Seal unit 4 is laterally extensive (~20×20 km) with 170 m-220 m thickness.

Reflections from fine-grained seal unit 4 are clearly much weaker than surrounding

coarser-grained channel sediments and its seismic character is varying vertically and

laterally which may reflect different geological features. Seismic characters of seal

unit 4 range from blocky moderate amplitude reflections to very transparent and

unresolved noisy reflections (Table 3.3).

Two main seismic facies were interpreted in seal unit 4 by Caprocks team

(“Phase 1”) at Cardiff University: hemipelagite 4 (upper) and mass transport deposit

4 (MTD 4) (lower) (Figure 3.3). This is a large scale classification of seal unit 4 from

a seismic stratigraphic point of view. In other words, lithology cannot be interpreted

directly from the seismic facies, and seismic character and lithology vary within each

seismic facies. Seal unit 4 has been investigated in both seismic facies. Hemipelagite

4 mainly contains low amplitude events with horizontal/low angle seismic reflectors.

There are also numerous areas within this seismic facies with local moderate

amplitude or distorted reflections. In contrast, MTD 4 often shows variable poor to

moderate amplitude reflections with chaotic texture. However the blocky events are

the dominant seismic texture in the western part of case study A.
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Figure 3.2: Overview of the regional seal units in case study A. The black lines represent the
major normal faults in the seismic profile. Well W31 does not cross the seal unit 4 and an
equivalent fine-grained depth-interval is used as analogue for seal unit 4. Gamma-ray (red
lines) and P-sonic (blue lines) logs illustrated the problem of availability of wireline records
within seal unit intervals. The green box indicates the boundary of the seal unit 4 section
view in Figure 3.3. (After Huuse and Cartwright, 2007 (Caprocks “Phase 1”))
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Figure 3.3: Seismic facies classification of seal unit 4 in case study A: hemipelagite 4
(bounded by pink and cyan interpretation lines) is fairly poor amplitude with continuous
reflections whilst MTD 4 (bounded by cyan and pale green interpretation lines) contains
variable poor to moderate amplitude reflections with chaotic and/or blocky textures.

In addition to the seismic data, case study A includes 16 wells, of which five

well (W31, W41, W42, W101 and W102) have conventional log suite coverage in

the seal unit 4 interval. Table 3.3 shows the availability of wireline records at the seal

interval of different wellbores as well as the seismic character within the main

seismic facies. It again demonstrates the limitations of studying seal intervals both in

terms of log data availability and seismic quality. At the end of this chapter, facies

recognition results from wells W31, W41 and W42 (Chapter 2) have been used for

correlation with seismic seal quality attribute.

Table 3.3: Overview of the wireline data and seismic character within two main seismic
facies of seal unit 4 (* Conventional well logs are available, including gamma-ray, p-sonic,
s-sonic and density logs).

Well
Seismic character

Wireline data
Hemipelagite 4 MTD 4

W31 low to moderate amplitude
– continuous reflections

moderate amplitude –
chaotic reflections complete log suite *

W41

Top: moderate amplitude –
low frequency continuous

reflections
Bottom: low amplitude –

low amplitude –
chaotic reflections complete log suite *

Amplitude
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continuous reflections

W42

Top: low amplitude –
continuous

Bottom: low amplitude -
chaotic reflections

low amplitude –
chaotic reflections complete log suite *

W43
W43_PH
W43_G

low amplitude – fairly
continuous reflections

low amplitude – blocky
/ chaotic reflections

seal unit 4 is out of
wireline range

W44
W44_PH
W44_SG

low amplitude – continuous/
chaotic reflections

low to moderate
amplitude - chaotic

reflections

seal unit 4 is out of
wireline range

W45_PH
W45_G

low to moderate amplitude
– continuous reflections

(prevalent low frequency at
top)

low to moderate
amplitude – chaotic

reflections

no available acoustic
log in seal unit 4

W71 moderate amplitude -
continuous reflections

moderate amplitude –
blocky / chaotic

reflections

complete log suite *
(with a missed

wireline interval in
hemipelagite 4)

W71_01 moderate to high amplitude
- continuous reflections

moderate amplitude -
blocky reflections

wireline starts just at
the top of MTD 4

W72_B
moderate amplitude -
continuous reflections moderate amplitude –

chaotic reflections

seal unit 4 is out of
wireline range

W101 low to moderate amplitude -
continuous reflections

low to moderate
amplitude – blocky /
chaotic reflections

complete log suite *

W102 moderate to high amplitude
- continuous reflections

Moderate to high
amplitude – chaotic

reflections

complete log suite *

3.5 Methods

In petroleum geoscience, there has always been a gap in resolution between

core (cm scale), well log (m scale) and seismic data (deca-metre scale). This is

especially challenging in mudstone sequences where there are considerable small-

scale petrophysical and sedimentological heterogeneities (Macquaker and Howell,

1999; Macquaker et al., 2007; Aplin and Macquaker, 2011). In the early stage of the

study, we performed a primary well-tie analysis in wells W41 and W42 using Petrel1

Seismic Well Tie module. Different analytical and statistical wavelets were tested

and applied to create synthetic seismograms along the seal unit 4 interval.
_____________________________

1 A Schlumberger software
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An example is given in Figure 3.4 for MTD 4 interval of well W42, where the

synthetic seismogram is created using a zero-phase, statistical wavelet (calculated in

a 3 × 3 trace-neighbourhood using the Bartlett taper and 2 ms sample rate) and a

reflection coefficient log (derived from the acoustic impedance log and using 2 ms

sampling interval). The synthetic seismogram is stretched and shifted to match the

base reflection at TWT = 3036 ms. Although there is a good seismic well-tie for the

base seal unit 4 (base MTD 4) reflection, the intra-unit reflections cannot be

correlated. For example, at TWT= 3027 ms, no reflection is modelled in the synthetic

seismogram (due to the absence of acoustic impedance contrast); or, at TWT=3017

ms, we expected to have stronger reflections at seismic traces. The primary seismic

well-tie analysis suggested that poor correlation in seal unit 4 could be caused by the

random noise effect on seismic at fine-grained sediment sections (e.g. Brancolini et

al., 1994) and/or dependency of weak seismic reflections to other parameters than

acoustic impedance contrast (such as sub-seismic vertical variability of facies) (e.g.

Pandey et al., 2007).

Figure 3.4: Seismic well-tie analysis at MTD 4 interval of well 42: A good tie was only seen
for the base seal unit 4 (base MTD 4) reflection – green line - (at TWT=3036 ms). The red
lines indicate the modelled reflections which cannot be matched with seismic. The blue boxes
indicate the TWT intervals for the major acoustic impedance contrasts. A statistical wavelet
(calculated in a 3 × 3 trace-neighbourhood using the Bartlett taper and 2 ms sample rate)
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and a reflection coefficient log (derived from the acoustic impedance log and using 2 ms
sampling interval) were used to create the synthetic seismogram.

We think that in fine-grained sediments achieving a relationship between well

data and volumetric attribute or set of volumetric attributes is usually more feasible

than conventional single-trace-based well-tie analysis. It is because the level of

random noise could be considerably reduced in volumetric attribute calculation.

Moreover, geological features are 3D in nature and seismic textural analysis has

limited capability using trace-based attributes (Sangree and Widmier, 1977; Love

and Simaan, 1984). As a result, we need an explicit, quantitative approach of 3D

seismic attribute analysis which considers the sealing quality elements and also

develops an automated seal risk cube. The current study proposes a five-step

workflow (Figure 3.5): (1) seismic input conditioning; (2) sensitivity analysis of 3D

attributes for characterising sealing elements; (3) seismic attributes

combination/building seal risk cube; (4) seismic result conditioning (result

stabilisation); and (5) validation of estimated seismic seal risk. Each step is now

described in detail.

Figure 3.5: The proposed five-step workflow for an automated seismic seal risk assessment

3.5.1 Steps 1 and 4: Seismic data conditioning of input/result

The amplitude content of reflections from fine-grained sedimentary facies is

relatively low and the stratigraphic/structural mapping of their reflectors is vague and

time-consuming in the chaotic or transparent regions. There are selective processing

filters which could be utilised for removing multiples and non-coherent noise, such

as spectral decomposition (Partyka et al., 1999) and broadband processing techniques

(e.g. Zhou et al., 2012). As standard post-processing techniques in reservoir

environments, they are mathematically cumbersome and would require even further

(1)
seismic input
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delicate adjustment to be used on the commonly transparent seal units. Due to the

complexity and extent of the subject, these filtering studies have been excluded from

this work, although we recommend them for future research. Here, we utilise trace-

based attributes to either pre-condition the seismic within seal intervals at the

beginning of the workflow or to help with removing artefacts from the resultant

attribute cube. For instance, they can be applied on the original seismic amplitude

cube to improve the phase contrast of the reflections.

According to the order of application, we categorise the conditioning

attributes into two groups: pre-conditioning and post-conditioning attributes. Seismic

data conditioning can simplify the structural interpretation and reduce the

interpretation time. This can be done by the stepwise removal of noise and unwanted

stratigraphic and structural features to improve the picking stability (Hocker and

Fehmers, 2002; Fehmers and Hocker, 2003; Pepper and Bejarano, 2005). In this

study, both complex and signal processing attributes from Petrel platform1 (version

2012.1) were examined for pre-conditioning of the seismic data in the seal interval

(Table 3.4). Pre-conditioning attributes are single-trace based and are able to provide

a better platform for quantification of seismic character (using structural and

stratigraphic attributes) in the resolvable seismic sections. Although some details

(e.g. lateral amplitude variation) may be smoothed (Sheriff et al., 1976; Bahorich and

Farmer, 1995), these attributes are more effective in visualising chaotic and dipping

reflections. Moreover, they can improve continuity of reflections and enhance the

visual appearance of edges, such as faults or stratigraphic terminations (Sheriff et al.,

1976; Bahorich and Farmer, 1995).
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Table 3.4: The complex and signal processing attributes examined for pre-conditioning of
seismic data in seal unit 4 (Petrel 2012.1, exploration geology user guide).

Attributes analysed for seal seismic pre-conditioning

Complex attributes Signal processing attributes

Apparent Polarity First Derivative

Cosine of Phase Frequency Filter

Dominant Frequency Graphic Equaliser

Envelope Original Amplitude

Instantaneous Bandwidth Phase Shift

Instantaneous Frequency Reflection Intensity

Instantaneous Phase Remove Bias

Instantaneous Quality RMS Amplitude

Quadrature Amplitude Second Derivative

Sweetness Time Gain

Trace AGC

Trace Gradient

In this study, we examined the efficiency of all the pre-conditioning attributes

in Table 3.4 within seal unit 4 context. The successful pre- and post-conditioning

attributes will be then included in the overall automatic seal assessment workflow.

Here, “Apparent Polarity” and “First Derivative” attributes are described as examples

of pre-conditioning attributes:

Apparent Polarity is defined as the sign of the complex seismic trace at the

peak or trough of reflection strength. The complex seismic trace can be expressed

based on a time-dependent amplitude A(t) and a time-dependent phase θ(t) as: F(t) =

A(t) e jθ(t) (Koehler et al., 1976). A specific colour is assigned for positive or negative

sign (Figure 3.6), while the intensity of the colour varies based on the value of the

reflection strength. The Apparent Polarity is mathematically expressed as:

If Envelope (t-1) < Envelope (t) > Envelope (t+1)

Then Apparent Polarity (t) = sign (F (t))

Else Apparent Polarity (t) = 0 Equation 3.1

where the envelope is the total instantaneous energy of the complex trace.
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Figure 3.6: Superimposition of Apparent Polarity attribute on the original seismic. Blue and
red colours on the seismic sections represent the positive and negative polarity of the
reflections.

The Apparent Polarity is a practical tool in seismic interpretation because it

can increase the event continuity in noisy sections with no effect on waveform. In

addition, it illustrates the lateral variation of polarity along a reflection layer (Sheriff

et al., 1976).

Similarly, the First Derivative attribute allows us to quality control the

signal consistency in the picks, as positive or negative should be zero crossing

(Yilmaz, 2001). It is defined as the time rate of change of the input real seismic trace

f(t):

First Derivative = d [f (t)] / dt Equation 3.2

where real seismic trace is expressed as: f(t) = A(t) cos θ(t). The output is equivalent

to a + 90° phase shift of the original amplitude cube. Since the boundary of

lithological / fluid units are located at the peak or trough (i.e. reflection interfaces) in

a zero-phase seismic cube, this phase shift is especially useful for stratigraphic

analysis, facies estimation and log-seismic tie studies.

Conditioning attributes act not only as an improved input in the seal risk

assessment workflow, but they can also stabilise the attributes combination results at

the final stage of the workflow. As an example, Structural Smoothing is a multi-

trace attribute that can attenuate/filter the vertical artefacts and random noises
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resulting from the process of attribute computation and combination. Structural

Smoothing is based on a Gaussian weighted filter which is expressed as (Iske and

Randen, 2005): h (k) = ∏ exp (− ) Equation 3.3

where σ is the width of the smoothing filter (the degree of the smoothing or the

standard deviation of the Gaussian filter). This scale can be approximately converted

to the number of inline/crossline traces (or vertical samples) as:

Number of traces/samples = (2 × σ) + 1 Equation 3.4

Sigma varies from 0.0 to 5.0 (typical values: 1.0 – 2.5). The larger filter size

uses a larger number of samples and traces and delivers smoother results in a longer

calculation time. Since the seal risk cube will be automatically smoothed by

volumetric attributes, a small filter size (σ: 0.5 – 1.5) is recommended for Gaussian

filter to avoid over-smoothing issues.

Structural Smoothing was originally developed to simplify the seismic data

(by attenuating random noises and survey imprints) in highly structured geological

settings while honouring the prevailing structures (e.g. faults) (Iske and Randen,

2005). We can also benefit from this image analysis advantage to smooth the seal

risk cube without degrading the estimated risk values in the original seal risk cube.

As a final note, Structural Smoothing in Petrel can be handled in three different

ways: without dip guide, dip-guided or edge-enhanced (Petrel 2012.1, exploration

geology user guide). In the dip-guided and edge-enhanced options, the visualisation

of local structural orientation and discontinuities, respectively, is further enhanced.

But in the seal risk assessment workflow, we intend to apply the Structural

Smoothing filter only to remove vertical artefacts (noises) from the resultant attribute

cube; therefore the dip guiding and edge enhancement options are ignored.

3.5.2 Step 2: Sensitivity analysis of 3D seismic attributes for

characterising potential sealing elements

After sensitivity analysis of the pre- and post-conditioning attributes, we

aimed to find the most appropriate seismic attributes to quantify the seal quality
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components of the proposed texture scheme and to eventually develop automated

seismic seal risk detection. A seismic attribute is any information (quantity or

property) which is derived or measured from seismic data (Taner, 2001). Thus they

can range from complex trace attributes and seismic event geometrical

configurations to spatial and pre-stack attributes. They can be analysed in order to

enhance information that might be more subtle in an original seismic image. There

are now over two hundred attributes in use in some geophysical interpretation

software packages, many of which result from slightly differing approaches to

determining a specific property, such as frequency or amplitude (Brown, 2004). In

reflection seismology, the stacked seismic data volume is commonly used for the

interpretation of geologic structure and seismic attributes (Yilmaz, 2001). In this

study, we used a 3D post-stack seismic attributes because we believe they are

generally more beneficial for detecting orientation and variation of those reflection

patterns which may be important indicators of flow/sealing behaviours in fine-

grained sediments. Therefore, we performed a comprehensive sensitivity analysis on

the industrial standard volumetric post-stack attributes (Table 3.5) in seal unit 4.

In Petrel, volumetric attributes are classified into four main groups: complex

trace attributes, signal processing attributes, stratigraphic method attributes and

structural method attributes (Petrel 2012.1, Exploration geology user guide). In Table

3.5, Petrel seismic attributes for each group are listed.
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Table 3.5: Volumetric attributes tested/analysed for characterising the potential sealing
quality component of the proposed scheme (Petrel 2012.1, Exploration geology user guide).

Complex

Attributes

Signal processing

attributes

Stratigraphic method

attributes

Structural method

attributes

Apparent Polarity First Derivative Chaos 3D Curvature

Cosine of Phase Frequency Filter Genetic Inversion Ant Tracking

Dominant Frequency Graphic Equaliser Iso-Frequency

Component

Dip Deviation

Envelope Original Amplitude Local Flatness Gradient Magnitude

Instantaneous

Bandwidth

Phase Shift Neural Net Local Structural

Azimuth

Instantaneous

Frequency

Reflection Intensity Relative Acoustic

Impedance

Local Structural Dip

Instantaneous Phase Remove Bias Sweetness Structural Smoothing

Instantaneous Quality Rms Amplitude t* Attenuation Variance

(Edge Method)

Quadrature Amplitude Second Derivative

Time Gain

Trace AGC

Trace Gradient

The standard seismic attributes are mainly designed for and applied to the

interpretation of geologic structure, stratigraphy and rock/pore fluid properties

associated with reservoirs (Chopra and Marfurt, 2005). Here, however, we intend to

utilise the post-stack volumetric attribute in the fine-gained seal context, which has a

different seismic texture. As a result, the common conventions may not apply or the

computation process may require different parameterisation. In this step, we run all

the above-mentioned volumetric attributes on the original seismic section of seal unit

4 using all possible (standard / non-standard) parameterisations in Petrel. According

to best visualisation performance of attributes, we evaluate the results and rank them

for quantification of the seal quality components (i.e. reflection strength, chaoticness

and dip). The ranking is qualitative (poor-fair-good) and is entirely based on

efficiency of capturing the seismic characteristics indicated in the seal texture

scheme. Finally we select the best attributes for each of the three seal quality

components and determine the best settings for their computation in seal

environments. This is an important and time-consuming part of the seal risk
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assessment workflow and the attribute ranking results will guide the choice of the

best seal risk attribute(s).

Explaining all the tested attributes (37 attributes listed in Table 3.5) with their

parameterisations would not be feasible here. Therefore, we introduce each attribute

category with a representative attribute, including the parameterisations and

considerations for applying it within the seal context. Please refer to the Petrel

manual (Petrel 2012.1, Exploration geology user guide) for the descriptions of other

volumetric attributes than the representative attributes.

1. Complex trace attributes: These evolved from the work of Taner et al.

(1979), who demonstrated the benefit of thinking of the seismic trace as an analytic

signal containing real and imaginary parts, of which only the real part is detected.

The applied complex trace attributes in our sensitivity analysis are: Apparent

Polarity, Cosine of Phase, Dominant Frequency, Envelope, Instantaneous Bandwidth,

Instantaneous Frequency, Instantaneous Phase, Instantaneous Quality, Quadrature

Amplitude and Sweetness. In the first step, Apparent Polarity, Instantaneous Phase

and Cosine of Phase are used for pre-conditioning the seismic and improving the

signal/noise ratio in the more transparent areas of the seal unit. At this stage we

analyse the other complex attributes for capturing the seal quality components.

Instantaneous Frequency is one of the most commonly used complex trace

attributes for fluid analysis in the reservoir environment. Instantaneous Frequency is

defined as the time derivative of instantaneous phase. It is mathematically expressed

as (Taner and Sheriff, 1977):

ωc (t) = ∂ { φ (t) } / ∂t Equation 3.5

where φ(t) is the Instantaneous Phase and defined as (Taner and Sheriff, 1977):

φc (t) = tan-1 [g(t)/f(t)] Equation 3.6

where f(t) is the real part of original seismic trace samples and g(t) is the imaginary

part of original seismic trace samples or the quadrature trace (from the Hilbert

transform). In Petrel, we can set the Hilbert filter window size, ranging from three to

eleven samples (Figure 3.7). In addition, the negative values of the frequency
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occurred due to the phase reversal are set to zero during the computations (Petrel

2012.1, exploration geology user guide).

Figure 3.7: Instantaneous Frequency: Parameters tab for setting the Hilbert filter window

size (Petrel 2012.1).

Instantaneous Frequency is often used in reservoir studies to estimate seismic

attenuation as an indicator of fracture zones or hydrocarbon accumulations (Taner

and Sheriff, 1977; Taner et al., 1979; Yilmaz, 2001; Castagna et al., 2003). In the

seal study perspective, it also has some characteristics which make it a suitable

candidate for interpretation. Instantaneous Frequency has an apparent higher

resolution than the input amplitude data which is useful for mapping subtle changes.

Moreover, it is less affected by the lower amplitudes typically observed in fine-

grained sediments (Taner and Sheriff, 1977), but it does tend to be unstable in the

presence of noise and is sometimes difficult to interpret. Hence it must be applied

with caution in the seal section, where the signal content is relatively poor. This

effect can be reduced by choosing a smaller window size and allowing the algorithm

to capture more phase changes within the thinner layering of seal unit 4. For the

sensitivity analysis, three different Hilbert filter window sizes (i.e. 3, 7 and 11

samples) have been applied in order to calculate the Instantaneous Frequency

attributes in seal unit 4.



Chapter 3 Seismic Characterisation of Seal Quality using Volumetric Attributes

112

2. Signal processing attributes: These operate on individual seismic traces

within a seismic 2D or 3D volume, producing a new collection of traces based on the

signal processing attributes. The following attributes are used for the current

sensitivity analysis on seal unit 4: First Derivative, Frequency Filter, Graphic

Equaliser, Original Amplitude, Phase Shift, Reflection Intensity, Remove Bias, RMS

Amplitude, Second Derivative, Time Gain, Trace AGC and Trace Gradient. Similar

to the complex attributes, two signal processing attributes (i.e. First and Second

Derivative attributes) are used earlier in the workflow for pre-conditioning of the

seismic data. However, there are still other attributes in this group which need to be

evaluated for seal quality component characterisation. For example, Reflection

Intensity is a simple and prevalent signal processing attribute which is related to the

energy in the real seismic trace. In Petrel, it integrates and averages the amplitudes

along the real seismic trace within a specified moving window using the trapezoidal

rule. Petrel manual defines the Reflection Intensity attribute for a real trace function

of f(t) as:

A (t) = 1/N∑ |f(t + k)|/ / Equation 3.7

where t, k and N are time, time step and window size (Petrel 2012.1, exploration

geology user guide).

We think the given expression in the Petrel manual (Equation 3.7) is not

correct because according to the Fresnel’s equations, the “square” of amplitude (and

reflection coefficient) is proportional to the reflected energy flux per unit area (i.e.

intensity) (Jenkins and White, 1957). In addition, Reflection Strength attribute (a

complex trace attribute) is also proportional to the sum of “squared” amplitudes (of

real and quadrature traces) (Taner et al., 1979). Therefore, the correct expression for

Reflection Intensity attribute should be as follows:ARI (t) = 1/N f (t + k)/ / Equation 3.8

Although Reflection Intensity is typically utilised to delineate amplitude

features implying the presence of hydrocarbons or pay zone thickness changes in the

reservoir context (Chopra and Marfurt, 2007), we think it can benefit the seal

interpretation too. By using Reflection Intensity on fine-grained units, we can
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highlight subtle local amplitude anomalies/variations or pockmarks within

transparent seismic facies. In addition, it can be employed to outline the blocky

events and moderate amplitude dipping reflectors in the noisy zones or chaotic

texture of MTDs. According to our proposed scheme, we suggest that amplitude is

controlled mainly by the degree of coarseness of sediments in the seal units

(excluding carbonate and evaporite seal rocks). Therefore these higher amplitudes

and hence coarser sediments can play an important role in delineating potential

features that characterise the flow/sealing behaviour of the seal unit. The default

computations in Petrel 2012.1 are based on 3 time samples (here 6 ms). To avoid a

smearing effect, smaller window sizes are recommended for seal units due to their

greater vertical variation for phase and amplitude. However, Petrel 2012.1 does not

allow the user to set the window size; thus Reflection Intensity attribute calculation is

parameter-less in this study (the default 3-sample window is used).

3. Stratigraphic method attributes: These are multi-trace based attributes and

attempt to isolate seismic textures visible in the data. These include: Structural

Orientation Measurements (Chaos and Local Flatness), Frequency Decompositions

(Iso-Frequency Component and t* Attenuation), Relative Acoustic Impedance,

Sweetness and Seismic Classification (Genetic Inversion and Neural Net).

One of the widely used 3D attributes for stratigraphic analysis in siliciclastic

(e.g. channels) and carbonate (e.g. reef) reservoirs is Chaos. The Chaos attribute

maps the chaoticness of the local seismic signal within a 3D window (Iske and

Randen, 2005). Here, chaoticness means the level of inconsistency in the orientation

estimate based on Principal Component Analysis (PCA), or in other words it is a

measure of the lack of organisation in the structural (dip and azimuth) estimation

method.

According to the PCA computation of Local Structural Dip and Azimuth

(Randen et al., 2000; Iske and Randen, 2005; Randen and Sønneland, 2005), there

are three eigenvectors, v̅i, for each C-matrix, each of them associated with one

eigenvalue, λi. The larger is λi, the better v ̅i describes the dip and azimuth. The larger

the difference between the dominating λi and the two other λi’s, the more reliable the

dip and azimuth estimate is; and assuming λ1 ≥ λ2 ≥ λ3, it can be measured as

(Randen et al., 2000; Randen and Sønneland, 2005):
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J = − 1 Equation 3.9

where λ1, λ2 and λ3 are eigenvalues that are associated with v ̅1, v̅2 and v ̅3 eigenvectors

of C-matrix.

By using this measure, regions with low consistency in the estimate typically

correspond to regions with chaotic signal patterns. This local chaoticness can be

caused by geological features (e.g. faults/discontinuities, reef textures, channel

infill), gas migration, salt body intrusions or the chaotic structure of the deposits.

This measure is independent of orientation and amplitude values and can produce the

same response whether in high or low amplitudes, dipping or non-dipping regions.

Thus it can be extremely beneficial to capture the chaotic seismic texture (and

according to our proposed texture scheme, the sediment heterogeneity) in the usually

low angle and transparent seal seismic context. Moreover, it can also indicate the

faults and discontinuities which are potential conduits (if permeable) for fluid

migration through the seals.

The Chaos attribute in Petrel is equivalent to J+1 (Equation 3.9) and scaled

from 0 (the most organised local signal pattern) to 1 (the most chaotic local signal

pattern). We can specify the 3D window size for calculating the Chaos by choosing

the radius of neighbourhood in the direction of three main axes (directional sigmas:

σx, σy, σz) (Figure 3.8).
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Figure 3.8: Chaos: Parameters tab for setting the 3D window size for PCA calculations

(Petrel 2012.1).

Similar to the Structural Smoothing, the sigma is related to the number of

traces/samples contributed to the computations at certain direction and their

relationship is expressed as: number of traces/samples = 2 × σ + 1. The larger the

sigma the smoother the result and also the longer computation time due to the

involved PCA of gradient covariance matrix. Typical sigma ranges used for reservoir

stratigraphy analysis are 1.0 – 2.5. Regarding the noisy and low signal content of the

seal units, larger neighbourhoods are recommended for the fine-grained seal units

(typically σ = 2.0 – 3.0). The smaller 3D window size may lead to misinterpretation

of noises or poorly resolved zones as chaotic and discontinuous areas within the seal

unit. Figure 3.9 is taken from Iske and Randen’s (2005) work which illustrates the

effect of the window size on edge/discontinuity detection. In our sensitivity analysis,

three different 3D window sizes have been used to calculate the Chaos attributes in

seal unit 4, i.e. σ = 0.5, 1.5 and 4.
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Figure 3.9: RMS-Chaos time slices computed with different 3D window size. The larger
sigma generates the smoother result and also the larger variance in the Chaos values. The
black and red colours indicate the areas with relative high and maximum chaoticness (Iske
and Randen, 2005).

4. Structural method attributes: Similar to the stratigraphic method attributes,

these are computed in a given 3D window based on analysis of time samples from

multiple traces. Structural method attributes are used to isolate the local structural

variations in the reflection patterns. These include: Discontinuity or Fault Detection

(3D Curvature, Ant Tracking, Dip Deviation and Variance) and Measurement of

Local Orientation of Formations (Gradient Magnitude, Local Structural Azimuth and

Local Structural Dip). According to the calculation manner, the Structural Smoothing

attribute is also placed in this group and is originally developed to enhance event

continuity parallel to estimated bedding or to improve the detection of discontinuity

(Iske and Randen, 2005). However, as mentioned earlier in the method, we utilised

its advantages in contrast recovery and stabilisation for post-conditioning of the seal

risk cube and removing noise and vertical artefacts.

The other important attribute of this group is Local Structural Dip, which is

often used to create dip-constrained seismic volumes for either fault analysis or

structural overview of the context (Randen et al., 2000; Randen and Sønneland,

2005). This attribute computes the angle of inclination of seismic events as measured

from a horizontal plane. Three methods of Local Structural Dip computation, are

made available in Petrel (Figure 3.10), have been tested on seal unit 4:

(i) Event (0° - 90°): calculates the downslope dip of the estimated event in a

given neighbourhood. The gradient is assumed to be perpendicular to the

event. This method is parameter-less in Petrel 2012.1.
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(ii) Gradient (-90° - 90°): measures the dip of the instantaneous gradient

(instantaneous dip) of the sample neighbourhood. This method is parameter-

less in Petrel 2012.1.

(iii) Principal Component Analysis (PCA) (0° - 90°): computes the local dip

estimate from the Principal Component of the gradient covariance matrix

(Randen et al., 2000). It is a time-intensive computation involving a local

gradient covariance estimate followed by a PCA. Similar to the Chaos

attribute, three different (3D) window sizes have been used to calculate the

PCA-based Local Structural Dip attributes in seal unit 4 (i.e. σ = 0.5, 1.5 and

4).

Figure 3.10: Local Structural Dip: Parameters tab for setting the calculation method, and

3D window size (available only for PCA calculations) (Petrel 2012.1).

The colour scale is set to +/- 90° for the gradient option while the event and

PCA methods have colour a scale of 0° to 90° with wider ranges of colour palette.

Regarding the size of captured features, the event and gradient methods are typically

used for more detailed studies (e.g. in highly deformed reservoirs), providing the

seismic data has an appropriate resolution (Iske and Randen, 2005; Randen and

Sønneland, 2005). These two methods compute the local estimate of dip for the

seismic events while the PCA method gives a much smoother estimate of the dip.

Figure 3.11 illustrates the Iske and Randen’s (2005) work where local structural dip

was calculated using these three methods with the same parameters. Due to the local

gradient covariance matrix, in PCA method dominant orientations of reflections are

retained within the sample neighbourhood and instantaneous variations are often

ignored. This is useful for dip analysis in fine-grained sediments where the seismic
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quality is relatively poor, and the noisy and dipping events are poorly distinguishable

on a fine scale. Moreover, regarding the parameterisation of the PCA method, the

same recommendations for the sigma values apply as for the Chaos.

Figure 3.11: Local Structural Dip attribute calculation using three different methods
available in Petrel. Gradient- and Event-based methods give local estimates of dips suitable
for more detailed analysis (e.g. in highly deformed reservoirs) while the PCA method
calculates much smoother estimates of structural dip favourable for the poorly resolved,
noisy seismic context of seal units (Iske and Randen, 2005).

3.5.3 Step 3: Seismic attributes combination/building seal risk cube

After completion of the sensitivity analysis, the seal risk cube can be

developed by proposing a meaningful Seal Risk Factor (SRF) attribute. We know

that different attributes will be sensitive to different geologic features of interest

(Chopra and Marfurt, 2005). Thereby, at this step, our SRF attribute is formed as a

combination of effective 3D attributes, taking into account the three seal quality

components. This helps to have a comprehensive view on the sealing quality and also

to enhance the contrast between features of interest and their surroundings. In

reservoir analysis, soft computing techniques are widely used for a variety of multi-

attribute tasks. They are often based on the training of artificial neural networks
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(ANN) for combining attributes to delineate specific reservoir features (e.g. Meldahl

et al., 2001). However, the ANN approach is not ideal for multi-attribute recognition

in the seal context. This is mainly due to the limited diversity of training within the

low amplitude/less variable textures of many seal units. Moreover, there is no direct

measurement/hard conditioning data for the seal risk and it is very tricky to resemble

other measurements as output nodes in the ANN. Therefore, considering the seismic

limitations of seal context, the seal quality component attributes are combined in an

interactive manner according to physical reasoning regarding the fluid dynamics.

First of all, to define a platform for the SRF attribute, we propose a schematic

matrix in Table 3.6 which represents a qualitative – and probabilistic - measure of

seismic seal risk (hence flow property) in seal unit intervals in terms of three seal

quality components. According to this table, the cap rock with high amplitude,

verticality and chaoticness is considered as the riskiest seal and vice versa. Given the

importance of the sandiness in the leakage process (as a conduit), the reflection

strength received a stronger weight than the reflection dip and chaoticness.

Table 3.6: The proposed schematic matrix of seismic seal risk in terms of three seal quality

components

As it is applied, the Seal Risk Factor (SRF) attribute is assumed to be a

mathematical function of seal quality component attributes. Three component

attributes contribute to the SRF attribute and the combination should meet the

Reflection
strength

Reflection
Dip

Reflection
chaoticness

Seismic
seal risk

High High High 1 (Riskiest)

High High Low 2

High Low High 3

High Low Low 4

Low High High 5

Low High Low 6

Low Low High 7

Low Low Low 8 (Safest)
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qualitative measures given by the proposed seal risk matrix. The exact algebraic form

(including type of functions, coefficients, etc.) is subjective and should be inferred by

physical reasoning or seismic-to-well calibration. This could involve transformation

of attributes and weighting factors. For example, we suggest applying exponential or

power transformation on the reflection dip attributes to isolate the significant

verticality events from a highly structured background. Thus we will examine

different combination sets in pilot localities of seal unit 4, but select the attribute

combination which also delivers the best distinction on the whole seal unit 4.

3.5.4 Step 4: Validation of estimated seismic seal risk

Since the Seal Risk Factor (SRF) attribute is calculated only from the seismic

data, we need to understand the way in which it is related to the geology and whether

it can be justified through a link to the logfacies within the seal sections. Typically,

core and well test information are used for the validation of seismic attributes in the

reservoir context, but they are very scarce in the seal unit intervals. However, in

Chapter 2, we introduced an approach for recognition of fine-grained logfacies

within uncored seal units. This recognition process was based on extrapolation of

core-log interrelationships in cored reservoir interval to the uncored seal interval

using index/probabilised self-organising maps. Here, we use the logfacies prediction

results within seal intervals as a way of validating the SRF attribute. Therefore, the

objective of this step is to investigate and quantify the relationship between the SRF

attributes and logfacies frequencies within the studied seal unit. We performed the

SRF validation process using logfacies recognition results of wells W31, W41 and

W42.

As always, there is a resolution gap between seismic and log data so that an

upscaling step is required for log data. Firstly, we converted the logfacies recognition

results from depth to time according to available check-shot data. We then divided

the whole recognition interval in each well into several sub-intervals where each sub-

interval was limited to the two-way-travel times of its corresponding consecutive

reflections (consecutive peak and trough). Block curves were finally created for the

segmented logfacies results at a seismic observable scale (the pick-trough time

interval scale: defined by successive picks and troughs along seismic amplitude
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traces) by computing the average frequency (percentage) of each logfacies within the

sub-intervals.

For the seismic data, we extracted and derived the same block curves for the

SRF attribute along the well locations, at the pick-trough time interval scale (c).

Having the seismic and log data at the same resolution and unit, we used multivariate

statistics to carry out the validation studies for each well. We consider the seismic-

derived SRF relevant to the geology providing that it can reflect the frequency

variation of logfacies with different sealing quality. Thereby, we assumed the SRF

attribute as a linear combination of different facies frequencies in each sub-interval

and set the following system of equations for all the sub-intervals throughout seal

unit 4 (and the analogue seal unit) in each well:

A x = W c Equation 3.10

where: A: seal logfacies frequencies – derived from logfacies recognition (predictor),

an n×m-matrix

x: seal logfacies coefficients (unknown), an m×1-column vector

W: an n×n-diagonal matrix where diagonal entries (wi,i) are inverse of

standard deviations of SRF attributes at the well locations (weighting

factors)– derived from seismic

c: SRF attributes at the well locations (measurement/calibrator) – derived

from seismic, an n×1-column vector

m and n are the number of seal logfacies and total number of sub-intervals

(pick-trough time intervals) in all wells, respectively. The weight matrix is designed

to reduce the effect of unstable SRF values which are potentially caused by poor

seismic quality (lower S/N ratio). This system of linear equations can be solved

through the common weighted least squares method and the r-squared (coefficient of

determination) value of the estimated result is a good measure of the link between

the seismic SRF and the geological facies variations within the seal unit.
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3.6 Results

The five-step workflow was applied on regional seal unit 4 in West Africa

case study. In total, 37 volumetric attributes were examined using various

parameterisations in the Petrel (Table 3.5). The complex and signal processing

attributes mainly involved either conditioning of data or characterising sandiness,

while the stratigraphic method and structural method attributes were used to capture

the chaoticness and verticality of the sediments.

3.6.1 Effective pre-conditioning seismic attributes

At the first step, 22 commonly used complex and signal processing attributes

were tested on seal unit 4 (Table 3.4). Since the majority of operations algorithms

were originally designed for well-resolved seismic images, few of them were

effective at improving the signal/noise ratio in the fine-grained units. As a result,

only five effective pre-conditioning attributes were identified for the seal unit 4

context (Table 3.7). This set of attributes include ones that either improved signal

continuity in poorly resolved areas prior to automatic structural/stratigraphic attribute

calculations, or conditioned the seismic image for log-seismic integration purpose for

Chapter 4.

Table 3.7: Effective complex and signal processing attributes for signal/noise ratio
improvement within seal unit 4.

Effective seal pre-conditioning attributes

Apparent Polarity,

Instantaneous Phase,

Cosine of Instantaneous Phase,

First Derivative,

Second Derivative

The performance of pre-conditioning attributes is illustrated with two

examples. In Figure 3.12 the impact of Apparent Polarity is shown for seal unit 4

using two different computation window sizes: 3ms and 9ms. The Apparent Polarity

section shows the continuity of reflections more clearly in the poorly resolved

localities of seal unit 4. This effect can facilitate the extraction of structural and
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stratigraphic attributes in relatively transparent zones. Although 9 and 33 ms are the

default window sizes and typically used for reservoir studies on modern seismic data,

the smaller window sizes (i.e. 3 ms) detected weaker continuous reflections within

the seal interval. This is mainly due to the relatively rapid changes of subtle

competent/incompetent layering in the fine-grained deposits, hence resulting in more

vertical polarity variations versus time (Robertson and Nogami, 1984).

Figure 3.12: Apparent Polarity effect on the seismic amplitude continuity within seal unit 4
using window sizes of (a) 9ms (software default setting for reservoir studies) and (b) 3ms.
Smaller size window gives more realistic result due to the variable and thinner nature of
layering at mud-rich sequences thus relatively more rapid vertical polarity changes. (c)
Original amplitude section. The cyan interpretation line separates the two main seismic
facies: hemipelagite 4 (upper) and MTD 4 (lower).

Another successful example of pre-conditioning of the seal seismic image is

illustrated in Figure 3.13 where we applied the First Derivative attribute on seal unit

4. This is partly a 90 degree phase rotation which makes a zero-phase cube more

closely resemble lithological variations. Since the SRF attribute is going to be tied to

the lithological data (seal logfacies) in the last step of the workflow, it is

recommended to operate this attribute standalone or immediately after the Apparent
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Polarity to achieve a more reliable log-seismic integration. In addition to its main

application, the First Derivative attribute also sharpens amplitudes and reduces the

thickness of reflections. Although this is considered as a drawback in reservoir fluid

and thickness analysis, it was advantageous in the poor amplitude seal unit 4 as it

more clearly resolved the weak reflections, particularly in hemipelagite 4 facies.

Figure 3.13: Application of the First Derivative attribute on the original real traces within
seal unit 4. (a) First Derivative of the original real traces. This is a direct mathematical
operation and does not require a specific computation window size setting. This operation is
practical for resolving weak reflections, particularly in hemipelagite seismic facies and also
facilitating the log-seismic integration. (b) Original amplitude section. The cyan
interpretation line separates the two main seismic facies: hemipelagite 4 (upper) and MTD 4
(lower).

3.6.2 Effective seal quality/leakage component attributes

Upon completion of pre-conditioning of the seismic input, we performed a

sensitivity analysis of the commonly used volumetric attributes with respect to the

proposed seal quality components. This is the main and most time-consuming part of

the seal risk assessment workflow. 37 attributes were evaluated through an intensive

sensitivity analysis process. This included nine complex attributes, twelve signal

processing attributes, eight stratigraphic method attributes and eight structural

method attributes (Table 3.5). As expected, most attributes were ineffective in

capturing the seal texture characters in these low amplitude contexts. This was

mainly caused by the instability of volumetric attributes in the presence of noise or

the low signal content in seal environments. For example, Instantaneous Frequency,
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which is an important attribute for attenuation analysis or mapping in poorly resolved

areas, tended to be very unstable in seal unit 4. It could hardly relate to the seal

seismic texture, particularly when large Hilbert filter window sizes (> 7 samples)

were used (Figure 3.14). Similarly, conventional Relative Acoustic Impedance and

Dip Deviation attributes showed significant sensitivity to the low amplitude content

in seal unit 4. Relative Acoustic Impedance attribute in seal unit 4 was adversely

influenced by the existence of larger (apparent) acoustic impedance contrasts in the

overlying channel reservoirs (and replicated their geometry pattern within the seal

unit section) (Figure 3.15a). On the other hand, Dip Deviation attribute was

incapable of capturing the major dipping events in MTD 4 and acted more as an edge

detector indicating the areas with poor and chaotic reflections (Figure 3.15b).

Figure 3.14: Instantaneous Frequency attributes calculated in seal unit 4 with Hilbert filter
window sizes of (b) 3 samples (c) 11 samples. The red and blue colours indicate areas with
high and low Instantaneous Frequencies. The calculated Instantaneous Frequencies do not
show correspondence with the seal seismic texture in the original amplitude section (a). The
pink, cyan and green interpretation lines are top hemipelagite 4, top MTD 4 and bottom
MTD 4, respectively.
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Figure 3.15: Two examples for ineffective volumetric attributes (in detecting seal quality
components): (a) original amplitude section. (b) Relative Acoustic Impedance attribute: The
yellow boxes delineate the areas which Relative Acoustic Impedance attribute in seal unit 4
interval have been affected by the presence of the overlying reservoir channels. (c) Dip
Deviation attribute (threshold angle=0): The area, which major dipping reflections in MTD
4 are not captured, is indicated with the red box. The pink, cyan and green interpretation
lines are top hemipelagite 4, top MTD 4 and bottom MTD 4, respectively.

Despite this, there were ten attributes which were less influenced by the low

signal/noise ratio and were still successful in detection of the seal components. These

identified effective attributes are summarised in Table 3.8 according to the extent to

which they captured the seal quality components. The characterisation efficiency

scales are qualitative measures and were derived by visual investigation of the best

performance of each attribute. Although there are a few attributes which can be used

to detect reflection strength and chaoticness components, there is only one attribute

which successfully captured reflection dip in the seal context. This results from the

instantaneous nature of dip attributes which are created for and commonly used in

reservoirs. The outputs of such attributes (e.g. dip deviation (Figure 3.15b)) were

usually hard to interpret in the seal units and involved a significant amount of

pseudo-dipping events caused by noise. On the other hand, it was only the Local

Structural Dip with PCA calculations which fits with the low signal content and

benefits from covariance analysis of neighbouring traces and samples to reduce the

noise effects.



Chapter 3 Seismic Characterisation of Seal Quality using Volumetric Attributes

127

Since we intended to combine the effective attributes and introduce the Seal

Risk Factor (SRF) attribute according to Table 3.6, we thus reformed the Table 3.8

into Table 3.9 where each seal quality component is assigned with its most effective

volumetric attributes (i.e. with good characterisation efficiency (G)).

Table 3.8: Summary of identified effective attributes for capturing seal quality components
in seal unit 4. The colours represent a qualitative measure of their characterisation
efficiency: Poor (P): pink, Moderate (M): orange and Good (G): green.

Seal quality component

attributes

Reflection

strength

Reflection

Dip

Reflection

chaoticness

3D Curvature P M G

Chaos P M G

Envelope G P P

Local Flatness P M G

Local Structural Dip P G M

Magnitude of Gradient G P P

Reflection Intensity G P P

RMS Amplitude G P P

Sweetness G P P

Variance P M G

Table 3.9: Seal quality components (geological/seismic) and their most effective volumetric
attributes (derived from sensitivity analysis of volumetric attributes in seal unit 4)

Seal quality

components

Geological character Seismic character Volumetric attribute

Sediment sandiness Reflection strength

Reflection Intensity,

Envelope,

Sweetness,

RMS Amplitude,

Magnitude Of Gradient

Sediment verticality Reflection dip Local Structural Dip

Sediment chaoticness Reflection Chaos

Chaos,

Local Flatness,

3D Curvature,

Variance (Edge Method)
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As shown in Table 3.9, we arbitrarily selected one representative volumetric

attribute for each seal quality component out of the attributes which displayed the

best characterisation efficiency in seal unit 4. These three representative attributes

are: Reflection Intensity (for reflection strength component), Chaos (for reflection

chaoticness component) and Local Structural Dip (for reflection dip component). In

Figures 3.16-3.21, we review the performance of the representative attributes for seal

quality components detection in seal unit 4. Figures 3.16, 3.18 and 3.20 are attributes

section views, whilst Figures 3.17, 3.19 and 3.21 are root mean square (RMS) slices

of the attributes in hemipelagite 4 and MTD 4 intervals.

In Figure 3.16, the Reflection Intensity attribute clearly isolates the high

amplitude features (potential coarser grained deposits) of seal unit 4 which could be

potential conduits for fluid leakages through the seal. These features include the

moderate amplitude part of MTD 4, local amplitude anomalies in hemipelagite 4 and

the top transition zone with the overlying reservoir. Reflection Intensity was not

affected by either the waveform or the low signal content in seal unit 4 and very few

vertical artefacts were generated during the computation process. In addition, unlike

the envelope and RMS Amplitude attributes, the Reflection Intensity had no adverse

impact on the frequency contents and did not smooth the seal seismic image.

Similarly, Chaos and Local Structural Dip effectively delineated the distorted

and dipping textures (Figures 3.18 and 3.20). Chaotic patterns were mainly detected

in the MTD 4 interval; however hemipelagite 4 also showed considerably distorted

patterns in the lower part. Chaotic reflections within the seal unit, and hence potential

sediment deformation, are considered to decrease seal quality and increase the

chance of fluid breakthrough (Praeg et al., 2014). A noteworthy fact is that Chaos is

more sensitive to seismic quality (Iske and Randen, 2005) so that a continuous

muddy sequence with poorly resolved seismic can be sometimes detected as

heterogeneous sediments. This is usually the case in the seal units of the low-density

seismic or at the marginal part of the high-density seismic (e.g. NE of case study A).

Moreover, the application of Chaos has a by-product which is the detection of

discontinuities and faults. Although faults are other potential leakage risk factors and

essential to seal bypass analysis, this research work focuses on evaluating textural

seal quality. Therefore, it is recommended to subtract the normalized output of an
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edge method attribute (e.g. ant tracking) from the result of the Chaos attribute to

achieve a better measure of textural seal quality.

The Local Structural Dip attribute was calculated by three methods with

different resolutions (Section 3.5.2). The Event- and Gradient-based methods were

more instantaneous and edge detectors, and did not realistically capture the dipping

layers in seal unit 4 (Figure 3.20). The instantaneous dip detection is an inefficient

technique in seal unit 4 where reflection continuity and signal content are relatively

low. As a result, the Principal Component Analysis (PCA)-based method was

selected for seal quality analysis which estimates the local using the gradient

covariance matrix (Randen et al., 2000). Since dipping events are often associated

with chaotic patterns in seal units, the Chaos and Local Structural Dip attributes

display relatively similar results. However, there are strong differences between them

where the organised dipping layers were detected. These are mainly located in the

northern part of case study A within MTD 4 where the deposits are influenced by the

adjacent active salt tectonics. Furthermore, the Local Structural Dip attribute has the

same by-product as the Chaos attribute (i.e. discontinuities and faults), thus the same

recommendation is advised to remove the effect of the detected discontinuities from

the seal textural analysis.

In order to further illustrate the characterisation efficiency of the

representative attributes, we extracted RMS slice maps. These were computed for the

representative attributes within hemipelagite 4 and MTD 4 intervals (Figures 3.17,

3.19 and 3.21). The RMS maps are very robust and can present the lateral

distribution and also the net effect of the seal quality attributes without the influence

of random artefacts (generated during their computation process). Overall, as

expected, hemipelagite 4 showed less sandy and a more continuous stratal reflections

(Figures 3.17a, 3.19a and 3.21a). However there are still few areas with relatively

high amplitude anomalies which may or may not be lower seal quality zones

(particularly in the middle and NW part of case study A). The textural seal quality of

these areas need to be verified against the well log and rock physics analysis. In

contrast, MTD 4 displays much more laterally variable behaviour in reflection

strength, chaoticness and dip (Figures 3.17b, 3.19b and 3.21b). MTD 4 contained

wider ranges of Reflection Intensity, Chaos and Local Structural Dip values; thus it
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requires careful attention on the net effect of the seal quality components at a

specified XY location.

As mentioned earlier, fault detection is a by-product of the Chaos and Local

Structural Dip attributes. The fault and discontinuity traces are clearly delineated in

the hemipelagite 4 RMS maps (Figures 3.19a and 3.21a) while they are smeared by

the chaotic patterns in MTD 4 (Figures 3.19b and 3.21b). Moreover, since Chaos is

sensitive to noise, a locality with pseudo-chaotic patterns was detected in the NE part

of case study A. This was primarily due to the lower fold of seismic and the very

poor amplitude content of seal unit 4 at that margin.

Figure 3.16: Characterisation efficiency of Reflection Intensity for isolating the higher
amplitude features (coarser-grained deposits) in seal unit 4. (a) Reflection Intensity
attributes obtained by 3-sample computation. The red and blue colours indicate areas with
high and low Reflection Intensity. (b) Original amplitude section. The pink, cyan and green
interpretation lines are top hemipelagite 4, top MTD 4 and bottom MTD 4, respectively (The
section line location is shown in seismic map views in Figure 3.17).

(a)

(b)



Chapter 3 Seismic Characterisation of Seal Quality using Volumetric Attributes

131

Figure 3.17: Lateral distribution of the RMS value of the Reflection Intensity attribute in
seal unit 4. (a) RMS of Reflection Intensity in hemipelagite 4. (b)RMS of Reflection Intensity
in MTD 4 (Reflection Intensity attributes obtained by 3-sample computation). The red and
blue colours indicate areas with high and low interval Reflection Intensity (The white line
indicates the location of seismic section shown in Figure 3.16).
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Figure 3.18: Characterisation efficiency of the Chaos attribute for delineating the distorted
reflection pattern (heterogeneous sediments) in seal unit 4. (a) Chaos attribute using a 3D
computation window size of σ = 2. The red and blue colours represent the chaotic and
organised reflections. (b) Original amplitude section. The pink, cyan and green
interpretation lines are top hemipelagite 4, top MTD 4 and bottom MTD 4, respectively (The
section line location is shown in seismic map views in Figure 3.19).
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Figure 3.19: Lateral distribution of the RMS value of the Chaos attribute in seal unit 4. (a)
RMS of Chaos in hemipelagite 4. (b)RMS of Chaos in MTD 4 (3D window size used for
Chaos computations: σ = 2). The red and blue colours represent the areas with net chaotic
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and organised reflectors in the given interval (The white line indicates the location of
seismic section shown in Figure 3.18).

Figure 3.20: Characterisation efficiency of Local Structural Dip attribute for delineating the
dipping reflection events (sediment verticality) in seal unit 4 using three different
methodologies: (a) Event-based method, (b)Gradient-based method (c) PCA-based method
with 3D computation window size of σ = 2. The red and blue colours indicate the local,
relative high and low dip events. (d) Original amplitude section. The cyan interpretation line
separates the two main seismic facies: hemipelagite 4 (upper) and MTD 4 (lower) (The
section line location is shown in seismic map views in Figure 3.21).
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Figure 3.21: Lateral distribution of the RMS value of the PCA-Local Structural Dip
attribute in seal unit 4. (a) RMS of PCA-Local Structural Dip in hemipelagite 4. (b) RMS of
PCA-Local Structural Dip in MTD 4 (3D window size used for Local Structural Dip
computations: σ = 2). The red and blue colours indicate intervals with more local, relative
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high and low dip events (The white line indicates the location of seismic section shown in
Figure 3.20).

To evaluate the reliability of volumetric attribute extraction and calibration in

fine-grained seal sequences, the representative volumetric attributes were

implemented on a conventional 3D seismic volume from offshore North Africa

(provided by a sponsor of Caprocks project) (Figure 3.22). The geological setting

here is a major North African deltaic deposit over Messinian salts with a background

of Neogene gravity-driven deformation. The deposits mainly contain gas reserves.

The North African seismic volume has lower quality in all acquisition and processing

aspects compared to the HD3D volume of case study A (Table 3.10). In particular, it

suffers from a considerable amount of acquisition footprints and from significant loss

of high frequencies in fine-grained sediments in pre-Pliocene (Pliocene imaging was

the primary objective of this survey).

Table 3.10: Comparison of some acquisition and processing parameters of HD3D volume of
case study A with the North African conventional 3D volume

Parameters HD3D volume
(case study A)

Conventional 3D volume
from offshore North Africa

Area 402 km2 907 km2

Nominal 3D trace density 1,382,400 traces/km2 ~ 48,000 traces/km2

Time sampling 2 ms 4 ms
Bin size 6.25 m × 6.25 m 25 m × 25 m

Vertical resolution 5 - 10 m 25 – 40 m
Bandwidth at seal unit level 30 – 110 Hz 20 - 50 Hz
S/N ratio at seal unit level 7 - 9 dB 4 - 6 dB

Although the Reflection Intensity attribute displayed acceptable performance

in outlining the high amplitude reflections with no further smoothing (Figure 3.22a),

lower S/N ratio (hence losing the high frequency end of the spectrum) and

acquisition footprints significantly limited the structural/stratigraphic understanding

using Chaos and Local Structural Dip attributes. For example in Figure 3.22b, the

majority of the poor amplitude fine-grained units were detected as chaotic zones

whereas visual inspection of original seismic indicated they are mainly horizontally

continuous reflections. The most realistic solution is the generation of a highly

smoothed seal risk cube where the dip and chaoticness attributes are computed in a

very large neighbourhood (σ > 4). However, this would be neither a reliable seal

textural analysis due to the loss of detail, nor an interactive analysis since the PCA
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computations for the large neighbourhood is very time-consuming (in this volume,

each PCA-based Local Structural Dip or Chaos calculation with σ = 5 takes around

three hours). As a result, the characterisation difficulty in the North African volume

demonstrated the need for high-density seismic data to achieve a robust seismic

textural analysis in poorly resolved fine-grained units. In other words, the high-

density seismic data in low S/N ratio is required to preserve the high frequencies (by

suppressing noise), recover folds and improve the spatial/temporal resolutions (e.g.

Bing et al., 2011).
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Figure 3.22: Characterisation efficiency of Reflection Intensity and Chaos attributes in pre-
Pliocene fine-grained units in the North African conventional 3D volume. (a) Reflection
Intensity attribute was obtained using three-sample computations. The red and blue colours
delineate local high and low amplitude events. (b) Chaos attribute was obtained using 3D
computation window size of σ = 2. The red and blue colours are supposed to only represent

(a)

(b)

(c)

2 km
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local chaotic and organised reflectors. Visual inspection of the original amplitude volume
shows that the Chaos attribute is unable to capture the realistic chaotic fine-grained textures
in presence low S/N ratio. The detected chaotic textures are often mixed with continuous low
amplitude reflections. (c) Original amplitude section.

3.6.3 Seal Risk Factor (SRF) attributes

In order to gain a comprehensive view on seal textural properties, it is

necessary to take into account all the seal elements in the proposed texture model.

Thus, we combined the effective seal quality component attributes and introduced

new attributes which we name Seal Risk Factor (SRF) attributes. Our study focused

on the interactive combination of component attributes which was followed by the

logfacies validation analysis. Since the interactive combination of attributes is

subjective to the geological setting, the following SRF attribute is proposed for seal

unit 4:

SRF= Reflection Intensity×(Chaos + Dip) Equation 3.11

For simplicity, in Equation 3.11, we use the representative attributes for each

seal quality component; however, they can also be replaced by other effective

attributes of the same seal quality component (i.e. Reflection Intensity can be

replaced by Envelope, Sweetness, RMS Amplitude or Magnitude of Gradient

attributes; similarly Chaos with Local Flatness, 3D Curvature or Variance). The

proposed SRF is an appropriate combination for a seal sequence with a balanced

combination of sediment layering, distortion and discontinuities. However, we

suggest using a SRF combination with higher weight on dip attribute for a seal unit

located in a highly structured context, dominated by the dipping and discontinuity

events. Similarly, in the fracture-prone contexts, t* Attenuation attribute or other

attributes helping with detecting open fractures can incorporate into the SRF

combination. Although the SRF combination is dictated by the seal geological

setting, all SRF attributes should follow the proposed schematic seal risk matrix

(Table 3.6) and represent a measure of seal risk in terms of three or four components

combined into logical, linear equations.

Reflection Intensity has positive values and can go over 100 depending on the

amplitude while Chaos and dip values are limited to the range of 0-1 and 0-90°,

respectively. Therefore, SRF have positive values with different ranges. Moreover,
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the values are not directly comparable, unless they are normalised on the same

seismic data.

The characterisation efficiency of SRF (Equation 3.11) has been fully

investigated in seal unit 4 in case study A. According to the interrelationship of the

SRF attribute with Reflection Intensity and how the other two seal quality

components contribute, we can divide seal unit 4 into four seismic texture categories:

(I) low Reflection Intensity (<2-3) associated with low chaoticness and verticality:

potential continuous muddy strata; (II) moderate Reflection Intensity (3-5) associated

with low chaoticness and verticality: potential continuous silt-rich strata; (III)

moderate Reflection Intensity (3-5) associated with high chaoticness and verticality:

potential distorted silt-rich strata and (IV) high Reflection Intensity (>5): potential

sand-rich strata. At the lower range of the Reflection Intensities (<3), the three seal

quality components show fairly similar behaviour. This means that low amplitudes

are often associated with continuous horizontal reflections in seal unit 4, although we

should also consider that the uncertainty in structural and stratigraphic understanding

gets higher at very low amplitudes. The latter three seismic texture categories have

higher Reflection Intensities (> 3) in which there are greater fluctuations in the SRF-

Reflection Intensity relationship due to the independent variation of the chaoticness

and dip attributes. This seismic textural categorisation of seal unit 4 is exemplified in

the Figure 3.23 where we cross plot Reflection Intensity versus SRF attribute for a

composite trace within the analogue seal unit 4 interval at well W31.
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Figure 3.23: Reflection Intensity and SRF interrelationship for a composite trace within the
analogue seal unit 4 interval at well W31. Seal unit 4 can be divided here into four seismic
textural categories: 1) low seismic intensity with low chaoticness and verticality (brown box)
(ignoring the noise effect within transparent contexts), 2) moderate seismic intensity with
low chaoticness and verticality (pale green box), 3) moderate seismic intensity with high
chaoticness and verticality (dark green box), 4) high seismic intensity (yellow box).

The characterisation efficiency of the SRF attribute in seal unit 4 is illustrated

with seismic sections and RMS slices in Figures 3.24 and 3.25. In these figures, the

red and blue colours represent the most and least local risky seal zones, respectively.

The attribute combination process can also randomly boost noises/artefacts from

component attributes (Figure 3.24). The red ovals delineate the genuine risky

features (faults, dipping layers and build-up of risky textures) whereas the yellow

ovals show the possible random noises boosted by attribute combination (here, the

boosted random noises are from Local Structural Dip attribute). These boosted

random noises can be distinguished by visual inspection of the SRF against the

original amplitude and/or component attributes in the section view. This adverse

effect is resolved in the RMS slices of SRF which illustrate the spatial distribution of

the net effect of attribute in the interval of study (Figure 3.25). The areas detected as

low risk (in blue) are considered potential good seal localities (at seismic-scale);

however the delineated poor quality areas (in red) need further investigation, such as

wellbore data integration, rock physics modelling and AVO analysis, to rule out the
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effect(s) of fluid, overpressure or other lithological changes (e.g. carbonate

intercalation). As expected, hemipelagite 4 shows better sealing quality (than MTD

4) with some risky anomalies which require more consideration for the exploration

purposes (Figure 3.25a). These risky zones are mainly located at the central and NW

part of case study A and have moderate amplitude textures with cluttered beddings.

In contrast, MTD 4 generally displays the higher risk of leakage, thus in Figure

3.25b, the palette was stretched two times for a better visualisation of the lateral

distributions of the SRF attribute. On the other hand, the detected seismic textures in

MTD 4 have much more variability than in hemipelagite 4. These range from fairly

homogenous transparent contexts (with even better sealing quality than the overlying

hemipelagite 4) in the south and central part, to high amplitude distorted textures

with lots of dipping events in the NW and NNW part of case study A (Figure 3.25b).

Figure 3.24: SRF attribute performance in seal unit 4. (a) SRF attribute section. The red
and blue colours indicate higher and lower seismic textural risks, respectively. The red ovals
mark the genuine risky features related to faults, dipping layers or build-ups of risky
textures, whereas the yellow ovals delineate the possible attribute combination artefacts (the
boosted random noises from component attributes; they can be distinguished by visual
inspection of the SRF against the original amplitude/component attributes). (b) Original
amplitude section. The pink, cyan and green interpretation lines are top hemipelagite 4, top
MTD 4 and bottom MTD 4, respectively (The section line location is shown in seismic map
views in Figure 3.25).

(a)

(b)
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Figure 3.25: SRF attribute performance in seal unit 4. The red and blue colours indicate
higher and lower seismic textural risks, respectively. (a) RMS of SRF in hemipelagite 4
interval. (b) RMS of SRF in MTD 4 interval. The white line indicates the location of seismic
section shown in Figure 3.24 (Remark: Due to the detected riskier nature of MTD 4, the
colour palette is compressed in (b) for the better visualisation of lateral distributions of SRF
attribute).

(a)

(b)

5 km

5 km
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3.6.4 Seal Risk Factor (SRF) attribute validation

At the end of the workflow, it is required to validate (based on lithology) the

seismic-derived SRF attributes with the available geological information at the seal

intervals. In case study A, there are 11 wells, of which five have core data in their

reservoir intervals but none of which have core descriptions for the seal unit 4

interval. The only available geological datasets for the validation study were the seal

logfacies recognition results derived in Chapter 2. The seal logfacies are considered

here to be reliable extrapolations of the core descriptions in the reservoir to the

uncored intervals within the seal unit 4. Although we recognised 16 lithological

facies in Chapter 2 along the wells, only six facies are fine-grained and dominant in

seal unit 4. These fine-grained facies are: “Hemipelagic Shales”, “Mud Turbidites

UP”, “Mud Turbidites LP”, “Muddy Debris Flow”, “Muddy Sandy-Debris Flow”

and “Sandy Debris Flow” facies. The other ten coarser-grained facies were

regrouped as “Sands” facies. Moreover, we merged the “Muddy Sandy-Debris Flow”

facies into the “Sandy Debris Flow” facies because we were unable to discriminate

them in the seismic data. In summary, for achieving a realistic logfacies-seismic

integration, the original 16 facies were regrouped into six facies, focusing on the

fine-grained facies and the possibility of seismic separability. The facies regrouping

is illustrated in Table 3.11, in which the new facies used for validation study are:

Hemipelagic Shales, Mud Turbidites UP, Mud Turbidites LP, Muddy Debris Flow,

Sandy Debris Flow and Sands facies.

Table 3.11: Regrouping of the initial 16 fine-grained facies (interpreted by
sedimentlogists/petrophysicists of the operating company – a sponsor of Caprocks project -;
Insalaco et al., 2001; see Figure 2.2) into six facies, focusing on the fine-grained facies and
the possibility of seismic separability. The regrouped facies are used for the SRF validation
studies.

Facies No. Facies name Used in validation study Colour

1 Hemipelagic Shales Hemipelagic Shales

2 Mud Turbidites UP Mud Turbidites UP

3 Mud Turbidites LP Mud Turbidites LP

4 Cross Laminated Silts Sands

5 Graded Silts Sands

6 Cross Laminated Sands Sands

7 Graded Sands Sands
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8 Massive m-f TB Sands Sands

9 Laminated m-f Sands Sands

10 Laminated C-Arac TB sands Sands

11 Laminated C-Arav sands Sands

12 Muddy Debris Flow Muddy Debris Flow

13 Muddy Sandy-Debris Flow Sandy Debris Flow

14 Sandy Debris Flow Sandy Debris Flow

15 Conglomerates Sands

16 Sand Injectites Sands

The SRF validation study was carried out in the seal unit 4 interval of wells

W31 (analogue interval), W41 and W42 since these wells have the most reliable

seismic data, log suites and facies recognition results. Furthermore, since the

signal/noise ratio is higher in the seal risk cube than in the original seismic amplitude

cube, log-seismic integration could proceed more easily. First, the percentages of

facies in the seal interval of each well were calculated (Figure 3.26). Initial

observations suggest a meaningful relation between the log-derived facies

distributions and the average seismic-derived SRF in seal unit 4 (Table 3.12). Higher

percentages of “Sands” and “Sandy Debris Flow” facies at well W31 correspond to

the highest average SRF. In contrast, well W42, dominated by “Hemipelagic Shales”

and “Mud Turbidites UP” facies has the lowest SRF. This promising qualitative

correspondence prompted a more quantitative analysis. Therefore, according to the

approach described in Section 3.5.4, a linear system of equations was used in order to

estimate SRF from a combination of logfacies percentages in seal unit 4 at wells

W31, W41 and W42. In this approach, independent, unknown, dependent and

weighting variables correspond to the logfacies percentage matrix, logfacies

coefficient vector, seismic-derived average SRF vector at well locations and standard

deviation of seismic-derived SRF vector at well locations, respectively. As a

multivariate analysis, the system of linear equations was solved by a weighted least

squares method and Matlab coding. As a result, we obtained the coefficients of

logfacies (Table 3.13) and computed the log-estimated SRF for the seal unit 4

interval of each well. Figure 3.27 illustrates the efficiency of this multivariate

analysis in estimating seismic SRF by using combination of fine-grained facies

percentages in seal unit 4. The overall estimates of SRF from logfacies were
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acceptable. The log-estimated SRF tends to have the same general trend as the

seismic-derived SRF, especially where there are major variations in the well W31.

There are nevertheless mismatches where relatively small or spiky variations occur.

These are inevitable because of data resolution difference and the range of

parameters which affect both well and seismic records.

Figure 3.26: Distribution of fine-grained facies percentages in seal unit 4 in wells W31,
W41 and W42 (Note that well W31 does not cross seal unit 4 and an equivalent fine-grained
depth-interval of well W31 is used as analogue for seal unit 4; see figure 2.11).

Table 3.12: Facies percentages in seal unit 4 of wells W31 (analogue interval), W41 and
W42 and their corresponding average seismic SRF. The seismic SRF gradually decreases
from W31 to W42 by decrease in Sands.

Well Facies1

%

Facies2

%

Facies3

%

Facies12

%

Facies13+14

%

Sands

%

Seismic

SRF

W31 4.3 55.8 4.1 3.8 13.7 18.4 0.0090

W41 0 30.1 13.8 46.9 4.6 4.6 0.0059

W42 39.9 32.5 3.8 4.9 15.4 3.6 0.0043

1

2
3

Sand

12
13+14

2

3

Sand

12

13+14

1

2

3
Sand

12 13+14

W31 W41 W42
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Table 3.13: Facies coefficient matrix derived through weighted least squares solution of
Equation 3.10. Multiplication of facies coefficient and facies percentage matrices gives us
the log estimation of SRF attribute in seal unit 4 in the vicinity of wells W31 (analogue
interval), W41 and W42.

Facies1

Coefficient

Facies2

Coefficient

Facies3

Coefficient

Facies12

Coefficient

Facies13+14

Coefficient

Sands

Coefficient

3.1693E-05 5.253E-05 0.000119916 3.86358E-05 5.13943E-05 0.000190272

Figure 3.27: Comparison of seismic SRF attribute and the log-estimated SRF in seal unit 4
of wells W31 (analogue interval), W41 and W42. The overall estimated pattern of the log-
estimated SRF follows the seismic SRF. However, some subtle and spiky variations in the
log-estimated SRF do not fit with seismic SRF (relative error of estimation for W31, W41
and W42 = 35.5 %, 39.8% and 35.2 %).
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At the end of the validation study, we conclude that the seismically-derived

SRF shows a reasonable correspondence to the lithology trends within seal unit 4.

High seismic SRFs are often a good approximation for volumes containing a higher

percentage of coarser-grained and distorted sediments (riskier facies), and vice versa.

In addition, SRF calibration helped us to find the seismic observable grouping of the

fine-grained facies and also to calculate proxies for the seismic textural seal risk at

the well locations based on logfacies data (i.e. without running into the cumbersome

processes of volumetric attributes computation). In the next chapter, we aim to

translate the seal risk cube into probabilistic seal litho-cubes.

3.7 Discussion

The textural analysis of reservoir units using seismic attributes is widely

discussed in the literature. It includes multi-attribute techniques (Russell et al., 1997)

and statistical measures (Vinther et al., 1995; Vinther, 1997; Whitehead et al., 1999;

West et al., 2002; Gao, 2003, 2004). These methods have continuously improved

their structural/stratigraphic characterisation efficiency by applying advanced

techniques such as Principal Component Analysis (Randen et al., 2000; Iske and

Randen, 2005). In contrast, there has been limited research on textural analysis for

seal characterisation, even though seismic understanding of flow properties in seal

units can help with reducing the drilling risk and refining the basin-scale flow

simulation. Seal characterisation from seismic data is especially important because

log and core data are usually not available within seal intervals. To date, the research

in mud-rich context has often been limited to qualitative seismic facies analysis (e.g.

Droz et al., 2003; Power et al., 2014), bypass detection (e.g. Meldahl et al., 2001;

Tingdahl et al., 2001; Cartwright et al., 2007; Løseth et al., 2009) or semi-

quantitative classification at the geobody scale (e.g. Corradi et al., 2009). In this

study, we introduced the first quantitative approach for an automated 3D seal textural

risk assessment using volumetric attributes. The targets, seismic context,

parametrisation and functionality of the attributes in this study are different from the

reservoir context, and it is difficult to compare the seal texture results with current

literature on reservoir texture analysis, focused on delineating the distribution and

connectivity of reservoir pay zones (Carrillat, et al., 2002; Gao, 2007, 2008; de

Matos et al., 2011).
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The study highlighted the important role of pre-conditioning and post-

conditioning of the seismic for increasing the characterisation efficiency of

volumetric attributes in seal units. Moreover, primary sensitivity analysis showed

most of the commonly used attributes in reservoirs (e.g. Instantaneous Frequency,

Dip Deviation, Relative Acoustic Impedance) were inefficient in the seal context,

mainly because of their sensitivity to low signal:noise. Consequently, a robust

seismic seal characterisation cannot be achieved only by data-driven information,

and the interpretation knowledge should contribute to the analysis. Therefore, we

interactively combined the seal quality component attributes according to a

qualitative seal risk matrix (derived from physical reasoning of leakage probability),

and the geological setting. Moreover, the ANN techniques for attribute combination

(e.g. Meldahl et al., 2001) have insufficient training sets in the relatively

homogeneous seal units (relative to reservoirs).

The proposed approach has a few limitations. Firstly, the calculation of

structural and stratigraphic attributes in seal units is very sensitive to signal/noise

ratio; they can be more reliably computed on seismic volumes acquired with short

shot intervals e.g. high-density seismic data (see Section 3.4). There is no single rule

regarding the acceptance criteria for the seismic data; however, we should avoid

interpreting these attributes in the marginal part of the cubes, fault shadow zones,

around intrusions, gas pockets, etc. Secondly, we cannot directly apply the SRF

attribute to the whole seismic cube in one go to investigate the seal textural capacity

of all the sequences and to automatically indicate fluid barriers and carriers in the

basin. This is because the attributes such as Reflection Intensity and t* Attenuation

have depth dependency. In addition to faults and MTDs, deformed channel infills

and borders, fluid effects and diagenetic events may also share high chaoticness and

dip values. Therefore, dealing with the whole seismic volume needs more

consideration. For instance, the high reflectivity of shallow seal units can be adjusted

using the shale/sand compaction trend and the sandiness-reflection strength

relationship. Moreover, in more complex circumstances, the neural network

approach would bring in better attribute combinations because of the variety of

seismic textures available for the training. Finally, in the seal texture scheme we

assumed a direct link between the geological and seismic characters. This
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assumption is thus not valid for the cases of having processing artefacts (e.g. tuning

effects, velocity pitfalls, etc.) or fluid effects.

In this study, we also demonstrated the geological dependency of the seismic-

derived textural risk using seal logfacies recognitions derived in the Chapter 2.

Although subtle logfacies variations did not fit the SRF attribute trend in wells W31,

W41 and W42, we found a meaningful link between the logfacies and the seismic

texture tendencies; commonly, an increase in the Sands and Sandy Debris Flow

facies occurred with high SRF attribute values, and vice versa.

This study was only provided with post-stack time-migrated (PSTM)

datasets. So it is recommended also to apply the developed approach on pre-stack or

depth-migrated (PSDM) seismic data where a stronger seismic – geology link is

promising. For instance, in PSTM seismic, reflection dip angles are apparent and

may not be related to geology, which is not the case with PSDM seismic (providing

the migration-velocity model honours the subsurface structure). Seal texture

characterisation using attributes is currently at the early stage and further studies are

essential to reduce the uncertainty of the analysis. We envisage the future work in

seal (seismic) texture characterisation on the three following aspects:

1) Signal processing in low amplitude/low signal:noise contexts:

- Thin bed spectral inversion (e.g. Marfurt and Kirlin, 2001; Chopra et al.,

2006): to remove the tuning effect in poorly resolved thin-bedded seal units,

particularly in hemipelagite seismic facies

- broadband processing techniques (e.g. Zhou et al., 2012): to normalise the

spectrum, increase S/N ratio and boost high frequencies to improve our

understanding from internal architectures of fine-grained sediments in low

S/N ratio areas of a HD3D volume

2) Faults and discontinuities detection in the seal units:

Faults and discontinuities play an important role in hydrocarbon migration.

They were partially detected by the chaoticness and verticality component

attributes. Since their effect is of higher order in the three seal (textural)

quality components, it is better to remove their effect from the seal textural
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risk cube and analyse them separately. This can be done through building a

normalised bypass cube of seal unit using appropriate edge methods (e.g. ant

tracking (Cox and Seitz, 2007; Kolisnyk et al., 2013) and subtract it from a

normalised seal textural risk cube. The next question would be the degree of

transmissibility of the faults and discontinuities!

3) Open fractures/fluid in the seal units:

Given the importance of the open fractures in sealing capability, an auxiliary

attribute can be introduced into the seal quality scheme. This is t* Attenuation

attribute which is responsible for the differential loss of high frequencies

relative to low frequencies as measured above and below the point of interest.

It can be used to identify open fracture zones and fluid movements (Boadu

and Long, 1996; Batzle et al., 2006). On the other hand, individual

interpretation of t* Attenuation has commonly high uncertainty due to high

frequency loss in steep dips and migrated faults (Gardner, 1985). It usually

has to be integrated with a proper azimuthal anisotropy studies provided by

the wide azimuth dataset (WAZ). In the PSTM cube of case study A, we

briefly analysed the t* Attenuation and Local Structural Azimuth attributes.

The early observations indicated a series of ambiguous anomalies around the

faults in seal unit 4 in the west of case study A, which may be related to open

fractures and the reason to have two connected pay zones. However, to

establish a valid link between anomalies and open fractures we require further

scrutiny including studying dip-meter data and AVO cross-plots.

3.8 Conclusions

This study has contributed to a better understanding of mud-rich sediment

sequences at the seismic scale and has introduced the first quantitative assessment of

seal risk and internal texture based at the seismic scale. We demonstrated the notable

capability of the volumetric attributes in texture detection and signal conditioning of

the seal units. We showed that the single attributes are not enough capable to capture

a comprehensive seismic perspective of the seal quality. Thus the proposed multiple

attribute approach significantly increased the seal texture characterisation by taking

into account all the leakage important factors. The detected areas as good seal quality
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were considered potential well-sealed localities; however the delineated poor quality

areas were required further investigations such as wellbore data integration, AVO

analysis, etc. Moreover, the proposed SRF attribute was well correlated with the

logfacies at the pilot wellbores in West Africa case study so that the less risky

seismic units often occurred with the higher percentage of the muddy facies and vice

versa.

In the developed approach we assumed that seismic character is mainly

controlled by geological characteristics. On the other hand, the chaoticness and dip

attributes calculation showed high sensitivity to signal/noise ratio. Despite these

limitations, the application of proposed approach on high-density seismic surveys

with high S/N ratio can save days of manual mapping time and can reduce

exploration risk by basing decisions on seal texture and their proven link to potential

leakage elements.
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4.1 Introduction

The effect of lithology on the flow properties of mud-rich sediment sequences

(Ingram et al., 1997; Drews, 2012) makes it very important to develop an approach

for translating the seismic seal cube into lithofacies seal cube. More permeable

sediments can play an important role in the leakage process. Moreover, the seal

lithofacies cube generates a better foundation for dynamic modelling to assess

subsurface flow and hydrocarbon migration (Hitchon, 1971; Bjørlykke, 1993, 2010;

Aydin, 2000) in sedimentary basins. Lithofacies distribution modelling requires an

integrated approach, where data from different sources (such as core, wireline,

seismic and outcrop) are used to populate facies away from the wells.

The use of seismic attributes can reduce the uncertainty of spatial modelling

and sometimes provides direct information about the distribution of sedimentary

bodies such as channels (Biver et al., 2002, 2008; Hass and Formery, 2002) and mass

transport deposits (Frey-Martinez et al., 2006; Moscardelli and Wood, 2008; Alves et

al., 2010). Discrete facies parameters must therefore be constrained with continuous

seismic attribute results. This is conducted by either deterministic or stochastic

geostatistical methods which have been widely developed over the last forty years to

predict the spatial distribution of geological facies and properties. Deterministic

approaches (Doyen et al., 1996; Chiles and Delfiner, 1999; Coleou, 2002) apply

kriging principles to interpolate facies data. They are good at honouring the statistics,

but often poor at capturing the sedimentary bodies (Amour et al., 2011; Park and

Jang, 2014). In contrast, stochastic facies modelling generates models representing

more realistic depositional features which honour the existing data and/or a priori

model – this is known as conditional simulation (Dubrule et al., 1998, 2003; Miller et

al., 2000; Falivene et al., 2006).

Dubrule et al. (1998) described in detail the geostatistical and probabilistic

conditional simulation of discrete parameters such as geological facies, lithology, or

rock types. Bortoli et al. (1992) and Haas and Dubrule (1994) introduced

geostatistical inversion (GI), which generates joint realisations of facies and acoustic-

impedance, all directly constrained by seismic data. GI is largely dependent on
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seismic quality; thus the algorithm was used in the case of a faulted reservoir (Lamy

et al., 1998; Rowbotham et al., 2000) and a salt tectonised region (Shrestha and

Boeckmann, 2002) to discriminate facies according to seismic quality variation.

Grijalba-Cuenca et al. (2000) and Hegstad and Henning (2001) further developed GI

by using a grid by grid rather than a trace by trace algorithm.

Despite these advances in geostatistical simulations, the relatively

homogeneous and low amplitude seismic in fine-grained sediment sequences limits

the efficiency of GI in modelling seal facies. The alternative conditional simulation

approaches are probabilistic and constrained by facies occurrence probabilities

derived from seismic attributes at well locations. The algorithms are independent of

S/N ratio or assumptions used for statistical relationships between facies and seismic

attributes (Dubrule, 2003). MacDonald et al. (1995) and Holden et al. (1998)

introduced simulated annealing object-based models to generate facies model

realisations by iteratively adding and subtracting channel bodies from the simulated

volume. Yarus et al. (2000) also described an application of this method to

stochastically model the distribution of bar and channel facies bodies within a shaly

background in a Tertiary reservoir in the Gulf of Thailand. Although constraining

object-based models with seismic data can effectively capture geological bodies with

characteristic geometries such as crevasse splays and channels (Clemesten et al.,

1990; Damsleth et al., 1992), it is less useful for predicting more subtle variation of

facies in laterally extensive, muddy seal units.

Journel and Gomez-Hernandez (1993) and Doyen et al. (1994) proposed

probabilistic pixel-based approaches that generalise the indicator simulation

methodology developed for continuous variables for use with discrete variables.

These methods are based on constraining a priori, sequential indicator simulation

(SIS) realisations using facies likelihood functions derived from seismic data

according to Bayes’ theorem. Doyen et al. (1994) successfully applied the

methodology in the Ness formation of the Oseberg field (North Sea) to find channel

deposits using seismic amplitude. Lo and Bashore (1999) proposed a similar

approach to obtain a 3D density model and translate it into probabilities of various

facies. Insalaco et al. (2001) presented an application of this approach to detailed

modelling of a West African turbidite deposit. Due to the increase in interest in shale

gas resources, there are also recent case studies utilising similar probabilistic
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conditional simulations (Wang and Carr, 2012, 2013) and support vector machines

(Wang et al., 2014) to predict shale lithofacies on a regional scale.

In this study, we present a semi-automatic algorithm to predict probabilities

of occurrence of fine-grained facies as functions of seismic seal quality attributes

within regional seal units. The algorithm extends the conventional probabilistic

indicator simulation for channel deposits (Doyen et al., 1994) and turbidites (Insalaco

et al., 2001) to fine-grained seal deposits. We incorporate the seal logfacies

recognition results in uncored intervals (Chapter 2) and seismic seal quality attributes

(Chapter 3), and constrain logfacies predictions by their statistical relationships.

Within seal intervals, there are usually limited well log data available, thus

variography analysis for generating a priori SIS models is very restricted. We

therefore utilise classic multivariate analysis (Fournier and Derain, 1995; Hart and

Balch, 2000; Mukerji et al., 2001) and Bayesian (Buland et al., 2008) techniques to

establish the likelihood functions of seal facies based on multiple textural attributes

with limited well control. This helps to reduce the uncertainty caused by the lack of

an a priori model in the seal intervals. The resulting algorithm is used to predict

lithology probabilities in three different fine-grained facies classification schemes

with different degrees of uncertainty. We believe this is the first attempt to predict

different fine-grained facies in non-reservoir mudstones. The strength of the

algorithm is that it is generic and benefits from standard seismic attributes as

predictors, whilst also compatible with the poorly resolved seismic and limited

wireline datasets within seal units.

We have applied the approach to a regional seal from offshore West Africa.

No a priori model was applied to the prediction algorithm; however, we suggest

calibrating the likelihood functions with an a priori model derived from SIS, if

sufficient wireline data is available.

4.2 Methods

The conventional seismic conditional simulation of lithofacies, using a

probabilistic indicator approach, consists of three main tasks:

1. Calculating the probabilities of facies occurrences (likelihood functions) by

seismic-to-well calibration, based on the values of the seismic attributes;
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2. Creating a priori probabilities of facies occurrences by running sequential

indicator simulation (SIS), based on wells and on the a priori geological model

quantified by the variogram;

3. Combining likelihood functions with a priori probabilities using the Bayesian

theorem.

The second and third tasks are usually inapplicable to seal intervals where

limited wireline data restrict the use of variography analysis, and result in unreliable

a priori geological models. In this study, we only focus on the first task. It is based

mainly on seismic data and involves the development of a three-step algorithm

(Figure 4.1) to derive facies likelihood functions based on multiple seismic seal

quality attributes with limited well control. Each step of the algorithm is outlined in

detail in Sections 4.2.1 - 4.2.3. In Chapter 2, we proposed a stepwise IPSOM

approach to recognise seal facies that honours reservoir core data. Here, therefore,

we first determine the best logfacies recognition set which better discriminates sand

and mud lithoclasses in the histogram of facies frequency-seismic seal quality

attributes. In the second step, we utilise multivariate techniques to predict the

probabilities of muds in two muds sub-lithoclasses. Although all facies in the muds

lithoclass are by definition mud-dominated, they will have different flow properties

(Drews, 2012) and exert different controls on subsurface flow in sedimentary basins.

In the last step, we divide the muds sub-lithoclasses into their component facies and

derive the likelihood functions by incorporating logfacies distribution controls using

Bayes’ theorem. The generated seal lithofacies cubes can provide valuable

information for appraisal of oil/gas fields and CO2 storage sites, or for flow

simulation in sedimentary basins. Considering log and seismic data quality and

availability constraints within the seal intervals, we believe this step is at the

feasibility borderline of prediction of fine-grained facies from seismic and log data.

Finally, we recommend using an SIS a priori model to calibrate the current

likelihood functions and reduce uncertainty, should enough well data be available to

apply variographic methods.



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

163

Bayesian Calibration

Figure 4.1: Overview of the approach used to generate probabilistic seal lithofacies cubes.

4.2.1 Selecting the seal logfacies recognition with the most seismically

observable facies distribution/deriving the initial likelihood functions

In order to be able to populate the probabilities of seal facies occurrences as a

function of seismic attributes, we first need a description of lithofacies within seal

intervals, at the well locations. In Chapter 2, we showed an application of Self-

Organising Map (SOM) (Kohonen, 1997, 1998; Malki and Anwar, 2003) for

logfacies recognition in uncored seal intervals which was able to recognise fine-

grained facies within seal units that were not used for training. We proposed a

stepwise SOM approach, in which a range of log curves was used as input neurons.

In each recognition operation, logfacies were predicted within seal units based on the

interrelationship of log patterns and core descriptions within cored intervals. All seal

logfacies recognition results honoured the core descriptions; however they displayed

different vertical facies distributions. This can generate different well-to-log

calibration results and can avoid achieving consistency in the relationship between

facies and seal quality attributes. As a result, we first aim to determine the
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recognition operation yielding the most seismically observable seal facies

distribution.

4.2.1.1 Defining lithoclasses:

Given the lower resolution of seismic compared to log data, we should group

the original sedimentological facies. In West Africa case study, sedimentologists

from the operating company defined 16 facies based on reservoir core data (Insalaco

et al., 2001; Table 2.2). We classified them into muds and sands lithoclasses, because

there is the greatest expected difference between seismic attribute histograms

associated with these two lithoclasses (Doyen et al., 1994) and seismic can

discriminate between them most easily. All muddy and debris flow facies are

included in the muds lithoclass and similarly, all silty, sandy and conglomeratic

facies in the sands lithoclass (Table 4.1).

Table 4.1: Muds and sands lithoclasses definition in seal unit 4 of West Africa case study

(see Table 2.2 for the sedimentological descriptions of the individual facies).

Lithoclass Facies

Muds
Hemipelagic Shales, Mud Turbidites UP, Mud Turbidites LP,

Muddy Debris Flow, Sandy Debris Flow, Sandy Debris Flow

Sands

Cross Laminated Silts, Graded Silts, Cross Laminated Sands,

Graded Sands, Massive m-f TB Sands, Laminated m-f Sands,

Laminated C-Arac, TB sands, Laminated C-Arav sands,

Conglomerates, Sand Injectites

We include all mud-dominated facies in the muds lithoclass because they are

expected to exhibit better sealing quality, whereas silty facies are added to the sand

lithoclass because their occurrence in seal units increases the risk of capillary

breakthrough (Ingram et al., 1997). Moreover, in seal unit 4 of West Africa case

study, silty facies are a very low proportion of the logfacies recognition results

(Chapter 2) and often coexist with sandy facies. Therefore, there is high uncertainty

in their seismic distinction from sandy facies and it is not feasible to introduce a third

silt lithoclass.
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4.2.1.2 Investigating the log detrending effect on discrimination between lithoclasses

in the seal context

As an important log processing technique, detrending is conventionally

applied prior to cross-correlation of log data. It can help to capture and compare the

wireline characteristic of lithologies, independent of compaction state (Magara,

1986). Log detrending has been commonly applied to reservoir logfacies prediction

using statistical methods (Anderberg, 1973; Rao, 1973; Wolff and Pelissier-

Combescure, 1982) and neural networks (Delfiner et al., 1987; Roger, 1992). In

addition, detrending has been recently used in conjunction with fractal/fluctuation

principles to improve the long-range cross correlations between well logs (Dashtian

et al., 2011; Marinho et al., 2013).

In Chapter 2 we deployed detrending techniques prior to seal facies

recognition from log data. The neuron inputs of the recognition practices varied in

type and detrending method of the log curves. Detrending was applied to density, p-

wave sonic, s-wave sonic and neutron-porosity logs by implementing linear and

segmented non-linear techniques (Chapter 2: Section 2.4.3.2).

Nivlet et al. (2007) tested the efficiency of detrending on recognition of

reservoir heterogeneities from seismic-to-log calibration. He used detrended log-

derived p- and s-acoustic impedances (Ip and Is) to compensate for compaction and

finally to improve the prediction heterolithic facies of turbidites reservoirs at seismic

scale in West Africa case study (Figure 4.2). The detrending was done by filtering

out the low-frequency component (0-0-4-8 Hz) of acoustic impedances.
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Figure 4.2: Discrimination of geological facies in Ip-Is crossplot before (a) and after (b)

detrending well-log data and comparison between initial and predicted facies log after

detrending impedances and grouping heterolithic facies (c) of turbidite reservoir in a West

African case study (Nivelt et al.,2007) .

Although log detrending helps to discriminate between reservoir facies, it

should not be applied in seal logfacies prediction. The main reason is that the

variability of log responses within mud-rich seal units is very subtle and thus

susceptible to being adversely affected by the detrending process, resulting in

incorrect facies predictions. In seal unit 4, there is a subtle fining-upward trend which

is missed if logs are detrended. On the other hand, seal units have generally very low

permeability (μD-nD scale) and hydrocarbon saturation, and field (Geertsma, 1973a;

Baldwin and Butler, 1985; de Waal, 1986) and laboratory (Dewhurst et al., 1998)

measurements have indicated that tight and dry rocks have lower compaction

coefficients than reservoir rocks (assuming compaction equilibrium exists). For

example, Revil et al. (2002) suggested average compaction coefficients of 4 × 10-8

Pa-1 and 6 × 10-8 Pa-1 for shales and sands in compaction modelling.

In order to prove the effect of log detrending on discrimination of logfacies in

the seal context, a four-step workflow was followed:

a)

b)

c)



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

167

 Depth to time conversion of logfacies recognition results (Chapter 2) based

on check-shot data

 Calculation of the average of log facies frequencies at the pick-trough time

interval scale (defined by successive peaks and troughs along seismic

amplitude traces)

 Qualitative evaluation of conformity of seal quality attributes with logfacies

distribution in seal unit 4

 Quantitative evaluation of facies distribution effect on discrimination

between muds and sands lithoclasses using facies frequency-seal quality

attribute cross-plot analysis

The workflow was applied on logfacies recognition results with RHOB-

detrended, PHIT-detrended or non-detrended input logs, since the recognition results

showed the best correlation to the reservoir core descriptions (Chapter 2). The

approach is similar to the work of Nivelt et al. (2007) and the log detrending effect is

analysed by vertical upscaling of seal facies from the log to the seismic scale through

log-to-seismic attribute calibration; however, the facies frequency-seal quality

attribute cross-plots (instead of Ip-Is crossplots) are used to discriminate between

muds and sands lithoclasses. Better seismic-to-log calibration in the crossplots

indicates improvements in discrimination between the lithoclasses in the seal unit.

Moreover, the analysis is carried out on the pick-trough time interval scale (in case

study A ~ 10 m), the resolution of which is addressed by crosswell seismic profiling

(Harris et al., 1995; Yu et al., 2008; Handayani et al., 2011; Neal and Krohn, 2012)

as the bridging solution for seismic-log resolution gap.

At the end of the process, the initial likelihood functions are derived from the

regression line equations corresponding to the best fitting facies frequency-to-seal

quality attribute calibrations. The initial likelihood functions are defined for muds

and sands lithoclasses and are based on the seal quality attributes.

4.2.2. Prediction of muds sub-lithoclass probabilities from seal quality
attributes using multi-attribute transforms

In this step, we demonstrate a new method to predict muds sub-lithoclass

probabilities using multiple seal quality attributes. Hampson et al. (2001) first

introduced the application of seismic Multi-Attribute Analysis (MAA) to predict

continuous log properties on a sample-by-sample basis. Later, MAA was used to



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

168

interpret and detect subtle, seismic-scale lithological features within reservoir

formations (e.g. Gray et al., 2006). Recent studies (e.g. Gray, 2011; Archer et al.,

2013) also showed that MAA can be beneficial for identifying muds and sands (shale

volume) in complex channel reservoirs. In these approaches, continuous lithology

logs were derived from wireline data and predicted as “convolutional” weighted

sums of seismic attributes within reservoir units. The predictions have been mainly

limited to discrimination of muds and sands in reservoirs and have not used core

(sedimentary facies) data. In the current study, we extend the MAA approach of

Hampson et al. (2001) to the mud-rich seal context and also to predict the

probabilities of discrete facies parameters from seismic. Here, lithology logs are

discrete, derived from log and core data (Chapter 2) and predicted as ordinary

weighted sums of seismic attributes at the pick-trough time interval scale within seal

units. The objective is to find data-driven, probabilistic relationships between sets of

seal quality attributes and seismically observable muds sub-lithoclasses, and then to

use these attributes over a 3D seismic volume to predict the probability of the sub-

lithoclasses. The methodology is summarised in the four following main steps and is

illustrated in Figure 4.3:

I. Extract seismic attributes at well locations of pilot study

II. Average seismic attributes/calculate logfacies frequencies at the pick-trough

time interval scale

III. Correlate multiple seismic attributes and logfacies/lithoclass frequencies

using a forward, stepwise, multivariate regression approach

IV. Apply the most robust probabilistic statistical relationship to the seismic

volume

In step (I), seismic attributes can be extracted at well locations using industry-

standard seismic interpretation packages. Here, we use Hampson-Russell software

and apply the composite trace extraction tool. Since volumetric attributes had been

previously computed over a 3D neighbourhood (Chapter 3), the composite traces of

attributes are extracted in the same neighbourhood along the well trajectories.

Moreover, we also extract simple traces of original amplitude at well locations to be

able to define the intervals. Each interval is defined as the distance between two

successive seismic amplitude peaks and troughs in the time domain.
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Steps (II) and (III) are implemented using Matlab programming. In step (II),

logfacies recognition results are converted to the time domain using the spline

method and available check-shot data, after which their frequencies can be calculated

in each interval for different wells. Similarly, seal quality attribute traces are also

averaged at the pick-trough time interval scale. The reason we do the correlation at

this scale is to bridge the resolution gap between log and seismic data, and also to

compare a continuous property (attribute) with a discrete property (facies). It is a

geologically relevant upscaling for log data where it is also recognisable by seismic.

Each interval is assumed to be an acoustic unit (resolvable by the dominant

frequency) with a specific elastic modulus, and thus with a different effective

lithology and fluid content.

Figure 4.3: Proposed multivariate regression approach to predict the probability of muds

sub-lithoclasses.

Step III is where we establish data-driven statistical relationships between

sets of seal quality attributes and lithoclass frequencies within seal units.
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Mathematically, the technique is known as multivariate linear regression, where

more than one predictor variable (seal quality attributes) is used to predict multiple

outcome variables (lithoclass frequencies) in a form of linear combination. At

interval (i), the linear combination that relates seal quality attributes (Att) to

lithoclass frequencies (LC) can be modelled as:

LC(i) = Att(i) β + ε(i) Equation 4.1

where LC(i): a d-by-1 response vector of lithoclass frequencies in ith interval (d is
the number of lithoclasses to predict)

Att(i): a d-by-K design matrix of seal quality attributes in ith interval (K is
the number of attributes used for prediction)

β: a K-by-1 coefficient vector of seismic quality attributes (unknown vector;
required to find a single coefficient – valid for all intervals - per seismic
quality attributes)

ε(i): a d-by-1 error terms vector in ith interval which follows multivariate

normal distribution (MVNd)
. .

ε (i) ~ MVNd (0, Σ)
: a d-by-d error variance – covariance matrix

If we have n defined intervals in our training set, their measurements are

assumed to be independent and the system of equations for n-stacked equation 4.1 is

denoted as:

LC ~ MVN nd (Att β, Id × ) Equation 4.2

where LC and Att are nd-by-1 vectors of stacked lithoclass frequency response

vectors, and nd-by-K matrix of stacked seismic quality attributes design matrices,

respectively. To solve this system of equations and fit a multivariate linear regression

model, we utilise the mvregress tool in the Statistics ToolboxTM of Matlab. This tool

is useful for solving multivariate regression problems with non-parameterised error

variance-covariance matrices. Here, we applied the ordinary least squares (OLS)

estimation option. The method can provide a multivariate regression model with a

diagonal error variance –covariance matrix ( ), assuming = Id. The OLS estimates

the coefficient vector ( ) in such a way that minimises:( ( ) − ( ) )′ ( (i) − (i) ) Equation 4.3

In other words, the OLS coefficient vector ( ) can be expressed as:
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= ( ) Equation 4.4

The standard errors of estimations are also derived from taking the

square root of the diagonal of the variance-covariance matrix (V ( )):
V( ) = ( ) Equation 4.5

Furthermore, to compare the residuals with standard errors of estimation, we

also compute the mean squared error (MSE) vector:

MSE = ∑ ( ) ( ) Equation 4.6

where e(i) = (LC (i) – Att (i) )′.
Lastly, in order to resolve the wavelet effect (which smears the effect of log

measurements over a range of seismic samples), the multivariate problem is solved at

±2 and ±1 shifted intervals for each attribute. This approach has been used in classic

convolutional models and analogues to the application of convolutional operators for

the prediction of continuous properties (Hampson et al., 2001).

Having defined the framework for the multivariate regression problem, we

design and infill the system of equations with seismic attributes and logfacies

measurements. In Chapter 3, we found ten effective seal quality attributes which

have been classified into three groups based on their efficiency in characterising seal

quality elements, and sixteen logfacies recognised from core descriptions and well

data, including six mud-rich facies. In Section 4.2.1, the logfacies were grouped into

two lithoclasses of muds and sands and their statistical relationship to single seal

quality attributes were derived by cross-plotting analysis. Since facies within the

mud lithoclass have different flow properties, here we are interested in subdividing

the mud lithoclass and finding a combination set of seal quality attributes and muds

sub-lithoclasses which provides the best correlation, and thus the maximum lithology

prediction efficiency. Combinatorial mathematics (Ryser, 1963; Mazur, 2010) states

that the number of combinations of n things taken k at a time without repetition and

irrespective of selection order is equal to:

!!( )! Equation 4.7
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whenever k ≤ n. The total number of combinations of muds sub-lithoclasses to check

is therefore 57 (in a form of multiplets with one to five members). According to the

same rule, seal quality attributes can also have 1013 forms of combination in the

prediction process where each form has to be solved with five different shifted

intervals. Thus, an overall 1013×57×5= 288,705 multivariate regression problems

are required to be solved to determine the best combination set in the seal pilot study.

Although correct type and number of predictor seismic attributes can be

determined by cross-validation (e.g. Kalkomey, 1997), a reliable validation study

requires a rich wireline database (Leonard et al., 1992). In Chapter 3, we determined

ten effective volumetric attributes for seal textural quality prediction; and here we

can limit them to three representative attributes (i.e. Reflection Intensity, Chaos and

Local Structural Dip) in order to avoid the excessive calculation of linearly

dependent attributes which are unlikely to improve correlations significantly. Instead,

we add seal risk factor (SRF), as a non-linear transform between representative

attributes, to increase the regression prediction efficiency. This approach can readily

be used in seal studies where wireline data is scarce.

Furthermore, we also utilise stepwise regression analysis in defining muds

sub-lithoclasses. Stepwise regression was initially introduced by Draper and Smith

(1966) and was later used by Hampson et al. (2001) to predict reservoir porosity

from seismic attributes. Hampson et al. (2001) used the approach to find the best set

of attributes to predict a single, continuous log property. We extend Hampson et al.’s

(2001) approach to predict multiple discrete parameters (i.e. lithoclass frequencies)

from multiple volumetric seismic attributes. This procedure assumes that the best

combination of N+1 lithoclasses should include the previous best N lithoclasses as

members. In order to subdivide the mud lithoclasses, we use a stepwise regression,

with a maximum of five steps.

First, we find the facies frequency showing the best correlation with seal

quality attribute sets. The multivariate problems are thus solved for a combination of

sand lithoclass and six mud facies, and the corresponding standard errors and MSE

are derived according to Equations 4.5 and 4.6. The facies with the lowest errors is

considered as the best singlet muds sub-lithoclass.
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In the next step, we create doublet lithoclasses by adding the other mud facies

to the best singlet lithoclass, and solve the multivariate problems accordingly. The

best doublet muds sub-lithoclass is assigned to the estimation with the lowest errors.

Similar procedures are followed for triplet, quartet and quintet muds sub-

lithoclasses. If, at step X+1, the addition of new facies to the multiplet muds sub-

lithoclass does not improve the estimation, then the muds lithoclass subdivision at

step X is considered favourable and the procedure stops. As a result, we achieve the

optimum multiattribute transforms for the prediction of the sands lithoclass and two

muds sub-lithoclasses; the transforms can then be applied to 3D seismic data to make

predictions away from wellbores. Depending on the required threshold for prediction

efficiency, each sub-lithoclass can also be subdivided using the same approach.

Optimum multiattribute transforms are achieved by limiting seal quality

attributes, adding a nonlinear term and applying stepwise regression. Although the

transforms are not necessarily the best solutions with the lowest prediction errors, the

approach saves an enormous amount of time, results in stepwise refinement of

predictions, avoids excessive computation of the contributions of linearly dependent

variables, and is more practical than exhaustive regression in terms of real-world

hydrocarbon prospectivity studies. In this approach, the maximum number of

multivariate regression problems to be solved is (6+5+4+3+2) × 5 = 100 problems,

which is 288,605 problems fewer than exhaustive regression analysis.

We note that there are alternative probabilistic approaches to predict log

values from seismic attributes, including neural networks (Specht, 1991; Hampson et

al., 2001). However, their estimation consistency is strongly dependent on the

availability of suitable wireline training sets, which is not often the case in seal

analysis.

4.2.3 Prediction of fine-grained logfacies probabilities from estimated

muds sub-lithoclasses using Bayesian probability calculations

In the previous step, mathematical models (transforms) were developed to

translate seal quality attributes into frequencies of one sand lithoclass and two muds

sub-lithoclasses. Each muds sub-lithoclass comprises a group of fine-grained facies

which exhibit different flow properties (permeability and capillary entry pressure).



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

174

Therefore, the seal flow behaviour may not be directly inferred from a lithology cube

with only three lithoclass members. Moreover, we are unable to integrate the current

lithology model with log-scale flow properties because the majority of log -scale

flow property models (e.g. Costa, 2006; Chehrazi and Rezaee, 2012; Drews, 2012)

have been developed for specific sedimentological units (either logfacies or

petrofacies). As a result, it is important to elaborate further the multiattribute

transforms in order to be able to subdivide the estimated muds sub-lithoclass

frequencies into their component facies.

Regarding differences between seismic and log resolution and - more

importantly – the low signal content in mud-rich sediment sequences, we believe that

seal quality attributes derived from high-density post-stack seismic data, are only

able to discriminate between groups of fine-grained facies in the seal units.

Therefore, further application of MAA cannot robustly and accurately subdivide

muds sub-lithoclasses. In order to capture the probability of fine-grained logfacies

away from wellbores, there are two possible options which have also been used to

predict sub-seismic features in reservoir context: i) post-processing filtration on post-

stack seismic data such as Kalman filtering (Sayman, 1992; Rocha et al., 2007) and

spectral analysis (Chakraborty and Okaya, 1995; Marfurt and Kirlin, 2001; Sinha et

al., 2005; McArdle and Ackers, 2012), accompanied by forward modelling analysis

such as wedge models or ii) subdivision of estimated muds sub-lithoclass

probabilities into their logfacies components by the use of Bayesian probabilities

derived from wellbore data.

Despite the important role of post-processing in the seismic characterisation

of mud-rich sediment sequences, there is no significant literature on this topic. Here

therefore, in order to keep consistency in the workflow, the Bayes theorem is used to

predict logfacies probabilities from estimated muds sub-lithoclasses. Mathematically,

the Bayes theorem gives the relationship between the probabilities of A and B, P(A)

and P(B) and the conditional probabilities of A given B and B given A, P(A|B) and

P(B|A). In this study, P (A) and P (B) are the probability of occurrence of a specific

fine-grained log facies and the probability of occurrence of any component of a

specific muds sub-lithoclass in the interval of study, respectively. According to the

Kolmogorov definition, the joint probability of event A and B can be expressed as an

axiom of probability (Lee, 2012):
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P(A ∩ B) = P(A|B) . P(B) Equation 4.8

= P(B|A) . P(A) Equation 4.9

Values of P(A|B) are calculated from logfacies recognition results in seal

intervals within all pilot study wellbores, whereas values of P(B) were seismically

derived in step II by the use of multiattribute transforms. In other words, according to

Equation 4.8, well-based conditional probabilities of facies, P(A|B), can be

incorporated into the multiattribute transforms as coefficients in order to be able to

predict the probability of occurrence of individual fine-grained facies. In this way,

we end up with six multiattribute transforms corresponding to six fine-grained facies

and one multiattribute transform to predict the sand lithoclass. Since there are

considerable limitations in seismic resolution and wireline availability within the seal

context, we hierarchically used seismic and log data to avoid augmenting

uncertainties in lithology predictions due to single source application.

In geostatistics, our derived probabilistic mathematical relationships are

called likelihood functions. Doyen et al. (1994) suggest calibrating the likelihood

functions with an a priori model generated by Sequential Indictor Simulation (SIS).

SIS is a variogram-based facies modelling which can generate a facies model

conditioned to both seismic and log data, but it is not effective in capturing realistic

architectures (Strebelle, 2000, 2002), particularly within seal units. This is because of

the limitations of two-point statistics in modelling curvy textures (e.g. debris flow

facies) and long-range continuous bodies (e.g. Hemipelagic Shales). It can be even

more problematic, since well data are very sparse in seal sections. Moreover, the

poor delineation of facies architecture in an SIS a priori model places major

constraints on the construction of a conditioned facies model, because the seal

likelihood functions are derived from the correlation of seismic textures and facies.

On the other hand, object-based facies models (Lia et al., 1996; Viseur, 1999) are

able to honour the geometries involved in the seal units, but are still unable to

integrate seismically-derived seal likelihood functions.

There is ongoing research to improve the traditional geostatistical simulation

and solve the problem of facies architecture modelling while keeping the integration

of a priori models with soft constraints (i.e. likelihood functions). For example, in

multiple-point statistics (MPS) simulations (Guardiano and Srivastava, 1993;
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Strebelle, 2000, 2002; Strebelle and Levy, 2008) the facies are modelled based on

multi-point statistics moments (with order higher than two, unlike traditional two-

point variography) derived from a training 3D conceptual model. The multi-point

statistics moments allow us to better capture nonlinear or long-range facies

geometries. The other innovative approach is event-based facies modelling which

benefits from nonstationary statistics and conditions facies models by interactive

rules developed through the analysis of relationships between texture and reservoir.

Pyrcz et al. (2012) successfully applied the method on complex channel context with

sparse well data setting. Despite the promising development in conditional facies

simulation, the methods mostly address issues specific to the architectures of

siliciclastic reservoirs such as channels and levees. Therefore, we recommend the

application of MPS and event-based conditional facies simulation in mud-rich seal

environment for further studies, since having a reliable a priori model is essential for

calibrating seal likelihood functions and generating realistic seal lithology models in

sparse data settings.

4.3 Data

Similar to Chapter 3, the developed probabilistic facies prediction

methodology is demonstrated on regional seal unit 4, in West Africa case study. The

interval of study covers both seismic facies, i.e. hemipelagite 4 and MTD 4.

Although 11 wells are available in the case study, we only use three of them: W31,

W41 and W42. This is because they have reliable seal facies recognition results to

integrate with the seismic analysis. The reliability of the facies recognition results

from their complete conventional log suite (gamma-ray, p-sonic, density and neutron

porosity) in both seal and reservoir intervals, and also the availability of reservoir

cores to train the facies recognition algorithm. The other wells suffer either from a

shortage of wireline data within the seal interval or core data for training, or both.

4.4 Results

The methodology is applied on a high-density seismic cube from offshore

West Africa. The interval of study is a lower Miocene (Aquitanian) heterogeneous

mud-rich deposit, the so-called seal unit 4. Seal unit 4 is relatively flat and extends

laterally throughout the seismic cube. On average, the top of seal unit 4 is located at
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a depth of around 2257 mbsl (2839 TWT ms/msl) with a thickness of 195 m (178

TWT ms). It has a heterogeneous seismic texture with low to moderate seismic

amplitudes (-1000<amplitude<1000). The upper part of seal unit 4 contains relatively

flat and continuous reflections, whereas a great proportion of chaotic textures occur

within the lower part. Whilst these textures correspond to the interpreted

Hemipelagite 4 and MTD 4 seismic facies, there are several non-conforming

anomalies within these seismic facies that may impact seal risk. The objective is here

to find statistical relationships between the seal quality seismic attributes and the

fine-grained logfacies and to use multiattribute transforms as an automated tool to

predict lithology variations within seal unit 4.

4.4.1 Derivation of the initial likelihood functions for the sands and muds

lithoclasses

Each well contains several sets of logfacies within seal unit 4 interval, which

differ according to input logs and detrending method used for their recognition. In

Chapter 2, three approaches resulted in good fits with core descriptions at wells W31,

W41 and W42: a) recognition with detrended total neutron-porosity (PHIT) log, b)

recognition with detrended bulk density (RHOB) log and c) recognition with no

detrending of input logs. Although the fit to core descriptions is similar in each case

(Chapter 2), the recognition results have different spatial distributions within seal

unit 4. We therefore first investigate the effect of log detrending on the recognition of

fine-grained facies and their subsequent fit with seismic seal quality attributes. This

is because we believe that standard log detrending approach may diminish or remove

variations in log responses within seal intervals, which are usually subtle (Section

4.2.1). Figure 4.4 shows three sets of logfacies recognition along the wells within the

Seismic SRF sections. Note that well W31 is not crossing the seal unit-4 and an

equivalent fine-grained depth-interval is used as an analogue for seal unit-4. The

Seismic SRF volume has been generated using the Volumetric Attributes tool in

Petrel and according to equations in Table 3.9 and recommended parameters in

Chapter 3. Note that the range of Seismic SRF colorset is deliberately kept wide in

order to discriminate better seal unit 4 and reservoir intervals.
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Qualitative inspection shows that the logfacies recognition using the

detrended PHIT log unrealistically predicts more Hemipelagic Shales and Mud

Turbidites within MTD-4 and basal MTD intervals (the intermediary deposits

between seal unit 4 and lower reservoir) at W41 and W42. Moreover, the logfacies

recognition using the detrended RHOB log also predicts highly sand dominated

MTD-4 and basal MTD at W41, which is not consistent with their low seismic
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Figure 4.4: Comparison of Seismic SRF-logfacies
fit for three different logfacies recognitions within
seal unit 4 of well W31 (analogue interval), W41
and W42. Recognitions from left to right:
recognition with detrended PHIT log, recognition
with detrended RHOB log, recognition with no log
detrending. Logfacies recognitions without
detrending display the better fit with Seismic SRF.
Red and blue colours indicate the higher and lower
Seismic SRF (seismic-derived leakage risk)

Analogue Seal U
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amplitude/SRF. These observations are in contrast with the result of logfacies

recognition with non-detrended logs where logfacies show a consistent agreement

with the interpreted seismic facies at W41 and W42. Therefore, we qualitatively

expect a better correlation between Seismic SRF (or other seal quality component

attributes) and logfacies from non-detrended logs at wells W41 and W42.

At well W31, the difference between recognition results within the analogue

seal interval is subtle, so that a quantitative approach has been taken to compare how

they agree with the Seismic SRF attribute. This has been done through conventional

cross-plot analysis. We have firstly calculated the logfacies frequencies from each

recognition within the analogue seal unit 4 interval in well W31 (Table 4.2). Table

4.2 shows that relatively similar amounts of logfacies have been predicted in all three

recognitions; however, their vertical distributions are slightly different. As explained

in Section 4.2.1.1, at this step six fine-grained logfacies have been grouped into a

single mud lithoclass due to limited fitting capability of univariate regression in

conventional cross-plotting.

Table 4.2: Logfacies frequencies (%) at analogue seal unit 4 interval in well W31, derived
from three different recognitions in Chapter 2.

Logfacies

Logfacies frequencies% within analogue seal unit 4

interval in well W31

Recognition with

PHIT-detrended

Recognition with

RHOB-detrended

Recognition with

no log detrending

Hemipelagic Shales 6.03 4.68 4.25

Mud Turbidites UP 55.11 54.89 55.84

Mud Turbidites LP 4.33 5.38 4.11

Sands 16.71 19.33 18.38

Muddy Debris Flow 4.36 2.47 3.75

Muddy-Sandy Debris Flow 5.28 6.17 5.50

Sandy Debris Flow 8.17 7.09 8.17
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On the other hand, composite traces of seismic amplitude and SRF have been

extracted from their corresponding seismic attribute volumes along the trajectory of

well W31. This was done by averaging the nine nearest traces around the borehole.

Then lithology logs (logfacies recognition) were converted from depth to time using

check-shot data and vertically averaged at the pick-trough time interval scale

according to the timing of successive peaks and troughs in the amplitude composite

trace. The same vertical averaging was performed on Seismic SRF composite trace to

obtain similar sampling rates as the lithology logs.

We plotted seismic attribute values against logfacies frequencies. Figures 4.5

and 4.6 show cross-plots of mud and sand lithoclass frequencies against Seismic SRF

values in well W31 for each of the three logfacies recognitions. In both muds and

sands cross-plots, recognition with non-detrended logs has the highest coefficients of

determination (R-squared), and thus indicates a better correlation with the Seismic

SRF values. The same cross-plot analysis was repeated for the Reflection Intensity

attribute and also for the two other wells and their correlation results are shown in

Table 4.3. In all these cases, R-squared values affirm better seismic attribute-

logfacies correlations when using the recognition with non-detrended logs. In

addition, the outcome of cross-plot analysis agrees with the visual inspection at W41

and W42. Comparison between R-squared values also illustrate that Seismic SRF is a

more effective predictor of mud lithoclass frequencies (because of contribution of

structural and stratigraphic attributes), whereas Reflection Intensity can better

delineate sand lithoclass frequencies.

In summary, both qualitative and quantitative comparisons of seismic

attributes and logfacies illustrate that the conventional log detrending approach

should not be applied for logfacies recognition within seal unit 4 because variations

in log responses are subtle and can be unrealistically diversified or smoothed by

detrending. In addition, there are reasonable linear relationships between mud/sand

lithoclass frequencies and Seismic SRF and Reflection Intensity. In other words,

more risky seismic intervals contain higher percentages of sand lithoclass and vice

versa (Figure 4.7). Therefore, as the initial likelihood functions, we expect the

Seismic SRF attribute to give relatively reliable predictions of sandiness within seal
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unit 4 away from wellbores. Above all, these univariate relationships also support the

next step - multivariate analysis.
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(c) Figure 4.5: Cross-plots of mud lithoclass
frequency vs. Seismic SRF at the pick-
trough time interval scale in analogue
seal unit 4 of well W31, using three
different log recognitions: a) logfacies
recognition with detrended PHIT log, b)
logfacies recognition with detrended
RHOB log, c) logfacies recognition with
no log detrending: trendlines overlap.
The best linear and second order
polynomial correlations are achieved
when log facies are predicted without
detrending of logs. Less risky seismic
intervals contain higher frequency of
muds in all three recognitions.
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Table 4.3: R-squared (R2) values of univariate linear regression between frequencies (%) of
muds/sands lithoclasses and Seismic SRF/Reflection Intensity in seal unit 4 at wells W31,
W41 and W42

Seismic
Attribute Well

PHIT-
Detrended

RHOB-
Detrended

No Log
Detrending

Muds Sands Muds Sands Muds Sands

Reflection
Intensity

W31 0.37 0.28 0.50 0.37 0.55 0.41

W41 0.51 0.37 0.46 0.29 0.58 0.43

W42 0.49 0.25 0.45 0.31 0.51 0.35
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(c) Figure 4.6: Cross-plots of sand
lithoclass frequency vs. Seismic SRF at
the pick-trough time interval scale in
analogue seal unit 4 of well W31, when
using three different log recognitions: a)
logfacies recognition with detrended
PHIT log, b) logfacies recognition with
detrended RHOB log, c) logfacies
recognition with no log detrending:
trendlines overlap. The best linear and
second order polynomial correlations
are achieved when logfacies are
predicted without detrending of logs.
More risky seismic intervals contain
higher frequency of sands in all three
recognitions.
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Seismic
SRF

W31 0.47 0.25 0.54 0.30 0.61 0.33

W41 0.53 0.26 0.51 0.21 0.63 0.37

W42 0.48 0.22 0.51 0.25 0.55 0.30

4.4.2 Prediction of the muds sub-lithoclasses using forward stepwise

multivariate regression

Knowing the univariate correspondence between muds lithoclass frequency

and Seismic SRF attribute, we have attempted to translate Seismic SRF into muds

sub-lithoclass frequencies through the use of multivariate analysis. Note that the

prediction of six individual fine-grained logfacies from seismic quality attributes is

not feasible due to the limitations of seismic resolution. The seal quality attributes

available for the multiattribute analysis consist of ten volumetric attributes classified

into three groups (Table 3.8) plus the Seismic SRF attribute. To avoid overtraining

and excessive calculations of linearly dependent attributes, only the representative

attribute of each group has been considered, thus we have reduced the number of

attributes to four: Reflection Intensity, Chaos, PCA-based Local Structural Dip and

SRF.

Figure 4.7: Relationship between overall facies
distribution and average Seismic SRF within
seal unit 4 at wells W31, W41 and W42.
Average Seismic SRF in seal unit 4 shows a
direct relationship with the frequency of
coarser-grained facies i.e. sand lithoclass and
debris flow facies of 12, 13 and 14.
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The multiattribute analysis consists of utilising forward stepwise regression at

the pick-trough time interval scale as described earlier in Section 4.2.2. The average

of calculated pick-trough time intervals at W31, W41 and W42 are 8.4 ms, 7.9 ms

and 8.2 ms. The interval size is a function of the dominant seismic frequency within

the seal interval at each well location and is thus proportional to the rate of vertical

sedimentological variation. The systems of equations have been solved by use of

computer programming at seal unit 4 of W31, W41 and W42 which returned

ordinary least-squares solutions (OLS) given a known covariance. The results are

shown in Tables 4.4 and 4.5, and give two types of prediction error: the average

relative absolute error (%) and the average of relative absolute error and OLS

standard error (%) (Equation 4.5). In the first columns, the average of prediction

errors for each single facies and its complementary muds sub-lithoclass has been

given. At the first step, Mud Turbidites UP and its corresponding complementary

muds sub-lithoclass possess the best seismic quality attribute fit with average

prediction errors of 49.5% and 42.5%. As we go to the right, the error values in the

columns show how integrating logfacies at each step influences the prediction error

of the best muds sub-lithoclass in the previous step. Therefore, in step 2, the results

indicated that OLS error is reduced by integrating Mud Turbidites UP and Mud

Turbidites LP, and similarly in step 3 by adding Muddy Debris Flow to their

combination. The process is stopped at the point where an increasing number of

logfacies decreases the prediction efficiency (i.e. step 3).

Table 4.4: Average of overall relative absolute error (%) for prediction of two divided muds
sub-lithoclasses at different steps of forward multivariate regression. The process stops at
step 3 due to increment of average relative absolute error in the fourth step.

Logfacies

Average relative absolute error (%) for

two divided muds sub-lithoclasses

Primary muds sub-lithoclasses

Step 1:

singlet

Step 2:

doublet

Step 3:

triplet

Step 4:

quartet

Step 5:

quintet

Hemipelagic Shales 74.9 54.7 58.1 64.5

Mud Turbidites UP 49.5

Mud Turbidites LP 56.5 49.9

Muddy Debris Flow 72.4 53.8 48.3

Muddy-Sandy Debris Flow 72.1 50.7 52.1 65.0
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Sandy Debris Flow 73.9 51.3 52.0 68.4

Table 4.5: Average of overall relative absolute error and OLS standard error (%) for
prediction of two divided muds sub-lithoclasses at different step of forward multivariate
regression. Again the process stops at step 3 and similar classification for muds sub-
lithoclasses is obtained.

Logfacies

Average of relative absolute error and

OLS standard error (%)

Primary muds sub-lithoclasses

Step 1:

singlet

Step 2:

doublet

Step 3:

triplet

Step 4:

quartet

Step 5:

quintet

Hemipelagic Shales 76.9 43.5 47.8 70.5

Mud Turbidites UP 42.5

Mud Turbidites LP 73.4 41.9

Muddy Debris Flow 75.4 44.4 39.8

Muddy-Sandy Debris Flow 89.6 42.7 44.7 62.0

Sandy Debris Flow 106.2 44.0 45.2 61.2

The stepwise multiattribute analysis illustrates that a combination of Mud

Turbidites LP/UP facies with Muddy Debris Flow facies gives the lowest prediction

errors of 48.3% and 39.8%. In other words, the four seal quality attributes can better

discriminate between two muds sub-lithoclasses in seal unit 4 as defined below:

Muds Sub-lithoclass I: Mud Turbidites UP+Mud Turbidites LP+Muddy Debris Flow

Muds Sub-lithoclass II: Hemipelagic Shales+Muddy Sandy Debris Flow+Sandy Debris Flow

This classification is also consistent with the seismic characters of the

logfacies within seal unit 4. As shown in Figure 4.8, the facies of muds sub-lithoclass

II typically occur within poor/moderate amplitude, chaotic seismic contexts in seal

unit 4, whereas the facies of muds sub-lithoclass I often occur within moderate

amplitude, layered seismic textures. In terms of seismic character, we have therefore

called muds sub-lithoclasses I and II non-distorted and distorted muds, respectively.

Note that Hemipelagic Shales have been recognised in the intervals in which seismic

is at its lowest amplitude and a chaotic texture (contrary to the geologically layered

structures of hemipelagites). This is likely due to the seismic frequency limit, and the

subtle and rapid changes in acoustic impedances within these sediments.
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Figure 4.8: Comparison of muds sub-lithoclass classification derived from multivariate
analysis with seismic characters. Non-distorted muds often occur within moderate
amplitude, layered seismic textures in seal unit 4 and vice versa for distorted muds.

According to the OLS solutions of the multivariate analysis, the frequencies

of distorted, non-distorted muds and sands can be predicted as linear combinations of

the four seal quality attributes with known coefficients and an intercept. The derived

multiattribute transforms based on seal unit 4 of W31, W41 and W42 are as follows:

Non-distorted Muds%= -1.13 SI - 12.39SC+0.8LD - 452.87 SRF+60.06 Equation 4.10a

Distorted Muds%= -2.61 SI + 22.11 SC - 0.69 LD - 783.41 SRF + 43.09 Equation 4.10b

Sands%= 3.74 SI - 9.72 SC - 0.11 LD + 1236.28 SRF - 3.15 Equation 4.10c

where SI, SC, LD and SRF are Reflection Intensity, Chaos, PCA-based Local

Structural Dip and Seal Risk Factor, respectively (Chapter 3). We interpret the

formulae to mean that the frequency of non-distorted muds is directly proportional to

Seismic SRF or leakage risk and vice versa for distorted-muds and sands. The

predictions of the multiattribute transforms in seal unit 4 of W31 and W41 are

displayed graphically in Figure 4.9, in which measured frequencies of lithoclasses

are shown as dotted lines and predicted frequencies as solid lines. The generally

good agreement between measured and predicted values suggests a promising

predictive power of the seal quality attributes for a more detailed discrimination of

lithologies in seal unit 4 when using the multivariate approach. However, it also

shows that seismic data has a very limited capability to predict (a) isolated log-scale

lithological variations (here ~ < 10 m) and (b) lithologies with small contributions to

Distorted Muds Non-distorted Muds
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the total section (e.g. distorted muds in well 41). In summary, multivariate analysis

using the four seal quality attribute predictors has enabled us to make reasonable

predictions of the percentages of three lithology groups in seal unit 4.
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Figure 4.9: Prediction of muds sub-lithoclass frequencies based on the developed
multiattribute transforms (Equations 4.10) in wells W31 and W41: a) non-distorted muds, b)
distorted muds and c) sands. The predicted and measured frequencies are shown as solid
and dotted lines, respectively. The multiattribute transforms were derived according to
stepwise multivariate regression between four seismic seal quality attributes and non-
detrended logfacies recognitions at the pick-trough time interval scale within seal unit 4 in
wells W31, W41 and W42.

4.4.3 Bayesian division of the muds sub-lithoclasses by honouring well

data statistics

Since the facies in the muds sub-lithoclasses have different flow/sealing

properties, we have tried to divide the muds sub-lithoclasses into their component

facies (as illustrated in Figure 4.10) by applying Bayesian probabilities derived from

the well data. Bayesian division of the muds sub-lithoclasses consists of calculating

conditional probabilities of component facies at different ranges of muds sub-

lithoclass frequencies (Equation 4.8). The derived conditional probabilities (P(A|B))

have been multiplied by predicted muds sub-lithoclass frequencies (P(B)) (calculated

in Section 4.4.2), to obtain probabilistic frequencies of component facies (P(A∩B))
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at each interval. As described in Section 4.2.3, probabilities P(A|B) have been

directly derived from the logfacies recognition results in wells W31, W41 and W42

and are shown in Tables 4.6 and 4.7. The second column, for example, shows the

probabilities of occurrence of Mud Turbidites UP facies having predicted different

ranges of non-distorted muds from the seal quality attributes. On the right side of the

Tables, relative standard deviations of conditional probabilities, σ(P(A|B)), are given

at each interval. Assuming a proper sample space for Bayesian calculation,

σ(P(A|B)) can represent the measure of uncertainty in our conditional probabilities.

As expected, the Bayesian division gives much more reliable results for non-

distorted muds. The average relative standard deviation for non-distorted muds is

12.1%, while for distorted muds is 32.2%. Moreover, the facies of neither non-

distorted muds nor distorted muds show meaningful trend/relationship with

variations in sub-lithoclass frequencies. In other words, the component facies within

both sub-lithoclasses maintain relatively consistent proportions throughout the

intervals, within an average standard deviation of 11%. This consistent facies

distribution in seal unit 4 further supports the use of Bayesian calculations.

Figure 4.10: Overview of component facies for the two muds sub-lithoclasses: Bayesian
probabilities were utilised to divide muds sub-lithoclasses predictions (derived from
multivariate analysis, Section 4.4.2) to their component facies.
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Table 4.6: Bayesian (conditional) probabilities P(A|B) derived for component facies of non-
distorted muds at different ranges of sub-lithoclass frequencies (event B); P(A|B)s are based
on distributions of facies from non-detrended logfacies recognitions within seal unit 4 in
wells W31, W41 and W42.

Non-distorted muds
B: Non-
distorted

muds
range %

P(A|B) % σ (P(A|B)) %
Mud

Turbidites
UP

Mud
Turbidites

LP

Muddy
Debris
Flow

Mud
Turbidites

UP

Mud
Turbidites

LP

Muddy
Debris
Flow

95-100 28.0 13.1 58.9 29.6 15.6 32.2
90-95 84.0 4.1 11.9 14.1 6.3 9.7
85-90 92.8 0.5 6.8 2.6 0.5 2.1
80-85 70.1 18.3 11.6 26.2 25.3 15.8
75-80 79.5 17.3 3.2 23.1 24.9 3.0
70-75 86.7 8.4 5.0 15.2 12.2 3.8
65-70 82.5 4.4 13.1 6.7 3.4 10.0
60-65 61.7 6.7 31.7 28.1 7.6 26.1
55-60 85.0 8.4 6.7 11.2 7.6 9.4
50-55 76.9 2.9 20.1 22.2 3.2 20.6
45-50 66.8 18.3 14.9 22.4 7.1 18.2
40-45 91.3 8.7 0.0 4.3 4.3 0.0
35-40 78.9 12.5 8.6 3.9 12.5 8.6
30-35 96.5 3.5 0.0 5.0 5.0 0.0

Average 77.2 9.1 13.7 15.3 9.7 11.4
12.1

Table 4.7: Bayesian (conditional) probabilities P(A|B) derived for component facies of
distorted muds at different ranges of sub-lithoclass frequencies (event B); P(A|B)s are based
on distributions of facies from non-detrended logfacies recognitions within seal unit 4 in
wells W31, W41 and W42.

Distorted muds
B:

Distorted
muds

range %

P(A|B) % σ (P(A|B)) %
Hemipelagic

Shales
Muddy
Sandy
Debris
Flow

Sandy
Debris
Flow

Hemipelagic
Shales

Muddy
Sandy
Debris
Flow

Sandy
Debris
Flow

30-35 21.8 17.1 61.1 37.8 12.3 37.3
25-30 13.3 49.3 37.3 18.9 40.8 44.6
20-25 - 41.4 58.7 0.0 38.4 38.4
15-20 9.6 59.2 31.3 12.0 32.5 35.5
10-15 18.3 46.6 35.1 36.7 31.1 30.2
5-10 3.1 33.6 63.3 5.9 37.4 41.1
0-5 18.1 35.4 46.5 33.0 42.0 46.3

Average 14.0 40.4 47.6 24.0 33.5 39.1
32.2
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Figure 4.11 shows graphically the result of applying the Bayesian

probabilities within seal unit 4 of wells W31 and W41. The thicker curves are muds

sub-lithoclass frequencies predicted by stepwise multivariate analysis and the other

curves represent Bayesian frequencies of component facies. The Mud Turbidites UP

facies dominates throughout the most of seal unit 4 at W31, but makes a high

contribution only in the lower part of seal unit 4 (i.e. basal MTD) at W41. At W31,

there is a greater proportion of the Hemipelagic Shales facies in the upper part of the

seal interval (i.e. hemipelagite 4) while Sandy Debris Flow and Muddy Sandy-Debris

Flow facies prevail in the lower parts (i.e. MTD 4 and basal MTD). Table 4.8 also

shows average relative absolute errors for the Bayesian prediction results at these

two wells. Similar to Section 4.4.2, smaller contribution of distorted muds in seal

unit 4 decreased the reliability of prediction results (with average relative absolute

error: 54.8%). Thereby, with current sample space (seal unit 4), we do not

recommend use of Bayesian calculations for prediction of component facies

frequencies in non-distorted muds and stay with sub-lithoclass frequencies derived

from multivariate analysis. Despite the high degree of uncertainty for prediction of

component facies in distorted muds, prediction efficiency significantly improved for

non-distorted muds and average relative absolute error is reduced from 40.2%

(multivariate analysis, Section 4.4.2) to 17.1% (Bayesian division, 4.4.3).
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Table 4.8: Overall average relative absolute errors for predicted frequencies by Bayesian
probability calculations at different resolution levels (calculated for seal unit 4 in wells W31,
W41 and W42)

Average relative
absolute error %

Non-distorted muds Distorted muds
Mud

Turbidites
UP

Mud
Turbidites

LP

Muddy
Debris
Flow

Hemipelagic
Shales

Muddy
Sandy
Debris
Flow

Sandy
Debris
Flow

For each facies 19.3 10.0 22.0 54.8 42.0 67.5
For each muds
sub-lithoclass 17.1 54.8
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Figure 4.11: Predicted frequencies of component facies
from Bayesian probability calculations within seal unit 4
of wells W31 and W41: for a) non-distorted muds and b)
distorted muds. The dotted lines represent the sub-
lithoclass frequencies, whilst the solid three lines show
the predicted frequencies of the component facies. Note
that Bayesian calculation depends on both facies
frequency and distribution. For example, seal unit 4
within well W41 is dominated by non-distorted muds so
that Bayesian division of distorted muds is not feasible.
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4.5 Discussion

The seismically constrained geostatistical approaches used in reservoir facies

modelling are not easily applicable in the relatively poorly-resolved and low

amplitude context of seal rocks. Therefore the purpose of this study was to develop

an integrated, probabilistic approach for translating seal seismic responses into

lithological values. The results suggest that a stepwise approach is required, in which

at different levels of resolution, different probabilistic methods should be applied to

establish the link between seal logfacies and seismic attributes. Conventional cross-

plotting was only effective in discriminating between sand and mud lithoclasses by

use of Seismic SRF or Reflection Intensity, with R-squared values of 50% - 60%.

This is mainly due to limitation of univariate cross-plotting and the fact that a single

seal quality attribute cannot define the characteristics of the fine-grained logfacies.

At finer resolution, the application of stepwise forward multivariate regression

resulted in robust, multiattribute transforms to estimate the frequencies of two muds

sub-lithoclasses, suggesting that we can effectively predict the probability of three

different lithologies - distorted muds, non-distorted muds and sands (Equation 4.10) -

away from wellbores. When high-density post-stack time-migrated seismic volumes

are available, we believe that the prediction of these three lithologies is the practical

optimum predictive power of seismic seal quality attributes for seal lithology

identification. Thus, further division of muds sub-lithoclasses into facies frequencies

was performed by Bayesian analysis which honoured wellbore statistics. In

particular, prediction errors considerably reduced for facies of non-distorted muds.

Although this step was not directly guided by seismic attributes and Bayesian

probabilities derived at well locations, the consistent distribution of facies at all

wellbore locations reasonably acknowledged the use of Bayesian probabilities away

from wellbores. In the ideal case, results should be calibrated with an a priori

lithofacies model derived by conditional simulations such as sequential indicator

simulations (SIS). However, as mentioned earlier, running conditional simulations

within mud-rich sediment sequences are often not feasible due to the limitations in

seismic data quality (low signal:noise) and wellbore data availability within seal

intervals.
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Our findings integrate and extend the approaches taken by Doyen et al.

(1994) and Hampson et al. (2001), who used a single attribute to predict sandiness,

and multiple attributes to predict a continuous property (i.e. porosity) in clastic

reservoirs. In this study we took a step in the direction of hierarchically applying 3D

attribute analysis to predict a categorical property (i.e. facies) at different resolution

of interest within mud-rich sediment sequences, while replacing the convolutional

operator with multiple shifted pick-trough time intervals calculations.

There were two main conflicting points between the findings and

theories/literature. First, the cross-plotting results suggested that conventional

detrending techniques may not be suitable for facies recognition in the seal intervals.

This is in contrast to the work of Nivlet et al. (2007) who achieved improved

seismic-well tie when using detrended logs in turbidite reservoirs of a West African

case study. The possible explanation would be the relatively lower compaction

coefficient in mud-rich sediments with low porosities (e.g. Revil et al., 2002) and

also sensitivity of log curves to detrending due to subtle variation of log response

within these sediments.

In the other conflicting point, the data-driven classification of facies within

muds sub-lithoclasses (Section 4.4.2) is not in agreement with sedimentology of the

facies: the Hemipelagic Shales facies with excellent sealing quality was grouped with

coarser grained Sandy/Muddy-Sandy Debris Flow facies with higher risk of leakage.

This illustrates the fact that seismic attributes calculated at full seismic bandwidth are

not able to genetically discriminate between seal facies. In other words, we have

deposition of fine-grained facies with slightly different acoustic properties in the seal

intervals, thus sub-seismic variations of facies do not exert much influence on

seismic responses in this seismic bandwidth (a seismic volume with a higher

resolution is required to resolve the individual seal facies). The factors that make

seismic attributes impotent are geometry and reflectivity differences between

seismic-scale, mud-rich sedimentological settings with different frequencies and

arrangements of fine-grained facies.

The advantage of the developed approach is that it is relatively generic and is

easy to apply to other datasets. It is a data-driven, interpreter-guided approach which

returns a quantitative, fast and objective overview of seal lithology variations while
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honouring manual interpretations/mappings and geological contexts. Moreover, the

approach can work with limited wireline datasets. On the other hand, as one of the

very first quantitative approaches for seal lithology analysis at the seismic scale, the

approach has some limitations. Firstly, since seismic and log data were correlated

over a time window, the approach always requires an accurate depth-to-time

conversion based on check-shot data. It also has a very limited ability to capture

spiky (log-scale) variations of logfacies. This is partly caused by the need to work

with the full seismic bandwidth within low S/N ratio seal context. Similar to soft

computing techniques, the reliability of predictions of logfacies depends on their

frequency and spatial organisation. For example, high uncertainty is expected for

prediction of logfacies/group of logfacies which make(s) up a small proportion of the

seal interval. Moreover, the use of Bayesian division can be only justified if

consistent proportional distributions of logfacies exist within the seal interval at all

wells. Our approach needs be replicated in other case studies which have substantial

well data, so that results can be calibrated with conditional simulations. It may then

be possible to recommend the general use of Bayesian multiattribute transforms for

lithology prediction within seal intervals. Finally, the incorporation of image logs

and dip information into the log recognition process as well as the use of post-stack

depth-migrated volumes have the potential to improve local structural dip-to-facies

calibration, and hence to increase the reliability of derived multiattribute transforms.

4.6 Conclusions

We have developed a three-step approach to build a mathematical model for

converting seismic seal quality attributes into frequencies (probabilities) of six

different fine-grained logfacies in seal intervals. This cube translation generates

useful information about the frequency and distribution of risky/non-risky lithologies

throughout the seal unit. Since the approach is based on standard volumetric

attributes and logfacies recognition processes, it is readily applicable on case studies

with high-density 3D seismic volumes and with limited wireline data.

From a hydrocarbon exploration point of view, the quantification of seal

lithology probabilities can help to mitigate risk in exploration and appraisal phases of

new ventures. The approach outlined in this study can help to make more informed,

seismically-driven decisions regarding well locations with lower risk of seal
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breaching. The approach can also have similar application in other fields such as

waste disposal and carbon capture storage.

Secondly, the derived litho-probability cubes provide a platform for flow

property modelling within mud-rich sediment sequences and can help basin

modellers with running more realistic flow simulations which honour heterogeneities

within these sediments. And finally, litho-probability cubes can be also used as

objective, data-driven and seismic-scale inputs for hydrocarbon/flow migration

packages such as Permedia.

4.7 References

Amour, F., Mutti, M., Christ, N., Immenhauser, A., Agar, S.M., Benson, G.S., Tomás, S.,
Always, R. and Kabiri, L., 2012, Capturing and modeling metre-scale spatial facies
heterogeneity in a Jurassic ramp setting (Central High Atlas, Morocco). Sedimentology, 59,
pp 1158-1189.

Anderberg, M. R., 1973, Probability and mathematical statistics.

Archer, S. H., Du, X. and Fletcher, R. P., 2013, June, Amplitude inversion of depth-imaged
seismic data from areas with complex geology. In 75th EAGE Conference & Exhibition
incorporating SPE EUROPEC 2013.

Aydin, A., 2000, Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine
and Petroleum Geology, 17(7), pp 797-814.

Baldwin, B. and Butler, C. O., 1985, Compaction curves. AAPG Bulletin, 69(4), pp 622-626.

Biver, P., Haas, A. and Bacquet, C., 2002, Uncertainties in facies proportion estimation II:
application to geostatistical simulation of facies and assessment of volumetric uncertainties.
Mathematical geology, 34(6), pp 703-714.

Biver, P., Allard, D. and D’or, D., 2008, Litho-type modeling using soft probabilities from
seismic attributes and other sources of information. In International geostatistics congress.

Bjørlykke, K., 1993, Fluid flow in sedimentary basins. Sedimentary Geology, 86(1), pp 137-
158.

Bjørlykke, K., 2010, Petroleum geoscience: From sedimentary environments to rock physics.
Springer.

Bortoli, L.J., Alabert, F., Haas, A. and Journel, A.G., 1992, Constraining stochastic images
to seismic data. In Soares A., Ed., In proceeding: International Geostatistics Congress,
Troia, Kluwer Academic Publication.

Buland, A., Kolbjørnsen, O., Hauge, R., Skjæveland, Ø. and Duffaut, K., 2008, Bayesian
lithology and fluid prediction from seismic prestack data. Geophysics, 73(3), pp C13-C21.



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

199

Chakraborty, A. and Okaya, D., 1995, Frequency-time decomposition of seismic data using
wavelet-based methods. Geophysics, 60(6), pp 1906-1916.

Chehrazi, A. and Rezaee, R., 2012, A systematic method for permeability prediction, a Petro-
Facies approach. Journal of Petroleum Science and Engineering, 82, pp 1-16.

Chiles, J. P. and Delfiner, P., 1999, Modeling spatial uncertainty. Geostatistics, Wiley Series
in Probability and Statistics. New York: Wiley Interscience.

Clemetsen, R., Hurst, A.R., Knarud, R. and Omre, H., 1990, A computer program for
evaluation of fluvial reservoirs, North Sea Oil and Gas Reservoirs II: Graham and Trotman.
Springer Netherlands. pp 373-385.

Coleou, T., 2002, May, Time-lapse filtering and improved repeatability with automatic
factorial co-kriging. AFACK. In 64th EAGE Conference & Exhibition.

Costa, A., 2006, Permeability‐porosity relationship: A reexamination of the Kozeny‐Carman
equation based on a fractal pore‐space geometry assumption. Geophysical research letters,
33(2).

Damsleth, E., Tjolsen, C.B., Omre, H. and Haldorsen, H.H., 1992, A two-stage stochastic
model applied to a North Sea reservoir. Journal of Petroleum Technology, 44(4), pp 402-
486.

Dashtian, H., Jafari, G. R., Lai, Z. K., Masihi, M. and Sahimi, M., 2011, Analysis of cross
correlations between well logs of hydrocarbon reservoirs. Transport in porous media, 90(2),
pp 445-464.

de Waal, J. A., 1986, On the rate type compaction behaviour of sandstone reservoir rock.
Technische Hogeschool Delft.

Delfiner, P., Peyret, O. and Serra, O., 1987, Automatic determination of lithology from well
logs. SPE Formation Evaluation, 2(03), pp 303-310.

Dewhurst, D. N., Aplin, A. C., Sarda, J. P. and Yang, Y., 1998, Compaction‐driven evolution
of porosity and permeability in natural mudstones: An experimental study. Journal of
Geophysical Research: Solid Earth (1978–2012), 103(B1), pp 651-661.

Doyen, P. M., Psaila, D. E. and Strandenes, S., 1994, January. Bayesian sequential indicator
simulation of channel sands from 3-d seismic data in the Oseberg field Norwegian North
Sea. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

Doyen, P., Den Boer, L. and Pillet, W., 1996, June. Seismic porosity mapping in the Ekofisk
Field using Bayesian stochastic simulation. In 58th EAEG Meeting.

Drews, M., 2012, Modelling stress-dependent effective porosity-permeability relationships of
metre-scale heterogeneous mudstones. PhD Thesis, Newcastle University, 164 p.

Dubrule, O., Thibaut, M., Lamy, P. and Haas, A., 1998, Geostatistical reservoir
characterization constrained by 3D seismic data. Petroleum Geoscience, 4(2), pp 121-128.



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

200

Dubrule, O., 2003, Geostatistics for seismic data integration in Earth models. 2003
Distinguished Instructor Short Course (No. 6), SEG Books.

Falivene, O., Arbués, P., Howell, J., Muñoz, J. A., Fernández, O. and Marzo, M., 2006,
Hierarchical geocellular facies modelling of a turbidite reservoir analogue from the Eocene
of the Ainsa basin, NE Spain. Marine and Petroleum Geology, 23(6), pp 679-701.

Fournier, F. and Derain, J. F., 1995, A statistical methodology for deriving reservoir
properties from seismic data. Geophysics, 60(5), pp 1437-1450.

Frey-Martínez, J., Cartwright, J. and James, D., 2006, Frontally confined versus frontally
emergent submarine landslides: a 3D seismic characterisation. Marine and Petroleum
Geology, 23(5), pp 585-604.

Geertsma, J., 1973. Land subsidence above compacting oil and gas reservoirs. Journal of
Petroleum Technology, 25(6), pp 734-744.

Gray, F. D., Anderson, P. F. and Gunderson, J. A., 2006, Prediction of shale plugs between
wells in heavy oil sands using seismic attributes. Natural Resources Research, 15(2), pp
103-109.

Gray, D., 2011. Oilsands: Not your average seismic data. CSEG abstract.

Grijalba-Cuenca, A., Torres-Verdin, C. and van der Made, P., 2000, Geostatistical inversion
of 3D seismic data to extrapolate wireline petrophysical variables laterally away from the
well. In proceedings: SPE Annual Technical Conference and Exhibition. 63283.

Guardiano, F.B. and Srivastava, R.M., 1993, Multivariate geostatistics: beyond bivariate
moments. In Geostatistics. Springer Netherlands.ith efficiency. In SPE annual technical
conference Troia’92, pp 133-144.

Haas, A. and Dubrule, O., 1994, Geostatical inversion-a sequential method of stochastic
reservoir modelling constrained by seismic data. First Break, 12(11).

Haas, A. and Formery, P., 2002, Uncertainties in facies proportion estimation I. Theoretical
framework: the Dirichlet distribution. Mathematical geology, 34(6), pp 679-702.

Hampson, D. P., Schuelke, J. S. and Quirein, J. A., 2001, Use of multiattribute transforms to
predict log properties from seismic data. Geophysics, 66(1), pp 220-236.

Handayani, T., Irwanzah, Z., Taslim, M., Kurniadi, D., Dogra, S., Nalonnil, A. and Carillo,
P., 2011, Exploring the interwell reservoir space with crosswell imaging and interpretation:
an example of multi scale data integration from Indonesia. In International Petroleum
Technology Conference. International Petroleum Technology Conference.

Harris, J.M, Nolen‐Hoeksema, R.C., Langan, R.T., Van Schaack, M., Lazaratos, S.K. and
Rector, III, J.W., 1995, ”High‐resolution crosswell imaging of a west Texas carbonate
reservoir: Part 1—Project summary and interpretation.” High‐resolution crosswell imaging
of a west Texas carbonate reservoir: Part 1—Project summary and interpretation 60, special
issue, pp 667-681.



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

201

Hart, B. S. and Balch, R. S., 2000, Approaches to defining reservoir physical properties from
3-D seismic attributes with limited well control: An example from the Jurassic Smackover
Formation. Alabama. Geophysics, 65(2), pp 368-376.

Hegstad, B.K. and Henning, O., 2001, Uncertainty in production forecasts based on well
observations, seismic data, and production history. SPE Journal, 6(4), pp 409-424.

Hitchon, B. and Hays, J., 1971, Hydrodynamics and hydrocarbon occurrences, Surat Basin,
Queensland, Australia. Water Resources Research, 7(3), pp 658-676.

Holden, L., Hauge, R., Skare, Ø. and Skorstad, A., 1998, Modeling of fluvial reservoirs with
object models. Mathematical Geology, 30(5), pp 473-496.

Ingram, G. M., Urai, J. L. and Naylor, M. A., 1997, Sealing processes and top seal
assessment. Norwegian Petroleum Society, Special Publications, 7, pp 165-174.

Insalaco, E., Marion, D., Michel, B. and Rowbotham, P., 2001, Reservoir-scale 3D
sedimentary modelling: Approaches and impact of integrating sedimentology into the
reservoir characterization workflow. In proceedings: AAPG Annual Meeting.

Journel, A.G., and Gomez-Hernandez, J.J., 1993, Stochastic imaging of the Wilmington
clastic sequence. SPE formation Evaluation, 8(1), pp 33-40.

Kalkomey, C. T., 1997, Potential risks when using seismic attributes as predictors of
reservoir properties. The Leading Edge, 16(3), pp 247-251.

Kohonen, T., 1997, Learning vector quantization. In Self-Organizing Maps. Springer Berlin
Heidelberg. pp. 203-217.

Kohonen, T., 1998, The self-organizing map. Neurocomputing, 21(1), pp 1-6.

Lamy, P., Swaby, P.A., Rowbotham, P.S., Dubrule, O. and Haas, A., 1998, From seismic to
reservoir properties using geostatistical inversion. In proceedings: SPE annual technical
conference, pp 535-545.

Lee, P. M., 2012, Bayesian statistics: an introduction. John Wiley & Sons.

Leonard, J. A., Kramer, M. A. and Ungar, L. H., 1992, Using radial basis functions to
approximate a function and its error bounds: IEEE Trans. on Neural Networks, 3, pp 624–
627.

Lia O., Tjelmeland H. and Kjellesvik L.E., 1996, Modeling of facies architecture by marked
point models. In: Baafi E, Schofield N (eds) Geostatistics Wollongong’96, 1, Kluwer
Academic, Dordrecht, pp 386–387.

Lo, T.W. and Bashore, W.M., 1999, Seismic constrained facies modeling using stochastic
seismic inversion and indicator simulation a North Sea example. In proceedings: 1999 SEG
Annual Meeting. Society of Exploration Geophysicists.

MacDonald, A.C., Berg, J.I., Skare, Ø. and Holden, L., 1995, Constraining a stochastic
model of channel geometries using seismic data. In proceeding: 57th EAEG Meeting.



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

202

Malki, H.A. and Anwar, M.S., 2003, Determination of lithofacies from well logs using
unsupervised neural network model. The Technology Interface. Electronic Jour. Eng. Tech.,
5(1), pp.947–964

Magara, K., 1986, Geological models of petroleum entrapment. Springer.

Marfurt, K. J. and Kirlin, R. L., 2001, Narrow-band spectral analysis and thin-bed tuning.
Geophysics, 66(4), pp 1274-1283.

Marinho, E.B.S., Sousa, A.M.Y.R. and Andrade, R.F.S., 2013, Using detrended cross-
correlation analysis in geophysical data. Physica A: Statistical Mechanics and its
Applications, 392(9), pp 2195-2201.

Mazur, D R., 2010, Combinatorics: a guided tour. MAA Textbooks.

McArdle, N. J. and Ackers, M. A., 2012, Understanding seismic thin-bed responses using
frequency decomposition and RGB blending. First Break, 30(12).

Moscardelli, L. and Wood, L., 2008, New classification system for mass transport complexes
in offshore Trinidad. Basin Research, 20(1), pp 73-98.

Mukerji, T., Jørstad, A., Avseth, P., Mavko, G. and Granli, J. R., 2001, Mapping lithofacies
and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock
physics. Geophysics, 66(4), pp 988-1001.

Neal, J. and Krohn, C., 2012, Higher Resolution Subsurface Imaging, Article 5 in R&D
Grand Challenges-JPT Article Series. Paper SPE 163061. SPE Journal of Petroleum
Technology, pp 44-53.

Nivlet, P., Lefeuvre, F. and Piazza, J. L., 2007,3D seismic constraint definition in deep-
offshore turbidite reservoir. Oil & Gas Science and Technology-Revue de l'IFP, 62(2), pp
249-264.

Park, N.W. and Jang, D.H., 2014, Comparison of geostatistical kriging algorithms for
intertidal surface sediment facies mapping with grain size data, The Scientific World
Journal, 2014, 11 p.

Pyrcz, T. W. and Garlacz, R., 2012, The presence–absence situation and its impact on the
assemblage structure and interspecific relations of Pronophilina butterflies in the
Venezuelan Andes (Lepidoptera: Nymphalidae). Neotropical entomology, 41(3), pp 186-195.

Rao, C. R., 1973, Linear statistical methods and its applications. Second Edition, Wiley
Series in Probability and Statistics.

Revil, A., Grauls, D. and Brévart, O., 2002, Mechanical compaction of sand/clay mixtures.
Journal of Geophysical Research: Solid Earth (1978–2012), 107(B11), ECV-11.

Rocha, M. P., Leite, L. W., Santos, M. D. L. and Farias, V. J. D. C., 2007, Attenuation of
multiple in reflection seismic data using Kalman–Bucy filter. Applied mathematics and
computation, 189(1), pp 805-815.



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

203

Rogers, S.J., Fang, J.H., Karr, C.L. and Stanely, D.A., 1992, Determination of lithology from
well logs using neural networks. AAPG Bulletin, 76, pp.731–739.

Rowbotham, S.P., Marion, D., Lamy, P., Swaby, P.A. and Rabary, G., 2000, Detailed
reservoir characterisation of the Elgin Field using geostatistical inversion. In proceeding:
62nd EAGE Conference and Exhibition.

Ryser, H. J., 1963, Combinatorial mathematics. MAA Textbooks, New York.

Sayman, A., 1992, Application of Kalman filter to synthetic seismic traces. Jeofizik, 6(2), pp
67-75.

Shrestha, R. K., and Boeckmann, M., 2002, January, Stochastic seismic inversion for
reservoir modeling. In 2002 SEG Annual Meeting. Society of Exploration Geophysicists.

Sinha, S., Routh, P. S., Anno, P. D. and Castagna, J. P., 2005, Spectral decomposition of
seismic data with continuous-wavelet transform. Geophysics, 70(6), P19-P25.

Specht, D. F., 1991, A general regression neural network. Neural Networks. IEEE
Transactions on, 2(6), pp 568-576.

Strébelle S. and Journel, A.G., 2000, Sequential simulation drawing structures from training
images. In: Kleingeld, W.J. and Krige, D.G. (eds), Geostatistics 2000, 6th international
geostatistics congress, Geostatistical Association of Southern Africa, Cape Town, South
Africa, pp 381–392.

Strebelle, S., 2002, Conditional simulation of complex geological structures using multiple-
point statistics. Mathematical Geology, 34(1), 1-21.

Strebelle, S. and Levy, M., 2008, Using multiple-point statistics to build geologically
realistic reservoir models: the MPS/FDM workflow. Geological Society, London, Special
Publications, 309(1), pp 67-74.

Viseur, S., 1999, Stochastic boolean simulation of fluvial deposits: a new approach
combining accuracy and efficiency. In Proceedings: SPE annual technical conference and
exhibition, Houston.

Wang, G. and Carr, T.R., 2012, Methodology of organic-rich shale lithofacies identification
and prediction: a case study from marcellus shale in the Appalachian basin. computers and
geosciences, 49, pp 151-163.

Wang, G. and Carr, T.R., 2013, Organic-rich Marcellus Shale lithofacies modeling and
distribution pattern analysis in the Appalachian Basin. AAPG bulletin, 97(12), pp 2173-
2205.

Wang, G., Carr, T.R., Ju, Y. and Li, C., 2014, Identifying organic-rich Marcellus Shale
lithofacies by support vector machine classifier in the Appalachian basin. Computers &
Geosciences, 64, pp 52-60.

Wolff, M., and Pelissier-Combescure, J., 1982, Faciolog—automatic electrofacies
determination.in Transactions, 23rd annual logging symposium, paper FF, Society of
Professional Well Log Analysts, Houston, 23 p.



Chapter 4 Probabilistic Prediction of Lithology in Mud-Rich Sediment…

204

Yarus, J.M., Yang, K., Sriisraporn, S., Chuemthaisong, N. and Sangwongwanich, K., 2000,
Integrating 3d seismic and geostatistics; building a 3D model of a Tertiary deltaic and
shallow marine deposit Malay Basin Offshore Gulf of Thailand. In proceeding: Offshore
Technology Conference.

Yu, G., Marion, B., Bryans, B., Carrillo, P., Wankui, G., Yanming, P. and Fanzhong, K.,
2008, Crosswell seismic imaging for deep gas reservoir characterization. Geophysics, 73(6),
pp B117-B126.



Chapter 5 Summary and Conclusions

205

5 Summary and Conclusions



Chapter 5 Summary and Conclusions

206

5.1 Summary and key results

The key results of this research should be seen in the light of the case study

used. Although West Africa case study has high-density post-stack time migrated

(PSTM) seismic data with good quality log suites and variable mud-rich sediment

sequences, the derived correlations might be different for other seismic data sets and

sedimentary basins. Hereby, the developed approach should be considered as a

basis/starting point for a generic quantitative log and seismic analysis, thus facies

modelling, in heterogeneous mud-rich sediments. Application of other seismic

volumes (e.g. pre-stack, post-stack depth migrated (PSDM), and multi-component)

and logs (e.g. image log, dip meter, and dipole sonic) can refine the workflow and

improve the efficiency of predictions, but the templates, schemes and key steps can

be applicable to any case study, where limited conventional log and reservoir

sample/core data are available with a high-density seismic volume.

In the framework of logfacies recognition, we found that the majority of

conventions for log processing and design factors are not applicable to mud-rich

sediment sequences. Thus a new logfacies recognition approach was introduced in

which the generic IPSOM engine was supplied with series of new pre-processing,

design constraints and validation techniques. In West Africa case study, the new

approach led to recognising seal logfacies based on the conventional log suite and to

extrapolating core descriptions from the reservoir to the fine-grained seal unit.

We showed that the recognition accuracy is irrespective of electrofacies

classification scheme, log detrending or logging tool calibration, and mainly

controlled by IPSOM design parameters, knowledge derived from supporting data

(such as seismic) and input log types. In West Africa case study, the overall

recognition accuracy in local calibration cases reached up to 80-90% in the pilot

wells. Although few pilot wells were provided for the blind recognition, the

recognition accuracy significantly improved using the seismic guide so that the

similarity of seismic characters along the seal formation used as the selection criteria

for training well(s). We concluded that in mud-rich sediment sequences the degree of

heterogeneity of vertical distribution of logfacies can be considered as a good proxy

for the level of seismic amplitude and frequency at well locations.
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In the seismic attribute analysis, we have developed the very first quantitative

approach for textural seal risk assessment based on volumetric seismic attributes.

Application of the proposed approach on modern seismic surveys can save days of

manual mapping time and reduce exploration risk by basing decisions on seal texture

and their proven link to leakage elements. By defining the seal risk factor (SRF)

attribute we were able to take into account all three leakage important characters (i.e.

sandiness, chaoticness and verticality) according to the proposed seal texture model.

At the pick-trough time interval scale (in case study A ~ 10 m), we showed that

synthetic SRF curve can be estimated from a linear combination of multiple logfacies

frequencies within a mud-rich section and the less risky seismic units often occur

with higher percentage of muddy facies and vice versa. The SRF can effectively

detect areas with good seal quality; however, delineated areas with high SRF need

further investigations (e.g. wellbore data integration and AVO analysis) before

making conclusive interpretation. The functionality of the SRF can be improved if

the component attributes extract from other 3D seismic sources (e.g. pre-stack or

PSDM seismic volumes) or introduce fractures into the seal texture model using

azimuthal-stack data.

In a final step, the seismic attribute analysis result has been integrated with

the logfacies recognition to generate lithofacies models within mud-rich sediment

sequences. The mud lithofacies model allows us to make informed seismically-

driven decisions about well locations with lower risk of seal breaching or to take into

account lithological distributions and heterogeneities within mud-rich sediment

sequences in basin flow simulation, CO2 sequestration or waste disposal studies. In

this study, a three-step approach was proposed to build mathematical models for

translating seal quality attributes into frequency/probability of six different fine-

grained lithofacies within seal unit-4 in West Africa case study. A combination of

cross-plotting, forward multiattribute regression and Bayesian techniques has been

applied at the pick-trough time interval scale to estimate the probabilistic mud-rich

facies frequencies. We kept the same reflection interval selections as conducted

earlier in this thesis. We showed that a single seismic seal quality attribute can

reliably discriminate sand and mud lithoclasses through nonlinear relationships. At

the next level, forward multiattribute regression analysis has been implemented to

split the mud lithoclass into distorted and non-distorted muds. Non-distorted muds
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include the group of mud facies with layered and organised seismic texture, hence

lower leakage risk. However, hemipelagic shale-dominated intervals with good seal

quality often occurred with poorly resolved and distorted seismic texture. This could

indicate the limitation of seismic resolution in high-density seismic at full seismic

bandwidth, which should alarm geomodellers dealing with mud-rich sediment

sequences dominated by hemipelagic shale facies. Mud sub-lithoclasses have been

divided into their logfacies components using Bayesian analysis so that the

prediction significantly relied on the wellbore and recognition results rather than

seismic data. The lithology predicted in three lithological levels/resolutions

associated with different level of uncertainty. The developed approach is generic and

can be applied to other siliciclastic seal sequences as long as a high-density 3D

seismic volume, conventional log suites (at reservoir and seal intervals) and reservoir

core/sample data are provided.

5.2 Limitations and future work

Despite the growing importance of mud-rich sediments, their seismic-log

characterisation is still at the early stage so that substantial future work can be

considered for the current study:

 Although the developed approach can work with any high-density seismic

amplitude cube, the entire seal quality component attributes have been

computed on PSTM seismic amplitude cubes only. Applying different

seismic amplitude cubes such as pre-stack and PSDM cubes might give

different results and should be addressed/compared in future studies, in

particular with regard the relations between seismic amplitude and sandiness

(in a pre-stack amplitude cube) and seismic local structural dip and sediment

verticality (in a PSDM amplitude cube).

 In addition, in this study SRF only includes three seal quality component

attributes. The fourth seal quality component attribute, fracture, should be

considered in future studies, providing that seismic azimuthal-stack data are

available for azimuthal anisotropy analysis (AVAZ). Fractures can play an

important role in the fluid flow within mud-rich sediments; however, their

seismic interpretation can be tricky and misleading using PSTM data.
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 In Chapter 3, the results were based on the assumption that seismic characters

in mud-rich seal units are mainly controlled by their corresponding geological

characteristics. This may only be valid in siliciclastic mud-rich sediment

sequences with relative lateral continuity and low hydrocarbon saturation.

The assumption is no longer valid when a mud-rich sediment sequence is

associated with calcareous sediments or if the seismic reflections are

significantly affected by pore fluid content (e.g. gas pocket). Therefore,

further studies should include mud-rich overburden sediment sequences with

a wider range of lithology and geological settings in order to achieve more

generic log-seismic lithology predictions.

 The application of SRF to the whole seismic volume should be treated with

care for depth dependency of the seismic attributes because relative acoustic

responses from muds and sands vary with depth. Furthermore, given the

whole seismic volume, there are other sedimentary units than seals which

may share similar seismic characteristics, and hence be difficult to

discriminate using an interactive attributes combination. It is, therefore,

recommended to calculate a feature-based seismic SRF using neural network

training.

 Seismic quality strongly controls the extent to which structural/stratigraphic

interpretations can be made in low amplitude mudstones. In the current

research, we did not undertake any post-processing of the seismic data but

recognise that this could help to improve signal:noise ratio and thus reduce

uncertainties in the quantitative interpretations and seismic-well ties. This

could involve improvement of routine filtering such as tuning effect removal

by wedge methods in hemipelagic seismic facies or more complicated

seismic processing like Kalman filters.

 This study is mainly focused on the evaluation of seal risk based on the

internal texture and using volume attributes. Although chaoticness and dip

attributes do help to detect faults and other discontinuities, the potential

importance of vertical conduits for leakage means that a bypass cube would

be a sensible, complementary volume for our established SRF volume. In
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addition, RMS slices of SRF can be compared / calibrated with the textures

detected by seismic surface attributes.

 Finally, image log and dip-meter log data have not been used in the logfacies

recognition process. Since core data are rare in seal intervals, these log data

can be used not only to cross-validate the logfacies recognition results, but

also to quality control the attribute computation results (e.g. dip attribute),

and finally improve the robustness of the lithology prediction results.
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