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A Singular Theta Lift and the Shimura
Correspondence

Abstract

Modular forms play a central and critical role in the study of modern number theory. These
remarkable and beautiful functions have led to many spectacular results including, most fa-
mously, the proof of Fermat’s Last Theorem. In this thesis we find connections between these
enigmatic objects. In particular, we describe the construction and properties of a singular

theta lift, closely related to the well known Shimura correspondence.

We first define a (twisted) lift of harmonic weak Maass forms of weight 3/2— k, by integrating
against a well chosen kernel Siegel theta function. Using this, we obtain a new class of auto-
morphic objects in the upper-half plane of weight 2 — 2k for the group I'o(N). We reveal these
objects have intriguing singularities along a collection of geodesics. These singularities divide
the upper-half plane into Weyl chambers with associated wall crossing formulas. We show our
lift is harmonic away from the singularities and so is an example of a locally harmonic Maass

form. We also find an explicit Fourier expansion.

The Shimura/Shintani lifts provided very important correspondences between half-integral
and even weight modular forms. Using a natural differential operator we link our lift to these.
This connection then allows us to derive the properties of the Shimura lift. The nature of the
singularities suggests we formulate all of these ideas as distributions and finally we consider

the current equation encompassing them.

This work provides extensions of the theta lifts considered by Borcherds (1998), Bruinier
(2002), Bruinier and Funke (2004), Hovel (2012) and Bringmann, Kane and Viazovska (2013).
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Chapter 1

Introduction

1.1 Motivation

Number theory studies the properties of the integers and is one of the most natural, fascinating
and oldest areas of mathematics. Many of the problems (unlike lots of areas of mathematics)
can be simply stated and understood. This is part of what makes this subject intrinsically
appealing to professional mathematicians and the layperson alike, as well as the obvious im-

portance of investigating some of the most fundamental objects in mathematics.

Questions in number theory have been investigated by many of the most renowned mathe-
maticians in history from Euclid to Euler. Gauss famously considered mathematics to be the
“queen of the sciences” and number theory to be the “queen of mathematics”. This subject
was for many years, considered to be entirely abstract, with Leonard Dickson commenting
“Thank God that number theory is unsullied by any application”. However in recent years
many uses have been found. These include contributions in theoretical physics, combinatorics,
chemistry and computer science. Arguably the most significant of these is in modern cryptog-

raphy, with the security of most online communications relying on ideas from number theory.

Some examples of number theoretic questions include: are there infinitely many primes? how
many integer solutions are there to certain polynomial equations? and how many ways can
we write a number as a sum of positive integers? The Riemann hypothesis and the Birch and
Swinnerton-Dyer conjecture are further examples, and they form two of the seven Millenium
Prize Problems (a list of some of the most important and difficult mathematical problems,

each with an attached $1 million prize).

The simplicity of stating problems in number theory however belies the sophistication of the
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mathematical objects often needed to find solutions. One of the most significant of these
tools, is modular forms. These form one of the largest areas of research in modern number
theory. These powerful and striking objects have many “symmetries”, important relationships

to elliptic curves and often beguiling Fourier coefficients.

This thesis is concerned with the properties of modular objects and the links between them.
As detailed in Section the topics we investigate will include theta functions, theta lifts,
half-integral weight harmonic weak Maass forms and locally harmonic weak Maass forms. A

very small selection of famous headlines in these areas, include results on:

e Solutions to the “kissing number problem” in 8 and 24 dimensions [CS99].

e The Birch and Swinnerton-Dyer conjecture (in the case of rank 1) using Heegner points
and weight 3/2 modular forms |GZ86l|GKZ87].

e A recently claimed proof of the umbral moonshine conjecture [DGO15].

e A resolution (conditional on parts of Birch and Swinnerton-Dyer conjecture) to the
“congruent number problem”, using the Shimura correspondence [Shi73,Tun83lKob93].

e Representation numbers, using the classical theory of theta functions [DS05].

e An explicit finite formula for the partition function, using a theta lift between harmonic

weak Maass forms [BO13].

e And of course the proof of Fermat’s last theorem [Wil95].

1.2 Literature Overview

In this section we succinctly discuss the literature and history related to this thesis. From now
on (and throughout this work) we will assume knowledge of classical elliptic modular forms.
If not, suggested introductory texts are [Kob93,[DS05, BvdGHZ08|Kil08]. Formal definitions

of many of the terms in this introduction can be found later in Chapter

The theory of modular forms of half-integral weight really began with Shimura, in a famous
paper [Shi73]. He laid the foundations by constructing a family of maps from half-integral
weight cusp forms and even weight holomorphic modular forms. The significant results of
Waldspurger [Wal81] and Kohnen and Zagier [KZ81|, used these ideas to show there is a
coefficient of a half-integral weight modular form that agrees with the central value of the
L-function of an even weight modular form. Tunnel [Tun83] then applied these results to the

aforementioned congruent number problem.
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The Shimura correspondence was first realised as a theta lift by Niwa [Niw75]. Theta lifts
provide important relationships between automorphic forms of different groups and often al-
low us to construct concrete examples. Shintani [Shi75] described a closely related theta lift.
This mapped forms “in the opposite direction” to the Shimura correspondence and formed an
adjoint lift. Much later Borcherds [Bor98| defined a notable singular theta lift of vector-valued
forms. This encompassed the Shimura lift, as well as many other examples, such as the Grit-
senko |Gri88] and Doi-Naganuma lifts [DN70]. Borcherds used a regularisation (Harvey and
Moore [HM96]) of the theta integral to enlarge the inputs of his lift to weakly holomorphic
modular forms. The Borcherds lift also gave rise to remarkable product expansions of some

automorphic forms.

These theta lifts can also be viewed in a more general framework. They are examples of the
theta correspondence between automorphic forms on two groups which form a dual reductive
pair. This is in the sense of Howe duality [How79|. In the case of Borcherds’s singular theta

correspondence the dual pair is the orthogonal group and the modular group.

More recently Bruinier [Bru02| extended the constructs from [Bor98|] to some non-holomorphic
Poincaré series. This led to the thorough introduction of harmonic weak Maass forms by Bru-
inier and Funke [BF04]. Harmonic weak Maass forms are natural generalisations of classical
modular forms. This coincided with the work of Zwegers [Zwe02]. Zwegers showed that Ra-
manujan’s famous mock theta functions (from his famous death bed letter to Hardy) were
holomorphic parts of harmonic weak Maass forms. These developments were the catalyst for
a lot of recent exciting results and applications. In [BF04] they also introduce a new Borcherds
lift for arbitrary signature and lift harmonic weak Maass forms. They prove this lift is adjoint

to the Kudla-Millson lift [KM90].

Locally harmonic weak Maass forms were first formally defined by Bringmann, Kane and
Kohnen [BKK12|. These forms are similar to harmonic weak Maass forms but may also ex-
hibit singularities. Some examples of these objects have been constructed using theta lifts.
Hovel [Hov12| describes a twisted singular theta lift of vector-valued weight 1/2 harmonic
weak Maass forms. He effectively works in a space of signature (2,1) and his lift generates
weight 0 locally harmonic Maass forms. He links his lift to the Shimura lift. Bringmann, Kane
and Viazovska |[BKV13| also consider a very similar lift for higher weights. Specifically, they
lift some scalar-valued non-twisted Poincaré series of full level and weight 3/2 — k. Here k € Z

is restricted to be even and k > 0.

Our work fits into the literature in the following respects. We will form a regularised twisted
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singular theta lift working in signature (2,1). In our case the theta correspondence is for the
dual pair: O(2,1) and the modular group. We will use the same kernel function as [BKV13]
(see also [BKZ14]). Let k € Z,k > 1. We will then lift vector-valued harmonic weak Maass
forms of weight 3/2 — k to recover locally harmonic Maass forms of weight 2 — 2k for the group
To(N). In particular, we will directly extend the works in [Bor98|Bru02,BF04,Hov12,BKV13].
We relate our lift to the Shimura and Shintani lifts, via a differential operator, and obtain a

commutative diagram.

1.3 Thesis Overview

In this section we summarise the main results of this thesis. This also provides an overview

of the content and key ideas in each chapter. We will often omit technical details.

Chapter [2, Background

We introduce the basic mathematical objects we will need throughout. We fix 7 = u+1iv € H.
We first comprehensively discuss quadratic spaces and lattices. We denote (V, Q) for a rational
non-degenerate quadratic space of signature (b*,b7), L for a even lattice L C V, L' for the
dual lattice and L’ /L for the (abelian) discriminant group. We then compactly derive the well

known Weil representation on the metaplectic group.

In this thesis we need to deal with Siegel theta functions on L C V and various half-integral
weight forms. So we will use vector-valued forms transforming under the action of I' € Mpy(R)
(the metaplectic group) with respect to the Weil representation p;, where Mp,(R) is a double
cover of SLy(R). We let x € $7Z. Then we will call a function f : H — C[L’/L] an automorphic

form A, ,, i

The functions that we will lift are generalisations of modular forms My, ,, called harmonic weak
Maass forms (see [BF04]) which we denote as H,, ,, . Instead of requesting holomorphicity we
request the weaker condition that f vanishes under a Laplacian operator A,. We also have a

growth condition on the cusps. We know f € H, ,, have Fourier expansions of the form

Z Z (n,h)e(nt)en + Z Zc n, h)T'(1 — k,4w|n|v)e(nt)en

heL’/L n>—o0 heL’/Ln<0

where I'(+, -) is the incomplete gamma function and ey, is the standard basis element of C[L’/L]
corresponding to h € L'/L. Crucially there is a differential operator &, = 2i0" -2 . This maps
surjectively to the cusp forms:

€Ii : Hli,pL — SQ*I{,ﬁL'



1.3. Thesis Overview 5

We also introduce (scalar-valued) locally harmonic weak Maass forms LH, (k € 2Z). These
forms mirror H, but are only harmonic within connected components, away from a measure
zero exceptional set E. They have polynomial growth at the cusps. Finally we use the
Weil representation to construct some Siegel theta functions. We denote Gr(V(R)) for the
Grassmannian of V(R), which is the set of negative definite b~ -dimensional subspaces in
V(R). If b© =2 or b~ = 2 then Gr(V(R)) can be given a complex structure. We then define
for z € Gr(V(R)),

OL(rz) =" > > e(QNu+Q.(Niv)es (1.3.1)
heL’/L NeL+h

where Q. (\) = Q(A,+) — Q(X;) > 0 is the majorant. There is also a more general definition

involving an additional polynomial term. We have two significant properties:
} . pt—p— . =
1. ©p(7, 2z) has weight 2=—=>— in 7 for I.

2. O (7, 2) is invariant in z under the action of the orthogonal group O(L).

Chapter [3], The Setting
We first fix (V, @) to have signature (2,1). This will form the setting for the rest of our work.
We also fix N € N. Then (V, Q) has an explicit realisation as

Vi={A e My(Q) | tr(A) =0}
with quadratic form Q(\) = —N det(\). We fix L as the lattice

p={(t)

which is even and of level 4N and we have L' /L = 7Z/2N7Z. This lattice is of particular interest

a,b,cEZ}

as each A\ € I/ corresponds to an integral binary quadratic form.

We notice that v € GL2(Q) acting via conjugation on A € V' is isometric i.e. Q(7.)\) = Q(N).
This leads to the significant accidental isomorphism PSLy(Q) 22 SO (V). We have that T'o(N)
acts trivially on L'/ L. The idea is to then consider I'g(N) acting via conjugation on V and z (as
opposed to O(L) from earlier). In signature (2,1) we can also realise Gr(V (R)) as the real hy-
perbolic space of dimension 2 which we also identify with H. We fix z = z+iy € H = Gr(V(R))

and notice I'g(IV) then naturally acts on z € H via fractional linear transformations.

We define a genus character xp(A\), A € L’ (see [GKZ87|) where D is a fundamental discrimi-
nant. We also set r € Z such that D = r? (mod 4N). We will use xp(\) to twist the Siegel
theta functions. We show they will then transform in 7 with respect to a twisted Weil repre-

sentation p. If D > 0 then p = p, and if D < 0 then p = pr.
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We fix k € Z,k > 1. We then define two Siegel kernel functions that will generate the
singular theta lift and the Shimura lift. These are both adapted from (1.3.1) with some well
chosen polynomial terms and by twisting. We denote ©p ,. (7, z) for the kernel function and

D x(7,2) for the Shintani kernel function. These then have the following transformation
properties in both variables (Theorems 3.6.11)).
1. ©p k(7 2) has weight k — 3/2 in 7 for T. Tt has weight 2 — 2k in z for [o(N).

2. ©) . x(7, 2) has weight k +1/2 in 7 for I. It has weight 2k in —% for Io(V).

Chapter [, The Singular Theta Lift

We finally consider the main item of our work, the singular theta lift. We fix f € Hz/o_p5
from now on. We lift f by pairing it against the kernel function in a regularised Petersson
scalar product as follows:

reg

(1(7),8p,4(7.2)) dzgl“.

Ppnuenf) = [

TEF
We discussed in detail in Section[I.2lhow this fits in with previous work and in particular this is
an extension of the Borcherds lift [Bor98]. The asymptotic behaviour of f means this integral
could diverge in general, hence we have used a regularisation. This regularisation is a slightly
weaker version of the method introduced by Harvey, Moore and Borcherds [HM96| Bor98|.

There are then three main results in the chapter.

Theorem 1.3.1 (Theorems |4.1.3] 4.2.2} |4.3.7)).

1. The regularised integral ®p 1 (z, f) converges pointwise for any z € H.
2. ®p.,i(z, ) has weight 2 — 2k for T'o(N) and is a smooth function on H\Zp ,.(f) with
singularities along Zp ,(f).

3. For z ¢ H\Zp (f) then Aok ®Pp r1(2, f) = 0.

The first part tells us our definition makes sense and the integral converges everywhere. For
the second part, the weight in z is immediately clear from the definition and the transfor-
mation properties of Op , (7, 2). The set Zp ,.(f) is a finite linear combination of (twisted)
geodesic cycles associated to the principal part of f. In the upper half-plane model they can be
visualised as vertical half-lines and semi-circles perpendicular to the real line. These geodesics
divide H into connected components called Weyl chambers. The third part tells us that our

lift is locally harmonic and real-analytic within the components.

Let D)y be the geodesic associated to a A € L,Q(A\) > 0. We then find very explicit wall
crossing formulas (Theorem [4.2.4]) which tell us the nature of the singularities along Zp ,.(f).

In particular, if we cross a geodesic Dy then we have a polynomial jump, given by g,(\)*~! =
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(eNz? — bz + a)*~!. The value on a singularity is the average of the values of the adjacent
Weyl chambers at that point. These singularities are of a similar nature to those found in the

Heaviside step function.

Chapter [5, Partial Poisson Summation
The main aim is to rewrite ©p ., (7, 2) as a Poincaré series, (Theorem [5.4.5)). This will allow
us to then find the Fourier expansion of Op , (7, z) in the next chapter, using the Rankin-

Selberg unfolding trick.

Using the mixed model we do this by finding a Fourier transform and then applying partial
Poisson summation to rewrite Op , (T, z) in terms of some theta functions Z (7). This will
require a lot of technical work with some careful calculations. The rewritten form also allows

us to look at the asymptotic behaviour of Op . x(7, z) as y — oo, (Proposition [5.4.6]).

Chapter [6, The Fourier Expansion
The main aim is to find the Fourier expansion of ®p . x(z, f). To do this we first solve
some tricky integrals and evaluate an “additional piece”. A very simplified version (we omit

constants and set D = 1,7 = 1,k > 2) of the Fourier expansion is as follows.

Theorem 1.3.2 (Theorem [6.3.10). Fory > C, where C > 0 is “the maximum height” of the
semi-circle geodesics, then:

By (2, f) = c*( +) et ( 2N) k (mz + [ma))

m>1

+ miz:l nz;l ¢ (—Z\j, ;;LV) [e(nmz) + e(—nmz)T(2k — 1, 4mnmy)] n=".
Here By(x) is the kth Bernoulli polynomial and ((k) is the Riemann zeta function. We can in
fact also write the bottom part in terms of polylogarithms. We then make some observations.
The vertical half-line singularities are encompassed by the first periodic Bernoulli polynomial
in this expansion. The lift is trivial (just a constant) when f is a modular form. When f is a

cusp form it vanishes.

We then use this expansion to show ®p ;. (2, f) = O(y*) asy — oo (for k > 2), i.e. polynomial
growth, (Proposition . We also show using the Atkin-Lehner involutions that we have
similar expansions at the other cusps of I'g(IN), (Theorem [6.3.12). Putting all this together
with Theorem [[L3.1] means:

Theorem 1.3.3 (Theorem|[6.4.2). We have that ®p .k (2, f) is a locally harmonic Maass form
for the group I'o(N) with exceptional set Zp ,(f):

@p (2, f): Hyjop — LHy ox(To(N)).
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Chapter [7, The Shimura Lift

There is two main parts. We now fix g € Si11/2,, a cusp form. In the first part we define our
version of the (twisted) Shimura lift,

Op . 1(2,9) = /Teg <g(7’), Op k(T z)> Uk+1/2du$.
TEF v

This is a similar definition to the singular theta lift. But here instead we let our input be
cusp forms and we use the (twisted) Shintani theta function O, ., (7,2) as a kernel. As g
decays exponentially it is immediately clear that the integral converges and defines a smooth

real-analytic form of weight 2k. In Section [1.2| we discussed the importance of this lift. We

then have the following key theorem which links the two lifts.

Theorem 1.3.4 (Theorem [7.2.2). For f € H3/o_j 5 and z € H\Zp,(f) then

D2 a0 i()) = 30 20x (B0(2 )

This link allows us to give new proofs of many of the properties of the Shimura lift. These prop-
erties are already well known. Firstly we can find the Fourier expansion by applying &;_of to
Theorem [1.3.2] The operator &, clearly kills holomorphic terms so only the e(—nmz)I'(2k—
1, 4mnmy) terms will survive. In particular, let g(7) =3 ), cr/ /1 22,50 a(n, h)e(nT)e, and as-
sume D = 1,7 = 1,k > 2. Then (omitting constants) the Fourier expansion of the Shimura

lift is as follows:

Theorem 1.3.5 (Theorem (7.3.5). We have that

* k—1 m2 m
CIJk(z,g):ZZd o\ INE INd e(mz).

m>1d>1
dlm

The link in Theorem only held for z € H\Zp ,-(f). However £ _y, kills the holomorphic
polynomial singularities so we are able to smoothly continue the Fourier expansion in Theorem
to hold for all z € H. This expansion is clearly holomorphic. We can also use the Atkin-
Lehner involutions to find the expansion at other cusps. Using these facts we then show that

the Shimura lift maps cusp forms to cusp forms (normally).

Theorem 1.3.6 (Theorem |[7.3.8)). If k=1,D # 1 or k > 2 then:
(I)*D,T,k : Sk+1/2,p — SQk(FO(N)).
Ifk = 1,D =1 then (I)*D,r,k : Sk+1/2,p — Mgk(ro(N)) .

The results of this part can be summarised with the following commutative diagram:
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@
Hiz/o k5 : LHy 2, (T'o(N))

£3/2—k &2 ok
Sk+1/2,p e Sok(To(N))

Figure 1.1: Commutative Diagram

Distributions

The second and final part in Chapter[7]is to consider these ideas as distributions. We are moti-
vated to introduce this concept because of the nature of the singularities. We follow the ideas
in the classical theory. In particular we fix a space of test functions g(z) € AS(I'g(N) which
are smooth and rapidly decay. We fix h(z) € LH,(I'¢(N)). Then we define the distribution

associated to h(z) as

(8] (g) = (g, h)» = / (T

To(N)\H v

and define a “distributional derivative” as &.[h](g) = —(h,&—x(g9))s for g € AS_,. (To(N).
This concept of the derivative makes sense even on the singularities. We then consider what

happens when we apply these ideas to the singular theta lift.

Theorem 1.3.7 (Theorem The Current Equation). We have that

a2t [B000(2.0)) (9) = oan(@prae DN (0) = [ g2V

Zp.(f)
So the distributional derivative of a locally harmonic Maass form matches the classical deriva-
tive but also sees the singularities. We obtain as an immediate corollary (Corollary (7.4.7))
that

22k [Pprk(2, )] (9) = 2 [P] 1 k(% E3/2-1(f))] (g)—/, )g(Z)qz(A)kfld& (1.3.2)

Zp .
This is an improved version of Theorem We have one more useful corollary. We let
g € So(Tp(N)) i.e the test functions are holomorphic as well. Then g vanish under the &3
operator. So the left hand side of vanishes. This then tells us the integral of a cusp
form against the Shimura lift is equal to some period integral (Corollary . We also

formulate this in terms of the Shintani lift.



Chapter 2

Background

In this chapter we discuss the basic ideas and notation we will use in this thesis. This is
preliminary material most of which has been described before. We will be working in a ratio-
nal vector space equipped with a quadratic form of signature (b™,b7) (in Chapter 3 onwards
this will be fixed to be (2,1)), so Section discusses these. We will need various spaces
of automorphic forms which are discussed in Section [2.5] These have certain transformation
properties with respect to the Weil representation (on the metaplectic group) associated to
our lattice. This representation is derived in the Section We make this representation
explicit in the case of the dual reductive pair (O(V(R)),SLy(R)) in Section In Section
[2.6] we define Siegel theta functions, which we integrate against later. These are defined over
two variables and naturally have (O(V (R)), Mp,(R)) acting on them. In fact we consider the
action of a subgroup of GSpin(V'). This group is defined in Section where we also classify
the Clifford algebras of RV

In this chapter, to help completeness, I have attempted to comprehensively define all concepts
but at the same time doing this as succinctly and compactly as possible. Most results used
(which are often fairly well know and easy) will not be proven explicitly to save space and

instead we normally give a reference for verification for the curious reader.

2.1 Quadratic Forms and Lattices

We start by recalling some very basic definitions and concepts about quadratic forms and
lattices. These will form the environment in which we will be working throughout the thesis.
The material here is condensed and amalgamated from [O’MO00, Chapter 4], |[Ser73, Chapter 4],
[BvdGHZ08, Chapter 2], [Ger08], [Kit93| and [Sch85].

10
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Quadratic Forms
Following the treatment in [Ger08, Chapter 2], we set R to be an integral domain, R* the group
of invertible elements (the units) in R, F its field of fractions, F* = F — {0} a multiplicative

group and finally M a finite free R-module.

Definition 2.1.1. A bilinear form on M, is a mapping (-,-) : M x M — F that is R-linear
in both variables. We call a bilinear form symmetric if (x,y) = (y,z) for all x,y € M and
alternating if (z,x) =0 for allxz € M. Two elements x,y € M are orthogonal if (z,y) =0
(we sometimes denote this as x L y). For a subset A C M we denote A+ for the orthogonal
complement where

At ={ze M|z Ly forallyc A}.

Finally a bilinear form is non-degenerate if M+ = {0} and is called symplectic if it is both

alternating and non-degenerate.

Definition 2.1.2. A quadratic form on M, is a mapping Q : M — F such that
1. Q(rx) =r2Q(x) for allr € R,x € M.
2. (z,y) = Q(z+y) — Qx) — Qy) is a bilinear form.

We note this associated bilinear form (-, -) is symmetric. From now on we will assume R is not
of characteristic 2. Then we can put Q(z) = % (x,2) and we have a bijective correspondence
between symmetric bilinear forms and quadratic forms. We call the pair (M, Q) a quadratic
R-module over R. If R is a field, i.e. R = F and so M is a vector space over F', then we call
the pair (M, Q)) a quadratic R-space. If R is not a field but is a principal ideal domain then
we call the pair (M, Q) a quadratic R-lattice. From now on we set (M, Q) as a R-quadratic

module. There are two simple examples that we will also need later.

Example 2.1.3. Let b",b~ € Z be non-negative. We denote by RVTET g quadratic R-space
with M = RY" +*" which for elements z = (X1, %2, .. Tyt 1p—) € RY"+%" has an attached
quadratic form

2 2 2 2
Qz) =ai+ Ty — Ty — Ty

Example 2.1.4. For a,b,c € R, z,y € M we define a binary quadratic form [a, b, ] to be

a quadratic R-space in two variables where
Q(z,y) = [a,b,d(,y) = az® + bry + cy.
If a,b, c € Z we call this an integral binary quadratic form.

Remark 2.1.5. We will refrain from using the common notation 22 to denote (z,z) as z is a

vector and so “squaring z” is confusing.
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Definition 2.1.6. For a quadratic R-module a non-zero element x € M 1is called isotropic if
Q(z) = 0, otherwise x is called anisotropic i.e. Q(x) # 0. A quadratic R-module is isotropic
if it contains an isotropic element, otherwise it is called anisotropic. A quadratic R-module is

totally isotropic if M # 0 and every element of M is isotropic.

Definition 2.1.7. For a basis {b;}.—, of M there is a symmetric matriz T = (b;;) € M, (F)
with bj; = (b;,b;), which we call the Gram matriz with respect to that basis. We let the
discriminant of M be the class of det(T) in F*/(R*)? U{0}.

Setting v, w as the column vector of coordinates of =,y € M respectively in the basis {b;}]_,,
then Q(z) = %”UTTU and also (z,y) = vITw. Every quadratic R-space (M, Q) has an or-
thogonal basis (see for example [O’M00, Theorem 42.1], [Ser73, Theorem 4.1]) in which case
the associated Gram matrix is diagonal, and so a quadratic R-space is non-degenerate if and

only if det(T") # 0.

Definition 2.1.8. Let (M',Q’) be another quadratic R-module. An isometry is an injective
R-linear map o : M — M’ such that Q'(o(z)) = Q(z) for all x € M. If o is also surjective

then M and M' are called isometric.

Definition 2.1.9. The orthogonal group and special orthogonal group of M are

OM):={o: M — M| o is an isometry} ,
SO(M) :={0o € O(M) | det(c) =1}.

When discussing the Grassmannian space later (Definition [2.6.2)) we will make use of the

following result (often called “Witt’s extension theorem”).

Theorem 2.1.10 (Witt, [Ser73, Theorem 4.1.3]). Let (M,Q),(M',Q’) be isometric non-

degenerate quadratic R-modules. Then, for any subspace U C M’, any injective isometry

o:U — M extends to an isometry o : M — M'.

Proposition 2.1.11 ([Ger08, Theorem 2.40], [Ser73, Section 4.2.3]). For a non-degenerate
real quadratic R-space (V,Q), there exists unique non-negative b*,b~ € Z such that (V,Q) is

isometric to RV b (see Example .

Definition 2.1.12. Non-degenerate quadratic R-spaces (V,Q) are characterised by (b*,07)
and we call this the signature of (V,Q). If b= =0 then we call (V,Q) positive definite. If
bT =0 then we call (V,Q) negative definite. If b, b~ are both non-zero then we call (V,Q)

indefinite.

In the case that (V,Q) is a non-degenerate quadratic R-space with signature (b™,5~) then
O(V) and SO(V) will often be denoted as O(b™,b~) and SO(b™,b7).
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Lattices
We now look at some properties of lattices. From now on let R C F be a principle ideal

domain and let V' be an F-space.

Definition 2.1.13. We call L an R-lattice if L C V is an R-submodule, i.e. L =0 or there
exists a linear independent subset {@}Zl of V such that L = Rby + - -+ 4+ Rb,,. The rank of
L is the dimension of the finite free R-module L i.e. m. A lattice is of maximal rank if the
rank of L is the same as the dimension of V.. We call an element x € L primitive if x # 0

and x can be included in a basis of L.

Now attaching a quadratic form @ to V' we have a quadratic F-space (V, Q) and a quadratic
R-lattice (L, Q).

Definition 2.1.14. We say (L, Q) is unimodular if its Gram matriz is unimodular. We
define the scale of (L,Q), sL, as the fractional R-ideal (an R-submodule of F') generated by
the set {(z,y) | z,y € L}. We say (L,Q) is called integral if sL C R.

Definition 2.1.15. The dual lattice of (L, Q) is
L'={xeV|(z,y) CR forallye L}.

We can check that this is in fact an R-lattice. For a basis {b;};~, of L we have a dual

basis {b;}.,l such that (bi,b;) = §;5. Then L’ is the lattice generated by {b;} . We

i=1
observe L is integral if and only if L C L’ and also that L is unimodular if and only if

L = L', [Kit93 Proposition 5.2.1], |Ger08, Proposition 6.25]. We also have (L) = L. From
now on we restrict ourselves to the rational case we need later and so let (V,Q) be a non-

degenerate quadratic Q-space.

Definition 2.1.16. Let (V,Q) be a non-degenerate quadratic Q-space. In this work we will
call L a lattice, if L is a Z-lattice with L C V.

We denote by L~ for the Z-lattice with the quadratic form —@Q. The discriminant of a lattice
is equal to det(T) as (R*)? = 1. A lattice is then integral if (z,y) € Z for all z,y € L. A
lattice is unimodular if the discriminant of L is 1 or —1. An element z € L,z # 0 is primitive
if QrN L =Zx. Wesay L is even if (z,z) € 27Z for all x € L, otherwise it is called odd. The

dual lattice in this case is
L'={zeV|(z,y) €Zforallyec L}
and we call the following the level of L:

min{n € N|nQ(x) € Z forall x € L'} .
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We will say that the signature of a quadratic Q-space (V, Q) is the signature of the associated
real quadratic space V(R) := V ®g R that is equipped with the quadratic form Q(z ® r) =
r2Q(z) for x € V,r € R. We will say that the signature of a lattice L C V is the signature of
V.

Lemma 2.1.17 ([Str13| Section 2], [CS99, Section 15.7]). For a lattice L, if b* + b~ is odd
then the level is divisible by 4.

Definition 2.1.18. The discriminant group of an integral lattice L is the quotient L' /L.

Lemma 2.1.19 ([Sch85, Lemma 3.3]). The discriminant group is a finite abelian group of

order |r|, where r is the discriminant of L.

Lemma 2.1.20. Let L be an even lattice. Then L' /L can be equipped with a well-defined map
Q, where
Q:L'/L—-Q/Z, z+Lw— Qx+L):=0Q(x) (moda1).

We call L'/ L, with associated quadratic form Q, the discriminant form of L.

2.2 The Clifford Algebra and Spin Groups

We now briefly discuss the Clifford algebra, the general spin group and the spin group associ-
ated to a quadratic R-module. We can form surjective homomorphisms from these groups to
SO(M) and SOT(M). We will use these ideas later when we investigate the action of these
groups on Siegel theta functions (2.6.12)). To define these groups we need to look at the Clifford
algebra which is somehow the “freest” algebra containing (M, Q) that is compatible with the
quadratic form. Most of the results here are taken from [Sch85, Chapter 9], [BvdGHZ08, Chap-
ter 2], [Kit93, Chapter 1], [Por95, Chapter 15], [Har90] and [O’MO00, Chapter 5].

Clifford Algebras
Let (M, Q) be a quadratic R-module, (R is not of characteristic 2 and contains unity 1).

Definition 2.2.1. The tensor algebra T(M), a Z-graded R-algebra, is defined as the Z-
graded R-module

T(M)=PM"=ReMa(MaerM)e...
n=0

with a product of two elements on T(M), x =21 Q- QT € Q"M and y=y1 @ -+ - Q yp, €
Q"M, (zi,y; € M) given by 2 QY =21 @+ Q@ Ty, QY1 @+ Q Yy, € QM M.

To form an algebra compatible with the quadratic form we take a quotient of this.
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Definition 2.2.2. Let I(M) C T(M) be the two sided ideal generated by the set
{z®@x—Q(z) | x € M}. Then the Clifford algebra C(M) is defined as

C(M) = T(M)/I(M).

We note the Clifford algebra could also be defined by a universal property, see [O’M00, Sec-
tion 54]. We will denote z; ® -+ ® z,, € C(M) as 1 ---x,,. We have that R and M are
embedded in C(M), and for x,y € M, 2% = Q(x) and zy + yx = (z,y) by construction.

Lemma 2.2.3 ([Kit93| Corollary 1.4.1]). If (M, Q), (M’, Q) are isometric quadratic R-modules
then C(M) and C(M') are isomorphic.

Lemma 2.2.4 ([Sch85, Corollary 2.7], [Kit93, Theorem 1.4.1]). Let {b;};—, be an orthogonal
basis of M. Then {bj* ---bsr | e; = 0,1} is a basis of C(M) and so C(M) is free R-module of

rank 2™.

We now look at automorphisms on C(M). The tensor algebra T'(M) has an anti-automorphism
which descends to an anti-automorphism on C(M) denoted by the transpose * : C'(M) —
C(M) where

(1 @12®...2,) = (T ®Tp_1 @ ...71).
We also have another automorphism. Let £ € M. The map x — —x induces an automorphism

of C(M) which we denote as J : C(M) — C(M).

Definition 2.2.5. The Clifford norm is a map N : C(M) — C(M) defined by

As the transpose reduces to the identity map on R or M, we have Q(z) = N(z) for x € M.
Therefore this norm extends the quadratic form. Using J : C(M) — C(M), we have the

following decomposition of C'(M).

Definition 2.2.6. We define the even and odd Clifford algebras, by Co(M) and C1(M),

Co(M) = {z € C(M) | J(x) = x},
Ci(M) ={zeCM)|J(x)=—zx}.

Then C(M) = Co(M)®C1(M). We have that Cy(M) and C (M) are R-subalgebras, generated
by an even number and odd number of basis vectors b; respectively. We know that non-
degenerate R-quadratic spaces (V, Q) are isometric to RYTbT (Example . We denote the
Clifford algebra of RVT07 by Ct" b We denote n x n matrices with entries in R as M, (R).

Theorem 2.2.7 ([Har90, Theorem 11.3], [Por95, Chapter 15]). Let b* + b~ = n. There is a
complete classification of CtTY . In particular CtTbT gre isomorphic to the following matrix

algebras:
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bT — b~ (mod 8) | CPTb"
0,6 Myn/2 (R)
2.4 My (n—2)/2 (H)
1.5 My 1)/2(C)
3 Mayn—s)2 (H) @ Myn_sy/2 (H)
7 Myn—1y/2(R) & Mgn-1),2(R)

Lemma 2.2.8 ([Har90, Theorem 9.38], [Por95, Corollary 15.35]). We have that
Cg+7b*+1 o Cb+,b7 and Cg++17b7 o Cbi,b‘k.

Example 2.2.9. We have that C%! = C,C%! 2 My(R). In the case of signature (2,1),
(which we will use later) then C2! 22 My(R @ R) and Cp'' 2 My(R).

2.2.1 Spin Groups

Definition 2.2.10. The general spin group GSpin(M) and the Spin group Spin(M), are
contained within the Clifford group, CG(M). We define these as
CG(M) = {z € C(M) | x invertible and xM J(z)"" = M},
GSpin(M) == CG(M)NCy(M),
Spin(M) = {z € GSpin(M) | N(z) = 1}.
For the final results, which we take from [BvdGHZ08, Section 2.3], we will let R = F be a field.
For each element x € CG(M ), we can use our definition of CG(M) to define an automorphism

gz € GL(M) of M, where
gz (m) = amJ(x) "

for m € M. In fact this automorphism g, is an isometry. So we have a homomorphism
g: CG(M) = O(M), (2.2.1)

defined by = +— g, and usefully, this is surjective. For GSpin(M) this homomorphism is
surjective onto SO(M). We also note for later that, for elements of z € GSpin(M), J(x) = =.
So the automorphism generated is just defined by conjugation i.e. g,(m) = zm(x)~! for

m € M. We have the well known exact sequence
1 — {—1,1} — Spin(M) % SO(M) — R*/(R*)>. (2.2.2)
Definition 2.2.11. The image of Spin(M) under g in O(M) is denoted as SOT(M).

We recall that, in the case O(M) = O(b™,b7), O(M) has four connected components as a Lie
Group. We will call SOT (M) the connected component of the identity of O(M). The

following result is useful in our case later.
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Lemma 2.2.12 ([BvdGHZ08, Lemma 2.14]). When dim(M) < 4

GSpin(M) = {z € C(M)" |N(z) € R*} and Spin(M):= {z e C(M)° |N(z)=1}.

2.3 The Weil Representation

Shortly we will construct various types of half-integral weight vector-valued automorphic
forms. When defining these forms we want to use a double cover of SLy(R), the metaplectic
group Mp,(R). Vector-valued forms are defined using an associated representation and there
is a well known and natural representation of the metaplectic group called the Weil represen-
tation. There is a particularity nice explicit description of the Weil representation called the
Schrédinger model. We will also use this to construct our Siegel theta functions. In this section

we describe these concepts. The results here are based on [Pra93,[Kud96,LV80L|Gel93|Li08|.

Let F' be a local field not of characteristic 2, S be a complex vector space and W be a finite

dimensional vector space over F equipped with a symplectic bilinear form (,).

Remark 2.3.1. We can also let F' be a finite field or a global field and form analogous con-
structions. However we will only need the local case, in particular in Section [2.4] we consider

the case when F' = R.

Definition 2.3.2. We call the pair (W, (,)) a symplectic F-vector space. We call a sub-
space of W Lagrangian if it is a maximal totally isotropic subspace of W. We let the sym-
pletic group Sp(W) be the group of F-linear automorphisms that preserve the symplectic

form i.e. forx,y e W

Sp(W) = {g € GL(W) | {9, gy) = (z,9)}.

We note that, by necessity, W has even dimension, 2n. The Weil representation we are looking

for is a projective representation of Sp(W).

Lemma 2.3.3 ([LV80, Lemma 1.1.4]). Let Wy be a Lagrangian subspace of W. There exists
another Lagrangian subspace Wo, such that we have a decomposition W = Wy @ Ws. Such a

decomposition is a complete polarisation of W.

There is a basis {e;}._;,{fi};—; of (W,(,)) such that e; € W1, f; € Wy and (e;, f;) = di;
(where 0; ; is the Kronecker delta) called the symplectic basis. Using this we can represent

Sp(W) as the well known matrix group

Spgn(F) = {M € GLay(F) | M" (G %

—_
I
—~
Lo

3

&
S~—
—
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Lemma 2.3.4 ([Ste62]). We have that Sp,,, (F') is generated by

A 0 I, B 0 I,
, and (2.3.1)
0 (AH~t 0 I, -1, 0
where A and B range through invertible matrices and symmetric matrices respectively.

Definition 2.3.5. The Heisenberg group H(W) := W @ F, associated to (W, {(,)), is the
set of all pairs {(w,r) | w € W,r € F} where, for two elements (wy,r1), (we,r2) € H(W), the
group operation is given by

(wy,71) - (w2,72) = <w1 +wo,r1 + 72 +

The centre of H(W) is {0} x FF = F. Let ¢ be a non-trivial unitary additive character
Y : F — C*, where C* := {2z € C | |z|] = 1}. This is a character on the centre of H(W). For
any irreducible representation (p,S), p : H(W) — GL(S), we call (p[{0}xr,S) the central
character of p. We now observe that these characters in fact classify the irreducible repre-
sentations of H(W). We will say a representation of H(WW) over S is smooth if every vector

in the representation space is fixed by a compact open subgroup of H(W).

Theorem 2.3.6 (Stone-von Neumann, [MVWS8T7, Section 2.1]). There exists a smooth irre-
ducible representation (py,S) of H(W) with central character ¢ i.e. py((0,7)) = ¢(r) -Idg

for all v € F. This representation is unique up to isomorphism.

We notice g € Sp(W) acts naturally on h = (w,r) € H(W) by ¢ - (w,r) = (gw,r) = gh
and is trivial on the centre of H(W). We then let (pi)(h), S) == (py(gh),S). This is also a
smooth irreducible representation with central character v and so by the Stone-von Neumann

theorem it is isomorphic to (py, ). Therefore we have an operator M,y (g) € GL(S) such that

pu(gh) = My (g)py(h)My(g) ™" (2.3.2)

Then, using Schur’s Lemma, we know this is uniquely determined up to a non-zero scalar in

C*. Letting [My(g)] denote the class of My (g) up to scalars we have:

Definition 2.3.7. The Weil representation of the symplectic group Sp(W) is the pro-
Jjective representation py, : Sp(W) — GL(S)/C* defined by the map py, = g — [My(g)]. The set
of pairs (g, My(g)) € Sp(W) x GL(S) such that holds, defines a group, which we denote
as Mp,,(W). We let the Weil representation of Mp,, (W) be the ordinary representation
(py,S), defined by the projection map py : (g, My(g)) — My(g).

Proposition 2.3.8 ([Pra93, Theorem 2.1], |Gel93| Section 1.7], [Kud96, Section 1.4]). There
exists a unique subgroup of Mpw(W), which we denote as Mp(W), that is a central extension
of Sp(W) and isomorphic to the two fold cover of Sp(W). This group is independent of the
central character 1. It can also be defined as Mp(W) := Sp(W) x C*, and then Mp,, (W) =
Mp(W) xz,/5 C*.
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Definition 2.3.9. We call Mp(W) the metaplectic group and we call the restriction of
(py,S) to Mp(W) the Weil representation of the metaplectic group.

2.3.1 The Schrodinger Model

A nice and commonly used realisation of these representations is the Schrodinger model, which
we now describe. This will allow to obtain some explicit formulas (Proposition [2.3.14)). This

model is realised on the space of Bruhat-Schwartz functions.

Definition 2.3.10. If W is Archimedean, a smooth function f : W — C is called a Schwartz

function if
sup [z*0sf(z)| < o0
zeW

for all multi-indices o, B. We will call a function f : W — C a Schwartz-Bruhat function,
if it is a Schwartz function in the case F is Archimedean and is a locally constant and compactly

supported function in the case F is non-Archimedean. We denote the space of these as S(W).

So the Schwartz functions are smooth functions all of whose derivatives decay faster, as |z| —
00, than any inverse power of x. We have the important property that the Fourier transform on
S(W) is in fact an isomorphism, see for example |Leal(, Section 4.4]. Now let W = W; & W,

be a complete polarisation.

Definition 2.3.11. The Schrédinger representation (pi™,S(Wh)) is a representation of

S(W1) described for f € S(W1),z € Wi, w; € Wy, we € Wy, r € F by

(w1, wa)

piCh(wl + wa, ) f(z) =1 <T + 5

+ (m,w2>> flz+wy).

Lemma 2.3.12 ([MVW8T7, Chapter 2|, [Kud96, Chapter 1]). The Schrédinger representation

is a smooth irreducible representation of H(W') with central character 1.
Using the Schrodinger representation we can now obtain the Schrédinger model.

Definition 2.3.13. The Schrédinger model is an explicit description of the Weil represen-
tations on Sp(W), Mp,,(W) and Mp(W). It is defined by the operator MECh(g) € GL(S(Wh))

where

Py (gh) = M3 (g)p ™ (R)ME™ (9) "

This was as we had in (2.3.2). The Schrédinger model can be written as follows.
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Proposition 2.3.14 ([Wall3| Section 2.1.4], [Pra93, Section 2], |[Kud96, Chapter 1]). Let
f € S(Wh). Then up to a scalar

A
g O N f) = L den(ay 2 pate),
0 (At> 1 |
I, B\] o
e (2 e =0 (52 s,
)]
agen | [ F@ = [ Fw)e (@) dy,
—I, 0 | Wi

where dy is the Haar measure such that this Fourier transform is self dual. With choice of

scalar as above, MdSJCh generates unitary Weil representations on S(V').

2.4 The Weil Representation over R

We show later that the theta functions we use can be defined naturally from the Weil represen-
tation on a certain pair of subgroups of Sp(W) called a dual reductive pair, which gives rise to
a local theta correspondence between automorphic forms on these groups. The automorphic
forms we use later transform under this representation. We will consider and define these
ideas in the case of the dual reductive pair (O(V(R)), SL2(R)) which we make explicit here.
Some references are [BF04, Section 2], [Bor98|, [Bru02, Section 1.1] and [Shi75].

2.4.1 Dual Reductive Pairs

Definition 2.4.1. A dual reductive pair is a pair of reductive subgroups G,G' C Sp(W)
such that G is the centraliser of G' in Sp(W) and G’ is the centraliser of G in Sp(W).

We consider the groups G and G’ which are the inverse images of G and G’ respectively in

Mp(W).

Lemma 2.4.2 ([MVW87, Lemma 2.5]). The centraliser of G in Mp(W) is G', the centraliser
of G' in Mp(W) is G and there is homomorphism

j:Gx G — Mp(W).

Consider the pullback of the Weil representation of the metaplectic group to G x G'. The Howe
duality principle then roughly says that, this pullback decomposes into two irreducible repre-
sentations m and 7 of G and G’ respectively and then 7 is determined by 7. This bijection is the
so-called (local) theta correspondence. This can often be realised as map between automorphic
forms explicitly using theta lifts. There is a large amount of material that could be discussed

here which we do not have space to detail and refer the reader to [Kud96,Pra93||Wall3}Gel93].
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Instead we focus on using these results in the specific case we need.

We let (V,Q) be a rational non-degenerate quadratic vector space, V(R) = V ®g R with
signature (b*,07) and let (W, (,)) be a real non-degenerate symplectic space of dimension 2n.

We let W :=V @r W. We form a symplectic space by equipping W with the quadratic form
1
((v1 ® Wy, V2 @ wa)) = 5(171,1)2) (wi, wa)

for v1 ® wi,ve ® we € W. We define the natural right action for g € O(V) on v @ w € W as
(v®w).g = g 'v ® w. We define the natural right action for ¢’ € Sp(W) on v @ w € W as
(v®@w).g =v®wg. Then O(V(R)) and Sp(W) form a dual reductive pair in Sp(W). There
is a standard polarization where W = V(R)™ @ V(R)™ and this allows us to form, as before,
a Schrodinger representation and Schrodinger model of Mp(W) acting on S(V(R)™). We can
then restrict this to the dual pair (O(V(R)),Sp(W)) and obtain formulas for their action on
S(V(R)™) (see for example [Kud96, Section 2.4], [Wall3| Section 2.2.1]). We will shortly make
this explicit in our case (n = 1) in equations (2.4.5). The singular theta lift in [Bor98] then
realises the (singular) theta correspondence for (O(V(R)),Sp(W)) when n = 1.

2.4.2 The Metaplectic Group over R

From now on we let W be of dimension 2. In general we would like to think of fractional weight
modular forms in terms of central extensions of SLy(Z). In our case, for half-integral forms,
this extension can just be a double cover. We have the well known and helpful isomorphism
that Spy(R) =2 SLo(R) (see for example [Jac85|, Section 6.9]). So it suffices to consider the
unique double cover of Spy(R) i.e. the metaplectic group Mp(WW) discussed in the previous

section. First we list a few basic definitions that we will need throughout this work.

Definition 2.4.3. Let H be the complex upper half plane, H = {7 € C|Im(7) > 0}.
For w € C we denote \/w as the principal root so that arg(y/w) € (—m/2,7/2] and denote
e(w) = 2™, We denote the special linear group as SLa(R) which consists of all real 2 x 2
matrices with determinant 1. We let T = u+iv € H and elements g = (¢ 4) € SLa2(R) act on
H via linear fractional transformations, gt = %. Set j(g,7) = eT +d. We define the
matriz g € SLa(R) as

L) fveo0 Vi ul\o

gr = =

o 1/\o 1/ 0 1/\o

We remember that j(gg’,7) = j(g,9'7)j(g'T) for g,¢' € SLa(R) (see [DS05, Lemma 1.2.2]).
We also see that g, is a matrix of determinant 1 and g,7 = 7. Later we will make use of the

following subgroups.



2.4. The Weil Representation over R 22

Definition 2.4.4. Let N € Z, N > 0. We define the modular group to be I := SLo(Z). We
define the following groups:

1 0
T(N) = {7 er ’ = (mod N) §, (2.4.1)
c d 0 1
To(N) == {761" ¢c=0 (mod N)}, (2.4.2)
o -—{ P ezt (2.4.3)
0 1

We observe that T'(N) C T'o(N) CT'and T',, C Tg(V) C T
Lemma 2.4.5 ([DS05, Chapter 1.2]). We have that T'/T(N) is isomorphic to SLo(Z/NZ).

We have an explicit realisation of the group Mp(W), which we denote as Mp,(R), through the
two choices of square roots of ¢ + d. We take this definition from [Ray06, Definition 3.3.2],
[Bor98,, Section 2], [Bru02, Section 1.1].

Definition 2.4.6. Let 7 € H. We define an element of Mp,(R) to be a pair (v, ¢) where
v € SLa(R) and ¢, : H — C is a holomorphic function such that ¢(7)? = j(v,7). The

multiplication of two elements in Mp,(R) is defined as

(7 0 (TN (Vs & (7)) = (17, 01 (V7)o (7).

We also define T', T(N) and SO(2) to be the inverse images of T,T'(N) and SO(2) respectively
under the covering map Mpy(R) — SLa(R).

Lemma 2.4.7 ([Ray06, Lemma 3.3.3], [Bum97, Proposition 1.2.3]). The generators of T' are

1 1 0 -1
,1 and S := AT
0 1 1 0

T .=

The centre of T is cyclic of order 4 and is generated by
S% = (ST)® = Z = i

We define the group

- 1 n
I'yw = 1
0 1

neZ% crl.

Definition 2.4.8. The Legendre symbol (%) is defined for a € Z and b an odd prime as

(%) =aP~Y/2 (mod p)
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(or it can be stated in terms of quadratic residues). We extend this definition to (%) for all
a,b € Z and call this the Kronecker symbol. This is multiplicative in both a and b so it is
extended by setting the following: (%) =1, (_Ll) =11i4fa >0 and —1 otherwise; (%) =1
if a = +1 and 0 otherwise; and finally (%) =14fa==+1 (mod8), 0 if a is even and —1

otherwise.

When considering what the components of our vector-valued forms look like we will need the
following section map. We remember (Lemma [2.1.17) that if b+ + b~ is odd then the level
is divisible by 4. Then in this case we know there exists a section (see |Ste07, Chapter 3])

s:T(4) — ['(4) so that for (¢}) € T'(4)

5 - : (2) Ver+d|. (2.4.4)

2.4.3 The Weil Representation over Mp,(R)

We return to our dual reductive pair (O(V(R)), SLa(R)). We consider the Schrédinger model
in this case. Recall that we will use these explicit equations to define our Siegel theta functions
and vector-valued forms. In this Archimedean case the Schwartz-Bruhat functions are just

Schwartz functions, S(V'(R)).

Definition 2.4.9. We let the Fourier transform, f, of an integrable function f(x) :
V(R) — C be defined as

f(€) = /V o S

We note there are several ways of defining this. Our version agrees with the definitions

in [Bor98| and |[BF04]. We will make use of the following later.

Lemma 2.4.10 (Poisson Summation Formula, [ABST13, Theorem 2.1], [Bor98, Section 4]).
For any lattice L C V(R), f € S(V(R)

VILTLY D f) =Y FOV.

A€EL AeLl’

We fix our central character as the standard one i.e. 1 : R — C* is set as ¢(z) := *™*. We
then denote MSCh as M5, The Schrédinger model of the Weil representation for the case
(O(V(R)), SLa(R)) is then described below.

Lemma 2.4.11 ([BF04, Section 2], [Kud96, Section 2.4]). Let f € S(V(R)) and g € O(V(R)).
Recall the generators from (2.3.1). In this case a > 0,a,b € R. We can then represent the
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Schrddinger model as follows:

M [g] f(z) = flg™ ), (2.4.5a)
s | ¢ 01 flz) = a(b++b_)/2f(a$), (2.4.5b)
0 a”
MO [ Lo f(z) = e™@) f(g), (2.4.5¢)
01 |
MEh (1] _01 f(@) = e((b™ —b%)/8)f(—x). (2.4.5d)

These equations can be easily derived from Proposition 2.3.141 We now set L to be an even

lattice of level N, L C V.

Definition 2.4.12. For f € S(V(R)),h € L'/L and g = (g, ¢4) € Mp,y(R) we let

OL(G, f,h) = > M5 [g] f(\)

AEL+h

be a theta function.
Lemma 2.4.13 (|[BF04, Equations (2.2),(2.3)], |Shi75, Section 1]). We have that

HL(Tgv f7 h) = E(Q(h))eL(gv f7 h)7

e((bi _b+)/8) e(—(h.B'NO; (& B,
\/W h/ezL;/L ( ( ) )) L(gva )

Remark 2.4.14. We prove a twisted version of these equations later in Proposition [3.2.6

eL(ngfv h) =

Definition 2.4.15. The C-group algebra C[L'/L] consists of formal linear combinations

ZheL,/L Anen where A\, € C and ey, is the standard basis element corresponding to h € L'/ L.
Multiplication is such that ey - ¢py = epyps for hyh' € L'/L. We define a Hermitian scalar
product on C[L'/L] by letting (ep, ep’) := O p and extending this to C[L' /L] by sesquilinearity

i.e.

< Z Aneh, Z Nh/eh/>: Z Anfn-

heL'/L weL /L hel’/L
Finally, for a function f : H — C[L'/L] we denote the components as fp, such that f =

ZhEL’/L fnen.

T and S were the generators of r. Using Lemma |2.4.13[ we are then able to generate a unitary
(the inner product is preserved, see for example |Boyl15, Definition 2.7]) representation of I

on C[L'/L]. See also [Shi75| Section 1], [Bor98, Section 4], [V6l13, Section 5.1].
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Definition 2.4.16. Let U(C[L'/L]) be the unitary group on C[L'/L]. Then we define a

representation via the generators, as before:

pL(T)(en) = e(Q(h))en,

6((b_ — b+)/8) /
S = E e(—=(h,h .
S = 2, e

We call pr, : T — U(C[L'/L]) the Weil representation on C[L'/L)].

We denote p; for the complex conjugate representation of p; and note that pr- = p;. We

also have

pi(Z)(en) = ¢ (b - b+> . (2.4.6)

Then (228) implies that p (v, —)(er) = (=1)" 7 pr(7,6,)(en) for (1,6,) € L. So if
b™ + b~ is even then the Weil representation just factors through (See for example [Boy15,

Definition 2.6]) T'.

Lemma 2.4.17 ([BS10, Section 2], [Bor00, Section 5|, [Zem12, Theorem 3.2]). If b" + b~
is even then the Weil representation py, is trivial on T'(N). If bt 4+ b~ is odd then the Weil

representation pr, is trivial on s(T(N)).

So the Weil representation factors through the group I'/T'(N) = SLy(Z/NZ) if b + b~ is even
and factors through T'/s(I'(N)) (a double cover of SLy(Z/NZ)) if bt + b~ is odd.

2.5 Automorphic Forms

Throughout this thesis we deal with several types of automorphic objects. In particular our
input in the lift will be some harmonic weak Maass forms and the output will be a locally
harmonic Maass form. The Siegel theta functions that we use as kernels also transform with
weight in two variables. These automorphic forms will normally be vector-valued forms with
respect to the Weil representation as discussed in the previous section. We discuss their prop-
erties. This is very standard material the main reference being [BF04, Section 3] but is also
discussed in the introductions of [Bru02, Section 1.1], [BO10, Section 2.2], [BO13, Section 2.2]
and [BFI15] Section 2.2].

We fix the following throughout this chapter: L an even lattice of level N in a rational non-

degenerate quadratic space (V, Q) which has signature (b*,b7); k € %Z; and 7 = u + v € H.

2.5.1 Vector-Valued Forms

We will specialise to the Weil representation shortly but first in greater generality we define

half-integral weight vector-valued forms with respect to any representation. This definition is
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taken from [Ray06, Section 3.3] (also see [Bor00, Section 2], [Bor99, Section 2]).

Definition 2.5.1. Let p be a representation of Mps(R) on a complex vector space V' of finite
dimension. A vector-valued modular form of weight k with respect to p for T is a function

f:H—V such that

1. f(37) = dy(1)*p(3) f (1) for all 7 = (7,¢,) €T,
2. f is holomorphic on H,

3. f is holomorphic at co.
As in the classical case, we will need a slash operator for the Weil representation on Mp,(R).

Definition 2.5.2. We denote the Petersson slash operator as |i ,,. For functions f :

H — C[L'/L] and 7 = (v,¢,) € T we set

(fleon 1)) = 65 (7) "2 pL(3) 1 F (7).

Definition 2.5.3. Let IV C T a finite index subgroup. Then a (vector-valued) modular form,
of weight k with respect to py, for I', is a function f : H — C[L'/L] such that

1 (flrprd) = f for all 7 € TV,
2. f is holomorphic on H,

3. for any cusp s € QU {oc} of I and taking (v, by) € I with yoo = s, then (fli,pr) is

holomorphic at oo.

If f is a function that only satisfies the first condition then, for our purposes, we call this
a (vector-valued) automorphic form. If f is not holomorphic, but merely meromorphic at
the cusps then we call this a (vector-valued) weakly holomorphic modular form. If f is

holomorphic and vanishes at the cusps we call this a (vector-valued) cusp form.

We also consider some further generalisation of modular forms, where instead of asking for
holomorphicity we just require our automorphic forms to vanish under the action of a Laplacian
operator. The main discussion can be found in [BF04, Chapter 3|. These will form the input

of our lift.

Definition 2.5.4. The weight k hyperbolic Laplacian, Ay . is defined as:
0? 0? 0 0
A = Akﬂ— = —v? ( + ) + kv < +i> .

Definition 2.5.5. Let IV C T' a finite index subgroup. Then a (vector-valued) weak Maass

form of weight k with respect to pr, for I' with eigenvalue A € C, is a twice continuously

differentiable function f :H — C[L'/L] such that

1. (flkpr) = f for all 5 €T,
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2. Akf = )‘f;
3. for any cusp s € QU {oo} of I and taking (v, by) € T with yoo = s, then there exists
a C >0 so that (f|k.,.7)(T) = O(e) as v — .

A (vector-valued) harmonic weak Maass form is a weak Maass form with eigenvalue A = 0.
We also form a subspace of harmonic weak Maass forms by altering 3. We instead request

that there exists an € > 0 and a Fourier polynomial

P = Z Z ct(n,h)e(nt)en

heL’/L neZ+Q(h)
—ookn<0

so that f(1) — P(1) = O(e™") as v — oo (and analogously for all cusps). This is a stricter

condition. This Fourier polynomial is uniquely determined by f and we call it the principal

part of f.

We remember that every harmonic (and holomorphic) function is real analytic [ABRO1, Theo-
rem 1.28]. It is easy to check that each holomorphic function f : H — C[L’/L] is harmonic with
respect to Ay,. We denote, Ay, ,, (I), Hr. p, (T), Hg py, (T), M,!WL (T"), My, p,, (T"), S, (T7) for
the C-vector spaces of weight k automorphic, harmonic weak Maass, the subspace of harmonic

weak Maass, weakly holomorphic modular, modular and cusp forms respectively. We have
Ak (1) D Hieypr (') D Hig o, (1) D My, (') D My, (T) D S (T).

We usually only deal with the full group f‘, in which case we drop the [’ from the notation.
There is some inconsistency in the literature here. The space Hy, ,, is often called the space of
harmonic weak Maass forms, as in [BO13] but we follow the more common naming convention

as in [BF04,BO10]. We now consider the Fourier expansions of these forms.

Lemma 2.5.6. Every holomorphic function f : H — C[L’'/L] that is invariant under the

|ie,p. -OpETGtOT has a Fourier expansion of the form

fry=>" > anh)e(nr)en, (2.5.1)

heL’ /L neZ+Q(h)

where a(n, h) denotes the Fourier coefficients a(n, h) = fol (f(7),en) e(—n7)du.
Proof. Tt suffices to notice e(—Q(h)7) fr(7) is 1 periodic, see [Bru02, Section 1.1]. O

If we request that f is also holomorphic at oo i.e. f € Mj ,, then the a(n,h) terms in the
Fourier expansion (2.5.1) vanish for n < 0. If f is meromorphic at co i.e. f € M, ,'g ,, then
there are only finitely many a(n, h) terms with n < 0. If f vanishes at oo i.e. f € Sk ,, then

the a(n, h) terms vanish for n < 0. For the weak Maass forms we do not have holomorphicity

so ([2.5.1]) does not hold.
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Definition 2.5.7. The incomplete gamma function, I'(a,z) for a,x € C,Re(a) > 0 is
defined as

I'(a,z) :_/ ettt

which can then be holomorphically continued to all a € C,x # 0. We also define the gamma
function, I'(a) :=T'(a,0).

Proposition 2.5.8 ([BF04, Equation 3.2]). Let k # 1. Any f € Hy,p, has a unique decom-
position f = fT + f~, where

ft= Z Z ct(n, h)e(nt)ep,

hel’/LneZ+Q(h)

n>>>—oo
o= Z ¢ (0, h)v ey, + Z Z ¢ (n,h)T'(1 — k, —4mnv)e(nt)ey,.
heL'/L heL' /L neZ+Q(h)
n<& oo
n#0

This is easily seen by noticing the Fourier expansion must vanish under the Laplacian operator
Ay. For the case k = 1 we simply replace the ¢~ (0, h)v!~* term with ¢ (0, k) log(v). We call
fT the holomorphic part and f~ the non-holomorphic part of f. The next explicit

decomposition we will use extensively when finding the Fourier expansion of our lift.

Proposition 2.5.9. Any f € Hy ,, has a unique decomposition

fr= Z Z ct(n, h)e(nt)en, (2.5.2a)
hel'/L neZ+Q(h)
n>>—oo

= Z Z ¢ (n,h)T'(1 — k,4x|n|v)e(nt)ey, (2.5.2Db)

heL’/L neZ+Q(h)
n<0

and for k > 2, the f~ part vanishes.

Proof. This follows from Theorem [2.5.18 and the fact that there are no negative weight cusp
forms. See also [BF04, Section 3. O

We can interpret a weakly holomorphic modular form M, ,!67 p, @S2 harmonic weak Maass form
Hy, ,, which has no non-holomorphic part, f~. Observe that there are only finitely many

¢t (n,h) terms for n < 0. This fact will be important later. We also have the following

property.

Lemma 2.5.10. For f € Hy ),

b~ —bt

ct(n,h) = (=)= ¢F(n, —h) (2.5.3)

Proof. Apply the action of Z on f and use (2.4.6]). O
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We now consider what these spaces look like. Using Lemma [2.5.10] we observe that any
[ € Hp,p, vanishes if 2k # b™ — b~ (mod 2). So when bt + b~ is even (or respectively,
odd) there exists only non-trivial modular forms of integral weight (respectively half-integral

weight) under this representation.

Let f € M, ,,. Lemma told us that the Weil representation is trivial on I'(IV) (respec-
tively s(I'(N))) if b+ + b~ is even (respectively odd). This means that if b™ + b~ is even the
components fp are classical scalar-valued integral weight modular forms on the congruence
subgroup I'(N), (see also [V6l13, Proposition 5.3.5]). If b* + b~ is odd then the components
fn are classical scalar-valued half-integral weight modular forms on the congruence subgroup
I['(N) (remember here N is divisible by 4) with the automorphy factor defined by the sec-
tion map ie. (£)Ver+dfor (2Y) € T(N). This is compatible with the definitions
in [Kob93, Section 4.1] and [Ono04, Chapter 1]. This is useful, in that we merely need to
consider level 1 vector-valued forms on I to obtain some level N scalar-valued forms. We now

have three well known examples:

Example 2.5.11. If L = Z? with associated quadratic form Q(\) = 1(A\? — A3). Then the
signature is (1,1), L' = L and so L’/L is trivial i.e. C[L’/L] = C and the Weil representation
is trivial. So we just have the classical slash operator (Definition [2.5.29) and vector-valued

forms certainly form a generalisation of classical scalar-valued forms for the group T

Example 2.5.12. Let m € Z,m > 0 and let L be the 1-dimensional lattice Z with associated
quadratic form Q(A) := mA? for all A € L. Then the space of Jacobi forms Jj_ ., of weight k
and index m is isomorphic to Mj_1 /25, . See [EZ85, Theorem 5.1].

Example 2.5.13. Let k € 2Z + 1/2 and let p be a prime. Then the space M;’!(Fo(élp))
of scalar valued weakly holomorphic forms satisfying the Kohnen plus space condition is

isomorphic to My, , ~for some lattice L. This is described in more detail in Example

2.5.2 Differential Operators

There are also some natural differential operators on these spaces. We will use these to form

the link from the Shimura lift to the singular theta lift that we construct.

Definition 2.5.14. For any smooth function f(r):H — C[L'/L] and k € 37, we define the

Maass raising and lowering operators on f as
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Definition 2.5.15. For f € Hy ,, we let the anti-linear differential operator be

&(f) (1) = 0" 2Lef(r) = R f (7).

We can check that —Ap = LigyoRr +k = Ro_p Ly = £o_1&k. Ry and Ly are called the raising

and lowering operators because of the following property.

Lemma 2.5.16 ([Bum97, Lemma 2.1.1]). For any smooth function f : H — C[L'/L] and
yer,

(R f)lk+2¥ = Ri(fle7) and  (Lpf)|k-27 = Li(fle7)-
The anti-linear differential operator & (as does Lj) annihilates the holomorphic part of a

harmonic weak Maass form. Explicitly:

Proposition 2.5.17. Let f € Hy, ,, with Fourier expansion as in (2.5.2)). Then

Ee(f)(1) = — Z Z (4mn)t=*e=(=n, h)e(nt)es. (2.5.4)
heL’/Lnei;Cg(h)

Proof. A straightforward direct calculation. See also [BO10, Section 2.2]. O

We observe this only depends on f~, the non-holomorphic part of f, and hence vanishes for

fem ,'c o~ This leads to the following significant relation.

Theorem 2.5.18 (|BF04} Proposition 3.2, Theorem 3.7]). The assignment f — & (f) defines
a surjective map

!
é—k : HkvPL — MQ—k,ﬁL'

The map has kernel Ml!c,pL‘ The assignment also defines a surjective map
&kt Hipp = S2-kp, -
As in the classical case (Definition [2.5.32)) we have the following inner product.

Definition 2.5.19. Let f,g € My, ,,, where one of f,g is a cusp form. Let F be the standard
fundamental domain

F={reH]||ul <1/2,|] > 1}.
Then we call

dudv
2

(. Depy = /f (F(r). g(r)) o

the Petersson scalar product.

(

This definition makes sense as we notice (f(7), g(7)) v* 24% is T invariant [DS05, Section 5.4]
and bounded on H. We have in fact formed a Hermitian non-degenerate inner product (see
for example [Kil08, Chapter 4]). We have a regularised version of this pairing. This will be

used to define our lift by pairing a harmonic weak Maass form against a kernel theta function.
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Definition 2.5.20. Let f,g € Ay, . Let F; be the truncated fundamental domain
Fi={re F|Im(r) <t}.
Then we call

dudv . 1 dudv
’U2 T tliglo reF, <f(7_)7g(7—)> v U2

o, = [ gt

the regularised Petersson scalar product, whenever this limit exists.

Fi

\)
IS

Figure 2.1: The truncated fundamental domain

This regularisation is a method of Harvey, Moore and Borcherds [HM96,Bor98,Bru02]. Further
discussion can be found in Section This leads to following useful pairing.

Definition 2.5.21. For f € Hy ,,,9 € M2 5, let

{9, f} = (9:&(f))2—.- (2.5.5)

For a fixed g € My_15,, this is determined by f~, (recall that & (f) = & (f7)). We im-
mediately observe that {g, f} = 0if f € M,!WL. This pairing is also determined by Py, the
principal part of f.

Proposition 2.5.22 ([BF04, Proposition 3.5]). Let f € Hy ,, and g € Ms_j, 57 with Fourier
expansions as in (2.5.2) and (2.5.1). Then
lo.ft= > > ctmha(-nh).
heL'/LneZ—Q(h)

n<0

We saw that the Petersson scalar product was non-degenerate and that & : Hy ,, = S2_r 5,

was surjective, so then:
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Theorem 2.5.23 ([BF04, Theorem 3.6]). The pairing between Hk,pL/M}cm and Sz 35,
induced by (2.5.5)) is non-degenerate.

We consider f € Hy,, when the principal part P; vanishes (or is constant) i.e. when
ct(n,h) = 0forn < 0 (or n < 0 respectively). Then we see that {g, f} =0forallg e So_; 5, .
Theorem then tells us that f~ = 0. So in fact f € Sy ,, (or My ,, respectively). Al-
ternatively, if f~ # 0, then Py is non-constant.

Proposition 2.5.24 ([BF04, Proposition 3.11]). Let P be a Fourier polynomial

P(r) = Z Z ct(n, h)e(nt)ey,
heL’/LneZ+Q(h)
n<0
with ¢t (n, h) satisfying (2.5.3)). Then there exists a f € Hy, ,, with principal part Py = P + ¢

for some T-invariant constant ¢ € C[L'/L]. In fact, if k <0 then f is uniquely determined.

So certainly for k < 0,k > 2 the principal part Py of any f € Hy, ,, uniquely determines f~.

Conversly f~ does not uniquely determine P;. We do however have the weaker statement
that f~ does uniquely determine some weighted sums. The following is immediately clear

from the fact that £ (f) only depended on f~.

Corollary 2.5.25. Let g € My_y, 57 be fized, with Fourier expansion as in (2.5.1). Then for
any f € Hy, ,, , with Fourier expansion as in (2.5.2)), the pairing
{o.0Y=">2 > c*(nhja(=n.h)
heL' /L neZ—Q(h)

n<0

is uniquely determined by f—.

Let f € Hy, ,, , with expansion (2.5.2). We denote ng € Z+Q(h'), (b € L’ /L) for the smallest
(possibly negative) number such that ¢t (n,h) = 0 for all n < —ng, (n € Z + sgn(D)Q(h) and

h € L'/L). We can then improve (2.5.2)) by replacing (2.5.2a) with
ff=5 > ct(nhemr)e. (2.5.6)

heL’/L neZ+Q(h)
n>—no

If ng < 0 (or ng < 0 respectively ) then f~ vanishes and we know that f is a cusp form (or a

modular form respectively). Using this, we have the following growth properties that we will

need when checking various equations converge.

Lemma 2.5.26 ([BF04, Lemma 3.3], [Hov12, Theorem 1.48]). Let f € Hy ,, with Fourier
expansion (2.5.6). Then f~ decays exponentially fast as v — oo and

f(1) = O(f (1)) = O(e*™")
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as v — oo, uniformly in u. If ng <0 (so f is a cusp form and k > 0) then
Y =0 1
f(r)=f7(7) = Y5

as v — 0, uniformly in u. If ng > 0 then

1) =0 (1+(m) =

as v — 0, uniformly in u.

Lemma 2.5.27 ([BF04, Lemma 3.4], [H6v12, Lemma 1.49]). Let f € Hy ,, with Fourier
expansion (2.5.6)). Then

(nk/ge‘l”\/%\/ﬁ) ifng >0,k >0,

(e4ﬂ¢%ﬁ) ifng >0,k < 0,

nk) ifng =0,k >0,

nk/2) if ng <0,k >0,

as n — 0o. For f~ we have

as n — —oo.
Lemma 2.5.28 ([BF04, Section 3]). We have that

@ <%62x) as T — 00,
I(1—k, —2z) = (=22)"

@) (mefmz‘) as r — —oo.

2.5.3 Scalar-Valued Forms

Once we have performed our lifts we will be dealing with more traditional scalar-valued auto-

morphic objects.

Definition 2.5.29. Let k € Z. We denote the Petersson slash operator as |, . For
functions f: H — C and v € SLa(R) we set

(Flen)(r) =G, 7) " f (7).

Let k € Z and IV C T a finite index subgroup. We then define scalar-valued forms f : H — C
of weight k for I, by replacing |5 ,, with |, and I C T with " C T throughout Definition
2.5.3l We denote, Ay(T"), M} ("), My(T"), S(I') for the spaces of weight k (scalar-valued)
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automorphic, weakly holomorphic modular, modular and cusp forms respectively. We remem-

ber there are no modular forms of negative weight.

One of the main aims of this thesis is to show that we obtain from our lift a locally harmonic
weak Maass form. We form our definition by adapting [BKK12,BK14,BKV 13| (other similar

definitions could also be usefully considered).

For a (not necessarily continuous) function f : HH — C and a nowhere dense (see [Rud91}
Definition 2.1]) exceptional set E C H, we will denote fy as the restriction of f to a
connected component W C H\E. For a point 7 € H we denote W.F for the (not necessarily

finite) set of connected components that contain 7 in their closure i.e.
WE={WcCH\E|reW}.

Finally let

be the average value of f on the connected components in which 7 lies (when this limit exists).

Definition 2.5.30. Let k € 2Z,k < 0, TV C T be a finite index subgroup and E be a T"-
invariant exceptional set E C H. We will call a function f:H — C a (scalar-valued) locally

harmonic weak Maass form, of weight k for IV and E, if

1. (flxy) = f for ally € T,

2. For all 7 € H\E there is a neighbourhood U C H of T in which f is real analytic and
Acf=1T.

3. For all 7 € H we have that: WE is a finite set, the limit defining Ag(f)(r) evists and
f=Ag(f).

4. For any cusp s € QU {oo} of IV and taking v € T” with yoo = s, then there exists a
C > 0 so that (f|i7)(7) = O(%) as v — co.

Remark 2.5.31. These are similar to harmonic weak Maass forms but only harmonic within
connected components which are divided by singularities (the exceptional set). In this case
where f is real analytic on the connected components we will call the components Weyl
chambers as in [Bor98, Section 6], which we also discuss in Section [4.2.1} These singularities
are nice in that the value on the singularity is the average of the values in the adjacent
connected components. We also note that we have restricted this definition to forms with

polynomial growth at the cusps and also of non-positive weight.



2.6. Siegel Theta Functions 35

We will denote the space of locally harmonic weak Maass forms as LHy(I"). We will also use
a scalar-valued version of the Petersson scalar product. Let IV C T be a finite index subgroup.

Then
Fi(T') = U v-F

~yel’\I'

is the truncated fundamental domain for I".

Definition 2.5.32. Let k € Z and f,g € A(I"). Then we call

reg L
(f, g% = / £ (r)glryok ey

F(T) v
—— dudv
= lim f(m)g(r)v"
t—o0 TE]:t(F/) ) U2

the (scalar-valued) regularised Petersson scalar product whenever the limit exists.

2.5.4 Atkin-Lehner Involutions

When finding the Fourier expansion of our lift at different cusps we will need to consider Atkin-
Lehner involutions. For further details see [Sch04, Chapter 4], [BO13, Section 4.3], [Kna92,
Section 9.7] and [AL70].

Definition 2.5.33. We let N € Z,n > 0, m be an exact divisor of N (when m|N and
gcd(N/m,m) = 1) and let (NC“/m di’n) € I'o(N/m). Then the Atkin-Lehner involutions
on T'4(N) are given by

Wy a b vm 0
Ne/m  dm 0 1/v/m

WX have determinant 1 and are uniquely determined up to elements of T'o(N). It is well

known that they form cosets of T'g(V) in its normaliser in T', and that, if m’ is another exact

divisor, then

m’ — "Wmm/'/ged(m,m’)

(mod I'y(N)).
In particular, (W2Y)? =1 (mod T'o(N)). We can use these to form an involution on Ag(To(N)).

Definition 2.5.34. An Atkin-Lehner involution on Ay(Ty(N)) is defined for

f € Ax(To(N)) by | flaWy).
As before, we have f,WN[, WY, = f|kWﬁm,/ng(m7m,) and f|r(WN)? = f.

m

2.6 Siegel Theta Functions

In this section we discuss the general theory of Siegel theta functions. These are defined on
a Grassmannian, which we discuss as well. The kernel functions we will define are Siegel
theta functions. The main references are [Bor98, Section 4], [BF04, Section 2] and [Bru02,
Section 2.1].
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2.6.1 Theta Functions

We now consider a general construction of some theta functions, following [Shi75] and [BF04,

Section 2].

Lemma 2.6.1 ([Ray06, Lemma 3.2.1]). The stabiliser of i € H is SO(2) and SL2(R)/SO(2)

is homeomorphic to H.

We have a character oy : SO(2) — C. For an element gy = (f:i&?g) i;ﬁ%g%) € SO(2), where

0 € (—m, 7], we let

- - ——1 i
01/2((907i J(ge,T))::i j(go.i) = xe/2

For f € S(V(R)),g € Mp,(R) and h € L'/L we had a theta function 0,(g, f, h) (Definition
2.4.12)) and we associate to this

Then, for 4 € T, this by definition satisfies

©L(79, ) = pL(V)OL(G; f)-

We also form a function defined on the upper half plane. If f is such that

M5 [go] £(A) = a1/ (Go)" f(N)

for any gy € SO(2) and some fixed r € Z, we will say (following [Cip83, (1.7)]) that f satisfies

the first spherical property for r/2. If this is the case then we let

Ot = 3 Y Jlon )M (o] F(Nen = jlgr ) POL(gr, f). (26.1)

hEL'/L AEL+h
We notice both g, and yg; map i to y7, so gy = 7g-ge for some gy € SO(2) (Lemma [2.6.1)).
Further j(vg,90,1) = j(v,7)j(9r,%)j (g0, 1), so we can then check that our function transforms

as we would hope under (v, ¢,) and is an element of A,/ ,, , i.e.
OL(Y7, f) = &4(7)" pL(7,91)OL(T, f). (2.6.2)
2.6.2 The Grassmannian
Definition 2.6.2. We define the Grassmannian, Gr(V(R)) as
Gr(V(R)) == {z C V(R) | dim z=1b" and Q|. < 0}.

This is the set of negative definite b~ -dimensional subspaces in V (R).
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Remark 2.6.3. This definition is in the form of [BF04,BFI15|, whereas in most other sources
(e.g. [Bor98,Bru02, BO10|) the Grassmannian is the set of positive definite b -dimensional
subspaces. This often means when we work in signature (b™,b7) the equivalent theory in

these other sources is described in a space of signature (b=, b™).

From basic algebra we know that if G is a group acting transitively on a set X and K, is the
stabiliser of a point xy € X, then G/K,, is in bijection with X by the mapping gK,, — gz
(see for example [Coh03, Thorem 2.1.3]). Using Witt’s extension theorem we see that
O(V(R)) = O(b™,b7) acts transitively on Gr(V(R)). Fix an element vy € Gr(V(R)) and
consider its stabiliser K,, C O(b*,b™). We have K,, =2 O(b*) x O(b™), as K,, preserves the
planes vy and vg. So,

Gr(V(R)) = O(b",b7)/0(b%) x O(b7).
Similarly, we can write
Gr(V(R)) =2 SOT(b7,57)/SO(b") x SO(b™). (2.6.3)

We can ask when we can associate a complex structure to the Grassmannian. We very briefly
sketch the theory here. These definitions are taken from [Mil05, Chapter 1] and [Huy05] which

have more rigorous detail.

Definition 2.6.4. A real smooth manifold M has a complex structure if it has a holomor-
phic atlas of charts. An almost complex structure on a smooth real manifold M is a smooth
tensor field J : TM — TM such that J> = —Id, where TM denotes the tangent bundle, the
collection of tangent space T, M. A manifold with complex structure always admits an almost
complex structure (see [Huy05, Proposition 2.6.2]). We call a Riemannian manifold M, (a
smooth real manifold with a Riemannian metric g) a Riemannian symmetric space if for
any point m € M there exists an involution s, such that s2, = Id and m is the only fized point
of sm in some neighbourhood of m. We call a Riemannian manifold Hermitian if it has a
complez structure and g(JX,JY ) = g(X,Y) for all vector fields X,Y . We call a Riemannian
symmetric space trreductble if it is not a product of Riemannian symmetric spaces of lower

dimensions.
Lemma 2.6.5 ([Fiol3, Section 2.3.3]). K,, is a mazimal compact subgroup of O(b*,b™).

This is useful as Cartan tells us that non-compact simple Lie groups modulo a maximal com-
pact subgroup correspond to irreducible simply connected Riemannian symmetric spaces of

negative curvature.

We can determine when these space are Hermitian as we also know that non-compact simple
Lie groups with trivial centre modulo a maximal compact subgroup with positive dimen-

sion centre correspond to non-compact irreducible Hermitian Riemannian symmetric spaces,
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(see |[Hel62, Theorem 8.6.1]). Finally SO(b") x SO(b™) has positive dimension centre only
if one or both of bT,b~ = 2 (see [BJ06, Section 1.5]). Specifically we know SO(2) = U(1)
which is abelian. When one of b*, b~ = 2 this complex structure can can be written explicitly
using the tube domain model, see [Bru02, Section 3.2], [Ray06, Lemma 5.2.2]. In our case of

signature (2,1) we will be able to associate the Grassmannian to the upper-half plane.

We now define another quadratic form on V(R) associated to a given element z € Gr(V(R)),
called the majorant. This form will always be positive definite and so ensures that our Siegel
theta functions will converge. Let z € Gr(V(R)) and A € V(R). We denote z- for the
orthogonal complement of z € V(R), which is a b™-dimensional positive definite subspace.

Then V(R) = z @ 2+ and we have a unique decomposition A = X\, + X,..

Definition 2.6.6. We define the majorant

Qz(A) = Q()\ZJ‘) - Q()‘z)

2.6.3 Siegel Theta Functions

We now describe some Siegel theta functions and a few of their properties. We will construct
these as before by using an Schwartz function at the base point. We first discuss some
polynomials. Remember RY"Y" was the quadratic R-space Example and elements x €

+ap— .
R b in the vector space were denoted as x = (T1, T2, Tpt1p-)-

Definition 2.6.7. We call a polynomial p on RV 6T homogeneous of degree (m™*,m™) if
p is homogeneous of degree m™ (and m™ ) in the b* (and b~ ) variables respectively. We also

let
bt +b” 92

A=Y 52 (2.6.4)
n=1 n

be an operator on RVTYT . e say a polynomial p, is harmonic when A(p) = 0.

We note A is just the traditional Laplace operator on RY* 5" but we will let it act on the
quadratic space R*'*". Let ¢ € C and € R*' +* . Using Borcherds’ [Bor98| notation

we will write exp(cA)(p)(z) to denote Zjoio %AJ (p)(z). We observe that exp(cA)(p)(dz) =

dm M exp(eA/d?)(p)(x) for d € C and if p is harmonic, then exp(cA)(p)(z) = p(x).
Definition 2.6.8. Let A € L and z € Gr(V(R)). We call
@O(Aa Z) = G(Qz()‘)z)

the Gaussian. Let o : V(R) — RV be an isometry and p be a homogeneous polynomial

on R0 of degree (m™*,m™), then we also define:

po(A, z,0,p) = exp (=A/87) (p)(a(A))e (Q=(N)i) -
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Both forms of the Gaussian are Schwartz functions, i.e. elements of S(V(R)). We will now
check that @o(A, z,0,p) is in fact an eigenfunction. We set for the moment r = b+ — b~ +

2m™t —2m™.
Lemma 2.6.9. We have that po(X, z,0,p) satisfies the first spherical property for r/2.

Proof. We want to show that, for all gy € SO(2),

b 4+2mtT—2m~

MSCh [99] SDO()‘7Z70—7P) =01/2 (ge)b SDO()‘7Z70—7P)‘

As before we write an element g9 = (% 2) € SO(2) where a = cos(),b = sin(f) and
0 € (—m,m]. We can easily check that these decompose into the following useful forms. For

b<0
(50 = (7" %) ) () (7).
and for b > 0
(42 = () () (9 (39).
We first consider the b < 0 case. Then using the equations
MR (5 75) ] eo(As 2, 0,p)

= exp (—=A/8) (p)(o(A)e (Q=(N)i — Q(Na/b)

= exp (=A/87) (p)(e(A))e (R(A.)(i — a/b) + Q(A:)(—i — a/b))
Denote this last equation as g(A). We now need the Fourier transform ¢(§) of g(\). Using
[Bor98, Corollary 3.5], setting 7 = (i — a/b), we see that

3(6) = (bla+bi))* /> (b(a — bi))" FHm T

x exp (—A/870%) (p) (0 (€))e (Q(E.+)(a + bi)b + Q(E:)(a — bi)d).

Using this, we have

ME (0 8) (1797)] po(A, 2, 0,p)

= (bla + bi))? /2T (b(a — bi))b /FEmT b b H2AmT M)
x exp (—A/87%) (p)(a(N)e (Q(A:1)(a + bi)b + Q(X;)(a — bi)b) .

Continuing

M5 ) (56) (6 77) ] wo(A z,0,p)

= (b(a+ bi))P/2HmT (b(a — bi))b/2HmT b b 4 2m )

x exp (—A/87b?) (p)(a(N))e (Q(A,1)b% — Q(A.)b71)
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and finally

e [T 5) (o) (58) (4] wolh 2. 00m)

_ b—(b++b_)/2(b(a + bi))b+/2+m+ (b(a _ bi))b_/2+m_’i2(M++m_)

x exp (—A/8mb%) (p)(a(=A/b))e (Q(A.1)i — Q(A.)i)
=(a+ bi)b+/2+m+(a — bi)b7/2+m7900(/\, z,0,p)

(~ )b++2m+—b7 —2m~

= 01/2\9¢ 300()‘7270-71))'

For the b > 0 case it suffices to note that ( ° 0)2 = (' %) hence M5 [(' O] f(z) =

bt +b" f(—x). Then we can easily show the result by adapting the b < 0 case. O

We then follow the earlier construction (2.6.1) to form a theta function for an element 7 =

u+ v € H.

@L(Ta <PO(>\> Z, J,p))

Z Z T/QMSCh [ T] QOO(Av Z,0, p) ehn

heL’'/L NeL+h

- Z Z MSCh{(l) (\Ofl/f)} wo(A, z,0,p)en

heL’'/L NeL+h

/4 Z Z MSch [1) M )/4%(\[/\ 2,0,p)en

heL’'/L AeL+h
=2 ST S e (<A /870) () (e(W)e QU+ Qe (Niv) e (2.6.5)
heL’'/L AeL+h

Remark 2.6.10. Cipra |Cip83, Theorem 1.9] tells us what Schwartz functions that satisfy the

first spherical property look like. Essentially the only functions of this type are (possibly
infinite) sums of Gaussians involving Hermite polynomials. We keep the discussion brief here.
Definitions and details of Hermite polynomials can be found in Section [5.2.1] We observe that
we can obtain Hermite polynomials from the term exp (—A/8) (p). For example if we let p
be of the form p(z1,x2...zp+yp-) = xk for some k € Z,k > 0 then exp (—A/87) (p) is up to

constants the xth Hermite polynomial, (see Lemma [5.3.4).
Equation (2 then motivates the following definition.
Definition 2.6.11. Let z € Gr(V(R)),h € L'/L. Let o : V(R) — RSP be an isometry and

let p be a homogeneous polynomial on RYTbT of degree (m*,m~). Then the Siegel theta

Sfunction is

(el Qs en) )

Dnn(r,z0,0) =0 AT ST exp(—A/STop(o(W)e (ST 4 2
AEL+h

= TS exp(— A Smo)p(o()e (Q(Nu + Q- (Viv)
AEL+h

= Y wo\Tz0p)

AeL+h
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where po(\,T,2,0,p) = v* 12+ exp(—=A/81v)p(c(N))e (Q(N)u + Q- (N)iv). The C[L'/L)-
valued Siegel theta function is then
I1(7,2,0,p) = Z Vr4n(T,2,0,p)en = OL(T, 00(A, 2,0,D)).
heLl'/L

This definition makes sense, because the term e(Q,(\)iv) rapidly decays, ensuring the compo-
nents are absolutely and locally uniformly convergent in 7 and z (see for example [DS05, Sec-
tion 4.9]). We know (7, z,0,p) is a real analytic function. We observe as v — oo then
I n(T,2,0,p) = Ow® /2+™7) uniformly in u. We will also need a more general version.

This definition is taken from [Bor98, Section 4].

Definition 2.6.12. Let z € Gr(V(R)),h € L'/L. Let o : V(R) — R be an isometry, let

p be a homogeneous polynomial on RYTbT of degree (m*,m™) and let o, 3 € V(R). Then

19L+h(7—72707p7aaﬂ) =

vl tmT > exp(—A/8mv)p(a(A+ B))e <Q()\ + B)u+ Q=(A+ Biv — (A + Q a>> .

2
XEL+h

and then

6[/(7—7 Z7aap7a76) = Z 19L+h(7-72a0-7p9aaﬁ)eh'
hel'/L

2.6.4 The Action of the Dual Pair

We look at the action of the dual pair (O(V(R)),SLy(R)) via the Weil representation on
these theta functions. This corresponds with the natural actions on 7 and z. We still set

r=>b"—b" +2m* — 2m~ throughout.

We consider the theta function 91,(7, 2,0, p). Let (v, ®+) € Mp,(R) and let gg € SO2(R). We
remember g, = yYg-90 and j(v9-g6,%) = j7(v,7)j(9r,7)j(ge,%). Then using the definition
(2.6.1)) we see that
M3 [ oA, 7, 2,0,p) = M3 [g,795 971 ] 3(gr, )2 M [g:] o(A, 2,0, p)
= M5 [9,7) j(g7,)"%5(96,8)*00(\, 2,0,p)
=51, 1) 2 j(gyr) P MM (g, 00 (A, 2,0, p)
= (1, 7)o\, 2,0, p).

So this does indeed give rise to an action on 7. Using equation (2.6.2]) and Lemma we

clearly have:

Corollary 2.6.13. The Siegel theta function 192(7, 2,0,p) € Apja,, is an automorphic form
pt—

52— +m* —m™). That is, for (y,¢,) €T,

of weight (

I1.(7, 2,0,p) = ¢ (1) prL(v, $4)IL(T, 2,0, p).
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So 91,7, 2,0,1) has for example weight (bt —b~)/2 in 7 under . For the general version:

Theorem 2.6.14 ([Bor98, Theorem 4.1]). For any (v,¢,) € T,y = (23) ,

191(77—7 Z,0,p,ac + bﬁv ca + dﬁ) = ¢’Y(7_)TpL("Yv (Zs’y)’&_L(Tv Z,0,P, aHB)'

Proof. This is shown in [Bor98, Theorem 4.1] using essentially the same methods, i.e. by

finding a Fourier transform and applying the Poisson summation formula. O

We consider the action of the orthogonal group (we restrict to the case when p = 1). Let

z € Gr(V(R)) and let g € O(V(R)). We then have using (2.4.5))

MSCh [g] (pO(A77—7 Z) = (PO(g_l)HT’ Z) = (po()\,’l', gZ)

This can be observed by letting g act on all elements A € L. We also recall the quadratic form

is invariant under g and notice that

997N = Agz) and  g(gT I A) 1 = Agay-

Clearly then 97 (, z) will be invariant under the action of a subgroup of O(L) on z that acts
trivially on L'/L. We denote this group as O4(L). In fact, we have the natural surjective
homomorphism from SO(L) to Aut(L'/L). So we will actually consider the the action of a
subgroup of SO(L) that acts trivially on L’/L. Which we call the discriminant kernel and
denote as SO4(L).

Our notation differs from [BO10| and is more similar to [Bru02|. In the case of signature (2,1)
we have mentioned that z can be thought of as an element of the upper-half plane. In this
case we can use a similar construction as in Section to form a Siegel theta function (with
a polynomial that satisfies the second spherical condition see Section that will actually
transform with a certain weight under SO4(L). Section told us that we have a surjective
homomorphism, g (see (2.2.1))) from GSpin(L) to SO(L). This means we can (and will) look
at an action on z in terms of a subgroup of GSpin(L) which acts via conjugation on V. This
discussion explains the singular theta correspondence in our context. We will lift from forms
for the group Mp,(R) to a subgroup of O(V(R)) = O(b*,b~). More specifically, from I to a
group G in GSpin(L) whose image under g is SO4(L).



Chapter 3

The Setting

We will first detail in Section the properties of a specific lattice L and the quadratic space
(V, Q) of signature (2, 1) that it lies in. The rest of our work will be based in this setting. This
lattice L also has an associated character which allows us to twist the Weil representation.
We discuss this in Section We then describe in detail what the Grassmannian, cusps
and the modular curve look like in this setting. We also define some twisted cycles on this
Grassmannian. We discuss objects in roughly the same order as we defined them in Chapter

2

3.1 A Lattice of Signature (2,1)

We first describe a realisation of our space and its properties. Throughout the rest of this
document we fix V to be a quadratic Q-space of dimension 3 with a non-degenerate sym-
metric bilinear form (-,-) of signature (2,1). We also fix N € N. Our setting is also used
in [FM11,BO10,BFI15]. The settings in [BO13,/AE13,[Hov12] are also similar. However there
the quadratic space is (V, —Q) which has signature (1, 2), see also Remark All of these

papers form a good reference for what follows.

We will work in a well known explicit realisation of this. In particular, we let V' be traceless
2 X 2 matrices, i.e.

V= {\ € My(Q) | tr(\) = 0} . (3.1.1)

Let A, u € V. We form a quadratic space of signature (2, 1) by setting Q(\) :== —N det(\) and
(A, i) == Ntr(Ap). Tt is easily checked the quadratic Q-space (V, Q) is isotropic and indefinite

of signature (2,1). In particular we have the following orthonormal basis of V(R)

1 0 1 1 1 0 1 0 1
e = — , egi= — and ez = — : (3.1.2)

V2N \1 0 V2N \0o -1 V2N \ -1 0
43



3.1. A Lattice of Signature (2,1) 44

We fix a lattice L as:

b —a/N
L= a,b,ceZ
c —b

The following properties are simple to check.

Lemma 3.1.1. The lattice L is even (and therefore integral), has level AN and discriminant
2N. The discriminant group L'/L can be identified with: Z/2NZ with discriminant form
x> 22/AN. The lattice L has dual lattice:

b/2N  —a/N
L' = a,bceZ . (3.1.3)
c —b/2N

Remark 3.1.2. The elements A\ € L’ correspond to integral binary quadratic forms, Example
In particular, each A € L’ corresponds to a form [a, b, N¢|. Also the discriminant D’ of
[a,b, Nc] is D' = b* — 4Nac = 4ANQ(N).

Remember we have the identifications from Example
C(V(R)) =Mx(R&R), C(V(R)) =Ma(R) and C°(V) = My(Q).

We let GL2(Q) act on V by conjugation, i.e. 7.\ = yAy~! for v € GL2(Q),A € V and
notice this action is isometric, i.e. Q(v.A) = Q(A). From Section we have that elements

x € GSpin(V) act on V isometrically via conjugation. This gives rise to the isomorphisms
GL2(Q) = GSpin(V) and SL2(Q) = Spin(V)

noting that the Clifford norm on M3(Q) is the determinant, (see Lemma [2.2.12)). Using the
exact sequence in ([2.2.2)), we have

PSL,(Q) = SOH (V). (3.1.4)

This accidental isomorphism is what makes signature (2,1) particularly interesting with re-

gards to modular forms.

We also want to find the group that takes L to itself and acts trivially on the discriminant
group L'/L when acting via conjugation. We will see in Section that there are two
components in our model of the Grassmanian, and we fix an orientation by choosing one. We
let T'(L) == SO4(L) N SOT(L). Then following Section and Definition it suffices
to find a subgroup of Spin(L) C Spin(V') = SLy(Q), whose image under g is I'(L). It is easily
checked that all W2 (where m is an exact divisor of N) map L to itself. So the image of WY

under g is an element of SO (L). In fact we have the following:

Proposition 3.1.3 ([BO10, Proposition 2.2]). The image of all W under g is SO (L). The
image of To(IN) under g is T'(L).
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Example 3.1.4. Continuing from Example [2.5.13] (see also [BFI15, Example 2.2]) if f(7) €

!
MkvPL

weakly holomorphic forms for I'(4N). (using the discussion in Section [2.5.1)). The function

then the scalar valued components fj are certainly scalar-valued half-integral weight

Z fn(dANT) = Z Z c(n,h)e(4Nnt) = Z c(m + h%/AN, h)e((4Nm + h*)7)

hel’/L heL’ /L neZ+Q(h) mez

is a form that satisfies the Kohnen plus space condition. I.e. the n-th fourier coefficient
vanishes unless it is a square modulo 4N. [EZ85, Theorem 5.4] tells us that this in fact forms
an isomorphism from M,!WL to M,:“!(FO(N)) in the case where k € 2Z+ % and N prime. Later
we define theta lifts of vector-valued forms using the lattice L. So in this case the isomorphism
M,

o =M T (To(N)) tells us that we are also lifting scalar-valued forms in the Kohnen plus

space.

3.2 The Twisted Weil Representation

The elements of L’ corresponded to integral binary quadratic forms. This allows us to define a
genus character on the lattice. We can then twist the Siegel theta functions from earlier with
this character. These will then transform with respect to the twisted Weil representation. We
still always set A = (b/ iN __b%]yv) € L’ in this section. The main sources for the definition
and properties of this character are [GKZ87, Section 1.2] and [Sko90bl, Chapter 1] and there is

some discussion of the twisted Weil representation in [AE13| Section 3] and [BO10, Section 4].

Remark 3.2.1. In particular, in |[AE13| they use an intertwining linear map to modify any
non-twisted theta function (on the lattice L) to a twisted theta function, which they show
then transforms with respect to the twisted Weil representation. Our approach is different.
We will form our twisted theta functions (in Section using Gaussians at the base point,
mirroring the construction in Section This will allow us to see their weight immediately,
mirroring Corollary To do this we will need twisted versions of the formulas in Lemma
which we obtain in Proposition [3.:2.6] Both approaches have essentially the same result

and so which one to use is a matter of taste.

Definition 3.2.2. We call an integer a fundamental discriminant if it is equal to 1 or the
discriminant of a quadratic field. We set Dy € Z a fundamental discriminant, and r € Z such
that Dy = 1% (mod 4N). From now on we simply denote Dy as D. Let n be any integer that
is coprime to D and representable by a binary quadratic form [Nya,b, Noc] with NyNo = N
and N1, Ny > 0 i.e. n = [Nya,b, Noc|(x,y) for some x,y € Z. If D is such that

1. 4NQ(N\)/D = s% (mod 4N) for some s € Z,
2. ged(a,b,¢,D) =1,
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then we define the generalised genus character as xp(\) := (%) otherwise xp(\) == 0.

This makes sense as |[GKZ87, Proposition 1.2.1] tells us there always exists such an n.

Remark 3.2.3. It is common in the literature to denote the fundamental discriminant as A.
We have used D to denote this so as to avoid confusion with the operator in (2.6.4) and the
weight k& hyperbolic Laplacian operator in Definition [2.5.4

The key properties we need concerning this character are summarised below:

Proposition 3.2.4 (|GKZ87, Proposition 1.2.1]). The character xp is independent of the
choice of N1, No and n. The character xp is invariant under the action of To(N) and the
Atkin-Lehner involutions WY . The character xp(\) only depends on A\ € L' modulo DL.
Finally if we have the factorisations D = DDy into discriminants and N = NiNs into

positive factors so that ged(D1, N1a) = ged(Da, Noc) = 1 then

- (22) (%)

In particular, xp(—X) = sgn(D)(A\). We define a twisted version of Definition Let D
be a fundamental discriminant and then consider the scaled lattice DL. The scaled lattice DL
has associated quadratic and bilinear forms Qp () = Q(N)/|D| and (A, u)p = (A, n)/|D| for
A, p € V. Using the same ideas as in Lemma we can then quickly see that DL is even,
with dual lattice L’ and discriminant 2N|D|? = |D|3|L’/L|. We will denote sgn(s) = s/|s| for
all s e R, s #0.

Definition 3.2.5. Let f € S(V(R)),h € L'/L,g = (g,¢4) € Mpy(R) and let D be a funda-

mental discriminant as before. Then we call

0o fih) = 3 ST oM £(N)
WeL'/DL  AeDL+h
h'=rh(L)

Q(h)=DQ(h)(D)

the twisted theta function.
We now show a twisted version of Lemma [2.4.13]
Proposition 3.2.6. We have that

0r.0.+(Tg, f,h) = e(sgn(D) - Q(h)0r.p.(9, f, h),

00 (S5, f,h) = L=580D)/8) 3" e(—sgn(D)(h, 1))01.0.0 (G, £, ).
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Proof. We first show this for 7= ((3 1),1). We use the formulas in Lemma for the
lattice DL.

0r,0.,(Tg, f, h) = > Y xpWMSP T M5 [g] £(A)
h'eLl’/DL NEDL+h!
h'=rh(L)

Q(h)=DQ(h)(D)
= > > e(@p(DX+1))xp(DA+ B)MS™ [g] f(DX + 1).

ReL /DL  AEL
h'=rh(L)
Q(L)=DQ(h)(D)

We observe that Qp (D) € Z for A € L and Qp(h') = DQ(h)/|D| (mod 1), therefore

= > > e(DQ(h)/|D])xp(DA+ K )M [g] f(DA+ 1)
WeL'/DL  XEL
h'=rh(L)
Q(h)=DQ(h)(D)

= e(sgn(D) - Q(h))0r,p.r(g, f, h).

Using the invariance of xp modulo DL we have for S = (((1) b ) , ﬁ) the following:

0.0, (S3, f.h) = > > xpWMIM[S] MM (5] F(N)
h'eL'/DL  XeDL+h
h'=rh(L)

Q(h)=DQ(h)(D)

=e((b” —b")/8) > > xpW)MSR[g] f(=))
h'eLl’/DL  AeDL+HK
h'=rh(L)
Q(h")=DQ(h)(D)

=e(-1/8) > > Xp(h)MSeh | @ F(-A = 1),
WeLl'/DL  XeDL
h'=rh(L)
Q(h")=DQ(h)(D)

Using the Poisson summation formula (Lemma [2.4.10) and the fact that f(—\ — h/) =
e(—(\, W )p)f(A) for A € DL (see eg. [Bor98, Lemma 3.1]) we obtain

e(—1/8 -
- % > xn(e(— (W )p)M5" (3] F(N)
| / | h'eL’/DL AeL’
h'=rh(L)
Q(h")=DQ(h)(D)

e(—1/8 5
- M T ST (Re(— (', 1)/ DM [g] F(N)
h’GL’/DL )\GDL+h”
h'=rh(L) h'"eL'/DL
Q(h)=DQ(h)(D)

and then using [BO10, Proposition 4.2] we finally have

ep|D|?/2e(—1/8 .
B DM : 2. > xp(h")e(=sgn(D)(h, h) M (] F(A)
[D?|L/L| WeD/L  aeDLiN"
R"=rh'(L) h"eL'/DL
Q(W")=DQ(h')(D)

e(—sgn(D)/8) T e _
= h h'))é ,D,r\Y, f7 R). O
|L//L Wil Sgn )) L,D (g )
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This leads to the following definition, mirroring Definition [2.4.16

Definition 3.2.7. Let U(C[L'/L]) be the unitary group on C[L'/L]. Then we define a repre-

sentation via the generators:

pr(T)(en) = e(sgn(D)Q(h))en,

51(S)(en) = =520D)/E) 3 e(—sgu(D)(h,H))en.

We call pr, : T — U(C[L'/L)) the twisted Weil representation on C[L'/L)].

Comparing with Definition [2.4.16] we observe that gy, is just pp if D > 0 and pg if D < 0.

3.3 The Grassmannian in Signature (2,1)

We will now describe in more detail the Grassmannian of V(R), a real hyperbolic 2-space.
This is also discussed in [FM11} Section 2.1], [Bru02, Chapter 3] and [BFI15, Section 2.1].
We remember that Gr(V(R) = {z C V(R) | dim z =1 and Q|, < 0}, so Gr(V(R)) is the set
of negative lines. The set of norm —1 vectors form a two-sheet hyperboloid. Le. (V(R),Q)
is isometric to R%!, so being of norm —1 dictates that z? + 25 — 23 = —1. We take one
component of this two-sheet hyperboloid. Each vector on this component then represents an

element of Gr(V(R)). Explicitly:
Definition 3.3.1. We fiz an isotropic vector ! € V.. Then we call
Vop={v_1 € VR) | (v_1,v_1) = =1, (v_1,1) <0}

the hyperboloid model, where we form a bijection a‘(}fl : Vo1 = Gr(V(R)) via the map

v_1 — Rou_q.

If instead we took —[ as our isotropic vector, we would obtain the other component of the two-
sheet hyperboloid. We denote the bijection in the other direction, as agf :Gr(V(R)) — V4
and it is given by the map z + [, /|l.|. We see that [,/|l,| is a norm —1 vector which lies in z

and also that [, # 0.

Section and (2.6.3) told us that Gr(V(R)) = SOT(2,1)/SO(2) x SO(1) and this is
Hermitian. In fact using, (3.1.4) and Lemma we have PSLy(R) = SO*(2,1) and
SL2(R)/SO(2) = H. We conclude that the Grassmannian is isomorphic to H. Explicitly:
Definition 3.3.2. We let 2’ = x + iy € H be the upper-half plane model, where we form
a bijection o* : H — Gr(V(R)) via the map

—z 2% +y?

2= R(g.re3) =R
-1 T
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This map is clearly injective. It is surjective as each element of Gr(V(R)) can be written
as R (:117 Z) ,a > b% a,b € R. We then have a bijection from Jﬂ‘gfl : H — V_; via the map

2ol (o™ (2")). Explicitly

l —(q. l .€ 1
Vi R(g./.e3) g--e3(l,g:-€3) (( —z Py —z 4y
H ( ) |l]R(gz/.eg)| ](l,gz/.€3)| «/2Ny 1z 1 =z

where we have used that (g,/.es,g,.e3) = —1. If we fix [ such that the sgn term equals 1

(or —1), then this is a positive (or negative) orientation of Gr(V(R)). In summary we have

H = Gr(V(R) =2 V_; and the following bijective diagram:

Gr
on

V_1
9Gr

/—\
Vo1 G
w

Gr
Uv—l

r

Figure 3.1: Bijective Diagram

As is standard, we will often abuse notation, and set z = x + iy € H but also denote by z
its identifications in V_; and Gr(V(R)). We had that SL2(Q) acts on V' via conjugation and,
as we would expect, this intertwines with the natural action on H. We can check with some

simple linear algebra that UE‘E*I (v2) = ’y.(aﬂ‘g’l (2)) for all v € SL2(Q), z = x + iy € H.

We now look for an oriented basis for V(R) compatible with these models. We fix a positive
orientation of Gr(V(R)) from here on. In we had an orthonormal basis e, ez, e3
of V(R). We notice for the base point z = i that e3 = UE‘H/_I(i). We then define a basis
bi(z) = g..e1, ba(2) = g..ea and bs(z) = g,.e3 for any z = x + iy € H. We will have
b3(2) = Jgfl(z). Explicitly

1 r —x?4y?

ne =l ] (3.3.1a)

1 y —2zy

ba(z) = , 3.3.1b
1 —r zz

bs(z) = . (3.3.1c)
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It can be verified (b1 (z),b1(2)) = 1, (b2(2), b2(2)) = 1, (b3(2),b3(2)) = —1 and (b;(2),b;(2)) =0

for i # j. If A € V(R) then A = ) X\;i(2)bi(2) where \;(z) := % We have

1

V2Ny
1

V2Ny
Na(2) = \/%y (N2 — bz + a). (3.3.2¢)

Ai(z) = (eN (=2 + y?) + br — a), (3.3.2a)

)\2(2) =

(—2cNzy + by), (3.3.2b)

Also (A, ) = A1(2)2 + Aa(2)? — A3(2)%, At = A1(2)b1(2) + A2(2)ba(2) and A, = A3(2)b3(2).

3.4 The Modular Curve

We now consider the modular curve and its associated cusps. We will find Fourier expansions
at these cusps. Good references include [DS05, Section 2.4], [BF06, Section 2] and [FM11, Sec-
tion 2.1].

We identify To(N)\Gr(V(R)) with the modular curve Yy(N) := T'o(N)\H. We compactify
this by adjoining finitely many cuspsi.e. Xo(V) = Yo(N)UT'o(N)\ (Q U {o0}). The elements
of P}(Q) := QU {oco} are pairs (m/n) where ged(m,n) = 1. Matrices (¢5) € GL3 (Q) act on
(m/n) by (£1) (m/n) = (am + bn)/(cm + dn).

When N is square-free there are an cusps. It is well known [DS05, Section 3.8], [Sch04, Sec-
tion 4] that the cusps of Yy(IN) can be represented by 1/d, where d are the divisors of N. Any
two cusps (m/n), (m’/n’) are To(N) equivalent when ged(n, N) = ged(n’, N). Letting d’ be
another divisor of N, then W2 maps the cusp 1/d to ged(d’,d)/(d'd). We observe that all

the cusps can be represented as Wév 00, with d running over the divisors of V.

We denote by Iso(V') the set of isotropic lines in V. Then the map UIIP,SIO(%) : PHQ) — Iso(V),
—mn m2

given by the identification (m/n) — Span ( IS m"), is clearly bijective. We can check that
the actions intertwine i.e. J[{],SIO(E@‘;) (v(m/n)) = v.aéiczf@‘;)(m/n) for (m/n) € P1(Q),v € SL2(Q).
This means we can view the cusps attached to Yo(V) as T'o(N)-classes of isotropic lines in
V. Each of these lines can be uniquely represented by a primitive isotropic vector in L up

to sign. We have fixed an orientation earlier so we choose our primitive vectors I’ so that

01/N)

sgn((—!', g,.es) = 1. Then the cusps co and 0 correspond to I'g(N)-classes of I = (0 A

and [y := ( 0 8). We observe that any other cusp I’ given by 7.l = I’ for some v = (‘; Z) el
is still positively oriented. Explicitly: (—7.lso, g--€3) = ((cx — a)? + (cy)?)/V2Ny > 0.
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3.5 Twisted Special Cycles

We describe some geodesics in Gr(V(R)) and cycles in Yy(N), which we also associate to an
J € Hy 5, . This will later allow us to describe the singularities of our lift, which will lie along
these cycles. Similar discussions can be found in [FM11, Section 3.1], [BF04} Section 2], [BO10|
Section 5], [FMO02, Section 3], [BF06, Section 2] and |[Fun02]. We fix a vector A € V with
positive norm Q(A\) > 0 and A = (b/QN —a/N )

¢ —b/2N

Definition 3.5.1. We denote
Dy ={zeGr(V(R)) | z L A}.
for a geodesic in Gr(V(R)). In the upper half plane model we can easily see this is
Dy {z€eH|cN[]>—bz+a=0}. (3.5.1)

We note D, = 7.Dy for v € SLy(R). If A L I and Q(A) > 0 this is equivalent to when
c¢c=0,b# 0. So z € D, is equivalent to when x = a/b i.e. D), defines vertical half-line in H.

The other case is when A [ [,. This is equivalent to having ¢ # 0, and after completing the

)

i.e. D, defines a semi-circle with centre at (x = b/2Nc,y = 0) and radius /Q(\)/Nc2.

square in x we have that

Clearly any two geodesics intersect at most once.

7</,\
.

\j
8

Figure 3.2: Geodesics on the upper-half plane

Any At in V(R) can be spanned with two positively oriented isotropic vectors in V(R) (not

necessarily in V' or primitive), which it is standard to denote as Iy, l;\. The corresponding
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isotropic lines are uniquely determined and lie in Iso(V(R)) = R U {o0}, so the end points of
D) correspond to Span(ly) and Span(l;\) under the a]{;O(E@V)(R)) map. So our first case, A L [,
is when D) joins the cusps oo and a/b. In this case Q(\)/N € (Q*)%. The second case,
A L lso, is when Dy joins the “cusps” b/2Nc+ \/W which are clearly “rational cusps”

if and only if Q(\)/N € (Q*)2.

We will also need an orientation of the geodesics. In Section [3.3] we fixed an oriented basis
{b1(2), ba(2), b3(2)} for V(R) and Gr(V (R)). we orient Dy such that Iy, \, [y is also a positively
oriented basis of V. This ensures D, \ and v.D, both have the same orientation. Using the
upper half-plane model the geodesics were defined by a,b,c € Z. In the case ¢ = 0,b # 0 (a
vertical half-line), this is oriented towards ico if b > 0 and in reverse if b < 0. When ¢ # 0 the

semi-circle is oriented clockwise if ¢ > 0 and anti-clockwise if ¢ < 0.

Definition 3.5.2. We let the stabiliser of A in T'o(N) be

We let T be the image of the stabiliser in PSLo(Z). We denote by Z(\), the image of the
quotient Tx\\Dy in the modular curve Yo(N). We call Z(\) a cycle.

In other words, cycles are “geodesics in the modular curve”. We classify these into two types.
The cycle Z()) is an infinite (or closed) geodesic in Yy(IV), this is exactly when Ty is trivial
(or infinite cyclic). This is exactly when A+ C V is isotropic (or anisotropic). Using our earlier
discussion A+ C V is isotropic (or anisotropic) when the isotropic vectors [y, l:\ which span A+
are in V (or V(R)\V). This happened when Q(\)/N € (Q*)? (or Q(\)/N & (Q*)?). So if

D, is infinite then it joins two “rational” cusps (or closed when it joins two “irrational” cusps).

We will see that the singularities of the lift will depend on a collection of vectors of certain

length and in a certain coset. We form some notation for this. Set D € Z and write
Lp={ e L'|Q\) =D/4N}.
Such vectors only exist if D = s? (mod 4N) for some s € Z. Then, for h € L'/ L, we write
Lpp={ el | Q) =D/4N), A\=h (mod L)}. (3.5.2)

Again such vectors only exist if D = h? (mod 4N). The group I'g(N) acts by conjugation on
Lp  and it is well known, by reduction theory on binary quadratic forms, that there are only

finitely many orbits of Lp j, (as long as D # 0).
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Definition 3.5.3. Let D be a fundamental discriminant with r € Z such that D = r?
(mod 4N) andleth € L'/L. Letm € Z—sgn(D)Q(h) withm < 0. We define d := 4Nsgn(D)m
and we have the following formal linear combination on Yo(N):

Zp (m,h) = > Xp(N)Z(N).

)\EL_dDﬁrh/Fo(N)

We call Z;Dyr(m, h) a twisted special cycle. We write Zp ,(m,h) for its image in H =
Gr(V(R)). Let k € 3Z and let f € Hy. 5, with ezpansion as in (2.5.2). Then we call
ZD,r(f) = Z Z C+ (ma h)ZD,r(mv h)

heL'/L meZ—sgn(D)Q(h)
m<0
an assoctated twisted special cycle. We denote Zp . (f) for its image in H = Gr(V(R)).

We remember that xp is invariant under the action of I'y(/N). We can think of a twisted spe-
cial cycle roughly as being a finite linear combination of twisted cycles, associated to vectors
of norm —m|D| > 0 and twisted coset rh. The associated twisted special cycle depends only
on the principal part of f that has only finitely many ¢*(m, h) terms for m < 0, so again this

is a finite collection of cycles. We also note that Zp ,(f) C H is a nowhere dense set.

Remark 3.5.4. There always exists a vector A € L_gp ,p such that xp(X) # 0 (in particular
Q(A\) = —m|D| so in Definition we certainly have ANQ(X)/D = —4Nsgn(D)m = 0
(mod 4N)). This implies Zp ,(f) is the empty set if and only if the principal part of f is
constant. When the principal part of f is not constant we know that ngy (from ) is
positive, ng > 0. For each —ng < n < 0 there is some associated geodesics Dy, where Q(\) =
—n|D|. In the case A\ L I, the geodesics D, are semi-circles with radius y/—n|D|/Nc? <
\/W . We conclude that, above this “height” we will only find vertical half-line geodesics
associated to Zp ,(f). Within these semi-circles we have bounded connected components and
above them we have unbounded connected components (which are regions between two vertical

half-lines).

3.6 Twisted Siegel Theta Functions

In this section we describe some twisted Siegel theta functions. We work with the lattice L
from earlier, which allows us to twist these theta functions with the genus character. Fol-
lowing Remark we construct these in the same manner that we did in Section We
discuss the transformation properties of the twisted Siegel theta functions. We then define
two examples with some well chosen polynomials. These examples will be the kernel functions
we use to define the singular theta lift and the Shimura lift. We will then show the transfor-

mation properties of the kernel functions in both variables, 7 and z. We fix L, (V, Q), D, r and
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A= (b/zN __ba/;]\’\,) € L', as before. We also let 7 = u+iv € Hand z = x+iy € H = Gr(V(R)).
Mirroring the construction in (2.6.1) we work with respect to the lattice DL and quadratic
form @Qp. We fix an f € S(V(R)) which satisfies the first spherical property i.e.

M5 [gg] F(A) = 172 (G0)" F(N) (3.6.1)

for g € SO(2) and some fixed ' € Z. We then let

OLp (T, )= Y > > ilgn )" Pxp WM [go] f(\en. (3.6.2)

REL'/L  h'eL'/DL  AEDL4R
h'=rh(L)
Q(h)=DQ(h)(D)
Let o : V(R) — R?! be an isometry for the quadratic form ). We then define op =
|D|='/2¢, which is an isometry op : V(R) — R?! for the quadratic form Qp. We also set p

a homogeneous polynomial on R?! of degree (m™,m~) and set 7/ =2 —1+2m* —2m~. We

define the following functions:

900()‘5 Z,0D,P, D) = |D‘(m++mi)/2 exp (_A/87T> (p)(UD()\))e (QZ(A) Z) )

DI

vo(\, T, 2,0,p,D) == U1/2+m7XD()\)eXp (—=|D]|A/87v) (p)(a(N))e <Q(A) Q- iv> .

—u+

D) D]
Using Lemma for the lattice DL with quadratic form Qp we see that ¢o(A, z,0p,p, D)
satisfies (3.6.1). We then use the fact that

)(m++m)/2

exp (=A/87) () (5 (v/oN)) = (

D exp (=|D|A/8mv) (p)(a(A))

to obtain the following:

@L,D{r‘(TySpO()HZaO-DapaD)
= > > > i(gn ) PxpNMS 9] 9o(A, 2,00, p, D)er

heL’/L  hn'eLl’/DL  XeDL+h’
B =rh(L)
Q(W)=DQ(h)(D)

- Y > > @\ T z,0,p,D)ey

h€L'/L  h'e€L//DL  AEDL+N
h'=rh(L)
Q(h")=DQ(h)(D)

— Z Z Z wo(DX+ 1, 7,2,0,p, D)ep,.

heL’/LXeL  h'eLl’/DL
h'=rh(L)
Q(r")=DQ(h)(D)

We then make the “substitution” h' +— h’ — DX to get

= > > (W', 7,2,0,p,D)e.

heL’/L h'eLl’
h'=rh(L)
Q(h)=DQ(h)(D)

This motivates the following definition.
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Definition 3.6.1. Let h € L'/L, let o : V(R) — R*! be an isometry and let p be a homo-
geneous polynomial on R*' of degree (m™,m™). Then the twisted Siegel theta function
18
19L+h,D,T(7—7270—7p) = Z QOo(A,T,Z,J,p,D).
AEL+h
QN)=DQ(h)(D)
The C[L'/L]-valued twisted Siegel theta function is

EL,D,T(Tv Z, va) = Z QgL-l—h,D,r(T; Z,0, p)eh = @L,D,T‘(T7 900()\7 Z2,0,pP, D))
heL’/L

We observe as v — oo then V14 4(7, z,0,p) = O(vY/?*™") uniformly in u. The next lemma

mirrors Corollary [2:6.13]

Lemma 3.6.2. The twisted Siegel theta function 0_,;(7,2,0,]9) € A, 2,5, is an automorphic

form of weight (1/24+m* —m™). That is, for (v,¢,) €T
792 (’YT7 Z, U7p> = ¢’Y (T)rlﬁL(’Yﬂ d)'y)ﬁ}/('ra z,0, p)

P?"OOf. We remember Gy = V9790 for some go € 80(2) and j(’yng197 Z) = ](77 7—)] (97-7 Z)](gm Z)
Then, using Proposition and the fact that vo(A, z, 0, p, D) satisfies (3.6.1]), we see for each

coset

SDO(/\v VT, 2,0,P,s D)

= Z Z j((’y77—>j(g7')Z.)j(geai))r//2XD()‘)MSCh [’yng@] QOO()\,Z,O',p,D)eh
h'eL'/DL  AEDL+h
h'=rh(L)
Q(h")=DQ(h)(D)
:j(777—)r,/25L(77 ¢7)@0(>\77'7 Za va7D)' D

3.6.1 Kernel Functions

We will use two examples of these twisted Siegel theta functions to form the kernels of our

lift. We first consider their polynomials.

We first define the vectors v(z) == —g..e3 and v(z) = g..(e1 +iea). We notice v(z) spans z €

Gr(V(R)) and by (2), ba(z) span z+, so v(z1) € z+ € V(C). Further we have (v(z+),v(z1)) = 0

and (v(z1),v(z1)) =2 > 0. We then consider the two polynomials

(/\’U(Z)) = _()‘)b3(z)) = _()‘792"63) = /\3('2))
y(A,v(z)) = y(A, bi(2) +iba(2)) = y(A, g=-(e1 +ie2)) = y(A1(2) + ida(2)).
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We will often denote these as p,(A) and ¢, (M) respectively. For A := (b/zN —o/N ) we have

¢ —=b/2N
p.(A) = (\v(z)) = Fy (eN|z|* = bz + a), (3.6.3)
-\ =y(\v(zh) = \/% (ch2 —bz+a). (3.6.4)

Lemma 3.6.3. Let k € Z,k > 0. The polynomials (A, v(2))(A, v(z1)y)*~1 and (N, v(z1)/y)*
are harmonic and of degree (k —1,1) and (k,0).

Proof. We remember Q(A) = 3 (A1(2)? + A2(2)? — A3(2)?) so we have an explicit isometry
o, : V(R) — R?! given by

(N = ( M), fxz(z) \1[ 3(z)>. (3.6.5)

Thus, if p(c.(\)) = (A\v(2)) and q(o.(N\) = y(Av(z1))) then p(zy,z2,23) = V2z3 and
q(r1,29,23) = yv2(xy + ixs) i.e. they are polynomials of degrees (0,1) and (1,0) in R?!.
We set py,(z1, 22, x3) = (V23)(yV2(x1 + ix))* 1 and p(z1, 22, 23) = (V2(x1 + ix2)/y)*
These are both are harmonic as it is easily verified, for example, that

321% O?pr  0%pr

+ =0. O
0x3  0x3

We now define the kernel function.

Definition 3.6.4. Let h € L'/L and let k € Z,k > 0. Then the kernel function is

pana(nd) =02 S0 oMo ( Dok B
AeL+rh D] D]
QN=DQ(h)(D)

The C[L'/L]-valued kernel function is
Oprk(1,2) = Y Oprni(T,2)en.
heL!/L

We can also rewrite this definition in the following useful forms:

Op,rnk(7,2) = 040,00 (T, 2,02, D)
= Z QOO()\,T,Z,O’Z,pk,D)
AELtrh
Q(N)=DQ(h)(D)

k—1
3/2 Z —xp(\)(eN|z|? = bz +a) [ — (cNz% — bz +a)
NeLarh V2Ny V2N

Q=D (h)(D)
b? u b2 (eN|z|? —bx 4+ a)?\ iv
AN I Y (366
<o((av o) o+ (i oo+ o amp ) ) 369)

Definition [2.6.11] tells us this is a real analytic function in 7 and z. There exists a C' > 0

such that ©p . x(7,2) = O(e”“Y) as v — oo, uniformly in u. This exponential decay is a
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better asymptotic than the polynomial growth given in [Hov12] and Definition [2.6.11} This is

because in our case the polynomial kills the term when A = 0.

We will often just denote Op , 5 i(7T,2) as Op x(7,2) and Op , (7, 2) as Ok(7,2) when the

context is clear. We also have
Op,rk(7.2) = Op . iu(—7,—7). (3.6.7)

Remark 3.6.5. Let us restrict to the case k € 2Z,k > 0,N =1 and D = 1. Then the kernel
function agrees, up to the constant i, with the scalar-valued theta function “©1 (7, 2)” discussed
in [BKZ14, Section 1]. In the scalar-valued case we need k to be even, as otherwise the sum over
A and —A\ cancel and the theta function is zero. The theta function “©*(z,7)” as denoted
in [BKV13, (1.6)] also matches our definition. In particular, i0*(—%,7) = i©*(z, —7) =
v*=3/20 (7, 2). In the case k = 1 our kernel function Uk_?’/QW matches the theta
function defined in [H6v12, Definition 2.5] (noting that in [Hov12| the lattice is of signature
(1,2)). The kernel function (in the case k = 1) is also used in [AGOR14} Section 3] to define

an adjoint lift to the one considered in [Hov12].

Definition 3.6.6. Let h € L'/L and k € Z,k > 0. Then the Shintani kernel function is

k

Soeastra) =0 5 o (BER) (G Sta)

AEL+Th y
QMN)=DQ(h)(D)

= Z 900()‘77-7270-271)27D)
AEL+7rh
QN=DQ(h)(D)

The C[L'/L]-valued Shintani kernel function is

@*D,r,k:(’r? Z) = Z Q*D,T‘,h,,k‘(7_7 Z)Qh.
heL’'/L

There exists a C' > 0 such that ©7, ., (7,2) = O(e~“") as v — oo uniformly in u. We have

GE,nk(Tv z) = *D,r,k(fTv —Z).

Remark 3.6.7. Let us restrict to the case k € 2Z,k > 0, N =1 and D = 1. Then the Shintani
kernel function agrees, up to constant with the theta function “©s(7,2)” defined in [BKZ14,
Section 1]. Tt also agrees with the theta function “©(z,7)” as denoted in [BKV13, (1.6)]. This
kernel function actually goes back to [Shi75| (see also [Niw75] and |[Cip83)).

3.6.2 Transformation Properties

Next, we examine the transformation properties of these kernel functions in both variables 7
and z. We will integrate in 7 so our singular theta lift will be a function in z. In the z variable

we have weight 2 — 2k.
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Theorem 3.6.8. For 7 € H,0.(7,2) € Ap_3/25, and ©;(7,2) € Apy1/25, -
Proof. Easily seen using Lemma [3.6.3| and Lemma |3.6.2 O

When considering the z variable we will need two short lemmas.

Lemma 3.6.9. The polynomial q,(\) transforms under the action of v € SLa(R) such that
Gy (1-A) = 5 (7, 2) g (V).

Proof. We set f.(\) = —v2¢.(\)/VN = + (cN2? — bz 4+ a) and

0 1 b/2N —a/N
o= and A= / /

-1 0 ¢ —b/2N

We notice a~lya =y~ for all elements v € SLy(R) and we can write

L0 = (Z 1) c —b/2N 2\ _ (z 1) o z

“b/2N  a/N | \1 1
Then applying the action of v to both z and A
B .z
frz(vA) = (.2 1) a(v\y?
o= (e )t [
z
=j(v,2) 7" (z 1) yaydy ™y, 2) "y
. 2 1T z - -2
=097 (= 1)ateTapa | ) =i6.2) L), =

Lemma 3.6.10. The polynomial g.(\) = q.(\)/Im(2)? transforms under the action of v €
SLa(R) such that g—5=(v.\) = j(v,2)%g—z(N).

Proof. Recall that Im(y.z) = % for all elements v € SLy(R). Combining this with
Lemma [3.6.9] we have

=j(v,2)%9-z(N). O

g_m=(y.N) = Q(—’Y).z(_');)\) B q—z(N) j(_%g)zj(_%z)Q

Im((=y)2)?  Im(-2)?  j(-7,%)?
Theorem 3.6.11. The kernel functions ©(7,2), ©F (T, —%) transform in the variable z €
Gr(V(R)) under the action of T'o(N) with weight 2 — 2k and 2k respectively. That is, for all
v € I'o(N) we have

Ok(T, 2)|2—2ky = j(7, 2)* 204(1,7.2) = Op(7, 2),

62(7—7 72)|2k7 = ](’77 Z)_QkGZ(Tv *W) = 9;2 (T7 72)'
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Proof. We fix z € Gr(L),y € To(N) and a coset h € L' /L and show the transformation
property for the scalar-valued function 6y, 1 (7, z). We can safely apply the action of v on the
A € L+ rh terms leaving 0}, 1 (7, z) unchanged. This is because I'g(/V) acts trivially on L'/L
(using Proposition and we sum over all A € L 4+ rh. Then, applying the action of v on

z as well, we have

Qh,k(7>7'z) = US/Q Z XD(fY')‘) : pv.z(’)/-)‘) : (q’%z(,}/'k))k—l
AeL+rh
Q(N)=DQ(h)(D)

. (Q(%/\) Qy.2) (%A)w) .

u +
|D| |D|

We then note that the quadratic form is invariant under the action of I'g(N) and

(Y-N .2 = 7-(A),
(’Y)\)(’yz)L = ’Y(AZL)v

(YA 0(1.2)) = —(1.\, 03 (1.2)) = — (7. A, .0y (2)) = (A 0(2)).

Finally Proposition tells us that xp(7.A) = xp(A). Combining these facts with Lemma
we obtain j(v,2)2 20}, (7, 2) as hoped. The proof for the Shintani kernel function

follows similarly using Lemma [3.6.10 O

Much later we will need to find the Fourier expansion and asymptotic behaviour at cusps

other than l,,. We will use the following.

Proposition 3.6.12. The kernel function ©(7,z) transforms in the variable z € Gr(V(R))
under the action of Atkin-Lehner involutions such that

@k(vanIY'z):j(WWIY7Z)272k Z 9W},§'.h,k(7'72)eh
hel’/L

for all WX where m is an exact divisor of N.

Proof. This follows in the same way as Theorem Noting that W2 C SLy(R), and
remembering the genus character was also invariant under Atkin-Lehner involutions (Proposi-
tion . However, there is a difference when applying the action of WY to the A € L +rh
terms. We know W2 maps L to itself but we may not necessarily stay in the same coset,

so to leave our function unchanged we move to the coset (WN)=1.h = W2 .k, (remembering

(WN)? =1 (mod T'y(N)) from Section [2.5.4). O



Chapter 4

The Singular Theta Lift

After this groundwork, we can now finally construct the main item of our work: a regu-
larised twisted singular theta lift. This is defined by integrating weak harmonic Maass forms
against the kernel function, over the 7 variable. This Petersson scalar product needs to
be regularised. To do this, we (essentially) use a standard method of Harvey, Moore and

Borcherds [HM96LBor98|. Our lift is then an extension of the Borcherds lift [Bor98|.

There are three sections in this chapter. In Section we first discuss the definition of our

lift and how it relates to other lifts. We then check this integral does indeed converge.

We then discuss the properties of this lift. In particular in Section we show that we obtain
some weight 2 — 2k forms for the group I'g(N). These forms have some well described singu-
larities along certain geodesics associated to the input f. The geodesics divide the upper-half
plane into connected components. We provide wall crossing formulas, displaying how the

function changes as we move between these components.

Finally in Section[4.3| we find that the lift is harmonic (and therefore real analytic and smooth)

within these connected components.

Further discussion of similar regularised lifts can be found in many of the previous references

such as [Bor98,BF04,BO10, BKV13}Bru02].

Throughout the rest of this thesis we will fix the following notation, unless stated otherwise.
We fix L as in (3.1.3), V as in and N € N. We also fix D € Z, a fundamental
discriminant, r € Z with D = r? (mod 4N). We fix z € Gr(V(R)) which is identified with
z=x+iyeHand fix T=u+iw €€ Hand k € Z,k > 0. We will also denote p := pr.

60
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4.1 Definition

Definition 4.1.1. Let k € Z,k > 1 and f € Hg/o_. 5. Then we will call

0sle )= (100 Bo ) = [ (5080t

3/2-k,p cF

the singular theta lift.

We check this definition makes sense. We have

- —_— k1
V2 (7, 2) = o > xoNp=(Ne=(A) e (
AEL+rTh
QMN=DQ(h)(D)

—Q(A A
5940

(4.1.1)
Thus, using we see that is a twisted Siegel theta function for the lattice L~
with quadratic form —@). This space is of signature (1,2). We have a harmonic homogeneous
polynomial of degree (1,k — 1). So transforms with respect to p with weight 3/2 — k,
using Lemma

Lemma tells us that f can increase exponentially as v — co. So the integral could
diverge in general, hence the regularisation. Our first task is to check this regularised Petersson
scalar product does indeed converge, which we do shortly in Theorem As ever, we often

drop D and r from the notation and often refer to ®p ;. x(z, f) as just “the lift”.

Remark 4.1.2. This choice of regularisation essentially just prescribes that we integrate first
over u, and then over v. The original regularisation of Harvey, Moore and Borcherds would

have been defined as, the constant term of the Laurent expansion in s € C of

reg

Dokl f) = (F(7), 053278 47, 2))

3/2—k,p
at s = 0. This is a stronger regularisation, but it coincides with our version when the constant

term vanishes. In particular, as we have a polynomial term attached to our kernel function,

the integral vanishes when A € L', A = 0. See also [Bru02, Proposition 2.11].

The singular theta lift has an input of harmonic weak Maass forms and is also twisted. It forms
an extension in the case of signature (2,1) of the original Borcherds lift. Borcherds lift was
not twisted and he only considered weakly holomorphic modular forms. The Borcherds lift
encompassed many other lifts such as the Shimura lift [Shi73| (which we discuss in more detail
in Chapter [7)), the Gritsenko lift [Gri88] and the Doi-Naganuma lift [DN70], see [Bor98| Sec-

tion 14]. [BF04,Bru02| also constructed non-twisted lifts for some harmonic weak Maass forms.
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In the case k = 1 then ®p, (2, f) exactly coincides with the theta lift “®p ,.(z, f)” de-
fined in [Hov12, Definition 3.1]. This is because Remark [3.6.5/ told us that v*=3/20p . (7, 2)
agrees with the theta function given in |[Hov12, Definition 2.5]. Remark also told us
that thet theta function“v®/2=%0*(—%,7)” from [BKV13, (1.6)] is essentially ©p . 1 (7, 2) when
N =1,D =1. So the theta lift “®]_, (H)(z)” constructed there is essentially a scalar-valued
version of ®p , x(z, f) in the non-twisted D = 1, level N = 1 case. They then apply this lift

to some Poincaré series.

We now show that the regularised integral does indeed converge. This includes the points
lying on the singularities, which we discuss in Section We follow the ideas in [Bru02,
Proposition 2.8], |[Bor98, Section 6] and |[BF04), Proposition 5.6].

Theorem 4.1.3. The reqularised Petersson scalar product ®p . (z, f) converges pointwise

for any z =z + iy € H= Gr(V(R)).

Proof. For any fixed z € H = Gr(V(R)), we consider whether the following rectangular

1/2 ———\ dudv
), Opr (T, 2 . 4.1.2
/y 1/—1/2 Dkl )> v? ( )

We see, by a standard easy argument, that this suffices. In particular the non-holomorphic
part of f decays exponentially fast (Lemma [2.5.26)) and ©p , x(7, 2) also decays exponentially
fast (using the discussion following Definition [3.6.4), as v — oo. We combine this with the

integral converges:

fact that the integral
dudv

/7'6]—‘1 <f+(7)’ Op,ri(T, Z)> v2

converges absolutely over the compact region Fi.

We then continue, by plugging in some explicit expansions into (4.1.2)). We use the expansions
given in (2.5.2)) and Definition to obtain

2 / | " PR NDISIEY

hel'/ ==1/2 ez _sen h AeL+trh
n§>(oﬁQ() Q=DQ(R)(D)

x p:(N)g-(A\)F"te <<n + Cﬁ) u) e <<n + ngi)) ) v~ Y2 dudv.

The next step is to carry out the integration over u (a compact region). When m € Z, m # 0,

then f 1/2€ e (mu) du = 0 so the integral vanishes unless n = —% i.e. we pick out the 0-th

Fourier coeflicient. We also note p,(0) = 0 so we can exclude the case A = 0. We are left with

C+ _Q()‘) k:—le %)’U ,U—1/2 v
EDD S ( ] ,h) Ao (W)p:(Na=() ( B ) do.

=1 heL’/L AEL+rh
N= DQ(h)(D)

(4.1.3)
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Here we note that —2Q()\,) = A\3(2)? = p.()\)? and so we need to remember throughout this
proof that terms with Q(\,) = 0 vanish. We swap the integral over v and the summations as
we notice that for v € [1,00) the series certainly converges absolutely.

Noting that v=/2 < 1 for 1 < v < oo, it then suffices to check if the following converges:

> X c*(‘%ﬁ>,h) PO Jg=()F ! /OO€<_2Q()\Z)Z'U>dv

heL'/L  AeL+rh v=1 DI
QN=DQ(h)(D)
A0

B L (—em 11Dl (=2Q00)i
=Yy e (FR ) oot e ()

heL'/L  AeL+rh
QN=DQ(h)(D)
A£0

and we know for all A € L’ that |p,(\)| = v/—2Q(X;) and |g(\)] = y1/2Q(A.+) so we have

_ D] (2N N\ V2R )T (—2Q(N)i
S, 2 (5 h)‘ ~a0n) (ZHr) w

QM\)=DQ(h)(D)
A£0

We now split the sum into three parts when Q(A) = 0, Q(\) < 0 and Q(A) > 0 and check each

one converges.

Case Q(\) =0:

If Q(\) =0 then Q(A\,1) = —Q(\;) = Q.(\)/2. Then using [4.1.4] we obtain
10| -~ WV/Q:))M " (Q:(Vi
w2 I O] 2 Q=N ( D >

heLl'/L Ae}\L+Orh
h)EZ
e QX)=0

It is clear this converges as the sum over A € L+ rh is a subseries of a convergent theta series,

for the positive definite quadratic form @, (\).

Case Q()\) < 0:

Again we bound with a function in terms of @, (). We have from Lemma that
there exists a constant C' > 0 such that ’c+ <7‘QT(|’\), h) < Cec\/T(’\). We also observe in this
case that Q-(A) =2 —Q(A), Qz(A) > Q(A;+) and —2Q(X.) = —Q(X:) —Q(N)+Q(A.1) > Q= (A).
Combining these facts we see that is less than

C|D| WV2Q:-WN)*" o\/arny- 22
;- Z Z e DT

2

heL'/L  XeL+rh Q-(A)
QN=DQ(h)(D)
Q<0
This once again converges courtesy of being a subseries of a convergent theta series, for the

positive definite quadratic form @, (\).



4.2. The Singularities 64

Case Q(\) > 0:

We remember from that there exists an ng > 0 such that ¢t (m,h) = 0 for all m <
—ng,h € L'/L, i.e. there are only finitely many c¢*(m,h) # 0 with m < 0. So we see
vanishes except for finitely many m where —ng < m < 0. We have —Q(A) = |D|m. We use

(4.1.4). For each m it then suffices to check that

Dl (yv/2Q(\.1))* ! <—2Q(/\z)i>

2v/2m )\ELZJrrh —Q(X2) ‘ D (419
—Q(\)=|D|m
Q(Az)#0

converges (the sums over m € Z —sgn(D),—ng < m < 0 and h € L'/L are finite). We know
from [Bru02, p.50] that for any C' > 0 and any compact U C Gr(L) the set

(NeL'| —Q(\) =|D|m, 32’ € U with — Q(\.) < C} (4.1.6)

is finite. Le. there are only finitely many small —Q()A.) > 0 terms. Let A\ € L’ be such that
—Q(\) = |D|mand Q(A;) # 0. Then there exists an € > 0 such that —Q(\,) > e for all A. This
means we have Q-(A) > @(X;1), —Q(A;) > eand —2Q(X;) = —Q(A)+Q=(A) = [DIm+Q=(}).
These facts tell us that is less than

‘D| 6727rm Z (y 2Qz(>\))k71€ (Qzl())[)l) .

2V 2em AeLtrh
—Q(N)=|D|m
Q(A2)#0

Which once again converges courtesy of being a subseries of a convergent theta series, for the

positive definite quadratic form Q. (). O

4.2 The Singularities

We investigate the properties of the lift ®p , (2, f) further. In particular, in this section we
observe its weight in z and describe its singularities. We show the lift is a smooth function
away from these singularities. The singularities lie on the twisted special cycles associated
to f, as discussed in Definition [3.5.3] We have already seen in Theorem that our lift
®p k(2 f) converges pointwise so it will take meaningful values on these singularities. These
types of singularities are seen in [Bor98, Section 6] and they divide Gr(V(R)) = H into Weyl

chambers with wall crossing formulas.

We first look at the concept of a jump (step) singularity on a geodesic D).

Definition 4.2.1. As in Definition we fit X € V,Q(X) >0 and Dy C H (the associated
oriented geodesic). For each fixed point zo € D), we associate an open subset U C H which

surrounds zo. For any point w € Dy we denote U,, for an open subset U,, C U (if it exists)
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which surrounds w. Let g : U\Dyx — C be a smooth function. We also define a function
g :Uy\Dx — C as

9(2) if (A, v(2)) >0,

g(z)+c if (A\v(z)) <O.
where ¢ € C is a constant. Then we will say that g has a jump singularity along Dy, in U,

of size ¢ € C, if for any point w € D), there exists a U,, such that § has a continuation to a

smooth function on U,,.

Let A € V,Q(\) > 0. Then the function \E§Z§23| (which we define to equal 0 when (\,v(z)) =

0) is a locally constant function on H\D, that has a jump singularity of size 2 along D,

(given our orientation in Section . In particular, |E§ZE§§§| is clearly equal to +1 (or —1)

if (A\,v(2)) > 0 (or (A\,v(2)) < 0). In fact this function has a a jump singularity of size 2

irrespective of its value along the singularity (when (A, v(z)) = 0).

We are now ready to state and prove the main theorem in this section. We will observe the role
that the twisted cycles Z, ,.(f) play. In particular, the singularities lie on Zp ,.(f). We describe
the singularities explicitly. We also show the lift to be a smooth function on H\Zp ,(f).
Proofs in other similar cases can be found in [Bor98, Theorem 6.2], [Bru02, Theorem 2.12]

and [BF04, Proposition 5.6].
Theorem 4.2.2. For f € Hy/y_j, 5 with Fourier expansion as z'n then

1. ®p (2, f) has weight 2 — 2k for To(N) i.e. (Ppri(2, f)l2—2k7) = Ppri(z, f) for all
7 € Lo(N).

2. ®p iz, f) is a smooth function on H\Zp ,(f).

3. ®p.ri(z, f) has singularities along Zp (f). More precisely for a point zy € H exists an

open neighbourhood U C H (with compact closure U C H) so that the function

|D| + (A, v(2) ko1
o r 3 - 5 7h N z A
D, ,k(z f) \/j Z Z c (m ) Z XD( )|(>\,’U(Z q ( )
heL’/L meZ—sgn(D)Q(h) AEL_apD,rh
m<0 Alzo

(where for z € U, (A, v(z)) = 0 we let the term on the right hand side vanish) can be

continued to a smooth function on U.

Remarks 4.2.3. We make a few observations before proceeding with the proof. We remember
Zp.r(f) was the image of Zp, ,.(f) in H and Z}, ,.(f) consisted of only finitely many twisted
cycles (on Yy(V)). For any given point zy € H we will see the sum A € L_gp 5, A L 2o is finite
i.e. each zg lies on finitely may geodesics. The singularities have “polynomial jumps”. This

is because we had ¢,(\) = \/TLN (cNz* — bz 4 a) which is simply a (holomorphic) polynomial
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in z and |828§\ is equal to either +1 or —1 (when A [ z).

Roughly, the final part of our theorem then says our function is not smooth only when zy € H
happens to lie on a geodesic (or finitely many geodesics) associated to f. The lift can be made
smooth by adding a polynomial (or finitely many polynomials) for points on one side of the
geodesic, subtracting the same polynomial on the other side and making no contribution if a
point lies on the geodesic. The value of ®p , 1 (z, f) along some geodesic is the average of the
values of ®p , (2, f) in the adjacent connected components. This corresponds to condition 3

in our definition of a locally harmonic weak Maass form, Definition [2.5.30

We will shortly see in Theorem that ®p ,x(2, f) is not just smooth, but actually har-

monic, and therefore real analytic for z € H\Zp ,.(f).

We observe that the singularities depend only on P; the principal part of f, as we only have
¢t (m, h) coefficients where m < 0. In fact we had in Section that Zp . (f) is the empty
set if and only if the principal part of f is constant. So ®p , (2, f) will have no singularities
to consider and be smooth for all z € H if f € M3/>_, ;. However when the principal part is
non-constant (which we remember certainly happens if f~ # 0) then the jump singularities
ensure that ®p ,; is non-constant. So when f~ # 0 we do not lift to the 0 function and our

lift is not trivial.

Proof. The first statement is clear as we showed in Theorem [3.6.11| that the kernel function is
of weight 2 — 2k in the z variable for the group I'g(/N) (we have integrated in the 7 variable).

Following the notation from [Bru02, Theorem 2.12] we denote f ~ g if f — g can be continued
to a smooth function on H in which case we say f has a singularity of type g. If f — g can

only be continued to a smooth function locally i.e. on U C H then we write f ~y g.

Following the early arguments in Theorem we see that the integral of the non-holomorphic
part f~ and the integral over the compact region F; do not contribute to the singularities.
These parts converge absolutely and therefore define a real analytic (and therefore smooth)

function on H. Tt then suffices, using (4.1.3)), to consider

q>D,r,k:(z) f) ~

[L5 5 e () ottt (i) v

heL'/L  AeL+
Q\)=DQ(h)(D)
A£0
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A function is smooth (a C*°-function) if all orders of its derivatives exist and are continuous.
So we would like to show that, for all orders of partial derivatives of z = z + iy € H, then the

integral over F; converges locally uniformly and absolutely as t — oo.

We remember that Q(A;) < 0 for all A € L. In Theorem we have seen that for a fixed
z = x + iy € H then this integral is absolutely convergent (it was bounded by some positive

definite theta series in @.()\)). We consider the cases of Q()\) < 0, Q(\) = 0.

We can then easily adapt the arguments in Theorem to show local uniform and absolute
convergence of this integral. We can do this, if for any point zg € H there exists an open
subset U C H (with compact closure U C H) and a constant € > 0 such that Q(\,) < e for
all A € L'\ # 0,Q(\) < 0and z € U. Le. Q(\.) # 0. This is easily seen to be true, as
in [Hov12, Equation 3.17]. The partial derivatives of this term also clearly converge locally
uniformly and absolutely. This is because after differentiating we will still have a similar series,

where the identical exponential term guarantees convergence.

We fix a zp € H. We have just seen that only the terms where Q(A) > 0 contribute to the
singularities. It then suffices, using the discussion preceding (4.1.5)), to consider

Oprr(z f) = Z Z ct (m, h)

heL’/L meZ—sgn(D)Q(h)
0

. o w0

=1 AEL _4p,rh

Where we observe that using (3.5.2) the set L_4p 1, is exactly the vectors A € L 4+ rh where
—Q(A) = [D|m. We now split the sum over A € L_gp ,, into two sums. One over A L 2y and

one over A [/ zg. We first consider when \ f zg.

As before, we adapt the proof from Theorem Once again this will suffice if for zg € H
there exists an open subset U C H (with compact closure U C H) and a constant € > 0 such
that Q(\;) < eforall A\ € L_gp yn, A L 20 and z € U. This is true using and noting
that A £ zp means we can choose a neighbourhood U of 7y small enough such that Q(\,) # 0.

Finally we look at the sum over A\ € L_4p ,n, where A L z;. We first notice that A L z
means that Q(\,,) = 0. We can then use (4.1.6) to see we actually have a finite sum over
A€ L_gprn, AL 2. Le. any given zy € H lies on only finitely many geodesics associated to f

and only contributes finitely many terms to the singularities. We now look at the remaining
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integral. We have

/v: pz()\)qZ()\)k_le <_2g|)\z)iv> v V2 = \/EpZ(|)2\gz§;\;TIF (;, _4712()\2)) .

When A, = 0 this has a singularity of type

1Dl (A v(2))
2 [(X0(2))]
as we know that I'(1/2,—47Q(X.)/|D|) = T'(1/2) + O(|Q(A.)|) as A\, — 0. The integral
vanishes when —2Q(\;) = p.(A\) = (A, v(z)) = 0 so this is the zero contribution to the

fOM

singularities when (A, v(z)) = 0. So finally we have the required result

D Ao(z _
Pp iz, f) muyf |7‘ > > ct(mh) Y XD()\)msz\)k !
heL’'/L mEZfsgn(OD)Q(h) Aeﬁfp,rh ’
m< zZ0

We remember (A, v(z))/|(A,v(z))| had a jump singularity of size 2 along D) for a given X\ €
L', Q(\) > 0. O

4.2.1 The Wall Crossing Formula

We have seen in Theorem that ®p rk(z, f) is smooth on H, away from geodesics Zp, ,.(f)
associated to f. These geodesics divide D = H into connected components. Theorem [4.3.7
will in fact tell us that ®p , (2, f) is harmonic and therefore real analytic on these connected
components. We remember from Section we called these real analytic connected com-
ponents Weyl chambers. We would then like to find the “wall crossing formula” in our case.

This will tell us how the function changes as we move between Weyl chambers.

We follow [Bor98, Section 6] and |[Bru02, Section 3.1]. Let W C H be a Weyl chamber and
let A\ € L'. Then we say (\,WW) < 0if (\,w) < 0 for all w € W C H. We will denote
Dy, (2) and Py, (z) for the restrictions of ®p . x(z, f) to two adjacent Weyl chambers W; and
Wj. The restrictions @y, () and ®w,(z) can both be extended to real analytic functions on
W1 U W, and we denote Wiy := W, N Ws for the “wall” dividing Wi, Wy. This next proof
follows [Bor98|, Corollary 6.3].

Theorem 4.2.4 (The wall crossing formula). The difference Oy, (2) — Pw, (2) is given by

2,2D] 3 Yoo tmh) D xp(MWe(W)
heL' /L meZ+sgn(D)Q(h) XEL_ap,rn
m<0 ALWio
(>\7W1)<0

Proof. Using Theorem we know that ®p , x(z, f) has a singularity of type

\/@ 2 > ct(mh) Y] XD(/\)|§izzgz§§|czz(>\)’“‘1 (4.2.1)

heL’/L meZ—sgn(D)Q(h) AEL_ap,rh
m<0 ALWio
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along Wi5. We consider the sum over A and —\. These two sums are the same. We see this by
observing that xp(—\) = (—1)17382(P)/2y ,(\) (using Proposition [3.2.4), p,(—A)g.(—A)*~*
= (=D*p,(N)g-(N)*~1 and ¢t (m, h) = (—=1)3/2-k+6en(D)/2c+ (i, —h) (using [2.5.10). We can
then rewrite as a sum over elements with (A, W7) < 0. We pick up a factor of 2 and
also another factor of 2 from the jump of size 2 arising from (A, v(2))/|(A, v(2))]. O

4.3 Locally Harmonic

The main aim of this section is to show that the singular theta lift is harmonic away from
the singularities Zp ,(f) i.e. locally harmonic. To do this we use a few lemmas which es-
sentially just involve some yoga with the hyperbolic Laplacian operator. We follow the ideas

in [Bru02}, Section 4.1].

We will first show a simple and useful lemma linking the Laplacian operator of weight x and

conjugation of a smooth function.

Lemma 4.3.1. For f:H — C[L'/L] a smooth function and k € 37 then

A_c(uf(7)) = v"Apf(T) + w0" f (7).

Proof. We first note that

9, ikt 9 . ikt
—" = and —ov" =—

oT 2 or 2

Then simply using the product rule we can see that
A (" f(7))

- (w2 (470)

- e o (2270 T (3 )+ (87 () + (3°) (379
-l (37) 75 (37

el () e (F0) 2 ()
i (7)o 775

[ (S0 v (370

=0 AL f(T) + Ko™ f(T). O

In particular, if f € H,, 5, i.e. f is harmonic, then A_, (v*f(7)) = Kv" f(7).
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The next key proposition links the action of the hyperbolic Laplacian operator on both vari-
ables of the kernel function. We first makes some observations concerning our kernel functions

from Section [3.6] which will allows us to show this proposition.

The Second Spherical Property

In the case of signature (2,1) we were able to identify Gr(V(R)) with H. This means we can
consider an alternative way of constructing the theta functions from Section We follow
the construction in [Cip83]. We do this by working at the base point of z. We make this more
precise. We will say f € S(V(R)) satisfies the second spherical property for 2m,m € Z if

M5 [go] F(N) = Flgg " A) = o1/2(90) "™ F(N)

for any gop € SO(2). Here we are thinking of gy as an element of the orthogonal group in our
dual pair (O(V(R)), Mp,(R)), using the accidental isomorphism (3.1.4). So we recall that gg

acts via conjugation on A € V(R).

Then if f € S(V(R)) satisfies the first spherical property for r’/2 and the second spherical

property for 2m we can construct the following:

®L,D,T(T7Z,f) = Z Z Z

heL’'/L  h'eL'/DL  XeDL+R
K =rh(L)
Q(h)=DQ(h)(D)

X j(grs8)" 2920 1> XN MO [, M5 [g.] f (N e

Which is a another form of . Here we are thinking of g, as an element of the orthogonal
group in our dual pair. We can then show that Oy p.(7,z, f) transforms as a scalar-valued
form with weight 2m in z. We do not detail this here. The proof is essentially a repeat of the
ideas in Theorem and Lemma Recall from earlier that for A € V(R) we had the

decomposition A = > \;(2)b;(z), see also (3.3.2)).

Lemma 4.3.2. If we let f € S(V(R)) be

FO) = (a0) + X)) As(i)e <Q|]§T) 7,) .

Then f satisfies the first spherical property for k — 3/2, and the second spherical property for
2 — 2k.

Proof. We know f()) satisfies the first spherical property for k — 3/2 using Lemma For
the second part we set gg € SO(2). We then recall that

(VA (r.2) =7-(A2) and  (1:A)(5.2)2 = 7-(A.1).
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for v € SLy(R). So using this in combination with Lemma when z =i we see that

M5 [go] £(N) = j(g0,9)> 2 F(A) = 71/2(g0)* " *F F(N). O

Our final observation in this part is that

35 0.1 | a0 + 2@ Nale (D50) | = o)+ iraten- e (5.

It is then clear from Sectionthat O©p rk(T,2) is of the form ©y, p (7, 2, f), where f satisfies
the first spherical property for £ — 3/2 and the second spherical property for 2 — 2k. We are

now in a position to show the aforementioned key proposition.

Proposition 4.3.3. We have that
4Ak,3/2779k(7, z2) = Ao_ok ,Ok(T, 2) + (6 — 4k)Ok (T, 2).

Proof. We use [Cip83, Proposition 2.13]. In our setup this result holds for theta functions
defined on lattices of signature (1,2), so we first consider v*=3/20 (7, —%z). The discussion
in the previous paragraph tells us that v*—3/ QW matches the form given in [Cip83,
Proposition 2.13] and arose from a Schwartz function with first spherical property for 3/2 — k

and second spherical property for 2 — 2k. So we have
4A3/2—k,'r(vk_3/2@k(7—7 —Z)) = Doop (VP 73204 (1, —2)). (4.3.1)

We then use Lemma [£.3.1] to obtain

4Uk_3/2Ak—3/2,7(@k(77 —Z)) + (4k — 6)0" 7320, (1, =2)) = V" 32 A0 oy . (O4(7, —2)).

Using (3.6.7) we then have
4039, 7(Ok(—T,2)) = Ao 2k 2 (O(—T,2)) + (6 — 4k)Or(-T, 2)).

We then see the stated result by letting 7 — —7. The genus character clearly just goes for

the ride throughout these differential calculations. O

Remarks 4.3.4. This proof was essentially just a proof on the level of the Schwartz func-
tions. The key ideas in Cipra’s result go back to [Shi75] and it is essentially a derivation
from [Shi75, Proposition 1.7]. This result relies on linking the Schwartz functions and the
Weil representation acting on them with the Casimir elements of the universal enveloping
algebras of the Lie algebras of the dual pair. These Casimir elements then correspond to the

hyperbolic Laplacian operator in each variable 7 and z.
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In the case of general signature we cannot necessarily identify Gr(V(R)) with H. Therefore
taking the hyperbolic Laplacian in z would not make sense. However when the Grassman-
nian is Hermitian we are able to give complex structure to Gr(V(R)). For example in the
case when Gr(V(R)) = H (the generalised upper half plane, see [Bru02, Section 3.2]) we can
adapt |Bru02, Proposition 4.5] and [Shi75|, Proposition 1.7] to show a similar link for Siegel

theta functions to the invariant Laplacian operator on Hj.
We see that (4.3.1) agrees with [Hov12, Proposition 3.10] in the case k = 1.

There is an alternative method of proof of Proposition [1.3.3] We could simply use the explicit
form of ©(7, z) given in (3.6.6) and then carry out some easy but long and tedious partial

differential calculations in z,y, u and v.

To show our function is locally harmonic we will use the adjointness of the hyperbolic Laplacian
operator in the Petersson scalar product. This is an easy and well known consequence of

Stokes’ theorem.

Lemma 4.3.5 (|[Bru02, Lemma 4.3]). Let k € %Z. Let f,g € Ay 5 be smooth functions. Then

/ (f, Arg) v" 2dudv — / (A f,g)v"2dudv
Fi

Fi

1/2 1/2
N / (L g) 0" %] du = / [(f, Lug)v" 7], _, du.

—1/2 —-1/2

We next show that the boundary terms in our case will vanish.

Lemma 4.3.6. For all f € Hy/o_1 5 and z € H we have

1/2

. YRy —_92 o
Jm s [<Lk—3/2,r<@D,r,k(77 z)), f(7)> v L:t du =0,
1/2
. 3/2—k 7 k—7/2 _
tliglo e [<®Dmk(77 z), Lk73/277’(v f(7)), > v ]U:t du = 0.

Proof.

The First Integral

We remember (Definition [2.5.14)) that Lj_3/, = —2@'1)2(%. We then use our explicit expansion
of ©k (7, z) from Definition to see that

Ly—3/2.7(©D,rnk(T, 2))
ArQ(\;)v? 3”) 3/2 -1 QN Q:(N) .
= [ === 4+ ")y XD(N)p.(A)g. (A el —*u+ w .
("5 D A G
QN=DQ(h)(D)

As usual we remember f~, the non-holomorphic part of f, decays exponentially fast as t — oo

and ©p , (7, 2) also decays exponentially so this part of the integral (over the compact region
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—1/2 < u < 1/2) vanishes. We consider f* and plug in the explicit expansion for f € Hz/o_j 5
given in (2.5.2). We then use (4.1.3]) (the integral over u picks out the 0-th Fourier coefficient)

to obtain

1/2
/1/2 <Lk—3/2,7—(@D,7‘,k<Ta z)), f+(7)> v du = <Lm|21())|\z)v + 2) v'/?

e AeL+rh - (_|QD(|)\)’h> Xp(Vp=(N)g=(\)* e (_ 26|2l(7)iz)iv> .

heLl’/L
QN=DQ(h)(D)
A£0

If Q(\;) = 0 then p,(A) = 0 and those terms simply vanish. For the rest of the terms
Q.(\:) < 0. We can use the same cases as in Theorem to see this is dominated by a
theta series in the positive definite form @.(A). So then for all z € H this sum is certainly
uniformly and absolutely convergent for v € [1,00). This means if we take the limit as v — oo
we can swap this with the summation and observe all the summands vanish in this limit.

Therefore the integral as t — oo vanishes.

The Second Integral
We first use (2.5.2) to find

Lig /o (032N f (7)) = <v5/2_k(3/2 — k) —1)247rn> ()

_ k12 Z Z e (n, B) (4x|n| )= 2e(—n7)en.

heL’/L neZ—sgn(D)Q(h)
n<0

We consider the first term. As f~ decays exponentially fast and we have
1/2
/ D (O 4(7,2)), (0¥/274(3/2 = k) = v24mm) T (7)) o7/ 2du
which is essentially the same as the 3/2 part of (up to some powers of v) and so will
also vanish as t — oco. For the second term this is in the form of a Fourier expansion of a cusp
form with no constant term (noting that ¢~ (n, h) = O(|n|*/?) as n — —oo0, i.e. the coefficients
still only grow polynomially, Lemma which we also know decays exponentially fast as

v — 00. So again this term vanishes as t — co. O

We are now able to state the main theorem of this section. We show that away from the
singularities, our lift is harmonic and therefore real analytic. This does not hold on the singu-
larities. On the singularities our function is discontinuous and so is not naturally differentiable

and we also do not have local uniform convergence.

Theorem 4.3.7. For f € H3/o_1 5 and z € H\Zp ,.(f) then

A272k,z@D,7‘,k<27 f) =0

and ®p rk(2, f) is also real analytic on H\Zp ,(f).
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Proof. We know from Theorem that, the regularised integral ®p , (2, f), converged as
t — o0, locally uniformly for z € H\Zp ,(f). So for these points we can swap the partial

derivatives with the integral and take the Laplacian operator inside to obtain

. dudv
Ao,z Pp r k(2 f) = lim o <f(7-)7A2—2k,z@D,r,k(7—a Z)> oz
Then using Proposition we have
. ———\ dudv
A2—2k,z<DD,r,k(Zv f) =4 lim <f(7-)7 Ak73/2,T@D,r,k(T7 Z) + (k - 3/2)@D,T,k(7-a Z)> )
t—00 Teft v
— dudv
4T 3/2—k k—3/2
=4 lim er <Ak—3/2,T@D,r,k(7—7 z), v/ (T)>’U 4 BTN
+4(k - 3/2) lim (Opk(r.2), F(7)) ducy
t— 00 reF, T A V2
and using Lemma we then obtain
— 41 o A 3/2—k 77\ , k—3/2 dudv
=4 hm . k(T 2), k—3/2,T(U f(7))v 02
. ——\ dudv
ak=3/2) im | (02 F0T) T
1/2
—4 lim |:<Lk—3/2 T(GD,r,k(Tv Z)), f(T)> U_2:| du
t—o0 71/2 ’ v=t
1/2 ) )
. 3/2—k 7y \ ,k—T/2
+4th20 e [<@D,r,k(7', 2), L_3/2.+(v f(T)),>v ]U:t du.

We know the last two terms disappear using Lemma Using Lemma [4.3.1]| we are then
left with

dudv
v2

=4 lim <@D,r,k(ﬂ Z),m>

t—00 TEF:

However f € Hs/p_j 5, which means that Ag/s_j -(f(7)) vanishes as well and we have the

stated result. OJ



Chapter 5

Partial Poisson Summation

In the next chapter we will obtain a Fourier expansion of our lift in the z variable, at a cusp.
This requires the evaluation of the integral in Definition that forms our lift. This will
be done using the Rankin-Selberg method, which is detailed explicitly in Section This
unfolding trick will first rely on us rewriting ©(7, z) in terms of Poincaré series. To do this
we first need to discuss a sublattice K. Roughly our aim is to rewrite the kernel function such
that ©4(7,2) = > 5cp \ J(7)|k—3/2,5,7 in terms of theta functions on this sublattice. We

do this by applying a partial Poisson summation to the kernel function.

5.1 A Sublattice

We first discuss a sublattice K; C L and its properties. These ideas here have been seen
before. We take our results from [BO10, Section 4.1], [Bru02 Section 2.1], [Bor98| Section 5]
and [BFI15| Section 2].

Remember from Section [3.4] the cusps of the modular curve Y5 (V) = I'o(INV)\H correspond to
To(N) isotropic lines in L. We took primitive isotropic vectors [ € L, with a fixed orientation,

to represent each cusp.

Definition 5.1.1. We define a space W; == I+ /1, equipped with the same quadratic form. We
also define a sublattice,

K= (LN /(LNl).

W, is a one dimensional positive definite vector space of signature (1,0) and K; is an even

lattice in W;. The dual lattice is given by

K| = (L'ni) /(L' nl).

75
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Alternatively, we also know there exists a I’ € L’ such that ({,!’) = 1. Using this we can write
the sublattice as

Ky =Lnl*+ni*.
For A € V(R), we denote Ak for the orthogonal projection onto K ® R. This is given by
Ak =A==\ DU+ N\ DA 1. (5.1.1)

If A € L', then Ak € K. There exists a unique N such that (I,L) = NZ. We then have
|L'/L| = N?|K|/K,|. Let X € L, such that (\,1) = N. Then

L=K ®Z\N & ZI.

We will now assume that (I, L) = Z and restrict ourselves to this case. We remember the cusp
oo corresponds to [, = (8 l/oN ) We will find the Fourier expansion at this cusp. We can

easily check that, (I, L) = Z.

Remark 5.1.2. In this text we will extract the Fourier expansion at other cusps (in the case of
N square-free) from the Il case by using the Atkin-Lehner involutions, see Theorem
It is also true that if IV is square-free, our assumption is not a restriction i.e. all the cusps
(primitive isotropic lines 1), satisfy (I,L) = Z. So the results of this section hold for any
cusp [ (if N square-free) and we could alternatively find the Fourier expansion at a cusp [ by
altering the calculations in Theorem by modifying the identities in for the [ case
(as opposed to lo). When N is not necessarily square-free, we have |L'/L| = N?|K]/K|.
We do not consider this case (which generates even longer calculations) but the results of
this section can indeed be generalised for all cusps for any N. In particular, we have to be
more careful with the cosets of K in Theorem see [Bor98, Section 5 (Theorem 5.2)]
and [Bru02, Section 2.1 (Theorem 2.4)]. We could then of course find the Fourier expansion
for any cusp. This would allow us to extend the results found in Proposition Thoerem

Theorem [6.4.2] and Theorem [7.3.8| to non-square-free .

With this assumption, we can choose I’ € L', such that [’ is isotropic as well. We have

L=K o7l &7, (5.1.2a)

V(R) = (K; ®zR) ® RlI' ® RIL. (5.1.2b)

Crucially, K]/K; = L'/L. The lattice K is of signature (1,0) and the Grassmannian of K @ R
consists of only one point. Let z € Gr(V(R)). Then 2+ was a two dimensional positive definite
space. We denote w=, for the orthogonal complement of /.. in z-. We denote the component

of any A € V(R) in w, as \,.. We also can write w to denote the orthogonal complement

of [, in z. However, in the case of signature (2, 1) this is empty. We clearly have

V(R)=2® 2t =RI, ®RL. @ w.
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From now on we will denote K; and K/, as K and K’ respectively.

5.1.1 Vectors

The following vectors will show up in our proofs. Using the basis given in (3.3.1)) we saw z*

was spanned by by (z) and by(z). We have 1,1 = l1(2)b1(2) + l2(2)ba(z) and we then define a
vector

ot = (1,by(2))b1(2) — (1, b1(2))ba(2).

We observe that (I,.,t%) = 0, thus o' spans the one dimensional space w*. Further
(I,rot) = (I,,rt) = 0 and (v, wh) = 11(2)? + 12(2)? = 13(2)2 = Q.(I) (as [ is isotropic).

This means we have

s = M) o ME)L(G) —A()h() o

Q-(1) Q-(1)
Using this discussion we see that w' C V(R) NI+ and V(R) NIt = (K ®z R) + RI, using
. In general A, Ak, A, 1 are not the same vector. However if A € V(R)NI+, then (A, \) =
Ak, Ax) = (Ay1, Ayr). This follows by noting if A = Ax +dl,d € R, then (A, \) = (Ax, Ak).
Finally, if A € V(R) NI+, then Q(A) = (A, A)/2 = (Mpr, Apr)/2 = (A, 101)2/(2Q.(1)).

We will also use a vector p(z), where

RN (5.1.3)

==

From now on we will denote u(z) as p.
Lemma 5.1.3. We have that
1. peV(RNI+) = (K®zR) R,
2. p=px+ (1),
3. (p1) = (p, 1) =0,
4o (o) = (prcs i) = (Bt s o),
5. Pyt = (BK)ws = —l;,u
6. (p,0t) = (ug,wt) = (=, r0t),
7o () /2= (px,px)/2 = = Le — 1)/ (2Q:(1)),

8 For\e K@R then (A, pn) = A\ px) =1L —1,)/2Q.()).
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Proof. We easily check that (u,1) = 0so u € V(RNI*) and so (as we just discussed) (u, u) =

(trc, foic) = (Jhp s fhapr ). We know px € K @R and using (5.1.1) we see that u = px + (u, I')1.

This tells us that (ux,l) = 0 as well. It is then immediate that if A € K @ R, then (A, u) =

(A, 1xc). We have seen that the projection map onto w vanishes on [,,l} and I. This means
Pt = (HK)pt = —l;}L. This fact then implies that (u,w*) = (ux,wt) = (=I’,1w*). For
identity 7, we note (I,,1,) = —(I,1,1,1) = —Q.(1). The final identity follows by recalling that

if \ € K®R, then (\,1') = 0. O

5.2 The Mixed Model

We remember in section that the Schrodinger representation (Definition and
the corresponding Schrodinger model depended on the choice of polarisation W = Wy @ Ws.
However, the Stone-von Neumann theorem (Theorem told us that the Schrodinger
representation is unique up to isomorphism and there was an intertwining operator

that is unique up to a scalar.

Definition 5.2.1. Let W = W, & Wy = W, & W, be two complete polarisations of W and let
f e S(W). We will call the operator § : S(W1) — S(W,) defined by

ene= [ w5

the partial Fourier transform. Here dy is a positive W1 -invariant measure on W1 / WlﬁWII.

Proposition 5.2.2 ([LV80, Proposition 1.4.7]). The partial Fourier transform § is an inter-
twiner of the Schrédinger models for Wy and W{ Le.

Fo My, (9) = M5, (9) o F.
We make this explicit, in the case of the dual pair (O(V(R)), SLy(RR)). We explicitly realised
this case using the equations in (2.4.5]). These acted on the Schwartz functions S(V(R)). We
used the character ¢ = €?™® and had a complete polarisation W = V(R) @& V (R). We see that
Rl and RI’ form totally isotropic subspaces of V(R) with V(R) = Rl ® (K ®z R) @ Rl’ and
we will call the corresponding Schrodinger model on S(RI) @ S(K ®z R) ® S(RI’) the mixed

model. Following [FM13| Section 4.2.1] we can move between the two models by the partial

Fourier transform:

f(fl +>\+Cl/) = / f(xl + )\+Cl/)€27ri£xdﬂf.
R

where ¢,z € R,A € K @z R and f € S(V(R)). The map f, when restricted to S(K @z R)
is indeed an intertwiner with S(V(R)). Naturally we still have actions under the dual pair
in the mixed model, these are explicitly given in [FM13, Lemma 4.1]. This motivates why
we use the decomposition , to rewrite our kernel function and then use partial Poisson

summation on the x variable (denoted as d later).
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5.2.1 Fourier Transforms

We first need a few lemmas to evaluate the complicated partial Fourier transform that will
appear in the next part. In particular, we will need Lemma [5.2.10, To do this we will use the

Hermite polynomials, which we discuss as well.

Definition 5.2.3. Let x € R,n € Z,n > 0. Then the nth Hermite polynomzial is defined

as

H,(z) = (—1)”em2d—n (eﬂ”?) .

dx™
Example 5.2.4. The first four Hermite polynomials are

Ho(z) =1, Hy(z)=2x, Hy(z)=42>-2, Hs(z)=82>—12z.

Lemma 5.2.5 (JEMOTS81b, Section 10.13]). We have that

H,(—z)=(-1)"Hy,(z), (5.2.1a)

H,1(z) =2xH,(x) — 2nH,_1(x), (5.2.1Db)

H, (z) = 2nH,_,(z), (5.2.1¢)
Ln/2] —1)™(2z n—2am

Hy(z)=n! Y (Wi!)(n(i 2)m)! : (5.2.1d)

m=0
Hy(r+y) = Z <Z> Hy(x)(2y)" ", (5.2.1e)
k=0

We defined a Fourier transform in Definition P.4.91 So over R we let

fie) = [ faemeedn

We remember this agrees with the versions used in [Bor98,BO10,Bru02,BO10] but not [FM13].

We then have the following basic properties.
Lemma 5.2.6 (|[Kam07, Chapter 3, Appendix 3|). The Fourier transform of:

1. Linearity: c1 f1(x) + cafa(x) where c1,co € C is afi €+ szz(f);

2. Reflection: f(—x) is f(=£),

3. Congugation: f(z) is f(=€),

4. Translation: f(x — a) is e2™9€ f(£),
5. Modulation: f(x)e?>™® s f(f +a),
6. Power Scaling: xf(x) is d%f(f)/%”',

7. Deriwvative: %f(x) is —27Ti§f(§),
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8. Dilation: f(azx) is |a|~ f(¢/a)

2 2
— T s — T,
9. e is e,

10. H,(v27x)e™ ™ is i"H, (vV2r)e ™
—7'l'$2

Lemma 5.2.7. The Fourier transform of x™e 18

(572) mvrge.

Proof. This follows from [FM13, Lemma 4.5] noting that H,(z) = (2x)~"/2H, (v/27x) and
that the inverse Fourier transform is used here. This shows the Fourier transform of

(—\/iiar)”e_”2 is (2%)_”/2Hn(\/7?§)e_”52 and we then multiply by (—v/2i)~". O

We now find the specific Fourier transform we will need in our case. To do this we let

DB Dz \"7' [24ix? — B2 +4AC
flay= (B-2B L Dr ),
2A v/ —2A1 4A
where A, B,C,D,E € C,Im(A) > 0,2z € R and k € Z,k > 0. Then we can check that

f <—2Aix — Bi
vV —2A1

We calculate the Fourier transform of f(z).

> = (E+ Dz)kte(Az?® + Bz + C).

Lemma 5.2.8. We have that

R Di \"! DB\ v—2rAi 2Ai¢? — B? + 4AC
f(f)_<m> Hk—1<ﬁ§+<E—2A) D )e( v )

Proof. Using the binomial theorem we have

DB Dz \*' [/24iz®+ 4AC — B2
fl@)=(F— —F 4+ —= e
24 ' /2 Ai 4A

_’“i k=1\(p_DB\"'7"( Dz \" (2Aia? - B?14AC
- n 24 v—24i) ° 1A ‘

n=0

Then using Lemma we have

=52 (41) (5 22Y () v (28 14

BB ()

e (2= 44)

and using the final property of the Hermite polynomials, Lemma this is

R Di \"! DB\ v—2rAi 24i¢? — B2 + 4AC
0= () mo (vass (- 57 ) Yot ) e (P 9) 0
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Lemma 5.2.9. The Fourier transform of (E + Dx)*~'e(Az? + Bx + C) is

() () e (5 ) 7).

24 27 24 D 4A
Proof. We remember f (%) = (E + Dz)"1e(Az? + Bz + C) and so using dilation,

Lemma [5.2.6| part 8 in combination with Lemma [5.2.8] we have

Flevam) = Ao (2 )“z{“<ﬁf o (- 28) Vo2

T V—24i \/—8r4i V—2Ai 24 Di
y —£2 - B2 +4AC
e 4A .

Next using translation, Lemma part 4. we obtain

f<—2Az‘§—Bi> 1 < Di )’”H (ﬁg +<E_DB>\/W)
V—2Ai ) V—24i \V_8rAi M\ V2 4i 24 Di
—£2 - B2 +4AC —B¢
<o () ()
i \"?/ Di \*! , (¢+B E
~(z1) (o) mo (v (57 -5))
£+ B)?
xe(C—4A>. OJ

The next final lemma is the Fourier transform that we will actually use in Section [5.4

Lemma 5.2.10. Let F,G € C. Then the Fourier transform of (G + Fz)(E + Dz)*le(Az? +
Bx +C) is

)" G s ler (50) T ()

X Hy 1 (im (5;;13 — g)) e <C’ — (ng)?) . (5.2.2)

Remark 5.2.11. Here the sum over j is 0 < j < max(k—1,1). This convention holds throughout

the text (to keep our notation compact).

Proof. We start with and then use power scaling, Lemma part 6 we get

(o) (%) [(o-# (50)) mos (v (52 -5)

gt (v (S ) (e )

Which can be rewritten as
.\ k/2 o\ k-1 1—j _ J
K2 D Z G_F ¢+ B F(k—-1)
2A 2\ /m r 2A i —2mAi
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5.3 Theta Functions on the Sublattice

Once we have written our kernel function in terms of elements on the sublattice K we will
then write it as a sum of some specific Siegel theta functions defined on K. In this section we

define these theta functions. We show they have a certain transformation property in 7.

The next definition mirrors Definition R.6.121 However it is different in that we twist and we
also fix the lattice K, a vector py and also an isometry o’. In particular, o’ : V(R) — R%! is
defined as o/(\) = o(\,1) where o : V(R) — R?! is an isometry of V(R). We notice that o’
vanishes on [, and /... Definition [5.3.1] is a more general, polynomial version, of the function

defined in [BO10, Equation 4.5].

Definition 5.3.1. Let o, € Z,h € K'/K, ux € K @z R and let p be a homogeneous polyno-

mial on RV of degree (m™*,0). Then we define

(i, o' po B) =Y > exp (—|D|A/87v) p(o’ (A + Bpx))
AeK+rh t(D)
Q(\—Bl'+tl)=DQ(h)(D)

X Xp(A — Bl +tl)e <_at) e (Q(’\ + Buk)T (A +Buk/2, aux))

Dl |D| |D|

and a C[K'/K]-valued version
E’(TmuKaO-/apaa)/@) = Z fh(TmuKaa-/apaa;ﬁ)eh'
heK' /K

Remember the Grassmannian of K consisted of one element so we drop the variable z from
the notation. We note that using the identities in Lemma that we could replace px with
1 throughout this definition, which is commonly done in the literature. However this results

in an abuse of notation as p is not an element of K ® R.

As ever we look at the transformation behaviour.

Theorem 5.3.2. For any (v, ¢y) € ',y = (‘; 2) then

_ mt ~ _
-:(’YT, 123:¢) Ul:pa ao + bﬁ7 ca + dﬁ) = ¢7<T)1+2 pK(77 ¢7)‘:'(Ta HE, O-lapa (678 6)

Proof. To check the transformation behaviour under (v, ¢,) € [ it is enough to check the
generators S,T for each component. We remember |K'/K| = |L'/L| = 2N. Then using
Definition [3.2.7 we would like to show for T' that

gh(T + ]-a 125 ¢) U,»py o+ 57/8) = e(sgn(D))Q<h>)€h(T7 MK, O'lvpa o, B) (531)
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Plugging &, (7 + 1, uk, o', p,a+ B, ) into Definition we get

> S e (<00 ) o' h+ )

AeK+rh (D)
Q(A=B'+tl)=DQ(h)(D)

><e< at>e<Q(A+ﬁuK> (A+5m</2,a,w)>

Dl DT D]
e <_6t L QO Bu) (A ﬂuK/z,am) |
D] D] D]

However we then notice

Bt O+ Bpuie, A Biic) — (A B /2 Byuxc) = QA = 81 + ) = DQ()(D),

and so ([5.3.1)) is clear. For S we would like to show
1 : 1/24m+ €(=sgn(D)/8)
——, pK,0,p, =B, =T -

X Z 6(—SgH(D)(h, h/)gh’(Tv /J,K,O'/,p,Oé,ﬁ). (532)
heK'/|K

We rewrite &, (7, ik, o', p, «, ) in terms of the Siegel theta function Jx (7, 0’,p, o, 8) (Defini-

tion [2.6.12])

fh(Ta,UKaUIaZ%Oéaﬁ) = |D|Tn+ Z Z XD()‘/_ﬁl/‘Ftl)
NeK'/DK t(D)
N=rh(K) QX' —pU'+tl)=DQ(h)(D)
at (MOWK)) ( N+ Bk
Xe\ =17 19K |D’7—70-/7p70‘,uK77 .
( D] 2|D| D

This can be checked by inserting the definition of ¥x and then making the “substitution”

A +— X — |D|X and remembering the invariance of xp modulo DL. So we have

1 , + ’ ’
S o —B,a ) = |D™ E E AN —al +tl
§h< TvMKv » Dy 3 ) | | XD( )

NeK'/DK t(D)
N=rh(K) QN —al’+tl)=DQ(h)(D)

pt (X,/BMK)> < D], N+ apg
Xe|l——+—7— 79K _7’U’p7_/B/LK77
<|D 2|D| T D

and we then use the transformation property of ¥ for S, Theorem [2.6.14] to see that
Tl/2+m+e(—1/8)
exp(—|D|A/8mv)p(o’ (A + Bpux))
(VIDIIK'/K]) gf;

QN+ Bux) (A Buk /2, apk)
(e (S, - BoEghen )

where for h € K'/K,\ € K'/DK and a,b € Z/DZ we let

1
Eh (_Tvquo-/vpa —B,Oé> =

1
A\ a,b) = N 4+bl' +the | —— (M N) +at) |.
gh(%a,b) S W e () +a
NeK'/DK
N =rh(K)
t(D)
QN +al’+bl)=DQ(h)(D)
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Then by [BO10, Proposition 4.5] we easily obtain

1 , T1/2m T e(~1/8)ep
— ,O0,p, =P, =
éh( MK, 0P B > N

x Y e(=sen(D)(h, h)éw (7, i, 0’ p, a, B)
WeK'|K

where ep =1if D > 0or ep =i if D < 0. We note ep = e((1 —sgn(D))/8) so we have shown
(5.3:2). O

We now give another example that we will need. This involves Hermite polynomials.

Definition 5.3.3. Let o, € Z,h € K'/K,ux € K @z R and let k € Z,k > 0 then we define

g/i,h(Tv HE, O /8> =

Ik > H, (ﬁ(a_BT_2|D|U(>‘+BMK7"0L))>

AeK+rh 2|DJv@Q.(1)
t(D)

QA=BU'+tl)=DQ(h)(D)

x xp(A — Bl' +tl)e (—at) e (Q<>\+5MK)T (/\+ﬁ“K/27aﬂK)>

DI |D| D]

and a C[K'/K]-valued version

Ee(rpr o, B) = Y &unlr . o, B)en.

heK'|K

Lemma 5.3.4. For any (v, ¢) € L,y = (25) then

En(’YTa HE,OQ + bﬁa ca + dﬁ) = ¢’Y(T)1+2RﬁK (73 QS’Y)EH(Tv MK, Q& B)

Proof. Using part e of Lemma [5.2.1| we can write

i (ﬁ(a 7 - zvuwmmﬂ))

2|D|vQ-(1)
N~ (K —V2mo(A + Buk,wt) \ [ V2r(a— B7) o
- mz::o (m)Hm ( IDIQ-(D) ) ( D[00. () )

We mentioned in Section [2.6] that we could think of Hermite polynomials in terms of the
exp (—A/8) (p) polynomial. Explicitly, K ® R is a vector space of signature (1,0) isometric
to R with basis x1. We then let p(x1) = 27*. Then for A € K and a € C

ao\ ™2 Lm/2] —1)s TVAL| e
<8 > exp (—|D|A/87v) (p)(azy) = m! Z 5!( : <\/87 >

D] VD]
V2mvaxy
:Hm _—
( VID| )

using part d of Lemma So setting ¢/(\) = —(A\, w1) /(Q.(1)a) we have

Eun (T i, @, B) = i (Z) <|85’)M/2 (%) o (T, b, 0’ po, B).

m=0



5.3. Theta Functions on the Sublattice 85

As in the previous proof we now consider 7' and S. For T' we see that the term (a — 57/v)
is invariant under the maps 7 +— 7+ 1, — a + . For S we have the maps 7 — —1/7,a —
—B,8 — « and plugging these in we get (o« — 57/v) — 7(av — 87 /v) so this term essential
“raises the weight” by 1. Each &, (7, ux,0’, p, o, 8) piece transforms with weight 1/2 + m by
Theorem so we have total weight 1/2 4+ m + k — m = 1/2 + k as required. O

5.3.1 Properties of =, (7, ug, —n,0)

The Poincaré series we will obtain in Theorem are of the form Zj_q1_;(7, ux,—n,0)
where n € Z,n > 1. We will use these in Theorem [6.3.10] to find our Fourier expansion. We
consider some of the properties of these functions. We first have the following more explicit

form. We simplify the sum over t in Definition

Lemma 5.3.5. For k € Z,k > 0 then

D
Sm,h(Ta MK, —T, 0) = () 6D|D’1/27~17’€/2
n

VA= 2Dt ) Q)T (k)
2 H( AD[Q- ) >< )

X
ACK L rh |2l Dl
QU=DG(m)(D)

Proof. We start by using the definition given in to write

gn,h(Tv KK, —T, 0) = v_ﬂ/2 Z Z XD(/\ + tl)
AeK+rh t(D)
Q(N)=DQ(h)(D)

V(=1 = 2|DJv(\, w)) nt\ (@ | (A nuk)
XH"( 2[D[vQ- (1) >6<D|> <ID D) )

We know that if A € K + rh,Q(A\) = DQ(h)(D) then xp(A +tl) = (%) so we obtain the

stated result by using the following Gauss sum (see eg. [BO10, Equation 4.7])

£ ) (3)- (e :
We remember from Theorem that ep was defined to equal 1 if D > 0 or ¢ if D < 0. We
then note using Definition that (%) =0if D # 1 and if D = 1 then (%) = 1. This
means that &, »(7,0,0,0) = 0 unless D = 1.

We will now look at the asymptotic behaviour. Before we show this, we first introduce the

polylogarithms. These will also crop up in the proof of Theorem [6.3.10

Definition 5.3.6. Let k € Z and z € C,|z| < 1. Then the polylogarithm is defined as

Lis(2) = i": Z—:,

n=1

which can be analytically continued to all z € C.
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Lemma 5.3.7 ([MR14] Section 2.1.1.7] [Wo092]). We have that

1. Lij(2) =—In(1—2),

OLi, :

2. z ;;Z) = Li,—1(2),
OLi,(e? .

3. % = le—l(ez);

4. Lig(e*) = O(z"71) as |z| = 0, for k <0,
5. Lik(z) = O(z) as |z| — 0.

We can now consider the growth of Z(7, g, —n,0, k). This lemma will once again be needed

in Theorem [6.3.10| to show convergence of certain integrals.

Lemma 5.3.8. The function Z.(7, ui,—n,0) = O(1) as v — oo, uniformly in u. The

function Z. (7, px, —n,0) = O(v=271) as v — 0, uniformly in u.

Proof. For the first part we remember Z, (7, i, —n, 0) is just a positive definite theta series
(with a polynomial term) on the lattice K. We also observe that v="/2H,(y/v) = O(1) as
v — 00 i.e. we only have non-positive powers of v in our series. As v — oo everything decays

except possibly a constant term. For the second part, we see that, for 0 < v < 1, then certainly

[ (7, ac, =1, 0) < Cv ™[\ h)| > e AP
AEK+rh
Q(N\)DQ(h)(D)

for some constant C,, > 0. We let b € K’ be a basis for the 1-dimensional positive definite

lattice K'. It then suffices to consider

4 2
& (Ty e, —m, 0)] < Co™" Z Im|Fe=m Q®)/ID]
meZ

for some constant C’,; > 0. We then see that

% Z |m|nefm2Q(b)v/‘D| — Z mr (Hcg(z;)v/u)\)"””2

me7Z m>1

<3 (e—Q(b)v/\D\)m —Li, (e—Q(b)v/IDI) .

m>1

So putting this all together with Lemma[5.3.7 part 4 we obtain the stated result. This estimate

is not optimal but will suffice for our purposes. O

In the case when n = 0, we have the following nice lemma which tells us the effect of the
raising and lowering operators. We will particularity need this lemma in Section [6.1} We also

remark that in general Z,(7,0,0,0) is neither harmonic nor holomorphic.
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Lemma 5.3.9. Let k € Z,k > 2 and D = 1. Then

= 1_
Rk73/2:%—2(7-7 07 07 O) = *Z:R(Tv 07 07 0)7

Lyy1/254(7,0,0,0) = k(k — 1)E4_2(7,0,0,0),

- k(k—1)_
LK+1/2RK,3/2‘:,€,2(T7 07 07 O) = 7%‘:%72(7_7 07 07 0)

Proof. We assume D = 1 otherwise Z,_5(7,0,0,0) vanishes, see Lemma Lemma [5.3.4]
told us that Z,_2(7,0,0,0) is of weight x — 3/2. We then use Definition to write out

explicitly

— €L
Geonn(r00.0) = 5 g (V)
AeK+h Q-(1)

We set a = —v/2m(\, 1) /1/Q. (1) and then we have that a® = 47Q()), (Section [5.1.1)). We

also remember that

) e(QA)7).

.0 0  k—3/2 L, .0 D
Rn—s/z—za—l—%—i— - and L,i10="v <_Z8u+8v>'

For the first part, it then suffices to consider

Re_ss [v_(“_z)/QHK_Q(aﬁ)eia%/ﬂ

k—1 9 (k —2)a 1-k/2 ia%7/2
(( 5, @ > H,_s(ay/v) + Vo H,.Q_g(a\/{))) v e
ia%r1/2

= ((k — 1) Hy—2(av/v) — av/vH,_1(av/v)) U—m/geT

ia27/2

= — Hﬁ(a\/a)v_k/2eT

where we have simplified using the properties of the Hermite polynomials stated in Lemma
For the second part we note that

8% (Helavyo/?) =

KZU_("H_Q)/Z

5 (Hu(av/v) — 2av/vH,—1(ay/v))

= k(k — D)o~ "FD2H, o (a/0)

SO

Liyi2 [Hn(aﬁ)vf’“peia%/ﬂ = k(K — 1)7)7(’{'72)/2HR_2(a\/qj)eiGQT/Q.

Combining parts one and two gives the third part. O

5.4 The Poincaré Series

The next few lemmas involve rewriting our kernel function in various forms with the aim of
writing it as a Poincaré series in Theorem [5.4.5] The first lemma will help to simplify some

of the terms we will obtain when we apply our partial Fourier transform.
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Lemma 5.4.1. Let A=Q(L,.)(7—7),B=(N1L)T+ NL)T,C=Q\)T+ Q(\,1)1,D =
:(1),E =q.(\),F =p,(l) and G =p,(\). Then

(d+ B)? AL — 1) Jd+ (AN D72
C-—n =7QMw) - 2Q.()  4iwQ.()
. - (d+B FE VT(d+ (N DT — 20(A, ot))
Nm( - D) o ,
L (d+BY _i(d+(\D7)
¢ F( 2A ) B 2v Vi Qz(l) .

Proof. Remember Q(I,1) = —Q(l,)and Q.(I) = 2Q(l.1) = ¢.(Nq.(Dy~2 = (I,1,1) = p.(1)*
(as [ is isotropic). We have fixed an orientation of isotropic vectors such that sgn(—1, b3(z)) =

so p.(1) > 0 and p,(I) = \/Q. (). For the first part we plug in the terms and obtain

(d+B)*  —d*—2d(T(\,1.) +7(\11)) — (TN L) +7(N 1,1))?

Y R 4ivQ (1)

+7QN,) + TQ(\ 1)

and then adapting [Bru02, Lemma 2.3] we get our stated result. For the second part we have
. (d+B E\ iy/2mQ.(]) d+BY  q.(\)g.()
V2mA| —— - = )| = —— 2 (1 _
e Z( 24 D) o0\ =2z 2
21V

7
(

<d+B

2iv

> (A L) +i(A\w )>

iV2rv (d+1(\ L) +T(N L) — 20N, 1) ; n
\/W +i(A\, ))
VT

20Q.(

2iv

o~
~—

0 (d+ N\ D7 = 20(\, b)),

N

For the third part we have

o-p(132) - o= (52)
q d+B>

= T(l) <()\, l.) + Sin
~1 <2w(A, L)4+d+ 7\ L) +7(A, zz))
Qz.(l)

" 20/Q.0)

The next lemma consists of applying our partial Poisson summation and simplifying as much

as possible. This is the same idea as in [Bor98, Lemma 5.1], [BO10, Lemma 4.6] and [Bru02,

2iv

(d+ A\ D). 0

Lemma 2.3]. We will use the following constant

i (czz(l)l'\/ﬁ)k1 ((1k) 2|D|Qz(l>>j, (5.4.1)

hI T 5 RDIQ-() \ 202701 (1) NG
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Lemma 5.4.2. We have that

eh’k(Tvz) = Z Z ZZXD()\+tl)cz’k7jvf(kflfj)/2
#(D)

XNEL/ZDl+rh dez j
QA+th)=DQ(h)(D)

1—j _ Vr(d+ M\ DT — 2v(\, wh))
X (d+ NO)T) 7 Hig1-; < D0 (0) )

(At (TQWws) ALy — L) |d+ (A DTl
. ( |D|> ( D] 2[DIQ- (1) 4|D|wc2z<o>'

Proof. As is standard, we rewrite the sum over A € rh + L in the definition of 6, (7, 2) as a
sum over A’ 4 d|DJl. This is where X' runs over rh + L/ZDI and d runs over Z. Noting that
Xp(A+d|D|l) = xp(A) and Q(A+d|D|l) = Q(N)(D) where A € L' and d € Z we then obtain

O (7, 2) = v3/? > Xp(A) D p=(A+d|D|l)g.(A+ d|D[1)*"
AEL/ZDl+rh deZ
QN)=DQ(h)(D)

(QrdDD, | @040, )

u
|D| D
A
= ¢3/2 > xo(\)> _g(ID|r, 2, ﬁ,k,d)
AEL/ZDI+rh dez
QM\)=DQ(h)(D)
where
9(1,2,\ k,d) == |D|"p, (A + dl)g (A + d)F e (Q\ + dl)u + Q. (A + dl)iv) .

We notice

QN+ dl)u+ Q.(\+ dl)iv= Ad®> + Bd+ C

where A = Q(Lo)(1—7) = Q.(l)iv,B = (N, 1,)T+ (A )7 and C = QA\.)T+ Q(A\,L)T =
Q(Nu + Q- (N)iv. We also set D' = q.(I), E = q.(\), F = p.(I) and G = p.(A). Then we find
the partial Fourier transform of g(7,z,\, k,d) in d by using Lemma Combining this
with the simplifications given in Lemma we see that §(7, z, A\, k, d) is equal to

N 1 \"? fq.()i\*! id+o 00\ =1V
1o <2sz(l)> (2ﬁ> ;( 20/Q:(1) > (i\/27rv>
(VA (A DT — 207, 0b)) AL —L)  ld+ (A D7)
Mo ( 2000 ) (ra0nen - 55 - )

Using the Poisson summation formula on the variable d we can simply replace our old term

g(|D|r, z, ﬁ, k,d) with g(|D|t, z, ﬁ, k,d) in (5.4.2]). We find that 6}, 1 (7, 2) is equal to

Yo S oWengu B2 (4 (A 1yr)

NEL/ZDl4rh dEL j
QM\=DQ(h)(D)

X Hy_1_j (ﬁ(d + (A, DT — 2v(A, ml))> e <TQ()\wJ.) A\ —1,) |d+ ()\,Z)T|2> |

2|DvQ- (1) D 2D|Q.()  4|D[ivQ. (1)
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Finally we rewrite the sum over A € L/ZDI+rh as a sum over X"+t where X" and ¢ run over
L/Zl + rh and Z/DZ respectively. We get the result stated at the start of the lemma. Also
observe that (I,1,1 —1,)/2Q.(l) = 1 and (I,t) = 0. O

We now rewrite the previous lemma in terms of the theta function (Definition [5.3.3) on the
sublattice. This is the same idea as in [Bor98, Theorem 5.2], [BO10, Lemma 4.7] and |[Bru02|
Theorem 2.4].

Theorem 5.4.3. Forhe L'/L =2 K'/K
Opi(T,2) = Z ZCZJCJ(CT +d) e <_4||g|—'1—'z/CQTZ|2(l)> Eh—1—j,n (T, pK, d, —c).
c,d€Z j
Proof. We use will use the fact that L/Zl+rh = K +ZI'+rh to rewrite Lemma in terms
of A € K + rh. We do this by making the “substitution” A — X + cl’, where now A € K @ R
and ¢ € Z. We have that (I,I') =1 and (A,l) = 0. Combining these facts with several of the
identities in Lemma [5.1.3] we obtain

On k(1) 2) = Z Z Z ZXD()\—l—cl’+tl)cz,k,jv7(k717j)/2

AeK+rhc,deZ t(D) J
Q(A+cl'+tl)=DQ(h)(D)

Vr(d+ e —20(\ — cug, mﬂ))

X (d—|— CT)l_j kalfj (

DG 0)
dt T d |d + er|?
‘e (—|D|) c (D|Q<<A — ciachus) = (0~ e /2, ) ~ 4|Dinz(l)> .
(5.4.3)

Inserting the definition of &, (7, ux, o, 8,n) gives the result. We recall that L'/L = K'/K and
note h,h’ € L'/ L are equal exactly when k', k € K'/K are equal. So &, (T, ik, a, 5,n) is well
defined for h € L'/L. O

Remark 5.4.4. We observe that using the identities in Lemma [5.1.3] we could in fact replace
px with p throughout this theorem.

Finally we write the C[L'/L]-valued theta function © p , (7, 2) in terms of the C[K’/K]-valued

theta function Z(7, uk, a, B,n). This is in a form that we can unfold later.

Theorem 5.4.5. We have that

O(r,2) = % Z Z Zcz7k7j(—n)1_j

n>15ef \[ J

v
k—3/2,px

< (‘4|D|u£<27>@z<z>> 1o~ 0)

and if k > 2 we also have the additional term

Cz,k,l‘Ek—2(7—a 07 Oa 0)
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Proof. Theorem told us that
- ldter]?
= 5 Seangter e (ST ) B o),
c,d€EZ j
Then, remembering to include the ¢ = 0,d = 0 term which vanishes unless k > 2,5 = 1, we

have

Ok(7,2) = c2k1Zk-2(1,0,0,0) + >~ Y D ek j(—n) T (er +d)'

n>1 cdeZ j
(¢,d)=1

< n?|d + er|?

) ]

We know two elements (29, (‘z,/ Z,,) € I are equal in ', \I' if and only if ¢ = ¢/ and d = d’,

see for example [Sad12, Lemma 12]. We now rewrite the sum over coprime integers as a sum
over 4 = (v,¢,) € Doo\I' where v = (¢%). This also introduces a factor of 1/2 due to the
two possibilities (v, ¢,) and (v, —¢,). We note that ¢ (7)* = ¢ + d and

Ek*l*j(’r’ IUK>_nd7 TLC) = ¢’Y( )1 2k+2j (’77 ¢’y)_‘k 1— ](’}/T MK, — 70)

We also recall from Lemma [3.6.10| that Im(y7) = Im(7)/j(~, 7)j (7, 7). We then finally obtain

Ok(T,2) = €2 1,1Ek—2(7,0,0,0) + Z Z Zczlw —J

”>1 €L\ J

X[€<‘Mth§;»@xu>E“*‘“““K"moﬂ

y. O
k—3/2,px

5.4.1 Asymptotics

We can also look at the asymptotic behaviour as y — oco. We first find all our terms explicitly,
in the case of the cusp I (we will also need a lot these in Theorem [6.3.10] where we find the

Fourier expansion at this cusp). In this case we have

0 1/N ,
I =l = and ' =~y =
0 0 10

Then using ) and ( we see that

1 1 2,2
L= a(2)ba(2) = ——bal) = 5z (3 7°17)).

1 1 2, 2
Lo = h@0() = ot (2) = s (14

1 1 oy
= — b(z):_2Ny2 (g —2yy)’
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and then
2Q() = (1. 1.) = ————
FTNE T Ny
1
2Q:4) = (1) = Qo) = 537

2:() = y(h(2)) = =

o = Ny (iyV]D| T a-wyiorY
20 21D\ 2v2r yVNT '

We also clearly have

1 0
K=Lnl*tni't=2 ,
0 —1
1 1 0
K'=L'nl*tnl"*=_--Z
2N \o 1

We say A > 0 for A € K @R if A = C’((l)_ol) for some C' > 0. We also, as is standard
(see [Bor98, Section 13] [BO10, Section 5]), associate the upper half plane with an open
subset of K ® C by mapping z’ € H to ((IJ _01) ® 2'. Using this identification we then clearly
have for A € K ® R that

1

(A pr) = (A z) and (Avml) = _W()‘>y)

Finally we can also identify K’ with the lattice ﬁZ, by letting an element 5% ((1) 91) e K’
be identified with 5% for m € Z. This means we can switch from a sum over A € K’ to a sum
over m € Z. In which case
m2
Q) = i and (A, 2") =mz.

for A € K’ and 2’ € H. In the next lemma we will let ;1 = ;519"

. We have already seen
that the theta kernel decays exponentially as v — co. We now look at the growth in the other

variable, i.e. as y — oo.

We will consider other cusps of T'g(V), and not just lo.. When N is square-free we can
use the Atkin-Lehner involutions to adapt the I, case. Section told us that for any
s € PH(Q) = QU {oo} there exists a WY such that WY oo = s, where m is an exact divisor of

N. For any function f : H — C[L’/L] with components f;, we will denote

fwy = Z Jwy nen-

hel’/L

We remember (W, ¥)2 =1 (mod I'g(NN)) and can write fwy =2 hern fnews b
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Proposition 5.4.6. Let N be square-free. Let s € P1(Q) be a cusp for To(N) and W the
Atkin-Lehner involution such that W oo = s. Then there is a constant C > 0 such that as

y — oo we have
2
(Ox(M)y 0 W) (2) = ¥ b1 Zp 2wy (7.0,0,0) + O(e=¥")

unless k = 1, in which case

2

(@1 ), %WN)( ) = O(e ).
Proof. Using (|5.4.3)) we see the term
_ Ny?ld+ et
¢ 2[Dliv

means that 05 (7, z) decays exponentially as y — oo (uniformly in z) except the case when
c¢=0,d =0. In the case ¢ = 0,d = 0 we observe 0, (7, z) simply vanishes unless k > 2 and

7 = 1. In the remaining cases Theorem tells us we have

cZ,k‘,l&k‘*Z,h(T» 07 07 0)

left to consider. We can check using the explicit terms given earlier that ;2 5(7,0,0,0) does

not depend on y and so
Ok(T, 2) = k¥ Ep_a(7,0,0,0) + O(e~ ")
as y — oo.
We now let s € P}(Q) be any cusp of I'o(&V). Following our earlier discussion, we know

W2 oo = s for some m an exact divisor of N. Then the Fourier expansion of ©(r, z) at the

cusp s is given by the Fourier expansion of
(O6(M)]y_o W) (2) = J(WY 2)% 20 (7, W 2)
at the cusp oo (see for example [DS05, Section 1.2]). Using Proposition [3.6.12| we then see

JWN, ) 20(r, Wi 2) = > O pu(T2)en

hel’/L

So it is then clear
(O8], W) (2) = 1y Za oy (7,0,0,0) + O(e=)

as y — 00. O



Chapter 6

The Fourier Expansion

This part is dedicated to investigating the Fourier expansion of our lift ®p , x(z, f) that we
defined in Chapter [d] Before we get to the main result, Theorem we first need some
groundwork that is useful in its own right. We discuss an evaluation of a pairing adapted from
Definition [2.5.21] that allows us to find the integral over the fundamental domain of a harmonic
weak Maass form against a modular form. We use this to find the expansion associated to
the additional term which appears in Theorem (when k > 2). We also solve some tricky
integrals that will crop up in our proof. Finally using our Fourier expansion at the cusp
we can consider the expansion at other cusps and the asymptotic behaviour showing that we

have obtained a locally harmonic weak Maass form as in Definition

The key references, where similar Fourier expansions are computed are [Bor98,[BO10,Bru02].

6.1 The Additional Term

In this section the aim is to evaluate the integral

/Treg <f(7'),5k_2(7',0,0,0)> dz;i“.

eF

This integral will arise in the proof of Theorem|[6.3.10|and it originates from the additional term
that appears in Theorem m (when k& > 2). Analogous integrals are considered in [Bor98|
Section 9].

We first quickly state another convenient version of Lemma [4.3.5| which we will use here. We

also correct a sign error and note this result is stated for any even lattice and any rational

non-degenerate quadratic space (V, Q) of signature (b™,b™) as in Section m

94
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Lemma 6.1.1 ([Bru02, Lemma 4.2]). Let s € 3Z and f,g € Ay, be smooth functions. Then
1/2
[ A Lusag) o audo+ [ (Rofig)otdudo = [ ((f9)0%],
Fi Fi -1/2
This next proposition is a useful manipulation of [2.5.21] that gives us an explicit way to find

the integral of any harmonic weak Maass form f € Hy ,  against a modular form g € M_ ,,

(the Petersson scalar product).

Proposition 6.1.2. For f € H,,,,  and g € M_, ,, with Fourier ezpansions as in (2.5.2)
and (25.1), k € 37 and extending our definition of |2.5.21] (R_.(g) is not necessarily an

element of Ma_,. ,, ) we have

{R-r(9), [} = (R—x(9), & ()%, ,, =0

and
e —\ dudv 1
/ <f(T>,g(T)> = > > ¢t (n,h)a(—n,h)(4mn).
g heL' /L neZtQ(h)
n<0

Proof. For the first statement we see that

{R*H(g)v f} = (R*H(g)a glﬁ(f));ign,L

= lim (R-1x(9), & (f)) v~ "dudv.
t—oo TEF:
Then using Lemma [6.1.1) we have
. _ . dudv
- tllglo TEF; (9, La-wbu(F)) v V2
1/2
thm [ e b)), du

However we then note the second term (the integral over the boundary) disappears as g is a
modular form and £, (f) is an exponentially decaying cusp form as t — oo. The first term also

disappears as we remember f is harmonic and using Definition 2.5.15] then

L2—m§n(f) = Uﬂ&—m@i(f) = _UHAH(f) =0.

To show the second part of the proposition we follow similar lines but when using [6.1.1] we

move to the other side.

{R—x(9), f} = (R-x(9),&())2%, L

- tlirgo <R—K(g))§m(f)>vindud’u
TEF:
- tlggo (R_i(v"f), R_x(g)) v—"dudv.

TEF:
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So using Lemma this time we obtain

/2
= — tll)I{.lo e <U'€f L2 K g)> v H + tll)rgo 1/2 |:<f’ Rim(g)>:| v=t du
. dudv . 1/2 [
- tlggo reF, (La-wR-i( f> * tlggo y [<f’ R_K(g)>}v:t du.

Then crucially as g is harmonic (it is holomorphic) we know (Definition [2.5.15) that —A_,(g)
=Ly wR_x(g9) — r(g) = 0s0
Ly wR_y(g) = r(g).

So this combined with the first part gives

reg - wdv 1/2
/ (9. 7) D _ Ly, (Pl it), By (g(u T 1)) ) du (6.1.1)

2
eF v Ki=o0 J_1/9

We then note using the explicit Fourier expansion ([2.5.1)) that for one component then

z Z (747mf;) a(n, h)e(nt)ey

heL’/L neZ+Q(h)
n>0

and so remembering the integral over u picks out the 0-th Fourier coefficient we obtain our

stated result:

= lim <f(u+it),m>du

S hm Z Z ¢t (n,h) (47rn - %) a(-n,h) + O(e™)

heL’/L neZ+Q(h)
n<0

1
=— E g ¢ (n,h)a(—n, h)(47n)
H heL’/L neZ+Q(h)
n<0

for some € > 0. O

We would hope to use Proposition in the case when g = Z(7,0,0,0,k — 2). However we
remember this function is in general neither harmonic nor holomorphic. We need a modifica-
tion of Proposition For the specific case of Z(7,0,0,0,k — 2), we can get round these
problems. Specifically we remember from Section that Z(7,0,0,0,k — 2) still has the
same asymptotic growth as a modular form and although it is not harmonic when we apply
the raising and lowering operators we still get back Z(7,0,0,0,k — 2) up to some constants,

(see Lemma [5.3.9).

Lemma 6.1.3. Let f € Hg/o_j, 5 with Fourier expansion as in (6.3.3) and let k > 2, D = 1.
Then

| (s ESmoom) %
TEF v

—ovar(u ) )
Z 2, )< Q- (1) >

heK’/K AEK+h
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Proof. The first part of Proposition still holds in the case that f € Hg/s_j5 and g =
Ek—2(7,0,0,0) ie.
(Ri—3/2(9): &3/2-k () /o i.p = 0-

We see this is true because the arguments still hold the same in this case up to the point
where we check the integral over the boundary vanishes. Then g is no longer a modular form.
However we know from Lemma [5.3.8 that g has the same growth behaviour as v — 0o so this

term does indeed still vanish.

Now we can adapt the second part of Proposition and obtain that

1/2

/; (1(r),9()) dﬁf” = _k(k4_ 0%, (St it). RiZayalglu D)) ) du.

This is clear from (6.1.1]) and remembering from Lemma that if g = Z;_2(7,0,0,0) then
Lit1/2Ri—3/2(9) = —@(g). We also know from Lemma that

Rk—3/2(§k*2,h(7—70’070)> = - igk,h(’raoyovo)
vk/2 —\ 2TV L
T X (” G )>e<Q<A>T>.

AeK+rh Q=(1)

The integral over u picks out the 0-th Fourier coefficient and f~(u + it) decays exponentially

as t — oo so it remains to consider

4 1/2

- m Jm i <f+(u +it), Ry_g2(g(u + it))> du

1
- Y Y e —k2gy, [ ZV2rEA WD)
= k tlirgo h,t)t Hj, < 0 (l) .

heK' /K NeK+h 2

Here we only need to consider the finite terms ¢ (—Q(\), h) as we remember K is a positive

definite lattice, so —Q(\) < 0. We then use part d of Lemma to obtain

[k/2] n n k—2n
_ i b2 (-1) (—wmx,m >>
k(k—1) he;;/}( Ae;rh )t Z::O n!(k — 2n)! Q.
—ovar(an )\
Z 2 " ( Q1) )

heK’/K AeK+h

6.2 Integrals

In this section we solve and simplify some difficult integrals. The integrals in Lemma and
Lemmal6.2.4] will be critical to the proof of Theorem[6.3.10] The first of these lemmas (Lemma
is already known. Specifically it can be found in even and odd cases in a complicated
hypergeometric form in |[GR15| (7.376.2), (7.376.3)]. We give a simpler exposition.
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Lemma 6.2.1. Letn € Z,n>0 and let r € Z,r > n. Then

o0 ! —n+1
/ e H, (e dt = — (Tt
+=0 2(r —n)! 2

Proof. We first notice that (for n > 1)

d (Hn (t) e*ﬁ)
dt

= (2H,_1(t) — 2tH, (1)) e = —Hp 1 (t)e .
Then using integration by parts

/ T H, (t) et dt = — [t’“Hn_l(t)e‘ﬂ +r/ T H, (et dt
t t=0

—0 0

:7’/ T H, 1 (t)e " dt.
t

=0

Repeating this n times (remembering Hy(t) = 1) we obtain

r! > 2 7l & 7! r—n-+1
tr—n —t dt — t(r—n—l)/2 —tdt — F
(r—n)! /t:() ¢ 2(r —n)! /t:O ¢ 2(r —n)! 2

where we have used Definition O

Lemma 6.2.2. Let kK € Z,k >0 and let o, 5 € R, > 0. Then
2080 (k 4+ 1, —2a3)
k)2 a KU pdv e (k+1, -2
[ 2 oy (=g V) (5 ) E T T e

Proof. Making the substitution v = 2 /t?> we obtain

2 o . af K\J _;2
7(—a)ﬁ+2 /t_ozj:t +II{;@—]‘ <t— t) (—¥> e t dt

and then using part e of Lemma [5.2.1

T TR ——
j n=0 t=

Applying Lemma [6.2.1] m forr=n+1

() (&) e

and considering this sum in the two cases of j = 0,1

S e e
0

a2

n= n=1
_ (28)"k! Q- (~208) 7"
a2 7;) (k —n)!
a) K— 2K'Z 2O‘B

Finally using [JDO§|, Section 11.1.9] we know that

2046)

T(k+ 1, —208) = %Pkl Z (6.2.1)

so we have the stated result. O
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The next lemma will make use of the modified K-Bessel function of the second kind, as defined

in [Ste84, Section 9.6] or [EMOT54, Appendix]. We will denote these as K;(-).

Lemma 6.2.3. Let k € Z,k > 0 with a, 6 € R, B # 0 and let n € Z,k > n > 0. Then

o d
/ I'(k+ 1/2,620)1)_”6_0‘2/”—;)

=0 %

n

n! 2|ﬁ‘2,{+1 |Oé| k+1/2—n+r
- Z (n—r)! |af2+2 (W) Kyt1/2-ntr (20f]) .

r=

Proof. In the case when n = 0 we find

= 2, dv o0 -
[ iz e —arjgpent [z sty
v=0 v v=0

with a simple integration by parts (see [Bru02, Proposition 3.1]). Then we have the following
identity [EMOT54, 6.3.17]

0o t
/ e(=F7v—a /o) yt=1gy — o (Ig:) K. (2|apB]).
v=0

So we have

o) e Ud’U 92 ﬁ 2k+1 a K+1/2
/ D(k+1/2,8%v)e V= = L o] Ky1/2(2]ap|).

—0 02 2 m

Now using integration by parts and remembering

2 o0
o0 —Q v
—azpdu e /
€ 2 = 2
_ v o
v=0 =0

we see that

e 2,.d
/ (k4 1/2, 2v)v e /”—:
v=0 v

—a?/v o 4 —a? /v
I'(k+1/2, /6’21))117"6 5 ] — / — (T(k+1/2, BPv)v ") ¢ 5—dv.
« —o v=0 AV «Q

oI (s,x) _

o x5 te™® |Ste84) 6.5.25] so continuing

The first term vanishes and we know

© —a? /v d oo —a?/v
= / F(H + 1/27 ﬁQU)n'Ufn+1 € 3 i _ / (—5267521)(,8211)&71/2)1}7”6 dv

=0 o -0 o
) —a? /v d 2|/3|2H+1 | | (k+1/2—n)
—n+1€ v o
_n/q)'_or(ﬁ+1/27ﬂ2'l))v +1 aQ /U72+ az <w> Kli+1/2—n (2|aﬁ|)

and repeated application of this reveals

oy 2ABP el T
- TZ:O (n_r)' |a‘2r+2 KH+1/2—7L+7’ (2‘0{ﬂ’) D

5]



6.2. Integrals 100

Lemma 6.2.4. Let k € Z,k > 0 and let a, 5 € R,a > 0,8 # 0. Then

A:Xj:wmm_j <_\%+ 4 ﬁ> <Hav

(-1)" %e—w if B> 0,

N

(_1) 4k k2

J _a2/v dU
) e /F(n—|—1/2,52v)?

e 2P (25 4+ 1, —4aB) if B <O.

Proof. We will use the fact that our Fourier expansion is harmonic (and therefore its coeffi-
cients satisfy a certain differential equation) to help us here. This will rely on knowledge of
our Fourier expansion that we only show in the next section but to simplify the exposition in

Theorem we will evaluate the integral here. We reformulate the stated integral as

ay
a dv
X chflfj <_\/% + 5\@) e—(ay)?/vr (kz _ 1/27521}) ﬁ

k+1

where k = k—1, a = ay (a,y > 0) and we have multiplied by y**'. We have written it in this

way so that it exactly matches the Fourier expansion form which we will obtain in
after unfolding and simplifying (associating 3 with sgn(D)m/3). We observe that a, 5 do not
depend on x or y. This is useful as we know that our lift and therefore must vanish
under the Laplacian operator Ag_oy ., using Theorem In particular, gathering all the

terms dependent on z and y, we see that I(y) must satisfy the following differential equation
Ao o - (I(y)e2“ﬁm) =0.
Applying the Laplacian we then have
yI"(y) + (2 = 2k) I (y) + ((2 = 2k)2a5 — 4a®B%y) I (y) = 0.

We remember a3 # 0 and so easily check that e =295 is a solution, as is e ~2¢%YT'(2k—1, —4aby).

This means we have a solution of the form
672a6y (Cl ((l, /Ba k) + 02(a7 57 ]{})F(2k) - 17 _4aﬁy)) . (622)

We now determine the two constants. This will briefly involve some long messy sums but we

have failed to spot a nicer approach. Using Lemma [5.2.5| parts d and e we expand out the
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Hermite polynomial terms of I(y) to obtain

1

Z (k;l)jkzj (k—i—j> (2)F— 19—

j c=0
k+1—j = —¢/2 W —(a)? /v (L — 1/92. 82 @
X /v_ov C< \/17>e (k /,ﬁv)v2
v (ke g ’“i] LC/ZQJ k—1— 4\ cl(—1)t+e(2q)c-2d (28)F 1~
L c d!(c — 2d)!
j d=0

c=0
k4+1—j+c—2d - —ct+d_—(ay)? /v 2 dv
Xy v e F(k—1/2,ﬂv)v—2
v=0

We then use Lemma fork =k—1,n=c—d,a =ay,B = [ to write this as a sum of

K-Bessel functions:
-y (% kZLf b - ) otz g
N - d!(c —2d)!

c=0 d=0
c—d _ k—1/2—c+d+r
(c—d)! 2|8t [ a o i
<2 (c—d—r) a2 \|B] K1 2—cratr (20]Bly) y?* 22770,
r=0

At this point we consider the identity [EMOTS81b| 7.2.6.40]

Kepplz) = Vafzee Y (22 i)

| _ |
05 sl(k — s)!

for k a non-negative integer. This tells us then that I(y) is certainly of the form

2k—2

> cla, Bt k)yle Pl (6.2.3)

t=0
for some constants c¢(a, 3,t, k) which do not depend on y. We take the limit as y — oo in
(6.2.3). This then converges to 0 and comparing with and remembering the asymptotic
behaviour of the incomplete gamma function from Lemma we see that if 3 > 0 then
co(a, B, k) must equal 0 and if 8 < 0 then ¢;(a, 8, k) must equal 0.

It remains to determine the other constant. To do this we find the ¢ = 0 term in
and take the limit as y — 0. Some staring reveals that we have ¢t = 0 in the cases when
0<j<lc=k—-1-450<d<|(k—1-j)/2],r=k—1—3j—dand s =k — 1. Plugging
these all in we find the ¢t = 0 term is
(2k —2)ly'7 <—1> o~ 2alBly Z 3 IZJ . ("“ —log- d) (—a)~7.
a? 2a = d

We then use the following identity which we take from [Gou72, 1.72]

1%/2] . d
Z(—l)d< 4 )2“—2d_n+1

d=0
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to see that the t = 0 term is

(sz_i)k'-\[ (—1 k—l e—2alBly Z (=1)7 (k —

= (et RN sy,

Ak—1gk+1
We consider (6.2.3) and (6.2.2)) as we take the limit, y — 0. We see that if 5 > 0, then

crfa, B k) = (-1) 1 BEZ BT

and if § < 0, then

E-DVE 1 VR
c2(a, B, k) = (-1 )k 92k—2k+1 F(gk_l’o)i(_l)k 4h=1gh+1"

Using (6.2.2) we then know I(y) and we have the stated result (remembering to divide by
yk+1)_ O

6.3 The Fourier Expansion

6.3.1 Objects

In our expansion a few mathematical objects will show up. We summarise these here.

Definition 6.3.1. Let x € R and let A C R. Then we define our indicator function as

% if x € A,

IA(JZ) =
0 ifzdA.

Definition 6.3.2. Let x € R,n € Z,n > 0. Then the nth periodic Bernoulli polynomial
is defined as

S—— Z 27rzm)”
and setting Bo(z) = 1.
Lemma 6.3.3 ([EMOTS81a, Section 1.13], [Bor98|, Section 10]). We have that
1. Bu(—2) = (—1)"By(2),
2. B,(z+1) =B,(x),

3. B,(r) =nB,_1(x) forx ¢ Z orn # 1,2,

4. By(z) =2 —1/2 for 0 <z <1 and B;(0) = 0.
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Remark 6.3.4. We see that B;(x) is a discontinuous sawtooth function with singularities on
x € Z and the value on the singularity (i.e. 0) is the average of the limits from either side (i.e.

—1/2 and 1/2). These functions will encompass the vertical half-line singularities of our lift.

Definition 6.3.5. Let x € R,n € Z,n > 0. Then the nth Bernoulli polynomial is defined

by the generating function

The nth Bernoulli number is defined as By, := By(0).

Example 6.3.6. The first four Bernoulli polynomials are

3 1
Bo(z) =1, Bi(x)=x-1/2, Bo(x)=x2*>—2+1/6, Bs(zx)=2— 5:1:2 + 52
We denote the fractional part of x € R as (z) :==x — [z].

Lemma 6.3.7 ([EMOTS81a, Section 1.13], [Bor98, Section 10], |GR15, Section 9.62]). We
have that

1. By(1—2) = (—1)"By(x),

2. Bu(z+1) = By(z) +na""!,

3. B, (z) =nBn_1(z),

4. Ba(1) = B,(0) = B, forn#1,

5. Bu(z+y) =Y p_o (7)Belz)y" ",
6. B, ((z)) =B, (z) forn #1,

7. By ((z)) + 1z(z) = By (2).

We notice using property 4 that B,,(x) are continuous functions for n # 1. The constant term

of our expansion in Theorem [6.3.10] will invole the following function:

Definition 6.3.8. For s € C,Re(s) > 1 we let the Dirichlet L-function associated to the

quadratic character (2) be defined as

()50

which can be meromorphically continued to all s € C.

We recall that we have already defined polylogarithms in Definition [5.3.6] To help make our

expansion even more compact we also introduce the following functions.
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Definition 6.3.9. Let k € Z,b € R,b > 0 and let z € C,|z| < 1. Then the shifted incom-
plete polylogarithm is defined as

[ee]

) ' 2" T (k,nb)
Li, (b, 2) = Z e TR

n=

which can be analytically continued to all z € C. When r = 0 we call this the incomplete

polylogarithm.

We note using ((6.2.1]) that the shifted incomplete polylogarithm is just a finite sum of poly-

logarithms:
. =2 L ppm —lpm & (ze7®)" ity X b
Lln,’r‘(ba Z) = ngl W@ TnZ:O W = rnZ:O ﬁ ngl ,nn+7‘fm = rnZ:O len—H‘—m (Ze ) .
We also remember from Section for the cusp /o, we had the following identifications
1
Q-(l) = AN (6.3.1a)
(A ni) = (A @), (6.3.1b)
1y — —_—
()\,I’O ) - 2Ny2 (Aay)7 (6310)

v (w7 (vl 6510
20 21D\ 2v2w yVN= ’ o

and denote ¢ ; ==y " 1*ic, ;. ;. Using ([2-5.6) and (2.5.2) we will as ever write an element

f(T) S Hg/g_k,ﬁ as follows:

ff=> > ct(m, h)e(mr)en, (6.3.2a)

heL’/L meZ—sgn(D)Q(h)
m>—ng

= S m Tk — 1/2,—4zmo)e(m7)en, (6.3.2b)

heL’/L meZ—sgn(D)Q(h)
m<0

Or alternatively

fry= > > c(m, h,v)e(m)e, (6.3.3)

heL’/L meZ—sgn(D)Q(h)
where

c(m, h,v) = ¢t (m,h) + ¢ (m, )T (k — 1/2, —4mmv). (6.3.4)

6.3.2 The Proof

We can now state the main result of this chapter. This Fourier expansion is at the cusp I
and for other cusps of I'g(IN) we also have similar Fourier expansions, see Theorem
This is (unavoidably) a very long and technical proof (similar in nature to those found in
[Bor98| Sections 7 and 14] and [Bru02, Chapters 2 and 3]), so we have divided parts of it into

paragraphs to hopefully make it more manageable.
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Theorem 6.3.10. Let f € Hs/o_j 5 be a harmonic weak Maass form with expansion as
given in (6.3.2). If ng < 0 then ®p,x(z,f) = 0. Ifng > 0, let z = x + iy € H where
y > +/—|D|no/N. Then the Fourier expansion of ®p i (z, f) is as follows:

€D|£r|\/§ ( 2|3|27v)k_1 ¢™(0,0)L (k. (%)) (6.3.5a)

_2\/§ekpx/5 (\/%)“ 33 (11)9) o <_|Z|]7\72,;’$> (6.3.5b)

m>1b(D)

< [B o 7))+ LY D] (6350)
V2epV/D(2k — 2)! D \"! D\ _ /[ |Dm? rm

* i/ <8m\/ﬁ) %%(b)c (_ AN 2N> (6.3.5d)

x [Liy, (e((mz + b/D))) + (—1)*sgn(D)Lisk—1,1-k (4mmy, e(—(mz — b/D)))] . (6.3.5¢)

In the case k =1 (6.3.5¢)) is replaced with By(mxz+b/D). The constant term (6.3.5al) vanishes
if k is odd and D > 0 (or if k is even and D < 0).

Remarks 6.3.11. This is a very large equation, which we have failed to simplify further. We

will often refer to: (6.3.5a) as the “constant term”; (6.3.5b))(6.3.5d) as the “c* terms”; and
(6.3.5d))(6.3.5€|) as the “c™ terms”.

We observe during this proof that this expansion actually converges for all z = x 4 iy € H.
However we will also show this form only truly represents ®p , x(z, f) in the unbounded Weyl
chambers. In particular, this expansion only encapsulates the vertical half-line singularities,
hence the restriction to the case y > \/W . We recall that, above that height there are
no semi-circle singularities associated to f. We can see the jumps generated by the vertical

half-line singularities are represented by the first periodic Bernoulli polynomial.

The Fourier expansion in the bounded Weyl chambers can be adapted from (6.3.5) with the
addition of some appropriate holomorphic polynomials. We explain this in detail at the very

end of this proof.

In Theorem we will consider the effect of applying £ o to this expansion (for z €
H\Zp,-(f)). This operator kills holomorphic pieces. In particular (for k£ > 2) only the shifted

incomplete polylogarithm term survives.

For the other cusps of I'g(N) we have similar Fourier expansions, see Remark We are
able to make this explicit in Theorem [6.3.12] in the case of N square-free. We do this by

adapting the [, case with some Atkin-Lehner involutions.
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Finally we consider when our lift is trivial. Remarks told us that if f had non-constant
principal part Py then ®p . i(2, f) was a non-constant function. I.e. the lift was not trivial.
However during the course of the proof we will see that actually holds true for all y > 0
if ng <0. It is then immediately clear then that if f € S5/5_j 5 (i.e. Py =0,n9 <0, f” =0)
then our lift is trivial and vanishes. We also look at the case when f € M3/5_j 5. Then Py is

a constant, f~ = 0 and ng = 0. So we observe that our lift is still trivial. We just obtain a

constant function, given by (6.3.5al).

Proof. Using Definition we need to consider the integral

reg

< £(7),@p () z)> dggv.

®oulaf) = [

TEF

Then using we write this in terms of the Poincaré series (7, pux,n,0,k — 1 — j), to get

reg )
<f(7),5k,2(7,0,0,0)> dngJF;/EfZ S S es(—n)t

n215er \I 7

n? = e — _\ dudv
. <f(7)’ {e (_4|D|ilm<T)Qz(l)> Bhotog (T ’Oﬂ ,f_3/2,p7> v

The Additional Term
In this paragraph we look at the first term given above. This disappears unless k > 2 (using

Theorem [5.4.5) and D = 1 (using Lemma [5.3.5)). If it does not vanish we use the integral

reg

(I)A,r,k(z7 f) = Cz,k,l/

TEF

calculated earlier in Lemma [6.1.3] to obtain
k
Cy —2V271(\, ot
k(k’ill) 2, 2. H-QOh ( : l )>
hel'/L NeK+h Q-(1)

we then simplify the sums over the cosets h € K'/K and A € K + h to one sum over K’ and
use the identities in (6.3.1]) to get

2V N i \" k
22 () 2 pofecen

We see that ¢t (—Q()\),\) = (=1)kc¢t (—=Q(N), =) using Lemma So the sum over A < 0
is the same as the sum over A > 0. The A = 0 term vanishes. We also identify K’ with 7%
for m € Z as discussed in Section [5.4.1] Putting all this together we have

ny (\/Z;LN> k=1 Z iy <_Z\2f’ 2’?\{) . (6.3.6)

m>1
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Unfolding

For the remaining main term we first rewrite this as a sum over 7 € T, \I" (as opposed to
v € foo\f) and so gain a factor of 2 outside. We then split this sum into two parts. The first
over v = £ (§?) and the second over v € Too\I', v # £ (§ ). Remembering f € Hz/p_j 5 ie.
the opposite of our slash termed (k — 3/2, p), we then obtain:

reg i 2 _ d d
2/_’_6]__22627k’j(_n)1 ‘e (_4|D’LIIZ<T)QZ(Z>> <f(7-)>':k—1—j(7—7 ,LLK,—TL,O)> 1,:2(0

n>1 j

(6.3.7)

(—n 1_j€ - - o
Zcz,k,g( ) ( 4|Di1m(’}/7)Qz(l>> (059

‘l Z)GFOO\F J

/ref n>1
c#0

X <f(’YT)aEk—1—j(77',MK,—7%0)>

dudv
02

(6.3.9)

The second additional factor of 2 outside the first term arises as the two elements v = + ( 9)

each generate the same term.

Theorem [£.1.3] told us that the regularised integral converges for all z € H. However we now
need to check that each of these two integrals also converge individually.

We first look at the second integral (6.3.8), (6.3.9). We observe that Im(y7) = for

v = (‘i Z) We have ¢ # 0 so to check the convergence of this integral as v — oo, we need
to look at the terms f(7),ZE(7, ux,—n,0,k —1 —j) and e <_W2Qz(l)) as v — 0. We use
Lemma [2.5.20] and Lemma We see immediately that if ng < 0 this integral converges.
In the case ng > 0 it converges if

’I’L27T

2mng — ———— < 0.

1D|Q=(1)
So using the identification in (6.3.1al) (and observing that n > 1) this is when

/2|D|n0
> N

This is always true if np = 0. We will assume from now on that either ng < 0 or y >
v/2|D|ng/N. In this case the integral converges absolutely and the regularisation is not nec-
essary. The first integral (6.3.7)) also converges for ng < 0 or y > /2|D|ng/N. This is clear

as the regularised integral and the second integral converged in this case.

Then using the Rankin-Selberg method (see for example [Bor98|Bru02], [Sad12, Proposi-
tion 13]) the second integral is:

/reg 22 ceki(—n)' e <4Dlz‘Ir:(27)Qz(l)> <f(T)a Ek—1-4(7, i, — 1, 0)> d%

n>1 j
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where

G={reH]|lu <1/2,|r| <1}.

We can check this converges absolutely for ng < 0 or y > 1/2|D|ng/N using the same argu-
ments as before (Lemmas [2.5.26|and Lemmas|5.3.8)). We can then recombine our two integrals
from above and we now need to evaluate

2

oo pl/2 iy — dud
2/1)_0/ ZZcz,k,j(—n)l Ye (‘W) <f(7),5k717j(7'vﬂl<a—n’0)> sz-

==1/2n>1

At this point we insert the expansion for f(7) and ZEx_1_;(7, i, —n,0) given in (6.3.3) and
Lemma We remember that L'/L = K'/K.

o [ [ EEE ST e

n>1 j heK’'/K meZ—sgn(D)Q(h AeK+rh
! / BDIRW) DG D)

m(—Nn — 2v *
x c(m, h,v)e(mT) (f) v—(k—l—j)/szﬂ,j <\F( 2|D’iC§)\El§0 )))

<o (457) e (o) <_4\DIZ)2QZ(1)> -

The next step is to carry out the integration over u (a compact region). We remember that

this integral picks out the 0-th Fourier coefficient (for example as in Theorem [4.1.3])

LU AP VD SEEND VD SWIEHE

Jj heEK'/K AEK+rh n>1
QN=DQ(h)(D)

X ¢ (_62()‘)7 h,v) <§> v D2 (ﬁ(—n - 2v(>\,mL))>

) B N 2|DJv@Q-(1)
< (i) e (~apream) &

Next we simplify the sums over the cosets and K to one sum over K’. We notice taking a sum
over A € K, h € K'/K such that Q(\) = AQ(h)(A) and A = rh(K) is equivalent to taking a
sum over N € K’ with A = AX and 7\ = h(K) (in particular we remember D = r?(4N)).

This leaves

2ep |1 IDIDIDS (f) g (=) I 717D 2¢ (< DIQ(A) A, )

v J AEK'n>1

T —n — v + TL2 v
x Hi_1_ <f( 21;?@?;)“’ ))> e (sgn(D)n(\, pur)) e <_4D|z’quz(l)) ‘5—2. (6.3.10)

At this point we consider the two parts given by [6.3.4]

c(m, h,v) = c(m,h) +c (m, h)[(k — 1/2, —47mv). (6.3.11)
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The ¢ Terms

We remember our lattice is positive definite i.e. —|D|Q()) is negative and so we will have

only finitely many ¢t (—|D|Q()),7A) terms that do not vanish. We set

V21 D(\, o+
= niﬁ >0 B:= ,w (6.3.12)
2|D[Q:(1) 1DIQ=(1)

We also see that using (5.4.1)) then (—n)7v7/%¢, k. ; = c. k0 <W>J and

sgn(D)mn(\, )
Q:(1)

We now carry out the integration over v. We can swap the integration and summation as the

aff = —

sum over m is finite and we can check through this proof that the absolute value of (6.3.10))

converges. In this case the integral over v (and the sum over j) we need to consider is

/U:zj:v(kl)ﬂ]{k_l_j <_\%+ﬁﬁ> (W)je"vcg_

Using Lemma [6.2.2| (for kK = k — 1) we then have

L 2|D|Q.(1 (—|D
_2€D|D|/<_ |¢|§z<>> c«oZZ() DIQQY. )

<

(st (g - OB (DO

We then observe that we change the sign of A\ and n and the terms in the sum remain

unchanged. We see this by noting that

ct(m,h) = (fl)ksgn(D)cJ“(m, —h)

as f transforms with respect to p using Lemma [2.5.10 and that (%) = sgn(D) (%) using

Proposition This means we can replace the sums over n > 1 and A € K’ with sums over
n € Z,n#0and A € K', X\ > 0 respectively. (We treat the case when \ = 0 separately, in the

constant term paragraph). This leaves

172 2|D|Q.(1 (—|D
_26D|D|/<_ |¢|§2<>> S Y () DIQQ). )

MK’ n€Z\{0}
A>0

o () )

We remember using [BO10, Equation 4.7] that

g;(ive(ﬁi)==<f>emDP” (6.3.14)
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SO we can rewrite to

k+1
21DI0.( D\ ¢t (—|D|Q(N),rA
_2<_¢flﬂ<>) Y Yy (2) ey

AEK' n€Z\{0} b(D)
A>0

oo (- 550 ) )

We had some identifications in (6.3.1)) for the specific cusp lo.. We also identifying K’ with
s for m € Z as discussed in Section This allows us to simplify to

Flam) 5.5 20 ()

m>1nez\{0} b(D)

xn"Fe (sgn(D)n (mz + g)) I' (k, —sgn(D)2mnmy) .

The ¢ Terms, Bernoulli Form
We can reformulate this more appealingly in terms of Bernoulli polynomials. Using the de-
composition of the incomplete gamma function given in (??) we have

P lam) I Era e () ()

m>1neZ\{0} b(D) s=0

x nFe (sgn(D)n <mx + lb))) (—sgn(D)2rnmy)" ' 7%

We then remember the periodic Bernoulli polynomials we defined earlier in Definition [6.3.2]

which allows us to write this as

() e (L) @) ()

m2>1b(D) s=0

B r00) (e + 5 conrm

This finite sum certainly converges for z € H. Using property 3 of Lemma we obtain

()RR ) (R e Dt

m>1b(D) s=1

This gives the stated result in the case k = 1. We know 3, (£) vanishes if D # 1 and
Bo(z) = 1 so this allows us to rewrite the additional term (6.3.6) (in the case k > 2) from

earlier as

() S () (0) (e )

m2>1b(D)

so these two nicely combine and we have:

SR BB (D) (R e

m2>1b(D) s=0
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The ¢t Terms, Alternative Bernoulli Form

This is a nice enough version but we can go further by using properties 5,6 and 7 of Lemma

to obtain

() 2 () ()
k

y (IZ(Z’Z:l;f/kD Z( ) mx+b/D>)(imy)k_s>

=0

and so finally we have the stated form:

() ZE ) ()

X (Bk ({mx + b/D) + imy) +

Iz(mx + b/D)k) .

(imy)'—*

The Constant Term
We remember we had still had to consider the case when A = 0 from (/6.3.13)). This is equal to

k+1
~3(k = 1)tep| D2 (—ﬂf*”) corae 003 ()

and using the identifications in (6.3.1)) and Definition we obtain

k—1
6D|Z|\/§ (ZW;%) ¢*(0,0)L (k, (2)) :

This is a constant term that does not depend on z. We also see using Lemma [2.5.10] it

disappears if (1 — 2k —sgn(D)) is odd as then ¢™(0,0) = 0. In particular it disappears if

k=1and D > 0 so we never have to consider the case when L (k, (2)) has a pole.

The ¢~ Terms
Next we consider our expansion associated to the non-holomorphic terms. Our lattice K is

positive definite so we will have infinitely many terms of the form ¢~ (—|D|Q()A),rA). We had
using (6.3.11)) the following form

26D|D1/2/ 3 Z( )czk (=)t (k1472

Jj AEK'n>1

¢ (=IDIQ(N),rA) T (k — 1/2, 4w D|Q(A)v)

4 VT (=n — 2Dv(\, b)) o (sen( D) o n? dv
H< 3D10Q-() ) @) (=g )

We note we have no ¢ (0,0) term so this vanishes for A = 0. We then swap the integration
over v with the summations. We see through this proof that the absolute value of (6.3.10))

converges. Also note that T'(k — 1/2,47|D|Q(X)v) decays exponentially as v — oo and the
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coefficients ¢~ (m, h) only grow polynomially fast. We then use our identifications in (6.3.1))
and then setting a = a/y > 0 and 3 # 0 as before in (6.3.12)) we have

~2eplD a3 Y Y (2) [ oz (W) (~1DIQ(N. ™)

J AeK'n=>1 y
A£0

x T (k—1/2,5%) Hy-1-; (‘? + 5\/5> e (sgn(D)n(A, x)) ei%%'

Next we identify K’ with J% for m € Z and B = B/sgn(D)m > 0 to obtain

D - Dm rm sgn amBiz
— 2D 200 Y Y Z(n)c <_|4|N ,m)egwm fis i1

j meZ\{0} n>1
> k—1)\/v J _(k=1) ~ ay 5 _@dv
X/UZO (%) v~ 2 I (k —1/2, (mﬁ)%)) Hyp 15 <\/17 + Sgn(D)mﬁ\/qj) e v =
(6.3.16)

We solved this integral in v (and the sum over j) in Lemma [6.2.4] Carefully considering the
cases when m and sgn(D) are positive and negative we can now switch to a sum over m > 1
and remember

¢ (m,h) = (—=1)*sgn(D)c™ (m, —h).

So we obtain for D > 0

_26D\/|D|7T0k ;1 k—lzz B - _|D|m2 rm
a? 0\ 4ay = \n 4N 2N

X [(Qk - 2)!62‘””5” + (—1)k6_2“méizf(2k -1, 4amﬁ~y)}

and for D < 0

_2epy/[Dlr (—1\* Z _( |Djm?
a2 "0\ day = = AN '2N

[ 1)k (2% — 2)le 2ampBiz +€—2am[§izf‘(2k — 1,4am3y)} .

So combining these two cases and then plugging in all the identities (6.3.1]) once again

() Z2Z () ()

xnk [sgn(D)(2k — 2)le(nmz) + (=1)*e(—nm2)T(2k — 1, dmnmy)] .

Using (6.3.14)) we know
D nb D

b(D)

and we then use this to finally obtain

G () S (D) ()

m>1n>1b(D)

x [(2k — 2)le(n(mz + b/D)) + (—1)*sgn(D)e(—n(mz — b/D))T'(2k — 1, 4mnmy)| . (6.3.17)
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The ¢~ Terms, Polylogarithm Form
We can go further than (6.3.17). We reformulate this more compactly (and remove an infinite
sum) by writing this in terms of polylogarithms. In particular using Definitions and

we have

S () 5 (D) ()

m>1b(D)

x [Lix (e((mz + b/D))) + (—1)*sgn(D)Lisg_1,—k+1 (47my, e(—(mz — b/D)))] .

We check this series converges absolutely for z € H as Lemma told us the ¢ (m,h)

coefficients only grow polynomially but the polylogarithm terms decay exponentially (noting

n,m # 0), see Lemma m

The Expansion in the Weyl Chambers

So far we have seen that our expansion is valid only when ng < 0 or y > 1/2[D|ng/N. How-
ever we have also observed that the expansion given in converges absolutely for all
z € H and so can be continued to hold for the entire upper-half plane. Using Remark
we know that there are only vertical half-line singularities for y > \/W . Theorem m
told us that our singularities arose from the ¢t (m,h) terms where m < 0. We then observe
that the vertical half-line singularities are fully encapsulated by the periodic Bernoulli polyno-

mials in our expansion. In particular the By (maz+b/D) term in (6.3.15)), see also Remark

We saw in Theorem that ®p ;. (2, f) was real-analytic for all z € H\Zp,(f). The
Fourier expansion we have found is also real-analytic outside the vertical half-lines so will

equal ®p , (2, f) within the unbounded Weyl chambers.

We find the expansion in the bounded Weyl chambers as well. Section [3.5] told us the vertical
half-lines were defined by Dy when A\ L [.. Theorem told us that for a point z, € H

there exists an open neighbourhood U C H so that subtracting

VeI DD DI 'R )N DI HE AL PRV

heL’ /L meZ—sgn(D)Q(h) NEL_ap.rh [(A,0(2))]
m<0 Alzg

allowed ®p , (2, f) to be continued to a smooth function on U. Using the wall crossing

formula (Theorem [4.2.4)) we let

gwi(2) = 2v/2D] Y > ¢t (mh) Y xpWNe(W)F
heL’/L meZ—sgn(D)Q(h) AEL_apD,rh
m<0 Al
ALWio
(A, W1)<0
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This function then tells us the finite number of polynomials we will need to add as we cross
a wall W15 defined by a semi-circle between two Weyl chambers W7, W5. This function is 0 if
Wig is a wall defined by a vertical half-line. Using the real analyticity of ®p , (2, f) it is clear
the expansion in a bounded Weyl chamber is given by the expansion (6.3.5)) with the addition
of the appropriate polynomials gw,,(z). The appropriate gy, (z) being those defined by walls
W12 which we crossed in order to reach that Weyl chamber from the unbounded Weyl chamber
above. The value of a point lying on a semi-circle Wis is given by the Fourier expansion in the
Weyl chamber Wj plus the polynomial (1/2)gw,,(2) i.e. the average value of the surrounding
Weyl chambers. O

6.3.3 The Fourier Expansion at other Cusps

Theorem held only for the cusp lo,. However by considering the Atkin-Lehner invo-
lutions from earlier we can now adapt this to find the expansion at other cusps in the case
when N is square-free. This is the same idea as in Lemma In particular we recall from
Section that crucially all the cusps of I'o(N) can be represented by W\ oo where m are
the divisors of N.

For f € H3/3_1 5 with components fj, we denoted

fwy = Z Jwy nen-

heL!/L

We also wrote fiyny = ZheL,/L frewn p and see that fyyn € Hzjo 5. We then have the

following useful theorem.

Theorem 6.3.12. Let N be square-free, f € Hyjo_ 5 and s € PH(Q) be a cusp for To(N).
Then there exists an m, an exact divisor of N, such that the Fourier expansion of ®p . r(z, f)

at the cusp s is given by

Do (2 fWTI,\[) -

Proof. For s € P1(Q) = QU {oco} we know W Noo = s for some exact divisor m of N. The

Fourier expansion of ®p , x(z, f) at the cusp s is given by the Fourier series of
(¢D,r,k|2,2kWn]¥) (z,f) = JWN, 2)*20p . o (W .2, f)

at the cusp oo (see for example [DS05|, Section 1.2]) and remembering ®p , 1 (z, f) is of weight
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2 — 2k from Theorem Using Proposition [3.6.12] we then have

dudv
02

reg
.](erpjv Z)zk_zq)D,r,k(Wg‘Za f) = ](Wr]r\L]a Z>2k_2 /
TEF

(F(7),6x(r WY 2))

dudv
02

— [ (s @ty

eF

= [ ()80

eF v?

- q)D,'r,k (Z? fWTIY\L’) . O

Fix f € Hs/_pp in the form (6.3.2). Then the expansion of the lift can be found at
the cusp s using Theorem [6.3.10], where we find the expansion at oo for the coefficients

ct(m, WX .h),c=(m, WN.h) (as opposed to ct(m,h),c™(m,h)).

6.4 A Locally Harmonic Weak Maass Form

In this part we consider the asymptotic behaviour of our lift as y — oo. This is the final

proposition that we will need to show that our lift is a locally harmonic weak Maass form, as

in Definition 2.5.301

Proposition 6.4.1. Let f € H3jo_ 5 and let k > 2 . Then

(DD,r,k(Zv f) = O(yk)

as y — 0o, uniformly in x. In the case k =1 then

lim q>D,r71('Za f) =

Y—00

DIDIVE (0,001 (1, (2))

D D|m?
22D Y Y () e (IR 2 ) B+ 0/,
m2>1b(D)

Proof. We show this by using the expansion given in Theorem [6.3.10, This was in three parts.

The first part (6.3.5a)), was just a constant.

The second part , , consisted of a finite sum over m > 1 as we remember there
are only finitely many non-zero ¢*(—n, h) for n > 0. Considering this part in the form given
in we note that Bs(ma + b/D) are actually bounded for any m,z and it is clear that
this part grows O(y*) as y — oco. In the case k = 1 this is again just a constant (dependant

on z) that does not depend on y.

We now consider the third part. We look at the form given in (6.3.17)). This was the part
associated to the ¢~ (n, h) coefficients. We first note that using (6.2.1))

e (4rnmy)®
e(—n(mz —b/D))T(2k — 1,47nmy) = (2k — 2)le (n (m(—z + iy) — b/ D)) —a
s=0
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Using this we will now bound the absolute value of ((6.3.17). Up to constants it then suffices

to consider
2k—2
B Dm —27rmny
S (R ) TS e
n>1 s=0

and using Lemma [2.5.27| we know the asymptotic behaviour of ¢~ (n, h) so we have

2k—2

—2mmn
< constant - Z Z m'/? Z ’ (nmy)*®
s=0 m>1 n>1
2k—2
< constant - Z Z mitse=mmy Z nfe MY
m>1 n>1
2k—2
< constant - Z Yy Li_s_1(e”™)Li_g(e™™)
s=0

and then using Lemma part 5 we know this decays exponentially fast as y — co. O

We are finally in a position to put together all our main theorems and complete one of the
main aims of this thesis. That is, to show the singular theta lift is a locally harmonic weak

Maass form.

Theorem 6.4.2. Let f € H3/o_1 5 and let N be square-free. Then ®p . x(z, f) is a locally
harmonic weak Maass form of weight 2—2k for the group I'o(N) with exceptional set Zp .(f).
Le.

Pp,r k(2 f) € LHz—2 (To(N)) .

Proof. We remember from Section [3.5|that Zp ,(f) was a nowhere dense I'g(V)-invariant set.
We look at the four conditions in Definition [2.5.301

1. We know from Theorem that ®p . x(z, f) has weight 2 — 2k for the group I'o(V).

2. Theorem says ®p ., k(z, f) is real analytic and harmonic outside the exceptional
set Zpr(f).

3. Theorem (see also Section [4.2.1)) tells us that the value on the singularities is the

average of the values in the adjacent Weyl chambers.

4. For the cusp condition we note if N is square-free, then the Fourier expansion at a
cusp s = WNoo was given by the Fourier expansion at co of ®p . (z, fWﬁ) using
Theorem Then using Proposition for fyyx (where we note ct (n, wWN .h),
¢ (n,WN.h) still grow at the same rate as ¢ (n,h),c¢™(n,h)) we can check that we

have polynomial growth at all the cusps. O



Chapter 7

The Shimura Lift

In this final chapter we consider the relationship of our lift with the well known Shimura
correspondence. The nature of the singularities found in Theorem also leads us to
consider these ideas as distributions. We first show that the kernel functions of each lift are
related via the anti-linear differential operator and so link the two lifts with £;_o, and obtain
a commutative diagram. Using this link we can then derive new proofs of the properties of the
Shimura lift including its holomorphicity and Fourier expansion. We then give our definition
of a distribution associated to a locally harmonic weak Maass form and show that this then

satisfies a current equation. Similar ideas can be found in [BF04, BKV13,Hov12].

7.1 Definition

We start by defining our version of the Shimura lift. As mentioned in the introduction this is
a family of maps from forms of half-integral weight first defined by Shimura [Shi73|. In the
introduction we also discuss the history, applications and significance of this lift. Niwa |[Niw75]
(see also [Shi75| and [Cip83|) later formulated this correspondence in terms of theta lifts (an
example of a Borcherds lift [Bor98|). This lift was also seen in [SZ88L|GKZ87,Sko90a,[Sko90b|
and examined for some Jacobi forms. We note however that vector-valued forms essentially
correspond to some Jacobi (and skew-holomorphic Jacobi) forms, see also Example
and [Bru02, Example 1.3].

For our construction we will use the twisted vector-valued Shintani kernel function (Definition

3.6.6) to define a twisted Shimura lift. This is the same idea as in Definition

Definition 7.1.1. Let k € Z,x > 1. For g € Si.y1/2,, we will call
B,r,n(27g) = (g(T)v *D,r,n(Tv Z))K/+1/2,p

117
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dud
V12 u2v

_ / (9(7), O, (7, 2))
TEF

(%

the twisted Shimura lift.

This definition makes sense, as Theoremtold us that ©F ,. (7, 2) is of weight k+1/2 in 7.
As f is a cusp form, which decays exponentially as v — 0o, and the Shintani kernel function
also decays exponentially we know immediately that the integral converges absolutely and
defines a real analytic (and therefore smooth) function on H. There is no need to regularise

the integral.

Remark 7.1.2. The properties of the Shimura lift are very well known, see e.g. [Niw75]. How-
ever, during this chapter, we will pretend we are ignorant of these facts and rederive them

from scratch. We will use the singular theta lift to do this.

Corollary 7.1.3. For k € Z,k > 1 then

*D,'r‘,n : S/i+1/2,p — AQN(FO(N))

Proof. Using Lemma [3.6.11]it is immediately clear the Shimura lift maps cusp forms to some
even weight (real analytic) functions for the group I'o(N). O

Remarks 7.1.4. In Theorem we will show that actually the Shimura lift usually maps

(vector-valued) cusp forms to holomorphic (scalar-valued) cusp forms.

In this work we have restricted the input to cusp forms and this will suffice for us. In partic-
ular, our original lift was defined for f € H3/3_r 7 and we will soon see that we want to lift
§3/2—k(f), which are elements of S, /2 ,. However in general we can regularise the integral
and extend the utility of this lift to much more general forms. For example weakly holomor-
phic forms as in [Bor98, Section 14] or weak Maass forms as in [BKV13] (after checking that

the regularised Petersson scalar product in these cases does indeed converge).

We remember that taking the complex conjugate of a Siegel theta function and multiplying by
an appropriate power of v essentially means we then work with swapped signature (b=, b7).
So our final remark here is that the Shimura lift definition is different in this respect; for for

the singular theta lift we first took the complex conjugate of the kernel function.

7.2 The Relationship

We now show that the Shimura lift and the singular theta lift obtained in this work are closely
connected. The connection formed here goes back to the results of [BF04]. We need the

following key lemma. This is adapted from [BKV13, Lemma 3.3].
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Lemma 7.2.1. We have that

* 1 —
Et1/2,7 (0D, (T,2) = — 56220z (057200 4(7,2))

Proof. This is actually a proof on the level of the Schwartz functions. Using Section the

associated Schwartz functions for our two kernel functions were

20 (72,029, D) = /2 p () (qjj))k c (Qu(j)u ; Qflg” )

@u QZ(A)Z’U
o] D] )

%o ()‘7 Ty 2,02, Pk, D) = v3/2XD()\)pZ(>\)qz()\)k_1e (

Section m told us that ©7, , ,(7,2) corresponded to ©(z,7) in [BKV13, (1.2)] and that
v*=3/20p , (7, 2) corresponded to ©*(—z,7) in [BKV13, (1.6)]. Putting this all together

with the partial derivative calculations in [BKV13| Lemma 3.3] we obtain

2€k+1/2,7' [800 ()\7 T,Z, 027p1:7 D)] = _52—2]6,2 |:Uk73/2§00 (/\7 Ty2,0z, Pk, D) i| (721)

The genus character clearly just goes for the ride during these differential calculations. Observe
that our kernel Siegel theta functions converged absolutely and locally uniformly in (7, z). This
means we can interchange the partial differential operators with the summation of the theta

series and ([7.2.1)) implies the stated result. O

Using this we then have the following important result. Once again this relies on Stokes’
theorem and the result only holds away from the cycles Zp ,(f) (where the singular lift is
not naturally differentiable) as then the boundary term does not necessarily disappear. This

proof is adapted from [BKV13, Lemma 3.4].
Theorem 7.2.2. Let f € Hy/y 5 and z € H\Zp . (f). Then
. 1
Oh .k (2,83/2-1(f)) = 55272k,z(q)D,7‘,/€(27 1))

Proof. We let f € Hss_j 5 and then using the Definition we have

I 1 * dudv
D2 &2k (f(7))) = Jim (€320, (f(7)), OD 4 (7, 2)) " T2 ——
X JreF v
Ty dudv
= li 3/2—k * k+1/2
- tllgolo reF, <Rk_3/277<v / (T))7@D,r,k(73 Z)>U / UT

Using Stokes’ theorem, Lemma [6.1.1] we have that this is equal to

dudv

02

= — lim <m Licy1/2,7 (O ri(7) Z>)>

t—00 TEF:
1/2

+ lim [<m, 0D k(T 2) >} du.
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Looking at the first term and using Lemma [7.2.1] we obtain

= —/:i <f(7_);§k+1/2;r( Dokl

reg )
—/ <f(T) iy 2o ( (Op.rk(T,2))

eF

= %52—% (/Tr:i <f( ), OD,r (T, )>

= %EQ-Q}@((I)DJ’J‘?(Z’ f))

dudv

>U3/2 K

Recalling from Theorem that the regularised integral ®p , (2, f) on the truncated fun-
damental domain F; converged as t — oo locally uniformly for z € H\Zp ,.(f). So for these

points we can interchange the partial derivatives in z with the integral.

To show the stated result it remains to show the (complex conjugate) of the second term
vanishes for z € H\Zp ,(f). We know f~ decays exponentially, as does the Shintani kernel
function. We look at the integral of the f* part and plug in the expansions given in (2.5.2))

and Definition [3.6.6] to get
1/2

tliglo —1/2 Z Z Z C+(n’ h)xp(A)

heL'/LneZ+sgn(D)Q(h)  AEL+rh
n>—00 QA=DQ(h)(D)

()-8 e

This integral then picks out the Oth Fourier coefficient and remembering ¢, () vanishes when

A = 0 we have

= Jim > <—C|2](3A|)ah) Xp(A) (qZ;;‘))ke <_2%(|AZ)¢15) $1/2,

NeL+rh
Q(\=DQ(h)(D)
A£0

Using the same analysis in Theorem (see also Lemma [4.3.6) we know this converges to
0 exponentially as t — oo unless Q(\,) = 0 (and c¢* (—%,h) # 0 and xp(A) # 0). As

before, this is exactly the case when z € Zp ,.(f). O

7.3 Properties of the Shimura Lift

In this next part we use the link found in Theorem [7.2.2] to show various properties of the
Shimura lift. We first have an easy corollary using this link. The fact that our lift was

harmonic (away from the singularities) implies that the Shimura lift is holomorphic.

Corollary 7.3.1. Let g € Si41/2,, and z € H\Zp ,(f). Then

§2k (q>*D,r,k(Z7 g)) =0.

Le. the Shimura lift is holomorphic away from the singularities.
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Proof. Theorem [2.5.18| told us that the anti-linear operator mapped harmonic weak Maass
forms surjectiovely to cusp forms. ILe. for any cusp form g € Spyi1/2,, there exists an

J € Hgjo_j 5 such that {35, (f) = g. So we know using Theorem that

D 1(2:9) = (21 Eajo k() = 562 28(@p sl )

for some f € Hso_j 5. However for z € H\Zp ,.(f) then

1

ok (Ph,k(2,9)) = %ﬁzk&—zk (®pri(z, f)) = 5 D22t (®prk(z, ) =0

using Theorem [4.3.7 O

Remark 7.3.2. In fact we will show in Theorem that the Shimura lift is holomorphic on

all z € H. This is because £5_9f kills the holomorphic polynomial singularities.

We next find the expansion of &_of (Pp k). We observe using Theorem that this
expansion is essentially the expansion of the Shimura lift. We make this explicit in Theorem
We will see that we can continue the expansion of £;_o5 (Pp k) to hold for the entire
upper-half plane, and not just for z € H\Zp (f).

Theorem 7.3.3. Let f € Hy/y_j, 5 with expansion as in (6.3.2) and let z € H\Zp (f). Then

. k—1
Ea—ok(Pp k(2 f)) = 4V2repD < D >

i V2N
D\ m?*~1  / m2|D| n r
XZZ(d) PO <_d?4N’d2N>e(mZ>
m>1d>1
dlm

and in the case k =1, D =1 we have an additional constant term

R )

m>1

This expansion can be analytically continued to a holomorphic function on the entire upper-half

plane.

Proof. We recall that ®p , (2, f) is of weight 2 — 2k and we need to find

0 0
&omok(@pork(z, f)) = iy> 2k <<817 + 28y> Op iz, f))

We deal with each part of our expansion ([6.3.5) in turn.

Constant Term

We had a constant term (6.3.5a))

this does not depend on z or y so immediately vanishes under &;_op.
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The ¢t terms

Looking at ((6.3.5b)), (6.3.5¢) (a finite sum over m) we consider for ma +b/D ¢ Z (away from

the vertical half-line singularities) and k > 2

klz(ma + b/D)

<3 Hﬁ) [Bk (e + b/ D)+ imy) + =220

oxr Oy

which we see, by using Lemma [6.3.7] part 3, vanishes. In the case of k =1

((,i + i%) [By (ma + b/D)] = %

and we remember Zb(D) (%) = 0 unless D = 1. This gives the constant term in the stated

result.

The ¢~ terms
We use the from given in(/6.3.17)). We may swap the partial derivatives with the sums over
m,n as we have absolute and locally uniform convergence of the series (noting m,n > 1) for

z € H. Then

—1)ksen
(jx n fy) { (n (m= + b/ D)) + W (—n (mz — b/ D)) T(2k — 1, d7nmy)

_ (~1)sen(D)

i(2k — 2)! e(=n(mz —b/D)) (47mm)2’“*1 y2h2,

> (5)(5) = ()7

b(D)

we see that {3 o, of (6.3.5d)) (6.3.5€) is

4v2repD [ 7D \"! D\ op1 k-1 _ |DIm?2 rm
: <Z\/W> ZZ Pl KU CC I ety vty e(nmz).

m>1n>1

Using the fact that

and then making the substitutions m +— * and n +— d we have

_ k—1 2k—1 2
WD (7D S S (D) (L e )
: N d) d2 4N’ d 2N

m>1d>1
dlm

Theorem told us that ®p , (2, f) was real analytic for z € H\Zp ,.(f). Theorems|6.3.10
and told us that our Fourier expansion held everywhere, even on the singularities and for

y < v/—|D|ng/N, if we added on appropriate polynomials when crossing walls. We remember,
from (3.6.4]), that these polynomials were of the form

¢:(\) =y(\o(zh)) =

-1
¢cN2* —bz+a).
V2N (
L.e. holomorphic. So they vanish when we apply the &_of operator and we can smoothly

continue {3_ ok (Pp rk(2, f)) to the entire upper-half plane with the expansion given in (7.3.1).
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Corollary said that {o_ok (P p rx(2, f)) was holomorphic for all z € H\Zp ,.(f) but clearly
the expansion in ([7.3.1)) is holomorphic for all z € H so this also provides a holomorphic
continuation of &_g (Pp . x(2, f)) to the entire upper-half plane. O

The previous theorem in conjunction with Theorem then allows us to easily find the

Fourier expansion of the Shimura lift.

Remark 7.3.4. An alternative way to find this expansion is to repeat the same analysis that
we carried out for the singular theta lift. I.e. write the Shintani kernel function as a Poincaré
series and then unfold and simplify the integral in Definition [7.1.1} This, as we have seen,

would take considerable work. This method can be found in [Bor98, Section 14]

Theorem 7.3.5. Let g € Si41/2,, have Fourier expansion of the form (2.5.1))

g(r) = Z Z a(n, h)e(nt)ey, (7.3.2)

heL’/L neZ+sgn(D)Q(h)
n>0

then the Fourier expansion of the Shimura lift is holomorphic and is given by

k-1
8,1 (2,9) = 2iepy/IN|D| (W)

D m?|D| m r
gkl (=D
<d> a(d24N’d2N e (mz)
and in the case when k =1, D = 1 we have an additional constant term

1 1 \"! m2 rm
- Z m-ct [ ——, — |.
ikv/2 \V2N — 4N’ 2N
where ¢t (—m, h) are the coefficients of the principal part of any f € Hs/5_ 5 such that
E32-1(f) =g

Proof. As in Corollary we know there exists an f € Hsz/p_y, 5 such that £3/5_1(f) = g.

This f must have a Fourier expansion of the form

Z Z ct(n, h)e(nt)ep,

heL’/L neZ—sgn(D)Q(h)
n>>—oo

=3 S [_%] T(k — 1/2, —4mnv)e(nt)en,

heL’/L neZ—sgn(D)Q(h)
n<0

f+

to agree with (7.3.2)) i.e. ¢~ (n,h) = —a(—n, h)(—4mwn)*/?>=%. We can check this by using[2.5.4
Then as

Ph ok (2,9) = %52—2k (@D, (2, 1))
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for z € H\Zp ,(f) by Theorem we then plug in ¢~ (n,h) = —a(—n, h)(—47n)*/?~* into
Theorem [1.3.3] to obtain

siep/2NTD] [ EUPWVN - DY gemig (DL m T N
Dm< - ) S () )etm)

d? AN’ d 2N
m>1d>1

dlm

plus when k£ =1 and D = 1 we have an additional constant term

iki/ﬁ (JiTv)H S et (Z\Qf ;X;) (7.3.3)

m>1

As in the previous proof this expansion is analytically continued to hold for all z € H and is

a holomorphic function. O

We can check this expansion agrees (up to constants) with the one given in [Hov12, Theo-
rem 4.1] which is adapted from [SZ88,|GKZ87,|Sko90a;, Sko90b].

Remark 7.3.6. In the case k = 1, D = 1 we notice the additional constant term depends only
on the ¢t (n,h) coefficients of f (where f € Hjz/o_j 5 such that &5 f = g). This implies
that g uniquely determines this constant. This at first glance seems strange as f~ in general
does not determine the ¢ (n, h) coefficients. This is actually an example of Corollary
using the unary theta function. A lot more detail of this can be found in [Hov12, Section 4.4]

which we do not repeat here. However we do obtain the following corollary.

Corollary 7.3.7. For f € Ml!/Qﬁ with expansion as in (6.3.2) and D = 1 d.e. 72 =1

(mod 4N) then
m? rm
et (2T g
D me < 4N’2N>

Proof. We use Theorem in the case when £k = 1,D =1 and ¢ = 0. Any f € Mi/Qﬁ

satisfies £ /2(f) = g = 0. Then certainly 7, . ,(2,9) = 0 using Definition but we also

know

k—1
1 1 m2 rm
e 2,9) = — E m-ct | ——,—=|.
pral29) = 55 (\TN) ( AN 2N>

m>1

This implies the stated result. O

We are now in the position to show that the Shimura lift maps to cusp forms most of the time.

We can use the Atkin-Lehner involutions to find the Fourier expansions at all the cusps.

Theorem 7.3.8. Let k€ Z,k>2 ork=1,D # 0 and N square-free. Then ®p , 1 is a cusp
form of weight 2k for the group T'o(N) i.e.

DDkt Skr1y2,p — S2(Lo(IV)).

In the case k = 1,D =1 and N square-free, ®p 1 s a modular form of weight 2k for the
group To(N).
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Proof. Let g € Siy1/2,, and f € Hz/_j 5 such that §5/5_1f = g. We know from Corollary
that ®7, ., (z,9) is a weight 2k automorphic form for I'g(V). We also know using Theo-
rem that the Shimura lift is holomorphic. It remains to check holomorphicity at all the

cusps.

For the cusp oo this is clear as we only have a constant term in Theorem [7.3.5| when k =
1,D = 1. For any other cusp s € P}(Q) = QU {c}, we know W2 oo = s for some exact
divisor m of N. Then

(bo—2k (Pp k) |2kWT],Y) (2, f) = &2k (Pp k(2 fW,J,y) .
So we can find Fourier expansions of ®7, ., (z, f) by just considering the expansion in Theorem
at oo for fyy~. So again there is a constant term only when k =1,D = 1.
In the case k = 1,D = 1 we have the same properties except the constant term of the

expansions at the cusps does not vanish so we have a modular form. O

Remarks 7.3.9. In fact, in the case when N is not square-free, we can find analogous Fourier

expansions at all the cusps, see Remarks [6.3.11] and [5.1.2] So this result can also be investi-

gated for any N. It is also well known (see for example [Niw75| [Bor98, Section 14]) that the

Shimura lift maps to cusp forms for all k£ > 2.

In the case k = 1, D = 1 we can still obtain cusp forms. This essentially happens when we
lift a cusp form that is orthogonal to the unary theta function and the weighted sum ([7.3.3)
disappears. Again the details of this can be found in [Hov12, Theorem 4.11].

We end this section with the following commutative diagram which holds for k € Z, k > 2 (or

k=1,D # 1) and summarises these results nicely.
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®
H3/o k5 - LH; 21(To(N))

§3/2—k §2_2k
Sk+1/2,p o Sor(I'o(N))

Figure 7.1: Commutative Diagram

7.4 Locally Harmonic Maass Forms as Distributions

In this final section we will think about locally harmonic Maass forms as distributions (gener-
alised functions). We are motivated to introduce this concept as the singularities in Definition

2.5.30| are of a similar nature to those found in the Heaviside step function.

We first form our definition and then look at the associated current equation. Finally we
reinterpret the link between the two lifts from this cohomological point of view. The main

reference is [BF04, Section 7]. Throughout this section we fix k € 2Z, k < 0.

We first briefly consider the classical theory of distributions, following [Gru09]. This will help
motivate the definitions that we introduce soon. The idea is to first form a space of test
functions. Letting Q be an open subset of R™ then we let D(Q2) be the space of functions on
) which are smooth with compact support. We call this the space of test functions. Then a

distribution on 2 is just a continuous linear functional on D(£2).

For example if A is a locally integrable function h : R — R we can let

1] (g) = / h(a)g(x)dz (7.4.1)

for ¢ € D(R), be its corresponding distribution. We can then define the derivative of the

distribution to be
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This is the key idea as this concept of the derivative makes sense even on singularities. We

also see that d[h] = [h'] if h is smooth. We examine an example: the Heaviside step function.

Definition 7.4.1. For x € R we let the Heaviside step function be defined as

H(x) = 0 ifz<0,

1 ifz>0.
This has a jump singularity of size 1 in the sense of Definition As a distribution we
define this as

H] (g) = / H(2)g(z)dz

where g € D(R). We also define the delta distribution. This is the linear functional

where g € D(R). This is the value of the test functions at the singularity of H(x). There is
no consistent interpretation of the delta distribution as a classical function. We see that the

delta distribution is the derivative of the Heaviside step distribution. I.e.

d[H] (g) = — / H(2)g (e)do = — / " (@) = 9(0) — go0) = 9(0) = [3] (9).

We follow these ideas in our case. From now we will let the space of test functions be
smooth functions g € A, (T'g(N)) with rapid (exponential) decay at the cusps of I'o(N). We
will denote this space as AS (I'g(N)). Mirroring ([7.4.1)) it seems natural to form our version

of the definition of a distribution as follows:

Definition 7.4.2. We let a locally harmonic Maass form h € LH, (I'o(N)) (with associated
exceptional set E) define a distribution [h] on Yo(N) where

(0] (9) = (g.h),, = / gy ey

Yo(N) Yy

for g € AL (To(N)).

To confirm this definition make sense and converges we have the following simple lemma. We
have use the (scalar-valued) Petersson scalar product from Definition [2.5.32f which we do not

need to regularise in this case.

Lemma 7.4.3. For any locally harmonic Maass form h € LH, (T'o(N)) with associated ex-
ceptional set E, then

. dzdy

converges for any g € A% (Fo(N)).
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Proof. Using Definition [2.5.30] properties 2 and 3 we know that f is locally bounded and g¢
is smooth. We consider convergence as y — oco. We have requested that g rapidly decays.
A locally harmonic Maass form only has polynomial growth at all the cusps so we have

convergence. 0

For our distributions, involving automorphic forms, it also seems natural to consider the
differential operator £, (as opposed to the derivative in the classical case). We also want to

be able to apply these concepts to Theorem

Definition 7.4.4. Let h € LH, (I'o(N)) and [h] be its associated distribution. Then we let

r [h] = — (h, fz—ﬁ(g))n
forge A5_,. (To(N)).

We can then consider £, (the derivative) of the distribution of any locally harmonic Maass
form f. Le. find the integral of h against a test function &_,(g). This generates a current
equation in the sense of [BF04l Section 7]. We consider for simplicity the specific case where

h is the singular theta lift.

Theorem 7.4.5. Let f € H3/5_1 5. Then
o2t (0,421 (9) = (€224 @01k )] (0) = V2D [ 2=V dz
Zp r(f)
where g € A5, (To(N)).

Proof. We start with the integral on the left hand side:

9_gp dxdy

§2-2k [P,k (2, f)] = —/Y(N) Pp,r k(2 f))Ek(9(2))y "

dxdy

=—/’ Y228, o (2 ) - Lan(g(2) )22 22
o(N) Yy

We then use |[Bru02, Lemma 4.2] to obtain:

S —— dxd
= / Rop 2 <y2_2kq)D,r,k(Z7f))g(z)y2k72y
Yo(N) Yy

_ / d(g(2)®p k(2 f)) dz
Yo(N)

= [(o—2k(Pp i (2, f))] —/Y(N)d(g(z)@D,r,k(Za f))dz.

So now we just have to look at the right hand term. We can decompose ®p , (2, f) into its
smooth and singular parts, both of which are of weight 2 — 2k for T'q(V), see Theorem
For the smooth part h(z) we know (see for example Lemma and [Bru02, Lemma 4.2])

that
1/2

lim d(g(2)h(z))dz = / l9(2)h(2)],—; dz.

=20 Jyy(N) —1/2
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This then simply vanishes as h only grows polynomially and g decays exponentially as ¢t — co.

We now consider the singular part of ®p , (2, f). Using Theorem it suffices to consider

f\/% Z Z ¢t (m,h)

heL’/L meZ—sgn(D)Q(h)
m<0

Mo(2) e (1 —47Q)
X/mmd o) Y W E T () | o

AEL_ap,rh

- _ \/@ Z Z ct (m,h) Z xp(A)

hEL//L mEZ—SgH(D)Q(h) )\Ero(N)\L,dD’rh
m<0

A7) e (1 —4mQ(O T ) VY
XWEFA%F:O(N)/YO(N)dG()|(7_1->\7U(2))|qz(w At (5 =G )

(7.4.2)

Lemma told us that g, .(7.A) = j(v,2) 2¢.(\). We also know that g(z) has weight 2k

and
(1)) = 7-(0) and (1A 0(1.2) = (A, v(2).

So we see the last line ([7.4.2) is equal to

) (1 A0
fot (g wr e (5 =50 ) o=
For z € H and any cycle D) we let

dist(z, D)) =min{|z —w| | w € Dy}.

For any € > 0 let
Uc(E) = {z € H| dist(z, D)) < €},

which defines an e-neighbourhood around the cycle. We then use Stokes’ theorem to obtain

/FA\Hd (st (30 )) &
LD g (1, 2109

=1
11m 9’ |D|

g
=0 Jo(r\(H\U. (V) |(A,v(2))]
=2y/m 9(2)g. (N1

' x\Dx
This is clear from the following facts. We oriented our cycles earlier. So approaching
(N, v(2))/|(A\ v(2))] with a left orientation or right orientation generates —1 or 1 i.e. 2. The
contributions from the I'g(NV)-equivalent boundary pieces cancel and also as Q(A;) — 0 the
r (%, %‘o‘”) term approaches I'(1/2) = /7. Putting all of this together gives the stated

theorem. O
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Remark 7.4.6. In general, if h € LH,, (I'o(N)), then we see that &, [h] = [£.(h)] if h is smooth.
This was as we hoped. If h it is not smooth then we picked up an additional term. This is
(roughly) the integral over the exceptional set of g multiplied by the size of the singularity.
This term corresponds to the classical delta distribution. In Theorem [7.4.5] this was given by

fZ/E),r(f) g(Z)q,z()‘)k_ldz'

Using Theorem in combination with Theorem[7.4.5|we then have the following immediate

corollary.

Corollary 7.4.7. Let f € H3j3_ 5. Then
§2-0k [PDrk(2, f)] (9) + /2| D| /Z, " 9(2)-:(N)* 1z = 2 [@F, 1 (2, €321 ()] (9)

where g € A5, (Io(IN)).

This is a better interpretation of Theorem We still see the link between the two lifts.
However thinking of the lifts as distributions also means that we see what happens at the

singularities.

We now consider the case where g € Sai, (I'o(N)). This is a smooth rapidly decaying weight
2k form so it is an element of A§, (I'o(IN)) but it is also holomorphic. In particular it vanishes

under the &5 operator so we have another easy corollary.

Corollary 7.4.8. Let f € H3jo_ 5. Then

T o] 0= 5 [ o0

where g € Say, (To(N)).

Proof. This is a simple application of Theorem where we see that if ¢ is a cusp form
then oo [Pp,r k(2 f)] (9) = (Pp,r k(2 f), E26(9))2—2k = 0. O

So this corollary tells us what happens when we integrate a cusp form against the Shimura
lift. In particular it is equal to some period integral. See for example [FM11, Section 4]

and [Shi75, Section 3].

Our final observation of this chapter is that we also have an interpretation of Corollary [7.4.§]
in terms of the Shintani lift. To show this we will first need to define the Shintani lift, we keep
the details brief. The Shintani lift as mentioned in the introduction is adjoint to the Shimura
liftt and “maps the other way”. In particular we integrate in the z variable using the same
Shintani kernel function to obtain a map from even weight cusp forms to half-integral weight

cusp forms.
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Definition 7.4.9. Let k € Z,k > 1. For g € Sa,,(To(N)) we will let

©Drk(T:9) = (9(2), O, (T, 2))2s

. L dxd
- / 9(2)0% (7, 2y W
Yo (N)

y2

be the twisted Shintani lift.

This definition makes sense as Theorem [3.6.11] told us that ©7, ., (7,2) is of weight 2k in 2.

Shintani [Shi75, Section 1.7] tells us that ©F, ., (7, 2) has polynomial growth in z. Alterna-

tively we can check this analogously to Proposition The exponential decay of the cusp

form g then ensures the (scalar-valued) Petersson scalar product converges absolutely and de-

fines a real analytic (and therefore smooth) function on H. It is clear from Theorem that

©D.rk(T,9) will have weight k +1/2 i.e. an element of Ay /2 ,. In fact [Shi75, Theorem 1]

tells us this will be a cusp form as we would hope.

We then use Corollary [7.4.8| to easily find the integral of the Shintani lift against a cusp form

(§3/2—-1(f) € Sk1/2,p)- In particular it is equal to some period integrals.

Corollary 7.4.10. Let f € H3/o_5 and g € Sap (To(N)). Then

* _ |D| k—1
(@D,r,k(ﬂg)a53/27k(f))k+1/27p =\ 2/25,7.(f)g(Z) (M) dz.
Proof. This clear from Corollary [7.4.8 after noticing
[@B ri (% 53/2—k(f))] (9)
dxdy
/ 9(2)®% (2, & e (Y —5
Yo(N) Y
. dudv o dxd
= [ ) [ (@b alr ) ayan () o
YO(N) v Y

/€f</m 96 (2 S oo a1 >>>v

k12 dudv

/ (& (79) Es o (F (7)) 0

V2

= (¢Drk(7,9), 53/2—k(f))k+1/2’p .

k172 dudv

02

We can swap the integrals as both g and £3/5_1(f) decay exponentially and ©7, ., (7,2)) only

has polynomial growth in both variables.

O



Bibliography

[AE13]

[AGOR14]

[ABST13]

[AL70]

[ABRO]

[Bor98]

[Bor99]

[Bor00]

[BJO6]

[Boy15]

Claudia Alfes and Stephan Ehlen, Twisted traces of CM values of weak Maass
forms, J. Number Theory 133 (2013), no. 6, 1827-1845. MR 3027941

Claudia Alfes, Michael Griffin, Ken Ono, and Larry Rolen, Weierstrass mock
modular forms and elliptic curves, arXiv preprint arXiv:1406.0443 (2014).

Krishnaswami Alladi, Manjul Bhargava, David Savitt, and Pham Huu Tiep
(eds.), Quadratic and higher degree forms, Developments in mathematics,

vol. 31, Springer, New York, 2013. MR 3157416

A. O. L. Atkin and J. Lehner, Hecke operators on T'o(m), Math. Ann. 185
(1970), 134-160. MR 0268123 (42 #3022)

Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory,
second ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New
York, 2001. MR 1805196 (2001j:31001)

Richard E. Borcherds, Automorphic forms with singularities on Grassmannians,

Invent. Math. 132 (1998), no. 3, 491-562. MR 1625724 (99¢:11049)

, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math.

J. 97 (1999), no. 2, 219-233. MR 1682249 (2000f:11052)

, Reflection groups of Lorentzian lattices, Duke Math. J. 104 (2000),
no. 2, 319-366. MR 1773561 (2001h:11086)

Armand Borel and Lizhen Ji, Compactifications of symmetric and locally sym-
metric spaces, Mathematics: Theory & Applications, Birkh&user Boston, Inc.,

Boston, MA, 2006. MR 2189882 (2007d:22030)

Hatice Boylan, Jacobi forms, finite quadratic modules and Weil representations

over number fields, Springer, 2015.

132



Bibliography 133

[BK14]

[BKK12]

[BKV13]

[BKZ14]

[Bru02]

[BF04]

[BFO6]

[BFI15]

[BvdGHZ08)]

[BO10]

[BO13]

[BS10]

Kathrin Bringmann and Ben Kane, Modular local polynomials, arXiv preprint

arXiv:1405.0589 (2014).

Kathrin Bringmann, Ben Kane, and Winfried Kohnen, Locally harmonic Maass

forms and the kernel of the Shintani lift, arXiv preprint arXiv:1206.1100 (2012).

Kathrin Bringmann, Ben Kane, and Maryna Viazovska, Theta lifts and local

Maass forms, Math. Res. Lett. 20 (2013), no. 2, 213-234. MR 3151643

Kathrin Bringmann, Ben Kane, and Sander Zwegers, On a completed generating
function of locally harmonic Maass forms, Compos. Math. 150 (2014), no. 5,
749-762. MR 3209794

Jan H. Bruinier, Borcherds products on O(2, 1) and Chern classes of Heegner
divisors, Lecture Notes in Mathematics, vol. 1780, Springer-Verlag, Berlin, 2002.
MR 1903920 (2003h:11052)

Jan H. Bruinier and Jens Funke, On two geometric theta lifts, Duke Math. J.
125 (2004), no. 1, 45-90. MR 2097357 (2005m:11089)

, Traces of CM values of modular functions, J. Reine Angew. Math. 594
(2006), 1-33. MR 2248151 (2007e:11050)

Jan H. Bruinier, Jens Funke, and Ozlem Imamoglu, Regularized theta liftings
and periods of modular functions, J. Reine Angew. Math. 703 (2015), 43-93.
MR 3353542

Jan H. Bruinier, Gerard van der Geer, Glinter Harder, and Don Zagier, The I-
2-3 of modular forms, Universitext, Springer-Verlag, Berlin, 2008. MR 2385372
(2009d:11002)

Jan H. Bruinier and Ken Ono, Heegner divisors, L-functions and harmonic weak
Maass forms, Ann. of Math. (2) 172 (2010), no. 3, 2135-2181. MR 2726107
(2012¢:11101)

, Algebraic formulas for the coefficients of half-integral weight harmonic

weak Maass forms, Adv. Math. 246 (2013), 198-219. MR 3091805

Jan H. Bruinier and Oliver Stein, The Weil representation and Hecke operators
for vector valued modular forms, Math. Z. 264 (2010), no. 2, 249-270. MR
2574974 (2011¢:11071)



Bibliography 134

[Bum97]

[Cip83]

[Coh03]

[CS99]

[DS05]

[DN70]

[DGO15]

[EZ85]

[EMOT54]

[EMOTS1a]

[EMOTS1b]

[Fiol3]

Daniel Bump, Automorphic forms and representations, Cambridge Studies in
Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997.
MR, 1431508 (97k:11080)

Barry A. Cipra, On the Niwa-Shintani theta-kernel lifting of modular forms,
Nagoya Math. J. 91 (1983), 49-117. MR 716787 (85¢:11032)

P. M. Cohn, Basic algebra, Springer-Verlag London, Ltd., London, 2003, Groups,
rings and fields. MR 1935285 (2003m:00001)

J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third ed.,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. MR 1662447
(2000b:11077)

Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate
Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
(2006£:11045)

Koji Doi and Hidehisa Naganuma, On the functional equation of certain Dirich-

let series, Invent. Math. 9 (1969/1970), 1-14. MR 0253990 (40 #7203)

John FR Duncan, Michael J Griffin, and Ken Ono, Proof of the umbral moon-
shine conjecture, arXiv preprint arXiv:1503.01472 (2015).

Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Math-
ematics, vol. 55, Birkhduser Boston Inc., Boston, MA, 1985. MR 781735
(86j:11043)

A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of inte-
gral transforms. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-
London, 1954. MR 0061695 (15,868a)

, Higher transcendental functions. Vol. I, Robert E. Krieger Publish-
ing Co., Inc., Melbourne, Fla., 1981, Reprint of the 1953 original. MR 698779
(84h:33001a)

, Higher transcendental functions. Vol. II, Robert E. Krieger Publish-
ing Co., Inc., Melbourne, Fla., 1981, Reprint of the 1953 original. MR 698780
(84h:33001Db)

Andrew Fiori, Special points on orthgonal symmetric spaces, Master’s thesis,

McGill University, 2013.



Bibliography 135

[Fun02]

[FM02]

[FM11]

[FM13]

[Gel93]

[Ger08]

[GouT2]

[GR15]

[Grig8]

[GKZ87]

(GZ86]

[Gru09]

[Har90]

Jens Funke, Heegner divisors and nonholomorphic modular forms, Compositio

Math. 133 (2002), no. 3, 289-321. MR 1930980 (2003k:11073)

Jens Funke and John Millson, Cycles in hyperbolic manifolds of non-compact
type and Fourier coefficients of Siegel modular forms, Manuscripta Math. 107
(2002), no. 4, 409-444. MR 1906769 (2003d:11070)

, Spectacle cycles with coefficients and modular forms of half-integral

weight, Arithmetic geometry and automorphic forms, Adv. Lect. Math. (ALM),
vol. 19, Int. Press, Somerville, MA, 2011, pp. 91-154. MR 2906907

, Boundary behaviour of special cohomology classes arising from the Weil

representation, J. Inst. Math. Jussieu 12 (2013), no. 3, 571-634. MR 3062872

Stephen Gelbart, On theta-series liftings for unitary groups, Theta functions:
from the classical to the modern, CRM Proc. Lecture Notes, vol. 1, Amer.

Math. Soc., Providence, RI, 1993, pp. 129-174. MR 1224053 (94f:22023)

Larry J. Gerstein, Basic quadratic forms, Graduate Studies in Mathematics,
vol. 90, American Mathematical Society, Providence, RI, 2008. MR 2396246
(2009e:11064)

Henry W. Gould, Combinatorial identities, Henry W. Gould, Morgantown,
W.Va., 1972. MR 0354401 (50 #6879)

1. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, eighth
ed., Elsevier/Academic Press, Amsterdam, 2015. MR 3307944

V. A. Gritsenko, Fourier-Jacobi functions in n wvariables, Zap. Nauchn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168 (1988), no. Anal. Teor. Chisel
i Teor. Funktsii. 9, 32—44, 187-188. MR 982481 (90a:11058)

B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of L-series.

II, Math. Ann. 278 (1987), no. 1-4, 497-562. MR 909238 (89i:11069)

B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math.

84 (1986), no. 2, 225-320. MR 833192 (87j:11057)

Gerd Grubb, Distributions and operators, Graduate Texts in Mathematics, vol.

252, Springer, New York, 2009. MR 2453959 (2010b:46081)

F. Reese Harvey, Spinors and calibrations, Perspectives in Mathematics, vol. 9,

Academic Press, Inc., Boston, MA, 1990. MR 1045637 (91e:53056)



Bibliography 136

[HM96]

[Hel62]

[Hov12]

[HowT79]

[Huy05]

[Jac85]

[JDO8]

[Kam07]

[Kil0g]

[Kit93]

[Kna92]

[Kob93]

[KZ81]

Jeffrey A. Harvey and Gregory Moore, Algebras, BPS states, and strings, Nu-
clear Phys. B 463 (1996), no. 2-3, 315-368. MR 1393643 (97h:81163)

Sigurdur Helgason, Differential geometry and symmetric spaces, Pure and Ap-
plied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR
0145455 (26 #2986)

Martin Hovel, Automorphe Formen mit Singularititen auf dem hyperbolischen

Raum, Ph.D. thesis, Technischen Universitat Darmstadt, 2012.

R. Howe, 0-series and invariant theory, Automorphic forms, representations
and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis,
Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc.,
Providence, R.I., 1979, pp. 275-285. MR 546602 (81f:22034)

Daniel Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin,
2005. MR 2093043 (2005h:32052)

Nathan Jacobson, Basic algebra. I, second ed., W. H. Freeman and Company,

New York, 1985. MR 780184 (86d:00001)

Alan Jeffrey and Hui-Hui Dai, Handbook of mathematical formulas and integrals,

fourth ed., Elsevier/Academic Press, Amsterdam, 2008. MR 2400410

David W. Kammler, A first course in Fourier analysis, second ed., Cambridge

University Press, Cambridge, 2007. MR 2382058 (2009g:42001)

L. J. P. Kilford, Modular forms, Imperial College Press, London, 2008, A classical
and computational introduction. MR 2441106 (2009m:11001)

Yoshiyuki Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Math-
ematics, vol. 106, Cambridge University Press, Cambridge, 1993. MR 1245266
(95¢:11044)

Anthony W. Knapp, Elliptic curves, Mathematical Notes, vol. 40, Princeton
University Press, Princeton, NJ, 1992. MR 1193029 (93j:11032)

Neal Koblitz, Introduction to elliptic curves and modular forms, second ed.,
Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993. MR
1216136 (94a:11078)

W. Kohnen and D. Zagier, Values of L-series of modular forms at the cen-
ter of the critical strip, Invent. Math. 64 (1981), no. 2, 175-198. MR 629468
(83b:10029)



Bibliography 137

[Kud96]

[KM90]

[Leal0]

[Li08]

[LV80]

[Mil05]

[MR14]

MVWS87]

[Nik80]

[Niw75]

[0'M00]

[Ono04]

Stephen S. Kudla, Notes on the local theta correspondence, http://www.math.
toronto.edu/~skudla/castle.pdf, 1996.

Stephen S. Kudla and John J. Millson, Intersection numbers of cycles on lo-
cally symmetric spaces and Fourier coefficients of holomorphic modular forms
in several complex variables, Inst. Hautes Etudes Sci. Publ. Math. (1990), no. 71,
121-172. MR 1079646 (92e:11035)

James-Michael Leahy, An introduction to Tate’s thesis, Master’s thesis, McGill
University, 2010.

Wen-Wei Li, The Weil representation and its character, Master’s thesis, Math-
ematisch Instituut Leiden, 2008.

Gérard Lion and Michele Vergne, The Weil representation, Maslov index and
theta series, Progress in Mathematics, vol. 6, Birkh&user, Boston, Mass., 1980.

MR, 573448 (81j:58075)

J. S. Milne, Introduction to Shimura varieties, Harmonic analysis, the trace
formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc.,

Providence, RI, 2005, pp. 265-378. MR 2192012 (2006m:11087)

Gradimir V Milovanovié and Michael Th Rassias, Analytic number theory, ap-

prozimation theory and special functions, AMC 10 (2014), 12.

Colette Meeglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Corre-
spondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, vol.

1291, Springer-Verlag, Berlin, 1987. MR 1041060 (91{:11040)

Vyacheslav Valentinovich Nikulin, Integral symmetric bilinear forms and some

of their applications, Mathematics of the USSR-Izvestiya 14 (1980), no. 1, 103.

Shinji Niwa, Modular forms of half integral weight and the integral of certain
theta-functions, Nagoya Math. J. 56 (1975), 147-161. MR 0364106 (51 #361)

O. Timothy O’Meara, Introduction to quadratic forms, Classics in Mathemat-
ics, Springer-Verlag, Berlin, 2000, Reprint of the 1973 edition. MR 1754311
(2000m:11032)

Ken Ono, The web of modularity: arithmetic of the coefficients of modular forms
and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, Pub-
lished for the Conference Board of the Mathematical Sciences, Washington,


http://www.math.toronto.edu/~skudla/castle.pdf
http://www.math.toronto.edu/~skudla/castle.pdf

Bibliography 138

[Por95]

[Pra93]

[Ray06]

[Rud91]

[Sad12]

[Sch85]

[Sch04]

[Ser73]

[Shi73)

[Shi75]

[Sko90a]

DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020489
(2005¢:11053)

Ian R. Porteous, Clifford algebras and the classical groups, Cambridge Studies in
Advanced Mathematics, vol. 50, Cambridge University Press, Cambridge, 1995.
MR, 1369094 (97c:15046)

Dipendra Prasad, Weil representation, Howe duality, and the theta correspon-
dence, Theta functions: from the classical to the modern, CRM Proc. Lecture
Notes, vol. 1, Amer. Math. Soc., Providence, RI, 1993, pp. 105-127. MR 1224052
(94e:11043)

Urmie Ray, Automorphic forms and Lie superalgebras, Algebras and Applica-
tions, vol. 5, Springer, Dordrecht, 2006. MR, 2286867 (2008e:17026)

Walter Rudin, Functional analysis, second ed., International Series in Pure
and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
(92k:46001)

Reza Sadoughian, Rankin L-functions and the Birch and Swinnerton-Dyer con-

jecture, Master’s thesis, Concordia University and University of Padova, 2012.

Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.

270, Springer-Verlag, Berlin, 1985. MR 770063 (86k:11022)

Nils R. Scheithauer, Generalized Kac-Moody algebras, automorphic forms and
Conway’s group. I, Adv. Math. 183 (2004), no. 2, 240-270. MR 2041900
(2004m:17036)

J.-P. Serre, A course in arithmetic, Springer-Verlag, New York, 1973, Trans-
lated from the French, Graduate Texts in Mathematics, No. 7. MR 0344216 (49
#8956)

Goro Shimura, On modular forms of half integral weight, Ann. of Math. (2) 97
(1973), 440-481. MR 0332663 (48 #10989)

Takuro Shintani, On construction of holomorphic cusp forms of half integral

weight, Nagoya Math. J. 58 (1975), 83-126. MR 0389772 (52 #10603)

Nils-Peter Skoruppa, Developments in the theory of Jacobi forms, Automorphic
functions and their applications (Khabarovsk, 1988), Acad. Sci. USSR, Inst.
Appl. Math., Khabarovsk, 1990, pp. 167-185. MR, 1096975 (92e:11043)



Bibliography 139

[Sko90b]

SZ88]

[Ste62]

[Ste84]

[Ste07]

[Str13]

[Tun83]

[V6113]

[Wal81]

[Wall3]

[Wil95]

[Wo0092]

[Zem12]

[Zwe02]

, Explicit formulas for the Fourier coefficients of Jacobi and elliptic mod-

ular forms, Invent. Math. 102 (1990), no. 3, 501-520. MR 1074485 (91j:11029)

Nils-Peter Skoruppa and Don Zagier, Jacobi forms and a certain space of mod-

ular forms, Invent. Math. 94 (1988), no. 1, 113-146. MR 958592 (89k:11029)

Robert Steinberg, Générateurs, relations et revétements de groupes algébriques,
Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Univer-
sitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 113-127. MR 0153677 (27
#3638)

Irene A. Stegun (ed.), Pocketbook of mathematical functions, Verlag Harri
Deutsch, Thun, 1984. MR 768931 (85j:00005b)

Oliver Stein, Hecke-Operatoren und vektorwertige Modulformen zur weildarstel-

lung, Ph.D. thesis, Universitdt zu Koln, 2007.

Fredrik Stromberg, Weil representations associated with finite quadratic mod-

ules, Math. Z. 275 (2013), no. 1-2, 509-527. MR 3101818

J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2,
Invent. Math. 72 (1983), no. 2, 323-334. MR 700775 (85d:11046)

Fabian Volz, Vector valued lifts of newforms, Master’s thesis, Technischen Uni-

versitat Darmstadt, 2013.

J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids
demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375-484. MR 646366
(83h:10061)

Patrick Walls, The theta correspondence and periods of automorphic forms,

Ph.D. thesis, University of Toronto, 2013.

Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math.

(2) 141 (1995), no. 3, 443 551. MR 1333035 (96d:11071)

David Wood, The computation of polylogarithms, University of Kent at Canter-
bury, Computing Laboratory, 1992.

Shaul Zemel, A p-adic approach to the weil representation of discriminant forms

arising from even lattices, arXiv preprint arXiv:1208.2570 (2012).

Sander Zwegers, Mock theta functions, Ph.D. thesis, Utrecht University, 2002.



	Abstract
	Declaration
	Acknowledgements
	Contents
	Introduction
	Motivation
	Literature Overview
	Thesis Overview

	Background
	Quadratic Forms and Lattices
	The Clifford Algebra and Spin Groups
	Spin Groups

	The Weil Representation
	The Schrödinger Model

	The Weil Representation over R
	Dual Reductive Pairs
	The Metaplectic Group over R
	The Weil Representation over `39`42`"613A``45`47`"603AMp2(R)

	Automorphic Forms
	Vector-Valued Forms
	Differential Operators
	Scalar-Valued Forms
	Atkin-Lehner Involutions

	Siegel Theta Functions
	Theta Functions
	The Grassmannian
	Siegel Theta Functions
	The Action of the Dual Pair


	The Setting
	A Lattice of Signature (2,1)
	The Twisted Weil Representation
	The Grassmannian in Signature (2,1)
	The Modular Curve
	Twisted Special Cycles
	Twisted Siegel Theta Functions
	Kernel Functions
	Transformation Properties


	The Singular Theta Lift
	Definition
	The Singularities
	The Wall Crossing Formula

	Locally Harmonic

	Partial Poisson Summation
	A Sublattice
	Vectors

	The Mixed Model
	Fourier Transforms

	Theta Functions on the Sublattice
	Properties of (, K, -n, 0)

	The Poincaré Series
	Asymptotics


	The Fourier Expansion
	The Additional Term
	Integrals
	The Fourier Expansion
	Objects
	The Proof
	The Fourier Expansion at other Cusps

	A Locally Harmonic Weak Maass Form

	The Shimura Lift
	Definition
	The Relationship
	Properties of the Shimura Lift
	Locally Harmonic Maass Forms as Distributions

	Bibliography

