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A Singular Theta Lift and the Shimura
Correspondence

Abstract

Modular forms play a central and critical role in the study of modern number theory. These

remarkable and beautiful functions have led to many spectacular results including, most fa-

mously, the proof of Fermat’s Last Theorem. In this thesis we find connections between these

enigmatic objects. In particular, we describe the construction and properties of a singular

theta lift, closely related to the well known Shimura correspondence.

We first define a (twisted) lift of harmonic weak Maass forms of weight 3/2−k, by integrating

against a well chosen kernel Siegel theta function. Using this, we obtain a new class of auto-

morphic objects in the upper-half plane of weight 2−2k for the group Γ0(N). We reveal these

objects have intriguing singularities along a collection of geodesics. These singularities divide

the upper-half plane into Weyl chambers with associated wall crossing formulas. We show our

lift is harmonic away from the singularities and so is an example of a locally harmonic Maass

form. We also find an explicit Fourier expansion.

The Shimura/Shintani lifts provided very important correspondences between half-integral

and even weight modular forms. Using a natural differential operator we link our lift to these.

This connection then allows us to derive the properties of the Shimura lift. The nature of the

singularities suggests we formulate all of these ideas as distributions and finally we consider

the current equation encompassing them.

This work provides extensions of the theta lifts considered by Borcherds (1998), Bruinier

(2002), Bruinier and Funke (2004), Hövel (2012) and Bringmann, Kane and Viazovska (2013).
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Chapter 1

Introduction

1.1 Motivation

Number theory studies the properties of the integers and is one of the most natural, fascinating

and oldest areas of mathematics. Many of the problems (unlike lots of areas of mathematics)

can be simply stated and understood. This is part of what makes this subject intrinsically

appealing to professional mathematicians and the layperson alike, as well as the obvious im-

portance of investigating some of the most fundamental objects in mathematics.

Questions in number theory have been investigated by many of the most renowned mathe-

maticians in history from Euclid to Euler. Gauss famously considered mathematics to be the

“queen of the sciences” and number theory to be the “queen of mathematics”. This subject

was for many years, considered to be entirely abstract, with Leonard Dickson commenting

“Thank God that number theory is unsullied by any application”. However in recent years

many uses have been found. These include contributions in theoretical physics, combinatorics,

chemistry and computer science. Arguably the most significant of these is in modern cryptog-

raphy, with the security of most online communications relying on ideas from number theory.

Some examples of number theoretic questions include: are there infinitely many primes? how

many integer solutions are there to certain polynomial equations? and how many ways can

we write a number as a sum of positive integers? The Riemann hypothesis and the Birch and

Swinnerton-Dyer conjecture are further examples, and they form two of the seven Millenium

Prize Problems (a list of some of the most important and difficult mathematical problems,

each with an attached $1 million prize).

The simplicity of stating problems in number theory however belies the sophistication of the

1
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mathematical objects often needed to find solutions. One of the most significant of these

tools, is modular forms. These form one of the largest areas of research in modern number

theory. These powerful and striking objects have many “symmetries”, important relationships

to elliptic curves and often beguiling Fourier coefficients.

This thesis is concerned with the properties of modular objects and the links between them.

As detailed in Section 1.3, the topics we investigate will include theta functions, theta lifts,

half-integral weight harmonic weak Maass forms and locally harmonic weak Maass forms. A

very small selection of famous headlines in these areas, include results on:

• Solutions to the “kissing number problem” in 8 and 24 dimensions [CS99].

• The Birch and Swinnerton-Dyer conjecture (in the case of rank 1) using Heegner points

and weight 3/2 modular forms [GZ86,GKZ87].

• A recently claimed proof of the umbral moonshine conjecture [DGO15].

• A resolution (conditional on parts of Birch and Swinnerton-Dyer conjecture) to the

“congruent number problem”, using the Shimura correspondence [Shi73,Tun83,Kob93].

• Representation numbers, using the classical theory of theta functions [DS05].

• An explicit finite formula for the partition function, using a theta lift between harmonic

weak Maass forms [BO13].

• And of course the proof of Fermat’s last theorem [Wil95].

1.2 Literature Overview

In this section we succinctly discuss the literature and history related to this thesis. From now

on (and throughout this work) we will assume knowledge of classical elliptic modular forms.

If not, suggested introductory texts are [Kob93, DS05, BvdGHZ08, Kil08]. Formal definitions

of many of the terms in this introduction can be found later in Chapter 2.

The theory of modular forms of half-integral weight really began with Shimura, in a famous

paper [Shi73]. He laid the foundations by constructing a family of maps from half-integral

weight cusp forms and even weight holomorphic modular forms. The significant results of

Waldspurger [Wal81] and Kohnen and Zagier [KZ81], used these ideas to show there is a

coefficient of a half-integral weight modular form that agrees with the central value of the

L-function of an even weight modular form. Tunnel [Tun83] then applied these results to the

aforementioned congruent number problem.
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The Shimura correspondence was first realised as a theta lift by Niwa [Niw75]. Theta lifts

provide important relationships between automorphic forms of different groups and often al-

low us to construct concrete examples. Shintani [Shi75] described a closely related theta lift.

This mapped forms “in the opposite direction” to the Shimura correspondence and formed an

adjoint lift. Much later Borcherds [Bor98] defined a notable singular theta lift of vector-valued

forms. This encompassed the Shimura lift, as well as many other examples, such as the Grit-

senko [Gri88] and Doi-Naganuma lifts [DN70]. Borcherds used a regularisation (Harvey and

Moore [HM96]) of the theta integral to enlarge the inputs of his lift to weakly holomorphic

modular forms. The Borcherds lift also gave rise to remarkable product expansions of some

automorphic forms.

These theta lifts can also be viewed in a more general framework. They are examples of the

theta correspondence between automorphic forms on two groups which form a dual reductive

pair. This is in the sense of Howe duality [How79]. In the case of Borcherds’s singular theta

correspondence the dual pair is the orthogonal group and the modular group.

More recently Bruinier [Bru02] extended the constructs from [Bor98] to some non-holomorphic

Poincaré series. This led to the thorough introduction of harmonic weak Maass forms by Bru-

inier and Funke [BF04]. Harmonic weak Maass forms are natural generalisations of classical

modular forms. This coincided with the work of Zwegers [Zwe02]. Zwegers showed that Ra-

manujan’s famous mock theta functions (from his famous death bed letter to Hardy) were

holomorphic parts of harmonic weak Maass forms. These developments were the catalyst for

a lot of recent exciting results and applications. In [BF04] they also introduce a new Borcherds

lift for arbitrary signature and lift harmonic weak Maass forms. They prove this lift is adjoint

to the Kudla-Millson lift [KM90].

Locally harmonic weak Maass forms were first formally defined by Bringmann, Kane and

Kohnen [BKK12]. These forms are similar to harmonic weak Maass forms but may also ex-

hibit singularities. Some examples of these objects have been constructed using theta lifts.

Hövel [Höv12] describes a twisted singular theta lift of vector-valued weight 1/2 harmonic

weak Maass forms. He effectively works in a space of signature (2, 1) and his lift generates

weight 0 locally harmonic Maass forms. He links his lift to the Shimura lift. Bringmann, Kane

and Viazovska [BKV13] also consider a very similar lift for higher weights. Specifically, they

lift some scalar-valued non-twisted Poincaré series of full level and weight 3/2−k. Here k ∈ Z

is restricted to be even and k > 0.

Our work fits into the literature in the following respects. We will form a regularised twisted
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singular theta lift working in signature (2, 1). In our case the theta correspondence is for the

dual pair: O(2, 1) and the modular group. We will use the same kernel function as [BKV13]

(see also [BKZ14]). Let k ∈ Z, k ≥ 1. We will then lift vector-valued harmonic weak Maass

forms of weight 3/2−k to recover locally harmonic Maass forms of weight 2−2k for the group

Γ0(N). In particular, we will directly extend the works in [Bor98,Bru02,BF04,Höv12,BKV13].

We relate our lift to the Shimura and Shintani lifts, via a differential operator, and obtain a

commutative diagram.

1.3 Thesis Overview

In this section we summarise the main results of this thesis. This also provides an overview

of the content and key ideas in each chapter. We will often omit technical details.

Chapter 2, Background

We introduce the basic mathematical objects we will need throughout. We fix τ = u+ iv ∈ H.

We first comprehensively discuss quadratic spaces and lattices. We denote (V,Q) for a rational

non-degenerate quadratic space of signature (b+, b−), L for a even lattice L ⊂ V , L′ for the

dual lattice and L′/L for the (abelian) discriminant group. We then compactly derive the well

known Weil representation on the metaplectic group.

In this thesis we need to deal with Siegel theta functions on L ⊂ V and various half-integral

weight forms. So we will use vector-valued forms transforming under the action of Γ̃ ⊂ Mp2(R)

(the metaplectic group) with respect to the Weil representation ρL where Mp2(R) is a double

cover of SL2(R). We let κ ∈ 1
2Z. Then we will call a function f : H→ C[L′/L] an automorphic

form Aκ,ρL if f |κ,ρL γ̃ = f for all γ̃ ∈ Γ̃.

The functions that we will lift are generalisations of modular formsMκ,ρL called harmonic weak

Maass forms (see [BF04]) which we denote as Hκ,ρL . Instead of requesting holomorphicity we

request the weaker condition that f vanishes under a Laplacian operator ∆κ. We also have a

growth condition on the cusps. We know f ∈ Hκ,ρL have Fourier expansions of the form

∑
h∈L′/L

∑
n�−∞

c+(n, h)e(nτ)eh +
∑

h∈L′/L

∑
n<0

c−(n, h)Γ(1− κ, 4π|n|v)e(nτ)eh

where Γ(·, ·) is the incomplete gamma function and eh is the standard basis element of C[L′/L]

corresponding to h ∈ L′/L. Crucially there is a differential operator ξκ = 2ivκ ∂
∂τ . This maps

surjectively to the cusp forms:

ξκ : Hκ,ρL → S2−κ,ρL .
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We also introduce (scalar-valued) locally harmonic weak Maass forms LHκ (κ ∈ 2Z). These

forms mirror Hκ but are only harmonic within connected components, away from a measure

zero exceptional set E. They have polynomial growth at the cusps. Finally we use the

Weil representation to construct some Siegel theta functions. We denote Gr(V (R)) for the

Grassmannian of V (R), which is the set of negative definite b−-dimensional subspaces in

V (R). If b+ = 2 or b− = 2 then Gr(V (R)) can be given a complex structure. We then define

for z ∈ Gr(V (R)),

ΘL(τ, z) := vb
−/2

∑
h∈L′/L

∑
λ∈L+h

e(Q(λ)u+Qz(λ)iv)eh (1.3.1)

where Qz(λ) = Q(λz⊥) −Q(λz) ≥ 0 is the majorant. There is also a more general definition

involving an additional polynomial term. We have two significant properties:

1. ΘL(τ, z) has weight b+−b−
2 in τ for Γ̃.

2. ΘL(τ, z) is invariant in z under the action of the orthogonal group O(L).

Chapter 3, The Setting

We first fix (V,Q) to have signature (2, 1). This will form the setting for the rest of our work.

We also fix N ∈ N. Then (V,Q) has an explicit realisation as

V := {λ ∈ M2(Q) | tr(λ) = 0}

with quadratic form Q(λ) := −N det(λ). We fix L as the lattice

L :=

{(
b −a/N
c −b

) ∣∣∣∣ a, b, c ∈ Z
}

which is even and of level 4N and we have L′/L ∼= Z/2NZ. This lattice is of particular interest

as each λ ∈ L′ corresponds to an integral binary quadratic form.

We notice that γ ∈ GL2(Q) acting via conjugation on λ ∈ V is isometric i.e. Q(γ.λ) = Q(λ).

This leads to the significant accidental isomorphism PSL2(Q) ∼= SO+(V ). We have that Γ0(N)

acts trivially on L′/L. The idea is to then consider Γ0(N) acting via conjugation on V and z (as

opposed to O(L) from earlier). In signature (2, 1) we can also realise Gr(V (R)) as the real hy-

perbolic space of dimension 2 which we also identify with H. We fix z = x+iy ∈ H ∼= Gr(V (R))

and notice Γ0(N) then naturally acts on z ∈ H via fractional linear transformations.

We define a genus character χD(λ), λ ∈ L′ (see [GKZ87]) where D is a fundamental discrimi-

nant. We also set r ∈ Z such that D ≡ r2 (mod 4N). We will use χD(λ) to twist the Siegel

theta functions. We show they will then transform in τ with respect to a twisted Weil repre-

sentation ρ. If D > 0 then ρ = ρL and if D < 0 then ρ = ρL.
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We fix k ∈ Z, k ≥ 1. We then define two Siegel kernel functions that will generate the

singular theta lift and the Shimura lift. These are both adapted from (1.3.1) with some well

chosen polynomial terms and by twisting. We denote ΘD,r,k(τ, z) for the kernel function and

Θ∗D,r,k(τ, z) for the Shintani kernel function. These then have the following transformation

properties in both variables (Theorems 3.6.8, 3.6.11).

1. ΘD,r,k(τ, z) has weight k − 3/2 in τ for Γ̃. It has weight 2− 2k in z for Γ0(N).

2. Θ∗D,r,k(τ, z) has weight k + 1/2 in τ for Γ̃. It has weight 2k in −z for Γ0(N).

Chapter 4, The Singular Theta Lift

We finally consider the main item of our work, the singular theta lift. We fix f ∈ H3/2−k,ρ

from now on. We lift f by pairing it against the kernel function in a regularised Petersson

scalar product as follows:

ΦD,r,k(z, f) :=

∫ reg

τ∈F

〈
f(τ),ΘD,r,k(τ, z)

〉 dudv
v2

.

We discussed in detail in Section 1.2 how this fits in with previous work and in particular this is

an extension of the Borcherds lift [Bor98]. The asymptotic behaviour of f means this integral

could diverge in general, hence we have used a regularisation. This regularisation is a slightly

weaker version of the method introduced by Harvey, Moore and Borcherds [HM96, Bor98].

There are then three main results in the chapter.

Theorem 1.3.1 (Theorems 4.1.3, 4.2.2, 4.3.7).

1. The regularised integral ΦD,r,k(z, f) converges pointwise for any z ∈ H.

2. ΦD,r,k(z, f) has weight 2 − 2k for Γ0(N) and is a smooth function on H\ZD,r(f) with

singularities along ZD,r(f).

3. For z ∈ H\ZD,r(f) then ∆2−2kΦD,r,k(z, f) = 0.

The first part tells us our definition makes sense and the integral converges everywhere. For

the second part, the weight in z is immediately clear from the definition and the transfor-

mation properties of ΘD,r,k(τ, z). The set ZD,r(f) is a finite linear combination of (twisted)

geodesic cycles associated to the principal part of f . In the upper half-plane model they can be

visualised as vertical half-lines and semi-circles perpendicular to the real line. These geodesics

divide H into connected components called Weyl chambers. The third part tells us that our

lift is locally harmonic and real-analytic within the components.

Let Dλ be the geodesic associated to a λ ∈ L,Q(λ) > 0. We then find very explicit wall

crossing formulas (Theorem 4.2.4) which tell us the nature of the singularities along ZD,r(f).

In particular, if we cross a geodesic Dλ then we have a polynomial jump, given by qz(λ)k−1 =
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(cNz2 − bz + a)k−1. The value on a singularity is the average of the values of the adjacent

Weyl chambers at that point. These singularities are of a similar nature to those found in the

Heaviside step function.

Chapter 5, Partial Poisson Summation

The main aim is to rewrite ΘD,r,k(τ, z) as a Poincaré series, (Theorem 5.4.5). This will allow

us to then find the Fourier expansion of ΘD,r,k(τ, z) in the next chapter, using the Rankin-

Selberg unfolding trick.

Using the mixed model we do this by finding a Fourier transform and then applying partial

Poisson summation to rewrite ΘD,r,k(τ, z) in terms of some theta functions Ξk(τ). This will

require a lot of technical work with some careful calculations. The rewritten form also allows

us to look at the asymptotic behaviour of ΘD,r,k(τ, z) as y →∞, (Proposition 5.4.6).

Chapter 6, The Fourier Expansion

The main aim is to find the Fourier expansion of ΦD,r,k(z, f). To do this we first solve

some tricky integrals and evaluate an “additional piece”. A very simplified version (we omit

constants and set D = 1, r = 1, k ≥ 2) of the Fourier expansion is as follows.

Theorem 1.3.2 (Theorem 6.3.10). For y > C, where C > 0 is “the maximum height” of the

semi-circle geodesics, then:

Φk(z, f) = c+(0, 0)ζ(k) +
∑
m≥1

c+
(
−m

2

4N
,
m

2N

)
Bk (mz + bmxc)

+
∑
m≥1

∑
n≥1

c−
(
−m

2

4N
,
m

2N

)
[e(nmz) + e(−nmz)Γ(2k − 1, 4πnmy)]n−k.

Here Bk(x) is the kth Bernoulli polynomial and ζ(k) is the Riemann zeta function. We can in

fact also write the bottom part in terms of polylogarithms. We then make some observations.

The vertical half-line singularities are encompassed by the first periodic Bernoulli polynomial

in this expansion. The lift is trivial (just a constant) when f is a modular form. When f is a

cusp form it vanishes.

We then use this expansion to show ΦD,r,k(z, f) = O(yk) as y →∞ (for k ≥ 2), i.e. polynomial

growth, (Proposition 6.4.1). We also show using the Atkin-Lehner involutions that we have

similar expansions at the other cusps of Γ0(N), (Theorem 6.3.12). Putting all this together

with Theorem 1.3.1 means:

Theorem 1.3.3 (Theorem 6.4.2). We have that ΦD,r,k(z, f) is a locally harmonic Maass form

for the group Γ0(N) with exceptional set ZD,r(f):

ΦD,r,k(z, f) : H3/2−k,ρ → LH2−2k(Γ0(N)).
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Chapter 7, The Shimura Lift

There is two main parts. We now fix g ∈ Sk+1/2,ρ a cusp form. In the first part we define our

version of the (twisted) Shimura lift,

Φ∗D,r,k(z, g) :=

∫ reg

τ∈F

〈
g(τ),Θ∗D,r,k(τ, z)

〉
vk+1/2 dudv

v2
.

This is a similar definition to the singular theta lift. But here instead we let our input be

cusp forms and we use the (twisted) Shintani theta function Θ∗D,r,k(τ, z) as a kernel. As g

decays exponentially it is immediately clear that the integral converges and defines a smooth

real-analytic form of weight 2k. In Section 1.2 we discussed the importance of this lift. We

then have the following key theorem which links the two lifts.

Theorem 1.3.4 (Theorem 7.2.2). For f ∈ H3/2−k,ρ and z ∈ H\ZD,r(f) then

Φ∗D,r,k(z, ξ3/2−k(f)) =
1

2
ξ2−2k,z(ΦD,r,k(z, f)).

This link allows us to give new proofs of many of the properties of the Shimura lift. These prop-

erties are already well known. Firstly we can find the Fourier expansion by applying ξ2−2k to

Theorem 1.3.2. The operator ξ2−2k clearly kills holomorphic terms so only the e(−nmz)Γ(2k−
1, 4πnmy) terms will survive. In particular, let g(τ) =

∑
h∈L′/L

∑
n>0 a(n, h)e(nτ)eh and as-

sume D = 1, r = 1, k ≥ 2. Then (omitting constants) the Fourier expansion of the Shimura

lift is as follows:

Theorem 1.3.5 (Theorem 7.3.5). We have that

Φ∗k (z, g) =
∑
m≥1

∑
d≥1
d|m

dk−1a

(
m2

4Nd2
,
m

2Nd

)
e (mz) .

The link in Theorem 1.3.4 only held for z ∈ H\ZD,r(f). However ξ2−2k kills the holomorphic

polynomial singularities so we are able to smoothly continue the Fourier expansion in Theorem

1.3.5 to hold for all z ∈ H. This expansion is clearly holomorphic. We can also use the Atkin-

Lehner involutions to find the expansion at other cusps. Using these facts we then show that

the Shimura lift maps cusp forms to cusp forms (normally).

Theorem 1.3.6 (Theorem 7.3.8). If k = 1, D 6= 1 or k ≥ 2 then:

Φ∗D,r,k : Sk+1/2,ρ → S2k(Γ0(N)).

If k = 1, D = 1 then Φ∗D,r,k : Sk+1/2,ρ →M2k(Γ0(N)) .

The results of this part can be summarised with the following commutative diagram:
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H3/2−k,ρ
Φk //

ξ3/2−k

��

LH2−2k(Γ0(N))

ξ2−2k

��
Sk+1/2,ρ

Φ∗k

// S2k(Γ0(N))

Figure 1.1: Commutative Diagram

Distributions

The second and final part in Chapter 7 is to consider these ideas as distributions. We are moti-

vated to introduce this concept because of the nature of the singularities. We follow the ideas

in the classical theory. In particular we fix a space of test functions g(z) ∈ Acκ(Γ0(N) which

are smooth and rapidly decay. We fix h(z) ∈ LHκ(Γ0(N)). Then we define the distribution

associated to h(z) as

[h] (g) := (g, h)κ =

∫
Γ0(N)\H

g(z)h(z)yκ
dxdy

y2

and define a “distributional derivative” as ξκ[h](g) := −(h, ξ2−κ(g))κ for g ∈ Ac2−κ(Γ0(N).

This concept of the derivative makes sense even on the singularities. We then consider what

happens when we apply these ideas to the singular theta lift.

Theorem 1.3.7 (Theorem 7.4.5, The Current Equation). We have that

ξ2−2k [ΦD,r,k(z, f)] (g) = [ξ2−2k(ΦD,r,k(z, f))] (g)−
∫
Z
′
D,r(f)

g(z)qz(λ)k−1dz.

So the distributional derivative of a locally harmonic Maass form matches the classical deriva-

tive but also sees the singularities. We obtain as an immediate corollary (Corollary 7.4.7)

that

ξ2−2k [ΦD,r,k(z, f)] (g) = 2
[
Φ∗D,r,k(z, ξ3/2−k(f))

]
(g)−

∫
Z
′
D,r(f)

g(z)qz(λ)k−1dz. (1.3.2)

This is an improved version of Theorem 1.3.4. We have one more useful corollary. We let

g ∈ S2k(Γ0(N)) i.e the test functions are holomorphic as well. Then g vanish under the ξ2k

operator. So the left hand side of (1.3.2) vanishes. This then tells us the integral of a cusp

form against the Shimura lift is equal to some period integral (Corollary 7.4.8). We also

formulate this in terms of the Shintani lift.



Chapter 2

Background

In this chapter we discuss the basic ideas and notation we will use in this thesis. This is

preliminary material most of which has been described before. We will be working in a ratio-

nal vector space equipped with a quadratic form of signature (b+, b−) (in Chapter 3 onwards

this will be fixed to be (2, 1)), so Section 2.1 discusses these. We will need various spaces

of automorphic forms which are discussed in Section 2.5. These have certain transformation

properties with respect to the Weil representation (on the metaplectic group) associated to

our lattice. This representation is derived in the Section 2.3. We make this representation

explicit in the case of the dual reductive pair (O(V (R)),SL2(R)) in Section 2.4. In Section

2.6 we define Siegel theta functions, which we integrate against later. These are defined over

two variables and naturally have (O(V (R)),Mp2(R)) acting on them. In fact we consider the

action of a subgroup of GSpin(V ). This group is defined in Section 2.2 where we also classify

the Clifford algebras of Rb+,b− .

In this chapter, to help completeness, I have attempted to comprehensively define all concepts

but at the same time doing this as succinctly and compactly as possible. Most results used

(which are often fairly well know and easy) will not be proven explicitly to save space and

instead we normally give a reference for verification for the curious reader.

2.1 Quadratic Forms and Lattices

We start by recalling some very basic definitions and concepts about quadratic forms and

lattices. These will form the environment in which we will be working throughout the thesis.

The material here is condensed and amalgamated from [O’M00, Chapter 4], [Ser73, Chapter 4],

[BvdGHZ08, Chapter 2], [Ger08], [Kit93] and [Sch85].

10
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Quadratic Forms

Following the treatment in [Ger08, Chapter 2], we set R to be an integral domain, R∗ the group

of invertible elements (the units) in R, F its field of fractions, F ∗ = F − {0} a multiplicative

group and finally M a finite free R-module.

Definition 2.1.1. A bilinear form on M , is a mapping (·, ·) : M ×M → F that is R-linear

in both variables. We call a bilinear form symmetric if (x, y) = (y, x) for all x, y ∈ M and

alternating if (x, x) = 0 for all x ∈M . Two elements x, y ∈M are orthogonal if (x, y) = 0

(we sometimes denote this as x ⊥ y). For a subset A ⊂M we denote A⊥ for the orthogonal

complement where

A⊥ := {x ∈M | x ⊥ y for all y ∈ A} .

Finally a bilinear form is non-degenerate if M⊥ = {0} and is called symplectic if it is both

alternating and non-degenerate.

Definition 2.1.2. A quadratic form on M , is a mapping Q : M → F such that

1. Q(rx) = r2Q(x) for all r ∈ R, x ∈M .

2. (x, y) := Q(x+ y)−Q(x)−Q(y) is a bilinear form.

We note this associated bilinear form (·, ·) is symmetric. From now on we will assume R is not

of characteristic 2. Then we can put Q(x) = 1
2(x, x) and we have a bijective correspondence

between symmetric bilinear forms and quadratic forms. We call the pair (M,Q) a quadratic

R-module over R. If R is a field, i.e. R = F and so M is a vector space over F , then we call

the pair (M,Q) a quadratic R-space. If R is not a field but is a principal ideal domain then

we call the pair (M,Q) a quadratic R-lattice. From now on we set (M,Q) as a R-quadratic

module. There are two simple examples that we will also need later.

Example 2.1.3. Let b+, b− ∈ Z be non-negative. We denote by Rb+,b− a quadratic R-space

with M = Rb++b− which for elements x = (x1, x2, . . . , xb++b−) ∈ Rb++b− has an attached

quadratic form

Q(x) := x2
1 + · · ·+ x2

b+ − x2
b++1 · · · − x2

b++b− .

Example 2.1.4. For a, b, c ∈ R, x, y ∈M we define a binary quadratic form [a, b, c] to be

a quadratic R-space in two variables where

Q(x, y) := [a, b, c](x, y) = ax2 + bxy + cy2.

If a, b, c ∈ Z we call this an integral binary quadratic form.

Remark 2.1.5. We will refrain from using the common notation x2 to denote (x, x) as x is a

vector and so “squaring x” is confusing.
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Definition 2.1.6. For a quadratic R-module a non-zero element x ∈M is called isotropic if

Q(x) = 0, otherwise x is called anisotropic i.e. Q(x) 6= 0. A quadratic R-module is isotropic

if it contains an isotropic element, otherwise it is called anisotropic. A quadratic R-module is

totally isotropic if M 6= 0 and every element of M is isotropic.

Definition 2.1.7. For a basis {bi}ni=1 of M there is a symmetric matrix T = (bij) ∈Mn(F )

with bij = (bi, bj), which we call the Gram matrix with respect to that basis. We let the

discriminant of M be the class of det(T ) in F ∗/(R∗)2 ∪ {0}.

Setting v, w as the column vector of coordinates of x, y ∈M respectively in the basis {bi}ni=1,

then Q(x) = 1
2v
TTv and also (x, y) = vTTw. Every quadratic R-space (M,Q) has an or-

thogonal basis (see for example [O’M00, Theorem 42.1], [Ser73, Theorem 4.1]) in which case

the associated Gram matrix is diagonal, and so a quadratic R-space is non-degenerate if and

only if det(T ) 6= 0.

Definition 2.1.8. Let (M ′, Q′) be another quadratic R-module. An isometry is an injective

R-linear map σ : M → M ′ such that Q′(σ(x)) = Q(x) for all x ∈ M . If σ is also surjective

then M and M ′ are called isometric.

Definition 2.1.9. The orthogonal group and special orthogonal group of M are

O(M) := {σ : M →M | σ is an isometry} ,

SO(M) := {σ ∈ O(M) | det(σ) = 1} .

When discussing the Grassmannian space later (Definition 2.6.2) we will make use of the

following result (often called “Witt’s extension theorem”).

Theorem 2.1.10 (Witt, [Ser73, Theorem 4.1.3]). Let (M,Q), (M ′, Q′) be isometric non-

degenerate quadratic R-modules. Then, for any subspace U ⊂ M ′, any injective isometry

σ : U →M extends to an isometry σ : M →M ′.

Proposition 2.1.11 ([Ger08, Theorem 2.40], [Ser73, Section 4.2.3]). For a non-degenerate

real quadratic R-space (V,Q), there exists unique non-negative b+, b− ∈ Z such that (V,Q) is

isometric to Rb+,b− (see Example 2.1.3).

Definition 2.1.12. Non-degenerate quadratic R-spaces (V,Q) are characterised by (b+, b−)

and we call this the signature of (V,Q). If b− = 0 then we call (V,Q) positive definite. If

b+ = 0 then we call (V,Q) negative definite. If b+, b− are both non-zero then we call (V,Q)

indefinite.

In the case that (V,Q) is a non-degenerate quadratic R-space with signature (b+, b−) then

O(V ) and SO(V ) will often be denoted as O(b+, b−) and SO(b+, b−).
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Lattices

We now look at some properties of lattices. From now on let R ( F be a principle ideal

domain and let V be an F -space.

Definition 2.1.13. We call L an R-lattice if L ⊂ V is an R-submodule, i.e. L = 0 or there

exists a linear independent subset {bi}mi=1 of V such that L = Rb1 + · · ·+Rbm. The rank of

L is the dimension of the finite free R-module L i.e. m. A lattice is of maximal rank if the

rank of L is the same as the dimension of V . We call an element x ∈ L primitive if x 6= 0

and x can be included in a basis of L.

Now attaching a quadratic form Q to V we have a quadratic F -space (V,Q) and a quadratic

R-lattice (L,Q).

Definition 2.1.14. We say (L,Q) is unimodular if its Gram matrix is unimodular. We

define the scale of (L,Q), sL, as the fractional R-ideal (an R-submodule of F ) generated by

the set {(x, y) | x, y ∈ L}. We say (L,Q) is called integral if sL ⊆ R.

Definition 2.1.15. The dual lattice of (L,Q) is

L′ := {x ∈ V | (x, y) ⊆ R for all y ∈ L} .

We can check that this is in fact an R-lattice. For a basis {bi}mi=1 of L we have a dual

basis
{
b
′

i

}m
i=1

such that (bi, b
′

j) = δij . Then L′ is the lattice generated by
{
b
′

i

}m
i=1

. We

observe L is integral if and only if L ⊆ L′ and also that L is unimodular if and only if

L = L′, [Kit93, Proposition 5.2.1], [Ger08, Proposition 6.25]. We also have (L′)′ = L. From

now on we restrict ourselves to the rational case we need later and so let (V,Q) be a non-

degenerate quadratic Q-space.

Definition 2.1.16. Let (V,Q) be a non-degenerate quadratic Q-space. In this work we will

call L a lattice, if L is a Z-lattice with L ⊂ V .

We denote by L− for the Z-lattice with the quadratic form −Q. The discriminant of a lattice

is equal to det(T ) as (R∗)2 = 1. A lattice is then integral if (x, y) ∈ Z for all x, y ∈ L. A

lattice is unimodular if the discriminant of L is 1 or −1. An element x ∈ L, x 6= 0 is primitive

if Qx∩L = Zx. We say L is even if (x, x) ∈ 2Z for all x ∈ L, otherwise it is called odd. The

dual lattice in this case is

L′ := {x ∈ V | (x, y) ∈ Z for all y ∈ L}

and we call the following the level of L:

min {n ∈ N | nQ(x) ∈ Z for all x ∈ L′} .
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We will say that the signature of a quadratic Q-space (V,Q) is the signature of the associated

real quadratic space V (R) := V ⊗Q R that is equipped with the quadratic form Q(x ⊗ r) :=

r2Q(x) for x ∈ V, r ∈ R. We will say that the signature of a lattice L ⊂ V is the signature of

V .

Lemma 2.1.17 ([Str13, Section 2], [CS99, Section 15.7]). For a lattice L, if b+ + b− is odd

then the level is divisible by 4.

Definition 2.1.18. The discriminant group of an integral lattice L is the quotient L′/L.

Lemma 2.1.19 ([Sch85, Lemma 3.3]). The discriminant group is a finite abelian group of

order |r|, where r is the discriminant of L.

Lemma 2.1.20. Let L be an even lattice. Then L′/L can be equipped with a well-defined map

Q, where

Q : L′/L→ Q/Z, x+ L 7→ Q(x+ L) := Q(x) (mod 1).

We call L′/L, with associated quadratic form Q, the discriminant form of L.

2.2 The Clifford Algebra and Spin Groups

We now briefly discuss the Clifford algebra, the general spin group and the spin group associ-

ated to a quadratic R-module. We can form surjective homomorphisms from these groups to

SO(M) and SO+(M). We will use these ideas later when we investigate the action of these

groups on Siegel theta functions (2.6.12). To define these groups we need to look at the Clifford

algebra which is somehow the “freest” algebra containing (M,Q) that is compatible with the

quadratic form. Most of the results here are taken from [Sch85, Chapter 9], [BvdGHZ08, Chap-

ter 2], [Kit93, Chapter 1], [Por95, Chapter 15], [Har90] and [O’M00, Chapter 5].

Clifford Algebras

Let (M,Q) be a quadratic R-module, (R is not of characteristic 2 and contains unity 1).

Definition 2.2.1. The tensor algebra T (M), a Z-graded R-algebra, is defined as the Z-

graded R-module

T (M) :=
∞⊕
n=0

M⊗n = R⊕M ⊕ (M ⊗RM)⊕ . . .

with a product of two elements on T (M), x = x1 ⊗ · · · ⊗ xm ∈ ⊗mM and y = y1 ⊗ · · · ⊗ yn ∈
⊗nM , (xi, yj ∈M) given by x⊗ y := x1 ⊗ · · · ⊗ xm ⊗ y1 ⊗ · · · ⊗ yn ∈ ⊗m+nM.

To form an algebra compatible with the quadratic form we take a quotient of this.
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Definition 2.2.2. Let I(M) ⊂ T (M) be the two sided ideal generated by the set

{x⊗ x−Q(x) | x ∈M}. Then the Clifford algebra C(M) is defined as

C(M) := T (M)/I(M).

We note the Clifford algebra could also be defined by a universal property, see [O’M00, Sec-

tion 54]. We will denote x1 ⊗ · · · ⊗ xm ∈ C(M) as x1 · · ·xm. We have that R and M are

embedded in C(M), and for x, y ∈M , x2 = Q(x) and xy + yx = (x, y) by construction.

Lemma 2.2.3 ([Kit93, Corollary 1.4.1]). If (M,Q), (M ′, Q) are isometric quadratic R-modules

then C(M) and C(M ′) are isomorphic.

Lemma 2.2.4 ([Sch85, Corollary 2.7], [Kit93, Theorem 1.4.1]). Let {bi}ni=1 be an orthogonal

basis of M . Then {bε11 · · · bεnn | ei = 0, 1} is a basis of C(M) and so C(M) is free R-module of

rank 2n.

We now look at automorphisms on C(M). The tensor algebra T (M) has an anti-automorphism

which descends to an anti-automorphism on C(M) denoted by the transpose t : C(M) →
C(M) where

(x1 ⊗ x2 ⊗ . . . xn)t := (xn ⊗ xn−1 ⊗ . . . x1).

We also have another automorphism. Let x ∈M . The map x 7→ −x induces an automorphism

of C(M) which we denote as J : C(M)→ C(M).

Definition 2.2.5. The Clifford norm is a map N : C(M)→ C(M) defined by

N(x) := xtx.

As the transpose reduces to the identity map on R or M , we have Q(x) = N(x) for x ∈ M .

Therefore this norm extends the quadratic form. Using J : C(M) → C(M), we have the

following decomposition of C(M).

Definition 2.2.6. We define the even and odd Clifford algebras, by C0(M) and C1(M),

C0(M) := {x ∈ C(M) | J(x) = x} ,

C1(M) := {x ∈ C(M) | J(x) = −x} .

Then C(M) = C0(M)⊕C1(M). We have that C0(M) and C1(M) areR-subalgebras, generated

by an even number and odd number of basis vectors bi respectively. We know that non-

degenerate R-quadratic spaces (V,Q) are isometric to Rb+,b− (Example 2.1.3). We denote the

Clifford algebra of Rb+,b− by Cb
+,b− . We denote n× n matrices with entries in R as Mn(R).

Theorem 2.2.7 ([Har90, Theorem 11.3], [Por95, Chapter 15]). Let b+ + b− = n. There is a

complete classification of Cb
+,b− . In particular Cb

+,b− are isomorphic to the following matrix

algebras:
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b+ − b− (mod 8) Cb
+,b−

0,6 M2n/2(R)

2,4 M2(n−2)/2(H)

1,5 M2(n−1)/2(C)

3 M2(n−3)/2(H)⊕M2(n−3)/2(H)

7 M2(n−1)/2(R)⊕M2(n−1)/2(R)

Lemma 2.2.8 ([Har90, Theorem 9.38], [Por95, Corollary 15.35]). We have that

Cb
+,b−+1

0
∼= Cb

+,b− and Cb
++1,b−

0
∼= Cb

−,b+ .

Example 2.2.9. We have that C0,1 ∼= C, C1,1 ∼= M2(R). In the case of signature (2, 1),

(which we will use later) then C2,1 ∼= M2(R⊕ R) and C2,1
0
∼= M2(R).

2.2.1 Spin Groups

Definition 2.2.10. The general spin group GSpin(M) and the Spin group Spin(M), are

contained within the Clifford group, CG(M). We define these as

CG(M) :=
{
x ∈ C(M) | x invertible and xMJ(x)−1 = M

}
,

GSpin(M) := CG(M) ∩ C0(M),

Spin(M) := {x ∈ GSpin(M) | N(x) = 1} .

For the final results, which we take from [BvdGHZ08, Section 2.3], we will let R = F be a field.

For each element x ∈ CG(M), we can use our definition of CG(M) to define an automorphism

gx ∈ GL(M) of M , where

gx(m) := xmJ(x)−1.

for m ∈M . In fact this automorphism gx is an isometry. So we have a homomorphism

g : CG(M)→ O(M), (2.2.1)

defined by x 7→ gx and usefully, this is surjective. For GSpin(M) this homomorphism is

surjective onto SO(M). We also note for later that, for elements of x ∈ GSpin(M), J(x) = x.

So the automorphism generated is just defined by conjugation i.e. gx(m) = xm(x)−1 for

m ∈M . We have the well known exact sequence

1 −→ {−1, 1} −→ Spin(M)
g−→ SO(M) −→ R∗/(R∗)2. (2.2.2)

Definition 2.2.11. The image of Spin(M) under g in O(M) is denoted as SO+(M).

We recall that, in the case O(M) ∼= O(b+, b−), O(M) has four connected components as a Lie

Group. We will call SO+(M) the connected component of the identity of O(M). The

following result is useful in our case later.
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Lemma 2.2.12 ([BvdGHZ08, Lemma 2.14]). When dim(M) ≤ 4

GSpin(M) :=
{
x ∈ C(M)0 | N(x) ∈ R∗

}
and Spin(M) :=

{
x ∈ C(M)0 | N(x) = 1

}
.

2.3 The Weil Representation

Shortly we will construct various types of half-integral weight vector-valued automorphic

forms. When defining these forms we want to use a double cover of SL2(R), the metaplectic

group Mp2(R). Vector-valued forms are defined using an associated representation and there

is a well known and natural representation of the metaplectic group called the Weil represen-

tation. There is a particularity nice explicit description of the Weil representation called the

Schrödinger model. We will also use this to construct our Siegel theta functions. In this section

we describe these concepts. The results here are based on [Pra93,Kud96,LV80,Gel93,Li08].

Let F be a local field not of characteristic 2, S be a complex vector space and W be a finite

dimensional vector space over F equipped with a symplectic bilinear form 〈, 〉.

Remark 2.3.1. We can also let F be a finite field or a global field and form analogous con-

structions. However we will only need the local case, in particular in Section 2.4 we consider

the case when F = R.

Definition 2.3.2. We call the pair (W, 〈, 〉) a symplectic F -vector space. We call a sub-

space of W Lagrangian if it is a maximal totally isotropic subspace of W . We let the sym-

pletic group Sp(W ) be the group of F -linear automorphisms that preserve the symplectic

form i.e. for x, y ∈W

Sp(W ) := {g ∈ GL(W ) | 〈gx, gy〉 = 〈x, y〉} .

We note that, by necessity, W has even dimension, 2n. The Weil representation we are looking

for is a projective representation of Sp(W ).

Lemma 2.3.3 ([LV80, Lemma 1.1.4]). Let W1 be a Lagrangian subspace of W . There exists

another Lagrangian subspace W2, such that we have a decomposition W = W1 ⊕W2. Such a

decomposition is a complete polarisation of W .

There is a basis {ei}ni=1 , {fi}
n
i=1 of (W, 〈, 〉) such that ei ∈ W1, fi ∈ W2 and 〈ei, fj〉 = δij

(where δi,j is the Kronecker delta) called the symplectic basis. Using this we can represent

Sp(W ) as the well known matrix group

Sp2n(F ) :=
{
M ∈ GL2n(F ) |M t

(
0 In
−In 0

)
M =

(
0 In
−In 0

)}
.
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Lemma 2.3.4 ([Ste62]). We have that Sp2n(F ) is generated byA 0

0 (At)−1

 ,

In B

0 In

 and

 0 In

−In 0

 (2.3.1)

where A and B range through invertible matrices and symmetric matrices respectively.

Definition 2.3.5. The Heisenberg group H(W ) := W ⊕ F , associated to (W, 〈, 〉), is the

set of all pairs {(w, r) | w ∈W, r ∈ F} where, for two elements (w1, r1), (w2, r2) ∈ H(W ), the

group operation is given by

(w1, r1) · (w2, r2) :=

(
w1 + w2, r1 + r2 +

〈w1, w2〉
2

)
.

The centre of H(W ) is {0} × F ∼= F . Let ψ be a non-trivial unitary additive character

ψ : F → C∗, where C∗ := {z ∈ C | |z| = 1}. This is a character on the centre of H(W ). For

any irreducible representation (ρ, S), ρ : H(W ) → GL(S), we call (ρ|{0}×R, S) the central

character of ρ. We now observe that these characters in fact classify the irreducible repre-

sentations of H(W ). We will say a representation of H(W ) over S is smooth if every vector

in the representation space is fixed by a compact open subgroup of H(W ).

Theorem 2.3.6 (Stone-von Neumann, [MVW87, Section 2.1]). There exists a smooth irre-

ducible representation (ρψ, S) of H(W ) with central character ψ i.e. ρψ((0, r)) = ψ(r) · IdS
for all r ∈ F . This representation is unique up to isomorphism.

We notice g ∈ Sp(W ) acts naturally on h = (w, r) ∈ H(W ) by g · (w, r) := (gw, r) = gh

and is trivial on the centre of H(W ). We then let (ρgψ(h), S) := (ρψ(gh), S). This is also a

smooth irreducible representation with central character ψ and so by the Stone-von Neumann

theorem it is isomorphic to (ρψ, S). Therefore we have an operator Mψ(g) ∈ GL(S) such that

ρψ(gh) = Mψ(g)ρψ(h)Mψ(g)−1. (2.3.2)

Then, using Schur’s Lemma, we know this is uniquely determined up to a non-zero scalar in

C∗. Letting [Mψ(g)] denote the class of Mψ(g) up to scalars we have:

Definition 2.3.7. The Weil representation of the symplectic group Sp(W ) is the pro-

jective representation ρψ : Sp(W )→ GL(S)/C∗ defined by the map ρψ : g 7→ [Mψ(g)]. The set

of pairs (g,Mψ(g)) ∈ Sp(W )×GL(S) such that (2.3.2) holds, defines a group, which we denote

as Mpψ(W ). We let the Weil representation of Mpψ(W ) be the ordinary representation

(ρ̃ψ, S), defined by the projection map ρ̃ψ : (g,Mψ(g)) 7→Mψ(g).

Proposition 2.3.8 ([Pra93, Theorem 2.1], [Gel93, Section 1.7], [Kud96, Section 1.4]). There

exists a unique subgroup of Mpψ(W ), which we denote as Mp(W ), that is a central extension

of Sp(W ) and isomorphic to the two fold cover of Sp(W ). This group is independent of the

central character ψ. It can also be defined as Mp(W ) := Sp(W ) × C∗, and then Mpψ(W ) =

Mp(W )×Z/2 C∗.
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Definition 2.3.9. We call Mp(W ) the metaplectic group and we call the restriction of

(ρ̃ψ, S) to Mp(W ) the Weil representation of the metaplectic group.

2.3.1 The Schrödinger Model

A nice and commonly used realisation of these representations is the Schrödinger model, which

we now describe. This will allow to obtain some explicit formulas (Proposition 2.3.14). This

model is realised on the space of Bruhat-Schwartz functions.

Definition 2.3.10. If W is Archimedean, a smooth function f : W → C is called a Schwartz

function if

sup
x∈W

|xα∂βf(x)| <∞

for all multi-indices α, β. We will call a function f : W → C a Schwartz-Bruhat function,

if it is a Schwartz function in the case F is Archimedean and is a locally constant and compactly

supported function in the case F is non-Archimedean. We denote the space of these as S(W ).

So the Schwartz functions are smooth functions all of whose derivatives decay faster, as |x| →
∞, than any inverse power of x. We have the important property that the Fourier transform on

S(W ) is in fact an isomorphism, see for example [Lea10, Section 4.4]. Now let W = W1⊕W2

be a complete polarisation.

Definition 2.3.11. The Schrödinger representation (ρSch
ψ ,S(W1)) is a representation of

S(W1) described for f ∈ S(W1), x ∈W1, w1 ∈W1, w2 ∈W2, r ∈ F by

ρSch
ψ (w1 + w2, r)f(x) := ψ

(
r +
〈w1, w2〉

2
+ 〈x,w2〉

)
f(x+ w1).

Lemma 2.3.12 ([MVW87, Chapter 2], [Kud96, Chapter 1]). The Schrödinger representation

is a smooth irreducible representation of H(W ) with central character ψ.

Using the Schrödinger representation we can now obtain the Schrödinger model.

Definition 2.3.13. The Schrödinger model is an explicit description of the Weil represen-

tations on Sp(W ),Mpψ(W ) and Mp(W ). It is defined by the operator MSch
ψ (g) ∈ GL(S(W1))

where

ρSch
ψ (gh) = MSch

ψ (g)ρSch
ψ (h)MSch

ψ (g)−1.

This was as we had in (2.3.2). The Schrödinger model can be written as follows.
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Proposition 2.3.14 ([Wal13, Section 2.1.4], [Pra93, Section 2], [Kud96, Chapter 1]). Let

f ∈ S(W1). Then up to a scalar

MSch
ψ

A 0

0 (At)−1

 f(x) := |det(A)|1/2f(Atx),

MSch
ψ

In B

0 In

 f(x) := ψ

(〈Bx, x〉
2

)
f(x),

MSch
ψ

 0 In

−In 0

 f(x) :=

∫
W1

f(y)ψ (〈x, y〉) dy,

where dy is the Haar measure such that this Fourier transform is self dual. With choice of

scalar as above, MSch
ψ generates unitary Weil representations on S(V ).

2.4 The Weil Representation over R

We show later that the theta functions we use can be defined naturally from the Weil represen-

tation on a certain pair of subgroups of Sp(W ) called a dual reductive pair, which gives rise to

a local theta correspondence between automorphic forms on these groups. The automorphic

forms we use later transform under this representation. We will consider and define these

ideas in the case of the dual reductive pair (O(V (R)), SL2(R)) which we make explicit here.

Some references are [BF04, Section 2], [Bor98], [Bru02, Section 1.1] and [Shi75].

2.4.1 Dual Reductive Pairs

Definition 2.4.1. A dual reductive pair is a pair of reductive subgroups G,G′ ⊂ Sp(W )

such that G is the centraliser of G′ in Sp(W ) and G′ is the centraliser of G in Sp(W ).

We consider the groups G̃ and G̃′ which are the inverse images of G and G′ respectively in

Mp(W ).

Lemma 2.4.2 ([MVW87, Lemma 2.5]). The centraliser of G̃ in Mp(W ) is G̃′, the centraliser

of G̃′ in Mp(W ) is G̃ and there is homomorphism

j : G̃× G̃′ → Mp(W ).

Consider the pullback of the Weil representation of the metaplectic group to G̃×G̃′. The Howe

duality principle then roughly says that, this pullback decomposes into two irreducible repre-

sentations π and π̃ of G̃ and G̃′ respectively and then π̃ is determined by π. This bijection is the

so-called (local) theta correspondence. This can often be realised as map between automorphic

forms explicitly using theta lifts. There is a large amount of material that could be discussed

here which we do not have space to detail and refer the reader to [Kud96,Pra93,Wal13,Gel93].
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Instead we focus on using these results in the specific case we need.

We let (V,Q) be a rational non-degenerate quadratic vector space, V (R) = V ⊗Q R with

signature (b+, b−) and let (W, 〈, 〉) be a real non-degenerate symplectic space of dimension 2n.

We let W := V ⊗R W . We form a symplectic space by equipping W with the quadratic form

〈〈v1 ⊗ w1, v2 ⊗ w2〉〉 :=
1

2
(v1, v2) 〈w1, w2〉

for v1 ⊗ w1, v2 ⊗ w2 ∈ W. We define the natural right action for g ∈ O(V ) on v ⊗ w ∈ W as

(v ⊗ w).g := g−1v ⊗ w. We define the natural right action for g′ ∈ Sp(W ) on v ⊗ w ∈ W as

(v ⊗ w).g := v ⊗ wg. Then O(V (R)) and Sp(W ) form a dual reductive pair in Sp(W). There

is a standard polarization where W = V (R)n ⊕ V (R)n and this allows us to form, as before,

a Schrödinger representation and Schrödinger model of Mp(W) acting on S(V (R)n). We can

then restrict this to the dual pair (O(V (R)), Sp(W )) and obtain formulas for their action on

S(V (R)n) (see for example [Kud96, Section 2.4], [Wal13, Section 2.2.1]). We will shortly make

this explicit in our case (n = 1) in equations (2.4.5). The singular theta lift in [Bor98] then

realises the (singular) theta correspondence for (O(V (R)),Sp(W )) when n = 1.

2.4.2 The Metaplectic Group over R

From now on we let W be of dimension 2. In general we would like to think of fractional weight

modular forms in terms of central extensions of SL2(Z). In our case, for half-integral forms,

this extension can just be a double cover. We have the well known and helpful isomorphism

that Sp2(R) ∼= SL2(R) (see for example [Jac85, Section 6.9]). So it suffices to consider the

unique double cover of Sp2(R) i.e. the metaplectic group Mp(W ) discussed in the previous

section. First we list a few basic definitions that we will need throughout this work.

Definition 2.4.3. Let H be the complex upper half plane, H := {τ ∈ C | Im(τ) > 0}.
For ω ∈ C we denote

√
ω as the principal root so that arg(

√
ω) ∈ (−π/2, π/2] and denote

e(ω) := e2πiω. We denote the special linear group as SL2(R) which consists of all real 2× 2

matrices with determinant 1. We let τ = u+ iv ∈ H and elements g =
(
a b
c d

)
∈ SL2(R) act on

H via linear fractional transformations, gτ := aτ+b
cτ+d . Set j(g, τ) = cτ + d. We define the

matrix gτ ∈ SL2(R) as

gτ :=

1 u

0 1

√v 0

0 1/
√
v

 =

√u u/
√
v

0 1/
√
v

 .

We remember that j(gg′, τ) = j(g, g′τ)j(g′τ) for g, g′ ∈ SL2(R) (see [DS05, Lemma 1.2.2]).

We also see that gτ is a matrix of determinant 1 and gτ i = τ . Later we will make use of the

following subgroups.
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Definition 2.4.4. Let N ∈ Z, N > 0. We define the modular group to be Γ := SL2(Z). We

define the following groups:

Γ(N) :=

γ ∈ Γ

∣∣∣∣
a b

c d

 ≡
1 0

0 1

 (mod N)

 , (2.4.1)

Γ0(N) :=

{
γ ∈ Γ

∣∣∣∣ c ≡ 0 (mod N)

}
, (2.4.2)

Γ∞ :=


1 n

0 1

∣∣∣∣ n ∈ Z

 . (2.4.3)

We observe that Γ(N) ⊂ Γ0(N) ⊂ Γ and Γ∞ ⊂ Γ0(N) ⊂ Γ.

Lemma 2.4.5 ([DS05, Chapter 1.2]). We have that Γ/Γ(N) is isomorphic to SL2(Z/NZ).

We have an explicit realisation of the group Mp(W ), which we denote as Mp2(R), through the

two choices of square roots of cτ + d. We take this definition from [Ray06, Definition 3.3.2],

[Bor98, Section 2], [Bru02, Section 1.1].

Definition 2.4.6. Let τ ∈ H. We define an element of Mp2(R) to be a pair (γ, φγ) where

γ ∈ SL2(R) and φγ : H → C is a holomorphic function such that φγ(τ)2 = j(γ, τ). The

multiplication of two elements in Mp2(R) is defined as

(γ, φγ(τ))(γ′, φγ′(τ)) := (γγ′, φγ(γ′τ)φγ′(τ)).

We also define Γ̃, Γ̃(N) and S̃O(2) to be the inverse images of Γ,Γ(N) and SO(2) respectively

under the covering map Mp2(R)→ SL2(R).

Lemma 2.4.7 ([Ray06, Lemma 3.3.3], [Bum97, Proposition 1.2.3]). The generators of Γ̃ are

T :=

1 1

0 1

 , 1

 and S :=

0 −1

1 0

 ,
√
τ

 .

The centre of Γ̃ is cyclic of order 4 and is generated by

S2 = (ST )3 = Z :=

−1 0

0 −1

 , i

 .

We define the group

Γ̃∞ :=


1 n

0 1

 , 1

∣∣∣∣n ∈ Z

 ⊂ Γ̃.

Definition 2.4.8. The Legendre symbol
(
a
b

)
is defined for a ∈ Z and b an odd prime as(a

b

)
= a(p−1)/2 (mod p)
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(or it can be stated in terms of quadratic residues). We extend this definition to
(
a
b

)
for all

a, b ∈ Z and call this the Kronecker symbol. This is multiplicative in both a and b so it is

extended by setting the following:
(
a
1

)
= 1;

(
a
−1

)
= 1 if a ≥ 0 and −1 otherwise;

(
a
0

)
= 1

if a = ±1 and 0 otherwise; and finally
(
a
2

)
= 1 if a ≡ ±1 (mod 8), 0 if a is even and −1

otherwise.

When considering what the components of our vector-valued forms look like we will need the

following section map. We remember (Lemma 2.1.17) that if b+ + b− is odd then the level

is divisible by 4. Then in this case we know there exists a section (see [Ste07, Chapter 3])

s : Γ(4)→ Γ̃(4) so that for
(
a b
c d

)
∈ Γ(4)

s :

a b

c d

 7→
a b

c d

 ,
( c
d

)√
cτ + d

 . (2.4.4)

2.4.3 The Weil Representation over Mp2(R)

We return to our dual reductive pair (O(V (R)),SL2(R)). We consider the Schrödinger model

in this case. Recall that we will use these explicit equations to define our Siegel theta functions

and vector-valued forms. In this Archimedean case the Schwartz-Bruhat functions are just

Schwartz functions, S(V (R)).

Definition 2.4.9. We let the Fourier transform, f̂ , of an integrable function f(x) :

V (R)→ C be defined as

f̂(ξ) :=

∫
V (R)

f(x)e((x, ξ))dx.

We note there are several ways of defining this. Our version agrees with the definitions

in [Bor98] and [BF04]. We will make use of the following later.

Lemma 2.4.10 (Poisson Summation Formula, [ABST13, Theorem 2.1], [Bor98, Section 4]).

For any lattice L ⊂ V (R), f ∈ S(V (R)

√
|L′/L|

∑
λ∈L

f(λ) =
∑
λ∈L′

f̂(λ).

We fix our central character as the standard one i.e. ψ : R → C∗ is set as ψ(x) := e2πix. We

then denote MSch
ψ as MSch. The Schrödinger model of the Weil representation for the case

(O(V (R)),SL2(R)) is then described below.

Lemma 2.4.11 ([BF04, Section 2], [Kud96, Section 2.4]). Let f ∈ S(V (R)) and g ∈ O(V (R)).

Recall the generators from (2.3.1). In this case a > 0, a, b ∈ R. We can then represent the
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Schrödinger model as follows:

MSch [g] f(x) := f(g−1x), (2.4.5a)

MSch

a 0

0 a−1

 f(x) := a(b++b−)/2f(ax), (2.4.5b)

MSch

1 b

0 1

 f(x) := eπib(x,x)f(x), (2.4.5c)

MSch

0 −1

1 0

 f(x) := e((b− − b+)/8)f̂(−x). (2.4.5d)

These equations can be easily derived from Proposition 2.3.14. We now set L to be an even

lattice of level N , L ⊂ V .

Definition 2.4.12. For f ∈ S(V (R)), h ∈ L′/L and g̃ = (g, φg) ∈ Mp2(R) we let

θL(g̃, f, h) :=
∑

λ∈L+h

MSch [g̃] f(λ)

be a theta function.

Lemma 2.4.13 ([BF04, Equations (2.2),(2.3)], [Shi75, Section 1]). We have that

θL(T g̃, f, h) = e(Q(h))θL(g̃, f, h),

θL(Sg̃, f, h) =
e((b− − b+)/8)√

|L′/L|
∑

h′∈L′/L

e(−(h, h′))θL(g̃, f, h′).

Remark 2.4.14. We prove a twisted version of these equations later in Proposition 3.2.6.

Definition 2.4.15. The C-group algebra C[L′/L] consists of formal linear combinations∑
h∈L′/L λheh where λh ∈ C and eh is the standard basis element corresponding to h ∈ L′/L.

Multiplication is such that eh · eh′ = eh+h′ for h, h′ ∈ L′/L. We define a Hermitian scalar

product on C[L′/L] by letting 〈eh, eh′〉 := δh,h′ and extending this to C[L′/L] by sesquilinearity

i.e. 〈 ∑
h∈L′/L

λheh,
∑

h′∈L′/L

µh′eh′

〉
=

∑
h∈L′/L

λhµh.

Finally, for a function f : H → C[L′/L] we denote the components as fh, such that f =∑
h∈L′/L fheh.

T and S were the generators of Γ̃. Using Lemma 2.4.13 we are then able to generate a unitary

(the inner product is preserved, see for example [Boy15, Definition 2.7]) representation of Γ̃

on C[L′/L]. See also [Shi75, Section 1], [Bor98, Section 4], [Völ13, Section 5.1].
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Definition 2.4.16. Let U(C[L′/L]) be the unitary group on C[L′/L]. Then we define a

representation via the generators, as before:

ρL(T )(eh) := e(Q(h))eh,

ρL(S)(eh) :=
e((b− − b+)/8)√

|L′/L|
∑

h′∈L′/L

e(−(h, h′))eh′ .

We call ρL : Γ̃→ U(C[L′/L]) the Weil representation on C[L′/L].

We denote ρL for the complex conjugate representation of ρL and note that ρL− = ρL. We

also have

ρL(Z)(eh) = e

(
b− − b+

4

)
e−h. (2.4.6)

Then (2.4.6) implies that ρL(γ,−φγ)(eh) = (−1)b
−+b+ρL(γ, φγ)(eh) for (γ, φγ) ∈ Γ̃. So if

b+ + b− is even then the Weil representation just factors through (See for example [Boy15,

Definition 2.6]) Γ.

Lemma 2.4.17 ([BS10, Section 2], [Bor00, Section 5], [Zem12, Theorem 3.2]). If b+ + b−

is even then the Weil representation ρL is trivial on Γ(N). If b+ + b− is odd then the Weil

representation ρL is trivial on s(Γ(N)).

So the Weil representation factors through the group Γ/Γ(N) ∼= SL2(Z/NZ) if b+ + b− is even

and factors through Γ̃/s(Γ(N)) (a double cover of SL2(Z/NZ)) if b+ + b− is odd.

2.5 Automorphic Forms

Throughout this thesis we deal with several types of automorphic objects. In particular our

input in the lift will be some harmonic weak Maass forms and the output will be a locally

harmonic Maass form. The Siegel theta functions that we use as kernels also transform with

weight in two variables. These automorphic forms will normally be vector-valued forms with

respect to the Weil representation as discussed in the previous section. We discuss their prop-

erties. This is very standard material the main reference being [BF04, Section 3] but is also

discussed in the introductions of [Bru02, Section 1.1], [BO10, Section 2.2], [BO13, Section 2.2]

and [BFI15, Section 2.2].

We fix the following throughout this chapter: L an even lattice of level N in a rational non-

degenerate quadratic space (V,Q) which has signature (b+, b−); k ∈ 1
2Z; and τ = u+ iv ∈ H.

2.5.1 Vector-Valued Forms

We will specialise to the Weil representation shortly but first in greater generality we define

half-integral weight vector-valued forms with respect to any representation. This definition is
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taken from [Ray06, Section 3.3] (also see [Bor00, Section 2], [Bor99, Section 2]).

Definition 2.5.1. Let ρ be a representation of Mp2(R) on a complex vector space V of finite

dimension. A vector-valued modular form of weight k with respect to ρ for Γ̃ is a function

f : H→ V such that

1. f(γ̃τ) = φγ(τ)2kρ(γ̃)f(τ) for all γ̃ = (γ, φγ) ∈ Γ̃,

2. f is holomorphic on H,

3. f is holomorphic at ∞.

As in the classical case, we will need a slash operator for the Weil representation on Mp2(R).

Definition 2.5.2. We denote the Petersson slash operator as |k,ρL . For functions f :

H→ C[L′/L] and γ̃ = (γ, φγ) ∈ Γ̃ we set

(f |k,ρL γ̃)(τ) := φγ(τ)−2kρL(γ̃)−1f(γτ).

Definition 2.5.3. Let Γ′ ⊂ Γ a finite index subgroup. Then a (vector-valued) modular form,

of weight k with respect to ρL for Γ̃′, is a function f : H→ C[L′/L] such that

1. (f |k,ρL γ̃) = f for all γ̃ ∈ Γ̃′,

2. f is holomorphic on H,

3. for any cusp s ∈ Q ∪ {∞} of Γ̃′ and taking (γ, φγ) ∈ Γ̃ with γ∞ = s, then (f |k,ρL γ̃) is

holomorphic at ∞.

If f is a function that only satisfies the first condition then, for our purposes, we call this

a (vector-valued) automorphic form. If f is not holomorphic, but merely meromorphic at

the cusps then we call this a (vector-valued) weakly holomorphic modular form. If f is

holomorphic and vanishes at the cusps we call this a (vector-valued) cusp form.

We also consider some further generalisation of modular forms, where instead of asking for

holomorphicity we just require our automorphic forms to vanish under the action of a Laplacian

operator. The main discussion can be found in [BF04, Chapter 3]. These will form the input

of our lift.

Definition 2.5.4. The weight k hyperbolic Laplacian, ∆k,τ is defined as:

∆k = ∆k,τ := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.

Definition 2.5.5. Let Γ′ ⊂ Γ a finite index subgroup. Then a (vector-valued) weak Maass

form of weight k with respect to ρL for Γ̃′ with eigenvalue λ ∈ C, is a twice continuously

differentiable function f : H→ C[L′/L] such that

1. (f |k,ρL γ̃) = f for all γ̃ ∈ Γ̃,
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2. ∆kf = λf ,

3. for any cusp s ∈ Q ∪ {∞} of Γ̃′ and taking (γ, φγ) ∈ Γ̃ with γ∞ = s, then there exists

a C > 0 so that (f |k,ρL γ̃)(τ) = O(eCv) as v →∞.

A (vector-valued) harmonic weak Maass form is a weak Maass form with eigenvalue λ = 0.

We also form a subspace of harmonic weak Maass forms by altering 3. We instead request

that there exists an ε > 0 and a Fourier polynomial

Pf :=
∑

h∈L′/L

∑
n∈Z+Q(h)
−∞�n≤0

c+(n, h)e(nτ)eh

so that f(τ)− Pf (τ) = O(e−εv) as v →∞ (and analogously for all cusps). This is a stricter

condition. This Fourier polynomial is uniquely determined by f and we call it the principal

part of f .

We remember that every harmonic (and holomorphic) function is real analytic [ABR01, Theo-

rem 1.28]. It is easy to check that each holomorphic function f : H→ C[L′/L] is harmonic with

respect to ∆k. We denote, Ak,ρL(Γ̃′),Hk,ρL(Γ̃′), Hk,ρL(Γ̃′),M !
k,ρL

(Γ̃′),Mk,ρL(Γ̃′), Sk,ρL(Γ̃′) for

the C-vector spaces of weight k automorphic, harmonic weak Maass, the subspace of harmonic

weak Maass, weakly holomorphic modular, modular and cusp forms respectively. We have

Ak,ρL(Γ̃′) ⊃ Hk,ρL(Γ̃′) ⊃ Hk,ρL(Γ̃′) ⊃M !
k,ρL(Γ̃′) ⊃Mk,ρL(Γ̃′) ⊃ Sk,ρL(Γ̃′).

We usually only deal with the full group Γ̃, in which case we drop the Γ̃′ from the notation.

There is some inconsistency in the literature here. The space Hk,ρL is often called the space of

harmonic weak Maass forms, as in [BO13] but we follow the more common naming convention

as in [BF04,BO10]. We now consider the Fourier expansions of these forms.

Lemma 2.5.6. Every holomorphic function f : H → C[L′/L] that is invariant under the

|k,ρL-operator has a Fourier expansion of the form

f(τ) =
∑

h∈L′/L

∑
n∈Z+Q(h)

a(n, h)e(nτ)eh, (2.5.1)

where a(n, h) denotes the Fourier coefficients a(n, h) =
∫ 1

0
〈f(τ), eh〉 e(−nτ)du.

Proof. It suffices to notice e(−Q(h)τ)fh(τ) is 1 periodic, see [Bru02, Section 1.1].

If we request that f is also holomorphic at ∞ i.e. f ∈ Mk,ρL then the a(n, h) terms in the

Fourier expansion (2.5.1) vanish for n < 0. If f is meromorphic at ∞ i.e. f ∈ M !
k,ρL

then

there are only finitely many a(n, h) terms with n < 0. If f vanishes at ∞ i.e. f ∈ Sk,ρL then

the a(n, h) terms vanish for n ≤ 0. For the weak Maass forms we do not have holomorphicity

so (2.5.1) does not hold.
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Definition 2.5.7. The incomplete gamma function, Γ(a, x) for a, x ∈ C,Re(a) > 0 is

defined as

Γ(a, x) :=

∫ ∞
x

e−tta−1dt,

which can then be holomorphically continued to all a ∈ C, x 6= 0. We also define the gamma

function, Γ(a) := Γ(a, 0).

Proposition 2.5.8 ([BF04, Equation 3.2]). Let k 6= 1. Any f ∈ Hk,ρL has a unique decom-

position f = f+ + f−, where

f+ :=
∑

h∈L′/L

∑
n∈Z+Q(h)
n�−∞

c+(n, h)e(nτ)eh,

f− :=
∑

h∈L′/L

c−(0, h)v1−keh +
∑

h∈L′/L

∑
n∈Z+Q(h)
n�∞
n6=0

c−(n, h)Γ(1− k,−4πnv)e(nτ)eh.

This is easily seen by noticing the Fourier expansion must vanish under the Laplacian operator

∆k. For the case k = 1 we simply replace the c−(0, h)v1−k term with c−(0, h) log(v). We call

f+ the holomorphic part and f− the non-holomorphic part of f . The next explicit

decomposition we will use extensively when finding the Fourier expansion of our lift.

Proposition 2.5.9. Any f ∈ Hk,ρL has a unique decomposition

f+ :=
∑

h∈L′/L

∑
n∈Z+Q(h)
n�−∞

c+(n, h)e(nτ)eh, (2.5.2a)

f− :=
∑

h∈L′/L

∑
n∈Z+Q(h)

n<0

c−(n, h)Γ(1− k, 4π|n|v)e(nτ)eh, (2.5.2b)

and for k ≥ 2, the f− part vanishes.

Proof. This follows from Theorem 2.5.18 and the fact that there are no negative weight cusp

forms. See also [BF04, Section 3].

We can interpret a weakly holomorphic modular form M !
k,ρL

as a harmonic weak Maass form

Hk,ρL which has no non-holomorphic part, f−. Observe that there are only finitely many

c+(n, h) terms for n ≤ 0. This fact will be important later. We also have the following

property.

Lemma 2.5.10. For f ∈ Hk,ρL

c±(n, h) = (−1)k+ b−−b+
2 c±(n,−h) (2.5.3)

Proof. Apply the action of Z on f and use (2.4.6).
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We now consider what these spaces look like. Using Lemma 2.5.10 we observe that any

f ∈ Hk,ρL vanishes if 2k 6≡ b+ − b− (mod 2). So when b+ + b− is even (or respectively,

odd) there exists only non-trivial modular forms of integral weight (respectively half-integral

weight) under this representation.

Let f ∈Mk,ρL . Lemma 2.4.17 told us that the Weil representation is trivial on Γ(N) (respec-

tively s(Γ(N))) if b+ + b− is even (respectively odd). This means that if b+ + b− is even the

components fh are classical scalar-valued integral weight modular forms on the congruence

subgroup Γ(N), (see also [Völ13, Proposition 5.3.5]). If b+ + b− is odd then the components

fh are classical scalar-valued half-integral weight modular forms on the congruence subgroup

Γ(N) (remember here N is divisible by 4) with the automorphy factor defined by the sec-

tion map (2.4.4) i.e.
(
c
d

)√
cτ + d for

(
a b
c d

)
∈ Γ(N). This is compatible with the definitions

in [Kob93, Section 4.1] and [Ono04, Chapter 1]. This is useful, in that we merely need to

consider level 1 vector-valued forms on Γ̃ to obtain some level N scalar-valued forms. We now

have three well known examples:

Example 2.5.11. If L = Z2 with associated quadratic form Q(λ) = 1
2(λ2

1 − λ2
2). Then the

signature is (1, 1), L′ = L and so L′/L is trivial i.e. C[L′/L] ∼= C and the Weil representation

is trivial. So we just have the classical slash operator (Definition 2.5.29) and vector-valued

forms certainly form a generalisation of classical scalar-valued forms for the group Γ.

Example 2.5.12. Let m ∈ Z,m > 0 and let L be the 1-dimensional lattice Z with associated

quadratic form Q(λ) := mλ2 for all λ ∈ L. Then the space of Jacobi forms Jk,m of weight k

and index m is isomorphic to Mk−1/2,ρL
. See [EZ85, Theorem 5.1].

Example 2.5.13. Let k ∈ 2Z + 1/2 and let p be a prime. Then the space M+,!
k (Γ0(4p))

of scalar valued weakly holomorphic forms satisfying the Kohnen plus space condition is

isomorphic to M !
k,ρL

for some lattice L. This is described in more detail in Example 3.1.4.

2.5.2 Differential Operators

There are also some natural differential operators on these spaces. We will use these to form

the link from the Shimura lift to the singular theta lift that we construct.

Definition 2.5.14. For any smooth function f(τ) : H→ C[L′/L] and k ∈ 1
2Z, we define the

Maass raising and lowering operators on f as

Rk := 2i
∂

∂τ
+ kv−1 = i

(
∂

∂u
− i ∂

∂v

)
+ kv−1,

Lk := − 2iv2 ∂

∂τ
= −iv2

(
∂

∂u
+ i

∂

∂v

)
.
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Definition 2.5.15. For f ∈ Hk,ρL we let the anti-linear differential operator be

ξk(f)(τ) := vk−2Lkf(τ) = R−kv
kf(τ).

We can check that −∆k = Lk+2Rk + k = R2−kLk = ξ2−kξk. Rk and Lk are called the raising

and lowering operators because of the following property.

Lemma 2.5.16 ([Bum97, Lemma 2.1.1]). For any smooth function f : H → C[L′/L] and

γ̃ ∈ Γ̃,

(Rkf)|k+2γ̃ = Rk(f |kγ̃) and (Lkf)|k−2γ̃ = Lk(f |kγ̃).

The anti-linear differential operator ξk (as does Lk) annihilates the holomorphic part of a

harmonic weak Maass form. Explicitly:

Proposition 2.5.17. Let f ∈ Hk,ρL with Fourier expansion as in (2.5.2). Then

ξk(f)(τ) = −
∑

h∈L′/L

∑
n∈Z−Q(h)

n>0

(4πn)1−kc−(−n, h)e(nτ)eh. (2.5.4)

Proof. A straightforward direct calculation. See also [BO10, Section 2.2].

We observe this only depends on f−, the non-holomorphic part of f , and hence vanishes for

f ∈M !
k,ρL

. This leads to the following significant relation.

Theorem 2.5.18 ([BF04, Proposition 3.2, Theorem 3.7]). The assignment f 7→ ξk(f) defines

a surjective map

ξk : Hk,ρL →M !
2−k,ρL .

The map has kernel M !
k,ρL

. The assignment also defines a surjective map

ξk : Hk,ρL → S2−k,ρL .

As in the classical case (Definition 2.5.32) we have the following inner product.

Definition 2.5.19. Let f, g ∈Mk,ρL , where one of f, g is a cusp form. Let F be the standard

fundamental domain

F := {τ ∈ H | |u| ≤ 1/2, |τ | ≥ 1} .

Then we call

(f, g)k,ρL :=

∫
F
〈f(τ), g(τ)〉 vk dudv

v2

the Petersson scalar product.

This definition makes sense as we notice 〈f(τ), g(τ)〉 vk dudvv2 is Γ̃ invariant [DS05, Section 5.4]

and bounded on H. We have in fact formed a Hermitian non-degenerate inner product (see

for example [Kil08, Chapter 4]). We have a regularised version of this pairing. This will be

used to define our lift by pairing a harmonic weak Maass form against a kernel theta function.
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Definition 2.5.20. Let f, g ∈ Ak,ρL . Let Ft be the truncated fundamental domain

Ft := {τ ∈ F | Im(τ) ≤ t} .

Then we call

(f, g)reg
k,ρL

:=

∫ reg

F
〈f(τ), g(τ)〉 vk dudv

v2
:= lim

t→∞

∫
τ∈Ft

〈f(τ), g(τ)〉 vk dudv
v2

the regularised Petersson scalar product, whenever this limit exists.

v

t

u
1-1

Ft

H

Figure 2.1: The truncated fundamental domain

This regularisation is a method of Harvey, Moore and Borcherds [HM96,Bor98,Bru02]. Further

discussion can be found in Section 4.1. This leads to following useful pairing.

Definition 2.5.21. For f ∈ Hk,ρL , g ∈M2−k,ρL let

{g, f} := (g, ξk(f))2−k,L− . (2.5.5)

For a fixed g ∈ M2−k,ρL , this is determined by f−, (recall that ξk(f) = ξk(f−)). We im-

mediately observe that {g, f} = 0 if f ∈ M !
k,ρL

. This pairing is also determined by Pf , the

principal part of f .

Proposition 2.5.22 ([BF04, Proposition 3.5]). Let f ∈ Hk,ρL and g ∈M2−k,ρL with Fourier

expansions as in (2.5.2) and (2.5.1). Then

{g, f} =
∑

h∈L′/L

∑
n∈Z−Q(h)

n≤0

c+(n, h)a(−n, h).

We saw that the Petersson scalar product was non-degenerate and that ξk : Hk,ρL 7→ S2−k,ρL

was surjective, so then:
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Theorem 2.5.23 ([BF04, Theorem 3.6]). The pairing between Hk,ρL/M
!
k,ρL

and S2−k,ρL

induced by (2.5.5) is non-degenerate.

We consider f ∈ Hk,ρL when the principal part Pf vanishes (or is constant) i.e. when

c+(n, h) = 0 for n ≤ 0 (or n < 0 respectively). Then we see that {g, f} = 0 for all g ∈ S2−k,ρL .

Theorem 2.5.23 then tells us that f− ≡ 0. So in fact f ∈ Sk,ρL (or Mk,ρL respectively). Al-

ternatively, if f− 6≡ 0, then Pf is non-constant.

Proposition 2.5.24 ([BF04, Proposition 3.11]). Let P be a Fourier polynomial

P (τ) =
∑

h∈L′/L

∑
n∈Z+Q(h)

n<0

c+(n, h)e(nτ)eh

with c+(n, h) satisfying (2.5.3). Then there exists a f ∈ Hk,ρL with principal part Pf = P + c

for some T -invariant constant c ∈ C[L′/L]. In fact, if k < 0 then f is uniquely determined.

So certainly for k ≤ 0, k ≥ 2 the principal part Pf of any f ∈ Hk,ρL uniquely determines f−.

Conversly f− does not uniquely determine Pf . We do however have the weaker statement

that f− does uniquely determine some weighted sums. The following is immediately clear

from the fact that ξk(f) only depended on f−.

Corollary 2.5.25. Let g ∈M2−k,ρL be fixed, with Fourier expansion as in (2.5.1). Then for

any f ∈ Hk,ρL , with Fourier expansion as in (2.5.2), the pairing

{g, f} =
∑

h∈L′/L

∑
n∈Z−Q(h)

n≤0

c+(n, h)a(−n, h)

is uniquely determined by f−.

Let f ∈ Hk,ρL , with expansion (2.5.2). We denote n0 ∈ Z+Q(h′), (h′ ∈ L′/L) for the smallest

(possibly negative) number such that c+(n, h) = 0 for all n < −n0, (n ∈ Z + sgn(D)Q(h) and

h ∈ L′/L). We can then improve (2.5.2) by replacing (2.5.2a) with

f+ =
∑

h∈L′/L

∑
n∈Z+Q(h)
n≥−n0

c+(n, h)e(nτ)eh. (2.5.6)

If n0 < 0 (or n0 ≤ 0 respectively ) then f− vanishes and we know that f is a cusp form (or a

modular form respectively). Using this, we have the following growth properties that we will

need when checking various equations converge.

Lemma 2.5.26 ([BF04, Lemma 3.3], [Höv12, Theorem 1.48]). Let f ∈ Hk,ρL with Fourier

expansion (2.5.6). Then f− decays exponentially fast as v →∞ and

f(τ) = O(f+(τ)) = O(e2πn0v)
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as v →∞, uniformly in u. If n0 < 0 (so f is a cusp form and k ≥ 0) then

f(τ) = f+(τ) = O
(

1

vk/2

)
as v → 0, uniformly in u. If n0 ≥ 0 then

f(τ) = O
(
f+(τ)

)
=

O
(

1
vk
e2πn0

1
v

)
if k ≥ 0,

O
(
e2πn0

1
v

)
if k < 0,

as v → 0, uniformly in u.

Lemma 2.5.27 ([BF04, Lemma 3.4], [Höv12, Lemma 1.49]). Let f ∈ Hk,ρL with Fourier

expansion (2.5.6). Then

c+(n, h) =



O
(
nk/2e4π

√
n0
√
n
)

if n0 > 0, k ≥ 0,

O
(
e4π
√
n0
√
n
)

if n0 ≥ 0, k < 0,

O
(
nk
)

if n0 = 0, k ≥ 0,

O
(
nk/2

)
if n0 < 0, k ≥ 0,

as n→∞. For f− we have

c−(n, h) = O(|n|k/2)

as n→ −∞.

Lemma 2.5.28 ([BF04, Section 3]). We have that

Γ(1− k,−2x) =

O
(

1
(−2x)k

e2x
)

as x→∞,

O
(

1
(2|x|)k e

−2|x|
)

as x→ −∞.

2.5.3 Scalar-Valued Forms

Once we have performed our lifts we will be dealing with more traditional scalar-valued auto-

morphic objects.

Definition 2.5.29. Let k ∈ Z. We denote the Petersson slash operator as |k . For

functions f : H→ C and γ ∈ SL2(R) we set

(f |kγ)(τ) := j(γ, τ)−kf(γτ).

Let k ∈ Z and Γ′ ⊂ Γ a finite index subgroup. We then define scalar-valued forms f : H→ C

of weight k for Γ′, by replacing |k,ρL with |k and Γ̃′ ⊂ Γ̃ with Γ′ ⊂ Γ throughout Definition

2.5.3. We denote, Ak(Γ′),M !
k(Γ′),Mk(Γ′), Sk(Γ′) for the spaces of weight k (scalar-valued)
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automorphic, weakly holomorphic modular, modular and cusp forms respectively. We remem-

ber there are no modular forms of negative weight.

One of the main aims of this thesis is to show that we obtain from our lift a locally harmonic

weak Maass form. We form our definition by adapting [BKK12,BK14,BKV13] (other similar

definitions could also be usefully considered).

For a (not necessarily continuous) function f : H → C and a nowhere dense (see [Rud91,

Definition 2.1]) exceptional set E ⊂ H, we will denote fW as the restriction of f to a

connected component W ⊂ H\E. For a point τ ∈ H we denote WE
τ for the (not necessarily

finite) set of connected components that contain τ in their closure i.e.

WE
τ :=

{
W ⊂ H\E | τ ∈W

}
.

Finally let

AE(f)(τ) :=
1

#WE
τ

∑
W∈WE

τ

lim
w∈W
w→τ

f(w)

be the average value of f on the connected components in which τ lies (when this limit exists).

Definition 2.5.30. Let k ∈ 2Z, k ≤ 0, Γ′ ⊂ Γ be a finite index subgroup and E be a Γ′-

invariant exceptional set E ⊂ H. We will call a function f : H→ C a (scalar-valued) locally

harmonic weak Maass form, of weight k for Γ′ and E, if

1. (f |kγ) = f for all γ ∈ Γ′.

2. For all τ ∈ H\E there is a neighbourhood U ⊂ H of τ in which f is real analytic and

∆kf = f .

3. For all τ ∈ H we have that: WE
τ is a finite set, the limit defining AE(f)(τ) exists and

f = AE(f).

4. For any cusp s ∈ Q ∪ {∞} of Γ′ and taking γ ∈ Γ′ with γ∞ = s, then there exists a

C > 0 so that (f |kγ)(τ) = O(vC) as v →∞.

Remark 2.5.31. These are similar to harmonic weak Maass forms but only harmonic within

connected components which are divided by singularities (the exceptional set). In this case

where f is real analytic on the connected components we will call the components Weyl

chambers as in [Bor98, Section 6], which we also discuss in Section 4.2.1. These singularities

are nice in that the value on the singularity is the average of the values in the adjacent

connected components. We also note that we have restricted this definition to forms with

polynomial growth at the cusps and also of non-positive weight.
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We will denote the space of locally harmonic weak Maass forms as LHk(Γ′). We will also use

a scalar-valued version of the Petersson scalar product. Let Γ′ ⊂ Γ be a finite index subgroup.

Then

Ft(Γ′) :=
⋃

γ∈Γ′\Γ

γ.F

is the truncated fundamental domain for Γ′.

Definition 2.5.32. Let k ∈ Z and f, g ∈ Ak(Γ′). Then we call

(f, g)reg
k :=

∫ reg

F(Γ′)

f(τ)g(τ)vk
dudv

v2

:= lim
t→∞

∫
τ∈Ft(Γ′)

f(τ)g(τ)vk
dudv

v2

the (scalar-valued) regularised Petersson scalar product whenever the limit exists.

2.5.4 Atkin-Lehner Involutions

When finding the Fourier expansion of our lift at different cusps we will need to consider Atkin-

Lehner involutions. For further details see [Sch04, Chapter 4], [BO13, Section 4.3], [Kna92,

Section 9.7] and [AL70].

Definition 2.5.33. We let N ∈ Z, n > 0, m be an exact divisor of N (when m|N and

gcd(N/m,m) = 1) and let
(

a b
Nc/m dm

)
∈ Γ0(N/m). Then the Atkin-Lehner involutions

on Γ0(N) are given by

WN
m :=

 a b

Nc/m dm

√m 0

0 1/
√
m

 .

WN
m have determinant 1 and are uniquely determined up to elements of Γ0(N). It is well

known that they form cosets of Γ0(N) in its normaliser in Γ, and that, if m′ is another exact

divisor, then

WN
mW

N
m′ = WN

mm′/ gcd(m,m′) (mod Γ0(N)).

In particular, (WN
m )2 = 1 (mod Γ0(N)). We can use these to form an involution onAk(Γ0(N)).

Definition 2.5.34. An Atkin-Lehner involution on Ak(Γ0(N)) is defined for

f ∈ Ak(Γ0(N)) by f 7→ f |kWN
m .

As before, we have f |kWN
m |kWN

m′ = f |kWN
mm′/ gcd(m,m′) and f |k(WN

m )2 = f.

2.6 Siegel Theta Functions

In this section we discuss the general theory of Siegel theta functions. These are defined on

a Grassmannian, which we discuss as well. The kernel functions we will define are Siegel

theta functions. The main references are [Bor98, Section 4], [BF04, Section 2] and [Bru02,

Section 2.1].
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2.6.1 Theta Functions

We now consider a general construction of some theta functions, following [Shi75] and [BF04,

Section 2].

Lemma 2.6.1 ([Ray06, Lemma 3.2.1]). The stabiliser of i ∈ H is SO(2) and SL2(R)/SO(2)

is homeomorphic to H.

We have a character σ1/2 : S̃O(2) → C. For an element gθ =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
∈ SO(2), where

θ ∈ (−π, π], we let

σ1/2

((
gθ,±

√
j(gθ, τ

))
:= ±

√
j(gθ, i)

−1
= ±eiθ/2.

For f ∈ S(V (R)), g̃ ∈ Mp2(R) and h ∈ L′/L we had a theta function θL(g̃, f, h) (Definition

2.4.12) and we associate to this

ΘL(g̃, f) :=
∑

h∈L′/L

θL(g̃, f, h)eh.

Then, for γ̃ ∈ Γ̃, this by definition satisfies

ΘL(γ̃g̃, f) = ρL(γ̃)ΘL(g̃, f).

We also form a function defined on the upper half plane. If f is such that

MSch [gθ] f(λ) = σ1/2 (g̃θ)
r
f(λ)

for any g̃θ ∈ S̃O(2) and some fixed r ∈ Z, we will say (following [Cip83, (1.7)]) that f satisfies

the first spherical property for r/2. If this is the case then we let

ΘL(τ, f) :=
∑

h∈L′/L

∑
λ∈L+h

j(gτ , i)
r/2MSch [gτ ] f(λ)eh = j(gτ , i)

r/2ΘL(gτ , f). (2.6.1)

We notice both gγτ and γgτ map i to γτ , so gγτ = γgτgθ for some gθ ∈ SO(2) (Lemma 2.6.1).

Further j(γgτgθ, i) = j(γ, τ)j(gτ , i)j(gθ, i), so we can then check that our function transforms

as we would hope under (γ, φγ) and is an element of Ar/2,ρL , i.e.

ΘL(γτ, f) = φγ(τ)rρL(γ, φγ)ΘL(τ, f). (2.6.2)

2.6.2 The Grassmannian

Definition 2.6.2. We define the Grassmannian, Gr(V (R)) as

Gr(V (R)) :=
{
z ⊂ V (R) | dim z = b− and Q|z < 0

}
.

This is the set of negative definite b−-dimensional subspaces in V (R).
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Remark 2.6.3. This definition is in the form of [BF04,BFI15], whereas in most other sources

(e.g. [Bor98, Bru02, BO10]) the Grassmannian is the set of positive definite b+-dimensional

subspaces. This often means when we work in signature (b+, b−) the equivalent theory in

these other sources is described in a space of signature (b−, b+).

From basic algebra we know that if G is a group acting transitively on a set X and Kx0 is the

stabiliser of a point x0 ∈ X, then G/Kx0 is in bijection with X by the mapping gKx0 7→ gx0

(see for example [Coh03, Thorem 2.1.3]). Using Witt’s extension theorem 2.1.10, we see that

O(V (R)) ∼= O(b+, b−) acts transitively on Gr(V (R)). Fix an element v0 ∈ Gr(V (R)) and

consider its stabiliser Kv0 ⊂ O(b+, b−). We have Kv0
∼= O(b+)×O(b−), as Kv0 preserves the

planes v0 and v⊥0 . So,

Gr(V (R)) ∼= O(b+, b−)/O(b+)×O(b−).

Similarly, we can write

Gr(V (R)) ∼= SO+(b+, b−)/SO(b+)× SO(b−). (2.6.3)

We can ask when we can associate a complex structure to the Grassmannian. We very briefly

sketch the theory here. These definitions are taken from [Mil05, Chapter 1] and [Huy05] which

have more rigorous detail.

Definition 2.6.4. A real smooth manifold M has a complex structure if it has a holomor-

phic atlas of charts. An almost complex structure on a smooth real manifold M is a smooth

tensor field J : TM → TM such that J2 = −Id, where TM denotes the tangent bundle, the

collection of tangent space TmM . A manifold with complex structure always admits an almost

complex structure (see [Huy05, Proposition 2.6.2]). We call a Riemannian manifold M , (a

smooth real manifold with a Riemannian metric g) a Riemannian symmetric space if for

any point m ∈M there exists an involution sm such that s2
m = Id and m is the only fixed point

of sm in some neighbourhood of m. We call a Riemannian manifold Hermitian if it has a

complex structure and g(JX, JY ) = g(X,Y ) for all vector fields X,Y . We call a Riemannian

symmetric space irreducible if it is not a product of Riemannian symmetric spaces of lower

dimensions.

Lemma 2.6.5 ([Fio13, Section 2.3.3]). Kv0 is a maximal compact subgroup of O(b+, b−).

This is useful as Cartan tells us that non-compact simple Lie groups modulo a maximal com-

pact subgroup correspond to irreducible simply connected Riemannian symmetric spaces of

negative curvature.

We can determine when these space are Hermitian as we also know that non-compact simple

Lie groups with trivial centre modulo a maximal compact subgroup with positive dimen-

sion centre correspond to non-compact irreducible Hermitian Riemannian symmetric spaces,



2.6. Siegel Theta Functions 38

(see [Hel62, Theorem 8.6.1]). Finally SO(b+) × SO(b−) has positive dimension centre only

if one or both of b+, b− = 2 (see [BJ06, Section 1.5]). Specifically we know SO(2) ∼= U(1)

which is abelian. When one of b+, b− = 2 this complex structure can can be written explicitly

using the tube domain model, see [Bru02, Section 3.2], [Ray06, Lemma 5.2.2]. In our case of

signature (2, 1) we will be able to associate the Grassmannian to the upper-half plane.

We now define another quadratic form on V (R) associated to a given element z ∈ Gr(V (R)),

called the majorant. This form will always be positive definite and so ensures that our Siegel

theta functions will converge. Let z ∈ Gr(V (R)) and λ ∈ V (R). We denote z⊥ for the

orthogonal complement of z ∈ V (R), which is a b+-dimensional positive definite subspace.

Then V (R) = z ⊕ z⊥ and we have a unique decomposition λ = λz + λz⊥ .

Definition 2.6.6. We define the majorant

Qz(λ) := Q(λz⊥)−Q(λz).

2.6.3 Siegel Theta Functions

We now describe some Siegel theta functions and a few of their properties. We will construct

these as before by using an Schwartz function at the base point. We first discuss some

polynomials. Remember Rb+,b− was the quadratic R-space Example 2.1.3 and elements x ∈
Rb++b− in the vector space were denoted as x = (x1, x2, . . . , xb++b−).

Definition 2.6.7. We call a polynomial p on Rb+,b− homogeneous of degree (m+,m−) if

p is homogeneous of degree m+ (and m−) in the b+ (and b−) variables respectively. We also

let

∆ :=
b++b−∑
n=1

∂2

∂x2
n

, (2.6.4)

be an operator on Rb+,b− . We say a polynomial p, is harmonic when ∆(p) = 0.

We note ∆ is just the traditional Laplace operator on Rb++b− but we will let it act on the

quadratic space Rb+,b− . Let c ∈ C and x ∈ Rb++b− . Using Borcherds’ [Bor98] notation

we will write exp(c∆)(p)(x) to denote
∑∞
j=0

cj

j! ∆j(p)(x). We observe that exp(c∆)(p)(dx) =

dm
++m− exp(c∆/d2)(p)(x) for d ∈ C and if p is harmonic, then exp(c∆)(p)(x) = p(x).

Definition 2.6.8. Let λ ∈ L and z ∈ Gr(V (R)). We call

ϕ0(λ, z) := e(Qz(λ)i)

the Gaussian. Let σ : V (R) → Rb+,b− be an isometry and p be a homogeneous polynomial

on Rb+,b− of degree (m+,m−), then we also define:

ϕ0(λ, z, σ, p) := exp (−∆/8π) (p)(σ(λ))e (Qz(λ)i) .
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Both forms of the Gaussian are Schwartz functions, i.e. elements of S(V (R)). We will now

check that ϕ0(λ, z, σ, p) is in fact an eigenfunction. We set for the moment r = b+ − b− +

2m+ − 2m−.

Lemma 2.6.9. We have that ϕ0(λ, z, σ, p) satisfies the first spherical property for r/2.

Proof. We want to show that, for all g̃θ ∈ S̃O(2),

MSch [gθ]ϕ0(λ, z, σ, p) = σ1/2 (g̃θ)
b+−b−+2m+−2m−

ϕ0(λ, z, σ, p).

As before we write an element gθ =
(
a b
−b a

)
∈ SO(2) where a = cos(θ), b = sin(θ) and

θ ∈ (−π, π]. We can easily check that these decompose into the following useful forms. For

b < 0 (
a b
−b a

)
=
(
−1/b 0

0 −b

) (
1 −ab
0 1

) (
0 −1
1 0

) (
1 −a/b
0 1

)
,

and for b > 0 (
a b
−b a

)
=
(

0 −1
1 0

)2 ( 1/b 0
0 b

) (
1 −ab
0 1

) (
0 −1
1 0

) (
1 −a/b
0 1

)
.

We first consider the b < 0 case. Then using the equations (2.4.5)

MSch
[(

1 −a/b
0 1

)]
ϕ0(λ, z, σ, p)

= exp (−∆/8π) (p)(σ(λ))e (Qz(λ)i−Q(λ)a/b)

= exp (−∆/8π) (p)(σ(λ))e (Q(λz⊥)(i− a/b) +Q(λz)(−i− a/b))

Denote this last equation as g(λ). We now need the Fourier transform ĝ(ξ) of g(λ). Using

[Bor98, Corollary 3.5], setting τ = (i− a/b), we see that

ĝ(ξ) = (b(a+ bi))b
+/2+m+

(b(a− bi))b−/2+m−i(−b
+−3b−)/2

× exp
(
−∆/8πb2

)
(p)(σ(ξ))e (Q(ξz⊥)(a+ bi)b+Q(ξz)(a− bi)b) .

Using this, we have

MSch
[(

0 1
−1 0

) (
1 −a/b
0 1

)]
ϕ0(λ, z, σ, p)

= (b(a+ bi))b
+/2+m+

(b(a− bi))b−/2+m−i−b
+−b−+2(m++m−)

× exp
(
−∆/8πb2

)
(p)(σ(λ))e (Q(λz⊥)(a+ bi)b+Q(λz)(a− bi)b) .

Continuing

MSch
[(

1 −ab
0 1

) (
0 1
−1 0

) (
1 −a/b
0 1

)]
ϕ0(λ, z, σ, p)

= (b(a+ bi))b
+/2+m+

(b(a− bi))b−/2+m−i−b
+−b−+2(m++m−)

× exp
(
−∆/8πb2

)
(p)(σ(λ))e

(
Q(λz⊥)b2i−Q(λz)b

2i
)
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and finally

MSch
[(
−1/b 0

0 −b

) (
1 −ab
0 1

) (
0 1
−1 0

) (
1 −a/b
0 1

)]
ϕ0(λ, z, σ, p)

= b−(b++b−)/2(b(a+ bi))b
+/2+m+

(b(a− bi))b−/2+m−i2(m++m−)

× exp
(
−∆/8πb2

)
(p)(σ(−λ/b))e (Q(λz⊥)i−Q(λz)i)

= (a+ bi)b
+/2+m+

(a− bi)b−/2+m−ϕ0(λ, z, σ, p)

= σ1/2 (g̃θ)
b++2m+−b−−2m−

ϕ0(λ, z, σ, p).

For the b > 0 case it suffices to note that
(

0 1
−1 0

)2
=
(−1 0

0 −1

)
hence MSch

[(−1 0
0 −1

)]
f(x) =

ib
++b−f(−x). Then we can easily show the result by adapting the b < 0 case.

We then follow the earlier construction (2.6.1) to form a theta function for an element τ =

u+ iv ∈ H.

ΘL(τ, ϕ0(λ, z, σ, p))

=
∑

h∈L′/L

∑
λ∈L+h

j(gτ , i)
r/2MSch [gτ ]ϕ0(λ, z, σ, p)eh

= v−r/4
∑

h∈L′/L

∑
λ∈L+h

MSch
[
( 1 u

0 1 )
(√

v 0

0 1/
√
v

)]
ϕ0(λ, z, σ, p)eh

= v−r/4
∑

h∈L′/L

∑
λ∈L+h

MSch [( 1 u
0 1 )] v(b++b−)/4ϕ0(

√
vλ, z, σ, p)eh

= vb
−/2+m−

∑
h∈L′/L

∑
λ∈L+h

exp (−∆/8πv) (p)(σ(λ))e (Q(λ)u+Qz(λ)iv) eh. (2.6.5)

Remark 2.6.10. Cipra [Cip83, Theorem 1.9] tells us what Schwartz functions that satisfy the

first spherical property look like. Essentially the only functions of this type are (possibly

infinite) sums of Gaussians involving Hermite polynomials. We keep the discussion brief here.

Definitions and details of Hermite polynomials can be found in Section 5.2.1. We observe that

we can obtain Hermite polynomials from the term exp (−∆/8π) (p). For example if we let p

be of the form p(x1, x2 . . . xb++b−) = xκn for some κ ∈ Z, κ ≥ 0 then exp (−∆/8π) (p) is up to

constants the κth Hermite polynomial, (see Lemma 5.3.4).

Equation (2.6.5) then motivates the following definition.

Definition 2.6.11. Let z ∈ Gr(V (R)), h ∈ L′/L. Let σ : V (R)→ Rb+,b− be an isometry and

let p be a homogeneous polynomial on Rb+,b− of degree (m+,m−). Then the Siegel theta

function is

ϑL+h(τ, z, σ, p) := vb
−/2+m−

∑
λ∈L+h

exp(−∆/8πv)p(σ(λ))e

(
(λz, λz)

2
τ +

(λz⊥ , λz⊥)

2
τ

)
= vb

−/2+m−
∑

λ∈L+h

exp(−∆/8πv)p(σ(λ))e (Q(λ)u+Qz(λ)iv)

=
∑

λ∈L+h

ϕ0(λ, τ, z, σ, p)
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where ϕ0(λ, τ, z, σ, p) := vb
−/2+m− exp(−∆/8πv)p(σ(λ))e (Q(λ)u+Qz(λ)iv) . The C[L′/L]-

valued Siegel theta function is then

~ϑL(τ, z, σ, p) :=
∑

h∈L′/L

ϑL+h(τ, z, σ, p)eh = ΘL(τ, ϕ0(λ, z, σ, p)).

This definition makes sense, because the term e(Qz(λ)iv) rapidly decays, ensuring the compo-

nents are absolutely and locally uniformly convergent in τ and z (see for example [DS05, Sec-

tion 4.9]). We know ~ϑL(τ, z, σ, p) is a real analytic function. We observe as v → ∞ then

ϑL+h(τ, z, σ, p) = O(vb
−/2+m−), uniformly in u. We will also need a more general version.

This definition is taken from [Bor98, Section 4].

Definition 2.6.12. Let z ∈ Gr(V (R)), h ∈ L′/L. Let σ : V (R) → Rb+,b− be an isometry, let

p be a homogeneous polynomial on Rb+,b− of degree (m+,m−) and let α, β ∈ V (R). Then

ϑL+h(τ, z, σ, p, α, β) :=

v
b−
2 +m−

∑
λ∈L+h

exp(−∆/8πv)p(σ(λ+ β))e

(
Q(λ+ β)u+Qz(λ+ β)iv −

(
λ+

β

2
, α

))
.

and then

~ϑL(τ, z, σ, p, α, β) :=
∑

h∈L′/L

ϑL+h(τ, z, σ, p, α, β)eh.

2.6.4 The Action of the Dual Pair

We look at the action of the dual pair (O(V (R)),SL2(R)) via the Weil representation on

these theta functions. This corresponds with the natural actions on τ and z. We still set

r = b+ − b− + 2m+ − 2m− throughout.

We consider the theta function ~ϑL(τ, z, σ, p). Let (γ, φγ) ∈ Mp2(R) and let gθ ∈ SO2(R). We

remember gγτ = γγgτgθ and j(γgτgθ, i) = j(γ, τ)j(gτ , i)j(gθ, i). Then using the definition

(2.6.1) we see that

MSch [γ]ϕ0(λ, τ, z, σ, p) = MSch
[
gγτg

−1
θ g−1

τ

]
j(gτ , i)

r/2MSch [gτ ]ϕ0(λ, z, σ, p)

= MSch [gγτ ] j(gτ , i)
r/2j(gθ, i)

r/2ϕ0(λ, z, σ, p)

= j(γ, τ)−r/2j(gγτ )r/2MSch [gγτ ]ϕ0(λ, z, σ, p)

= j(γ, τ)−r/2ϕ0(λ, γτ, z, σ, p).

So this does indeed give rise to an action on τ . Using equation (2.6.2) and Lemma 2.6.9 we

clearly have:

Corollary 2.6.13. The Siegel theta function ~ϑL(τ, z, σ, p) ∈ Ar/2,ρL is an automorphic form

of weight ( b
+−b−

2 +m+ −m−). That is, for (γ, φγ) ∈ Γ̃,

~ϑL(γτ, z, σ, p) = φγ(τ)rρL(γ, φγ) ~ϑL(τ, z, σ, p).
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So ~ϑL(τ, z, σ, 1) has for example weight (b+ − b−)/2 in τ under Γ̃. For the general version:

Theorem 2.6.14 ([Bor98, Theorem 4.1]). For any (γ, φγ) ∈ Γ̃, γ =
(
a b
c d

)
,

~ϑL(γτ, z, σ, p, aα+ bβ, cα+ dβ) = φγ(τ)rρL(γ, φγ) ~ϑL(τ, z, σ, p, α, β).

Proof. This is shown in [Bor98, Theorem 4.1] using essentially the same methods, i.e. by

finding a Fourier transform and applying the Poisson summation formula.

We consider the action of the orthogonal group (we restrict to the case when p = 1). Let

z ∈ Gr(V (R)) and let g ∈ O(V (R)). We then have using (2.4.5)

MSch [g]ϕ0(λ, τ, z) = ϕ0(g−1λ, τ, z) = ϕ0(λ, τ, gz).

This can be observed by letting g act on all elements λ ∈ L. We also recall the quadratic form

is invariant under g and notice that

g(g−1λ)z = λ(gz) and g(g−1λ)z⊥ = λ(gz)⊥ .

Clearly then ~ϑL(τ, z) will be invariant under the action of a subgroup of O(L) on z that acts

trivially on L′/L. We denote this group as Od(L). In fact, we have the natural surjective

homomorphism from SO(L) to Aut(L′/L). So we will actually consider the the action of a

subgroup of SO(L) that acts trivially on L′/L. Which we call the discriminant kernel and

denote as SOd(L).

Our notation differs from [BO10] and is more similar to [Bru02]. In the case of signature (2, 1)

we have mentioned that z can be thought of as an element of the upper-half plane. In this

case we can use a similar construction as in Section 2.6.1 to form a Siegel theta function (with

a polynomial that satisfies the second spherical condition see Section 4.3) that will actually

transform with a certain weight under SOd(L). Section 2.2 told us that we have a surjective

homomorphism, g (see (2.2.1)) from GSpin(L) to SO(L). This means we can (and will) look

at an action on z in terms of a subgroup of GSpin(L) which acts via conjugation on V . This

discussion explains the singular theta correspondence in our context. We will lift from forms

for the group Mp2(R) to a subgroup of O(V (R)) ∼= O(b+, b−). More specifically, from Γ̃ to a

group G in GSpin(L) whose image under g is SOd(L).



Chapter 3

The Setting

We will first detail in Section 3.1 the properties of a specific lattice L and the quadratic space

(V,Q) of signature (2, 1) that it lies in. The rest of our work will be based in this setting. This

lattice L also has an associated character which allows us to twist the Weil representation.

We discuss this in Section 3.2. We then describe in detail what the Grassmannian, cusps

and the modular curve look like in this setting. We also define some twisted cycles on this

Grassmannian. We discuss objects in roughly the same order as we defined them in Chapter

2.

3.1 A Lattice of Signature (2, 1)

We first describe a realisation of our space and its properties. Throughout the rest of this

document we fix V to be a quadratic Q-space of dimension 3 with a non-degenerate sym-

metric bilinear form (·, ·) of signature (2, 1). We also fix N ∈ N. Our setting is also used

in [FM11,BO10,BFI15]. The settings in [BO13,AE13,Höv12] are also similar. However there

the quadratic space is (V,−Q) which has signature (1, 2), see also Remark 2.6.3. All of these

papers form a good reference for what follows.

We will work in a well known explicit realisation of this. In particular, we let V be traceless

2× 2 matrices, i.e.

V := {λ ∈ M2(Q) | tr(λ) = 0} . (3.1.1)

Let λ, µ ∈ V . We form a quadratic space of signature (2, 1) by setting Q(λ) := −N det(λ) and

(λ, µ) := Ntr(λµ). It is easily checked the quadratic Q-space (V,Q) is isotropic and indefinite

of signature (2, 1). In particular we have the following orthonormal basis of V (R)

e1 :=
1√
2N

0 1

1 0

 , e2 :=
1√
2N

1 0

0 −1

 and e3 :=
1√
2N

 0 1

−1 0

 . (3.1.2)

43
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We fix a lattice L as:

L :=


b −a/N
c −b

∣∣∣∣ a, b, c ∈ Z

 .

The following properties are simple to check.

Lemma 3.1.1. The lattice L is even (and therefore integral), has level 4N and discriminant

2N . The discriminant group L′/L can be identified with: Z/2NZ with discriminant form

x 7→ x2/4N . The lattice L has dual lattice:

L′ :=


b/2N −a/N

c −b/2N

∣∣∣∣∣ a, b, c ∈ Z

 . (3.1.3)

Remark 3.1.2. The elements λ ∈ L′ correspond to integral binary quadratic forms, Example

2.1.4. In particular, each λ ∈ L′ corresponds to a form [a, b,Nc]. Also the discriminant D′ of

[a, b,Nc] is D′ = b2 − 4Nac = 4NQ(λ).

Remember we have the identifications from Example 2.2.9

C(V (R)) ∼= M2(R⊕ R), C0(V (R)) ∼= M2(R) and C0(V ) ∼= M2(Q).

We let GL2(Q) act on V by conjugation, i.e. γ.λ = γλγ−1 for γ ∈ GL2(Q), λ ∈ V and

notice this action is isometric, i.e. Q(γ.λ) = Q(λ). From Section 2.2.1 we have that elements

x ∈ GSpin(V ) act on V isometrically via conjugation. This gives rise to the isomorphisms

GL2(Q) ∼= GSpin(V ) and SL2(Q) ∼= Spin(V )

noting that the Clifford norm on M2(Q) is the determinant, (see Lemma 2.2.12). Using the

exact sequence in (2.2.2), we have

PSL2(Q) ∼= SO+(V ). (3.1.4)

This accidental isomorphism is what makes signature (2, 1) particularly interesting with re-

gards to modular forms.

We also want to find the group that takes L to itself and acts trivially on the discriminant

group L′/L when acting via conjugation. We will see in Section 3.3 that there are two

components in our model of the Grassmanian, and we fix an orientation by choosing one. We

let Γ(L) := SOd(L) ∩ SO+(L). Then following Section 2.6.4 and Definition 2.2.11, it suffices

to find a subgroup of Spin(L) ⊂ Spin(V ) ∼= SL2(Q), whose image under g is Γ(L). It is easily

checked that all WN
m (where m is an exact divisor of N) map L to itself. So the image of WN

m

under g is an element of SO+(L). In fact we have the following:

Proposition 3.1.3 ([BO10, Proposition 2.2]). The image of all WN
m under g is SO+(L). The

image of Γ0(N) under g is Γ(L).
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Example 3.1.4. Continuing from Example 2.5.13 (see also [BFI15, Example 2.2]) if f(τ) ∈
M !
k,ρL

then the scalar valued components fh are certainly scalar-valued half-integral weight

weakly holomorphic forms for Γ(4N). (using the discussion in Section 2.5.1). The function

∑
h∈L′/L

fh(4Nτ) =
∑

h∈L′/L

∑
n∈Z+Q(h)

c(n, h)e(4Nnτ) =
∑
m∈Z

c(m+ h2/4N,h)e((4Nm+ h2)τ)

is a form that satisfies the Kohnen plus space condition. I.e. the n-th fourier coefficient

vanishes unless it is a square modulo 4N . [EZ85, Theorem 5.4] tells us that this in fact forms

an isomorphism from M !
k,ρL

to M+,!
k (Γ0(N)) in the case where k ∈ 2Z+ 1

2 and N prime. Later

we define theta lifts of vector-valued forms using the lattice L. So in this case the isomorphism

M !
k,ρL
∼= M+,!

k (Γ0(N)) tells us that we are also lifting scalar-valued forms in the Kohnen plus

space.

3.2 The Twisted Weil Representation

The elements of L′ corresponded to integral binary quadratic forms. This allows us to define a

genus character on the lattice. We can then twist the Siegel theta functions from earlier with

this character. These will then transform with respect to the twisted Weil representation. We

still always set λ =
(
b/2N −a/N
c −b/2N

)
∈ L′ in this section. The main sources for the definition

and properties of this character are [GKZ87, Section 1.2] and [Sko90b, Chapter 1] and there is

some discussion of the twisted Weil representation in [AE13, Section 3] and [BO10, Section 4].

Remark 3.2.1. In particular, in [AE13] they use an intertwining linear map to modify any

non-twisted theta function (on the lattice L) to a twisted theta function, which they show

then transforms with respect to the twisted Weil representation. Our approach is different.

We will form our twisted theta functions (in Section 3.6) using Gaussians at the base point,

mirroring the construction in Section 2.6.1. This will allow us to see their weight immediately,

mirroring Corollary 2.6.13. To do this we will need twisted versions of the formulas in Lemma

2.4.13 which we obtain in Proposition 3.2.6. Both approaches have essentially the same result

and so which one to use is a matter of taste.

Definition 3.2.2. We call an integer a fundamental discriminant if it is equal to 1 or the

discriminant of a quadratic field. We set DN ∈ Z a fundamental discriminant, and r ∈ Z such

that DN ≡ r2 (mod 4N). From now on we simply denote DN as D. Let n be any integer that

is coprime to D and representable by a binary quadratic form [N1a, b,N2c] with N1N2 = N

and N1, N2 > 0 i.e. n = [N1a, b,N2c](x, y) for some x, y ∈ Z. If D is such that

1. 4NQ(λ)/D ≡ s2 (mod 4N) for some s ∈ Z,

2. gcd(a, b, c,D) = 1,
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then we define the generalised genus character as χD(λ) :=
(
D
n

)
otherwise χD(λ) := 0.

This makes sense as [GKZ87, Proposition 1.2.1] tells us there always exists such an n.

Remark 3.2.3. It is common in the literature to denote the fundamental discriminant as ∆.

We have used D to denote this so as to avoid confusion with the operator in (2.6.4) and the

weight k hyperbolic Laplacian operator in Definition 2.5.4.

The key properties we need concerning this character are summarised below:

Proposition 3.2.4 ([GKZ87, Proposition 1.2.1]). The character χD is independent of the

choice of N1, N2 and n. The character χD is invariant under the action of Γ0(N) and the

Atkin-Lehner involutions WN
m . The character χD(λ) only depends on λ ∈ L′ modulo DL.

Finally if we have the factorisations D = D1D2 into discriminants and N = N1N2 into

positive factors so that gcd(D1, N1a) = gcd(D2, N2c) = 1 then

χD(λ) =

(
D1

N1a

)(
D2

N2c

)
.

In particular, χD(−λ) = sgn(D)(λ). We define a twisted version of Definition 2.4.12. Let D

be a fundamental discriminant and then consider the scaled lattice DL. The scaled lattice DL

has associated quadratic and bilinear forms QD(λ) := Q(λ)/|D| and (λ, µ)D := (λ, µ)/|D| for

λ, µ ∈ V . Using the same ideas as in Lemma 3.1.1 we can then quickly see that DL is even,

with dual lattice L′ and discriminant 2N |D|3 = |D|3|L′/L|. We will denote sgn(s) = s/|s| for

all s ∈ R, s 6= 0.

Definition 3.2.5. Let f ∈ S(V (R)), h ∈ L′/L, g̃ = (g, φg) ∈ Mp2(R) and let D be a funda-

mental discriminant as before. Then we call

θL,D,r(g̃, f, h) :=
∑

h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′

χD(λ)MSch [g̃] f(λ)

the twisted theta function.

We now show a twisted version of Lemma 2.4.13.

Proposition 3.2.6. We have that

θL,D,r(T g̃, f, h) = e(sgn(D) ·Q(h))θL,D,r(g̃, f, h),

θL,D,r(Sg̃, f, h) =
e(−sgn(D)/8)√

|L′/L|
∑

h′∈L′/L

e(−sgn(D)(h, h′))θL,D,r(g̃, f, h
′).
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Proof. We first show this for T = (( 1 1
0 1 ) , 1). We use the formulas in Lemma 2.4.5 for the

lattice DL.

θL,D,r(T g̃, f, h) =
∑

h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′

χD(λ)MSch [T ]MSch [g̃] f(λ)

=
∑

h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈L

e(QD(Dλ+ h′))χD(Dλ+ h′)MSch [g̃] f(Dλ+ h′).

We observe that QD(Dλ) ∈ Z for λ ∈ L and QD(h′) = DQ(h)/|D| (mod 1), therefore

=
∑

h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈L

e(DQ(h)/|D|)χD(Dλ+ h′)MSch [g̃] f(Dλ+ h′)

= e(sgn(D) ·Q(h))θL,D,r(g̃, f, h).

Using the invariance of χD modulo DL we have for S =
((

0 −1
1 0

)
,
√
τ
)

the following:

θL,D,r(Sg̃, f, h) =
∑

h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′

χD(λ)MSch [S]MSch [g̃] f(λ)

= e((b− − b+)/8)
∑

h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′

χD(λ) ̂MSch [g̃] f(−λ)

= e(−1/8)
∑

h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL

χD(h′) ̂MSch [g̃] f(−λ− h′).

Using the Poisson summation formula (Lemma 2.4.10) and the fact that f̂(−λ − h′) =

e(−(λ, h′)D)f(λ) for λ ∈ DL (see eg. [Bor98, Lemma 3.1]) we obtain

=
e(−1/8)√
|L′/DL|

∑
h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈L′

χD(h′)e(−(h′, λ)D)MSch [g̃] f(λ)

=
e(−1/8)√
|D|3|L′/L|

∑
h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′′

h′′∈L′/DL

χD(h′)e(−(h′, h′′)/|D|)MSch [g̃] f(λ)

and then using [BO10, Proposition 4.2] we finally have

=
εD|D|3/2e(−1/8)√
|D|3|L′/L|

∑
h′∈L′/L
h′′≡rh′(L)

Q(h′′)≡DQ(h′)(D)

∑
λ∈DL+h′′

h′′∈L′/DL

χD(h′′)e(−sgn(D)(h, h′))MSch [g̃] f(λ)

=
e(−sgn(D)/8)√

|L′/L|
∑

h′∈L′/L

e(−sgn(D)(h, h′))θL,D,r(g̃, f, h
′).
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This leads to the following definition, mirroring Definition 2.4.16.

Definition 3.2.7. Let U(C[L′/L]) be the unitary group on C[L′/L]. Then we define a repre-

sentation via the generators:

ρ̃L(T )(eh) := e(sgn(D)Q(h))eh,

ρ̃L(S)(eh) :=
e(−sgn(D)/8)√

|L′/L|
∑

h′∈L′/L

e(−sgn(D)(h, h′))eh′ .

We call ρ̃L : Γ̃→ U(C[L′/L]) the twisted Weil representation on C[L′/L].

Comparing with Definition 2.4.16, we observe that ρ̃L is just ρL if D > 0 and ρL if D < 0.

3.3 The Grassmannian in Signature (2, 1)

We will now describe in more detail the Grassmannian of V (R), a real hyperbolic 2-space.

This is also discussed in [FM11, Section 2.1], [Bru02, Chapter 3] and [BFI15, Section 2.1].

We remember that Gr(V (R) = {z ⊂ V (R) | dim z = 1 and Q|z < 0}, so Gr(V (R)) is the set

of negative lines. The set of norm −1 vectors form a two-sheet hyperboloid. I.e. (V (R), Q)

is isometric to R2,1, so being of norm −1 dictates that x2
1 + x2

2 − x2
3 = −1. We take one

component of this two-sheet hyperboloid. Each vector on this component then represents an

element of Gr(V (R)). Explicitly:

Definition 3.3.1. We fix an isotropic vector l ∈ V . Then we call

V−1 := {v−1 ∈ V (R) | (v−1, v−1) = −1, (v−1, l) < 0}

the hyperboloid model, where we form a bijection σGr
V−1

: V−1 → Gr(V (R)) via the map

v−1 7→ Rv−1.

If instead we took −l as our isotropic vector, we would obtain the other component of the two-

sheet hyperboloid. We denote the bijection in the other direction, as σ
V−1

Gr : Gr(V (R))→ V−1

and it is given by the map z 7→ lz/|lz|. We see that lz/|lz| is a norm −1 vector which lies in z

and also that lz 6= 0.

Section 2.6.2 and (2.6.3) told us that Gr(V (R)) ∼= SO+(2, 1)/SO(2) × SO(1) and this is

Hermitian. In fact using, (3.1.4) and Lemma 2.6.1, we have PSL2(R) ∼= SO+(2, 1) and

SL2(R)/SO(2) ∼= H. We conclude that the Grassmannian is isomorphic to H. Explicitly:

Definition 3.3.2. We let z′ = x + iy ∈ H be the upper-half plane model, where we form

a bijection σGr
H : H→ Gr(V (R)) via the map

z′ 7→ R(gz′ .e3) = R

−x x2 + y2

−1 x

 .
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This map is clearly injective. It is surjective as each element of Gr(V (R)) can be written

as R
( −b a
−1 b

)
, a > b2, a, b ∈ R. We then have a bijection from σ

V−1

H : H → V−1 via the map

z′ 7→ σ
V−1

Gr

(
σGr
H (z′)

)
. Explicitly

σ
V−1

H (z′) :=
lR(gz′ .e3)

|lR(gz′ .e3)|
=
−gz′ .e3(l, gz.e3)

|(l, gz′ .e3)| =
1√

2Ny
sgn

((
−l,
(
−x x2+y2

−1 x

)))(
−x x2+y2

−1 x

)
where we have used that (gz′ .e3, gz′ .e3) = −1. If we fix l such that the sgn term equals 1

(or −1), then this is a positive (or negative) orientation of Gr(V (R)). In summary we have

H ∼= Gr(V (R) ∼= V−1 and the following bijective diagram:

H
σGr
H

��

σ
V−1
H

��
V−1

σGr
V−1

33 Gr

σ
V−1
Gr

rr

Figure 3.1: Bijective Diagram

As is standard, we will often abuse notation, and set z = x + iy ∈ H but also denote by z

its identifications in V−1 and Gr(V (R)). We had that SL2(Q) acts on V via conjugation and,

as we would expect, this intertwines with the natural action on H. We can check with some

simple linear algebra that σ
V−1

H (γz) = γ.(σ
V−1

H (z)) for all γ ∈ SL2(Q), z = x+ iy ∈ H.

We now look for an oriented basis for V (R) compatible with these models. We fix a positive

orientation of Gr(V (R)) from here on. In (3.1.2) we had an orthonormal basis e1, e2, e3

of V (R). We notice for the base point z = i that e3 = σ
V−1

H (i). We then define a basis

b1(z) := gz.e1, b2(z) := gz.e2 and b3(z) := gz.e3 for any z = x + iy ∈ H. We will have

b3(z) = σ
V−1

H (z). Explicitly

b1(z) =
1√

2Ny

x −x2 + y2

1 −x

 , (3.3.1a)

b2(z) =
1√

2Ny

y −2xy

0 −y

 , (3.3.1b)

b3(z) =
1√

2Ny

−x zz

−1 x

 . (3.3.1c)
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It can be verified (b1(z), b1(z)) = 1, (b2(z), b2(z)) = 1, (b3(z), b3(z)) = −1 and (bi(z), bj(z)) = 0

for i 6= j. If λ ∈ V (R) then λ =
∑
λi(z)bi(z) where λi(z) := (λ,bi(z))

(bi(z),bi(z))
. We have

λ1(z) =
1√

2Ny
(cN(−x2 + y2) + bx− a), (3.3.2a)

λ2(z) =
1√

2Ny
(−2cNxy + by), (3.3.2b)

λ3(z) =
−1√
2Ny

(cN |z|2 − bx+ a). (3.3.2c)

Also (λ, λ) = λ1(z)2 + λ2(z)2 − λ3(z)2, λz⊥ = λ1(z)b1(z) + λ2(z)b2(z) and λz = λ3(z)b3(z).

3.4 The Modular Curve

We now consider the modular curve and its associated cusps. We will find Fourier expansions

at these cusps. Good references include [DS05, Section 2.4], [BF06, Section 2] and [FM11, Sec-

tion 2.1].

We identify Γ0(N)\Gr(V (R)) with the modular curve Y0(N) := Γ0(N)\H. We compactify

this by adjoining finitely many cusps i.e. X0(N) := Y0(N)∪Γ0(N)\ (Q ∪ {∞}). The elements

of P1(Q) := Q ∪ {∞} are pairs (m/n) where gcd(m,n) = 1. Matrices
(
a b
c d

)
∈ GL+

2 (Q) act on

(m/n) by
(
a b
c d

)
(m/n) = (am+ bn)/(cm+ dn).

When N is square-free there are
∑
d|N cusps. It is well known [DS05, Section 3.8], [Sch04, Sec-

tion 4] that the cusps of Y0(N) can be represented by 1/d, where d are the divisors of N . Any

two cusps (m/n), (m′/n′) are Γ0(N) equivalent when gcd(n,N) = gcd(n′, N). Letting d′ be

another divisor of N , then WN
d′ maps the cusp 1/d to gcd(d′, d)/(d′d). We observe that all

the cusps can be represented as WN
d ∞, with d running over the divisors of N .

We denote by Iso(V ) the set of isotropic lines in V . Then the map σ
Iso(V )
P1(Q) : P1(Q)→ Iso(V ),

given by the identification (m/n) 7→ Span
(
−mn m2

−n2 mn

)
, is clearly bijective. We can check that

the actions intertwine i.e. σ
Iso(V )
P1(Q) (γ(m/n)) = γ.σ

Iso(V )
P1(Q) (m/n) for (m/n) ∈ P1(Q), γ ∈ SL2(Q).

This means we can view the cusps attached to Y0(N) as Γ0(N)-classes of isotropic lines in

V . Each of these lines can be uniquely represented by a primitive isotropic vector in L up

to sign. We have fixed an orientation earlier so we choose our primitive vectors l′ so that

sgn((−l′, gz.e3) = 1. Then the cusps ∞ and 0 correspond to Γ0(N)-classes of l∞ :=
(

0 1/N
0 0

)
and l0 :=

(
0 0
−1 0

)
. We observe that any other cusp l′ given by γ.l∞ = l′ for some γ =

(
a b
c d

)
∈ Γ

is still positively oriented. Explicitly: (−γ.l∞, gz.e3) = ((cx− a)2 + (cy)2)/
√

2Ny > 0.
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3.5 Twisted Special Cycles

We describe some geodesics in Gr(V (R)) and cycles in Y0(N), which we also associate to an

f ∈ Hk,ρ̃L−
. This will later allow us to describe the singularities of our lift, which will lie along

these cycles. Similar discussions can be found in [FM11, Section 3.1], [BF04, Section 2], [BO10,

Section 5], [FM02, Section 3], [BF06, Section 2] and [Fun02]. We fix a vector λ ∈ V with

positive norm Q(λ) > 0 and λ =
(
b/2N −a/N
c −b/2N

)
.

Definition 3.5.1. We denote

Dλ := {z ∈ Gr(V (R)) | z ⊥ λ} .

for a geodesic in Gr(V (R)). In the upper half plane model we can easily see this is

Dλ
∼=
{
z ∈ H | cN |z|2 − bx+ a = 0

}
. (3.5.1)

We note Dγ.λ = γ.Dλ for γ ∈ SL2(R). If λ ⊥ l∞ and Q(λ) > 0 this is equivalent to when

c = 0, b 6= 0. So z ∈ Dλ is equivalent to when x = a/b i.e. Dλ defines vertical half-line in H.

The other case is when λ 6⊥ l∞. This is equivalent to having c 6= 0, and after completing the

square in x we have that

y =

√
−
(
x− b

2Nc

)2

+
Q(λ)

Nc2

i.e. Dλ defines a semi-circle with centre at (x = b/2Nc, y = 0) and radius
√
Q(λ)/Nc2.

Clearly any two geodesics intersect at most once.

y

x

H

Figure 3.2: Geodesics on the upper-half plane

Any λ⊥ in V (R) can be spanned with two positively oriented isotropic vectors in V (R) (not

necessarily in V or primitive), which it is standard to denote as lλ, l
′

λ. The corresponding
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isotropic lines are uniquely determined and lie in Iso(V (R)) ∼= R ∪ {∞}, so the end points of

Dλ correspond to Span(lλ) and Span(l
′

λ) under the σ
Iso(V (R))
P1(Q) map. So our first case, λ ⊥ l∞,

is when Dλ joins the cusps ∞ and a/b. In this case Q(λ)/N ∈ (Q×)2. The second case,

λ 6⊥ l∞, is when Dλ joins the “cusps” b/2Nc±
√
Q(λ)/Nc2 which are clearly “rational cusps”

if and only if Q(λ)/N ∈ (Q×)2.

We will also need an orientation of the geodesics. In Section 3.3 we fixed an oriented basis

{b1(z), b2(z), b3(z)} for V (R) and Gr(V (R)). we orient Dλ such that lλ, λ, l
′

λ is also a positively

oriented basis of V . This ensures Dγ.λ and γ.Dλ both have the same orientation. Using the

upper half-plane model the geodesics were defined by a, b, c ∈ Z. In the case c = 0, b 6= 0 (a

vertical half-line), this is oriented towards i∞ if b > 0 and in reverse if b < 0. When c 6= 0 the

semi-circle is oriented clockwise if c > 0 and anti-clockwise if c < 0.

Definition 3.5.2. We let the stabiliser of λ in Γ0(N) be

Γλ := {γ ∈ Γ0(N) | γ.λ = λ} .

We let Γλ be the image of the stabiliser in PSL2(Z). We denote by Z(λ), the image of the

quotient Γλ\Dλ in the modular curve Y0(N). We call Z(λ) a cycle.

In other words, cycles are “geodesics in the modular curve”. We classify these into two types.

The cycle Z(λ) is an infinite (or closed) geodesic in Y0(N), this is exactly when Γλ is trivial

(or infinite cyclic). This is exactly when λ⊥ ⊂ V is isotropic (or anisotropic). Using our earlier

discussion λ⊥ ⊂ V is isotropic (or anisotropic) when the isotropic vectors lλ, l
′

λ which span λ⊥

are in V (or V (R)\V ). This happened when Q(λ)/N ∈ (Q×)2 (or Q(λ)/N 6∈ (Q×)2). So if

Dλ is infinite then it joins two “rational” cusps (or closed when it joins two “irrational” cusps).

We will see that the singularities of the lift will depend on a collection of vectors of certain

length and in a certain coset. We form some notation for this. Set D ∈ Z and write

LD := {λ ∈ L′ | Q(λ) = D/4N} .

Such vectors only exist if D ≡ s2 (mod 4N) for some s ∈ Z. Then, for h ∈ L′/L, we write

LD,h := {λ ∈ L′ | Q(λ) = D/(4N), λ ≡ h (mod L)} . (3.5.2)

Again such vectors only exist if D ≡ h2 (mod 4N). The group Γ0(N) acts by conjugation on

LD,h and it is well known, by reduction theory on binary quadratic forms, that there are only

finitely many orbits of LD,h (as long as D 6= 0).
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Definition 3.5.3. Let D be a fundamental discriminant with r ∈ Z such that D ≡ r2

(mod 4N) and let h ∈ L′/L. Let m ∈ Z−sgn(D)Q(h) with m < 0. We define d := 4Nsgn(D)m

and we have the following formal linear combination on Y0(N):

Z
′

D,r(m,h) :=
∑

λ∈L−dD,rh/Γ0(N)

χD(λ)Z(λ).

We call Z
′

D,r(m,h) a twisted special cycle. We write ZD,r(m,h) for its image in H ∼=
Gr(V (R)). Let k ∈ 1

2Z and let f ∈ Hk,ρ̃L−
with expansion as in (2.5.2). Then we call

Z
′

D,r(f) :=
∑

h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c+(m,h)Z
′

D,r(m,h)

an associated twisted special cycle. We denote ZD,r(f) for its image in H ∼= Gr(V (R)).

We remember that χD is invariant under the action of Γ0(N). We can think of a twisted spe-

cial cycle roughly as being a finite linear combination of twisted cycles, associated to vectors

of norm −m|D| > 0 and twisted coset rh. The associated twisted special cycle depends only

on the principal part of f that has only finitely many c+(m,h) terms for m < 0, so again this

is a finite collection of cycles. We also note that ZD,r(f) ⊂ H is a nowhere dense set.

Remark 3.5.4. There always exists a vector λ ∈ L−dD,rh such that χD(λ) 6= 0 (in particular

Q(λ) = −m|D| so in Definition 3.2.2, we certainly have 4NQ(λ)/D = −4Nsgn(D)m ≡ 0

(mod 4N)). This implies ZD,r(f) is the empty set if and only if the principal part of f is

constant. When the principal part of f is not constant we know that n0 (from (2.5.6)) is

positive, n0 > 0. For each −n0 ≤ n < 0 there is some associated geodesics Dλ, where Q(λ) =

−n|D|. In the case λ ⊥ l∞, the geodesics Dλ are semi-circles with radius
√
−n|D|/Nc2 ≤√

n0|D|/N . We conclude that, above this “height” we will only find vertical half-line geodesics

associated to ZD,r(f). Within these semi-circles we have bounded connected components and

above them we have unbounded connected components (which are regions between two vertical

half-lines).

3.6 Twisted Siegel Theta Functions

In this section we describe some twisted Siegel theta functions. We work with the lattice L

from earlier, which allows us to twist these theta functions with the genus character. Fol-

lowing Remark 3.2.1 we construct these in the same manner that we did in Section 2.6. We

discuss the transformation properties of the twisted Siegel theta functions. We then define

two examples with some well chosen polynomials. These examples will be the kernel functions

we use to define the singular theta lift and the Shimura lift. We will then show the transfor-

mation properties of the kernel functions in both variables, τ and z. We fix L, (V,Q), D, r and
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λ =
(
b/2N −a/N
c −b/2N

)
∈ L′, as before. We also let τ = u+iv ∈ H and z = x+iy ∈ H ∼= Gr(V (R)).

Mirroring the construction in (2.6.1) we work with respect to the lattice DL and quadratic

form QD. We fix an f ∈ S(V (R)) which satisfies the first spherical property i.e.

MSch [gθ] f(λ) = σ1/2 (g̃θ)
r′
f(λ) (3.6.1)

for g̃θ ∈ S̃O(2) and some fixed r′ ∈ Z. We then let

ΘL,D,r(τ, f) :=
∑

h∈L′/L

∑
h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′

j(gτ , i)
r′/2χD(λ)MSch [gτ ] f(λ)eh. (3.6.2)

Let σ : V (R) → R2,1 be an isometry for the quadratic form Q. We then define σD :=

|D|−1/2σ, which is an isometry σD : V (R) → R2,1 for the quadratic form QD. We also set p

a homogeneous polynomial on R2,1 of degree (m+,m−) and set r′ = 2− 1 + 2m+ − 2m−. We

define the following functions:

ϕ0(λ, z, σD, p,D) := |D|(m++m−)/2 exp (−∆/8π) (p)(σD(λ))e

(
Qz(λ)

|D| i
)
,

ϕ0(λ, τ, z, σ, p,D) := v1/2+m−χD(λ) exp (−|D|∆/8πv) (p)(σ(λ))e

(
Q(λ)

|D| u+
Qz(λ)

|D| iv
)
.

Using Lemma 2.6.9 for the lattice DL with quadratic form QD we see that ϕ0(λ, z, σD, p,D)

satisfies (3.6.1). We then use the fact that

exp (−∆/8π) (p)(σD(
√
vλ)) =

(
v

|D|

)(m++m−)/2

exp (−|D|∆/8πv) (p)(σ(λ))

to obtain the following:

ΘL,D,r(τ, ϕ0(λ, z, σD, p,D)

=
∑

h∈L′/L

∑
h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′

j(gτ , i)
r′/2χD(λ)MSch [gτ ]ϕ0(λ, z, σD, p,D)eh

=
∑

h∈L′/L

∑
h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′

ϕ0(λ, τ, z, σ, p,D)eh

=
∑

h∈L′/L

∑
λ∈L

∑
h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

ϕ0(Dλ+ h′, τ, z, σ, p,D)eh.

We then make the “substitution” h′ 7→ h′ −Dλ to get

=
∑

h∈L′/L

∑
h′∈L′

h′≡rh(L)
Q(h′)≡DQ(h)(D)

ϕ(h′, τ, z, σ, p,D)eh.

This motivates the following definition.
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Definition 3.6.1. Let h ∈ L′/L, let σ : V (R) → R2,1 be an isometry and let p be a homo-

geneous polynomial on R2,1 of degree (m+,m−). Then the twisted Siegel theta function

is

ϑL+h,D,r(τ, z, σ, p) :=
∑

λ∈L+h
Q(λ)≡DQ(h)(D)

ϕ0(λ, τ, z, σ, p,D).

The C[L′/L]-valued twisted Siegel theta function is

~ϑL,D,r(τ, z, σ, p) :=
∑

h∈L′/L

ϑL+h,D,r(τ, z, σ, p)eh = ΘL,D,r(τ, ϕ0(λ, z, σ, p,D)).

We observe as v → ∞ then ϑL+h(τ, z, σ, p) = O(v1/2+m−), uniformly in u. The next lemma

mirrors Corollary 2.6.13.

Lemma 3.6.2. The twisted Siegel theta function ~ϑL(τ, z, σ, p) ∈ Ar/2,ρ̃L is an automorphic

form of weight (1/2 +m+ −m−). That is, for (γ, φγ) ∈ Γ̃

~ϑL(γτ, z, σ, p) = φγ(τ)r
′
ρ̃L(γ, φγ) ~ϑL(τ, z, σ, p).

Proof. We remember gγτ = γgτgθ for some gθ ∈ SO(2) and j(γgτgθ, i) = j(γ, τ)j(gτ , i)j(gθ, i).

Then, using Proposition 3.2.6 and the fact that ϕ0(λ, z, σ, p,D) satisfies (3.6.1), we see for each

coset

ϕ0(λ, γ.τ, z, σ, p,D)

=
∑

h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′

j((γ, τ)j(gτ , i)j(gθ, i))
r′/2χD(λ)MSch [γgτgθ]ϕ0(λ, z, σ, p,D)eh

= j(γ, τ)r
′/2ρ̃L(γ, φγ)ϕ0(λ, τ, z, σ, p,D).

3.6.1 Kernel Functions

We will use two examples of these twisted Siegel theta functions to form the kernels of our

lift. We first consider their polynomials.

We first define the vectors v(z) := −gz.e3 and v(z⊥) := gz.(e1 + ie2). We notice v(z) spans z ∈
Gr(V (R)) and b1(z), b2(z) span z⊥, so v(z⊥) ∈ z⊥ ∈ V (C). Further we have (v(z⊥), v(z⊥)) = 0

and (v(z⊥), v(z⊥)) = 2 > 0. We then consider the two polynomials

(λ, v(z)) = −(λ, b3(z)) = −(λ, gz.e3) = λ3(z),

y(λ, v(z⊥)) = y(λ, b1(z) + ib2(z)) = y(λ, gz.(e1 + ie2)) = y(λ1(z) + iλ2(z)).
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We will often denote these as pz(λ) and qz(λ) respectively. For λ :=
(
b/2N −a/N
c −b/2N

)
we have

pz(λ) := (λ, v(z)) =
−1√
2Ny

(cN |z|2 − bx+ a), (3.6.3)

qz(λ) := y(λ, v(z⊥)) =
−1√
2N

(
cNz2 − bz + a

)
. (3.6.4)

Lemma 3.6.3. Let k ∈ Z, k > 0. The polynomials (λ, v(z))(λ, v(z⊥)y)k−1 and (λ, v(z⊥)/y)k

are harmonic and of degree (k − 1, 1) and (k, 0).

Proof. We remember Q(λ) = 1
2

(
λ1(z)2 + λ2(z)2 − λ3(z)2

)
so we have an explicit isometry

σz : V (R)→ R2,1 given by

σz(λ) :=

(
1√
2
λ1(z),

1√
2
λ2(z),

1√
2
λ3(z)

)
. (3.6.5)

Thus, if p(σz(λ)) = (λ, v(z)) and q(σz(λ)) = y(λ, v(z⊥))) then p(x1, x2, x3) =
√

2x3 and

q(x1, x2, x3) = y
√

2(x1 + ix2) i.e. they are polynomials of degrees (0, 1) and (1, 0) in R2,1.

We set pk(x1, x2, x3) := (
√

2x3)(y
√

2(x1 + ix2))k−1 and p∗k(x1, x2, x3) := (
√

2(x1 + ix2)/y)k .

These are both are harmonic as it is easily verified, for example, that

∂2pk
∂x2

1

+
∂2pk
∂x2

2

+
∂2pk
∂x2

3

= 0.

We now define the kernel function.

Definition 3.6.4. Let h ∈ L′/L and let k ∈ Z, k > 0. Then the kernel function is

θD,r,h,k(τ, z) := v3/2
∑

λ∈L+rh
Q(λ)≡DQ(h)(D)

χD(λ)(λ, v(z))(λ, v(z⊥)y)k−1e

(
Q(λ)

|D| u+
Qz(λ)

|D| iv
)
.

The C[L′/L]-valued kernel function is

ΘD,r,k(τ, z) :=
∑

h∈L′/L

θD,r,h,k(τ, z)eh.

We can also rewrite this definition in the following useful forms:

θD,r,h,k(τ, z) = ϑL+h,D,r(τ, z, σz, pk)

=
∑

λ∈L+rh
Q(λ)≡DQ(h)(D)

ϕ0(λ, τ, z, σz, pk, D)

= v3/2
∑

λ∈L+rh
Q(λ)≡DQ(h)(D)

−χD(λ)(cN |z|2 − bx+ a)√
2Ny

(
−
(
cNz2 − bz + a

)
√

2N

)k−1

× e
((

b2

4N
− ac

)
u

|D| +

(
b2

4N
− ac+

(cN |z|2 − bx+ a)2

2Ny2

)
iv

|D|

)
. (3.6.6)

Definition 2.6.11 tells us this is a real analytic function in τ and z. There exists a C > 0

such that ΘD,r,k(τ, z) = O(e−Cv) as v → ∞, uniformly in u. This exponential decay is a
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better asymptotic than the polynomial growth given in [Höv12] and Definition 2.6.11. This is

because in our case the polynomial kills the term when λ = 0.

We will often just denote θD,r,h,k(τ, z) as θh,k(τ, z) and ΘD,r,k(τ, z) as Θk(τ, z) when the

context is clear. We also have

ΘD,r,k(τ, z) = ΘD,r,k(−τ ,−z). (3.6.7)

Remark 3.6.5. Let us restrict to the case k ∈ 2Z, k > 0, N = 1 and D = 1. Then the kernel

function agrees, up to the constant i, with the scalar-valued theta function “Θ1(τ, z)” discussed

in [BKZ14, Section 1]. In the scalar-valued case we need k to be even, as otherwise the sum over

λ and −λ cancel and the theta function is zero. The theta function “Θ∗(z, τ)” as denoted

in [BKV13, (1.6)] also matches our definition. In particular, iΘ∗(−z, τ) = iΘ∗(z,−τ) =

vk−3/2Θ1(τ, z). In the case k = 1 our kernel function vk−3/2ΘD,r,k(τ,−z) matches the theta

function defined in [Höv12, Definition 2.5] (noting that in [Höv12] the lattice is of signature

(1, 2)). The kernel function (in the case k = 1) is also used in [AGOR14, Section 3] to define

an adjoint lift to the one considered in [Höv12].

Definition 3.6.6. Let h ∈ L′/L and k ∈ Z, k > 0. Then the Shintani kernel function is

θ∗D,r,h,k(τ, z) := v1/2
∑

λ∈L+rh
Q(λ)≡DQ(h)(D)

χD(λ)

(
(λ, v(z⊥))

y

)k
e

(
Q(λ)

|D| u+
Qz(λ)

|D| iv
)

=
∑

λ∈L+rh
Q(λ)≡DQ(h)(D)

ϕ0(λ, τ, z, σz, p
∗
k, D)

The C[L′/L]-valued Shintani kernel function is

Θ∗D,r,k(τ, z) :=
∑

h∈L′/L

θ∗D,r,h,k(τ, z)eh.

There exists a C > 0 such that Θ∗D,r,k(τ, z) = O(e−Cv) as v →∞ uniformly in u. We have

Θ∗D,r,k(τ, z) = Θ∗D,r,k(−τ ,−z).

Remark 3.6.7. Let us restrict to the case k ∈ 2Z, k > 0, N = 1 and D = 1. Then the Shintani

kernel function agrees, up to constant with the theta function “Θ2(τ, z)” defined in [BKZ14,

Section 1]. It also agrees with the theta function “Θ(z, τ)” as denoted in [BKV13, (1.6)]. This

kernel function actually goes back to [Shi75] (see also [Niw75] and [Cip83]).

3.6.2 Transformation Properties

Next, we examine the transformation properties of these kernel functions in both variables τ

and z. We will integrate in τ so our singular theta lift will be a function in z. In the z variable

we have weight 2− 2k.
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Theorem 3.6.8. For τ ∈ H,Θk(τ, z) ∈ Ak−3/2,ρ̃L and Θ∗k(τ, z) ∈ Ak+1/2,ρ̃L .

Proof. Easily seen using Lemma 3.6.3 and Lemma 3.6.2.

When considering the z variable we will need two short lemmas.

Lemma 3.6.9. The polynomial qz(λ) transforms under the action of γ ∈ SL2(R) such that

qγ.z(γ.λ) = j(γ, z)−2qz(λ).

Proof. We set fz(λ) = −
√

2qz(λ)/
√
N = 1

N

(
cNz2 − bz + a

)
and

α =

 0 1

−1 0

 and λ =

b/2N −a/N
c −b/2N

 .

We notice α−1γα = γ−1 for all elements γ ∈ SL2(R) and we can write

fz(λ) =
(
z 1

) c −b/2N
−b/2N a/N

z
1

 =
(
z 1

)
αλ

z
1

 .

Then applying the action of γ to both z and λ

fγ.z(γ.λ) =
(
γ.z 1

)
α
(
γλγ−1

)γ.z
1


= j(γ, z)−1

(
z 1

)
γTαγλγ−1j(γ, z)−1γ

z
1


= j(γ, z)−2

(
z 1

)
α(α−1γTα)γλ

z
1

 = j(γ, z)−2fz(λ).

Lemma 3.6.10. The polynomial gz(λ) = qz(λ)/ Im(z)2 transforms under the action of γ ∈
SL2(R) such that g−γ.z(γ.λ) = j(γ, z)2g−z(λ).

Proof. Recall that Im(γ.z) = Im(z)
j(γ,z)j(γ,z) for all elements γ ∈ SL2(R). Combining this with

Lemma 3.6.9 we have

g−γ.z(γ.λ) =
q(−γ).z(−γ.λ)

Im((−γ).z)2
=

q−z(λ)

Im(−z)2

j(−γ, z)2j(−γ, z)2

j(−γ, z)2
= j(γ, z)2g−z(λ).

Theorem 3.6.11. The kernel functions Θk(τ, z),Θ∗k(τ,−z) transform in the variable z ∈
Gr(V (R)) under the action of Γ0(N) with weight 2 − 2k and 2k respectively. That is, for all

γ ∈ Γ0(N) we have

Θk(τ, z)|2−2kγ = j(γ, z)2k−2Θk(τ, γ.z) = Θk(τ, z),

Θ∗k(τ,−z)|2kγ = j(γ, z)−2kΘ∗k(τ,−γ.z) = Θ∗k(τ,−z).
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Proof. We fix z ∈ Gr(L), γ ∈ Γ0(N) and a coset h ∈ L
′
/L and show the transformation

property for the scalar-valued function θh,k(τ, z). We can safely apply the action of γ on the

λ ∈ L + rh terms leaving θh,k(τ, z) unchanged. This is because Γ0(N) acts trivially on L′/L

(using Proposition 3.1.3) and we sum over all λ ∈ L+ rh. Then, applying the action of γ on

z as well, we have

θh,k(τ, γ.z) = v3/2
∑

λ∈L+rh
Q(λ)≡DQ(h)(D)

χD(γ.λ) · pγ.z(γ.λ) · (qγ.z(γ.λ))k−1

× e
(
Q(γ.λ)

|D| u+
Q(γ.z)(γ.λ)

|D| iv

)
.

We then note that the quadratic form is invariant under the action of Γ0(N) and

(γ.λ)(γ.z) = γ.(λz),

(γ.λ)(γ.z)⊥ = γ.(λz⊥),

(γ.λ, v(γ.z)) = −(γ.λ, σ
V−1

H (γ.z)) = −(γ.λ, γ.σ
V−1

H (z)) = (λ, v(z)).

Finally Proposition 3.2.4 tells us that χD(γ.λ) = χD(λ). Combining these facts with Lemma

3.6.9, we obtain j(γ, z)2−2kθh,k(τ, z) as hoped. The proof for the Shintani kernel function

follows similarly using Lemma 3.6.10.

Much later we will need to find the Fourier expansion and asymptotic behaviour at cusps

other than l∞. We will use the following.

Proposition 3.6.12. The kernel function Θk(τ, z) transforms in the variable z ∈ Gr(V (R))

under the action of Atkin-Lehner involutions such that

Θk(τ,WN
m .z) = j(WN

m , z)
2−2k

∑
h∈L′/L

θWN
m .h,k

(τ, z)eh

for all WN
m where m is an exact divisor of N .

Proof. This follows in the same way as Theorem 3.6.11. Noting that WN
m ⊂ SL2(R), and

remembering the genus character was also invariant under Atkin-Lehner involutions (Proposi-

tion 3.2.4). However, there is a difference when applying the action of WN
m to the λ ∈ L+ rh

terms. We know WN
m maps L to itself but we may not necessarily stay in the same coset,

so to leave our function unchanged we move to the coset (WN
m )−1.h = WN

m .h, (remembering

(WN
m )2 = 1 (mod Γ0(N)) from Section 2.5.4).



Chapter 4

The Singular Theta Lift

After this groundwork, we can now finally construct the main item of our work: a regu-

larised twisted singular theta lift. This is defined by integrating weak harmonic Maass forms

against the kernel function, over the τ variable. This Petersson scalar product needs to

be regularised. To do this, we (essentially) use a standard method of Harvey, Moore and

Borcherds [HM96,Bor98]. Our lift is then an extension of the Borcherds lift [Bor98].

There are three sections in this chapter. In Section 4.1 we first discuss the definition of our

lift and how it relates to other lifts. We then check this integral does indeed converge.

We then discuss the properties of this lift. In particular in Section 4.2 we show that we obtain

some weight 2− 2k forms for the group Γ0(N). These forms have some well described singu-

larities along certain geodesics associated to the input f . The geodesics divide the upper-half

plane into connected components. We provide wall crossing formulas, displaying how the

function changes as we move between these components.

Finally in Section 4.3 we find that the lift is harmonic (and therefore real analytic and smooth)

within these connected components.

Further discussion of similar regularised lifts can be found in many of the previous references

such as [Bor98,BF04,BO10,BKV13,Bru02].

Throughout the rest of this thesis we will fix the following notation, unless stated otherwise.

We fix L as in (3.1.3), V as in (3.1.1) and N ∈ N. We also fix D ∈ Z, a fundamental

discriminant, r ∈ Z with D ≡ r2 (mod 4N). We fix z ∈ Gr(V (R)) which is identified with

z = x+ iy ∈ H and fix τ = u+ iv ∈ H and k ∈ Z, k > 0. We will also denote ρ := ρ̃L.

60
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4.1 Definition

Definition 4.1.1. Let k ∈ Z, k ≥ 1 and f ∈ H3/2−k,ρ. Then we will call

ΦD,r,k(z, f) :=
(
f(τ), vk−3/2ΘD,r,k(τ, z)

)reg

3/2−k,ρ
=

∫ reg

τ∈F

〈
f(τ),ΘD,r,k(τ, z)

〉 dudv
v2

the singular theta lift.

We check this definition makes sense. We have

vk−3/2θD,r,h,k(τ, z) = vk
∑

λ∈L+rh
Q(λ)≡DQ(h)(D)

χD(λ)pz(λ)qz(λ)
k−1

e

(−Q(λ)

|D| u+
Qz(λ)

|D| iv
)
.

(4.1.1)

Thus, using 2.6.11 we see that (4.1.1) is a twisted Siegel theta function for the lattice L−

with quadratic form −Q. This space is of signature (1, 2). We have a harmonic homogeneous

polynomial of degree (1, k − 1). So (4.1.1) transforms with respect to ρ with weight 3/2− k,

using Lemma 2.6.13.

Lemma 2.5.26 tells us that f can increase exponentially as v → ∞. So the integral could

diverge in general, hence the regularisation. Our first task is to check this regularised Petersson

scalar product does indeed converge, which we do shortly in Theorem 4.1.3. As ever, we often

drop D and r from the notation and often refer to ΦD,r,k(z, f) as just “the lift”.

Remark 4.1.2. This choice of regularisation essentially just prescribes that we integrate first

over u, and then over v. The original regularisation of Harvey, Moore and Borcherds would

have been defined as, the constant term of the Laurent expansion in s ∈ C of

ΦD,r,k(z, f) :=
(
f(τ), vk−3/2−sΘD,r,k(τ, z)

)reg

3/2−k,ρ

at s = 0. This is a stronger regularisation, but it coincides with our version when the constant

term vanishes. In particular, as we have a polynomial term attached to our kernel function,

the integral vanishes when λ ∈ L′, λ = 0. See also [Bru02, Proposition 2.11].

The singular theta lift has an input of harmonic weak Maass forms and is also twisted. It forms

an extension in the case of signature (2, 1) of the original Borcherds lift. Borcherds lift was

not twisted and he only considered weakly holomorphic modular forms. The Borcherds lift

encompassed many other lifts such as the Shimura lift [Shi73] (which we discuss in more detail

in Chapter 7), the Gritsenko lift [Gri88] and the Doi-Naganuma lift [DN70], see [Bor98, Sec-

tion 14]. [BF04,Bru02] also constructed non-twisted lifts for some harmonic weak Maass forms.
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In the case k = 1 then ΦD,r,k(z, f) exactly coincides with the theta lift “ΦD,r(z, f)” de-

fined in [Höv12, Definition 3.1]. This is because Remark 3.6.5 told us that vk−3/2ΘD,r,k(τ, z)

agrees with the theta function given in [Höv12, Definition 2.5]. Remark 3.6.5 also told us

that thet theta function“v3/2−kθ∗(−z, τ)” from [BKV13, (1.6)] is essentially ΘD,r,k(τ, z) when

N = 1, D = 1. So the theta lift “Φ∗1−k(H)(z)” constructed there is essentially a scalar-valued

version of ΦD,r,k(z, f) in the non-twisted D = 1, level N = 1 case. They then apply this lift

to some Poincaré series.

We now show that the regularised integral does indeed converge. This includes the points

lying on the singularities, which we discuss in Section 4.2. We follow the ideas in [Bru02,

Proposition 2.8], [Bor98, Section 6] and [BF04, Proposition 5.6].

Theorem 4.1.3. The regularised Petersson scalar product ΦD,r,k(z, f) converges pointwise

for any z = x+ iy ∈ H ∼= Gr(V (R)).

Proof. For any fixed z ∈ H ∼= Gr(V (R)), we consider whether the following rectangular

integral converges: ∫ ∞
v=1

∫ 1/2

u=−1/2

〈
f+(τ),ΘD,r,k(τ, z)

〉 dudv
v2

. (4.1.2)

We see, by a standard easy argument, that this suffices. In particular the non-holomorphic

part of f decays exponentially fast (Lemma 2.5.26) and ΘD,r,k(τ, z) also decays exponentially

fast (using the discussion following Definition 3.6.4), as v → ∞. We combine this with the

fact that the integral ∫
τ∈F1

〈
f+(τ),ΘD,r,k(τ, z)

〉 dudv
v2

converges absolutely over the compact region F1.

We then continue, by plugging in some explicit expansions into (4.1.2). We use the expansions

given in (2.5.2) and Definition 3.6.4 to obtain

∑
h∈L′/L

∫ ∞
v=1

∫ 1/2

u=−1/2

∑
n∈Z−sgn(D)Q(h)

n�−∞

∑
λ∈L+rh

Q(λ)≡DQ(h)(D)

c+(n, h)χD(λ)

× pz(λ)qz(λ)k−1e

((
n+

Q(λ)

|D|

)
u

)
e

((
n+

Qz(λ)

|D|

)
iv

)
v−1/2dudv.

The next step is to carry out the integration over u (a compact region). When m ∈ Z,m 6= 0,

then
∫ 1/2

−1/2
e (mu) du = 0 so the integral vanishes unless n = −Q(λ)

|D| i.e. we pick out the 0-th

Fourier coefficient. We also note pz(0) = 0 so we can exclude the case λ = 0. We are left with∫ ∞
v=1

∑
h∈L′/L

∑
λ∈L+rh

Q(λ)≡DQ(h)(D)
λ 6=0

c+
(−Q(λ)

|D| , h

)
χD(λ)pz(λ)qz(λ)k−1e

(−2Q(λz)

|D| iv

)
v−1/2dv.

(4.1.3)
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Here we note that −2Q(λz) = λ3(z)2 = pz(λ)2 and so we need to remember throughout this

proof that terms with Q(λz) = 0 vanish. We swap the integral over v and the summations as

we notice that for v ∈ [1,∞) the series certainly converges absolutely.

Noting that v−1/2 ≤ 1 for 1 ≤ v ≤ ∞, it then suffices to check if the following converges:

∑
h∈L′/L

∑
λ∈L+rh

Q(λ)≡DQ(h)(D)
λ 6=0

∣∣∣∣c+(−Q(λ)

|D| , h

)∣∣∣∣ |pz(λ)| |qz(λ)|k−1
∫ ∞
v=1

e

(−2Q(λz)

|D| iv

)
dv

=
∑

h∈L′/L

∑
λ∈L+rh

Q(λ)≡DQ(h)(D)
λ 6=0

∣∣∣∣c+(−Q(λ)

|D| , h

)∣∣∣∣ |pz(λ)| |qz(λ)|k−1 |D|
4πQ(λz)

e

(−2Q(λz)i

|D|

)

and we know for all λ ∈ L′ that |pz(λ)| =
√
−2Q(λz) and |qz(λ)| = y

√
2Q(λz⊥) so we have

=
|D|

2
√

2π

∑
h∈L′/L

∑
λ∈L+rh

Q(λ)≡DQ(h)(D)
λ6=0

∣∣∣∣c+(−Q(λ)

|D| , h

)∣∣∣∣ (y
√

2Q(λz⊥))k−1√
−Q(λz)

e

(−2Q(λz)i

|D|

)
. (4.1.4)

We now split the sum into three parts when Q(λ) = 0, Q(λ) < 0 and Q(λ) > 0 and check each

one converges.

Case Q(λ) = 0:

If Q(λ) = 0 then Q(λz⊥) = −Q(λz) = Qz(λ)/2. Then using 4.1.4 we obtain

|D|
2π

∑
h∈L′/L
Q(h)∈Z

∣∣c+ (0, h)
∣∣ ∑
λ∈L+rh
λ 6=0

Q(λ)=0

(y
√
Qz(λ))k−1√
Qz(λ)

e

(
Qz(λ)i

|D|

)
.

It is clear this converges as the sum over λ ∈ L+ rh is a subseries of a convergent theta series,

for the positive definite quadratic form Qz(λ).

Case Q(λ) < 0:

Again we bound (4.1.4) with a function in terms of Qz(λ). We have from Lemma 2.5.27 that

there exists a constant C > 0 such that
∣∣∣c+ (−Q(λ)

|D| , h
)∣∣∣ ≤ CeC√−Q(λ). We also observe in this

case that Qz(λ) ≥ −Q(λ), Qz(λ) > Q(λz⊥) and −2Q(λz) = −Q(λz)−Q(λ)+Q(λz⊥) > Qz(λ).

Combining these facts we see that (4.1.4) is less than

C|D|
2π

∑
h∈L′/L

∑
λ∈L+rh

Q(λ)≡DQ(h)(D)
Q(λ)<0

(y
√

2Qz(λ))k−1√
Qz(λ)

eC
√
Qz(λ)− 2πQz(λ)

|D| .

This once again converges courtesy of being a subseries of a convergent theta series, for the

positive definite quadratic form Qz(λ).
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Case Q(λ) > 0:

We remember from (2.5.6) that there exists an n0 > 0 such that c+(m,h) = 0 for all m <

−n0, h ∈ L′/L, i.e. there are only finitely many c+(m,h) 6= 0 with m < 0. So we see (4.1.4)

vanishes except for finitely many m where −n0 ≤ m < 0. We have −Q(λ) = |D|m. We use

(4.1.4). For each m it then suffices to check that

|D|
2
√

2π

∑
λ∈L+rh

−Q(λ)=|D|m
Q(λz) 6=0

(y
√

2Q(λz⊥))k−1√
−Q(λz)

e

(−2Q(λz)i

|D|

)
(4.1.5)

converges (the sums over m ∈ Z − sgn(D),−n0 ≤ m < 0 and h ∈ L′/L are finite). We know

from [Bru02, p.50] that for any C ≥ 0 and any compact U ⊂ Gr(L) the set

{λ ∈ L′ | −Q(λ) = |D|m, ∃z′ ∈ U with −Q(λz′) ≤ C} (4.1.6)

is finite. I.e. there are only finitely many small −Q(λz) ≥ 0 terms. Let λ ∈ L′ be such that

−Q(λ) = |D|m andQ(λz) 6= 0. Then there exists an ε > 0 such that−Q(λz) > ε for all λ. This

means we have Qz(λ) ≥ Q(λz⊥),−Q(λz) > ε and −2Q(λz) = −Q(λ)+Qz(λ) = |D|m+Qz(λ).

These facts tell us that (4.1.5) is less than

|D|
2
√

2επ
e−2πm

∑
λ∈L+rh

−Q(λ)=|D|m
Q(λz) 6=0

(y
√

2Qz(λ))k−1e

(
Qz(λ)i

|D|

)
.

Which once again converges courtesy of being a subseries of a convergent theta series, for the

positive definite quadratic form Qz(λ).

4.2 The Singularities

We investigate the properties of the lift ΦD,r,k(z, f) further. In particular, in this section we

observe its weight in z and describe its singularities. We show the lift is a smooth function

away from these singularities. The singularities lie on the twisted special cycles associated

to f , as discussed in Definition 3.5.3. We have already seen in Theorem 4.1.3 that our lift

ΦD,r,k(z, f) converges pointwise so it will take meaningful values on these singularities. These

types of singularities are seen in [Bor98, Section 6] and they divide Gr(V (R)) ∼= H into Weyl

chambers with wall crossing formulas.

We first look at the concept of a jump (step) singularity on a geodesic Dλ.

Definition 4.2.1. As in Definition 3.5.1 we fix λ ∈ V,Q(λ) > 0 and Dλ ⊂ H (the associated

oriented geodesic). For each fixed point z0 ∈ Dλ, we associate an open subset U ⊂ H which

surrounds z0. For any point ω ∈ Dλ we denote Uω for an open subset Uω ⊂ U (if it exists)
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which surrounds ω. Let g : U\Dλ → C be a smooth function. We also define a function

g̃ : Uw\Dλ → C as

g̃ :=

g(z) if (λ, v(z)) > 0,

g(z) + c if (λ, v(z)) < 0.

where c ∈ C is a constant. Then we will say that g has a jump singularity along Dλ, in U ,

of size c ∈ C, if for any point ω ∈ Dλ, there exists a Uω such that g̃ has a continuation to a

smooth function on Uω.

Let λ ∈ V,Q(λ) > 0. Then the function (λ,v(z))
|(λ,v(z))| (which we define to equal 0 when (λ, v(z)) =

0) is a locally constant function on H\Dλ that has a jump singularity of size 2 along Dλ

(given our orientation in Section 3.5). In particular, (λ,v(z))
|(λ,v(z))| is clearly equal to +1 (or −1)

if (λ, v(z)) > 0 (or (λ, v(z)) < 0). In fact this function has a a jump singularity of size 2

irrespective of its value along the singularity (when (λ, v(z)) = 0).

We are now ready to state and prove the main theorem in this section. We will observe the role

that the twisted cycles Z ′D,r(f) play. In particular, the singularities lie on ZD,r(f). We describe

the singularities explicitly. We also show the lift to be a smooth function on H\ZD,r(f).

Proofs in other similar cases can be found in [Bor98, Theorem 6.2], [Bru02, Theorem 2.12]

and [BF04, Proposition 5.6].

Theorem 4.2.2. For f ∈ H3/2−k,ρ with Fourier expansion as in 2.5.2 then

1. ΦD,r,k(z, f) has weight 2− 2k for Γ0(N) i.e. (ΦD,r,k(z, f)|2−2kγ) = ΦD,r,k(z, f) for all

γ ∈ Γ0(N).

2. ΦD,r,k(z, f) is a smooth function on H\ZD,r(f).

3. ΦD,r,k(z, f) has singularities along ZD,r(f). More precisely for a point z0 ∈ H exists an

open neighbourhood U ⊂ H (with compact closure U ⊂ H) so that the function

ΦD,r,k(z, f)−
√
|D|
2

∑
h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c+ (m,h)
∑

λ∈L−dD,rh
λ⊥z0

χD(λ)
(λ, v(z))

|(λ, v(z))|qz(λ)k−1

(where for z ∈ U, (λ, v(z)) = 0 we let the term on the right hand side vanish) can be

continued to a smooth function on U .

Remarks 4.2.3. We make a few observations before proceeding with the proof. We remember

ZD,r(f) was the image of Z ′D,r(f) in H and Z ′D,r(f) consisted of only finitely many twisted

cycles (on Y0(N)). For any given point z0 ∈ H we will see the sum λ ∈ L−dD,rh, λ ⊥ z0 is finite

i.e. each z0 lies on finitely may geodesics. The singularities have “polynomial jumps”. This

is because we had qz(λ) = −1√
2N

(
cNz2 − bz + a

)
which is simply a (holomorphic) polynomial
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in z and (λ,v(z))
|(λ,v(z))| is equal to either +1 or −1 (when λ 6⊥ z).

Roughly, the final part of our theorem then says our function is not smooth only when z0 ∈ H

happens to lie on a geodesic (or finitely many geodesics) associated to f . The lift can be made

smooth by adding a polynomial (or finitely many polynomials) for points on one side of the

geodesic, subtracting the same polynomial on the other side and making no contribution if a

point lies on the geodesic. The value of ΦD,r,k(z, f) along some geodesic is the average of the

values of ΦD,r,k(z, f) in the adjacent connected components. This corresponds to condition 3

in our definition of a locally harmonic weak Maass form, Definition 2.5.30.

We will shortly see in Theorem 4.3.7 that ΦD,r,k(z, f) is not just smooth, but actually har-

monic, and therefore real analytic for z ∈ H\ZD,r(f).

We observe that the singularities depend only on Pf the principal part of f , as we only have

c+(m,h) coefficients where m < 0. In fact we had in Section 3.5 that ZD,r(f) is the empty

set if and only if the principal part of f is constant. So ΦD,r,k(z, f) will have no singularities

to consider and be smooth for all z ∈ H if f ∈M3/2−k,ρ. However when the principal part is

non-constant (which we remember certainly happens if f− 6≡ 0) then the jump singularities

ensure that ΦD,r,k is non-constant. So when f− 6≡ 0 we do not lift to the 0 function and our

lift is not trivial.

Proof. The first statement is clear as we showed in Theorem 3.6.11 that the kernel function is

of weight 2− 2k in the z variable for the group Γ0(N) (we have integrated in the τ variable).

Following the notation from [Bru02, Theorem 2.12] we denote f ≈ g if f − g can be continued

to a smooth function on H in which case we say f has a singularity of type g. If f − g can

only be continued to a smooth function locally i.e. on U ⊂ H then we write f ≈U g.

Following the early arguments in Theorem 4.1.3 we see that the integral of the non-holomorphic

part f− and the integral over the compact region F1 do not contribute to the singularities.

These parts converge absolutely and therefore define a real analytic (and therefore smooth)

function on H. It then suffices, using (4.1.3), to consider

ΦD,r,k(z, f) ≈∫ ∞
v=1

∑
h∈L′/L

∑
λ∈L+rh

Q(λ)≡DQ(h)(D)
λ6=0

c+
(−Q(λ)

|D| , h

)
χD(λ)pz(λ)qz(λ)k−1e

(−2Q(λz)

|D| iv

)
v−1/2dv.
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A function is smooth (a C∞-function) if all orders of its derivatives exist and are continuous.

So we would like to show that, for all orders of partial derivatives of z = x+ iy ∈ H, then the

integral over Ft converges locally uniformly and absolutely as t→∞.

We remember that Q(λz) ≤ 0 for all λ ∈ L. In Theorem 4.1.3 we have seen that for a fixed

z = x + iy ∈ H then this integral is absolutely convergent (it was bounded by some positive

definite theta series in Qz(λ)). We consider the cases of Q(λ) < 0, Q(λ) = 0.

We can then easily adapt the arguments in Theorem 4.1.3 to show local uniform and absolute

convergence of this integral. We can do this, if for any point z0 ∈ H there exists an open

subset U ⊂ H (with compact closure U ⊂ H) and a constant ε > 0 such that Q(λz) < ε for

all λ ∈ L′, λ 6= 0, Q(λ) ≤ 0 and z ∈ U . I.e. Q(λz) 6= 0. This is easily seen to be true, as

in [Höv12, Equation 3.17]. The partial derivatives of this term also clearly converge locally

uniformly and absolutely. This is because after differentiating we will still have a similar series,

where the identical exponential term guarantees convergence.

We fix a z0 ∈ H. We have just seen that only the terms where Q(λ) > 0 contribute to the

singularities. It then suffices, using the discussion preceding (4.1.5), to consider

ΦD,r,k(z, f) ≈
∑

h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c+ (m,h)

×
∫ ∞
v=1

∑
λ∈L−dD,rh

χD(λ)pz(λ)qz(λ)k−1e

(−2Q(λz)

|D| iv

)
v−1/2dv.

Where we observe that using (3.5.2) the set L−dD,rh is exactly the vectors λ ∈ L+ rh where

−Q(λ) = |D|m. We now split the sum over λ ∈ L−dD,rh into two sums. One over λ ⊥ z0 and

one over λ 6⊥ z0. We first consider when λ 6⊥ z0.

As before, we adapt the proof from Theorem 4.1.3. Once again this will suffice if for z0 ∈ H

there exists an open subset U ⊂ H (with compact closure U ⊂ H) and a constant ε > 0 such

that Q(λz) < ε for all λ ∈ L−dD,rh, λ 6⊥ z0 and z ∈ U . This is true using (4.1.6) and noting

that λ 6⊥ z0 means we can choose a neighbourhood U of z0 small enough such that Q(λz) 6= 0.

Finally we look at the sum over λ ∈ L−dD,rh where λ ⊥ z0. We first notice that λ ⊥ z0

means that Q(λz0) = 0. We can then use (4.1.6) to see we actually have a finite sum over

λ ∈ L−dD,rh, λ ⊥ z0. I.e. any given z0 ∈ H lies on only finitely many geodesics associated to f

and only contributes finitely many terms to the singularities. We now look at the remaining
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integral. We have∫ ∞
v=1

pz(λ)qz(λ)k−1e

(−2Q(λz)

|D| iv

)
v−1/2 =

√
|D|
2π

pz(λ)qz(λ)k−1

|2Q(λz)|
Γ

(
1

2
,
−4πQ(λz)

|D|

)
.

When λz = 0 this has a singularity of type√
|D|
2

(λ, v(z))

|(λ, v(z))|fz(λ)k−1

as we know that Γ(1/2,−4πQ(λz)/|D|) = Γ(1/2) + O(|Q(λz)|) as λz → 0. The integral

vanishes when −2Q(λz) = pz(λ) = (λ, v(z)) = 0 so this is the zero contribution to the

singularities when (λ, v(z)) = 0. So finally we have the required result

ΦD,r,k(z, f) ≈U
√
|D|
2

∑
h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c+ (m,h)
∑

λ∈L−dD,rh
λ⊥z0

χD(λ)
(λ, v(z))

|(λ, v(z))|fz(λ)k−1.

We remember (λ, v(z))/|(λ, v(z))| had a jump singularity of size 2 along Dλ for a given λ ∈
L′, Q(λ) > 0.

4.2.1 The Wall Crossing Formula

We have seen in Theorem 4.2.2 that ΦD,r,k(z, f) is smooth on H, away from geodesics Z ′D,r(f)

associated to f . These geodesics divide D ∼= H into connected components. Theorem 4.3.7

will in fact tell us that ΦD,r,k(z, f) is harmonic and therefore real analytic on these connected

components. We remember from Section 2.5.3 we called these real analytic connected com-

ponents Weyl chambers. We would then like to find the “wall crossing formula” in our case.

This will tell us how the function changes as we move between Weyl chambers.

We follow [Bor98, Section 6] and [Bru02, Section 3.1]. Let W ⊂ H be a Weyl chamber and

let λ ∈ L′. Then we say (λ,W ) < 0 if (λ,w) < 0 for all w ∈ W ⊂ H. We will denote

ΦW1(z) and ΦW2(z) for the restrictions of ΦD,r,k(z, f) to two adjacent Weyl chambers W1 and

W2. The restrictions ΦW1(z) and ΦW2(z) can both be extended to real analytic functions on

W1 ∪W2 and we denote W12 := W1 ∩W2 for the “wall” dividing W1,W2. This next proof

follows [Bor98, Corollary 6.3].

Theorem 4.2.4 (The wall crossing formula). The difference ΦW1(z)− ΦW2(z) is given by

2
√

2|D|
∑

h∈L′/L

∑
m∈Z+sgn(D)Q(h)

m<0

c+ (m,h)
∑

λ∈L−dD,rh
λ⊥W12

(λ,W1)<0

χD(λ)qz(λ)k−1.

Proof. Using Theorem 4.2.2 we know that ΦD,r,k(z, f) has a singularity of type√
|D|
2

∑
h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c+ (m,h)
∑

λ∈L−dD,rh
λ⊥W12

χD(λ)
(λ, v(z))

|(λ, v(z))|qz(λ)k−1 (4.2.1)
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along W12. We consider the sum over λ and −λ. These two sums are the same. We see this by

observing that χD(−λ) = (−1)(1−sgn(D))/2χD(λ) (using Proposition 3.2.4), pz(−λ)qz(−λ)k−1

= (−1)kpz(λ)qz(λ)k−1 and c+(m,h) = (−1)3/2−k+(sgn(D))/2c+(m,−h) (using 2.5.10). We can

then rewrite (4.2.1) as a sum over elements with (λ,W1) < 0. We pick up a factor of 2 and

also another factor of 2 from the jump of size 2 arising from (λ, v(z))/|(λ, v(z))|.

4.3 Locally Harmonic

The main aim of this section is to show that the singular theta lift is harmonic away from

the singularities ZD,r(f) i.e. locally harmonic. To do this we use a few lemmas which es-

sentially just involve some yoga with the hyperbolic Laplacian operator. We follow the ideas

in [Bru02, Section 4.1].

We will first show a simple and useful lemma linking the Laplacian operator of weight κ and

conjugation of a smooth function.

Lemma 4.3.1. For f : H→ C[L′/L] a smooth function and κ ∈ 1
2Z then

∆−κ(vκf(τ)) = vκ∆κf(τ) + κvκf(τ).

Proof. We first note that

∂

∂τ
vκ =

iκvκ−1

2
and

∂

∂τ
vκ = − iκv

κ−1

2
.

Then simply using the product rule we can see that

∆−κ(vκf(τ))

=

(
−4v2 ∂

∂τ

∂

∂τ
− 2iκv

∂

∂τ

)(
vκf(τ)

)
= − 4v2

[
vκ
(
∂

∂τ

∂

∂τ
f(τ)

)
+ f(τ)

(
∂

∂τ

∂

∂τ
vκ
)

+

(
∂

∂τ
f(τ)

)(
∂

∂τ
vκ
)

+

(
∂

∂τ
vκ
)(

∂

∂τ
f(τ)

)]
− 2iκv

[
vκ
(
∂

∂τ
f(τ)

)
+ f(τ)

(
∂

∂τ
vκ
)]

= − 4v2

[
vκ
(
∂

∂τ

∂

∂τ
f(τ)

)
+ f(τ)

κ(κ− 1)

4
vκ−2 +

(
∂

∂τ
f(τ)

)
iκvκ−1

2
− iκvκ−1

2

(
∂

∂τ
f(τ)

)]
− 2iκv

[
vκ
(
∂

∂τ
f(τ)

)
+ f(τ)

iκvκ−1

2

]
= vκ

[
−4v2

(
∂

∂τ

∂

∂τ
f(τ)

)
+ 2ivκ

(
∂

∂τ
f(τ)

)]
+ κvκf(τ)

= vκ∆κf(τ) + κvκf(τ).

In particular, if f ∈ Hκ,ρ, i.e. f is harmonic, then ∆−κ(vκf(τ)) = κvκf(τ).
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The next key proposition links the action of the hyperbolic Laplacian operator on both vari-

ables of the kernel function. We first makes some observations concerning our kernel functions

from Section 3.6 which will allows us to show this proposition.

The Second Spherical Property

In the case of signature (2, 1) we were able to identify Gr(V (R)) with H. This means we can

consider an alternative way of constructing the theta functions from Section 3.6. We follow

the construction in [Cip83]. We do this by working at the base point of z. We make this more

precise. We will say f ∈ S(V (R)) satisfies the second spherical property for 2m,m ∈ Z if

MSch [gθ] f(λ) = f(g−1
θ .λ) = σ1/2(gθ)

4mf(λ)

for any gθ ∈ SO(2). Here we are thinking of gθ as an element of the orthogonal group in our

dual pair (O(V (R)),Mp2(R)), using the accidental isomorphism (3.1.4). So we recall that gθ

acts via conjugation on λ ∈ V (R).

Then if f ∈ S(V (R)) satisfies the first spherical property for r′/2 and the second spherical

property for 2m we can construct the following:

ΘL,D,r(τ, z, f) :=
∑

h∈L′/L

∑
h′∈L′/DL
h′≡rh(L)

Q(h′)≡DQ(h)(D)

∑
λ∈DL+h′

× j(gτ , i)r
′/2j(gz, i)

2mχD(λ)MSch [gτ ]MSch [gz] f(λ)eh.

Which is a another form of (3.6.2). Here we are thinking of gz as an element of the orthogonal

group in our dual pair. We can then show that ΘL,D,r(τ, z, f) transforms as a scalar-valued

form with weight 2m in z. We do not detail this here. The proof is essentially a repeat of the

ideas in Theorem 3.6.11 and Lemma 3.6.2. Recall from earlier that for λ ∈ V (R) we had the

decomposition λ =
∑
λi(z)bi(z), see also (3.3.2).

Lemma 4.3.2. If we let f ∈ S(V (R)) be

f(λ) = (λ1(i) + iλ2(i))k−1λ3(i)e

(
Qi(λ)

|D| i
)
.

Then f satisfies the first spherical property for k − 3/2, and the second spherical property for

2− 2k.

Proof. We know f(λ) satisfies the first spherical property for k− 3/2 using Lemma 2.6.9. For

the second part we set gθ ∈ SO(2). We then recall that

(γ.λ)(γ.z) = γ.(λz) and (γ.λ)(γ.z)⊥ = γ.(λz⊥).
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for γ ∈ SL2(R). So using this in combination with Lemma 3.6.9 when z = i we see that

MSch [gθ] f(λ) = j(gθ, i)
2−2kf(λ) = σ1/2(gθ)

4−4kf(λ).

Our final observation in this part is that

MSch [gz]

[
(λ1(i) + iλ2(i))k−1λ3(i)e

(
Qi(λ)

|D| i
)]

= (λ1(z) + iλ2(z))k−1λ3(z)e

(
Qz(λ)

|D| i
)
.

It is then clear from Section 3.6 that ΘD,r,k(τ, z) is of the form ΘL,D,r(τ, z, f), where f satisfies

the first spherical property for k − 3/2 and the second spherical property for 2− 2k. We are

now in a position to show the aforementioned key proposition.

Proposition 4.3.3. We have that

4∆k−3/2,τΘk(τ, z) = ∆2−2k,zΘk(τ, z) + (6− 4k)Θk(τ, z).

Proof. We use [Cip83, Proposition 2.13]. In our setup this result holds for theta functions

defined on lattices of signature (1, 2), so we first consider vk−3/2Θk(τ,−z). The discussion

in the previous paragraph tells us that vk−3/2Θk(τ,−z) matches the form given in [Cip83,

Proposition 2.13] and arose from a Schwartz function with first spherical property for 3/2− k
and second spherical property for 2− 2k. So we have

4∆3/2−k,τ (vk−3/2Θk(τ,−z)) = ∆2−2k,z(v
k−3/2Θk(τ,−z)). (4.3.1)

We then use Lemma 4.3.1 to obtain

4vk−3/2∆k−3/2,τ (Θk(τ,−z)) + (4k − 6)vk−3/2Θk(τ,−z)) = vk−3/2∆2−2k,z(Θk(τ,−z)).

Using (3.6.7) we then have

4∆k−3/2,−τ (Θk(−τ , z)) = ∆2−2k,z(Θk(−τ , z)) + (6− 4k)Θk(−τ , z)).

We then see the stated result by letting τ 7→ −τ . The genus character clearly just goes for

the ride throughout these differential calculations.

Remarks 4.3.4. This proof was essentially just a proof on the level of the Schwartz func-

tions. The key ideas in Cipra’s result go back to [Shi75] and it is essentially a derivation

from [Shi75, Proposition 1.7]. This result relies on linking the Schwartz functions and the

Weil representation acting on them with the Casimir elements of the universal enveloping

algebras of the Lie algebras of the dual pair. These Casimir elements then correspond to the

hyperbolic Laplacian operator in each variable τ and z.
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In the case of general signature we cannot necessarily identify Gr(V (R)) with H. Therefore

taking the hyperbolic Laplacian in z would not make sense. However when the Grassman-

nian is Hermitian we are able to give complex structure to Gr(V (R)). For example in the

case when Gr(V (R)) ∼= Hl (the generalised upper half plane, see [Bru02, Section 3.2]) we can

adapt [Bru02, Proposition 4.5] and [Shi75, Proposition 1.7] to show a similar link for Siegel

theta functions to the invariant Laplacian operator on Hl.

We see that (4.3.1) agrees with [Höv12, Proposition 3.10] in the case k = 1.

There is an alternative method of proof of Proposition 4.3.3. We could simply use the explicit

form of Θk(τ, z) given in (3.6.6) and then carry out some easy but long and tedious partial

differential calculations in x, y, u and v.

To show our function is locally harmonic we will use the adjointness of the hyperbolic Laplacian

operator in the Petersson scalar product. This is an easy and well known consequence of

Stokes’ theorem.

Lemma 4.3.5 ([Bru02, Lemma 4.3]). Let κ ∈ 1
2Z. Let f, g ∈ Ak,ρ be smooth functions. Then∫

Ft
〈f,∆κg〉 vκ−2dudv −

∫
Ft
〈∆κf, g〉 vκ−2dudv

=

∫ 1/2

−1/2

[
〈Lκf, g〉 vκ−2

]
v=t

du−
∫ 1/2

−1/2

[
〈f, Lκg〉 vκ−2

]
v=t

du.

We next show that the boundary terms in our case will vanish.

Lemma 4.3.6. For all f ∈ H3/2−k,ρ and z ∈ H we have

lim
t→∞

∫ 1/2

−1/2

[〈
Lk−3/2,τ (ΘD,r,k(τ, z)), f(τ)

〉
v−2

]
v=t

du = 0,

lim
t→∞

∫ 1/2

−1/2

[〈
ΘD,r,k(τ, z), Lk−3/2,τ (v3/2−kf(τ)),

〉
vk−7/2

]
v=t

du = 0.

Proof.

The First Integral

We remember (Definition 2.5.14) that Lk−3/2 = −2iv2 ∂
∂τ . We then use our explicit expansion

of Θk(τ, z) from Definition 3.6.4 to see that

Lk−3/2,τ (ΘD,r,h,k(τ, z))

=

(
4πQ(λz)v

2

|D| +
3v

2

)
v3/2

∑
λ∈L+rh

Q(λ)≡DQ(h)(D)

χD(λ)pz(λ)qz(λ)k−1e

(
Q(λ)

|D| u+
Qz(λ)

|D| iv
)
.

As usual we remember f−, the non-holomorphic part of f , decays exponentially fast as t→∞
and ΘD,r,k(τ, z) also decays exponentially so this part of the integral (over the compact region
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−1/2 ≤ u ≤ 1/2) vanishes. We consider f+ and plug in the explicit expansion for f ∈ H3/2−k,ρ

given in (2.5.2). We then use (4.1.3) (the integral over u picks out the 0-th Fourier coefficient)

to obtain∫ 1/2

−1/2

〈
Lk−3/2,τ (ΘD,r,k(τ, z)), f+(τ)

〉
v−2du =

(
4πQ(λz)v

|D| +
3

2

)
v1/2

×
∑

h∈L′/L

∑
λ∈L+rh

Q(λ)≡DQ(h)(D)
λ 6=0

c+
(−Q(λ)

|D| , h

)
χD(λ)pz(λ)qz(λ)k−1e

(
−2Q(λz)

|D| iv

)
.

If Q(λz) = 0 then pz(λ) = 0 and those terms simply vanish. For the rest of the terms

Qz(λz) < 0. We can use the same cases as in Theorem 4.1.3 to see this is dominated by a

theta series in the positive definite form Qz(λ). So then for all z ∈ H this sum is certainly

uniformly and absolutely convergent for v ∈ [1,∞). This means if we take the limit as v →∞
we can swap this with the summation and observe all the summands vanish in this limit.

Therefore the integral as t→∞ vanishes.

The Second Integral

We first use (2.5.2) to find

Lk−3/2,τ (v3/2−kf(τ)) =
(
v5/2−k(3/2− k)− v24πn

)
f(τ)

− vk+1/2
∑

h∈L′/L

∑
n∈Z−sgn(D)Q(h)

n<0

c−(n, h)(4π|n|)k−1/2e(−nτ)eh.

We consider the first term. As f− decays exponentially fast and we have∫ 1/2

−1/2

〈
ΘD,r,k(τ, z)), (v5/2−k(3/2− k)− v24πn)f+(τ)

〉
vk−7/2du

which is essentially the same as the 3/2 part of (4.3.2) (up to some powers of v) and so will

also vanish as t→∞. For the second term this is in the form of a Fourier expansion of a cusp

form with no constant term (noting that c−(n, h) = O(|n|k/2) as n→ −∞, i.e. the coefficients

still only grow polynomially, Lemma 2.5.27) which we also know decays exponentially fast as

v →∞. So again this term vanishes as t→∞.

We are now able to state the main theorem of this section. We show that away from the

singularities, our lift is harmonic and therefore real analytic. This does not hold on the singu-

larities. On the singularities our function is discontinuous and so is not naturally differentiable

and we also do not have local uniform convergence.

Theorem 4.3.7. For f ∈ H3/2−k,ρ and z ∈ H\ZD,r(f) then

∆2−2k,zΦD,r,k(z, f) = 0

and ΦD,r,k(z, f) is also real analytic on H\ZD,r(f).
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Proof. We know from Theorem 4.2.2 that, the regularised integral ΦD,r,k(z, f), converged as

t → ∞, locally uniformly for z ∈ H\ZD,r(f). So for these points we can swap the partial

derivatives with the integral and take the Laplacian operator inside to obtain

∆2−2k,zΦD,r,k(z, f) = lim
t→∞

∫
τ∈Ft

〈
f(τ),∆2−2k,zΘD,r,k(τ, z)

〉 dudv
v2

.

Then using Proposition 4.3.3 we have

∆2−2k,zΦD,r,k(z, f) = 4 lim
t→∞

∫
τ∈Ft

〈
f(τ),∆k−3/2,τΘD,r,k(τ, z) + (k − 3/2)ΘD,r,k(τ, z)

〉 dudv
v2

= 4 lim
t→∞

∫
τ∈Ft

〈
∆k−3/2,τΘD,r,k(τ, z), v3/2−kf(τ)

〉
vk−3/2 dudv

v2

+ 4(k − 3/2) lim
t→∞

∫
τ∈Ft

〈
ΘD,r,k(τ, z), f(τ)

〉 dudv
v2

and using Lemma 4.3.5 we then obtain

= 4 lim
t→∞

∫
τ∈Ft

〈
ΘD,r,k(τ, z),∆k−3/2,τ (v3/2−kf(τ))

〉
vk−3/2 dudv

v2

+ 4(k − 3/2) lim
t→∞

∫
τ∈Ft

〈
ΘD,r,k(τ, z), f(τ)

〉 dudv
v2

− 4 lim
t→∞

∫ 1/2

−1/2

[〈
Lk−3/2,τ (ΘD,r,k(τ, z)), f(τ)

〉
v−2

]
v=t

du

+ 4 lim
t→∞

∫ 1/2

−1/2

[〈
ΘD,r,k(τ, z), Lk−3/2,τ (v3/2−kf(τ)),

〉
vk−7/2

]
v=t

du.

We know the last two terms disappear using Lemma 4.3.6. Using Lemma 4.3.1 we are then

left with

= 4 lim
t→∞

∫
τ∈Ft

〈
ΘD,r,k(τ, z),∆3/2−k,τ (f(τ))

〉 dudv
v2

.

However f ∈ H3/2−k,ρ, which means that ∆3/2−k,τ (f(τ)) vanishes as well and we have the

stated result.



Chapter 5

Partial Poisson Summation

In the next chapter we will obtain a Fourier expansion of our lift in the z variable, at a cusp.

This requires the evaluation of the integral in Definition 4.1.1 that forms our lift. This will

be done using the Rankin-Selberg method, which is detailed explicitly in Section 6.3.10. This

unfolding trick will first rely on us rewriting Θk(τ, z) in terms of Poincaré series. To do this

we first need to discuss a sublattice K. Roughly our aim is to rewrite the kernel function such

that Θk(τ, z) =
∑
γ̃∈Γ̃∞\Γ̃ f(τ)|k−3/2,ρ̃K γ̃ in terms of theta functions on this sublattice. We

do this by applying a partial Poisson summation to the kernel function.

5.1 A Sublattice

We first discuss a sublattice Kl ⊂ L and its properties. These ideas here have been seen

before. We take our results from [BO10, Section 4.1], [Bru02, Section 2.1], [Bor98, Section 5]

and [BFI15, Section 2].

Remember from Section 3.4 the cusps of the modular curve Y0(N) = Γ0(N)\H correspond to

Γ0(N) isotropic lines in L. We took primitive isotropic vectors l ∈ L, with a fixed orientation,

to represent each cusp.

Definition 5.1.1. We define a space Wl := l⊥/l, equipped with the same quadratic form. We

also define a sublattice,

Kl := (L ∩ l⊥)/(L ∩ l).

Wl is a one dimensional positive definite vector space of signature (1, 0) and Kl is an even

lattice in Wl. The dual lattice is given by

K ′l = (L′ ∩ l⊥)/(L′ ∩ l).

75
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Alternatively, we also know there exists a l′ ∈ L′ such that (l, l′) = 1. Using this we can write

the sublattice as

Kl = L ∩ l′⊥ ∩ l⊥.

For λ ∈ V (R), we denote λK for the orthogonal projection onto K ⊗ R. This is given by

λK = λ− (λ, l′)l − (λ, l)l′ + (λ, l)(l′, l′)l. (5.1.1)

If λ ∈ L′, then λK ∈ K ′l . There exists a unique N such that (l, L) = NZ. We then have

|L′/L| = N 2|K ′l/Kl|. Let λ′ ∈ L, such that (λ′, l) = N . Then

L = Kl ⊕ Zλ′ ⊕ Zl.

We will now assume that (l, L) = Z and restrict ourselves to this case. We remember the cusp

∞ corresponds to l∞ =
(

0 1/N
0 0

)
. We will find the Fourier expansion at this cusp. We can

easily check that, (l∞, L) = Z.

Remark 5.1.2. In this text we will extract the Fourier expansion at other cusps (in the case of

N square-free) from the l∞ case by using the Atkin-Lehner involutions, see Theorem 6.3.12.

It is also true that if N is square-free, our assumption is not a restriction i.e. all the cusps

(primitive isotropic lines l), satisfy (l, L) = Z. So the results of this section hold for any

cusp l (if N square-free) and we could alternatively find the Fourier expansion at a cusp l by

altering the calculations in Theorem 6.3.10 by modifying the identities in (6.3.1) for the l case

(as opposed to l∞). When N is not necessarily square-free, we have |L′/L| = N 2|K ′l/Kl|.
We do not consider this case (which generates even longer calculations) but the results of

this section can indeed be generalised for all cusps for any N . In particular, we have to be

more careful with the cosets of K in Theorem 5.4.3, see [Bor98, Section 5 (Theorem 5.2)]

and [Bru02, Section 2.1 (Theorem 2.4)]. We could then of course find the Fourier expansion

for any cusp. This would allow us to extend the results found in Proposition 5.4.6, Thoerem

6.3.12, Theorem 6.4.2 and Theorem 7.3.8 to non-square-free N .

With this assumption, we can choose l′ ∈ L′, such that l′ is isotropic as well. We have

L = Kl ⊕ Zl′ ⊕ Zl, (5.1.2a)

V (R) = (Kl ⊗Z R)⊕ Rl′ ⊕ Rl. (5.1.2b)

Crucially, K ′l/Kl
∼= L′/L. The lattice K is of signature (1, 0) and the Grassmannian of K⊗R

consists of only one point. Let z ∈ Gr(V (R)). Then z⊥ was a two dimensional positive definite

space. We denote w⊥, for the orthogonal complement of lz⊥ in z⊥. We denote the component

of any λ ∈ V (R) in w⊥, as λw⊥ . We also can write w to denote the orthogonal complement

of lz in z. However, in the case of signature (2, 1) this is empty. We clearly have

V (R) = z ⊕ z⊥ = Rlz ⊕ Rlz⊥ ⊕ w⊥.
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From now on we will denote Kl and K ′l , as K and K ′ respectively.

5.1.1 Vectors

The following vectors will show up in our proofs. Using the basis given in (3.3.1) we saw z⊥

was spanned by b1(z) and b2(z). We have lz⊥ = l1(z)b1(z) + l2(z)b2(z) and we then define a

vector

w⊥ := (l, b2(z))b1(z)− (l, b1(z))b2(z).

We observe that (lz⊥ ,w
⊥) = 0, thus w⊥ spans the one dimensional space w⊥. Further

(l,w⊥) = (lz,w
⊥) = 0 and (w⊥,w⊥) = l1(z)2 + l2(z)2 = l3(z)2 = Qz(l) (as l is isotropic).

This means we have

λw⊥ =
(λ,w⊥)

Qz(l)
w⊥ =

λ1(z)l2(z)− λ2(z)l1(z)

Qz(l)
w⊥.

Using this discussion we see that w⊥ ⊂ V (R) ∩ l⊥ and V (R) ∩ l⊥ = (K ⊗Z R) + Rl, using

(5.1.2). In general λ, λK , λw⊥ are not the same vector. However if λ ∈ V (R)∩l⊥, then (λ, λ) =

(λK , λK) = (λw⊥ , λw⊥). This follows by noting if λ = λK + dl, d ∈ R, then (λ, λ) = (λK , λK).

Finally, if λ ∈ V (R) ∩ l⊥, then Q(λ) = (λ, λ)/2 = (λw⊥ , λw⊥)/2 = (λ,w⊥)2/(2Qz(l)).

We will also use a vector µ(z), where

µ(z) := −l′ + lz
2(lz, lz)

+
lz⊥

2(lz⊥ , lz⊥)
. (5.1.3)

From now on we will denote µ(z) as µ.

Lemma 5.1.3. We have that

1. µ ∈ V (R ∩ l⊥) = (K ⊗Z R)⊕ Rl′,

2. µ = µK + (µ, l′)l,

3. (µ, l) = (µK , l) = 0,

4. (µ, µ) = (µK , µK) = (µw⊥ , µw⊥),

5. µw⊥ = (µK)w⊥ = −l′w⊥ ,

6. (µ,w⊥) = (µK ,w
⊥) = (−l′,w⊥),

7. (µ, µ)/2 = (µK , µK)/2 = −(l′, lz⊥ − lz)/(2Qz(l)),

8. For λ ∈ K ⊗ R then (λ, µ) = (λ, µK) = (λ, lz⊥ − lz)/(2Qz(l)).
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Proof. We easily check that (µ, l) = 0 so µ ∈ V (R∩ l⊥) and so (as we just discussed) (µ, µ) =

(µK , µK) = (µw⊥ , µw⊥). We know µK ∈ K⊗R and using (5.1.1) we see that µ = µK +(µ, l′)l.

This tells us that (µK , l) = 0 as well. It is then immediate that if λ ∈ K ⊗ R, then (λ, µ) =

(λ, µK). We have seen that the projection map onto w⊥ vanishes on lz, l
⊥
z and l. This means

µw⊥ = (µK)w⊥ = −l′w⊥ . This fact then implies that (µ,w⊥) = (µK ,w
⊥) = (−l′,w⊥). For

identity 7, we note (lz, lz) = −(lz⊥ , lz⊥) = −Qz(l). The final identity follows by recalling that

if λ ∈ K ⊗ R, then (λ, l′) = 0.

5.2 The Mixed Model

We remember in section 2.3.1 that the Schrödinger representation (Definition 2.3.11) and

the corresponding Schrödinger model depended on the choice of polarisation W = W1 ⊕W2.

However, the Stone-von Neumann theorem (Theorem 2.3.6) told us that the Schrödinger

representation is unique up to isomorphism and there was an intertwining operator (2.3.2)

that is unique up to a scalar.

Definition 5.2.1. Let W = W1⊕W2 = W
′

1⊕W
′

2 be two complete polarisations of W and let

f ∈ S(W1). We will call the operator F : S(W1)→ S(W
′

1) defined by

(Ff)(x) :=

∫
W1/W1∩W

′
1

f(y)ψ

(〈x, y〉
2

)
dy

the partial Fourier transform. Here dy is a positive W1-invariant measure on W1/W1∩W
′

1.

Proposition 5.2.2 ([LV80, Proposition 1.4.7]). The partial Fourier transform F is an inter-

twiner of the Schrödinger models for W1 and W
′

1. I.e.

F ◦MSch
ψ,W1

(g) = MSch
ψ,W

′
1

(g) ◦ F.

We make this explicit, in the case of the dual pair (O(V (R)),SL2(R)). We explicitly realised

this case using the equations in (2.4.5). These acted on the Schwartz functions S(V (R)). We

used the character ψ = e2πix and had a complete polarisation W = V (R)⊕V (R). We see that

Rl and Rl′ form totally isotropic subspaces of V (R) with V (R) = Rl ⊕ (K ⊗Z R) ⊕ Rl′ and

we will call the corresponding Schrödinger model on S(Rl)⊗S(K ⊗Z R)⊗S(Rl′) the mixed

model. Following [FM13, Section 4.2.1] we can move between the two models by the partial

Fourier transform:

f̂(ξl + λ+ cl′) :=

∫
R
f(xl + λ+ cl′)e2πiξxdx.

where c, x ∈ R, λ ∈ K ⊗Z R and f ∈ S(V (R)). The map f̂ , when restricted to S(K ⊗Z R)

is indeed an intertwiner with S(V (R)). Naturally we still have actions under the dual pair

in the mixed model, these are explicitly given in [FM13, Lemma 4.1]. This motivates why

we use the decomposition (5.1.2), to rewrite our kernel function and then use partial Poisson

summation on the x variable (denoted as d later).
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5.2.1 Fourier Transforms

We first need a few lemmas to evaluate the complicated partial Fourier transform that will

appear in the next part. In particular, we will need Lemma 5.2.10. To do this we will use the

Hermite polynomials, which we discuss as well.

Definition 5.2.3. Let x ∈ R, n ∈ Z, n ≥ 0. Then the nth Hermite polynomial is defined

as

Hn(x) := (−1)nex
2 dn

dxn

(
e−x

2
)
.

Example 5.2.4. The first four Hermite polynomials are

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x.

Lemma 5.2.5 ([EMOT81b, Section 10.13]). We have that

Hn(−x) = (−1)nHn(x), (5.2.1a)

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (5.2.1b)

H
′

n(x) = 2nHn−1(x), (5.2.1c)

Hn(x) = n!

bn/2c∑
m=0

(−1)m(2x)n−2m

m!(n− 2m)!
, (5.2.1d)

Hn(x+ y) =
n∑
k=0

(
n

k

)
Hk(x)(2y)n−k. (5.2.1e)

We defined a Fourier transform in Definition 2.4.9. So over R we let

f̂(ξ) :=

∫
R
f(x)e2πiξxdx.

We remember this agrees with the versions used in [Bor98,BO10,Bru02,BO10] but not [FM13].

We then have the following basic properties.

Lemma 5.2.6 ([Kam07, Chapter 3, Appendix 3]). The Fourier transform of:

1. Linearity: c1f1(x) + c2f2(x) where c1, c2 ∈ C is c1f̂1(ξ) + c2f̂2(ξ),

2. Reflection: f(−x) is f̂(−ξ),

3. Conjugation: f(x) is f̂(−ξ),

4. Translation: f(x− a) is e2πiaξf̂(ξ),

5. Modulation: f(x)e2πiax is f̂(ξ + a),

6. Power Scaling: xf(x) is d
dξ f̂(ξ)/2πi,

7. Derivative: d
dxf(x) is −2πiξf̂(ξ),
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8. Dilation: f(ax) is |a|−1f̂(ξ/a)

9. e−πx
2

is e−πξ
2

,

10. Hn(
√

2πx)e−πx
2

is inHn(
√

2πξ)e−πξ
2

.

Lemma 5.2.7. The Fourier transform of xne−πx
2

is(
i

2
√
π

)n
Hn(
√
πξ)e−πξ

2

.

Proof. This follows from [FM13, Lemma 4.5] noting that H̃n(x) := (2π)−n/2Hn(
√

2πx) and

that the inverse Fourier transform is used here. This shows the Fourier transform of

(−
√

2ix)ne−πx
2

is (2π)−n/2Hn(
√
πξ)e−πξ

2

and we then multiply by (−
√

2i)−n.

We now find the specific Fourier transform we will need in our case. To do this we let

f(x) :=

(
E − DB

2A
+

Dx√
−2Ai

)k−1

e

(
2Aix2 −B2 + 4AC

4A

)
where A,B,C,D,E ∈ C, Im(A) > 0, x ∈ R and k ∈ Z, k > 0. Then we can check that

f

(−2Aix−Bi√
−2Ai

)
= (E +Dx)k−1e(Ax2 +Bx+ C).

We calculate the Fourier transform of f(x).

Lemma 5.2.8. We have that

f̂(ξ) =

(
Di√
−8πAi

)k−1

Hk−1

(√
πξ +

(
E − DB

2A

) √−2πAi

Di

)
e

(
2Aiξ2 −B2 + 4AC

4A

)
.

Proof. Using the binomial theorem we have

f(x) =

(
E − DB

2A
+

Dx√
−2Ai

)k−1

e

(
2Aix2 + 4AC −B2

4A

)
=

k−1∑
n=0

(
k − 1

n

)(
E − DB

2A

)k−1−n(
Dx√
−2Ai

)n
e

(
2Aix2 −B2 + 4AC

4A

)
.

Then using Lemma 5.2.7 we have

f̂(ξ) =

k−1∑
n=0

(
k − 1

n

)(
E − DB

2A

)k−1−n(
Di√
−8πAi

)n
Hn(
√
πξ)e

(
2Aiξ2 −B2 + 4AC

4A

)

=
k−1∑
n=0

(
k − 1

n

)(√−8πAi

Di

(
E − DB

2A

))k−1−n(
Di√
−8πAi

)k−1

×Hn(
√
πξ)e

(
2Aiξ2 −B2 + 4AC

4A

)
and using the final property of the Hermite polynomials, Lemma 5.2.5, this is

f̂(ξ) =

(
Di√
−8πAi

)k−1

Hk−1

(√
πξ +

(
E − DB

2A

) √−2πAi

Di

)
e

(
2Aiξ2 −B2 + 4AC

4A

)
.
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Lemma 5.2.9. The Fourier transform of (E +Dx)k−1e(Ax2 +Bx+ C) is(
i

2A

)k/2(
Di

2
√
π

)k−1

Hk−1

(
i
√
−2πAi

(
ξ +B

2A
− E

D

))
e

(
C − (ξ +B)2

4A

)
.

Proof. We remember f
(
−2Aix−Bi√
−2Ai

)
= (E + Dx)k−1e(Ax2 + Bx + C) and so using dilation,

Lemma 5.2.6 part 8 in combination with Lemma 5.2.8 we have

f̂
(
ξ
√
−2Ai

)
=

1√
−2Ai

(
Di√
−8πAi

)k−1

Hk−1

( √
πξ√
−2Ai

+

(
E − DB

2A

) √−2πAi

Di

)
× e

(−ξ2 −B2 + 4AC

4A

)
.

Next using translation, Lemma 5.2.6 part 4. we obtain

f̂

(−2Aiξ −Bi√
−2Ai

)
=

1√
−2Ai

(
Di√
−8πAi

)k−1

Hk−1

( √
πξ√
−2Ai

+

(
E − DB

2A

) √−2πAi

Di

)
× e

(−ξ2 −B2 + 4AC

4A

)
e

(−Bξ
2A

)
=

(
i

2A

)k/2(
Di

2
√
π

)k−1

Hk−1

(
i
√
−2πAi

(
ξ +B

2A
− E

D

))
× e

(
C − (ξ +B)2

4A

)
.

The next final lemma is the Fourier transform that we will actually use in Section 5.4.

Lemma 5.2.10. Let F,G ∈ C. Then the Fourier transform of (G+Fx)(E+Dx)k−1e(Ax2 +

Bx+ C) is

(
i

2A

)k/2(
Di

2
√
π

)k−1∑
j

(
G− F

(
ξ +B

2A

))1−j (
F (k − 1)

i
√
−2πAi

)j
×Hk−1−j

(
i
√
−2πAi

(
ξ +B

2A
− E

D

))
e

(
C − (ξ +B)2

4A

)
. (5.2.2)

Remark 5.2.11. Here the sum over j is 0 ≤ j ≤ max(k−1, 1). This convention holds throughout

the text (to keep our notation compact).

Proof. We start with 5.2.9 and then use power scaling, Lemma 5.2.6 part 6 we get(
i

2A

)k/2(
Di

2
√
π

)k−1 [(
G− F

(
ξ +B

2A

))
Hk−1

(
i
√
−2πAi

(
ξ +B

2A
− E

D

))
+
F (k − 1)

i
√
−2πAi

Hk−2

(
i
√
−2πAi

(
ξ +B

2A
− E

D

))]
e

(
C − (ξ +B)2

4A

)
.

Which can be rewritten as(
i

2A

)k/2(
Di

2
√
π

)k−1∑
j

(
G− F

(
ξ +B

2A

))1−j (
F (k − 1)

i
√
−2πAi

)j
×Hk−1−j

(
i
√
−2πAi

(
ξ +B

2A
− E

D

))
e

(
C − (ξ +B)2

4A

)
.
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5.3 Theta Functions on the Sublattice

Once we have written our kernel function in terms of elements on the sublattice K we will

then write it as a sum of some specific Siegel theta functions defined on K. In this section we

define these theta functions. We show they have a certain transformation property in τ .

The next definition mirrors Definition 2.6.12. However it is different in that we twist and we

also fix the lattice K, a vector µK and also an isometry σ′. In particular, σ′ : V (R) 7→ R2,1 is

defined as σ′(λ) = σ(λw⊥) where σ : V (R) 7→ R2,1 is an isometry of V (R). We notice that σ′

vanishes on lz and lz⊥ . Definition 5.3.1 is a more general, polynomial version, of the function

defined in [BO10, Equation 4.5].

Definition 5.3.1. Let α, β ∈ Z, h ∈ K ′/K, µK ∈ K ⊗Z R and let p be a homogeneous polyno-

mial on R1,0 of degree (m+, 0). Then we define

ξh(τ, µK , σ
′, p, α, β) :=

∑
λ∈K+rh

∑
t(D)

Q(λ−βl′+tl)≡DQ(h)(D)

exp (−|D|∆/8πv) p(σ′(λ+ βµK))

× χD(λ− βl′ + tl)e

(−αt
|D|

)
e

(
Q(λ+ βµK)τ

|D| − (λ+ βµK/2, αµK)

|D|

)
and a C[K ′/K]-valued version

Ξ(τ, µK , σ
′, p, α, β) :=

∑
h∈K′/K

ξh(τ, µK , σ
′, p, α, β)eh.

Remember the Grassmannian of K consisted of one element so we drop the variable z from

the notation. We note that using the identities in Lemma 5.1.3 that we could replace µK with

µ throughout this definition, which is commonly done in the literature. However this results

in an abuse of notation as µ is not an element of K ⊗ R.

As ever we look at the transformation behaviour.

Theorem 5.3.2. For any (γ, φγ) ∈ Γ̃, γ =
(
a b
c d

)
then

Ξ(γτ, µK , σ
′, p, aα+ bβ, cα+ dβ) = φγ(τ)1+2m+

ρ̃K(γ, φγ)Ξ(τ, µK , σ
′, p, α, β).

Proof. To check the transformation behaviour under (γ, φγ) ∈ Γ̃ it is enough to check the

generators S, T for each component. We remember |K ′/K| = |L′/L| = 2N . Then using

Definition 3.2.7 we would like to show for T that

ξh(τ + 1, µK , σ
′, p, α+ β, β) = e(sgn(D))Q(h))ξh(τ, µK , σ

′, p, α, β). (5.3.1)
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Plugging ξh(τ + 1, µK , σ
′, p, α+ β, β) into Definition 5.3.1 we get∑

λ∈K+rh

∑
t(D)

Q(λ−βl′+tl)≡DQ(h)(D)

χD(λ− βl′ + tl) exp

(
−|D|∆

8πv

)
p(σ′(λ+ βµK))

× e
(
− αt

|D|

)
e

(
Q(λ+ βµK)

|D| τ − (λ+ βµK/2, αµK)

|D|

)
× e

(
− βt

|D| +
Q(λ+ βµK)

|D| − (λ+ βµK/2, αµK)

|D|

)
.

However we then notice

−βt+
1

2
(λ+ βµK , λ+ βµK)− (λ+ βµK/2, βµK) = Q(λ− βl′ + tl) ≡ DQ(h)(D),

and so (5.3.1) is clear. For S we would like to show

ξh

(
−1

τ
, µK , σ

′, p,−β, α
)

= τ1/2+m+ e(−sgn(D)/8)√
2N

×
∑

h′∈K′/K

e(−sgn(D)(h, h′)ξh′(τ, µK , σ
′, p, α, β). (5.3.2)

We rewrite ξh(τ, µK , σ
′, p, α, β) in terms of the Siegel theta function ϑK(τ, σ′, p, α, β) (Defini-

tion 2.6.12)

ξh(τ, µK , σ
′, p, α, β) = |D|m+ ∑

λ′∈K′/DK
λ′≡rh(K)

∑
t(D)

Q(λ′−βl′+tl)≡DQ(h)(D)

χD(λ′ − βl′ + tl)

× e
(
− αt

|D| −
(λ′, αµK)

2|D|

)
ϑK

(
|D|τ, σ′, p, αµK ,

λ′ + βµK
|D|

)
.

This can be checked by inserting the definition of ϑK and then making the “substitution”

λ′ 7→ λ′ − |D|λ and remembering the invariance of χD modulo DL. So we have

ξh

(
−1

τ
, µK , σ

′, p,−β, α
)

= |D|m+ ∑
λ′∈K′/DK
λ′≡rh(K)

∑
t(D)

Q(λ′−αl′+tl)≡DQ(h)(D)

χD(λ′ − αl′ + tl)

× e
(
βt

|D| +
(λ′, βµK)

2|D|

)
ϑK

(
−|D|

τ
, σ′, p,−βµK ,

λ′ + αµK
|D|

)
and we then use the transformation property of ϑK for S, Theorem 2.6.14 to see that

ξh

(
−1

τ
, µK , σ

′, p,−β, α
)

=
τ1/2+m+

e(−1/8)

(
√
|D||K ′/K|)

∑
λ∈K′

exp(−|D|∆/8πv)p(σ′(λ+ βµK))

× gh(λ,−β,−α)e

(
Q(λ+ βµK)

|D| τ − (λ+ βµK/2, αµK)

|D|

)
where for h ∈ K ′/K, λ ∈ K ′/DK and a, b ∈ Z/DZ we let

gh(λ, a, b) :=
∑

λ′∈K′/DK
λ′≡rh(K)
t(D)

Q(λ′+al′+bl)≡DQ(h)(D)

χD(λ′ + bl′ + tl)e

(
− 1

|D|((λ, λ
′) + at)

)
.
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Then by [BO10, Proposition 4.5] we easily obtain

ξh

(
−1

τ
, µK , σ

′, p,−β, α
)

=
τ1/2+m+

e(−1/8)εD√
|2N |
×

∑
h′∈K′/K

e(−sgn(D)(h, h′))ξh′ (τ, µK , σ
′, p, α, β)

where εD = 1 if D > 0 or εD = i if D < 0. We note εD = e((1− sgn(D))/8) so we have shown

(5.3.2).

We now give another example that we will need. This involves Hermite polynomials.

Definition 5.3.3. Let α, β ∈ Z, h ∈ K ′/K, µK ∈ K ⊗Z R and let κ ∈ Z, κ ≥ 0 then we define

ξκ,h(τ, µK , α, β) := v−κ/2
∑

λ∈K+rh
t(D)

Q(λ−βl′+tl)≡DQ(h)(D)

Hκ

(√
π(α− βτ − 2|D|v(λ+ βµK ,w

⊥))√
2|D|vQz(l)

)

× χD(λ− βl′ + tl)e

(−αt
|D|

)
e

(
Q(λ+ βµK)τ

|D| − (λ+ βµK/2, αµK)

|D|

)
and a C[K ′/K]-valued version

Ξκ(τ, µK , α, β) :=
∑

h∈K′/K

ξκ,h(τ, µK , α, β)eh.

Lemma 5.3.4. For any (γ, φγ) ∈ Γ̃, γ =
(
a b
c d

)
then

Ξκ(γτ, µK , aα+ bβ, cα+ dβ) = φγ(τ)1+2κρ̃K(γ, φγ)Ξκ(τ, µK , α, β).

Proof. Using part e of Lemma 5.2.1 we can write

Hκ

(√
π(α− βτ − 2v(λ+ βµK ,w

⊥))√
2|D|vQz(l)

)

=
κ∑

m=0

(
κ

m

)
Hm

(
−
√

2πv(λ+ βµK ,w
⊥)√

|D|Qz(l)

)(√
2π(α− βτ)√
|D|vQz(l)

)κ−m
.

We mentioned in Section 2.6 that we could think of Hermite polynomials in terms of the

exp (−∆/8π) (p) polynomial. Explicitly, K ⊗ R is a vector space of signature (1, 0) isometric

to R with basis x1. We then let p(x1) = xm1 . Then for λ ∈ K and a ∈ C(
8πv

|D|

)m/2
exp (−|D|∆/8πv) (p)(ax1) = m!

bm/2c∑
s=0

(−1)s

s!(m− 2s)!

(√
8πvax1√
|D|

)m−2s

= Hm

(√
2πvax1√
|D|

)

using part d of Lemma 5.2.1. So setting σ′(λ) = −(λ,w⊥)/(Qz(l)a) we have

ξκ,h(τ, µK , α, β) =
κ∑

m=0

(
κ

m

)(
8π

|D|

)m/2(√
2π(α− βτ)

v
√
|D|Qz(l)

)κ−m
ξh(τ, µK , σ

′, p, α, β).
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As in the previous proof we now consider T and S. For T we see that the term (α − βτ/v)

is invariant under the maps τ 7→ τ + 1, α 7→ α + β. For S we have the maps τ 7→ −1/τ, α 7→
−β, β 7→ α and plugging these in we get (α − βτ/v) 7→ τ(α − βτ/v) so this term essential

“raises the weight” by 1. Each ξh(τ, µK , σ
′, p, α, β) piece transforms with weight 1/2 +m by

Theorem 5.3.2 so we have total weight 1/2 +m+ κ−m = 1/2 + κ as required.

5.3.1 Properties of Ξκ(τ, µK ,−n, 0)

The Poincaré series we will obtain in Theorem 5.4.5 are of the form Ξk−1−j(τ, µK ,−n, 0)

where n ∈ Z, n ≥ 1. We will use these in Theorem 6.3.10 to find our Fourier expansion. We

consider some of the properties of these functions. We first have the following more explicit

form. We simplify the sum over t in Definition 5.3.3:

Lemma 5.3.5. For κ ∈ Z, κ ≥ 0 then

ξκ,h(τ, µK ,−n, 0) =

(
D

n

)
εD|D|1/2v−κ/2

×
∑

λ∈K+rh
Q(λ)≡DQ(h)(D)

Hκ

(√
π(n− 2|D|v(λ,w⊥))√

2|D|vQz(l)

)
e

(
Q(λ)τ

|D| −
(λ, nµK)

|D|

)
.

Proof. We start by using the definition given in 5.3.1 to write

ξκ,h(τ, µK ,−n, 0) = v−κ/2
∑

λ∈K+rh
Q(λ)≡DQ(h)(D)

∑
t(D)

χD(λ+ tl)

×Hκ

(√
π(−n− 2|D|v(λ,w⊥))√

2|D|vQz(l)

)
e

(
nt

|D|

)
e

(
Q(λ)τ

|D| +
(λ, nµK)

|D|

)
.

We know that if λ ∈ K + rh,Q(λ) ≡ DQ(h)(D) then χD(λ + tl) =
(
D
n

)
so we obtain the

stated result by using the following Gauss sum (see eg. [BO10, Equation 4.7])∑
t(D)

(
D

t

)
e

(
nt

D

)
=

(
D

n

)
εD|D|1/2.

We remember from Theorem 5.3.2 that εD was defined to equal 1 if D > 0 or i if D < 0. We

then note using Definition 2.4.8 that
(
D
0

)
= 0 if D 6= 1 and if D = 1 then

(
D
0

)
= 1. This

means that ξκ,h(τ, 0, 0, 0) = 0 unless D = 1.

We will now look at the asymptotic behaviour. Before we show this, we first introduce the

polylogarithms. These will also crop up in the proof of Theorem 6.3.10.

Definition 5.3.6. Let κ ∈ Z and z ∈ C, |z| < 1. Then the polylogarithm is defined as

Liκ(z) =
∞∑
n=1

zn

nκ
,

which can be analytically continued to all z ∈ C.
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Lemma 5.3.7 ([MR14, Section 2.1.1.7] [Woo92]). We have that

1. Li1(z) = − ln (1− z),

2. z
∂Liκ(z)

∂z
= Liκ−1(z),

3.
∂Liκ(ez)

∂z
= Liκ−1(ez),

4. Liκ(ez) = O(zκ−1) as |z| → 0, for κ ≤ 0,

5. Liκ(z) = O(z) as |z| → 0.

We can now consider the growth of Ξ(τ, µK ,−n, 0, κ). This lemma will once again be needed

in Theorem 6.3.10 to show convergence of certain integrals.

Lemma 5.3.8. The function Ξκ(τ, µK ,−n, 0) = O(1) as v → ∞, uniformly in u. The

function Ξκ(τ, µK ,−n, 0) = O(v−2κ−1) as v → 0, uniformly in u.

Proof. For the first part we remember Ξκ(τ, µK ,−n, 0) is just a positive definite theta series

(with a polynomial term) on the lattice K. We also observe that v−κ/2Hκ(
√
v) = O(1) as

v →∞ i.e. we only have non-positive powers of v in our series. As v →∞ everything decays

except possibly a constant term. For the second part, we see that, for 0 ≤ v ≤ 1, then certainly

|ξκ,h(τ, µK ,−n, 0)| ≤ Cκv−κ|(λ,w⊥)|κ
∑

λ∈K+rh
Q(λ)DQ(h)(D)

e−Q(λ)v/|D|

for some constant Cκ > 0. We let b ∈ K ′ be a basis for the 1-dimensional positive definite

lattice K ′. It then suffices to consider

|ξκ,h(τ, µK ,−n, 0)| ≤ C ′κv−κ
∑
m∈Z
|m|κe−m2Q(b)v/|D|

for some constant C
′

κ > 0. We then see that

1

2

∑
m∈Z
|m|κe−m2Q(b)v/|D| =

∑
m≥1

mκ
(
e−Q(b)v/|D|

)m2

≤
∑
m≥1

mκ
(
e−Q(b)v/|D|

)m
= Li−κ

(
e−Q(b)v/|D|

)
.

So putting this all together with Lemma 5.3.7 part 4 we obtain the stated result. This estimate

is not optimal but will suffice for our purposes.

In the case when n = 0, we have the following nice lemma which tells us the effect of the

raising and lowering operators. We will particularity need this lemma in Section 6.1. We also

remark that in general Ξκ(τ, 0, 0, 0) is neither harmonic nor holomorphic.
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Lemma 5.3.9. Let κ ∈ Z, κ ≥ 2 and D = 1. Then

Rk−3/2Ξκ−2(τ, 0, 0, 0) = −1

4
Ξκ(τ, 0, 0, 0),

Lκ+1/2Ξκ(τ, 0, 0, 0) = κ(κ− 1)Ξκ−2(τ, 0, 0, 0),

Lκ+1/2Rκ−3/2Ξκ−2(τ, 0, 0, 0) = −κ(κ− 1)

4
Ξκ−2(τ, 0, 0, 0).

Proof. We assume D = 1 otherwise Ξκ−2(τ, 0, 0, 0) vanishes, see Lemma 5.3.5. Lemma 5.3.4

told us that Ξκ−2(τ, 0, 0, 0) is of weight κ − 3/2. We then use Definition 5.3.3 to write out

explicitly

ξκ−2,h(τ, 0, 0, 0) = v−(κ−2)/2
∑

λ∈K+h

Hκ−2

(
−
√

2πv(λ,w⊥)√
Qz(l)

)
e(Q(λ)τ).

We set a = −
√

2π(λ,w⊥)/
√
Qz(l) and then we have that a2 = 4πQ(λ), (Section 5.1.1). We

also remember that

Rκ−3/2 = i
∂

∂u
+

∂

∂v
+
κ− 3/2

v
and Lκ+1/2 = v2

(
−i ∂
∂u

+
∂

∂v

)
.

For the first part, it then suffices to consider

Rκ−3/2

[
v−(κ−2)/2Hκ−2(a

√
v)eia

2τ/2
]

=

((
κ− 1

2v
− a2

)
Hκ−2(a

√
v) +

(κ− 2)a√
v

Hκ−3(a
√
v)

)
v1−κ/2eia

2τ/2

=
(
(κ− 1)Hκ−2(a

√
v)− a√vHκ−1(a

√
v)
)
v−κ/2

eia
2τ/2

2

= −Hκ(a
√
v)v−k/2

eia
2τ/2

4

where we have simplified using the properties of the Hermite polynomials stated in Lemma

5.2.5. For the second part we note that

∂

∂v

(
Hκ(a

√
v)v−κ/2

)
= −κv

−(κ+2)/2

2

(
Hκ(a

√
v)− 2a

√
vHκ−1(a

√
v)
)

= κ(κ− 1)v−(κ+2)/2Hk−2(a
√
v)

so

Lκ+1/2

[
Hκ(a

√
v)v−κ/2eia

2τ/2
]

= κ(κ− 1)v−(κ−2)/2Hκ−2(a
√
v)eia

2τ/2.

Combining parts one and two gives the third part.

5.4 The Poincaré Series

The next few lemmas involve rewriting our kernel function in various forms with the aim of

writing it as a Poincaré series in Theorem 5.4.5. The first lemma will help to simplify some

of the terms we will obtain when we apply our partial Fourier transform.
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Lemma 5.4.1. Let A = Q(lz⊥)(τ − τ), B = (λ, lz)τ + (λ, lz⊥)τ, C = Q(λz)τ +Q(λz⊥)τ,D =

qz(l), E = qz(λ), F = pz(l) and G = pz(λ). Then

C − (d+B)2

4A
= τQ(λw⊥)− d(λ, lz⊥ − lz)

2Qz(l)
− |d+ (λ, l)τ |2

4ivQz(l)
,

i
√
−2πAi

(
d+B

2A
− E

D

)
=

√
π(d+ (λ, l)τ − 2v(λ,w⊥))√

2vQz(l)
,

G− F
(
d+B

2A

)
=
i(d+ (λ, l)τ)

2v
√
Qz(l)

.

Proof. Remember Q(lz⊥) = −Q(lz)and Qz(l) = 2Q(lz⊥) = qz(l)qz(l)y
−2 = (l, lz⊥) = pz(l)

2

(as l is isotropic). We have fixed an orientation of isotropic vectors such that sgn(−l, b3(z)) = 1

so pz(l) > 0 and pz(l) =
√
Qz(l). For the first part we plug in the terms and obtain

C − (d+B)2

4A
=
−d2 − 2d(τ(λ, lz) + τ(λ, lz⊥))− (τ(λ, lz) + τ(λ, lz⊥))2

4ivQz(l)
+ τQ(λz) + τQ(λz⊥)

and then adapting [Bru02, Lemma 2.3] we get our stated result. For the second part we have

i
√
−2πAi

(
d+B

2A
− E

D

)
=
i
√

2πvQz(l)

Qz(l)

(
Qz(l)

(
d+B

2A

)
− qz(λ)qz(l)

y2

)

=
i
√

2πv√
Qz(l)

((
d+B

2iv

)
− (λ, lz⊥) + i(λ,w⊥)

)
=

i
√

2πv√
Qz(l)

(
d+ τ(λ, lz⊥) + τ(λ, lz)− 2iv(λ, lz⊥)

2iv
+ i(λ,w⊥)

)
=

√
π√

2vQz(l)
(d+ (λ, l)τ − 2v(λ,w⊥)).

For the third part we have

G− F
(
d+B

2A

)
=

1

pz(l)

(
pz(λ)pz(l)− (pz(l))

2

(
d+B

2A

))
=

−1√
Qz(l)

(
(λ, lz) +

d+B

2iv

)
=

−1√
Qz(l)

(
2iv(λ, lz) + d+ τ(λ, lz⊥) + τ(λ, lz)

2iv

)
=

i

2v
√
Qz(l)

(d+ (λ, l)τ).

The next lemma consists of applying our partial Poisson summation and simplifying as much

as possible. This is the same idea as in [Bor98, Lemma 5.1], [BO10, Lemma 4.6] and [Bru02,

Lemma 2.3]. We will use the following constant

cz,k,j =
i

2
√

2|D|Qz(l)

(
qz(l)i

√
|D|

2
√

2πQz(l)

)k−1(
(1− k)

√
2|D|Qz(l)√
π

)j
. (5.4.1)
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Lemma 5.4.2. We have that

θh,k(τ, z) =
∑

λ∈L/ZDl+rh

∑
t(D)

Q(λ+tl)≡DQ(h)(D)

∑
d∈Z

∑
j

χD(λ+ tl)cz,k,jv
−(k−1−j)/2

× (d+ (λ, l)τ)
1−j

Hk−1−j

(√
π(d+ (λ, l)τ − 2v(λ,w⊥))√

2|D|vQz(l)

)

× e
(
− dt

|D|

)
e

(
τQ(λw⊥)

|D| − d(λ, lz⊥ − lz)
2|D|Qz(l)

− |d+ (λ, l)τ |2
4|D|ivQz(l)

)
.

Proof. As is standard, we rewrite the sum over λ ∈ rh+ L in the definition of θh,k(τ, z) as a

sum over λ′ + d|D|l. This is where λ′ runs over rh+ L/ZDl and d runs over Z. Noting that

χD(λ+ d|D|l) = χD(λ) and Q(λ+ d|D|l) ≡ Q(λ)(D) where λ ∈ L′ and d ∈ Z we then obtain

θh,k(τ, z) = v3/2
∑

λ∈L/ZDl+rh
Q(λ)≡DQ(h)(D)

χD(λ)
∑
d∈Z

pz(λ+ d|D|l)qz(λ+ d|D|l)k−1

× e
(
Q(λ+ d|D|l)

|D| u+
Qz(λ+ d|D|l)

|D| iv

)
= v3/2

∑
λ∈L/ZDl+rh

Q(λ)≡DQ(h)(D)

χD(λ)
∑
d∈Z

g(|D|τ, z, λ|D| , k, d)

where

g(τ, z, λ, k, d) := |D|kpz(λ+ dl)qz(λ+ dl)k−1e (Q(λ+ dl)u+Qz(λ+ dl)iv) .

We notice

Q(λ+ dl)u+Qz(λ+ dl)iv = Ad2 +Bd+ C

where A = Q(lz⊥)(τ − τ) = Qz(l)iv, B = (λ, lz)τ + (λ, lz⊥)τ and C = Q(λz)τ + Q(λz⊥)τ =

Q(λ)u+Qz(λ)iv. We also set D′ = qz(l), E = qz(λ), F = pz(l) and G = pz(λ). Then we find

the partial Fourier transform of g(τ, z, λ, k, d) in d by using Lemma 5.2.10. Combining this

with the simplifications given in Lemma 5.4.1 we see that ĝ(τ, z, λ, k, d) is equal to

|D|k
(

1

2vQz(l)

)k/2(
qz(l)i

2
√
π

)k−1∑
j

(
i(d+ (λ, l)τ)

2v
√
Qz(l)

)1−j (
(k − 1)

i
√

2πv

)j

×Hk−1−j

(√
π(d+ (λ, l)τ − 2v(λ,w⊥))√

2vQz(l)

)
e

(
τQ(λw⊥)− d(λ, lz⊥ − lz)

2Qz(l)
− |d+ (λ, l)τ |2

4ivQz(l)

)
.

Using the Poisson summation formula on the variable d we can simply replace our old term

g(|D|τ, z, λ
|D| , k, d) with ĝ(|D|τ, z, λ

|D| , k, d) in (5.4.2). We find that θh,k(τ, z) is equal to

∑
λ∈L/ZDl+rh

Q(λ)≡DQ(h)(D)

∑
d∈Z

∑
j

χD(λ)cz,k,jv
−(k−1−j)/2 (d+ (λ, l)τ)

1−j

×Hk−1−j

(√
π(d+ (λ, l)τ − 2v(λ,w⊥))√

2|D|vQz(l)

)
e

(
τQ(λw⊥)

|D| − d(λ, lz⊥ − lz)
2|D|Qz(l)

− |d+ (λ, l)τ |2
4|D|ivQz(l)

)
.
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Finally we rewrite the sum over λ ∈ L/ZDl+ rh as a sum over λ′+ tl where λ′ and t run over

L/Zl + rh and Z/DZ respectively. We get the result stated at the start of the lemma. Also

observe that (l, lz⊥ − lz)/2Qz(l) = 1 and (l,w⊥) = 0.

We now rewrite the previous lemma in terms of the theta function (Definition 5.3.3) on the

sublattice. This is the same idea as in [Bor98, Theorem 5.2], [BO10, Lemma 4.7] and [Bru02,

Theorem 2.4].

Theorem 5.4.3. For h ∈ L′/L ∼= K ′/K

θh,k(τ, z) =
∑
c,d∈Z

∑
j

cz,k,j(cτ + d)1−je

(
− |d+ cτ |2

4|D|ivQz(l)

)
ξk−1−j,h(τ, µK , d,−c).

Proof. We use will use the fact that L/Zl+rh ∼= K+Zl′+rh to rewrite Lemma 5.4.2 in terms

of λ ∈ K + rh. We do this by making the “substitution” λ 7→ λ + cl′, where now λ ∈ K ⊗ R

and c ∈ Z. We have that (l, l′) = 1 and (λ, l) = 0. Combining these facts with several of the

identities in Lemma 5.1.3 we obtain

θh,k(τ, z) =
∑

λ∈K+rh

∑
c,d∈Z

∑
t(D)

Q(λ+cl′+tl)≡DQ(h)(D)

∑
j

χD(λ+ cl′ + tl)cz,k,jv
−(k−1−j)/2

× (d+ cτ)
1−j

Hk−1−j

(√
π(d+ cτ − 2v(λ− cµK ,w⊥))√

2|D|vQz(l)

)

× e
(
− dt

|D|

)
e

(
τ

|D|Q((λ− cµK)w⊥)− d

|D|(λ− cµK/2, µK)− |d+ cτ |2
4|D|ivQz(l)

)
.

(5.4.3)

Inserting the definition of ξh(τ, µK , α, β, n) gives the result. We recall that L′/L ∼= K ′/K and

note h, h′ ∈ L′/L are equal exactly when k′, k ∈ K ′/K are equal. So ξh(τ, µK , α, β, n) is well

defined for h ∈ L′/L.

Remark 5.4.4. We observe that using the identities in Lemma 5.1.3 we could in fact replace

µK with µ throughout this theorem.

Finally we write the C[L′/L]-valued theta function ΘD,r,h(τ, z) in terms of the C[K ′/K]-valued

theta function Ξ(τ, µK , α, β, n). This is in a form that we can unfold later.

Theorem 5.4.5. We have that

Θk(τ, z) =
1

2

∑
n≥1

∑
γ̃∈Γ̃∞\Γ̃

∑
j

cz,k,j(−n)1−j

×
[
e

(
− n2

4|D|i Im(τ)Qz(l)

)
Ξk−1−j(τ, µK ,−n, 0)

] ∣∣∣∣
k−3/2,ρ̃K

γ̃

and if k ≥ 2 we also have the additional term

cz,k,1Ξk−2(τ, 0, 0, 0).
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Proof. Theorem 5.4.3 told us that

Θk(τ, z) =
∑
c,d∈Z

∑
j

cz,k,j(cτ + d)1−je

(
− |d+ cτ |2

4|D|ivQz(l)

)
Ξk−1−j(τ, µK , d,−c).

Then, remembering to include the c = 0, d = 0 term which vanishes unless k ≥ 2, j = 1, we

have

Θk(τ, z) = cz,k,1Ξk−2(τ, 0, 0, 0) +
∑
n≥1

∑
c,d∈Z

(c,d)=1

∑
j

cz,k,j(−n)1−j(cτ + d)1−j

× e
(
− n2|d+ cτ |2

4|D|ivQz(l)

)
Ξk−1−j(τ, µK ,−nd, nc).

We know two elements
(
a b
c d

)
,
(
a′ b′

c′ d′

)
∈ Γ are equal in Γ∞\Γ if and only if c = c′ and d = d′,

see for example [Sad12, Lemma 12]. We now rewrite the sum over coprime integers as a sum

over γ̃ = (γ, φγ) ∈ Γ̃∞\Γ̃ where γ =
(
a b
c d

)
. This also introduces a factor of 1/2 due to the

two possibilities (γ, φγ) and (γ,−φγ). We note that φγ(τ)2 = cτ + d and

Ξk−1−j(τ, µK ,−nd, nc) = φγ(τ)1−2k+2j ρ̃−1
K (γ, φγ)Ξk−1−j(γτ, µK ,−n, 0).

We also recall from Lemma 3.6.10 that Im(γτ) = Im(τ)/j(γ, τ)j(γ, τ). We then finally obtain

Θk(τ, z) = cz,k,1Ξk−2(τ, 0, 0, 0) +
1

2

∑
n≥1

∑
γ̃∈Γ̃∞\Γ̃

∑
j

cz,k,j(−n)1−j

×
[
e

(
− n2

4|D|i Im(τ)Qz(l)

)
Ξk−1−j(τ, µK ,−n, 0)

] ∣∣∣∣
k−3/2,ρ̃K

γ̃.

5.4.1 Asymptotics

We can also look at the asymptotic behaviour as y →∞. We first find all our terms explicitly,

in the case of the cusp l∞ (we will also need a lot these in Theorem 6.3.10 where we find the

Fourier expansion at this cusp). In this case we have

l = l∞ =

0 1/N

0 0

 and l′ = −l0 =

0 0

1 0

 .

Then using (3.3.1) and (3.3.2) we see that

lz = l3(z)b3(z) =
1√

2Ny
b3(z) =

1

2Ny2

(
−x x2+y2

−1 x

)
,

lz⊥ = l1(z)b1(z) =
1√

2Ny
b1(z) =

1

2Ny2

(
x −x2+y2

1 −x

)
,

w⊥ = − 1√
2Ny

b2(z) = − 1

2Ny2

(
y −2xy
0 −y

)
,

µ =
(
x −x2

0 −x

)
,

µK =
(
x 0
0 −x

)
,
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and then

2Q(lz) = (lz, lz) = − 1

2Ny2
,

2Q(lz⊥) = (lz⊥ , lz⊥) = Qz(l) =
1

2Ny2
,

qz(l) = y(l1(z)) =
1√
2N

,

cz,k,j =
iNy2√

2|D|

(
iy
√
|D|

2
√

2π

)k−1(
(1− k)

√
|D|

y
√
Nπ

)j
.

We also clearly have

K = L ∩ l⊥ ∩ l′⊥ = Z

1 0

0 −1

 ,

K ′ = L′ ∩ l⊥ ∩ l′⊥ =
1

2N
Z

1 0

0 −1

 .

We say λ > 0 for λ ∈ K ⊗ R if λ = C
(

1 0
0 −1

)
for some C > 0. We also, as is standard

(see [Bor98, Section 13] [BO10, Section 5]), associate the upper half plane with an open

subset of K ⊗ C by mapping z′ ∈ H to
(

1 0
0 −1

)
⊗ z′. Using this identification we then clearly

have for λ ∈ K ⊗ R that

(λ, µK) = (λ, x) and (λ,w⊥) = − 1

2Ny2
(λ, y).

Finally we can also identify K ′ with the lattice 1
2NZ, by letting an element m

2N

(
1 0
0 −1

)
∈ K ′

be identified with m
2N for m ∈ Z. This means we can switch from a sum over λ ∈ K ′ to a sum

over m ∈ Z. In which case

Q(λ) =
m2

4N
and (λ, z′) = mz′.

for λ ∈ K ′ and z′ ∈ H. In the next lemma we will let ck,1 = cz,k,1y
−k. We have already seen

that the theta kernel decays exponentially as v →∞. We now look at the growth in the other

variable, i.e. as y →∞.

We will consider other cusps of Γ0(N), and not just l∞. When N is square-free we can

use the Atkin-Lehner involutions to adapt the l∞ case. Section 3.4 told us that for any

s ∈ P1(Q) = Q∪ {∞} there exists a WN
m such that WN

m∞ = s, where m is an exact divisor of

N . For any function f : H→ C[L′/L] with components fh we will denote

fWN
m

:=
∑

h∈L′/L

fWN
m .h

eh.

We remember (WN
m )2 = 1 (mod Γ0(N)) and can write fWN

m
=
∑
h∈L′/L fheWN

m .h
.
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Proposition 5.4.6. Let N be square-free. Let s ∈ P1(Q) be a cusp for Γ0(N) and WN
m the

Atkin-Lehner involution such that WN
m∞ = s. Then there is a constant C > 0 such that as

y →∞ we have(
Θk(τ)

∣∣
2−2k

WN
m

)
(z) = ykck,1Ξk−2,WN

m
(τ, 0, 0, 0) +O(e−Cy

2

)

unless k = 1, in which case (
Θ1(τ)

∣∣
2−2k

WN
m

)
(z) = O(e−Cy

2

).

Proof. Using (5.4.3) we see the term

e

(
−Ny

2|d+ cτ |2
2|D|iv

)
means that θh,k(τ, z) decays exponentially as y → ∞ (uniformly in x) except the case when

c = 0, d = 0. In the case c = 0, d = 0 we observe θh,k(τ, z) simply vanishes unless k ≥ 2 and

j = 1. In the remaining cases Theorem 5.4.3 tells us we have

cz,k,1ξk−2,h(τ, 0, 0, 0)

left to consider. We can check using the explicit terms given earlier that ξk−2,h(τ, 0, 0, 0) does

not depend on y and so

Θk(τ, z) = ck,1y
kΞk−2(τ, 0, 0, 0) +O(e−Cy

2

)

as y →∞.

We now let s ∈ P1(Q) be any cusp of Γ0(N). Following our earlier discussion, we know

WN
m∞ = s for some m an exact divisor of N . Then the Fourier expansion of Θk(τ, z) at the

cusp s is given by the Fourier expansion of(
Θk(τ)

∣∣
2−2k

WN
m

)
(z) = j(WN

m , z)
2k−2Θk(τ,WN

m .z)

at the cusp ∞ (see for example [DS05, Section 1.2]). Using Proposition 3.6.12 we then see

j(WN
m , z)

2k−2Θk(τ,WN
m .z) =

∑
h∈L′/L

θWN
m .h,k

(τ, z)eh.

So it is then clear(
Θk(τ)

∣∣
2−2k

WN
m

)
(z) = ck,1y

kΞk−2,WN
m

(τ, 0, 0, 0) +O(e−Cy
2

)

as y →∞.



Chapter 6

The Fourier Expansion

This part is dedicated to investigating the Fourier expansion of our lift ΦD,r,k(z, f) that we

defined in Chapter 4. Before we get to the main result, Theorem 6.3.10, we first need some

groundwork that is useful in its own right. We discuss an evaluation of a pairing adapted from

Definition 2.5.21 that allows us to find the integral over the fundamental domain of a harmonic

weak Maass form against a modular form. We use this to find the expansion associated to

the additional term which appears in Theorem 5.4.5 (when k ≥ 2). We also solve some tricky

integrals that will crop up in our proof. Finally using our Fourier expansion at the cusp l∞

we can consider the expansion at other cusps and the asymptotic behaviour showing that we

have obtained a locally harmonic weak Maass form as in Definition 2.5.30.

The key references, where similar Fourier expansions are computed are [Bor98,BO10,Bru02].

6.1 The Additional Term

In this section the aim is to evaluate the integral∫ reg

τ∈F

〈
f(τ),Ξk−2(τ, 0, 0, 0)

〉 dudv
v2

.

This integral will arise in the proof of Theorem 6.3.10 and it originates from the additional term

that appears in Theorem 5.4.5 (when k ≥ 2). Analogous integrals are considered in [Bor98,

Section 9].

We first quickly state another convenient version of Lemma 4.3.5 which we will use here. We

also correct a sign error and note this result is stated for any even lattice and any rational

non-degenerate quadratic space (V,Q) of signature (b+, b−) as in Section 2.5.1.

94
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Lemma 6.1.1 ([Bru02, Lemma 4.2]). Let κ ∈ 1
2Z and f, g ∈ Aκ,ρL be smooth functions. Then∫

Ft
〈f, Lκ+2g〉 vκ−2dudv +

∫
Ft
〈Rκf, g〉 vκdudv =

∫ 1/2

−1/2

[〈f, g〉 vκ]v=t du.

This next proposition is a useful manipulation of 2.5.21 that gives us an explicit way to find

the integral of any harmonic weak Maass form f ∈ Hκ,ρL−
against a modular form g ∈M−κ,ρL

(the Petersson scalar product).

Proposition 6.1.2. For f ∈ Hκ,ρL−
and g ∈ M−κ,ρL with Fourier expansions as in (2.5.2)

and (2.5.1), κ ∈ 1
2Z and extending our definition of 2.5.21 (R−κ(g) is not necessarily an

element of M2−κ,ρL) we have

{R−κ(g), f} := (R−κ(g), ξκ(f))reg
2−κ,ρL = 0

and ∫ reg

τ∈F

〈
f(τ), g(τ)

〉 dudv
v2

=
1

κ

∑
h∈L′/L

∑
n∈Z+Q(h)

n≤0

c+(n, h)a(−n, h)(4πn).

Proof. For the first statement we see that

{R−κ(g), f} = (R−κ(g), ξκ(f))reg
2−κ,L

= lim
t→∞

∫
τ∈Ft

〈R−κ(g), ξκ(f)〉 v−κdudv.

Then using Lemma 6.1.1 we have

= − lim
t→∞

∫
τ∈Ft

〈g, L2−κξκ(f)〉 v−κ dudv
v2

+ lim
t→∞

∫ 1/2

−1/2

[
〈g, ξκ(f)〉 v−κ

]
v=t

du.

However we then note the second term (the integral over the boundary) disappears as g is a

modular form and ξκ(f) is an exponentially decaying cusp form as t→∞. The first term also

disappears as we remember f is harmonic and using Definition 2.5.15 then

L2−κξκ(f) = vκξ2−κξκ(f) = −vκ∆κ(f) = 0.

To show the second part of the proposition we follow similar lines but when using 6.1.1 we

move to the other side.

{R−κ(g), f} = (R−κ(g), ξκ(f))reg
2−κ,L

= lim
t→∞

∫
τ∈Ft

〈R−κ(g), ξκ(f)〉 v−κdudv

= lim
t→∞

∫
τ∈Ft

〈
R−κ(vκf), R−κ(g)

〉
v−κdudv.
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So using Lemma 6.1.1 this time we obtain

= − lim
t→∞

∫
τ∈Ft

〈
vκf, L2−κR−κ(g)

〉
v−κ

dudv

v2
+ lim
t→∞

∫ 1/2

−1/2

[〈
f,R−κ(g)

〉]
v=t

du

= − lim
t→∞

∫
τ∈Ft

〈
L2−κR−κ(g), f

〉 dudv
v2

+ lim
t→∞

∫ 1/2

−1/2

[〈
f,R−κ(g)

〉]
v=t

du.

Then crucially as g is harmonic (it is holomorphic) we know (Definition 2.5.15) that −∆−κ(g)

= L2−κR−κ(g)− κ(g) = 0 so

L2−κR−κ(g) = κ(g).

So this combined with the first part gives∫ reg

τ∈F

〈
g, f
〉 dudv

v2
=

1

κ
lim
t→∞

∫ 1/2

−1/2

〈
f(u+ it), R−κ(g(u+ it))

〉
du. (6.1.1)

We then note using the explicit Fourier expansion (2.5.1) that for one component then

R−κ(g(τ)) =
∑

h∈L′/L

∑
n∈Z+Q(h)

n≥0

(
−4πn− κ

v

)
a(n, h)e(nτ)eh

and so remembering the integral over u picks out the 0-th Fourier coefficient we obtain our

stated result:

1

κ
lim
t→∞

∫ 1/2

−1/2

〈
f(u+ it), R−κ(g(u+ it))

〉
du

=
1

κ
lim
t→∞

∑
h∈L′/L

∑
n∈Z+Q(h)

n≤0

c+(n, h)
(

4πn− κ

t

)
a(−n, h) +O(e−εt)

=
1

κ

∑
h∈L′/L

∑
n∈Z+Q(h)

n≤0

c+(n, h)a(−n, h)(4πn)

for some ε > 0.

We would hope to use Proposition 6.1.2 in the case when g = Ξ(τ, 0, 0, 0, k − 2). However we

remember this function is in general neither harmonic nor holomorphic. We need a modifica-

tion of Proposition 6.1.2. For the specific case of Ξ(τ, 0, 0, 0, k − 2), we can get round these

problems. Specifically we remember from Section 5.3.1 that Ξ(τ, 0, 0, 0, k − 2) still has the

same asymptotic growth as a modular form and although it is not harmonic when we apply

the raising and lowering operators we still get back Ξ(τ, 0, 0, 0, k − 2) up to some constants,

(see Lemma 5.3.9).

Lemma 6.1.3. Let f ∈ H3/2−k,ρ with Fourier expansion as in (6.3.3) and let k ≥ 2, D = 1.

Then∫ reg

τ∈F

〈
f(τ),Ξk−2(τ, 0, 0, 0)

〉 dudv
v2

=
1

k(k − 1)

∑
h∈K′/K

∑
λ∈K+h

c+(−Q(λ), h)

(
−2
√

2π(λ,w⊥)√
Qz(l)

)k
.
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Proof. The first part of Proposition 6.1.2 still holds in the case that f ∈ H3/2−k,ρ and g =

Ξk−2(τ, 0, 0, 0) i.e.

(Rk−3/2(g), ξ3/2−k(f))reg
1/2−k,L = 0.

We see this is true because the arguments still hold the same in this case up to the point

where we check the integral over the boundary vanishes. Then g is no longer a modular form.

However we know from Lemma 5.3.8 that g has the same growth behaviour as v →∞ so this

term does indeed still vanish.

Now we can adapt the second part of Proposition 6.1.2 and obtain that∫ reg

τ∈F

〈
f(τ), g(τ)

〉 dudv
v2

= − 4

k(k − 1)
lim
t→∞

∫ 1/2

−1/2

〈
f(u+ it), Rk−3/2(g(u+ it))

〉
du.

This is clear from (6.1.1) and remembering from Lemma 5.3.9 that if g = Ξk−2(τ, 0, 0, 0) then

Lk+1/2Rk−3/2(g) = −k(k−1)
4 (g). We also know from Lemma 5.3.9 that

Rk−3/2(ξk−2,h(τ, 0, 0, 0)) = − 1

4
ξk,h(τ, 0, 0, 0)

= − v−k/2

4

∑
λ∈K+rh

Hk

(
−
√

2πv(λ,w⊥)√
Qz(l)

)
e(Q(λ)τ).

The integral over u picks out the 0-th Fourier coefficient and f−(u+ it) decays exponentially

as t→∞ so it remains to consider

− 4

k(k − 1)
lim
t→∞

∫ 1/2

−1/2

〈
f+(u+ it), Rk−3/2(g(u+ it))

〉
du

=
1

k(k − 1)
lim
t→∞

∑
h∈K′/K

∑
λ∈K+h

c(−Q(λ), h, t)t−k/2Hk

(
−
√

2πt(λ,w⊥)√
Qz(l)

)
.

Here we only need to consider the finite terms c+(−Q(λ), h) as we remember K is a positive

definite lattice, so −Q(λ) ≤ 0. We then use part d of Lemma 5.2.5 to obtain

=
1

k(k − 1)
lim
t→∞

∑
h∈K′/K

∑
λ∈K+h

c+(−Q(λ), h)t−k/2k!

bk/2c∑
n=0

(−1)n

n!(k − 2n)!

(
−2
√

2πt(λ,w⊥)√
Qz(l)

)k−2n

=
1

k(k − 1)

∑
h∈K′/K

∑
λ∈K+h

c+(−Q(λ), h)

(
−2
√

2π(λ,w⊥)√
Qz(l)

)k
.

6.2 Integrals

In this section we solve and simplify some difficult integrals. The integrals in Lemma 6.2.2 and

Lemma 6.2.4 will be critical to the proof of Theorem 6.3.10. The first of these lemmas (Lemma

6.2.1) is already known. Specifically it can be found in even and odd cases in a complicated

hypergeometric form in [GR15, (7.376.2), (7.376.3)]. We give a simpler exposition.
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Lemma 6.2.1. Let n ∈ Z, n ≥ 0 and let r ∈ Z, r ≥ n. Then∫ ∞
t=0

trHn (t) e−t
2

dt =
r!

2(r − n)!
Γ

(
r − n+ 1

2

)
.

Proof. We first notice that (for n ≥ 1)

d
(
Hn (t) e−t

2
)

dt
= (2Hn−1(t)− 2tHn(t)) e−t

2

= −Hn+1(t)e−t
2

.

Then using integration by parts∫ ∞
t=0

trHn (t) e−t
2

dt = −
[
trHn−1(t)e−t

2
]∞

0
+ r

∫ ∞
t=0

tr−1Hn−1(t)e−t
2

dt

= r

∫ ∞
t=0

tr−1Hn−1(t)e−t
2

dt.

Repeating this n times (remembering H0(t) = 1) we obtain

r!

(r − n)!

∫ ∞
t=0

tr−ne−t
2

dt =
r!

2(r − n)!

∫ ∞
t=0

t(r−n−1)/2e−tdt =
r!

2(r − n)!
Γ

(
r − n+ 1

2

)
where we have used Definition 2.5.7.

Lemma 6.2.2. Let κ ∈ Z, κ ≥ 0 and let α, β ∈ R, α > 0. Then∫ ∞
v=0

∑
j

v−κ/2Hκ−j

(
− α√

v
+ β
√
v

)(
κ
√
v

α

)j
e−α

2/v dv

v2
=
e−2αβΓ(κ+ 1,−2αβ)

(−α)κ+2
.

Proof. Making the substitution v = α2/t2 we obtain

2

(−α)κ+2

∫ ∞
t=0

∑
j

tκ+1Hκ−j

(
t− αβ

t

)(
−κ
t

)j
e−t

2

dt

and then using part e of Lemma 5.2.1

=
2(2β)κ

α2

∑
j

κ−j∑
n=0

(
κ− j
n

)(
κ

2αβ

)j
(−2αβ)−n

∫ ∞
t=0

tn+1Hn (t) e−t
2

dt.

Applying Lemma 6.2.1 for r = n+ 1

=
2(2β)κ

2α2

∑
j

κ−j∑
n=0

(
κ− j
n

)(
κ

2αβ

)j
(−2αβ)−n(n+ 1)!

and considering this sum in the two cases of j = 0, 1

=
(2β)κ

α2

[
κ∑
n=0

(n+ 1)κ!

(κ− n)!
(−2αβ)−n −

κ∑
n=1

nκ!

(κ− n)!
(−2αβ)−n

]

=
(2β)κκ!

α2

κ∑
n=0

(−2αβ)−n

(κ− n)!

= (−α)−κ−2κ!
κ∑
n=0

(−2αβ)n

n!
.

Finally using [JD08, Section 11.1.9] we know that

Γ(κ+ 1,−2αβ) = e2αβκ!
κ∑
n=0

(−2αβ)n

n!
(6.2.1)

so we have the stated result.
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The next lemma will make use of the modified K-Bessel function of the second kind, as defined

in [Ste84, Section 9.6] or [EMOT54, Appendix]. We will denote these as Kt(·).

Lemma 6.2.3. Let κ ∈ Z, κ ≥ 0 with α, β ∈ R, α, β 6= 0 and let n ∈ Z, κ ≥ n ≥ 0. Then∫ ∞
v=0

Γ(κ+ 1/2, β2v)v−ne−α
2/v dv

v2

=
n∑
r=0

n!

(n− r)!
2|β|2κ+1

|α|2r+2

( |α|
|β|

)κ+1/2−n+r

Kκ+1/2−n+r (2|αβ|) .

Proof. In the case when n = 0 we find∫ ∞
v=0

Γ(κ+ 1/2, β2v)e−α
2/v dv

v2
= α−2|β|2κ+1

∫ ∞
v=0

vκ−1/2e−β
2v−α2/vdv

with a simple integration by parts (see [Bru02, Proposition 3.1]). Then we have the following

identity [EMOT54, 6.3.17]∫ ∞
v=0

e(−β2v−α2/v)vt−1dv = 2

( |α|
|β|

)t
Kt(2|αβ|).

So we have ∫ ∞
v=0

Γ(κ+ 1/2, β2v)e−α
2/v dv

v2
=

2|β|2κ+1

α2

( |α|
|β|

)κ+1/2

Kκ+1/2(2|αβ|).

Now using integration by parts and remembering∫ ∞
v=0

e−α
2/v dv

v2
=

[
e−α

2/v

α2

]∞
v=0

we see that∫ ∞
v=0

Γ(κ+ 1/2, β2v)v−ne−α
2/v dv

v2

=

[
Γ(κ+ 1/2, β2v)v−n

e−α
2/v

α2

]∞
v=0

−
∫ ∞
v=0

d

dv

(
Γ(κ+ 1/2, β2v)v−n

) e−α2/v

α2
dv.

The first term vanishes and we know ∂Γ(s,x)
∂x = −xs−1e−x [Ste84, 6.5.25] so continuing

=

∫ ∞
v=0

Γ(κ+ 1/2, β2v)nv−n+1 e
−α2/v

α2

dv

v2
−
∫ ∞
v=0

(−β2e−β
2v(β2v)κ−1/2)v−n

e−α
2/v

α
dv

= n

∫ ∞
v=0

Γ(κ+ 1/2, β2v)v−n+1 e
−α2/v

α2

dv

v2
+

2|β|2κ+1

α2

( |α|
|β|

)(κ+1/2−n)

Kκ+1/2−n (2|αβ|)

and repeated application of this reveals

=
n∑
r=0

(n)!

(n− r)!
2|β|2κ+1

|α|2r+2

( |α|
|β|

)(κ+1/2−n+r)

Kκ+1/2−n+r (2|αβ|) .
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Lemma 6.2.4. Let κ ∈ Z, κ ≥ 0 and let α, β ∈ R, α > 0, β 6= 0. Then∫ ∞
v=0

∑
j

v−κ/2Hκ−j

(
− α√

v
+ β
√
v

)(
κ
√
v

α

)j
e−α

2/vΓ
(
κ+ 1/2, β2v

) dv
v2

=


(−1)

κ (2κ)!
√
π

4κακ+2
e−2αβ if β > 0,

(−1)
κ

√
π

4κακ+2
e−2αβΓ(2κ+ 1,−4αβ) if β < 0.

Proof. We will use the fact that our Fourier expansion is harmonic (and therefore its coeffi-

cients satisfy a certain differential equation) to help us here. This will rely on knowledge of

our Fourier expansion that we only show in the next section but to simplify the exposition in

Theorem 6.3.10 we will evaluate the integral here. We reformulate the stated integral as

I(y) := yk+1

∫ ∞
v=0

∑
j

v−(k−1)/2

(
(k − 1)

√
v

ay

)j
×Hk−1−j

(
− ay√

v
+ β
√
v

)
e−(ay)2/vΓ

(
k − 1/2, β2v

) dv
v2

where κ = k−1, α = ay (a, y > 0) and we have multiplied by yk+1. We have written it in this

way so that it exactly matches the Fourier expansion form which we will obtain in (6.3.16)

after unfolding and simplifying (associating β with sgn(D)mβ̃). We observe that a, β do not

depend on x or y. This is useful as we know that our lift and therefore (6.3.16) must vanish

under the Laplacian operator ∆2−2k,z using Theorem 4.3.7. In particular, gathering all the

terms dependent on x and y, we see that I(y) must satisfy the following differential equation

∆2−2k,z

(
I(y)e2aβix

)
= 0.

Applying the Laplacian we then have

yI ′′(y) + (2− 2k)I ′(y) +
(
(2− 2k)2aβ − 4a2β2y

)
I(y) = 0.

We remember aβ 6= 0 and so easily check that e−2aβy is a solution, as is e−2abyΓ(2k−1,−4aby).

This means we have a solution of the form

e−2aβy (c1(a, β, k) + c2(a, β, k)Γ(2k − 1,−4aβy)) . (6.2.2)

We now determine the two constants. This will briefly involve some long messy sums but we

have failed to spot a nicer approach. Using Lemma 5.2.5 parts d and e we expand out the
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Hermite polynomial terms of I(y) to obtain

∑
j

(
k − 1

a

)j k−1−j∑
c=0

(
k − 1− j

c

)
(2β)

k−1−j−c

× yk+1−j
∫ ∞
v=0

v−c/2Hc

(
− ay√

v

)
e−(ay)2/vΓ

(
k − 1/2, β2v

) dv
v2

=
∑
j

(
k − 1

a

)j k−1−j∑
c=0

bc/2c∑
d=0

(
k − 1− j

c

)
c!(−1)d+c(2a)c−2d (2β)

k−1−j−c

d!(c− 2d)!

× yk+1−j+c−2d

∫ ∞
v=0

v−c+de−(ay)2/vΓ
(
k − 1/2, β2v

) dv
v2
.

We then use Lemma 6.2.3 for κ = k − 1, n = c − d, α = ay, β = β to write this as a sum of

K-Bessel functions:

=
∑
j

(
k − 1

a

)j k−1−j∑
c=0

bc/2c∑
d=0

(
k − 1− j

c

)
c!(−1)d+c(2a)c−2d (2β)

k−1−j−c

d!(c− 2d)!

×
c−d∑
r=0

(c− d)!

(c− d− r)!
2|β|2k−1

a2r+2

(
a

|β|

)k−1/2−c+d+r

Kk−1/2−c+d+r (2a|β|y) y2k−3/2−j+d−r.

At this point we consider the identity [EMOT81b, 7.2.6.40]

Kκ+1/2(z) =
√
π/2ze−z

∑
0≤s≤κ

(2z)−s
(κ+ s)!

s!(κ− s)!

for κ a non-negative integer. This tells us then that I(y) is certainly of the form

2k−2∑
t=0

c(a, β, t, k)yte−2a|β|y (6.2.3)

for some constants c(a, β, t, k) which do not depend on y. We take the limit as y → ∞ in

(6.2.3). This then converges to 0 and comparing with (6.2.2) and remembering the asymptotic

behaviour of the incomplete gamma function from Lemma 2.5.28 we see that if β > 0 then

c2(a, β, k) must equal 0 and if β < 0 then c1(a, β, k) must equal 0.

It remains to determine the other constant. To do this we find the t = 0 term in (6.2.3)

and take the limit as y → 0. Some staring reveals that we have t = 0 in the cases when

0 ≤ j ≤ 1, c = k − 1 − j, 0 ≤ d ≤ b(k − 1 − j)/2c, r = k − 1 − j − d and s = k − 1. Plugging

these all in we find the t = 0 term is

(2k − 2)!
√
π

a2

(−1

2a

)k−1

e−2a|β|y
∑
j

(−2)
−j
b(k−1−j)/2c∑

d=0

(
k − 1− j − d

d

)
(−4)−d.

We then use the following identity which we take from [Gou72, 1.72]

bκ/2c∑
d=0

(−1)d
(
κ− d
d

)
2κ−2d = κ+ 1
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to see that the t = 0 term is

(2k − 2)!
√
π

22k−2ak+1
(−1)

k−1
e−2a|β|y

∑
j

(−1)
j

(k − j)

= (−1)
k−1 (2k − 2)!

√
π

4k−1ak+1
e−2a|β|y.

We consider (6.2.3) and (6.2.2) as we take the limit, y → 0. We see that if β > 0, then

c1(a, β, k) = (−1)
k−1 (2k − 2)!

√
π

4k−1ak+1

and if β < 0, then

c2(a, β, k) = (−1)
k−1 (2k − 2)!

√
π

22k−2ak+1

1

Γ(2k − 1, 0)
= (−1)

k−1

√
π

4k−1ak+1
.

Using (6.2.2) we then know I(y) and we have the stated result (remembering to divide by

yk+1).

6.3 The Fourier Expansion

6.3.1 Objects

In our expansion a few mathematical objects will show up. We summarise these here.

Definition 6.3.1. Let x ∈ R and let A ⊂ R. Then we define our indicator function as

IA(x) :=


1
2 if x ∈ A,

0 if x 6∈ A.

Definition 6.3.2. Let x ∈ R, n ∈ Z, n ≥ 0. Then the nth periodic Bernoulli polynomial

is defined as

Bn(x) := −n!
∑
m 6=0

e(mx)

(2πim)n

and setting B0(x) = 1.

Lemma 6.3.3 ([EMOT81a, Section 1.13], [Bor98, Section 10]). We have that

1. Bn(−x) = (−1)nBn(x),

2. Bn(x+ 1) = Bn(x),

3. B′n(x) = nBn−1(x) for x /∈ Z or n 6= 1, 2,

4. B1(x) = x− 1/2 for 0 < x < 1 and B1(0) = 0.
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Remark 6.3.4. We see that B1(x) is a discontinuous sawtooth function with singularities on

x ∈ Z and the value on the singularity (i.e. 0) is the average of the limits from either side (i.e.

−1/2 and 1/2). These functions will encompass the vertical half-line singularities of our lift.

Definition 6.3.5. Let x ∈ R, n ∈ Z, n ≥ 0. Then the nth Bernoulli polynomial is defined

by the generating function

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
.

The nth Bernoulli number is defined as Bn := Bn(0).

Example 6.3.6. The first four Bernoulli polynomials are

B0(x) = 1, B1(x) = x− 1/2, B2(x) = x2 − x+ 1/6, B3(x) = x3 − 3

2
x2 +

1

2
x.

We denote the fractional part of x ∈ R as 〈x〉 := x− bxc.

Lemma 6.3.7 ([EMOT81a, Section 1.13], [Bor98, Section 10], [GR15, Section 9.62]). We

have that

1. Bn(1− x) = (−1)nBn(x),

2. Bn(x+ 1) = Bn(x) + nxn−1,

3. B
′

n(x) = nBn−1(x),

4. Bn(1) = Bn(0) = Bn for n 6= 1,

5. Bn(x+ y) =
∑n
κ=0

(
n
κ

)
Bκ(x)yn−κ,

6. Bn (〈x〉) = Bn(x) for n 6= 1,

7. B1 (〈x〉) + IZ(x) = B1(x).

We notice using property 4 that Bn(x) are continuous functions for n 6= 1. The constant term

of our expansion in Theorem 6.3.10 will invole the following function:

Definition 6.3.8. For s ∈ C,Re(s) > 1 we let the Dirichlet L-function associated to the

quadratic character
(
D
·
)

be defined as

L

(
s,

(
D

·

))
:=
∑
n≥1

(
D

n

)
1

ns
,

which can be meromorphically continued to all s ∈ C.

We recall that we have already defined polylogarithms in Definition 5.3.6. To help make our

expansion even more compact we also introduce the following functions.



6.3. The Fourier Expansion 104

Definition 6.3.9. Let κ ∈ Z, b ∈ R, b > 0 and let z ∈ C, |z| < 1. Then the shifted incom-

plete polylogarithm is defined as

Liκ,r(b, z) :=
∞∑
n=1

zn

nκ+r

Γ (κ, nb)

Γ(κ)
,

which can be analytically continued to all z ∈ C. When r = 0 we call this the incomplete

polylogarithm.

We note using (6.2.1) that the shifted incomplete polylogarithm is just a finite sum of poly-

logarithms:

Liκ,r(b, z) =
∞∑
n=1

zn

nκ+r
e−nb

κ−1∑
m=0

nbm

m!
=

κ−1∑
m=0

bm

m!

∞∑
n=1

(
ze−b

)n
nκ+r−m =

κ−1∑
m=0

bm

m!
Liκ+r−m

(
ze−b

)
.

We also remember from Section 5.4.1 for the cusp l∞ we had the following identifications

Qz(l) =
1

2Ny2
, (6.3.1a)

(λ, µK) = (λ, x), (6.3.1b)

(λ,w⊥) = − 1

2Ny2
(λ, y), (6.3.1c)

cz,k,j =
iNy2√

2|D|

(
iy
√
|D|

2
√

2π

)k−1(
(1− k)

√
|D|

y
√
Nπ

)j
, (6.3.1d)

and denote ck,j := y−k−1+jcz,k,j . Using (2.5.6) and (2.5.2) we will as ever write an element

f(τ) ∈ H3/2−k,ρ as follows:

f+ =
∑

h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m≥−n0

c+(m,h)e(mτ)eh, (6.3.2a)

f− =
∑

h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c−(m,h)Γ(k − 1/2,−4πmv)e(mτ)eh, (6.3.2b)

Or alternatively

f(τ) =
∑

h∈L′/L

∑
m∈Z−sgn(D)Q(h)

c(m,h, v)e(mτ)eh, (6.3.3)

where

c(m,h, v) = c+(m,h) + c−(m,h)Γ(k − 1/2,−4πmv). (6.3.4)

6.3.2 The Proof

We can now state the main result of this chapter. This Fourier expansion is at the cusp l∞

and for other cusps of Γ0(N) we also have similar Fourier expansions, see Theorem 6.3.12.

This is (unavoidably) a very long and technical proof (similar in nature to those found in

[Bor98, Sections 7 and 14] and [Bru02, Chapters 2 and 3]), so we have divided parts of it into

paragraphs to hopefully make it more manageable.
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Theorem 6.3.10. Let f ∈ H3/2−k,ρ be a harmonic weak Maass form with expansion as

given in (6.3.2). If n0 < 0 then ΦD,r,k(z, f) ≡ 0. If n0 ≥ 0, let z = x + iy ∈ H where

y >
√
−|D|n0/N . Then the Fourier expansion of ΦD,r,k(z, f) is as follows:

εD|D|
√

2

iπ

( |D|
iπ2
√

2N

)k−1

c+(0, 0)L
(
k,
(
D
·
))

(6.3.5a)

−2
√

2εD
√
D

k

(
D√
2N

)k−1 ∑
m≥1

∑
b(D)

(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)
(6.3.5b)

×
[
Bk (〈mx+ b/D〉+ imy) +

kIZ(mx+ b/D)

(imy)1−k

]
(6.3.5c)

+

√
2εD
√
D(2k − 2)!

i
√
π

(
D

8πi
√

2N

)k−1 ∑
m≥1

∑
b(D)

(
D

b

)
c−
(
−|D|m

2

4N
,
rm

2N

)
(6.3.5d)

×
[
Lik (e((mz + b/D))) + (−1)ksgn(D)Li2k−1,1−k (4πmy, e(−(mz − b/D)))

]
. (6.3.5e)

In the case k = 1 (6.3.5c) is replaced with B1(mx+b/D). The constant term (6.3.5a) vanishes

if k is odd and D > 0 (or if k is even and D < 0).

Remarks 6.3.11. This is a very large equation, which we have failed to simplify further. We

will often refer to: (6.3.5a) as the “constant term”; (6.3.5b)(6.3.5c) as the “c+ terms”; and

(6.3.5d)(6.3.5e) as the “c− terms”.

We observe during this proof that this expansion actually converges for all z = x + iy ∈ H.

However we will also show this form only truly represents ΦD,r,k(z, f) in the unbounded Weyl

chambers. In particular, this expansion only encapsulates the vertical half-line singularities,

hence the restriction to the case y >
√
|D|n0/N . We recall that, above that height there are

no semi-circle singularities associated to f . We can see the jumps generated by the vertical

half-line singularities are represented by the first periodic Bernoulli polynomial.

The Fourier expansion in the bounded Weyl chambers can be adapted from (6.3.5) with the

addition of some appropriate holomorphic polynomials. We explain this in detail at the very

end of this proof.

In Theorem 7.3.3 we will consider the effect of applying ξ2−2k to this expansion (for z ∈
H\ZD,r(f)). This operator kills holomorphic pieces. In particular (for k ≥ 2) only the shifted

incomplete polylogarithm term survives.

For the other cusps of Γ0(N) we have similar Fourier expansions, see Remark 5.1.2. We are

able to make this explicit in Theorem 6.3.12 in the case of N square-free. We do this by

adapting the l∞ case with some Atkin-Lehner involutions.
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Finally we consider when our lift is trivial. Remarks 4.2.3 told us that if f had non-constant

principal part Pf then ΦD,r,k(z, f) was a non-constant function. I.e. the lift was not trivial.

However during the course of the proof we will see that (6.3.5) actually holds true for all y > 0

if n0 ≤ 0. It is then immediately clear then that if f ∈ S3/2−k,ρ (i.e. Pf ≡ 0, n0 < 0, f− ≡ 0)

then our lift is trivial and vanishes. We also look at the case when f ∈M3/2−k,ρ. Then Pf is

a constant, f− ≡ 0 and n0 = 0. So we observe that our lift is still trivial. We just obtain a

constant function, given by (6.3.5a).

Proof. Using Definition 4.1.1, we need to consider the integral

ΦD,r,k(z, f) =

∫ reg

τ∈F

〈
f(τ),ΘD,r,k(τ, z)

〉 dudv
v2

.

Then using 5.4.5, we write this in terms of the Poincaré series Ξ(τ, µK , n, 0, k − 1− j), to get

Φ∆,r,k(z, f) = cz,k,1

∫ reg

τ∈F

〈
f(τ),Ξk−2(τ, 0, 0, 0)

〉 dudv
v2

+
1

2

∫ reg

τ∈F

∑
n≥1

∑
γ̃∈Γ̃∞\Γ̃

∑
j

cz,k,j(−n)1−j

×
〈
f(τ),

[
e

(
− n2

4|D|i Im(τ)Qz(l)

)
Ξk−1−j(τ, µK ,−n, 0)

] ∣∣∣∣
k−3/2,ρ

γ̃

〉
dudv

v2
.

The Additional Term

In this paragraph we look at the first term given above. This disappears unless k ≥ 2 (using

Theorem 5.4.5) and D = 1 (using Lemma 5.3.5). If it does not vanish we use the integral

calculated earlier in Lemma 6.1.3 to obtain

cz,k,1
k(k − 1)

∑
h∈L′/L

∑
λ∈K+h

c+(−Q(λ), h)

(
−2
√

2π(λ,w⊥)√
Qz(l)

)k

we then simplify the sums over the cosets h ∈ K ′/K and λ ∈ K + h to one sum over K ′ and

use the identities in (6.3.1) to get

−2
√
N

k

(
i√
2N

)k ∑
λ∈K′

(λ, y)kc+(−Q(λ), λ).

We see that c+ (−Q(λ), λ) = (−1)kc+ (−Q(λ),−λ) using Lemma 2.5.3. So the sum over λ < 0

is the same as the sum over λ > 0. The λ = 0 term vanishes. We also identify K ′ with m
2N

for m ∈ Z as discussed in Section 5.4.1. Putting all this together we have

2
√

2y

ik

(
yi√
2N

)k−1 ∑
m≥1

mkc+
(
−m

2

4N
,
m

2N

)
. (6.3.6)
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Unfolding

For the remaining main term we first rewrite this as a sum over γ ∈ Γ∞\Γ (as opposed to

γ̃ ∈ Γ̃∞\Γ̃) and so gain a factor of 2 outside. We then split this sum into two parts. The first

over γ = ± ( 1 0
0 1 ) and the second over γ ∈ Γ∞\Γ, γ 6= ± ( 1 0

0 1 ). Remembering f ∈ H3/2−k,ρ i.e.

the opposite of our slash termed (k − 3/2, ρ), we then obtain:

2

∫ reg

τ∈F

∑
n≥1

∑
j

cz,k,j(−n)1−je

(
− n2

4|D|i Im(τ)Qz(l)

)〈
f(τ),Ξk−1−j(τ, µK ,−n, 0)

〉 dudv
v2

(6.3.7)

+

∫ reg

τ∈F

∑
n≥1

∑
γ=

(
a b
c d

)
∈Γ∞\Γ

c6=0

∑
j

cz,k,j(−n)1−je

(
− n2

4|D|i Im(γτ)Qz(l)

)
(6.3.8)

×
〈
f(γτ),Ξk−1−j(γτ, µK ,−n, 0)

〉 dudv
v2

(6.3.9)

The second additional factor of 2 outside the first term arises as the two elements γ = ± ( 1 0
0 1 )

each generate the same term.

Theorem 4.1.3 told us that the regularised integral converges for all z ∈ H. However we now

need to check that each of these two integrals also converge individually.

We first look at the second integral (6.3.8), (6.3.9). We observe that Im(γτ) = v
|cτ+d|2 for

γ =
(
a b
c d

)
. We have c 6= 0 so to check the convergence of this integral as v → ∞, we need

to look at the terms f(τ),Ξ(τ, µK ,−n, 0, k − 1 − j) and e
(
− n2

4|D|ivQz(l)

)
as v → 0. We use

Lemma 2.5.26 and Lemma 5.3.8. We see immediately that if n0 < 0 this integral converges.

In the case n0 ≥ 0 it converges if

2πn0 −
n2π

|D|Qz(l)
< 0.

So using the identification in (6.3.1a) (and observing that n ≥ 1) this is when

y >

√
2|D|n0

N
.

This is always true if n0 = 0. We will assume from now on that either n0 ≤ 0 or y >√
2|D|n0/N . In this case the integral converges absolutely and the regularisation is not nec-

essary. The first integral (6.3.7) also converges for n0 ≤ 0 or y >
√

2|D|n0/N . This is clear

as the regularised integral and the second integral converged in this case.

Then using the Rankin-Selberg method (see for example [Bor98, Bru02], [Sad12, Proposi-

tion 13]) the second integral is:

2

∫
τ∈G

∑
n≥1

∑
j

cz,k,j(−n)1−je

(
− n2

4|D|i Im(τ)Qz(l)

)〈
f(τ),Ξk−1−j(τ, µK ,−n, 0)

〉 dudv
v2
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where

G := {τ ∈ H | |u| ≤ 1/2, |τ | ≤ 1} .

We can check this converges absolutely for n0 ≤ 0 or y >
√

2|D|n0/N using the same argu-

ments as before (Lemmas 2.5.26 and Lemmas 5.3.8). We can then recombine our two integrals

from above and we now need to evaluate

2

∫ ∞
v=0

∫ 1/2

u=−1/2

∑
n≥1

∑
j

cz,k,j(−n)1−je

(
− n2

4|D|ivQz(l)

)〈
f(τ),Ξk−1−j(τ, µK ,−n, 0)

〉 dudv
v2

.

At this point we insert the expansion for f(τ) and Ξk−1−j(τ, µ,−n, 0) given in (6.3.3) and

Lemma 5.3.5. We remember that L′/L ∼= K ′/K.

2εD|D|1/2
∫ ∞
v=0

∫ 1/2

u=−1/2

∑
n≥1

∑
j

∑
h∈K′/K

∑
m∈Z−sgn(D)Q(h)

∑
λ∈K+rh

Q(λ)≡DQ(h)(D)

cz,k,j(−n)1−j

× c(m,h, v)e(mτ)

(
D

n

)
v−(k−1−j)/2Hk−1−j

(√
π(−n− 2v(λ,w⊥))√

2|D|vQz(l)

)

× e
(
Q(λ)τ

|D|

)
e

(
n

|D|(λ, µK)

)
e

(
− n2

4|D|ivQz(l)

)
dudv

v2
.

The next step is to carry out the integration over u (a compact region). We remember that

this integral picks out the 0-th Fourier coefficient (for example as in Theorem 4.1.3)

2εD|D|1/2
∫ ∞
v=0

∑
j

∑
h∈K′/K

∑
λ∈K+rh

Q(λ)≡DQ(h)(D)

∑
n≥1

cz,k,j(−n)1−j

× c
(
−Q(λ)

|D| , h, v
)(

D

n

)
v−(k−1−j)/2Hk−1−j

(√
π(−n− 2v(λ,w⊥))√

2|D|vQz(l)

)

× e
(
n

|D|(λ, µK)

)
e

(
− n2

4|D|ivQz(l)

)
dv

v2
.

Next we simplify the sums over the cosets and K to one sum over K ′. We notice taking a sum

over λ ∈ K,h ∈ K ′/K such that Q(λ) ≡ ∆Q(h)(∆) and λ ≡ rh(K) is equivalent to taking a

sum over λ′ ∈ K ′ with λ = ∆λ′ and rλ′ ≡ h(K) (in particular we remember D ≡ r2(4N)).

This leaves

2εD|D|1/2
∫ ∞
v=0

∑
j

∑
λ∈K′

∑
n≥1

(
D

n

)
cz,k,j(−n)1−jv−(k−1−j)/2c (−|D|Q(λ), rλ, v)

×Hk−1−j

(√
π(−n− 2Dv(λ,w⊥))√

2|D|vQz(l)

)
e (sgn(D)n(λ, µK)) e

(
− n2

4|D|ivQz(l)

)
dv

v2
. (6.3.10)

At this point we consider the two parts given by 6.3.4

c(m,h, v) = c+(m,h) + c−(m,h)Γ(k − 1/2,−4πmv). (6.3.11)
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The c+ Terms

We remember our lattice is positive definite i.e. −|D|Q(λ) is negative and so we will have

only finitely many c+(−|D|Q(λ), rλ) terms that do not vanish. We set

α :=
n
√
π√

2|D|Qz(l)
> 0 β := −

√
2πD(λ,w⊥)√
|D|Qz(l)

(6.3.12)

We also see that using (5.4.1) then (−n)−jvj/2cz,k,j = cz,k,0

(
(k−1)

√
v

α

)j
and

αβ = −sgn(D)πn(λ,w⊥)

Qz(l)
.

We now carry out the integration over v. We can swap the integration and summation as the

sum over m is finite and we can check through this proof that the absolute value of (6.3.10)

converges. In this case the integral over v (and the sum over j) we need to consider is∫ ∞
v=0

∑
j

v−(k−1)/2Hk−1−j

(
− α√

v
+ β
√
v

)(
(k − 1)

√
v

α

)j
e−

α2

v
dv

v2
.

Using Lemma 6.2.2 (for κ = k − 1) we then have

− 2εD|D|1/2
(
−
√

2|D|Qz(l)√
π

)k+1

cz,k,0
∑
λ∈K′

∑
n≥1

(
D

n

)
c+ (−|D|Q(λ), rλ)

nk

× e
(

sgn(D)n

(
(λ, µK)− i(λ,w⊥)

Qz(l)

))
Γ

(
k,

sgn(D)2πn(λ,w⊥)

Qz(l)

)
. (6.3.13)

We then observe that we change the sign of λ and n and the terms in the sum remain

unchanged. We see this by noting that

c+(m,h) = (−1)ksgn(D)c+(m,−h)

as f transforms with respect to ρ using Lemma 2.5.10 and that
(
D
−n

)
= sgn(D)

(
D
n

)
using

Proposition 3.2.4. This means we can replace the sums over n ≥ 1 and λ ∈ K ′ with sums over

n ∈ Z, n 6= 0 and λ ∈ K ′, λ > 0 respectively. (We treat the case when λ = 0 separately, in the

constant term paragraph). This leaves

− 2εD|D|1/2
(
−
√

2|D|Qz(l)√
π

)k+1

cz,k,0
∑
λ∈K′
λ>0

∑
n∈Z\{0}

(
D

n

)
c+ (−|D|Q(λ), rλ)

nk

× e
(

sgn(D)n

(
(λ, µK)− i(λ,w⊥)

Qz(l)

))
Γ

(
k,

sgn(D)2πn(λ,w⊥)

Qz(l)

)
.

We remember using [BO10, Equation 4.7] that

∑
b(D)

(
D

b

)
e

(
nb

|D|

)
=

(
D

n

)
εD|D|1/2 (6.3.14)
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so we can rewrite to

− 2

(
−
√

2|D|Qz(l)√
π

)k+1

cz,k,0
∑
λ∈K′
λ>0

∑
n∈Z\{0}

∑
b(D)

(
D

b

)
c+ (−|D|Q(λ), rλ)

nk

× e
(

sgn(D)n

(
(λ, µK)− i(λ,w⊥)

Qz(l)
+

b

D

))
Γ

(
k,

sgn(D)2πn(λ,w⊥)

Qz(l)

)
.

We had some identifications in (6.3.1) for the specific cusp l∞. We also identifying K ′ with

m
2N for m ∈ Z as discussed in Section 5.4.1. This allows us to simplify to√

2|D|
iπ

( −i|D|
2π
√

2N

)k−1 ∑
m≥1

∑
n∈Z\{0}

∑
b(D)

(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)

× n−ke
(

sgn(D)n

(
mz +

b

D

))
Γ (k,−sgn(D)2πnmy) .

The c+ Terms, Bernoulli Form

We can reformulate this more appealingly in terms of Bernoulli polynomials. Using the de-

composition of the incomplete gamma function given in (??) we have√
2|D|
iπ

( −i|D|
2π
√

2N

)k−1 ∑
m≥1

∑
n∈Z\{0}

∑
b(D)

k−1∑
s=0

(k − 1)!

(k − 1− s)!

(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)

× n−ke
(

sgn(D)n

(
mx+

b

D

))
(−sgn(D)2πnmy)

k−1−s
.

We then remember the periodic Bernoulli polynomials we defined earlier in Definition 6.3.2

which allows us to write this as

− 2
√

2|D|
k

( |D|√
2N

)k−1 ∑
m≥1

∑
b(D)

k−1∑
s=0

(
k

s+ 1

)(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)

× Bs+1

(
sgn(D)

(
mx+

b

D

))
(sgn(D)imy)

k−1−s

This finite sum certainly converges for z ∈ H. Using property 3 of Lemma 6.3.3 we obtain

−εD2
√

2D

k

(
D√
2N

)k−1 ∑
m≥1

∑
b(D)

k∑
s=1

(
k

s

)(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)
Bs
(
mx+

b

D

)
(imy)

k−s
.

This gives the stated result in the case k = 1. We know
∑
b(D)

(
D
b

)
vanishes if D 6= 1 and

B0(x) = 1 so this allows us to rewrite the additional term (6.3.6) (in the case k ≥ 2) from

earlier as

−εD2
√

2D

k

(
D√
2N

)k−1 ∑
m≥1

∑
b(D)

(
k

0

)(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)
B0

(
mx+

b

D

)
(imy)k

so these two nicely combine and we have:

−εD2
√

2D

k

(
D√
2N

)k−1 ∑
m≥1

∑
b(D)

k∑
s=0

(
k

s

)(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)
Bs
(
mx+

b

D

)
(imy)

k−s
.

(6.3.15)
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The c+ Terms, Alternative Bernoulli Form

This is a nice enough version but we can go further by using properties 5, 6 and 7 of Lemma

6.3.7 to obtain

−εD2
√

2D

k

(
D√
2N

)k−1 ∑
m≥1

∑
b(D)

(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)

×
(

IZ(mx+ b/D)k

(imy)1−k +
k∑
s=0

(
k

s

)
Bs (〈mx+ b/D〉) (imy)

k−s

)

and so finally we have the stated form:

−εD2
√

2D

k

(
D√
2N

)k−1 ∑
m≥1

∑
b(D)

(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)

×
(
Bk (〈mx+ b/D〉+ imy) +

IZ(mx+ b/D)k

(imy)1−k

)
.

The Constant Term

We remember we had still had to consider the case when λ = 0 from (6.3.13). This is equal to

−2(k − 1)!εD|D|1/2
(
−
√

2|D|Qz(l)√
π

)k+1

cz,k,0c
+ (0, 0)

∑
n≥1

(
D

n

)
1

nk

and using the identifications in (6.3.1) and Definition 6.3.8 we obtain

εD|D|
√

2

iπ

( |D|
iπ2
√

2N

)k−1

c+(0, 0)L
(
k,
(
D
·
))
.

This is a constant term that does not depend on z. We also see using Lemma 2.5.10 it

disappears if 1
2 (1− 2k − sgn(D)) is odd as then c+(0, 0) = 0. In particular it disappears if

k = 1 and D > 0 so we never have to consider the case when L
(
k,
(
D
·
))

has a pole.

The c− Terms

Next we consider our expansion associated to the non-holomorphic terms. Our lattice K is

positive definite so we will have infinitely many terms of the form c−(−|D|Q(λ), rλ). We had

using (6.3.11) the following form

2εD|D|1/2
∫ ∞
v=0

∑
j

∑
λ∈K′

∑
n≥1

(
D

n

)
cz,k,j(−n)1−jv−(k−1−j)/2

× c− (−|D|Q(λ), rλ) Γ (k − 1/2, 4π|D|Q(λ)v)

×Hk−1−j

(√
π(−n− 2Dv(λ,w⊥))√

2|D|vQz(l)

)
e (sgn(D)n(λ, µK)) e

(
− n2

4|D|ivQz(l)

)
dv

v2
.

We note we have no c−(0, 0) term so this vanishes for λ = 0. We then swap the integration

over v with the summations. We see through this proof that the absolute value of (6.3.10)

converges. Also note that Γ(k − 1/2, 4π|D|Q(λ)v) decays exponentially as v → ∞ and the
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coefficients c−(m,h) only grow polynomially fast. We then use our identifications in (6.3.1)

and then setting a = α/y > 0 and β 6= 0 as before in (6.3.12) we have

− 2εD|D|1/2ck,0
∑
j

∑
λ∈K′
λ6=0

∑
n≥1

(
D

n

)∫ ∞
v=0

v−(k−1)/2yk+1n

(
(k − 1)

√
v

ay

)j
c− (−|D|Q(λ), rλ)

× Γ
(
k − 1/2, β2v

)
Hk−1−j

(
− ay√

v
+ β
√
v

)
e (sgn(D)n(λ, x)) e−

(ay)2

v
dv

v2
.

Next we identify K ′ with m
2N for m ∈ Z and β̃ = β/sgn(D)m > 0 to obtain

− 2εD|D|1/2ck,0
∑
j

∑
m∈Z\{0}

∑
n≥1

(
D

n

)
c−
(
−|D|m

2

4N
,
rm

2N

)
esgn(D)2amβ̃ixnyk+1

×
∫ ∞
v=0

(
(k−1)

√
v

ay

)j
v−

(k−1)
2 Γ

(
k − 1/2, (mβ̃)2v

)
Hk−1−j

(
− ay√

v
+ sgn(D)mβ̃

√
v

)
e−

(ay)2

v
dv

v2
.

(6.3.16)

We solved this integral in v (and the sum over j) in Lemma 6.2.4. Carefully considering the

cases when m and sgn(D) are positive and negative we can now switch to a sum over m ≥ 1

and remember

c−(m,h) = (−1)ksgn(D)c−(m,−h).

So we obtain for D > 0

− 2εD
√
|D|π

a2
ck,0

( −1

4ay

)k−1 ∑
m≥1

∑
n≥1

(
D

n

)
nc−

(
−|D|m

2

4N
,
rm

2N

)
×
[
(2k − 2)!e2amβ̃iz + (−1)ke−2amβ̃izΓ(2k − 1, 4amβ̃y)

]
and for D < 0

− 2εD
√
|D|π

a2
ck,0

( −1

4ay

)k−1 ∑
m≥1

∑
n≥1

(
D

n

)
nc−

(
−|D|m

2

4N
,
rm

2N

)
×
[
(−1)k+1(2k − 2)!e2amβ̃iz + e−2amβ̃izΓ(2k − 1, 4amβ̃y)

]
.

So combining these two cases and then plugging in all the identities (6.3.1) once again

√
2εDD

i
√
π

(
D

8πi
√

2N

)k−1 ∑
m≥1

∑
n≥1

(
D

n

)
c−
(
−|D|m

2

4N
,
rm

2N

)
× n−k

[
sgn(D)(2k − 2)!e(nmz) + (−1)ke(−nmz)Γ(2k − 1, 4πnmy)

]
.

Using (6.3.14) we know ∑
b(D)

(
D

b

)
e

(
nb

D

)
= sgn(D)

(
D

n

)√
D,

and we then use this to finally obtain

√
2εD
√
D

i
√
π

(
D

8πi
√

2N

)k−1 ∑
m≥1

∑
n≥1

∑
b(D)

(
D

b

)
c−
(
−|D|m

2

4N
,
rm

2N

)
n−k

×
[
(2k − 2)!e(n(mz + b/D)) + (−1)ksgn(D)e(−n(mz − b/D))Γ(2k − 1, 4πnmy)

]
. (6.3.17)
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The c− Terms, Polylogarithm Form

We can go further than (6.3.17). We reformulate this more compactly (and remove an infinite

sum) by writing this in terms of polylogarithms. In particular using Definitions 5.3.6 and 6.3.9

we have

√
2εD
√
D(2k − 2)!

i
√
π

(
D

8πi
√

2N

)k−1 ∑
m≥1

∑
b(D)

(
D

b

)
c−
(
−|D|m

2

4N
,
rm

2N

)
×
[
Lik (e((mz + b/D))) + (−1)ksgn(D)Li2k−1,−k+1 (4πmy, e(−(mz − b/D)))

]
.

We check this series converges absolutely for z ∈ H as Lemma 2.5.27 told us the c−(m,h)

coefficients only grow polynomially but the polylogarithm terms decay exponentially (noting

n,m 6= 0), see Lemma 5.3.7.

The Expansion in the Weyl Chambers

So far we have seen that our expansion is valid only when n0 < 0 or y >
√

2|D|n0/N . How-

ever we have also observed that the expansion given in (6.3.5) converges absolutely for all

z ∈ H and so can be continued to hold for the entire upper-half plane. Using Remark 3.5.4

we know that there are only vertical half-line singularities for y >
√
|D|n0/N . Theorem 4.2.2

told us that our singularities arose from the c+(m,h) terms where m < 0. We then observe

that the vertical half-line singularities are fully encapsulated by the periodic Bernoulli polyno-

mials in our expansion. In particular the B1(mx+b/D) term in (6.3.15), see also Remark 6.3.4.

We saw in Theorem 4.3.7 that ΦD,r,k(z, f) was real-analytic for all z ∈ H\ZD,r(f). The

Fourier expansion we have found is also real-analytic outside the vertical half-lines so will

equal ΦD,r,k(z, f) within the unbounded Weyl chambers.

We find the expansion in the bounded Weyl chambers as well. Section 3.5 told us the vertical

half-lines were defined by Dλ when λ ⊥ l∞. Theorem 4.2.2 told us that for a point z0 ∈ H

there exists an open neighbourhood U ⊂ H so that subtracting√
|D|
2

∑
h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c+ (m,h)
∑

λ∈L−dD,rh
λ⊥z0

χD(λ)
(λ, v(z))

|(λ, v(z))|qz(λ)k−1,

allowed ΦD,r,k(z, f) to be continued to a smooth function on U . Using the wall crossing

formula (Theorem 4.2.4) we let

gW12(z) = 2
√

2|D|
∑

h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c+ (m,h)
∑

λ∈L−dD,rh
λ 6⊥l∞
λ⊥W12

(λ,W1)<0

χD(λ)qz(λ)k−1.
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This function then tells us the finite number of polynomials we will need to add as we cross

a wall W12 defined by a semi-circle between two Weyl chambers W1,W2. This function is 0 if

W12 is a wall defined by a vertical half-line. Using the real analyticity of ΦD,r,k(z, f) it is clear

the expansion in a bounded Weyl chamber is given by the expansion (6.3.5) with the addition

of the appropriate polynomials gW12(z). The appropriate gW12(z) being those defined by walls

W12 which we crossed in order to reach that Weyl chamber from the unbounded Weyl chamber

above. The value of a point lying on a semi-circle W12 is given by the Fourier expansion in the

Weyl chamber W1 plus the polynomial (1/2)gW12(z) i.e. the average value of the surrounding

Weyl chambers.

6.3.3 The Fourier Expansion at other Cusps

Theorem 6.3.10 held only for the cusp l∞. However by considering the Atkin-Lehner invo-

lutions from earlier we can now adapt this to find the expansion at other cusps in the case

when N is square-free. This is the same idea as in Lemma 5.4.6. In particular we recall from

Section 3.4 that crucially all the cusps of Γ0(N) can be represented by WN
m∞ where m are

the divisors of N .

For f ∈ H3/2−k,ρ with components fh we denoted

fWN
m

:=
∑

h∈L′/L

fWN
m .h

eh.

We also wrote fWN
m

=
∑
h∈L′/L fheWN

m .h
and see that fWN

m
∈ H3/2−k,ρ. We then have the

following useful theorem.

Theorem 6.3.12. Let N be square-free, f ∈ H3/2−k,ρ and s ∈ P1(Q) be a cusp for Γ0(N).

Then there exists an m, an exact divisor of N , such that the Fourier expansion of ΦD,r,k(z, f)

at the cusp s is given by

ΦD,r,k
(
z, fWN

m

)
.

Proof. For s ∈ P1(Q) = Q ∪ {∞} we know WN
m∞ = s for some exact divisor m of N . The

Fourier expansion of ΦD,r,k(z, f) at the cusp s is given by the Fourier series of(
ΦD,r,k

∣∣
2−2k

WN
m

)
(z, f) = j(WN

m , z)
2k−2ΦD,r,k(WN

m .z, f)

at the cusp∞ (see for example [DS05, Section 1.2]) and remembering ΦD,r,k(z, f) is of weight
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2− 2k from Theorem 4.2.2. Using Proposition 3.6.12 we then have

j(WN
m , z)

2k−2ΦD,r,k(WN
m .z, f) = j(WN

m , z)
2k−2

∫ reg

τ∈F

〈
f(τ),Θk(τ,WN

m .z)
〉 dudv

v2

=

∫ reg

τ∈F

〈
f(τ), (Θk(τ, z))WN

m

〉 dudv
v2

=

∫ reg

τ∈F

〈
fWN

m
(τ),Θk(τ, z)

〉 dudv
v2

= ΦD,r,k
(
z, fWN

m

)
.

Fix f ∈ H3/2−k,ρ in the form (6.3.2). Then the expansion of the lift can be found at

the cusp s using Theorem 6.3.10, where we find the expansion at ∞ for the coefficients

c+(m,WN
m .h), c−(m,WN

m .h) (as opposed to c+(m,h), c−(m,h)).

6.4 A Locally Harmonic Weak Maass Form

In this part we consider the asymptotic behaviour of our lift as y → ∞. This is the final

proposition that we will need to show that our lift is a locally harmonic weak Maass form, as

in Definition 2.5.30.

Proposition 6.4.1. Let f ∈ H3/2−k,ρ and let k ≥ 2 . Then

ΦD,r,k(z, f) = O(yk)

as y →∞, uniformly in x. In the case k = 1 then

lim
y→∞

ΦD,r,1(z, f) =
εD|D|

√
2

iπ
c+(0, 0)L

(
1,
(
D
·
))

− 2
√

2εD
√
D
∑
m≥1

∑
b(D)

(
D

b

)
c+
(
−|D|m

2

4N
,
rm

2N

)
B1 (mx+ b/D) .

Proof. We show this by using the expansion given in Theorem 6.3.10. This was in three parts.

The first part (6.3.5a), was just a constant.

The second part (6.3.5b), (6.3.5c), consisted of a finite sum over m ≥ 1 as we remember there

are only finitely many non-zero c+(−n, h) for n > 0. Considering this part in the form given

in (6.3.15) we note that Bs(mx+ b/D) are actually bounded for any m,x and it is clear that

this part grows O(yk) as y → ∞. In the case k = 1 this is again just a constant (dependant

on x) that does not depend on y.

We now consider the third part. We look at the form given in (6.3.17). This was the part

associated to the c−(n, h) coefficients. We first note that using (6.2.1)

e (−n (mz − b/D)) Γ(2k − 1, 4πnmy) = (2k − 2)!e (n (m(−x+ iy)− b/D))

2k−2∑
s=0

(4πnmy)s

s!
.
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Using this we will now bound the absolute value of (6.3.17). Up to constants it then suffices

to consider ∣∣∣∣∣∣
∑
m≥1

c−
(
−|D|m

2

4N
,
rm

2N

)∑
n≥1

2k−2∑
s=0

e−2πmny

nk
(nmy)s

∣∣∣∣∣∣
and using Lemma 2.5.27 we know the asymptotic behaviour of c−(n, h) so we have

≤ constant ·
2k−2∑
s=0

∑
m≥1

m1/2
∑
n≥1

e−2πmny

nk
(nmy)s

≤ constant ·
2k−2∑
s=0

ys
∑
m≥1

m1+se−πmy
∑
n≥1

nse−πny

≤ constant ·
2k−2∑
s=0

ysLi−s−1(e−πy)Li−s(e
−πy)

and then using Lemma 5.3.7 part 5 we know this decays exponentially fast as y →∞.

We are finally in a position to put together all our main theorems and complete one of the

main aims of this thesis. That is, to show the singular theta lift is a locally harmonic weak

Maass form.

Theorem 6.4.2. Let f ∈ H3/2−k,ρ and let N be square-free. Then ΦD,r,k(z, f) is a locally

harmonic weak Maass form of weight 2−2k for the group Γ0(N) with exceptional set ZD,r(f).

I.e.

ΦD,r,k(z, f) ∈ LH2−2k (Γ0(N)) .

Proof. We remember from Section 3.5 that ZD,r(f) was a nowhere dense Γ0(N)-invariant set.

We look at the four conditions in Definition 2.5.30.

1. We know from Theorem 4.2.2 that ΦD,r,k(z, f) has weight 2− 2k for the group Γ0(N).

2. Theorem 4.3.7 says ΦD,r,k(z, f) is real analytic and harmonic outside the exceptional

set ZD,r(f).

3. Theorem 4.2.2 (see also Section 4.2.1) tells us that the value on the singularities is the

average of the values in the adjacent Weyl chambers.

4. For the cusp condition we note if N is square-free, then the Fourier expansion at a

cusp s = WN
m∞ was given by the Fourier expansion at ∞ of ΦD,r,k

(
z, fWN

m

)
using

Theorem 6.3.12. Then using Proposition 6.4.1 for fWN
m

(where we note c+
(
n,WN

m .h
)
,

c−
(
n,WN

m .h
)

still grow at the same rate as c+(n, h), c−(n, h)) we can check that we

have polynomial growth at all the cusps.



Chapter 7

The Shimura Lift

In this final chapter we consider the relationship of our lift with the well known Shimura

correspondence. The nature of the singularities found in Theorem 4.2.2 also leads us to

consider these ideas as distributions. We first show that the kernel functions of each lift are

related via the anti-linear differential operator and so link the two lifts with ξ2−2k and obtain

a commutative diagram. Using this link we can then derive new proofs of the properties of the

Shimura lift including its holomorphicity and Fourier expansion. We then give our definition

of a distribution associated to a locally harmonic weak Maass form and show that this then

satisfies a current equation. Similar ideas can be found in [BF04,BKV13,Höv12].

7.1 Definition

We start by defining our version of the Shimura lift. As mentioned in the introduction this is

a family of maps from forms of half-integral weight first defined by Shimura [Shi73]. In the

introduction we also discuss the history, applications and significance of this lift. Niwa [Niw75]

(see also [Shi75] and [Cip83]) later formulated this correspondence in terms of theta lifts (an

example of a Borcherds lift [Bor98]). This lift was also seen in [SZ88,GKZ87,Sko90a,Sko90b]

and examined for some Jacobi forms. We note however that vector-valued forms essentially

correspond to some Jacobi (and skew-holomorphic Jacobi) forms, see also Example 2.5.12

and [Bru02, Example 1.3].

For our construction we will use the twisted vector-valued Shintani kernel function (Definition

3.6.6) to define a twisted Shimura lift. This is the same idea as in Definition 4.1.1.

Definition 7.1.1. Let κ ∈ Z, κ ≥ 1. For g ∈ Sκ+1/2,ρ we will call

Φ∗D,r,κ(z, g) :=
(
g(τ),Θ∗D,r,κ(τ, z)

)
κ+1/2,ρ

117
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=

∫
τ∈F

〈
g(τ),Θ∗D,r,κ(τ, z)

〉
vκ+1/2 dudv

v2

the twisted Shimura lift.

This definition makes sense, as Theorem 3.6.8 told us that Θ∗D,r,κ(τ, z) is of weight κ+1/2 in τ .

As f is a cusp form, which decays exponentially as v →∞, and the Shintani kernel function

also decays exponentially we know immediately that the integral converges absolutely and

defines a real analytic (and therefore smooth) function on H. There is no need to regularise

the integral.

Remark 7.1.2. The properties of the Shimura lift are very well known, see e.g. [Niw75]. How-

ever, during this chapter, we will pretend we are ignorant of these facts and rederive them

from scratch. We will use the singular theta lift to do this.

Corollary 7.1.3. For κ ∈ Z, κ ≥ 1 then

Φ∗D,r,κ : Sκ+1/2,ρ → A2κ(Γ0(N)).

Proof. Using Lemma 3.6.11 it is immediately clear the Shimura lift maps cusp forms to some

even weight (real analytic) functions for the group Γ0(N).

Remarks 7.1.4. In Theorem 7.3.8 we will show that actually the Shimura lift usually maps

(vector-valued) cusp forms to holomorphic (scalar-valued) cusp forms.

In this work we have restricted the input to cusp forms and this will suffice for us. In partic-

ular, our original lift was defined for f ∈ H3/2−k,ρ and we will soon see that we want to lift

ξ3/2−k(f), which are elements of Sκ+1/2,ρ. However in general we can regularise the integral

and extend the utility of this lift to much more general forms. For example weakly holomor-

phic forms as in [Bor98, Section 14] or weak Maass forms as in [BKV13] (after checking that

the regularised Petersson scalar product in these cases does indeed converge).

We remember that taking the complex conjugate of a Siegel theta function and multiplying by

an appropriate power of v essentially means we then work with swapped signature (b−, b+).

So our final remark here is that the Shimura lift definition is different in this respect; for for

the singular theta lift we first took the complex conjugate of the kernel function.

7.2 The Relationship

We now show that the Shimura lift and the singular theta lift obtained in this work are closely

connected. The connection formed here goes back to the results of [BF04]. We need the

following key lemma. This is adapted from [BKV13, Lemma 3.3].
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Lemma 7.2.1. We have that

ξk+1/2,τ (Θ∗D,r,k(τ, z)) = −1

2
ξ2−2k,z

(
vk−3/2ΘD,r,k(τ, z)

)
.

Proof. This is actually a proof on the level of the Schwartz functions. Using Section 3.6.1 the

associated Schwartz functions for our two kernel functions were

ϕ0 (λ, τ, z, σz, p
∗
k, D) = v1/2χD(λ)

(
qz(λ)

y2

)k
e

(
Q(λ)

|D| u+
Qz(λ)

|D| iv
)

ϕ0 (λ, τ, z, σz, pk, D) = v3/2χD(λ)pz(λ)qz(λ)k−1e

(
Q(λ)

|D| u+
Qz(λ)

|D| iv
)
.

Section 3.6.1 told us that Θ∗D,r,k(τ, z) corresponded to Θ(z, τ) in [BKV13, (1.2)] and that

vk−3/2ΘD,r,k(τ, z) corresponded to Θ∗(−z, τ) in [BKV13, (1.6)]. Putting this all together

with the partial derivative calculations in [BKV13, Lemma 3.3] we obtain

2ξk+1/2,τ [ϕ0 (λ, τ, z, σz, p
∗
k, D)] = −ξ2−2k,z

[
vk−3/2ϕ0 (λ, τ, z, σz, pk, D) .

]
(7.2.1)

The genus character clearly just goes for the ride during these differential calculations. Observe

that our kernel Siegel theta functions converged absolutely and locally uniformly in (τ, z). This

means we can interchange the partial differential operators with the summation of the theta

series and (7.2.1) implies the stated result.

Using this we then have the following important result. Once again this relies on Stokes’

theorem and the result only holds away from the cycles ZD,r(f) (where the singular lift is

not naturally differentiable) as then the boundary term does not necessarily disappear. This

proof is adapted from [BKV13, Lemma 3.4].

Theorem 7.2.2. Let f ∈ H3/2−k,ρ and z ∈ H\ZD,r(f). Then

Φ∗D,r,k(z, ξ3/2−k(f)) =
1

2
ξ2−2k,z(ΦD,r,k(z, f)).

Proof. We let f ∈ H3/2−k,ρ and then using the Definition 7.1.1 we have

Φ∗D,r,k(z, ξ3/2−k,τ (f(τ))) = lim
t→∞

∫
τ∈Ft

〈
ξ3/2−k,τ (f(τ)),Θ∗D,r,k(τ, z)

〉
vk+1/2 dudv

v2

= lim
t→∞

∫
τ∈Ft

〈
Rk−3/2,τ (v3/2−kf(τ)),Θ∗D,r,k(τ, z)

〉
vk+1/2 dudv

v2
.

Using Stokes’ theorem, Lemma 6.1.1 we have that this is equal to

= − lim
t→∞

∫
τ∈Ft

〈
f(τ), Lk+1/2,τ

(
Θ∗D,r,k(τ, z)

)〉 dudv
v2

+ lim
t→∞

∫ 1/2

−1/2

[〈
f(τ),Θ∗D,r,k(τ, z)

〉]
v=t

du.
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Looking at the first term and using Lemma 7.2.1 we obtain

= −
∫ reg

τ∈F

〈
f(τ), ξk+1/2,τ

(
Θ∗D,r,k(τ, z)

)〉
v3/2−k dudv

v2

=

∫ reg

τ∈F

〈
f(τ), iy2−2k

∂

∂z
(ΘD,r,k(τ, z))

〉
dudv

v2

=
1

2
ξ2−2k

(∫ reg

τ∈F

〈
f(τ),ΘD,r,k(τ, z)

〉 dudv
v2

)
=

1

2
ξ2−2k(ΦD,r,k(z, f)).

Recalling from Theorem 4.2.2 that the regularised integral ΦD,r,k(z, f) on the truncated fun-

damental domain Ft converged as t → ∞ locally uniformly for z ∈ H\ZD,r(f). So for these

points we can interchange the partial derivatives in z with the integral.

To show the stated result it remains to show the (complex conjugate) of the second term

vanishes for z ∈ H\ZD,r(f). We know f− decays exponentially, as does the Shintani kernel

function. We look at the integral of the f+ part and plug in the expansions given in (2.5.2)

and Definition 3.6.6 to get

lim
t→∞

∫ 1/2

−1/2

∑
h∈L′/L

∑
n∈Z+sgn(D)Q(h)

n�−∞

∑
λ∈L+rh

Q(λ≡DQ(h)(D)

c+(n, h)χD(λ)

×
(
qz(λ)

y2

)k
e

((
n+

Q(λ)

|D|

)
u

)
e

((
n+

Qz(λ)

|D|

)
it

)
t1/2du.

This integral then picks out the 0th Fourier coefficient and remembering qz(λ) vanishes when

λ = 0 we have

= lim
t→∞

∑
λ∈L+rh

Q(λ≡DQ(h)(D)
λ6=0

c+
(
−Q(λ)

|D| , h
)
χD(λ)

(
qz(λ)

y2

)k
e

(−2Q(λz)

|D| it

)
t1/2.

Using the same analysis in Theorem 4.1.3 (see also Lemma 4.3.6) we know this converges to

0 exponentially as t → ∞ unless Q(λz) = 0 (and c+
(
−Q(λ)
|D| , h

)
6= 0 and χD(λ) 6= 0). As

before, this is exactly the case when z ∈ ZD,r(f).

7.3 Properties of the Shimura Lift

In this next part we use the link found in Theorem 7.2.2 to show various properties of the

Shimura lift. We first have an easy corollary using this link. The fact that our lift was

harmonic (away from the singularities) implies that the Shimura lift is holomorphic.

Corollary 7.3.1. Let g ∈ Sk+1/2,ρ and z ∈ H\ZD,r(f). Then

ξ2k
(
Φ∗D,r,k(z, g)

)
= 0.

I.e. the Shimura lift is holomorphic away from the singularities.
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Proof. Theorem 2.5.18 told us that the anti-linear operator mapped harmonic weak Maass

forms surjectiovely to cusp forms. I.e. for any cusp form g ∈ Sk+1/2,ρ, there exists an

f ∈ H3/2−k,ρ such that ξ3/2−k(f) = g. So we know using Theorem 7.2.2 that

Φ∗D,r,k(z, g) = Φ∗D,r,k(z, ξ3/2−k(f)) =
1

2
ξ2−2k(ΦD,r,k(z, f))

for some f ∈ H3/2−k,ρ. However for z ∈ H\ZD,r(f) then

ξ2k
(
Φ∗D,r,k(z, g)

)
=

1

2
ξ2kξ2−2k (ΦD,r,k(z, f)) =

1

2
D2−2k (ΦD,r,k(z, f)) = 0

using Theorem 4.3.7.

Remark 7.3.2. In fact we will show in Theorem 7.3.5 that the Shimura lift is holomorphic on

all z ∈ H. This is because ξ2−2k kills the holomorphic polynomial singularities.

We next find the expansion of ξ2−2k (ΦD,r,k). We observe using Theorem 7.2.2 that this

expansion is essentially the expansion of the Shimura lift. We make this explicit in Theorem

7.3.5. We will see that we can continue the expansion of ξ2−2k (ΦD,r,k) to hold for the entire

upper-half plane, and not just for z ∈ H\ZD,r(f).

Theorem 7.3.3. Let f ∈ H3/2−k,ρ with expansion as in (6.3.2) and let z ∈ H\ZD,r(f). Then

ξ2−2k(ΦD,r,k(z, f)) =
4
√

2πεDD

i

(
πD

i
√

2N

)k−1

×
∑
m≥1

∑
d≥1
d|m

(
D

d

)
m2k−1

dk
c−
(
−m

2

d2

|D|
4N

,
n

d

r

2N

)
e (mz)

and in the case k = 1, D = 1 we have an additional constant term
√

2

ik

(
1√
2N

)k−1 ∑
m≥1

m · c+
(
−m

2

4N
,
rm

2N

)
.

This expansion can be analytically continued to a holomorphic function on the entire upper-half

plane.

Proof. We recall that ΦD,r,k(z, f) is of weight 2− 2k and we need to find

ξ2−2k(ΦD,r,k(z, f)) = iy2−2k

((
∂

∂x
+ i

∂

∂y

)
ΦD,r,k(z, f)

)
We deal with each part of our expansion (6.3.5) in turn.

Constant Term

We had a constant term (6.3.5a)

εD|D|
√

2

iπ

( |D|
iπ2
√

2N

)k−1

c+(0, 0)L
(
k,
(
D
·
))

this does not depend on x or y so immediately vanishes under ξ2−2k.
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The c+ terms

Looking at (6.3.5b), (6.3.5c) (a finite sum over m) we consider for mx+ b/D 6∈ Z (away from

the vertical half-line singularities) and k ≥ 2(
∂

∂x
+ i

∂

∂y

)[
Bk (〈mx+ b/D〉+ imy) +

kIZ(mx+ b/D)

(imy)1−k

]
which we see, by using Lemma 6.3.7 part 3, vanishes. In the case of k = 1(

∂

∂x
+ i

∂

∂y

)
[B1(mx+ b/D)] =

m

2

and we remember
∑
b(D)

(
D
b

)
= 0 unless D = 1. This gives the constant term in the stated

result.

The c− terms

We use the from given in(6.3.17). We may swap the partial derivatives with the sums over

m,n as we have absolute and locally uniform convergence of the series (noting m,n ≥ 1) for

z ∈ H. Then(
∂

∂x
+ i

∂

∂y

)[
e (n (mz + b/D)) +

(−1)ksgn(D)

(2k − 2)!
e (−n (mz − b/D)) Γ(2k − 1, 4πnmy)

]
=

(−1)ksgn(D)

i(2k − 2)!
e (−n (mz − b/D)) (4πnm)

2k−1
y2k−2.

Using the fact that ∑
b(D)

(
D

b

)
e

(
nb

D

)
= sgn(D)

(
D

n

)√
D

we see that ξ2−2k,z of (6.3.5d) (6.3.5e) is

4
√

2πεDD

i

(
πD

i
√

2N

)k−1 ∑
m≥1

∑
n≥1

(
D

n

)
m2k−1nk−1c−

(
−|D|m

2

4N
,
rm

2N

)
e (nmz) .

and then making the substitutions m 7→ m
n and n 7→ d we have

4
√

2πεDD

i

(
πD

i
√

2N

)k−1 ∑
m≥1

∑
d≥1
d|m

(
D

d

)
m2k−1

dk
c−
(
−m

2

d2

|D|
4N

,
n

d

r

2N

)
e (mz) . (7.3.1)

Theorem 4.3.7 told us that ΦD,r,k(z, f) was real analytic for z ∈ H\ZD,r(f). Theorems 6.3.10

and 4.2.2 told us that our Fourier expansion held everywhere, even on the singularities and for

y <
√
−|D|n0/N , if we added on appropriate polynomials when crossing walls. We remember,

from (3.6.4), that these polynomials were of the form

qz(λ) = y(λ, v(z⊥)) =
−1√
2N

(
cNz2 − bz + a

)
.

I.e. holomorphic. So they vanish when we apply the ξ2−2k operator and we can smoothly

continue ξ2−2k (ΦD,r,k(z, f)) to the entire upper-half plane with the expansion given in (7.3.1).
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Corollary 7.3.1 said that ξ2−2k (ΦD,r,k(z, f)) was holomorphic for all z ∈ H\ZD,r(f) but clearly

the expansion in (7.3.1) is holomorphic for all z ∈ H so this also provides a holomorphic

continuation of ξ2−2k (ΦD,r,k(z, f)) to the entire upper-half plane.

The previous theorem in conjunction with Theorem 7.2.2 then allows us to easily find the

Fourier expansion of the Shimura lift.

Remark 7.3.4. An alternative way to find this expansion is to repeat the same analysis that

we carried out for the singular theta lift. I.e. write the Shintani kernel function as a Poincaré

series and then unfold and simplify the integral in Definition 7.1.1. This, as we have seen,

would take considerable work. This method can be found in [Bor98, Section 14]

Theorem 7.3.5. Let g ∈ Sk+1/2,ρ have Fourier expansion of the form (2.5.1)

g(τ) =
∑

h∈L′/L

∑
n∈Z+sgn(D)Q(h)

n>0

a(n, h)e(nτ)eh (7.3.2)

then the Fourier expansion of the Shimura lift is holomorphic and is given by

Φ∗D,r,k (z, g) = 2iεD
√

2N |D|
(

sgn(D)
√
N

i
√

2

)k−1

×
∑
m≥1

∑
d≥1
d|m

(
D

d

)
dk−1a

(
m2

d2

|D|
4N

,
m

d

r

2N

)
e (mz)

and in the case when k = 1, D = 1 we have an additional constant term

1

ik
√

2

(
1√
2N

)k−1 ∑
m≥1

m · c+
(
−m

2

4N
,
rm

2N

)
.

where c+(−m,h) are the coefficients of the principal part of any f ∈ H3/2−k,ρ such that

ξ3/2−k(f) = g.

Proof. As in Corollary 7.3.1 we know there exists an f ∈ H3/2−k,ρ such that ξ3/2−k(f) = g.

This f must have a Fourier expansion of the form

f+ =
∑

h∈L′/L

∑
n∈Z−sgn(D)Q(h)

n�−∞

c+(n, h)e(nτ)eh,

f− =
∑

h∈L′/L

∑
n∈Z−sgn(D)Q(h)

n<0

[
− a(−n, h)

(−4πn)k−1/2

]
Γ(k − 1/2,−4πnv)e(nτ)eh,

to agree with (7.3.2) i.e. c−(n, h) = −a(−n, h)(−4πn)1/2−k. We can check this by using 2.5.4.

Then as

Φ∗D,r,k (z, g) =
1

2
ξ2−2k (ΦD,r,k (z, f))
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for z ∈ H\ZD,r(f) by Theorem 7.2.2 we then plug in c−(n, h) = −a(−n, h)(−4πn)1/2−k into

Theorem 7.3.3 to obtain

2iεD
√

2N |D|
(

sgn(D)
√
N

i
√

2

)k−1 ∑
m≥1

∑
d≥1
d|m

(
D

d

)
dk−1a

(
m2

d2

|D|
4N

,
m

d

r

2N

)
e (mz)

plus when k = 1 and D = 1 we have an additional constant term

1

ik
√

2

(
1√
2N

)k−1 ∑
m≥1

m · c+
(
−m

2

4N
,
rm

2N

)
. (7.3.3)

As in the previous proof this expansion is analytically continued to hold for all z ∈ H and is

a holomorphic function.

We can check this expansion agrees (up to constants) with the one given in [Höv12, Theo-

rem 4.1] which is adapted from [SZ88,GKZ87,Sko90a,Sko90b].

Remark 7.3.6. In the case k = 1, D = 1 we notice the additional constant term depends only

on the c+(n, h) coefficients of f (where f ∈ H3/2−k,ρ such that ξ3/2−kf = g). This implies

that g uniquely determines this constant. This at first glance seems strange as f− in general

does not determine the c+(n, h) coefficients. This is actually an example of Corollary 2.5.25

using the unary theta function. A lot more detail of this can be found in [Höv12, Section 4.4]

which we do not repeat here. However we do obtain the following corollary.

Corollary 7.3.7. For f ∈ M !
1/2,ρ with expansion as in (6.3.2) and D = 1 i.e. r2 ≡ 1

(mod 4N) then ∑
m≥1

m · c+
(
−m

2

4N
,
rm

2N

)
= 0.

Proof. We use Theorem 7.3.5 in the case when k = 1, D = 1 and g ≡ 0. Any f ∈ M !
1/2,ρ

satisfies ξ1/2(f) = g ≡ 0. Then certainly Φ∗D,r,1(z, g) ≡ 0 using Definition 7.1.1 but we also

know

Φ∗D,r,1(z, g) =
1

ik
√

2

(
1√
2N

)k−1 ∑
m≥1

m · c+
(
−m

2

4N
,
rm

2N

)
.

This implies the stated result.

We are now in the position to show that the Shimura lift maps to cusp forms most of the time.

We can use the Atkin-Lehner involutions to find the Fourier expansions at all the cusps.

Theorem 7.3.8. Let k ∈ Z, k ≥ 2 or k = 1, D 6= 0 and N square-free. Then ΦD,r,k is a cusp

form of weight 2k for the group Γ0(N) i.e.

Φ∗D,r,k : Sk+1/2,ρ → S2k(Γ0(N)).

In the case k = 1, D = 1 and N square-free, ΦD,r,k is a modular form of weight 2k for the

group Γ0(N).
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Proof. Let g ∈ Sk+1/2,ρ and f ∈ H3/2−k,ρ such that ξ3/2−kf = g. We know from Corollary

7.1.3 that Φ∗D,r,k(z, g) is a weight 2k automorphic form for Γ0(N). We also know using Theo-

rem 7.3.5 that the Shimura lift is holomorphic. It remains to check holomorphicity at all the

cusps.

For the cusp ∞ this is clear as we only have a constant term in Theorem 7.3.5 when k =

1, D = 1. For any other cusp s ∈ P1(Q) = Q ∪ {∞}, we know WN
m∞ = s for some exact

divisor m of N . Then

(
ξ2−2k (ΦD,r,k)

∣∣
2k
WN
m

)
(z, f) = ξ2−2k

(
ΦD,r,k(z, fWN

m

)
.

So we can find Fourier expansions of Φ∗D,r,k(z, f) by just considering the expansion in Theorem

7.3.3 at ∞ for fWN
m

. So again there is a constant term only when k = 1, D = 1.

In the case k = 1, D = 1 we have the same properties except the constant term of the

expansions at the cusps does not vanish so we have a modular form.

Remarks 7.3.9. In fact, in the case when N is not square-free, we can find analogous Fourier

expansions at all the cusps, see Remarks 6.3.11 and 5.1.2. So this result can also be investi-

gated for any N . It is also well known (see for example [Niw75] [Bor98, Section 14]) that the

Shimura lift maps to cusp forms for all k ≥ 2.

In the case k = 1, D = 1 we can still obtain cusp forms. This essentially happens when we

lift a cusp form that is orthogonal to the unary theta function and the weighted sum (7.3.3)

disappears. Again the details of this can be found in [Höv12, Theorem 4.11].

We end this section with the following commutative diagram which holds for k ∈ Z, k ≥ 2 (or

k = 1, D 6= 1) and summarises these results nicely.
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H3/2−k,ρ
Φk //

ξ3/2−k

��

LH2−2k(Γ0(N))

ξ2−2k

��
Sk+1/2,ρ

Φ∗k

// S2k(Γ0(N))

Figure 7.1: Commutative Diagram

7.4 Locally Harmonic Maass Forms as Distributions

In this final section we will think about locally harmonic Maass forms as distributions (gener-

alised functions). We are motivated to introduce this concept as the singularities in Definition

2.5.30 are of a similar nature to those found in the Heaviside step function.

We first form our definition and then look at the associated current equation. Finally we

reinterpret the link between the two lifts from this cohomological point of view. The main

reference is [BF04, Section 7]. Throughout this section we fix κ ∈ 2Z, κ ≤ 0.

We first briefly consider the classical theory of distributions, following [Gru09]. This will help

motivate the definitions that we introduce soon. The idea is to first form a space of test

functions. Letting Ω be an open subset of Rn then we let D(Ω) be the space of functions on

Ω which are smooth with compact support. We call this the space of test functions. Then a

distribution on Ω is just a continuous linear functional on D(Ω).

For example if h is a locally integrable function h : R→ R we can let

[h] (g) :=

∫
R
h(x)g(x)dx (7.4.1)

for g ∈ D(R), be its corresponding distribution. We can then define the derivative of the

distribution to be

d [h] (g) := −
∫
R
h(x)g′(x)dx.
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This is the key idea as this concept of the derivative makes sense even on singularities. We

also see that d [h] = [h′] if h is smooth. We examine an example: the Heaviside step function.

Definition 7.4.1. For x ∈ R we let the Heaviside step function be defined as

H(x) :=

0 if x < 0,

1 if x ≥ 0.

This has a jump singularity of size 1 in the sense of Definition 4.2.1. As a distribution we

define this as

[H] (g) :=

∫
R
H(x)g(x)dx

where g ∈ D(R). We also define the delta distribution. This is the linear functional

[δ] (g) := g(0)

where g ∈ D(R). This is the value of the test functions at the singularity of H(x). There is

no consistent interpretation of the delta distribution as a classical function. We see that the

delta distribution is the derivative of the Heaviside step distribution. I.e.

d [H] (g) = −
∫
R
H(x)g′(x)dx = −

∫ ∞
0

g′(x)dx = g(0)− g(∞) = g(0) = [δ] (g).

We follow these ideas in our case. From now we will let the space of test functions be

smooth functions g ∈ Aκ (Γ0(N)) with rapid (exponential) decay at the cusps of Γ0(N). We

will denote this space as Acκ (Γ0(N)). Mirroring (7.4.1) it seems natural to form our version

of the definition of a distribution as follows:

Definition 7.4.2. We let a locally harmonic Maass form h ∈ LHκ (Γ0(N)) (with associated

exceptional set E) define a distribution [h] on Y0(N) where

[h] (g) := (g, h)κ =

∫
Y0(N)

g(z)h(z)yκ
dxdy

y2

for g ∈ Acκ (Γ0(N)).

To confirm this definition make sense and converges we have the following simple lemma. We

have use the (scalar-valued) Petersson scalar product from Definition 2.5.32 which we do not

need to regularise in this case.

Lemma 7.4.3. For any locally harmonic Maass form h ∈ LHκ (Γ0(N)) with associated ex-

ceptional set E, then

(g, h)κ =

∫
Y0(N)

g(z)h(z)yκ
dxdy

y2

converges for any g ∈ Acκ (Γ0(N)).
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Proof. Using Definition 2.5.30 properties 2 and 3 we know that f is locally bounded and g

is smooth. We consider convergence as y → ∞. We have requested that g rapidly decays.

A locally harmonic Maass form only has polynomial growth at all the cusps so we have

convergence.

For our distributions, involving automorphic forms, it also seems natural to consider the

differential operator ξκ (as opposed to the derivative in the classical case). We also want to

be able to apply these concepts to Theorem 7.2.2.

Definition 7.4.4. Let h ∈ LHκ (Γ0(N)) and [h] be its associated distribution. Then we let

ξκ [h] := − (h, ξ2−κ(g))κ

for g ∈ Ac2−κ (Γ0(N)).

We can then consider ξκ (the derivative) of the distribution of any locally harmonic Maass

form f . I.e. find the integral of h against a test function ξ2−κ(g). This generates a current

equation in the sense of [BF04, Section 7]. We consider for simplicity the specific case where

h is the singular theta lift.

Theorem 7.4.5. Let f ∈ H3/2−k,ρ. Then

ξ2−2k [ΦD,r,k(z, f)] (g) = [ξ2−2k(ΦD,r,k(z, f))] (g)−
√

2|D|
∫
Z
′
D,r(f)

g(z)qz(λ)k−1dz

where g ∈ Ac2k (Γ0(N)).

Proof. We start with the integral on the left hand side:

ξ2−2k [ΦD,r,k(z, f)] = −
∫
Y0(N)

ΦD,r,k(z, f))ξ2k(g(z))y2−2k dxdy

y2

= −
∫
Y0(N)

y2−2kΦD,r,k(z, f) · L2k(g(z))y2k−2
dxdy

y2
.

We then use [Bru02, Lemma 4.2] to obtain:

=

∫
Y0(N)

R2k−2

(
y2−2kΦD,r,k(z, f)

)
g(z)y2k dxdy

y2

−
∫
Y0(N)

d (g(z)ΦD,r,k(z, f)) dz

= [ξ2−2k(ΦD,r,k(z, f))]−
∫
Y0(N)

d (g(z)ΦD,r,k(z, f)) dz.

So now we just have to look at the right hand term. We can decompose ΦD,r,k(z, f) into its

smooth and singular parts, both of which are of weight 2− 2k for Γ0(N), see Theorem 4.2.2.

For the smooth part h(z) we know (see for example Lemma 6.1.1 and [Bru02, Lemma 4.2])

that

lim
t→∞

∫
Y0(N)

d (g(z)h(z)) dz =

∫ 1/2

−1/2

[g(z)h(z)]y=t dx.
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This then simply vanishes as h only grows polynomially and g decays exponentially as t→∞.

We now consider the singular part of ΦD,r,k(z, f). Using Theorem 4.2.2 it suffices to consider

−
√
|D|
2

∑
h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c+ (m,h)

×
∫
Y0(N)

d

g(z)
∑

λ∈L−dD,rh

χD(λ)
(λ, v(z))

|(λ, v(z))|qz(λ)k−1Γ

(
1

2
,
−4πQ(λz)

|D|

) dz.

= −
√
|D|
2

∑
h∈L′/L

∑
m∈Z−sgn(D)Q(h)

m<0

c+ (m,h)
∑

λ∈Γ0(N)\L−dD,rh

χD(λ)

×
∑

γ∈Γλ\Γ0(N)

∫
Y0(N)

d

(
g(z)

(γ−1.λ, v(z))

|(γ−1.λ, v(z))|qz(γ
−1.λ)k−1Γ

(
1

2
,
−4πQ((γ−1.λ)z)

|D|

))
dz.

(7.4.2)

Lemma 3.6.9 told us that qγ.z(γ.λ) = j(γ, z)−2qz(λ). We also know that g(z) has weight 2k

and

(γ.λ)(γ.z) = γ.(λz) and (γ.λ, v(γ.z)) = (λ, v(z)).

So we see the last line (7.4.2) is equal to∫
Γλ\H

d

(
g(z)

(λ, v(z))

|(λ, v(z))|qz(λ)k−1Γ

(
1

2
,
−4πQ(λz)

|D|

))
dz.

For z ∈ H and any cycle Dλ we let

dist(z,Dλ) := min {|z − w| | w ∈ Dλ} .

For any ε > 0 let

Uε(E) := {z ∈ H | dist(z,Dλ) < ε} ,

which defines an ε-neighbourhood around the cycle. We then use Stokes’ theorem to obtain∫
Γλ\H

d

(
g(z)

(λ, v(z))

|(λ, v(z))|qz(λ)k−1Γ

(
1

2
,
−4πQ(λz)

|D|

))
dz

= lim
ε→0

∫
∂(Γλ\(H\Uε(λ)))

g(z)
(λ, v(z))

|(λ, v(z))|qz(λ)k−1Γ

(
1

2
,
−4πQ(λz)

|D|

)
dz

= 2
√
π

∫
Γλ\Dλ

g(z)qz(λ)k−1.

This is clear from the following facts. We oriented our cycles earlier. So approaching

(λ, v(z))/|(λ, v(z))| with a left orientation or right orientation generates −1 or 1 i.e. 2. The

contributions from the Γ0(N)-equivalent boundary pieces cancel and also as Q(λz) → 0 the

Γ
(

1
2 ,
−4πQ(λz)
|D|

)
term approaches Γ(1/2) =

√
π. Putting all of this together gives the stated

theorem.
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Remark 7.4.6. In general, if h ∈ LHκ (Γ0(N)), then we see that ξκ [h] = [ξκ(h)] if h is smooth.

This was as we hoped. If h it is not smooth then we picked up an additional term. This is

(roughly) the integral over the exceptional set of g multiplied by the size of the singularity.

This term corresponds to the classical delta distribution. In Theorem 7.4.5 this was given by∫
Z
′
D,r(f)

g(z)qz(λ)k−1dz.

Using Theorem 7.2.2 in combination with Theorem 7.4.5 we then have the following immediate

corollary.

Corollary 7.4.7. Let f ∈ H3/2−k,ρ. Then

ξ2−2k [ΦD,r,k(z, f)] (g) +
√

2|D|
∫
Z
′
D,r(f)

g(z)qz(λ)k−1dz = 2
[
Φ∗D,r,k(z, ξ3/2−k(f))

]
(g)

where g ∈ Ac2k (Γ0(N)).

This is a better interpretation of Theorem 7.2.2. We still see the link between the two lifts.

However thinking of the lifts as distributions also means that we see what happens at the

singularities.

We now consider the case where g ∈ S2k (Γ0(N)). This is a smooth rapidly decaying weight

2k form so it is an element of Ac2k (Γ0(N)) but it is also holomorphic. In particular it vanishes

under the ξ2k operator so we have another easy corollary.

Corollary 7.4.8. Let f ∈ H3/2−k,ρ. Then

[
Φ∗D,r,k(z, ξ3/2−k(f))

]
(g) =

√
|D|
2

∫
Z
′
D,r(f)

g(z)qz(λ)k−1dz

where g ∈ S2k (Γ0(N)).

Proof. This is a simple application of Theorem 7.4.5 where we see that if g is a cusp form

then ξ2−2k [ΦD,r,k(z, f)] (g) = (ΦD,r,k(z, f), ξ2k(g))2−2k = 0.

So this corollary tells us what happens when we integrate a cusp form against the Shimura

lift. In particular it is equal to some period integral. See for example [FM11, Section 4]

and [Shi75, Section 3].

Our final observation of this chapter is that we also have an interpretation of Corollary 7.4.8

in terms of the Shintani lift. To show this we will first need to define the Shintani lift, we keep

the details brief. The Shintani lift as mentioned in the introduction is adjoint to the Shimura

lift and “maps the other way”. In particular we integrate in the z variable using the same

Shintani kernel function to obtain a map from even weight cusp forms to half-integral weight

cusp forms.
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Definition 7.4.9. Let κ ∈ Z, κ ≥ 1. For g ∈ S2κ(Γ0(N)) we will let

ϕ∗D,r,k(τ, g) := (g(z),Θ∗D,r,κ(τ, z))2κ

=

∫
Y0(N)

g(z)Θ∗D,r,κ(τ, z)y2κ dxdy

y2

be the twisted Shintani lift.

This definition makes sense as Theorem 3.6.11 told us that Θ∗D,r,k(τ, z) is of weight 2k in z.

Shintani [Shi75, Section 1.7] tells us that Θ∗D,r,k(τ, z) has polynomial growth in z. Alterna-

tively we can check this analogously to Proposition 5.4.6. The exponential decay of the cusp

form g then ensures the (scalar-valued) Petersson scalar product converges absolutely and de-

fines a real analytic (and therefore smooth) function on H. It is clear from Theorem 3.6.8 that

ϕ∗D,r,k(τ, g) will have weight k + 1/2 i.e. an element of Ak+1/2,ρ. In fact [Shi75, Theorem 1]

tells us this will be a cusp form as we would hope.

We then use Corollary 7.4.8 to easily find the integral of the Shintani lift against a cusp form

(ξ3/2−k(f) ∈ Sk+1/2,ρ). In particular it is equal to some period integrals.

Corollary 7.4.10. Let f ∈ H3/2−k,ρ and g ∈ S2k (Γ0(N)). Then

(
ϕ∗D,r,k(τ, g), ξ3/2−k(f)

)
k+1/2,ρ

=

√
|D|
2

∫
Z
′
D,r(f)

g(z)qz(λ)k−1dz.

Proof. This clear from Corollary 7.4.8 after noticing

[
Φ∗D,r,k(z, ξ3/2−k(f))

]
(g)

=

∫
Y0(N)

g(z)Φ∗D,r,k(z, ξ3/2−k(f))y2k dxdy

y2

=

∫
Y0(N)

g(z)

∫
τ∈F

〈
Θ∗D,r,k(τ, z), ξ3/2−k(f(τ))

〉
vk+1/2 dudv

v2
y2k dxdy

y2

=

∫
τ∈F

〈∫
Y0(N)

g(z)Θ∗D,r,k(τ, z)y2k dxdy

y2
, ξ3/2−k(f(τ))

〉
vk+1/2 dudv

v2

=

∫
τ∈F

〈
ϕ∗D,r,k(τ, g), ξ3/2−k(f(τ))

〉
vk+1/2 dudv

v2

=
(
ϕ∗D,r,k(τ, g), ξ3/2−k(f)

)
k+1/2,ρ

.

We can swap the integrals as both g and ξ3/2−k(f) decay exponentially and Θ∗D,r,k(τ, z)) only

has polynomial growth in both variables.
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