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Abstract

Despite the continued success of the Large Hadron Collider, no clear evidence for

the existence of new BSM particles has been identified to date, pushing the bounds

on their masses to ever higher values. As such, increasing efforts have been made to

constrain all remaining regions of parameter space where light new particles could

still exist. To do so reliably requires accurate Monte Carlo simulations of signal

events, often in the case that hard radiation is produced together with the new

particles. In this thesis, we focus on using matrix-element corrections based on the

Powheg formalism to improve the simulation of hard radiation produced in new

physics events. The corrections have been implemented within the Herwig++ Monte

Carlo event generator, both for squark-antisquark production at the LHC and a wide

range of decay modes that occur in beyond the Standard Model physics scenarios.

Taking supersymmetry as a test case, we find that corrections applied to radiation

generated during either the production or decays of new particles each impact on

the reach of analysis strategies sensitive to high transverse momentum jets, with the

most important effect occurring when the former correction is applied in scenarios

featuring a compressed new particle mass spectrum. Finally, we investigate the

sensitivity of the LHC to supersymmetric scenarios using monotop signatures of

a single top quark produced together with missing transverse energy. We present

analysis strategies sensitive to compressed regions of parameter space, and compare

their expected reach at the next run of the LHC to those of more traditional search

strategies.
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∗
L
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(mg̃,mũL) = (2.4, 1.8) TeV. Results were generated with either no

ME corrections, or with ME corrections applied during the squark

production, decays or both. . . . . . . . . . . . . . . . . . . . . . . . 134

4.12 As in Figure 4.11, but for the compressed benchmark scenario (mg̃,mq̃) =

(700, 650) GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1 Distributions of mW
T and Emiss

T for the leptonically decaying monotop

signal scenarios and dominant background processes. . . . . . . . . . 151

5.2 LHC sensitivity to the leptonically decaying monotop signal induced

by (t̃1, t, g̃) production in compressed supersymmetric scenarios. . . . 152

5.3 LHC sensitivity to the leptonically decaying monotop signal induced

by (t̃1, t, χ̃
0
1) production in compressed supersymmetric scenarios. . . . 153



List of Figures xi

5.4 Distributions of mbjj for the hadronically decaying monotop signal

scenarios and dominant background processes. . . . . . . . . . . . . 153

5.5 Same as Figure 5.2, but for the hadronically decaying monotop signal. 155

5.6 Same as Figure 5.3, but for the hadronically decaying monotop signal. 155

5.7 Comparison of the bounds derived using monotop probes with those

set by the ATLAS and CMS collaborations using more traditional

search strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.1 Comparison of md̃Rd̃
∗
R
, pT, d̃R , pT, d̃Rd̃∗R and md̃∗Rd

distributions gener-

ated using the Matchbox and PowhegBox implementations of

ME corrections with the DS0 diagram subtraction scheme for the

mass splitting (mg̃,md̃R
) = (1.9, 1.8) TeV. . . . . . . . . . . . . . . . 166

B.2 As in Figure B.1, but for c̃Rc̃∗R production with the mass splitting

(mg̃,mc̃R) = (1.9, 1.8) TeV. . . . . . . . . . . . . . . . . . . . . . . . . 168

B.3 As in Figure B.1, but for s̃Ls̃∗L production with the mass splitting

(mg̃,ms̃L) = (2.4, 1.8) TeV. . . . . . . . . . . . . . . . . . . . . . . . . 169



List of Tables

1.1 Summary of the gauge and mass eigenstates of the superpartners and

Higgs sector of the MSSM. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 List of two-body decay spin structures for which the Powheg style

ME correction has been implemented. . . . . . . . . . . . . . . . . . . 59

2.2 List of two-body decay colour flows for which the Powheg style ME

correction has been implemented. . . . . . . . . . . . . . . . . . . . . 59

2.3 Masses of the SUSY particles relevant to the decays studied in Sec-

tion 2.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Summary of the selection criteria imposed in the ATLAS collabora-

tion search for direct top squark pair production. . . . . . . . . . . . 96

5.1 Cross sections and number of events surviving all selection criteria for

the simulated background processes and two representative monotop

signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xii



Chapter 1

Introduction

The Standard Model of particle physics (SM) provides a remarkably successful

framework for describing fundamental particles and their interactions. However,

despite its continued success in the face of intense experimental scrutiny, it is widely

believed that the Standard Model is not the complete theory of everything. This

motivates the search for an extension to the Standard Model, and a plethora of new

physics theories has been postulated. The most studied set of beyond the Standard

Model (BSM) scenarios are the class of weak scale supersymmetric theories [1, 2].

Supersymmetry (SUSY) is motivated by the observation that it is the only non-

trivial extension to the Poincaré group which gives rise to a consistent interacting

quantum field theory. It unambiguously predicts the existence of a partner with

opposite spin statistics for each of the Standard Model particles, and there is the-

oretical motivation to believe that at least some of these new superparticles should

be accessible at current collider energy scales.

However, no clear evidence of supersymmetry has been observed to date, and

exclusion limits on the masses of the strongly interacting superparticles are being

pushed to and beyond the TeV scale [3, 4]. Corners of parameter space where these

high bounds can be evaded are becoming increasingly appealing and well scruti-

nized. One such area is the region occupied by compressed spectra supersymmetric

scenarios in which the mass splittings between the superpartners accessible at the

LHC are small. In this case, the SM objects produced during the decays of super-

particles are soft, and only a relatively small amount of missing transverse energy

1



Chapter 1. Introduction 2

is expected in events. Consequently, the kinematic quantities traditionally used to

identify supersymmetric events and reduce the SM background become less effective,

making these scenarios more difficult to exclude.

To constrain compressed spectra scenarios, new analysis techniques have been

developed which rely on the production of a hard SM object together with a pair of

superpartners. The introduction of the SM object leads to recoil of the superparticle

pair, increasing the amount of missing transverse energy in events. Studies and

experimental searches have been performed for a range of SM objects, for example a

photon or top quark, but the most investigated scenario is that of monojet signatures

where the additional SM object is a hard jet originating from initial-state radiation

(ISR).

The limits on new physics that are set by these monojet searches are clearly

sensitive to the way in which hard (high-transverse momentum) Quantum Chromo-

dynamic (QCD) radiation is treated during the simulation of the SUSY signal events.

In a typical Monte Carlo event generator, fixed-order matrix elements describing the

partonic scattering process are combined with parton showers that simulate the emis-

sion of QCD radiation from coloured particles in the event1. Traditionally, the hard

process is described at leading order (LO) in perturbation theory, while the parton

shower utilizes an approximation that is exact only for soft and collinear radiation.

Consequently, high transverse momentum emissions are not well described using

this basic event generation setup. However, much effort has been made in recent

years to improve the simulation of hard radiation in Monte Carlo event generators,

with several techniques now widely available. In one approach, known as matrix-

element (ME) matching, the hardest emission in each event is distributed using the

next-to-leading order (NLO) real-emission correction to the matrix element of the

hard process. As such, the hardest emission is now described with leading-order

accuracy. This method may be further improved, in an approach known as NLO

matrix-element matching, such that the description of suitably inclusive observables

is promoted to NLO accuracy, in addition to the improvement in the description of

1Typically, a QED parton shower simulating the emission of photons is also included. However,

in this work we restrict our study to the effects of QCD radiation only.
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the hardest emission.

The main purpose of this thesis is to study the impact of using higher-order ma-

trix elements to improve the simulation of hard radiation produced in new physics

events. To this end, we consider matrix-element matching based on the POs-

itive Weight Hardest Emission Generator (Powheg) formalism [5]. While the

Powheg formalism deals with NLO matrix-element matching, we only implement

ME matching in which inclusive observables are accurate to leading order. This

choice is motivated by the limited availability of NLO virtual corrections for pro-

cesses involving BSM particles. The matching prescription, which we refer to as

a Powheg style matrix-element correction, has been implemented within the Her-

wig++ Monte Carlo event generator [6, 7].

Hard radiation may be generated in BSM events either during the production

or decay of particles. In the latter case, we consider the application of matrix-

element corrections to a range of decays that appear in both supersymmetry and

alternative new physics scenarios. Previously, the Powheg formalism has been

successfully applied to a number of decays involving Standard Model and new physics

particles [8–11]. In addition, a similar approach based on generic spin structures has

been used to apply matrix-element corrections to hard radiation in SM and BSM

particle decays in the Pythia 6 event generator [12].

When considering radiation emitted during the production stage of the event, we

study only the production of squark-antisquark pairs at the LHC. This production

process is a test case that marks the beginning of the development of an automated

method for implemented Powheg style matrix-element corrections in Herwig++.

In future, it is envisaged that the correction will be available for a wide range of

BSM production processes. The motivation for this choice of test case comes from

the fact that the production of the strongly interacting superpartners, the squarks

and gluinos, presents one of the most promising channels for discovering SUSY

at the LHC. As such, accurate predictions for their production cross sections and

observable distributions are crucial. The leading-order cross section predictions for

squark-antisquark production, calculated for example in Ref. [13], have been known

for some time. The NLO predictions are now also widely available, having first been
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determined in the case of five degenerate light-flavour squarks [14–17] and then

more recently calculated for a completely general squark mass spectrum [11,18]. In

addition to fixed-order calculations, in Ref. [11] the NLO accurate matrix elements

have been matched to parton showers following the Powheg prescription. The

Powheg approach has also been previously applied to alternative hard production

processes in SUSY models [19–24].

This thesis is organised as follows. The remainder of Chapter 1 is devoted to

introductory information relevant to later chapters. A brief summary of the main

principles of supersymmetry and the minimal supersymmetric extension to the SM

is given in Section 1.1. In Section 1.2, we outline the general structure of fixed-order

NLO calculations in perturbative QCD. A brief review of the main components

of Monte Carlo event generators is then given in Section 1.3, along with a more

detailed discussion of the parton-shower algorithm in Herwig++. Finally, matching

NLO calculations and parton showers using the Powheg formalism is described

in Section 1.4, with technical details relevant to our Powheg style matrix-element

correction included both in this section and in Appendix A.1.

In Chapter 2, we consider the impact of improving the simulation of hard radi-

ation generated during the decays of BSM particles. In Section 2.1, our implemen-

tation of the Powheg style matrix-element correction is described in full for the

example of top quark decays. Details of the full range of decay modes for which

the correction is implemented are then given in Section 2.2. In Section 2.3, the im-

pact of the correction on the decay of the lightest graviton in the Randall-Sundrum

model [25] and a selection of decays in the Constrained Minimal Supersymmetric

Standard Model is presented, before our results are summarized in Section 2.4.

In Chapters 3 and 4, we turn our attention to the application of the matrix-

element correction to the production of squark-antisquark pairs at the LHC. In

Chapter 3 we focus on the case of top squarks. After validation of our matrix-

element correction algorithm in Section 3.1, we study the impact of the correction

on parton-level distributions2 in Section 3.2. Having done so, in Section 3.3 the effect

2We use the term parton level to refer to events that include the simulation of some or all of

the parton-shower evolution, but exclude the effects of hadronization and the underlying event.
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of including matrix-element corrections in simulations used to constrain compressed

spectra scenarios is illustrated, considering also the combination of corrections ap-

plied during the production and decays of the top squarks. Finally, Section 3.4

summarizes the findings of this chapter.

Matrix-element corrections to squark-antisquark production are addressed for all

remaining squark flavours in Chapter 4. We begin in Section 4.1 with a detailed

discussion of techniques used to deal with real-emission contributions containing a

heavy, on-shell intermediate particle. Our matrix-element correction approach is

then validated in Section 4.2, with additional results available in Appendix B.1.

The various methods for removing on-shell contributions to the real-emission ma-

trix element are compared in Section 4.3, before the effect of the matrix-element

correction on parton-level results is presented in Section 4.4. Conclusions are drawn

in Section 4.5.

In Chapter 5, we move away from the matrix-element corrections relevant to

monojet based search strategies, and consider instead monotop signatures consist-

ing of a single top quark produced in association with missing transverse momentum.

We investigate the possibility of using monotop probes at the LHC to gain sensitivity

to two simplified supersymmetric scenarios with compressed spectra. To do so, we

make use of Monte Carlo simulations of both the new physics signals and SM back-

ground processes, using the technical setup described in Section 5.1. In Section 5.2,

we present analysis strategies sensitive to compressed regions of parameter space.

The reach of these strategies for our two simplified model scenarios is illustrated in

Section 5.3, before the chapter is summarized in Section 5.4.

Finally, in Chapter 6 we summarize the thesis.

1.1 Supersymmetry

1.1.1 Motivations for physics beyond the Standard Model

The Standard Model of particle physics is a consistent theoretical framework which

describes elementary particles and their interactions. Within it is contained Quan-

tum Chromodynamics, the theory describing the strong interaction of quarks and



1.1. Supersymmetry 6

f

f̄

H H

H H

s

Figure 1.1: One-loop contributions to the Higgs boson mass from fermion (left) and

scalar (right) fields.

gluons, and a unified picture of electromagnetic and weak interactions [26–28]. Over

the past 50 years, it has been subjected to a barrage of experimental tests and has

successfully explained almost all existing high energy physics data. However, it fails

to provide satisfactory answers to a number of fundamental questions. Perhaps the

most obvious shortcoming is its inability to describe gravitational interactions. At

the scale at which quantum gravitational effects become important, i.e. the reduced

Planck scale M̄Pl = 2.4× 1018 GeV, it is necessary to describe gravity using a quan-

tum field theory (QFT) approach. However, attempts to do so are typically plagued

by issues of non-renormalizability, and so a robust theory of quantum gravity is yet

to be formulated. In addition, given the complexity of nature at the weak scale,

it seems likely that new physics exists beyond that which is encompassed in the

Standard Model, in the unexplored 16 orders of magnitude below M̄Pl. In fact,

postulating that no new physics effects are present between the weak and reduced

Planck scales gives rise to a significant conceptual problem with the Standard Model,

known as the hierarchy problem. The hierarchy problem refers to the sensitivity of

the Higgs mass to high energy phenomena. In a theory with an ultraviolet (UV)

energy cutoff Λ, the one-loop correction to m2
H arising from a fermion loop in the

Higgs propagator, as illustrated in the left-hand side of Figure 1.1, is [29]

δm2
H = −

λ2
f

8π2
[Λ2 + terms logarithmic in Λ], (1.1.1)

where λf is the Yukawa coupling of the fermion to the Higgs boson. Through

renormalization, the regulated divergent terms in Eq. 1.1.1 can be absorbed into

a redefinition of the Higgs mass. However, if one assumes that no new physics is
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present below the reduced Planck scale, i.e. Λ = M̄Pl, huge cancellation is required

between the bare Higgs mass parameter and the one-loop contribution in order to ar-

rive at a renormalized mass that agrees with the experimentally observed value [30],

mH = 125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV. While not technically inconsistent,

this level of fine-tuning is theoretically unpleasant. It is more appealing to imagine

that new physics effects are introduced at a lower energy scale, Λ ≈ 1 TeV, such

that the bare and renormalized Higgs mass parameters are of the same order of

magnitude. If this new physics takes the form of a new complex scalar field, an

additional contribution to m2
H exists. This correction, shown in the right-hand side

of Figure 1.1, is [29]

δm2
H =

λs
16π2

[Λ2 + terms logarithmic in Λ], (1.1.2)

where λs is the coupling of the new scalar to the Higgs boson. As such, the systematic

cancellation of contributions to m2
H that depend quadratically on the cutoff param-

eter Λ, and therefore the elimination of the hierarchy problem, can be achieved by

introducing two new complex scalar fields for every fermion in the Standard Model

and requiring λ2
f = λs.

Two further aspects of nature not incorporated in the Standard Model of particle

physics are that of dark matter and dark energy. Fundamental particles described by

the Standard Model account for less than 5% of the total energy content of the Uni-

verse. The remainder exists in terms of dark matter (27%) and dark energy (68%),

and no suitable candidate for either exists within the Standard Model framework.

Finally, experimental observations of neutrino oscillations set non-zero bounds on

neutrino masses. The Standard Model predicts massless neutrinos and so must be

augmented with some mechanism through which they may obtain a mass.

Given these and further unmentioned limitations, the Standard Model is typically

viewed as a low energy limit of some larger theory. Consequently, many theories at-

tempting to describe physics beyond the Standard Model have been developed over

the years. One of the most popular candidates is weak scale supersymmetry [1, 2].

In the following section, the main ideas and motivations for supersymmetry will be

outlined and the additional particle content predicted by the minimal supersymmet-

ric extension to the Standard Model (MSSM) introduced. Having done so, typical



1.1. Supersymmetry 8

collider signatures for SUSY and the corresponding search strategies employed at

the LHC will be outlined. Details are limited to those relevant for later chapters

of this thesis. Pedagogic introductions to the theoretical construction and collider

signatures of SUSY can be found, for example, in Refs. [29,31].

1.1.2 Introduction to supersymmetry

Supersymmetric theories postulate the existence of a symmetry relating fermionic

and bosonic degrees of freedom. Schematically, this symmetry can be expressed in

terms of a SUSY operator, Q, which when acting on a fermionic state transforms it

into a bosonic state and visa versa,

Q |fermion〉 = |boson〉 and Q |boson〉 = |fermion〉 . (1.1.3)

It is clear from the nature of these transformations that the generators of supersym-

metry are fermionic spin-1/2 operators. Through the introduction of such genera-

tors, the Poincaré algebra which encapsulates the space-time symmetries of the SM

may be extended in a non-trivial way [32], i.e. such that the Poincaré and SUSY

generators have non-zero commutation relations.

In fact, the addition of SUSY generators is the only possible non-trivial exten-

sion to the Poincaré group that gives rise to a consistent relativistic QFT [32]. The

addition of bosonic generators (i.e. those that preserve the spin of the state they

act on) is ruled out by the Coleman-Mandula no-go theorem [33], while the Haag-

Lopuszanski-Sohnius theorem [32] limits the possible fermionic generators to only

those which generate supersymmetry. The SUSY generators satisfy the following an-

ticommutation and commutation relations that, together with the Poincaré algebra,

form the Super-Poincaré algebra [31]

{Q, Q̄} = 2σµP
µ, (1.1.4)

[Mµν , Q] = −iσµνQ, (1.1.5)

{Q,Q} = {Q̄, Q̄} = 0, (1.1.6)

[P µ, Q] = [P µ, Q̄] = 0, (1.1.7)
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where Q and Q̄ are the generators of supersymmetry, related through Q† = Q̄, P µ

are the generators of spacetime translations and Mµν are the generators of Lorentz

transformations3.

Supersymmetric extensions to the SM are constructed by embedding each SM

particle as a component field in a supermultiplet. Also contained within each super-

multiplet is a superpartner field related to the SM one through a SUSY transforma-

tion. As such, these superpartners have identical properties to their SM counterparts

with the exception of spin, where they differ by a half integer. This symmetry be-

tween fermionic and bosonic degrees of freedom naturally gives rise to the equality

of coupling constants that was required in order to solve the hierarchy problem

introduced in the previous section. The Lagrangian of the theory may then be con-

structed from the supermultiplets by including all possible renormalizable terms that

are consistent with the symmetries of the theory. Finally, the Lagrangian may be

expanded in terms of the component fields to obtain the Feynman rules of the the-

ory. These can be found for the minimal supersymmetric extension to the Standard

Model in, for example, Ref. [34].

It is clear that supersymmetric theories, in their most basic form, cannot rep-

resent a realistic model of Nature. The equality of SM particle and superpartner

properties, so crucial in the solution to the hierarchy problem, raises a significant

issue. If the masses and gauge couplings of the superpartners are identical to their

SM counterparts, the superpartners should be being produced copiously at cur-

rent collider experiments. However, the superpartners are yet to be observed [3, 4],

leading to the conclusion that SUSY, if it exists, cannot be an exact symmetry of

Nature. By breaking SUSY, the masses of the superpartners can be greater than the

SM particles, therefore accounting for their non-observation. While details of the

SUSY-breaking mechanism are unknown, the form of the additional SUSY-breaking

terms in the Lagrangian can be constrained by requiring that they do not disrupt

the cancellation of the quadratically divergent contributions to the Higgs mass. The

resulting procedure in known as soft SUSY-breaking.

3σµ = (1, σi), σ̄µ = (1,−σi) and σµν = 1
4 (σµσ̄ν − σν σ̄µ), where σi are the Pauli matrices.
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In the MSSM, no mechanism for SUSY breaking is assumed and instead the

Lagrangian is simply augmented with the most general combination of soft SUSY-

breaking terms. With the inclusion of these terms, the Lagrangian for the MSSM

contains some 124 parameters [35]. Such a model is of limited use to experimental

searches and so it is often helpful to consider a constrained form, the CMSSM,

in which the number of new parameters is reduced. The reduction is obtained

by assuming high scale universality (at mGUT ≈ 1016 GeV) of the SUSY-breaking

masses of the gauginos (m1/2) and scalars (m0), and of the trilinear SUSY-breaking

couplings4 (A0). In addition to these parameters, to fully define the CMSSM it is

also necessary to specify the ratio of the vacuum expectation values of the two Higgs

doublets (tan β) and the sign of a parameter µ that appears in the Lagrangian. The

low scale parameters of the model, relevant to phenomenological studies, can then

be obtained through renormalization group running of these high scale parameters.

1.1.3 The particle content of the MSSM

In the minimal supersymmetric extension to the SM, two types of supermultiplets

are required - chiral and vector supermultiplets. The SM fermions are contained

within the former, with the left and right-handed components of each Dirac fermion

embedded separately in left and right-handed chiral supermultiplets, thus allowing

them to transform differently under electroweak gauge transformations. Each chiral

supermultiplet also contains a spin-0 complex scalar superpartner. The superpart-

ners of the SM quarks and leptons are referred to as the squarks and sleptons respec-

tively. They are typically denoted by e.g. q̃L for the superpartner of the left-handed

quark, where the subscript indicates the chiral nature of the SM partner.

The Higgs boson is embedded within the spin-0 component field of a chiral super-

multiplet, with its superpartner the higgsino, H̃, providing the spin-1/2 component.

In fact, it is necessary to extend the Higgs sector to include two such supermul-

tiplets, one which couples to up-type quarks and one which couples to down-type

4The trilinear soft SUSY-breaking terms describe the coupling of three scalar fields and take

the form Ltri = A0λφiφjφk.
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quarks and charged leptons. These multiplets have differing values of weak hyper-

charge such that the total higgsino contribution to the gauge anomaly is zero. After

electroweak symmetry breaking, an extended Higgs sector remains in the MSSM

with two charged and three neutral scalar bosons. Finally, the SM gauge bosons

are contained within the spin-1 component fields of vector supermultiplets. Their

superpartners are spin-1/2 fermions called the gauginos. The superpartner of the

gluon is known as the gluino (g̃) and, prior to electroweak symmetry breaking, the

partners of the electroweak W and B gauge bosons are the winos and bino, (W̃ 0,±

and B̃ respectively).

When both SUSY and electroweak symmetry are broken, mixing occurs between

the electroweak gauginos and the higgsinos, such that the gauge eigenstates do not

correspond with the mass eigenstates of the theory. The bino, neutral wino and

neutral higgsinos mix to form four neutral superpartners, the neutralinos χ̃0
i . The

remaining charged winos and higgsinos similarly mix to form two positively and

two negatively charged superpartners, known as the charginos χ̃±i . Supersymmetry

breaking also gives rise to mixing in the squark and slepton sectors. The mass

eigenstates of the squarks and sleptons are determined by diagonalizing three 6× 6

mixing matrices for the up-type squarks, down-type squarks and charged sleptons,

and one 3×3 matrix for the sneutrinos. In practice however, off-diagonal terms in the

mixing matrix are proportional to the Yukawa coupling constants, and so significant

mixing only occurs between pairs of third generation sfermions. For example, the

left and right-handed stops, t̃L and t̃R, mix to form the mass eigenstates5 t̃1 and t̃2.

The lightest of these, t̃1, is typically the lightest of all the squarks. The gauge and

mass eigenstates of the new superpartners and Higgs sector content of the MSSM is

summarized in Table 1.1.

In the most general form of the supersymmetric Lagrangian, terms appear which

violate either lepton number (L) or baryon number (B) conservation. The existence

of such terms is not compatible with experimental constraints that arise, for example,

from the non-observation of proton decay. If the lepton and baryon number violating

5By convention, mass eigenstates are numbered in terms of increasing mass.
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Gauge eigenstates Mass eigenstates

Scalars

Squarks

ũL, ũR, d̃L, d̃R,

c̃L, c̃R, s̃L, s̃R,

t̃L, t̃R, b̃L, b̃R

same

same

t̃1, t̃2, b̃1, b̃2

Sleptons

ν̃e, ν̃µ, ν̃τ

ẽL, ẽR, µ̃L, µ̃R,

τ̃L, τ̃R

same

same

τ̃1, τ̃2

Higgs bosons H0
u, H0

d , H+
u , H

−
d h0, H0, A0, H±

Fermions

Gluino g̃ same

Charginos W̃+, W̃−, H̃+
u , H̃

−
d χ̃±1 , χ̃

±
2

Neutralinos B̃, W̃ 0, H̃0
u, H̃0

d χ̃0
i , i = 1, 2, 3, 4

Table 1.1: Summary of the gauge and mass eigenstates of the superpartners and

Higgs sector of the MSSM.

terms were present in the Lagrangian with non-negligible couplings, the lifetime of

the proton would be extremely short and in contradiction with the experimentally

observed limit6 which is in excess of 1033 years [36]. In the MSSM, these problematic

terms are eliminated through the addition of a new Z2 symmetry called R-parity.

The R-parity of a particle with spin s is defined as

PR = (−1)3(B−L)+2s. (1.1.8)

Accordingly, SM particles have even R-parity (PR = +1), while the R-parity of

the superpartners is odd (PR = −1). The conservation of R-parity has a huge

impact of the phenomenology of SUSY processes. Firstly, only even numbers of

supersymmetric particles can be produced in the collisions of SM particles (i.e. at

6This limit applies to the decay of the proton into a lepton plus meson final state.
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current collider experiments). These sparticles, with the exception of the lightest

supersymmetric particle (LSP), can decay through a number of stages, with each

decay vertex involving an even number of superparticles. The decay proceeds until

the only sparticles remaining in the event are an even number of LSPs. Finally, the

LSP is stable, and can provide a suitable candidate for non-baryonic dark matter if

it is also electrically and colour neutral.

1.1.4 Searching for supersymmetry at the LHC

Due to the strong theoretical motivation for studying SUSY, searches for sparticle

production have been one of the main emphases of the BSM program during Run

1 of the LHC, continuing on from studies previously performed at LEP and the

Tevatron. In R-parity conserving models, such as the MSSM, sparticles produced in

high energy collisions would decay though a number of stages to produce SM objects

(e.g. leptons, photons, jets) and the LSP. Throughout the course of this work, we will

assume the LSP is the lightest neutralino χ̃0
1. The neutralino only interacts weakly

and as such would evade detection at collider experiments. This typically leads to a

significant imbalance in the combined transverse momentum of the visible final-state

particles when compared with the colliding protons in events in which sparticles are

produced. The magnitude of this quantity, Emiss
T , has traditionally been the most

important kinematic quantity employed in discriminating SUSY events from the SM

background, since in the latter, normally only a small amount of Emiss
T is present7.

The classic experimental signature studied in SUSY searches is therefore a number

of SM objects accompanied by a significant amount of missing transverse energy.

Many searches for sparticles have been performed at the LHC by both the general

purpose experiments, ATLAS [3] and CMS [4]. Given the huge number of SUSY

models and size of the associated parameter spaces, these searches must be done in

a quasi model-independent manner if they are to efficiently probe the likelihood of

a supersymmetric extension to the SM. As such, data is often interpreted in terms

7Missing transverse momentum in SM events arises due to neutrino production and detector

effects.
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of simplified models in which only a small subset of the superpartners have masses

that are kinematically accessible at the LHC. This severely restricts the number of

viable decay modes so that sparticles typically decay in only one or two steps and

into a limited number of final states. In this simplified setup, the remain degrees of

freedom in the parameter space, often the masses of the sparticles, can be varied to

produced exclusion bounds like those found in Refs. [3, 4].

A large fraction of this thesis will be concerned with the impact of an improved

treatment of hard radiation on LHC searches for SUSY particles, with the focus

being on squark-antisquark production. Searches for squark production are particu-

larly relevant at the LHC (and other hadron colliders) owing to the large production

cross sections associated with coloured interactions. In addition, the lightest top

squark can be considerably lighter than the other squarks and so should in principle

be easily accessible at the LHC8, despite the relative reduction in the production

cross section when compared directly to light-flavour squark production9.

In our study of squark-antisquark production, we will rely heavily on simplified

models in which only the squarks and a subset of the gauginos are accessible at

the LHC. In the case of light-flavour squark production, we focus on the decay

mode q̃ → qχ̃0
1 which is often considered in experimental studies, see for example

Refs. [37,38]. In the case of top squark production, the equivalent decay mode is not

kinematically accessible in all regions of phase space. In the region mt̃1 > mt +mχ̃0
1
,

the decay mode t̃1 → tχ̃0
1 is expected to dominate, but as the difference between the

stop and neutralino masses decreases, the 3-body decay t̃1 → bWχ̃0
1 and then the

flavour changing mode t̃1 → cχ̃0
1 and 4-body decay t̃1 → bff ′χ̃0

1 become dominant.

In later chapters, we will consider simplified models that probe a number of different

regions of the stop and neutralino mass plane.

The regions of parameter space that exhibit small mass splittings between the

superpartners accessible at the LHC are of particular relevance to this work. In

8Arguably, if the top squark is not accessible at the LHC, supersymmetry no longer provides a

suitable solution to the hierarchy problem introduced in Section 1.1.1.
9This reduction arises due to the negligible top quark content in the parton distribution func-

tions of the proton at the LHC.
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these so called compressed supersymmetric scenarios, sparticles decay as before into

the LSP and a collection of SM objects. However, now the SM objects are typ-

ically not energetic enough to be identified by the trigger algorithms used at the

LHC. In addition, since sparticles are minimally produced in pairs, the two LSPs

arising from the sparticle decays will be produced in an approximately back-to-back

configuration, such that the amount of Emiss
T in events will be significantly reduced.

This means that the event selection criteria which in uncompressed scenarios gave

good discrimination between SUSY events and the SM background, are now less

efficient. Furthermore, poor trigger efficiencies are expected from algorithms that

rely solely on the amount of Emiss
T in events [39,40]. Classical search strategies based

on the presence of numerous jets and leptons and a large amount of missing energy

therefore have poor sensitivity to compressed supersymmetric scenarios.

These difficulties have lead to the development of non-standard analysis tech-

niques, such as those which search for a monojet signature consisting of a single hard

jet and missing transverse energy10. Such a signature can arise when superparticles

are produced in association with a hard jet originating from initial-state radiation

and all the decay products of the sparticles are soft or invisible. The introduction

of an additional hard jet causes recoil of the sparticles which serves to increase the

amount of Emiss
T in events. When combined with the requirement of a hard jet, this

quantity can be used to achieve good efficiency in trigger algorithms and discrimina-

tion from SM backgrounds. As was previously stated, in this work we are interested

in improving the treatment of high transverse momentum radiation in SUSY events.

Consequently, monojet search strategies are of particular interest since their reach

will be highly sensitive to any change in the description of hard radiation.

Events with single jets and missing transverse momentum have been interpreted

in terms of SUSY particle production for over 30 years now, starting with data

recorded at the UA1 experiment [41], see for example Ref. [42]. Since then, the

10In analogy with monojet systems, signatures comprising of missing transverse energy produced

in association with an alternative SM object, for example an energetic photon, have also been used

to constrain sparticle production at the LHC. In Chapter 5, monotop signatures in which the SM

particle is a top quark, will be studied in the context of compressed spectrum SUSY scenarios.
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use of monojet probes in searches for new physics scenarios has received significant

attention11 and has been effective at constraining compressed spectra SUSY sce-

narios, in particular the existence of light top squarks [45, 46], and alternative new

physics models [47,48]. In Chapter 3, a monojet-type search for light top squarks in

compressed spectra scenarios will be used to assess the effect of different treatments

of hard radiation in stop-antistop production.

1.2 Calculations in perturbative QCD

Methods for improving the treatment of hard radiation in Monte Carlo simulations

typically make use of higher-order QCD contributions to the matrix elements of

the hard process. As such, aspects of calculations within perturbative QCD will be

relevant in later chapters and so are briefly reviewed in the following section. In

Section 1.2.1, the salient points about the strong coupling constant, QCD factor-

ization theorem and the connection between hadronic and partonic cross sections

will be discussed. The treatment of next-to-leading order contributions in pertur-

bative QCD calculations will then be outlined in Section 1.2.2, including a brief

introduction to the Catani-Seymour dipole subtraction formalism.

1.2.1 Hard scattering formalism

Quantum Chromodynamics is a non-abelian SU(3) gauge theory, included within the

framework of the Standard Model, that describes the strong interactions experienced

by coloured particles and mediated by gluons. The scale dependence of the QCD

coupling constant, αs, that arises after renormalization of ultraviolet divergences in

the theory, may be expressed as

β(αs) = µ2
R

∂αs(µ
2
R)

∂µ2
R

. (1.2.9)

In QCD, the β-function appearing in the left-hand side of Eq. 1.2.9 is negative. As

such, at high energies, or equivalently at short distance scales, the coupling constant

11See for example Refs. [43] and [44], for studies at the Tevatron and LHC respectively.
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is small. This behaviour is known as asymptotic freedom. Conversely, at low en-

ergies the coupling constant becomes large - a phenomenon known as confinement.

Confinement forbids the observation of free quarks and gluons and leads to the for-

mation of colour-singlet hadrons, which are the experimentally observable states. In

Eq. 1.2.9, the scale on which the coupling constant depends is an unphysical scale

introduced during renormalization, known accordingly as the renormalization scale

µR.

Interactions at hadron colliders in general depend on both high and low en-

ergy scales. According to QCD factorization theorem12, the treatment of these two

regimes can be separated such that the cross section for a hadronic scattering process

may be written as

σhad
h1h2→n =

∑

a,b

∫
dxadxbf

h1
a (xa, µF )fh2b (xb, µF )dσa,b→n. (1.2.10)

Here dσa,b→n is the differential partonic cross section describing the scattering of

partons13 a and b into n final-state particles. The characteristic scale of the partonic

interaction, Q, is large and so the associated value of the coupling constant is small.

Consequently, dσa,b→n is calculable within perturbation theory and may be written

as an expansion in terms of αs, such that Eq. 1.2.10 becomes

σhad
h1h2 →n

=
∑

a,b

∫
dxadxbf

h1
a (xa, µF )fh2b (xb, µF )

∞∑

m=0

(αs(µ
2
R))k+mdσ

(m)
a,b→n

(
xa, xb,

Q2

µ2
F

,
Q2

µ2
R

)
,

(1.2.11)

where k is the order in αs of the LO contributions to the partonic cross section. Each

term in the perturbative expansion can be computed using, for example, Feynman

diagrams.

The long range physics effects in the hadronic cross section are encapsulated

in non-perturbative parton distribution functions (PDFs), f(x, µF ). These describe

12Only the factorization of inclusive cross sections for deep inelastic scattering and Drell-Yan

processes has been proven. For all other hadronic collisions, factorization is taken as an ansatz.
13The term parton refers to the fundamental particles that are the constituents of hadrons,

i.e. the quarks, antiquarks and gluons.
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the dynamics of partons within a given hadron, for example, fh1a (xa, µF ) can be

interpreted as the probability of finding within hadron h1, a parton of type a that

carries a fraction xa of the total hadron momentum. The functions are universal,

however, can not be calculated perturbatively and must instead be extracted from

fits to experimental data14.

In addition to the momentum fraction x, the PDFs depend on an unphysical

factorization scale, µF , which can be thought of as defining the transition between

the hard and soft regimes. The exact choice of this scale, as with the renormaliza-

tion scale, is somewhat arbitrary. To avoid large logarithms, the factorization and

renormalization scales are typically set equal to some momentum scale characteristic

of the hard scattering process. Formally, the hadronic cross section in Eq. 1.2.11

is independent of both scales when calculated to all order in perturbation theory.

However if the perturbative expansion is truncated, some residual dependence of

the cross section on µR and µF will remain. In this case, an estimate of the size of

the unknown higher-order contributions may be obtained by varying the values of

µR and µF used in the calculation. As such, renormalization and factorization scale

variation is typically used to estimate the level of theoretical uncertainty associated

with a calculation.

1.2.2 Next-to-leading order calculations

The cross section for a partonic hard scattering process can be expanded perturba-

tively in powers of the strong coupling constant, that is

dσ =
∞∑

m=0

(αs(µ
2
R))k+mdσ(m). (1.2.12)

Taking only the first term in the perturbative expansion, i.e. the m = 0 term,

corresponds to the leading-order result. Leading-order calculations provide an order

of magnitude estimate for the total cross section and rough predictions for the shapes

14Although the PDFs cannot be calculated perturbatively, the functions at a given x and µ2
F

may be evolved to lower values of x and higher values of µ2
F using by the perturbatively calculable

DGLAP equations [49–51].
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of some observables. Often, this level of accuracy is insufficient and it is necessary

to include further terms in the expansion so as to achieve a reasonable description

of data and better control of the theoretical uncertainties.

In the next-to-leading order prediction for dσ, both the first and second terms

in Eq. 1.2.12 must be included. The new terms present at NLO arise from taking

into account processes that contribute with an additional factor of αs as compared

with the lowest order interaction. These terms can be divided into contributions

in which an additional parton has been radiated from the lowest order process and

contributions in which a virtual parton has been exchanged between particles present

at LO. As such, the NLO cross section may be written as

dσNLO = B(Φn)dΦn + V(Φn)dΦn +

∫
R(Φn+1)dΦn+1. (1.2.13)

Here B corresponds to the LO or Born matrix element squared15, present also in

the lowest order expansion, while R and V are the real and virtual corrections

that contribute with one higher power of αs. Since the real-emission contribution

corresponds to the radiation of an additional parton, it is evaluated in the real-

emission phase space Φn+1. The virtual or 1-loop contribution is defined, as for the

Born process, in the phase-space element Φn.

The real-emission contribution in Eq. 1.2.13 is infrared (IR) divergent in regions

of phase space where the additional emitted parton is either soft (i.e. has vanishing

energy) or is emitted collinear to one of the particles involved in the Born pro-

cess16. The virtual term is also divergent in the IR limit17, but contributes to the

cross section with the opposite sign. The Bloch-Nordsieck [52] and Kinoshita-Lee-

Nauenberg [53,54] theorems guarantee that the IR singularities arising from integra-

tion of soft and collinear real-emission configurations will cancel with those arising

15Throughout this thesis, relevant flux factors will be absorbed into the definitions of B, V and

R such that, for example, the partonic LO cross section is σLO =
∫
B(Φn)dΦn.

16Collinear singularities occur only for pairs of massless collinear particles.
17The virtual contribution is also divergent in the ultraviolet limit, i.e. in the limit of large loop

momentum. These divergences can be dealt with by first regularizing them and then renormalizing

the theory.
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from virtual loop integrals18 when considering infrared-safe observables19. This can-

cellation occurs order-by-order in perturbation theory, such that each higher-order

correction is independently finite.

The numerical evaluation of Eq. 1.2.13 as it stands, is not possible. While the

total result is finite, the cancellation of IR singularities occurs between terms with

different final-state multiplicities. This issue is overcome in the subtraction formal-

ism by introducing a subtraction term, C(Φn+1). The subtraction term accurately

reproduces the singular structure of the real-emission contribution in the soft and

collinear regions of phase space, and is by design analytically integrable over the one-

particle phase space of the unresolved parton ΦR, defined through Φn+1 = ΦRΦn.

Eq. 1.2.13 may then be rewritten as

dσNLO = B(Φn)dΦn +

[
V(Φn) +

∫
C(Φn+1)dΦR

]
dΦn + [R(Φn+1)− C(Φn+1)] dΦn+1.

(1.2.14)

Through the introduction of the subtraction term, both square brackets in Eq. 1.2.14

are now separately finite, with C(Φn+1) providing local cancellation of singular con-

tributions in the real-emission term and
∫
C(Φn+1)dΦR allowing for analytic can-

cellation of singularities in the virtual term. The total cross section is unaffected

by the procedure and numerical integration over the n and n+ 1 body phase-space

elements is now possible.

Different formulations of the exact form the subtraction terms have been devel-

oped in, for example, the Catani-Seymour (CS) dipole formalism [55, 56] and the

Frixione-Kunszt-Signer (FKS) [57] and antenna [58,59] subtraction approaches. The

first of these methods will be relevant to later sections of this thesis, and so will be

briefly outlined below. More details can be found in Refs. [55] and [56] for the case

18In fact, there is a class of real-emission divergences, arising from collinear emissions from

initial-state or identified final-state partons, that are not cancelled by singularities appearing in

the virtual term. Instead, these divergences are dealt with through a redefinition of the PDFs

which introduces a mass factorization counter term into Eq.1.2.13. This term will not be made

explicit but is assumed to be absorbed into the virtual contribution.
19An observable O is infrared safe if it fulfils the property O(Φn+1) → O(Φn) in the limit that

one of the particles in the n+ 1 body phase space becomes soft or collinear to another particle.
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of massless and massive partons respectively.

Construction of the subtraction term in the CS dipole formalism (and other

approaches) is based on the factorized form of real-emission amplitudes evaluated in

the soft or collinear limits. This allows the IR singular structure of the real-emission

contribution to be encoded in a sum of terms, each of which is the convolution of a

Born-level matrix element and a universal function. Schematically, the subtraction

term is

C =
∑

dipoles

B ⊗ Vdipole, (1.2.15)

where Vdipole are the universal dipole splitting functions. Each term in Eq. 1.2.15

defines a dipole function, Dij,k, that describes the behaviour of the real-emission

matrix element in the singular regions of phase space where the emitted parton j

becomes soft or collinear to the emitting parton i. The dipole functions also depend

on a spectator parton k which is colour connected to the emitted parton.

For each dipole function, a kinematic mapping between the n + 1 and n body

phase spaces is required. The emitter particle and unresolved parton are combined

into a single on-shell particle ĩj, while the momentum of the spectator particle is

reshuffled to account for the recoil of the emission. Once this mapping has be

established, the one-particle phase space required for the analytic integration of the

dipole may be determined.

1.3 Monte Carlo event generators

While fixed-order calculations can provide predictions for high momentum transfer

scattering processes involving a limited number of partons, collision data recorded at

experiments like the LHC typically involves multiple high and low energy scatterings

which give rise to a huge number of final-state hadrons. Monte Carlo event gen-

erators aim to bridge this gap between perturbative calculations and experimental

observations by simulating, for a given theoretical model, all elements of a high-

energy collision. As such, Monte Carlo event generators play a crucial role in the

search of BSM physics signals, the measurement of SM parameters and the design

of future experiments. A comprehensive review of Monte Carlo event generators is
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available in Ref. [60]. In the following section, a brief review of the main components

of a Monte Carlo event generator will be given, followed in Section 1.3.2 by a more

in-depth description of the parton-shower stage of the event. Only collisions involv-

ing initial-state hadrons will be discussed20 and all generator specific information

applies to the Herwig++ event generator [6].

1.3.1 Overview

The complete simulation of high-energy hadronic collisions is only feasible due to

QCD factorization. This allows the different stages of the event to be simulated

separately, each with their own tailored mathematical and computational tools. The

different stages are characterized by the associated scale of momentum transfer, and

are outlined below.

• Hard process: At the highest momentum transfer scale, partonic constituents

of the colliding hadrons scatter into a small number of fundamental final-

state particles, in a stage of the event known as the hard process. The cross

section for this process has traditionally been calculated at LO in perturbation

theory although, as will be discussed in Section 1.4, it is possible to increase

the accuracy to NLO and this is fast becoming the norm for SM processes.

The cross section is integrated with standard Monte Carlo techniques, using

pseudo-random numbers to determine the particles, momenta and colour flow

of the process and sampling the integrand over the available phase space.

The momentum transfer and colour flow of the hard process sets the initial

conditions for the next stage of the event - the parton shower.

• Parton shower: The parton-shower stage of the event perturbatively evolves

particles involved in the hard process from the high momentum transfer scale

of the scattering to an IR cutoff scale. This evolution typically leads to the

emission of additional QCD radiation and provides a connection between the

20In lepton collisions, treatment of the initial-state parton shower, PDFs and underlying event

is no longer necessary. This leads to significant simplification of the event generation process.
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hard and soft regimes. The procedure is separated into an initial-state shower

describing radiation from the colliding partons, and a final-state shower ac-

counting for the evolution of coloured particles produced in the hard process.

The emission of QED radiation from charged particles is simulated in a similar

way.

• Decays of fundamental particles: The decays of unstable particles pro-

duced in the hard process, for example top quarks or top squarks, are treated

separately from their production by making use of the narrow width approx-

imation. In the simulation of BSM events, the narrow width approximation

is often invoked in scenarios where it is not strictly applicable. To improve

the accuracy in these cases, an additional weight factor is available in Her-

wig++ which aims to take into account finite width effects, see Ref. [61] for

more details. In addition, the correct treatment of spin correlations between

the production and decay stages is obtained by using the algorithm described

in Ref. [62]. Finally, unstable coloured particles that are produced in the hard

process will typically initiate parton showers both during their production and

decay. The treatment of hard radiation in both these stages will be the subject

of subsequent chapters.

• Multiple partonic interactions: In parallel to the hard process, additional

interactions can take place between pairs of initial-state partons not involved

in the hard scattering. For the large centre-of-mass energies found at the

LHC, the probability of this occurring is high. These interactions are treated

separately from the hard process, and may be modelled as perturbative 2 →
2 QCD scattering processes when their characteristic scale is above the IR

cutoff. As with the hard process, these additional interactions initiate parton

showers making them a source of extra soft and semi-hard jets in events.

Additional scatters that occur in the non-perturbative regime are also included,

see Refs. [6, 63] for more details.

• Hadronization: The parton-shower evolution of particles involved in the hard

process and additional scatters terminates at an IR cutoff scale, typically taken
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to be O(1) GeV. At this scale, the formation of hadrons from colour connected

systems of partons is simulated in a process known as hadronization. This

process cannot be described perturbatively and so a phenomenological model

containing a number of universal parameters is used. The values of these pa-

rameters are tuned by comparing the results of Monte Carlo simulations to

experimental data. In Herwig++, the particular hadronization model used is

the cluster model, as described in Ref. [64]. Motivated by colour preconfine-

ment, colour connected partons present at the end of the parton shower are

formed into colour-singlet clusters. These clusters have a universal mass dis-

tribution typically peaked around a few GeV. As such, they are too massive

to correspond directly to one of the known hadrons, but are assumed instead

to decay into pairs of hadrons.

• Hadron decays: Finally, hadrons produced during the hadronization stage

of the event are not necessarily stable on collider timescales and therefore

their decays into stable particles must be simulated. The decays of unstable

colourless fundamental particles, such as the τ lepton21, are also simulated

at this stage. The treatment of hadron and tau decays is described for Her-

wig++ in Refs. [6, 65]. Decays are simulated using experimentally measured

branching ratios and matrix-element descriptions of the distributions of the

decay products. Spin correlations between the different decays are included

where possible and in particular are treated consistently for τ lepton decays.

1.3.2 Parton showers

In Monte Carlo event generation, the hard scattering process is simulated using

fixed-order matrix elements, typically at leading or next-to-leading order. Given

the complexity involved in calculating these matrix elements, the addition of fur-

ther terms in the perturbative expansion is not an efficient method for including

21The decay of colourless SUSY particles is handled prior to the parton shower, alongside the

decays of coloured fundamental particles. This allows for the correct treatment of any coloured

particles produced during the decay.
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Figure 1.2: Branching of the quark i into a collinear gluon k and the final-state

quark j.

important higher-order contributions. Higher-order corrections due to additional

emissions are formally suppressed by factors of the strong coupling constant, how-

ever, there exist kinematic configurations for which this suppression is overcome

by a logarithmic enhancement of the cross section. These contributions must be

resummed to all orders in perturbation theory so as to obtain reliable predictions

when considering anything other than the most inclusive observables. In Monte

Carlo event generators, this resummation is performed by the parton-shower stage

of the event, which will be the subject of the following section.

The all-order resummation of exact higher-order corrections is not possible and so

an approximation is used that is accurate in the enhanced regions of phase space only.

We begin by discussing the origin of this so-called parton-shower approximation in

the context of collinear emissions. The formulation of the parton shower in terms of

an iterative algorithm and the treatment of soft singularities will then be outlined

briefly. Finally, Herwig++ specific details about the starting scale of the parton

shower and kinematic reconstruction procedure will be given. These will be relevant

to discussions appearing in later chapters.

Collinear emissions and the parton-shower approximation

For processes in which a final-state quark emits a gluon, as illustrated in Figure 1.2,

the matrix element contains a propagator factor

1

(pj + pk)2 −m2
j

=
1

2z(1− z)E2
i (1− v cos θ)

, (1.3.16)
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where pi and pj are the momenta of the quark before and after the branching, pk

is the momentum of the emitted gluon and mj the mass of the quark. The en-

ergy carried by the splitting parton, Ei, is divided between the quark and gluon

according to Ej ' zEi and Ek ' (1 − z)Ei. The velocity of the final-state quark

is v = |~pj|/Ej, while θ is the angle between the final-state quark-gluon pair. The

form of this propagator illustrates the divergent nature of the matrix elements of

such processes. Singularities occur in two distinct kinematic regions: the soft limit

in which the energy fraction of the gluon is small (i.e. z → 1) and, for mj = 0, the

collinear limit in which θ → 0. As was discussed in Section 1.2.2, when considering

infrared-safe observables these soft and collinear singularities cancel with those aris-

ing from virtual corrections. However, for some observables large-logarithmic terms

will remain after the cancellation has taken place. The purpose of the parton shower

is to resum such logarithms to all orders in perturbation theory.

To introduce the parton-shower algorithm with which this resummation is per-

formed, we begin by considering logarithms arising from collinear branchings only.

The effects of soft singularities will be incorporated later. In the collinear limit, the

squared matrix element for the process shown in Figure 1.2, with massless quarks,

is

|M̄n+1|2 =
8παs
t

CF
1 + z2

1− z |M̄n|2, (1.3.17)

where t = p2
i is the mass of the off-shell splitting quark, CF is the Casimir of the

fundamental representation of SU(3) and we have summed over the spins of the final-

state particles. The n body process before gluon emission is described by the squared

matrix element |M̄n|2, where summation over the spins of the final-state particles

has again been performed. The colour factor and z-dependence of Eq. 1.3.17 define

a universal unregularized Altarelli-Parisi splitting function, Pq→qg(z). The splitting

functions for Standard Model branchings in the massless limit are given by

Pq→qg(z) = CF
1 + z2

1− z ,

Pg→qq̄(z) = TR(z2 + (1− z)2),

Pg→gg(z) = CA

[
z

1− z +
1− z
z

+ z(1− z)

]
,

(1.3.18)

where TR and CA are the trace and Casimir invariants in the fundamental and
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adjoint representations of SU(3) respectively22. Finally, the n+ 1 body phase space

also factorizes such that the cross section for the process shown in Figure 1.2 is

dσn+1 ≈ dσn
αs
2π

dt

t
P̂q→qg(z)dz, (1.3.19)

where P̂q→qg is now the splitting function after averaging over the azimuthal angle

of the emitted parton23. From Eq. 1.3.19, we see that the cross section for processes

involving a collinear emission factorizes into the cross section for the process with

no splitting and a universal function describing the emission.

The above picture may be easily extended to the case with multiple coloured

particles in the hard process, for example the process e+e− → qq̄. The interference

between contributions in which a gluon is emitted from either the quark or antiquark

is negligible in the collinear limit. As such, Eq. 1.3.19 is simply modified to now

include a sum of universal splitting functions, each one of which describes an emission

from a different particle in the hard process. This allows the evolution of different

particles to be treated independently.

The Altarelli-Parisi splitting functions can be used as the building blocks of an

iterative algorithm. The final state shown in Figure 1.2, i.e. after a single collinear

emission, is treated as the new hard process from which a second collinear splitting

can be generated. The emissions are ordered in terms of an evolution variable, in

this case the virtuality of the emitting parton, t, that decreases with each subse-

quent emission. Any variable k that satisfies dt
t

= dk
k

may be used, and common

alternatives to the virtuality are the transverse momentum of the emitted parton or

the angle between the branched pair of partons.

To construct the parton-shower algorithm, a more probabilistic interpretation of

the splitting functions is necessary. As such, we may express the probability of a

22The splitting functions applicable to the case of massive partons and additional branchings

possible in SUSY processes can be found, for example, in Ref. [6].
23In general, the splitting functions do depend on the azimuthal angle of the emitted parton and

these angular correlations are accounted for in the Herwig++ parton-shower algorithm. However,

for simplicity they are neglected in this discussion.
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parton i undergoing a branching in the infinitesimal range t to t+ dt as

dP =
αs
2π

dt

t

∫ 1−
√
tmin/t

√
tmin/t

∑

j,k

P̂i→jk(z)dz, (1.3.20)

where all possible splittings i → jk are summed. In order to produce physically

meaningful distributions it has been necessary to impose a resolution criterion that

limits the transverse momenta of emissions to be greater than an IR cutoff, pmin
T ,

typically chosen to be O(1 GeV ). This is motivated by the observation that a pair of

exactly collinear partons is experimentally indistinguishable from the single parent

parton before splitting. This limit on the transverse momentum translates into a

lower bound on the evolution variable, tmin, which defines the scale at which the

parton-shower evolution terminates and non-perturbative effects are considered to

be significant. The resolution criterion also restricts the z integration range such

that the integral in Eq. 1.3.20 is finite.

While Eq. 1.3.20 expresses the probability of producing a resolvable emission,

the probability of producing no resolvable emission in the range t to t + dt may be

constrained through unitarity to be (1− dP). This encapsulates both contributions

arising from unresolvable emissions with pT < pmin
T , and those from enhanced vir-

tual corrections. Extending this non-emission probability to a finite range of the

evolution variable, we obtain the Sudakov form factor

∆(t1, t2) = exp

(
−
∫ t1

t2

αs
2π

dt

t

∫ 1−
√
tmin/t

√
tmin/t

∑

j,k

P̂i→jk(z)dz

)
. (1.3.21)

This expresses the probability of parton i evolving from a high scale, t1, to a low

scale, t2, without producing a resolvable emission.

Monte Carlo implementation

Using the Sudakov form factor introduced in Eq. 1.3.21, it is possible to construct

a simple parton-shower algorithm as follows. Working separately for each coloured

particle produced in the hard process, collinear emissions are generated by solving,
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for t1, the equality24

∆(tmax, t1) = R. (1.3.22)

Here R is a pseudo-random number uniformly distributed in the range [0, 1] and

tmax is the starting scale of the parton shower. Any emission not satisfying t1 > tmin

is discarded. Additional random numbers are then used to generate a value of z

according to the splitting function and a value of the azimuthal angle, φ, which is

uniformly distributed in the range [0, 2π]. For each parton produced in the branch-

ing, the process is repeated with the starting scale of the shower replaced by the

scale of the previous splitting, i.e. using ∆(t1, t2) and solving for t2. This evolution

continues for each parton independently, until the scale drops below the cutoff value

tmin.

The above process is sufficient when describing emissions generated from final-

state particles. However in the case of initial-state branchings, a modified algorithm

is required. In Monte Carlo event generators, the hard process is generated first

therefore fixing the flavour and momenta of the initial-state partons involved. A

parton shower based on the algorithm used for final-state particles would extract a

parton from the colliding hadron and run a forward evolution towards the hard pro-

cess. As such, the partons at the end of the shower evolution would typically not have

flavour and momentum matching those required by the hard process. This would

result in a highly inefficient procedure. Instead, the initial-state shower evolution

is effectively performed backwards, starting from the partons involved in the hard

process and evolving them back to partons extracted from the colliding hadrons. As

such, the backwards evolution is generated using the modified Sudakov form factor

∆(t1, t2) = exp

(
−
∫ t1

t2

αs
2π

dt

t

∫ 1−
√
tmin/t

√
tmin/t

∑

j,k

P̂i→jk(z)
x/zfhj (x/z, t)

xfhi (x, t)
dz

)
. (1.3.23)

The ratio of the PDFs in Eq. 1.3.23 ensures that unphysical values of the momen-

tum fraction x are avoided. Finally if an initial-state emission is generated, the

24Typically, Eq. 1.3.22 is not analytically tractable. To overcome this, radiation is instead

generated using a simple overestimated branching probability for which the analog to Eq. 1.3.22

can be easily solved. The correct branching probability is then restored using the veto algorithm,

a good description of which may be found in Ref. [66].
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corresponding value of z is now determined using x/zfj(x/z, t)P̂i→jk(z).

Soft singularities

The parton-shower algorithm described in the previous section can be used to resum

the leading logarithms associated with collinear branchings. However, soft emis-

sions give rise to an additional class of enhanced contributions that must also be

resummed. In the Herwig++ event generator, this is done through angular ordering

of the parton-shower emissions, exploiting the properties of QCD coherence [67,68],

as will be outlined in this section.

In the soft limit, the matrix element describing a process with an additional

emission factorizes into a universal eikonal function and the matrix element for the

process with no soft emission. However, the interference between different matrix

elements contributing to the soft emission process is such that this factorization

does not persist beyond the level of the matrix element. At the level of the cross

section, the factor accounting for the soft emission depends on the momenta of all

the external particles. Therefore, the soft emission cannot be viewed as having

been emitted from any given particle, but rather as having come from the scattering

process as a whole. This prohibits the treatment of emissions from different particles

as independent processes, something that is vital to the parton-shower algorithm.

However, the picture of independent evolution can be restored by making use of

colour coherence. To illustrate this phenomenon, consider the example of a quark

radiating a relatively hard and collinear gluon, as shown in Figure 1.2. The proba-

bility of a subsequent soft gluon being radiated from this process has contributions

arising from emissions from either the collinear gluon or the final-state quark. If

the soft gluon is emitted at an angle wider than that associated with the collinear

branching25, interference between the two contributions is largely destructive. Ne-

glecting colour suppressed terms, the combined contribution of emissions from each

of the collinear pair of partons is equivalent to the contribution corresponding to the

25i.e. at an angle larger than the opening angle between the emitting member of the collinear

pair and its colour connected partner. For emissions from the collinear gluon, the assignment of a

colour partner is not unique. This will be discussed in more detail in the next section.
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soft gluon being emitted by the branching parent quark (i.e. quark i in Figure 1.2).

Schematically, a wide-angle soft gluon cannot resolve the individual partons in the

collinear pair and so is sensitive only to the sum of their colour charges, i.e. the

colour charge of the parent quark. Therefore, it can effectively be viewed as having

branched from the parent quark, before the collinear emission. As such, soft en-

hancements can be incorporated into a collinear parton-shower algorithm simply by

ordering the parton-shower emissions in terms of the opening angle of the splittings,

giving rise to an angular-ordered parton-shower algorithm.

By employing the angular-ordered prescription, the Herwig++ parton shower re-

sums leading collinear and leading-colour soft logarithms. A further class of universal

higher-order corrections may also be incorporated in the parton shower through the

choice of renormalization scale. By using the transverse momentum of the emission

as the argument of the strong coupling constant during the parton-shower evolution,

these subleading but phenomenologically important logarithms are resummed to all

orders [69]. Whilst technically a higher-order consideration, this choice of scale in

the running coupling has a significant impact of the multiplication rate of partons

in the shower and cluster mass distributions arising during hadronization.

Starting scale of the parton shower

A component missing from the parton-shower prescription detailed so far is the start-

ing value of the shower-evolution variable. As was discussed in the previous section,

enhanced contributions due to soft emissions are taken into account in Herwig++ by

ordering radiation in terms of a decreasing angular variable. Each branching must

occur at a lower value of the angular variable than the one associated with the

opening angle of the emitting parton and its colour connected partner. As such, the

maximum allowed value of the angular variable depends on the colour flow in the

hard process. The colour flow is determined in the large Nc limit26 by associating a

(anti)colour line to each particle that transforms under the (anti)fundamental rep-

resentation of SU(3) and a pair of lines, one with colour and one with anticolour, to

26Here Nc represents the number of colours.
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particles transforming under the adjoint representation. As such, quarks involved in

the hard process have only one possible colour connected partner, while for gluons a

choice must be made between the partners connected via the colour and anticolour

lines. For correct treatment of colour factors in the splitting functions, the gluon

partner is chosen at random with an equal probability of selecting each of the two

possibilities.

Having assigned colour partners, the starting scale of the shower evolution vari-

able is determined for each colour connected pair using the prescription detailed in

Ref. [70], taking into account whether the particles are in the initial or final state.

Radiation from each member of the pair is constrained to populate a distinct region

of phase space. The regions are required to be non-overlapping and to meet smoothly

in the soft limit. By doing so, the full soft region of phase space is populated and no

double counting of radiation occurs. Some ambiguity exists in how this division of

phase space is performed, but in all cases, in addition to the regions populated by

emissions from each of the colour connected pair, there will typically be some region

of phase space which is completely unpopulated by the parton shower. The presence

of this region, known as the dead zone, will be illustrated explicitly in Chapter 2.

The phase space within the dead zone corresponds to (relatively) hard emissions,

i.e. those which are neither soft nor collinear.

An additional constraint on the transverse momentum of emissions is also im-

posed by default in the Herwig++ angular-ordered shower. Shower emissions must

have transverse momentum below some upper value, pmax
T , which depends on the

nature of the hard process. For hard scatterings that produce coloured particles,

the minimum transverse mass27 of all the final-state coloured particles is used. In

the case that no coloured particles exist in the final state, pmax
T is set equal to the

invariant mass of the colour-singlet system. Alternatively, the option exists in Her-

wig++ to set pmax
T equal to the factorization scale of the hard process. Finally for

parton showers initiated from particle decays, the maximum transverse momentum

is equal to the mass of the decaying particle. The limit on the transverse momentum

27The transverse mass is defined as mT =
√
m2 + p2T .
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of emissions is necessary to ensure no double counting of configurations28 and to re-

strict the application of the parton-shower approximation to the regions of phase

space in which it is valid.

Kinematic reconstruction

After the parton-shower evolution has terminated, the momenta of all particles in-

volved are calculated from the values of the shower variables generated at each

splitting. Particles produced in the final branching step of the shower are con-

strained to be on their constituent mass shells such that partons involved in the

hard process develop a virtual mass. The momenta of all final-state progenitors29

and their subsequent emissions are then rescaled by a common factor that is deter-

mined by requiring the total centre-of-mass energy of the system to be unchanged

by the parton shower. A similar rescaling procedure is used for initial-state progen-

itors, where now different kinematic quantities are preserved based on whether the

colour connected partner to the progenitor is in the initial or final state. Further

details of this process can be found in Ref. [6].

When an external matrix-element generator is interfaced to the angular-ordered

parton shower in Herwig++, care must be taken with regards to the kinematic re-

construction if the simulation of the hard scattering process involves higher-order

corrections. In this case, the additional parton in real-emission configurations gen-

erated by the external matrix-element generator will always be interpreted in the

parton-shower algorithm as a final-state emission. However, the final-state kine-

matic reconstruction procedure gives unphysical results when applied to hard pro-

cess final states containing two massive particles and a hard additional parton that

actually originated from initial-state radiation. In this case, the massive particles

28A very hard parton-shower emission would cause significant recoil of the hard process such

that particles involved in the hard process would be boosted to higher transverse momenta. This

is indistinguishable from a hard process with high transverse momentum particles from which a

softer emission is produced.
29The term progenitor is used to refer to any particle (be it in the hard process, subsequent

decays of unstable particles or additional scatterings) that initiates a parton shower.



1.4. Combining higher-order matrix elements and parton showers 34

produce only a small amount of radiation, while the additional parton can build up

a considerable virtual mass. By rescaling the momenta of all final-state progenitors

democratically, the energies of the massive particles can be significantly decreased,

giving rise to unphysical distributions. This phenomenon was pointed out in Ref. [71]

for the case of top quark pair production. To account for this, an alternative final-

state kinematic reconstruction procedure is available in the Herwig++ shower. In

this scheme, the momenta of the progenitor with the largest virtual mass and the

combined system of all other progenitors are rescaled by a common factor to restore

energy conservation. Then working in the rest frame of the combined system, the

momenta of the remaining progenitors are rescaled to preserve the total energy of

the system in this frame. In this way, the invariant mass of the combined system

of progenitors is preserved. The effect of the different choices of kinematic recon-

struction procedure will be investigated for the case of stop-antistop production in

Chapter 3.

1.4 Combining higher-order matrix elements and

parton showers

Monte Carlo event generators provide a link between theoretical models and ex-

perimental signatures. As such, it is important that the simulation is performed

with the highest possible accuracy so that results correctly reflect the underlying

physics. The parton-shower algorithm, by which additional QCD radiation is pro-

duced, makes use of an approximation which is valid only in the soft and collinear

regions of phase space. Consequently, the production of hard radiation is not ac-

curately described by the parton shower. This can pose a problem, for example, in

searches for BSM scenarios where often the event selection criteria require the pres-

ence of hard jets in each event. In particular, signal predictions in monojet based

compressed spectra SUSY searches, introduced in Section 1.1.4, are highly sensitive

to the way in which hard parton-shower radiation is generated. The parton shower

alone cannot be relied upon to produce sufficiently accurate predictions in this case.

In recent years, improving the simulation of hard radiation within Monte Carlo
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event generators has been the subject of extensive work. Currently, two main tech-

niques are available - matrix-element merging and matrix-element matching. In the

former, matrix-element level event samples are generated in which the final-state

particles in the hard process are produced together with differing numbers of ad-

ditional partons, j. That is, in addition to generating the hard process pp → X,

the processes pp→ X + (1, 2, ..., i, ..., n)j ∀ i ≤ n are also simulated at fixed order.

The event samples are then merged with the parton shower so that multiple hard

emissions in each event are now described using fixed-order matrix elements, not

the parton-shower splitting kernels. Several prescriptions exist for performing this

merging procedure, see for example Refs. [72–75], which each ensure that no double

counting of radiation takes place.

In this work, we focus exclusively on the latter technique of matrix-element

matching. In this approach, the real-emission contribution to the NLO matrix ele-

ment of the hard process is used to generate the hardest extra parton in each event.

The resulting configuration is then matched to the parton-shower stage of the event

to simulate additional softer radiation in such a way that double counting of emis-

sions is avoided. In some prescriptions, a further modification is also made which

ensures that the Born configuration is simulated with NLO accuracy. Multiple for-

malisms exist for performing matrix-element matching. We will mention briefly the

MC@NLO approach [76,77] and the phase-space slicing technique previously imple-

mented in Herwig++ [78], but focus predominantly on the POsitive Weight Hardest

Emission Generator or Powheg approach suggested in Ref. [5]. We will use this

formalism to implement a Powheg inspired matrix-element correction in which the

description of both the hardest parton-shower emission and the Born process are

accurate to LO.

In this section, we begin by considering the combination of LO matrix ele-

ments with the parton shower in Section 1.4.1, before extending the prescription

to NLO matrix-element matching in Section 1.4.2. Having done so, details of the

Powheg formalism will be given in Section 1.4.3, along with a brief outline of the

MC@NLO prescription. This will be followed in Section 1.4.4 by an introduction

to the Powheg style matrix-element corrections relevant to this work, and a short
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review of the phase-space slicing approach which has previously been used to imple-

ment ME corrections in Herwig++. Finally, details specific to the application of the

Powheg formalism to angular-ordered parton showers will be given in Section 1.4.5.

A more in-depth description of the Powheg formalism can be found, for example,

in Ref. [79].

1.4.1 Combining LO matrix elements and parton showers

Before discussing the matching of NLO calculations with a Monte Carlo parton

shower, it is instructive to first consider the action of the parton shower on a LO

calculation. To this end, we consider an generic infrared-safe observable O. The

expectation value of the observable is

〈O〉 =

∫
dΦnB(Φn)

[
∆(pmax

T , pmin
T )O(Φn) +

∫ pmax
T

pmin
T

dP(pT )∆(pmax
T , pT )O(Φn+1)

]
,

(1.4.24)

where only the first parton-shower splitting has been included. Here we are consid-

ering a parton shower ordered in terms of the transverse momentum of the emitted

parton, pT . The Born matrix element squared, including the relevant flux and par-

ton luminosity factors30, is represented by B(Φn). The phase space of the 2 → n

LO process is represented by Φn, while Φn+1 is the configuration after an emission

from the Born process. More concretely, we define

dΦn =
dxa
xa

dxb
xb

(2π)4 δ4

(
xaPa + xbPb −

n∑

i=1

pi

)
n∏

i=1

d3~pi
2Ei(2π)3

, (1.4.25)

where xa and xb are the momentum fractions of the incoming partons, Pa and Pb

are the momenta of the incoming hadrons and pi = (Ei, ~pi) is the momentum of the

outgoing particle i. In general, the n+1 body phase space will depend on the splitting

channel through which the emission took place, however the splitting channel index

has been suppressed in the following discussion for the sake of clarity. Furthermore,

in the following we abbreviate O(Φn) to On. In the notation of Eq. 1.4.24, the

30The parton luminosity is defined as L = xaf
h1
a (xa, µ)xbf

h2

b (xb, µ), where fh(x, µ) is the PDF

of hadron h, as introduced in Section 1.2.1.
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Sudakov form factor for the parton shower is31

∆(pmax
T , pT ) = exp

(
−
∫ pmax

T

pT

dP(p̃T )

)
. (1.4.26)

The first term in Eq. 1.4.24 represents the case in which no radiation is generated by

the parton shower above the IR cutoff scale, while the second term is the scenario

where an emission is produced at a scale pT . On continuing the parton-shower evo-

lution, terms describing the production of multiple emissions would also be present.

Observables that are insensitive to the additional radiation produced by the parton

shower, i.e. those for which On = On+1 throughout phase space, are predicted with

LO accuracy and the square bracket in Eq. 1.4.24 integrates to one. As such, the

parton shower does not effect the total cross section of the hard scattering. This

property is referred to as the unitarity of the parton shower. Observables which are

sensitive to the hardest parton-shower emission are predicted with the accuracy of

the parton-shower splitting kernels, i.e. leading-logarithmic accuracy.

1.4.2 Combining NLO matrix elements and parton showers

In the most naïve combination of an NLO cross section with the parton shower, one

finds that the prediction for the observable O is

〈O〉=
∫
dΦn [B (Φn)+V (Φn)]

[
∆
(
pmax
T , pmin

T

)
On+

∫ pmax
T

pmin
T

dP(pT )∆ (pmax
T , pT )On+1

]

+

∫
dΦn+1 [R(Φn+1)On+1 − C(Φn+1)On] ,

(1.4.27)

where again we consider a shower ordered in terms of the transverse momentum of

the emissions and only the splitting giving rise to the hardest emission has been

considered. Here the subtraction term required to render the virtual contribution

31In relation to the notation used for final-state emissions in Section 1.3.2, the ex-

ponent dP(pT ), referred to in the following as as the parton-shower splitting kernel, is

dP(pT ) = αs

2π
dp2T
p2T

∫
dz
∑
i P̂i(z). When applied to initial-state emissions, an additional factor of

Ln+1

Ln
is present in the splitting kernel, where Ln (Ln+1) is the parton luminosity before (after) the

splitting.
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finite is included in V (Φn) implicitly. Note that no showering of the real-emission

contribution is necessary since we are concerned with the generation of at most one

emission. Expanding this expression to O(αk+1
s ), where k is the order in αS of the

Born process, gives

〈O〉 =

∫
dΦn [B (Φn) + V (Φn)]On +

∫
dΦnB (Φn)

∫ pmax
T

pmin
T

dP(pT ) [On+1 −On]

+

∫
dΦn+1 [R(Φn+1)On+1 − C(Φn+1)On] .

(1.4.28)

The contributions relating to the parton-shower splitting kernel are problematic.

The term B(Φn)dP(pT )On+1 corresponds to a resolvable emission generated by the

parton shower which is already accounted for by the real-emission contribution to

the prediction, R(Φn+1)On+1. Furthermore, the expansion of the Sudakov form

factor ∆
(
pmax
T , pmin

T

)
in Eq. 1.4.27 gives rise to the spurious term B(Φn)dP(pT )On

which leads to double counting of virtual contributions.

In addition to the double counting, another issue is present in Eq. 1.4.27. The

subtraction term appearing on the second line of the equation must contribute to-

wards the prediction for the observable for n parton configurations so that it exactly

cancels the subtraction term that has been absorbed into the virtual contribution.

This means that the combination of terms contributing to On+1 and On are not

separately finite.

Taking into account both issues, consistent matching of the NLO matrix element

and parton shower can be obtained by beginning the parton-shower evolution from

the modified cross section32

(1.4.29)dσNLO
mod =

[
B (Φn) + V (Φn) + B(Φn)

∫ pmax
T

pmin
T

dP(pT )

]
dΦn

− B(Φn)dP(pT )dΦn + [R (Φn+1)− C (Φn+1)] dΦn+1,

32Note that the third term on the first line and first term on the second line of Eq. 1.4.29

contribute to the n and n + 1 body configurations respectively, since no integration over the

radiative phase-space variables is included for the latter term.
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and including an additional bridging contribution to the expectation value of the

observable ∫
dΦn+1R(Φn+1) [On −On+1] Θ(pmin

T − pT ). (1.4.30)

For infrared-safe observables, the contribution in Eq. 1.4.30 does not effect the NLO

accuracy of predictions that are insensitive to additional radiation or the resumma-

tion properties of the parton shower [80].

After these modifications have been made, the expectation value of the observable

O becomes

〈O〉matched =

∫
dΦnB̄ (Φn)

[
∆
(
pmax
T , pmin

T

)
On +

∫ pmax
T

pmin
T

dP(pT )∆ (pmax
T , pT )On+1

]

+

[∫
dΦn+1R (Φn+1) Θ(pT −pmin

T )−
∫
dΦnB(Φn)

∫ pmax
T

pmin
T

dP(pT )

]
On+1

+

∫
dΦn+1

[
R (Φn+1) Θ(pmin

T − pT )− C (Φn+1)
]
On,

(1.4.31)

where

B̄ (Φn) = B (Φn) + V (Φn) + B(Φn)

∫ pmax
T

pmin
T

dP(pT ). (1.4.32)

Up to O(αk+2
s ) corrections, the third line in Eq. 1.4.31 may be absorbed into the

prefactor so that now

(1.4.33)
B̄ (Φn) = B (Φn) + V (Φn) + B(Φn)

∫ pmax
T

pmin
T

dP(pT )

+

∫
dΦR

[
R (Φn+1) Θ(pmin

T − pT )− C (Φn+1)
]
,

where the radiation variables of the additional emitted parton, ΦR, have be factor-

ized such that dΦn+1 = dΦndΦR.

1.4.3 The Powheg formalism

In the Powheg matching prescription, the ratio of the differential real-emission and

Born-level cross sections33 is used as the parton-shower splitting kernel during the

33In practice, the real-emission and Born cross sections in the ratio are stripped of their re-

spective factors of αs. A single factor of αs, evaluated at the transverse momentum scale of the
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generation of the hardest emission, i.e.
∫ pmax

T

pmin
T

dP(pT ) =

∫
dΦR
R (Φn+1)

B (Φn)
Θ(pT − pmin

T ). (1.4.34)

In the right-hand side of Eq. 1.4.34, the radiative phase space of the additional

emitted parton is limited to emissions with transverse momenta greater than pmin
T

by the inclusion of the function Θ(pT−pmin
T ). In the following, this Heaviside function

will be translated into explicit limits on the phase-space integral without rewriting

dΦR in terms of the transverse momentum of the emission.

Making the substitution in Eq. 1.4.34 leads to considerable simplification of the

approach detailed in Section 1.4.2, such that the expectation value of O is now

(1.4.35)
〈O〉Powheg =

∫
dΦnB̄ (Φn)

[
∆
(
pmax
T , pmin

T

)
On

+

∫ pmax
T

pmin
T

dΦR
R (Φn+1)

B (Φn)
∆ (pmax

T , pT )On+1

]
,

where

B̄ (Φn) = B (Φn) + V (Φn) +

∫
dΦR [R (Φn+1)− C (Φn+1)] . (1.4.36)

As such, the total cross section and suitably inclusive observables are generated with

NLO accuracy, while the hardest shower emission is distributed with LO accuracy.

The Sudakov form factor, ∆(pmax
T , pT ), used to generate the hardest emission in

the Powheg formalism is given by

∆(pmax
T , pT ) = exp

(
−
∫ pmax

T

pT

dΦR
R(Φn+1)

B(Φn)

)
. (1.4.37)

In practice, Eq. 1.4.37 is modified to include dipole functions, Di, thus allowing

the singular behaviour of the real-emission matrix element in different phase-space

regions to be isolated. Eq. 1.4.37 becomes a product of Sudakov form factors,

∆(pmax
T , pT ) =

∏

i

exp

(
−
∫ pmax

T

pT

dΦR
Di∑
j Dj
R(Φn+1)

B(Φn)

)
. (1.4.38)

emission, is then included in the numerator of the splitting kernel. This allows for resummation of

phenomenologically important but subleading corrections as discussed in Section 1.3.2.
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As discussed in Section 1.2.2, each dipole function approximates the behaviour of

the real-emission matrix element in some singular limit, i.e. when the emitted parton

becomes soft or collinear to one of the particles in the Born process. An emission

can be simulated according to Eq. 1.4.38 by generating a value of pT for each form

factor in the product using the method described in Section 1.3.2. The form factor

giving rise to the hardest emission is selected and the associated dipole then fixes

the kinematic mapping between Φn and Φn+1.

Aside - The MC@NLO method

The original matrix-element matching prescription, dubbed MC@NLO [76,77], can

be derived in a similar way to the Powheg formalism by instead taking the bridging

contribution to be
∫
dΦn+1C(A)(Φn+1) [On −On+1] Θ(pmin

T − pT ), (1.4.39)

and writing the parton-shower splitting kernels as

B (Φn)

∫ pmax
T

pmin
T

dP(pT ) =

∫
dΦRC(A) (Φn+1) Θ(pT − pmin

T ). (1.4.40)

Then, representing the subtraction term present in the NLO calculation now with

C(S)(Φn+1), the expectation value of the observable O becomes

(1.4.41)

〈O〉MC@NLO =

∫
dΦnB̄ (Φn)

[
∆
(
pmax
T , pmin

T

)
On

+

∫ pmax
T

pmin
T

dΦR
C(A) (Φn+1)

B (Φn)
∆ (pmax

T , pT )On+1

]

+

∫
dΦn+1

[
R (Φn+1)− C(A)(Φn+1)

]
On+1,

where

B̄ (Φn) = B (Φn) + V (Φn) +

∫
dΦR

[
C(A) (Φn+1)− C(S) (Φn+1)

]
(1.4.42)

and

∆(pmax
T , pT ) = exp

(
−
∫ pmax

T

pT

dΦR
C(A)(Φn+1)

B(Φn)

)
. (1.4.43)
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The first and second lines in Eq. 1.4.41 correspond to events originating from a

Born-like n parton hard process, commonly referred to as shower or S-events. The

real-emission like n + 1 parton configurations generated by the terms on the third

line are known as hard or H-events. The parton-shower splitting kernel C(A) and

NLO subtraction term C(S) have the same phase-space factorization and may both

be written in terms of a sum of dipole contributions. However, their functional form

away from the singular limits may differ, and typically the parton-shower kernel

will include a cutoff that limits the upper scale of the shower evolution variable. As

such, the upper limits in the integration of the splitting kernels in Eqs. 1.4.41, 1.4.42

and 1.4.43 are reduced from pmax
T to some physically motivated choice of parton-

shower starting scale, phard
T , which is typically similar to the factorization scale. By

doing so, the resummation is limited to the region of phase space where the parton-

shower approach is appropriate.

Finally, we note that the integrand in the third line of Eq. 1.4.41 is not guaranteed

to be positive. The weights of H-events can become negative if the parton-shower

approximation of the real-emission term exceeds the true value. While the presence

of negative weights affects the efficiency of the Monte Carlo simulation, typically

these contributions do not lead to an unacceptable reduction in performance.

Division of the real-emission phase space

In the original Powheg formalism, the emission generated by the Powheg correc-

tion must populate the entire radiative phase space in order to achieve LO accuracy

for the hardest emission. As such, the starting scale of the parton-shower evolution

is equal to the hadronic centre-of-mass energy, pmax
T =

√
s, and the real-emission ma-

trix element is exponentiated beyond the scale where the parton-shower approach is

valid. Furthermore, observables sensitive to the real-emission configuration are en-

hanced by the artificial K-factor34 B̄(Φn)/B(Φn) which, although formally an NNLO

effect, is not guaranteed to be small35.

34We use the term K-factor to refer to the ratio of the NLO to LO cross sections.
35See for example Ref. [81], where the resulting K-factor in Higgs boson production via gluon

fusion was found to be approximately 2.
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The unphysical choice of parton-shower starting scale can be corrected through

the division of the real-emission matrix element into shower and hard components [5]

according to

RS = f(pT , p
max
T , phard

T )R and RH = R−RS, (1.4.44)

where now the former is identified with the parton-shower splitting kernel. The

function f(pT , p
max
T , phard

T ) is designed such that it:

• vanishes for large values of pT thus limiting the resummation scale of the

parton shower to O(phard
T );

• tends to unity in the soft/collinear limit such that Rs(Φn+1) encapsulates the

full singular behaviour of the real-emission matrix element.

On performing the division of R, Eq. 1.4.35 becomes

(1.4.45)

〈O〉Powheg =

∫
dΦnB̄ (Φn)

[
∆
(
pmax
T , pmin

T

)
On

+

∫ pmax
T

pmin
T

dΦR
RS (Φn+1)

B (Φn)
∆ (pmax

T , pT )On+1

]

+

∫ pmax
T

pmin
T

dΦn+1RH (Φn+1)On+1,

where

B̄ (Φn) = B (Φn) + V (Φn) +

∫
dΦR

[
RS (Φn+1)− C (Φn+1)

]
(1.4.46)

and

∆(pmax
T , pT ) =

∏

i

exp

(
−
∫ pmax

T

pT

dΦR
Di∑
j Dj
RS(Φn+1)

B(Φn)

)
. (1.4.47)

Therefore, by choosing the function f to have a sharp cutoff,

fsharp(pT , p
max
T , phard

T ) = Θ(phard
T − pT ), (1.4.48)

the upper scale in the Sudakov form factor is reduced from pmax
T to phard

T , limiting the

resummation of the real-emission contribution to scales less than phard
T . All radiation

above this scale is included by the finite hard component, RH , which is generated as

a separate n+1 body hard process. In doing so, the artificial K-factor B̄(Φn)/B(Φn)

is no longer applied to the hard regions of the real-emission phase space.
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Restricting the phase space of the hardest parton-shower emission with a sharp

cutoff gives rise to a discontinuity in the distribution of the restricted variable, in

this case the transverse momentum of the emitted parton. Formally, this amounts

to an NNLO effect, but can have a non-negligible impact on observables. To solve

this problem, f may instead be chosen to be a function that vanishes smoothly. In

Ref. [81] the function

fhfact(pT , p
max
T , phard

T ) = Θ(pmax
T − pT )

(phard
T )2

(phard
T )2 + p2

T

, (1.4.49)

was first used for the phase-space restriction. This function, referred to from now on

as the hfact profile, has been adopted for a number of processes implemented within

the PowhegBox program [82]. Naïvely, this function appears to fulfil the necessary

criteria - it smoothly vanishes in the high pT limit and approaches unity as pT → 0.

However, as discussed in Ref. [83], this approach can run into difficulties in the

soft collinear limit where the function may not approach unity sufficiently quickly

to preserved the Sudakov resummation. Furthermore by reaching zero only in the

infinite pT limit, results produced using this approach tend to reflect those produced

using the original Powheg formalism with RS = R, unless phard
T is significantly less

than the factorization scale.

An alternative function referred to as the resummation profile,

fresum(pT , p
max
T , phard

T ) = Θ(phard
T − pT )P (pT/p

hard
T , ρ), (1.4.50)

where,

P (x, ρ) =





0 if x > 1,

(1−x)2

2ρ2
if 1− ρ < x ≤ 1,

1− (1−2ρ−x)2

2ρ2
if 1− 2ρ < x ≤ 1− ρ,

1 if x ≤ 1− 2ρ,

(1.4.51)

was suggested in Ref. [84]. The function is zero for all values of pT greater than

the natural starting scale of the shower, unity in the low pT region and interpolates

quadratically between these two regimes. The range of pT over which the transition

occurs may be controlled via the parameter ρ, with f = 1 ∀ pT/p
hard
T < 1 − 2ρ.
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For suitable choices of ρ, this ensures that the full real-emission matrix element is

used in the splitting kernel in the Sudakov region.

1.4.4 Matrix-element corrections

The matrix-element correction approach that is the subject of this work is equivalent

to a Powheg correction in which the Born configuration is generated according to

the differential cross section B(Φn), rather than B̄(Φn). In this case, the expectation

value of the observable O is

〈O〉ME =

∫
dΦnB (Φn)

[
∆
(
pmax
T , pmin

T

)
On+

∫ pmax
T

pmin
T

dΦR
R (Φn+1)

B (Φn)
∆ (pmax

T , pT )On+1

]
.

(1.4.52)

As such, the hardest emission in the parton shower is still distributed according to

the full real-emission matrix element. However, inclusive observables that would in

the Powheg approach be accurate to NLO, are now only described at LO accu-

racy. Furthermore, the absence of the full NLO calculation for the Born configura-

tion means there is no reduction in the uncertainties associated with the choice of

factorization and renormalization scales.

Division of the real-emission phase space

As with the full Powheg approach, the upper pT boundary of the phase space of

the ME corrected emission may be limited to a more natural scale. In this case,

Eq. 1.4.52 becomes

〈O〉ME =

∫
dΦnB (Φn)

[
∆
(
pmax
T , pmin

T

)
On

+

∫ pmax
T

pmin
T

dΦR
RS (Φn+1)

B (Φn)
∆ (pmax

T , pT )On+1

]
+

∫ pmax
T

pmin
T

dΦn+1RH (Φn+1)On+1.

(1.4.53)

Unlike in the full Powheg correction, no discontinuity is present in the transverse

momentum distribution, even when employing the sharp cutoff to the real-emission

matrix element defined in Eq. 1.4.48. However considering Eq. 1.4.53, it is clear that

the LO accuracy of the integrated cross section has been destroyed by the division
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of the real-emission phase space. To restore unitarity, the Born configuration in

Eq. 1.4.53 is modified to

B′(Φn) = B(Φn)−
∫ pmax

T

pmin
T

dΦRRH (Φn+1) . (1.4.54)

The replacement B → B′ will be referred to throughout as a LoopSim correction,

owing to similarities between this approach and those proposed in Ref. [85]. The

function B′ may be viewed as an approximation to the NLO accurate function B̄ in

which the virtual contribution has been replaced using V ≈ −
∫
RdΦR.

One of the motivations for the original Powheg formalism was the absence of

negative weights as compared with the MC@NLO approach. In the LoopSim ME

correction introduced here, it is again possible for negative weights to arise. In fact,

in our implementation the two terms in Eq. 1.4.54 are simulated as separate n parton

contributions, the second of which will have negative weights. This impacts on the

efficiency of the simulation but typically not at an unacceptable level.

A more detailed discussion of the LoopSim correction as implemented within

the Matchbox framework in the Herwig++ event generator is available in Ap-

pendix A.1.

Finally, we note that matrix-element corrections represent the original [86, 87]

and simplest method of improving the parton shower using information from full

QCD matrix elements. Consequently, an alternative implementation of ME correc-

tions, based on phase-space slicing, has been available within the Herwig++ event

generator for a number of processes36 for some time. In this phase-space slicing

approach, two types of correction are required [78]. The first, called the hard ME

correction, populates the dead zone of the parton-shower phase space using the ex-

act matrix element describing an additional emission from the hard process. In the

second, soft ME correction, existing parton-shower emissions are corrected again

using the full real-emission matrix element. This correction is applied to all shower

emissions for which there is no previous splitting with higher transverse momen-

tum. The Powheg style ME correction that has been implemented in this work

36See Ref. [6] for a summary of available processes and further details on the ME correction

implementation.
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has two significant advantages over the original phase-space slicing method. Firstly,

it is easily extendable to full NLO matrix-element matching if and when automated

calculations of NLO virtual contributions become available. In addition to this,

the Powheg style correction is considerably easier to implement within the Her-

wig++ event generator, given that no knowledge of the phase-space boundaries of

the dead zone is required.

1.4.5 Truncated and vetoed parton showers

In Powheg based matching procedures, once the hardest shower emission has been

generated using a splitting kernel proportional to the real-emission matrix element,

all further parton-shower emissions are simulated using the normal parton-shower

splitting kernels. For the case in which the parton-shower emissions are ordered

in terms of decreasing transverse momentum, this amounts simply to applying the

parton-shower algorithm to the hard process including the first emission, with a

starting scale set by the transverse momentum of the Powheg emission37.

For parton showers in which the emissions are ordered in terms of an angular

evolution parameter, such as the default shower in Herwig++, the highest transverse

momentum emission is not necessarily produced first. In this case, starting the nor-

mal parton shower from the scale defined by the Powheg emission would miss a

class of emissions which have a larger value of the angular evolution parameter but

smaller transverse momentum than the Powheg emission. The impact of this soft,

wide-angle radiation is typically thought to be small and so is often neglected. This

assumption allows matrix-element event generators that specialize in the implemen-

tation of the Powheg correction, for example PowhegBox, to be easily interfaced

to angular-ordered parton showers. This is done using the same procedure as for the

transverse-momentum ordered showers with an additional veto on any subsequent

parton-shower emission which is generated with transverse momentum greater than

37We use the term Powheg emission to refer to the parton-shower emission that is generated

using the Sudakov form factor in Eq. 1.4.37, both for the full Powheg and ME correction ap-

proaches.
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that of the Powheg emission.

However to correctly reconcile angular ordering with the Powheg formalism, a

vetoed and truncated component of the shower must be introduced which simulates

the missing soft wide-angle radiation. This amounts to an angular-ordered shower

that is initiated at a scale determined from the underlying Born process, in which

any emission with transverse momentum exceeding that of the Powheg emission

is discarded. The evolution of the shower is stopped, or truncated, when the angu-

lar evolution parameter reaches the value corresponding to the Powheg emission.

The Powheg emission is then inserted into the chain, and the normal shower is

used to continue the evolution from this scale down to the non-perturbative cutoff

scale, again discarding emissions with transverse momentum greater than that of

the Powheg emission. Currently, the consistent inclusion of a truncated shower is

only available in internal implementations of the Powheg formalism, such as those

included in the Herwig++ event generator38.

In the case that the phase space of shower-type Powheg emissions has been

restricted, as described in Section 1.4.3, the shower evolution of events generated

with the hard real-emission matrix element, RH , must also be included. These

events require no truncated shower and are showered freely, with the parton-shower

starting scale fixed at the maximum value defined by the particular parton-shower

convention.

More details of the truncated and vetoed parton showers present in Herwig++ can

be found in Ref. [88].

38It is important to note that there may be regions of the parton-shower phase space that are

not correctly populated even in the case that a specialist Powheg matrix-element generator is

interfaced to a transverse-momentum ordered parton shower. This is due to the ambiguity in

the definition of transverse momentum within the shower, and clearly advocates the use of a

fully integrated Monte Carlo approach in which parameter definitions can be easily communicated

between the different stages of the program.



Chapter 2

Matrix-element corrections to the

decays of BSM particles

The production of high transverse momentum radiation in BSM processes will af-

fect the topology of new physics events and therefore the expected experimental

signature at collider experiments. Radiation produced during the hard scattering

processes is of particular importance in scenarios which feature small mass split-

tings between the new BSM particles. As was discussed in Section 1.1.4, searches

for these compressed spectra scenarios can benefit from considering events in which

final-state BSM particles recoil against hard initial-state radiation. The emission

of radiation in the subsequent decays of the new particles could either enhance or

reduce the sensitivity of these search strategies and so must be accurately accounted

for.

In this chapter, the impact of improving the simulation of hard radiation using

a Powheg style ME correction is studied for a range of decays relevant to BSM

physics searches. The chapter is organised as follows. In Section 2.1, our implemen-

tation of the ME correction within the Herwig++ event generator is described for

the example of top quark decay. In addition, the effect of applying the correction

to this decay is studied and compared with results generated using an alternative

matrix-element correction based on phase-space slicing [89]. This allows us to vali-

date our algorithm. In Section 2.2, details are given of the decay modes for which

the correction has been implemented. The impact of the correction on the decay of

49
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the lightest graviton in the Randall-Sundrum model [25] is studied in Section 2.3.1

and results for two decays in the CMSSM are presented in Section 2.3.2. Finally,

our findings are summarized in Section 2.4.

2.1 Top quark decays

In this section, we describe the implementation of the Powheg style ME correction

for the example of a top quark decaying to aW -boson and a bottom quark. We make

use of the existing Herwig++ matrix elements for leading-order top quark decay and

modify the shower such that the hardest emission is distributed according to the full

real-emission matrix element. Application of the Powheg correction to top quark

decays in Herwig++, along with top quark-antiquark production in e+e− collisions,

has been previously studied in Ref. [8] for massless bottom quarks. Here the physical

mass of the bottom quark is used throughout.

2.1.1 Implementation in Herwig++

Matrix elements

At leading order, the spin and colour-averaged squared matrix element for the decay

of a top quark into a bottom quark and a W -boson is given by

|M̄B|2 =
g2

4m2
W

(
m4
t +m4

b − 2m4
W +m2

tm
2
W +m2

bm
2
W − 2m2

tm
2
b

)
, (2.1.1)

where mt, mb and mW are the masses of the top quark, bottom quark and W -

boson respectively and g is the weak interaction coupling constant. The relevant

CKM factor has been set equal to 1. The spin and colour-averaged squared matrix

element for the O (αs) real-emission correction to the decay t→ Wb is

|M̄R|2 = g2g2
sCF

{
−|M̄B|2

g2

(
pb
pb.pg

− pt
pt.pg

)2

+

(
pt.pg
pb.pg

+
pb.pg
pt.pg

)(
1 +

m2
t

2m2
W

+
m2
b

2m2
W

)
− 1

m2
W

(
m2
t +m2

b

)}
, (2.1.2)

where gs is the strong coupling constant, CF is the Casimir invariant in the funda-

mental representation of SU(3) and pt, pb, pW and pg are the momenta of the top

quark, bottom quark, W -boson and gluon.
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Kinematics

Decays of fundamental particles are performed in the rest frame of the parent par-

ticle, in this case the top quark. In this frame, we are free to choose the orientation

of the W -boson to be along the negative z-direction and so, at leading order, the

bottom quark is orientated along the positive z-direction. In general, the orientation

of the decay products in the three-body final state of a real-emission configuration

is chosen such that the emitting parton absorbs the transverse recoil coming from

the emission of the gluon, while the spectator particle, the W -boson, continues to

lie along the negative z-direction. However, when the radiation originates from the

top quark, the bottom quark effectively acts as the emitting particle such that we

remain in the rest frame of the parent. Therefore for emissions from both the top

and the bottom quarks, the momenta of the decay products are:

pW =

(
EW , 0, 0,−

√
E2
W −m2

W

)
; (2.1.3)

pb =

(
Eb,−pT cosφ,−pT sinφ,

√
E2
b − p2

T −m2
b

)
; (2.1.4)

pg =
(
Eg, pT cosφ, pT sinφ,

√
E2
g − p2

T

)
; (2.1.5)

where Ex is the energy of particle x, and pT and φ are the transverse momentum

and azimuthal angle of the gluon.

Phase space

The Lorentz invariant phase-space element of the additional emitted gluon, dΦR, is

obtained from the relation

dΦ3 = dΦ2dΦR, (2.1.6)

where

dΦn = (2π)4 δ4

(
pt −

n∑

i=1

pi

)
n∏

i=1

d3~pi
2Ei(2π)3

, (2.1.7)

and ~pi is the three-momentum of particle i. We choose to parameterize the radiative

phase space in terms of the transverse momentum, pT , rapidity, y, and azimuthal

angle, φ, of the gluon and so find

dΦR = JdpTdydφ, (2.1.8)
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where the Jacobian factor, J , is 1

J =
1

8π3

m2
tpT |~pW |2

λ(m2
t ,m

2
W ,m

2
b)[|~pW |(mt − pT cosh y)− EWpT sinh y]

. (2.1.9)

Dipole functions

The Sudakov form factor used to generate the Powheg corrected emission2 is

∆(pmax
T , pT ) =

∏

i

exp

(
−
∫ pmax

T

pT

4παs(p̃
2
T )
Di∑
j Dj
|M̄R|2
|M̄B|2

Jdp̃Tdydφ

)
, (2.1.10)

where now the factor of g2
s has been removed from the expression for |M̄R|2 in

Eq. 2.1.2. Considering Eq. 2.1.10, the final components required for the implemen-

tation of the Powheg style ME correction are the dipole functions, Di, which each

describe the singular behaviour of the real-emission matrix element for a particular

enhanced kinematic configuration. We use the functions defined in the Catani-

Seymour subtraction scheme [55, 56] to describe the singular behaviour resulting

from emissions from the decay products. The dipole used to describe radiation from

the top quark is as follows,

Di =
−4πCFαs

E2
g

|M̄B|2. (2.1.11)

It contains only soft enhancements since, in the top quark rest frame, collinear

enhancements are suppressed. In practice, the absolute magnitude of the dipole

functions are used in Eq. 2.1.10 to ensure that the parton-shower splitting kernel is

always positive.

Matrix-element correction algorithm

Using the above information, the hardest emission in the shower can be generated

according to Eq. 2.1.10 using the veto algorithm, which proceeds as follows:

1λ(x, y, z) =
√
x2 + y2 + z2 − 2xy − 2xy − 2yz.

2We note that restricting the phase space of shower-type Powheg emissions, as discussed in

Section 1.4.4, is not necessary in the case of particle decays since the starting scale of the shower

is naturally limited by the masses of the particles involved.
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1. Trial values of the radiative phase-space variables are generated. The trans-

verse momentum of the emission is generated by solving

∆over (pmax
T , pT ) = exp

(
−
∫ pmax

T

pT

dp̃T
p̃T

αover
s

2π
C

∫ ymax

ymin

dy

∫ 2π

0

dφ

2π

)
= R,
(2.1.12)

where pmax
T =

(mt−mW )2−m2
b

2(mt−mW )
is the maximum possible pT of the gluon. The

upper and lower bounds on the gluon rapidity, ymax and ymin, are chosen to

overestimate the true rapidity range, while αover
s overestimates the true value

of the strong coupling constant evaluated at the scale of the emission. The

constant C is chosen such that the integrand in Eq. 2.1.12 always exceeds

the integrand of the true Sudakov form factor, and R is a random number

distributed uniformly in the range [0, 1]. Values of y and φ are generated

uniformly in the ranges [ymin, ymax] and [0, 2π] respectively;

2. If the trial value of the transverse momentum does not satisfy pT ≥ pmin
T , no

radiation is generated and the decay products are hadronized directly;

3. If pT ≥ pmin
T , the momenta of the W -boson, bottom quark and gluon are

calculated using the generated values of the radiative variables. Doing so

yields two possible values of EW , which must both be retained and used in

the remainder of the calculation. If the resulting momenta do not lie within

the physically allowed region of phase space, the configuration is rejected, the

maximum allowed transverse momentum is updated to pmax
T = pT and the

algorithm returns to step 1;

4. Events within the physical phase space are accepted with a probability given

by the ratio of the integrands of the true and overestimated form factors,

i.e. events are accepted if

αs(p
2
T )

αover
s

16π3JpT
C

Di∑
j Dj
|M̄R|2
|M̄B|2

> R′, (2.1.13)

where R′ is a random number in the range [0, 1]. If the event is rejected, we

set pmax
T = pT and return to step 1;

Using this procedure, a trial emission is generated for each Sudakov form factor

in the product in Eq. 2.1.10 and the one giving rise to the highest pT emission is
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selected. The existing Herwig++ framework is then used to generate the remainder

of the parton shower, including the truncated and vetoed component introduced in

Section 1.4.5.

2.1.2 Validation and results

To validate our implementation of the algorithm described in Section 2.1.1, Dalitz

style plots were generated for the decay t → Wbg and are shown in Figure 2.1.

The Dalitz variables, xW and xg, were defined by the relation xi = 2Ei

mt
, where Ei is

the energy of particle i in the rest frame of the top quark. The left-hand panel in

Figure 2.1 shows the distribution obtained when the Powheg style ME correction is

applied. In this case, xg is the energy fraction of a gluon generated using the full real-

emission matrix element. The distribution on the right-hand side of Figure 2.1 was

instead generated using the uncorrected parton shower, limited to a single emission,

such that xg is the energy fraction of a gluon produced using the parton-shower

splitting kernels. In both distributions, the black outline indicates the physical

phase-space boundaries. The enclosed area is divided into a section populated by

radiation from the bottom quark (above the green dashed line), sections populated

by radiation from the top quark (below the blue dotted lines) and the dead zone

(between the blue dotted and green dashed lines), which corresponds to hard gluon

radiation and is not populated by the parton shower. These boundaries correspond

to the theoretical limits of the Herwig++ parton shower with symmetric phase-

space partitioning, described in Ref. [70], in which the starting values of the shower

evolution variables for the top and bottom quarks are chosen such that the volumes

of phase space accessible to emissions from each quark are approximately equal.

As expected, in both plots a high density of points is observed in the region

xg → 0, corresponding to soft gluon emissions. The ME corrected distribution also

has a concentration of points along the upper physical phase-space boundary where

xW is maximal and emissions are collinear to the bottom quark. The density of

points along the upper boundary is reduced in the uncorrected distribution, and

instead a concentration is present along the lower boundary of the bottom quark

emission region. As discussed in Ref. [70], the parton-shower approximation agrees
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Figure 2.1: Dalitz distributions for the decay t → Wbg with (left) and without

(right) the Powheg style ME correction. The black outline indicates the physically

allowed region of phase space. In the uncorrected parton-shower approach, the

region above the green dashed line is populated with radiation from the bottom

quark and the regions below the blue dotted lines are populated with radiation from

the top quark. These boundaries correspond to the limits of the parton shower with

symmetric phase-space partitioning.

with the true splitting probability for the case of collinear radiation from the bottom

quark, but overestimates it elsewhere in this emission region. The factor by which

the parton-shower approximation exceeds the exact real-emission matrix element

increases towards the lower boundary of the region, and therefore we see an excess

of points in that area. The parton-shower distribution also has a high density

of points in the top quark emission region for xg . 0.53, again caused by the

parton-shower approximation overestimating the true splitting probability in this

area. In general, we find that the parton shower produces areas of high emission

density which do not correspond to physically enhanced regions of phase space, and

therefore has a tendency to produce too much hard radiation. On the other hand,

the ME corrected emission is distributed according to the exact real-emission matrix

element and so correctly populates the physically enhanced regions of phase space

with no additional spurious high density regions. Finally, we also see that the ME

corrected distribution fills the dead zone of the parton-shower phase space that is

not populated by shower emissions.

To further study the impact of the Powheg style ME correction to top quark de-
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cays, e+e− → tt̄ events were generated and analysed as in Ref. [89]. The production

of the top-antitop pair was simulated at leading order using the built-in implemen-

tation in Herwig++ version 2.6 [90]. The full evolution of the parton shower was

simulated, but the effects of hadronization were neglected. Events were generated

at a centre-of-mass energy close to the tt̄ threshold,
√
s = 360 GeV, in order to

minimize the effects of radiation generated during the production of the top-antitop

pair. The top quarks were forced to decay leptonically, either at leading order or

including, for the decay t → Wb, the Powheg style or preexisting ME correction

based on phase-space slicing [89]. The events were analysed using the Rivet frame-

work [91]. Final-state particles, excluding the decay products of the W -boson, were

clustered into three jets using the FastJet [92] implementation of the e+e− kT algo-

rithm [93]. Events were discarded if they contained a jet with transverse momentum

pT,j < 10 GeV or the minimum jet separation3, ∆R , did not satisfy ∆R ≥ 0.7. Dif-

ferential distributions of ∆R and log (y32), where y32 is the value of the jet resolution

parameter4 at which a three jet event is classified as a two jet event, were plotted

and are shown in the left and right-hand panels in Figure 2.2. The bottom panel in

each plot shows the ratio of distributions generated either with no ME correction

or using the original phase-space slicing technique to the one generated with the

Powheg style ME correction. For both observables, the uncertainty in the results

due to limited statistics is indicated by error bars in the distributions, except for the

central values in the ratio plots where this uncertainty is instead shown by a yellow

error band.

Distributions generated with and without the Powheg style ME correction ap-

plied to the top quark decays are shown by the black solid and blue dashed lines

in Figure 2.2 respectively. The red dotted lines in Figure 2.2 show the distributions

obtained when the preexisting ME correction is used. In this phase-space slicing

approach, both hard and soft matrix-element corrections must be included. The

3∆R = minij
√

∆η2ij + ∆φ2ij , where the indices i, j run over the three hardest jets and i 6= j.

∆ηij and ∆φij are the differences in pseudorapidity and azimuthal angle of jets i and j respectively.
4y32 = 2

s minij
(
min

(
E2
i , E

2
j

)
(1− cos θij)

)
, where the indices i, j run over the three hardest jets

with i 6= j. Ei is the energy of jet i and θij the polar angle between jets i and j.
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Figure 2.2: Comparison of distributions generated with no ME correction to those

generated using the preexisting or new Powheg style ME correction to the decay

t → Wb. Parton-level e+e− → tt̄ events were generated at
√
s = 360 GeV. The

left-hand plot shows the distribution of the minimum jet separation, ∆R, and the

right-hand plot shows the logarithm of the jet measure, y32.

hard ME corrections use the t→ Wbg matrix element to distribute emissions in the

dead zone of parton-shower phase space, while soft matrix-element corrections use

the real-emission matrix element to correct parton-shower emissions that lie outside

the areas of phase space where the shower approximation is valid, i.e. away from the

soft and collinear limits. Applying these corrections ensures that the hardest emis-

sion in the shower is generated according to the exact real-emission matrix element,

therefore, we expect a high level of agreement between results generated using the

Powheg style and original ME corrections.

Considering the plots in Figure 2.2, we see that applying either type of matrix-

element correction has the effect of softening both the ∆R and log (y32) distribu-

tions. This is the result of the corrections reducing the number of high pT emissions

generated within the parton-shower phase space, as was observed in Figure 2.1.

The magnitude of the observed effect illustrates the importance of matching the

parton shower to the exact matrix element in high pT regions. As expected, the

distributions generated using the Powheg style and original matrix-element cor-

rections are very similar, although for both variables the Powheg style correction

yields slightly harder distributions. The differences between the distributions are
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the result of a number of subtle variations between the Powheg style and orig-

inal matrix-element correction schemes. Firstly in the original approach, events

in the dead zone are generated using the fixed-order real-emission matrix element

only, without any Sudakov suppression, and subsequent showering of the result-

ing configuration is simulated starting from the 1 → 3 process. However in the

Powheg style approach, the real-emission configuration is interpreted in terms of

a parton-shower splitting and incorporated into the evolution of the shower, which

begins from the Born configuration as outlined in Section 1.4.5. In addition to this,

the soft matrix-element correction in the original approach is applied to all emis-

sions in the parton shower which are the hardest so far. Normally this leads to the

correction of both the hardest emission and a number of other emissions with large

values of the evolution parameter, but smaller transverse momenta. These differ-

ences all contribute to the disparity between the Powheg style and original ME

corrected distributions, although it is unclear which has the dominant effect. The

difference between the Powheg style and original matrix-element corrected results

is, however, small. As such, the agreement between the two approaches serves to fur-

ther validate the implementation of our Powheg style ME correction. Finally, we

note that the Powheg style approach is preferable to the original matrix-element

correction scheme since it is significantly simpler to implement in Herwig++.

2.2 Decays of BSM particles

Having outlined and validated our implementation of Powheg style ME corrections

for the case of top quark decays, we now turn our attention to decays involving

BSM particles. The Powheg style ME correction has been implemented within

the Herwig++ event generator for a range of decays that occur in most of the well

studied BSM scenarios. The leading-order and real-emission matrix elements are

calculated using the internal Herwig++ implementation of the Helas formalism [94],

thereby allowing spin correlations to be correctly incorporated through the algorithm

described in Ref. [62]. The singular nature of the real-emission matrix element is

partitioned using dipole functions defined as in the Catani-Seymour subtraction
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Incoming Outgoing

Scalar Scalar Scalar

Scalar Scalar Vector*

Scalar Fermion Fermion

Fermion Fermion Scalar

Fermion Fermion Vector*

Vector Scalar Scalar

Vector Fermion Fermion

Tensor Fermion Fermion

Tensor Vector Vector*

Table 2.1: Spin combinations for

which the Powheg style ME correc-

tion has been implemented. Correc-

tions to the decays marked * are not

included for massive coloured vector

particles.

Incoming Outgoing

0 3 3̄†

0 8 8†

3 3 0

3̄ 3̄ 0

3 3 8

3̄ 3̄ 8

8 3 3̄

Table 2.2: Colour flows for which

the Powheg style ME correction has

been implemented. For tensor parti-

cles, corrections are only included for

colour flows marked †.

scheme [55, 56] when describing radiation from the decay products, and a spin-

independent soft contribution for emissions from the decaying particle. The latter

is defined in analogy to the function in Eq. 2.1.11, modifying the colour factor to

reflect the colour flow of the decay.

Table 2.1 shows the combinations of incoming and outgoing spins for which

the correction has been included, and each spin structure is implemented for the

colour flows given in Table 2.2. However, two limitation apply. Firstly, no models

with coloured tensor particles have been considered and therefore decays involving

incoming tensor particles are limited to the colour flows in which the tensor is a

colour singlet. In addition, the Fermion-Fermion-Vector, Scalar-Scalar-Vector and

Tensor-Vector-Vector decays are not implemented in the case of massive coloured
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vector particles, although the corrections for massless coloured vector particles have

been included5.

2.3 Results

2.3.1 Randall-Sundrum graviton

In the remainder of the chapter we investigate the impact of applying Powheg style

ME corrections to the decays of BSM particles, beginning in this section with the

decay of the lightest graviton in the Randall-Sundrum (RS) model. To this end, we

make use of the RS type model [25] implemented within Herwig++, see Ref. [95] for

more details. Proton-proton collisions were simulated in which the lightest graviton,

G, was produced as a resonance and allowed to decay via G → gg or G → qq̄ for

q = u, d, s, c, b. The mass of the graviton was chosen to be mG = 2.23 TeV which, at

the time of writing, corresponded to the lower bound on the allowed graviton mass for

the coupling k/M̄Pl = 0.1 [96]. Events were generated at a centre-of-mass energy of
√
s = 8 TeV and include simulation of the full parton shower, hadronization and the

underlying event. The default values of the renormalization and factorization scales

in Herwig++ version 2.6 were used, along with the default PDF set CTEQ5L [97].

To study the impact of the Powheg style ME correction to the decay of the

graviton, an analysis based on an ATLAS collaboration search for new phenomena

in dijet distributions [98] was implemented within the Rivet framework. Jets were

constructed using the FastJet [92] implementation of the anti-kT algorithm [99]

with the energy recombination scheme and a distance parameter R = 0.6. Events

with less than two jets satisfying |yi| < 4.4 were discarded, where yi is the rapidity

in the pp centre-of-mass frame of the ith hardest jet. In the dijet centre-of-mass

frame formed by the two hardest jets, the rapidities of those jets, y∗ and −y∗, where
determined from y∗ = 1

2
(y1 − y2). Events not satisfying |y∗| < 0.6 and |y1,2| < 2.8

5At the time of implementation, attempts to calculate well-defined dipoles describing quasi-

collinear radiation from massive vector bosons were unsuccessful. While the dipoles have now been

determined, corrections to these modes remain absent.
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Figure 2.3: Dijet invariant mass distributions for the lightest RS graviton de-

caying to jets. The left-hand plot shows the distribution in the full range

1.0 TeV ≤ mjj ≤ 2.5 TeV, while the right-hand plot emphasises the effect on the

peak region 2.1 TeV ≤ mjj ≤ 2.3 TeV. The mass of the graviton was mG = 2.23 TeV

and the coupling k/M̄Pl = 0.1. LHC events were simulated with
√
s = 8 TeV. The

uncertainty bands were generated by varying the event tune parameters in the ME

corrected (blue) and uncorrected (red) distributions respectively.

were discarded. The dijet invariant mass, mjj, was determined from the vector

sum of the momenta of the two hardest jets, and events were required to satisfy

mjj > 1.0 TeV.

The dijet mass distribution after the above selection criteria were applied is

shown in the left-hand plot in Figure 2.3. The red solid line shows the invari-

ant mass distribution in the case that no ME correction was included, while the

blue dashed line shows the result obtained when the Powheg style ME correc-

tion to the graviton decay was applied. From Figure 2.3, we see that including the

Powheg style correction causes a decrease of O (40%) in the number of events in

the region 2.1 TeV ≤ mjj ≤ 2.3 TeV. This effect is highlighted in the right-hand

plot in Figure 2.3, which shows the dijet mass distribution in this range. In the

uncorrected approach, the majority of the graviton’s momentum will be carried by

the two partonic decay products. When the Powheg style correction is applied,

the momentum is instead distributed between the partonic decay products and the

Powheg corrected emission, such that a significant fraction of the graviton’s mo-
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mentum is missed when the invariant mass of only the hardest two jets is considered.

Therefore, we see a shift in the dijet mass distribution to lower values of mjj when

the ME correction is applied.

The central values of the dijet mass distributions were generated using the opti-

mum set of tuned perturbative and non-perturbative parameters (event tune) found

in Ref. [9]. To give an estimate of the uncertainty arising from our choice of event

tune, the dijet mass distributions were generated at ten points in the event tune

parameter space and error bands were created showing the maximum and minimum

values from the resulting set of distributions. A description of the varied parameters

can be found in Ref. [9] and their values at each of the ten points are given in Table 2

of Ref. [9]. The resulting error bands are shown in blue and red for the distributions

with and without the ME correction respectively. The impact of the Powheg style

correction is still clearly evident once this uncertainty has been taken into account.

2.3.2 The Constrained Minimal Supersymmetric Standard

Model

In addition to the results presented in Section 2.3.1, the effect of the Powheg style

ME correction has also been studied in the context of the CMSSM model. To

this end, we consider a scenario with the high scale parameters m0 = 1220 GeV,

m1/2 = 630 GeV, tan β = 10, A0 = 0 and µ > 0. This point lies just outside the

exclusion limits set by the ATLAS experiment in Ref. [100], which at the time of

writing provided the most stringent constraint on the CMSSM parameter space.

The corresponding weak scale parameters and decay modes were calculated us-

ing ISAJET 7.80 [101], and the resulting masses of the SUSY particles relevant to

this study are given in Table 2.3. The Herwig++ implementation of the MSSM

model [95] was used to generate LHC pp collisions at a centre-of-mass energy of
√
s = 8 TeV. Here we focus on the effect of the correction to the parton shower and

so hadronization and the underlying event were not simulated6. In the following

6As in Section 2.3.1, we use the default values of the renormalization and factorization scales

and the CTEQ5L PDF set.
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mũL mg̃ mt̃1 mχ̃0
1

1812.91 GeV 1546.56 GeV 1278.14 GeV 279.22 GeV

Table 2.3: Masses of the SUSY particles relevant to the decays studied in Sec-

tion 2.3.2. Values were obtained using ISAJET 7.80 with the high scale parameters

m0 = 1220 GeV, m1/2 = 630 GeV, tan β = 10, A0 = 0 and µ > 0.

sections, the impact of the Powheg style correction on two archetypal decays is

presented. In both cases, the decaying SUSY particle is pair produced in the hard

process and the two subsequent decays are then analysed separately in the rest frame

of the decaying particle. Dalitz style distributions were produced, as described in

Section 2.1.2, for both the Powheg corrected emission and an emission generated

using the uncorrected parton-shower splitting kernel. In addition, for each decay

mode the transverse momentum distribution of the hardest jet not originating from

a decay product was also studied. To do so, the full parton shower was generated,

with and without the Powheg style correction, and the visible final-state particles

originating from each decay were clustered into jets using the FastJet implemen-

tation of the anti-kT algorithm with the energy recombination scheme and R = 0.4.

Jets with transverse momentum pT,j ≤ 20 GeV or pseudorapidity |η| > 4.0 were

discarded. Each decay was required to have at least n+ 1 jets passing the selection

criteria, where n is the number of visible decay products.

Matrix-element corrections to ũL → u χ̃0
1

Events were generated in which a left-handed up squark-antisquark pair was pro-

duced and then decayed according to ũL → u χ̃0
1, and the equivalent conjugate mode.

Dalitz style distributions with and without the ME correction were produced and

are shown in the left and right-hand plots in Figure 2.4. The black outline indicates

the kinematic limits of phase space and the green dashed and blue dotted lines are

the boundaries of the emission regions in the uncorrected parton shower with the

most symmetric choice of shower phase-space partitioning. Emissions from the up

quark populate the area above the green dashed line, while the regions below the

blue dotted lines are filled by emissions from the ũL. The area between the green
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Figure 2.4: Dalitz distributions for the decay ũL → u χ̃0
1g with (left) and without

(right) the Powheg style ME correction. The black outline indicates the physically

allowed region phase space. In the uncorrected parton-shower approach, the region

above the green dashed line is populated with radiation from the up quark and

the regions below the blue dotted lines are populated with radiation from the ũL.

These boundaries correspond to the limits of the parton shower with symmetric

phase-space partitioning.

and blue lines is the dead zone, unpopulated by the normal parton shower.

Similar to the result in Section 2.1.2, we see that points in the ME corrected

distribution are concentrated in the soft region as xg → 0, and along the upper

boundary of the physical phase space where the emitted gluon is collinear to the up

quark. However, in the normal parton-shower distribution fewer points lie along the

upper physical phase-space boundary. Instead there is a concentration of points in

the up squark emission region with xg . 0.85 and along the lower boundary of the

up quark emission region. In analogy to the case of top quark decay, these unphys-

ical high density regions are understood to result from the parton-shower kernels

overestimating the exact real-emission matrix element. Finally, we see that includ-

ing the Powheg style correction ensures that the region of phase space inaccessible

to the normal parton shower is populated.

Differential distributions of the transverse momentum of the subleading jet7, pT,2,

in each decay were also generated and are shown in Figure 2.5. The red solid line

corresponds to the distribution generated using the uncorrected parton shower, while

7Jets are ordered in terms of their transverse momentum such that pT,1 > pT,2 > pT,3 etc.
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Figure 2.5: Transverse momentum distributions of the second hardest jet in the

decay ũL → u χ̃0
1, analysed in the rest frame of the ũL. Events were generated with

(blue dashed line) and without (red solid line) the Powheg style correction, using

the CMSSM model with m0 = 1220 GeV, m1/2 = 660 GeV, tan β = 10, A0 = 0 and

µ > 0 at the LHC with
√
s = 8 TeV.

the blue dashed line shows the result with the ME correction to the decay applied.

Error bars are included to indicate the statistical uncertainty in the distributions.

As demonstrated in Figure 2.4, the parton shower tends to overpopulate the hard

regions of phase space. Hence, including the Powheg style correction reduces the

pT of the hardest emission in the decay. This is reflected in the ME corrected

pT,2 distributions which is softer that the uncorrected result. As such, we observe

an O (20%) reduction in the number of events passing the jet selection criterion

pT,j > 20 GeV when the correction is applied.

Matrix-element corrections to g̃ → t̃1 t̄

Finally, we investigate the impact of the Powheg style correction on the decay

mode g̃ → t̃1 t̄. The left and right-hand plots in Figure 2.6 show Dalitz distributions

for this decay generated with and without the ME correction respectively. In both

plots, the black outline indicates the kinematically allowed region phase space. The

solid coloured lines show the boundaries of the parton-shower emission regions in the

scenario where the t̄ absorbs the transverse momentum recoil of the gluon emission
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Figure 2.6: Dalitz distributions for the decay g̃ → t̃1 t̄g with (left) and without (right)

the Powheg style correction applied. The solid (dashed) coloured lines indicate

the parton-shower emission regions when the t̄
(
t̃1
)
absorbs the transverse recoil of

the emission. The solid (dashed) green line shows the lower (upper) boundary for

radiation from the t̄
(
t̃1
)
. The blue solid (dashed) lines are the equivalent upper

(lower) boundaries for radiation from the g̃. All boundaries correspond to the case

of symmetric phase-space partitioning and the black outline shows the kinematically

allowed region of phase space.

and the t̃1 is orientated along the negative z-axis in the g̃ rest frame. The region

above the green (pale) solid line is populated by emissions from the t̄ and the areas

below the blue (dark) solid lines are filled by emissions from the g̃. In this case,

the two emission regions overlap away from the soft limit and there is no region

of phase space left unpopulated by the parton shower. The dashed coloured lines

indicate the emission boundaries of the parton shower when instead the t̃1 absorbs

the transverse recoil of the emission and the t̄ is aligned with the negative z-axis.

The green (pale) dashed line is the upper limit for emissions coming from the t̃1 and

the blue (dark) dashed lines mark the lower boundaries for emissions from the g̃.

From the left-hand plot of Figure 2.6, we see that the majority of points in the

ME corrected distribution are concentrated in the soft region of phase space. High

density regions corresponding to emissions collinear to the t̄ or t̃1 are suppressed

due to the massive nature of the decay products. In the parton-shower distribution,

points are concentrated in the soft region and along the lower boundary of the t̄

and dashed g̃ emission regions. The latter two unphysical regions of overpopulation
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Figure 2.7: Transverse momentum distributions of the third hardest jet in the decay

g̃ → t̃1 t̄, analysed in the rest frame of the g̃ and with stable t̃1 and t̄. Events were

generated with (blue dashed line) and without (red solid line) the Powheg style

correction, using the CMSSM model with m0 = 1220 GeV, m1/2 = 660 GeV, tan β =

10, A0 = 0 and µ > 0 at the LHC with
√
s = 8 TeV.

again highlight the importance of correcting hard emissions in the parton shower

using the exact real-emission matrix element.

Transverse momentum distributions of the third hardest jet in the rest frame of

the g̃ were also plotted and are shown in Figure 2.7. To focus on the effect of the

Powheg style correction, the top quark and top squark produced in each decay

were not allowed to decay further. The red solid and blue dashed lines in Fig-

ure 2.7 correspond to the uncorrected and ME corrected distributions respectively

and error bars indicating the statistical uncertainty on the results are shown. As

for the decay ũL → u χ̃0
1, we find that the ME correction decreases the total number

of events passing the jet pT selection criterion. The effect is more pronounced in

this case, with an O (40%) reduction. The pure parton-shower distribution signifi-

cantly exceeds the ME corrected result in the small pT,3 limit, however in the high

transverse momentum tail the two distributions are similar. This occurs because the

Powheg style correction softens the hardest emission in the decay, which in the low

pT,3 region forms the base of the third hardest jet. However, the maximum possible
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pT of the gluon generated by the ME correction is8 pmax
T ≈ 75 GeV. Jets contribut-

ing to the corrected pT,3 distribution above this limit are sensitive to uncorrected

shower emissions in addition to the hardest emission, therefore reducing the effect

of the correction in the high pT regime. As such, applying the ME correction will

only impact significantly on the number of events passing a jet pT selection criterion

if the value of the pT cut lies below pmax
T of the Powheg corrected emission.

2.4 Summary

In this chapter, we have investigated the effect of using a Powheg style ME correc-

tion to improve the simulation of hard QCD radiation in a range of particle decays.

The implementation of this correction within the Herwig++ event generator was de-

scribed in detail for the decay t→ Wb. Dalitz style distributions of the first emission

from this decay in the uncorrected parton shower and ME corrected cases were pro-

duced, and showed that the parton shower has erroneous, unphysical areas of high

emission density which result in the overpopulation of some high pT regions of the

emission phase space. This effect may be rectified by applying the Powheg style

correction, which ensures that the majority of emissions lie in the soft and collinear

limits. Differential distributions of the minimum jet separation and logarithm of the

jet measure were also generated with the Powheg style correction and compared

to those generated with the existing Herwig++ implementation of hard and soft

matrix-element corrections. The two techniques exhibit a high level of agreement,

therefore demonstrating the validity of our approach. In addition to this, distribu-

tions were generated using the normal parton shower. In agreement with the results

from the Dalitz plots, these distributions were found to be considerably harder than

those generated with the original or Powheg style matrix-element corrections.

The impact of applying the Powheg style ME correction to the decays of BSM

particles was then studied in the context of the Randall-Sundrum and CMSSM

models. In the former scenario, applying the matrix-element correction was found

8The value of pmax
T was calculated using the formula for pmax

T in top quark decay, given on

page 53, with the replacements mt → mg̃, mW → mt̃1
and mb → mt.
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to have a significant impact on the invariant mass distribution of dijets produced

in the decay of the lightest RS graviton. The number of events passing selection

criteria in the mass range 2.1 TeV ≤ mjj ≤ 2.3 TeV was found to be O (40%)

less than in the uncorrected case, owing to the decreased fraction of the graviton’s

momentum accounted for by the two hardest jets when the correction is applied.

The sizable impact of the correction in this scenario illustrates the importance of

including higher-order corrections when optimising experimental searches.

The impact of the ME correction was also investigate for two decays in the

CMSSM model by studying Dalitz plots and transverse momentum distributions. In

general, applying the matrix-element correction was found to decrease the transverse

momentum of the hardest parton-shower jet in each decay, leading to a reduction in

the number of events passing the event selection criterion pT,j > 20 GeV. However,

no impact is expected in the case that the maximum transverse momentum of the

Powheg corrected emission does not exceed the lower bound on the jet transverse

momentum set by the event selection criterion.



Chapter 3

Matrix-element corrections to

stop-antistop production

To obtain an accurate simulation of radiation in BSM events, one must improve

on the pure parton-shower description of hard emissions generated during both the

production and decays of coloured particles. An improved treatment of the lat-

ter source of radiation was addressed in Chapter 2, where the impact of applying

Powheg style ME corrections was investigated for a number of BSM decay modes.

In the following two chapters, we study the effect of applying Powheg style ME

corrections to radiation emitted during the production of BSM particles, specifically

focusing on squark-antisquark production at the LHC.

To improve the description of hard radiation generated during production pro-

cesses, our Powheg style ME correction has been incorporated in Herwig++ through

the Matchbox framework. The Matchbox framework provides NLO hard pro-

cess calculations for a large range of Standard Model processes, with matching to

the angular ordered and dipole showers [102] through both the MC@NLO and

Powheg formalisms. As such, it already contains the functionality required to

implement ME corrections in squark-antisquark production, with only the Born

and real-emission amplitudes missing. Typically, the Matchbox framework relies

on interfaces to external matrix-element providers to obtain the necessary ampli-

70



3.1. Validation 71

tudes for calculations1. However, these interfaces exist only for SM processes and

consequently the amplitudes used in this work were implemented manually, having

been derived from those generated by MadGraph 5 [105] using the built-in MSSM

model [109–112]. Extension of the Matchbox-MadGraph 5 interface to include

BSM scenarios is however possible, and would allow ME corrections to alternative

SUSY processes and BSM models to be included in a more automated way. Further

details of the Matchbox framework can be found in Refs. [84, 102]. In addition,

technical details of our ME correction implementation within the Matchbox frame-

work are given in Appendix A.1.

In this chapter, the effect of applying our Powheg style ME correction is stud-

ied for the case of top squark-antisquark production. We begin in Section 3.1, with

the validation of our implementation against the one available within the Powheg-

Box program [5, 11, 79, 82]. The impact of the ME correction on parton-level dis-

tributions is investigated in Section 3.2, along with the significance of the trun-

cated shower and the effects of different schemes for dividing the phase space of

the Powheg emission. The combined impact of ME corrections applied during the

production and decays of top squarks is also investigated in this section, consider-

ing benchmark scenarios with both compressed and well separated sparticle mass

spectra. Finally, in Section 3.3 the impact of the Powheg style ME correction is

studied in the context of an existing ATLAS search for top squarks [113], before

concluding remarks are given in Section 3.4.

3.1 Validation

3.1.1 Setup

In the following section, we validate our implementation of Powheg style ME

corrections for the production of top squark-antisquark pairs. To this end, LHC pp

collisions were generated at a centre-of-mass energy of
√
s = 14 TeV. To focus on

1Interfaces to GoSam [103], HJets++ [104], MadGraph 5 [105], NJet [106], Open-

Loops [107] and Vbfnlo [108] are available at present.
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the impact of the correction, the effects of hadronization and the underlying event

were not simulated and the top squarks and antisquarks were not allowed to decay.

The mass of the top squark was set to mt̃1 = 700 GeV. Histograms were plotted

using the Rivet analysis framework [91] and, unless otherwise stated, all PDFs were

taken from the LHAPDF package [114].

3.1.2 Validation of leading-order amplitudes

The leading-order amplitudes for top squark-antisquark production were validated

by comparing results generated using the Matchbox framework to those produced

using the internal Herwig++ setup. While these implementations are formally both

part of the Herwig++ program, the Matchbox framework makes use of amplitudes

derived using MadGraph 5 whereas the internal Herwig++ approach uses an in-

dependent implementation of the Helas formalism [94]. The leading-order matrix

elements were convoluted with the CTEQ6L1 PDF set [115], and the renormaliza-

tion and factorization scales were set to µR = µF = mt̃1 . The total cross sections

calculated using Matchbox and the internal Herwig++ setup were found to ex-

actly agree at 44.09+32%
−23% fb. The percentile uncertainties indicate an estimate of the

theoretical uncertainty on the predictions obtained by varying the renormalization

and factorization scales simultaneously by a factor of two around the central value.

For further comparison, differential distributions of the invariant mass of the top

squark pair2, mt̃1 t̃∗1
, and inclusive transverse momentum of the top squark3, pT,t̃1 ,

are shown in the left and right-hand plots of Figure 3.1. To focus on the validation

of the matrix elements, no parton shower simulation has been included. The central

results produced using the internal Herwig++ and Matchbox implementations are

shown by the dashed blue and solid red lines respectively, with the uncertainty due

to scale variation shown by the bands of corresponding colour. In both distributions,

the two implementation are in excellent agreement.

2The invariant mass of the top squark pair is defined as mt̃1 t̃∗1
=
√

(pt̃1 + pt̃∗1 )2, where pt̃1 and

pt̃∗1 are the momenta of the top squark and antisquark respectively.
3We use pT,t̃1 to refer to transverse momentum distributions in which the contributions from

both the t̃1 and t̃∗1 have been summed.



3.1. Validation 73

Matchbox + MadGraph 5
Herwig++ internal

10−3

10−2

10−1

d
σ
/
d
m

t̃
1
t̃
∗ 1
[f
b
/
G
eV

]

1500 2000 2500 3000 3500 4000

0.6

0.8

1

1.2

1.4

m
t̃1 t̃

∗
1
[GeV]

M
at

ch
bo

x
/
H
er
w
ig
+
+

Matchbox + MadGraph 5
Herwig++ internal

10−5

10−4

10−3

10−2

10−1

d
σ
/
d
p
T
,t̃
1
[f
b
/
G
eV

]

0 500 1000 1500 2000 2500

0.6

0.8

1

1.2

1.4

pT,t̃1 [GeV]

M
at

ch
bo

x
/
H
er
w
ig
+
+

Figure 3.1: Distributions of the invariant mass of the top squark pair mt̃1 t̃∗1
(left) and

the inclusive top squark transverse momentum pT,t̃1 (right) in simulations of LHC

collisions at a centre-of-mass energy of 14 TeV. Events were generated using the LO

Matchbox and internal Herwig++ setups, for top squarks of mass mt̃1 = 700 GeV.

For each line, the error band indicates the uncertainty arising from the variation of

µR = µF by a factor of two around the central value.

3.1.3 Validation of matrix-element corrections

To test the validity of our ME correction algorithm, results produced using the

Matchbox implementation were compared to those generated using the Powheg-

Box program [5,11,79,82]. Events were simulated in which the parton shower was

limited to the production of the hardest emission only, and the matrix elements were

convoluted with the PDF set CTEQ6m [115]4. To minimize differences between the

implementations, the value of the strong coupling constant was set to the default

Herwig++ value of the coupling evaluated at µR, including during the generation of

the hardest emission. The factorization and renormalization scales were set and var-

ied as with the LO validation described in Section 3.1.2. The PowhegBox program

allows events to be generated both with the full Powheg correction and in the case

that the Born configuration is generated only at LO. The latter approach corresponds

to our Powheg style ME correction in the case that the real-emission configuration

4The CTEQ6m PDF set was used in this case as there exists an internal implementation of the

set within the PowhegBox program.
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Figure 3.2: Distributions of the invariant mass of the top squark pair mt̃1 t̃∗1
(upper

left), the inclusive top squark transverse momentum pT,t̃1 (upper right) and the

transverse momentum of the top squark pair pT,t̃1 t̃∗1 (bottom) in simulations of LHC

collisions at a centre-of-mass energy of 14 TeV. Events were generated using the

matrix-element corrected Matchbox and PowhegBox setups detailed in the text,

for top squarks of mass mt̃1 = 700 GeV. For each line, the error band indicates the

uncertainty arising from the variation of µR = µF by a factor of two around the

central value.

is not divided into S and H-events. Consequently, results were generated using this

approach to allow for direct comparison between the implementations.

The total cross sections predicted by Matchbox and the PowhegBox pro-

gram were found to be in good agreement at 59.01+32%
−24% and 59.36+33%

−23% fb respectively,

where the indicted uncertainties were obtained by varying the renormalization and

factorization scales simultaneously by a factor of two around the central value. Dif-
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ferential distributions of mt̃1 t̃∗1
and pT,t̃1 were again produced and are shown in the

upper left and right-hand plots of Figure 3.2. Distributions of the transverse mo-

mentum of the top squark-antisquark pair5, pT,t̃1 t̃∗1 , are shown in the bottom panel

of Figure 3.2. The blue dashed and red solid lines show the central values calculated

using PowhegBox and Matchbox respectively. The uncertainty resulting from

the variation of µR and µF is indicated for each line by the band of corresponding

colour. In all cases, the distributions produced with the Matchbox and Powheg-

Box implementations agree within the uncertainty bands. For the mt̃1 t̃∗1
and pT,t̃1

observables, differences are seen in the slopes of the distributions. This is due to the

use of different kinematic mappings between the Born and real-emission phase space

variables. The Matchbox implementation uses mappings which are consistent with

the Catani-Seymour subtraction formalism, as described in Refs. [116] and [117] for

massless and massive final-state particles respectively, while the PowhegBox im-

plementation instead uses a mapping consistent with the FKS subtraction method,

which is detailed in Ref. [79]. Some deviation is also seen in the pT,t̃1 t̃∗1 distribution,

specifically in the low pT region. This is to be expected given that the IR cutoff of

the radiation phase space differs between the two implementations. In the region

pT & 500 GeV, the shapes of the pT,t̃1 t̃∗1 distributions are in excellent agreement

while the normalization shows an O(1%) deviation consistent with the difference

observed in the values of the total cross section. In general, the level of agreement

observed between the results generated with Matchbox and the PowhegBox pro-

gram is high, giving us confidence in the validity of the Matchbox implementation

of Powheg style ME corrections.

5pT,t̃1 t̃∗1 is defined as the transverse component of the vectorial sum of the top squark and

antisquark momenta.
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3.2 Parton-level results

3.2.1 Setup

Having established the validity of the Matchbox ME correction algorithm in Sec-

tion 3.1, we now go on to study its impact on parton-level events. To do so,

pp collisions were simulated at
√
s = 14 TeV in which a top squark-antisquark

pair was produced. Unless otherwise stated, the squarks were not allowed to de-

cay. The CTEQ6L1 PDF set was used and the mass of the top squark was again

mt̃1 = 700 GeV. The renormalization and factorization scales were set to µR = µF =

min(mT,t̃1 ,mT,t̃∗1
), where mT,t̃1 (mT,t̃∗1

) is the transverse mass of the top (anti)squark.

Simulations were considered in which either the parton shower was limited to the

production of the Powheg emission only, or the full parton-shower evolution took

place. In the latter case, the truncated component of the parton shower required in

ME corrected events is included by default, unless it is stated otherwise. In all sim-

ulations, the effects of hadronization and the underlying event were not generated.

Events were again analysed using the Rivet framework. For cases in which the

full parton shower was simulated, all final-state particles excluding the stable top

squarks were clustered into jets using the FastJet [92] implementation of the anti-

kT algorithm [99] with the energy recombination scheme and a distance parameter

R = 0.4. The resulting jets were required to have pseudorapidity and transverse

momentum satisfying |ηj| < 4.9 and pT,j > 20 GeV respectively. Unless otherwise

stated, no additional event selection criteria have been imposed.

Throughout this section, by default, ME corrected results have been generated

using the LoopSim method, i.e. by restricting the phase space accessible to shower-

type Powheg emissions, including the remaining hard real-emission contribution as

a separate subprocess and restoring the unitarity of the parton shower by modifying

the Born contribution. The division of the real-emission contribution was done using

the resummation profile in Eq. 1.4.50 with the default parameter setting ρ = 0.3, and

the natural starting scale of the shower set to phard
T = µF . Finally, the uncertainty in

results due to limited statistics is indicated by error bars in the distributions, except

in the central values of ratio plots where it is instead shown by a yellow error band.
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Figure 3.3: Distributions of the transverse momentum of the top squark pair, pT,t̃1 t̃∗1 ,

in simulations of LHC collisions at
√
s = 14 TeV. Leading-order and matrix-element

corrected Matchbox events, including simulation of the full parton shower, are

compared for top squarks of mass mt̃1 = 700 GeV.

3.2.2 Effect of the correction

We begin by comparing results generated with no correction with those produced

when the Powheg style ME correction is applied, in both cases including simulation

of the full parton shower. Figure 3.3 shows the distributions of pT,t̃1 t̃∗1 corresponding

to the uncorrected (solid red line) and ME corrected (dashed blue line) events. Two

effects are evident in this plot. In the low pT region, the distribution generated

using the uncorrected parton shower is significantly harder than the ME corrected

result. This is in agreement with the findings in Chapter 2 and is a consequence of

the Herwig++ shower kernels overestimating the exact real-emission matrix element

away from the strict soft-collinear limit. This causes the uncorrected Herwig++ par-

ton shower to overpopulate some hard regions of the parton-shower phase space. In

addition to this shift in the low pT region, in the region pT & mt̃1 the ME cor-

rected distribution significantly exceeds the uncorrected one. As was discussed in

Section 1.3.2, the starting scale of the angular-ordered parton shower in Herwig++ is

chosen such that the regions of phase space accessible to emissions from the various

shower progenitors do not overlap. This construction is necessary to avoid double

counting of radiation but also typically gives rise to a region of phase space which is
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entirely unpopulated by the parton shower. This inaccessible dead zone corresponds

to high pT emissions and therefore we see a shortage of events in the hard tail of

the uncorrected pT,t̃1 t̃∗1 distribution. In contrast, in the ME corrected approach the

hardest emission in the shower is distributed according to the full real-emission ma-

trix element and populates the entire available phase space. Therefore, we do not

see this unphysical deficit of events in the high pT region when the ME correction

is included.

3.2.3 Effect of the truncated shower

In Section 1.4.5, the construction of the Powheg formalism for angular-ordered

parton showers was outlined. For this choice of ordering variable it is necessary to

include a vetoed and truncated component of the parton shower. This simulates soft

wide-angle radiation that would otherwise be missed by direct showering starting

from the Powheg corrected hard process. In previous studies, the inclusion of this

truncated shower was found to have little impact on results generated using the

Powheg formalism.

In this section, we study the effect of including the truncated parton shower for

the case of top squark-antisquark pair production. Furthermore, we provide a pre-

scription by which events generated using specialist Powheg matrix-element gen-

erators may be best interfaced with the Herwig++ angular-ordered parton shower.

To study the effects of the truncated shower, ME corrected events were generated

as described in Section 3.2.1. Three parton-shower approaches were considered and

are described below.

1. Truncated shower: In this setup, the vetoed-truncated shower required to

ensure population of the entire shower phase space is included. The real-

emission configuration generated by the matrix-element correction is reinter-

preted in terms of a Born configuration and a parton-shower emission. In

doing so, the emission is identified as being either initial-state radiation (ISR)

or final-state radiation (FSR). This in turn dictates the exact form of the

momentum reshuffling which is applied after the parton-shower evolution has
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terminated in order to ensure energy-momentum conservation6. The inverse of

this kinematic reconstruction procedure, along with the radiative variables of

the Powheg emission, is used to determine the value of the shower evolution

variable corresponding to the Powheg emission, q̃h. Radiation is then gener-

ated by the conventional parton shower in the phase-space regions q̃0 > q̃ > q̃h

and q̃h > q̃ > q̃min, in both cases requiring the transverse momentum of any

splittings to be less than that of the Powheg emission. Here q̃0 and q̃min are

the maximum starting value and IR cutoff of the angular ordering parameter.

When the phase space of the Powheg emission is divided such that there are

both shower and hard real-emission events, the shower events are treated using

the aforementioned prescription. Events generated using the hard component

of the real-emission matrix element are showered directly, with each coloured

leg in the hard process acting as a shower progenitor. The starting scale of

the shower evolution variable is determined using the default Herwig++ con-

vention. As such, the colour connected partner of a gluon emission, which is

not uniquely defined, is assigned at random with equal probability of selecting

each of the two possibilities. Finally, emissions generated by the conventional

shower are not required to have transverse momentum less than that of the

Powheg emission. However, they are required to be softer than the maxi-

mum transverse momentum scale of the shower, which here has been set equal

to the factorization scale.

2. No truncated shower: This approach proceeds as with the truncated shower

case, with the real-emission configuration in S-events being used to define a

parton-shower splitting. However, in this scheme radiation from the conven-

tional shower is limited to the region q̃h > q̃ > q̃min. Hard real-emission events

are treated as they were in the truncated shower case.

3. Direct shower: In this setup, the real-emission configuration in S-events is

showered directly, using a similar approach to that applied to hard real-

6The momentum reshuffling procedure used in Herwig++ was outlined in Section 1.3.2 and

more details can be found in Ref. [6].



3.2. Parton-level results 80

emission configurations in the truncated shower case. Each coloured external

leg is treated as a shower progenitor and the starting scale of the shower is

determined using the default shower convention. As such, the value of the evo-

lution variable corresponding to the Powheg emission is determined without

reinterpretation of the emission as a parton-shower splitting. Typically, this

means that the region of phase space populated with parton-shower emissions

in this procedure matches neither of the previous two cases. In addition, using

the direct shower approach causes the default kinematic reconstruction pro-

cedure to treat all Powheg emissions as FSR. Accordingly, at the end of the

parton-shower evolution the momenta of the stop, antistop and Powheg emis-

sion are boosted by a common factor to restore momentum conservation. If

instead the radiation was treated as ISR, as should be the case in the majority

of events, the momentum reshuffling would be performed in such a way that

the invariant mass of the stop-antistop pair was preserved. Finally, as in the

previous approaches, the transverse momenta of all subsequent shower emis-

sions in S-events are required to be less than that of the Powheg emission.

Events generated with the hard component of the real-emission matrix element

are treated in the same way as the S-events, but with no requirement on

subsequent emissions to be softer than the Powheg one.

We note that this procedure corresponds to the approach taken when an exter-

nal Powheg matrix-element generator is interfaced to the Herwig++ angular-

ordered parton shower7. While it is often considered to be an alternative to

the approach which includes no truncated parton shower, there are clearly

significant differences between the two procedures.

Figure 3.4 shows distributions of mt̃1 t̃∗1
(top left), pT,t̃1 (top right), pT,t̃1 t̃∗1 (bottom

left) and ∆R(t̃1t̃
∗
1, j1) (bottom right) generated using each of the shower procedures

7In fact, when an external Powheg matrix-element generator is interfaced to the Her-

wig++ angular-ordered parton shower, all events are treated as S-events. However given the

similarity in the treatment of S and H-events in this approach, this difference has negligible impact

in practice.
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Figure 3.4: Distributions of the invariant mass of the top squark pair mt̃1 t̃∗1
(upper

left), the inclusive top squark transverse momentum pT,t̃1 (upper right), the trans-

verse momentum of the top squark pair pT,t̃1 t̃∗1 (bottom left) and separation of the

hardest jet and t̃1t̃∗1 system ∆R(t̃1t̃
∗
1, j1) (bottom right). Matrix-element corrected

Matchbox events were generated at a centre-of-mass energy of 14 TeV for each of

the three shower procedures described in Section 3.2.3.

outlined above. The ∆R(t̃1t̃
∗
1, j1) variable is defined as

∆R(t̃1t̃
∗
1, j1) =

√
∆φ2

t̃1 t̃∗1,j1
+ ∆η2

t̃1 t̃∗1,j1
, (3.2.1)

where ∆φt̃1 t̃∗1,j1 and ∆ηt̃1 t̃∗1,j1 are the differences in azimuthal angle and pseudora-

pidity of the t̃1t̃∗1 system and the highest transverse momentum jet in each event.

The lower panel in each plot shows the ratios of results generated with no truncated

shower or with the direct shower procedure, to those which include the full truncated

shower simulation.
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Comparing the distributions generated with the truncated shower (solid red line)

to those produced without the truncated shower (dashed blue line), we see negli-

gible differences in the mt̃1 t̃∗1
and pT,t̃1 distributions. Radiation generated by the

parton shower does not impact significantly on these observables since the majority

of emissions are produced in the initial state. Accordingly, including or excluding the

soft-wide angle radiation generated by the truncated shower has no effect. The pT,t̃1 t̃∗1
spectrum in the lower left-hand panel of Figure 3.4 also exhibits minimal sensitivity

to the additional emissions produced by the truncated shower. In the ∆R(t̃1t̃
∗
1, j1)

distribution, the two shower procedures give similar results in the region ∆R > π,

where the distributions are predominantly sensitive to the configuration of the t̃1t̃∗1
system and the hardest jet. The hardest jet in each event should originate from

the Powheg emission and so is largely unaffected by the inclusion of the truncated

shower. A small difference in the distributions is however seen in the large ∆R limit.

This effect is due to the soft wide-angle emissions in the truncated shower causing

the hardest jet in each event to be less central in rapidity than it would be if this

component of radiation was not simulated. Furthermore, including the truncated

shower also affects the softer jets produced by the parton shower. The amount of

radiation in each event is increased, particularly when the transverse momentum of

the Powheg emission is low and therefore the phase space available for truncated

emissions is at its largest. This leads to a slight hardening of all jets other than the

hardest. This effect is evident in the region ∆R < π, where the observable is sensi-

tive to all radiation not contributing to j1. When no truncated shower is simulated,

less events are produced in which the t̃1t̃∗1 system and hardest jet deviate from a

back-to-back configuration, and therefore less events populate the low ∆R bins.

Significant changes in the distributions in Figure 3.4 are observed when consid-

ering the results generated with the direct shower (dash-dotted green line). The

mt̃1 t̃∗1
and pT,t̃1 distributions are consistently shifted to lower values when compared

with the results generated both with and without the truncated shower. This is

a result of the misinterpretation of ISR as FSR during the kinematic reshuffling,

which causes the reconstruction procedure to have an unphysical impact on the

momenta of the stop and antistop in the case that the emission was actually ISR.
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In addition, the pT,t̃1 t̃∗1 spectrum generated with the direct shower displays a slight

softening when compared with the other shower procedures, while the shape of the

∆R(t̃1t̃
∗
1, j1) distribution shows more marked deviations, in general being shifted

towards lower values. The overall impact of the parton shower does not different

significantly for the three shower cases, however we clearly see that the distribution

of the radiation in the event does. This is the result of not interpreting shower-type

Powheg emissions in terms of parton-shower splittings. Instead, the starting scale

of the shower is calculated from the real-emission configuration in such a way that,

for the dominant gluon emission contribution, the value will be maximized in 50%

of events. This appears to produce more wide-angle radiation than would be present

if the same real-emission configuration was treated as a parton-shower splitting. In

general, this causes the hardest jet produced in the direct shower to be softer than in

the other approaches, while the subleading shower jets become significantly harder.

The results presented in Figure 3.4 clearly illustrate that the direct shower ap-

proach, as it stands, does not provide an alternative to the case with no truncated

shower. However, the behavior of the direct shower procedure may be improved

through slight modification of the default Herwig++ shower setup. Firstly, the pre-

scription for choosing the colour partner of gluon emissions may be modified so that

the partner that minimises the starting value of the angular evolution parameter is

always selected. In doing so, less wide-angle radiation is generated and the procedure

more closely resembles the case that the real-emission configuration was interpreted

as a shower splitting. In addition to this, the FSR kinematic reconstruction pro-

cedure may be modified so that the top squark and antisquark pair are treated as

a single system. The reshuffling then proceeds via a rescaling of the momenta of

the Powheg emission and the t̃1t̃∗1 system, and therefore more closely reflects the

procedure applied to ISR.

Figure 3.5 shows analogous distributions to those in Figure 3.4, now including the

aforementioned modifications for the direct shower. Here we see excellent agreement

between all three approaches in the mt̃1 t̃∗1
and pT,t̃1 distributions. In the pT,t̃1 t̃∗1 distri-

bution, the direct shower procedure gives rise to slightly softer results due to the new

kinematic reconstruction procedure. The direct shower ∆R(t̃1t̃
∗
1, j1) distribution is
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Figure 3.5: As in Figure 3.4, now including improvements to the kinematic reshuf-

fling procedure and calculation of the parton-shower starting scale in the direct

shower approach.

now in significantly better agreement with those generated using the other shower

approaches, in particular with the case in which no truncated shower is simulated.

A slight decrease in the normalization of the direct shower spectrum is observed,

which is due to a reduction in the number of events which satisfy pT,j1 > 20 GeV.

Excluding this change, the direct and no truncated shower distributions are in ex-

cellent agreement in the region ∆R > π. Some small discrepancy is still seen for

∆R < π. However, we note that this region of phase space is sensitive to uncor-

rected parton-shower emissions and therefore has large associated uncertainties. In

general, the modified direct shower approach does now provide a sensible alternative

to the case in which no truncated shower is simulated.

Finally we note that here, and in the remainder of this work, we have used
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the parton-shower setup that is the default choice in Herwig++ version 2.7.1. As

such, the kinematics in processes with colour flows where no colour singlet can

be constructed, e.g. gg → t̃1t̃
∗
1, are reconstructed by treating first the final-state

progenitors and then the initial-state progenitors, using the procedure outlined in

Section 1.3.2. In Herwig++ version 3.0, a number of modifications will be made to

the default parton-shower algorithm, including changes to the kinematic reconstruc-

tion procedure. In the new approach, the colour system containing the progenitor

that radiated the highest transverse momentum emission is reconstructed first, again

using the original procedure outlined in Section 1.3.2. This process is applied re-

cursively, taking next the progenitor with the second hardest emission and so forth.

One consequence of this modification is that the unphysical treatment of the stop

and antistop momenta in the direct shower approach is corrected. As such once the

procedure for choosing the colour connected partner of gluon emissions is modified,

results generated using the direct shower in Herwig++ version 3.0 are in relatively

good agreement with those generated with no truncated shower, although again

exhibit a slightly softening of the pT,t̃i t̃∗1 distribution.

3.2.4 Division of the real-emission phase space

In this section we investigate the impact of limiting the starting scale of shower-

type Powheg emissions using the phase-space restriction functions introduced in

Section 1.4.3. To this end, matrix-element corrected events were generated using the

setup described in Section 3.2.1, with the phase space accessible to S-events either

maximal or restricted using the sharp, hfact or resummation profiles. The natural

starting scale of the shower, phard
T , was set equal to the factorization scale in the

sharp and resummation profiles, and in the latter the default setting ρ = 0.3 was

used. As is typical, a fixed value of the natural scale was used in the hfact profile,

which was chosen to be phard
T = 350 GeV. For each of the restricted phase space

cases, LoopSim corrections were used to restore the unitarity of the parton shower.

Figure 3.6 shows distributions ofmt̃1 t̃∗1
, pT,t̃1 , pT,t̃1 t̃∗1 and

8 ∆R(t̃1, t̃
∗
1) corresponding

8The variable ∆R(t̃1, t̃
∗
1) is defined as in Eq. 3.2.1, but replacing the momenta of the hardest
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Figure 3.6: Distributions of the invariant mass of the top squark pair mt̃1 t̃∗1
(up-

per left), the inclusive top squark transverse momentum pT,t̃1 (upper right), the

transverse momentum of the top squark pair pT,t̃1 t̃∗1 (bottom left) and separation of

the top squark and antisquark ∆R(t̃1, t̃
∗
1) (bottom right). Matrix-element corrected

distributions are shown for the cases in which the phase space of the shower-type

Powheg emission is either maximal or restricted using the sharp, hfact or resum-

mation profiles.

to ME corrected events generated with the full phase space (red solid line), resum-

mation (blue dashed line), sharp (green dot-dashed line) and hfact (black dotted

line) phase-space restrictions. In this case, the parton-shower evolution has been

limited to generating the Powheg emission only. The lower panel in each plot

shows the ratios of distributions generated with each form of phase-space restric-

jet and t̃1t̃∗1 system with the momenta of the top squark and antisquark.
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tion, to the one generated with the full phase space available to the shower-type

Powheg emission.

For Powheg emissions with transverse momentum pT < phard
T , restricting the

phase space of the shower-type emissions affects both the normalization of the Born

configuration and the exponent of the Sudakov form factor. The former is decreased

by the restriction while the latter increases, and consequently no significant effect

is expected in the distributions. For high transverse momentum emissions, the

restricted phase space distributions are generated with the hard component of the

real-emission matrix element only, whereas in the unrestricted case an additional

Sudakov form factor multiplies this term. However, the Sudakov factor approaches

unity in the high pT limit and so again no significant difference between the restricted

and unrestricted cases is expected.

As predicted, the sharp and resummation profile restrictions have minimal im-

pact on all the distributions in Figure 3.6, as compared with the unrestricted case.

However, some differences are seen in the pT,t̃1 t̃∗1 and ∆R(t̃1, t̃
∗
1) spectra generated

with the hfact profile restriction. These distributions exhibit a softening of the

Powheg emission when compared to the other phase space options. This is a re-

sult of the lower value of phard
T used in the hfact restriction, which causes a larger

fraction of the real-emission contribution to be included in the finite hard term and

consequently a smaller exponent in the Sudakov form factor. It has been verified

that distributions generated with the hfact profile with phard
T = 1 TeV are in better

agreement with those shown for the sharp, resummation and unrestricted cases.

It should be noted that a relatively large value of phard
T was chosen in this study,

in an attempt to avoid causing problems with the Sudakov resummation in the

singular regions of phase space. However, typically phard
T in the hfact approach is set

to much lower values, see for example Ref. [22]. Given that deviations are seen in

the Sudakov region already with phard
T = 350 GeV, clearly the use of lower values is

poorly motivated. However, with suitably large values of the natural starting scale,

the hfact profile restriction is a reasonable alternative to the resummation profile

restriction which is used by default in Herwig++9.

9This conclusion pertains to the case of ME corrections only. When considering the full
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Figure 3.7: Distributions of the transverse momentum of the hardest pT,j1 (left) and

second hardest pT,j2 (right) jet in each event. Matrix-element corrected distribu-

tion are shown for the cases in which the phase space of the shower-type Powheg

emission is either maximal or restricted using the resummation profile.

Restricting the phase space of the shower-type Powheg emission has a more

significant impact when the effect of the full parton shower is simulated. Figure 3.7

shows distributions of the transverse momentum of the hardest, pT,j1 , and second

hardest jet, pT,j2 , in events generated with either unrestricted phase space (red solid

line) or using the resummation profile restriction (blue dashed line). When the

resummation profile restriction is applied, the transverse momentum of the hardest

jet is reduced slightly. Conversely, the pT,j2 distribution is shifted to higher values,

an effect which prevails also in the subsequent softer jets. As was discussed in the

previous section, hard real-emission events are showered directly with the starting

scale of the parton shower governed by the default Herwig++ convention. This leads

to the production of more wide-angle radiation than would otherwise be present if

the event was treated as an S-event, as would be the case in the unrestricted phase

space scenario. This causes the observed redistribution of radiation in the event,

away from the hardest jet.

Powheg correction, using the hfact profile leads to corrected emissions that are significantly

harder than those produced in the other restricted phase space cases. Furthermore, uncertainties

associated with varying the value of phardT are unrealistically small for the hfact profile, see Ref. [84]

for more details.



3.2. Parton-level results 89

Here we show results for the resummation profile restriction only, since this

approach will be used throughout the remainder of the thesis. However, the same

effect is observed also when the real-emission phase space is divided using the hfact

and sharp profiles, with the former showing more significant changes again due to

the lower value of phard
T .

3.2.5 Combining corrections to stop production and decay

So far, in this chapter we have studied the impact of including Powheg style ME

corrections during the production stage of the event only. However, clearly it is

desirable to combine this ME correction with the one studied in Chapter 2 which

applies to the decays of new particles. In doing so, multiple hard emissions in each

event are corrected to LO accuracy.

In this section, we study the effect of including both corrections by considering

the case in which top squarks are pair produced, as described in10 Section 3.2.1,

and then decay via t̃1 → bχ̃+
1 or the equivalent conjugate mode. For simplicity,

the charginos that are created are not allowed to decay further. We consider the

benchmark scenarios with (mt̃1 ,mχ̃+
1

) = (700, 200) GeV and (225, 180) GeV. In both

cases, the mixing matrices of both the top squarks and the charginos were maxi-

mized, and the width of the top squark was calculated internally by Herwig++. All

final-state particles, excluding the χ̃±1 , were clustered into jets as described in Sec-

tion 3.2.1. Jets were identified as b-tagged if they were found to lie within ∆R = 0.3

of a final-state bottom quark11. The missing transverse momentum in each event

was determined from the vector sum of the transverse momentum of all visible

final-state particles12. The magnitude of this quantity, Emiss
T , was calculated and is

10For results shown in this and the next section, the event generation setup in Section 3.2.1 was

modified slightly to include the correction to wide-angle gluon emissions described in Ref. [118].

This modification has negligible impact on results which have ME corrections applied during the

production of the top squarks, but does have an O(20%) effect of distributions generated without

this ME correction, in general increasing the amount of radiation in events.
11∆R =

√
∆η2 + ∆φ2, where ∆η and ∆φ are the differences in pseudorapidity and azimuthal

angle of the jet and bottom quark, respectively.
12For the purpose of this analysis, the χ̃±1 are treated as invisible.
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plotted along with the transverse momentum distributions of the hardest b-tagged

jet, pT,b1 and the hardest, pT,j1 , and second hardest, pT,j2 , non b-tagged jets in each

event. For each observable, results are shown for the cases in which either no ME

corrections were applied (solid red line) or ME corrections were applied to the top

squark decays (blue dashed line), production (green dot-dashed line) or to both the

production and decays (dotted black line). The lower panel in each plot shows the

ratio of results generated with one or both of the ME corrections to those which

include no ME corrections.

Beginning with the high mass scenario with (mt̃1 ,mχ̃+
1

) = (700, 200) GeV, the

upper left-hand panel of Figure 3.8 show the transverse momentum distribution of

the hardest non b-tagged jet in each event. Here we see that applying ME corrections

to the decays of the top squarks causes a slight softening of the pT,j1 distribution

when compared with the uncorrected case. Including this ME correction reduces

the transverse momentum of the hardest emission produced in the parton shower

initiating from the decay. This is reflected in the soft region of the pT,j1 distribution,

while no significant change is seen in the high pT regime. A much more dramatic

effect is observed when ME corrections are applied to the production of the stop-

antistop pair. In this case, a significant softening of the pT,j1 distribution occurs in

the low pT region, while in the high pT region we see the impact of populating the

dead zone in the parton shower produced from the production process. This closely

reflects the effects seen in Section 3.2.2. When the corrections to the production and

decay stages are applied together, the transverse momentum of multiple emissions

in each event will be reduced. Accordingly, we see further softening of the pT,j1
distribution in the low pT region when compared with the distribution generated

with ME corrections in the production phase only.

Similar effects are seen in the upper right-hand panel of Figure 3.8, which shows

the transverse momentum of the second hardest jet in each event. The Powheg cor-

rected emission will typically undergo further splittings during the remainder of the

parton shower, meaning that the impact of the ME corrections are normally evi-

dent in several shower jets. Consequently, the same general effects seen in the pT,j1
spectrum are observed also in the distributions of pT,j2 .



3.2. Parton-level results 91

none

decay

production

combined

10−5

10−4

10−3

10−2

10−1

d
σ
/
d
p
T
,j
1
[f
b
/
G
eV

]

0 200 400 600 800 1000 1200

0.6

0.8

1

1.2

1.4

pT,j1 [GeV]

R
a
ti
o

none

decay

production

combined

10−4

10−3

10−2

10−1

d
σ
/
d
p
T
,j
2
[f
b
/
G
eV

]

0 100 200 300 400 500 600 700

0.6

0.8

1

1.2

1.4

pT,j2 [GeV]

R
a
ti
o

none

decay

production

combined

10−4

10−3

10−2

10−1

d
σ
/
d
p
T
,b
1
[f
b
/
G
eV

]

0 200 400 600 800 1000 1200 1400 1600
0.7
0.8
0.9
1.0
1.1
1.2
1.3

pT,b1 [GeV]

R
a
ti
o

none

decay

production

combined

10−4

10−3

10−2

10−1

d
σ
/
d
E
m
is
s

T
[f
b
/
G
eV

]

0 200 400 600 800 1000 1200 1400

0.6

0.8

1

1.2

1.4

E
miss
T

[GeV]

R
a
ti
o

Figure 3.8: Distributions of the transverse momentum of the hardest pT,j1 (upper

left) and second hardest pT,j2 (upper right) non b-tagged jets in each event, the

transverse momentum of the hardest b-tagged jet pT,b1 (lower left) and the missing

transverse energy Emiss
T (lower right). Results are shown for the cases in which either

no ME corrections have been applied or ME corrections have been applied to the

top squark production, decays or both. Events were generated at a centre-of-mass

energy of 14 TeV for the benchmark scenario with (mt̃1 ,mχ̃+
1

) = (700, 200) GeV.

The transverse momentum distribution of the hardest b-tagged jet in each event

is shown in the lower left-hand panel of Figure 3.8. For this observable, the most

significant effect is seen when ME corrections are applied to radiation generated

in the top squark decays. The softening of the hardest emission in the decay is

compensated for by an increase in the transverse momentum of the decay products,

and this is visible in the pT,b1 spectrum. On the other hand, applying an ME

correction to the production stage of the event causes only a very slight softening of
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the pT,b1 distribution. This is to be expected given that the transverse momentum

distribution of the bottom quark largely reflects that of its parent top squark, which

in turn displays little sensitivity to ME corrections applied during the production

process. Correcting emissions both in the production and decay stages of the event

leads to some cancellation between these two effects, but still results in significant

deviation from the uncorrected distribution in the low pT region. The same effect is

seen also in the pT spectrum of the second hardest b-tagged jet in each event.

Finally, the magnitude of the missing transverse momentum in each event is

plotted in the lower right-hand panel of Figure 3.8. The shape of this distribution is

largely governed by the momenta of the charginos produced in the top squark decays.

Therefore, applying ME corrections in the decay stage of the event causes a slight

shift of the Emiss
T spectrum to higher values, reflecting the hardening of the decay

products. When a ME correction is applied in the production stage, we see a more

significant shift from intermediate to high values of Emiss
T . Configurations with large

values of Emiss
T arise when the top squark pair recoil against a high pT initial-state

emission. Therefore, the missing transverse energy distribution is directly affected

by the hardest emission generated during the top squark production, such that the

changes in the Emiss
T spectrum follow the same trend as those seen in the distributions

of pT,j1 and pT,j2 . Combining corrections in the production and decay stages leads

to a cancellation of effects at intermediate values of Emiss
T and a compound increase

in the high Emiss
T region.

Equivalent distributions to those shown in Figure 3.8 are shown in Figure 3.9 for

the compressed benchmark scenario with (mt̃1 ,mχ̃+
1

) = (225, 180) GeV. Considering

first the pT,j1 distribution, we see that applying ME corrections to the decays of the

top squarks has very little visible impact. This is because the maximum allowed

transverse momentum of emissions in the decay shower is low, owing to the com-

pressed nature of the mass spectrum. Therefore, the expected softening of the pT,j1
distribution occurs at very low values of the transverse momentum where the selec-

tion criterion pT,j > 20 GeV also applies. When ME corrections are applied during

the production process, significant changes are seen which reflect those present in

the (mt̃1 ,mχ̃+
1

) = (700, 200) GeV scenario, but now with the effect of the parton-
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Figure 3.9: As in Figure 3.8, but for the compressed benchmark scenario with

(mt̃1 ,mχ̃+
1

) = (225, 180) GeV.

shower dead zone evident for lower values of pT,j1 . The distribution generated with

ME corrections in both the production and decay stages closely follows the case

where only the former correction is included and, as with the high mass scenario,

the changes in the pT,j1 distributions are also seen in the pT,j2 plot.

A significant effect is seen in the pT,b1 spectrum when ME corrections are included

during the decays. We see an increase in the transverse momentum of the decay

products, which is compensating for the softening of the hardest emission in the

decay, as was the case in the high mass scenario. However in contrast to the high

mass scenario, a significant effect is also seen when ME corrections are applied in

the production stage of the event. This is because b-tagged jets arising from the

top squark decays are now softer than those originating from the hardest emission,

either from direct production of a bottom quark or from the radiation of a gluon
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followed by the splitting g → bb̄. Therefore, the softening of the hardest emission in

the low pT region and population of the parton shower dead zone of the production

process is again visible. Applying the corrections to the hardest emissions in the

production and decay stages results in a combination of these effects.

Finally in the Emiss
T distribution in Figure 3.9, we see that applying the ME

corrections to the production and decay stages of the event has similar effects to

those observed in the high mass scenario. The slight hardening of the chargino

momenta is seen when ME corrections to the decays are included. In addition,

applying the correction to the production process very clearly reflects the effects

seen in the distribution of the hardest emission. The effect is more prominent

here than in the high mass scenario because the inherent transverse momentum of

the charginos is small, owing to the compressed nature of the mass spectrum, and

therefore recoil arising from ISR has a greater impact on the distribution. Again

when combining the corrections for the production and decay stages of the event,

we see that the dominant effect comes from the correction to the production.

3.3 Effect of the correction on exclusion boundaries

In this section, the impact of including ME corrections to the production and subse-

quent decays of top squarks is studied within the context of an existing top squark

search, described in Ref. [113], that was performed by the ATLAS collaboration

using LHC Run 1 data. The search is sensitive to the direct production of a top

squark-antisquark pair which decay via t̃1 → bχ̃±1 → bχ̃0
1ff

′, giving rise to a signal

of missing transverse energy and two b-tagged jets. The cases ∆m(χ̃±1 −χ̃0
1) = 5 GeV

and 20 GeV were considered, making use of 20.1fb−1 of pp collision data at a centre-

of-mass energy
√
s = 8 TeV. The set of selection criteria imposed in the study is

summarized in Table 3.1 for the two distinct strategies referred to as signal region

A (SRA) and signal region B (SRB), with more details available in Refs. [113,119].

We note that the latter signal region is sensitive to events which have a hard jet

originating from ISR radiation, in addition to the two b-tagged jets produced during

the stop decays. Correspondingly, the selection criterion on the amount of missing
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transverse energy is higher in this monojet-like search strategy than in the more

conventional SRA approach.

To recreate the original analysis performed by the ATLAS collaboration, the

selection criteria in Table 3.1 were implemented within the Rivet analysis framework.

In order to validate this recast analysis, Herwig++ events were generated at a centre-

of-mass energy of 8 GeV in which a top squark-antisquark pair was produced and

decayed according to t̃1 → bχ̃+
1 → bχ̃0

1ff
′. Events were generated without any

Powheg style ME corrections, and the branching ratio of the decay t̃1 → bχ̃+
1 was

set to unity. The branching ratios of the 3-body decay χ̃+
1 → χ̃0

1ff
′ were calculated

internally in Herwig++, forcing the decay to proceed via an off-shell W -boson in

order to be consistent with the decay channels considered in the original study. As

in the original study, the effects of polarization due to the choice of top squark mixing

were found to be negligible and so the mixing matrix was chosen to be maximal.

In the absence of information about the electroweakino mixing matrices used in the

ATLAS study, the lightest neutralino was chosen to be purely wino and the chargino

to be a maximal admixture of the charged wino and higgsino interaction eigenstates.

As in the original study, the PDF set CTEQ6L1 was used. The production cross-

sections calculated by Herwig++ were corrected to NLO accuracy by applying a

global renormalization factor calculated using the Prospino package [16, 17]. An

indication of the uncertainty in this value was obtained by varying the factorization

and renormalization scales simultaneously by a factor of two around the central

value of µR = µF = min(mT,t̃1 ,mT,t̃∗1
). Events were simulated including the effects of

parton showering, hadronization and the underlying event13 but with no simulation

of detector effects. The use of a b-tagging algorithm in the original study was,

however, emulated by classifying jets as having originated from a b-quark if they

were within ∆R = 0.3 of a final-state B-hadron with pT > 5 GeV. A pT -dependent b-

tagging efficiency was also imposed, having been obtained by fitting data in Ref. [123]

and rescaling to account for differences in the average efficiency.

The correctness of our recast analysis was first verified by reproducing the cut

13The default set of tuned perturbative and non-perturbative parameters available in Her-

wig++ version 2.7.1 was used.
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Selection criterion Signal region A Signal region B

Emiss
T > 150 GeV > 250 GeV

Leading jet, pT,j1 > 130 GeV > 150 GeV

Subleading jet, pT,j2 > 50 GeV > 30 GeV

Third jet, pT,j3 veto if > 50 GeV > 30 GeV

∆φ(pmiss
T , j1) - > 2.5

b-tagged jets
j1 and j2 b-tagged with

pT > 50 GeV, |η| < 2.5

j2 and j3 b-tagged with

pT > 30 GeV, |η| < 2.5

mink(∆φ(pmiss
T , jk)) for k ≤ 3 > 0.4 > 0.4

Emiss
T /(

∑n
i=1 pT,ji + Emiss

T ) > 0.25, n = 2 > 0.25, n = 3

mCT (see Refs. [120–122])
> 150, 200, 250,

300, 350 GeV
-

HT,3 =
∑

i pT,ji for all i > 3 - < 50 GeV

mbb =
√

(pb,1 + pb,2)2 > 200 GeV -

Table 3.1: Summary of the selection criteria imposed in the ATLAS search for direct

top squark pair production in final states with two b-tagged jets and missing trans-

verse energy, Emiss
T . Shown separately are the criteria imposed in the signal regions A

and B. Jets were ordered according to the magnitude of their transverse momentum,

pT,j, with pT,j1 > pT,j2 > pT,j3 ... and were required to fulfil |η| < 2.8. The difference

in azimuthal angle between the missing transverse momentum vector, pmiss
T , and

the jet with the k-th highest transverse momentum, jk, is written as ∆φ(pmiss
T , jk).

Finally, pb,1 (pb,2) represents the momentum of the leading (subleading) b-tagged jet.

More details may be found in Ref. [113].
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flow tables provided by the ATLAS collaboration in Ref. [119], and the mCT , mbb,

Emiss
T and HT,3 distributions in Ref. [113]. Some discrepancies were observed be-

tween results obtained using our recast analysis and those quoted in Ref. [119] for

signal region B. However, this is to be expected given that simulation of the signal

events in the original study was performed using MadGraph [124] interfaced to

Pythia 6 [66]. In this setup, matrix-element level events are generated in which

the top squark-antisquark pair is produced in association with different numbers of

additional partons. The different event samples are then merged using the MLM

prescription [74, 125, 126], before simulating the subsequent parton showering and

hadronization stage of the event. By performing this matrix-element merging, a sub-

set of the hard parton-shower emissions are corrected to LO accuracy. Therefore,

we expect significant differences between results generated using this procedure and

those produced with Herwig++, at least when considering search strategies that are

sensitive to high pT shower jets, like signal region B. With the exception of signal

region B, good agreement was observed between the original ATLAS study and our

recast results.

To further study the impact of the different simulation strategies, scans were

performed in the (mt̃1 ,mχ0
1
) plane for both ∆m(χ̃±1 −χ̃0

1) = 5 GeV and 20 GeV. The

95% confidence level (CL) exclusion boundaries derived using our recast analysis

were determined by comparing the number of Herwig++ events passing all selection

criteria to the observed limit on the BSM event yield given in Ref. [113]. The

resulting boundaries are shown in the left and right-hand plots of Figure 3.10, for

∆m(χ̃±1 −χ̃0
1) = 5 GeV and 20 GeV respectively. In each case, the red solid line shows

the boundary derived in the original ATLAS analysis and the black dashed line

is the result obtained using Herwig++ events. An estimation of the theoretical

uncertainty on the Herwig++ results was obtained by varying the factorization and

renormalization scales used by the Prospino package during the calculation of

the total NLO cross section. The upper and lower boundaries arising from these

variations are shown by the black dotted lines in Figure 3.10. Similarly, the edges

of the 1σ uncertainty band quoted in the original ATLAS results are shown by the

red dotted lines.
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Figure 3.10: Observed 95% CL exclusion limit in the (mt̃1 ,mχ̃0
1
) mass plane for

∆m(χ̃±1 −χ̃0
1) = 5 GeV (left) and 20 GeV (right). The black dashed line indicates the

boundaries derived using Herwig++ events as described in Section 3.3. The black

dotted lines indicate the edges of an uncertainty band arising from scale variation

in the NLO cross section calculation used to normalize the Herwig++ distributions.

For comparison, the official ATLAS results from Figures 6c (left) and 6d (right) of

Ref. [113] are shown by the red solid lines. In both cases, the red dotted lines show

the edges of the associated ±1σ uncertainty band. Results correspond to 20.1fb−1

of LHC collisions at a centre-of-mass energy of
√
s = 8 GeV.

The original and recast exclusion bounds for the ∆m(χ̃±1 −χ̃0
1) = 5 GeV scenario are

consistent in the less compressed regions of phase space, i.e. when mt̃1 � mχ̃+
1

+mb.

Approaching the limit mt̃1 = mχ̃+
1

+ mb, we see that the exclusion boundary set

in the original analysis is significantly more stringent than that determined using

Herwig++ events. The most sensitive search strategy in this region is that of signal

region B, and therefore this difference can be attributed to the differing treatments

of hard parton-shower radiation in the signal events. Looking at the case with

∆m(χ̃±1 −χ̃0
1) = 20 GeV, better agreement is observed between the ATLAS and Her-

wig++ derived boundaries. The latter slightly underestimates the original result,

most significantly in the low top squark mass region. However, the effect is less

pronounced here owing to the negligible impact of the SRB search strategy in this

case.

Having verified the accuracy of our recast analysis, we now study the impact



3.3. Effect of the correction on exclusion boundaries 99

200 300 400 500 600 700

mt̃1 [GeV]

100

200

300

400

500

600

m
χ̃

0 1
[G

eV
]

ATLAS-SUSY-2013-05

∆mχ̃+
1 −χ̃0

1
= 5 GeV

t̃ 1
→
bχ̃
+
1

fo
rb

id
d
en ∫

L = 20.1fb−1

√
s = 8TeV

none

decay

production

combined

200 300 400 500 600 700

mt̃1 [GeV]

100

200

300

400

500

600

m
χ̃

0 1
[G

eV
]

ATLAS-SUSY-2013-05

∆mχ̃+
1 −χ̃0

1
= 20 GeV

t̃ 1
→
bχ̃
+
1

fo
rb

id
d
en ∫

L = 20.1fb−1

√
s = 8TeV

none

decay

production

combined

Figure 3.11: Observed 95% CL exclusion limit in the (mt̃1 ,mχ̃0
1
) mass plane for

∆m(χ̃±1 −χ̃0
1) = 5 GeV (left) and 20 GeV (right). The black dashed line indicates the

boundaries derived using uncorrected Herwig++ events. Results obtained when

Powheg style ME corrections were applied to the top squark decays, production or

in both stages of the event are shown respectively by the blue (dot-dashed), green

(dot-dot-dashed) and red (dotted) lines. Results correspond to 20.1fb−1 of LHC

collisions at a centre-of-mass energy of
√
s = 8 GeV.

of Powheg style ME corrections on the exclusion boundaries derived using Her-

wig++. Figure 3.11 shows the exclusion boundaries set using Herwig++ events in

the ∆m(χ̃±1 −χ̃0
1) = 5 GeV (left-hand panel) and ∆m(χ̃±1 −χ̃0

1) = 20 GeV (right-hand

panel) scenarios. Results corresponding to events generated with either no ME cor-

rections (black dashed line) or ME corrections applied during the top squark decays

(blue dot-dashed line), production (green dash-dot-dot line) or in both stages of the

event (red dotted line) are shown.

In the ∆m(χ̃±1 −χ̃0
1) = 5 GeV scenario, applying ME corrections to the hardest

emission produced during the top squark decays causes an increase in the reach of

the exclusion boundary in all regions of phase space. The most marked effect occurs

in the high stop mass region where the SRA search strategy is setting the limit.

Here the extension of the exclusion boundary is the result of a softening, in the low

pT region, of the transverse momentum spectrum of the hardest non b-tagged jet in

each event. This in turn leads to a reduction in the number of events failing the

selection criterion pT,j3 < 50 GeV. Some increase in the sensitivity is also seen in
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the more compressed regions of parameter space. In this case, the limit is being

set by the SRB strategy and the increase in acceptance is due to an increase in

the transverse momenta of the b-tagged jets, which in turn leads to more events

passing the b-jet selection criteria. When instead the Powheg style ME correction

is applied during the production stage of the event, an extension of the exclusion

boundary is again seen in the high stop mass region. This is similar to the effect

observed when ME corrections were applied to the stop decays, and is also caused by

an increase in the number of events passing the veto on the transverse momentum

of the hardest non b-tagged jet. In addition, the exclusion boundary is significantly

extended beyond the uncorrected result in the low stop mass region where SRB sets

the limit. This is a consequence of the ME corrected emission in the production

process populating the entire real-emission phase space, including the previously

unpopulated dead zone. Crucially, this increases the number of events in which the

top squark-antisquark pair recoils against a hard initial-state jet, and therefore the

number passing the Emiss
T > 250 GeV requirement. Finally, when ME corrections

are applied to radiation produced both in the top squark production and decays,

the effects of the two corrections are combined. The exclusion boundary in the

compressed region of parameter space predominantly follows the one generated with

ME corrections in the production stage only. However in the high stop mass region,

the effect of combining the corrections is significant, and the exclusion boundary

is extended when compared with the results generated with a only one type of

correction. This is a result of compound softening of the pT,j3 distribution.

Considering now the scenario in which ∆m(χ̃±1 −χ̃0
1) = 20 GeV, in the high stop

mass region of parameter space similar effects are observed to those seen in the

∆m(χ̃±1 −χ̃0
1) = 5 GeV case. Including the correction to either the production or the

decays of the top squarks causes a reduction in the transverse momentum of the

hardest non b-tagged jet in each event, therefore leading to an increase in the reach

of the exclusion boundary. When both corrections are applied, this effect is again

more pronounced due to composite softening of the pT,j3 distribution. However, only

a small effect is seen along the low mass edge of the exclusion boundary when any

of the corrections are applied. This is because the search strategy setting the limit
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Figure 3.12: As in Figure 3.10, but with Powheg style ME corrections applied

during the production and decays of the top squarks in the Herwig++ events.

in this region is now SRA. Unlike the SRB strategy, the reach of signal region A is

not significantly affected by the increased amount of Emiss
T in events generated with

ME corrections in the production phase. In addition, the increase in acceptance

due to the softening of the pT,j3 spectrum is less pronounced in the compressed

region, since in these scenarios the jets are typically already soft enough to pass the

pT,j3 < 50 GeV selection criterion.

Finally, Figure 3.12 shows analogous plots to those in Figure 3.10, where now

the Herwig++ events have been generated with ME corrections applied during both

the production and decays of the top squarks. In both the ∆m(χ̃±1 −χ̃0
1) = 5 and

20 GeV scenarios, including ME corrections leads to excellent agreement between

the original and recast exclusion limits in the compressed regions of parameter space.

This is to be expected given that now both simulations of the signal process include

improvements to the treatment of a number of hard emissions in each event. In

the high stop mass region, the exclusion boundaries set using Herwig++ events is

now more stringent than the original result. However, we note that in this region of

parameter space the acceptance times the cross section is a relatively flat function,

and so a small variation in either leads to a significant shift in the exclusion boundary.

This is illustrated by the size of the uncertainty bands in this region. As such, it

seems likely that differences between the Herwig++ and ATLAS results in this region

are not significant, especially considering the lack of detector simulation in our study.
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3.4 Summary

In this chapter we have presented an implementation of Powheg style ME cor-

rections to stop-antistop production at the LHC. The correction has been included

within the Matchbox framework of the Herwig++ event generator, using Mad-

Graph 5 derived amplitudes. Our implementation has been validated through

comparison with results generated using the PowhegBox program, for which good

agreement was observed in both the total cross sections and the differential distri-

butions.

At parton level, it was found that including the Powheg style ME correction

to stop-antistop production has two significant and distinct effects on the hardest

parton-shower emission. Firstly, as was found in Chapter 2, the uncorrected parton

shower tends to overpopulate high pT regions of the parton-shower phase space, and

therefore including the ME correction reduces the transverse momentum of emissions

in the soft and intermediate pT regimes. In addition to this, the population of

the dead zone in the parton-shower phase space now has a significant effect. As

such, when the ME correction is included more emissions are produced in the high

transverse momentum region than in the uncorrected case.

In this study, we have considered the matching of higher-order matrix elements

with the Herwig++ angular-ordered parton shower, and as such it is necessary to

include a truncated and vetoed component of the parton shower that simulates soft,

wide-angle emissions. The impact of failing to include this component of radiation

was studied and found to be largely insignificant, causing only a slight reduction in

the transverse momentum of subleading shower jets. This reiterates the commonly

held view that the effect of the truncated shower can often be safely neglected in

Powheg based approaches. A more striking effect was instead seen when ME cor-

rected events were showered directly, using a procedure similar to the one employed

when matrix-element level events are generated with a specialist Powheg program

and then interfaced to Herwig++ for the remainder of the shower evolution. It was

found that this approach had an unphysical impact on distributions which should

be insensitive to parton-shower radiation and also resulted in an increased amount

of wide-angle radiation in events. Modifications to the Herwig++ angular-ordered
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parton shower that correct this behaviour were also studied.

The effect of restricting the phase space of shower-type Powheg emissions was

investigated, both with the full parton shower simulation and when the evolution

was limited to the production of the hardest emission only. In the latter case, a

significant impact on results was only observed when the natural starting scale of the

parton shower was chosen to be unphysically low, as is often the case when the hfact

profile is used. In this case, the phase-space restriction was found to impact on the

Sudakov region of the transverse momentum distribution of the hardest emission.

In addition, when the full parton-shower evolution was included, differences were

observed in the transverse momentum distributions of jets sensitive to parton-shower

radiation. When the phase space of the Powheg emission was divided, more wide-

angle radiation was generated, leading to a softening of the hardest shower jet and

an increase in the number of hard subleading jets.

Finally, having studied separately the impact of applying Powheg style ME

corrections during both the production and decays of sparticles, the effect of com-

bining the corrections was investigated both at parton level and in the context of

an existing search for top squarks performed by the ATLAS collaboration. In com-

pressed regions of parameter space it was found that the impact of the combined

corrections was largely driven by the one applied during the production of the top

squarks. Including this correction was found to increase the number of events in

which the stop-antistop pair recoiled against hard ISR, and therefore the number

of events with a large the amount of missing transverse energy. Consequently, in-

cluding the ME corrections resulted in significantly better agreement between the

exclusion boundaries set using Herwig++ and those obtained in the original ATLAS

study, where signal events were generated using MadGraph interfaced to Pythia 6

with MLM merging. Away from the compressed region, corrections applied during

the production and decays of the top squarks were both found to have a significant

impact. Separately each correction was found to extend the exclusion boundaries

derived using Herwig++, with a cumulative effect seen when the corrections were

applied together.



Chapter 4

Matrix-element corrections to

squark-antisquark production

In this chapter we consider the generalization of our Powheg style ME correction,

studied in the previous chapter for stop-antistop production, to the remaining squark

flavours. Higher-order QCD corrections to squark-antisquark production at the LHC

in general have an additional degree of complexity when the squark in question is not

the top squark. This is caused by new divergent contributions to the real-emission

amplitude that arise when an intermediate s-channel gluino goes on-shell. These

contributions may be interpreted as squark-gluino production followed by gluino de-

cay, and therefore not as genuine NLO corrections to squark-antisquark production.

As such, we wish to subtract them from the real-emission matrix element used in

the Powheg style ME correction.

The outline of this chapter is as follows. In Section 4.1, the different schemes for

removing on-shell contributions to the real-emission matrix element will be outlined

and technical details relevant to their implementation within a Monte Carlo event

generator will be discussed. The Matchbox implementation of ME corrections

to squark-antisquark production will be validated against results generated using

the PowhegBox program in Section 4.2, with further results presented also in

Appendix B.1. The different strategies available in Matchbox for removing on-shell

contributions will then be tested and compared in Section 4.3. Having done so, in

Section 4.4 we focus on a single on-shell subtraction procedure and study the impact

104
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Figure 4.1: Feynman diagrams of the real-emission corrections to squark-antisquark

production that lead to divergent contributions in the limit of on-shell gluinos.

of applying ME corrections using this prescription, relative to the uncorrected parton

shower approach. In this section, the effect of combining ME corrections during the

production and decays of squarks is also illustrated for benchmark scenarios with

both compressed and well separated sparticle mass spectra. Finally, our findings are

summarized in Section 4.5.

4.1 Treatment of on-shell contributions

The production of top squark-antisquark pairs, as was considered in the previous

chapter, is a highly simplified case of general squark-antisquark pair production.

For all flavours of squark other than the stop, the presence of quark content in the

proton with corresponding flavour gives rise to new qg-initiated1 contributions to the

NLO real-emission process like those shown in Figure 4.1. When the sparticle mass

hierarchy is such that mg̃ > mq̃, the intermediate s-channel gluino in these diagrams

may be produced on-shell. This leads to new potentially singular real-emission

corrections to the Born process. This new type of divergence may be regulated

by introducing a finite gluino width, Γg̃, in the offending propagator. However, a

finite width is an all orders perturbative result, and therefore its introduction may

violate the gauge invariance of the calculation. Moreover, the presence of such a

large NLO contribution signals a break down in the validity of the perturbative

expansion. These issues can be addressed by viewing the diagrams in Figure. 4.1

1Here we discuss the case of initial-state quarks only. However, equivalent new contributions

arise also in q̄g-initiated processes and the subsequent discussion is also valid in this case.
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not as real-emission corrections to squark-antisquark pair production, but instead

as the leading-order production qg → q̃g̃ followed by the decay g̃ → q̃∗q. In a Monte

Carlo event generator, squark-antisquark production and squark-gluino production

would be simulated as separate processes, leading to double counting of the on-shell

channel if the diagrams in Figure 4.1 were included in higher-order corrections to the

former process. As such, it is clear that to avoid this double counting and maintain

the convergence of the perturbative expansion, the on-shell contributions must be

removed from the real-emission correction to squark-antisquark production.

Several methods have been proposed for performing this division into on-shell

and what may be viewed as genuine NLO real-emission contributions. The most

commonly employed methods, dubbed diagram removal (DR) and diagram sub-

traction (DS) in Ref. [127], are outlined below. Considering a generic qg-initiated

channel, the squared matrix element may be written as

|M|2 = |MR|2 + 2<(MRM∗
NR) + |MNR|2, (4.1.1)

whereMR denotes the amplitude arising from resonant diagrams, i.e. those in which

an intermediate s-channel gluino may be on-shell, andMNR is the amplitude from

the remaining non-resonant diagrams. In the diagram removal approach2, contribu-

tions with on-shell gluinos are removed at the amplitude level. Consequently, both

the resonant contribution and the interference terms are removed from Eq. 4.1.1

such that the real-emission matrix element squared becomes3

R = |MNR|2. (4.1.2)

This approach is straightforward to implement in Monte Carlo event generators

however has the drawback that the interference terms are lost even when LO q̃g̃

production is included in the simulation. A variation of the diagram removal method

was proposed in Ref. [128] which aims to combat this issue by dropping only the

2Diagram removal in the context of NLO matrix-element matching was first studied in Ref. [127],

for the case of QCD corrections to tW production.
3As is Section 1.4, the relevant flux and parton luminosity factors are absorbed into the definition

of R. For simplicity, these factors are omitted in the following discussion.
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resonant term and using

R = |MNR|2 + 2<(MRM∗
NR). (4.1.3)

Both approaches, however, break gauge invariance and so in principle give arbitrary

results.

In contrast, the diagram subtraction approach [127], often referred to as the

“Prospino scheme” [15], keeps the full squared amplitude in Eq. 4.1.1 and intro-

duces a subtraction term, Csub, such that the real-emission matrix element squared

is

R = |MR|2 + 2<(MRM∗
NR) + |MNR|2 − Csub. (4.1.4)

The subtraction term aims to locally cancel the contributions from on-shell gluinos.

To achieve this without significantly modifying the genuine NLO contributions, the

difference between the subtraction term and |MR|2 must be as close to zero as

possible, in all regions of phase space. Therefore, the subtraction term most typically

chosen, and which is used in this study, is

Csub = Θ(
√
s−mg̃ −mq̃)Θ (mg̃ −mq̃∗)

m2
g̃Γ

2
g̃(

(pq̃∗ + pq)2 −m2
g̃

)2
+m2

g̃Γ
2
g̃

|MR(φ
′

3)|2dφ′3.

(4.1.5)

Taking each component in turn:

• The function Θ(
√
s − mg̃ − mq̃) in Eq 4.1.5 ensures that no subtraction is

performed when the centre-of-mass energy,
√
s, is insufficient for the on-shell

production of a squark and gluino with masses mq̃ and mg̃ respectively.

• Similarly, the production of an on-shell gluino followed by the decay g̃ → q̃∗q

cannot occur for the mass orderingmg̃ < mq̃∗ . Therefore, the subtraction term

must be zero in this case, which is guaranteed by the inclusion of the function

Θ (mg̃ −mq̃∗).

• Exact cancellation of the resonant contribution in the limit4 mq̃∗q → mg̃ is en-

sured by using an on-shell subtraction term that is proportional to |MR(φ
′
3)|2.

4We defined mq̃∗q =
√

(pq̃∗ + pq)2, where pq and pq̃∗ are the momenta of the final-state quark

and antisquark respectively.
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• The subtraction term must only remove contributions with on-shell kinematics

such that the procedure is gauge invariant in the small-width limit. Conse-

quently, the amplitude in Eq. 4.1.5 is evaluated at the three-body phase-space

point φ′3, which is obtained by reshuffling the final-state kinematics of a general

phase space point φ3 such that they fulfil mq̃∗q = mg̃. The mapping between

the full and restricted three-body configurations, φ3 → φ
′
3, must maintain

energy-momentum conservation, preserve the on-shell conditions for the q̃ and

q̃∗ and, crucially, reduce to the identity transformation when mq̃∗q = mg̃.

These conditions can be met by employing the Catani-Seymour momentum

reshuffling described in Ref. [56] for massive final-state particles. Using this

formalism, the three-body phase space φ3 is mapped to a two-body phase space

with an on-shell gluino and final-state squark, which acts as the spectator par-

ticle. From this two-particle configuration, the momenta of the final-state

quark and antisquark may be obtained in the rest frame of the on-shell gluino

using the standard kinematics of a 1 → 2 decay, see e.g. Ref. [129]. The

original direction of the antisquark in the rest frame of the off-shell gluino is

used to set the azimuthal and polar angles of the decay. Finally, the momenta

of the quark and antisquark are boosted from the gluino rest frame to the

centre-of-mass frame to obtain the full set of transformed momenta.

• The momentum reshuffling procedure described above destroys the Breit-

Wigner form of the gluino propagator in |MR(φ
′
3)|2. It is restored by including

the factor
m2
g̃Γ

2
g̃(

(pq̃∗ + pq)2 −m2
g̃

)2
+m2

g̃Γ
2
g̃

, (4.1.6)

in the subtraction term, thus ensuring minimal differences between Csub and

the resonant real-emission contribution.

• The Monte Carlo integration of the subtraction term is performed, as for

the squared real-emission matrix element, by sampling the unrestricted phase

space measure dφ3. As was discussed in Ref. [22], it is therefore necessary to

include a Jacobian factor relating the restricted and unrestricted measures,
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that is, in Equation 4.1.5 the substitution

dφ′3 =

√
λ(s,m2

g̃,m
2
q̃)

λ(s,m2
q̃∗q,m

2
q̃)

(m2
g̃ −m2

q̃)m
2
q̃∗q

(m2
q̃∗q −m2

q̃)m
2
g̃

dφ3, (4.1.7)

is made.

• Finally, we note that the gluino width, Γg̃, must be exactly zero in the non-

resonant amplitudes, so as not to disrupt the cancellation of the collinear

singularities in the real-emission matrix element with those present in the

Catani-Seymour dipole subtraction term. However, Γg̃ must take a non-zero

value in all instances of the resonant amplitude, thereby avoiding divergences

in the gluino propagator.

The diagram subtraction method as it is presented here only respects gauge invari-

ance in the small-width limit, i.e. when Γg̃ → 0. Correspondingly, the parameter Γg̃

should take a very small but non-zero value and therefore may be viewed as a pure

mathematical cutoff rather than the physical width of the gluino. A fully gauge

invariant variation of the method can however be obtained. The construction of the

subtraction term in this case requires the analytic expansion of Eq. 4.1.1 in terms

of poles in mq̃∗q −mg̃, see Ref. [22] for details. As a result, this approach does not

lend itself to the semi-automated nature in which we wish to add new processes

to the Matchbox framework. Therefore, in this work we have implemented the

original diagram subtraction approach and rely on the residual gauge dependence

being small for sufficiently small values of Γg̃.

While being more complicated in terms of implementation within a Monte Carlo

event generator, the diagram subtraction approach is clearly preferable to diagram

removal. In addition to preserving gauge invariance in the small-width limit, the

contribution removed through diagram subtraction closely mimics the term which

would be included by simulating LO q̃g̃ production followed by gluino decay. As such,

the full real-emission configuration with the resonant, non-resonant and interference

contributions may be easily recovered in an inclusive simulation. Consequently,

diagram subtraction will be implemented as the default procedure for dealing with

the resonant real-emission diagrams in squark-antisquark production. However, the
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original diagram removal method given in Eq. 4.1.2 is also made available to allow

comparisons to be drawn and the impact of the interference term to be studied.

Generation of the hardest emission

Incorporating diagram removal into the Powheg method is simple and amounts to

making the replacementM→MNR in the squared real-emission matrix element,R.
However in the case of diagram subtraction, problems arise because the squared real-

emission matrix element in Eq. 4.1.4 is not positive definite. The interference term

is negative in some regions of phase space and, close to the resonance, the magnitude

of this term can easily exceed the sum of the other contributions. These negative

real-emission contributions affect the Powheg procedure in two ways. Firstly,

the function B̄, with which the Born configuration is generated, is not positive

in all regions of phase space. This is easily dealt with by allowing Monte Carlo

events to be generated with negative weights. As such, this does not introduce

any additional complexity in the case of our Powheg style ME corrections, since

negatively weighted events were already required when considering unitarization of

the correction using the LoopSim approach.

The second, somewhat more involved problem arises because the splitting kernel

in the Sudakov form factor for the corrected emission is no longer positive defi-

nite. This leads to problems when generating the hardest emission, both for the

full Powheg and ME correction approaches. The simplest solution to this problem

is to set all negative values of R in the splitting kernel equal to zero. In doing so

however, negative contributions coming from interference effects are missed. There-

fore, the result obtained by combining NLO squark-antisquark production with the

LO production and decay of an on-shell gluino will not accurately reflect the full

squared amplitude in Eq. 4.1.1. In addition, there is no obvious way of quantifying

the effect of the missing negative phase-space points. This approach is straightfor-

ward to implement in a Monte Carlo event generator and will be referred to in the

subsequent work as the DS0 approach.

A second solution, considered in Ref. [130], is motivated by the observation that

the majority of negative phase-space points lie close to the resonance. Therefore, by
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making the substitution in the splitting kernel

R → Θ(|mq̃∗q −mg̃| −∆)R, (4.1.8)

the problematic points are excluded. This introduces an artificial cutoff, ∆, in the

radiation phase space which is typically chosen to be ∆ = O(Γg̃). This method drops

both positive and negative contributions to R close to the resonance. The effect of

doing so may be quantified by varying the value of the cutoff parameter, and it was

suggested in Ref. [130] that this approach is a reliable solution if the final observables

exhibit negligible dependence on ∆. However by excluding all phase-space points

near the resonance, one may in principle also be removing single logarithmically

enhanced contributions arising from collinear g → qq̄ splittings, where the invariant

mass of the quark-antisquark system by chance reproduces that of the gluino. As

such, this approach impacts on the Sudakov region of the transverse momentum

distribution of the hardest emission, a fact that will be illustrated in Section 4.3.

Adopting the naming convention used in Ref. [22], this solution will be referred to

as DSI.

An alternative method has been studied in Refs. [11, 22] in which only part of

the real-emission matrix element is exponentiated, i.e. in analogy to the division

of the real-emission phase space that was introduced in Section 1.4.3, the square

matrix element is split into the components RS and RH . One of the suggested

combinations,

RS = |MNR|2 and RH = |MR|2 + 2<(MRM∗
NR)− Csub, (4.1.9)

has been implemented within the Matchbox framework. This approach negates

the need for the artificial phase-space cutoff and retains all positive and negative real-

emission contributions. However, it has the disadvantage of being gauge dependent

even in the limit Γg̃ → 0. This solution will be referred to as DSII.

Finally, in this study we propose an additional variant of the DSI method in

Eq. 4.1.8 in which the near resonant configurations that are excluded in the splitting

kernel are added back in as a hard finite contribution. To do so, we make use of the

identity,

1 = ΘPSΘ∆Θcol + ΘPSΘ∆(1−Θcol) + (1−ΘPS) + ΘPS(1−Θ∆), (4.1.10)
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such that the real-emission matrix element may be divided into shower and hard

emission components,

RS = (Θ∆Θcol + (1−Θ∆))ΘPSR (4.1.11)

and

RH = (ΘPSΘ∆(1−Θcol) + (1−ΘPS))R, (4.1.12)

where Θ∆ is the Heaviside function Θ(∆−|mq̃∗q−mg̃|) which is unity for phase-space

points that lie sufficiently close to the resonance. The function ΘPS corresponds to

the function f in Section 1.4.3, i.e. it is zero when the transverse momentum of

the Powheg emission exceeds the natural starting scale of the parton shower and

becomes unity for emissions below this cutoff, with the possibility of smoothing

the transition between the two regimes. Phase-space configurations can occur in

which both these resonant and low pT conditions are fulfilled. To ensure that the

hard component of the real-emission matrix element contains no logarithmically

enhanced collinear contributions, the function Θcol is also introduced. It is defined

as

Θcol = Θ

(
1

p2
T

− m2
q̃∗q

(m2
q̃∗q −m2

g̃)
2 +m2

g̃Γ
2
g̃

)
. (4.1.13)

As such, Θcol effectively decides whether the enhancement to the cross section due to

the collinear nature of the emission is more or less significant than the enhancement

due to the proximity of the phase-space point to the on-shell configuration. By

performing the division in this way, RS encapsulates emissions below the natural

starting scale of the shower that are either far from the resonance, or close to the

resonance and collinearly enhanced.

This approach, referred to as DSI′, has the advantages that it retains all positive

and negative real-emission contributions and is gauge invariant in the limit Γg̃ → 0.

As with the original DSI approach, the introduction of an artificial cutoff is necessary.

However, as will be demonstrated in Section 4.3, negligible dependence on this

parameter is evident, even at the level of the hard process.

Finally, when the DSII and DSI′ approaches are applied within the context of

matrix-element corrections, the unitarity of the parton shower is violated. This can
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be restored through the modification of the Born prefactor B → B′, as described in

Section 1.4.4.

4.2 Validation

4.2.1 Setup

Before studying the different methods for removing real-emission contributions with

on-shell gluinos, we first validate our implementation of Powheg style ME correc-

tions for squark-antisquark pair production, for all squark flavours other than the

stop. To this end, LHC pp collisions were generated at
√
s = 14 TeV in which stable

squark-antisquark pairs were produced. In this section, results are shown for the

case of left-handed up squark production where the masses of the up squark and

potentially on-shell gluino were set to mũL = 1.8 TeV and mg̃ = 2.4 TeV respec-

tively. Similar checks have also been performed for the production of all alternative

squark-antisquark pairs5 and in the scenario with (mg̃,mq̃) = (1.9, 1.8) TeV. A lim-

ited number of these additional results are presented in Appendix B.1. During the

validation the width of the gluino, which here acts to regulate the resonant con-

tributions, was set to Γg̃/mg̃ = 10−4. This choice is motivated by the observation

that the real-emission cross section for channels with resonant contributions has

negligible dependence on the value of the gluino width for Γg̃/mg̃ . 10−2. This

will be illustrated explicitly in Section 4.3. In all cases, the effects of hadronization

and the underlying event were not simulated and, unless otherwise stated, PDF sets

from the LHAPDF package were used. Distributions were created using the Rivet

analysis framework and no event selection criteria were imposed.

4.2.2 Validation of leading-order amplitudes

The Matchbox implementation of left-handed up squark-antisquark production

was validated at leading order through comparison with results produced using the

internal Herwig++ implementation of the MSSM model. The leading-order matrix

5We consider only the production of same flavour squarks and antisquarks, i.e. pp→ q̃iq̃
∗
i .
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Figure 4.2: Distributions of the invariant mass of the up squark pair mũLũ
∗
L
(left)

and the inclusive up squark transverse momentum pT,ũL (right) in simulations of

LHC collisions at a centre-of-mass energy of 14 TeV. The production of left-handed

up squark-antisquark pairs was simulated using the LO Matchbox and internal

Herwig++ setups, in the scenario with mũL = 1.8 TeV. For each line, the error band

indicates the uncertainty arising from the variation of µR = µF by a factor of two

around the central value.

elements were convoluted with the CTEQ6L1 PDF set and no parton shower effects

were included in the simulation. The factorization and renormalization scales were

set at µR = µF = mũL and simultaneously varied by a factor of two around this

central value to allow an estimation of the theoretical uncertainty to be obtained.

The total cross sections calculated using Matchbox and the internal Her-

wig++ setup were found to agree well at 71.45+34%
−24% ab and 71.46+34%

−24% ab respectively,

where the percentile uncertainties correspond to those arising from scale variation.

Distributions of the invariant mass of the up squark-antisquark pair, mũLũ
∗
L
, and

inclusive transverse momentum of the up squark, pT,ũL , are shown in the left and

right-hand plots of Figure 4.2. The central results generated with the Match-

box and Herwig++ implementations are shown by the red solid and blue dashed

lines respectively, with the uncertainty due to scale variation indicated by the bands

of corresponding colour. The Matchbox and Herwig++ results agree very well

in both distributions, providing further confidence in our implementation of the

leading-order amplitudes for squark-antisquark production.
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4.2.3 Validation of matrix-element corrections

To test the correctness of our implementation of the diagram removal and subtrac-

tion procedures, along with the ME correction algorithm, events produced using

Matchbox were compared to those generated with the PowhegBox program.

The factorization and renormalization scales were set and varied as in the leading-

order comparison in Section 4.2.2, and the PDF set CTEQ6m was used6. Events

were generated in which the parton shower was limited to the production of the

hardest emission and the strong coupling constant was fixed at the default Her-

wig++ value of the coupling evaluated at µR. Where possible, PowhegBox events

were generated using the replacement B̄ → B, to allow for direct comparison with

our Powheg style ME correction in the case that there is no division of the real-

emission phase space.

We begin by considering events generated using the diagram removal approach

in which the resonant contributions are removed at amplitude level. The total cross

sections calculated by Matchbox and PowhegBox were found to agree well at

72.93+37%
−25% ab and 72.94+36%

−25% ab respectively, where the indicated uncertainty is the

estimate arising from scale variation. For further comparison, differential distribu-

tions were generated and are shown in Figure 4.3. The blue dashed lines correspond

to the results generated using PowhegBox and the red solid lines to those pro-

duced using Matchbox. In both cases, the band of corresponding colour indicates

the scale variation uncertainty. The top left and right-hand panels of Figure 4.3

show distributions of mũLũ
∗
L
and pT,ũL . As was observed for t̃1t̃∗1 production in the

previous chapter, a slight difference in the slopes of the Matchbox and Powheg-

Box results is evident in these plots. This is caused by the use of different kine-

matic mapping procedures in the two implementations. Also shown, in the lower

left-hand plot of Figure 4.3, are distributions of the transverse momentum of the up

squark-antisquark pair, pT,ũLũ∗L . Here the PowhegBox result is harder than the

Matchbox distributions in the low pT region. This effect was also observed for

6As in Section 3.1.3, this PDF set was used in order to simplify event generation with the

PowhegBox program.



4.2. Validation 116

Matchbox + MadGraph 5
PowhegBox

10−7

10−6

10−5

10−4

d
σ
/
d
m

ũ
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Figure 4.3: Distributions of the invariant mass of the up squark pair mũLũ
∗
L
(upper

left), the inclusive up squark transverse momentum pT,ũL (upper right), the trans-

verse momentum of the up squark pair pT,ũLũ∗L (bottom left) and invariant mass

of the final state quark and up antisquark system mũ∗Lq
(bottom right). Events

were generated at a centre-of-mass energy of 14 TeV using the matrix-element cor-

rected Matchbox and PowhegBox setups detailed in the text with the diagram

removal method. The mass of the up squark and gluino were mũL = 1.8 TeV and

mg̃ = 2.4 TeV. For each line, the error band indicates the uncertainty arising from

the variation of µR = µF by a factor of two around the central value.

top squark-antisquark production and is attributed to the differing methods used to

impose the IR cutoff of the radiation phase space. The results produced by the two

implementation are in excellent agreement at high pT . Finally, distributions of the



4.2. Validation 117

invariant mass of the final-state quark and up antisquark system7, mũ∗Lq
, are shown

in the lower right-hand panel of Figure 4.3. Again, good agreement is observed

between results generated using Matchbox and the PowhegBox program.

Comparing results generated using the diagram removal procedure allows the

implementation of the non-resonant real-emission amplitudes and the total leading-

order cross section to be validated. To test the correctness of the resonant real-

emission amplitudes and on-shell subtraction term, we consider now the diagram

subtraction approach of Eq. 4.1.4. To combat the non-positive definite nature of the

splitting kernels we study both the case in which any negative values are set equal to

zero, i.e. the DS0 method, and the case in which only the non-resonant term in the

real-emission matrix element is exponentiated and the remaining terms are included

as a hard finite contribution, i.e. the DSII approach. Analogous distributions to

those in Figure 4.3 are shown in Figures 4.4 and 4.5 for the DS0 and DSII methods

respectively. In the latter case, the substitution B̄ → B is not possible in the

PowhegBox program and so the Matchbox distributions were normalized to

account for the difference in the LO and NLO total cross sections.

Considering the DS0 results, as expected the mũLũ
∗
L
and pT,ũL distributions are

consistent between the two implementations, with the PowhegBox results exhibit-

ing a slight shift to higher values throughout. In addition, the Matchbox pT,ũLũ∗L

distribution is in good agreement with the PowhegBox result in the high pT region

and shows the expected softening in the low pT region. However, some discrepancy

is observed between the implementations in the intermediate pT range, where the

resonant contributions have their most significant impact8. Disagreement between

the mũ∗Lq
distributions is also evident close to the resonance, i.e. when mũ∗Lq

= mg̃.

These differences are due to a combination of effects, the first of which relates to the

treatment of the Jacobian factor in Equation 4.1.7 which accounts for the restricted

on-shell phase space of the subtraction term. In the Matchbox implementation

7We define mũ∗
Lq

=
√

(pũ∗
L

+ pq)2, where pũ∗
L
and pq are the momenta of the up antisquark

and the final-state quark respectively. Only qg-initiated events impact on this observable, with the

dominant contribution coming from events with an initial-state up quark.
8Resonant contributions impact in the region pT,ũLũ∗

L
≈ mg̃ −mũL

.
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Figure 4.4: As in Figure 4.3, but using the DS0 diagram subtraction method to

remove contributions with on-shell gluinos.

this factor has been included for all instances of the subtraction term, while in the

PowhegBox program it is included only when the subtraction term appears in

the hard component of the real-emission matrix element, not when it is utilized in

the splitting kernel9. It has been confirmed that the two implementations are in

significantly better agreement when the Matchbox treatment of the Jacobian is

modified to reflect the PowhegBox approach. The second source of disagreement

arises during the treatment of terms linear in Γg̃ that appear in the interference be-

tween the resonant and non-resonant amplitudes. These terms are discarded in the

PowhegBox implementation but retained in the Matchbox approach10. Close

9The Jacobian factor is excluded in the splitting kernel of the PowhegBox implementation

purely due to practical reasons, see Ref. [22].
10Discarding these terms in the Matchbox implementation would not be a straightforward
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Figure 4.5: As in Figure 4.3, but using the DSII diagram subtraction method to

remove contributions with on-shell gluinos.

to the resonance this leads to a difference in the implementations that scales as

mg̃/Γg̃. It has been verified that the observed differences in the pT,ũLũ∗L and mũ∗Lq

distributions do indeed decrease as mg̃/Γg̃ is reduced.

Finally, considering the distributions generated using the DSII approach we see

that the mũLũ
∗
L

and pT,ũL plots in Figure 4.5 are in relatively good agreement,

however now with the PowhegBox results consistently shifted to slightly lower

values. This change in slope arises because the Born configuration in the Powheg-

Box events is generated now with B̄ rather than B. The pT,ũLũ∗L and mũ∗Lq
distribu-

tions shown in the bottom left and right-hand plots exhibit a good level of agreement

between the two implementations, with only slight deviations in the intermediate pT

matter due to the semi-automated method used to obtain the real-emission matrix elements.
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region of the former and resonant region of the latter. In this scheme, the treatment

of the on-shell phase space Jacobian factor is consistent between Matchbox and

PowhegBox . Therefore, the observed discrepancy in these distributions is caused

only by the differing treatment of terms linear in Γg̃ that appear in the interference

contribution.

In general, the good level of agreement observed between the PowhegBox and

Matchbox results presented in this section validates our implementation of ME

corrections to squark-antisquark production, for both the diagram removal and sub-

traction procedures.

4.3 Comparison of on-shell subtraction methods

4.3.1 Setup

Having demonstrated the validity of the Matchbox implementation of diagram

removal and subtraction in Section 4.2, in the following section we study in detail

the different strategies for removing contributions with on-shell gluinos. To do so, we

again rely predominantly on simulations of stable left-handed up squark-antisquark

production at
√
s = 14 TeV, in a scenario with (mg̃,mũL) = (2.4, 1.8) TeV. When

instructive, results will also be shown for alternative squark flavour and chirality

combinations, and for the mass splitting (mg̃,mq̃) = (1.9, 1.8) TeV. Unless otherwise

stated, we consider ME corrected events in which the evolution of the parton shower

was limited to the production of the Powheg corrected emission only and the

factorization and renormalization scales were set to µR = µF = min(mT,ũL ,mT,ũ∗L
).

In all cases, the CTEQ6L1 PDF set was used and the effects of hadronization and the

underlying event were not simulated. Differential distributions were created using

the Rivet analysis framework, with no event selection criteria imposed. Finally,

the uncertainty in results due to limited statistics is indicated by error bars in the

distributions, except for the central values in ratio plots where this uncertainty is

instead shown by a yellow error band.
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4.3.2 Dependence on the width

Total cross section

In the diagram subtraction approach, Γg̃ does not correspond to the physical width

of the gluino but is instead a regularizing parameter. Consequently, if predictions

made using this approach are to be considered reliable they must be insensitive to

the value of Γg̃, with any residual dependence on the width giving an indication of

the size of gauge dependent contributions. To test the sensitivity of the Match-

box implementation of diagram subtraction to the value of the gluino width, we

begin by studying the dependence on this parameter of contributions to the real-

emission cross section arising from channels with resonant diagrams. In Figure 4.6,

the numerical dependence of the combined qig and q̄ig-initiated contributions to the

real-emission cross section for the process pp → q̃iq̃
∗
i is shown, as a function of the

ratio Γg̃/mg̃, for q̃i = ũL (left) and d̃R (right). The mass of the squarks was set to

mq̃i = 1.8 TeV, while the mass of the gluino was fixed at mg̃ = 2.4 TeV in the case

of ũLũ∗L production and at mg̃ = 1.9 TeV when considering d̃Rd̃∗R production. Re-

sults were obtained for fixed values of the factorization and renormalization scales,

µR = µF = mq̃i .

For the squark flavour and chirality combinations in Figure 4.6, the cross sections

calculated using diagram subtraction (red data points) are observed to be largely

insensitive to the choice of regularizing parameter for values Γg̃/mg̃ . 10−2. At larger

values, the influence of gauge dependent contributions is visible and the diagram

subtraction cross sections begin to decrease. In addition, in the very small-width

limit, Γg̃/mg̃ . 10−6, results can become numerically unstable. This leads us to

concluded that widths in the range 10−4 . Γg̃/mg̃ . 10−2 are optimal for producing

stable, gauge invariant results.

An analogous cross section calculated using diagram removal is also shown in

each panel of Figure 4.6 by the blue data points. This value has no dependence

on the gluino width and is included instead to illustrate the size of interference

terms that are missed in this approach. To quantify the significance of the differ-

ence between the diagram subtraction and removal schemes, the full real-emission
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Figure 4.6: The dependence on the regularizing parameter Γg̃/mg̃ of the combined

qig and q̄ig-initiated contributions to the real-emission cross section for the process

pp → q̃iq̃
∗
i , calculated using diagram subtraction (red points). Also shown is the

width-independent diagram removal cross section (blue points) and the full real-

emission cross section (σR). Results are shown for ũLũ∗L production in the scenario

(mg̃,mq̃) = (2.4, 1.8) TeV (left) and d̃Rd̃
∗
R production when instead mg̃ = 1.9 TeV

(right).

cross section11 for the process pp→ q̃iq̃
∗
i , calculated using diagram subtraction with

Γg̃/mg̃ = 10−4, is also indicated on each plot by σR. Considering these values we see

that, for processes in which there is valence quark content in the PDF with corre-

sponding flavour to that of the produced squarks, the qig and q̄ig-initiated channels

contribute a significant fraction of the total real-emission cross section, for example

16% (7%) for ũLũ∗L (d̃Rd̃
∗
R) production in the scenario considered here. However, the

interference terms omitted by the diagram removal approach amount to a less than

1% effect in the context of the full real-emission cross section in both cases12. The ne-

glected interference terms are even less significant when considering the production

of second generation squarks, where the qig and q̄ig-initiated channels contribute to

the real-emission cross section typically at the sub-percent level.

11The full real-emission cross section was regulated by imposing a transverse momentum cut on

the final-state parton of pT > 1 GeV.
12Although the interference terms have only a small impact at the level of the total cross section,

in Section 4.3.4 we will show that for ũLũ∗L production significant differences are present between

differential distributions calculated with the diagram subtraction and removal procedures.
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Differential distributions

Having previously demonstrated the stability of the real-emission cross section with

respect to Γg̃, we study now the effect of the regularizing parameter in the context of

differential distributions. To this end, we consider left-handed up squark-antisquark

production, as described in Section 4.3.1, in the scenario with (mg̃,mũ∗L
) = (2.4, 1.8)

TeV. We study separately the different diagram subtraction procedures and in each

case consider distributions of pT,ũLũ∗L generated with Γg̃/mg̃ = 10−2 (blue dashed

line), 10−3 (red solid line) and 10−4 (green dot-dashed line). These are shown re-

spectively for the DS0, DSI, DSI′ and DSII approaches in the upper left, upper

right, lower left and lower right-hand panels of Figure 4.7. The bottom section of

each plot shows the ratio of the distributions generated with Γg̃/mg̃ = 10−2 and

10−4 to the one generated with the central value Γg̃/mg̃ = 10−3. In the DSI′ ap-

proach, the cutoff on the radiation phase space used to define the resonant region

was set to ∆ = 0.4(mg̃ − mq̃), while in the original DSI scheme the smaller value

of ∆ = 0.05(mg̃ −mq̃) was used. The motivation for these values and dependence

of the pT,ũLũ∗L distribution on this parameter will be discussed in the next section.

Finally, in the DSI′ scheme the resummation profile with ρ = 0.3 was used to define

the region of phase space below the natural starting scale of the parton shower, and

in this and the DSII procedure LoopSim corrections were included to preserve the

leading-order accuracy of the total cross section. This will be the case throughout

the remainder of the chapter.

The upper left-hand panel of Figure 4.7 shows pT,ũLũ∗L distributions generated

using the DS0 approach. In this scheme, the splitting kernel used to generate the

hardest emission is set equal to zero at any problematic phase-space points where

it would have otherwise been negative. As the value of Γg̃ decreases, the negative

contributions discarded in this approach increase in size and become more localized

around the resonant region mq̃∗q = mg̃. Consequently, the pT,ũLũ∗L distribution

exhibits a significant dependence on the value of Γg̃ in the intermediate pT region,

where resonant contributions have their most significant effect. In the DSI scheme,

the non-positive definite nature of the splitting kernel is dealt with by applying

a cut to the phase space of the Powheg corrected emission such that the region
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pT,ũLũ∗L [GeV]

R
a
ti
o

DSII, Γg̃/mg̃ = 10−3

DSII, Γg̃/mg̃ = 10−2

DSII, Γg̃/mg̃ = 10−4

10−6

10−5

10−4

d
σ
/
d
p
T
,ũ
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Figure 4.7: Dependence of the transverse momentum of the up squark-antisquark

pair, pT,ũLũ∗L , on the regularizing parameter Γg̃/mg̃ in the DS0 (upper left), DSI

(upper right), DSI′ (lower left) and DSII (lower right) schemes. Results were gen-

erated at a centre-of-mass energy
√
s = 14 TeV for a scenario with (mg̃,mũ∗L

) =

(2.4, 1.8) TeV and Γg̃/mg̃ = 10−2, 10−3 or 10−4.

containing the majority of the negative contributions is removed. In doing so, both

positive and negative contributions to the squared real-emission matrix element

are discarded in the resonant region of phase space, where the choice of Γg̃ has

most impact. Consequently, the pT,ũLũ∗L distribution generated with the DSI scheme

exhibits no dependence on the gluino width. This lack of sensitivity to Γg̃ provides

assurance that the region of phase space excluded by the cut does indeed contain

the most significant negative contributions to the splitting kernel13. Finally, by

13In the DSI scheme, any negative contributions remaining after the phase-space cut are set to
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introducing a hard real-emission contribution the DSI′ and DSII schemes take into

account the negative contributions to the squared real-emission matrix element.

As such, the corresponding pT,ũLũ∗L distributions in the lower left and right-hand

panels of Figure 4.7 are largely insensitive to the value of the gluino width. A minor

difference, inconsistent with pure statistical fluctuation, appears to be present in the

DSII distribution generated with Γg̃/mg̃ = 10−2 at pT ≈ 600 GeV. While the effect

is small, we nevertheless aim to avoid it by using Γg̃/mg̃ = 10−4 in the remainder of

this section.

4.3.3 Dependence on the phase-space cutoff

In addition to the regularizing width Γg̃, the DSI and DSI′ methods also depend

on the parameter ∆ introduced in Eq. 4.1.8. In the DSI′ approach, schematically

this parameter defines the region of phase space in which the squared non-resonant

amplitudes are not the dominant term in the squared real-emission matrix element,

and so real-emission configurations should be included as H-events rather than in the

splitting kernel of the hardest emission14. Reasonable values for ∆ in this approach15

typically correspond to a significant fraction of mg̃−mq̃. In the original DSI method

however, the parameter ∆ is used to set the range of mq̃∗q values that are removed

from the real-emission phase space in order to avoid encountering negative values of

the splitting kernel. This excluded region is not taken into account elsewhere in the

simulation. Therefore, it is desirable to choose the minimum possible value of ∆ that

ensures all significant negative contributions are removed. We choose ∆ = 30 GeV

as the default setting in this scenario.

To assess the influence of the parameter ∆ on results generated using the DSI

zero such that in the limit ∆→ 0 the DSI and DS0 schemes are equivalent.
14In fact, some real-emission contributions in this resonant region must be treated as S-events

so as to ensure that the hard real-emission term receives no contribution from logarithmically

enhanced regions of phase space.
15Suitable values of ∆ in the DSI′ scheme have been chosen by studying mũ∗

Lq
distributions in

LO pp → ũLũ
∗
Lj events. Results generated using the diagram removal and subtraction methods

were compared in order to determine the region of phase space in which there are significant

real-emission contributions not arising from the squared non-resonant term.
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DSI, ∆ = 0.01(mg̃ −mũL)
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Figure 4.8: Dependence of the transverse momentum of the up squark-antisquark

pair pT,ũLũ∗L on the parameter ∆ for the DSI (left) and DSI′ (right) schemes in the

benchmark scenario with (mg̃,mũ∗L
) = (2.4, 1.8) TeV.

and DSI′ prescriptions, matrix-element corrected events were generated as in Sec-

tion 4.3.1, with the width of the gluino fixed at Γg̃ = 10−4mg̃. Distributions of the

transverse momentum of the up squark-antisquark system, pT,ũLũ∗L , generated using

the DSI and DSI′ schemes are shown respectively in the left and right-hand panels

of Figure 4.8, for a benchmark scenario with (mg̃,mũL) = (2.4, 1.8) TeV. In both

procedures, the value of ∆ was parameterized according to ∆ = x(mg̃ −mũL). For

the DSI approach, the values x = 0.01, 0.05 and 0.1 are shown, while in the DSI′

scheme x was taken to be 0.3, 0.4 or 0.5. Distributions corresponding to the highest,

lowest and central values are shown in Figure 4.8 by the green (dot-dashed), blue

(dashed) and red (solid) lines respectively. The lower panel in each plot shows the

ratio of results generated with the highest and lowest values of x to those produced

with the central value.

In the pT,ũLũ∗L distributions generated using the original DSI approach, a signif-

icant dependence on the value of ∆ is observed. This is to be expected since in

this procedure ∆ directly controls the extent of the excluded phase-space region. In

the DSI′ scheme, ∆ instead affects the division of the real-emission matrix element

between the splitting kernel and hard real-emission term. As such, its value does

not impact significantly on the pT,ũLũ∗L distributions generated using this approach.
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The insensitivity of results generated using the DSI′ procedure has been verified also

for the benchmark scenario with (mg̃,mũL) = (1.9, 1.8) TeV.

4.3.4 Comparison of on-shell subtraction methods

In this section, we compare results generated using diagram removal (DR) and the

DS0, DSI, DSI′ and DSII diagram subtraction procedures. To this end, events

were generated as described in Section 4.3.1 with the gluino width set equal to

Γg̃ = 10−4mg̃. In the DSI and DSI′ methods the parameter ∆ was set according to

∆ = x(mg̃ −mq̃), with x = 0.05 and 0.4 respectively. Distributions of mũLũ
∗
L
, pT,ũL ,

pT,ũLũ∗L and mũ∗Lq
are shown in the upper left, upper right, lower left and lower right-

hand panels of Figure 4.9. The results corresponding to the DR, DS0, DSI, DSI′ and

DSII approaches are shown respectively by the red (solid), blue (dashed), green (dot-

dot-dashed), yellow (dot-dashed) and black (dotted) lines. Ratios of distributions

generated with the different diagram subtraction procedures to the one generated

using diagram removal are shown in the lower portion of each plot.

The mũLũ
∗
L
and pT,ũL distributions in the upper panels of Figure 4.9 are largely

insensitive to radiation emitted from the Born process and so also show minimal de-

pendence on the choice of on-shell subtraction scheme. In the pT,ũLũ∗L and mũ∗Lq
dis-

tributions however, significant variations are observed between the different schemes.

Considering first the latter observable, we see there is relatively good agreement

between all five approaches at large values of mũ∗Lq
. In this region, non-resonant

terms provided the dominant contribution to the real-emission matrix element and

therefore differing treatments of the interference between resonant and non-resonant

amplitudes has little effect16. In the region where resonant amplitudes become sig-

nificant, additional contributions arising from the interference term are evident in

the diagram subtraction procedures. The interference term is positive in the region

mũ∗Lq
> mg̃ and negative when mũ∗Lq

< mg̃, such that below the resonance there

16In the following discussion, we make the reasonable assumption that the cancellation between

the resonant and subtraction terms is accurate and so only the non-resonant and interference terms

are relevant.
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Figure 4.9: Distributions of the invariant mass of the up squark pair mũLũ
∗
L
(upper

left), the inclusive up squark transverse momentum pT,ũL (upper right), the trans-

verse momentum of the up squark pair pT,ũLũ∗L (bottom left) and invariant mass of

the final state quark and antisquark system mũ∗Lq
(bottom right). Results are shown

in which contributions from on-shell gluinos are removed using the diagram removal

(DR) and the diagram subtraction procedures DS0, DSI, DSI′ and DSII introduced

in Section 4.1. Events were generated at a centre-of-mass energy of 14 TeV for a

scenario with (mg̃,mũ∗L
) = (2.4, 1.8) TeV.

are real-emission configurations which contribute to the total squared matrix ele-

ment with negative weights. In the DS0 scheme, these negative contributions, which

cause difficulties in the splitting kernel of the hardest emission, are simply set to

zero. Consequently, the resulting mũ∗Lq
distribution is positive in all regions of phase

space and significantly exceeds the DR result in the region of positive interference

contributions, i.e. mũ∗Lq
> mg̃. In the DSI scheme, a region around the resonance is
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excluded from the phase space of the splitting kernel thereby removing the most sig-

nificant negative contributions. The effect of the phase-space restriction can be seen

in the resonant region of themũ∗Lq
spectrum, however the distribution does not fall to

zero due to additional sub-dominant contributions from qg-initiated processes with

q 6= u. In the DSII approach, all positive and negative interference contributions are

retained as a hard real-emission contribution, and only the non-resonant component

of the real-emission amplitude is used in the splitting kernel17. As a result, the DSII

distribution is less than the DS0 result in the region where negative interference

contributions are significant, becoming negative at mũ∗Lq
. mg̃. The DSI′ approach,

which also takes into account both positive and negative interference contributions,

exhibits very similar behaviour to the DSII result18.

In the limit mũ∗Lq
→ mũL , the interference term is small compared with the

non-resonant contribution, leading to the expectation that the diagram removal and

diagram subtraction approaches should yield similar results. However, we observe

that themũ∗Lq
distributions generated using diagram subtraction are suppressed with

respect to the DR result. In the DS0 and DSI schemes, the integrated splitting kernel

in the Sudakov form factor is substantially larger than in the case of diagram removal,

explaining the observed difference. In the DSII approach, the observed suppression

is instead due to the negative interference contributions, which are significant in

this case since they contribute to the distribution without being multiplied by the

Sudakov form factor. Finally for the DSI′ scheme, the suppression comes from the

modified Born configuration used in the LoopSim approach.

Considering now the pT,ũLũ∗L distribution in the lower left-hand panel of Fig-

ure 4.9, we see that in the high pT limit the four diagram subtraction procedures

are in relatively good agreement and consistently exceed the diagram removal result.

17In addition, in the DSII scheme the Born-level matrix element undergoes the modification

B → (B −
∫

(|MR|2 + 2<(MRM∗NR) − Csub)) such that the unitarity of the parton shower is

maintained. However, it has been verified that in this case the effect of the modification is small.
18It has been verified that results produced using the DSI′ and DSII methods agree well, not

only in this scenario, but also for alternative squark flavour and chirality combinations and for

different mass splittings between the squark and gluino.
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Clearly the interference term missing from the latter scheme contributes significantly

in this region. In addition, the agreement of the DS approaches implies that neg-

ative contributions to the squared real-emission matrix element are not important

in this limit. Moving to lower values of pT,ũLũ∗L , the negative contributions do how-

ever become relevant, causing the DS0 approach to overestimate the other diagram

subtraction results. The DSI′ and DSII schemes again produce very similar results,

and both exhibit behaviour consistent with the transition of the interference term

from positive to negative values. The original DSI approach, which removes all

negative and some positive contributions in the resonant region, exceeds the DSI′

and DSII results although not as significantly as the DS0 case. Finally, in the low

pT,ũLũ∗L limit, the distributions generated with the DR, DSI′ and DSII approaches

are similar. This is because the interference term is negligible in this region when

compared with the enhanced non-resonant contribution. As such, the DSII and DR

procedures should coincide exactly, while the DSI′ approach will have an additional

term proportional to
∫ pmax

T

pT≈pmin
T

2<(MRM∗
NR)dpT in the exponent of the Sudakov form

factor. This integral is insignificant when compared with the equivalent term arising

from the squared non-resonant amplitudes if all the negative contributions to the

integrand are taken into account, as is the case in the DSI′ procedure. However,

when large negative contributions are excluded, as in the DS0 and DSI procedures,

the integral can be significant resulting in a suppression of the pT,ũLũ∗L distribution

in the low pT limit. This effect is particularly significant in the DS0 scheme.

To summarize, we find that the choice of on-shell subtraction technique impacts

considerably on distributions sensitive to the Powheg corrected emission. In con-

trast to Section 4.3.2, significant differences are seen between distributions generated

using diagram removal and those which use diagram subtraction. Of the studied

diagram subtraction procedures, the DS0 and DSI approaches exhibit significant

shortcomings. Both procedures fail to take into account negative contributions to

the real-emission matrix element, which has a non-negligible impact in the Sudakov

region of the transverse momentum distribution of the corrected emission. In addi-

tion, the former approach exhibits a significant dependence on the value of Γg̃ used,

while the latter technique is sensitive to the choice of ∆. On the other hand, the DSII
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and new DSI′ schemes take into account both positive and negative contributions to

the real-emission matrix element and as a consequence result in sensible treatment of

the on-shell contributions. The DSI′ scheme will be implemented in Matchbox as

the default choice and the impact of applying matrix-element corrections using this

scheme will be studied in more detail in the next section.

4.4 Parton-level results

4.4.1 Setup

In this section, we study the impact of the Powheg style ME correction to squark-

antisquark production on hard parton-shower radiation, using the DSI′ approach to

subtract contributions from intermediate on-shell gluinos. To this end,
√
s = 14 TeV

parton-level events were simulated in which left-handed up squark-antisquark pairs

were produced. The factorization and renormalization scales were set equal to µR =

µF = min(mT,ũL ,mT,ũ∗L
) and the CTEQ6L1 PDF set was used. In matrix-element

corrected events, the regularizing width was set to Γg̃ = 10−4mg̃ and the phase

space cutoff parameter was ∆ = 0.4(mg̃ −mũL). In both corrected and uncorrected

events, the full evolution of the parton shower was generated, including the truncated

component of the shower where relevant. However, the effects of hadronization

and the underlying event were not simulated. Distributions were plotted using the

Rivet analysis framework and, unless otherwise stated, no event selection criteria

were imposed. Finally, the uncertainty on the resulting distributions due to limited

statistics is indicated with error bars, as in Section 4.3.1.

4.4.2 Effect of the correction

We begin by considering the case in which the produced up squarks are stable, and

compare in Figure 4.10 the transverse momentum distributions of the up squark-

antisquark pair generated with (blue dashed line) and without (red solid line) the

Powheg style ME correction. In the left-hand panel, results are shown for a bench-

mark scenario with (mg̃,mũL) = (700, 650) GeV. Similar effects to those seen in the
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Figure 4.10: Distributions of the transverse momentum of the up squark pair

pT,ũLũ∗L in simulations of LHC collisions at
√
s = 14 TeV. Leading-order and matrix-

element corrected Matchbox events, including simulation of the full parton shower,

are compared for benchmark scenarios with (mg̃,mũL) = (700, 650) GeV (left) and

(mg̃,mũL) = (1000, 650) GeV (right).

case of top squark-antisquark production in Figure 3.3 are also observed in this dis-

tribution. When the ME correction is applied, we see an increase in the number of

events in the high pT tail, which is caused by the hardest emission populating the

dead zone of the parton-shower phase space, and at very low values of pT,ũLũ∗L the

distribution is shifted slightly towards softer emissions. In addition to these changes,

a new effect is observed at intermediate values of the transverse momentum. The

squared real-emission matrix element used to generate the hardest emission in the

ME corrected events now has a contribution arising from the interference of res-

onant and non-resonant diagrams. No approximation of this term is included in

the parton-shower splitting kernels, and therefore when the ME correction is ap-

plied we see an increase in the number of events in the region where the resonant

amplitudes are significant. Similar effects are also seen in the right-hand panel

of Figure 4.10, which shows pT,ũLũ∗L distributions in a benchmark scenario with

(mg̃,mũL) = (1000, 650) GeV. In this case, the interference contribution in the ME

corrected distribution now has an effect at higher values of pT , close to the region

where the effect of the dead zone becomes apparent, such that the softening in the

low pT region is more pronounced.
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4.4.3 Combining corrections to squark production and decay

In analogy to Section 3.2.5, we now study the effect of applying separate and com-

bined Powheg style ME corrections to the production and decays of the up squarks.

Events were simulated as in Section 4.4.1, with the up squarks decaying via the mode

ũL → uχ̃0
1. All visible final-state particles were clustered into jets using the imple-

mentation of the anti-kT algorithm within the FastJet program, with the energy

recombination scheme and a distance parameter R = 0.4. The resulting jets were

required to have pseudorapidity and transverse momentum satisfying |ηj| < 4.9 and

pT,j > 20 GeV respectively. The missing transverse momentum in each event was

determined from the vector sum of the transverse momentum of all visible final-

state particles. Distributions of the magnitude of this quantity, Emiss
T , and the

transverse momentum of the three hardest jets, pT,ji for i = 1, 2, 3, are plotted in

Figures 4.11 and 4.12 for benchmark scenarios with (mg̃,mũL) = (2.4, 1.8) TeV and

(mg̃,mũL) = (700, 650) GeV respectively. In both cases, the mass of the neutralino

was mχ̃0
1

= 600 GeV. Results generated with no ME correction (solid red line) are

compared to those generated with ME corrections applied to the up squark decays

(blue dashed line), production (green dot-dash line) or in both stages of the event

(black dotted line). The lower panel in each plot shows the ratio of results generated

with one or both ME correction to those which were produced with no corrections.

In the scenario with (mg̃,mũL) = (2.4, 1.8) TeV, the large difference in mass

between the squark and its decay products means that up quarks produced in the

decay will typically be very energetic and form the basis of the hardest jets in the

event. Applying Powheg style ME corrections during the squark decays there-

fore has a significant impact on the pT,j1 and pT,j2 distributions in Figure 4.11,

shifting both towards higher values. This is caused by the correction softening the

hardest emission in the parton shower initiated by each decay, resulting in the de-

cay products themselves having higher transverse momentum. When instead the

Powheg style correction is applied to the production stage of the event, no sig-

nificant effect is observed. This correction effects the momentum of the combined

squark-antisquark system and has only a negligible impact on the individual mo-

menta of the up squarks. Consequently the pT distributions of the separate up
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Figure 4.11: Distributions of the transverse momentum of the first pT,j1 (upper left),

second pT,j2 (upper right) and third pT,j3 (lower left) hardest jet in each event and

the missing transverse energy Emiss
T (lower right). Results are shown for the cases

in which either no ME corrections have been applied or ME corrections have been

applied to the up squark production (using the DSI′ procedure), decays or both.

Events were generated in the benchmark scenario with (mg̃,mq̃) = (2.4, 1.8) TeV

and mχ̃0
1

= 600 GeV. Also shown are distributions generated with combined ME

corrections in the case that the gluino is decoupled.

squark decay products, pT,j1 and pT,j2 , show no change.

While similar effects are observed in the pT,j1 and pT,j2 spectra, the pT,j3 plot in

Figure 4.11 exhibits different trends. This distribution is sensitive to hard parton

shower emissions and so is shifted towards lower values when ME corrections are

applied to the decays of the up squarks. Similarly, when the correction is applied

during the production stage of the event the pT,j3 distribution is again softened,
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reflecting the tendency of the uncorrected parton shower to overpopulate the hard

regions of the shower phase space. In the high pT region, the corrected distribution

begins to exceed the uncorrected result. However, the drop-off in the uncorrected

distribution, characteristic of the dead zone in the parton-shower phase space, occurs

at pT ≈ mũL and so is not evident in this case. Combining the two ME corrections

leads to further softening in the low pT region of the distribution.

Finally, in the Emiss
T distribution of Figure 4.11 we find that applying ME cor-

rection to the decays of the up squarks has a significant impact. This distribution is

largely governed by the momentum of the pair of neutralinos produced in each event

and so is shifted to higher values when this correction is applied. In contrast, no

effect is seen when the ME correction is applied in the production stage of the event,

implying that increasing the number of events in which the squark-antisquark pair

recoils against very hard ISR does not have a significant impact in this scenario.

Also shown on each plot in Figure 4.11 is the distribution obtained when both

ME corrections are applied in a benchmark scenario with mũL = 1.8 TeV and the

gluino too massive to be kinematically accessible at this centre-of-mass energy (yel-

low dot-dot-dashed line). Comparing this to the case with mg̃ = 2.4 TeV, we see

that decoupling the gluino only has a substantial effect in the tail of the pT,j3 dis-

tribution. The difference is caused by the absence of the real-emission interference

term between resonant and non-resonant diagrams when the gluino is decoupled.

While the effect is of the order of 50% in the high pT region, it amounts to only

a sub-percent change in the number of events which would pass a event selection

criterion pT,j3 > 200 GeV.

Equivalent distributions to those in Figure 4.11 are shown in Figure 4.12 for

the benchmark scenario with (mg̃,mũL) = (700, 650) GeV and mχ̃0
1

= 600 GeV.

Considering first the pT,j1 distribution in the upper left-hand panel we see that the

momentum distribution is much softer than in the previous high mass scenario. The

compressed nature of the mass splitting between the squark and neutralino means

that jets originating from the up squark decays are significantly less energetic. Nev-

ertheless, the up quarks produced in the decays still contribute significantly in the

low pT region of this distribution. Therefore, the distribution is shifted towards



4.4. Parton-level results 136

none

decay

production

combined

decoupled g̃

10−5

10−4

10−3

10−2

10−1

1

d
σ
/
d
p
T
,j
1
[f
b
/
G
eV

]

0 200 400 600 800 1000 1200 1400
0.7
0.8
0.9
1.0
1.1
1.2
1.3

pT,j1 [GeV]

R
a
ti
o

none

decay

production

combined

decoupled g̃

10−4

10−3

10−2

10−1

1

d
σ
/
d
p
T
,j
2
[f
b
/
G
eV

]

0 100 200 300 400 500 600

0.6

0.8

1

1.2

1.4

pT,j2 [GeV]

R
a
ti
o

none

decay

production

combined

decoupled g̃

10−3

10−2

10−1

1

d
σ
/
d
p
T
,j
3
[f
b
/
G
eV

]

0 50 100 150 200 250

0.6

0.8

1

1.2

1.4

pT,j3 [GeV]

R
a
ti
o

none

decay

production

combined

decoupled g̃

10−4

10−3

10−2

10−1

1

d
σ
/
d
E
m
is
s

T
[f
b
/
G
eV

]

0 200 400 600 800 1000
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Emiss
T [GeV]

R
a
ti
o

Figure 4.12: As in Figure 4.11, but for the compressed benchmark scenario with

(mg̃,mq̃) = (700, 650) GeV.

higher values when ME corrections are applied to the decays of the up squarks.

No change occurs in the high pT region, where the spectrum is mainly sensitive to

parton-shower radiation. Applying the ME correction to the production of the up

squark-antisquark pair has a much more dramatic effect. The pT,j1 distribution is

now largely governed by the distribution of the hardest parton-shower emission pro-

duced during the showering of the hard scattering process. As such, we see changes

in the distribution similar to those in Figure 4.10. The ME corrected distribution

exceeds the uncorrected one in the high pT region due to the formers ability to the

fill the parton-shower dead zone. Furthermore, an increase in the number of events

is also seen at intermediate values of pT , which is caused by the additional interfer-

ence term in the splitting kernel of the Powheg corrected emission. However, the

softening of the corrected result with respect to the uncorrected case that is present
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in the low pT region of Figure 4.10 is not evident in this distribution. This is because

the change occurs at values of the transverse momentum below the event selection

criterion pT,j1 > 20 GeV.

The changes seen in the pT,j1 distribution are observed also in the pT spectra of

the second and third hardest jet in each event, pT,j2 and pT,j3 , which will typically

originate from splittings of the hardest parton-shower emission. Similar trends to

those in pT,j1 are also evident in the distribution of the missing transverse energy

in Figure 4.12, although in this case the shift in the distribution seen when ME

corrections are applied to the up squark decays is due to increases in the pT of the

neutralinos, rather than the up quarks. In contrast to the high mass benchmark

point, the recoil of squark-antisquark pairs against hard ISR does have a substantial

effect on the shape of the distribution, with more events populating the high Emiss
T

region when ME corrections are applied to the production stage of the event.

As in Figure 4.11, results are also shown which correspond to the same bench-

mark scenario with a decoupled gluino, including ME corrections during both the

production and decays of the squarks. Decoupling the gluino has a significant im-

pact on all the distributions. The change is driven by the fact that real-emission

interference terms between resonant and non-resonant diagrams are negligible in the

case of a very high mass gluino. As such, the transverse momentum spectrum of the

Powheg corrected emission now exhibits softening in the intermediate and low pT

limits. This effect causes a 13% reduction in the number of events passing an event

selection cut of pT,j1 > 200 GeV, or equivalently Emiss
T > 200 GeV. Experimental

searches for squarks at the LHC are often interpreted in terms of simplified models

with decoupled gluinos. By doing so, the search is likely to be less sensitive to com-

pressed regions of parameter space than it would be in a scenario with a heavy but

accessible gluino.
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4.5 Summary

In this chapter we have studied the effect of applying Powheg style ME corrections

to squark-antisquark production, having extended the correction to stop-antistop

production introduced in the previous chapter to treat general squark flavours. For

the production of all squark flavours other than the stop, an additional complica-

tion arises in scenarios with mq̃ < mg̃ due to the presence of divergent real-emission

amplitudes containing an intermediate s-channel gluino. These contributions occur

also in the leading-order production of a squark and a gluino, where the gluino then

decays to a quark and an antisquark. As such, they must be removed from the real-

emission amplitude to avoid double counting. Several previously proposed methods

for removing this contribution have been implemented within the Matchbox frame-

work, along with a new approach which we have dubbed the DSI′ method. Where

possible, our implementation has been validated against results generated using the

PowhegBox program.

We have focused predominantly on left-handed up squark-antisquark pair pro-

duction and, working at parton level, have studied the different schemes for remov-

ing on-shell contributions. The sensitivity of each approach to the width of the

gluino has been studied both at the level of total cross sections and in differential

distributions. In addition, the dependence of results on restrictions applied to the

real-emission phase space, which are necessary in some schemes but nevertheless un-

physical, has also been investigated. From the information gained in these studies,

we conclude that the new DSI′ and previously proposed DSII [22] schemes provide

the most consistent and well-motivated treatments of on-shell contributions.

Having verified the behaviour of the newly proposed DSI′ scheme, the effect of ap-

plying Powheg style ME corrections using this prescription was studied. Applying

the ME correction was found to have similar effects on distributions sensitive to the

hardest parton-shower emission to those observed in stop-antistop production. We

find that there is a softening of distributions in the low transverse momentum region

and a significant increase in the number of events which contain very high transverse

momentum radiation. In addition to these effects, a previously unseen increase in

the number of events in the intermediate pT region was also observed. This feature is
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caused by additional contributions to the splitting kernel of the Powheg corrected

emission arising from the interference of resonant and non-resonant real-emission

amplitudes.

Finally, the effect of combining ME corrections during the production and de-

cay stages of the event was studied, again for the case of left-handed up squark

production. We find that both ME corrections can have a substantial effect on

distributions, but that the most marked impact occurs when the ME correction is

applied to the production of the squark-antisquark pair in scenarios featuring small

mass splittings between the different superparticles. Furthermore, we find that in

such cases the mass of the gluino impacts significantly on the shapes of distribu-

tions, and results in a more than 10% reduction in the number of events passing a

typical event selection criterion of Emiss
T > 200 GeV when the gluino is decoupled,

as compared with the case in which the gluino is heavier than the squark but easily

accessible at LHC energies.



Chapter 5

Constraining compressed SUSY

scenarios with monotop signatures

The search for monojet signatures has proven to be an effective way of constraining

the compressed regions of SUSY parameter space and other new physics scenarios.

Inspired by this approach, monotop signals of a single top quark together with miss-

ing transverse momentum have been proposed as a means of constraining a number

of BSM models, see Refs. [131, 132] for early work investigating the sensitivity of

the LHC to monotop signals using a simplified model approach. Since then mono-

tops have become increasingly well studied, see for example Refs. [133–139], and are

predicted to be observable at the LHC for a large range of new physics masses and

couplings. Consequently, experimental searches for monotop signatures have been

performed using data recorded at the Tevatron [140] and LHC [141–143], but have

found no evidence of new physics to date.

In this chapter we consider the possibility of accessing the compressed regions

of SUSY parameter space using monotop probes. The production of a superpartner

pair in association with a top quark can manifest itself as a monotop signature when

the decay of each superpartner gives rise to a small amount of missing transverse

energy and soft SM objects. We use Monte Carlo simulations to determine the

projected sensitivity of the LHC with 300 fb−1 of 14 TeV collision data to two

simplified compressed scenarios.

The chapter is organised as follows. In Section 5.1, our simplified compressed

140
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scenarios are outlined along with the technical setup for the simulation of both the

new physics signals and the relevant sources of background. Analysis strategies

based on both leptonic and hadronic monotop decays have been developed and are

detailed in Section 5.2. In Section 5.3, the results for specific benchmark scenarios

are presented and the sensitivity of monotop probes is compared with the projected

reach of alternative analysis strategies at the LHC. Finally, some concluding remarks

are given in Section 5.4.

5.1 Monte Carlo simulations

5.1.1 Signal processes

In our simplified model framework, we first consider the production of a top quark

in association with the lightest top squark t̃1 and the gluino g̃, for the case in

which both sparticles decay into the lightest neutralino χ̃0
1 and Standard Model

particles. All other superpartners are decoupled, with masses that are inaccessible

at the LHC. We consider the scenario in which the masses of the stop and gluino

are similar and not significantly larger than that of the neutralino, such that the

additional Standard Model objects produced during the superparticle decays are

soft and invisible. Monotop systems may also be produced in scenarios where the

gluino is significantly heavier than the stop, which is again not much heavier than

the neutralino. In this case, monotop production relies on the associated production

of a heavy gluino and a light top squark, the gluino decays into a top quark and

a stop, while both stops decay invisibly. Such a process occurs at tree level when

considering flavour mixings of the up-type squarks that, for instance, occurs in

minimally-flavor-violating SUSY models. Production cross sections in such models

are highly suppressed given that all flavour-violating effects are driven by the CKM

matrix, however could be enhanced in non-minimal flavour violation scenarios [144–

146]. Nevertheless, we study only the first class of models.

In addition to the case in which a top squark and top quark are produced along

with a gluino, we consider also the signal in which they are produced in association
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with the lightest neutralino1. Again, here we focus on the scenario in which the top

squark is not significantly heavier than the neutralino. For both signal scenarios,

the stop is chosen to be a maximal admixture of the left-handed and right-handed

stop gauge eigenstates. For the signal scenario in which a gluino is produced with

a top squark and top quark, the lightest neutralino is assumed to be purely bino.

When instead a neutralino is produced directly, it is assumed to be predominantly

higgsino2. This enhances the production cross section as compared with the purely

bino neutralino scenario.

Event generation for the hard scattering signal process was performed using the

MadGraph 5 [105] implementation of the MSSM model [109–112]. Using this

setup, the CTEQ6L1 PDF set [115] was convoluted with hard matrix elements de-

scribing the production of a pair of strong superpartners in association with either a

leptonically or a hadronically decaying top quark. The decays of the superparticles

and matching of the parton-level hard events with a parton shower and hadronization

infrastructure was performed with Herwig++ version 2.7 [6,7]. The accessible decay

modes of the final-state superparticles and associated branching ratios were calcu-

lated internally by Herwig++ . No 4-body modes were considered, and therefore in

the highly compressed region withmt̃1 < mb+mW+mχ̃0
1
the dominant decay channel

of the stop was3 t̃1 → c χ̃0
1. In regions of phase space where mt̃1 > mb +mW +mχ̃0

1
,

1In this scenario, the gluino is now decoupled.
2The neutralino mixing matrix is chosen such that the lightest neutralino is 99% higgsino and

1% bino. In doing so, the production cross section is enhanced while still leaving all top squark

decay modes accessible. In scenarios with a predominantly higgsino χ̃0
1, the lightest chargino and

neutralino will be near degenerate in mass. As such, the production of a top squark and bottom

quark in association with the lightest chargino will lead to a “mono b-jet” signature that could

be used to constrain the same region of parameter space as the monotop probe. This signature

provides an interesting alternative to monotop signals, however, its investigation goes beyond the

scope of this work.
3In the MSSM, the decay t̃1 → c χ̃0

1 proceeds via a loop and CKM suppressed channel only.

Therefore, the width of the top squark is sufficiently small that hadronization occurs before the top

squark decays. However, the lifetime of the top squarks is still short when compared with detector

time scales and so we assume the final observables do not differ significantly from the situation in

which the top squarks decay promptly, before hadronization.



5.1. Monte Carlo simulations 143

the decay mode t̃1 → W+bχ̃0
1 was found to dominate. For all mass scenarios con-

sidered in this study, the dominant gluino decay channel was g̃ → q q̄ χ̃0
1. Finally, a

global normalization factor of K = 1.4 was included when simulating the production

of a top squark, top quark and neutralino. This factor aims to account for the large

next-to-leading order contributions to this process [147].

Signal cross sections for the example scenarios of top squark, top quark and gluino

production with (mt̃1 = mg̃,mχ̃0
1
) = (200, 190) GeV and top squark, top quark and

neutralino production with (mt̃1 ,mχ̃0
1
) = (145, 75) GeV are given in Table 5.1. Com-

paring with the expected monojet cross sections of 12.5 pb (formt̃1 = mg̃ = 200 GeV

after imposing a typical monojet requirement on the jet transverse momentum of

pT,j > 450 GeV) and 0.7 pb (for mt̃1 = 145 GeV again after imposing a requirement

on the jet transverse momentum of pT,j > 450 GeV), one can expect these scenarios

to be sensitive to both monotop and monojet probes. However, the competitive cross

section in the case of top quark, top squark and neutralino production is strongly

affected by the composition of the neutralino. In scenarios with a lightest neutralino

that is predominately bino or wino, the cross section drops to 0.09 pb and 0.2 pb

respectively when (mt̃1 ,mχ̃0
1
) = (145, 75) GeV, with no selection criteria imposed.

In these cases, it is unlikely that monotop probes could provide comparable limits

to those derived using monojet searches.

5.1.2 Background processes

Leptonically decaying monotop states result in event topologies with a single hard

lepton, a jet originating from the fragmentation of a b-quark and missing transverse

energy. As such, the main sources of background events are the production of a tt̄

pair where one of the top quarks decays leptonically and the other one hadronically,

and the production of a single-top quark in association with a W -boson where

either the top quark or the W -boson decays leptonically. We also consider extra

background processes expected to have subdominant contributions, namely the two

other single-top production modes and W -boson plus jets, γ∗/Z-boson plus jets and

diboson production.

Turning to hadronically decaying monotops, the above signal final-state is altered



5.1. Monte Carlo simulations 144

with the hard lepton being replaced by a pair of hard jets. In this case, the dominant

contributions to the background events come from fully hadronic tt̄ events, Z-boson

plus jets events in which the Z-boson decays invisibly and W -boson plus light-

jets events in which the W -boson decays leptonically but where its decay products

escape identification4. Additionally, single-top, W -boson plus b-jets and diboson

production processes are also expected to contribute, in a less significant way, to the

total number of monotop background events.

In the simulation of the Standard Model backgrounds for both the leptonic and

hadronic monotop analyses, QCDmultijet production processes have been neglected.

We instead assume the related background contributions will be under good control

after the selection criteria detailed in Section 5.2 have been applied. Finally, no de-

tector effects other than a b-tagging efficiency (see Section 5.2) have been simulated

in this work. Consequently, all possible sources of instrumental background have

been ignored.

Parton-level production of top-antitop pairs, including the top decays, was sim-

ulated by convoluting NLO matrix elements with the CTEQ6M PDF set [115] us-

ing the PowhegBox program [5, 79, 82, 148]. These events were then matched to

Herwig++ for parton showering and hadronization. Owing to the angular-ordered

nature of the Herwig++ parton shower, it is in principle necessary to include a trun-

cated component of the parton shower which simulates emissions with a smaller

transverse momentum than those described by the NLO matrix elements, but a

larger value of the shower evolution variable. However, the corresponding effects

are typically small and so here have been omitted5. The same machinery was used

to generate single-top events [130, 149], suppressing resonant contributions related

4The production of a hadronically decaying W -boson in association with jets does not induce a

significant background contribution due to the small expected amount of missing transverse energy

in this case.
5As was found in Chapter 3, some modification of the default Herwig++ shower setup is required

to render the direct showering of externally generated Powheg events equivalent to the case in

which no truncated shower is simulated. These modification have not been included in the following,

however it has been verified that excluding them has negligible impact on the number of events

passing the event selection criteria.
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Process σ[pb] NSRL1
event NSRL2

event NSRH1
event NSRH2

event

W (→ lν) + light jets 67453 ≈ 0 3150 4500 9030

γ∗/Z(→ ll̄) + jets 26603 ≈ 0 ≈ 0 - -

γ∗/Z(→ νν̄) + jets 12387 ≈ 0 ≈ 0 23160 36390

tt̄ 781 43230 292500 35190 80040

Single top [t-channel] 7320 36.6 4650 250.8 762

Single top [s-channel] 312 6.3 244.8 35.7 75.3

tW production 2313 4890 42570 3480 7560

Wbb̄ with W → lν 3660 ≈ 0 549 134.1 158.7

Diboson 158 31.5 268.8 205.5 315

Total background 107834 48190 343900 66960 134330

(mg̃ = mt̃1 ,mχ̃0
1
) = (200, 190) GeV 2.54 8430 17280 12690 14700

(mt̃1 ,mχ̃0
1
) = (145, 75) GeV 2.37 3180 7773 6796 9840

Table 5.1: Cross sections for the simulated background processes and two represen-

tative signal scenarios, including an NLO K-factor of 1.4 for the signal scenario in

which the stop and top are produced in association with a neutralino. Also shown are

the number of events, Nevents, surviving all selection criteria in the leptonic (SRL1,

SRL2) and hadronic (SRH1, SRH2) signal regions. Results correspond to 300 fb−1

of LHC collisions at a centre-of-mass energy of 14 TeV.

to the tW mode following the diagram subtraction prescription of Ref. [130], as

implemented in the PowhegBox.

In order to simulate the production of aW -boson with light-flavour jets (u, d, s, c)

or a γ∗/Z-boson with both light and heavy-flavour jets (u, d, s, c, b), the Sherpa 2.0

[150,151] package was used. We have followed the MENLOPS prescription to match

an event sample based on NLO matrix elements related to the production of a single

gauge boson to LO samples describing the production of the same gauge boson with

one and two extra jets [152,153]. In all cases, the vector bosons were forced to decay
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either leptonically or invisibly, including all three flavours of leptons, and matrix

elements were convoluted with the CTEQ6M PDF set. Moreover, the invariant

masses of lepton pairs produced via a γ∗/Z-boson s-channel diagram were required

to exceed 10 GeV.

The production of a W -boson with heavy-flavour jets was simulated separately

using MadGraph 5 and its built-in Standard Model implementation. We have

generated LO matrix elements that have been convoluted with the LO PDF set

CTEQ6L1. Parton-level events were simulated including the leptonic decay of the

W -boson and then showered and hadronized with Herwig++.

Finally, diboson production was simulated at NLO accuracy and matched to

the Herwig++ parton shower using its built-in Powheg implementation [154]. In

this case, the component of radiation corresponding to the truncated shower was

included, and the matrix elements were convoluted with the CTEQ6M PDF set.

The total cross sections for all considered background processes are shown in

Table 5.1.

5.2 Event selection strategies

5.2.1 Object reconstruction

The objects used as inputs for the leptonic and hadronic monotop search strategies

of the next two subsections were reconstructed as in typical single-top studies per-

formed by the ATLAS collaboration (see for example Ref. [155]). Electron (muon)

candidates were required to have transverse momentum pT,` > 10 GeV, pseudo-

rapidity satisfying |η`| < 2.47 (2.5) and to be isolated, such that the sum of the

transverse momenta of all charged particles in a cone of radius6 ∆R < 0.2 centered

on the lepton was less than 10% of its transverse momentum.

Jets were reconstructed from all visible final-state particles with pseudorapidity

satisfying |η| < 4.9 by applying an anti-kT jet algorithm [99] with a radius param-

6The angular distance between two particles is defined as ∆R =
√

∆φ2 + ∆η2, where ∆φ and

∆η are their differences in azimuthal angle and pseudorapidity respectively.
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eter R = 0.4, as implemented in the FastJet program [92]. Reconstructed jet

candidates were required to not overlap with candidate electrons within a distance

of ∆R < 0.2, and to have transverse momentum pT,j > 20 GeV and pseudorapidity

|ηj| < 2.5. Any lepton candidate within a distance ∆R < 0.4 to the closest of the

selected jets was then discarded. We further identified jets as originating from a

b-quark if their angular distance to a B-hadron satisfies ∆R < 0.3 and imposed a

pT -dependent b-tagging probability derived from the data in Ref. [123]. This corre-

sponds to an average efficiency of 70% in the case of tt̄ events.

5.2.2 Leptonic monotops

The preselection of events possibly containing a leptonically decaying monotop sig-

nal was designed to reflect the expected final-state particle content. As such, events

were required to contain exactly one lepton candidate with transverse momentum

pT,` > 30 GeV and one b-jet with transverse momentum pT,b > 30 GeV. To re-

flect the expectation that the produced superparticles (and their decay products)

are largely invisible, any event containing an extra jet with transverse momentum

pT,j > min(pT,b, 40 GeV) was discarded. After these basic requirements, a number

of additional selection steps were implemented in order to increase the sensitivity s

of the analysis to the signal, where s = S/
√
S +B and S and B are the number of

signal and background events passing all selection criteria, respectively. Two signal

regions were defined, SRL1 and SRL2, with the former dedicated to the high mass

regions of the superparticle parameter space and the latter to the low mass regions.

Starting with the signal region SRL1, the missing transverse momentum pmiss
T

in the event, determined from the vector sum of the transverse momenta of all

visible final-state particles, was required to have a magnitude Emiss
T > 150 GeV. The

orientation of the missing transverse momentum with respect to the identified lepton

was also constrained by imposing a minimum value for theW -boson transverse mass,

mW
T =

√
2pT,`Emiss

T

[
1− cos (∆φ(`,pmiss

T ))
]
, (5.2.1)

where ∆φ(`,pmiss
T ) is the difference in azimuthal angle between the lepton and the

missing transverse momentum. Selected events were required to satisfy mW
T >



5.2. Event selection strategies 148

120 GeV. This is motivated by the observation that the peak of the mW
T distri-

bution occurs at lower values in events in which the missing transverse momentum

originates solely from the leptonic decay of a W -boson than it does when both a

neutrino from the W -boson decay and a pair of invisible sparticles contribute to

pmiss
T (like in the signal case). This last selection ensures that the non-simulated

QCD multijet background is negligible [156,157].

The second signal region, SRL2, was optimized for lower mass scenarios where

Emiss
T is typically very small due to a low neutralino mass. Instead of constraining

the individual quantities Emiss
T and mW

T , events satisfying

Emiss
T +mW

T > 220 GeV, (5.2.2)

were instead selected. In doing so, signal events with low values of Emiss
T are retained

by the selection process provided they have a suitably large value of mW
T . This

ensures that the QCD multijet background contributions are small [158].

In both search strategies, the following additional selection criteria were imposed.

Firstly, in order to reduce the number of background events in which the identified

lepton and b-jet did not originate from a single top quark, a restriction on the

invariant mass of the lepton plus b-jet system was imposed,

mb` =
√

(pb + p`)2 < 150 GeV. (5.2.3)

This leads to a reduction in background contributions from semi-leptonically decay-

ing tt̄ and s-channel single-top events in which one of the b-jets was not identified.

Finally, a minimum value for the invariant mass of the monotop system, or equiv-

alently for the invariant mass of the system comprised of the missing transverse

momentum, the identified lepton and b-jet,

m
(
pmiss
T , `, b

)
=
√

(pmiss
T + p` + pb)2 > 700 GeV, (5.2.4)

was enforced.

5.2.3 Hadronic monotops

In the hadronic case, final states arising from the production of a pair of strong

superpartners together with a top quark contain one heavy-flavour and two light
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jets associated with the top decay, as well as missing transverse energy and extra

soft objects arising from the decays of the superparticles. Therefore, events that

contained no candidate leptons and exactly one b-jet with pT,b > 30 GeV were

selected. In addition, we have demanded the presence of exactly three light jets in

each event. This requirement was found to slightly increase the analysis sensitivity

over the case in which only two light jets were required.

Two search strategies referred to as SRH1 and SRH2 were designed, the former

to be sensitive to scenarios with higher superparticle masses and the latter to lower

mass cases. The missing transverse energy in events was required to satisfy Emiss
T >

200 GeV and Emiss
T > 150 GeV in the SRH1 and SRH2 regions respectively. While an

even looser missing energy selection might increase the sensitivity in the SRH2 case,

this would no longer ensure sufficient control of the non-simulated QCD multijet

background and furthermore not be sensible in the context of event triggers. To

improve the trigger efficiency associated with the SRH2 region, the hardest non b-

tagged jet in each event was required to fulfil pT,j1 > 80 GeV, such that a trigger

based on the selection of a hard jet in association with missing transverse energy

may be used. In contrast, no selection on the hardest jet was imposed for the SRH1

region, since it is likely that triggers based on the amount of missing transverse

energy only could be used in this case.

A number of selection criterion were imposed for both strategies to improve the

sensitivity of the analysis. Firstly, the invariant mass of a light dijet system, mjj,

was required to be consistent with the mass of the W -boson,

50 GeV < mjj < 100 GeV, (5.2.5)

where the pair of light jets was chosen such that the quantity |mW − mjj| was
minimized. This pair of light jets was then combined with the b-tagged jet to

fully reconstruct the hadronically decaying top quark, and the resulting system was

constrained to have an invariant mass in the range

100 GeV < mbjj < 200 GeV. (5.2.6)

This eliminates a large number of background events which do not contain a hadron-

ically decaying top quark. In particular, it leads to a significant reduction of the W -
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and γ∗/Z-boson plus jet background contributions.

Next, several restrictions were applied based on the kinematic configuration of

the events. The azimuthal angle between the missing transverse momentum and

both the b-tagged and hardest non b-tagged jet in the event were required to be

suitably large,

∆φ
(
pmiss
T ,pj1

)
> 0.6 and ∆φ

(
pmiss
T ,pb

)
> 0.6 . (5.2.7)

These selection criteria were designed to rejected events in which the missing trans-

verse energy originates from the mismeasurement of jets or semi-leptonic decays

of heavy-flavour hadrons. Including these requirements is also expected to reduce

background contributions originating from QCD multijet events with large instru-

mental missing transverse energy. Finally to reflect the topology of signal events,

the reconstructed top quark was required to be well separated from the missing

transverse momentum, with the difference in azimuthal angle exceeding

∆φ
(
pmiss
T ,pt

)
> 1.8 . (5.2.8)

5.3 Results

5.3.1 Leptonic monotops

The numbers of events populating both leptonic monotop signal regions defined in

Section 5.2.2 are listed in the third and fourth columns of Table 5.1 separately for

the different background contributions and for the two compressed spectra scenarios

mentioned in Section 5.1.1. The first of these scenarios is a representative high mass

setup for top squark, top quark and gluino production where the relevant masses

are (mt̃1=mg̃,mχ̃0
1
) = (200, 190) GeV. The second is an example low mass scenario

with (mt̃1 ,mχ̃0
1
) = (145, 75) GeV where the gaugino produced in association with

the top squark and top squark is now the lightest neutralino. The SRL1 analysis

strategy is illustrated in Figure 5.1 where we present the mW
T (left panel) and Emiss

T

(right panel) distributions after applying all SRL1 selection requirements, except

mW
T > 120 GeV and Emiss

T > 150 GeV respectively. Results are shown for the two
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Figure 5.1: Distributions of the W -boson transverse mass mW
T (left) and the miss-

ing transverse energy Emiss
T (right), normalized to 300 fb−1 of LHC collisions at a

centre-of-mass energy of
√
s = 14 TeV. Results are shown for the dominant back-

ground contributions after all selection criteria defining the SRL1 region have been

applied, except mW
T > 120 GeV (left) and Emiss

T > 150 GeV (right). Also shown are

the spectra for the example signal scenarios of Section 5.1.1.

considered signal scenarios and the prevailing components of the Standard Model

background, i.e. for tt̄, tW and single-top (in the s- and t-channel) production.

The mW
T distributions for the background contributions exhibit peaks in the

region mW
T ' 80 GeV, which correspond to events in which both the lepton and all

the missing transverse momentum originate from aW -boson decay. In contrast, both

signal distributions feature a suppression for mW
T < 120 GeV, which motivates the

mW
T selection criterion of the SRL1 strategy. Despite the large number of remaining

background events, the sensitivity of the SRL1 analysis to the high mass (t̃1, t, g̃)

and low mass (t̃1, t, χ̃
0
1) signal scenarios reaches 36σ and 14σ respectively. The

SRL1 search strategy was designed to probe higher mass spectra, and so is by

construction less sensitive to scenarios with light neutralinos where a comparatively

smaller amount of Emiss
T is present, as seen in the right panel of Figure 5.1. This drop

in the sensitivity is alleviated through the inclusion of the SRL2 analysis strategy.

This strategy exhibits a reduced sensitivity to the high mass benchmark point of

29σ. The sensitivity to the lower mass (t̃1, t, χ̃
0
1) example scenario is in fact also

slightly reduced to 13σ. However, it has been confirmed that in even less compressed

scenarios the sensitivity of the SRL2 analysis exceeds that of the SRL1 analysis, a
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Figure 5.2: LHC sensitivity to a leptonically decaying monotop signal induced by

a compressed supersymmetric scenario, adopting either the SRL1 (left) or SRL2

(right) search strategy. Results are shown in the (mt̃1 ,mχ̃0
1
) plane for (t̃1, t, g̃) pro-

duction in scenarios with mt̃1 = mg̃. Results are based on the simulation of 300 fb−1

of LHC collisions at a centre-of-mass energy of
√
s = 14 TeV.

feature that is evident in the discovery bounds presented in Figure 5.3.

To study more extensively the LHC sensitivity to different compressed super-

symmetric scenarios, we perform a scan of the (mt̃1 ,mχ̃0
1
) plane, enforcing mt̃1 = mg̃

for the (t̃1, t, g̃) signal scenario, and derive contours corresponding to different ob-

servation boundaries. The 5σ and 3σ regions for top quark, top squark and gluino

production are shown respectively by solid and dashed red lines in Figure 5.2 for the

SRL1 (left panel) and SRL2 (right panel) search strategies. Equivalent boundaries

are shown in Figure 5.3 for the case of direct neutralino production in association

with a top and stop. As a result of the design, the SRL1 analysis is found to be

more sensitive to higher mass setups for both signal scenarios. Conversely, the SRL2

search strategy is more sensitive to scenarios featuring smaller superpartner masses

and possibly less compressed spectra, as can be seen for both (t̃1, t, g̃) and (t̃1, t, χ̃
0
1)

production with the latter exhibiting a more significant improvement in the less

compressed regions of parameter space.
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Figure 5.3: LHC sensitivity to a leptonically decaying monotop signal induced by

a compressed supersymmetric scenario, adopting either the SRL1 (left) or SRL2

(right) search strategy. Results are shown in the (mt̃1 ,mχ̃0
1
) plane for (t̃1, t, χ̃

0
1)

production with 300 fb−1 of LHC collisions at a centre-of-mass energy of
√
s =

14 TeV.
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Figure 5.4: Distributions of the invariant mass of the reconstructed top quark mbjj,

normalized to 300 fb−1 of LHC collisions at a centre-of-mass energy of
√
s = 14 TeV.

Results are shown for the dominant background contributions after all selection

criteria defining the SRH2 region have been applied, except mbjj ∈ [100, 200] GeV.

Also shown are the spectra for the example signal scenarios of Section 5.1.1.
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5.3.2 Hadronic monotops

We again focus on the high mass and low mass example scenarios of Section 5.1.1

and apply the hadronic monotop selection requirements outlined in Section 5.2.3.

The number of signal events populating the SRH1 and SRH2 regions are given in

the fifth and sixth columns of Table 5.1, together with the different background

contributions. The results indicate that the Standard Model background is largely

composed of events originating from tt̄, γ∗/Z-boson plus jets, tW andW -boson plus

light jet production for both search regions.

Our hadronic monotop selection strategy is illustrated in Figure 5.4 which shows

the distribution of the invariant mass of the reconstructed top quark after applying

all SRH2 requirements, except the one on mbjj. Results are shown for the two

considered signal scenarios and the dominant background sources. In principle, the

W -boson plus light jet results should also be represented. However, only a very

small fraction of the ∼ 108 simulated events pass all selection criteria, so that after

normalizing to the large associated total cross section and an integrated luminosity

of 300 fb−1 the resulting statistical uncertainty is important. The W -boson plus

light jets curve has therefore been omitted.

From Figure 5.4 we see that imposing the constraint mbjj ∈ [100, 200] GeV will

retain the majority of the signal events while reducing the number of background

events, particularly in the case of γ∗/Z plus jets production for which the distribution

does not peak significantly at the top mass. As such, after applying this final

selection criterion the sensitivity of the SRH2 strategy to the high mass (t̃1, t, g̃) and

low mass (t̃1, t, χ̃
0
1) signal benchmark points is found to be 38σ and 26σ respectively.

The SRH1 strategy has a significantly improved sensitivity to the high mass scenario

of 45σ, whilst the sensitivity to the low mass point drops slightly to 25σ.

As in Section 5.3.1, we perform a scan in the (mt̃1 ,mχ̃0
1
) plane, with the equality

mt̃1 = mg̃ enforced for the case of (t̃1, t, g̃) production. The results are given in

Figures 5.5 and 5.6 which show the 5σ and 3σ contours found after applying the

SRH1 (left panel) and SRH2 (right panel) search strategies for (t̃1, t, g̃) and (t̃1, t, χ̃
0
1)

production respectively. By design, the SRH1 analysis has an enhanced sensitivity to

compressed scenarios with relatively large sparticle masses, while the SRH2 strategy
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Figure 5.5: Same as Figure 5.2, but for the SRH1 (left) and SRH2 (right) search

strategies.
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Figure 5.6: Same as Figure 5.3, but for the SRH1 (left) and SRH2 (right) search

strategies.

is instead more tuned to situations with smaller superparticle masses and a less

compressed spectrum. The reach of SRH2 improves over that of SRH1 in the low

mass region of parameter space for the case of (t̃1, t, χ̃
0
1) production. However, no

significant extension of the observation boundaries is seen in the case of (t̃1, t, g̃)

production in Figure 5.5.

Finally, we note that the contours derived by considering hadronic monotop

decays in (t̃1, t, g̃) production exceed the limits set by the leptonic monotop search

strategies in all regions of the (mt̃1 ,mχ̃0
1
) plane. For the case of (t̃1, t, χ̃

0
1) production,

hadronic monotop decays provide the most extensive reach in high mass scenarios,
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while considering leptonic decays leads to more stringent limits in low mass and less

compressed regions of the (mt̃1 ,mχ̃0
1
) plane.

5.3.3 Comparison to existing bounds

For the signal scenario in which a gluino is produced in association with the top

squark and top quark, the search strategies presented here have the capability of

discovering a significant region of the (mt̃1 ,mχ0
1
) plane. However, these scenarios are

in fact already excluded. By requiring mg̃ = mt̃1 the signal is subject to constraints

derived from direct LHC searches for light gluinos [37, 159]. These rule out at the

95% confidence level the existence of gluinos with mass less than O(600) GeV in

highly compressed scenarios. Even with 300 fb−1 of LHC collisions at a centre-

of-mass energy of
√
s =14 TeV, our monotop based search strategy does not have

comparable sensitivity to these higher mass gluino scenarios.

For our second signal scenario in which a top squark and top quark are produced

in association with the lightest neutralino, the gluino mass bounds are no longer

applicable. As such, we investigate whether the monotop based search strategy

presented here can place competitive exclusion limits when compared with previously

exploited analysis strategies that, for example, search for monojet events or make

use of charm-flavour identification techniques. To do so, we approximate the 95%

CL exclusion limit of our search strategy with the 2σ discovery bound, and plot

this contour in the left-hand panel of Figure 5.7 for the combined hadronic monotop

search strategies7. Superimposed on Figure 5.7 are the current 95% CL exclusion

limits set by the ATLAS [160] and CMS [161] collaborations. We see that our

monotop based search strategy can provide comparable exclusion bounds in the

region with mt̃1 < mχ̃0
1

+ mb + mW . However, we note that our bounds make use

of 300 fb−1 of LHC data at
√
s = 14 TeV while the existing limits are based on

O(20) fb−1 of data recorded at
√
s = 8 TeV.

The right-hand panel of Figure 5.7 instead shows a comparison between the 5σ

7We find in this case that the discovery bounds derived from studying hadronic monotop decays

exceed those set by leptonically decaying monotops searches in all regions of the parameter space.



5.3. Results 157

150 200 250 300

mt̃1
[GeV]

50

100

150

200

250

300

350

m
χ̃

0 1
[G

eV
]

mt̃1
< m

χ̃0
1

+mc

CMS: 95% CL, 19.7fb−1

ATLAS: 95% CL, 20.0fb−1

Monotop: 2σ, 300 fb−1

150 200 250 300

mt̃1
[GeV]

50

100

150

200

250

300

350

m
χ̃

0 1
[G

eV
]

mt̃1
< m

χ̃0
1

+mc

CMS projected: 5σ, 300fb−1

Monotop: 5σ, 300fb−1

Figure 5.7: Left: Comparison of the current 95% CL exclusion boundaries set by

the ATLAS and CMS collaborations with O(20) fb−1 of data recorded at
√
s =

8 TeV and the 2σ sensitivity of the LHC to a monotop signal arising from (t̃1, t, χ̃
0
1)

production for 300 fb−1 of LHC collisions at a centre-of-mass energy of
√
s = 14 TeV.

Right: Comparison of the 5σ sensitivity of the LHC to hadronically and leptonically

decaying monotop signals arising from (t̃1, t, χ̃
0
1) production and the extrapolated 5σ

discovery bound derived from a CMS search for stops in events with electrons and

muons. Both results correspond to 300 fb−1 of LHC data at
√
s = 14 TeV.

discovery reach of our monotop analysis8 and the 5σ discovery boundary arising from

a CMS search for top squarks in events with final-state electrons or muons [162],

extrapolated to 300 fb−1 of LHC data taken at
√
s = 14 TeV [163]. For the latter,

we show the boundary corresponding to the less conservative scenario where the

uncertainty on the background is assumed to be dominated by the statistical preci-

sion. Here we observe that the monotop analysis sets stronger limits in the region

mt̃1 ≈ mχ̃0
1

+ mb + mW for mt̃1 . 150 GeV. However, the comparison is again not

ideal given that extrapolated boundaries are not available for the search strategies

that set the most stringent limits in the compressed regions of phase space with
√
s = 8 TeV data.

8We show the result obtained by combining the hadronic and leptonic monotop search strategies

in the most naïve way, making use of the most sensitive strategy at each parameter space point.

While a more sophisticated combination might expand the observation boundaries, our simplistic

approach provides a conservative estimate.
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5.4 Summary

In this chapter we have investigated the feasibility of using monotop probes to

constrain supersymmetric scenarios with near mass-degenerate accessible sparticles.

We have considered the production of a pair of superparticles in association with a

top quark in LHC collisions at a centre-of-mass energy of 14 TeV. Since the sparticle

mass spectrum is compressed, both superpartners decay into missing transverse

energy carried by the lightest neutralino and a collection of Standard Model objects

too soft to be reconstructed. The resulting new physics signal consequently consists

of a monotop signature.

Both the leptonic and hadronic decays of the top quark have been investigated

and two pairs of analysis strategies, respectively dedicated to the low and high mass

regions of the parameter space, have been designed.

It was found that monotop signals arising from the production of a top squark,

top quark and gluino in a compressed supersymmetric setup are in principle reach-

able with 5σ sensitivity at the future Run 2 of the LHC. With a luminosity of

300 fb−1, scenarios in which the top squark and gluino have masses below 380 GeV

are discoverable. As such, we find the monotop based search strategy is not com-

petitive with current bounds set by direct searches for light gluinos.

In addition, we have studied the production of a top squark and top quark in

association with the lightest neutralino. In this case, 5σ sensitivity is obtained for

compressed scenarios with mt̃1 . 200 GeV and also in the region mt̃1 ≈ mχ̃0
1

+

mb + mW for mt̃1 . 150 GeV. The latter region is not excluded by any existing

extrapolations of current searches to 300 fb−1 of
√
s = 14 TeV data.



Chapter 6

Summary and conclusions

In this thesis we have presented an implementation of matrix-element corrections

based on the Powheg formalism through which QCD real-emission matrix ele-

ments may be consistently matched with parton-shower algorithms. These correc-

tions have been implemented within the Herwig++ Monte Carlo event generator for

a wide range of decays that occur in most of the well studied new physics scenarios

and for the production of squark-antisquark pairs at the LHC. In the latter case,

a number of methods for removing real-emission contributions with on-shell inter-

mediate gluinos have been implemented, including a new variation of the diagram

subtraction procedure.

Applying matrix-element corrections to the decays of new particles was found to

reduce the transverse momentum of distributions sensitive to the hardest emission

in the decay-initiated parton shower, correcting the tendency of the parton-shower

splitting kernels to overpopulate some hard regions of phase space. A similar effect

was observed for the matrix-element correction to squark-antisquark production,

augmented with a substantial increase in the number of events containing very high

transverse momentum parton-shower jets. The latter effect is caused by the matrix-

element correction populating the dead zone in the parton-shower phase space.

For the case of squark-antisquark production, we have separately studied the

effect of applying matrix-element corrections to the production and decay stages

of the event, along with the impact of combining the two corrections. This was

studied both at parton level and in the context of an existing ATLAS search for the
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direct production of top squarks at the LHC. In either case, it was found that cor-

rections to the squark production and decays were both important in scenarios with

well separated superparticle mass spectra, while in compressed regions of parameter

space the effect of the former correction dominates. In addition, by applying these

corrections we achieve good agreement with the original ATLAS analysis which was

performed using matrix-element merging. The agreement between the two signal

simulation strategies gives us further confidence in the limits being set using this

analysis.

The matrix-element corrections to the decays of BSM particles are provided

in Herwig++ version 2.7 onwards, while corrections to the production of Stan-

dard Model particles will become available in Herwig++ version 3.0. The matrix-

element correction to squark-antisquark production will, however, not be included

in this version. Instead, it will be made available once the capability to include

Powheg style matrix-element corrections for a range of new physics production

processes is present. In this sense, the correction to squark-antisquark production

presented in this thesis marks the beginning of an exciting new implementation of

higher-order corrections to BSM particle production within the Herwig++ event gen-

erator. Furthermore, as NLO virtual corrections to new physics processes become

available in independent matrix-element generators, our correction may be easily

promoted to the full Powheg correction using existing elements of the Match-

box framework.

Finally, we have also investigated a novel alternative strategy for accessing com-

pressed regions of the supersymmetric parameter space which relies on the produc-

tion of a monotop signature. We have designed search strategies for both leptonic

and hadronic monotop decays and found them to be sensitive to scenarios with small

splittings between the masses of accessible superparticles.
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A.1 Matrix-element corrections in the Matchbox

framework

In the following, we expand on the discussion in Section 1.4.4 and give a more in-

depth description of our Powheg style ME correction as it is implemented within

the Matchbox framework. Details are given for the case of LoopSim corrections in

which the phase space of the hardest emission is divided into shower and hard real-

emission components, and the weight of the Born configuration has been modified to

restore the unitarity of the parton shower. The formulae relevant to ME corrections

without phase-space division can be obtained from those below by setting RH = 0.

Including the LoopSim correction, the inclusive cross section for the hardest

emission is

dσME

= B′ (Φn) dΦn

[
∆
(
pmax
T , pmin

T

)
+ dΦR

RS (Φn+1)

B (Φn)
∆ (pmax

T , pT )

]
+RH (Φn+1) dΦn+1,

(A.1.1)

where
(A.1.2)B′(Φn) = B(Φn)−

∫ pmax
T

pmin
T

dΦRRH (Φn+1) .

Beginning with the third term in Eq. A.1.1, which corresponds to the finite real

contribution, we have in more detail,

RH (Φn+1) dΦn+1 = dσRθcuts(Φn+1)dΦn+1−
∑

α

dσRwα
[
f(pαT , p

max
T , phard

T )θ(pαT −pmin
T )

+ θ(pmin
T − pαT )

]
θcuts(Φ

α
n)dΦn+1.

(A.1.3)

Taking each component of Eq. A.1.3 in turn:

• dσR is the NLO real-emission contribution to the differential hadronic cross

section,

dσR =
|MR|2

2sR
xRa x

R
b f

h1
a (xRa , µ

R
F ) fh2b (xRb , µ

R
F ), (A.1.4)

where MR and sR are the amplitude and partonic centre-of-mass energy of

the real-emission process. The PDF factors are represented by fh1a (xa, µF ) and
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fh2b (xb, µF ), where xa and xb are the momentum fractions of the incoming par-

tons and µF is the factorization scale. The values of the momentum fractions

and factorization scale can differ between the Born and real-emission configu-

rations. We use superscripts R and B to indicate whether the quantities have

been evaluated with the real-emission or Born kinematics respectively. Along

with the momentum fraction, the flavour of one of the initial-state partons

may also change during the splitting. Parton flavours before and after the

emission are indicated by primed and unprimed subscripts respectively.

• The n+ 1 parton phase-space element is defined as

dΦn+1 =
dxRa
xRa

dxRb
xRb

(2π)4 δ4

(
√
sR −

n+1∑

i=1

pi

)
n+1∏

i=1

d3~pi
2Ei(2π)3

, (A.1.5)

where pi = (Ei, ~pi) is the momentum of the outgoing particle i.

• The weight of each splitting channel is

wα =
Dα∑
β Dβ

, (A.1.6)

where Dα is a dipole function that encapsulates the singular structure of the

real-emission matrix element in the splitting channel α. Dipoles based on the

Catani-Seymour formalism [55,56] have been implemented within the Match-

box framework. However for the case of ME corrections, the full dipole func-

tions are not required since it is never necessary to integrate them analytically

over the phase space of the unresolved parton. As such, simple functions of

the momenta of the emission pj, the emitting particle pi and the spectator

particle pk have been used for the dipole functions in Eq. A.1.6. When the

emitted parton is a gluon

Di = C
pi.pk

pi.pj(pi.pj + pj.pk)
, (A.1.7)

where the colour factor is C = (N2
c − 1)/2Nc (C = Nc) when the emitting

particle transforms under the fundamental (adjoint) representation of SU(Nc).

When instead the emitted parton is a quark or antiquark, the form of the dipole

is

Di =
C

pi.pj
, (A.1.8)
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where here the colour factor is C = 1
2
, the trace invariant of the fundamental

representation of SU(Nc).

• Mapping between the n + 1 and n particle configurations is done using the

schemes described in Refs. [116] and [117] for massless and massive final-state

particles respectively. A different mapping prescription is required for each

type of splitting channel, and therefore the transverse momentum of the emis-

sion, pαT , depends on the particular channel through which the emission took

place.

• The function f(pαT , p
max
T , phard

T ), as defined in Section 1.4.3, specifies the re-

stricted phase space of shower-type hardest emissions. The sharp, hfact and

resummation profiles are all available in the Matchbox framework. Phase-

space restriction with the resummation profile is applied by default when either

the full Powheg or Powheg style ME correction is used in the simulation.

• Finally, θ(pαT − pmin
T ) imposes an IR cutoff on the transverse momentum of the

additional emission and θcuts(Φ
α
n) (θcuts(Φn+1)) indicates any event selection

criteria that have been applied to the Born (real-emission) configuration during

event generation.

Within the Matchbox framework, the contribution in Eq. A.1.3 is contained

within a SubtractedME object. The first term in Eq. A.1.3, corresponding to the

full real-emission contribution, is the head object, while each term in the sum over

α provides a separate dependent object. The first term in the dependent object

subtracts the double counted contribution from the parton-shower splitting kernel.

The second term corresponds to the bridging cross section and is included to cancel

the full real-emission contribution in the divergent regions of phase space.

The modified Born configuration in Eq. A.1.2 contains both the true Born con-

tribution, defined in direct analogy to the first term in Eq. A.1.3, and an additional

term which ensures that the total integrated cross section is unaffected by the ad-
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ditional parton-shower emission. The exact form of the integrand of this term is

(A.1.9)
RH (Φn+1) dΦR =

∑

α

dσRwα
[
θ(pαT − pmin

T )

− f(pαT , p
max
T , phard

T )θ(pαT − pmin
T )

]
θcuts(Φ

α
n)
dΦn+1

dΦn

,

where dΦn is defined as in Eq. A.1.5 with the replacements n+ 1→ n, sR → sB and

xRa , xRb → xBa′ , xBb′ .

The contribution in Eq. A.1.9 is also included in Matchbox as a SubtractedME

object. Each term in the sum again provides a separate dependent contribution and

no head object is present in this case. To improve efficiency, the summation over α

is performed as a Monte Carlo sum. This requires only a single real-emission phase

space configuration to be generated. By contrast, in the conventional approach a

point in the n+1 body phase space must be generated for each of the possible split-

ting channels that, starting from a given Born configuration, give rise to the required

real-emission configuration. Consequently, this approach is more computationally

expensive.

Finally, the splitting kernel appearing in Eq. A.1.1, which is also used in the

Sudakov form factor, is more precisely expressed as

(A.1.10)

RS

B dΦR =
∑

α

[
wαf(pαT , p

max
T , phard

T )
αs(p

α
T )αs(µ

B
R)k

αs(µRR)k+1

|MR|2
|MB|2

· f
h1
a (xRa , p

α
T ) fh2b (xRb , p

α
T )

fh1a′ (xBa′ , p
α
T ) fh2b′ (xBb′ , p

α
T )
θ(pαT − pmin

T )
dΦα

n+1

dΦn

]
,

where k is the order in αs of the Born cross section. The ratio of coupling constants

in Eq. A.1.10 cancels with those included implicitly in the ratio of squared matrix

elements and leaves an overall factor of αs(p2
T ). By using transverse momentum as

the argument of the strong coupling constant in the parton shower, a subleading

but numerically relevant class of logarithms are resummed [69], see Ref. [6] for more

details of this scale choice in the context of the Herwig++ event generator. The ratio

of PDF functions in Eq. A.1.10 simplifies to unity in the case of final-state emissions,

and for initial-state emissions guides the evolution of the backwards parton shower

as described in Section 1.3.2.
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In Matchbox, the splitting kernel for the hardest emission is computed in the

MEMatching class for both Powheg and Powheg style ME corrections. This class

inherits from a more general ShowerApproximation object which facilitates the

division of the phase space of the hardest emission. The generation of the hardest

emission is performed by the ShowerApproximationGenerator.
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B.1 Validation of matrix-element corrections to q̃q̃∗

production
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Figure B.1: Comparison of md̃Rd̃
∗
R
, pT, d̃R , pT, d̃Rd̃∗R and md̃∗Rq

distributions generated

using the Matchbox and PowhegBox implementations of Powheg style ME

corrections with the DS0 diagram subtraction scheme. The mass of the down squark

and gluino were md̃R
= 1.8 TeV and mg̃ = 1.9 TeV.

With the aim of further validating our Matchbox implementation of ME correc-

tions to squark-antisquark production, here we present additional plots comparing

distributions generated using Matchbox to those produced with the Powheg-

Box program. Events were generated as in Section 4.2.3, using the DS0 approach

to remove real-emission contributions with on-shell gluinos. Analogous plots to those

in Figure 4.4 are shown in Figures B.1, B.2 and B.3 for d̃Rd̃∗R, c̃Rc̃∗R and s̃Ls̃∗L produc-

tion respectively. In the first two cases, the mass hierarchy between the squark and
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gluino was (mg̃,mq̃) = (1.9, 1.8) TeV, while for strange squark production the gluino

mass was instead mg̃ = 2.4 TeV. In each plot, error bands indicate the uncertainty

in the distributions due to limited statistics.

In general, the distributions generated using the Matchbox and Powheg-

Box implementations agree well, with similar differences to those seen for ũLũ∗L
production in Section 4.2.3. More specifically, slight differences are observed in the

slopes of the mq̃q̃∗ and pT, q̃ distributions, which as before is attributed to the differ-

ent kinematic mapping procedures used in the two implementations. In addition,

the two implementations agree well in the high pT region of the pT, q̃q̃∗ distribution,

with the Matchbox generated spectra exhibiting a slight softening in the low pT

region when compared with the PowhegBox results. This is due to the different

methods of imposing the IR cutoff on the radiation phase space.

In Section 4.2.3, discrepancies were observed between the PowhegBox and

Matchbox results in the pT, ũLũ∗L distribution at pT ≈ mg̃ − mũL and in the res-

onant region of the mũ∗Lq
plot. These are caused by differing treatments of the

Jacobian factor in the phase space of the subtraction term and contributions to

the interference term that are linear in Γg̃. The same differences are also present

in the implementations of d̃Rd̃∗R production, but their effects are less visible in the

pT, d̃Rd̃∗R
distribution of Figure B.1 than they were for ũLũ∗L production. This is par-

tially a consequence of the compressed mass spectrum, (mg̃,md̃R
) = (1.9, 1.8) TeV,

which means that resonant contributions affect the low pT region of the distribution

where non-resonant channels are enhanced due to soft and collinear logarithms. This

causes the overall impact of terms involving the resonant amplitudes, and therefore

the difference between the Matchbox and PowhegBox implementations, to be

less evident in this scenario. In addition, the parton luminosity factors are such that

channels with resonant amplitudes account for less of the real-emission cross section

than in ũLũ
∗
L production. This reduces the visible impact of differences between

the Matchbox and PowhegBox implementations in both the pT, d̃Rd̃∗R and md̃∗Rq

distributions in Figure B.1. Similar arguments may also be applied to explain the

reduced visibility of differences between the Matchbox and PowhegBox results

in the pT, q̃q̃∗ and mq̃∗q distributions in Figures B.2 and B.3.
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Figure B.2: As in Figure B.1, but for c̃Rc̃∗R production with the mass splitting

(mg̃,mc̃R) = (1.9, 1.8) TeV.
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Figure B.3: As in Figure B.1, but for s̃Ls̃∗L production with the mass splitting

(mg̃,ms̃L) = (2.4, 1.8) TeV.
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