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Abstract

Despite the continued success of the Large Hadron Collider, no clear evidence for
the existence of new BSM particles has been identified to date, pushing the bounds
on their masses to ever higher values. As such, increasing efforts have been made to
constrain all remaining regions of parameter space where light new particles could
still exist. To do so reliably requires accurate Monte Carlo simulations of signal
events, often in the case that hard radiation is produced together with the new
particles. In this thesis, we focus on using matrix-element corrections based on the
POWHEG formalism to improve the simulation of hard radiation produced in new
physics events. The corrections have been implemented within the Herwig++4 Monte
Carlo event generator, both for squark-antisquark production at the LHC and a wide
range of decay modes that occur in beyond the Standard Model physics scenarios.
Taking supersymmetry as a test case, we find that corrections applied to radiation
generated during either the production or decays of new particles each impact on
the reach of analysis strategies sensitive to high transverse momentum jets, with the
most important effect occurring when the former correction is applied in scenarios
featuring a compressed new particle mass spectrum. Finally, we investigate the
sensitivity of the LHC to supersymmetric scenarios using monotop signatures of
a single top quark produced together with missing transverse energy. We present
analysis strategies sensitive to compressed regions of parameter space, and compare
their expected reach at the next run of the LHC to those of more traditional search

strategies.
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Chapter 1

Introduction

The Standard Model of particle physics (SM) provides a remarkably successful
framework for describing fundamental particles and their interactions. However,
despite its continued success in the face of intense experimental scrutiny, it is widely
believed that the Standard Model is not the complete theory of everything. This
motivates the search for an extension to the Standard Model, and a plethora of new
physics theories has been postulated. The most studied set of beyond the Standard
Model (BSM) scenarios are the class of weak scale supersymmetric theories [1,2].
Supersymmetry (SUSY) is motivated by the observation that it is the only non-
trivial extension to the Poincaré group which gives rise to a consistent interacting
quantum field theory. It unambiguously predicts the existence of a partner with
opposite spin statistics for each of the Standard Model particles, and there is the-
oretical motivation to believe that at least some of these new superparticles should
be accessible at current collider energy scales.

However, no clear evidence of supersymmetry has been observed to date, and
exclusion limits on the masses of the strongly interacting superparticles are being
pushed to and beyond the TeV scale [3,4]. Corners of parameter space where these
high bounds can be evaded are becoming increasingly appealing and well scruti-
nized. One such area is the region occupied by compressed spectra supersymmetric
scenarios in which the mass splittings between the superpartners accessible at the
LHC are small. In this case, the SM objects produced during the decays of super-

particles are soft, and only a relatively small amount of missing transverse energy

1



Chapter 1. Introduction 2

is expected in events. Consequently, the kinematic quantities traditionally used to
identify supersymmetric events and reduce the SM background become less effective,
making these scenarios more difficult to exclude.

To constrain compressed spectra scenarios, new analysis techniques have been
developed which rely on the production of a hard SM object together with a pair of
superpartners. The introduction of the SM object leads to recoil of the superparticle
pair, increasing the amount of missing transverse energy in events. Studies and
experimental searches have been performed for a range of SM objects, for example a
photon or top quark, but the most investigated scenario is that of monojet signatures
where the additional SM object is a hard jet originating from initial-state radiation
(ISR).

The limits on new physics that are set by these monojet searches are clearly
sensitive to the way in which hard (high-transverse momentum) Quantum Chromo-
dynamic (QCD) radiation is treated during the simulation of the SUSY signal events.
In a typical Monte Carlo event generator, fixed-order matrix elements describing the
partonic scattering process are combined with parton showers that simulate the emis-
sion of QCD radiation from coloured particles in the event!. Traditionally, the hard
process is described at leading order (LO) in perturbation theory, while the parton
shower utilizes an approximation that is exact only for soft and collinear radiation.
Consequently, high transverse momentum emissions are not well described using
this basic event generation setup. However, much effort has been made in recent
years to improve the simulation of hard radiation in Monte Carlo event generators,
with several techniques now widely available. In one approach, known as matrix-
element (ME) matching, the hardest emission in each event is distributed using the
next-to-leading order (NLO) real-emission correction to the matrix element of the
hard process. As such, the hardest emission is now described with leading-order
accuracy. This method may be further improved, in an approach known as NLO
matrix-element matching, such that the description of suitably inclusive observables

is promoted to NLO accuracy, in addition to the improvement in the description of

! Typically, a QED parton shower simulating the emission of photons is also included. However,

in this work we restrict our study to the effects of QCD radiation only.



Chapter 1. Introduction 3

the hardest emission.

The main purpose of this thesis is to study the impact of using higher-order ma-
trix elements to improve the simulation of hard radiation produced in new physics
events. To this end, we consider matrix-element matching based on the POs-
itive Weight Hardest Emission Generator (POWHEG) formalism [5]. While the
POWHEG formalism deals with NLO matrix-element matching, we only implement
ME matching in which inclusive observables are accurate to leading order. This
choice is motivated by the limited availability of NLO virtual corrections for pro-
cesses involving BSM particles. The matching prescription, which we refer to as
a POWHEG style matrix-element correction, has been implemented within the Her-
wig++ Monte Carlo event generator [6,7].

Hard radiation may be generated in BSM events either during the production
or decay of particles. In the latter case, we consider the application of matrix-
element corrections to a range of decays that appear in both supersymmetry and
alternative new physics scenarios. Previously, the POWHEG formalism has been
successfully applied to a number of decays involving Standard Model and new physics
particles [8-11]. In addition, a similar approach based on generic spin structures has
been used to apply matrix-element corrections to hard radiation in SM and BSM
particle decays in the PYTHIA 6 event generator [12].

When considering radiation emitted during the production stage of the event, we
study only the production of squark-antisquark pairs at the LHC. This production
process is a test case that marks the beginning of the development of an automated
method for implemented POWHEG style matrix-element corrections in Herwig++.
In future, it is envisaged that the correction will be available for a wide range of
BSM production processes. The motivation for this choice of test case comes from
the fact that the production of the strongly interacting superpartners, the squarks
and gluinos, presents one of the most promising channels for discovering SUSY
at the LHC. As such, accurate predictions for their production cross sections and
observable distributions are crucial. The leading-order cross section predictions for
squark-antisquark production, calculated for example in Ref. [13], have been known

for some time. The NLO predictions are now also widely available, having first been



Chapter 1. Introduction 4

determined in the case of five degenerate light-flavour squarks [14-17] and then
more recently calculated for a completely general squark mass spectrum [11,18|. In
addition to fixed-order calculations, in Ref. [11] the NLO accurate matrix elements
have been matched to parton showers following the POWHEG prescription. The
POWHEG approach has also been previously applied to alternative hard production
processes in SUSY models [19-24].

This thesis is organised as follows. The remainder of Chapter 1 is devoted to
introductory information relevant to later chapters. A brief summary of the main
principles of supersymmetry and the minimal supersymmetric extension to the SM
is given in Section 1.1. In Section 1.2, we outline the general structure of fixed-order
NLO calculations in perturbative QCD. A brief review of the main components
of Monte Carlo event generators is then given in Section 1.3, along with a more
detailed discussion of the parton-shower algorithm in Herwig++. Finally, matching
NLO calculations and parton showers using the POWHEG formalism is described
in Section 1.4, with technical details relevant to our POWHEG style matrix-element
correction included both in this section and in Appendix A.1.

In Chapter 2, we consider the impact of improving the simulation of hard radi-
ation generated during the decays of BSM particles. In Section 2.1, our implemen-
tation of the POWHEG style matrix-element correction is described in full for the
example of top quark decays. Details of the full range of decay modes for which
the correction is implemented are then given in Section 2.2. In Section 2.3, the im-
pact of the correction on the decay of the lightest graviton in the Randall-Sundrum
model [25] and a selection of decays in the Constrained Minimal Supersymmetric
Standard Model is presented, before our results are summarized in Section 2.4.

In Chapters 3 and 4, we turn our attention to the application of the matrix-
element correction to the production of squark-antisquark pairs at the LHC. In
Chapter 3 we focus on the case of top squarks. After validation of our matrix-
element correction algorithm in Section 3.1, we study the impact of the correction

on parton-level distributions? in Section 3.2. Having done so, in Section 3.3 the effect

2We use the term parton level to refer to events that include the simulation of some or all of

the parton-shower evolution, but exclude the effects of hadronization and the underlying event.
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of including matrix-element corrections in simulations used to constrain compressed
spectra scenarios is illustrated, considering also the combination of corrections ap-
plied during the production and decays of the top squarks. Finally, Section 3.4
summarizes the findings of this chapter.

Matrix-element corrections to squark-antisquark production are addressed for all
remaining squark flavours in Chapter 4. We begin in Section 4.1 with a detailed
discussion of techniques used to deal with real-emission contributions containing a
heavy, on-shell intermediate particle. Our matrix-element correction approach is
then validated in Section 4.2, with additional results available in Appendix B.1.
The various methods for removing on-shell contributions to the real-emission ma-
trix element are compared in Section 4.3, before the effect of the matrix-element
correction on parton-level results is presented in Section 4.4. Conclusions are drawn
in Section 4.5.

In Chapter 5, we move away from the matrix-element corrections relevant to
monojet based search strategies, and consider instead monotop signatures consist-
ing of a single top quark produced in association with missing transverse momentum.
We investigate the possibility of using monotop probes at the LHC to gain sensitivity
to two simplified supersymmetric scenarios with compressed spectra. To do so, we
make use of Monte Carlo simulations of both the new physics signals and SM back-
ground processes, using the technical setup described in Section 5.1. In Section 5.2,
we present analysis strategies sensitive to compressed regions of parameter space.
The reach of these strategies for our two simplified model scenarios is illustrated in
Section 5.3, before the chapter is summarized in Section 5.4.

Finally, in Chapter 6 we summarize the thesis.

1.1 Supersymmetry

1.1.1 Motivations for physics beyond the Standard Model

The Standard Model of particle physics is a consistent theoretical framework which
describes elementary particles and their interactions. Within it is contained Quan-

tum Chromodynamics, the theory describing the strong interaction of quarks and
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Figure 1.1: One-loop contributions to the Higgs boson mass from fermion (left) and

scalar (right) fields.

gluons, and a unified picture of electromagnetic and weak interactions [26-28|. Over
the past 50 years, it has been subjected to a barrage of experimental tests and has
successfully explained almost all existing high energy physics data. However, it fails
to provide satisfactory answers to a number of fundamental questions. Perhaps the
most obvious shortcoming is its inability to describe gravitational interactions. At
the scale at which quantum gravitational effects become important, i.e. the reduced
Planck scale Mp; = 2.4 x 10'® GeV, it is necessary to describe gravity using a quan-
tum field theory (QFT) approach. However, attempts to do so are typically plagued
by issues of non-renormalizability, and so a robust theory of quantum gravity is yet
to be formulated. In addition, given the complexity of nature at the weak scale,
it seems likely that new physics exists beyond that which is encompassed in the
Standard Model, in the unexplored 16 orders of magnitude below Mp;. In fact,
postulating that no new physics effects are present between the weak and reduced
Planck scales gives rise to a significant conceptual problem with the Standard Model,
known as the hierarchy problem. The hierarchy problem refers to the sensitivity of
the Higgs mass to high energy phenomena. In a theory with an ultraviolet (UV)
2

energy cutoff A, the one-loop correction to m7 arising from a fermion loop in the

Higgs propagator, as illustrated in the left-hand side of Figure 1.1, is [29]

)\2
dm2 = —8—1;[/\2 + terms logarithmic in A, (1.1.1)
T

where A; is the Yukawa coupling of the fermion to the Higgs boson. Through
renormalization, the regulated divergent terms in Eq. 1.1.1 can be absorbed into

a redefinition of the Higgs mass. However, if one assumes that no new physics is
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present below the reduced Planck scale, i.e. A = Mp;, huge cancellation is required
between the bare Higgs mass parameter and the one-loop contribution in order to ar-
rive at a renormalized mass that agrees with the experimentally observed value [30],
my = 125.09 + 0.21 (stat.) &+ 0.11 (syst.) GeV. While not technically inconsistent,
this level of fine-tuning is theoretically unpleasant. It is more appealing to imagine
that new physics effects are introduced at a lower energy scale, A ~ 1 TeV, such
that the bare and renormalized Higgs mass parameters are of the same order of
magnitude. If this new physics takes the form of a new complex scalar field, an
additional contribution to m3, exists. This correction, shown in the right-hand side
of Figure 1.1, is [29]

As
om3, = W[A2 + terms logarithmic in A], (1.1.2)
m

where A, is the coupling of the new scalar to the Higgs boson. As such, the systematic
cancellation of contributions to m? that depend quadratically on the cutoff param-
eter A, and therefore the elimination of the hierarchy problem, can be achieved by
introducing two new complex scalar fields for every fermion in the Standard Model
and requiring A} = A,.

Two further aspects of nature not incorporated in the Standard Model of particle
physics are that of dark matter and dark energy. Fundamental particles described by
the Standard Model account for less than 5% of the total energy content of the Uni-
verse. The remainder exists in terms of dark matter (27%) and dark energy (68%),
and no suitable candidate for either exists within the Standard Model framework.
Finally, experimental observations of neutrino oscillations set non-zero bounds on
neutrino masses. The Standard Model predicts massless neutrinos and so must be
augmented with some mechanism through which they may obtain a mass.

Given these and further unmentioned limitations, the Standard Model is typically
viewed as a low energy limit of some larger theory. Consequently, many theories at-
tempting to describe physics beyond the Standard Model have been developed over
the years. One of the most popular candidates is weak scale supersymmetry [1,2].
In the following section, the main ideas and motivations for supersymmetry will be
outlined and the additional particle content predicted by the minimal supersymmet-

ric extension to the Standard Model (MSSM) introduced. Having done so, typical
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collider signatures for SUSY and the corresponding search strategies employed at
the LHC will be outlined. Details are limited to those relevant for later chapters
of this thesis. Pedagogic introductions to the theoretical construction and collider

signatures of SUSY can be found, for example, in Refs. [29,31].

1.1.2 Introduction to supersymmetry

Supersymmetric theories postulate the existence of a symmetry relating fermionic
and bosonic degrees of freedom. Schematically, this symmetry can be expressed in
terms of a SUSY operator, (), which when acting on a fermionic state transforms it

into a bosonic state and visa versa,
@ |fermion) = |boson) and @ |boson) = |fermion) . (1.1.3)

It is clear from the nature of these transformations that the generators of supersym-
metry are fermionic spin-1/2 operators. Through the introduction of such genera-
tors, the Poincaré algebra which encapsulates the space-time symmetries of the SM
may be extended in a non-trivial way [32], i.e. such that the Poincaré and SUSY
generators have non-zero commutation relations.

In fact, the addition of SUSY generators is the only possible non-trivial exten-
sion to the Poincaré group that gives rise to a consistent relativistic QFT [32]. The
addition of bosonic generators (i.e. those that preserve the spin of the state they
act on) is ruled out by the Coleman-Mandula no-go theorem [33], while the Haag-
Lopuszanski-Sohnius theorem [32| limits the possible fermionic generators to only
those which generate supersymmetry. The SUSY generators satisfy the following an-
ticommutation and commutation relations that, together with the Poincaré algebra,

form the Super-Poincaré algebra [31]

{Q.Q} = 20, P, (1.1.4)
[M", Q) = —id"Q, (1.1.5)
{Q,Q} ={Q,Q} =0, (1.1.6)

[P*, Q] = [P*,Q] =0, (1.1.7)
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where @) and Q are the generators of supersymmetry, related through Qf = Q, P*
are the generators of spacetime translations and M*” are the generators of Lorentz
transformations?.

Supersymmetric extensions to the SM are constructed by embedding each SM
particle as a component field in a supermultiplet. Also contained within each super-
multiplet is a superpartner field related to the SM one through a SUSY transforma-
tion. As such, these superpartners have identical properties to their SM counterparts
with the exception of spin, where they differ by a half integer. This symmetry be-
tween fermionic and bosonic degrees of freedom naturally gives rise to the equality
of coupling constants that was required in order to solve the hierarchy problem
introduced in the previous section. The Lagrangian of the theory may then be con-
structed from the supermultiplets by including all possible renormalizable terms that
are consistent with the symmetries of the theory. Finally, the Lagrangian may be
expanded in terms of the component fields to obtain the Feynman rules of the the-
ory. These can be found for the minimal supersymmetric extension to the Standard
Model in, for example, Ref. [34].

It is clear that supersymmetric theories, in their most basic form, cannot rep-
resent a realistic model of Nature. The equality of SM particle and superpartner
properties, so crucial in the solution to the hierarchy problem, raises a significant
issue. If the masses and gauge couplings of the superpartners are identical to their
SM counterparts, the superpartners should be being produced copiously at cur-
rent collider experiments. However, the superpartners are yet to be observed |[3,4],
leading to the conclusion that SUSY, if it exists, cannot be an exact symmetry of
Nature. By breaking SUSY, the masses of the superpartners can be greater than the
SM particles, therefore accounting for their non-observation. While details of the
SUSY-breaking mechanism are unknown, the form of the additional SUSY-breaking
terms in the Lagrangian can be constrained by requiring that they do not disrupt
the cancellation of the quadratically divergent contributions to the Higgs mass. The

resulting procedure in known as soft SUSY-breaking.

3ok = (1,0%), 0 = (1, —0") and o = 1(c"G” — 0”5"), where o' are the Pauli matrices.
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In the MSSM, no mechanism for SUSY breaking is assumed and instead the
Lagrangian is simply augmented with the most general combination of soft SUSY-
breaking terms. With the inclusion of these terms, the Lagrangian for the MSSM
contains some 124 parameters [35]. Such a model is of limited use to experimental
searches and so it is often helpful to consider a constrained form, the CMSSM,
in which the number of new parameters is reduced. The reduction is obtained
by assuming high scale universality (at mgur ~ 106 GeV) of the SUSY-breaking
masses of the gauginos (my,2) and scalars (my), and of the trilinear SUSY-breaking
couplings? (Ap). In addition to these parameters, to fully define the CMSSM it is
also necessary to specify the ratio of the vacuum expectation values of the two Higgs
doublets (tan 3) and the sign of a parameter p that appears in the Lagrangian. The
low scale parameters of the model, relevant to phenomenological studies, can then

be obtained through renormalization group running of these high scale parameters.

1.1.3 The particle content of the MSSM

In the minimal supersymmetric extension to the SM, two types of supermultiplets
are required - chiral and vector supermultiplets. The SM fermions are contained
within the former, with the left and right-handed components of each Dirac fermion
embedded separately in left and right-handed chiral supermultiplets, thus allowing
them to transform differently under electroweak gauge transformations. Each chiral
supermultiplet also contains a spin-0 complex scalar superpartner. The superpart-
ners of the SM quarks and leptons are referred to as the squarks and sleptons respec-
tively. They are typically denoted by e.g. ¢, for the superpartner of the left-handed
quark, where the subscript indicates the chiral nature of the SM partner.

The Higgs boson is embedded within the spin-0 component field of a chiral super-
multiplet, with its superpartner the higgsino, H, providing the spin-1 /2 component.
In fact, it is necessary to extend the Higgs sector to include two such supermul-

tiplets, one which couples to up-type quarks and one which couples to down-type

4The trilinear soft SUSY-breaking terms describe the coupling of three scalar fields and take
the form ﬁtri = AO)\¢1¢1¢1€
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quarks and charged leptons. These multiplets have differing values of weak hyper-
charge such that the total higgsino contribution to the gauge anomaly is zero. After
electroweak symmetry breaking, an extended Higgs sector remains in the MSSM
with two charged and three neutral scalar bosons. Finally, the SM gauge bosons
are contained within the spin-1 component fields of vector supermultiplets. Their
superpartners are spin-1/2 fermions called the gauginos. The superpartner of the
gluon is known as the gluino (§) and, prior to electroweak symmetry breaking, the
partners of the electroweak W and B gauge bosons are the winos and bino, (VT/O’i
and B respectively).

When both SUSY and electroweak symmetry are broken, mixing occurs between
the electroweak gauginos and the higgsinos, such that the gauge eigenstates do not
correspond with the mass eigenstates of the theory. The bino, neutral wino and
neutral higgsinos mix to form four neutral superpartners, the neutralinos x?. The
remaining charged winos and higgsinos similarly mix to form two positively and
two negatively charged superpartners, known as the charginos S(Z?t. Supersymmetry
breaking also gives rise to mixing in the squark and slepton sectors. The mass
eigenstates of the squarks and sleptons are determined by diagonalizing three 6 x 6
mixing matrices for the up-type squarks, down-type squarks and charged sleptons,
and one 3 x 3 matrix for the sneutrinos. In practice however, off-diagonal terms in the
mixing matrix are proportional to the Yukawa coupling constants, and so significant
mixing only occurs between pairs of third generation sfermions. For example, the
left and right-handed stops, t;, and 5, mix to form the mass eigenstates® ; and t,.
The lightest of these, 1, is typically the lightest of all the squarks. The gauge and
mass eigenstates of the new superpartners and Higgs sector content of the MSSM is
summarized in Table 1.1.

In the most general form of the supersymmetric Lagrangian, terms appear which
violate either lepton number (L) or baryon number (B) conservation. The existence
of such terms is not compatible with experimental constraints that arise, for example,

from the non-observation of proton decay. If the lepton and baryon number violating

5By convention, mass eigenstates are numbered in terms of increasing mass.
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Gauge eigenstates | Mass eigenstates
ur,, UR, JL, JR, same
Squarks ¢L, CR, 5L, 3R, same
tr, tr, br, bR f1, t2, by, by
Scalars
Ve, Uy, Ur same
Sleptons &1, €R, fiL, fiR, same
TL, TR T1, T2
Higgs bosons | H?, HY, H}, H; | h° H°, A° H*
Gluino g same
Fermions |  Charginos | W+, W—, HF, H " &, NG
Neutralinos B, W°, ﬁg, I:Ig X0, i=1,2,3,4

Table 1.1: Summary of the gauge and mass eigenstates of the superpartners and

Higgs sector of the MSSM.

terms were present in the Lagrangian with non-negligible couplings, the lifetime of
the proton would be extremely short and in contradiction with the experimentally
observed limit® which is in excess of 103 years [36]. In the MSSM, these problematic
terms are eliminated through the addition of a new Z; symmetry called R-parity.

The R-parity of a particle with spin s is defined as

Pr = (—1)3B-D)+2s, (1.1.8)

Accordingly, SM particles have even R-parity (P = +1), while the R-parity of
the superpartners is odd (Pr = —1). The conservation of R-parity has a huge
impact of the phenomenology of SUSY processes. Firstly, only even numbers of

supersymmetric particles can be produced in the collisions of SM particles (i.e. at

6This limit applies to the decay of the proton into a lepton plus meson final state.
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current collider experiments). These sparticles, with the exception of the lightest
supersymmetric particle (LSP), can decay through a number of stages, with each
decay vertex involving an even number of superparticles. The decay proceeds until
the only sparticles remaining in the event are an even number of LSPs. Finally, the
LSP is stable, and can provide a suitable candidate for non-baryonic dark matter if

it is also electrically and colour neutral.

1.1.4 Searching for supersymmetry at the LHC

Due to the strong theoretical motivation for studying SUSY, searches for sparticle
production have been one of the main emphases of the BSM program during Run
1 of the LHC, continuing on from studies previously performed at LEP and the
Tevatron. In R-parity conserving models, such as the MSSM, sparticles produced in
high energy collisions would decay though a number of stages to produce SM objects
(e.g. leptons, photons, jets) and the LSP. Throughout the course of this work, we will
assume the LSP is the lightest neutralino 9. The neutralino only interacts weakly
and as such would evade detection at collider experiments. This typically leads to a
significant imbalance in the combined transverse momentum of the visible final-state
particles when compared with the colliding protons in events in which sparticles are
produced. The magnitude of this quantity, E¥** has traditionally been the most
important kinematic quantity employed in discriminating SUSY events from the SM
background, since in the latter, normally only a small amount of E® is present’.
The classic experimental signature studied in SUSY searches is therefore a number
of SM objects accompanied by a significant amount of missing transverse energy.
Many searches for sparticles have been performed at the LHC by both the general
purpose experiments, ATLAS [3] and CMS [4]. Given the huge number of SUSY
models and size of the associated parameter spaces, these searches must be done in
a quasi model-independent manner if they are to efficiently probe the likelihood of

a supersymmetric extension to the SM. As such, data is often interpreted in terms

"Missing transverse momentum in SM events arises due to neutrino production and detector

effects.
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of simplified models in which only a small subset of the superpartners have masses
that are kinematically accessible at the LHC. This severely restricts the number of
viable decay modes so that sparticles typically decay in only one or two steps and
into a limited number of final states. In this simplified setup, the remain degrees of
freedom in the parameter space, often the masses of the sparticles, can be varied to
produced exclusion bounds like those found in Refs. [3,4].

A large fraction of this thesis will be concerned with the impact of an improved
treatment of hard radiation on LHC searches for SUSY particles, with the focus
being on squark-antisquark production. Searches for squark production are particu-
larly relevant at the LHC (and other hadron colliders) owing to the large production
cross sections associated with coloured interactions. In addition, the lightest top
squark can be considerably lighter than the other squarks and so should in principle
be easily accessible at the LHC®, despite the relative reduction in the production
cross section when compared directly to light-flavour squark production®.

In our study of squark-antisquark production, we will rely heavily on simplified
models in which only the squarks and a subset of the gauginos are accessible at
the LHC. In the case of light-flavour squark production, we focus on the decay
mode ¢ — ¢x! which is often considered in experimental studies, see for example
Refs. [37,38]. In the case of top squark production, the equivalent decay mode is not
kinematically accessible in all regions of phase space. In the region mz > m; + myo,
the decay mode #; — tx? is expected to dominate, but as the difference between the
stop and neutralino masses decreases, the 3-body decay ¢; — bW Y and then the
flavour changing mode #; — c¢x? and 4-body decay #; — bf f'x? become dominant.
In later chapters, we will consider simplified models that probe a number of different
regions of the stop and neutralino mass plane.

The regions of parameter space that exhibit small mass splittings between the

superpartners accessible at the LHC are of particular relevance to this work. In

8 Arguably, if the top squark is not accessible at the LHC, supersymmetry no longer provides a

suitable solution to the hierarchy problem introduced in Section 1.1.1.
9This reduction arises due to the negligible top quark content in the parton distribution func-

tions of the proton at the LHC.
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these so called compressed supersymmetric scenarios, sparticles decay as before into
the LSP and a collection of SM objects. However, now the SM objects are typ-
ically not energetic enough to be identified by the trigger algorithms used at the
LHC. In addition, since sparticles are minimally produced in pairs, the two LSPs
arising from the sparticle decays will be produced in an approximately back-to-back
configuration, such that the amount of E¥* in events will be significantly reduced.
This means that the event selection criteria which in uncompressed scenarios gave
good discrimination between SUSY events and the SM background, are now less
efficient. Furthermore, poor trigger efficiencies are expected from algorithms that
rely solely on the amount of ES in events [39,40]. Classical search strategies based
on the presence of numerous jets and leptons and a large amount of missing energy
therefore have poor sensitivity to compressed supersymmetric scenarios.

These difficulties have lead to the development of non-standard analysis tech-
niques, such as those which search for a monojet signature consisting of a single hard
jet and missing transverse energy'’. Such a signature can arise when superparticles
are produced in association with a hard jet originating from initial-state radiation
and all the decay products of the sparticles are soft or invisible. The introduction
of an additional hard jet causes recoil of the sparticles which serves to increase the
amount of E* in events. When combined with the requirement of a hard jet, this
quantity can be used to achieve good efficiency in trigger algorithms and discrimina-
tion from SM backgrounds. As was previously stated, in this work we are interested
in improving the treatment of high transverse momentum radiation in SUSY events.
Consequently, monojet search strategies are of particular interest since their reach
will be highly sensitive to any change in the description of hard radiation.

Events with single jets and missing transverse momentum have been interpreted
in terms of SUSY particle production for over 30 years now, starting with data

recorded at the UAL experiment [41], see for example Ref. [42]. Since then, the

10Tn analogy with monojet systems, signatures comprising of missing transverse energy produced
in association with an alternative SM object, for example an energetic photon, have also been used
to constrain sparticle production at the LHC. In Chapter 5, monotop signatures in which the SM

particle is a top quark, will be studied in the context of compressed spectrum SUSY scenarios.



1.2. Calculations in perturbative QCD 16

use of monojet probes in searches for new physics scenarios has received significant

attention!!

and has been effective at constraining compressed spectra SUSY sce-
narios, in particular the existence of light top squarks [45,46], and alternative new
physics models [47,48]. In Chapter 3, a monojet-type search for light top squarks in
compressed spectra scenarios will be used to assess the effect of different treatments

of hard radiation in stop-antistop production.

1.2 Calculations in perturbative QCD

Methods for improving the treatment of hard radiation in Monte Carlo simulations
typically make use of higher-order QCD contributions to the matrix elements of
the hard process. As such, aspects of calculations within perturbative QCD will be
relevant in later chapters and so are briefly reviewed in the following section. In
Section 1.2.1, the salient points about the strong coupling constant, QCD factor-
ization theorem and the connection between hadronic and partonic cross sections
will be discussed. The treatment of next-to-leading order contributions in pertur-
bative QCD calculations will then be outlined in Section 1.2.2, including a brief

introduction to the Catani-Seymour dipole subtraction formalism.

1.2.1 Hard scattering formalism

Quantum Chromodynamics is a non-abelian SU(3) gauge theory, included within the
framework of the Standard Model, that describes the strong interactions experienced
by coloured particles and mediated by gluons. The scale dependence of the QCD
coupling constant, oy, that arises after renormalization of ultraviolet divergences in
the theory, may be expressed as
2

Blo) = 25 (1.2.9)

In QCD, the S-function appearing in the left-hand side of Eq. 1.2.9 is negative. As

such, at high energies, or equivalently at short distance scales, the coupling constant

HSee for example Refs. [43] and [44], for studies at the Tevatron and LHC respectively.
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is small. This behaviour is known as asymptotic freedom. Conversely, at low en-
ergies the coupling constant becomes large - a phenomenon known as confinement.
Confinement forbids the observation of free quarks and gluons and leads to the for-
mation of colour-singlet hadrons, which are the experimentally observable states. In
Eq. 1.2.9, the scale on which the coupling constant depends is an unphysical scale
introduced during renormalization, known accordingly as the renormalization scale
122:2

Interactions at hadron colliders in general depend on both high and low en-
ergy scales. According to QCD factorization theorem!?, the treatment of these two
regimes can be separated such that the cross section for a hadronic scattering process

may be written as
0-}}:?22_m Z/dxadxbfgl (xm/vLF)fl?Z (xme/F)do-a,b—mx (1210)
a,b

Here do,p., is the differential partonic cross section describing the scattering of
partons'® a and b into n final-state particles. The characteristic scale of the partonic
interaction, @), is large and so the associated value of the coupling constant is small.
Consequently, do, ., is calculable within perturbation theory and may be written

as an expansion in terms of ay, such that Eq. 1.2.10 becomes

had

O-hlhg —n
% 2 ()2
= Z/dmada:bf Y(Xa, por) [12 (20, p1r) Z k+md0a b)_m <xa,xb, S—Q,S—z) )
m=0 F FR
(1.2.11)

where £ is the order in a; of the LO contributions to the partonic cross section. Each
term in the perturbative expansion can be computed using, for example, Feynman
diagrams.

The long range physics effects in the hadronic cross section are encapsulated

in non-perturbative parton distribution functions (PDFs), f(z, ur). These describe

12Qnly the factorization of inclusive cross sections for deep inelastic scattering and Drell-Yan

processes has been proven. For all other hadronic collisions, factorization is taken as an ansatz.
3The term parton refers to the fundamental particles that are the constituents of hadroms,

i.e. the quarks, antiquarks and gluons.
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the dynamics of partons within a given hadron, for example, f" (z,,ur) can be
interpreted as the probability of finding within hadron h;, a parton of type a that
carries a fraction z, of the total hadron momentum. The functions are universal,
however, can not be calculated perturbatively and must instead be extracted from
fits to experimental data'4.

In addition to the momentum fraction x, the PDFs depend on an unphysical
factorization scale, ug, which can be thought of as defining the transition between
the hard and soft regimes. The exact choice of this scale, as with the renormaliza-
tion scale, is somewhat arbitrary. To avoid large logarithms, the factorization and
renormalization scales are typically set equal to some momentum scale characteristic
of the hard scattering process. Formally, the hadronic cross section in Eq. 1.2.11
is independent of both scales when calculated to all order in perturbation theory.
However if the perturbative expansion is truncated, some residual dependence of
the cross section on g and pp will remain. In this case, an estimate of the size of
the unknown higher-order contributions may be obtained by varying the values of
ir and pp used in the calculation. As such, renormalization and factorization scale
variation is typically used to estimate the level of theoretical uncertainty associated

with a calculation.

1.2.2 Next-to-leading order calculations

The cross section for a partonic hard scattering process can be expanded perturba-

tively in powers of the strong coupling constant, that is

do = (as(up))mdo™. (1.2.12)
m=0
Taking only the first term in the perturbative expansion, i.e. the m = 0 term,

corresponds to the leading-order result. Leading-order calculations provide an order

of magnitude estimate for the total cross section and rough predictions for the shapes

14 Although the PDFs cannot be calculated perturbatively, the functions at a given x and 2
may be evolved to lower values of z and higher values of ;% using by the perturbatively calculable

DGLAP equations [49-51].
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of some observables. Often, this level of accuracy is insufficient and it is necessary
to include further terms in the expansion so as to achieve a reasonable description
of data and better control of the theoretical uncertainties.

In the next-to-leading order prediction for do, both the first and second terms
in Eq. 1.2.12 must be included. The new terms present at NLO arise from taking
into account processes that contribute with an additional factor of oy as compared
with the lowest order interaction. These terms can be divided into contributions
in which an additional parton has been radiated from the lowest order process and
contributions in which a virtual parton has been exchanged between particles present

at LO. As such, the NLO cross section may be written as
o0 = B(®,)dP, +V(®,)dD, + / R(®ps1)d, 1. (1.2.13)

Here B corresponds to the LO or Born matrix element squared!®, present also in
the lowest order expansion, while R and V are the real and virtual corrections
that contribute with one higher power of a,. Since the real-emission contribution
corresponds to the radiation of an additional parton, it is evaluated in the real-
emission phase space ®,,.1. The virtual or 1-loop contribution is defined, as for the
Born process, in the phase-space element ®,,.

The real-emission contribution in Eq. 1.2.13 is infrared (IR) divergent in regions
of phase space where the additional emitted parton is either soft (i.e. has vanishing
energy) or is emitted collinear to one of the particles involved in the Born pro-
cess'®. The virtual term is also divergent in the IR limit'?, but contributes to the
cross section with the opposite sign. The Bloch-Nordsieck [52] and Kinoshita-Lee-
Nauenberg [53,54] theorems guarantee that the IR singularities arising from integra-

tion of soft and collinear real-emission configurations will cancel with those arising

5 Throughout this thesis, relevant flux factors will be absorbed into the definitions of B, V and

R such that, for example, the partonic LO cross section is o0 = [ B(®,,)d®,,.
16Collinear singularities occur only for pairs of massless collinear particles.
ITThe virtual contribution is also divergent in the ultraviolet limit, i.e. in the limit of large loop

momentum. These divergences can be dealt with by first regularizing them and then renormalizing

the theory.
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from virtual loop integrals!® when considering infrared-safe observables'®. This can-
cellation occurs order-by-order in perturbation theory, such that each higher-order
correction is independently finite.

The numerical evaluation of Eq. 1.2.13 as it stands, is not possible. While the
total result is finite, the cancellation of IR singularities occurs between terms with
different final-state multiplicities. This issue is overcome in the subtraction formal-
ism by introducing a subtraction term, C(®,,1). The subtraction term accurately
reproduces the singular structure of the real-emission contribution in the soft and
collinear regions of phase space, and is by design analytically integrable over the one-
particle phase space of the unresolved parton ®g, defined through ®,,; = ®r®,,.
Eq. 1.2.13 may then be rewritten as

do™© = B(®,)d®, + {V(cbn) + / C(Cbnﬂ)dqm} d®, + [R(®pi1) — C(Ppy1)] dPpy1.

(1.2.14)
Through the introduction of the subtraction term, both square brackets in Eq. 1.2.14
are now separately finite, with C(®,,,1) providing local cancellation of singular con-
tributions in the real-emission term and [ C(®,41)d®r allowing for analytic can-
cellation of singularities in the virtual term. The total cross section is unaffected
by the procedure and numerical integration over the n and n + 1 body phase-space
elements is now possible.

Different formulations of the exact form the subtraction terms have been devel-
oped in, for example, the Catani-Seymour (CS) dipole formalism [55,56] and the
Frixione-Kunszt-Signer (FKS) [57] and antenna [58,59] subtraction approaches. The
first of these methods will be relevant to later sections of this thesis, and so will be

briefly outlined below. More details can be found in Refs. [55] and [56] for the case

18In fact, there is a class of real-emission divergences, arising from collinear emissions from
initial-state or identified final-state partons, that are not cancelled by singularities appearing in
the virtual term. Instead, these divergences are dealt with through a redefinition of the PDFs
which introduces a mass factorization counter term into Eq.1.2.13. This term will not be made

explicit but is assumed to be absorbed into the virtual contribution.
19An observable O is infrared safe if it fulfils the property O(®,,1) — O(®,,) in the limit that

one of the particles in the n + 1 body phase space becomes soft or collinear to another particle.
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of massless and massive partons respectively.

Construction of the subtraction term in the CS dipole formalism (and other
approaches) is based on the factorized form of real-emission amplitudes evaluated in
the soft or collinear limits. This allows the IR singular structure of the real-emission
contribution to be encoded in a sum of terms, each of which is the convolution of a
Born-level matrix element and a universal function. Schematically, the subtraction

term is

C= Y B& Vapol. (1.2.15)

dipoles

where Vgipole are the universal dipole splitting functions. Each term in Eq. 1.2.15
defines a dipole function, D;;, that describes the behaviour of the real-emission
matrix element in the singular regions of phase space where the emitted parton j
becomes soft or collinear to the emitting parton ¢. The dipole functions also depend
on a spectator parton k£ which is colour connected to the emitted parton.

For each dipole function, a kinematic mapping between the n 4+ 1 and n body
phase spaces is required. The emitter particle and unresolved parton are combined
into a single on-shell particle ij, while the momentum of the spectator particle is
reshuffled to account for the recoil of the emission. Once this mapping has be
established, the one-particle phase space required for the analytic integration of the

dipole may be determined.

1.3 Monte Carlo event generators

While fixed-order calculations can provide predictions for high momentum transfer
scattering processes involving a limited number of partons, collision data recorded at
experiments like the LHC typically involves multiple high and low energy scatterings
which give rise to a huge number of final-state hadrons. Monte Carlo event gen-
erators aim to bridge this gap between perturbative calculations and experimental
observations by simulating, for a given theoretical model, all elements of a high-
energy collision. As such, Monte Carlo event generators play a crucial role in the
search of BSM physics signals, the measurement of SM parameters and the design

of future experiments. A comprehensive review of Monte Carlo event generators is
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available in Ref. [60]. In the following section, a brief review of the main components
of a Monte Carlo event generator will be given, followed in Section 1.3.2 by a more
in-depth description of the parton-shower stage of the event. Only collisions involv-
ing initial-state hadrons will be discussed?® and all generator specific information

applies to the Herwig++ event generator [6].

1.3.1 Overview

The complete simulation of high-energy hadronic collisions is only feasible due to
QCD factorization. This allows the different stages of the event to be simulated
separately, each with their own tailored mathematical and computational tools. The
different stages are characterized by the associated scale of momentum transfer, and

are outlined below.

e Hard process: At the highest momentum transfer scale, partonic constituents
of the colliding hadrons scatter into a small number of fundamental final-
state particles, in a stage of the event known as the hard process. The cross
section for this process has traditionally been calculated at LO in perturbation
theory although, as will be discussed in Section 1.4, it is possible to increase
the accuracy to NLO and this is fast becoming the norm for SM processes.
The cross section is integrated with standard Monte Carlo techniques, using
pseudo-random numbers to determine the particles, momenta and colour flow
of the process and sampling the integrand over the available phase space.
The momentum transfer and colour flow of the hard process sets the initial

conditions for the next stage of the event - the parton shower.

e Parton shower: The parton-shower stage of the event perturbatively evolves
particles involved in the hard process from the high momentum transfer scale
of the scattering to an IR cutoff scale. This evolution typically leads to the

emission of additional QCD radiation and provides a connection between the

20Tn lepton collisions, treatment of the initial-state parton shower, PDFs and underlying event

is no longer necessary. This leads to significant simplification of the event generation process.
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hard and soft regimes. The procedure is separated into an initial-state shower
describing radiation from the colliding partons, and a final-state shower ac-
counting for the evolution of coloured particles produced in the hard process.
The emission of QED radiation from charged particles is simulated in a similar

way.

e Decays of fundamental particles: The decays of unstable particles pro-
duced in the hard process, for example top quarks or top squarks, are treated
separately from their production by making use of the narrow width approx-
imation. In the simulation of BSM events, the narrow width approximation
is often invoked in scenarios where it is not strictly applicable. To improve
the accuracy in these cases, an additional weight factor is available in Her-
wig++ which aims to take into account finite width effects, see Ref. [61] for
more details. In addition, the correct treatment of spin correlations between
the production and decay stages is obtained by using the algorithm described
in Ref. [62]. Finally, unstable coloured particles that are produced in the hard
process will typically initiate parton showers both during their production and
decay. The treatment of hard radiation in both these stages will be the subject

of subsequent chapters.

e Multiple partonic interactions: In parallel to the hard process, additional
interactions can take place between pairs of initial-state partons not involved
in the hard scattering. For the large centre-of-mass energies found at the
LHC, the probability of this occurring is high. These interactions are treated
separately from the hard process, and may be modelled as perturbative 2 —
2 QCD scattering processes when their characteristic scale is above the IR
cutoff. As with the hard process, these additional interactions initiate parton
showers making them a source of extra soft and semi-hard jets in events.
Additional scatters that occur in the non-perturbative regime are also included,

see Refs. [6,63] for more details.

e Hadronization: The parton-shower evolution of particles involved in the hard

process and additional scatters terminates at an IR cutoff scale, typically taken
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to be O(1) GeV. At this scale, the formation of hadrons from colour connected
systems of partons is simulated in a process known as hadronization. This
process cannot be described perturbatively and so a phenomenological model
containing a number of universal parameters is used. The values of these pa-
rameters are tuned by comparing the results of Monte Carlo simulations to
experimental data. In Herwig++, the particular hadronization model used is
the cluster model, as described in Ref. [64]. Motivated by colour preconfine-
ment, colour connected partons present at the end of the parton shower are
formed into colour-singlet clusters. These clusters have a universal mass dis-
tribution typically peaked around a few GeV. As such, they are too massive
to correspond directly to one of the known hadrons, but are assumed instead

to decay into pairs of hadrons.

e Hadron decays: Finally, hadrons produced during the hadronization stage
of the event are not necessarily stable on collider timescales and therefore
their decays into stable particles must be simulated. The decays of unstable

1 are also simulated

colourless fundamental particles, such as the 7 lepton?®
at this stage. The treatment of hadron and tau decays is described for Her-
wig++ in Refs. |6,65]. Decays are simulated using experimentally measured
branching ratios and matrix-element descriptions of the distributions of the

decay products. Spin correlations between the different decays are included

where possible and in particular are treated consistently for 7 lepton decays.

1.3.2 Parton showers

In Monte Carlo event generation, the hard scattering process is simulated using
fixed-order matrix elements, typically at leading or next-to-leading order. Given
the complexity involved in calculating these matrix elements, the addition of fur-

ther terms in the perturbative expansion is not an efficient method for including

2IThe decay of colourless SUSY particles is handled prior to the parton shower, alongside the
decays of coloured fundamental particles. This allows for the correct treatment of any coloured

particles produced during the decay.



1.3. Monte Carlo event generators 25

Figure 1.2: Branching of the quark 7 into a collinear gluon k£ and the final-state

quark j.

important higher-order contributions. Higher-order corrections due to additional
emissions are formally suppressed by factors of the strong coupling constant, how-
ever, there exist kinematic configurations for which this suppression is overcome
by a logarithmic enhancement of the cross section. These contributions must be
resummed to all orders in perturbation theory so as to obtain reliable predictions
when considering anything other than the most inclusive observables. In Monte
Carlo event generators, this resummation is performed by the parton-shower stage
of the event, which will be the subject of the following section.

The all-order resummation of exact higher-order corrections is not possible and so
an approximation is used that is accurate in the enhanced regions of phase space only.
We begin by discussing the origin of this so-called parton-shower approximation in
the context of collinear emissions. The formulation of the parton shower in terms of
an iterative algorithm and the treatment of soft singularities will then be outlined
briefly. Finally, Herwig++ specific details about the starting scale of the parton
shower and kinematic reconstruction procedure will be given. These will be relevant

to discussions appearing in later chapters.

Collinear emissions and the parton-shower approximation

For processes in which a final-state quark emits a gluon, as illustrated in Figure 1.2,

the matrix element contains a propagator factor

1 1
== 1.3.1
(pj +poe)?—m35  22(1 = 2)E}(1 —wvcosh)’ (1.3.16)
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where p; and p; are the momenta of the quark before and after the branching, py
is the momentum of the emitted gluon and m; the mass of the quark. The en-
ergy carried by the splitting parton, F;, is divided between the quark and gluon
according to E; >~ zE; and Ej, ~ (1 — z)E;. The velocity of the final-state quark
is v = |p;|/E;, while 0 is the angle between the final-state quark-gluon pair. The
form of this propagator illustrates the divergent nature of the matrix elements of
such processes. Singularities occur in two distinct kinematic regions: the soft limit
in which the energy fraction of the gluon is small (i.e. z — 1) and, for m; = 0, the
collinear limit in which 8 — 0. As was discussed in Section 1.2.2, when considering
infrared-safe observables these soft and collinear singularities cancel with those aris-
ing from virtual corrections. However, for some observables large-logarithmic terms
will remain after the cancellation has taken place. The purpose of the parton shower
is to resum such logarithms to all orders in perturbation theory.

To introduce the parton-shower algorithm with which this resummation is per-
formed, we begin by considering logarithms arising from collinear branchings only.
The effects of soft singularities will be incorporated later. In the collinear limit, the
squared matrix element for the process shown in Figure 1.2, with massless quarks,
is

Moy ]? = 87;% o - M, 2, (1.3.17)

1—=2

where t = p? is the mass of the off-shell splitting quark, Cr is the Casimir of the
fundamental representation of SU(3) and we have summed over the spins of the final-
state particles. The n body process before gluon emission is described by the squared
matrix element |M,,|?, where summation over the spins of the final-state particles
has again been performed. The colour factor and z-dependence of Eq. 1.3.17 define
a universal unregularized Altarelli-Parisi splitting function, P,_,,,(2). The splitting

functions for Standard Model branchings in the massless limit are given by

1+ 22
Pq%qg(fz) =CFp 11—
Pysgq(2) = Tr(2* + (1 = 2)?), (1.3.18)
z 11—z
Pyrgg(2) = Ca Tt +2z(1—2)|,

where Ty and Cy4 are the trace and Casimir invariants in the fundamental and



1.3. Monte Carlo event generators 27

adjoint representations of SU(3) respectively??. Finally, the n + 1 body phase space

also factorizes such that the cross section for the process shown in Figure 1.2 is

o dt -
dO’n+1 ~ dO’n%?Pq_)qg(Z)dZ, (1319)

where pqﬁqg is now the splitting function after averaging over the azimuthal angle
of the emitted parton??. From Eq. 1.3.19, we see that the cross section for processes
involving a collinear emission factorizes into the cross section for the process with
no splitting and a universal function describing the emission.

The above picture may be easily extended to the case with multiple coloured
particles in the hard process, for example the process ete™ — ¢g. The interference
between contributions in which a gluon is emitted from either the quark or antiquark
is negligible in the collinear limit. As such, Eq. 1.3.19 is simply modified to now
include a sum of universal splitting functions, each one of which describes an emission
from a different particle in the hard process. This allows the evolution of different
particles to be treated independently.

The Altarelli-Parisi splitting functions can be used as the building blocks of an
iterative algorithm. The final state shown in Figure 1.2, i.e. after a single collinear
emission, is treated as the new hard process from which a second collinear splitting
can be generated. The emissions are ordered in terms of an evolution variable, in
this case the virtuality of the emitting parton, ¢, that decreases with each subse-
dt _ dk

k

quent emission. Any variable k that satisfies &£ =

; may be used, and common

alternatives to the virtuality are the transverse momentum of the emitted parton or
the angle between the branched pair of partons.
To construct the parton-shower algorithm, a more probabilistic interpretation of

the splitting functions is necessary. As such, we may express the probability of a

22The splitting functions applicable to the case of massive partons and additional branchings

possible in SUSY processes can be found, for example, in Ref. [6].
23In general, the splitting functions do depend on the azimuthal angle of the emitted parton and

these angular correlations are accounted for in the Herwig++ parton-shower algorithm. However,

for simplicity they are neglected in this discussion.
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parton ¢ undergoing a branching in the infinitesimal range ¢ to t + dt as

Jdt [V
ap = 22 NP2z, (1.3.20)
2 t Ny T

where all possible splittings ¢« — jk are summed. In order to produce physically
meaningful distributions it has been necessary to impose a resolution criterion that
limits the transverse momenta of emissions to be greater than an IR cutoff, p®,
typically chosen to be O(1 GeV ). This is motivated by the observation that a pair of
exactly collinear partons is experimentally indistinguishable from the single parent
parton before splitting. This limit on the transverse momentum translates into a
lower bound on the evolution variable, t™* which defines the scale at which the
parton-shower evolution terminates and non-perturbative effects are considered to
be significant. The resolution criterion also restricts the z integration range such
that the integral in Eq. 1.3.20 is finite.

While Eq. 1.3.20 expresses the probability of producing a resolvable emission,
the probability of producing no resolvable emission in the range t to ¢ + dt may be
constrained through unitarity to be (1 — dP). This encapsulates both contributions
arising from unresolvable emissions with pr < pi", and those from enhanced vir-

tual corrections. Extending this non-emission probability to a finite range of the

evolution variable, we obtain the Sudakov form factor

tq a, dt 1—4/tmin /¢ R
A(tl, tg) = exp —/ 2—— / ‘ Z Pl_mk(Z)dZ .
ty 2T t \/W o

This expresses the probability of parton ¢ evolving from a high scale, t;, to a low

(1.3.21)

scale, to, without producing a resolvable emission.

Monte Carlo implementation

Using the Sudakov form factor introduced in Eq. 1.3.21, it is possible to construct
a simple parton-shower algorithm as follows. Working separately for each coloured

particle produced in the hard process, collinear emissions are generated by solving,
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for ¢, the equality?*
A 1) = R. (1.3.22)

Here R is a pseudo-random number uniformly distributed in the range [0,1] and

tMaX jg the starting scale of the parton shower. Any emission not satisfying ¢; > t™in
is discarded. Additional random numbers are then used to generate a value of z
according to the splitting function and a value of the azimuthal angle, ¢, which is
uniformly distributed in the range [0, 27]. For each parton produced in the branch-
ing, the process is repeated with the starting scale of the shower replaced by the
scale of the previous splitting, i.e. using A(#y,t2) and solving for t5. This evolution
continues for each parton independently, until the scale drops below the cutoff value
grom,

The above process is sufficient when describing emissions generated from final-
state particles. However in the case of initial-state branchings, a modified algorithm
is required. In Monte Carlo event generators, the hard process is generated first
therefore fixing the flavour and momenta of the initial-state partons involved. A
parton shower based on the algorithm used for final-state particles would extract a
parton from the colliding hadron and run a forward evolution towards the hard pro-
cess. Assuch, the partons at the end of the shower evolution would typically not have
flavour and momentum matching those required by the hard process. This would
result in a highly inefficient procedure. Instead, the initial-state shower evolution
is effectively performed backwards, starting from the partons involved in the hard
process and evolving them back to partons extracted from the colliding hadrons. As
such, the backwards evolution is generated using the modified Sudakov form factor

By dt [TV x/zfi(x)2,t)
_ §7/ MDY Piﬁjk(z)fh—dz> . (1.3.23)

. NG xfi(x,t)

The ratio of the PDFs in Eq. 1.3.23 ensures that unphysical values of the momen-

A(t1,t2) = exp (

tum fraction x are avoided. Finally if an initial-state emission is generated, the

24 Typically, Eq. 1.3.22 is not analytically tractable. To overcome this, radiation is instead
generated using a simple overestimated branching probability for which the analog to Eq. 1.3.22
can be easily solved. The correct branching probability is then restored using the veto algorithm,

a good description of which may be found in Ref. [66].
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~

corresponding value of z is now determined using z/z f;(x/z,t) P jx(2).

Soft singularities

The parton-shower algorithm described in the previous section can be used to resum
the leading logarithms associated with collinear branchings. However, soft emis-
sions give rise to an additional class of enhanced contributions that must also be
resummed. In the Herwig++ event generator, this is done through angular ordering
of the parton-shower emissions, exploiting the properties of QCD coherence [67,68|,
as will be outlined in this section.

In the soft limit, the matrix element describing a process with an additional
emission factorizes into a universal eikonal function and the matrix element for the
process with no soft emission. However, the interference between different matrix
elements contributing to the soft emission process is such that this factorization
does not persist beyond the level of the matrix element. At the level of the cross
section, the factor accounting for the soft emission depends on the momenta of all
the external particles. Therefore, the soft emission cannot be viewed as having
been emitted from any given particle, but rather as having come from the scattering
process as a whole. This prohibits the treatment of emissions from different particles
as independent processes, something that is vital to the parton-shower algorithm.

However, the picture of independent evolution can be restored by making use of
colour coherence. To illustrate this phenomenon, consider the example of a quark
radiating a relatively hard and collinear gluon, as shown in Figure 1.2. The proba-
bility of a subsequent soft gluon being radiated from this process has contributions
arising from emissions from either the collinear gluon or the final-state quark. If
the soft gluon is emitted at an angle wider than that associated with the collinear
branching®®, interference between the two contributions is largely destructive. Ne-
glecting colour suppressed terms, the combined contribution of emissions from each

of the collinear pair of partons is equivalent to the contribution corresponding to the

254.e. at an angle larger than the opening angle between the emitting member of the collinear

pair and its colour connected partner. For emissions from the collinear gluon, the assignment of a

colour partner is not unique. This will be discussed in more detail in the next section.
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soft gluon being emitted by the branching parent quark (i.e. quark i in Figure 1.2).
Schematically, a wide-angle soft gluon cannot resolve the individual partons in the
collinear pair and so is sensitive only to the sum of their colour charges, i.e. the
colour charge of the parent quark. Therefore, it can effectively be viewed as having
branched from the parent quark, before the collinear emission. As such, soft en-
hancements can be incorporated into a collinear parton-shower algorithm simply by
ordering the parton-shower emissions in terms of the opening angle of the splittings,
giving rise to an angular-ordered parton-shower algorithm.

By employing the angular-ordered prescription, the Herwig++ parton shower re-
sums leading collinear and leading-colour soft logarithms. A further class of universal
higher-order corrections may also be incorporated in the parton shower through the
choice of renormalization scale. By using the transverse momentum of the emission
as the argument of the strong coupling constant during the parton-shower evolution,
these subleading but phenomenologically important logarithms are resummed to all
orders [69]. Whilst technically a higher-order consideration, this choice of scale in
the running coupling has a significant impact of the multiplication rate of partons

in the shower and cluster mass distributions arising during hadronization.

Starting scale of the parton shower

A component missing from the parton-shower prescription detailed so far is the start-
ing value of the shower-evolution variable. As was discussed in the previous section,
enhanced contributions due to soft emissions are taken into account in Herwig++ by
ordering radiation in terms of a decreasing angular variable. Each branching must
occur at a lower value of the angular variable than the one associated with the
opening angle of the emitting parton and its colour connected partner. As such, the
maximum allowed value of the angular variable depends on the colour flow in the
hard process. The colour flow is determined in the large NN, limit?® by associating a
(anti)colour line to each particle that transforms under the (anti)fundamental rep-

resentation of SU(3) and a pair of lines, one with colour and one with anticolour, to

26Here N, represents the number of colours.
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particles transforming under the adjoint representation. As such, quarks involved in
the hard process have only one possible colour connected partner, while for gluons a
choice must be made between the partners connected via the colour and anticolour
lines. For correct treatment of colour factors in the splitting functions, the gluon
partner is chosen at random with an equal probability of selecting each of the two
possibilities.

Having assigned colour partners, the starting scale of the shower evolution vari-
able is determined for each colour connected pair using the prescription detailed in
Ref. [70], taking into account whether the particles are in the initial or final state.
Radiation from each member of the pair is constrained to populate a distinct region
of phase space. The regions are required to be non-overlapping and to meet smoothly
in the soft limit. By doing so, the full soft region of phase space is populated and no
double counting of radiation occurs. Some ambiguity exists in how this division of
phase space is performed, but in all cases, in addition to the regions populated by
emissions from each of the colour connected pair, there will typically be some region
of phase space which is completely unpopulated by the parton shower. The presence
of this region, known as the dead zone, will be illustrated explicitly in Chapter 2.
The phase space within the dead zone corresponds to (relatively) hard emissions,
i.e. those which are neither soft nor collinear.

An additional constraint on the transverse momentum of emissions is also im-
posed by default in the Herwig++ angular-ordered shower. Shower emissions must
have transverse momentum below some upper value, p7**, which depends on the
nature of the hard process. For hard scatterings that produce coloured particles,
the minimum transverse mass®’ of all the final-state coloured particles is used. In
the case that no coloured particles exist in the final state, pii** is set equal to the
invariant mass of the colour-singlet system. Alternatively, the option exists in Her-

max

wig++ to set p7®™* equal to the factorization scale of the hard process. Finally for
parton showers initiated from particle decays, the maximum transverse momentum

is equal to the mass of the decaying particle. The limit on the transverse momentum

2"The transverse mass is defined as mp = /m2 + pQT.
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of emissions is necessary to ensure no double counting of configurations®® and to re-
strict the application of the parton-shower approximation to the regions of phase

space in which it is valid.

Kinematic reconstruction

After the parton-shower evolution has terminated, the momenta of all particles in-
volved are calculated from the values of the shower variables generated at each
splitting. Particles produced in the final branching step of the shower are con-
strained to be on their constituent mass shells such that partons involved in the
hard process develop a virtual mass. The momenta of all final-state progenitors®
and their subsequent emissions are then rescaled by a common factor that is deter-
mined by requiring the total centre-of-mass energy of the system to be unchanged
by the parton shower. A similar rescaling procedure is used for initial-state progen-
itors, where now different kinematic quantities are preserved based on whether the
colour connected partner to the progenitor is in the initial or final state. Further
details of this process can be found in Ref. [6].

When an external matrix-element generator is interfaced to the angular-ordered
parton shower in Herwig++, care must be taken with regards to the kinematic re-
construction if the simulation of the hard scattering process involves higher-order
corrections. In this case, the additional parton in real-emission configurations gen-
erated by the external matrix-element generator will always be interpreted in the
parton-shower algorithm as a final-state emission. However, the final-state kine-
matic reconstruction procedure gives unphysical results when applied to hard pro-
cess final states containing two massive particles and a hard additional parton that

actually originated from initial-state radiation. In this case, the massive particles

28 A very hard parton-shower emission would cause significant recoil of the hard process such
that particles involved in the hard process would be boosted to higher transverse momenta. This
is indistinguishable from a hard process with high transverse momentum particles from which a

softer emission is produced.
2The term progenitor is used to refer to any particle (be it in the hard process, subsequent

decays of unstable particles or additional scatterings) that initiates a parton shower.
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produce only a small amount of radiation, while the additional parton can build up
a considerable virtual mass. By rescaling the momenta of all final-state progenitors
democratically, the energies of the massive particles can be significantly decreased,
giving rise to unphysical distributions. This phenomenon was pointed out in Ref. [71]
for the case of top quark pair production. To account for this, an alternative final-
state kinematic reconstruction procedure is available in the Herwig++ shower. In
this scheme, the momenta of the progenitor with the largest virtual mass and the
combined system of all other progenitors are rescaled by a common factor to restore
energy conservation. Then working in the rest frame of the combined system, the
momenta of the remaining progenitors are rescaled to preserve the total energy of
the system in this frame. In this way, the invariant mass of the combined system
of progenitors is preserved. The effect of the different choices of kinematic recon-

struction procedure will be investigated for the case of stop-antistop production in

Chapter 3.

1.4 Combining higher-order matrix elements and
parton showers

Monte Carlo event generators provide a link between theoretical models and ex-
perimental signatures. As such, it is important that the simulation is performed
with the highest possible accuracy so that results correctly reflect the underlying
physics. The parton-shower algorithm, by which additional QCD radiation is pro-
duced, makes use of an approximation which is valid only in the soft and collinear
regions of phase space. Consequently, the production of hard radiation is not ac-
curately described by the parton shower. This can pose a problem, for example, in
searches for BSM scenarios where often the event selection criteria require the pres-
ence of hard jets in each event. In particular, signal predictions in monojet based
compressed spectra SUSY searches, introduced in Section 1.1.4, are highly sensitive
to the way in which hard parton-shower radiation is generated. The parton shower
alone cannot be relied upon to produce sufficiently accurate predictions in this case.

In recent years, improving the simulation of hard radiation within Monte Carlo
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event generators has been the subject of extensive work. Currently, two main tech-
niques are available - matrix-element merging and matrix-element matching. In the
former, matrix-element level event samples are generated in which the final-state
particles in the hard process are produced together with differing numbers of ad-
ditional partons, j. That is, in addition to generating the hard process pp — X,
the processes pp — X + (1,2, ...,4,...,n)j ¥V i < n are also simulated at fixed order.
The event samples are then merged with the parton shower so that multiple hard
emissions in each event are now described using fixed-order matrix elements, not
the parton-shower splitting kernels. Several prescriptions exist for performing this
merging procedure, see for example Refs. [72-75], which each ensure that no double
counting of radiation takes place.

In this work, we focus exclusively on the latter technique of matrix-element
matching. In this approach, the real-emission contribution to the NLO matrix ele-
ment of the hard process is used to generate the hardest extra parton in each event.
The resulting configuration is then matched to the parton-shower stage of the event
to simulate additional softer radiation in such a way that double counting of emis-
sions is avoided. In some prescriptions, a further modification is also made which
ensures that the Born configuration is simulated with NLO accuracy. Multiple for-
malisms exist for performing matrix-element matching. We will mention briefly the
MC@NLO approach |76,77] and the phase-space slicing technique previously imple-
mented in Herwig++ [78], but focus predominantly on the POsitive Weight Hardest
Emission Generator or POWHEG approach suggested in Ref. [5]. We will use this
formalism to implement a POWHEG inspired matrix-element correction in which the
description of both the hardest parton-shower emission and the Born process are
accurate to LO.

In this section, we begin by considering the combination of LO matrix ele-
ments with the parton shower in Section 1.4.1, before extending the prescription
to NLO matrix-element matching in Section 1.4.2. Having done so, details of the
POWHEG formalism will be given in Section 1.4.3, along with a brief outline of the
MCQNLO prescription. This will be followed in Section 1.4.4 by an introduction

to the POWHEG style matrix-element corrections relevant to this work, and a short
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review of the phase-space slicing approach which has previously been used to imple-
ment ME corrections in Herwig++-. Finally, details specific to the application of the
POWHEG formalism to angular-ordered parton showers will be given in Section 1.4.5.

A more in-depth description of the POWHEG formalism can be found, for example,

in Ref. [79].

1.4.1 Combining LO matrix elements and parton showers

Before discussing the matching of NLO calculations with a Monte Carlo parton
shower, it is instructive to first consider the action of the parton shower on a LO
calculation. To this end, we consider an generic infrared-safe observable O. The
expectation value of the observable is

p?ax

A(p7™, pr™) O(®) +/ dP(pT)A(p?“,pT)@(@nH)] ,

(0) = / 00, B(,) -
(1.4.24)

br

where only the first parton-shower splitting has been included. Here we are consid-
ering a parton shower ordered in terms of the transverse momentum of the emitted
parton, pr. The Born matrix element squared, including the relevant flux and par-
ton luminosity factors®’, is represented by B(®,). The phase space of the 2 — n
LO process is represented by ®,,, while ®,,; is the configuration after an emission
from the Born process. More concretely, we define

n

dzx, dx, 4ot - d*p;
dd,, = = 2m)*6* | x,P, P, — : S 1.4.25
e 7 ( T Z}p)E?EW )

where x, and x;, are the momentum fractions of the incoming partons, P, and P,
are the momenta of the incoming hadrons and p; = (E;, p;) is the momentum of the
outgoing particle ¢. In general, the n+1 body phase space will depend on the splitting
channel through which the emission took place, however the splitting channel index
has been suppressed in the following discussion for the sake of clarity. Furthermore,

in the following we abbreviate O(®,) to O,. In the notation of Eq. 1.4.24, the

30The parton luminosity is defined as £ = x, f"* (z,, u)xbf£2 (wp, 1), where f"(z, ) is the PDF

of hadron h, as introduced in Section 1.2.1.
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Sudakov form factor for the parton shower is®!

A(pr™, pr) = exp (— /pT dP(p})) : (1.4.26)
pr
The first term in Eq. 1.4.24 represents the case in which no radiation is generated by
the parton shower above the IR cutoff scale, while the second term is the scenario
where an emission is produced at a scale pr. On continuing the parton-shower evo-
lution, terms describing the production of multiple emissions would also be present.
Observables that are insensitive to the additional radiation produced by the parton
shower, i.e. those for which O,, = O,,; throughout phase space, are predicted with
LO accuracy and the square bracket in Eq. 1.4.24 integrates to one. As such, the
parton shower does not effect the total cross section of the hard scattering. This
property is referred to as the unitarity of the parton shower. Observables which are
sensitive to the hardest parton-shower emission are predicted with the accuracy of

the parton-shower splitting kernels, i.e. leading-logarithmic accuracy.

1.4.2 Combining NLO matrix elements and parton showers

In the most naive combination of an NLO cross section with the parton shower, one

finds that the prediction for the observable O is

max
T

. D
A (5, i) O, + / dP(pr) A (2, pr) O
P

min
T

(0) = / 0B, (B (D,)+V (3,)]

+ / 40,11 [R(Dps1)Ons1 — C(®pa1)On]
(1.4.27)

where again we consider a shower ordered in terms of the transverse momentum of
the emissions and only the splitting giving rise to the hardest emission has been

considered. Here the subtraction term required to render the virtual contribution

3Tn relation to the notation used for final-state emissions in Section 1.3.2, the ex-
ponent dP(pr), referred to in the following as as the parton-shower splitting kernel, is

2 N

dP(pr) = %% [ dzY"; P,(z). When applied to initial-state emissions, an additional factor of
T

Ln

=+ is present in the splitting kernel, where £,, (£,,41) is the parton luminosity before (after) the

n

splitting.
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finite is included in V (®,,) implicitly. Note that no showering of the real-emission
contribution is necessary since we are concerned with the generation of at most one
emission. Expanding this expression to O(af*!), where k is the order in ag of the
Born process, gives

max

Pr

KH=/M%W@M+V@JK%+/¢%B@M/ P (pr) [Onis — O,

pjnzin

+/ﬂ@HmR@mﬂoﬁi—a¢m004.
(1.4.28)

The contributions relating to the parton-shower splitting kernel are problematic.
The term B(®,,)dP(pr)O,41 corresponds to a resolvable emission generated by the
parton shower which is already accounted for by the real-emission contribution to
the prediction, R(®,.1)O,+1. Furthermore, the expansion of the Sudakov form
factor A (pip™, p) in Eq. 1.4.27 gives rise to the spurious term B(®,)dP(pr)O,
which leads to double counting of virtual contributions.

In addition to the double counting, another issue is present in Eq. 1.4.27. The
subtraction term appearing on the second line of the equation must contribute to-
wards the prediction for the observable for n parton configurations so that it exactly
cancels the subtraction term that has been absorbed into the virtual contribution.
This means that the combination of terms contributing to O,,; and O, are not
separately finite.

Taking into account both issues, consistent matching of the NLO matrix element
and parton shower can be obtained by beginning the parton-shower evolution from

the modified cross section3?

max

P

daggé) = |B(®,) + V() + B(P,) /mm dP(pT)] d®y, (1.4.29)

= B(®n)dP(pr)d®, + [R (Pni1) = C (Pnia)] dPpis,

32Note that the third term on the first line and first term on the second line of Eq. 1.4.29
contribute to the n and n 4+ 1 body configurations respectively, since no integration over the

radiative phase-space variables is included for the latter term.
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and including an additional bridging contribution to the expectation value of the

observable
/d(I)n+1R((I)n+1) [On — On+1] @(p%m — pT) (1430)

For infrared-safe observables, the contribution in Eq. 1.4.30 does not effect the NLO
accuracy of predictions that are insensitive to additional radiation or the resumma-
tion properties of the parton shower [80].

After these modifications have been made, the expectation value of the observable

O becomes

max
T

. D
A (e, i) O, + / P (pr) A (P2 pr) O
Y2

min
T

<O>matched:/d¢)n8(q}n)

] p,lll—}ax
o | [d0iR @) Opr =) - [ d0,B() [ aP(r)| O
ppt
T / 0Dy [R (@011) OWE™ = pr) = C (11)] O
(1.4.31)
where
, P
B(®,) = B(®y) + V(@) + B(Py) / " dP(pr). (1.4.32)
ppt

Up to O(af*?) corrections, the third line in Eq. 1.4.31 may be absorbed into the

prefactor so that now

max

B(®n) = B (@) +V (0n) + B(2y) /pT dP(pr) (1.4.33)

+ / A0 [R (®ns1) O™ = pr) = C (i)

where the radiation variables of the additional emitted parton, ®z, have be factor-

ized such that d®,,; = d®,d®g.

1.4.3 The POWHEG formalism

In the POWHEG matching prescription, the ratio of the differential real-emission and

33

Born-level cross sections® is used as the parton-shower splitting kernel during the

33In practice, the real-emission and Born cross sections in the ratio are stripped of their re-

spective factors of a. A single factor of «y, evaluated at the transverse momentum scale of the
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generation of the hardest emission, 7.e.

p?ax

/pmin dP(pr) = /déR%@(pT _p$in)' (1.4.34)
In the right-hand side of Eq. 1.4.34, the radiative phase space of the additional
emitted parton is limited to emissions with transverse momenta greater than p®
by the inclusion of the function ©(pr—p®). In the following, this Heaviside function
will be translated into explicit limits on the phase-space integral without rewriting
dPr in terms of the transverse momentum of the emission.

Making the substitution in Eq. 1.4.34 leads to considerable simplification of the

approach detailed in Section 1.4.2, such that the expectation value of O is now

<O>POWHEG _ /dq)n[)) (q)n> A (p?ax7p?in) On

- (1.4.35)
where
B(®,) =B(®,)+V(®,) + /d(I)R R (Pps1) — C (Pria)] - (1.4.36)

As such, the total cross section and suitably inclusive observables are generated with
NLO accuracy, while the hardest shower emission is distributed with LO accuracy.
The Sudakov form factor, A(p2* pr), used to generate the hardest emission in

the POWHEG formalism is given by

" R@m))

P
A(pr™, pr) = exp (—/ d®p (1.4.37)
' r 5(@,)

In practice, Eq. 1.4.37 is modified to include dipole functions, D;, thus allowing
the singular behaviour of the real-emission matrix element in different phase-space

regions to be isolated. Eq. 1.4.37 becomes a product of Sudakov form factors,

max

A(pp™,pr) = Hexp (— /p :T d@RZ?;)j Ré?gb”) : (1.4.38)

emission, is then included in the numerator of the splitting kernel. This allows for resummation of

phenomenologically important but subleading corrections as discussed in Section 1.3.2.
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As discussed in Section 1.2.2, each dipole function approximates the behaviour of
the real-emission matrix element in some singular limit, 7.e. when the emitted parton
becomes soft or collinear to one of the particles in the Born process. An emission
can be simulated according to Eq. 1.4.38 by generating a value of pr for each form
factor in the product using the method described in Section 1.3.2. The form factor
giving rise to the hardest emission is selected and the associated dipole then fixes

the kinematic mapping between ¢, and ®,, .

Aside - The MCQNLO method

The original matrix-element matching prescription, dubbed MC@NLO [76, 77|, can
be derived in a similar way to the POWHEG formalism by instead taking the bridging

contribution to be

/dq)n+lc(A)((I)n+l) [On - On+1] @(p?in - pT), (1-4-39)

and writing the parton-shower splitting kernels as
pr%lﬂx

B(®) / _dP(pr) = / dPRC™Y (Pri1) O(pr — p™). (1.4.40)

Then, representing the subtraction term present in the NLO calculation now with

C)(®,,41), the expectation value of the observable © becomes

<O>MC@NLO _ /d(png ((I)n) A (przr}ax’pglr}in) On

max

“ [ an g a e 0| 4
+ /dq)n—i-l [R (Prg1) — C(A)((Dnﬂﬂ Ony1,
where
B(®,) =B(®,)+V(d,) + / dPg [CY (®,41) — CP) (Dy41)] (1.4.42)
and

max

Pt (4) o
A(pr™,pr) = exp (—/ d%M) : (1.4.43)
pr



1.4. Combining higher-order matrix elements and parton showers 42

The first and second lines in Eq. 1.4.41 correspond to events originating from a
Born-like n parton hard process, commonly referred to as shower or S-events. The
real-emission like n + 1 parton configurations generated by the terms on the third
line are known as hard or H-events. The parton-shower splitting kernel CY) and
NLO subtraction term C®) have the same phase-space factorization and may both
be written in terms of a sum of dipole contributions. However, their functional form
away from the singular limits may differ, and typically the parton-shower kernel
will include a cutoff that limits the upper scale of the shower evolution variable. As
such, the upper limits in the integration of the splitting kernels in Eqgs. 1.4.41, 1.4.42
and 1.4.43 are reduced from p** to some physically motivated choice of parton-
shower starting scale, pi#™d, which is typically similar to the factorization scale. By
doing so, the resummation is limited to the region of phase space where the parton-
shower approach is appropriate.

Finally, we note that the integrand in the third line of Eq. 1.4.41 is not guaranteed
to be positive. The weights of H-events can become negative if the parton-shower
approximation of the real-emission term exceeds the true value. While the presence
of negative weights affects the efficiency of the Monte Carlo simulation, typically

these contributions do not lead to an unacceptable reduction in performance.

Division of the real-emission phase space

In the original POWHEG formalism, the emission generated by the POWHEG correc-
tion must populate the entire radiative phase space in order to achieve LO accuracy
for the hardest emission. As such, the starting scale of the parton-shower evolution
is equal to the hadronic centre-of-mass energy, p3** = /s, and the real-emission ma-
trix element is exponentiated beyond the scale where the parton-shower approach is
valid. Furthermore, observables sensitive to the real-emission configuration are en-

hanced by the artificial K-factor3* B(®,,)/B(®,) which, although formally an NNLO

effect, is not guaranteed to be small®.

34We use the term K-factor to refer to the ratio of the NLO to LO cross sections.

35See for example Ref. [81], where the resulting K-factor in Higgs boson production via gluon

fusion was found to be approximately 2.
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The unphysical choice of parton-shower starting scale can be corrected through
the division of the real-emission matrix element into shower and hard components [5]
according to

RS = fpr, o™, P )R and R =R — RS, (1.4.44)

where now the former is identified with the parton-shower splitting kernel. The

max - hard

function f(pr, pp*, py?) is designed such that it:

e vanishes for large values of py thus limiting the resummation scale of the

}%ard ) .

Y

parton shower to O(p

e tends to unity in the soft/collinear limit such that R*(®,1) encapsulates the

full singular behaviour of the real-emission matrix element.

On performing the division of R, Eq. 1.4.35 becomes

<O>POWHEG _ /d(I)nB ((I)n) A (p?ax’p¥in) On

max

ol RS ((I) +1) s
d@ —nA max ( 4. )
+ /p;‘in R B (q)n) (pT apT) O’H—‘rl

p?ax

+ / A0, RY (B,41) O,
pmln

where

and

P . S
A(pr™, pr) = Hexp (— /p ) dq)RZ?ZDj R;ng) . (1.4.47)

Therefore, by choosing the function f to have a sharp cutoff,

fsharp(pTap?axapg’ard) = @<pf%ard - pT)a (1448)

the upper scale in the Sudakov form factor is reduced from pa* to ph#rd, limiting the

resummation of the real-emission contribution to scales less than ph#d. All radiation
above this scale is included by the finite hard component, R, which is generated as
a separate n+ 1 body hard process. In doing so, the artificial K-factor B(®,,)/B(®,,)

is no longer applied to the hard regions of the real-emission phase space.
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Restricting the phase space of the hardest parton-shower emission with a sharp
cutoff gives rise to a discontinuity in the distribution of the restricted variable, in
this case the transverse momentum of the emitted parton. Formally, this amounts
to an NNLO effect, but can have a non-negligible impact on observables. To solve
this problem, f may instead be chosen to be a function that vanishes smoothly. In

Ref. [81] the function

hard\2
— @(p?ax o PT)( (pT )

max hard)
hard 2 27
P + 1

fhfact(pTapT , Pr (1449)

was first used for the phase-space restriction. This function, referred to from now on
as the hfact profile, has been adopted for a number of processes implemented within
the POWHEGBOX program [82|. Naively, this function appears to fulfil the necessary
criteria - it smoothly vanishes in the high py limit and approaches unity as pr — 0.
However, as discussed in Ref. [83|, this approach can run into difficulties in the
soft collinear limit where the function may not approach unity sufficiently quickly
to preserved the Sudakov resummation. Furthermore by reaching zero only in the
infinite py limit, results produced using this approach tend to reflect those produced
using the original POWHEG formalism with R¥ = R, unless ph* is significantly less

than the factorization scale.

An alternative function referred to as the resummation profile,

fresum<pT7pg’laxvpgl’ard) = @(p}%ard - pT)P(pT/pkjl“arda IO)J (1450)
where,
0 ifx>1,

(1-z)?
2p2

ifl—p<ax<l,
(1.4.51)

1 -2l 1 -2p<a<1-p,

1 if x <1-—2p,

\

was suggested in Ref. [84]. The function is zero for all values of pr greater than
the natural starting scale of the shower, unity in the low py region and interpolates
quadratically between these two regimes. The range of pr over which the transition

occurs may be controlled via the parameter p, with f =1 V pp/phed < 1 — 2p.
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For suitable choices of p, this ensures that the full real-emission matrix element is

used in the splitting kernel in the Sudakov region.

1.4.4 Matrix-element corrections

The matrix-element correction approach that is the subject of this work is equivalent
to a POWHEG correction in which the Born configuration is generated according to
the differential cross section B(®,,), rather than B(®,,). In this case, the expectation

value of the observable O is

max

P

: R (D,
A (P, pp™) On"‘/ dq)R—( +1)
D

g T B, ST O

(1.4.52)

(OYF / 45,8 (P,)

As such, the hardest emission in the parton shower is still distributed according to
the full real-emission matrix element. However, inclusive observables that would in
the POWHEG approach be accurate to NLO, are now only described at LO accu-
racy. Furthermore, the absence of the full NLO calculation for the Born configura-
tion means there is no reduction in the uncertainties associated with the choice of

factorization and renormalization scales.

Division of the real-emission phase space

As with the full POWHEG approach, the upper pr boundary of the phase space of
the ME corrected emission may be limited to a more natural scale. In this case,

Eq. 1.4.52 becomes

(OYMF = / d®,B(P,)

max

A (p?ax7p?in) On

max

D
+ / AP R (Pri1) O
pmln

(1.4.53)

P RS (I)n max
+/pmm déRﬁA(pT ,01) Onga

Unlike in the full POWHEG correction, no discontinuity is present in the transverse
momentum distribution, even when employing the sharp cutoff to the real-emission
matrix element defined in Eq. 1.4.48. However considering Eq. 1.4.53, it is clear that

the LO accuracy of the integrated cross section has been destroyed by the division
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of the real-emission phase space. To restore unitarity, the Born configuration in

Eq. 1.4.53 is modified to

p¥ax

B(®,) :B(cbn)—/ dPrR” (®,11). (1.4.54)

min
T

The replacement B — B’ will be referred to throughout as a LoopSim correction,
owing to similarities between this approach and those proposed in Ref. [85]. The
function B’ may be viewed as an approximation to the NLO accurate function B in
which the virtual contribution has been replaced using V ~ — [ Rd®p.

One of the motivations for the original POWHEG formalism was the absence of
negative weights as compared with the MCQNLO approach. In the LoopSim ME
correction introduced here, it is again possible for negative weights to arise. In fact,
in our implementation the two terms in Eq. 1.4.54 are simulated as separate n parton
contributions, the second of which will have negative weights. This impacts on the
efficiency of the simulation but typically not at an unacceptable level.

A more detailed discussion of the LoopSim correction as implemented within
the MATCHBOX framework in the Herwig++ event generator is available in Ap-
pendix A.1.

Finally, we note that matrix-element corrections represent the original |86, 87]
and simplest method of improving the parton shower using information from full
QCD matrix elements. Consequently, an alternative implementation of ME correc-
tions, based on phase-space slicing, has been available within the Herwig++ event
generator for a number of processes®® for some time. In this phase-space slicing
approach, two types of correction are required [78]. The first, called the hard ME
correction, populates the dead zone of the parton-shower phase space using the ex-
act matrix element describing an additional emission from the hard process. In the
second, soft ME correction, existing parton-shower emissions are corrected again
using the full real-emission matrix element. This correction is applied to all shower
emissions for which there is no previous splitting with higher transverse momen-

tum. The POWHEG style ME correction that has been implemented in this work

36See Ref. [6] for a summary of available processes and further details on the ME correction

implementation.
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has two significant advantages over the original phase-space slicing method. Firstly,
it is easily extendable to full NLO matrix-element matching if and when automated
calculations of NLO virtual contributions become available. In addition to this,
the POWHEG style correction is considerably easier to implement within the Her-
wig++ event generator, given that no knowledge of the phase-space boundaries of

the dead zone is required.

1.4.5 Truncated and vetoed parton showers

In POWHEG based matching procedures, once the hardest shower emission has been
generated using a splitting kernel proportional to the real-emission matrix element,
all further parton-shower emissions are simulated using the normal parton-shower
splitting kernels. For the case in which the parton-shower emissions are ordered
in terms of decreasing transverse momentum, this amounts simply to applying the
parton-shower algorithm to the hard process including the first emission, with a
starting scale set by the transverse momentum of the POWHEG emission®”.

For parton showers in which the emissions are ordered in terms of an angular
evolution parameter, such as the default shower in Herwig++, the highest transverse
momentum emission is not necessarily produced first. In this case, starting the nor-
mal parton shower from the scale defined by the POWHEG emission would miss a
class of emissions which have a larger value of the angular evolution parameter but
smaller transverse momentum than the POWHEG emission. The impact of this soft,
wide-angle radiation is typically thought to be small and so is often neglected. This
assumption allows matrix-element event generators that specialize in the implemen-
tation of the POWHEG correction, for example POWHEGBOX, to be easily interfaced
to angular-ordered parton showers. This is done using the same procedure as for the
transverse-momentum ordered showers with an additional veto on any subsequent

parton-shower emission which is generated with transverse momentum greater than

3TWe use the term POWHEG emission to refer to the parton-shower emission that is generated
using the Sudakov form factor in Eq. 1.4.37, both for the full POWHEG and ME correction ap-

proaches.
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that of the POWHEG emission.

However to correctly reconcile angular ordering with the POWHEG formalism, a
vetoed and truncated component of the shower must be introduced which simulates
the missing soft wide-angle radiation. This amounts to an angular-ordered shower
that is initiated at a scale determined from the underlying Born process, in which
any emission with transverse momentum exceeding that of the POWHEG emission
is discarded. The evolution of the shower is stopped, or truncated, when the angu-
lar evolution parameter reaches the value corresponding to the POWHEG emission.
The POWHEG emission is then inserted into the chain, and the normal shower is
used to continue the evolution from this scale down to the non-perturbative cutoff
scale, again discarding emissions with transverse momentum greater than that of
the POWHEG emission. Currently, the consistent inclusion of a truncated shower is
only available in internal implementations of the POWHEG formalism, such as those
included in the Herwig++ event generator®.

In the case that the phase space of shower-type POWHEG emissions has been
restricted, as described in Section 1.4.3, the shower evolution of events generated
with the hard real-emission matrix element, R¥, must also be included. These
events require no truncated shower and are showered freely, with the parton-shower
starting scale fixed at the maximum value defined by the particular parton-shower
convention.

More details of the truncated and vetoed parton showers present in Herwig++ can

be found in Ref. [88].

381t is important to note that there may be regions of the parton-shower phase space that are
not correctly populated even in the case that a specialist POWHEG matrix-element generator is
interfaced to a transverse-momentum ordered parton shower. This is due to the ambiguity in
the definition of transverse momentum within the shower, and clearly advocates the use of a
fully integrated Monte Carlo approach in which parameter definitions can be easily communicated

between the different stages of the program.



Chapter 2

Matrix-element corrections to the

decays of BSM particles

The production of high transverse momentum radiation in BSM processes will af-
fect the topology of new physics events and therefore the expected experimental
signature at collider experiments. Radiation produced during the hard scattering
processes is of particular importance in scenarios which feature small mass split-
tings between the new BSM particles. As was discussed in Section 1.1.4, searches
for these compressed spectra scenarios can benefit from considering events in which
final-state BSM particles recoil against hard initial-state radiation. The emission
of radiation in the subsequent decays of the new particles could either enhance or
reduce the sensitivity of these search strategies and so must be accurately accounted
for.

In this chapter, the impact of improving the simulation of hard radiation using
a POWHEG style ME correction is studied for a range of decays relevant to BSM
physics searches. The chapter is organised as follows. In Section 2.1, our implemen-
tation of the ME correction within the Herwig++4 event generator is described for
the example of top quark decay. In addition, the effect of applying the correction
to this decay is studied and compared with results generated using an alternative
matrix-element correction based on phase-space slicing [89]. This allows us to vali-
date our algorithm. In Section 2.2, details are given of the decay modes for which

the correction has been implemented. The impact of the correction on the decay of

49
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the lightest graviton in the Randall-Sundrum model [25] is studied in Section 2.3.1
and results for two decays in the CMSSM are presented in Section 2.3.2. Finally,

our findings are summarized in Section 2.4.

2.1 Top quark decays

In this section, we describe the implementation of the POWHEG style ME correction
for the example of a top quark decaying to a W-boson and a bottom quark. We make
use of the existing Herwig++ matrix elements for leading-order top quark decay and
modify the shower such that the hardest emission is distributed according to the full
real-emission matrix element. Application of the POWHEG correction to top quark

+

decays in Herwig++, along with top quark-antiquark production in eTe™ collisions,

has been previously studied in Ref. [8] for massless bottom quarks. Here the physical

mass of the bottom quark is used throughout.

2.1.1 Implementation in Herwig++
Matrix elements

At leading order, the spin and colour-averaged squared matrix element for the decay

of a top quark into a bottom quark and a WW-boson is given by

(Mp|* =

P (my + my — 2my, + mim3y, + mpmyy, — 2mim;) (2.1.1)
W

where m;, my and my are the masses of the top quark, bottom quark and W-
boson respectively and ¢ is the weak interaction coupling constant. The relevant
CKM factor has been set equal to 1. The spin and colour-averaged squared matrix

element for the O («ay) real-emission correction to the decay t — Wb is

. M2 2
|MR|2:929§CF{_’ d (pb S ) +

9> DPb-Dg  Dt-Pyg
. . 2 2 1
(ptpg+pbpg) (1+ mi ) ! (m§+mg)}, (2.1.2)
DPb-Dg  Di-Py 2miy, - 2myy, myy

where g is the strong coupling constant, C'z is the Casimir invariant in the funda-
mental representation of SU(3) and p;, py, pw and p, are the momenta of the top

quark, bottom quark, W-boson and gluon.
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Kinematics

Decays of fundamental particles are performed in the rest frame of the parent par-
ticle, in this case the top quark. In this frame, we are free to choose the orientation
of the W-boson to be along the negative z-direction and so, at leading order, the
bottom quark is orientated along the positive z-direction. In general, the orientation
of the decay products in the three-body final state of a real-emission configuration
is chosen such that the emitting parton absorbs the transverse recoil coming from
the emission of the gluon, while the spectator particle, the W-boson, continues to
lie along the negative z-direction. However, when the radiation originates from the
top quark, the bottom quark effectively acts as the emitting particle such that we
remain in the rest frame of the parent. Therefore for emissions from both the top

and the bottom quarks, the momenta of the decay products are:

Pw = (EW,O,O, — EI%V W) ) (2.1.3)
Py = (Eb, —pr o8 ¢, —prsin ¢, \/ EZ — p3 — m%) : (2.1.4)
Py = (Eg,pT cos ¢, prsin ¢, \/ B2 — p%) : (2.1.5)

where E, is the energy of particle x, and pr and ¢ are the transverse momentum

and azimuthal angle of the gluon.

Phase space

The Lorentz invariant phase-space element of the additional emitted gluon, d®p, is
obtained from the relation

d®; = dDydPp, (2.1.6)
where

d®, = (27 <pt sz) 11 QEd g;)g, (2.1.7)

and p; is the three-momentum of particle i. We choose to parameterize the radiative
phase space in terms of the transverse momentum, pr, rapidity, y, and azimuthal

angle, ¢, of the gluon and so find
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where the Jacobian factor, J, is !

1 mipr|pw |
83 A(mi, mi,, mp)[|[Pw|(m¢ — pr coshy) — Ewprsinhy]

J = (2.1.9)

Dipole functions

The Sudakov form factor used to generate the POWHEG corrected emission? is

max

Pr

o Di Mg .
A(ppex = — Ao (pa " Jdprdyde |, (2.1.10
(P, pr) Uexp( /pT Ta (pT)Zj D, M Prdve (2.1.10)

where now the factor of g2 has been removed from the expression for |[Mz|? in
Eq. 2.1.2. Considering Eq. 2.1.10, the final components required for the implemen-
tation of the POWHEG style ME correction are the dipole functions, D;, which each
describe the singular behaviour of the real-emission matrix element for a particular
enhanced kinematic configuration. We use the functions defined in the Catani-
Seymour subtraction scheme [55,56] to describe the singular behaviour resulting
from emissions from the decay products. The dipole used to describe radiation from

the top quark is as follows,

_ —4rCra;

D; = £ |IMp|* (2.1.11)

It contains only soft enhancements since, in the top quark rest frame, collinear
enhancements are suppressed. In practice, the absolute magnitude of the dipole
functions are used in Eq. 2.1.10 to ensure that the parton-shower splitting kernel is

always positive.

Matrix-element correction algorithm

Using the above information, the hardest emission in the shower can be generated

according to Eq. 2.1.10 using the veto algorithm, which proceeds as follows:

\(@,y,2) = /22 + y2 + 22 — 2xy — 2zy — 2y2.
2We note that restricting the phase space of shower-type POWHEG emissions, as discussed in

Section 1.4.4, is not necessary in the case of particle decays since the starting scale of the shower

is naturally limited by the masses of the particles involved.
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1. Trial values of the radiative phase-space variables are generated. The trans-

verse momentum of the emission is generated by solving

max

Pr dp“T a°Vver Ymax 2T d¢
Aover pmax7p = exp (_/ - s C/ dy/ - _ R,
( g T) pr pT 27T Ymin 0 27T
(2.1.12)
max (W*mw)zfmﬁ

where pp®* = ) is the maximum possible pr of the gluon. The

upper and lower bounds on the gluon rapidity, ymax and ymin, are chosen to

over

over overestimates the true value

overestimate the true rapidity range, while «
of the strong coupling constant evaluated at the scale of the emission. The
constant C' is chosen such that the integrand in Eq. 2.1.12 always exceeds
the integrand of the true Sudakov form factor, and R is a random number

distributed uniformly in the range [0,1]. Values of y and ¢ are generated

uniformly in the ranges [Ymin, Ymax] and [0, 27] respectively;

min

2. If the trial value of the transverse momentum does not satisfy pr > p7™, no

radiation is generated and the decay products are hadronized directly;

3. If pr > p™ the momenta of the W-boson, bottom quark and gluon are
calculated using the generated values of the radiative variables. Doing so
yields two possible values of Ey,, which must both be retained and used in
the remainder of the calculation. If the resulting momenta do not lie within
the physically allowed region of phase space, the configuration is rejected, the

maximum allowed transverse momentum is updated to p** = pp and the

algorithm returns to step 1;

4. Events within the physical phase space are accepted with a probability given
by the ratio of the integrands of the true and overestimated form factors,

i.e. events are accepted if

as(p) 1673 Jpr  D; |./\EIR\2
ager C > D Mpl?

>R (2.1.13)

where R’ is a random number in the range [0, 1]. If the event is rejected, we

max

set pp** = ppr and return to step 1;

Using this procedure, a trial emission is generated for each Sudakov form factor

in the product in Eq. 2.1.10 and the one giving rise to the highest py emission is
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selected. The existing Herwig++ framework is then used to generate the remainder
of the parton shower, including the truncated and vetoed component introduced in

Section 1.4.5.

2.1.2 Validation and results

To validate our implementation of the algorithm described in Section 2.1.1, Dalitz

style plots were generated for the decay ¢ — Whbg and are shown in Figure 2.1.

The Dalitz variables, xy and x4, were defined by the relation z; = 25:, where E; is

the energy of particle ¢ in the rest frame of the top quark. The left-hand panel in
Figure 2.1 shows the distribution obtained when the POWHEG style ME correction is
applied. In this case, z, is the energy fraction of a gluon generated using the full real-
emission matrix element. The distribution on the right-hand side of Figure 2.1 was
instead generated using the uncorrected parton shower, limited to a single emission,
such that z, is the energy fraction of a gluon produced using the parton-shower
splitting kernels. In both distributions, the black outline indicates the physical
phase-space boundaries. The enclosed area is divided into a section populated by
radiation from the bottom quark (above the green dashed line), sections populated
by radiation from the top quark (below the blue dotted lines) and the dead zone
(between the blue dotted and green dashed lines), which corresponds to hard gluon
radiation and is not populated by the parton shower. These boundaries correspond
to the theoretical limits of the Herwig++ parton shower with symmetric phase-
space partitioning, described in Ref. [70], in which the starting values of the shower
evolution variables for the top and bottom quarks are chosen such that the volumes
of phase space accessible to emissions from each quark are approximately equal.
As expected, in both plots a high density of points is observed in the region
xy — 0, corresponding to soft gluon emissions. The ME corrected distribution also
has a concentration of points along the upper physical phase-space boundary where
Tw is maximal and emissions are collinear to the bottom quark. The density of
points along the upper boundary is reduced in the uncorrected distribution, and
instead a concentration is present along the lower boundary of the bottom quark

emission region. As discussed in Ref. [70], the parton-shower approximation agrees
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Figure 2.1: Dalitz distributions for the decay t — Wbg with (left) and without
(right) the POWHEG style ME correction. The black outline indicates the physically
allowed region of phase space. In the uncorrected parton-shower approach, the
region above the green dashed line is populated with radiation from the bottom
quark and the regions below the blue dotted lines are populated with radiation from
the top quark. These boundaries correspond to the limits of the parton shower with

symmetric phase-space partitioning.

with the true splitting probability for the case of collinear radiation from the bottom
quark, but overestimates it elsewhere in this emission region. The factor by which
the parton-shower approximation exceeds the exact real-emission matrix element
increases towards the lower boundary of the region, and therefore we see an excess
of points in that area. The parton-shower distribution also has a high density
of points in the top quark emission region for z, < 0.53, again caused by the
parton-shower approximation overestimating the true splitting probability in this
area. In general, we find that the parton shower produces areas of high emission
density which do not correspond to physically enhanced regions of phase space, and
therefore has a tendency to produce too much hard radiation. On the other hand,
the ME corrected emission is distributed according to the exact real-emission matrix
element and so correctly populates the physically enhanced regions of phase space
with no additional spurious high density regions. Finally, we also see that the ME
corrected distribution fills the dead zone of the parton-shower phase space that is
not populated by shower emissions.

To further study the impact of the POWHEG style ME correction to top quark de-
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cays, ete” — tt events were generated and analysed as in Ref. [89]. The production
of the top-antitop pair was simulated at leading order using the built-in implemen-
tation in Herwig++ version 2.6 [90]. The full evolution of the parton shower was
simulated, but the effects of hadronization were neglected. Events were generated
at a centre-of-mass energy close to the ¢t threshold, /s = 360 GeV, in order to
minimize the effects of radiation generated during the production of the top-antitop
pair. The top quarks were forced to decay leptonically, either at leading order or
including, for the decay ¢ — Wb, the POWHEG style or preexisting ME correction
based on phase-space slicing [89]. The events were analysed using the Rivet frame-
work [91]. Final-state particles, excluding the decay products of the W-boson, were
clustered into three jets using the FASTJET [92] implementation of the eTe™ kp algo-
rithm [93]. Events were discarded if they contained a jet with transverse momentum
pr; < 10GeV or the minimum jet separation®, AR , did not satisfy AR > 0.7. Dif-
ferential distributions of AR and log (ys2), where ys5 is the value of the jet resolution
parameter* at which a three jet event is classified as a two jet event, were plotted
and are shown in the left and right-hand panels in Figure 2.2. The bottom panel in
each plot shows the ratio of distributions generated either with no ME correction
or using the original phase-space slicing technique to the one generated with the
POWHEG style ME correction. For both observables, the uncertainty in the results
due to limited statistics is indicated by error bars in the distributions, except for the
central values in the ratio plots where this uncertainty is instead shown by a yellow
error band.

Distributions generated with and without the POWHEG style ME correction ap-
plied to the top quark decays are shown by the black solid and blue dashed lines
in Figure 2.2 respectively. The red dotted lines in Figure 2.2 show the distributions
obtained when the preexisting ME correction is used. In this phase-space slicing

approach, both hard and soft matrix-element corrections must be included. The

3AR = min;; w/AniZj + Agb?j, where the indices 4,j run over the three hardest jets and ¢ # j.

An;; and A¢;; are the differences in pseudorapidity and azimuthal angle of jets ¢ and j respectively.
Yy32 = 2 min;; (min (EZ, E?) (1 — cosy;)), where the indices i, j run over the three hardest jets

with ¢ # j. Ej; is the energy of jet ¢ and 0;; the polar angle between jets ¢ and j.
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Figure 2.2: Comparison of distributions generated with no ME correction to those
generated using the preexisting or new POWHEG style ME correction to the decay
t — Whbh. Parton-level ete™ — tf events were generated at /s = 360 GeV. The
left-hand plot shows the distribution of the minimum jet separation, AR, and the

right-hand plot shows the logarithm of the jet measure, yss.

hard ME corrections use the ¢t — Wbg matrix element to distribute emissions in the
dead zone of parton-shower phase space, while soft matrix-element corrections use
the real-emission matrix element to correct parton-shower emissions that lie outside
the areas of phase space where the shower approximation is valid, ¢.e. away from the
soft and collinear limits. Applying these corrections ensures that the hardest emis-
sion in the shower is generated according to the exact real-emission matrix element,
therefore, we expect a high level of agreement between results generated using the
POWHEG style and original ME corrections.

Considering the plots in Figure 2.2, we see that applying either type of matrix-
element correction has the effect of softening both the AR and log (y32) distribu-
tions. This is the result of the corrections reducing the number of high pr emissions
generated within the parton-shower phase space, as was observed in Figure 2.1.
The magnitude of the observed effect illustrates the importance of matching the
parton shower to the exact matrix element in high py regions. As expected, the
distributions generated using the POWHEG style and original matrix-element cor-
rections are very similar, although for both variables the POWHEG style correction

yields slightly harder distributions. The differences between the distributions are
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the result of a number of subtle variations between the POWHEG style and orig-
inal matrix-element correction schemes. Firstly in the original approach, events
in the dead zone are generated using the fixed-order real-emission matrix element
only, without any Sudakov suppression, and subsequent showering of the result-
ing configuration is simulated starting from the 1 — 3 process. However in the
POWHEG style approach, the real-emission configuration is interpreted in terms of
a parton-shower splitting and incorporated into the evolution of the shower, which
begins from the Born configuration as outlined in Section 1.4.5. In addition to this,
the soft matrix-element correction in the original approach is applied to all emis-
sions in the parton shower which are the hardest so far. Normally this leads to the
correction of both the hardest emission and a number of other emissions with large
values of the evolution parameter, but smaller transverse momenta. These differ-
ences all contribute to the disparity between the POWHEG style and original ME
corrected distributions, although it is unclear which has the dominant effect. The
difference between the POWHEG style and original matrix-element corrected results
is, however, small. As such, the agreement between the two approaches serves to fur-
ther validate the implementation of our POWHEG style ME correction. Finally, we
note that the POWHEG style approach is preferable to the original matrix-element

correction scheme since it is significantly simpler to implement in Herwig++.

2.2 Decays of BSM particles

Having outlined and validated our implementation of POWHEG style ME corrections
for the case of top quark decays, we now turn our attention to decays involving
BSM particles. The POWHEG style ME correction has been implemented within
the Herwig++ event generator for a range of decays that occur in most of the well
studied BSM scenarios. The leading-order and real-emission matrix elements are
calculated using the internal Herwig++ implementation of the HELAS formalism [94],
thereby allowing spin correlations to be correctly incorporated through the algorithm
described in Ref. [62]. The singular nature of the real-emission matrix element is

partitioned using dipole functions defined as in the Catani-Seymour subtraction
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Incoming Outgoing Incoming | Outgoing
Scalar Scalar Scalar B
0 33f
Scalar Scalar Vector*
T
Scalar Fermion Fermion 0 88
Fermion Fermion Scalar 3 30
Fermion Fermion Vector* 3 30
Vector Scalar Scalar
3 38
Vector Fermion Fermion
Tensor Fermion Fermion 3 38
Tensor Vector Vector* 8 33
Table 2.1: Spin combinations for Table 2.2: Colour flows for which
which the POWHEG style ME correc- the POWHEG style ME correction has
tion has been implemented. Correc- been implemented. For tensor parti-
tions to the decays marked * are not cles, corrections are only included for
included for massive coloured vector colour flows marked T.
particles.

scheme [55, 56] when describing radiation from the decay products, and a spin-
independent soft contribution for emissions from the decaying particle. The latter
is defined in analogy to the function in Eq. 2.1.11, modifying the colour factor to
reflect the colour flow of the decay.

Table 2.1 shows the combinations of incoming and outgoing spins for which
the correction has been included, and each spin structure is implemented for the
colour flows given in Table 2.2. However, two limitation apply. Firstly, no models
with coloured tensor particles have been considered and therefore decays involving
incoming tensor particles are limited to the colour flows in which the tensor is a
colour singlet. In addition, the Fermion-Fermion-Vector, Scalar-Scalar-Vector and

Tensor-Vector-Vector decays are not implemented in the case of massive coloured
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vector particles, although the corrections for massless coloured vector particles have

been included®.

2.3 Results

2.3.1 Randall-Sundrum graviton

In the remainder of the chapter we investigate the impact of applying POWHEG style
ME corrections to the decays of BSM particles, beginning in this section with the
decay of the lightest graviton in the Randall-Sundrum (RS) model. To this end, we
make use of the RS type model [25] implemented within Herwig++, see Ref. [95] for
more details. Proton-proton collisions were simulated in which the lightest graviton,
G, was produced as a resonance and allowed to decay via G — gg or G — qq for
q = u,d,s,c,b. The mass of the graviton was chosen to be mg = 2.23 TeV which, at
the time of writing, corresponded to the lower bound on the allowed graviton mass for
the coupling k/Mp; = 0.1 [96]. Events were generated at a centre-of-mass energy of
/s = 8 TeV and include simulation of the full parton shower, hadronization and the
underlying event. The default values of the renormalization and factorization scales
in Herwig++ version 2.6 were used, along with the default PDF set CTEQS5L [97].

To study the impact of the POWHEG style ME correction to the decay of the
graviton, an analysis based on an ATLAS collaboration search for new phenomena
in dijet distributions [98] was implemented within the Rivet framework. Jets were
constructed using the FASTJET [92| implementation of the anti-kr algorithm [99]
with the energy recombination scheme and a distance parameter R = 0.6. Events
with less than two jets satisfying |y;| < 4.4 were discarded, where y; is the rapidity
in the pp centre-of-mass frame of the ¢th hardest jet. In the dijet centre-of-mass
frame formed by the two hardest jets, the rapidities of those jets, y. and —y., where
determined from y, = 3(y1 — y2). Events not satisfying |y.| < 0.6 and |y; | < 2.8

5At the time of implementation, attempts to calculate well-defined dipoles describing quasi-
collinear radiation from massive vector bosons were unsuccessful. While the dipoles have now been

determined, corrections to these modes remain absent.
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Figure 2.3: Dijet invariant mass distributions for the lightest RS graviton de-
caying to jets. The left-hand plot shows the distribution in the full range
1.0TeV <m;; <2.5TeV, while the right-hand plot emphasises the effect on the
peak region 2.1 TeV < mj; < 2.3TeV. The mass of the graviton was mqg = 2.23 TeV
and the coupling k/Mp; = 0.1. LHC events were simulated with /s = 8 TeV. The
uncertainty bands were generated by varying the event tune parameters in the ME

corrected (blue) and uncorrected (red) distributions respectively.

were discarded. The dijet invariant mass, m;;, was determined from the vector
sum of the momenta of the two hardest jets, and events were required to satisfy
mj; > 1.0TeV.

The dijet mass distribution after the above selection criteria were applied is
shown in the left-hand plot in Figure 2.3. The red solid line shows the invari-
ant mass distribution in the case that no ME correction was included, while the
blue dashed line shows the result obtained when the POWHEG style ME correc-
tion to the graviton decay was applied. From Figure 2.3, we see that including the
POWHEG style correction causes a decrease of O (40%) in the number of events in
the region 2.1 TeV < m;; < 2.3TeV. This effect is highlighted in the right-hand
plot in Figure 2.3, which shows the dijet mass distribution in this range. In the
uncorrected approach, the majority of the graviton’s momentum will be carried by
the two partonic decay products. When the POWHEG style correction is applied,
the momentum is instead distributed between the partonic decay products and the

POWHEG corrected emission, such that a significant fraction of the graviton’s mo-
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mentum is missed when the invariant mass of only the hardest two jets is considered.
Therefore, we see a shift in the dijet mass distribution to lower values of m;; when
the ME correction is applied.

The central values of the dijet mass distributions were generated using the opti-
mum set of tuned perturbative and non-perturbative parameters (event tune) found
in Ref. [9]. To give an estimate of the uncertainty arising from our choice of event
tune, the dijet mass distributions were generated at ten points in the event tune
parameter space and error bands were created showing the maximum and minimum
values from the resulting set of distributions. A description of the varied parameters
can be found in Ref. [9] and their values at each of the ten points are given in Table 2
of Ref. [9]. The resulting error bands are shown in blue and red for the distributions
with and without the ME correction respectively. The impact of the POWHEG style

correction is still clearly evident once this uncertainty has been taken into account.

2.3.2 The Constrained Minimal Supersymmetric Standard
Model

In addition to the results presented in Section 2.3.1, the effect of the POWHEG style
ME correction has also been studied in the context of the CMSSM model. To
this end, we consider a scenario with the high scale parameters my = 1220 GeV,
myse = 630GeV, tan B = 10, Ag = 0 and p > 0. This point lies just outside the
exclusion limits set by the ATLAS experiment in Ref. [100], which at the time of
writing provided the most stringent constraint on the CMSSM parameter space.
The corresponding weak scale parameters and decay modes were calculated us-
ing ISAJET 7.80 [101], and the resulting masses of the SUSY particles relevant to
this study are given in Table 2.3. The Herwig++ implementation of the MSSM
model [95] was used to generate LHC pp collisions at a centre-of-mass energy of
\/s = 8 TeV. Here we focus on the effect of the correction to the parton shower and

so hadronization and the underlying event were not simulated®. In the following

6As in Section 2.3.1, we use the default values of the renormalization and factorization scales

and the CTEQ5L PDF set.
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May, Mg mg mzg

1812.91 GeV | 1546.56 GeV | 1278.14 GeV | 279.22 GeV

Table 2.3: Masses of the SUSY particles relevant to the decays studied in Sec-
tion 2.3.2. Values were obtained using ISAJET 7.80 with the high scale parameters
mp = 1220 GeV, my, = 630 GeV, tan 3 = 10, Ay = 0 and p > 0.

sections, the impact of the POWHEG style correction on two archetypal decays is
presented. In both cases, the decaying SUSY particle is pair produced in the hard
process and the two subsequent decays are then analysed separately in the rest frame
of the decaying particle. Dalitz style distributions were produced, as described in
Section 2.1.2, for both the POWHEG corrected emission and an emission generated
using the uncorrected parton-shower splitting kernel. In addition, for each decay
mode the transverse momentum distribution of the hardest jet not originating from
a decay product was also studied. To do so, the full parton shower was generated,
with and without the POWHEG style correction, and the visible final-state particles
originating from each decay were clustered into jets using the FASTJET implemen-
tation of the anti-kr algorithm with the energy recombination scheme and R = 0.4.
Jets with transverse momentum pr; < 20GeV or pseudorapidity || > 4.0 were
discarded. Each decay was required to have at least n 4+ 1 jets passing the selection

criteria, where n is the number of visible decay products.

Matrix-element corrections to @y — u \?

Events were generated in which a left-handed up squark-antisquark pair was pro-
duced and then decayed according to @z, — u XY, and the equivalent conjugate mode.
Dalitz style distributions with and without the ME correction were produced and
are shown in the left and right-hand plots in Figure 2.4. The black outline indicates
the kinematic limits of phase space and the green dashed and blue dotted lines are
the boundaries of the emission regions in the uncorrected parton shower with the
most symmetric choice of shower phase-space partitioning. Emissions from the up
quark populate the area above the green dashed line, while the regions below the

blue dotted lines are filled by emissions from the uy. The area between the green
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Figure 2.4: Dalitz distributions for the decay i — u x{g with (left) and without
(right) the POWHEG style ME correction. The black outline indicates the physically
allowed region phase space. In the uncorrected parton-shower approach, the region
above the green dashed line is populated with radiation from the up quark and
the regions below the blue dotted lines are populated with radiation from the .
These boundaries correspond to the limits of the parton shower with symmetric

phase-space partitioning.

and blue lines is the dead zone, unpopulated by the normal parton shower.

Similar to the result in Section 2.1.2, we see that points in the ME corrected
distribution are concentrated in the soft region as z, — 0, and along the upper
boundary of the physical phase space where the emitted gluon is collinear to the up
quark. However, in the normal parton-shower distribution fewer points lie along the
upper physical phase-space boundary. Instead there is a concentration of points in
the up squark emission region with z, < 0.85 and along the lower boundary of the
up quark emission region. In analogy to the case of top quark decay, these unphys-
ical high density regions are understood to result from the parton-shower kernels
overestimating the exact real-emission matrix element. Finally, we see that includ-
ing the POWHEG style correction ensures that the region of phase space inaccessible
to the normal parton shower is populated.

Differential distributions of the transverse momentum of the subleading jet”, pro,
in each decay were also generated and are shown in Figure 2.5. The red solid line

corresponds to the distribution generated using the uncorrected parton shower, while

7Jets are ordered in terms of their transverse momentum such that pr.1 > pr2 > pr,3 ete.
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Figure 2.5: Transverse momentum distributions of the second hardest jet in the
decay i, — ux?, analysed in the rest frame of the 7. Events were generated with
(blue dashed line) and without (red solid line) the POWHEG style correction, using
the CMSSM model with mg = 1220 GeV, m,/, = 660 GeV, tan 3 = 10, Ay = 0 and
p > 0 at the LHC with /s = 8 TeV.

the blue dashed line shows the result with the ME correction to the decay applied.
Error bars are included to indicate the statistical uncertainty in the distributions.
As demonstrated in Figure 2.4, the parton shower tends to overpopulate the hard
regions of phase space. Hence, including the POWHEG style correction reduces the
pr of the hardest emission in the decay. This is reflected in the ME corrected
pr2 distributions which is softer that the uncorrected result. As such, we observe
an O (20%) reduction in the number of events passing the jet selection criterion

pr,; > 20 GeV when the correction is applied.

Matrix-element corrections to §j — ¢, ¢

Finally, we investigate the impact of the POWHEG style correction on the decay
mode § — 1 t. The left and right-hand plots in Figure 2.6 show Dalitz distributions
for this decay generated with and without the ME correction respectively. In both
plots, the black outline indicates the kinematically allowed region phase space. The
solid coloured lines show the boundaries of the parton-shower emission regions in the

scenario where the ¢ absorbs the transverse momentum recoil of the gluon emission



2.3. Results 66

1.670 N — 1.670

1.665 — 1.665
1.680

— 1.680

1.655 — 1.655

Figure 2.6: Dalitz distributions for the decay § — #; tg with (left) and without (right)
the POWHEG style correction applied. The solid (dashed) coloured lines indicate
the parton-shower emission regions when the ¢ (fl) absorbs the transverse recoil of
the emission. The solid (dashed) green line shows the lower (upper) boundary for
radiation from the ¢ (fl). The blue solid (dashed) lines are the equivalent upper
(lower) boundaries for radiation from the g. All boundaries correspond to the case
of symmetric phase-space partitioning and the black outline shows the kinematically

allowed region of phase space.

and the ¢, is orientated along the negative z-axis in the § rest frame. The region
above the green (pale) solid line is populated by emissions from the ¢ and the areas
below the blue (dark) solid lines are filled by emissions from the §. In this case,
the two emission regions overlap away from the soft limit and there is no region
of phase space left unpopulated by the parton shower. The dashed coloured lines
indicate the emission boundaries of the parton shower when instead the #; absorbs
the transverse recoil of the emission and the ¢ is aligned with the negative z-axis.
The green (pale) dashed line is the upper limit for emissions coming from the #; and
the blue (dark) dashed lines mark the lower boundaries for emissions from the g.
From the left-hand plot of Figure 2.6, we see that the majority of points in the
ME corrected distribution are concentrated in the soft region of phase space. High
density regions corresponding to emissions collinear to the £ or #; are suppressed
due to the massive nature of the decay products. In the parton-shower distribution,
points are concentrated in the soft region and along the lower boundary of the ¢

and dashed ¢ emission regions. The latter two unphysical regions of overpopulation
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Figure 2.7: Transverse momentum distributions of the third hardest jet in the decay
§ — 11 t, analysed in the rest frame of the § and with stable ¢; and . Events were
generated with (blue dashed line) and without (red solid line) the POWHEG style
correction, using the CMSSM model with mg = 1220 GeV, m;/, = 660 GeV, tan 3 =
10, Ag =0 and p > 0 at the LHC with /s = 8 TeV.

again highlight the importance of correcting hard emissions in the parton shower
using the exact real-emission matrix element.

Transverse momentum distributions of the third hardest jet in the rest frame of
the g were also plotted and are shown in Figure 2.7. To focus on the effect of the
POWHEG style correction, the top quark and top squark produced in each decay
were not allowed to decay further. The red solid and blue dashed lines in Fig-
ure 2.7 correspond to the uncorrected and ME corrected distributions respectively
and error bars indicating the statistical uncertainty on the results are shown. As
for the decay @, — u x?, we find that the ME correction decreases the total number
of events passing the jet pr selection criterion. The effect is more pronounced in
this case, with an O (40%) reduction. The pure parton-shower distribution signifi-
cantly exceeds the ME corrected result in the small pr3 limit, however in the high
transverse momentum tail the two distributions are similar. This occurs because the
POWHEG style correction softens the hardest emission in the decay, which in the low

pr,3 region forms the base of the third hardest jet. However, the maximum possible
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pr of the gluon generated by the ME correction is® pma* ~ 75 GeV. Jets contribut-
ing to the corrected pr g distribution above this limit are sensitive to uncorrected
shower emissions in addition to the hardest emission, therefore reducing the effect
of the correction in the high pr regime. As such, applying the ME correction will
only impact significantly on the number of events passing a jet pr selection criterion

if the value of the py cut lies below p7** of the POWHEG corrected emission.

2.4 Summary

In this chapter, we have investigated the effect of using a POWHEG style ME correc-
tion to improve the simulation of hard QCD radiation in a range of particle decays.
The implementation of this correction within the Herwig++ event generator was de-
scribed in detail for the decay ¢ — Wb. Dalitz style distributions of the first emission
from this decay in the uncorrected parton shower and ME corrected cases were pro-
duced, and showed that the parton shower has erroneous, unphysical areas of high
emission density which result in the overpopulation of some high pr regions of the
emission phase space. This effect may be rectified by applying the POWHEG style
correction, which ensures that the majority of emissions lie in the soft and collinear
limits. Differential distributions of the minimum jet separation and logarithm of the
jet measure were also generated with the POWHEG style correction and compared
to those generated with the existing Herwig++ implementation of hard and soft
matrix-element corrections. The two techniques exhibit a high level of agreement,
therefore demonstrating the validity of our approach. In addition to this, distribu-
tions were generated using the normal parton shower. In agreement with the results
from the Dalitz plots, these distributions were found to be considerably harder than
those generated with the original or POWHEG style matrix-element corrections.
The impact of applying the POWHEG style ME correction to the decays of BSM
particles was then studied in the context of the Randall-Sundrum and CMSSM

models. In the former scenario, applying the matrix-element correction was found

8The value of p®* was calculated using the formula for p®* in top quark decay, given on

page 53, with the replacements m; — mg, my — my;, and my — my.
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to have a significant impact on the invariant mass distribution of dijets produced
in the decay of the lightest RS graviton. The number of events passing selection
criteria in the mass range 2.1TeV < m;; < 2.3TeV was found to be O (40%)
less than in the uncorrected case, owing to the decreased fraction of the graviton’s
momentum accounted for by the two hardest jets when the correction is applied.
The sizable impact of the correction in this scenario illustrates the importance of
including higher-order corrections when optimising experimental searches.

The impact of the ME correction was also investigate for two decays in the
CMSSM model by studying Dalitz plots and transverse momentum distributions. In
general, applying the matrix-element correction was found to decrease the transverse
momentum of the hardest parton-shower jet in each decay, leading to a reduction in
the number of events passing the event selection criterion pr; > 20 GeV. However,
no impact is expected in the case that the maximum transverse momentum of the
POWHEG corrected emission does not exceed the lower bound on the jet transverse

momentum set by the event selection criterion.



Chapter 3

Matrix-element corrections to

stop-antistop production

To obtain an accurate simulation of radiation in BSM events, one must improve
on the pure parton-shower description of hard emissions generated during both the
production and decays of coloured particles. An improved treatment of the lat-
ter source of radiation was addressed in Chapter 2, where the impact of applying
POWHEG style ME corrections was investigated for a number of BSM decay modes.
In the following two chapters, we study the effect of applying POWHEG style ME
corrections to radiation emitted during the production of BSM particles, specifically
focusing on squark-antisquark production at the LHC.

To improve the description of hard radiation generated during production pro-
cesses, our POWHEG style ME correction has been incorporated in Herwig++ through
the MATCHBOX framework. The MATCHBOX framework provides NLO hard pro-
cess calculations for a large range of Standard Model processes, with matching to
the angular ordered and dipole showers [102] through both the MC@QNLO and
POWHEG formalisms. As such, it already contains the functionality required to
implement ME corrections in squark-antisquark production, with only the Born
and real-emission amplitudes missing. Typically, the MATCHBOX framework relies

on interfaces to external matrix-element providers to obtain the necessary ampli-

70



3.1. Validation 71

tudes for calculations'. However, these interfaces exist only for SM processes and
consequently the amplitudes used in this work were implemented manually, having
been derived from those generated by MADGRAPH 5 [105] using the built-in MSSM
model [109-112|. Extension of the MATCHBOX-MADGRAPH 5 interface to include
BSM scenarios is however possible, and would allow ME corrections to alternative
SUSY processes and BSM models to be included in a more automated way. Further
details of the MATCHBOX framework can be found in Refs. [84,102]. In addition,
technical details of our ME correction implementation within the MATCHBOX frame-
work are given in Appendix A.1.

In this chapter, the effect of applying our POWHEG style ME correction is stud-
ied for the case of top squark-antisquark production. We begin in Section 3.1, with
the validation of our imple