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Structure formation in modified gravity cosmologies

Alexandre Miguel Rodrigues Barreira

Abstract

We study linear and nonlinear structure formation in cosmologies where the accelerated
expansion is driven by modifications to general relativity (GR). We focus on Galileon and
Nonlocal gravity, which are two classes of models that have been attracting much attention.
We derive the linearly perturbed model equations and solve them with suitably modified
versions of Einstein-Boltzmann codes. We also derive the perturbed equations keeping
the relevant nonlinear terms for small scale structure formation, which we solve using N-
body codes and semi-analytical techniques that were developed for these models. Using
CMB, SNIa and BAO data we find strong evidence for nonzero active neutrino masses
(Xm, ~ 0.6 eV) in all three main branches of covariant Galileon cosmologies, known as the
Cubic, Quartic and Quintic models. However, in all branches, the lensing potential does
not decay at late times on sub-horizon scales, which contradicts the measured positive
sign of the ISW effect, thereby ruling out the Galileon model. The Nonlocal model we
study should be able to fit the CMB with similar parameter values as ACDM. The N-body
simulation results show that the covariant Galileon model admits realistic halo occupation
distributions of luminous red galaxies, even for model parameters whose linear growth is
noticieably enhanced (og ~ 1) relative to ACDM. In the Cubic Galileon model the screening
mechanism is very efficient on scales S 1Mpc, but in the Quartic and Quintic sectors, as
well as in the Nonlocal model, we identify potential tensions with Solar System bounds.
We illustrate that, despite the direct modifications to the lensing potential in the Cubic
Galileon and Nonlocal models, cluster masses estimated from lensing remain the same as
in GR. The lensing effects produced by cosmic voids found in the simulations of the Cubic
Galileon are significanly boosted (=~ 100%) compared to GR, which strongly motivates
using voids in tests of gravity. The combination of linear and nonlinear theory results
presented here for Galileon and Nonlocal gravity is an example of what it could be done

for any serious alternative models to ACDM, which will be tested by future experiments.
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Chapter 1
Introduction

1.1 The standard ACDM model of cosmology

Over the past twenty years or so, a wealth of cosmological observations — ranging from
temperature anisotropies in the cosmic microwave background (CMB) [13], to supernovae
type Ia (SNla) light curves [14, 15], baryonic acoustic oscillations (BAO) imprinted in the
galaxy distribution [16, 17], galaxy cluster abundances [18, 19], gravitational lensing [20,
21], etc — have established the so-called A cold dark matter (ACDM) model as the standard
theoretical paradigm. This model, which assumes the cosmological principle (statistical
homogeneity and isotropy on large scales), can be devided into four main ingredients.
These are (i) the standard model of particle physics (SMPP); (ii) cold dark matter (CDM);
(iii) a cosmological constant, A; and (iv) general relativity (GR) as the theory of gravity.

Next, we briefly discuss each of these in turn.

Standard model of particle physics

This corresponds to all stable known particles that are predicted by the SMPP (including
their electroweak and strong force interactions) for after matter/antimatter annihilation
(the photon era). For cosmological purposes these include photons, neutrinos and baryons.

Photons Most of the photons in the Universe are part of the CMB. The rest are emitted
by astrophysical structures such as stars in galaxies and hot gas inside deep gravitational
wells. Today, the photon energy density represents only a tiny fraction (~ 0.008%) of the
energy budget in the Universe, with negligible impact on the dynamics of the expansion.
Photons were only dominant before the epoch of radiation-matter equality z 2 3000, where
z is the cosmological redshift.

Neutrinos Neutrinos are massless particles in the SMPP, but this is known to be wrong
after the detection of neutrino flavour oscillations in atmospheric, solar and reactor ex-

periments [22]. These experiments measure m2 — m? =~ (7.5 4 0.19) x 107° eV? (1¢) and

1



1. Introduction 2

|m3 — m3| =~ (2.427 +0.007) x 1073 eV? (1o) [22], where m1,ma, m3 are the masses of
the three neutrino eigenstates. Assuming a normal mass ordering (m; < mo < ms), the
data imply ¥m, > 0.06 eV, whereas for an inverted mass ordering (ms < ma < my),
Ym, > 0.1 eV, where ¥m,, is the value of the summed neutrino masses. Currently, the
upper bound from terrestrial experiments is ¥m,, < 6.6 eV [23, 24].

Baryons The rest of the particles in the Universe (mostly in the form of atomic nuclei
and electrons) are referred to as the baryons !. Baryons exist today in stars inside galaxies
and also in diffuse gas inside galaxy groups and clusters. Before the epoch of recombina-
tion, baryons could not collapse gravitationally due to the nonnegligible pressure of the
photons, to which baryons were coupled. During this time, the competition between pho-
ton pressure and gravity produced baryonic accoustic oscillations which are inprinted in
the temperature anisotropies of the CMB [13] and also on the large scale distribution of

galaxies [16, 17].

Cold Dark Matter

The CDM particle does not interact (or interacts only very weakly) electromagnetically and
its existence was postulated to explain a number of observational puzzles [25, 26]. Perhaps
the most famous of these is related to the flattening of galaxy rotation curves at large radii,
which could not be explained solely by the gravitational field originating from the visible
components. This led to explanations in which the galaxies are embedded in larger Dark
Matter (DM) haloes [27, 28, 29]. In galaxy clusters, measurements of the temperature of
X-ray emitting gas, of galaxy velocity dispersion and of lensing distortions induced on the
appearence of background galaxies suggested that the potential wells had to be deeper
than accounted by the visible matter [30]. Colliding galaxy clusters provide a particularly
strong case for DM [31]. In these events, one observes the gas from the two clusters located
at same position, but lensing measurements show an offset between the gas and the bulk of
the mass of each cluster. The explanation is that the two DM clumps have passed through
each other interacting weakly through gravity only, but the gas stayed behind due to the
extra electromagnetic forces that it experiences.

Further strong evidence for DM comes from the large scale structure in the Universe.

This is actually incorrect as electrons are leptons. However, in the literature the word baryons is used to

denote electrons as well, which is why we do the same here.
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Before recombination, the diffusion of the photon-baryon plasma from hotter (denser) to
colder (less dense) regions should have smeared out the small scale density fluctuations
that would later collapse gravitationally to form the galaxies we see today. Dark matter
does not experience this diffusion damping (also called Silk damping) since it does not
couple to photons (at least strongly), and therefore, its potential wells remain unaffected.
After recombination, the baryons decouple from the photons and collapse into the existing
gravitational potentials of the dark matter, where galaxies will be able to form. This is
also why cold versions of dark matter are preferred over massive neutrinos with masses
of a few eV, which would be hot dark matter. Massive neutrinos cannot account for the
totality of dark matter since their high streaming velocity would also wipe out small scale
fluctuations, and hence, prevent structures from forming [32]. However, warm versions
of DM (with masses of a few keV) may be allowed by observations and have received
substantial attention recenty in cosmology [33].

Results from N-body simulations suggest that the dark matter distribution in the Uni-
verse forms a cosmic web [34, 35, 36] made up by (i) voids, which are underdense regions; (ii)
filaments and (iii) walls, which are, respectively, one and two dimensional structures that
typically surround voids; and (iv) knots, which correspond to the locations of intersection

of filaments and walls, where the most massive dark matter haloes form.

Cosmological constant, A

The extra diming of the light emited from SNIa [14, 15] compared to that expected in a
Universe containing only matter provided the first concrete evidence for the existence of
dark energy —a mysterious energy source with negative background pressure that is causing
the expansion of the Universe to accelerate. In the ACDM model, the role of dark energy is
played by vacuum energy, which acts as a cosmological constant, A. Despite its simplicity,
A is responsible for, arguably, the most serious shortcomings of ACDM. One is known as
the fine tuning problem and is related to the huge difference between the value of A inferred
from observations and the much larger figure that is predicted by the SMPP. If one takes
the Planck energy scale as the energy cutoff when estimating the zero-point fluctuations of
some field, then the discrepancy reaches 120 orders of magnitude. For A to be dark energy,
then this implies that there must be some unknown and extreme fine-tuning mechanism,

which is hard to reconcile with our current knowledge of quantum fields.
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The second problem associated with A is known as the coincidence problem, which asks
why we live at the cosmological epoch when the energy densities of matter and A are
comparable. The ratio of the energy density of nonrelativistic matter to the cosmological
constant is given by pmoa~3/pa, where p,o and py are, respectively, the energy densities
of matter and A in the Universe today, and a is the cosmological scale factor. For most of
the past evolution of the Universe (¢ < 1), this ratio is much larger than unity and in the
far future (a > 1), it is much smaller than unity. We happen to live in the narrow slice of
time (a ~ 1) when the ratio is approximately unity, which is very unlikely. The coincidence

problem refers to the question “"Why is this the case?” 2.

General Relativity

The theory of gravity in the ACDM model is Einstein’s theory of General Relativity (GR).
This theory is in remarkably good agreement with a wealth of precision tests performed
in the Solar system (SS) [40]. These include the classical tests of gravitational redshift,
the lensing of the light from background stars by the Sun and the anomalous perihelion
of Mercury, as well as other tests such as the Shapiro time-delay effect measured by the
Cassini spacecraft and Lunar laser ranging experiments which meausure the rate of change
of the gravitational strength in the SS. Outside of the SS, GR is also in good agreement with
the tests that involve changes in the orbital period of binary pulsars due to the emission
of gravitational waves. All these tests, however, only probe length scales that are much
smaller than those relevant for cosmology. This therefore motivates research on the obser-
vational signatures that alternative gravity models can leave on cosmological observables.

These investigations form the basis of this thesis.

1.1.1 Key equations

In the ACDM model, the spacetime is described by the Friedmann-Roberston-Walker line

element

ds® = (1 +2®) dt? — a(t)* (1 — 2®) v;;da’da?, (1.1)

%Since the coincidence problem is linked to our existence as cosmological observers, there have been at-
tempts to solve this problem using anthropic considerations [37, 38, 39]. The argument is that, for instance, life
as we know it could only appear after the first galaxies, stars and planets have formed, and therefore we are

living soon after the time the Universe became habitable, which would not be that much of a “coincidence”.
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where v;; = diag|[1, 1,1] is the spatial sector of the metric (which here, and througout this
thesis is always taken to be flat), and ¥ and ® are the two gravitational potentials (the line
element is written in the Newtonian gauge considering only scalar perturbations). At the

background level (® = ¥ = 0) one has the two Friedmann equations

N
3 (“) =3H? = 8xGp, (1.2)
a

a ArG
- = ——[p+3p 1.3
. 5 [P +37], (1.3)

and the conservation equation

p+3H (p+p) =0, (1.4)

where H is the Hubble expansion rate and p and p are the background density and pressure
associated with all the energy species in the model, e.g. p = proa™*+pmoa 3+ puo fo(a)+pa,
where the subscripts r, m, v and A denote radiation, matter (baryons + CDM), massive neu-
trinos and A (the function f encapsulates the time dependence of the neutrino component
which cannot be given by a single power law). The subscript 0 denotes the values at the
present day, a = 1, and a dot denotes a physical time derivative. Equation (1.3) tells us
that for the expansion to accelerate (¢ > 0), the Universe must be dominated by an energy
component for which w = p/p < —1/3, where w is called the equation of state parameter.
The cosmological constant is characterized by wy = —1.

On sub-horizon scales, the geodesic equation for matter particles results in
0 i 1o
v+ Hv' = —=V'¥, (1.5)
a

where v/ = azi is the i-th component of the peculiar velocity of the matter particles and the

gravitational potentials can be given by the Poisson equation

V2d = 47Gép (1.6)

d = U, (1.7)

where §p = p — pis the density perturbation.

1.2 Beyond ACDM with modified gravity

The main focus of this thesis is on models that go beyond ACDM by exploring modifica-

tions to the general relativistic gravitational law. Research on modified gravity in cosmol-
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ogy is now a well established and active field on both the theoretical [41, 42, 43] and obser-
vational [44, 45, 46] levels. There are two main reasons for this. The first is related to the
fact that GR has not been tested on scales larger than the SS, as commented on above. This
means that one makes a huge extrapolation of the regime of validity of the theory when
using it (as it is common) in cosmological studies. The gravitational law should, therefore,
be put to test on larger scales, and modified gravity models help to design such observational
tests: by understanding the typical observational inprints of alternative gravity scenarios
one learns about the observables that have the potential to uncover any departures from
GR. The second reason is that these models can also be used to explain the accelerated ex-
pansion of the Universe without an explicit A term, thereby providing further motivation

for their study 3.

Before proceding, we note that a stronger case for modified gravity studies can perhaps
be made by noting that GR is a classical theory without a well-defined quantum limit. This
suggests that GR should be modified in the high curvature regime (small distance scales),
if one wishes to construct a viable quantum field theory. Although cosmology represents
the other end of the curvature spectrum (large distance scales), it is not unreasonable to
believe that an eventual quantum field theory of gravity that differs from GR on small

scales, should also differ from it on cosmological ones.

*1t is important to stress, however, that modified gravity does not explain the fine tuning problem of A.
Nevertheless, the problem gets relaxed since, if there is now an alternative explanation for dark energy, then
the value of A can be cancelled exactly, which is easier to motivate (e.g., by some symmetry principle or

scenarios of degravitation of A [47, 48]) than a case of extreme fine tuning,.
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1.2.1 Modified gravity: the broad picture

Below we show the actions of some well known examples of cosmological models,

[ R A
_ 4 —
S = /dx\/ 9_167TG+£m+87rG]’ (1.8)
[ R 1
S = /d%s/—g el + Ly + §vavu¢ + V(gp)] , (1.9)
[ R 1
S = /d4a:\/—g e + Ly (A(9), ) + §V“<,0Vugo + V(go)} , (1.10)
[ R
_ 4 —
s = /d x«ﬁg_lﬁﬂGJrﬁerf(R)], (1.11)
[ R c c
- 4 /o | I «2 3
S /damﬁg_wﬂG+l%f%Vqﬁhw<2+2AﬁD¢ﬂ, (1.12)
[ R
S - /d4$\/ —g 167TG + »Cm (A((p)a gul/) + K (Vuch“ap)} ’ (113)
[ R
_ 4 — —-n
S —(/dm/gJ%G+£m+f@ Rﬂ, (1.14)
[ R R ()
= o /=g | —— 520)/g3) |
S /d T\/—g T6rC: + Ly } +/d x g 162G | ° (1.15)

where g is the determinant of the metric g,,,, £, is the Lagrangian density that describes
the SMPP and dark matter, R is the Ricci curvature scalar and G is Newton’s constant.
This list is not meant to cover all known theoretical models and we use it here simply to
illustrate some key ideas. Reference [42] presents a very thorough review of these and
many more modified gravity models in cosmology.

The above equations make it apparent that there is a common structure for these mod-
els. They all contain (i) the Einstein-Hilbert term, %, which gives rise to the Einstein
tensor, G, in the metric field equations; (ii) £,,, which is used to define the energy-
momentum tensor, 7)), in the metric field equations; and (iii) additional terms that modify
the standard Einstein metric field equations and which are designed to explain the acceler-
ation of the expansion of the Universe.

Equation (1.8) is the standard ACDM model. Models with the action of Eq. (1.9) are
known as quintessence models [49]. In these models, the cosmological constant is replaced
by a scalar field that does not couple to matter and whose equation of state, w, = p,/p,, is
given by

_@*2=V(p)

= T V(e) (1.16)
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where p, and p, are, respectively, the background pressure and energy density of ¢. If
the scalar field rolls slowly down its potential, /2 < V (), then w, ~ —1. The model of
Eq. (1.10) generalizes the quintessence model by allowing the scalar field to conformally
couple to matter, i.e., £,, depends on a function A(p) that governs the physics of the cou-
pling. It is possible to show that, for appropriately chosen forms of A(y), these coupled
scalar field scenarios [50, 51] are mathematically equivalent to f(R) models [52, 53, 54],
whose action is given by Eq. (1.11) (see e.g. Refs. [51, 55] for an illustration of this equiva-
lence). In crude terms, this equivalence can be described as follows. In the coupled scalar
field models, gravity is as in GR and a fifth force arises via an explicit interaction between
the scalar field and the matter fields (this is called the Einstein frame). In this interpreta-
tion, Egs. (1.6) and (1.7) remain unchanged, but an extra term appears on the right-hand
side of Eq. (1.5). On the other hand, in f(R) models, it is the Poisson equation, Eq. (1.6),
that acquires extra terms, while the geodesic equation is only changed indirectly via the
modified potential (this is called the Jordan frame). Nevertheless, the trajectories of matter
particles end up being the same, regardless of which frame one works in. In this thesis,
we use the term fifth force to denote any modification to the force law of GR, interpreted
either in the Einstein or Jordan frames.

At this point, it is interesting to comment on one aspect related to the naturalness of
modified gravity scenarios. Quintessence models are generally portrayed as the simplest
alternative to A as the dark energy. This is in the sense that these models modify only
the expansion rate of the Universe, without introducing any fifth force effects. However,
from a theoretical point of view, if one introduces a scalar field into a model, then one
could expect it to couple to the remaining matter degrees of freedom. That is, standard
quintessence models need to include an explanation for a vanishing coupling strength.
These models are therefore somewhat less natural when compared to coupled quintessence
models, whose phenomenology is equivalent to modified gravity. In this way, fifth force
effects can be regarded as quite a natural consequence of models that go beyond ACDM.

The model of Eq. (1.12) is called the Cubic Galileon, which is a special case of the more

*Note, however, that certain physical processes can be different in between these two frames and therefore
care must be taken when interpreting the observations. For instance, in the Einstein frame, the scalar field can
induce a time variation of the mass of the matter particles, which must be taken into account when analysing
supernovae light curves at different redshift. This shows that these two frames are actually not completely

equivalent.
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general Covariant Galileon model [56, 57]. The action of this model has no free functions.
The starting point for its derivation is the requirement that the theory remains invariant
under Galilean shifts, 0, — J,¢ + b, (Where b, is a constant four-vector), in flat space-
time. In this model, the acceleration and the modifications to gravity are driven by the
nonlinear coupling of the derivatives of the scalar field. A substantial part of this thesis

will be devoted to the study of the Galileon model.

The action of Eq. (1.13) is similar to the coupled quintessence model, Eq. (1.10), but
the scalar Lagrangian density is given by a nonlinear function of the scalar kinetic term,
VHpV /2. These models are called K-mouflage [58, 59, 60] models, and recent work on
them by the author will be mentioned briefly in this thesis (cf. Chapter 8).

Models whose action can be cast in the form of Eq. (1.14) are called Nonlocal gravity
models [61, 62, 63]. In this case, one replaces A by a function of the inverse of a derivative
operator (like the d”Alembertian [J) acting on some curvature tensor. The meaning of the
inverse of a differential operator is essentially an integral, which is a nonlocal operation

(hence the name). Nonlocal gravity models are also studied in detail in this thesis.

Finally, Eq. (1.15) shows the action of the Dvali-Gabadadze-Porrati (DGP) model [64].
This is a braneworld model, in which the matter fields are confined to a four-dimensional
brane embedded in a five-dimensional bulk spacetime. Gravity can propagate in both the
brane and in the extra dimension (in the action, the supercripts (°) mean that a quantity is
associated with the bulk). The quantity r. = G®) /G®, is a model parameter known as the
crossover scale, which determines the distance scale on the brane above which the gravita-
tional effects from the fifth dimension become important. This model is characterized by
two branches of solutions. One of them is called the normal branch, which contains fifth
force effects, but requires an explicit dark energy term to be added to the four-dimensional
part of the action. The more appealing self-accelerating branch does not require an additional
dark energy field to explain the acceleration on the brane, but is plagued by ghost insta-
bilities (degrees of freedom whose energy is unbounded from below) [65, 66, 67, 68]. The
self-accelerating branch is also ruled out by the CMB and SNIa data [69].

Although there is always some theoretical reasoning behind the forms proposed for
the dark energy terms in Egs. (1.8 - 1.15), the reality is that their motivation always lies on
somewhat shaky ground (and this includes the ACDM model). In this thesis, we shall not

worry too much about the reasoning behind the motivation for the models or their more



1. Introduction 10

theoretical details. Instead, the focus will be given to the study of their phenomenology

and the impact it has on observations.

1.2.2 The need for screening mechanisms

The idea of modifying the gravitational law on large scales inevitably leads to the question
of how such O(1) modifications can be made compatible with the stringent SS tests. This
reconciliation is typically achieved via screening mechanisms which dynamically suppress
the modifications to gravity in regions like the SS. Currently, there is a variety of screening
mechanisms in the literature which include the chameleon, symmetron, dilaton, Vainshtein
and K-mouflage type screenings. In all of these, the implementation of the screening effects
relies on the presence of nonlinear terms in the equations of motion, which act to suppress
the size of the fifth force in regions where some criterion is met. This criterion typically
involves the size of the gravitational potential or of its derivatives, which tend to be higher
on smaller length scales than on larger scales’.

We note in passing that another way to reconcile the SS tests with sizeable fifth force
effects in cosmology is to confine the fifth force to act only within the dark sector of the
Universe, i.e., an interaction that would only affect dark energy and dark matter [50]. In
this way, baryons would be unaffected and the SS contraints could be met. In this thesis, we
focus only on models where the modifications to gravity are felt universally by all matter
species.

Below, we briefly describe how different types of screening mechanisms operate. We
shall be very schematic in the discussion and refer the reader to the cited literature for the

details (see also [41, 43] for reviews).

Chameleon Screening

The chameleon screening mechanism operates in models such as coupled quintessence,

Eq. (1.10) (as well as f(R), Eq. (1.11), via the conformal equivalence that exists between

°In the literature, one often encounters this criterion being described as the amplitude of the matter den-
sity fluctuations. This is done perhaps to make the explanations simpler, but is inaccurate. For instance, the
matter density perturbation between the Sun and the Earth is small (compared to that of each object), but one
still requires the fifth force to be screened there. A more correct description would be made in terms of the
gravitational potential (or its gradients), which can be sizeable even if there is a vacuum between two massive

bodies.
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these two models [55]). The equation for the scalar field can be written as [70, 71]

1

5 (%0 ) 0 = V(@) +(NAR)p = VI, (1.17)

where we have assumed spherical symmetry for simplicity, ,, and ,,, denote partial differ-
entiation w.r.t. the radial coordinate r and the field ¢, p(r) is the matter density profile and
Vel = V 4 pA is an effective scalar potential that governs the behaviour of ¢. The main
premise of the mechanism lies in choosing the functional form of the self-interacting po-
tential, V' (¢), and the coupling function, A(y), in such a way that the scalar field acquires a
large mass in the regions of interest. If the mass is sufficiently large, then the distance scale
over which the scalar field can mediate a fifth force can be brought down to undetectable
values.

For the sake of illustration (which follows closely that used in Refs. [70, 71]), consider
a compact spherical object of size R and constant density pi,, embedded in an ambient
density pout- One can think of this as a golf ball embedded in the Earth’s atmosphere,
or the Earth embedded in the Milky Way halo, or the Milky Way halo embedded in the
Local Group, etc. The idea now is to choose the functions V() and A(y) so that VI has
a minimum at ¢ = @mniy. The typical choices are V' « ¢ " and A(p) = ePe/Mp1 where
Mp is the reduced Planck mass, n is a positive integer and 3 > 0 measures the strength of
the coupling between the scalar field and matter. Then, the value of the scalar field at the
minimum of the potential, ¢,y (defined by Veff,w (¢min) = 0), and the value of its mass
squared, m2 = VI (¢min), become dependent on the value of p. In particular, the larger
the density p, then the smaller the value of ¢,;, and the larger the mass m,.

In these models, the fifth force (which appears as an extra term on the right-hand side
of Eq. (1.5)) is proportional to 0,InA(yp) = B0,¢. That is, the fifth force is determined by
the spatial gradient of the scalar field in the same way that normal gravity is proportional
to the spatial gradient of the gravitational potential. Skipping the details of the derivation
[70, 71], it can be shown that if

AR ®min,out — ¥min,in ASD
—_— = ’ — = <1, 1.18
R 63 Mp P 63Mpy|D| (1.18)

then the scalar field profile outside of the spherical overdensity can be approximated as

(for r > R)

38 AR\ , e moun(r=R)
SO(T) ~ @min,out — <47TMPI> (R) Mf, (119)
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where, in the above two equations, @min in and @min out are, respectively, the values of the
tield at the minimum of the potential for p = pi, and p = pout, Mout is the mass of the scalar
field for p = pour, M = 4mpi R3/3 is the mass of the spherical object and ® = —GM/R
is its gravitational potential. Equation (1.19) tells us that the force generated by ¢ is of
the Yukawa type, but that only the matter inside a thin shell of width AR contributes to
it. This is because deeper inside the overdensity, the mass of the scalar field, mjy, is large
and the spatial dependence of the scalar field becomes exponentially suppressed, oc e™™»".
Equation (1.19) is valid only if Eq. (1.18) holds, which depends on the ratio between Ay
and |®|. The former is determined by the difference of the minimum of the scalar field in
and out of the overdensity, which increases with the density contrast. For fixed density
contrast then, the chameleon mechanism works if the gravitational potential of the object
is sufficiently deep.
If the condition of Eq. (1.18) is not met, then the scalar field profile is given by

/8 > Mefmout (r—R)

1.20
47TMP1 r ’ ( )

SD(T) ~ ©min,out — <

in which there are no suppression effects.

Symmetron Screening

The symmetron screening mechanism [72, 73, 74] works similarly to the chameleon case.
The effective potential is again V& = V + pA, but now one chooses the functions V (¢) and
A(p) in such a way that the fifth force is proportional to ¢ and that for high p the effective

potential has a minimum at ¢ = 0. To illustrate this point one can choose

_ Ly Ay _ 2
V= 4 +4g0, A_1+2M290, (1.21)
for which (up to an additive constant)
1 A
off _ _ (P 2\ 2, A 4
1% —V+pA—2<M2 u)g& + 30" (1.22)

where ;1 and M are two mass scales and A is a dimensionless self-interacting coupling
constant. If p > M?u?, then Vf has a minimum at ¢,;, = 0. On the other hand, if
p < M?u?, then the potential acquires two minima at Ymin = %4/ VA, The symmetron
mechanism works because in these models the fifth force is proportional to ¢: 0,InA(p)

©0,p. Hence, deep inside a sufficiently dense object (i.e., p > M?12), ¢ = pmin = 0 and the
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scalar field generates no fifth force. However, if the ambient density is such that p < M?12,
then, at the edge of the dense object, the scalar field must grow to ¢ = Ymin = £/ V. This
results in a thin-shell effect similar to that which occurs in the chameleon case. Detailed

calculations [73, 74] show that the condition for the thin-shell to develop is given by

M?
<1 1.23
Mz < 1.23)

Dilaton screening

Another type of screening that is similar to the above two and that we mention only in
passing is the dilaton mechanism [75, 76, 77]. The effective potential Vel =V 4+ pAis now

characterized by

V o e #/Mpi A=1 B 2 1.24
xX e y + 2M1:2>1 (90 ()00) ( )

The idea is to have ¢ ~ ¢q in dense regions, and hence, a vanishing fifth force 9,InA

B¢ — ¢0)0re < 1. In low density regions, ¢ # ¢ and the fifth force can become sizeable.

Vainshtein Screening

The Vainshtein screening mechanism [78, 79, 80] operates in models whose equation of
motion for the scalar field contains nonlinear second derivative terms. Examples of these
include the Galileon and DGP models (cf. Egs. (1.12) and (1.15)). This mechanism will be
studied with greater detail in this thesis (e.g. in Chapters 4 and 5), and so we shall be brief

here. Consider a model whose equation of motion can be written as

A((’D:)QJrB(SO:) — Cp, (1.25)

where, for concreteness, we are assuming spherical symmetry, and A, B and C' are some
time-dependent and model-specific functions. If p is small, then the spatial gradient of
¢ should also be small. In this case, the nonlinear term in Eq. (1.25) can be neglected
compared with the other terms and one has that ¢,./r ~ p. Recalling that for normal
gravity we have that ®,, /r ~ p, then the ratio of the fifth to the normal gravity force

becomes:

Lo o), (1.26)

Far
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i.e., a fuction of time alone and not space. On the other hand, when the density gets high,
the nonlinear term in Eq. (1.25) dominates, which results in ¢,./r ~ |/p. In this case, we

have

F 1
Stho =50, if p— oo, (1.27)

Fer /P

and the fifth force is suppressed compared with standard gravity.

K-mouflage Screening

K-mouflage screening [58, 81, 82] operates in models with an action of the form of Eq. (1.14).
It can be shown that the ratio of the fifth to normal gravity force in models like these is given
by [81, 82]

Fsn N 1
For  dK(x)/dx’

where x = V,¢oV*#p/2. The screening of the fifth force is then realized by tuning the non-

(1.28)

linear function K(x) to become sufficiently large in the high-density regions of interest.
The K-mouflage screening is at play in models whose equation of motion contains nonlin-
ear first derivative terms. This is similar to the case of Vainshtein screening, except that in

the latter the nonlinearity lies in second (not first) derivative terms.

1.2.3 Strategies to constrain modified gravity
Parametrization approach

One approach to constraining modified gravity models consists of parametrizing the mod-
ifications to gravity at the level of the equations of motion. For instance, Refs. [83, 84]
developed a linear perturbation theory framework that parametrizes the modifications to
the metric field equations in a fairly model-independent way. The idea is then to conduct
observational constraints on the free functions that enter into the parametrization, and the
observational viability of several specific models can be assessed by mapping their equa-
tions onto the parametrized framework. To give an example, the relevant equations for

structure formation on sub-horizon scales can be written as (see e.g. Refs. [85, 86])

Geff
G

Vo = 4WG[ (a,F)} P, (1.29)

% = n(a,r), (1.30)
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where Geg(a, ) encapsulates the deviations from GR in the Poisson equation that gov-
erns the dynamical gravitational potential; and 7(a, 7) quantifies the difference between
the two Newtonian potentials. The model-independent nature of the parametrizated ap-
proach, however, comes at the price that the unspecified time- and space-dependence of the
free functions renders them too general to be tightly constrained. Nevertheless, by making
simplistic assumptions about the form of the free functions (e.g. that they are scale inde-
pendent), the parametrized framework can still prove useful in identifying observational
tensions. For instance, if some data constrains Geg(a) # 1 or n(a) # 1, then this might alert
us to a tension with ACDM. Moreover, the parametrized framework can also be useful in
the search for degeneracies that might exist between the free functions. This can be used to
determine which data combination can break such degeneracies [87]. Another approach is
to describe the free functions in a piecewise manner, in both time and scale, and treat the

amplitude of each piece as a free parameter (see e.g. Ref. [88, 89]).

The effective field theory (EFT) [90, 91] approach is an example of another framework, in
which the parametrization is made at the level of the action instead of the equations of mo-
tion (see Refs. [92, 93] for constraint studies with EFT). Other parametrization frameworks
include that developed and used by Refs. [94, 95, 96], in which the parametrization of the
perturbed equations builds upon the knowledge of the field content in the action, and not

its functional form.

The parametrized frameworks described above are generically employed to place fairly
model-independent constraints on modified gravity using data that is sensitive to the evo-
lution of linear density fluctuations [97]. However, in the linear regime, the predictions of
modified gravity models cannot be explored to their full extent because the scale-dependent
effects of the screening mechanisms are not at play in this case. This strongly motivates go-
ing beyond linear theory to constrain theories of modified gravity. In the nonlinear regime,
however, the majority of the parametrized frameworks becomes less useful because the
equations of the models become significantly more complicated. To try to overcome this,
in Ref. [98] the authors proposed a way to parametrize the nonlinear regime of models
with chameleon/symmetron/dilaton type screening via two functions of time only, which
are the mass of the scalar and the coupling function to matter. This parametrization was
explored in Refs. [99, 100] using N-body simulations, which being significantly more time

consuming than linear perturbation theory calculations prevented the authors from run-
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ning more than ~ 100 simulations. Nevertheless, this is still a remarkable number and al-
lows intuition to be built regarding the physics of the parametrization. However, N-body
simulations are still far too slow to be used in statistical explorations of vast parameter
spaces. Moreover, the parametrization of Ref. [98] does not cover models with Vainshtein
or K-mouflage screening. All in all, to study the nonlinear regime of structure formation, it

becomes almost imperative to proceed on a model-by-model basis.

Following a model by model approach in the nonlinear regime

Even within the parameter space of a concrete model, one must still determine which pa-
rameter combinations should be the focus of dedicated nonlinear studies. Naturally, these
studies should focus on model parameters whose background and linear perturbation evo-
lution are consistent with the CMB, BAO and SNIa observations, which are currently the
most robust datasets. This way, in addition to serving as a tool to learn about the phe-
nomenology of the models on nonlinear scales, N-body simulations can also be used to
infer their observational viability. Since ACDM is in good agreement with the CMB, BAO
and SNIa data, one may wonder if this means that any viable modified gravity model
should possess a ACDM limit in the regime probed by these data. This is often the source
of some confusion, and as a result, we believe it is important to clarify this point here. To
say that ACDM fits the CMB, BAO and SNIa data well is to say that, in a ACDM cosmol-
ogy, there are combinations of the cosmological parameters (such as the matter density and
Hubble rate today) which yield a good fit to the data. If an alternative model behaves very
closely to ACDM, in terms of matching the expansion rate and evolution of linear density
fluctuations, then such a model will fit these data with the same goodness-of-fit and with
similar parameters as well. On the other hand, if a model does not behave like ACDM,
then one should not expect the model to fit the data with the same set of cosmological pa-
rameters. However, this does not mean that the model is unable to fit the data as well as
ACDM, simply that the best fit is realised for a different set of parameters®.

Over the past few years, chameleon models have been extensively studied in the non-
linear regime of structure formation, with the Hu-Sawicki f(R) model being the classic
working case [54]. This model admits ACDM-like expansion histories, and hence, it fits

the BAO and SNIa data as well as the ACDM model. The CMB data constrains the model

This is precisely what happens in the case of the Galileon model, as we shall see in Chapter 3.



1. Introduction 17

parameter | fro| < 1072 [101, 102], where fry is the background value of the scalar degree
of freedom today. The smaller the amplitude of this value, the closer the model gets to
ACDM. One of the strongest bounds on this parameter comes from comparisons of dis-
tance indicators in screened and unscreened dwarf galaxies [103] (see also Ref. [104]). If a
galaxy is unscreened, then its stars (in this case, cepheids, water masers and tip of the red
giant branch stars) behave differently, which affects the distance measurements. Reference
[103] reports that this gives | fro| < 1077. The selection of the sample of unscreened dwarfs
is based on the results from N-body simulations [105, 106, 107], which show that, for values
of | fro|l 2 1077, dwarfs in voids are not screened by the low-density environment (they are
also not screened by their own potential), and hence, can be used in the above test. This
constraint on f(R) improves upon that from the CMB by five orders of magnitude. This
highlights the benefits of going beyond linear theory with N-body simulations, particu-
larly when there are screening mechanisms in operation whose efficiency depends on the
detailed matter distribution. Other recent nonlinear studies of the Hu-Sawicki model in-
clude detailed analyses of the nonlinear and velocity power spectrum [108, 109, 110], stud-
ies of halo and subhalo properties [111, 112, 113], cluster abundances [114], redshift space
distortions [115], void properties [105, 106, 116, 117], the Integrated Sachs-Wolfe effect in
superclusters and supervoids [118], X-ray scaling relations of clusters [119] and Lyman-
a forest statistics [120] (see Ref. [121] for a recent review on the observational status of

chameleon theories, which includes the Hu-Sawicki f(R) model).

The normal branch of the DGP model has been the representative model to study the
Vainshtein screening mechanism on nonlinear scales. The dark energy component that
this model requires on the brane is typically tuned to yield exact ACDM expansion his-
tories. This model can fit the CMB data with model parameters [122] that still allow for
potentially testable predictions in the nonlinear regime. The nonlinear matter and veloc-
ity power spectra have been studied in Refs. [123, 124]. Reference [125, 126] used N-body
simulations of this model to illustrate how comparisons between dynamical and lensing
cluster mass estimates can be a smoking gun of modified gravity (these authors also used
the Hu-Sawicki model in their analysis). More recently, Refs. [127, 128] used the normal
branch of the DGP model to investigate the dependence of the Vainshtein mechanism on

the morphology of the cosmic web.

The nonlinear regime of structure formation was also studied with N-body simulations
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in the dilaton [77] and symmetron [129] models. Reference [130] studied the formation and
evolution of domain walls in simulations of the symmetron model. Coupled quintessence
scenarios with an unscreened coupling to dark matter have been tested against the CMB
Planck data in Ref. [97]. These models were simulated in Refs. [131, 132, 133, 134]. Recently;,
Ref. [135] has investigated the impact of coupled quintessence models on galactic and sub-
galactic scales.

In this thesis, we extend the body of work on modified gravity by studying cosmologies
with Galileon and Nonlocal gravity, which are two classes of models that have been attract-
ing much attention recently in the theoretical community. In our analysis of these models,
our first steps will always involve determining the regions of the parameter space that
are consistent with the CMB, BAO and SNIa data. The CMB predictions presented in this
thesis for these models were the first to be shown in the literature. Then, armed with the
best-fitting parameters, we focus on the model predictions for nonlinear structure forma-
tion with the aid of N-body simulations, as well as with some analytical methods assuming
spherically symmetric configurations. The study of the nonlinear regime of structure for-
mation in these models had also never been performed prior to the work presented in this
thesis. We will see that, indeed, the extra information encoded in the nonlinear regime
enriches considerably the phenomenology of Galileon and Nonlocal gravity. Our inves-
tigations of these two models will determine not only how much of a serious alternative
to ACDM they can be, but will also provide insight to develop a number of observational

tests that can be used to constrain other theories of modified gravity.

1.3 Thesis outline

The rest of this thesis is organized as follows.

Chapters 2 and 3 are devoted to the predictions of the Galileon model in the linear
regime of structure formation. In Chapter 2, we derive the relevant equations and solve
them for a fixed number of parameter set combinations. Then, these predictions are con-
fronted with the data from SNIa, BAO and CMB (temperature and lensing potential power
spectra) in Chapter 3. By the end of these chapters, we will see that the Galileon model
can fit these data with the same goodness-of-fit as ACDM, but with substantially different

cosmological parameters, such as the total mass of the three active neutrinos ¥m,. We
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shall also identify a major observational tension associated with the sign of the Integrated
Sachs-Wolfe (ISW) effect, which is what ends up bringing the observational viability of this

model into question.

In Chapter 4, we take a first look at nonlinear structure formation in the Galileon model
by analysing its predictions for the spherical collapse of perturbations. In this chapter,
we focus on the so-called Quartic and Quintic sectors of the Galileon model. Then, in
Chapter 5, we combine the results from N-body simulations and spherical collapse in the
Cubic and Quartic Galileons to study the properties of dark matter haloes and build a
semi-analytical halo model for the nonlinear matter power spectrum. In this chapter, we
also conduct a halo occupation distribution (HOD) analysis to show that these models
can match the observed galaxy clustering amplitude on large scales with realistic galaxy
distributions. These chapters highlight that the screening mechanism is very efficient in the
Cubic Galileon model. In the case of the Quartic Galileon model, it will become apparent
that the screening mechanism cannot suppress all modifications to gravity on small scales,
which may render this model incompatible with SS tests. It will also become apparent that
the higher degree of nonlinearity in the equations of the Quintic Galileon model may imply

that the model is unable to provide physically meaningful solutions on small length scales.

Chapter 6 is devoted to the study of the formation of large scale structure in the Non-
local gravity model of Ref. [136]. We do so by running N-body simulations and analysing
the results with the aid of semi-analytical models based on the spherical collapse of pertur-
bations. This model does not have a screening mechanism and we discuss whether or not
it is able to comply with the SS bounds. Although we do not perform a formal parameter

constraint analysis, this chapter also shows that these models can fit the CMB data.

Chapter 7 focus on the gravitational lensing effects in Cubic Galileon and Nonlocal
gravity cosmologies associated with galaxy clusters and cosmic voids. In the first part
of the chapter, our main goal is to assess the degree to which the direct modifications to
the lensing potential in these models can bias the estimation of cluster masses. We use
19 clusters from the CLASH survey [137] and find that, compared to GR, lensing mass
estimates are virtually unaffected by these two gravity models. This is attributed to the
strong efficiency of the Vainshtein screening in the Cubic Galileon model and to the rather
weak fifth force in the Nonlocal gravity model at the cluster redshifts. In the second part

of Chapter 7, we use the results from N-body simulations to measure the effects of the
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modified gravity on the density profiles of voids and on their associated lensing signal. We
shall see in this chapter that gravitational lensing by voids has the power to be a very good
probe of gravity on large scales.
Finally, we summarize our results and outline future research directions in Chapter 8.
Unless otherwise specified, throughout this thesis we use the unit ¢ = 1 and metric
convention (+,—, —, —). Greek indices run over 0,1,2,3 and we use 87G = Kk = Ml;12

interchangeably.



Chapter 2
Linear perturbations in

Galileon gravity models

We discussed in the previous chapter that, before undergoing dedicated studies of non-
linear structure formation in modified gravity models, one should first learn about their
goodness-of-fit to the data from the CMB, SNIa and BAO. In this chapter, we take the first
steps towards using these data to constrain the Covariant Galileon gravity model [56, 57]

by studying its linear perturbation theory predictions.

In the Galileon model, the deviations from GR are mediated by a scalar field ¢, dubbed
the Galileon, whose Lagrangian density is invariant under the Galilean shift symmetry
Oup — Oup + by, (Where b, is a constant vector), in flat spacetime. Such a field appears, for
instance, as a brane-bending mode in the decoupling limit of the four-dimensional bound-
ary effective action of the DGP braneworld model [64, 138, 139] which was proposed before
the Galileon model. However, despite being theoretically appealing, the self-accelerating
branch of the DGP model is plagued by the ghost problems (energy states unbounded from
below) [65, 66, 67, 68]. Taking the decoupling limit of the DGP model as inspiration, it was
shown in Ref. [56] that in four-dimensional Minkowski space there are only five Galilean
invariant Lagrangians that lead to second-order field equations, despite containing highly
nonlinear derivative self-couplings of the scalar field. The second-order nature of the equa-
tions of motion is crucial to avoid the presence of Ostrogradski ghosts [140]. Furthermore,
the structure of these five Lagrangians is such that their classical solutions receive no quan-
tum corrections to any loop order in perturbation field theory [141], i.e., the theory is non-
renormalizable. This means that the theory is an effective field theory whose classical solu-
tions can be trusted up to the energy scale above which a quantum completion of the theory
becomes inevitable. In Ref. [57, 142], it was shown how these Lagrangians could be gener-
alised to curved spacetimes. These authors concluded that explicit couplings between the
Galileon field derivatives and curvature tensors are needed to keep the equations of motion

up to second-order (see Ref. [143] for a recent discussion about how such couplings are not
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strictly needed). Such couplings however break the Galilean shift symmetry which is only
a symmetry of the model in the limit of flat spacetime. The couplings of the Galileon field
to the curvature tensors and to itself in the equations of motion change the way in which
particle geodesics responds to the matter distribution, which is why the Galileon model

falls under the category of modified gravity.

Since the equations of motion are kept up to second order, it means that the Galileon
model is a subclass of the more general Horndeski theory [144, 145, 146]. The Horndeski
action is the most general single scalar field action one can write that yields only sec-
ond order field equations of motion of the metric and scalar fields. Besides the Galileon
model, it therefore encompasses simpler cases such as Quintessence (cf. Eq. (1.9)) and f(R)
(cf. Eq. (1.11)) models as well as other models which also involve derivative couplings of
the scalar field that have recently generated some interest such as Kinetic Gravity Braid-
ing [147, 148, 149], Fab-Four [150, 151, 152, 153, 154], K-mouflage (cf. Eq. (1.14)) and others
[155, 156, 157]. An important difference between the Galileon model studied here and some
other corners of Horndeski’s general theory is that in the Galileon model there are no free

functions.

In this chapter, we start by presenting the action and field equations of the Covariant
Galileon model. We then derive the fully covariant and gauge invariant linearly perturbed
field equations and solve them with a modified version of the CAMB code. We analyse the
model predictions for the CMB temperature, CMB lensing and linear matter power spectra,
and also for the time evolution of the lensing potential. We do this for a limited number of
parameter values to illustrate how the model predictions are obtained. A main goal of this

chapter is to build some intuition for the contraint results of Chapter 3.

2.1 The Covariant Galileon model

The action of the covariant uncoupled Galileon model is given by [57]

5
1
16 e chici—cm , (2.1)

=1

S = / d*z\/—g
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with

Ly = M3<p,

Ly = VHSOV“%
2

Ly = FpteVueVie,

Ly = %VH@V“Q@ [2(5@2 — 2V, V,0)(VAV )
—RV V2],

Ls; = %V“wvmp [(Op)? = 3(00) (V. V) (VA7)

+2(vuvy¢) (V. VPyp) (vauSD)
—6(V,u0)(VEV ) (VPp)Gup) (2.2)

where R is the Ricci curvature scalar, g is the determinant of the metric g,,,, and M 3 =
Mp HZ with Hy being the present-day Hubble expansion rate. The five terms in the La-
grangian density are fixed by the Galilean invariance in a flat spacetime, 0,9 — 0.9 + b,
and c;_5 are dimensionless constants. The explicit couplings to the Ricci scalar R and the
Einstein tensor G, in £, and L5 break the Galilean symmetry, but are necessary to limit
the equations of motion to second-order in field derivatives (and hence free from Ostro-
gradski ghosts) in spacetimes such as FRW [57] 1. We set the potential term to zero (c; = 0),
as we are only interested in cases where cosmic acceleration is driven by the kinetic terms
of the field. Before proceeding, we note in passing that £, and L5 are associated with some
theoretical problems related to the smallness of the energy cutoff below which the theory is
valid, as discussed in [56, 158]. In general, in this thesis, we shall always be more concerned
about the observational consequences of the models, although such theoretical problems
should always be kept in mind.

Besides the terms which appear in the Galileon Lagrangians, £;, we also consider here a
derivative coupling of the form L ,upiing ~ G"*'V .0V, ¢, which does not spoil the second-
order nature of the equations [159, 160, 161, 162, 163, 164, 165]. Here, for comparison pur-
poses, we follow [159] and add to Eq. (2.1) the Lagrangian density

M,
Lo = —CGFP;GWVH@VU@, (2.3)

!These curvature couplings act as counter terms that cancel the higher derivative terms that arise from
the naive promotion of the partial derivatives to covariant ones. However, Ref. [143] has shown that, due to

hidden constraints, these curvature couplings are indeed not stricly necessary.
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where cg is a dimensionless constant. The phenomenology of L is only studied in the

present chapter, and not anywhere else in this thesis.

The modified Einstein field equations and the Galileon field equation of motion can
be obtained by varying the action with respect to g,,, and ¢, respectively. Our derivation
agrees with those present in the literature [57, 159] although we explicitly write the Rie-
mann tensor in terms of the Ricci and Weyl tensors, whenever it leads to the cancellation of
some terms and hence to a slight simplification of the final expressions. The Einstein field

equations are given by:

Guv =k |Th + T + T + Tg + T+ Tes | (2.4)
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where
C: 1 (e
Ty = c2 [VMOVM - §guvv ¢Vap|, 25)
T = % [QVHQOVIA,ODQD 420, VgV eV o — 4V*wwvy)vw} 7 (2.6)

Tib = 315 9u [(Dsofvw%o - %R (VapV*0)? +40pV oV  oVa Ve — 4VaVapV VoV oV
VeV eV VeV — Raﬁv%v%vwv%}

+5 [200)° V.10V + 2920V OVPOR, (. Voo — 809V VAV 16V )0

—2VaVpVoVP oV ,0V, 0 + 8V oV, VeV V (¢ V., — 200VaeV oV, V.o

—4V V3oV *oVP oV, V0 — ngwv*wuwygp + %RW (VapVeep)?

42V, VoV, V¥V V 0 + 4V, VoV, VoV o V7 + zwwﬁvwv%vwvw] , (2.7)
T35 = 1759m |0 VaeV 0 + 3(00) V VP eV apVsp — 300V a0V oVa VoV Vg

—60pV VP Vo VapV oV 0 4 2VapV Vo V20V sV pV, Ve

3V VeV VPOV, VoV 0V 0 + 6Va V5oV VoV, VoV oV o — ROp (VWVM@)Q

+§RQBV“V% (vwv*@f n 3VA<pVA<pVa<pVB<pV7VU<pWa7@U]
+% [(Dso)gvmovuw — 3(09)°VaeV oV, Voo — 6(00) 2V 0V AV .0V, 0 + 600V AeV oV, VeV, Vi
—60pV o VeV oV oV, V.o — 300VaVeeVVP 0V 0V, 0 + 600V*0V? oV . V0V, Vsp
+120pVap VOV oV5V (L, Vi 4+ 3VapV oVa VspVoVI oV, Vo — 6VApV oV VP oV, V0V, Vs
+6V VP oV 0oV sV, VaoV, V0 + 6V VoV VoV V20V, V0 + 2V V2oV 3V oVAV* 0V 0V, 0
+6VV oV a VeV VAV 10V, o — 12V 9oV a VeV VoV AV 0V, ¢
12V VOV OV OVAY 0V, Voo + ngo (vwv*go)Q Ry —3 (vwv*go)Q Ro(,Vy Vg
R (VWV%)Q V. Vg + 300V 2oV 0V 0V 0Whars — 6V A0V oV 0V V 0V (oW, 50y
+H6VARV oV OV OV V (i oW,)apy — 6VAPV 0V apV V0V, oW, 0 j)] , (2.8)

M, o
TiS = o [g,w ((I:Icp)2 VaVseV v%) 2V, VeV, VP — 200V, Ve

. “ 2 1
2RV eV 9 = R VaoVs0gu + DWausn V9V 0 — ZRVupVip + RV 0V a0 | 2.9



2. Linear perturbations in Galileon gravity models 26

The Galileon field equation of motion is given by:

C
0 = cOp+ 2ﬁ33 [(Op)? — VOVPeVaVsp — RagVepVPy]
C « « 4 «
+ﬁ46 {2(1]@)3 — 60pVaVapVeVPp + 4V, VoVPVI oV, Vo — SRV OVP OV Ve

5
—gRDWva + 4R, VVP OV oV 0 4+ 4R, sV oV VPV o — 200 R,V VP

+4Wapr, VOV VP VP
Cs
Mo

+80¢V o VPV sV VAV 4 609V 2oV o R0 s VOV — 2R(0p)2 VeV e

+ Op)* — 6(0¢)2VaV5oVeVA + 3 (VaVsoVoVPe)? — 6V, VPV sV ,oVeV VAV, o
B B BVp

1

+=RRo3VoVP oV oV — 6Ras V> oV ApVOVI VAV 0 + 2RV oV o VVP 0V V50
9 B B B
3 2 1 2

— 5 Roo R (VapVie)™ + ZR2 (VroVr)™ + 600W,005 VP VI V¥V

F12W,050 VPV oVEVA VOV 30 4 3W 08, VPV VOV oV 0V 30

F6Wapo s VPPV VOV VPV 0 — 3W, 50 RPIV VP oV 0V

3
+§meRy“ﬁ”V“wV”@W@Vw

M
+2VP;CGGQ5VQVBQD. (2.10)

The equations presented in the literature (e.g. [57, 159]) are related to ours via the

following Riemann tensor expansion

1
R,uzzaﬁ = 5 (g,uasz,B + gV,BR,ua - g,uﬁRVa - guaRu,B)
1
+W;u/o¢,8 - ER (gua.guﬁ - guﬁgua) ) (2'11)

which cancels some of the terms originally derived in [57]. In Eq. (2.10), we kept only the
term proportional to %RWMRVQB 7 in terms of the Riemann tensor, as using Eq. (2.11) in

this particular case would make the equations longer.

2.2 The perturbation equations

2.21 The Perturbed Equations in General Relativity

In this section, we derive the covariant and gauge invariant perturbation equations in
Galileon gravity. This will be done in detail below, but first let us outline the main in-
gredients of 3 4+ 1 decomposition and their application to GR (which is elegantly described

in [166]) for ease of later reference.
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The main idea of 3 4+ 1 decomposition is to make spacetime splits of physical quantities
with respect to the 4-velocity u* of an observer. The projection tensor b, is defined by
huw = gu — uuu, and can be used to obtain covariant tensors which live in 3-dimensional
hyperspaces perpendicular to u*. For example, the covariant spatial derivative V of a

tensor field Tﬁ ) is defined as

VOTP Y = KSR - hYhE - RIVETYE, (2.12)

The energy-momentum tensor and covariant derivative of the 4-velocity are decom-

posed, respectively, as

Ty = mTw+ QQ(;LUV) + pupuy — phyw, (2.13)

1
Vuuy = 0w+ @ + §9hw, +uu Ay, (2.14)

where 7, is the projected symmetric and trace-free (PSTF) anisotropic stress, g, is the heat
flux vector, p is the isotropic pressure, p is the energy density, 0,,,, is the PSTF shear tensor,
Wy = @[uu,,} is the vorticity, § = V*u, = 3a/a = 3H (a is the mean expansion scale factor)
is the expansion scalar and A, = 1,; the overdot denotes a time derivative expressed
as ¢ = u®V,¢, brackets mean antisymmetrization and parentheses symmetrization. The
normalization is such that u“u, = 1. The quantities 7,,, q,, p and p are referred to as
dynamical quantities and o0, @, ¢ and A, as kinematical quantities. The dynamical

quantities can be obtained from Eq. (2.13) using the relations

p = Tuuuuuya
1
p = — g huyTuy,
Qu = hZu'”T,,p,
T = hohyThr + phyw. (2.15)

Decomposing the Riemann tensor and making use of Einstein equations, we obtain,
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after linearization, five constraint equations [166]:

0 = Ve <6Waﬁu5ww> , (2.16)
IV,0 - .
KQy = — 3“ o + V0, (2.17)
Bus = Vo0 + Vomp] €, (2.18)
-, 1 e, 2 2.
V (C/‘uy = 5/‘% [V ’ﬂ'uy + g(gq’u §v :| (219)
- 1
V'Bus = 5 |Vats+ (p+p)mas] ¢, (2.20)

and five propagation equations:

. 1 ~
0 = 9+§92—V-A+g(p+3p), (2.21)
2 A
0 = G+ 500 — Vs + & + gm, (2.22)
2 ~
0 = Y'D/W + §9wu,, - V[#Ay], (2.23)

0 = g [#MV + ;)HWW] — g [(p +p)ow + @wqw}

— & + 08 = VO Byge, o] (2.24)
0 = B+ 6B, +V°Ese,

—{—g@awﬁ(“eyhgtﬂ. (2.25)

Here, €., is the covariant permutation tensor, £, and B, are, respectively, the elec-
tric and magnetic parts of the Weyl tensor W5, defined by £, = u®u’W,a,5 and
B, = 2u oy 6/“34 Wﬂ,g,,g. The angle brackets mean taking the trace-free part of a quan-
tity and V - v = V®v,, where v is an arbitrary vector. We note that although there is some
level of redundancy in the above equations, one still has enough equations to solve for all
the necessary degrees of freedom as we shall see below (we opted to write the redundant
equations anyway to maintain the notation of Ref. [166]).

Besides the above equations, it is useful to express the projected Ricci scalar R into the
hypersurfaces orthogonal to u* as

R =2kp— %92. (2.26)

The spatial derivative of the projected Ricci scalar, 7, = aV, R/2, is given as

2a

Ny = KaV,p — 39%9, (2.27)
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and its propagation equation is given by

20 2a0 ~ - ~
T + ?”" = —%VMV -A—akV,V -q. (2.28)

Finally, there are the conservation equations for the energy-momentum tensor:

p+(p+p0+V-q¢ = 0, (2.29)
4

200+ (p+0) Ay = Vyp + Vim = 0. (2.30)

G+
We always consider the case of a spatially-flat Universe and, as a result, the spatial

curvature vanishes at the background level. Thus, setting 2 = 0 in Eq. (2.26), we obtain the

tirst Friedmann equation

92
5= Kp. (2.31)

Note that at the background level only the zeroth-order terms contribute to the equations.
The second Friedmann equation and the energy-conservation equation are obtained by

taking the zeroth-order parts of Egs. (2.21, 2.29), as

o1
0+ 567+ g(p +3p) = 0, (2.32)
p+(p+p0o = 0. (2.33)

2.2.2 The Perturbation Quantities in Galileon Gravity

In the effective energy-momentum tensor approach, the field equations Egs. (2.16 - 2.33)
above preserve their forms, but the dynamical quantities p, p, ¢, and 7, should be replaced
by the effective total ones p'*" = p/ + p¢, p'*t = p/ 4 p%, ¢t = a+ q¢ and 'l = e+ 75,
in which the superscripts ¢ and / identify the contributions from the Galileon field and
the rest of the matter fluid (including cold dark matter, baryons, photons and neutrinos),
respectively. From here on we shall drop the superscript ' for ease of notation.

Before using Eq. (2.15) to calculate p, p®, qf and WEU from the components of the
Galileon energy-momentum tensor of Egs. (2.5-2.9) , we need an explicit expression for
the Ricci tensor R, in terms of the kinematical quantities. For this, let us expand the

symmetric rank-2 tensor R, in the following general way

ij = Auuu,, + Ehw/ + 2u(uTu) + ZIUU (234)
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in which T, is a four-vector and X, a PSTF rank-2 tensor, both of which live in the 3-
dimensional hyperspace perpendicular to the observer’s four-velocity (Y, = u"X,, =

0). A and = are scalar quantities. Then, using the modified Einstein field equations

1
Ryy = 59 R = KT = KT, + kTS, (2.35)
one gets,
1
A = Sr(p+3p)
.1 R
= —[9+3e2—v-4, (2.36)
1
=2 = —5rlp-p)
1r. R
- —§[9+92+R—V-A], (2.37)
T, = K
oV,.0 - .
= — V; o + Vi, (2.38)
Y = KMy
9 .
= -2 |:é’w, + 300 — Vi + 5,“,] . (2.39)

where we have used Egs. (2.17, 2.21, 2.22, 2.26). Note that the first lines are expressed in

terms of total dynamical quantities and the second lines in terms of kinematical quantities.
With the above useful relations and after some tedious but straightforward calculations,
the Galileon contribution to the energy-momentum tensor up to first order in perturbed

quantities can be identified as

1 .
G _ 1.9 3 2 402 3
po = 02[299] 3[2g0 0+ 2¢ Dgo} 6[2@9 +4p 9D<p+ R]
¢s |7 503 O .ap L 5,5, Mp 202 o 1.,z
0% + Z¢%0%0p + =¢%0 - 02 + —p00p + = 2.4
0 {990 3970+ 56 R]+M3ca ¢ +3<,0 p+59°R| (2.40)
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in which (J = @“@H.
Following the same procure, the Galileon field equation of motion, Eq. (2.10), is given

by
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As a consistency test, we checked that Egs. (2.40 - 2.43) satisfy the conservation Egs. (2.29,
2.30).

2.2.3 Perturbed Equations in k-space

For the purpose of the numerical studies presented in this chapter, we need to write the

perturbed quantities derived in the last subsection in terms of k-space variables. This is
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achieved with the aid of the following harmonic definitions:

. k . k2
Ve = > EyQﬁ, V=) EZQfL,
k k
— k k v — k k
Ay = ) SAQL Vup =) —XQp
k k
k
7'('/_“/ = ZHQﬁua O-,U,I/ = Z EJQZ‘V’
k k
o k2
M = D5 Ew ==Y 50Q, (245)
k k

in which Q¥ is the eigenfunction of the comoving spatial Laplacian a?(] satisfying
ek K2
0Q" = =5Q*, (2.46)
a

and Qﬁ and wa are given by Qﬁ = %@MQ’“ and by Qﬁu = %@wa, respectively.
In terms of these harmonic expansion variables, Eqs. (2.17, 2.19, 2.22, 2.24, 2.27, 2.28)

can be rewritten as

gk;?(a ~2) = kgad, (2.47)
Ko = —%mﬂ [k(IT + x) + 3Hq], (2.48)
k(o +Ho) = K (¢p+A)— %mﬂn, (2.49)
k(¢ +Hp) = %mﬂ [k(p + p)o + kq — II' — HIT] (2.50)
K*n = kya® —2kHZ, (2.51)
knt = —rqa® — 2kHA, (2.52)

respectively, where H = a’/a and a prime denotes a derivative with respect to conformal
time 7 (adr = dt, with ¢ the physical time). From Egs. (2.40, 2.42, 2.43) one obtains the
k-space variables X%, ¢¢ and I¢

X¢ = cza% (&Y +¢24) + %% ([18¢Hy + 1805 HA] + k [20%2] + k? [2¢"%7])

+176 36 ([9()@’37{27’ + 900 H?A] + k [159"* HZ] + k* | 120" Hy + 2<p’4nD
+%ai8 ([1050"*H>y + 1050 H3 A] + k [210H2Z] + K [150"*H?y + 3¢ Hn])
+%CG% ([18"H*Y + 18 H?A] + k [69*HZ] + k* [40'Hy + ¢"*n]) , (2.53)
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¢¢ = ng (") + %% (60" Hy — 20" — 20" 4)
+%% (k [—12¢"°Hy — 120" HA + 180" H?y] + k* [¢"*0 — ¢ Z])
+%aig (k [~150" H?y — 150 H? A + 150" 1] + 2k [—""HZ + ¢"Ho])
+%cga—14 (k [—49/ My — 40 HA + 60 H?A] + %kQ [0 — w’23]> : (2.54)
e = %% (k [—¢"0" + 30" Ho — 60" o] + k? [0 Hry — 6"y + T A — "))
—&-%% (k [-3¢"°H 0+ 12¢""H?0 — 15¢" " Ho — 39" "o’
+ k2 [—120" @ Hry + 120 H?y — 3" H/ v + 30" " A + 60" " ¢ — 60" H))
+%CG% (k[-2¢"¢'0] = 2% [0y + ¢"*¢]) . (2.55)

Note that the spatial derivative of the isotropic pressure p in k-space is not needed in the
CAMB code, which is why we do not write it here. Finally, in k-space, the perturbed Galileon

field equation of motion, Eq. (2.44), reads

0= % (kY +29H + @A + ¢ HA+ 20" Al + K>’ Z + k)

1
T N (k (129" H + 120 HA — 180 *H?> A + 360" o' HA + 120" Hy' + 120 H'y + 18¢"*H' 4]

M3 ab
+k2 [6(,0’27'[2 + 250/22/ + 4@//@/2] + kS [490/7'[')/ o 290/214 +4<PH’Y])
1
+%? (k [54(,0/2%2'}// _ 108()0/27'[3’}/ + 54S0/3H2A/ _ 198%0,37—[314 + 216()0//@/2%214 + 108(,0“%0/%2'}/

+108¢*HH'y + 1440 HH'A] + k* [-60°H>Z + 360" ¢*HZ + 120 H'Z + 12¢"*H Z']

+k7 [109H?y — 120" HA — 40" Hn + 249" o' Hry + 120 H'y + 69" ¢ 1)])
1
+%$ (k [-2400" H'y' — 345" H A + 600" H? 7" + 600" H> A” + 3000" 9" H> A + 1809" "> H>/

+180¢ * H>H'y' + 225" H>H' A] + k* [—450" HP Z + 60" " H? Z + 150" H? 2’ + 300" HH' Z]

+R? [=360"H >y — 120" H?n — 150" H2A + 3" M/ + 369" 0> My + 240 HH'y + 120" ¢ Hi) )

% ZG (k [6H>Y" + 60" H* A" — 180" HP A + 120" H> A + 12HH Y + 249" HH' A]
+k% [6QH?Z + 40" HZ + 4" HZ' + 40" H' Z] + k* [2H?y — 4" HA + 4H'y + 2¢"n]) . (2.56)

As another consistency test, we have checked that the conservation Egs. (2.29, 2.30) in

k-space,

X + (kZ =3HA)(p+p) +3H(x +X*)+ kg = 0, (2.57)

2
¢ +4Hq+ (p+p)kA — kx? + ng = 0, (2.58)

are satisfied by the k-space perturbed expressions derived above.
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Synchronous and Newtonian Gauge Equations

Here, we present the recipe to write the CGI perturbation equations in the synchronous
and in the newtonian gauge [167].
The perturbed Friedmann-Robertson-Walker line element in the synchronous gauge is

written as
ds’s = a*(7) [dr® — (6;5 + hisj)dxidmj] . (2.59)

Latin indices run over 1, 2 and 3, §;; is the delta function and the spatial perturbed metric

S _ S . .
hy; = hij(x,7) is given by
. ; N N 1

where a superscript © denotes quantities in the synchronous gauge, x is the spatial position
vector and k = k/k is the unit vector mode in the k-direction. The CGI and the synchronous

gauge quantities are related by means of the following relations

1 s s1 1 g
¢ = 47k2[677// +h”]_1777
A = 0,
n = -2,
1S
z -
2%
1
o = 5 (607 +0%). (2.61)

The line element in the Newtonian (also known as longitudinal) gauge is diagonal,

described by two scalar potentials ¥ and ®, and reads
ds3 = a*(7) [(1 4 20)dr? — (1 — 2®)da'dx;) . (2.62)

Written in this way, the perturbed line element is only applicable to the study of the scalar
modes of the metric perturbations. The two potentials are related to the Weyl potential ¢

as

( )2 w11, (2.63)
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and the other CGI quantities are given by

A = -0,
n o= _2q)7

3 (&
o = 0. (2.64)

We do not present the full perturbed field equations in the synchronous and Newtonian
gauges because they are not used in our modified CAMB code. However, note that CAMB
works in the cold-dark-matter frame where A = 0, which is equivalent to the synchronous

gauge written in a slightly different formalism.

2.3 Understanding the Galileon parameter space: free parameters

and stability conditions

Before proceeding to showing the results, it is useful to analyse the equations of the model
to determine which of the new parameters are actually extra parameters and which are
derived ones. In this section, we also present two different approaches to obtain the back-
ground evolution. The first one involves integrating numerically the equations of the
model, whereas the second approach makes use of analytical formulae that characterizes
the so-called tracker solution. We comment also on the conditions for the avoidance of ghost

and Laplace instabilities in the scalar sector of the model.

A main goal of this section is to present a concise description of some key aspects of the
equations of the model, for ease of later reference. For this reason, in this section we take
ce = 0, as we do in all the other chapters. The inclusion of c¢¢ in the considerations of this

section is nevertheless straightforward.
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2.3.1 Scaling degeneracy

By looking at Egs. (2.40 - 2.44), we note that they are invariant under the following trans-

formations:
co — cy=cy/B?
3 —> cp= 03/33,
g — cy=cy/B,
s —> s =c5/B5,
¢ — ¢ =B, (2.65)

in which B is an arbitrary constant and the transformation of ¢ holds for both the back-
ground and perturbation parts. The reason for this scaling lies in the fact that each of the
Galileon Lagrangians £; yields terms which all have the same power in the Galileon field
¢ (for the counting of the power, the time and spatial derivatives of ¢ are treated equally
as ).

From a practical point of view, the scaling of the Galileon field ¢ is realized by rescaling
its time derivative at the initial redshift, z;, when the calculation starts, ¢; = ¢(z = z)
2. As a result, according to Egs. (2.65), the impact of smaller values of ©; can always be
compensated by larger values of the ¢, parameters and vice versa. This makes the ¢,
parameters unbounded, thus preventing proper constraints on the parameter space. A
possible way to break the scaling degeneracy is to use one of the Galileon parameters as a
reference to write down invariant quantities under the scaling. For instance, taking cs3 as

the reference parameter, then the invariant quantities are

C2 C4 C5  1/3-
3 €G3 G

’In principle, to achieve the exact scaling at the linear perturbation level, one has to resize the Galileon

field perturbation d¢; and its time derivative 6'%- as well. However, our choices of initial conditions are dp; =
¢, = 0, which means that the resizing does not need to be done explicitly. We have checked that our results
are insensitive to sufficiently small changes around these initial values for all length scales (or k-modes) that are
of interest to us. Here, ‘sufficiently small’ means small enough to be still in the regime of linear perturbation
theory. Typically, such a condition is quoted as dy; < @;. However, the background value of the field is
irrelevant in the covariant Galileon model since the background equations only involve ¢ and ¢ and not @. As
an alternative, we adopt d¢; < @;/H,; as a criterion for the validity of the linear perturbation analysis. This

restricts d¢; and 5'%- to be so small that it makes no practical difference if they are set to be exactly zero.
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The above equations make it explicit that the need to break the scaling degeneracy reduces
the dimensionality of the parameter space of the model by one. Another approach could

be to fix the value of ¢, so as to normalize the canonical kinetic term of the theory.

2.3.2 Tracker solution

The background energy and pressure densities of the Galileon field that enter Egs. (2.31)
and (2.32) are given by taking the zeroth-order part (non-hatted terms) of Egs. (2.40) and
(2.41), respectively, as

_ . 1.5 C3 .3 c4 |9 4.0 Cs 7.5 3
Pp = 2 bo ] +a [2¢°6] + 176 [Q‘P 0°| + 279 | 9% 6|, (2.67)
_ B 1 5 C3 v .9 C4 . .3 L4, 1.4
Do = C2 [Zso]Mg[QW}+M6[4W 0 —¢'0— 59"
Cs 5. .49 2.5/ 2 5.3
— | == 0° — =00 — —°0°| . 2.
+M9[ A 5% i (2.68)

Similarly, the background part of the equation of motion of the Galileon field is given by

. . C3 .. . .24 C4 .. .34 .
0 = calp+¢bl+ 775 [4W9+2¢292+2¢29} + 75 [6@4,0292—1-4903«99—1—24,0393
€5 |9 apa 20, 393 D 450
B 125498 4 T893 4 2 4002 2.
RNVE [990 Tt ge (2.69)

The above equation and Eq. (2.31) or (2.32) can be solved numerically from some initial
redshift, z;, until the present day, z = 0. Reference [168] did this and showed that different
initial conditions of the background Galileon field derivative, ¢;, give rise to different time
evolution that eventually merge into a common trajectory called the tracker solution. The
advantage of assuming that the Galileon model follows the tracker at all times is twofold.
First, it allows one to derive analytical formulae for the background evolution (just like,
e.g., ACDM models), which greatly simplifies and speeds up the numerical calculations;
second, it also allows us to reduce the number of free parameters by one, which is helpful
when exploring the high-dimensional parameter space of the model. Next, we show these
two advantages explicitly.

The tracker evolution is characterized by [168]
H = constant = ¢HZ, (2.70)

where ¢ is a dimensionless constant. Multiplying Eq. (2.31) by H?, eliminating ¢ with
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Eq. (2.70) and dividing the resulting equation by Hj, one obtains

E' = <Qr‘0a4 =+ Qm()a/iB + o pl:(a)> E?
Pro
1 2 3 15 4 5
+ 6025 + 2c38” + ?C4§ + Tcs8°, (2.71)

in which E = H/Hy, Qo = pio/pco, where py = 3H§ /k is the critical energy density
today. The subscript , refers to radiation, ,, to baryonic and cold dark matter and , refers
to neutrinos (the function p, (a) describes the time evolution of the neutrino density, which

depends on neutrino mass). At the present day, Eq. (2.71) gives
1 15
Qoo =1— Qo — Qno — Qo = 60252 + 2¢383 + ?cg‘* + Tes€?, (2.72)

where we have assumed spatial flatness (as everywhere in this thesis). This equation can
be regarded as a constraint equation for one of the Galileon parameters, i.e., one of the
parameters can be fixed by the condition that the Universe is spatially flat. The assumption
that the field follows the tracker allows us to fix one more Galileon parameter. This second

constraint equation can be obtained by plugging Eq. (2.70) into Eq. (2.69), which yields
262 4 6383 + 18¢4€* + 15¢58° = 0. (2.73)

Equation (2.71) is a second-order algebraic equation for £(a), whose solution reads

1 Ov
E(a)2 =5 [(Qroa_4 + Qa3 + Qo pﬁ(z)>

_ 2
+\/ (Qroa—‘l T Qoa—3 + Qo ”;?) +AQ,0] - (2.74)

Finally, using Eq. (2.70) we have
$ = EHy/E(a). (2.75)

These last two equations completely specify the tracker background evolution in the Galileon
model. Note that in our treatment of the tracker solution, one essentially replaces ¢; by ¢ in
our notation, as can be checked by evaluating Eq. (2.75) at z;. We stress, however, that one
must first check whether the tracker solution is favoured by the observational data before
comfortably using it in studies of the Galileon model. This check shall be done explicitly
in the next chapter.

In summary, by assuming the (i) tracker solution and that (ii) the Universe is spatially
flat, together with the (iii) need to break the scaling degeneracy, one is able to reduce the

dimensionality of the parameter space of the Galileon model by three.
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2.3.3 Stability conditions

In the next chapter, we present observational constraints on the Galileon model. However,
the parameter space can be constrained a priori by the requirement to avoid the appearance
of theoretical instabilities. The Galileon Lagrangian, being a subset of the more general
Horndeski Lagrangian, is automatically protected against the propagation of Ostrogradsky
ghosts as the equations are retained up to second order [140]. However, other sorts of
theoretical pathologies may still arise.

In all our discussions about the Galileon model, we consider the conditions for each
point in parameter space not to develop ghost degrees of freedom or Laplace instabilities
in the scalar sector of the linear perturbations. We do not present a detailed derivation
of these stability conditions, but refer the reader to Refs. [159, 169, 170] where these have
been derived and discussed. The analytical method to derive these conditions is different
in between Refs. [169, 170] and Ref. [159]. However, we have checked that the two for-
mulae consistenly identify which regions of the parameter space are unstable (the reader
can sneak a peak at Fig. 3.12). The no-ghost and no-Laplace stability conditions, despite
applying to the scalar perturbations, depend only on background quantities. Hence, in
our calculations, we first solve the background evolution to test whether or not a given
set of parameters is stable. The calculation of the evolution of the perturbations is only
performed if the point is theoretically viable. We only test the theoretical stability of any
given point in the past, since there is no evidence that the instabilities cannot develop in
the unprobed future.

One could also consider other theoretical conditions such as those which ensure that
the Galileon field perturbation does not propagate superluminally (i.e. ¢ > 1). However,
such cases do not necessarily imply the existence of pathologies such as the violation of
causality (see e.g. [171]) and therefore we do not employ them. We also do not rule out
a priori cases where p, < 0 at some point in time, but instead let the data decide their

viability.

2.4 Results

In this section we present and discuss our results. These were obtained with a suitably

modified version of the CAMB code [172] to follow Galileon gravity models.
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Table 2.1: The model parameters for the Galileon models studied in this chapter. The ¢; parameter
is tuned to yield the required amount of dark energy today and its exact value depends on the

choice of the initial Galileon energy density p,, ;.

Models c3 cq Cs ca
Galileon 1 12.8 —1.7 1.0 0
Galileon 2 6.239 —2.159 1.0 0
Galileon 3 5.73 —1.2 1.0 0
Galileon 4 5.73 —1.2 1.0 —0.4
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Figure 2.1: Evolution of the ratio of the Hubble expansion rates of the Galileon and ACDM
models, H/Hxcpm (H = 0/3), and of the Galileon field equation of state parameter w. The
evolutions are shown for the four models of Table 2.1 for different initial conditions, as

labelled.

24.1 Background

In the remainder of this chapter, we compute the evolution of the cosmological back-

ground numerically (without enforcing the tracker solution) using the Friedmann equa-
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Table 2.2: The values of the parameter ¢, and of the age of the Universe for all the initial conditions

used in this chapter. The age for ACDM is 13.738 Gyr.

P,/ Pmi C2 Age (Gyr)
Galileon 1
1074 —27.00 13.978
107° —27.49 14.317
1076 —27.56 14.366
1077 —27.58 14.374
10-8 —27.59 14.375
Galileon 2
10~ —12.600 13.614
107° —12.846 14.256
5x 1076 —12.857 14.286
1076 —12.885 14.357
1077 —12.891 14.372
1078 —12.892 14.375
Galileon 3
1074 —14.760 13.854
107° —15.122 14.296
10-6 —15.179 14.363
1077 —15.188 14.373
10~8 —15.189 14.375
Galileon 4
104 —14.186 13.833
107° —14.519 14.285

5x 1076 —14.539 14.312
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tion, Eq. (2.32), and the background Galileon equation of motion, Eq. (2.69)%. The value of
the Galileon background energy density p,; at the starting redshift, which we take to be
z = 108, is determined through Eq. ( 2.67) by the initial values of the field time deriva-
tive ¢; and the expansion rate ;. The latter is given by the fixed matter and radiation
components via Eq. (2.31) (the Galileon background energy density is negligible at early
times). We specify 0; using €),,,0 = 0.265 and Q,9 ~ 8 x 1075 for the present day values of
the fractional energy density of matter and radiation, respectively [173, 174]. Since we are
assuming a spatially flat Universe we need the evolution of the Galileon field to be such
that Q0 =~ 1 — Q0 = 0.735. In the previous section, we have seen that on the tracker,
the flatness condition results in the constraint of Eq. (2.72). When solving the equations
numerically, the strategy is to "tune’ the value of one of the Galileon parameters by a trial
and error approach. In this chapter, we choose to tune c3. As a consistency test, we have
checked that Egs. (2.31, 2.33) are satisfied by the numerical solution we obtain from CAMB.
Moreover, we have also checked that the background expansion history from CAMB agrees
very well with those in the literature [159, 168, 175, 176, 177, 178] and from an independent

code written in Python by us.

We focus on four different sets of Galileon parameters which we list in Table 2.1. In
[159] (to which we refer the reader for further details on the background evolution of these
models) it was shown that these choices of parameters are free of ghost and Laplace in-
stabilities (of the scalar fluctuations) for initial conditions with py;/pm.; ~ 107°. Here we
shall use this and other choices of initial conditions which have not shown any theoretical
instabilities of the scalar perturbations throughout the entire expansion history. In Table
2.2 we list all these initial conditions with the derived values of the c; parameter and age of
the Universe. In this chapter, it is not our goal to place formal constraints on the parameter
space of the model and therefore we shall not be worried about the scaling degeneracy of
Egs. (2.65).

Figure 2.1 shows the time evolution of the ratio of the Hubble expansion rates, H = /3,
of the Galileon and ACDM models and of the Galileon field equation-of-state parameter,

w = Py/p,. Figure 2.1 shows that, depending on the initial condition, the expansion rate

*Recall that if cc # 0, then the equations presented in the last section should be augmented with the cc
contribution. This can be done straightforwardly by reading the background part of the c¢ terms from the

relevant equations.
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can be faster or slower than in ACDM for different times during the evolution. Another
noteworthy aspect of the background evolution is the possibility of having phantom dy-
namics, w < —1 [147, 148, 179]. The initial values of p,; can have a great impact on the
evolution of w: the lower p,; the more negative the values of w tend to be at late times.
The reason is that lower values of p, in the past force the energy density of the Galileon
tield to grow more drastically (w < —1) closer to today, in order to become the dominant
component to accelerate the expansion [159, 168, 180] (see [177, 178] for expansion his-
tory observational constraints). However, for p,; < 1072, the strong dependence of w on
the initial conditions does not propagate into the expansion rate which is only sensitive
to changes in w for times sufficiently close to today when dark energy is non-negligible.
Moreover, the solutions for p,; < 107° tend to have nearly the same late time evolution of
w,,. This illustrates the different initial condition being attracted to the tracker evolution.

In particular, the smaller p,, ; (smaller ¢;), the earlier the solutions reach the tracker [168].

2.4.2 Linear perturbation results

We now look at the physical predictions of the full linear perturbation equations derived
in the previous sections. We always use the best fit parameters from the WMAP 7-year
data results [173]: Q,,0 = 0.265, ns = 0.963, Hy = 100h km/s/Mpc (h = 0.71), Q = 0,
where n, and ), are the spectral index and the fractional energy density associated with
the spatial curvature. Neutrinos are treated as massless in this chapter. These values are
obtained for a ACDM model and there is no reason to believe they should be the same
in a Galileon cosmology. However, in our analysis here, we prefer to focus only on the
differences to ACDM driven by the Galileon field per se, and not by different cosmological
parameters. The determination of the best-fitting cosmological parameters from the CMB
obtained assuming Galileon cosmologies is the subject of Chapter 3. The amplitude of the
primordial curvature perturbations is A; = 2.43 x 1079 at a pivot scale ko = 0.002Mpc~".

As a consistency test of the results that follow, we checked that the perturbed quantities

we obtain from CAMB satisfy the k-space conservation equations, Egs. (2.57, 2.58).

CMB

In Figure 2.2, we plot the CMB power spectrum for the Galileon 3 model and ACDM to-
gether with the WMAP 7-year [181] (squares) and ACT [182] (circles) data. Figure 2.3 is
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Figure 2.2: CMB temperature power spectra for the Galileon 3 model with two different
initial conditions and for ACDM (dashed black), together with the WMAP 7-year (squares)
[181] and ACT (circles) [182] data.

6000 6000

—  Ppil P =107"

5000 S000F — /Py, =10"°
& < — Ppil P =5107
. 4000 . 4000f ,
— — — =10~
= = Poil P
“~ 3000 “~ 3000} Dyl P =10"°
B B
'_T_ 2000 : 2000}
1000 1000|F
0 0 . . .
10" 10° 10’
l
6000 6000
5000 5000}
—
3. 4000 4000}

3000F

20001

IOOOJ; %Lé_@ ﬁ’fl‘féBE’

10! 10° 10° 10! 10° 10°
l l

I+ 1)CH f2m | uK?

Figure 2.3: CMB power spectra for the four Galileon models for different initial conditions
and ACDM, together with the WMAP 7-year data (squares) [181] and ACT (circles) [182]
data.
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Figure 2.4: Time evolution of the Weyl (lensing) gravitational potential ¢ for the four
Galileon models and ACDM (dashed) for & = {1.0, 0.1, 0.01 and 0.001} hMpc~!. All the

models have the initial condition py ;/pm; = 107°.

the same as Figure 2.2 but for the four models of Table 2.1 with a log-scaled x-axis which
highlights the low-/ region. The effect of the Galileon field in the CMB power spectrum is

mainly two-fold.

Firstly, the modifications of the expansion rate can shift the positions of the CMB acous-
tic peaks. The value of the initial condition has an impact on the background expansion
rate and hence on the distance to the surface of last scattering, which translates into differ-
ent positions for the peaks. For sufficiently small values of p,;/pm: < 107 (not plotted
in Figure 2.2 since they are indistinguishable from the py;/pm,i = 1075 case) the Galileon
3 curves have essentially the same peaks positions since the expansion rate becomes in-
sensitive to py ;/pm,i (cf. Figure 2.1). The same applies for the Galileon 1, Galileon 2 and

Galileon 4 models.

Secondly, the late time evolution of the gravitational potential can be also different from

ACDM, resulting in a modified signal of the ISW effect on the largest angular scales (low [
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in Figure 2.3). For instance, the choice py;/pm; = 107 is completely ruled out for all the
models shown, since the spectrum at low [ is larger than the observational data by several
orders of magnitude. In this case, the ISW effect is so pronounced that it dominates over

the first acoustic peak and can also have an impact on the second and third ones.

Lowering the initial amount of dark energy helps to reconcile the models with the data.
However, for Galileon 4 there is still too much power on large scales. Note that this model
differs from Galileon 3 by having a non-vanishing value of ¢ and it is impossible to keep
lowering the initial Galileon density (p,;/pm.i ~ 5 x 107%) as Laplace instabilities start to
appear. This hints that the strength of the derivative coupling c can have a crucial impact
on the predictions. For all the other models (Galileon 1 to Galileon 3), for sufficiently small
values of p, i/ pm,i, the dependence on the initial conditions becomes less pronounced and
the fit to the CMB improves. There are still differences from the best fit ACDM model
and from the data at low [, but since the errorbars are also larger due to cosmic variance,

Galileon 1 to Galileon 3 models may still be compatible with the observations.

It is interesting to note that the CMB power spectrum for the Galileon 1 and Galileon 3
models can be quite similar although their c3 and ¢, parameters are different. This shows
that there are, to some extent, degeneracies in the Galileon model parameter space. On the
other hand, changing only one of the Galileon parameters can also change considerably the
CMB predictions. For instance, in the top-right panel we plot the CMB power spectrum of
a model sharing all the parameters of Galileon 2 in Table 2.1 except that ¢4, = —1.659, for
P/ Pmi = 1076 (dashed red). Note that c, also differs because it is tuned to yield the
required amount of dark energy today, giving c; = —14.968. We see that by changing only
c4 the predicted CMB spectrum gets closer to the data for the lowest values of /. It is also
interesting to note that all the models have the value of ¢5 fixed and we expect a richer

phenomenology if we allow this parameter to vary as well.

To further understand the CMB predictions of the Galileon model at low [, we plot in
Figure 2.4 the time evolution of the Weyl potential, ¢, which is the relevant quantity for
the ISW effect. We show the evolution for different values of k for the initial condition
Ppi/Pm,i = 107°. The variety of evolutions can be very rich within the parameter space
of the Galileon model and depends on the scale under consideration. The evolution of ¢
agrees, to some extent, with the ACDM model during the radiation dominated era. How-

ever, in the matter era, while ¢ is constant in the ACDM model, that is not the case for
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Galileon gravity and the gravitational potential does evolve with time. In particular, we
note a very pronounced variation with time of ¢ for Galileon 4 during the matter era and
today which explains why there is so much power at low [ in this model (c.f. Figure 2.3).
Moreover, for the models shown, the gravitational potential suffers an overall deepening
with time [159, 180, 183, 184], in clear contrast with the ACDM model where the grav-
itational potential gets shallower with the onset of the accelerated expansion. We shall
analyse this feature with more detail in Sec. 3.3.2, but we anticipate here that the late-time
deepening of the lensing potential has a very strong potential to rule out the entire Galileon

model!

Weak lensing power spectrum

The weak lensing signal of the CMB anisotropies is determined by the projected lensing
potential 1), which is an effective potential obtained by integrating the Weyl potential, ¢,
from today to the time of last scattering [185] (see also [186] for a concise description and
application to modified gravity theories).

The angular power spectrum of ¢ is plotted in Figure 2.5 for the four Galileon models
and we see that it can be noticeably larger than the ACDM result on all scales, which follows
from the larger values (in magnitude) of ¢ in these models (cf. Figure 2.4). The Galileon
4 model is the one where the gravitational potential deepens the most with time and it is
therefore the model with the most lensing power. The initial conditions also have an impact
on the result, especially for py;/pm; 2 1075. For instance, for the case Pp.il Pmyi = 1074
(which is not plotted) the power is higher by several orders of magnitude for all the models.

This is an important result and it shows that weak lensing measurements have the capa-
bility to place strong constraints on the Galileon gravity model. In particular, the Galileon
1 to Galileon 3 models, which have CMB temperature power spectrum predictions similar
to that of ACDM for py i/ pm,: = 1076 (red line), nevertheless have very distinctive predic-
tions for the power spectrum of the lensing potential. In Chapter 3, measurements of Clw v

shall be used to constrain the model.

Matter power spectrum

Figure 2.6 shows the linear matter power spectrum predicted in the different models. We

have chosen to plot the power spectra at redshift Z;, rg = 0.31, which is the median redshift
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Figure 2.5: Angular power spectrum of the weak lensing potential ¢ for the four Galileon

models with different initial conditions and ACDM (dashed).

of luminous red galaxies (LRGs) in DR7 from the Sloan Digital Sky Survey (SDDS) [189].
A recent estimate of the power spectrum of LRGs is shown by the points with errorbars
reproduced in each panel [187]. By plotting the matter power spectrum at the same redshift
as the measurement, there is no need to make any adjustment for the growth factor to
compare theory to observation. However, since we are plotting the prediction of linear
perturbation theory in real space, there are three effects which could be responsible for any
discrepancies between the theoretical spectra and the measurement: 1) Galaxy bias. This
is generally modelled as a constant shift in the amplitude of the power spectrum on large
scales, though simulations show that the bias is scale dependent, particularly for highly
clustered objects [190]. 2) Redshift-space distortions. Using peculiar velocities to infer
the radial distance to a galaxy introduces a systematic shift in the clustering amplitude.
Again, this can be scale dependent [191]. 3) Non-linear effects. This includes the familiar
mode coupling between fluctuations on different scales, but also, in the case of the Galileon

models, possible screening effects which could introduce scale dependent departures from
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Figure 2.6: Matter power spectrum at redshift z;rz = 0.31 for the four Galileon models
with different initial conditions and ACDM (dashed), together with the SDSS-DR7 LRG
host halo power spectrum [187]. The measurements are scaled by a factor of 1.8572 [188]

and zy gg is the mean redshift of the LRG sample.

the linear perturbation theory predictions. It is important to note also that the amplitude
of the actual LRG power spectrum shown in Fig. 2.6 is scaled down by a factor of 1.8572,

as explained in the Erratum [188].

A robust comparison between theory and observations should take all three compli-
cations above into account. This shall be done in Chapter 5 using Halo Occupation Dis-
tribution (HOD) methods applied on the results from N-body simulations. For now, we
simply note that the difference to ACDM depends sensitively on the value of p, ;/ppm ;. For
instance, the initial condition p,;/pm,; = 10~* has a substantial excess of power relative to
ACDM, which suggests it may be hard to reconcile these models with the data. Lowering
Py,i/ Pm,i brings the Galileon models into closer agreement with ACDM and the results be-
come less sensitive to the initial conditions (lower initial conditions have nearly the same

prediction as py i/ pm,; = 10~%). However, all the models still produce an excess of power
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Figure 2.7: Time evolution of the linear density contrast of dark matter (DM, solid
lines), dbm = ppm/ppm — 1, baryonic matter (B, dotted lines), 65 = pp/pp — 1, and
Galileon field (dashed lines), 6, = p,/p, — 1, for the four Galileon models for k =
{1.0, 0.1, 0.01 and 0.001} hMpc ™. All the models have initial condition py;/pm.; = 107°.

when compared to ACDM indicating that the formation of linear structure is enhanced by
the modifications of gravity in the Galileon model, a conclusion in agreement with previ-
ous linear perturbation studies in the literature [159, 180, 183, 192]. The Galileon 4 model
is the one where the effects are the most pronounced. This indicates, once again, that the

cc parameter can have a critical impact on the results.

Clustering of the Galileon field

We now turn the attention to the time evolution of the linear density contrast of the Galileon
field 6, = p,/p, — 1. This is plotted in Figure 2.7 for the initial condition py,;/ppm,; = 107°.
We see that the Galileon density contrast (dashed lines) can be large, being comparable with
the dark matter (solid lines) and baryonic matter (dotted lines) density contrasts through-

out most of the evolution. This happens for all the scales considered including small scales
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Figure 2.8: Time evolution of the k-space Galileon field perturbation v (dashed) along
with the corresponding quasi-static limit (solid), for the four Galileon models for & =

{1.0, 0.1, 0.01 and 0.001} hMpc~!. All the models have initial condition py,;/pm; = 107°.

such as k = 1.0 hMpc 1.
This strong clustering of the Galileon field has a large impact on the evolution of the
Weyl gravitational potential ¢ which directly determines many observables such as the ISW

effect (c.f. Figure 2.3), weak lensing (c.f. Figure 2.5) and clustering of matter (c.f. Figure 2.6).

Quasi-static limit approximation

In Figure 2.8 we plot the time evolution of the k-space Galileon perturbation, v (dashed),
along with the corresponding solution obtained in the quasi-static limit (solid). The quasi-
static limit is the limit in which the spatial derivatives of the field are dominant over the
time derivative ones. Practically, this means neglecting all terms in the field equations that
are suppressed by H?/k? or ¢’ /k>.

As for the evolution of the density contrast é, and the Weyl potential ¢, here there is

also a strong scale dependence. Moreover, we see that even for near-horizon scales such as
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k = 0.001 hMpc~! the quasi-static limit can be a good (though not perfect) approximation
to the full solution. In particular, in the Galileon 2 curves with £ = 0.01 hMpc~?, one can
see that the quasi-static approximation agrees quite well with the full solution despite the
oscillations in the latter. The quasi-static limit appears therefore to be valid for many cases

in the Galileon model, especially when one is interested in subhorizon scales.

2.5 Summary

In this chapter, we took the first step towards constraining Galileon gravity with linear
perturbation theory by studying its cosmological preditions for a fixed number of param-
eter set values. For this, we derived the full CGI perturbation equations, which were then
solved using a modified version of the CAMB code. We validated our CAMB code by per-
forming several successful consistency tests.

The main results in this chapter can be summarized as follows:

e The expansion rate in Galileon cosmologies can depend sensitively on the initial value
of the Galileon field energy density, especially if the latter is not small, e.g., if py i/ pm.i 2
107° (z; = 10°). Throughout the evolution (cf. Fig. 2.1), the expansion rate can be faster
or slower than in ACDM and the Galileon equation-of-state parameter is phantom-like

(w < —1) at late times.

e The modified background expansion leads to a visible shift in the positions of the acous-
tic peaks of the CMB temperature power spectrum. The strongest effect of the Galileon
field on the CMB temperature power spectrum, however, appears to be on the largest
angular scales (low values of [, cf. Fig. 2.3), where the full power receives a significant
contribution from the integrated Sachs-Wolfe effect. This is due to the late-time evolution
of the gravitational potential ¢, which in Galileon models tends to become deeper at late

times (more negative), and does so rather rapidly, compared to ACDM (cf. Fig. 2.4).

e The evolution of the gravitational potential influences a number of cosmological observ-
ables, both directly and indirectly. In addition to the ISW effect, it also has a strong impact
on the growth of matter density perturbations (cf. Fig.2.6) and gravitational lensing. In
particular, we have shown that the Galileon model can predict considerably more power

than ACDM for the weak lensing power spectrum (cf. Fig. 2.5), even if the predictions
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of the two models for the CMB power spectrum more or less agree. In Chapter 3, we
shall use the weak lensing power spectrum data from the Planck mission to constrain

the Galileon model.

e We have seen that the Galileon field can cluster substantially (cf. Fig. 2.7) and that the
quasi-static approximation for the evolution of the Galileon field perturbation serves as

a good approximation on subhorizon scales (cf. Fig. 2.8).

o At first sight, the physics of the Galileon field appears to be described by the nine extra
parameters: {61,02, €3, C4, C5, By Py 004, (5%} However, ¢;, is an irrelevant parameter
since it never enter the equations of the model. Furthermore, the initial values of the field
perturbation and its time derivative can be fixed to zero d; = dip; = 0, with no impact on
the results. In this chapter (and in fact in all this thesis) we always consider ¢; = 0, as this
is a potential term and we are interested only in cases where the acceleration is driven by
kinetic terms. By assuming that (i) the background is spatially flat and (ii) that the field
evolves according to the tracker solution, then two of the Galileon parameters are given
in terms of the others (cf. Sec. 2.3). Finally, the need to break the scaling degeneracy of
the model, allows one to fix one more parameter (cf. Sec. 2.3). If all these considerations
are applied, then the Galileon model that we shall study in the remainder of this thesis

contains only two extra parameters, relative to ACDM.

In conclusion, we have shown that the detailed study of the full perturbation equations
unveils a rich phenomenology in Galileon gravity models. The results presented in this
chapter also show that the model predictions depend sensitively on the exact parameter
combinations. The indications are that strong constraints can be placed on the parameter

space of the model, which is precisely what we shall determine in the next chapter.
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Chapter 3
The observational status

of Galileon gravity after
Planck

To fully assess the observational viability of any cosmological model we must allow all
of its parameters to vary within the observational constraints. This helps to understand
any hidden degeneracies between the parameters that are hard to identify if one studies
only a handful of parameter value combinations.

This chapter builds upon the methodology described in Chapter 2. We use the modi-
tied version of the CAMB code developed there to perform a Monte Carlto Markov Chain
(MCMC) exploration of the full cosmological parameter space, and not only its Galilean
subspace. We place observational constraints using the CMB temperature and CMB lens-
ing potential data from the Planck satellite [193, 194], together with BAO data at lower
redshift. Here, we shall pay special attention to the role played by the summed mass of the
three active neutrinos, Ym,,, in the constraints of the Galileon model.

We start this chapter by describing our methodology. Some of it is different from the
one used to obtain the results in the last chapter, namely in what concerns the treatment of
the background evolution. For clarity, we shall therefore be careful at justifying the steps

we follow to constrain the Galileon model.

3.1 Methodology

3.1.1 MCMC chains setup

We use the publicly available CosmoMC code [195] to carry out the formal exploration of
the full Galileon cosmological parameter space. We select the Metropolis-Hastings algo-

rithm (see [195] for a concise description) as the MCMC method to draw the samples from

55



3. The observational status of Galileon gravity after Planck 56

the posterior probability distribution, which is determined by the observational data. The
code is compatible with our modified version of CAMB that we presented in Chapter 2. Our
results were obtained by running eight chains in parallel with the stoping convergence cri-
terion R — 1 < 0.02, where R is the Gelman and Rubin statistic given by R ="variance
of chains means”/”mean of chains variances” [196]. The estimation of the likelihood from
the samples was performed using the routines in the Getdist software supplied in the
CosmoMC package. We do not consider the first half of the chains in the likelihood evalua-
tion to eliminate points sampled during the ‘burn-in” period of the chains.

When the MCMC algorithm tries a new point in parameter space, our code first solves
the background evolution, testing whether or not it satisfies all the stability criteria (cf. Sec. 2.3.3).
The calculation of the evolution of the perturbations and the subsequent likelihood eval-
uation is only performed if the point is theoretically viable. Without this initial check,
these points would still be rejected as the instabilities drastically affect the evolution of the
gravitational potential, and hence, lead to very poor fits to the CMB data. However, this
step helps to speed up the overall performance of the code, and also avoids the numerical
difficulties associated with the instabilities. We want to stress that these theoretical con-
straints are a convenient way to select only those points which give viable perturbation
evolution, and once these constraints are satisfied so that a trial parameter point is not re-
jected straightaway, they play no further role in the calculation of likelihoods. Although
we are mostly interested in scalar perturbations, we note that in principle one could im-
pose similar conditions for the avoidance of ghost and Laplace instabilities of the tensor

perturbations [169, 197] (see Sec. 3.5 below).

3.1.2 Background evolution: justifying the use of the tracker solution

In this chapter, we use the analytical formulae associated with the tracker solution of the
background evolution of the Galileon model (cf. Sec. 2.3). However, one must first check
if the tracker evolution is compatible with the observational data. Otherwise, by assuming
the tracker we could be restricting ourselves to a corner of the parameter space of the
model that could not provide a good fit. Next, we illustrate for an explicit case that the
background evolution must follow the tracker solution since sufficiently early times, if the
model is to fit the CMB data. In Ref. [2] (on which some of the results of this chapter are

based), the same conclusion is reached when all of the parameters are allowed to vary.
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Figure 3.1: From top to bottom, the first two panels show the time evolution of the back-
ground energy density and of the Galileon field equation-of-state parameter w,, for the
base Cubic (PLB) model. The time evolution is shown for three cases that differ in the time
when the background evolution follows the tracker solution: all epochs (blue), a 2 0.2
(green) and a 2 0.6 (red). The bottom panels shows the corresponding CMB power spec-
trum (here, the blue and green curves are overlapping). In the top panel, the dashed and

dotted curves correspond, respectively, to the energy density of matter (baryons and CDM

for this model) and radiation (photons and massless neutrinos for this model).



3. The observational status of Galileon gravity after Planck 58

Figure 3.1 shows the time evolution of the Galileon field background energy density p,,
(upper) and equation-of-state parameter w,, (middle), for the one of the best-fitting models
that we shall find below !, for three different epochs where the background evolution fol-
lows the tracker solution: all cosmic epochs (blue), a 2 0.2 (green) and a 2 0.6 (red). The
lower panel shows the respective CMB temperature angular power spectrum. One notes
that, indeed, models with different time evolution at early times eventually start following
the tracker solution (as we have “hinted” already in Fig. 2.1). The latter is characterized by
a phantom evolution w, < —1, i.e., the dark energy density grows with the expansion of
the Universe. Also, the tracker is reached sooner if the Galileon density is smaller at earlier
times. When solving the background equations numerically, the initial conditions are set
up by different values of ¢; at some initial time. The figure shows that, if the background
evolution is not on the tracker sufficiently before the start of the dark energy era (a ~ 0.5),
then this leads to a poor fit to the CMB temperature data. This was a result that we could
have already anticipated from Fig. 2.3, which shows for the four models studied there that
if ¢; (or, equivalently p ;) is too large, then the fit to the CMB data is noticeaby bad. Also,
the physical predictions do not depend on the time the tracker is reached, provided it does
so at a < 0.5. This suggests that if we assume the tracker at all epochs we are not at risk of

missing any best-fitting regions of the parameter space of the model.

3.1.3 Parameter space

In our constraint analysis, we shall devide the Galilean subspace into three distinct sectors.
We dub Cubic and Quartic Galileon the models made up by {£2, L3} (ie. ¢4 = ¢5 = 0)
and {L2, L3, L4} (i.e. c5 = 0), respectively. We shall use the name Quintic Galileon when
referring to the most general model, i.e., { L2, £3, L4, L5}, which was the case considered in
the last chapter (recall that we always assume ¢; = 0 and in this chapter we do not consider

the L term).

In addition to the Galileon model parameters (cf. Sec. 2.3)

{0270370476576} ; (31)

'This model is the best-fitting base Cubic Galilon model to the PLB dataset, but what is important in the

discussion here is the impact of the initial conditions, regardless of which exact model parameters we consider.
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we also constrain the cosmological parameters
{Qb0h2a QCOhQa 01\407 T, Ns, ASv Zhnl/} ) (32)

which are, respectively, the physical energy density of baryons, the physical energy den-
sity of cold dark matter, a CosmoMC parameter related to the angular acoustic scale of the
CMB, the optical depth to reionization, the scalar spectral index of the primordial power
spectrum, the amplitude of the primordial power spectrum at a pivot scale k = 0.05 Mpc ™
and the summed mass of the three active neutrino species. Recall that, as we discussed in
Sec. 2.3, two of the five parameters in Eq. (3.1) can be given in terms of the others using
Egs. (2.72) and (2.73).

Below, we shall see that one of the main results of this chapter is associated with the im-
portant role that the parameter ¥m, has on the goodness of fit of Galileon models. The cur-
rent cosmology-independent bounds on neutrino masses imply 0.06 eV < ¥m, < 6.6 eV
(cf. Sec. 1.1). This range of values allows neutrinos to affect substantially a number of dif-
ferent cosmological observables. As a result, it seems reasonable to require that consistent
cosmological constraints treat ¥m, as a free parameter. This is of particular interest in
modified gravity models, where some degeneracies may arise [198, 199, 200]. To this end,
we shall consider two variations of the model: one for which the number of massive neu-
trinos Npassive = 0 and YXm, = 0, and another for which Ny asive = 3 and Ym,, is a free
parameter. We shall refer to the first class of models as “base” Galileon models, and shall
denote the second class with a prefix v, e.g., vCubic Galileon. For comparison purposes,
we also consider a vACDM model.

The value of the Hubble expansion rate today, Hy = 100~ km/s/Mpc, is a derived
parameter. For a given point in parameter space, the CosmoMC code determines, by trial-
and-error, the value of Hj that reproduces the sampled value of 6y (called theta in
the code). Onic is much less correlated with the other parameters than Hj, which speeds
up the convergence of the chains, despite of the additional trial-and-error calculations.
Parameters such as €, and the rms linear matter fluctuations at 8 Mpc/h, og, are also
derived parameters. We always fix the number of relativistic neutrinos Neg = 3.046, the
baryonic mass fraction in helium Yp = 0.24 and the running of the scalar spectral index
dng/dlnk = 0. We also set to zero the amplitude of the tensor perturbations, and its tensor
spectral index, as we are only interested in scalar perturbations. However, we do comment

briefly on the impact of the tensor fluctuations in Sec. 3.5.
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Figure 3.2: Points accepted by the Metropolis-Hastings algorithm (cyan dots), includ-
ing those sampled during the burn-in period, using the CMB temperature data from the
Wilkinson Microwave Anisotropy Probe (WMAP) 9-year results [201], the SNIa sample
from Supernova Legacy Survey (SNLS) project [202] and BAO measurements from the 6df
Galaxy Survey [203], from the Sloan Digital Sky Survey (SDSS) DR7 [204] and from the
SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) [205]. In Ref. [2], this data combi-
nation is dubbed the WMAP9+SNLS+BAO dataset. The points are projected onto different
planes of the Galileon subset of the parameter space. All of the Galileon parameters were
allowed to vary in order to manifest the scaling degeneracy. The remaining cosmologi-
cal parameters were also sampled (not shown). There are approximately 132000 points

(around 22000 per chain) and the large red circles represent the fifty best-fitting points.

Scaling degeneracy of the Galileon parameters

As discussed in Sec. 2.3, one of the Galileon parameters should be fixed when running the
Markov chains to overcome the scaling degeneracy of the Galileon equations. However,
the scaling relation of Egs. (2.65) does not link parameters with different signs, and as a
result, one needs to be careful with the sign chosen for the fixed parameter. To determine
this sign, we have run a set of chains where all of the Galileon parameters are allowed to
vary. The result is shown in Fig. 3.2, where we plot all the points accepted by the MCMC al-

gorithm (cyan dots) for four different planes of the Galileon parameter subspace for chains
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constrained using the WMAP9+SNLS+BAO dataset? (see the figure caption). There are ap-
proximately 132000 points (22000 per chain). We highlight the points with the fifty highest
likelihood values (red circles). The rest of the cosmological parameters were allowed to
vary as well (not shown in this plot, see Ref. [2]). The parameters c3, ¢4 and c5 were sam-
pled from the interval [—1000, 1000] to prevent the chains from spending too much time
searching larger and larger values of the c,. The starting point for each of the chains was
set to be sufficiently close to zero so that the algorithm could quickly select the signs for

the parameters which best fit the data.

As expected from the scaling relations of Egs. (2.65), one finds a long and narrow region
of degeneracy in the Galileon subset of the parameter space, along which the likelihood
is kept constant. Note that although it seems that the best-fitting points are confined to
c2 2 —200, c3 < 400 and ¢4 2 —600, this happens only because the points have reached
the prior range limit of 1000 in the c5 direction, which therefore ‘artificially’ constrains
the other parameters. We have checked that the degeneracy region keeps increasing on
increasing the size of the prior ranges. The difference in x? = —2logP (where P is the
posterior) between the best-fitting and the fiftieth best-fitting points is Ax?, nsotn ~ —1, but
the likelihood does not change monotonically along any direction of the parameter space.
The result shown in Fig. 3.2 is in partial disagreement with the conclusions drawn in [180].
In the latter, the authors found a long and narrow region of degeneracy along which the
likelihood decreases for values of ¢,, much larger or much smaller than unity. We agree that
the long region of degeneracy exists. However, the likelihood does not change appreciably
towards larger values of the parameters c,, which is what one would expect in light of the

scaling relation described by Egs. (2.65).

In Fig. 3.2 we see that the best-fitting points all lie in the region of parameter space
where ¢c2 < 0, ¢35 > 0, ¢4 < 0, ¢5 > 0and ¢; > 0, which means that when fixing one of
the parameters, these sign conditions should be preserved. For completeness, we note that
the result of Fig. 3.2 was obtained by solving the background equations numerically. By
running a similar set of chains with the tracker solution one also encounters the long and
narrow degeneracy regions, but now c3, ¢4 and c¢5 can cross zero. This difference is linked to

the different evolution of the background at early times when one solves for it numerically

In this chapter, we shall present results using the more recent CMB data from the Planck satellite, but for

the purpose of discussing the scaling degeneracy here we can use these WMAP?9 results.
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or by assuming the tracker. Although these two approaches can be equivalent in what
concerns the observational data, they can be different from the point of view of the stability
conditions. For instance, in Fig. 3.2, ¢3, ¢4 and ¢5 do not cross zero because if they do, then
the background evolution at early times (when it is not yet on the tracker) is such that ghost
or Laplace instabilities appear. If the tracker solution is assumed at all cosmological epochs,
then these points no longer develop instabilities and are therefore viable. All in all, what is
important to retain here is that in both treatments of the background, c; never changes its
sign when all of the parameters are varying. As a result, c; is the most reasonable choice for
the fixed parameter to break the scaling degeneracy. The magnitude of c; is not critical, as
one can always rescale the resulting constraints to any value of ¢ (with the same sign) by
using Egs. (2.65). For simplicity, we fix c; = —1. This way, the £, term in Eq. (2.1) becomes

the standard scalar kinetic term, but with the opposite sign.

3.1.4 Datasets

In our constraints, we consider three data combinations. The first dataset comprises the
Planck data for the CMB temperature anisotropy angular power spectrum [193, 194]. These
include its low-! and high-l temperature components, as well as the cross-correlation of the
temperature map with the WMAP9 polarization data [201]. For this piece of the likelihood,
we also vary the nuisance parameters that are used to model foregrounds, and instrumen-
tal and beam uncertainties. We denote this dataset by P.

We call our second dataset PL, which adds to P the data for the power spectrum of the
lensing potential (reconstructed from the CMB), also given by the Planck satellite [206]. On
smaller angular scales, the CMB lensing power spectrum can be affected by nonlinearities.
However, given the current level of precision of the data, such nonlinear corrections can be
ignored and one can assume that linear perturbation theory holds.

The final dataset, denoted by PLB, also includes the BAO measurements obtained from

the 6df [203], SDDS DR7 [207], BOSS DR9 [208] and WiggleZ [209] galaxy redshift surveys.

Why we do not use growth rate and clustering data

Several studies have shown that the modifications to gravity in the Galileon model can sig-
nificantly enhance the growth of linear matter fluctuations on sub-horizon scales [1, 159,

180, 183, 192, 197] (recall also Fig. 2.6). However, the regime of validity of linear theory
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in Galileon gravity is still uncertain, since we do not have yet determined the impact of
the Vainshtein screening mechanism, which is a purely nonlinear effect and is therefore ab-
sent in linear theory studies. For example, numerical simulations have shown that in other
modified gravity models such as the f(R) and dilaton [76, 77, 99], linear perturbation the-
ory can fail even on scales as large as k ~ 0.01 hMpc ™! because of the chameleon screening
[99, 115, 210].

Our modifications to the CAMB code allow us to obtain the Galileon predictions for the
linear matter power spectrum and growth rate and we could use them to place further
constraints on the model. However, given the above reasoning, we remain cautious about
using clustering data for now. We argue that a better understanding of the true impact of
the Vainshtein screening is needed before attempting a more rigorous confrontation of the
predicted clustering power and growth rate with the observational data. This shall be done

in subsequent chapters after we study nonlinear structure formation processes.

3.2 Overview of previous observational constraints

In this section, we summarize the constraints on the Galileon model of Eq. (2.1) that were
obtained in previous work. Our goal is simply to provide a general overview of the current
status of Galileon constraints and not to present a thorough review. For further details, we
refer the interested reader to the cited literature and references therein.

The first observational constraints on the Galileon model were derived in Ref. [177],
by using only data sensitive to the background dynamics. The authors allow for non-flat
spatial geometries of the Universe and find, in particular, that although the tracker solution
can provide a good fit to the individual datasets (which include data from SNIa, BAO
and CMB distance priors), there is some tension when one combines these observational
probes.

References [180, 192] attempted to use measurements of the growth rate of structure to
constrain the Galileon model. These two papers concluded that the model has difficulties
in fitting the background and the growth rate data simultaneously. However, Ref. [197]
performed a more detailed analysis and found that the tension is actually much less sig-
nificant. The authors of Ref. [197] pointed out that Ref. [180] did not take into account

the scaling degeneracy of the Galileon parameters; furthermore Ref. [192] used data that
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is not corrected for the Alcock-Paczynski effect [211], having assumed also that the shape
of the linear matter power spectrum of Galileon models is the same as in ACDM, which is
not guaranteed [1, 2]. Moreover, as acknowledged in Ref. [197], the constraints obtained by
confronting linear theory predictions with growth data assume the validity of linear theory
on the scales used to measure the growth rate. For example, the growth rate measurements
of the WiggleZ Dark Energy Survey [212] are obtained by estimating redshift space distor-
tions in the galaxy power spectrum measured down to scales of k ~ 0.3hMpc™~'. On these
scales, however, the impact of nonlinear effects, galaxy bias, and of the Vainshtein mecha-
nism can be significant.

The first observational constraints using the full shape of the CMB temperature anisotropy
power spectrum were presented by us in Ref. [2] (on which part of this chapter is based).
We found that the amplitude of the low-/ region of the CMB power spectrum, which is
mostly determined by the Integrated Sachs-Wolfe (ISW) effect, plays a decisive role in con-
straining the parameter space of the Galileon model. The use of the full shape of the CMB
temperature data results in much tighter constraints than those obtained by using only
the information encoded in the CMB distance priors [213]. Reference [2] finds that the
best-fitting Galileon models to the WMAP9 data [201] have a lower ISW power relative to
ACDM, which results in a better fit. However, some observational tensions become appar-
ent when background data from SNIa and BAO is added to the analysis. The results that
follow recover some of those first encountered by Ref. [2], but with some aspects discussed
with more detail. In the constraints of Ref. [2], the impact of massive neutrinos was also

not considered, but shall be in this chapter.

3.3 Results: Cubic Galileon

The Cubic Galileon sector is defined by ¢4 = ¢5 = 0, which leaves c3 and £ in Eq. (3.1) as
potential free parameters (recall c; = —1 to break the scaling degeneracy). However, one
can use Egs. (2.72) and (2.73) to fix two more Galileon parameters. For the case of the Cubic

model we then get

=1/ (6\/69¢0> &= /690. (3.3)
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Figure 3.3: Marginalized two-dimensional 95% confidence level contours obtained using
the PL (open dashed) and PLB (filled) datasets for the base Cubic Galileon (blue), ¥Cubic
Galileon (red) and vACDM (green) models. In the top right panel, the horizontal bands
indicate the 68% confidence limits of the direct measurements of i presented in Ref. [214]
(open dashed) and Ref. [215] (grey filled). In the lower right panel, the horizontal dashed
bands indicate the 95% confidence interval on og for the base Galileon model, for which

Ym, = 0.

In this way, the only free parameters in the Cubic Galileon model are those in Eq. (3.2), just
like in ACDM. This contrasts with popular modified gravity theories (with f(R) gravity
[52, 198, 199, 200] being perhaps the leading example), for which there are, in general,

extra functions and parameters to tune, compared to ACDM.

3.3.1 Cosmological constraints

Figure 3.3 shows two-dimensional 95% confidence level marginalized contours obtained
with the PL (dashed) and PLB (filled) datasets for the base Cubic (blue), »Cubic (red) and
vACDM (green) models. Table 3.1 shows the best-fitting parameters and corresponding
values of y? = —2InL, and Table 3.2 summarizes the one-dimensional marginalized likeli-
hood (£) statistics.

Figure 3.4 shows H(a), the CMB temperature and lensing power spectrum, the linear

matter power spectrum and time evolution of the linear growth rate, f = dlnD/dlna, ex-
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pressed as fog, for the best-fitting models. In the top right and middle left panels, the data
points show the power spectrum measured by the Planck satellite[194, 206]. In the middle
right panel, the data points show the SDSS-DR7 Luminous Red Galaxy host halo power
spectrum from Ref. [187], but scaled down by a constant factor to match approximately the
amplitude of the best-fitting »Cubic (PLB) model. In the lower panels, the data points show
the measurements extracted by using the data from the 2dF [216] (square), 6dF [217] (tri-
angle), SDSS DR7 (LRG) [218] (circle), BOSS [204] (dot) and WiggleZ [219] (side triangles)

galaxy surveys.

Observational tensions in the base Cubic model

The x? values in the base Cubic model are significantly larger than those in the v¥Cubic
and »ACDM models, which indicates the markedly poorer fits of the base Cubic model.
Moreover, the quality of the fit becomes worse as one combines the different datasets. In
particular, when constrained with the PLB dataset, the base Cubic model fails to provide a
reasonable fit to any of the likelihood components: x%_ . s ~ 22, for 8 degrees of freedom
(dof); XQB a0 ~ 8, for 6 dof 3. This poorer fit to the data by the base Cubic model is primarily
driven by the difficulty of the model in fitting, simultaneously, the BAO and the CMB peak
positions.

The angular acoustic scale of the CMB fluctuations, 6%, is essentially what determines
the CMB peak positions. It is given by 6* = r} /d%, where

Cs

ry = H(z (3.4)
. 1
&y = / Eh (3.5)

are, respectively, the sound horizon and the comoving angular diameter distance to the

redshift of recombination z*; ¢, = 1/+/3 (1 + 3p,/(4p)) and p, and p, are the background
energy densities of baryons (b) and photons (7). The constraints on * tend to be fairly
model independent, since they depend mostly on the peak positions, rather than the am-
plitude of the power spectrum (cf. Tables 3.1 and 3.2). From Eq. (2.74), one can show that,
at early times, H (a) evolves in the same way in the Galileon and ACDM models. Hence,

for fixed cosmological parameters, r} is also the same in these two models. However, at

*In Ref. [3], without including the WiggleZ measurements in the BAO data, it was found that x% 40 ~ 8,
for 3 dof.
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late times, H (a) is smaller in the Galileon models compared to ACDM. This can be seen,
again, by inspecting Eq. (2.74) or by noting the late-time “dips” in H/H,rcpwm — 1 in the top
left panel of Fig. 3.4 (although in this plot the cosmological parameters differ from model
to model). The point here is that the smaller late-time expansion rate increases d*, which
in turn decreases 6*. In order to fit the CMB peak positions, the “intrinsically” smaller ex-
pansion rate at late times is compensated for by larger values of the expansion rate today,
h, in such a way as to preserve the values of d%, and hence #*. The preference of the CMB
data for high values of h in the base Cubic model is illustrated in top right panel of Fig. 3.3.
The lensing data lowers the matter density slightly to reduce the amplitude of the lensing
power spectrum (the Cld’ ? for the base Cubic (P) model is not shown in Fig. 3.4, but is sim-
ilar to that of the base Cubic (PLB) model). This increases both 7} and d7, but affects the
latter more. As a result, and by the above reasoning, the addition of the CMB lensing to the
CMB temperature data helps to push h to even higher values (cf. Table 3.1).

The inclusion of the BAO data counteracts the preference of the CMB data for higher
values of h. The significance of this tension is illustrated by the offset between the con-
tours obtained with the PL and PLB datasets for the base Cubic model. The addition of the
BAO data also pushes the total matter density to higher values, which has an impact on
the amplitude of both the CMB temperature and lensing spectra. This triggers a number
of slight shifts in the remaining cosmological parameters in order to optimize the fit. Nev-
ertheless, this optimization is not perfect, and the base Cubic model ultimately fails to fit
the combined data well. In addition to the poor BAO fit, the base Cubic model predicts a
high amplitude for C/7" at low-I (top right panel of Fig. 3.4), caused by a rapid late-time
deepening of the lensing potential (cf. top panels of Fig. 3.5). The amplitude of the lensing
power spectrum, C%?, is also visibly larger than the data (middle left panel of Fig. 3.4).
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Figure 3.4: Time evolution of the Hubble expansion rate (top left), CMB temperature power spec-

trum (top right), CMB lensing potential power spectrum (middle left), linear matter power spec-
trum (middle right) and time evolution of fog for k¥ = 0.5h/Mpc (bottom left) and & = 0.005h/Mpc
(bottom right) for the best-fitting base Cubic (blue), vCubic (red) and ¥ ACDM (green) models ob-
tained using the PL (dashed) and PLB (solid) datasets. In the top left panel, the Y ACDM model used

in the denominator is the corresponding best-fitting model to the PLB dataset.
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Figure 3.6: Time evolution of the ratio of the total lensing potential, ¢, and the lensing
potential caused by the matter fluid only, ¢/, for the vCubic (PLB) model and for a range
of k scales, as labelled. This quantity gives a measure of fifth force induced by the Galileon

field.
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Alleviating the tensions with ¥m,

Although at sufficiently early times massive neutrinos act as an extra source of radiation,
at late times (after becoming non-relativistic), they will effectively raise the total matter
density, modifying the evolution of H(a) accordingly. In particular, higher values of ¥m,,
increase H(a) at late times, and therefore have the same impact as increasing i on the
value of d%. This degeneracy between ¥m, and h eliminates the preference of the CMB
data for large values of h, as shown by the »Cubic contours for the PL dataset in Fig. 3.3.
An important consequence of this is that, in the vCubic model, there is no longer a tension
between the CMB and the BAO data, as illustrated by the overlap between the contours for
the PL and PLB datasets and by the acceptable x? values listed in Table 3.1.

The presence of the massive neutrinos causes the lensing potential to deepen less rapidly
with time, which reduces the amplitude of the CMB temperature power spectrum at large
angular scales. On these scales, there is still an excess of power compared to vACDM, but
the large errorbars do not allow tight constraints to be derived. The massive neutrinos also
lower substantially the amount of matter clustering (lower og), which results in a better fit
to the CMB lensing power spectrum. Compared to the v ACDM model, the vCubic model
provides a slightly better fit, as it predicts more power at [ ~ 40 — 80 and the amplitude
decreases more rapidly at higher /.

We note, for completeness, that relaxing the assumption that the universe is spatially
flat may also help to alleviate the tension between the CMB and BAO peak positions. In
particular, 5, < 0 also lowers d%, and as a result, may mimic to some extent the effect of
Ym, > 0on H(a). The phenomenology of non-flat Galileon cosmologies is not explored in

this thesis.

3.3.2 Sign of the ISW effect

The ISW effect is a secondary anisotropy on the CMB temperature maps induced by time-
evolving gravitational potentials. Consider for instance a photon travelling through a su-
percluster whose potential is getting shallower with time. This photon will get blueshifted
(increase of temperature) as it goes into the center of the potential well, but redshifted (de-
crease of temperature) as it comes out of it. Since the potential was deeper at the time the

photon was entering it, overall the temperature of the photon will increase. This causes a
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so-called "hot spot” in the CMB maps. If the potential of the supercluster is getting deeper
with time, then one would end up with a “cold spot” instead.

The amplitude of the ISW effect is proportional to the time derivative of the lensing
potential, d¢/dt, integrated along the line of sight. In Fourier space, ¢ is given by the
equation * (cf. Egs. (2.47))

—k3¢ = 4nGa® [k (I + x) + 2aH (a)q] (3.6)

where x, ¢ and II are, respectively, the Fourier modes of the total density perturbation, heat
flux and anisotropic stress (see Ref. [1] or Chapter 2 for more details) °. Figure 3.5 shows
the time evolution of ¢ for the best-fitting models for four different scales k = 0.052/Mpc,
k = 0.005h/Mpc, k = 0.0008h/Mpc and k& = 0.0005h/Mpc. In the standard ACDM picture,
¢ grows at the transition from the radiation to the matter dominated eras, stays approx-
imately constant during the matter era (£2,,, ~ 1), and starts decaying (note the negative
sign on the y-axis) at the onset of the dark energy era. The physical picture in the Cubic
Galileon models is more complex. During the matter era, ¢ also remains approximately
constant, although on smaller length scales £ 2 0.05h/Mpc, the presence of the massive
neutrinos can cause ¢ to decay slightly. The modifications induced by the Galileon field
become apparent at later times (¢ 2 0.5) and are scale-dependent. For £ = 0.005h/Mpc,
¢ deepens at late times, whereas for £ < 0.0005h/Mpc it decays. On intermediate scales
(k ~ 0.0008h/Mpc) the potential can remain approximately constant, even at late times,
undergoing only small amplitude oscillations. To help understand the scale-dependent be-
haviour of ¢ in the Cubic model, we plot the time evolution of ¢/ ¢' for a range of scales k
in Fig. 3.6. The quantity ¢/ is given by Eq. (3.6), but considering only the contribution from
the matter fluid in x, ¢ and II. This isolates the impact of the Galileon field, and as such
¢/¢’ provides a measure of the fifth force modifications to the lensing potential. Firstly,
we note that the Galileon field contribution only becomes nonnegligible at late times, i.e.,
¢/¢p! ~ 1 for a < 0.4. At late times, on smaller length scales (larger k), the Galileon field
contributes significantly to ¢, making it deeper. On the other hand, on larger length scales

(smaller k), the Galileon terms become less important, which leads to a gradual recovery

*In terms of the ¥ and & potentials of the linearly perturbed FRW line element in the Newtonian gauge

ds® = (1 +2¥)dt* — (1 — 2®) da’dx;, one has ¢ = (T + @) /2.
5The ¢ term is subdominant on small length scales (large k) and for matter IT = 0. In this case, one then

recovers the standard Poisson equation —k?¢ = 4rGa’.
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of the ACDM behaviour, i.e., ¢ decays at late times.

The physical picture depicted in Fig. 3.5 suggests that the Cubic Galileon and ACDM
models predict opposite signs for the ISW effect on sub-horizon scales, a fact that can po-
tentially be used to distinguish between them. The CMB temperature power spectrum
is sensitive to (d¢/dt)?, and hence it cannot probe the sign of the ISW effect. There are
however a number of different techniques that can be used to determine d¢/dt. One of
these consists of stacking CMB maps at the locations of known superclusters and super-
voids. Given their size, these superstructures are not yet virialized, and hence constitute
good probes of the ISW effect since their potentials are still evolving. A recent analysis
of this type was performed by the Planck collaboration [220] who claimed to have found
a detection of a positive ISW effect using the superstructure catalogue of Refs. [221, 222].
The significance of this detection becomes, however, substantially weaker when the cata-
logues of Refs. [223] and [224] are used instead. Moreover, all these signals are typically
higher than the standard ACDM expectation [225, 226]. This fact, together with the differ-
ences between using different cluster and void catalogues, may raise concerns about the
presence of unknown systematics in the analysis, such as selection effects. More recently,
Refs. [227, 228] claimed the detection of a supervoid aligned with a prominent cold spot in

the Planck CMB maps, as one would expect in models with positive ISW effect.

The cross-correlation of the CMB with tracers of large-scale structure (LSS) provides an-
other way to probe the ISW effect. A positive amplitude for this cross correlation was first
detected in Ref. [229], and later confirmed by Refs. [220, 230, 231], although with different
significances. The cross correlation functions obtained by using different galaxy catalogues
typically show positive correlation at smaller angular scales, and become consistent with
zero at large angular scales (see e.g. Fig. 3 of Ref. [231]). This trend is consistent with the
ACDM expectation (see Refs. [232, 233] for use of these data to constrain modified gravity),
but Refs. [234, 235, 236, 237, 238] have raised some skepticism about the significance of

these claims for a positive detection (some of this skepticism is addressed in Ref. [231]).

The potential ¢ is responsible for both the lensing of the CMB photons and the ISW
effect. As a result, cross correlating CMB temperature maps with maps of the lensing po-
tential (used to measure C’l‘z’ % in Fig. 3.4) can potentially be used to probe the sign and am-
plitude of the ISW effect. This has been made possible after the data release by the Planck
collaboration [220], who found a signal that is consistent with the ACDM expectation that
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¢ decays at late times.

Taken at face value, the above-mentioned measurements seem to be inconsistent with
the predictions of the base Cubic and vCubic Galileon models. Note that this is not a
question of matching the amplitude of the signal, but instead its sign, and as a result,
it may be hard to reconcile the model predictions with the claims of a positive ISW effect.
Note also that although ¢ can decay in the Cubic models, this happens only on horizon-like
scales, which do not affect the observational measurements. However, there is still some
ongoing discussion about the understanding of the systematics in these measurements of
the ISW effect. This makes us reluctant to add these data to the constraints at present.
Moreover, in the case of Galileon gravity there is also the potential impact of the Vainshtein
screening mechanism, which is unaccounted for in linear perturbation theory studies. For
instance, on smaller scales, where the ISW detections are more significant, the screening
mechanism may suppress the modifications to gravity, making the potentials decay as in
ACDM. For the time being, we limit ourselves to noting that the positiveness of the ISW
effect may turn out to be a crucial observational tension of the vCubic model. In the future,
one will be able to say more about it, as more data become available and the discussion
about the role of systematic effects is settled, and also when fully nonlinear predictions are

used to model the signal.

3.3.3 Future constraints

We now discuss briefly the impact that additional data can have in further constraining the
vCubic model.

For | < 40, the vCubic and ACDM models make quite distinct predictions for C’l¢ ,
As a result, future measurements of the lensing potential on these angular scales have
a strong potential to discriminate between these two models, provided the errorbars are
small enough [206].

The horizontal bands in the top right panel of Fig. 3.3 show the 1o limits of the direct
determinations of the Hubble constant h using Cepheid variables reported in Ref. [214]
(open dashed) and Ref. [215] (grey filled). As one can see in the figure, these determinations
are in tension with the CMB constraints for ACDM models. This fact has been the subject
of discussions about the role that systematic effects can play in these direct measurements

of h (see e.g. Ref. [239]). This is why we did not include them in our constraints. Here,
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we simply note that »Cubic models avoid the tensions apparent in ACDM, and therefore,

adding a prior for A would favour the vCubic over ACDM.

Another ACDM tension that has become apparent after the release of the Planck data is
associated with the normalization of the matter density fluctuations. In short, the values of
og inferred from probes such as galaxy shear [21] and cluster number counts [240] seem to
be smaller than the values preferred by the CMB constraints. Massive neutrinos have been
shown to alleviate some of these problems [241, 242]. However, some residual tensions
between datasets seem to remain. In the case of the ¥Cubic model, the presence of the
massive neutrinos lowers substantially the value of og w.r.t. the base model. Compared to
ACDM, the constraints on oy are rather similar, although they can extend to slightly lower
values (cf. Fig. 3.3). This happens despite the enhanced gravitational strength driven by
the Galileon field. It is therefore interesting to investigate whether or not the vCubic model
can evade the above-mentioned ACDM tensions. This requires the modelling of nonlinear

structure formation in the #Cubic model, which is not explored in this thesis.

In the context of the »Cubic model, the PLB dataset suggests that ¥m, > 0.3 eV (at
20) (cf. Fig. 3.3). This contrasts with the constraints on vACDM, for which ¥m, < 0.3 eV
(at 20). This opens an interesting window for upcoming terrestrial determinations of the
absolute neutrino mass scale (see e.g. Ref. [243] for a review) to distinguish between these
two models. For instance, the high energy part of the Tritium -decay spectrum provides a
robust and model-independent way to measure the mass of the electron neutrino directly.
The MAINZ [23] and TROITSK [24] experiments have set ¥m, < 6.6eV (at 20), but near-
future experiments such as KATRIN [244] are expected to improve the mass sensitivity

down to ¥m, <

~

0.6eV. In the case that neutrinos are Majorana particles and provide the
dominant contribution in the neutrinoless double $-decay of heavy nuclei [245], then one
may achieve even higher sensitivity: in case of nondetection, these type of experiments are
expected to constrain ¥m, < 0.3eV. This would completely probe the quasi-degenerate
neutrino hierarchy spectrum (m; ~ mg ~ mg ~ m, > 0.1 eV). The forecast sensitivity
of these experiments should be reached in a few years time and will say more about the

viability of the vYACDM and vCubic models.

The lower panels of Fig. 3.4 show the time evolution of fog in the best-fitting mod-
els (computed using linear theory), together with the measurements from the 2dF [216]

(square), 6dF [217] (triangle), SDSS DR7 (LRG) [218] (circle), BOSS [204] (dot) and WiggleZ
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[219] (side triangles). In principle, these data can be used to further constrain the »Cubic
model. However, such a comparison between theory and observation may not be straight-
forward for at least three reasons. The first one is related to the validity of linear theory on
the length scales probed by the surveys, on which nonlinear effects can affect the statistics
of both the density and velocity fields, and hence modify significantly the linear theory
expectations (see e.g. [218] for some discussion). The growth measurements are extracted
from the data by analyzing the redshift space distortions induced by galaxy peculiar mo-
tions. This is usually achieved by assuming a model for how these peculiar velocities
modify the true (unobserved) real space statistics. These models are typically calibrated
and tested against N-body simulations, most of which are performed assuming GR (see
however [115, 246, 247]). Here lies the second nontrivial aspect: to avoid obtaining results
biased towards standard gravity, it seems reasonable to demand first the development of
a self-consistent RSD model for modified gravity to see how it can have an impact on the
extraction of the fog values from the galaxy catalogues. The third complication has to do
with the scale-dependent growth introduced by the massive neutrinos, even at the linear
level. In the lower panels of Fig. 3.4, one notes that the predictions of the vCubic model are,
indeed, scale dependent, due to the relatively large massive neutrino fraction, compared
to vYACDM. However, the measured values of fog obtained from the different surveys are
derived from the clustering signal of galaxies measured over a range of different scales at
once. Future constraints on the »Cubic model using these data have therefore to take this
scale dependence into account. We note that this third complication also applies to ACDM
models with a large value of ¥m,, such as those found in Refs. [241, 242]; and to f(R)
gravity models (see e.g. Ref [115] for a study of RSD in f(R) gravity).

3.4 Results: Quartic and Quintic Galileon

The parameter space of the Quartic Galileon model is the same as the Cubic model, but

with ¢4 # 0. In our constraints, we use Egs. (2.72) and (2.73) to derive c3 and ¢4 as

L. -
3 = 5& = 200087,

1 2 _
c4 = —gf 2+§Q<pof 4, (3.7)
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Figure 3.7: Same as Fig. 3.3 but for the base Quartic (red dashed), vQuartic (red filled), base
Quintic (blue dashed) and vQuintic (blue filled) models, using the PLB dataset.

with £ being the free parameter varied in the chains. In the case of the Quintic model

(c5 # 0), we vary £ and c3 in the chains, and derive ¢4 and c5 from

1., 8 4 10 4
Cy = gf —§Csf —jﬂpog )

1. 2 4 _
c5 = —gf 3+§CS§ 2+§Q¢0§ . (3.8)

3.4.1 Cosmological constraints

Figures 3.7, 3.8 and 3.9 show the same as Figs. 3.3, 3.4 and 3.5, respectively, but for the
base Quartic (red dashed), vQuartic (red filled/solid), base Quintic (blue dashed) and
vQuintic (blue filled/solid) Galileon models and using the PLB dataset. Table 3.3 shows
the best-fitting parameter values and Table 3.4 summarizes the one-dimensional marginal-
ized statistics.

Just as in the case of the Cubic model, the presence of massive neutrinos in the Quartic
and Quintic models also alleviates substantially the observational tensions between the
different datasets in PLB (cf. Table 3.3). The situation here is completely analogous to the
case of the Cubic Galileon model discussed in the last section. Recall that the origin of

these observational tensions lies in the specifics of the late-time evolution of H (a), which
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does not depend on the values of the ¢;. Consequently, the same degeneracy between h
and ¥m, exists in the Quartic and Quintic Galileon models, which leads to good fits to
the BAO, CMB temperature and CMB lensing data (cf. Fig. 3.8). It is also noteworthy that
the constraints on the cosmological parameters of Eq. (3.2) are roughly the same in the
Cubic, Quartic and Quintic models. Since these models differ in the Galileon subspace of
parameters, this indicates that, to a reasonable extent, the constraints on the cosmological
parameters do not correlate with those on the Galileon parameters.

One noticeable difference w.r.t. the Cubic Galileon case relates to the lower amplitude
of the CMB temperature spectrum at low-{ in both the Quartic and Quintic models. This is
explained by the milder late-time evolution of ¢, as shown in Fig. 3.9. The extra Galileon
terms in the Quartic and Quintic models help to reduce the magnitudes of the fifth force,
and hence ¢ is less affected by the Galileon field. This is illustrated in Fig. 3.10, which
shows the same as Fig. 3.6 but for the vQuartic and vQuintic (PLB) models. For instance,
fora = 1 and k = 0.05h/Mpc, ¢/¢f ~ 1.21 in the vQuintic (PLB), whereas ¢/¢! ~ 1.9
in the vCubic (PLB). It is interesting to note the nontrivial time evolution of ¢/ ¢ in the
vQuintic (PLB) model for k& = 0.0005h/Mpc, which indicates that the fifth force terms can
be repulsive (¢/ ¢! < 1) rather than attractive. This shows that in the more general Quintic
models there is more freedom to tune the modifications to gravity, in such a way as to
reduce substantially the ISW power in the low-l part of the CMB spectrum (blue lines
in the top right panel of Fig. 3.8). In Sec. 3.3.2, we discussed the possible role that an
observational determination of the sign of the ISW effect could play in determining the
viability of the vCubic Galileon model. The physical picture depicted in Fig. 3.9 suggests
that any observational tension that might fall upon the Cubic Galileon model (due to its
negative ISW effect) should be less severe in the vQuartic and vQuintic models, but that it

may still be hard to reconcile them with a positive ISW sign.
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3.4.2 Local time variation of G4 in the Quartic model

As pointed out by Refs. [248, 249], the implementation of the Vainshtein screening effect
in models like the Quartic and Quintic Galileons may not be enough to suppress all lo-
cal modifications to gravity. Without loss of generality, the modified Poisson equation in

Galileon gravity can be written as (see Chapter 4):
V2T = [A(t) + B(t, V)] V2UCR + C(t, V), (3.9)

where V? is the three-dimensional Laplace operator, ¥ is the total modified gravitational
potential and WER is the GR potential that satisfies the standard Poisson equation, V2WGR =
4w Gopm, where dp is the total matter perturbation. The shapes of the functions A, B,C
depend on whether one assumes the Cubic, Quartic or Quintic models. An important as-
pect of the functions B and C'is that they can be neglected if the spatial variations of the
Galileon field are small compared to the variations in the gravitational potential, i.e., if
V2p/V2UGR 5 0, then B,C — 0.

The Vainshtein mechanism is implemented through nonlinear terms in the Galileon
field equation of motion, which effectively suppress V2¢ (compared to V2WSR) near over-

dense objects like our Sun. As a result, in the Solar System, Eq. (3.9) reduces to
V20 = A(t)V2UOR, (3.10)

In the case of the Cubic Galileon model, A(¢f) = 1 and one recovers exactly the standard
Poisson equation in GR. However, in the Quartic and Quintic models, A(t) depends on the
time evolution of @ (which cannot be screened), and hence, residual modifications remain,
even after the implementation of the Vainshtein mechanism. Figure 3.11 shows 10 ran-
domly selected points from the chains used to constrain the vQuartic model with the PLB
dataset, projected onto the c3 — ¢4 and £ — ¢4 planes. The points are coloured according
to the value of G.g/G (lower panel) and G.q/G (upper panel) today. These two quantities
were evaluated by following the strategy presented in Refs. [5, 7] (which shall be explained

also in Chapter 4). In short, assuming spherical symmetry, one evaluates

Geﬁ \:[177‘ /T
G (a,5) = \I/,TGR r

(3.11)

where r denotes a partial derivative w.r.t. the radial coordinate r and § = dp;,/pm, is the

density contrast of the (top-hat) matter fluctuation. In Fig. 3.11, we have assumed that in
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Figure 3.8: Same as Fig. 3.4 but for the base Quartic (red dashed), vQuartic (red solid), base
Quintic (blue dashed) and vQuintic (blue solid) models that best fit the PLB dataset.
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our Solar System § = 107, although this is not critical for our mostly qualitative discussion®.

The value of G.g/G was evaluated by taking finite differences at two consecutive times
close to the present day (we have ensured that the time step used is small enough to be
accurate). The figure shows that if ¢4 is not sufficiently close to zero, then Geg/G # 1 and
Get/G # 0, contrary to what one would expect in standard gravity. These modifications
are caused by the function A(t), whose origin can be traced back to the explicit coupling
to the Ricci scalar R in £4 (cf. Eq. (2.2)). For the reasons listed in Ref. [5] (which shall be
explained also in Chapter 4), the same calculations for the Quintic model are much more
challenging to perform due to the extra level of nonlinearity in the equations. However, the
direct coupling to G, in L5 could presumably give rise to the same qualitative behavior.
The phenomenology of the Quartic and Quintic models near massive bodies like our
Sun can be used to further constrain their parameter space. The best-fitting vQuartic (PLB)
model predicts that the effective local gravitational strength is varying at a rate Gog/G ~
—150 x 10~13yr~!. However, Lunar Laser Ranging experiments constrain Get/G = (4 %
9) x 10~13yr~! [250]. From the figure we see that this is only allowed provided c, is very

close to zero, in which case one recovers the Cubic Galileon studied in the last section

3.4.3 The Galileon subspace of parameters in the Quintic model

Figure 3.12 shows the points accepted in the chains (after the burn-in period) used to con-
strain the vQuintic model with the PLB dataset, projected onto the c3 — £ and ¢4 — ¢5 planes.
The black dots indicate the points that were tried during the sampling, but which failed
to meet the conditions of no ghost and Laplace instabilities of the scalar fluctuations. It is
noteworthy that these stability conditions can, on their own, rule out a significant portion
of the parameter space.

In the £ — c3 plane, one can identify two branches that develop along stable but in-
creasingly narrow regions of the parameter space, and that intersect at the location of the
best-fitting regions. The narrowness of these branches may raise concerns about the fair-
ness of the Monte Carlo sampling. Consider, for instance, a chain that is currently in the
upper branch (which goes through ¢ ~ 10 to guide the eye). Since there are only two
possible directions that do not lead to instabilities, the majority of the MCMC trials will

®To first approximation, we assume also that all of the matter components (baryons, CDM and massive

neutrinos) contribute equally to 6.
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Figure 3.11: Sample of 10* randomly selected points from the chains used to constrain the
vQuartic model with the PLB dataset, projected onto the Galileon subspace of parameters.
The points are coloured according to their respective values of G.g/G(a,d) (lower panel)
and G./G(a, §) (upper panel), at a = 1 and for top-hat profiles with § = 107 (see text). The
big red dot indicates the position of the best-fitting point of (cf. Table 3.3).

be rejected and the chain will remain at the same point for a large number of steps. The
narrowness of the gap between the unstable points therefore makes it harder for the chains
to explore the regions that lie along the direction of the gap. Consequently, the “end point”
of the branches may be determined not only by its poorer fit to the data, but also by these

limitations of the numerical sampling.

To address the above concerns, as a test, we have run chains with priors on & to force
the chains to sample only the lower (¢ < 3) and the upper branches (£ 2 3). These runs
have shown that the length of the branches may extend just slightly (compared to Fig. 3.12).
This is expected since the chains spend more time in each branch, and hence, have a better
chance of probing the limits of the branches. To learn more about the likelihood surface
along the direction of the branches, we have further forced the chains to sample only the
branch regions that are sufficiently far away from the intersection (to explore the far end

of the lower branch we have imposed £ < 3 and c3 < 0.0; and for the upper branch

~
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we have imposed £ 2 12). Also, in this second test, we have fixed all of the remaining
cosmological parameters to their best-fitting values from Table 3.3. Again, as expected,
these chains extended a bit more compared to Fig. 3.12. In all these tests, however, the value
of x? increases along these branches, indicating that the far end of the branches are indeed
worse fits to the data. We have also looked at the CMB power spectrum for points located
deep in the branches to confirm that the CMB spectra becomes visibly worse, compared to
the best-fitting point. We therefore conclude that, despite some sampling difficulties that
may arise due to the narrow stable regions, the “end points” of the branches are mostly
determined by their poorer fit to the data. We stress that these complications in sampling
the branches of the top panel of Fig. 3.12 are only important in determining the exact limit
of confidence contours. For the purpose of identifying the best-fitting parameters, and
subsequent analysis of their cosmology, these issues are not important as the best-fitting

regions lie sufficiently far away from the end of the branches.

The lower panel of Fig. 3.12 zooms into the best-fitting regions of the c5 — ¢4 plane. The
points are color coded according to their values of £, which helps to identify the branches
in the top panel. The projection along the ¢ direction gives rise to overlap of the points
for which ¢ 2 3 and for which £ < 3. We also note that the high-£ points lie on a much
narrower region of the c¢5 — ¢4 plane, compared to those with lower £. This can be un-
derstood by recalling that c4 and c5 are derived parameters that depend on c3, £ and .0
(cf. Egs.(3.8)). When ¢ is sufficiently large, the terms o Q. in Egs. (3.8) can be neglected.
This way, the narrow constraints imposed by the stability conditions on the c3 and £ param-
eters (upper panel of Fig. 3.12) lead directly to narrow constraints on ¢4 and c5, as well. On
the other hand, when ¢ is smaller, the terms o {20 are no longer negligible. Consequently,
the different sampled values of €2, (which are not as tightly constrained as c3 and & by
the stability conditions) introduce extra scatter, which broadens the shape of the region of
accepted points. A closer inspection shows also that an empty (unsampled) region forms
at (c4,c5) ~ (—0.012,0.0013) (barely visible at the resolution of the figure). This serves to
show the rather nontrivial shape of the parameter space in Quintic Galileon model. For
instance, the CosmoMC routines that evaluate the confidence contours from chain samples

cannot resolve all these details clearly.



3. The observational status of Galileon gravity after Planck 88

0.005g

15.0

0.000¢
13.5

—0.005} 12.0
—0.010¢ 10.5

9.0

Cs

—0.015}
7.5

—0.020¢
6.0

—0.025}
| Colors show &

4.5

—0.030 30

-0.02 000 002 004 006 008

0.0016} 130
135
0.0014}
12.0
0.0012}
10.5
0.0010}
9.0

Cs

0.0008F
75

0.0006F 60

0.00041

, 4.5
L Colors show & 3

0.0002 10

-0.012 -0.009 -0.006 -0.003 0.000
Cy4

0.0000

Figure 3.12: Accepted MCMC points (after the burn-in period) obtained in the constraints
of the vQuintic model using the PLB dataset, projected onto the £ — c3 (top panels) and
cs — c4 (middle and lower panels) planes. In the middle and lower panels, the points
are color coded according to their value of {. The lower panel zooms into a region of
the middle panel. The big red dot indicates the best-fitting point. In the top panel, the
black dots indicate those points that were tried during the sampling but failed to meet the
conditions for the absence of ghost and Laplace instabilities of the scalar fluctuations. We
checked that the boundaries of these unstable regions are consistent in between using the

derivation of the stability conditions presented in Refs. [169, 170] and Ref. [159].
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3.5 Tensor perturbations

In our constraints, we are mainly interested in the role played by scalar fluctuations, and
as a result, we have set the amplitude of tensor fluctuations to zero (vector perturbations
play a negligible role as they decay very quickly after their generation). However, before
summarizing the results of this chapter, we briefly investigate the impact that the evolution
of tensor fluctuations can have in Galileon gravity models.

The relevant equations for the evolution of the tensor modes can be written as [166, 251,

252]:

2
0 == O'—,U‘V + 590-/”/ + g’LLI/ + g’n—‘ul}’ (3‘12)
K |. 1 K
0 = 5 |:7T/“’ + 307TNV:| — 5([) + p)JMV
- [éW + 08, — VBy(ue, P (3.13)

where (as in Chapter 2), £,, and B, are, respectively, the electric and magnetic parts of
the Weyl tensor, W,,,qs, defined by &, = u®u® W, and B, = —2uu? e,tgéwvg,,ﬁ. €val
is the covariant permutation tensor. The Galileon field contributes to the tensor modes
evolution via its modifications to the background dynamics, but also via its anisotropic
stress (Eq. (2.43)), both of which are only important at late times. Explicitly, the relevant

terms from Eq. (2.43) that enter Egs. (3.12) and (3.13) are

P L 4
ﬂ_ﬁl,/tenSOI‘ = 746 |:—SO4 (O'/u/ - EIJ,V) - (6()0903 + 38040) O-MV:|

+W {7 <9059 + 90502 + 690%049) Tpv = (@059 + 390804) Ouww — 6%0<P4guu] )

(3.14)

where the superscript **°" indicates we are only considering the terms that contribute to
the tensor fluctuations. Recall that for the Cubic Galileon model, ¢4 = ¢5 = 0, and as a
result, there is no explicit contribution from the Galileon field to the tensor perturbations.
As in the case of scalar fluctuations, when studying the evolution of the tensor per-
turbations of the Galileon field, one must also ensure that they do not develop ghost nor
Laplace instabilities. The conditions for the avoidance of these pathologies were derived

in Ref. [169]. With our notation, the no-ghost condition is given by

1 3¢y . 3¢5 .
Qr/Mp) = 57 ZW& - 5@90515’ >0, (3.15)
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whereas the no-Laplace instability condition is given by

1 1\42 1e¢ 3 ¢

2 Pl 4 .4 5 .4 ..

= - - T - T A 0. 3-16
cr Q 5 + 6(p 5 9(10 %2 > ( )

During the sampling of the parameter space, we have only checked for the stability of
the scalar fluctuations. Consequently, it is possible that some of the accepted points are
associated with tensor instabilities. For the case of the Quartic model, we have checked
that all of the accepted points in the chains are tensor-stable. The same however is not true
for the Quintic model. This is illustrated in Fig. 3.13, which shows the points accepted
in the chains used to constrain the base Quintic model with the PLB dataset. The red
crosses, which contain the best-fitting point of Table 3.3 (black circle), indicate the regions
of the parameter space which develop Laplace instabilities of the tensor perturbations. It is
remarkable that taking the tensor stability conditions into account rules out more than half
of the parameter space space allowed by the PLB dataset and scalar stability conditions.
The red circle indicates the best-fitting point that is tensor-stable, for which Ax? = 1.7
compared to the best-fitting point of Table 3.3. Hence, although the stability conditions rule
out a significant portion of the parameter space, they still leave behind regions which can
provide a similar fit to the data, compared to the case where only scalar stability conditions
are considered.

Figure 3.14 shows the CMB temperature power spectrum, the cross-correlation of the
temperature and E-mode polarization of the CMB and the B-mode polarization power
spectrum for the tensor-stable vACDM (green), base Quartic (red) and base Quintic (blue)
models that best-fit the PLB dataset. The dashed curves show the spectra obtained by set-
ting rg.05 = 0.2, where 7 5 is the tensor-to-scalar ratio of primordial power (at a pivot
scale & = 0.05Mpc~1). Our choice of 7 g5 is merely illustrative. The solid curves show the
spectra for rp.05 = 0. We also assume a zero tensor spectral index with no running. One
notes that the modifications driven by setting 795 = 0.2 are roughly of the same size for
the three models. This shows that the tensor perturbations from the Galileon field are not
affecting the overall spectra in a nontrivial and sizeable way. This justifies the approach in
our model constraints, where we have neglected the role of the tensor modes. The differ-
ences between the Quartic, Quintic and v ACDM models are only visible at low-/. In the
particular case of the B-mode power spectrum, it is interesting to note that for [ 2 10, the

Galileon models predict essentially the same amplitude as standard ACDM. As a result,
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Figure 3.13: Same as the upper panel of Fig. 3.12, but for the base Quintic model and with
the accepted points colored according to their stability of the tensor perturbations. The red
crosses indicate points which are associated with tensor Laplace instabilities, as labelled.
The big black dot indicates the best-fitting point found in the chains. The big red dot
indicates the best-fitting point considering only tensor-stable points (the fact that this point

looks like it lies in the tensor-unstable region is purely due to the resolution of the figure).

any detections of the B-mode signal at I ~ 80 such as those reported by BICEP-2 [253] are
unlikely to be directly related to the Galileon field per se.

3.6 Summary

In this chapter, we have studied and constrained the parameter space of the covariant
Galileon gravity model using the recent observational CMB (temperature and lensing) data
from the Planck satellite and BAO measurements from the 2dF, 6dF, SDSS-DR7, BOSS and
WiggleZ galaxy redshift surveys. The exploration of the parameter space was performed
using MCMC methods with the aid of suitably modified versions of the publicly available
CAMB and CosmoMC codes. The analysis of this chapter constitutes the first observational
constraint study on the parameter space of the Galileon model using the full information
encoded in the CMB temperature and CMB lensing potential angular power spectra. To the
date of submission of this thesis, the conclusions on the observational status of the Galileon

model studied here remain the most up-to-date in the literature.
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Figure 3.14: From top to bottom, the lines show, respectively, the CMB temperature power
spectrum, the cross-correlation of the CMB temperature with the E-mode polarization and
the B-mode polarization power spectrum for the v ACDM (green), base Quartic (red) and
base Quintic (blue) models, for rg o5 = 0 (solid) and rgo5 = 0.2 (dashed). For the C*
curves, the lines are thiner at the values of [ for which the cross-correlation becomes nega-

tive. The curves for the Quintic model correspond to the best-fitting model that is tensor-

stable (c.f. Fig. 3.13).

We have analysed separately three main branches of the Galileon model. These are the
so-called Cubic, {L9, L3}; Quartic {Lo, L3, L4} and Quintic {L9, L3, L4, L5} Galileon mod-
els. A major goal of the analysis here was to investigate the impact that massive neutri-
nos have on the observational viability of Galileon gravity. We have therefore constrained
"base Galileon models”, for which ¥m, = 0; and rGalileon models, for which ¥m, is a
free parameter to be constrained by the data. For all models, we have assumed that the
background evolution of the Galileon field follows, at all epochs, the tracker solution de-
scribed in Sec. 2.3. This is justified by the fact that if the tracker is not reached before the
epoch when the accelerated expansion begins (a ~ 0.5), then the Galileon model cannot fit
the low-{ part of the CMB temperature power spectrum (cf. Fig. 3.1 or Ref. [2]). The main

results of this chapter can be summarized as follows:

e When ¥m, = 0, all sectors of Galileon gravity have difficulties in fitting the BAO and
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the CMB peak positions simultaneously. This tension is related to the specific late-time
evolution of H(a) (cf. Eq. (2.74)), which leads to different constraints on the value of &
by the CMB (which prefers higher h) and BAO (which favours lower h) data (cf. Fig. 3.3
and 3.7). This tension applies to all sectors of the Galileon model, since H(a) does not
depend on the values of the ¢; parameters. In addition to this observational tension, these
best-fitting models also predict too much power for the CMB lensing potential spectrum
(Figs. 3.4 and 3.8). In the case of the Cubic Galileon model, there is also an excess of ISW
power in the low-I region of the CMB temperature power spectrum (top right panel of

Fig. 3.4).

e If neutrinos are sufficiently massive, then they modify the late-time expansion history
in such a way that the CMB data no longer prefers high values for h. This completely
eliminates the tension with the BAO data if ¥m, 2= 0.4 eV (20) in the case of the Cubic

~

Galileon (cf. Fig. 3.3), and ¥m, 2 0.3 eV (20) in the cases of the Quartic and Quintic
models (cf. Fig. 3.7). These best-fitting vGalileon models also reproduce much better the
CMB lensing power spectrum. This fit can be even slightly better than in ACDM models,
mainly due to a better fit to the data at [ ~ 60 (Figs. 3.4 and 3.8). For the Cubic Galileon
model, massive neutrinos also help to lower the excess of ISW power in the CMB. The

neutrino mass constraints in the vGalileon models leave room for upcoming terrestrial

neutrino experiments to help distinguish between these models and ACDM.

e In Galileon gravity, the time evolution of the lensing potential ¢ differs from the ACDM
result at late times, and its qualitative behaviour is also scale dependent (cf. Figs. 3.5
and 3.9). In the case of the Cubic models, ¢ deepens considerably at late times on scales
k z 0.005h/Mpc, but decays (as in ACDM) on scales k£ < 0.0005h/Mpc. This behaviour
follows from the scale dependence of the magnitude of the modifications to gravity in-
duced by the Galileon field, which becomes weaker on horizon-like scales (cf. Fig. 3.6).
The extra Galileon terms in the Quartic and Quintic sectors of the model allow for milder
and smoother time evolution of ¢ for & 2 0.005h/Mpc, but the potential can still decay
for k£ < 0.0005h/Mpc.

e The fact that ¢ deepens at late times for £ 2 0.005h/Mpc in the Cubic model implies
a negative ISW sign. This is opposite to what has been found recently by a number of

observational studies that claimed the detection of a positive sign for the ISW effect (cf.
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Sec. 3.3.2). There is still ongoing discussion about the impact that systematics (such as
selection effects) might play in the significance of these observations. We have also raised
the possibility that the nonlinear effects of the screening could have an impact on the ISW
signal. We anticipate here that in the subsequent chapters, we will see that the effects of
the screening are only very important on scales £ 2 1h/Mpc. Hence, and although we
did not perform a detailed comparison with these observations, we conclude that the ISW
effect probably rules out the Cubic Galileon model. The same applies for the Quartic and Quintic

sectors, even though the tension is not as strong.

e The explicit couplings between the Galileon field derivatives and curvature tensors in
the £, and L5 Lagrangian densities (cf. Eq. (2.2)) give rise to modifications to gravity
that cannot be totally suppressed by the Vainshtein mechanism (the reasons for this will
become clear in the next chapter). We have shown how, by imposing a prior for the time
variation of Geg obtained from Lunar laser experiments, one can essentially constrain

the Quartic model to look almost like the Cubic model (cf. Fig. 3.11) 7.

o Although the main focus here was on the effects of scalar perturbations, we have also
looked at the impact of the tensor perturbations in the Quartic and Quintic models (the
Cubic Galileon does not contribute directly to the tensor perturbations). We have seen
that modifications driven by the Galileon field do not change drastically the shape and
amplitude of the CTF and CPP spectra (cf. Fig. 3.14).

In the following chapters, we shall go beyond linear theory in our discussions about the

Galileon model and focus more on the nonlinear aspects of large scale structure formation.

"We note that this observational tension arises when one considers the background evolution of the Galileon
field when making a prediction for the Solar System. If ¢ = 0, then the tension goes away. In Chapter 6, we

shall discuss this more indepth when we encounter a similar tension for Nonlocal gravity.



Chapter 4
Spherical collapse in

Galileon gravity

As we have mentioned in the previous chapters, the inclusion of data related to the
growth of structure on scales < 10Mpc/h in tests of Galileon gravity requires modelling
of some physics which can only be tackled by going beyond linear theory. These include
not only standard effects such as galaxy and halo bias, redshift space distortions and mode
coupling, but also those associated with the Vainshtein screening mechanism. The latter
can have a particularly strong impact on ~ 1Mpc scales, and thus affect the way dark mat-
ter haloes form and evolve. To model all these effects and extend the range of observational
tests one typically needs to use N-body simulations, which are more computationally ex-
pensive than the linear theory calculations done using CAMB. It is therefore impractical to
include results from N-body simulations in MCMC constraints. The analysis of Chapters
2 and 3, however, narrowed down significantly the regions of the parameter space of the
Galileon model that are good fits to some of the most robust datasets. N-body simulations

should therefore be focused on these parameter values.

Before moving on to analysing the results from N-body simulations in Chapter 5, in this
chapter we study first nonlinear structure formation in Galileon models within the frame-
work of the Excursion Set Theory (EST) formalism [254]. This formalism is not expected to
achieve the same level of accuracy as N-body simulations. However, since it is analytical,
it provides a neat and easy way to capture the main qualitative physical features of the
models. A main goal of this chapter is to build the intuition about the phenomenology of
Galileon models on small scales that will help in the interpretation of the N-body results

later on.

95



4. Spherical collapse in Galileon gravity 96

4.1 Spherically symmetric nonlinear equations

We work with the perturbed FRW metric in the Newtonian gauge, Eq. (1.1), and assume
that the fields, ¢, ¥ and ® are spherically symmetric, under which case the nonlinear field
equations simplify considerably. In the equations below ¢ = @(t) + d¢(t, Z), where d¢ is
the field perturbation and an overbar indicates background averaged quantities. We will
always use ¢ to denote the scalar field, and the context should determine whether we refer
to ¢ or dp. To make the problem tractable we shall also employ two other simplifying
assumptions. The first one is the so-called quasi-static approximation which corresponds
to the limit where the time derivatives of the perturbed quantities are negligible compared
to their spatial derivatives. For instance, 0,0, < 0,0,® or 0,0,¢ < 0,0,¢ 1 In[1, 183]
(and in Chapter 2), it was shown that such an approximation typically works well in the
Galileon model on length scales smaller than £ ~ 0.01h/Mpc. The second simplifying
assumption amounts to neglecting the terms that are suppressed by the scalar potentials,
® and ¥, and their first spatial derivatives, 9;® and 9;¥. This is known as the weak-field
approximation where, for instance, (1 — 2®) 99, ~ 0'0;p or 9;99'® < 9;,0'®. This is
plausible since these fields are typically very small (< 10~) on nonlinear scales.

Under the above approximations, the perturbed Poisson (6GY = kdTy), slip ( 0G" =

k6T}") and Galileon field equations of motion follow, respectively,
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Note that 8, = d,.d¢ is a perturbed quantity.



4. Spherical collapse in Galileon gravity 97

1 c 41 . N .21
0 = —C2ﬁ(T2¢,r)»r+F% ;72(T(so,r)Q),r—4(so+2Hs0)p(T2<P,r)vr—2902§(7”2‘1’7r)w]
e [ 41 ; G+ Hp 1 - o\ 1
g5 [T () H12EE 5 (o )7) o — (12097 + 24661 + 261°67) 5 (Ppur)

. 3y 1 31 »? 1 »? 1
+(12¢¢2 + 4H<p3)7 (r2<1>,r) . —12H<p372 (r?.\p,r) . —4(% 902 — (ro, U,..) ,r}

r2 a Tig (TA)OW éﬂ” ) 5T +12

a

s [ o p1 3 HY® + H>¢” + 2Hgo 1 2 ¢° 1 2
+H73 _78¥7‘72 (((va) ) 5T +12 a2 Tig (T(SD’T) ) T 712?7‘72 (‘IJVF (SOaT) ) 5T
12 (8H2¢g? 4 2HHE + 206 & (P, ) 2450 Lo, ) 424 Lo )
T a T a T

.4
P 1 s T ) 1 a1
655 = (0, @) 1 46 (4ng<p5 FHG + H%‘*) (@) o —15H" 5 (P20, ) o | 4.3)

r

where 7 is the comoving radial coordinate and ,, = d/dr. We have checked that these
equations (together with the remaining components of the Einstein equations, which we do
not show for brevity) satisfy the independent conservation equations V,6G* = V,6TH" =
0. In the last term in Eq. (4.1), 0 = py/pm — 1 is the matter density contrast of the spherical
top-hat overdensity w.r.t. the cosmic mean density. In this chapter, § characterizes the
density of the spherical haloes throughout their entire evolution, and not only during the

stages where it is small (|| < 1).

Egs. (4.1) and (4.3) can be simplified by integrating over [ 47r2dr. Doing so, and mov-
ing to the radial coordinate xy = aHyr, we can write Egs. (4.1), (4.2) and (4.3) as

P,y _ Qmoda™® + Ay (907x /x) + Az (Sox/X)Q + Az (@X/X)3 (4.4)
X Ay + As (ox/X) ’ .
Uy Bo(@n/X) + Bilen /X) + Ba (o /X)° 45)
X B3 — By (0, /X) ’ '

@ 298 o\’ 4@ v
0 = C1=2+0y (’X) +C3 (’X> +Cy—=% +C5—=%
X X X X X

P, o, ), 0, 7,
Ce XX 4 o PXTX 4 o <90><> X 4 Oy X DX (4.6)
X X X X X X X X
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The quantities A;, B; and C; depend only on time and are given by:
Al = 2360 — 12048%¢) — 150587 (4.7)
Ay = 6eaby’ + 12587 (4.8)
Az = —deséy (4.9)
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A5 = 66552@/2 (411)
By = —2-— g’ +3e:8°0" (4.12)
By = 4 <—5280, - 2§2<PH>
3
+6c5 (—25390” - €3<p’> (4.13)
By = 2c4&¢’ 4 6c58%¢" (4.14)
By = —2+43c20"% + 6563 (4.15)
By = 6c562%0" (4.16)
S0// ()0/1
1 —cy — 2c3 (45 + ggp’) —C4 <26§2 + 6529[3,)
90”
—6c5 <4§3 + §3> (4.17)
¥
SOH
Cy 4c3 4 6y <2§ + £g0’>
(p/l
+6¢5 (252 + 52¢,> (4.18)
()0”
03 —4cy — 4C5§? (419)
C4 2cy (3&2(,0” + 2§2g0/)
+3c5 (383" +28%¢") (4.20)
Cs —2c38¢@" — 12¢4€2¢" — 15¢583¢’ (4.21)
Cs —desé@’ — 12¢5620" (4.22)
Cy 12¢460" + 24582y’ (4.23)
Cy —12¢5&¢’ (4.24)
Cy —6c58%0", (4.25)

which we have written by assuming the tracker evolution for the background. One can

use Egs. (4.4) and (4.5) to eliminate ®,, and ¥,, in Eq. (4.6). The resulting equation is a
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sixth-order algebraic equation for ¢,, /x, which can be cast as
¢ ik ik
0 = mad® s s+ ) 2] ) |22 ) 2]
L Tk 0. 1°
+ ?740[ ’X} +?750[ ’X] + 760 ["] . (4.26)
X X X

The coefficients 7, are given in terms of the functions A4;, B; and C; in Egs. (4.4), (4.5)

and (4.6). Their expression is very lengthy and for brevity we do not show them explicitly.

The strategy used to determine the total gravitational force is as follows. For every mo-
ment in time and for a given matter overdensity ¢ one has to solve the algebraic equation,
Eq. (4.26), to determine the gradient of the Galileon field inside the overdensity. Note that
in the case of a top-hat profile, this gradient will be proportional to the radial coordinate,
just like in GR. Having obtained the solution for ¢,, /x, one can then plug it into Eqgs. (4.4)
and (4.5) to determine the total gravitational force (GR + fifth force), which is given by ¥, .

In the following, it will be convenient to measure the impact of the fifth force in terms
of an effective gravitational constant Gg. The latter is determined by the ratio of the total

force to the normal gravity contribution:

GBH ((I 5) — \II7X /X — \IJ7X /X .
G YT WOR Y T Q0003)2

(4.27)

In the Galileon model, G is in general time and density dependent, but it is constant

within a top-hat density profile.

Model parameters

In this chapter, we focus on the Quintic and Quartic Galileon models. Throughout, when-
ever we refer to these models, we will be referring to the models with the parameters given
in Table 4.1. These are the model parameters that best-fit the WMAP9+SNLS+BAO dataset
used in Ref. [2].

The time evolution of the expansion rate, the Galileon equation of state parameter w, =

Do/ Py and the effective cosmological equation of state

Wett = (Pr/3 + wypy) [ (Pr + Pm + D) » (4.28)

are shown in Fig. 4.1 for the Quintic and Quartic Galileon models. In the top left panel,
we show both the numerical solution (solid) and the analytical tracker expression (dashed)

for the expansion rate (Eq. (2.74)). One can see the very good agreement between the two
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Table 4.1: Parameters of the Cubic, Quartic and Quintic Galileon models obtained from the

constraint analysis presented in Ref. [2] with the WMAP9+SNLS+BAO dataset used there.

In the analysis that led to these parameters, c3 was the fixed parameter to break the scaling

degeneracy (cf. Sec. 2.3). The value of c; was fixed by trial-and-error to yield a spatially flat

Universe.
Parameter Quintic Galileon = Quartic Galileon  Cubic Galileon
X2 7989.97 7995.60 8006.50
Q,0h? 4.28 x 1075 4.28 x 1075 4.28 x 1075
Qpoh? 0.02178 0.02182 0.02196
Qoh? 0.125 0.126 0.1274
h 0.735 0.733 0.7307
g 0.947 0.945 0.953
T 0.0680 0.0791 0.0763
log [1010A,] 3.127 3.152 3.154
10g [p.i/ Pm.i] —6.51 —37.39 —4.22
cofcdl? —3.59 —4.55 —5.378
cs 10 20 10
cafcdl? ~0.199 —0.096 0 (fixed)
cs/cy? 0.0501 0 (fixed) 0 (fixed)
Gics’ 2.31 x 10714 1.54 x 1020 1.104 x 10~?
Age (Gyr) 13.778 13.770 13.748
os(z = 0) 0.975 0.998 0.997
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Figure 4.1: Cosmology of the best-fitting Cubic, Quartic and Quintic cosmologies that
best-fit the WMAP9+SNLS+BAO dataset used in Ref. [2]. (Top left) Time evolution of
the expansion histories of the Quintic (blue) and Quartic (green) Galileon models, plot-
ted as H/Hacpwm. The solid lines represent the full numerical solution, whereas the dashed
lines show the tracker solution of Eq. (2.74). (Top right) Time evolution of the Galileon
field (solid) and cosmological (dashed) equations of state, w and weg, respectively, for the
ACDM (black), Quartic (green) and Quintic (blue) Galileon models. (Bottom left) CMB
temperature fluctuations angular power spectra, as function of the multipole moments, for
the ACDM (dashed black), Cubic (solid red), Quartic (solid green) and Quintic (solid blue)
Galileon models. Also shown are the data points with errorbars of the WMAP 9-yr results
[201]. (Bottom right) Linear matter power spectrum, as function of scale k, for the ACDM
(dashed black), Cubic (solid red), Quartic (solid green) and Quintic (solid blue) Galileon
models. The power spectrum is shown for z = 0.31, which is the mean redshift of the Lu-
minous Red Galaxies of the SDDS DR7 used to estimate the host halo spectrum shown as

the data points with errorbars [187]. The amplitude of the latter is scaled by 1.8572,
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at all the epochs shown. In the bottom panels of Fig. 4.1, we show the predicted power
spectra for the CMB temperature fluctuations (bottom left) and for the linear clustering
of matter (bottom right). We show the predictions of the Quintic and Quartic Galileon
models, as well as the Cubic Galileon model?> and the ACDM model with the WMAP 9-
year parameters [201]. The spectra for these three models has already been discussed in

Chapter 3 in light of the more recent Planck CMB results.

4.2 Fifth force solutions

In Eq. (4.27), we have parametrized the modifications to gravity (the fifth force) as a rescal-
ing of the effective gravitational constant, which is time and density dependent. The
process of determining the total force involves solving a nonlinear algebraic equation,
Eq. (4.26), which in general has more than one branch of real solutions. Therefore, care
must be taken in making sure that the physical branch exists and is correctly identified. We

discuss these issues next.

4.2.1 Quintic Galileon

In the case of the Quintic Galileon model, Eq. (4.26) has six branches of solutions, which
in general can be either complex or real. We require the physical branch to be real and to

satisfy:

“;X (6 = 0) — 0. (4.29)

This is the solution that exhibits the physical behavior that there should be no fifth force if
there are no density fluctuations sourcing it. This is what characterizes the linear regime
as well. We must ensure that this solution exists at every moment in time, and for every

value of 6 > —1.
However, as we will show next, the Quintic Galileon model equations do not satisfy
this requirement. To better understand why this happens, one can differentiate Eq. (4.26)

The Cubic Galileon model is also the best-fitting one to the WMAP9+SNLS+BAO dataset, obtained with
the strategy presented in Ref. [2]. The nonlinear structure formation in this model shall be studied in Chapter

5.
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Figure 4.2: Evolution of the branches of solutions of Eq. (4.26) as function of the density
constrast 6, for a = 0.5 (left panel) and a = 1 (right panel). The physical branch corresponds
to the solid blue line for which ¢,, /x (6 = 0) = 0. For visualization purposes, in the a = 1
panel we do not show the branch ¢,, /x (§ = 0) = —11.477, which is far below the scale of

the plot and has little importance for the discussion.

w.r.t. 0 to obtain a differential equation for ¢,, /x:

2 3
i |:<P7x —2n020 — Mo1 — M1 [%] — 12 [TX] — M31 [%]

do | x :| B N110 + N1o + 2 (m21 + n20) [%} + 3 (1316 + 130) [A]Q + 4y [;X]g + 575 [%Xr + 676 [%X]s.

Just to illustrate our point, it suffices to consider the equations at a = 0.5 and a = 1 (we
have checked that our conclusion holds for other epochs too). When 6 = 0, Eq. (4.26)
has four real roots {—2.059, —1.292, 0, 0.765} at a = 0.5, whereas at a = 1 there are six
real roots {—11.477, —0.445, —0.261, —0.113, 0, 0.291}. These can be used as the initial
conditions to solve Eq. (4.30) and evolve the different branches. The result is shown in
Fig. 4.2. The physical branch is the one that starts from zero at § = 0, but one sees that
it cannot be evaluated beyond § ~ 2 and § ~ 0.2 ata = 0.5 and a = 1, respectively. At
these values of §, the differential equation becomes singular because the physical branch
becomes complex (and therefore unphysical), together with the branch represented by the
dashed red line. The same thing happens for the (unphysical) branches represented by the
solid green and dashed magenta lines at a = 1, although at different values of §. We have
explicitly looked at Eq. (4.26) for cases near these critical values of § to confirm that the

breakdown of the differential equation is related to the absence of real roots. Moreover,
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we have also checked that the problem persists for different choices of the Galileon and

cosmological parameters around the regions of parameter space preferred by the CMB,

SNIa and BAO data [2].

The spherical collapse in the Galileon model has been also studied in [255]. In the latter,
the authors found that physical fifth force solutions exist both at low and high densities.
In particular, by taking the limit 6 > 1, the authors derive the conditions for the existence
of real solutions for Eq. (4.26). This assumes that the physical solution does not become
complex for intermediate densities, which is what is shown not to happen in Fig. 4.2. Here,
we do not attempt a thorough comparison between our results, although we point out that

contrary to [255], we focus on the parameters of the model that fit the observational data.

At this point, one may wonder whether this problem can be avoided by relaxing the
quasi-static and weak-field approximations used to derive Egs. (4.1), (4.2) and (4.3). How-
ever, note that Fig. 4.2 shows that the physical solution does not even exist in high density
regions, where the terms that have been neglected are expected to be small, and hence our
approximations are justified (we will return to this point in the next section). Another way
to try to circunvent the problem is to explore different choices of the Galileon and cosmo-
logical parameters. However, even if for a different choice of parameters one could find
physical solutions for all §, such parameters would already be ruled out by the CMB, SNIa
and BAO data. For these reasons, our study of the spherical collapse in the Quintic model

stops here!

4.2.2 Quartic Galileon

When c¢; = 0, Eq. (4.26) becomes

2 3
0 = 7010+ (1119 + n0) VX’X} + 720 [SDX’X] + 130 [QDX’X] , (4.31)

which is third order, and therefore admits analytical solutions given by the general expres-

sion

©Oyx 1 [ Yo }
= —— + '+ —1, ke {l,2,3}, 4.32
N 310 1720 + ik Ry { } (4.32)
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where
_— 21+\/§%—423 1/3’ (4.33)
o = 3 — 3n30 (M1 +mo) , (4.34)
1= 203 — 930720 (m16 + m10) + 27030701, (4.35)
and the three branches of solutions (labelled by k) correspond to
pr=1, pg=exp[—ir/3], pz=explir/3]. (4.36)

The physical branch, Eq. (4.29), corresponds to the £k = 3 solution, which is a complex

number. As a result, I' must be complex as well and we can write it as

I =2 explif/3], (4.37)
with 6 given by
%1 /2
cos 0 = 2;2 . belo,n]. (4.38)
x

0
Using these expressions, Eq. (4.32) can be written as
% 237;30 [7720+2\/E>ocos (22;)] , (4.39)
which allows us to analytically determine the magnitude of the effective gravitational
strength (Geg) using Eq. (4.27).

The value of Gg as a function of the scale factor a and density § is shown in the colour
map of Fig. 4.3, for the Quartic Galileon model. The left and right panels correspond to
0 > 0and § < 0, respectively. For 6 > 0 we see that, contrary to the case of the Quintic
Galileon model, there are physical solutions for sufficiently large values of the density
contrast §. When a < 0.5 one has Gegr/G = 1. At later times, however, G /G progressively
deviates from unity, and this happens in a density dependent way. In the linear regime
(0 < 1), Geg increases with time, being roughly 40% larger than G today. However, for
d 2 1, one sees that gravity becomes weaker with time (Geg/G < 1). In particular, at the
present day, the effective gravitational strength is reduced to ~ 60% of the standard gravity
value.

The effects of the fifth force that modify Geg in the Quartic model can be thought of

as being two-fold. Firstly, one has the extra terms proportional to ¢,, /x, that add up to
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the total gravitational strength in Egs. (4.4) and (4.5). Secondly, there are also the time-
dependent coefficients A4, By and B3 that multiply the standard gravity terms, and that
arise from the explicit couplings of the Galileon field to curvature in L4 (cf. Eq. (2.2)). The

effect of the screening can be seen by writting Eq. (4.26) in the limit where § > 1,

0 ~ no+mm [‘vax] . (4.40)

Here, one sees that in regions where the density is sufficiently high, the spatial gradient of
the Galileon field, ¢, /x, does not depend on §. The Vainshtein mechanism in the Quartic
model works because

v

<<’7X
X

_ | Mo

i1

"P’X ~8 (5> 1), (4.41)

X

and increasing the density § further does not increase the gradient of the Galileon field.
However, the coefficients A4, By and B3 depend only on the background evolution of the
Galileon field, and will not be affected by the Vainshtein mechanism. This is why Geg/G
does not approach unity when ¢ > 1 (cf. Fig. 4.3). This result has in fact been found to
be generically possible in the framework of the most general second-order scalar tensor
theory [248, 249], which encompasses the Quartic Galileon model studied here.

The fact that the effective gravitational strength is time-varying if the density is high
is an unpleasent novelty of the model. In fact, this may imply that the Quartic Galileon
model is automatically ruled out by the local gravity tests that constrain the modifications
to gravity to be very small. For instance, [248, 249] have claimed that Lunar Laser Ranging
experiments [250] can place very strong constraints on models like the Quartic Galileon.
Indeed, in Chapter 3, we saw that the Lunar Laser Ranging bounds essentially constraint
the Quartic model to look almost exactly like the Cubic model, ie., |c4| < 1 (cf. Fig. 3.11).
One may invoke the validity of the quasi-static approximation in an attempt to ease this
problem. For instance, if the time derivative of the Galileon field perturbation is not com-
pletely negligible, then its contribution to the coefficients A4, By and B3 could help soften
the time variation of Geg. However, we argue that this should not be the case. The success-
ful implementation of the screening in the Quartic Galileon model means that the fluctua-
tions of the Galileon field, d¢, have to be much smaller than the metric perturbation, i.e.,
d, < W (cf. Egs. (4.40) and (4.41)). Since V is typically very small for collapsed objects like

cluster- and galaxy-mass haloes or the Sun (¥ ~ 1076 to 107%) 3, then d¢ has to be even

3Near black holes, for instance, one can have larger metric perturbations ¥ ~ 1.
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Figure 4.3: Time and density dependence of the effective gravitational strength G.g of
Eq. (4.27) for § > 0 (left panel) and § < 0 (right panel). The colour scale bars at the right
of each panel show the value of G.t/G. In the left panel the solid red and solid black
lines represent the trajectory in a — 0 space of a halo that collapses at a = 1 (¢ = 0) and
a = 0.5 (z = 1) in the Quartic Galileon model, respectively. The dashed black line shows
the trajectory of a large linear density region with density contrast § = 0.01 today. In the
right panel, the region marked in black in the top left corner shows the values of a and
d for which the solution of the fifth force becomes a complex number. To facilitate the

visualization, note that the colour scale in the two panels is not the same.

smaller. This justifies the use of the weak-field assumption for the Galileon perturbation,
d¢p. Consequently, for consistency, the time variation of d¢ has to be very small as well,
dp < ¥ < @. The same reasoning applies to the Quintic model studied in the last subsec-
tion. In the remaining of the chapter, we will focus on the cosmological interpretation of
the results *.

For 6 < 0, in Fig. 4.3, we see again that the modifications to gravity arise only for
a 2 0.5, but here gravity can only become stronger. In addition, there are no physical
solutions for the epochs and densities indicated by the black region in the top left corner
of the right panel of Fig. 4.3. In particular, the fifth force becomes complex in the most

empty voids (0 ~ —1) for a 2 0.6; at a = 1, underdense regions where § < —0.4 also

“We note that if we solve the model equations in perturbed Minkowski space (instead of FRW), then ¢ = 0
and Geg — 1, when 6 > 1. We discuss this issue further in Chapter 6, when we encounter a similar problem

in Nonlocal gravity models.
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do not admit a real fifth force. As we will see in the next chapter, this is a problem that
exists also in the Cubic Galileon model. One may wonder whether this absence of real
physical solutions for the fifth force could be due to the fact that the quasi-static limit is not
be a good approximation in low density regions. However, the recent work of Ref. [256]
suggests that this is not the case. We shall return to these discussions in Chapter 7, when
we study the properties of cosmic voids. For the analysis in this chapter, however, we can
put these issues aside as we are interested in the formation of haloes, for which these low

densities are irrelevant.

4.3 Excursion set theory in Galileon gravity

In this section, we layout the main premises of excursion set theory [254, 257] and of the
dynamics of the gravitational collapse of spherical overdensities in the Galileon model (see,
e.g. [258, 259, 260, 261, 262, 263, 264, 265, 266, 267] and references therein for applications of

the spherical collapse model and excursion set theory to other modified gravity models).

4.3.1 Basics of excursion set theory
Unconditional probability distribution and halo mass function

The main postulate of excursion set theory is that dark matter haloes form from the gravita-
tional collapse of regions where the linear density contrast smoothed over some comoving

length scale R,

biin (X, R) = / W (Ix — yl, R) 6im () %

= drm / K2W (K, R) Spin ™ dk, (4.42)

exceeds a certain critical density threshold dji, it (to be defined below). Here W (|x — y|, R)
is the real space filter (or window) function of comoving size R, and W (k, R) and dyiy,  are
the Fourier transforms of W (|x — y/|, R) and dji (y), respectively. We use the subscript "ji,”
to remind ourselves of the situations where the density contrast should be interpreted as
being small (|§| < 1), i.e., in the linear regime.

The mass of the halo is given by

M = 47p,0R3/3. (4.43)
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For the same comoving radius R, the halo mass is different for models with different matter
densities p,,0. As the standard practice, we assume that the probability distribution of the
initial (for us, initial refers to z; = 300) linear density contrast dj,(x) is a Gaussian with
Zero mean

1 62
—e — =2 ddgin, 4.44
/7271_ S XP |: 29 lin ( )

in which S = S(R) is the variance of the density contrast field on the scales of the size of

Prob. (511n, S) d(Slin =

the filter function R, and is given by
S(R) = o?(R) = 47r/lc2PkW (k, R) dk, (4.45)

where P is the linear matter power spectrum. Note that for a fixed model, the variables
R, M and S are related to one another and will be used interchangeably throughout when
referring to the scale of the haloes.

In hierarchical models of structure formation, S(R) is a monotonically decreasing func-
tion of R. Consequently, the probability that the density field on a region smoothed over a
very large R exceeds the critial density 6y, crit is very small, since the variance is also very
small. As one smooths the density field with decreasing R, the field dji, (x, R) undergoes
a random walk with “time” variable S. In the excursion set theory language, djin crit de-
fines a “barrier” that the random walks cross, and the aim is to determine the probability
distribution, f(S)dS, that the first up-crossing of the barrier occurs at [S, .S + dS]. In the
particular case where the filter function is a top-hat in k-space, then the random walk of
the density field will be Brownian. As we will see below, in the case of the Galileon model,
the critical density for collapse does not depend on the scale S considered. This is called a

”flat barrier”. In this case, f(S) admits a closed analytical formula given by [254]

1 6 52
18) = =gz | -5 (4.46)

where §. denotes the initial critical density, din crit, for a spherical overdensity to collapse at
a given redshift, linearly extrapolated to the present day, assuming ACDM linear growth
factor®. This linear extrapolation is done only for historical reasons so that the values of
d. we present in this chapter can be more easily compared with previous work. Note also

that, for consistency, one must compute the variance S in Eq. (4.45) using the initial power

5In the case of §., we will avoid writting the subscript 1i, to ease the notation.
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spectrum of the models, but evolved to z = 0 with the ACDM linear growth factor. We
use the BBKS fitting formula [268], whose accuracy in reproducing the ACDM and Quartic
Galileon model P, at the initial time is more than sufficient for the purposes of the qual-
itative discussion we present here®. We will follow the standard procedure of adopting a

filter function that is a top-hat in real space, whose Fourier transform is given by

~ sin (kR) — kR cos (kR)

W (k,R)=3 Ry (4.47)

Note that, strictly speaking, for this filter function the excursion set random walks are not
Brownian, and as a result, there is some degree of approximation in taking Eq. (4.46). On
the other hand, this choice of filter function is that which is compatible with our definition
of the mass of the smoothed overdense region (Eq. (4.43)).

In this chapter, the halo mass function is the comoving differential number density
of haloes of a given mass per natural logarithmic interval of mass. This quantity is ob-
tained by associating f(S5)dS with the fraction of the total mass that is incorporated in
haloes, whose variances fall within [S, .S + dS] (or equivalently, whose masses fall within

[M, M 4 dM]). The mass function observed at redshift z is then given by

Tapdindl = 2 ()as
Pmo 50 dlnS 52

— ~2¢ ) dmm. .
M vorg |amar | &P | g ) 4 (448)

This is known as the Press-Schechter mass function [269]. The redshift dependence is in-
cluded into 6. (cf. Fig. 4.4). In principle, one can distinguish the formation time from the
observation time of the haloes (see e.g. [270]). For simplicity, in this chapter we assume

that these are the same, i.e., 2 = Zform = Zobs-

Conditional probability distribution and halo bias

Equations (4.46) and (4.48) assume that the starting point of the excursion set random walk
is the origin of the ¢y, — S plane. The mass function computed using Eq. (4.48) gives the
abundance of haloes that have collapsed from the mean cosmological background. How-
ever, it is well known that the clustering of haloes is biased towards the underlying clus-

tering of dark matter, i.e., the number density of haloes is different in different regions.

®Note that one can use ACDM to compute the matter power spectrum of the Galileon model at the initial

time, but one has to use the parameters given in Table 4.1.
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Within the framework of excursion set theory, this is described by the so-called halo bias
parameter ¢, [271]. The latter is determined by computing the abundance of haloes that
have formed from a region characterized by S = Sy and dj;, = o, and compare it with the
abundance of the haloes that have formed from the mean background (S = d;i, = 0). It can
be shown that dy, is given by [271]

F(S1S0,80)dS

5h:(1+5env) f(S)dS y

(4.49)

where depy is the density contrast of the underlying dark matter region or environment
where the haloes are forming. f(S5]Sp,dp) is the probability distribution that a random
walk that starts (or passes through) (dp, So) crosses the critical barrier . at [S, S + dS], and
is given by

f(S1S0,00) =

1 5c - 50 ex [_ (50 - 50)2]
Var (S — S 28 =80
(4.50)

for a flat barrier. Here, dy is the linearly extrapolated (with the ACDM linear growth factor
to today) initial density of the underlying dark matter region, so that its density is denv,
at a given redshift’. From Egs. (4.50) and (4.49) one sees that dense regions can boost the
clustering of haloes, since the effective height of the barrier becomes lower (6. — dp < ).
On the other hand, the clustering can also be suppressed if the mass of the haloes is compa-
rable to the mass available in the region specified by Sy. For example, haloes with variance
S < Sp will not form because the random walks cannot cross the barrier before their start-
ing point (this effect is known as halo exclusion).

One is often interested in the limit of very large regions with small density contrast
(So < 1, 0 < §p < 1), where the treatment simplifies considerably. In this case, we can

Taylor expand §j, as [272]:

b
5, = ?ﬁak ~ bo + b10env + O (Ofpeny) » (4.51)
k=0

where we have truncated the series at the linear term, as we are assuming low density
regions (from here on de,y should be interpreted as a small linear overdensity). Since we are

taking the limit where the dark matter regions look like the mean background, Sy, d9 — 0,

Just like for ., we will avoid writting the subscript 11, in do to ease the notation.
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then by = 0. The linear term b; is then the leading one, and is given by

d

by — 5 _
1 2.0 | Seny=0

1 dég d
- 5 [f<s> n (d 5) S F510.60)ls0-0

- ddo \ 62/5 — 1

= (daenv> 5

52/8 -1
Oc )

= 1+g() (4.52)

To find the expression of g(z), one notes that

Dmodel(z) Dmodel(z) DACDM(ZZ‘)
Dmodel(zi)éen"’i - Dmodel () DACDM () 0o

pmodel ( Z)

56 nv

where d¢yy i is the initial density of the regions whose density today in a given model is deny.-
In Eq. (4.53), D™°4¢l(2) is the linear growth factor of a given model and we have assumed
that D™medel(z,) = DACDM () (see next subsection). Thus, g(z) is simply given by

dgy  DACPM(g)
ddenv - Dmodel(z) :

g9(z) = (4.54)

In Eq.(4.52), the model dependence is included in g(z) and d.. In particular, g(z) ac-
counts for the fact that different models have different values of d, to yield the same d¢yy at

redshift z.

4.3.2 Linear growth factor and spherical collapse dynamics

The final ingredient to derive the mass function and the linear halo bias is to determine the
threshold barrier d., and to specify the equation that governs the evolution of the linear
overdensities (which determines g(z), Eq. (4.54)). For scales inside the horizon, the latter

can be written as
Otin + 2H iy — 470G pp O = 0, (4.55)

or equivalently, by changing the time varible to NV = Ina, as

E’ 3 Gegr(a) Qmoe 3N
" & r 92Ye m, _
D"+ ( =+ 2) D - 5= = 0, (4.56)

where the linear growth factor D(a) is defined as iy (@) = D(a)din(a;)/D(a;). The initial

conditions are set up at z; = 300 using the known matter dominated solution D(a;) =
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D'(a;) = a; 8. These initial conditions are the same for all the models we will study
(cf. Eq. (4.53)). The linear growth factor obtained by solving Eq. (4.56) enters the calcu-
lation of the linear halo bias through ¢(z).

Recall we have defined 4. as the linearly extrapolated value (using the ACDM linear
growth factor) of the initial density of the spherical overdensity for it to collapse at a given
redshift. To determine this value, we consider the evolution equation of the physical radius

¢ of the spherical halo at time ¢, which satisfies the Euler equation

- (i) - oo
Geff(a, 5) Hng()éCL_S
= — (4.57)

where we have used Eq. (4.27) in the last equality. Note that ( = ar = x/H3, where r
is the comoving radial coordinate. Changing the time variable to N and defining y(t) =

¢(t)/ (aR), Eq. (4.57) becomes

E' Geg(a,y2 — 1) Qoe 3N, _
Y+ <E+2>y’+ il e ) QOEQ (y?-1)y=0, (4.58)

3.1 invoking mass conservation 9. The initial conditions

where we have used that § = ¢y~
are then given by y(a;) = 1 — 0iin,i/3 and y'(a;) = dyin,i/3 (here, Oy ; is the initial linear den-
sity contrast). The value of d. is found by a trial-and-error approach to determine the initial
density 6y, i that leads to collapse (y = 0, § — o0) at redshift z, evolving this afterwards
until the present day using the ACDM linear growth factor.

It is important to note that, despite the presence of the Vainshtein screening, the mod-
ifications to gravity incorporated into Geg do not introduce any scale dependence in the
dynamics of the collapse of the spherical overdensities. The reason for this is that the imple-
mentation of the Vainshtein mechanism does not depend on the size of the halo R, but only
on its density. Consequently, the critical barrier J. is “flat”, i.e., it is only time-dependent
and not S-dependent. In fact, in the previous subsection we have already anticipated this
result, which is the one for which Eqgs. (4.46), (4.48) and (4.50) are valid. The situation is dif-
ferent, for instance, in models that employ the chameleon screening mechanism. In these

cases, the fifth force is sensitive to the size of the halo, and the barrier can have a nontrivial

shape [261].

8Not to be confused with the initial times of Table 4.1.
YExplicitly: pma®R® = (1+8) pmr® = 6 = (aR/r)® — 1=y — 1.



4. Spherical collapse in Galileon gravity 114

Limitations of the spherical top-hat profile description

It is well known that the Sheth-Tormen mass function [273, 274, 275] fits ACDM N-
body simulation results better than Eq. (4.48). The reason is because the Sheth-Tormen
mass function is derived by assuming the ellipsoidal collapse of the overdensities, which
is a more realistic description of the intrinsically triaxial proccesses of gravitational insta-
bility. In the excursion set picture, the ellipsoidal collapse translates into a mass dependent
(i.e. 'non-flat’) critical barrier. In this chapter, we are only interested in a qualitative analy-
sis and, therefore, the spherical collapse model is sufficient. However, even if one models
the Galileon mass function with the standard Sheth-Tormen formulae (as we shall do in
Chapter 5), some complications may still arise. We comment on two such complications.

Firstly, the Sheth-Tormen mass function contains two free parameters (« and p in Eq. (10)
of [273]), which were originally fitted against N-body simulations of ACDM models. The
ellipsoidal collapse captures a number of departures from the spherical collapse, but the
magnitude of such departures can be different for different models. As a result, one expects
these two parameters to be different in Galileon gravity. Secondly, in the paradigm of hi-
erarchichal structure formation, larger objects form by the merging or accretion of smaller
objects. As a result, the assumption that the overdense regions remain a top-hat throughout
all stages of the collapse may not be a good approximation, specially when it comes to cap-
ture the effects of the screening mechanism. For example, consider the formation of a very
massive halo; then, in the case of the spherical top-hat collapse, the effects of the screening
mechanism only become important in the late stages of the collapse, when the density of
the region is sufficiently high. In reality, however, the screening mechanism should start
to have an impact on the formation of this very massive halo much earlier, because the
halo forms via the continuous merging/accretion of higher-density objects that has been
affected by the screening since earlier times.

The investigation of the performance of the excursion set theory formalism in repro-
ducing the simulation results of Galileon gravity models [6, 276] is the subject of Chapter
5.

4.4 Results

In this section we present our results for the halo mass function and halo bias. These

will be shown for the WMAP9 best-fitting ACDM model [201] (dashed black) and three
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Table 4.2: Summary of the models for which we study the mass function and halo bias. We

also show the collapse threshold é. at redshift zero for each of these models.

Model Qm0h2 H(a) GeH/G 5c (Z = O)
ACDM 0.137 ACDM 1 1.677
QCDM 0.148 Eq. (2.74) 1 1.565
Linear force Quartic Galileon 0.148 Eq. (2.74) Eq.(4.27) (0 < 1) 1.497
Full Quartic Galileon 0.148 Eq. (2.74) Eq. (4.27) 1.594

variants of the Quartic Galileon model. The first one is the “full” Quartic Galileon (solid
blue) model characterized by Egs. (2.74) and (4.27). The second model is a linear force
Quartic Galileon model (solid green), in which Geg/G is obtained by taking the limit where
|0] < 1 (cf. Fig.4.3). Comparing these two models allows one to measure the effects of the
d-dependence of Geg. The last variant is a model we call QCDM (solid red), in which
the modifications to gravity are absent G.s/G = 1, but the expansion history and matter
density are the same as in the other two variants. This model is useful to isolate the changes
introduced by the modified gravitational strength, excluding those that arise through the
different matter density and modified expansion rate. These models are summarized in

Table 4.2.

4.4.1 Evolution of the critical density o,

Before presenting the predictions for the halo mass function and bias, it is instructive to
look at the time dependence of §.. This is shown in the top panel of Fig. 4.4, and the bot-
tom panel shows the difference with respect to the ACDM model. Comparing the ACDM
and QCDM models, the differences are driven by the different matter densities and by the
different expansion rates. The physical matter density, ,,,0h?, is smaller in the ACDM than
in the QCDM model (cf. Table 4.2), so that structure formation is enhanced in the latter.
On the other hand, the expansion rate acts as a friction term that slows down structure
formation. In Fig. 4.1, we saw that HAPM > QDM for 0.3 < o < 0.8. During these

times, the friction will be higher in ACDM, but lower for all other times. The net effect
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--- ACDM

— QCDM

— Quartic Galileon
Linear Quartic Galileon

Figure 4.4: The top panel shows the time evolution of the linearly extrapolated value (as-
suming ACDM linear growth factor) of the initial critical density for the halo collapse to
occur at scale factor a for the ACDM (dashed black), QCDM (solid red), linear force Quartic
model (solid green) and full Quartic Galileon model (solid blue). The bottom panel shows

the difference relative to ACDM.

is that structure formation is suppressed overall in the ACDM model, which is why J. is
larger: the initial critical densities have to be larger to account for the slower collapse. One
also notes that the relative difference between these two models starts to flatten for a > 0.5.
This is due to the fact that, after this time, HQCPM starts to grow relative to H ACDM "which

effectively brings the rate of the growth of structure closer together in the two models.

The differences between the three variants of the Quartic Galileon model are driven
only by the differences in G.g. In particular, in the linear force model, . is smaller than
in QCDM because gravity is stronger at late times (a 2 0.5) and the initial densities have
to be smaller for the collapse to occur at the same epoch. On the other hand, é. is larger
in the full Quartic Galileon model compared to QCDM, which means that the collapsing
halo feels an overall weaker gravity. This is illustrated by the solid red in the left panel of
Fig. 4.3, which represents the trajectory in a — ¢ space of a halo that collapses at the present

day. Here, one sees that by the time the fifth force deviates from unity (a 2 0.5), the density



4. Spherical collapse in Galileon gravity 117

<
10° g
g
s
~
£
c? 10% z=0 Z]
Q AN
on
o<, .
= 10°
3 p
= z=1"\
£ z
10°® 5
3
- ACDM =
— QCDM "Z@]
LIl — Quartic (full 05
10 — Quartic (linear)
1012 1013 1014 * 1015
M[M/h]

Figure 4.5: The left panel shows the halo mass function of Eq. (4.48) for the ACDM (dashed
black), QCDM (solid red), linear force Quartic model (solid green) and full Quartic Galileon
model (solid blue), for two different redshifts = = 1 and z = 0. The two panels on the right

show the difference relative to ACDM for the two redshifts.

of the halo is already sufficiently large for it to feel the negative fifth force (Geg/G < 1).
It is interesting to note that this brings the full model predictions closer to ACDM because
the resulting weaker gravity in the Quartic Galileon model compensates the faster growth
driven by the higher matter density.

As we look back in time, the curves of the three Quartic model variants get closer to one
another. This is expected because Geg/G ~ 1 in the three models for a < 0.5, and therefore
there is nothing driving any differences. The solid black line in the left panel of Fig. 4.3
shows the trajectory in a — 6 space of a halo that collapses at a = 0.5 (z = 1), where one

sees that it never crosses any region where Geg /G significantly deviates from unity.

4.4.2 Halo mass function

The left panel of Fig. 4.5 shows the mass function of Eq. (4.48) predicted for the models
of Table 4.2 at redshifts z = 1 and z = 0. All the models show the standard result that
the number density of haloes decreases with halo mass. Moreover, the number of the

most massive haloes progressively increases with time, while the number of lowest mass
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haloes decreases (the latter effect is not seen due to the range of abundances plotted). This
is a result of hierarchical structure formation: with time, low-mass haloes merge to form
higher mass objects. The two panels on the right show the difference with respect to the
ACDM model at each redshift.

At z = 0, all the variants of the Quartic Galileon model predict more massive haloes, but
fewer low-mass haloes compared to ACDM. This is expected because d. is smaller in all the
Quartic variants (structure formation is enhanced), which favours the merging of smaller
haloes into bigger ones. The linear force model has the lowest value of ., and therefore
is the model in which these differences to ACDM are more pronounced. In the excursion
set language, the explanation is that lower values of §. shift the peak of the first-crossing
distribution f(S), Eq. (4.46), towards lower S, or equivalently, towads higher M 10 This
enhances the abundance of high-mass haloes, but suppresses at the same time the number
of low-mass haloes. The opposite happens in the case of the full Quartic Galileon model.
In this case, the J-dependence of Geg results in an overall weaker gravity for haloes that
form at z > 1, which increases .. As a result, one finds that there are fewer high-mass
haloes compared to QCDM,; the overall weaker gravitational strength felt by the collapsing
haloes in the Quartic Galileon model compensates slightly the effects of the higher matter
density.

The differences between the results for the three variants of the Quartic Galileon model
become less pronounced as one looks back in time. This follows from the fact that Geg /G ~

1 at sufficiently early times a < 0.5, and so the models become essentially undistinguish-

able.

4.4.3 Halo bias

Figure 4.6 shows the linear halo bias of Eq. (4.52) for the models listed in Table 4.2. The
left panel shows the standard qualitative behaviour that high-mass haloes cluster more
(b1 > 1, biased haloes) and low-mass haloes cluster less (b; < 1, anti-biased haloes), with
respect to the underlying linear dark matter distribution. The mass M* that separates
these two regimes is determined by S(M*) = §2. This is a result of hierarchical structure

formation which predicts that, in higher-density regions, low-mass haloes are more likely

19Tn other words, if §. is lower then the random walks first up-cross the barrier sooner (low .5), rather than

later (high S).
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to merge to form higher-mass haloes. This results in an overabundance of the latter, and
in a suppresion of the former. In this chapter, we are more interested in the differences
between models in this qualitative picture, which are determined by two factors. The first
one is the different dynamics of the collapse, and is encapsulated in the different values
of .. In particular, larger values of . lead to higher bias at all mass scales (cf. Eq. (4.52)).
The second factor is the different dynamics of the linear evolution of the regions where the
haloes are forming, and is described by the term g(z) in Eq. (4.52). Larger values of g(z)
increase the bias for M > M* (§2/S > 1), but decrease it for M < M* (§2/S < 1).

Following these considerations, the bias is generally smaller in the three variants of the
Quartic Galileon model because of the lower value of §. compared to ACDM (cf. Fig. 4.4).
Moreover, g(z) is also smaller in the Quartic model variants than in ACDM, which is why
the differences become more pronounced (more negative in the right panels of Fig. 4.6) with
increasing mass. Note that, at the low-mass end of the panels, the changes in . and g(z) in
the Quartic Galileon model variants with respect to ACDM shift the bias in opposite direc-
tions. However, the bias is still smaller in any of the Quartic model variants for low-mass
haloes, which shows that the changes in J. play the dominant role over ¢(z) in determining
the differences between these models and ACDM. The linear force Quartic Galileon model
is that where the haloes are less biased at all mass scales because it is the model where
gravity is strongest (lowest . value). One also notes that the difference between the linear
force model and QCDM becomes slighlty more pronounced with halo mass, since g(z) is
smaller in the former compared to the latter. The case of the full Galileon model is perhaps
the most interesting one due to the /-dependence in G.g. The dashed black and solid red
lines in Fig. 4.3, show, respectively, the trajectories in a — ¢ space of a linear overdensity
that has 6 = 0.01 and of a halo that collapses today. One sees that at late times, a 2 0.5,
the spherical halo feels an overall weaker gravity compared to QCDM (larger ¢.), but that
the larger region, where the density is small, feels an overall stronger gravity (smaller g(z))
compared to QCDM. As a result, in light of the changes driven by J. and g(z), one has
that at the high-mass end, these effects shift the linear bias in opposite directions, and the
net result is an approximate cancellation, w.r.t. QCDM. On the other hand, at lower mass
scales, the changes in d. and g(z) both shift the bias upwards, which therefore becomes

larger in the full Quartic model compared to QCDM.

Similarly to what we have seen in the previous subsections, the bias of haloes that form
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Figure 4.6: The left panel shows the linear halo bias parameter of Eq. (4.52) for the ACDM
(dashed black), QCDM (solid red), linear force Quartic model (solid green) and full Quartic
Galileon model (solid blue), for two different redshifts z = 1 and z = 0. The two panels on

the right show the difference relative to ACDM for the two redshifts.

at z 2 1 (a £ 0.5) tend to become the same in the three variants of the Quartic Galileon

model, because at these early times the three models are undistinguishable.

4.5 Summary

In this chapter, we studied the nonlinear growth of large scale structure in the Quartic and
Quintic Galileon gravity models in the context of excursion set theory. For this, we have
derived the nonlinear Einstein and Galileon field equations assuming spherical symmetry,
the quasi-static approximation and the weak field approximation. In these models, the
spatial gradient, ¢,, /x, of the Galileon field contributes to the fifth force and its value is
obtained by solving a nonlinear algebraic equation, Eq. (4.26). Using these equations, we
studied the spherical collapse of matter overdensities and analysed the preditions for the

halo mass function and halo bias. Our main findings can be summarized as follows:

o In the case of the Quintic Galileon model, if § is above order unity, then the field equations

do not admit physical solutions. This is because the branch of solutions for ¢,, /x that
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vanishes when § = 0 (which characterizes the physical behaviour) becomes a complex
root of Eq. (4.26) (cf. Fig. 4.2). Evidently, the impossibility of evaluating the fifth force at
these densities prevents the study of the spherical collapse in the Quintic model. In the
case of the Quartic model, we showed that the physical solutions exist in sufficiently high
density regions, but do not exist at late times if the density is sufficiently low (cf. Fig. 4.3).
For the halo spherical collapse study we presented, such low densities are not important

and the problem is irrelevant.

e Atearly times (z 2 1, ora < 0.5) in the Quartic model, the effective gravitational strength
is Ger /G =~ 1 (cf. Fig. 4.3). With time, Gg/G increases if the overdensity is small (6 < 1),
and at the present day one has Geg/G ~ 1.4. On the other hand, if the overdensity is of
order unity or above, the value of G.4/G decreases with time, and at the present day it
is Geg /G =~ 0.6 for 6 > 1. Thus, the modifications to gravity are not completely screened
at high densities. The reason for this is that the Galileon field contributes to G.g/G not
only through its spatial gradients, but also through the background time evolution that
multiplies the standard gravity terms (cf. Egs. (4.4), (4.5) and (4.6)). The latter will still be
present, even at high densities where the Vainshtein screening successfully suppresses

the spatial gradients.

e The dynamics of the spherical collapse of (top-hat) overdensities is sensitive to the den-
sity of the halo, but not to its size or mass. In other words, the critical density for collapse,
., which determines the height of the barrier in the excursion sets, is “flat”. Our results
show that ¢. becomes smaller when one changes from the ACDM to the QCDM model.
This is mostly because of the higher matter density in the latter, which makes the haloes
collapse faster. In the linear force Quartic model, the fifth force is non-negligible and pos-
itive for a 2 0.5, which further decreases the critical density J. because it further boosts
the collapse of the haloes. In the case of the full Quartic model, the spherical haloes feel a
negative fifth force in the collapsing stages for a 2 0.5 (cf. Fig 4.3), which makes §. larger
than in QCDM.

e The excursion set theory results show that, at = = 0, all the variants of the Quartic
Galileon model predict more high-mass haloes than ACDM, but fewer low-mass haloes
(c. f. Fig. 4.5). This is mainly due to the higher matter density in the Galileon models,

which enhances structure formation, and thus makes it easier for smaller haloes to merge
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into more massive ones. In the case of the linear force model, the enhanced gravitational
strength leads to more haloes at the high-mass end. On the other hand, in the full Quar-
tic Galileon model, the haloes that collapse at z = 0 feel overall a weaker gravity, and

therefore, the model predicts fewer high-mass haloes compared to QCDM.

The excursion set theory linear bias parameter in the variants of the Quartic Galileon
model is generally smaller than in ACDM, with the differences becoming more pro-
nounced with increasing halo mass. In the Galileon model, the bias of dark matter haloes
is determined by the interplay of the different values of . and g(z) (cf. Eq. (4.52)). While
larger values of . can only lead to higher bias, larger values of g(z), (which corresponds
to slower growth rate of the underlying dark matter field), make high-mass haloes more

biased, but low-mass haloes less biased.

In summary, the simplified study of nonlinear structure formation in this chapter pro-
vides us with some first insights into the N-body simulation results that will follow in
subsequent chapters. In particular, in Chapter 5, we shall use some of the excursion set
methodology presented here to develop a halo model [277] for Galileon gravity, and see
how it compares with the results from the simulations. In principle, the analysis of this
chapter can also be used to compute halo mergers trees with less work than by using N-

body simulations, which could be used to study galaxy formation in the Galileon model.



Chapter 5
N-body simulations and

halo modelling in

Galileon gravity

cosmologies

In this chapter, our goal is to bring the excursion set theory predictions of the previ-
ous chapter on to a more quantitative level, by comparing and calibrating them with the
results from N-body simulations. In particular, we calibrate the free parameters of the
Sheth-Tormen formulae for the halo mass function and linear halo bias [273, 274, 275] to
the N-body simulations of the Cubic and Quartic Galileon models. We also fit the halo
concentration-mass relation in the simulations, which we use, together with the Sheth-

Tormen formulae, to build a halo model for the nonlinear matter power spectrum.

The first part of this chapter is dedicated to presenting the strategy used to simulate
Cubic Galileon cosmologies, which is based on the algorithm of Ref. [124]. We shall also
use simulation results of the Quartic Galileon model, which requires a more involved al-
gorithm. This is due to the higher degree of nonlinearity of the equations, but also due to
the existence of anisotropic stress in the Quartic model. The details about Quartic Galileon
model simulations shall not be presented in this thesis, but the interested reader can find
them in Ref. [276]. Recall that in the last chapter, by studying the behavior of the fifth force
in the Quintic model assuming spherical symmetry in the quasi-static limit, we have seen
that the model fails to admit physical solutions where the density perturbations become
of order unity. The study of nonlinear structure formation in the Quintic model therefore

requires a more careful assessment of this problem, which is beyond the scope of this thesis.

In Chapters 2 and 3 we have seen that the Galileon models (without massive neutrinos)

that fit the CMB data tend to predict rather high amplitudes for the clustering of matter

123
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on large scales, compared to ACDM (cf. lower right panel of Fig. 4.1). This is illustrated
by the larger values of og in these models in Table 4.1. Although we know from Chapter 3
that the presence of massive neutrinos helps to lower this amplitude, it is interesting to ask
the question of whether or not the high values of og constitute an observational tension. In
these previous chapters, we argued that a decisive statement could only be made after more
careful modelling of galaxy/halo bias, redshift space distortions and nonlinearities of the
screening mechanism. In this chapter, armed with the results from N-body simulation and
the calibrated analytical formulae we shall finally answer the above question by conducting

a Halo Occupation Distribution (HOD) analysis.

5.1 N-body simulations of Cubic Galileon cosmologies

In this section, we describe the strategy to solve the equations of the Cubic Galileon model
using the modified gravity N-body code ECOSMOG [124, 278]. As we shall see below, the
Cubic Galileon model is, in many aspects, similar to the Dvali-Gabadadze-Porrati (DGP)
model [64, 138, 139, 279], of which a number of N-body studies have already been per-
formed [124, 280, 281, 282, 283, 284].

5.1.1 Force equations in the quasi-static and weak-field limits

The N-body code solves the equations written in the quasi-static and weak-field limits
(cf. Sec. 4.1). The validity of these assumptions can always be assessed by checking if the
simulation results reproduce the full linear theory predictions on the scales where linear
theory should hold. In our notation, 9; denotes a partial derivative w.r.t. the i-th spatial
coordinate (i = x,, ), and the indices are lowered and raised using the spatial metric ~;;
and its inverse 7%/, respectively (cf. Eq. 1.1).

Under the above approximations, the Poisson equation and the Galileon field equation

of motion are given, respectively, by

820 = 47Ga28p,, — %@26%, (5.1)
2c3 des . 2¢
TPV = |~ — g (B4 2H9)| e+ o [(0%0) — (319,9)°]

(5.2)

These two equations can be combined in an equation that involves solely the Galileon field
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and the matter density perturbation:

1 M;
P+ g (09) = (0i059)] = S518nGa o, (5.3)

where we have used the relation ® = ¥ in the Cubic Galileon model, as a consequence of
the vanishing anisotropic stress (cf. Chapter 2). Here, 9* = 9;0" is the spatial Laplacian dif-
ferential operator and (9;09;¢)? = (9;0;¢)(9'd7¢). Spm, is the matter density perturbation,

pm = Pm(t) + 6pm(t, ©). The dimensionless functions 31 and /3, are defined as

1 4cs .. . Kes

b= e —cg—ﬁ?;,(go+2ﬂ<p)+2ﬁ’é<p4 : (5.4)
M3M,

o= 2 PLs,. (5.5)

Equation (5.3) has the same structural form (in terms of the spatial derivatives of the scalar
tield) as the equation of motion of the DGP brane-bending mode [285]. The differences lie
only in the distinct time evolution of the functions $; and (2. In particular, in the DGP
model 31 = f. To facilitate the comparison between the different models with equations

of the same form as Egs. (5.1) and (5.3), we can redefine the field perturbation as

B

Op = 5-0¢p, (5.6)
B2
where 3 is a free function. With this redefinition, Egs. (5.1) and (5.3) become
25 — 2 kes B g0
0°P = 4AnGa“dpy, — W@SO %, (5.7)
P+ ! [(8290)2 - (3i8j<p)2] = @8ﬂGa26pm. (5.8)
3(8152/B) a? M3 35

In this way, we can choose 3 to make the right-hand side of Eq. (5.8) look like in a given
model, such as the DGP model. In this case, the differences between the two models in the
scalar field equation are fully captured by the different values of 3152/ in the coefficient
of the nonlinear derivative terms. In the top panel of Fig. 5.1, we show the time evolution
of —B1P2/p for the Cubic Galileon (solid blue) and DGP (dashed green) models taking
B = Bpcp. Here, the DGP model is the self-accelerating branch that best fits the WMAP
5yr CMB data [69] and that has been simulated in [124]. Note that in the DGP model,
B1B2/Bpap = Bpcp. We see that for both models the value of —/182/6pap decreases
overall but in different ways. In particular, the value of — 1 52/5pap in the Cubic Galileon

model can be smaller or larger than in the DGP model throughout cosmic history. Since
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this term multiplies the nonlinear derivative terms, its different time evolution in these two
models translates into a different efficiency for the screening mechanism.

Note however, that besides the different coefficients of the nonlinear derivative terms,
different models can also differ in the coefficient of 9> in the Poisson equation Eq. (5.7).
In particular, in the Cubic Galileon model, such a coefficient is time-dependent whereas in
the DGP model, for instance, it is simply a constant equal to 1/2 [124].

Equation (5.8) can be regarded as a second-order algebraic equation for 8%¢. To avoid
numerical problems related to the choice of which branch of solutions to take, we first solve

this equation analytically to obtain':

—a+t./a2+4(1—-¢)%

2 _
in which
a = 3(B162/B)a* M3, (5.10)
2
Y = (9:059) + ozSTrG;B]WPI(Spm — e (9%p). (5.11)

In our simulations, we follow the strategy of [124, 282] and set the free constant coefficient
e = 1/3. The reason behind 1/3 is linked to the so-called operator splitting trick [276, 282]
which is explained below. The choice of the solution branch is determined by the condition
that the physical result that 0%p — 0, when p — 1, should be recovered, i.e., if there are
no density fluctuations then there should be no fifth force [124]. As a result, one should
choose the sign of the square root in Eq. (5.9) to be the sign of «, or equivalently, the sign
of 3182/8. With such a choice, Eq. (5.9) can be written as

To determine the particle trajectories, the N-body code first solves the Galileon field equa-
tion (Eq. (5.12)) to determine 9%¢. The solution is then plugged into the Poisson equation
(Eq. (6.7)), which is solved to obtain the gradient of ®, which gives the total force (GR +
fifth force) under which the simulation particles move.

The discretization of Egs. (5.7) and (5.12) is identical to the case of the DGP model (apart
from the different coefficients, cf. Sec.5.1.1). Such equations are lengthy and were already

presented in [124], to which we refer the interested reader.

'Equation (5.9) is obtained by solving the equivalent equation (1 — ¢) (82<p)2 +a(8%p) - =0.
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Operator splitting trick

In the expression for ¥ above, one can decompose the tensor 9;0;¢ into its trace and trace-

less parts, respectively, as
1 2 A A
0;0j¢p = g%’ja ¢ + 0,05, (5.13)

where the operator § is defined by ~*/ (iéfp = 0. Using this split, it can be shown that if
e = 1/3, then X becomes

87Ga?Mp

Y= (éjéj‘@)2 +« 33

0Pm; (5.14)

that is, we have eliminated the dependence on 9%¢. The ECOSMOG code solves Eq. (5.9) by
iteratively relaxing a discretized version of it on a grid [278]. It is possible to show that ¥,
as given by Eq. (5.14), does not depend on the value of ;. after one writes the derivatives
as finite differences (where ;i is the value of the field at the grid cell labelled by {ijk}).
This is why the choice of ¢ = 1/3 is useful, as in this way, when the code is iterating over
the values of ¢;ji, the latter appears only linearly on the left-hand side of Eq. 5.9 (after
discretizing §%¢). This is found to significantly improve the convergence rate of the code.
Moreover, by removing ¢;; from inside of the square-root, one is also protected against
imaginary square-root problems that could arise from a bad initial choice for the value of
©ijk at the start of the iteration. More details on the operator splitting trick can be found in

Refs. [276, 282].

5.1.2 Vainshtein screening

Equation (5.8) tells us that different models can be compared by the different coefficients
of the nonlinear derivative term responsible for the screening. It is therefore instructive to
understand how such derivative couplings work to suppress the modifications of gravity.
For simplicity, here we look only at the case of spherically symmetric configurations of the
gravitational and scalar fields (this was already done for the case of the Quartic Galileon
model in the previous chapter). Therefore, assuming that ¢ and ® depend only on the
radial coordinate, r, Eq. (5.8) becomes:

2 1 1d M
[ z 2 Pl 2
r2 dr [7¢or] 3 M3a? (182/8) r? dr [re.r] 30 8rGa”op, (5.15)
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Figure 5.1: Time evolution of the quantity —352/5, with 5 = Bpgp (cf. Egs. (5.4), (5.5)
and (5.8)) (top panel), and of the Vainstein radius 7y (bottom panel) for the Cubic Galileon
(solid blue) and DGP (dashed green) models. In the bottom panel, we have assumed r. =
Hy !'so that r can be plotted in the same units for both models. The Cubic Galileon model

plotted is the model of Table 4.1 while the DGP model is the model simulated in [124].

which can be integrated once to yield

42 1 1,2 2Mp GM(r) ,
T3 MBa? (B1B2/B) P 3B ’

where M(r) = 4 [ dpm(£)€2d€ is the matter contribution to the mass enclosed within a

(5.16)

radius r. Eq. (5.16) is a second-order algebraic equation for ¢,.. Taking for simplicity a

top-hat density distribution of radius R, the physical solutions are given by:

AMpyar3 ry\3 GM(R)
= = 1—1 , 5.17
& 3613 ( r ) * 2 (17)
forr > R and
4MP16L2R3 ry 3 GM(T)
= = 1-1 , 5.18
& 3613 ( R ) + 2 (5.18)

for r < R. In Egs. (5.17) and (5.18) we have identified a distance scale, 7/, known as the
Vainshtein radius, which is given by

8Mp17“5'

OM351 By’ (5.19)

" =
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where rg = 2GM (R) is the Schwarzschild radius of the top-hat source. The last term in the
modified Poisson equation (Eq. (5.7)) represents the fifth force mediated by the Galileon
field:

keg B .o
F — . 5.20
Taking the limits where > ry and r < ry one has
2c3a?p? GM(R)
F - 21
5th SMOMpy 12 >y, (5.21)
Fsip ~ 0 r<Lry. (5.22)

Consequently, ry gives a measure of the length scale below which the screening mecha-
nism starts to operate to recover the normal general relativistic force law. If 3182 — oo
then both the coefficient of the nonlinear derivative terms in Eq. (5.8) and ry tend to zero.
In this case, the additional gravitational force is not suppressed below any distance scale.
This shows how the derivative interactions of the scalar field are able to suppress the fifth
force.

The lower panel of Fig. 5.1 shows the time evolution of the Vainshtein radius, 7y, for
the Cubic Galileon and DGP models. In the latter we have assumed that r. = H 1 where
r. is the DGP crossover scale?, so that ry could be plotted for the two models with the
same units of rgH 2. For both models, ry increases with time, but it does so at different
rates. In particular, at a = 0.5, the Vainshtein radius of a given matter source in the Cubic
Galileon model is comparable to that in the DGP model. From a ~ 0.5 until the present
time, the Vainshtein radius in the Cubic Galileon model is larger than in the DGP model,
with the values differing by approximately one order of magnitude at @ = 1. In practice,
this means that in the Cubic Galileon model, the fifth force resulting from a given matter
source at a = 1 is screened out to a distance which can be about ten times larger than in the

DGP model.

Problems with imaginary square roots

The quadratic nature of Eq. (5.16) raises the possibility that, under some circumstances,

there might not be real solutions. From Egs. (5.17), (5.18) and (5.19) we see that the condi-

2Very briefly, the crossover scale, r., is a parameter of the DGP model that gives a measure of the length

scale below which gravity is four-dimensional and above which it is five-dimensional [64].
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tion for the existence of real solutions is given by:

1 647TGMP1

A=1 -
58 oM

/0 S (€)EdE > 0, (5.23)

This equation shows that in low density regions, such as voids, where dp,,, < 0, itis possible
for A to be negative (note that 5132 > 0). In fact, this is exactly what we have found in our
simulations of the Cubic Galileon model: for a 2 0.8, there are regions in the simulation
box for which there are no real solutions for the fifth force. Such a problem, nevertheless, is
absent from the DGP simulations performed with the same N-body code [124]. The reason
is primarily related to the different time evolution of the quantity 5152/ (or equivalently
B1P2) in both models. Looking at Eq. (5.23), one sees that the smaller the value of 335, the
easier it is for A to be negative in low density regions. In Fig. 5.1, we have seen that at late
times, 3155 is smaller in the Cubic Galileon model than it is in the DGP model, which is
why the imaginary square root problem shows up in the former and not in the latter.

This problem can be a consequence of the quasi-static limit approximation. The terms
we have neglected while deriving the quasi-static field equations may not be completely
negligible in certain circumstances, such as when the matter density is very low. In partic-
ular, such terms might be the missing contribution to Eq. (5.12) that prevents the imaginary
solutions 3. In the simulations for this chapter, we work our way around this problem by
simply setting A = 0 whenever this quantity becomes negative. Such a solution, although
crude and not theoretically self-consistent, should not have a measurable impact on the
small scale nonlinear matter power spectrum and halo mass functions. The reason is that
the clustering power on small scales is dominated by the high density regions where the
problem does not appear.

We stress however that even if the fifth force would not have become imaginary, one
would still have an inaccurate calculation in low densities because the quasi-static limit is
not expected to be a good approximation there. For instance, this is the case of the DGP
simulations that have been performed so far [124, 280, 281, 282, 283, 284]. The case of the
Cubic Galileon is more severe because it forces one to fix some terms in the equations in an
ad hoc way. It should be noted that it is not clear that our solution to the imaginary fifth force

problem is making the calculation more inaccurate than in the DGP simulations. To fully

*The recent work of Ref. [256], however, suggests that even after relaxing the quasi-static approximation

the problem persists.



5. N-body simulations and halo modelling in Galileon gravity cosmologies 131

address this question one would have to simulate the full model equations (i.e. without

assuming the quasi-static limit), which is beyond the scope of the analysis here.

5.2 Halo Model of the nonlinear matter power spectrum

In this section, we describe the halo model of the nonlinear matter power spectrum, as
well as the halo properties that are needed as input. In particular, we define and present

the halo mass function, linear halo bias and halo density profiles.

5.2.1 Halo model

In the halo model approach, one of the main premises is that all matter in the Universe is in
bound structures. Thus, the two-point correlation function of the matter density field can
be decomposed into the contributions from the correlations between mass elements that
belong to the same halo (the 1-halo term) and to different haloes (the 2-halo term). In terms
of the matter power spectrum, this can be written as (see Ref. [277] for a comprehensive

review)
P, = Pt 4+ P2, (5.24)

where

M dn(M)
P = [ dM - k, M)|?
= fam S M

P = I(k)*Ppn, (5.25)
are, respectively, the 1-halo and 2-halo terms, with

dn(M
I(k) =/de;mbnn(M)!u(k,M)\- (5.26)

In the above expressions, k is the comoving wavenumber; p,,o is the present-day back-
ground matter density; Py i, is the matter power spectrum obtained using linear theory;
dn(M)/dInM denotes the comoving number density of haloes per differential logarithmic
interval of mass (we shall refer to this quantity as the mass function); by, (M) is the linear
halo bias; u(k, M) is the Fourier transform of the density profile of the haloes truncated at
the size of the halo and normalized such that u(k — 0, M) — 1. In order to compute the
matter power spectrum of Eq. (5.24), one has to model these quantities first. This is done

next, where we follow the notation used in Chapter 4.
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5.2.2 Halo mass function

We express the halo mass function as in the first line of Eq. (4.48), but taking the following

expression for f(5)

L [a b g2\ "
7(5) = Ay L e, 1+(S>

where 0. = 0.(z) is the critical initial overdensity for a spherical top-hat to collapse at red-

oz
exp [—qzs] , (5.27)

shift z, extrapolated to z = 0 with the ACDM linear growth factor (as we did in Chapter
4). The choice of parameters (¢, p) = (1,0) leads to the Press-Schechter mass function [269],
used in the previous chapter. However, Refs. [273, 274, 275] found that the choice of pa-
rameters (¢, p) = (0.75,0.30) (which is motivated by the ellipsoidal collapse of structures,
and not spherical) provides a much more accurate description of the mass function mea-
sured from N-body simulations of ACDM models. For Galileon gravity models, it is not
necessarily true that this choice of (¢,p) parameters also results in a good fit to N-body
results. In the next section, we recalibrate these two parameters to our simulations of the
Cubic and Quartic Galileon models. The normalization constant A is fixed by requiring
that [ f(S)dS = 1. The mass function computed using Eq. (5.27) is known as the Sheth-

Tormen mass function.

5.2.3 Linear halo bias

By following the same steps as in Chapter 4, one can show that the Sheth-Tormen halo bias

is given by

2 _
b(M) = 1+ g(2) (q‘sc/i . +2(§§§;S)p> . (5.28)

Provided the (g, p) parameters are calibrated to fit the mass function, the linear halo bias
b(M) should, according to the excursion set theory logic, give automatically a reasonably
good fit to the simulation results. This is one of the well-known lessons of Refs. [273, 274,
275] for the CDM family of models. The results in the next section show that this remains

true for the Cubic and Quartic Galileon models.
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5.2.4 Halo density profiles

We assume that the radial profile of the dark matter haloes 4 is of the NFW type [286]
PNFW (1) = %, (5.29)
r/rs [1+17/15]
where ps and r; are often called the characteristic density and the scale radius of the halo.
The mass of the NFW density profile, Ma, can be obtained by integrating Eq. (5.29) up
to some radius Ra (the meaning of the subscript A will become clear later)

3

Ra 2 RA CA
Mp = / dranrpnrw (1) = 4mps— |In (1 +ca) — , (5.30)
0 CA 14+ca
where we have used the concentration parameter
R
cp = 2 (5.31)
Ts
(not to be confused with the ¢; parameters in the action of the Galileon model).
In our simulations, the halo mass is defined as
4T 3
Ma = ?AIOCORAa (5.32)

i.e., M is the mass enclosed by the comoving radius R, within which the mean density is
A times the critical density of the Universe today, p.o. Here, we consider A = 200, but for
now let us keep the discussion as general as possible. By combining Egs. (5.30) and (5.32),

one finds p; as a function of ca:

-1
CA

1+ca

1
Ps = gAﬁcoci In(1+ca)— (5.33)

All that is needed to fully specify the NFW profile is to determine the value of r,, which
is done by direct fitting to the halo density profiles measured from the simulations. In the
literature, however, it has become more common to specify the concentration-mass relation
ca(My), instead of the equivalent values of rs. Previous studies [287, 288, 289, 290] have
found that the concentration-mass relation is well described by a power law function. The
parameters of the power law, however, seem to have a sizeable cosmology dependence,
even for different choices of cosmological parameters in ACDM models (see e.g. Ref. [289]).

In the next section, we will see that the ca(Ma) relation in Galileon models can also be

*Not to be confused with the top-hat profile assumption used in the spherical collapse to obtain the values

of the critical density d..
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well fitted by a power law, but with fitting parameters that differ considerably from those
obtained for ACDM. Having found the ca(Ma) relation from the simulations, then the
NFW density profile becomes completely specified by the mass Ma of the halo.

Finally, because what enters Egs. (5.25) and (5.26) is the Fourier transform of the pro-
files, u(k, M), and not the profiles themselves, we simply mention that it is possible to show
that

o sinkr pnpw (1)

RA
k. M) = dr4 _
unrw (k, M) /0 rdmr o A

= drperd {Sm ](\l;rs) Si([1 + cakrs] — Si (kry))

cos (krs)
M

sin (cakrs)
M (1+cp)krs } ’ (5:34)

Ci([1 + cakrs] — Ci (kry))

where Si(z) = [ dtsin(t)/t and Ci(z) = — [ dtcos(t)/t. Note that, indeed, u(k —
0, M) — 1, as required.

5.3 Results

In this section, we test the predictions of the halo model formulae presented in the last sec-
tion with the results from N-body simulations of the Cubic [6] and Quartic [276] Galileon

models.

5.3.1 Summary of the simulations

The simulations we use in this chapter were performed with the ECOSMOG code [278],
which is a modified version of the RAMSES code [291] that includes extra solvers for the
scalar degrees of freedom that appear in modified gravity theories. The code solves the
equation of motion of the scalar field by performing Gauss-Seidel iterative relaxations on
an adaptively refined grid. The grid is refined whenever the number of particles within
a grid cell exceeds some user-specified threshold, Ny,. This ensures that high-density re-
gions are sufficiently well resolved, while saving computational resources in regions where
the density is lower. The strategy to simulate the equations of the Cubic Galileon was pre-

sented in Sec. 5.1 and the strategy to simulate the equations of the Quartic Galileon model
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Figure 5.2: Time and density dependence of the effective gravitational strength Geg of
Eq. (4.27) for the Cubic (left panel) and Quartic (right panel) Galileon models. The colour
scale bars at the right of each panel show the value of Geg/G. The color scale is the same

for both panels.

follows that described in Ref. [276]. For more details about the code implementation, in
particular in Galileon cosmologies, we refer the reader to Refs. [6, 124, 276, 278].

The results that follow correspond to the full, linear and QCDM variants that we have
introduced already in Chapter 4 (c.f. Table 4.2).

The simulations were performed in a box of size L = 200Mpc/h, with N,, = 5123 dark
matter particles and grid refinement criteria Ny, = 8. For each of the model variants, we
have simulated five different realizations of the initial density field, by choosing different
random seeds. This allows for statistical averaging, which we use to construct errorbars
for the simulation results by measuring the variance within the different realizations. Al-
though in this chapter we show results only for one box size, we note that in Refs. [6, 276]
the same models were simulated using different box sizes and particle numbers, and gave

converged results.

Model parameters

The results of the Cubic and Quartic Galileon models that follow correspond to the model
parameters shown in Table 4.1. Figure 5.2 shows the effective gravitational strength for the
Cubic and Quartic Galileon models, Geg(a,d) (cf. Eq. (4.27)). The right panel of Fig. 5.2

is the same as the left panel of Fig. 4.3, but we show it again to facilitate the comparison



5. N-body simulations and halo modelling in Galileon gravity cosmologies 136

Table 5.1: Best-fitting Sheth-Tormen (g, p) parameters to the simulation results for the vari-
ants of the Cubic and Quartic Galileon models at a = 0.60, a = 0.80 and a = 1.00. The
uncertainty in the values of g and pis A, = 3.5 x 1073 and A, = 1.5 x 1073, respectively.
These parameters were determined by minimizing the quantity Y, [n*™(> M;)/n5T (>
M;,q,p) — 1|, where n®™ is the cumulative mass function measured in the simulations,
nST is the analytical result given by the Sheth-Tormen mass function and the index "i’ runs

over the number of bins in the cumulative mass function.

Model a = 0.60 a = 0.80 a = 1.00
(¢,p) (¢;p) (a,p)
QCDMypic (0.699,0.336) (0.727,0.349)  (0.791,0.354)
Cubic Galileon (0.699, 0.334) (0.720,0.346)  (0.770,0.349)

Linearized Cubic Galileon

QCDMQuartic

Quartic Galileon

Linearized Quartic Galileon

(0.685,0.326)

(0.671,0.339)
(0.713,0.359)
(0.649,0.316)

(0.692, 0.308)

(0.692, 0.349)
(0.840, 0.389)
(0.671,0.316)

(0.734,0.301)

(0.713,0.354)
(1.024,0.407)
(0.692,0.321)

with the corresponding result for the Cubic Galileon model (left panel of Fig. 5.2). The
physical picture depicted in Fig. 5.2 indicates that the modelling of halo properties can be
very different in these two models, in particular because of the different behavior in high-
density regions. The values of J. and g(z) that enter the calculation of the mass function
and halo bias in the Cubic and Quartic Galileon models were computed by following the
strategy layed out in Chapter 4 (we do not display the values for brevity, but the interested
reader can find them in Table II of Ref. [7]).

5.3.2 Mass function

In Figs. 5.3 and 5.4, we show our results for the cumulative mass function of the Cubic
and Quartic Galileon models, respectively. These were obtained with the phase-space
friends-of-friends halo finder code Rockstar [292]. Throughout, we use M and Msg

interchangeably to denote halo mass. The symbols with errorbars indicate the simulation
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Figure 5.3: The upper panels show the cumulative mass function of the three variants of
the Cubic model at a = 0.60, @ = 0.80 and a = 1.00. The triangles with errorbars show the
simulation results considering only haloes (and not subhaloes) with mass Mao > 100M),
where M, = Q0 peoL? /Ny is the particle mass. The solid lines correspond to the cumula-
tive Sheth-Tormen mass function using the best-fitting (¢, p) parameters to the simulation
results given in Table 5.1. The dashed lines are computed in the same way as the solid lines,
but with the standard Sheth-Tormen parameter values (¢,p) = (0.75,0.30). For reference,
the Sheth-Tormen cumulative mass function for a ACDM model with WMAP9 parameters
[201] is shown by the black dashed curve in the upper panels. The color scheme indicated
in the figure applies to the lines and symbols. In the lower panels, the relative difference
of the simulation results w.r.t. the QCDM simulation results is shown, and the relative
difference of the analytical predictions is plotted w.r.t. the analytical predictions of the
QCDM model. Also in the lower panels, the solid red and dashed red lines are both zero,

by definition.
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Figure 5.4: Same as Fig. 5.3, but for the Quartic Galileon model.

results and the dashed lines show the Sheth-Tormen mass function with the standard pa-
rameters (¢,p) = (0.75,0.30). One can see that the mass function computed in this way
fails to provide a reasonable description of the simulation results, as it significantly under-

estimates the effects of the modifications to gravity seen in the simulations.

It is not completely surprising that the use of the standard Sheth-Tormen parameters
(¢,p) = (0.75,0.30) fails in the Galileon model, since these were chosen to fit ACDM sim-
ulations [273, 274, 275]. The ellipsoidal collapse motivates a departure from (¢,p) = (1,0)
(which corresponds to the spherical collapse case), but the magnitude of this departure
is determined by fitting to numerical results. Very crudely, one can say that the fitted
(g, p) parameters absorb some of the uncertain details of the nonlinear structure formation,
which cannot be accurately described by the ellipsoidal collapse. In models that differ sig-
nificantly from ACDM, like the Cubic or Quartic Galileon models, it is to be expected that
the specifics of the ellipsoidal collapse should also be different. In practice, this translates
into different values for the (¢,p) parameters. The solid lines in Figs. 5.3 and 5.4 show
the Sheth-Tormen mass function predicted using the best-fitting (¢, p) parameters to the

simulation results. The latter were determined for each variant of the Cubic and Quartic
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Galileon models at a = 0.6, a = 0.8 and a = 1. Their values are shown in Table 5.1. By
allowing (g, p) to differ from the standard values, one sees that the analytical predictions
can actually provide an extremely good fit to the simulation results in the entire mass range
probed.

In the case of the Cubic model, one sees that the screening mechanism works well at
suppressing the enhancement in the number density of haloes. For instance, the linear vari-
ant predicts an enhancement in the number density of haloes with M ~ 104 Mg /hata = 1
of about 45%, whereas in the case of the full model, in which the screening is at play, the
enhancement is smaller than 10%. On the other hand, in the case of the Quartic model, the
overall weakening of gravity in the full variant (cf. Fig. (5.2)) leads to a significant suppre-
sion in the number density of collapsed objects. In particular, haloes with M ~ 10'4M /h
are ~ 50% less abundant compared to QCDM. In the case of the linearized variant, the
same massive haloes are ~ 30% more abundant w.r.t. QCDM.

Before proceeding, a comment should be made about the definition of halo mass in the
simulations and in the analytical formulae. Assuming mass conservation, Eq. (4.43) can
be associated with the virial mass of the halo, whose definition differs in different models.
Here, we are comparing the mass M of Eq. (4.43) with the values of Moy measured from
the simulations. One does not expect these two mass definitions to be exactly the same, but
nor would one expect them to differ significantly. These ambiguities in the mass definition
can, anyway, be absorbed in the fitted values of the Sheth-Tormen (g, p) parameters. We
expect these fitting parameters to slightly change with different mass definitions. However,

note that this is also the case for the ACDM model, and is not peculiar to Galileon gravity.

5.3.3 Linear halo bias

In our simulations, we measure the halo bias by evaluating the ratio

b(k, M) = ]W, (5.35)

where P (k) is the total matter power spectrum and P, (k, M) is the halo-matter cross spec-
trum for haloes of mass M. We used a Delaunay Tessellation field estimator code [293, 294]
to obtain the halo and matter density fields from which we computed these power spectra.
In the numerator of Eq. (5.35), we consider the cross power spectrum, rather than the halo-

halo counts power spectrum, to reduce the impact of shot noise on our measurements. Our
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estimate for the linear halo bias is given by the asymptotic value of b(k, M) on large scales
(small k). The result is shown in Fig. 5.5 for the Cubic (upper panels) and Quartic (lower
panels) Galileon models. In Fig. 5.5, one sees that Eq. (5.28) provides a good description
of the linear halo bias seen in the simulations if one uses the (g, p) parameters that best-fit
the mass function of the simulations (solid lines). This shows that the excursion set theory
approach and the steps involved in the derivation of Eq. (5.28) are still valid in the Cubic
and Quartic Galileon models. However, the use of the best-fitting (¢, p) parameters does
not lead to a significant improvement over the use of the standard Sheth-Tormen values,
(¢,p) = (0.75,0.30) in matching the simulation results. The linear halo bias seems to be
less sensitive than the halo mass function to the exact choice of (¢, p). This can be under-
stood as the linear halo bias is computed as the ratio of two mass functions (cf. Sec. 4.3.1),
and consequently, some of the dependence on the values of (¢,p) cancels to some extent.
Note that despite the weaker sensitivity to the exact choice of the Sheth-Tormen parame-
ters, these must still differ from the Press-Schechter limit (¢, p) = (1,0), which is known to

fail to reproduce the results from N-body simulations [273, 274, 275].

5.3.4 Halo occupation distribution analysis

As indicated by the values of 0y ~ 1 in Table 4.1, the amplitude of the linear matter power
spectrum in the Cubic and Quartic Galileon models is higher than in standard ACDM mod-
els, for which og ~ 0.82 [201]. Consequently, it is interesting to investigate if the enhanced
clustering power in the Galileon models is still consistent with the observed large scale
clustering of the host haloes of Luminous Red Galaxies (LRGs) of the SDSS DR7 [187]. The
screening mechanism could potentially suppress part of the enhancement. However, we
will see in Sec. 5.3.6 that for scales k& < 0.1h/Mpc, the effects of the Vainshtein mechanism
on the power spectrum are small in the Cubic and Quartic Galileon models (see Figs. 5.8
and 5.9 below). On the other hand, the result of Fig. 5.5 shows that massive haloes in
Galileon cosmologies can be less biased than in ACDM, which effectively suppresses the
halo power spectrum. As a result, a robust comparisson between theory and observations
requires an exploration of this degeneracy between the enhanced linear growth of struc-
ture and the lower halo bias parameter. We carry on such an exploration by performing a
halo occupation distribution (HOD) analysis of LRG clustering.

In the HOD formalism, one asks what is the probability distribution P(N, M) that a
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Figure 5.5: Linear halo bias of the three variants of the Cubic (upper panels) and Quartic
Galileon (lower panels) models at a = 0.60, a = 0.80 and @ = 1.00. The triangles with
errorbars show the simulation results considering only haloes (and not subhaloes) with
mass Moo > 100M,,, where M), = Q0 peoL? /Ny is the particle mass. The solid and dashed
lines correspond to the linear halo bias parameter of Eq. (5.28) computed with the (g, p)
parameters from Table 5.1 and (¢,p) = (0.75,0.30), respectively. The linear halo bias for
a ACDM model with WMAP9 parameters [201] is shown by the black dashed lines. The

color scheme indicated in the figure applies to the lines and symbols.

dark matter halo of mass M contains IV galaxies. The HOD models are typically parametrized
by the mean of their distribution, (N|M), which can be separated into the mean num-
ber of central and satellite galaxies that reside in haloes of mass M [295]. For simplicity,
and since independent HOD studies have suggested that the satellite fraction is small for
LRGs [296, 297, 298], we neglect the contribution from satellite galaxies and assume that
the haloes can either host one LRG (the central) or none at all. Our aim is to determine if
it is possible, in the Cubic and Quartic Galileon cosmologies, to realistically populate the
dark matter haloes with LRGs in order to reproduce the observed clustering amplitude and

galaxy number density. We parametrize the HOD as

(N|M) = % [1 + erf <log1(37§j\j/f\\jmin))] ; (5.36)

where M, and oyog,, s are the HOD parameters. These can be constrained by construct-
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ing the following x? quantity

2 2 (bg - 59)2 i (ng - ﬁg)2

_ 2 _
where
dn
b, = /den<NMwaﬁ (5.39)
g dM ’ ’

are the number density and effective linear bias parameter of the galaxies, respectively. The
likelihood of M, and o1og,,ar is then P o< exp [—x?/2].

In Eq. (56.37), f, and b, are, respectively, the number density and galaxy bias of the
LRG sample presented in Ref. [187], which the HOD model should reproduce. We take
fy = 4 x 107°h3 /Mpc?, which corresponds roughly to [ n(z)dz, where n(z) is the redshift
dependence of the observed galaxy number density (see Fig. 1 of Ref. [187]). The value of
b, can be inferred from the ratio R of the amplitudes of the observed LRG host halo power
spectrum (in redshift space) and the theoretical linear prediction for each model (in real

space). To first approximation we can write:

2
T A

R ZENNEs
3b, | 502

: (5.40)

P/f,LRG(Zeff) _ 7)9 2
P,;"’hn(zeg) 1.85

where f = dInD/dlna is the logarithmic derivative of the linear growth factor at z.g =
0.313, which is the effective redshift of the LRG sample. On the RHS of Eq. (5.40), the
term within squared brackets approximately describes the boost in the real space power
spectrum caused by the peculiar velocities of galaxies on large scales. The b7 factor accounts
for the shift in the power due to the galaxy bias. Although b, is the bias of the LRGs,
the method used in Ref. [187] effectively leads to a normalization of the LRG host halo
power spectrum with a factor (1.85)~2 (see their Erratum [188]). For the Cubic and Quartic
Galileon models, we have that fcubic & fQuartic & 0.75 and Rcubic & Rquartic ~ 1.10 (see
Fig. 4.1). Solving Eq. (5.40) yields b, ~ 1.68. For reference, in a ACDM model with WMAP9
parameters [201], one has f =~ 0.66 and R ~ 1.40 which leads to l_7g ~ 1.96. In Egs. (5.38)
and (5.39), we use the calibrated Sheth-Tormen formulae for the mass function and linear
halo bias at a = 0.80, which is sufficiently close to aeg = 1/(1 + zer) =~ 0.76. We assume

fractional errors of 10% and 5% on the number density and galaxy bias, respectively, i.e.,
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Figure 5.6: The upper panels show the 68% and 95% confidence contours on the M,;, and
Olog,,M Parameters of Eq. (5.36) obtained using Eq. (5.37) for the full variants of the Cubic
(left) and Quartic (right) Galileon models. The black dashed and dotted contours indicate
the constraints derived by using only ng and only X%g in Eq. (5.37), respectively. The solid
contours show the combined constraints. The lower left and lower right panels show, re-
spectively, the best-fitting (N|M) and (N|M) dn/dInM for the full Cubic (blue) and Quar-
tic (red) Galileon models, and ACDM with WMAP9 parameters [201] (black dashed). The
quantity plotted in the lower right panel shows the contribution from haloes of different

mass to the galaxy number density.

Ang = 0.1, and Ab, = 0.05b,. We have checked that our results do not depend on these

assumptions for the size of the errors.

The constraints on the parameters My, and oyog, 17 for the full Cubic and Quartic vari-
ants are shown in the upper panels of Fig. 5.6. The dashed and dotted contours show the
confidence regions obtained by considering only X%g or X%g in Eq. (5.37), respectively. The
fact that the two contours overlap means that there are some LRG HODs that can match
both the observed large scale clustering amplitude and number density. The best-fitting
HOD models are shown in the lower left panel of Fig. 5.6. We also show the best-fitting
HOD for ACDM. It is remarkable that the Cubic and ACDM models predict almost the
same HOD. This shows that the boost in the linear matter power spectrum can be com-
pensated by the modifications to the halo abundance and linear bias in the Cubic model

to preserve the way the LRGs populate the dark matter haloes. In the case of the Quartic
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Table 5.2: Best-fitting (a, /) parameters in the parametrization log;g(c200) = o« +
Blogyy (Mago/ [10'2M¢ /h]) to the simulation results for the variants of the Cubic and Quar-
tic Galileon models at a = 0.60, @ = 0.80 and a = 1.00. The uncertainty in the values of «

and 8 is A, = Ag = 0.001. These parameters were determined by minimizing the quan-

tity Zz ‘C%iO%S(Mi)/CSgBam(Mi’ a, B) - 1‘/ where ¢

param

the simulations, c5,

index '¢’ runs over the number of mass bins.

sims

(M;) is the concentration measured in

(M;, o, B) is the concentration given by the parametrization and the

Model a = 0.60 a = 0.80 a=1.00
(o, B) (o, B) (o, B)
QCDMg e (0.670,—0.024)  (0.801,—0.078)  (0.825,—0.068)
Cubic Galileon (0.674,—0.025)  (0.797,—0.076)  (0.818,—0.067)

Linearized Cubic Galileon

QCDMQuartic

Quartic Galileon

Linearized Quartic Galileon

(0.740, —0.030)

(0.667, —0.026)
(0.569, —0.029)
(0.781, —0.028)

(1.001, —0.080)

(0.794, —0.079)
(0.562, —0.033)
(0.956, —0.084)

(1.129, —0.076)

(0.833,—0.079)
(0.542, —0.017)
(1.011,—-0.078)

model, the lower amplitude of the halo mass function (c.f. Fig. 5.4) and the higher lin-
ear halo bias (c.f. Fig.5.5) make the HOD extend towards slightly lower halo masses. The
lower right panel of Fig. 5.6 shows the halo mass function weighted by the best-fitting
HOD model, (N|M) dn/dInM. The latter peaks at M ~ [2 — 4] x 10'3M/h and predicts
a negligible fraction of LRGs residing in haloes with mass < 1012, /h, for all the models.
Note that otherwise this would represent an observational tension since LRGs have stellar
masses that are typically > 10* M, /h [299, 300, 301], and are not expected to reside in dark

matter haloes whose mass is comparable to theirs.

From the above analysis, we therefore conclude that it is unlikely that the Cubic and
Quartic Galileon models are in tension with the large-scale galaxy distribution, despite

both having values of o5 ~ 1.
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Figure 5.7: Halo concentration-mass relation, cao(Magp), of the three variants of the Cubic
(upper panels) and Quartic (lower panels) Galileon models, for a = 0.60, a = 0.80 and
a = 1.00. The circles with errorbars show the simulation results considering haloes (and
not subhaloes) with My > 1000M,, where M,, = Qmopeo L /Ny is the particle mass. The
solid lines show the best-fitting power laws from Table 5.2. For comparison, in the a =
1.00 panels, we also show the fit found in Ref. [302] for a ACDM model with the WMAP5

parameters [303]. The color scheme indicated in the figure applies to the lines and symbols.

5.3.5 Concentration-mass relation

In Fig. 5.7, we show the concentration-mass relation, ca00(M200), measured in the simu-
lations of the Cubic (upper panels) and Quartic Galileon models (lower panels). We have
checked that the haloes in the simulations are well described by the NFW profile, Eq. (5.29),
for all model variants and epochs. The values of co9g were obtained via Eq. (5.31), by us-
ing the values of Ryyy and rs determined by the Rockstar code [292]. The simulation
results are well fitted by a power law logg(c200) = o + Blogig (Maoo/ [10'2M /h]), with
the best-fitting parameters shown in Table 5.2. In the Galileon models, one encounters the
standard picture that halo concentrations tend to increase with time for fixed mass, and
tend to decrease with halo mass at a given epoch [304, 305]. The exact mass and time de-
pendence, however, differs within the variants of the Cubic and Quartic Galileon models.

In the a = 1.00 panels, we also show a similar power law fitted by Ref. [302] to simulation
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results of ACDM models with WMAP5 parameters [303].

In the case of the Cubic Galileon model, one sees that the Vainshtein mechanism is ex-
tremely efficient in restraining the modifications to gravity from having an impact on the
concentrations of the haloes. The values of cygg in the full and in the QCDM variants of the
Cubic model are essentially indistinguishable over the mass range probed by the simula-
tions. This is because by the time the modifications to gravity occur, a 2 0.6 (cf. Fig. 5.2),
the Vainshtein radius of the haloes, which is a growing function of time (cf. Fig. 5.1), is
larger than the haloes themselves. At a = 1, the haloes of all the variants of the Cubic
model are more concentrated than in standard ACDM. The reason for this can be traced
back to the fact that the haloes in the Cubic models form earlier than in ACDM (cf. Fig. 5.3).
This makes them to be more concentrated since they formed at an epoch when the back-
ground matter density was higher. The same reasoning can also be used to explain why the
halo concentrations are higher in the linear variant w.r.t. the QCDM variant. In this case,
however, the deepening of the gravitational potential at late times (cf. Fig. 5.2) in the linear

variant is also expected to play a significant role (see also Refs. [306, 307]).

The picture in the full Quartic model differs significantly because of the overall weak-
ening of gravity in regions of high density. Following the above reasoning, haloes of a
given mass form later in the full Quartic model, which leads to a lower concentration com-
pared to any other variant of the model. The values of 399 also barely evolve with time in
the full Quartic Galileon model. This can be due to the fact that the gravitational potential
inside haloes in the full Quartic model becomes shallower at late times (cf. Fig. 5.2). Ad-
ditionally, the mass dependence of the concentration is much shallower than in any other
variant, including those of the Cubic Galileon model. Comparing with ACDM at a = 1,
the full Quartic Galileon model predicts lower halo concentrations, although the difference

becomes smaller with increasing halo mass.

Before proceeding, note that since the effects of the fifth force are not felt inside the
haloes in the full Cubic Galileon, then our current knowledge about the baryonic processes
that are relevant for galaxy formation should prevail °. As a result, it should be more or
less straightforward to implement semi-analytical models of galaxy formation in Cubic

Galileon cosmologies. The same, however, does not apply to the Quartic Galileon model.

>See, for instance, Ref. [308] for a study of stellar oscillations in models of modified gravity that employ the

chameleon screening mechanism [70, 309].



5. N-body simulations and halo modelling in Galileon gravity cosmologies 147

5.3.6 Halo model matter power spectrum

Our results for the nonlinear matter power spectrum of the Cubic and Quartic Galileon
models are shown in Figs. 5.8 and 5.9. These simulation power spectra were measured
using the POWMES code [310]. We discuss now the performance of the halo model in de-
scribing the simulation results, by separating the discussion into large, intermediate and

small scales.

Large scales. On scales k < 0.2h/Mpc, the halo model prediction matches the simulation
results. On these scales, the halo model is dominated by the 2-halo term in Eq. (5.24), which
reduces simply to the linear matter power spectrum P j;,. More precisely, in the limit in

which k < 1h/Mpc, Eq. (5.26) becomes

I(k) ~ / delnowbhn(M) _1, (5.41)
where we have used the fact that u(k — 0,M) — 1 and the last equality is ensured by
the definition of the Sheth-Tormen mass function and linear halo bias (see e.g. Refs. [277,
311, 312]). We note that the integral of Eq. (5.41) is hard to evaluate numerically because,
at low M, neither the mass function nor the halo bias approach zero. Here, we make
use of the fact that the last equality of Eq. (5.41) holds by construction. Effectively, we
choose a sufficiently small lower limit (M ~ 10°M;,/h), and then simply add the missing
contribution to the integral, such that it adds up to unity. We have computed the integrals
using both Python and Mathemat ica routines, which gave the same results °. Note also
that P,?h differs only from P ji, for & 2 1h/Mpc, where P,gh already provides the dominant
contribution to the total power. This is a general result that is not restricted to the Galileon
models studied here [277]; in practice, this means that in the halo model approach, it makes

almost no difference to use the 2-halo term or the linear matter power spectrum.

Intermediate scales. On scales 0.2h/Mpc < k < 2h/Mpc, the halo model predictions in all
the variants of the Cubic and Quartic Galileon models tend to underpredict the clustering
power measured in the simulations. In particular, the mismatch ranges between ~ 50%
and ~ 20% across all the variants and epochs. These differences are not entirely unexpected

and their explanation can be related to some of the approximations associated with the halo

%The same Mat hemat ica routines were used to obtain the results of Ref. [112].
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Figure 5.8: The upper panels show the nonlinear matter power spectrum of the three vari-
ants of the Cubic Galileon model, at a = 0.60, a = 0.80 and ¢ = 1.00. The lower panels
show the relative difference w.r.t. QCDM. The triangles with errorbars show the simulation
results. The dashed black and dashed red lines show the linear theory prediction for the
Cubic Galileon model and its QCDM variant, respectively (these two curves are practically
indistinguishable in the upper panels). The solid lines show the nonlinear matter power
spectrum in the halo model obtained using Eqs. (5.24), (5.25) and (5.26). The two sets of
dotted lines show the contributions from the 1-halo and 2-halo terms. The former is shown
by the lines that approach a constant value at small &; the latter is shown by the lines that
coincide with the linear theory lines at small k. The color scheme indicated in the figure
applies to the lines and symbols. In the lower panels, the relative difference of the simula-
tion results w.r.t. the QCDM simulation results is shown, and the relative difference of the

analytical predictions is plotted w.r.t. the QCDM analytical predictions.
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Figure 5.9: Same as Fig. 5.8, but for the Quartic Galileon model.

model. In particular, the 2-halo term can be written more accurately as

1 dn(Ml)
P = My ———= M
o [ T )

/dM2—1dn(Mz)IU(’f,M2>|P;?h(M17Mz),
(5.42)

where P (M, M) is the halo-halo power spectrum of haloes with mass M; and M. In the
standard halo model approach, one approximates P,?h(Ml, My) = b(M1)b(Ma) Py, 1in, which
is done purely for convenience. This way, the two integrals in Eq. (5.42) can be separated
and one recovers Egs. (5.25) and (5.26). This approximation is expected to be valid on
large scales. However, on intermediate and small scales, neither the bias parameter nor
the matter power spectrum are well approximated by linear theory. Indeed, using the
linear halo bias on these scales leads to an overestimation of the power, and using the
linear power spectrum leads to an underestimation. As a result, the net effect of these
approximations can, in principle, cancel to some extent. Nevertheless, it seems reasonable
to expect that this cancellation may not be perfect. Note that this applies not only to the
Galileon models studied here, but also to the standard ACDM model. In fact, the halofit
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approach is partly motivated as an alternative to the halo model that is more accurate on
intermediate scales [313, 314]. Recently, Ref. [315] extended the halofit approach to describe
the nonlinear power spectrum in f(R) gravity models. In the lower panels of Figs. 5.8
and 5.9, the halo model prediction overestimates the effects of the modifications to gravity,
compared to the simulation results. This overestimation is similar to that found in Ref. [284]
for Dvali-Gabadadze-Porrati (DGP) models and Refs. [112, 316] for f(R) models of gravity.
However, Ref. [112] has also shown how a simple modification of the 2-halo term can make

the analytical predictions much more accurate.

Small scales. On scales k 2 2h/Mpc, the agreement between the halo model and sim-
ulation results becomes generally better than on intermediate scales, especially at a = 1.
On these scales, the 1-halo term dominates the total power spectrum, and the good perfor-
mance of the halo model in matching the power spectrum of the simulations is related to
the fact that we have used the fitted mass function and the fitted co99(Ma20o) relation. For
instance, in the case of the full variant of the Quartic model at a = 1, the use of the stan-
dard Sheth-Tormen mass function would significantly overpredict the simulation results
(cf. Fig. 5.4). This would in turn lead to a significant overprediction of the clustering power
on small scales as well (not shown to make the plot clearer). Nevertheless, this variant,
together with the linear variant of the Cubic model, still shows a visible discrepancy be-
tween the halo model and simulation results on these small scales at @ = 1. In particular, at
k ~ 1h/Mpc, the halo model of the linear Cubic variant predicts ~ 30% less power than the
simulations; whereas in the case of the full Quartic variant, the halo model overpredicts the
power in the simulations by ~ 40%. Moreover, the performance of the halo model on small
scales becomes worse at earlier times. A possible reason for this mismatch can be related
to the relaxation state of the haloes. If the haloes are not relaxed, then this can bias the
estimation of the concentration, which could explain the differences. To investigate this,
we have measured the impact of artifically enhancing and suppressing the amplitude of
the concentration-mass relation by 25% on all mass scales. This test has shown that even
a drastic modification of 25% in the halo concentration parameter does not fully reconcile
the halo model with the simulation results. Hence, the discrepancies on small scales are
likely to be associated with the approximations of the halo model itself. For instance, recall
that the halo model assumes that all the matter in the Universe lies within gravitationally

bound structures, which is not the case in N-body simulations. The halofit approach is also
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known to be more accurate than the halo model on small scales [313, 314]. A more detailed
study of the validity of the assumptions of the halo model is beyond the scope of the anal-
ysis of this chapter. In terms of the relative difference, however, these discrepancies cancel
to some extent, and the agreement between the halo model and the simulations becomes

much better. This is particularly noticeable in the case of the Cubic Galileon model.

Physically, just as we saw in the previous sections, in Fig. 5.8, we reencounter the ex-
treme effectiveness of the screening mechanism in the Cubic model in suppressing any
modifications to gravity on small scales. For instance, at k¥ ~ 1h/Mpc and a = 1, the in-
crease in power relative to QCDM is of order 10%, which is considerably smaller than the
~ 50% boost seen with the linear variant. The suppression effects of the screening mecha-
nism become even more apparent for k 2 1h/Mpc. The physical picture is much different
in Fig. 5.9 because of the weaker gravity in the Quartic model, which follows from the im-
plementation of the Vainshtein mechanism. In this case, the simulations of the full Quartic
model show ~ 30% less clustering power than QCDM at k ~ 1h/Mpc and a = 1; while the
simulations of the linear model show an enhancement of about 25%.

For more details about the results for the power spectrum in the Cubic and Quartic

Galileon models we refer the reader to Refs. [6] and [276], respectively.

54 Summary

In this chapter, we studied the properties of dark matter haloes in the Cubic and Quartic
Galileon gravity cosmologies. We have made use of N-body simulation results, as well
as semi-analytical predictions to investigate the halo mass function, the linear halo bias
parameter, the halo concentration-mass relation and the nonlinear matter power spectrum.
We have also assessed the performance of standard semi-analytical formulae in describing
the results from the N-body simulations. The strategy to solve the equations of the Cubic
Galileon model in a N-body code was presented in Sec. 5.1. Our simulations of the Quartic

model were based on the code of Ref. [276].

Our main results can be summarized as follows:
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e If one uses the standard Sheth-Tormen fitting parameters (¢,p) = (0.75,0.30), then the
formulae for the halo mass function fail to provide a reasonable match to the results of

the N-body simulations (see Figs. 5.3 and 5.4).

e By fitting the (¢, p) parameters to match the halo mass function measured from the sim-
ulations (cf. Table 5.1), then indeed, the Sheth-Tormen formula provides a very good
description of the halo abundances over the entire mass range probed by our simula-
tions. Moreover, the Sheth-Tormen linear halo bias formula computed with the best-
fitting (¢, p) also provides a good description of the results of the simulations. This im-

plies that the principles of the excursion set theory still hold in Galileon gravity models.

e In previous chapters we have mentioned the possibility that the enhanced clustering am-
plitude of the linear matter power spectrum in the Cubic and Quartic Galileon models
(08 ~ 1, for ¥m, = 0) could potentially lead to some tension with the observed clus-
tering amplitude of LRGs. However, the effect of a boosted linear power spectrum is
degenerate with a lower linear halo bias parameter (c.f. Fig. 5.5), which can help to ease
an eventual tension. In this chapter, armed with accurate analytical formulae, we have
addressed this issue by performing a halo occupation distribution analysis of LRGs. Our
analysis showed that the interplay between the modifications to the large scale clustering
power, halo abundance and halo bias in the Cubic and Quartic Galileon models can be
explored to yield realistic LRG halo distributions that match both the observed clustering
amplitude and galaxy number density. We conclude that the Cubic and Quartic models

are not in tension with the LRG clustering data.

e The halo concentration-mass relation, cago(Mago ), in the Cubic and Quartic Galileon mod-
els is well fitted by a power law (cf. Fig. 5.7 and Table 5.2). The standard picture that the
concentration increases with time for fixed mass, and decreases with mass at a given
epoch prevails in all but one of the models we studied. The exception is the full variant
of the Quartic model, in which the weaker gravity leads to halo concentrations with a

very weak mass and time dependence.

e On linear scales (k < 0.2h/Mpc), the halo model prediction agrees very well with the
matter power spectrum measured from the simulations because both reduce to the lin-
ear theory result. On intermediate scales (0.2h/Mpc < k < 2h/Mpc), the halo model

typically underpredicts the power spectrum of the simulations by 20% to 50% across all
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the model variants at all the epochs shown (cf. Fig. 5.8 and Fig. 5.9). This is a conse-
quence of approximations that are made in the derivation of the halo model equations,
which sacrifice accuracy in the mildy-nonlinear regime in favour of analytical conve-
nience. The agreement between the halo model and simulations becomes better on small
scales (k 2 2h/Mpc) at a = 1. We believe this is closely related to the fact that we have
used analytical formulae that match the mass function and concentration parameter from
the simulations. There are still visible differences between the formulae and the simu-
lation results on smaller scales for the linear variant of the Cubic and full variant of the
Quartic model. Morevoer, these differences also exist for all variants at earlier times. We
have checked that any discrepancies on small scales are likely to be due to the approxi-
mations made in the halo model, and not to an incorrect modelling of the halo properties

that enter the calculation of the 1-halo term.

e In all of our results, we have found that the screening mechanism works very effectively
in the Cubic Galileon model, especially on small scales. This is particularly noticeable
in our results for the halo concentration-mass relation and the nonlinear matter power
spectrum on small scales, for which the full and QCDM variants of the Cubic model
give essentially the same predictions. In the case of the Quartic model, the screening
mechanism cannot suppress all of the modifications to gravity, which becomes weaker
in high density regions. This leads to clear differences in our results for the full and

QCDM variants of the model.

With its two free parameters recalibrated, the Sheth-Tormen mass function and its ap-
plication in the halo model approach, has proven sufficient to give a reasonable match to
the results of the Cubic and Quartic Galileon simulations. Although in this analysis we fo-
cused only on two particular models, we believe that the strategy presented here of directly
titting the halo properties to simulations can also be applied to other modified gravity the-
ories [258, 259, 260, 261, 262, 266, 267, 317]. For some models, we believe this can improve
the performance of the semi-analytical formulae. These are a much faster alternative to
N-body simulations, and can be used to generate quick estimates for the large-scale struc-
ture in modified gravity. The development of these semi-analytical models, in addition to
enabling a clearer way of pinpointing the physical effects (which are often hidden in the

brute-force calculations of a N-body simulation), can also be important for current and up-
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coming large-scale structure surveys, which will require vast regions of parameter spaces
to be spanned in a timely manner.

Finally, we stress that although both the Cubic and Quartic Galileon models are in ten-
sion with the observational data (recall the ISW discussion in Chapter 3), it is still valuable
to investigate the impact that models like these can have on nonlinear structure formation.
This allows for a better understanding of the ways to distinguish between different modi-
fied gravity theories and also for a more robust interpretation of the data from current and
future large scale structure surveys. Indeed, in Chapter 7, we shall use the Cubic Galileon

model as a working case to investigate ways to test gravity on large scales using lensing.



Chapter 6
Nonlinear structure

formation in Nonlocal

Gravity

We now turn our attention to large scale structure formation in nonlocal gravity mod-
els. In these models, the modifications to gravity arise via the addition of nonlocal terms
(i.e. which depend on more than one point in spacetime) to the Einstein field equations.
These terms typically involve the inverse of the d’Alembertian operator, [J~!, acting on
curvature tensors. To ensure causality, such terms must be defined with the aid of retarded
Green functions (or propagators). However, such retarded operators cannot be derived
from standard action variational principles (see e.g. Sec. 2 of Ref. [63] for a discussion).
One way around this is to specify the model in terms of its equations of motion and not in
terms of its action. One may still consider a nonlocal action to derive a set of causal equa-
tions of motion, so long as in the end one replaces, by hand, all of the resulting operators
by their retarded versions. Both of these approaches, however, imply that nonlocal mod-
els of gravity must be taken as purely phenomenological and should not be interpreted
as fundamental theories. In general, one assumes that there is an unknown fundamental
(local) quantum theory of gravity, and the nonlocal model represents only an effective way
of capturing the physics of that theory in some appropriate limit.

It was in the above spirit that Ref. [61] proposed a popular nonlocal model of gravity
capable of explaining cosmic acceleration. In this model, which has been extensively stud-
ied (see e.g. Refs. [62, 63, 318, 319, 320, 321, 322, 323, 324, 325, 326] and references therein),
one adds the term Rf (O"'R) to the Einstein-Hilbert action, where R is the Ricci scalar
and f is a free function. As described in Ref. [63], the function f can be constructed in such
a way that it takes on different values on the cosmological background and inside gravita-
tionally bound systems. In particular, at the background level, f can be tuned to reproduce

ACDM-like expansion histories, but inside regions like the Solar System, one can assume
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that f vanishes, thus recovering GR completely. This model, however, seems to run into
tension with data sensitive to the growth rate of structure on large scales [325, 326].

More recently, nonlocal terms have also been used to construct theories of massive grav-
ity. An example of this is obtained by adding directly to the Einstein field equations a term
like m? (g, O~ 'R) r [327, 328, 329, 330], where m is a mass scale and 7 means the extraction
of the transverse part (see also Refs. [331, 332, 333, 334] for models in which O~ acts on the
Einstein and Ricci tensors). This model has no ACDM limit for the background evolution,
but it can still match the current background expansion and growth rate of structure data
with a similar goodness-of-fit [330]. Furthermore, Ref. [329] has investigated spherically
symmetric static solutions in this model, concluding that it does not suffer from instabil-
ities that usually plague theories of massive gravity. A similar model was proposed by
Ref. [136], which is characterized by a term oc m?RI~2R in the action (see Eq. (6.1)). Refer-
ence [335] showed that this model can reproduce current type Ia Supernovae (SNla) data,
although it also has no ACDM limit for the background expansion. The time evolution
of linear matter density fluctuations in this model also differs from that in ACDM, but the
work of Ref. [335] suggests that the differences between these two models are small enough
to be only potentially distinguishable by future observational missions.

In this chapter, we extend the previous work done for the model of Refs. [136, 335] by
examining its predictions in the nonlinear regime of structure formation. We do this by
running a set of N-body simulations, which we use to analyse the model predictions for
the nonlinear matter and velocity divergence power spectra, and also halo properties such
as their abundance, bias and concentration. By following the steps presented in the last
chapter for the Galileon models, we shall also assess the performance of the Sheth-Tormen
and halo model formulae in describing the simulations of Nonlocal gravity. The halo mod-
elling notation in this chapter follows closely that used in the last chapter. To the best of our
knowledge, the analysis presented here constitutes the first study of the nonlinear regime

of structure formation in nonlocal gravity cosmologies using N-body simulations.

6.1 The R *R nonlocal gravity model

6.1.1 Action and field equations

We consider the nonlocal gravity model of Refs. [136, 335], whose action is given by
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2
- 2i /dx‘&ﬁ—g [R - ROR ~ L ©6.1)
K

where g is the determinant of the metric g,,, £, is the Lagrangian density of the matter
fluid, R is the Ricci scalar and [0 = V#V, is the d’Alembertian operator. To facilitate the
derivation of the field equations, and to solve them afterwards, it is convenient to introduce

two auxiliary scalar fields defined as

U = _DflR’ (6.2)
= —-O'v=07?%R. (6.3)

The solutions to Egs. (6.2) and (6.3) can be obtained by evaluating the integrals

U = D‘leUhom(x)/d“y\/g(y)G(x,y)R(y), (6.4)
S = -0 = Shom(2) —/d‘*y\/—g(y)G(x,y)U(y% (6.5)

where Uy, and Spopn, are any solutions of the homogeneous equations OU = 0 and [0S =
0, respectively, and G(z,y) is any Green function of [J. The choice of the homogeneous
solutions and of the Green function specify the meaning of the operator 0~!. To ensure
causality, one should use the retarded version of the Green function, i.e., the solutions of
U (or S) should only be affected by the values of R (or U) that lie in its past light-cone.
The homogeneous solutions can be set to any value, which is typically zero, without any
loss of generality. In principle, the model predictions can be obtained by solving Egs. (6.4)
and (6.5). However, it is convenient to use the fields U and S to cast the nonlocal action of
Eq. (6.1) in the form of a local scalar-tensor theory [319, 336, 337] as

1 4 m?
A :%/dxﬁ[R—6RS—§1(DU+R)—52(DS+U)—£WLv (6-6)

where ¢ and & are Lagrange multipliers. The field equations can then be written as

2

G — %KW = KT, 6.7)
OuU = —R, (6.8)
08 = -, (6.9)

with

U2
Ky = 25G,, — 2V,V,8 — 2V,5V, U + <2DS + VoSVl — 2) Gus  (6.10)
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and where 7" = (2/y/—g) 0 (Lm\/—g) /0w is the energy-momentum tensor of the mat-
ter fluid. The use of the scalar fields U and S therefore allows one to obtain the solutions
by solving a set of coupled differential equations, instead of the more intricate integral
equations associated with the inversion of a differential operator. These two formula-
tions are, however, not equivalent as explained with detail in many recent papers (see
e.g. Refs.[62, 327, 328, 332, 337, 338, 339]): Egs. (6.7), (6.8) and (6.9) admit solutions that are
not solutions of the original nonlocal problem. For instance, if U* is a solution of Eq. (6.8),
then U* + Upom is also a solution for any Uper,, since OUpem = 0 (the same applies for the
tield S and Eq. (6.9)). If one wishes the differential equations (6.7), (6.8) and (6.9) to de-
scribe the nonlocal model, then one must solve them with the one and only choice of initial
conditions that is compatible with the choice of homogeneous solutions in Egs. (6.4) and
(6.5). All other initial conditions lead to spurious solutions and should not be considered.
In the remainder of this chapter, we shall not worry too much about the theoretical
aspects of the model, and prefer to focus more on its phenomenology and impact on obser-

vations (as is the overall philosophy of this thesis).

6.1.2 Background equations

At the level of the cosmological background (® = ¥ = 0), the two Friedmann equations

can be written as

3H° = KPm + Kpde, (6.11)

—2H —3H? = Kpm + KDdes (6.12)

where we have encapsulated the effects of the nonlocal term into an effective background

"dark energy” density, p4e, and pressure pg., which are given, respectively, by

2 hd [ 72
Kpge = % {65”[12 +6HS -US — U2] , (6.13)
2 . i3 = R 72
KPde = —7% [25 (2H + 3H2) +S+4HS+US - (;] . (6.14)

Additionally, Egs. (6.8) and (6.9) yield

U+3HU = 6 (H n 2H2) , (6.15)

S+3HS = -U. (6.16)
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In the above equations, a dot denotes a partial derivative w.r.t. physical time, ¢, an overbar
indicates that we are considering only the background average and H = a/a is the Hubble
expansion rate.

The background evolution in the RO"?R model has to be obtained numerically. The
differential equations are evolved starting from deep into the radiation dominated era (z =
10%) with initial conditions for the auxiliary fields U = U =5 =5 = 0. Note that, in the
radiation era, the Ricci scalar vanishes (R = 6H + 12H? = 0). Hence, from Egs. (6.4) and
(6.5) one sees that these initial conditions are indeed compatible with the choice Uom =
Shom = 0. The value of the parameter m is determined by a trial-and-error scheme to yield
the value of pge that makes the Universe spatially flat, i.e., pr0 + pmo + paeo = peo = SHE /K,
where the subscripts ,, ,,, refer to radiation and matter, respectively, the subscript o denotes

present-day values, and Hy = 100hkm/s/Mpc is the present-day Hubble rate.

6.1.3 Spherically symmetric nonlinear equations

By assuming that the potentials ® and ¥ are spherically symmetric, one can write the (0, 0)

and (r, ) components of Eq. (6.7), and Egs. (6.8) and (6.9), respectively, as

2 ., m? 5 48 2,
T72 (7" (I)v’r‘) 77‘_? I:GSH + ﬁ (T q)a’r’) 77‘_ﬁ (7’ Sﬂ‘) s
U2
+2S)7‘ q)ﬂ‘ _Sﬂ“ UaT _2:| = ﬁﬁm5a27 (617)
2 .
% (@, T, ) — % [45’Ha2 6SH2a? + g (®, T,
Sy U?

+4SW’ @77’ _QSW \1177’ —4 7: + 287’/‘ U?'r’ _2:| = O) (618)
1 1 1
ﬁ (TQU”") T +U7T (\Ilﬂ’ _(I)v’l‘ ) = 27,72 (TQ\IIVF) T _47_72 (7’2(1),7«) 3T (619)
1
) (T2Sﬂ“) i +S;'r’ (\Ijﬂ‘ _(I)ﬂ‘) = U7 (6’20)

2
where ,, denotes a partial derivative w.r.t. the comoving radial coordinate r. When writing
Egs. (6.17)-(6.20), we have already employed the quasi-static and weak-field approxima-
tions (cf. Sec. 4.1). The above equations still contain terms with ¥, and ®,,, because these
terms contain the fields U and S, and up to now, we have not discussed the validity of

applying these approximations to the auxiliary fields. However:

1. Equation (6.19) tells us that the U field is of the same order as the scalar potentials, U ~
®, ¥. Consequently, the quasi-static and weak-field limits also hold for U;
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2. Equation (6.20) tells us that S,,, ~ ®, ¥, which means we can also neglect all terms con-

taining S, S, and S,

Under these considerations, the above equations simplify drastically. In particular, the only
equation that remains relevant for the study of the spherical collapse of matter overdensi-

ties is Eq. (6.17), which can be written as:

1
> (r*®,,) v = 47 Gegprmda’, (6.21)
where
2a7—1
Gt = G {1 - mﬂ . (6.22)

Equation (6.21) is the same as in standard gravity, but with Newton’s constant replaced
by the time-dependent gravitational strength, Geg. This time dependence follows directly
from the term 2SG/,, in the field equations, Eq. (6.7), which in turn follows from the varia-
tion of the term o« SR in the action Eq. (6.6). The fact that G.g depends only on time tells
us that gravity is modified with equal strength everywhere, regardless of whether or not
one is close to massive bodies or in high-density regions. This may bring into question the
ability of this model to pass the stringent Solar System tests of gravity [40, 248, 340]. We
come back to this discussion in Sec. 6.2.3. We note also that from Eq. (6.18), it follows that

® = U in the quasi-static and weak-field limits.

6.1.4 Model parameters

The results presented in this chapter are for the cosmological parameter values listed in
Table 6.1. These parameters were found by following the steps outlined in Chapter 3 for
ACDM, although in the latter, neutrino masses are also varied in the constraints (cf. Ta-
ble 3.1). In this chapter, however, we treat neutrinos as massless for simplicity.

The CMB temperature power spectra of the ACDM and RO ~2R models for the param-
eters listed in Table 6.1 are shown in Fig. 6.1. The RO~2R model predictions were obtained
with a suitably modified version of the CAMB code [172]. The derivation of the perturbed
equations that enter the calculations in CAMB follows the strategy shown in Chapter 2 for
the Galileon model, and for brevity we do not repeat it here. The result in Fig. 6.1 shows
that the RO 2R model is able to fit the CMB data with a goodness-of-fit that is similar to
that of ACDM. In Sec. 6.2, we shall compare the results of the RCJ~>R model with those of
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Figure 6.1: CMB temperature power spectrum of the ACDM (black) and RO2R (blue)
models for the cosmological parameters of Table 6.1. The data points with errorbars show

the power spectrum measured by the Planck satellite [193, 194].

Table 6.1: Cosmological parameters adopted in this chapter. The scalar amplitude at re-
combination Ay refers to a pivot scale & = 0.05Mpc~'. These values were determined by
following the strategy outlined in Chapter 3 for ACDM, but assuming that neutrinos are
massless. The RO™2R model parameter m is derived by the condition to make the Uni-

verse spatially flat, i.e., 1 = Q.0 + Qo + Qe + Qgeo(m).

Parameter Planck (temperature+lensing) + BAO
Qroh? 4.28 x 107°

Quoh® 0.02219

Qeoh® 0.1177

h 0.6875

N 0.968

T 0.0965

logy [1010A] 3.097

Qaeo 0.704

m 0.288
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Table 6.2: Summary of the three models we simulate in this chapter. All models share the
cosmological parameters of Table 6.1. The QCDM model has the same expansion history

as the RO 2R model, but with GR as the theory of gravity (cf. Sec. 6.2.1).

Model H(a) Gett/G

"Full” RO“?R H(a)po—2r  Eq. (6.22)
QCDM H(G)RD—QR 1
ACDM H(a)acpMm 1

standard ACDM. In this chapter, we are mostly interested in the phenomenology driven by
the modifications to gravity in the RC™?R model. This is why we shall use the same cos-
mological parameters for both models. We refer the reader to Ref. [341] for an exploration

of the parameter space in the RLJ 2R model with CMB data.

6.2 Results

6.2.1 N-body simulations summary

Our simulations of the Nonlocal gravity model were performed with a modified version
of the publicly available RAMSES N-body code [291]. Our modifications to the code consist
of (i) changing the routines that compute the background expansion rate to interpolate
the RO~2R model expansion rate from a pre-computed table generated elsewhere; (ii) re-
scaling the total force felt by the particles in the simulation by Geg(a)/G, whose values are
also interpolated from a table generated beforehand.

In the following sections we show the N-body simulation results obtained for three
models. We simulate the “full” RCO~2R model of action Eq. (6.1), whose expansion history
and Geg/G are given by Egs. (6.11) and (6.22), respectively. We also simulate a standard
ACDM model and a model with the same expansion history as the RL 2R model, but with
Gefi /G = 1. We call the latter model QCDM, and comparing its results to ACDM allows us
to pinpoint the impact of the modified H (a) alone on the growth of structure. The specific
impact of the modified G.¢ can then be measured by comparing the results from the ”full”

RO~2R model simulations with those from QCDM. Table 6.2 summarizes the models we
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consider in this chapter (these model variants are analogous to those of Table 4.2 for the
Galileon model).

We simulate all models on a cubic box of size L = 200 Mpc/h with N, = 5123 dark
matter particles. We take Ny, = 8 as the grid refinement criterion in RAMSES. The initial
conditions are set up at z = 49, using the ACDM linear matter power spectrum with the
parameters of Table 6.1. For each model, we simulate five realizations of the initial condi-
tions (generated using different random seeds), which we use to construct errorbars for the

simulation results by determining the variance across the realizations.

6.2.2 Linear growth and . curves

Before discussing the results from the simulations, it is instructive to look at the model
predictions for the linear growth rate of structure and for the time dependence of the critical
density d.(2).

From top to bottom, Fig. 6.2 shows the time evolution of the fractional difference of the
expansion rate relative to ACDM, H/Hxcpwm — 1, the effective gravitational strength Geg /G
and the fractional difference of the squared linear density contrast relative to ACDM, (6/6 ACDM)Z—
1. The expansion rate in the RO ~2R model is lower than in ACDM for a > 0.1. This re-
duces the amount of Hubble friction and therefore boosts the linear growth rate. The grav-
itational strength in the RO ~2R model starts growing after a > 0.2, being approximately
6% larger than in GR at the present day. This also boosts the linear growth of structure, but
has a smaller impact compared to the effect of the lower expansion rate. This is seen by
noting that the differences between QCDM and ACDM in the bottom panel are larger than
the differences between QCDM and the RO 2R model.

Figure 6.3 shows the time dependence of J.. In the top panel, all models exhibit the
standard result that J. decreases with time, i.e., the initial overdensity of the spherical top-
hat should be smaller, if the collapse is to occur at later times. Compared to ACDM, at
late times (a > 0.3), the QCDM and ROI~2R models predict lower values for d.. This is as
expected since structure formation is boosted at late times in these models, and as a result,
this needs to be compensated by smaller values of the initial overdensities for the collapse
to occur at the same epoch as in ACDM. Just like in the case of the linear growth rate, the
differences w.r.t. the ACDM results are mainly affected by the lower expansion rate, and

not by the larger values of G /G. At earlier times (a < 0.3), all models have essentially the
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Figure 6.2: The upper panel shows the evolution of the expansion rate, plotted as the frac-
tional difference w.r.t. the ACDM (black) result, H(a)/Hacpm — 1 as a function of the
expansion factor, a. H(a) is the same for the RO >R (blue) and QCDM (red) models. The
middle panel shows the evolution of the effective gravitational strength, Geg/G. This is
unity in the ACDM and QCDM models at all times. The lower panel shows the evolu-
tion of the squared linear density contrast, §2, plotted as the fractional difference w.r.t. the

ACDM prediction.

same expansion rate and gravitational strength, and as a result, the values of J. are roughly

the same.

6.2.3 Interpretation of the constraints from Solar System tests of gravity

The absence of a screening mechanism in the R ~2R model may raise concerns about the
ability of the model to satisfy Solar System constraints [40]. For instance, for the parameters

of Table 6.1, the RLJ~2R model predicts that the rate of change of the gravitational strength

today, Ges /G, is

Geﬂ - d <Geff

a ~ ~13 1

e gy & ) 92 x 1072 yrs™ -, (6.23)
which is at odds with the observational contraint Gog/G = (4 = 9) x 1073 yr~!, obtained
from Lunar Laser Ranging experiments [250]. Hence, it seems that this type of local con-

straints can play a crucial role in determining the observational viability of the RO™2R
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Figure 6.3: The upper panel shows the time evolution of the critical initial density for a
spherical top-hat halo to collapse at scale factor a (linearly extrapolated to the present-day
using the ACDM linear growth factor), for the ACDM (black), QCDM (red) and RO 2R

(blue) models. The lower panel shows the fractional difference w.r.t. ACDM.

model, potentially ruling it out (see e.g. Refs. [248, 340] for a similar conclusion, but in the
context of other models).

It is interesting to contrast this result with that of the nonlocal model of Ref. [61], which
we call here the f(X) model (for brevity), where f(X) is a free function that appears in the
action and X = [J~!R. The equations of motion of this model can be schematically written

as
G/W [1 + X(X)] + AGW/ = T,uua (6.24)

where AG,,, encapsulates all the extra terms that are not proportional to GG, and the factor

x(X) is given by

x=f(xX)+0O! [Rs)f((X)] . (6.25)

For the purpose of our discussion, it is sufficient to look only at the effect of x in Eq. (6.24).

This rescales the gravitational strength as

Geff

= {1+x}71, (6.26)
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which is similar to the effect of S in the RLO™2R model. There is, however, one very im-
portant difference associated with the fact that in the case of the f(X) model, one has the
freedom to choose the functional form of the terms that rescale G.g. To be explicit, we write

the argument of f as
X=0"R=0R+0R, (6.27)

where R and 6R are, respectively, the background and spatially perturbed part of R. As
explained in Ref. [63], the relative size of R and JR is different in different regimes. At
the background level, 07'6R = 0 and so the operator 0! acts only on R. On the other
hand, within gravitationally bound objects we have 071dR > O 'R. Now recall that
the covariant J operator acts with different signs on purely time- and space-dependent
quantities 1. As a result, the sign of X on the background differs from that within bound
systems, such as galaxies or our Solar System. This can be exploited to tune the function
f in such a way that it vanishes when the sign of X is that which corresponds to bound
systems. In this way, y = 0 and one recovers GR completely 2. When X takes the sign
that corresponds to the background, then the function f is tuned to reproduce a desired
expansion history, typically ACDM. In the case of the RLJ"2R model, S is fixed to be
S =072 (R + §R) and one does not have the freedom to set it to zero inside bound objects.
Consequently, the time-dependent part of S is always present in Eq. (6.22), which could
potentially lead to a time-dependent gravitational strength that is at odds with the current
constraints.

For completeness, one should be aware of a caveat. In the above reasoning, we have
always assumed that the line element of Eq. (1.1) is a good description of the geometry of
the Solar System. The question here is whether or not the factor a(t)? should be included
in the spatial sector of the metric when describing the Solar System. This is crucial as the
presence of a(t) in Eq. (1.1) determines if S varies with time or not. If a(t) is considered,
then S varies with time and G.g is time-varying as well. In this way, the model fails the
Solar System tests. On the other hand, if one does not consider a(t) in the metric, then G.g
is forcibly constant, and there are no apparent observational tensions. Such a static analysis
was indeed performed by Refs. [136, 329], where it was shown that the model can cope well

with the local constraints. Recall that these issues are similar to those we encountered in

. . . . . . 92 a2 a2 a2
!For instance, in flat four-dimensional Minkowski space we have 0 = + 2, — 2, — 0 &

ot? ox2 Oy
’In Eq. (6.24), AG ., also vanishes if x = 0.
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Table 6.3: Best-fitting Sheth-Tormen (¢, p) parameters to the simulation results at a = 0.6,
a = 0.8 and a = 1.0. The uncertainty in the values of g and pis A, = 3.5 x 102 and A, =
1.5x 1073, respectively. These parameters are those that minimize the quantity >, [n5™(>
M;)/nST (> M;, q,p) — 1], in which n¥™$ is the cumulative mass function measured from
the simulations and n5T is the analytical result given by the Sheth-Tormen mass function.
Here, the index ¢ runs over the number of bins used in the simulation results. The standard

ST values (¢, p) = (0.75,0.3) are also shown as a reminder.

Model a=0.6 a=0.8 a=1.0
(¢:p) (¢,p) (¢,p)
Standard  (0.750,0.300)  (0.750,0.300) (0.750,0.300)
ACDM (0.713,0.323)  (0.756,0.326)  (0.756,0.341)
QCDM (0.727,0.321)  (0.756,0.331)  (0.763,0.344)
RO2R  (0.720,0.321)  (0.741,0.326) (0.756,0.336)

previous chapters for the Quartic Galileon model, in which the background evolution of
the Galileon field may also drive a sizeable e locally (cf. Fig. 4.3).

The clarification of the above tension boils down to determining the impact of the global
expansion of the Universe on local scales. It is not clear to us that if a field is varying
on a time-evolving background, then it should not do so in a small perturbation around
that background. However, we acknowledge this is an open question to address, and such
study is beyond the scope of the analysis in this chapter. In what follows, we limit ourselves
to assuming that Eq. (6.22) holds on all scales, but focus only on the cosmological (rather

than local) interpretation of the results.

6.2.4 Halo mass function

Our results for the cumulative mass function of the ACDM (black), QCDM (red) and RO 2R
(blue) models are shown in Fig. 6.4 at a = 0.60, a = 0.80 and a = 1.00. The symbols show
the simulation results obtained with the halo catalogues we built using the Rockstar halo

finder [292]. The results in the figure correspond to catalogues with subhaloes filtered



6. Nonlinear structure formation in Nonlocal Gravity 168

- Black : ACDM
7\ Red :QCDM
5 Blue : Nonlocal

a=0.60 a=0.80

0.4
<
=
A 0.3
= /!
o2
= 0. . /l,/
4 01 sy oAy

et i
0.0 ==
10.12 1(;13 10‘14 1015 1(;12 1(;13 10‘14 1015 1(;12 1(;13 10‘14 1015
M[M/h) M[M/h) M[M/h)]

Figure 6.4: The cumulative mass function of dark matter haloes (upper panels) for the
ACDM (black), QCDM (red) and RO 2R (blue) models, at three epochs a = 0.6, a = 0.8
a = 1.0, as labelled. The lower panels show the difference relative to ACDM. The sym-
bols show the simulation results, and the errorbars indicate twice the variance across the
five realizations of the initial conditions. We have used the phase-space friends-of-friends
Rockstar code [292] to build the halo catalogues (without subhalos) used to compute the
halo abundances. We only show the results for haloes with mass My > 100 x M, ~
5 x 101 Mg /h, where M, = p,,0L?/N, is the particle mass in the simulations. The lines
correspond to the ST mass function obtained using the fitted (solid lines) and the standard

(dashed lines) (g, p) parameters listed in Table 6.3.
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out. The lines show the ST analytical prediction computed for the fitted (solid lines) and
standard (dashed lines) ST (g, p) parameters of Table 6.3. From the figure, one notes that
although performing the fitting helps to improve the accuracy of the analytical formulae,
overall the use of the standard values for (¢, p) provides a fair estimate of the halo abun-
dances in the RO 2R model, and of its relative difference w.r.t. ACDM. This is not the
case, for instance, in Galileon gravity models, for which it is necessary to recalibrate sub-
stantially the values of (¢, p) if the ST mass function is to provide a reasonable estimate of
the effects of the modifications to gravity (cf. Chapter 5). In the case of the REI~2R model,
the fact that the standard values of (¢,p) = (0.75,0.30) work reasonably well means that
the modifications in the RO 2R model, relative to ACDM, are mild enough for its effects
on the mass function to be well captured by the differences in 6.(z).

At a = 1.00, the mass function of the QCDM model shows an enhancement at the high-
mass end (M 2> 5x10'2M,/h), and a suppression at the low-mass end (M < 5x10'2M,/h),
relative to ACDM. This is what one expects in hierarchical models of structure formation
if the growth rate of structure is boosted, as smaller mass objects are assembled more effi-
ciently to form larger structures, leaving fewer of them. The effects of the enhanced Geg/G
maintain this qualitative picture, but change it quantitatively. More explicitly, the mass
scale below which the mass function drops below that of ACDM is smaller than the mass
range probed by our simulations; and the enhancement of the number density of mas-
sive haloes is more pronounced. In particular, compared to ACDM, haloes with masses
M ~ 10"M /h are ~ 5% and ~ 15% more abundant in the QCDM and RJ~2R models,
respectively. Figure 6.4 also shows that the relative differences w.r.t. ACDM do not change
appreciably with time after a ~ 0.80. At earlier times (a ~ 0.60), the halo abundances in the
QCDM and RO~2R models approach one another, and their relative difference to ACDM

decreases slightly, compared to the result at later times.

6.2.5 Halo bias

The linear halo bias predictions for the ACDM (black), QCDM (red) and RO2R (blue)
models are shown in Fig. 6.5 at @ = 0.6, a = 0.8 and a = 1.0. The symbols show the
simulation results, which were obtained as in Sec. 5.3.3.

The simulation results show that, within the errorbars, the linear halo bias parameter

for the three models is indistinguishable at all epochs shown. This shows that the modifi-
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Figure 6.5: Linear halo bias in the ACDM (black), QCDM (red) and RO ~?R (blue) models,
for three epochs a = 0.6, a = 0.8 and a = 1.0, as labelled. The symbols show the asymptotic
value of the halo bias on large scales measured from the simulations as b(M) = Py, (k —
0,M)/P(k), considering only haloes (and not subhaloes) with mass My > 100 x M, ~
5 x 10" M, /h, where M,, = p,,0L3/N,, is the particle mass. Only the mass bins for which
the values of Py, (k, M)/P(k) have reached a constant value on large scales are shown.
The errorbars show twice the variance across the five realizations of the initial conditions.
The solid and dashed lines show the prediction from the ST formula, Eq. (5.28), computed,
respectively, with the best-fitting and standard (g, p) parameters listed in Table 6.3.

cations to gravity in the RO 2R model are not strong enough to modify substantially the
way that dark matter haloes trace the underlying density field. The ST formula, Eq. (5.28),
reproduces the simulation results very well. Note also that there is little difference between
the curves computed using the fitted (solid lines) and the standard (dashed lines) (¢, p) pa-
rameters of Table 6.3. We conclude the same as in the case of the mass function that, in the
context of the RLO™2R model, there is no clear need to recalibrate the (g, p) parameters in

order to reproduce the bias results from the simulations.

6.2.6 Halo concentration

Figure 6.6 shows the halo concentration-mass relation for the ACDM (black), QCDM (red)
and RO2R (blue) models, at a = 0.60, a = 0.80 and a = 1.00. The symbols correspond
to the mean values of ¢y identified in the same halo catalogues used in Fig. 6.4. For all

models, and at all epochs and mass scales shown, one sees that the halo concentrations are
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Figure 6.6: Halo concentration-mass relation in the ACDM (black), QCDM (red) and
RO2R (blue) models, for three epochs a = 0.6, a = 0.8 and a = 1.0, as labelled. The
symbols show the mean halo concentration in each mass bin, considering only haloes (and
not subhaloes) with mass Magy > 1000 x M, ~ 5 x 10'?M,/h, where M,, = pyoL3/N, is
the particle mass. In the a = 0.6 panel, we omit the results from the two highest mass bins
due to their few number of objects. The errorbars show twice the variance of the mass-
binned mean concentration across the five realizations of the initial conditions. The solid

lines show the best-fitting power law relations of Table 6.4.

Table 6.4: Concentration-mass relation best-fitting («, 3) parameters in the parametrization

logyo(c200) = a + Blogyg (Mago/ [10'2Mg /h]) to the simulation results at @ = 0.6, a = 0.8

and a = 1.0. The uncertainty in the values of o and 3 is A, = Ag = 0.001. These are the

parameters that minimize the quantity >_. (¢33 (M;) — cbio™ (M, a, 8))? ) (2AcSS (M;))?,

where 555 (M;) is the mean halo concentration measured from the simulations, Ac5is(M;)
param

is the variance of the mean across the five realizations and ¢, (M;, v, §) is the concen-

tration given by the parametrization. Here, the index i runs over the number of mass bins.

Model a=0.6 a=0.8 a=1.0

ACDM  (0.729,-0.066)  (0.813,—0.084) (0.863, —0.093)
QCDM  (0.726,-0.068)  (0.814,—0.087) (0.866,—0.100)
RO2R  (0.737,—0.067)  (0.834,—0.086) (0.898, —0.095)
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well fitted by the power law function (solid lines),

logyo(c200) = a + Blog (Mago/ [10'2 Mg /R]) (6.28)

with the best-fitting (c, 3) parameters given in Table 6.4. In the RC~?R and QCDM mod-
els, one recovers the standard ACDM result that halo concentration grows with time at
fixed mass, and that, at a given epoch, the concentration decreases with halo mass.

At early times (¢ < 0.6), all models predict essentially the same concentration-mass
relation. At later times, however, the halo concentrations in the RO 2R model become
increasingly larger compared to ACDM. In particular, at a = 1.00, the halos are ~ 8% more
concentrated in the RO 2R model, compared to ACDM, for the entire mass range probed
by the simulations. This can be attributed to a combination of two effects. Firstly, the
enhanced structure formation in the RCJ~2R model may cause the haloes to form at earlier
times. This leads to higher concentrations since the haloes form at an epoch when the
matter density in the Universe was higher. Secondly, the increasingly larger value of Geg
is also expected to play a role via its effect in the deepening of the gravitational potentials.
In other words, even after the halo has formed, the fact that gravity keeps getting stronger
with time may also help to enhance the concentration of the haloes (see also Refs. [306, 342,
343, 344]). In the case of the QCDM model, one finds that the halo concentrations are hardly
distinguishable (within errorbars) from those in the ACDM model, at all times and for all
mass scales. This suggests that the differences between the expansion history of the QCDM
and ACDM models (cf. Fig. 6.2) are not large enough to have an impact on the formation
time of the haloes. Once the haloes have formed in these two models, one can think as if
the clustering inside these haloes decouples from the expansion. As a result, and since the
gravitational strength is the same (cf. Table 6.2), one sees no significant differences in the

concentration of the haloes from the QCDM and ACDM simulations.

6.2.7 Nonlinear matter power spectrum

Figure 6.7 shows our results for the nonlinear matter power spectrum. The power spectrum
from the simulations was measured using the POWMES code [310]. The solid (dashed) lines
show the halo model prediction obtained using Eq. (5.24) with the fitted (standard) (g, p)
parameters of Table 6.3. The dotted lines show the predictions obtained using linear theory.

Next, we organize the discussion as in Sec. 5.3.6 for the Galileon model by discussing the
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Figure 6.7: The nonlinear matter power spectrum (upper panels) in the ACDM (black),
QCDM (red) and RO~2R (blue) models, at three epochs a = 0.6, a = 0.8 and a = 1.0, as
labelled. The lower panels show the different w.r.t. ACDM. The symbols show the simula-
tion results, where the errorbars show twice the variance across the five realizations of the
initial conditions. The solid lines show the halo model prediction obtained using Eq. (5.24),
with the best-fitting (¢, p) parameters listed in Table 6.3. The dashed lines show the power
spectrum when using the standard ST (¢, p) = (0.75,0.30) parameter values. The dotted
lines show the result from linear perturbation theory. These lines are indistinguishable in

the upper panels.
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results separately for large, intermediate and small length scales. Some of the discussion is
overlapping with that from the previous chapter, and as a result, we shall be brief here.

Large scales. On scales k < 0.1h/Mpc, the halo model is dominated by the 2-halo term,
which is practically indistinguishable from the linear matter power spectrum (cf. Sec. 5.3.6).
As a result, the agreement between the halo model and the simulation results on large
(linear) scales is guaranteed.

Intermediate scales. On scales 0.1h/Mpc < k < 1h/Mpc, the halo model underpre-
dicts slightly the power spectrum measured from the simulations, for all models and at all
epochs shown. This is due to a fundamental limitation of the halo model on these scales,
which follows from some simplifying assumptions about the modelling of halo bias on
these intermediate scales (recall the simple explanation given in Sec. 5.3.6). Nevertheless, in
terms of the relative difference to ACDM, the halo model limitations cancel to some extent,
which leads to a better agreement with the simulation results. It is also worth mentioning
that the performance of the halo model when ones uses the standard (¢,p) = (0.75,0.30)
values (dashed lines) is comparable to the case where one uses the values that best fit the
mass function results (solid lines).

Small scales. On scales of k 2 1h/Mpc, the halo model predictions are dominated by the
1-halo term, whose agreement with the simulations becomes better than on intermediate
scales, especially at a = 1.00. There are still some visible discrepancies at a = 0.60, which
are similar to those found in Sec. 5.3.6 for the Cubic and Quartic Galileon models. How-
ever, similarly to what happens on intermediate scales, the halo model performs much
better when one looks at the relative difference w.r.t. ACDM. The predictions obtained
by using the standard (¢, p) parameter values (dashed lines), although not as accurate as
the results obtained by using the fitted (g, p) values (solid lines), are still able to provide
a good estimate of the effects of the modifications to gravity in the RLJ~2R model on the

small-scale clustering power.

In the QCDM model, the relative difference w.r.t. ACDM becomes smaller with increas-
ing k. In particular, for £ 2 10h/Mpc at a = 1.0, the clustering amplitude of these two
models becomes practically indistinguishable. This result can be understood with the aid
of the halo model expression for the 1-halo term, Pklh, (cf. Eq. (5.25)), which depends on

the halo mass function and concentration-mass relation. Firstly, one notes that for smaller
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length scales, the integral in P! becomes increasingly dominated by the lower mass end
of the mass function. Consequently, the fact that the mass function of the QCDM model
approaches that of ACDM at low masses (becoming even smaller for M < 5 x 10'2M, /h at
a = 1.00), helps to explain why the values of AP, /P; ncpm decrease for k 2 1h/Mpc. Sec-
ondly, according to Fig. 6.6, the halo concentrations are practically the same in the ACDM
and QCDM models. In other words, this means that inside small haloes (those relevant for
small scales), matter is almost equally clustered in these two models, which helps to ex-
plain why AP /P, axcpwm is compatible with zero for £ 2 10h/Mpc (Ref. [60] finds similar
results for K-mouflage gravity models).

The same reasoning also holds for the RO~2R model, which is why one can also note
a peak in AP, /P, acpm at k ~ 1h/Mpc. However, in the case of the RO~2R model, the
mass function is larger at the low-mass end and the halo concentrations are also higher,
compared to QCDM and ACDM. These two facts explain why AP}/ P, acpm does not
decrease in the RO™2R model, being roughly constant at a = 1.00 for k¥ > 1h/Mpc. In
particular, we have explicitly checked that if one computes the halo model predictions of
the RO~2R model, but using the concentration-mass relation of ACDM, then one fails to
reproduce the values of AP,/ P, acpm on small scales. This shows that a good performance
of the halo model on small scales is subject to a proper modelling of halo concentration,

which can only be accurately determined in N-body simulations.

6.2.8 Nonlinear velocity divergence power spectrum

Figure 6.8 shows the nonlinear velocity divergence power spectrum, Pyy,? for the three
models of Table 6.2 and for @ = 0.60, a = 0.80 and a = 1.00. The computation was done
by first building a Delaunay tessellation using the particle distribution of the simulations
[293, 294], and then interpolating the density and velocity information to a fixed grid to
measure the power spectra. The upper panels show that on scales & < 0.1h/Mpc, the
results from the simulations of all models approach the linear theory prediction, which is

given by

i H ? inear
g™ = a (HO> SR, (6:29)

*Here, 0 is the Fourier mode of the divergence of the peculiar physical velocity field v, defined as (&) =

Vv(f)/Ho
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Figure 6.8: The nonlinear peculiar velocity divergence power spectrum (upper panels) in
the ACDM (black), QCDM (red) and RO2R (blue) models, for three epochs a = 0.6,
a = 0.8 and a = 1.0, as labelled. The lower panels show the difference w.r.t. ACDM.
The symbols show the simulation results, where the errorbars show the variance across
the five realizations of the initial conditions. The dashed lines only link the symbols to
help the visualization. The dotted lines in the bottom panels show the prediction of linear

perturbation theory.

where P,?near is the linear matter power spectrum and f = dIndj;,/dIna. On smaller scales,
the formation of nonlinear structures tends to slow down the coherent (curl-free) bulk
flows that exist on larger scales. This leads to an overall suppression of the divergence
of the velocity field compared to the linear theory result for scales k£ 2 0.1h/Mpc, as shown
in the upper panels.

In the lower panels, the simulation results also agree with the linear theory prediction
for £ < 0.1h/Mpc. On these scales, the time evolution of the power spectrum of all models
is scale independent and the relative difference encapsulates the modifications to the time
evolution of P,?near, H and f, in Eq. (6.29). On smaller scales, the values of APkee / P,f}eACDM
decay w.r.t. the linear theory result until approximately k£ = 1h/Mpc. This suppression fol-
lows from the fact that the formation of nonlinear structures is enhanced in the QCDM and

RO~2R models, relative to ACDM (cf. Figs. 6.4 and 6.7). Hence, on these scales, the sup-
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pression in the velocity divergence caused by nonlinear structures is stronger in the QCDM
and RO~2R model, compared to ACDM. Finally, on scales k > 2 — 3h/Mpc, the relative
difference to ACDM grows back to values comparable to the linear theory prediction. On
these scales, one does not expect haloes to contribute considerably to P/’ for two main
reasons. First, as haloes virialize, the motion of its particles tends to become more random,
which helps to reduce the divergence of the velocity field there. Secondly, and perhaps
more importantly, P/’ is computed from a volume-weighted field, and as a result, since
haloes occupy only a small fraction of the total volume, they are not expected to contribute
significantly to the total velocity divergence power spectrum. On the other hand, consider-
able contributions may arise from higher-volume regions such as voids, walls or filaments,
where coherent matter flows exist. For instance, matter can flow along the direction of dark
matter filaments, or inside a large wall or void that is expanding (see e.g. [36, 345, 346]).
These small scale flows are larger in the QCDM and RO2R models at a fixed time, as

shown by the growth of the values of AP’/ P,f’(’}\CDM on small scales.

On scales k 2 2 — 3h/Mpc, one may find it odd that the QCDM model predicts roughly
the same matter power spectrum as ACDM (cf. Fig. 6.7), but has a different velocity di-
vergence power spectrum. This has to do with the weight with which different structures
contribute to P, and PY°. For instance, Py is computed from a mass-weighted density
field, and hence, it is dominated by the highest density peaks, which are due to dark mat-
ter haloes. In other words, it is very insensitive to the behavior of the clustering of matter
in voids, walls or filaments due to their lower density. On the contrary, P/, which is com-
puted from a volume-weighted field, is forcibly less sensitive to dark matter haloes due to
their low volume fraction. The values of PY’ are then mostly determined by the velocity
field inside voids, walls and filaments. These structures are typically larger than haloes
and therefore they are more sensitive to the background expansion of the Universe. Con-
sequently, they are more likely to be affected by modifications to H(a), compared to haloes
which detach from the overall expansion sooner. This can then explain the differences in
the sizes of the modifications to P, and P,fa on small scales in the QCDM model, relative
to ACDM. To test this we have computed PY/ by artificially setting 6(#) = 0 in regions
where the density contrast exceeds § = 50. This should roughly exclude the contribution
from haloes to the values of PYY. We have found no visible difference w.r.t. the results of

Fig. 6.8, which shows that the small scale behavior of the velocity divergence is not affected
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by what happens inside dark matter haloes. We have performed the same calculation, but
by setting (Z) = 0 whenever § < 0, to exclude the contribution from voids. We have
found that at a = 1, the relative difference of QCDM to ACDM at £ ~ 10h/Mpc drops
from ~ 9% (as in Fig. 6.8) to ~ 7%. This seems to suggest that the dominant effect in the
small scale behavior of P/ comes from walls and/or filaments. The velocity divergence
in these structures is typically large (see e.g. Fig. 2 of Ref. [108]) and they also occupy a
sizeable fraction of the total volume as well. A more detailed investigation of these results

is, however, beyond the scope of the present analysis.

6.3 Summary

In this chapter, we studied the nonlinear regime of structure formation in nonlocal grav-
ity cosmologies using N-body simulations, and also in the context of the semi-analytical
ellipsoidal collapse and halo models.

The action or equations of motion of nonlocal gravity models are typically characterized
by the inverse of the d’Alembertian operator acting on curvature tensors. Here, we focused
on the model of Refs. [136, 335], in which the standard Einstein-Hilbert action contains an
extra term proportional to RO2R (cf. Eq. (6.1)). The constant of proportionality is fixed
by the dark energy density today, and hence this model contains the same number of free
parameters as ACDM, although it has no ACDM limit for the background dynamics or
gravitational interaction.

Our goal was not to perform a detailed exploration of the cosmological parameter space
in the RO~?R model. Instead, for the RLI~>R model we used the same cosmological pa-
rameters as for ACDM (cf. Table 6.1). In this way, one isolates the impact of the mod-
ifications to gravity from the impact of having different cosmological parameter values.
Nevertheless, the comparison presented in Fig. 6.1 suggests that the model fits the CMB
temperature data as well as ACDM (as confirmed by the more recent work of Ref. [341]).

Our main results can be summarized as follows:

e The expansion rate in the RO2R model is smaller than in ACDM at late times, and
the gravitational strength is enhanced by a time-dependent factor (cf. Fig. 6.2). Both effects
help to boost the linear growth of structure (cf. Fig. 6.2) and also speed up the collapse of

spherical matter overdensities (cf. Fig. 6.3). In particular, at the present day, the amplitude
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of the linear matter (velocity divergence) power spectrum is enhanced by ~ 7% (~ 12%) in
the RO~2R model, compared to ACDM. These results are in agreement with Ref. [335]. The
critical density for collapse today, d.(a = 1), is ~ 3% smaller in the R ~2R model, relative
to ACDM (cf Fig. 6.3). For these results, the modified expansion history plays the dominant
role in driving the differences w.r.t. ACDM, compared to the effect of the enhanced G.g.

e At late times (a > 0.6), the number density of haloes with masses M > 10'2M /h
is higher in the RO~?R model, compared to ACDM. The difference becomes more pro-
nounced at the high-mass end of the mass function. In particular, at a = 1, haloes with
mass M ~ 10'* Mg /h are ~ 15% more abundant in the RCJ"2R model than in ACDM. At
M = 102 Mg, /h this difference is only ~ 2%. The effects of the modified H(a) and Gg on

the enhancement of the high-mass end of the mass function are comparable.

e The ST mass function describes well the halo number densities as well as the relative
differences w.r.t. ACDM, for all of the epochs studied (cf. Fig. 6.4). We find that the use
of the standard (q,p) = (0.75,0.30) ST parameter values provides a fair estimate of the
modifications to the mass function in the RO"2R model. However, recalibrating these

parameters to the simulation results helps to improve the accuracy of the fit (cf. Table 6.3).

e The linear halo bias parameter in the RLJ™?R model is barely distinguishable from
that in ACDM for all masses and epochs studied (cf. Fig. 6.5). In other words, the modifica-
tions to gravity in the RJ"2R model play a negligible role in the way dark matter haloes
trace the underlying density field. The ST halo bias formula therefore provides a good
description of the simulation results. There is also almost no difference between the semi-
analytical predictions for the bias computed using the best-fitting and standard values for

the (¢, p) ST parameters.

e The halo concentration-mass relation is well-fitted by a power law function (cf. Fig. 6.6),
but with fitting parameters that differ from those of ACDM (see Table 6.4). For a < 0.6, the
concentration of the haloes in the R ™2R model is roughly the same as in ACDM, but it
increases with time. In particular, at a = 1.0 (¢ = 0.8) and for all masses, haloes are ~ 8%

(=~ 4%) more concentrated in the RLJ~2R model, compared to ACDM.

e The modifications to gravity in the RLJ~?R model lead only to a modest enhancement

of the clustering power. For instance, at a = 1.0 (a = 0.8) the amplitude of the nonlinear
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matter power spectrum is never larger than ~ 15% (~ 10%) on all scales (cf. Fig. 6.7).
These differences might be hard to disentangle using data from galaxy clustering given
the known uncertainties in modelling galaxy bias. On small scales, k¥ 2 1h/Mpc, the dif-
ferences w.r.t. ACDM are completely determined by the enhanced Geg, and not by the

modifications to H (a).

e Similarly to the case of the matter power spectrum, the modifications in the RO 2R
model lead only to modest changes in the amplitude of the nonlinear velocity divergence
power spectrum. In particular, at a = 1.0 (e = 0.8) the enhancement relative to ACDM is

kept below =~ 12% (=~ 10%) on all scales.

e The RO~2R model possesses no screening mechanism to suppress the modifications
to gravity on small scales. As a result, Solar System tests of gravity can be used to constrain
the model. For example, the RO2R model predicts that Gost /G =~ 92 x 10713 yrs~1, which
is incompatible with the current bound from Lunar Laser Ranging experiments, Gz /G =
(4£9) x 10713 yr~=! [250]. The local time variation of Geg follows from the background
evolution of the auxiliary scalar field S, and it seems nontrivial to devise a mechanism
that can suppress it around massive objects or in high-density regions [248, 340]. In this
chapter, we focused only on a particular choice of cosmological parameters. As a result, it
might be possible that certain parameter combinations can be made compatible with Solar
System tests, whilst still being able to yield viable cosmological solutions. Nevertheless,
it seems clear that these tests should be taken into account in future constraint studies, as

they might have the potential to rule out these models observationally.

In conclusion, the RO~?R model, despite having no ACDM limit for the dynamics
of the background and gravitational interaction, exhibits changes of only a few percent
in observables sensitive to the nonlinear growth of structure. Some of these effects are
degenerate with baryonic mechanisms such as AGN feedback or galaxy bias, or even with
massive neutrinos [3, 4, 200, 347]. This makes it challenging to distinguish this model from
ACDM, but the precision of upcoming observational missions such as Euclid [348, 349],

DESI [350] or LSST [351] should make this possible.



Chapter 7
Lensing by clusters and

voids in modified lensing

potentials

In this chapter, we focus on the lensing signal associated with galaxy clusters and cos-
mic voids in modified gravity theories that modify directly the lensing potential. This is
a topic that has not been extensively investigated in the literature. The reason for this,
we believe, is historical as many of the first modified gravity models to be compared to
observations were models like f(R) [52] or Dvali-Gabadadze-Porrati (DGP) [352] gravity,
which do not modify the lensing potential directly through a modified Poisson equation.
This is because, in these models, the amplitude of the fifth force vanishes for relativis-
tic particles like photons, which means that any modifications to lensing arise through
changes in the mass distribution, and not due to changes to the photon geodesic equation.
Consequently, one expects that lensing observations can serve as stronger probes of mod-
ified gravity models that also modify directly the lensing potential. The Cubic Galileon
and Nonlocal gravity models that we studied previously in this thesis are two such exam-
ples of models that modify lensing directly, and we take them as our working test cases
in this chapter. Other models that also modify lensing directly include massive gravity
[353, 354, 355, 356, 357, 358, 359], K-mouflage gravity [12, 58, 59, 60], and several other
special cases of Horndeski’s general model [144].

In a first part of this chapter, we focus on one possible consequence of modifications
to the lensing potential, which is that they may introduce model-dependent systematics in
the estimation of cluster masses from lensing. To investigate this, we model galaxy clusters
as NFW haloes [286], and fit the predicted lensing convergence signal to the data obtained
from weak and strong lensing observations for 19 X-ray selected clusters from the Cluster
Lensing and Supernova Survey with the Hubble Space Telescope (CLASH) [137, 360, 361].

Our goal is to compare the resulting mass estimates to the values obtained assuming

181
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ACDM. In most of the current data analysis, one often makes model-dependent assump-
tions which may lead to results that are biased towards the assumed models. For example,
the analysis of Ref. [137] assumes a fiducial ACDM background to compute angular di-
ameter distances. Assumptions like these must be identified and carefully assessed before
using the observations to test alternative models. Given the subtle nature of some steps
involved in the analysis of lensing data we shall pay special attention to them and explain
how they can be taken into account.

In a second part of this chapter, we focus on lensing by cosmic voids, which (contrary to
clusters) are the regions of the Universe where the density is the lowest, and hence, where
one expects fifth force effects to be maximal (due to the weaker screening efficiency). We
find voids in the simulations using a watershed based algorithm [362] and investigate the
effects of the fifth force on the number of voids and on their density and force profiles. We
also put forward a simple fitting formula that matches very well the void profiles found
in the simulations for different variants of the modified gravity models, for different den-
sity tracer types (dark matter and haloes) and for a wide range of void sizes. The formula
admits a closed expression (in terms of hypergeometric functions) for the mass within a
given radius, which makes it convenient to use in force profile calculations and lensing
studies. Our goal is to provide intuition about the potential of lensing by voids to test
gravity outside the solar system. We do not attempt to make any observationally conclu-
sive statement, but we do comment on a number of extra steps that need to be taken to

compare our results with observations.

7.1 Lensing equations

In this section, we specify our notation and briefly describe the calculation of the relevant

lensing quantities (see e.g. Refs. [363, 364, 365] for comprehensive reviews).

7.1.1 Cluster lensing basics

In our setup, we consider a set of source galaxies at redshift z;, whose light gets deflected by
alens at z4. We use Dy, D, and Dy, to denote, respectively, the angular diameter distances
between the observer and the lens, the observer and the sources, and the lens and the

sources. In our calculations, we always assume that the lenses are spherically symmetric
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and use the thin-lens approximation in which one neglects the size of the lens compared to
the much larger values of Dy, Ds and Dg4s. We also neglect the lensing distortions induced
by foreground and background structures, compared to the lensing signal of the lens. In
our notation, r = \/aﬁy2 is a two-dimensional radial coordinate defined on the lens
plane and with origin at the lens center (x and y are cartesian coordinates); [ denotes the
optical axis (line-of-sight) direction, perpendicular to the lens plane, and with origin also
at the lens center; and R = V2 + [2, is a three-dimensional radial coordinate with origin
at the lens center.

Light rays coming from the sources are deflected at the lens position by an angle &,

which is related to the true (unobserved) angular position, ﬁ, and the observed one, 5, by
3 =0-al(0). (7.1)

The local properties of the lensing signal are fully determined by spatial second derivatives

of the scaled projected lensing potential of the lens, v/, which is given by

Dy,
WO =1/Dy) = Das 2 /D Do (1, 1)dL, (7.2)

"~ DyD, 2
where c is the speed of light and ®j,,, = (® + ¥) /2 is the total three-dimensional lensing
potential. The Jacobian matrix of the lensing mapping of Eq. (7.1) is given by

0B ~ |l—k—m —72
—(0) = , (7.3)
00 —2 l=rk+m
where
KO) = S92 =1 (62 + 2 )w (7.4)

D% — 9 D% 9 9
= =Viyp=-—->"- (817 + ay) Y
is the lensing convergence', and

1
o= 9 (agz - agy) v,
Y2 = 0,0, (7.5)

are the two components of the complex lensing shear, |v| = \/v{ + 73. The convergence is re-

sponsible for an isotropic focusing (or defocusing) of the light rays, whereas the shear field

'The overbar on the V operator indicates that it is the two-dimensional Laplacian. Also, note that 7 = Dg6.
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causes distortions in the shapes of the observed source galaxies. For spherically symmetric

cases, the tangential lensing shear +; is given in terms of the convergence « as [366]
v =K —k, where k== [ yr(y)dy. (7.6)

In lensing studies, one can split the analysis into the weak and strong lensing regimes.
In the weak lensing regime, the directly observable quantity is the locally averaged com-
plex ellipticity field in the lens plane, (¢), which can be constructed from measurements
of background galaxy shapes. At each point of the lens field, an average is taken over a
number of nearby sources to smooth out the intrinsic ellipticity of the galaxies from that
caused by the lens (see e.g. [364, 367, 368]). Observationally, the field (¢) is directly related
to the reduced shear, g, as (¢) «<— g = 7/(1 — k). The strong lensing regime takes place in
regions of high mass concentration (e.g. in the inner regions of galaxy clusters). There, the
lensing quantities x and v become large and the equations become nonlinear. As a conse-
quence, highly distorted images like giant arcs or arclets and multiple images of the same
background source can form. This happens close to the location of the critical curves of
the lens, which are defined as the set of points on the lens plane where the lensing matrix,

Eq. (7.3), becomes singular, i.e.,
det (aé/aef) —(1-r)2—~2=0. 7.7)

Observationally, one identifies multiple images and giant-arcs to infer the position and
shape of the critical lines. Then, given a theoretical prediction for x and v, one can check if

det (85 / 85) vanishes at the location of the critical lines.

7.1.2 Convergence in ACDM

In ACDV,, in the absence of anisotropic stress, ® = ¥, and as a result, the lensing potential
is equal to the dynamical potential, ®jo, = (® + V) /2 = & = V. Both satisfy the Poisson
equation, V%rjl)fb(r, ) = 4nGp(r,1), where p(r,l) is the three-dimensional density distribu-
tion. The lensing convergence is obtained by integrating the Poisson equation along the
line of sight, . After some straightforward algebra, and by making use of the thin-lens
approximation and Egs. (7.2) and (7.4), it is possible to show that [363, 364, 365]

4rG Ddst

_ (0 =r/Da)
2 Dy

1{(9 = T/Dd) Y. )

(0 =r/Dy) = (7.8)
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where ¥(r) = [ p(r,1)dl is the surface mass density of the lens and X = ¢ D/ (4rGDgsDy)
is called the critical surface mass density for lensing. Once & is determined, then the lensing

shear can be obtained from it by making use of Eq. (7.6).

7.1.3 Convergence in Nonlocal and Cubic Galileon Gravity

As in ACDM, in the Nonlocal and Cubic Galileon models one also has that ® = ¥ (in the
absence of anisotropic stress). Hence, the calculation of the lensing quantities in these two
models remains as in ACDM, apart from (i) the modified background expansion history,
which enters in the calculation of the angular diameter distances; and (ii) the modified
lensing potential, which enters in the calculation of the lensing convergence.

In the case of the Nonlocal model, the modified lensing convergence is obtained by
replacing G in Eq. (7.8) by the effective gravitational strength Gg of Eq. (6.22). In the case of
the Cubic Galileon model, one makes use of the spherically symmetric formulae presented
in Sec. 5.1.2 to compute V2®1en — PlonsrR +2%T?’R (which can be done analytically), which
is then numerically integrated along the line-of-sight to determine x. As in ACDM, 7; can
be determined from « via Eq. (7.6), for both these models.

The background quantities of the Cubic Galileon model are computed using the tracker
solution presented in Sec. 2.3. For the Nonlocal model, the background quantities have to

be solved numerically as in Chapter 6.

7.2 Galaxy cluster lensing masses

In this section, we describe our methodology to estimate the lensing masses of the 19
CLASH survey galaxy clusters [137]. We shall pay particular attention to a number of
subtleties that need to be accounted for to self-consistently compare the data with the pre-

dictions from the alternative models studied here.

7.2.1 Cluster density profiles

In order to compute the lensing convergence we need to specify the density profile of the
galaxy clusters, which we model as dark matter haloes with NFW density profiles. The
relevant NFW formulae have already been shown in Sec. 5.2.4. Here, we simply note that

the surface mass density of a NFW halo admits an analytical solution given by [363, 366,
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369]
Sxew(r = Dif) = [ prew(r: Dl = 7.9)
i?—_"i(l—ﬁarctanh[ h‘_—i}) r<l1
= —QTEPS r=1

27'sps 2 rx—1
ﬁ<1—marctan[ ITED z>1

where z = r/rs.

7.2.2 Fitting methodology

We use the radially-binned lensing convergence profiles obtained for 19 X-ray selected
galaxy clusters from CLASH in Ref. [137]. There, the analysis was performed with a numer-
ical algorithm called SaWLens [370], which iteratively reconstructs the lensing potential for
each cluster on a two-dimensional grid that covers the cluster field. The analysis is purely
non-parametric, i.e., it makes no assumptions about the mass distribution of the cluster. We
refer the reader to Refs. [137, 370, 371] for the details about how SaWLens operates. For the
discussion here, what is important to note is that what SawLens actually reconstructs is
the lensing potential scaled to a source redshift of infinity, ¥oc = ¢(2s = 00), by assuming
a fiducial cosmological model. We use k to denote the lensing convergence associated

with 9., which is related to the convergence at the true source redshift, z;, via

Ky, = Zﬁd(2d7zs)lioo, (7.10)

s

where we use the subscript ., to emphasize that x ., corresponds to the convergence associ-
ated with z,. The function Z = Z(z4, z5) transports the convergence from a source redshift
of infinity to the source redshift that corresponds to the galaxies on each SawWLens grid
cell/pixel (we use the words cell and pixel interchangeably). It is given by
DD

DD’

ds,00

78 (24, 25) = (7.11)

where the superscript fid

indicates angular diameter distances that are calculated assuming
the fiducial background cosmology and the subscript o, means that the calculation assumes
that z; = oco. In the reconstruction process of Ref. [137], the fiducial cosmology is a ACDM

model with Q,,0 = 0.27. From hereon, we use xf9 to denote the convergence profiles
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obtained in this way, where the superscript iY makes it explicit that the data is linked to the
fiducial model. It is therefore important to investigate the extent to which the i profiles
can be used in studies of alternative cosmologies.

Consider the case that we wish to estimate the lensing masses of the CLASH clusters in
amodel with a cosmological background that is different from the fiducial model originally

used to analyse the observations in Ref. [137]. In principle, we could suitably modify the

alt
oo’

SaWLens algorithm to reconstruct the convergence maps in the alternative model,
instead of 4. However, this would not be practical as it would imply rerunning the entire
analysis pipeline for different background cosmologies. A more economical strategy is to

note that the two convergence maps, 9 and x2, can be related by

78 (24, 25 RS = 2% (2a, 25 )RS (7.12)

o0

where Z%!t is defined as in Eq. (7.11) but with the distances calculated in any alternative,
and not the fiducial, cosmology. The above equation holds (up to a correction that we
discuss in the next subsection) since both Zﬁdmgg and Z altn";lf correspond to «.,, i.e., the
convergence at the true source redshift 2. Using the above equation, the radially binned

convergence profiles obtained using the fiducial cosmology in Ref. [137], £4(6), can be

alt

directly compared to the prediction of the alternative model 2

, provided the latter is
multiplied by the factor Z2!(z4, 25)/Z%4(24, z5). This is the approach that we adopt here.
Specifically, we aim to obtain constraints on Mgy and cz09 in non-fiducial backgrounds by

minimizing the x? quantity

o= VeV, (7.13)
where
7 fd o~ alt 4
Vi = ko, — TrES (Maoo, 200, 65), (7.14)

is the i-th entry of the vector V; x4 is the reconstructed lensing convergence in the i-th

radial bin, 6;; C,; is the covariance matrix of the radially binned data 3. and for brevity of

For example, for ACDM with an alternative background and for fixed surface mass density, for simplicity,

Eq. (7.12) becomes X () /22" = »(9) /x84 — yalt = »fid,
3The bootstrap realizations used to derive the covariance matrices in Ref. [137] also make use of the fiducial

cosmological background. Here, we use the errors as obtained for the fiducial cosmology and do not attempt
to estimate the dependence of the covariance matrix on the assumed cosmology. This does not alter our conclu-
sions as this choice only affects the precise size of the confidence intervals, without introducing any important

systematics.
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Figure 7.1: Dependence of the factor T = Z(zy, 25)/Z%4(24, 25), Eq. (7.15), on the source
redshift z; for a ACDM model with Q,,o = 0.4 (black), Galileon gravity (red) and Nonlocal
gravity (blue). The cosmological background of these models is different from the fiducial
ACDM model with €,,o = 0.27 used by Ref. [137]. In this figure, z4 = 0.35, which is typical
for the CLASH clusters.

notation, we introduce the scaling factor

Zalt(zd’ Zs)

Y(z4, 25) = T (g 20)

(7.15)

Although (2,0 is a parameter that enters the calculation of the lensing convergence, we
have checked that its impact is very small compared to the size of the effects of Msyy and
c200- In other words, assuming a particular value for 2,0 does not introduce any significant
biases in the cluster mass and concentration estimates (see Ref. [9] for more details). In our
cluster results below, we fix the cosmological matter density to be €,,o = 0.27, for all our

models. In this way, the ACDM model becomes the fiducial one used in Ref. [137].

The validity of Eq. (7.12) and the choice of source redshifts

fid

[e.9]

As discussed above, k5 is reconstructed by applying the transformation of Eq. (7.10) in
each cell of the SaWLens grid that covers the cluster field. In this process, the value of
zs is determined by the redshift of the galaxies used to measure the ellipticity field at that
pixel, or by the redshift of the galaxies associated with a given multiple image system. On
the other hand, our methodology is based on Eq. (7.12), in which one scales the lensing

quantities from z; = oo to a source redshift z,, but neglects the redshift distribution of the

background lensed galaxies. The validity of Eq. (7.12) then becomes linked to the impact
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of the spread of the redshift distribution of the source galaxies across each cluster field.
For the CLASH clusters analysed in Ref. [137], the redshift distribution of the background

galaxies is manifest in four main aspects:

(i) in the weak lensing regime, different ellipticity pixels are associated with different
source redshifts since the shapes are measured using different galaxies across the cluster
field;

(ii) related to the above, the ellipticity of each pixel results from a local average of neigh-

bouring galaxy shapes, which can have different redshifts;

(iii) the ellipticity field used by SaWLens is a combined catalog of measurements from
space- and ground-based telescopes, which probe different galaxy redshift ranges. The
measurements of these two catalogs (see Ref. [137]) are corrected for this, but assuming the

fiducial cosmology;

(iv) in the strong lensing regime, each pixel is associated with the redshift of the multi-
ple images contained within it, which can be different in different multiple image systems
for the same cluster and also different from the galaxy populations used in the weak lens-

ing measurements.

To get a feeling for the size of our approximation, we show in Fig. 7.1 the z, dependence
of the factor Y (Eq. (7.15)) for the Galileon (red) and Nonlocal (blue) models, and a ACDM
model with Q,,o = 0.4 (black). The quantity T encapsulates all of the dependence on z, in
the x? minimization used to estimate the cluster parameters. For illustrative purposes, we
choose z4 = 0.35. This corresponds roughly to the mean redshift of the CLASH clusters,
although the exact value is not important for the discussion here. We note that what is
relevant is the slope of the curves and not their absolute value. Consider for the sake of
argument an extreme case where the source galaxies are distributed between z; = [1, 3], but
that we choose to use z; = 2 in Eq. (7.15). Focusing on the case of the Galileon model, we
have that T(zs = 1) ~ 1.019, T(z5 = 2) ~ 1.011 and T(zs = 3) ~ 1.007. These values differ
by no more than ~ 1%, and hence our choice of z; should not lead to serious biases in the
results. The error would be even smaller in the Nonlocal model or ACDM with Q,,,0 = 0.40,
since in these cases the T(z;) curves are shallower than in the Galileon case. The error of
neglecting the redshift distribution becomes smaller for higher values of z,, for which the
curves in Fig. 7.1 become visibly flatter. This is relevant for strongly lensed systems, which

tend to be associated with galaxies at higher redshifts.
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In cluster weak lensing studies, it is common to determine an effective source galaxy

redshift, z, ., defined as

Dds Dds
s,e = 5 7.16
2 (eoat) = () 716)

where (Dgs/D;) is an average over all source galaxies. Reference [137] quotes z; .4 val-
ues for the CLASH clusters (see also Ref. [361]). For example, Abell 209 (z4 = 0.206) has
(Dgs/Ds) = 0.75 + 0.04 (10), which corresponds to z, g = 1.0370-23 (this estimate comes
from Table 3 of Ref. [361]). This uncertainty on z, .¢ is much smaller than our rather ex-
treme example above (z; = 2 £ 1), which further convinces us that the approximation of
Eq. (7.12) is a good one. For completeness, we note that the determination of these values
of z, . involves knowledge of the background cosmology, and hence they are also model
dependent. However, again taking Abell 209 as an example, in the Galileon model one has
Dgs/Dg(zseg = 1.03) = 0.76, which is well within the uncertainty (£0.04) quoted above
for this cluster. We can therefore neglect this model dependency and use the values of
Zs ot listed in Ref. [137]. In particular, in our 2 minimization, we shall use the effective
source redshift values found for the background sources of the ground-based ellipticity
measurements [137].

To summarize this discussion, although Eq. (7.12) is only approximate, the results shown

in Fig. 7.1 suggest that our results are insensitive to the exact choice of z,.

7.2.3 Other subtleties in using cluster lensing data to test gravity

Before proceeding further into estimating the CLASH cluster masses in modified gravity
models, we discuss some other subtle issues that may arise when combining current lens-
ing modelling techniques with modified gravity. Although it turns out these other issues
do not play a direct role in our main results, we believe such a discussion is instructive and
leads to a clearer and broader understanding of the results of this and other work in the

literature.

Parametric vs. nonparametric analysis

The non-parametric reconstruction of the lensing potential used in this chapter builds

solely upon the observed lensing constraints, without making any assumptions about the
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mass distribution of the cluster. Such a model-independent * method is particularly well
suited to modified gravity studies. Consider the alternative scenario of a parametric ap-
proach. In this case one starts by making an Ansatz about the mass distribution in the
cluster. Typically, this can involve describing the main dark matter distribution using a
single (or more in the case of mergers) NFW profile. Then, one could also model substruc-
ture by identifying the position of the most massive cluster galaxies and assigning them
a given density profile. (see e.g. Refs. [372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382,
383, 384, 385, 386, 387]). The free parameters of such a mass model are then iterated over
until the lensing constraints are satisfied. In the context of modified gravity there are at
least two subtle issues associated with such a parametric lensing analysis. First, in order
to compute the lensing effects due to the postulated mass distribution one must assume a
theory of gravity: for the same mass distribution, different models of gravity could induce
different lensing effects. Parametric methods are therefore biased towards the assumed
theory of gravity. Second, the lensing properties of a given point in the cluster field are
determined by the sum of the lensing signal predicted by each element of the mass model
(main halo plus the substructures). This superposition is valid in GR (which is linear in the
Newtonian limit), but not necessarily in alternative (typically nonlinear) models of gravity.
These issues can be circumvented if one reconstructs directly the lensing potential and its
derivatives but not the mass distribution. It is for this reason that we choose to use the

SaWLens results of Ref. [137] in our analysis.

Interpretation of stacked cluster lensing profiles

To overcome systematic effects due to intervening structure, cluster substructure and clus-
ter asphericity, it has become common to build average (stacked) lensing profiles by using
cluster lensing data from independent lines of sight [383, 384, 388]. The averaged pro-
files are then fitted again to infer an average mass and concentration that characterizes the
stack. From a conceptual point of view, the same procedure can be applied assuming mod-
ified gravity models. Here, we comment that the interpretation of the stacked data may
be somewhat more complex due to the effects of modified gravity. Consider for simplicity
the stacking of the convergence radial profiles of NV clusters at redshifts z; n with mass

and concentration values M;_y and c; .y, respectively. The background galaxies can be as-

4Apart from the issue of the fiducial cosmological background model discussed above.
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Figure 7.2: Two-dimensional 68% and 95% confidence limits on the ca09 — M2go plane for all
of the CLASH clusters assuming ACDM (black), Galileon gravity (red) and Nonlocal grav-
ity (blue). The position of the best-fitting points is marked by the dots, and their respective

x? values are shown in each panel.

sumed to lie at the same source redshift. For instance, Ref. [383] stacks four massive clusters
by co-adding (with some weighting) their profiles. The resulting mean profile is then re-
fitted to determine a mean mass and concentration of the stack. Now consider fitting such
a stack to two gravity models which display different time evolution for an unscreened
gravitational strength. For these two models, clusters located at different redshifts would
contribute differently to the mean mass/concentration estimate since their lensing signal
is amplified differently. For such a scenario, an interesting analysis would be to split the
stack into smaller ones binned by cluster redshift and check for differences in the resulting
mean mass/concentration of the smaller stacks. The situation becomes even more complex
(but interesting) in models with screening, due to its scale-dependence, whose efficiency is

in general redshift dependent as well.

We stress that the above issues do not pose a serious problem to using stacked data to
test modified gravity, but simply that the extra physics can enrich the interpretation of the
results. In this chapter, however, we shall not be concerned with these issues since we fit

each of the CLASH clusters individually.
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Figure 7.3: Best-fitting lensing convergence profiles, x(f) = Tk, obtained for all of the
CLASH clusters assuming ACDM (black), Galileon gravity (red) and Nonlocal gravity
(blue) . The green dots are the radially binned data as described in Ref. [137] and the
errorbars are the square root of the diagonal entries of the covariance matrix of the data.
To guide the eye, the dotted vertical lines indicate the inferred values of Ry, which are

barely distinguishable for the three models.

7.2.4 Lensing mass estimates in the modified gravity models

Figure 7.2 shows the constraints on the ca00-M20p plane obtained for each of the CLASH
clusters in ACDM (black), Galileon (red) and Nonlocal gravity (blue) cosmologies. The
dots indicate the position of the best-fitting values. The best-fitting lensing convergence
profiles are shown in Fig. 7.3 (what is shown is Txo(#)). The concentration-mass relation
of the CLASH clusters for the three models is shown in Fig. 7.4, together with results from
N-body simulations [7, 8, 389]. First, we note that our cluster mass and concentration
estimates for ACDM are in agreement with those obtained in Ref. [137]. Second, these three
figures all show that the constraints on the cluster parameters are, within errorbars, the
same in the three cosmological models. Although there are tiny differences in the resulting
best-fitting values of Maop and cap for the three models (S 5%), they all lie well within the
1o limits (whose precision varies within ~ 50% — 80%). The shapes of the contours are

also remarkably similar and the goodness-of-fit is essentially the same in all models, as can
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be seen by comparing the respective x? values in Fig. 7.2. In Fig. 7.3, one notes that for
almost all of the clusters, the best-fitting convergence profiles underpredict the data points
at large angular scales (although well within the errorbars). However, close to the edge of
the clusters, the contribution from the surrounding large scale structure may have a non-
negligible impact. This can partly explain why the data points tend to go up at large scales,

as investigated, for instance, in Ref. [390].

The shaded bands in Fig. 7.4 show the best-fitting mean concentration-mass relations
found in N-body simulations for the ACDM (gray) model in Ref. [389] 5, the Cubic Galileon
model (red) in Chapter 5 and the Nonlocal model (blue) in Chapter 6. In these bands, the
lower and upper bounds correspond, respectively, to the relations at z = 0.666 (¢ = 0.60)
and z = 0 (a = 1) (this redshift range is approximately that of the CLASH clusters). Figure
7.4 shows that there is good agreement between the simulation results and the concentra-
tion/mass estimates of the CLASH clusters in the three models of gravity. However, there
are a number of issues that prevent a direct comparison between the simulation results and
the estimated concentration and mass values. First, the shaded bands of the Galileon and
Nonlocal models in Fig. 7.4 have been extrapolated to masses larger than the mass range
used to find the best-fitting concentration mass relations from the simulations. Second,
the concentration mass relation was fitted using all haloes, without applying any selec-
tion criteria to consider only relaxed ones [288]. This may be particularly relevant for the
CLASH clusters, which are characterized by regular X-ray surface brightness morpholo-
gies [360], and are therefore expected to be relaxed and close to virial equilibrium (see also
Refs. [391, 392] for a recent discussion on the impact of baryonic processes in the density
profiles of clusters). Third, the concentration-mass relation in the simulations was obtained
by fitting NFW profiles to the three-dimensional spherically averaged mass distribution of
the haloes, whereas the symbols in Fig. 7.4 are the values obtained by also assuming spher-
ical symmetry, but fitting to two-dimensional (projected) lensing convergence profiles (see
e.g. Sec.6.2 of Ref. [137] for an analysis of the impact of this projection bias in the CLASH
sample). Finally, the upper and lower bounds of the bands correspond to the mean relation
found in the simulations, but the intrinsic scatter around the mean concentration-mass re-

lation should also be taken into account. Nevertheless, to guide the eye, we opted to keep

>See Fig. 9 of Ref. [137] for the comparison of the CLASH c200-M2g0 relation in ACDM with other relations

in the literature.
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Figure 7.4: Concentration-mass relation of the CLASH clusters assuming ACDM (black),
Galileon gravity (red) and Nonlocal gravity (blue). The errorbars indicate the marginal-
ized 68% confidence limits. We use different symbols for different clusters to facilitate the
identification of which cluster is which across the three models. The shaded bands indicate
the mean concentration-mass relations from N-body simulations between z = 0.66 (lower
bound) and z = 0 (upper bound) found for ACDM (gray) in Ref. [389], Cubic Galileon
model (red) in Chapter 5 and Nonlocal model (blue) in Chapter 6.

the simulation results in Fig. 7.4, but advise that further work is needed before perform-
ing a more thorough comparison (see the analysis of Ref. [393] in ACDM models for an

illustration of the steps to follow).

The left panel of Fig. 7.5 shows the best-fitting lensing convergence for all of the CLASH
clusters in the Galileon (red) and Nonlocal (blue) cosmologies, plotted as the respective
difference to the best-fitting profiles in ACDM. As expected from the above results, on
the scales that are probed by the CLASH data, § < 500 — 700 arcsec, the three models are
in very good agreement. In the case of the Galileon model, this is because the screening
is very effective on these scales inside Ry (Ref. [128] finds a similar screening efficiency
inside Raoo for DGP gravity, which employs also the Vainshtein mechanism). This can be
noted by comparing the enhancement in the amplitude of x on larger scales, where the
screening becomes less efficient. In the case of the Nonlocal model, although the modifica-
tions to the gravitational strength are not screened, they are not strong enough to have a
significant impact on the lensing convergence profiles. We therefore conclude that, for the case

of the CLASH clusters analysed here, the impact of modifying the lensing gravitational potential
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according to Cubic Galileon or Nonlocal gravity is completely negligible in the estimation of their

lensing masses.

7.2.5 The connection with tests of gravity

Before proceeding to the analysis of the lensing signal by cosmic voids, we briefly discuss
the link between our cluster lensing results for the Galileon and Nonlocal models with

observational tests originally designed for other models.

Dynamical masses from the phase-space density around massive clusters

Recently, the authors of Refs. [125, 126, 394, 395] have proposed methods to test the law
of gravity on Mpc scales by using information from the galaxy velocity field in the in-
fall regions around massive clusters (see also Ref. [11]). These techniques were designed
with models of gravity that modify the dynamical potential (i.e. that felt by nonrelativis-
tic objects like galaxies), but do not modify the lensing potential (i.e. that felt by relativistic
particles like photons). Popular models such as f(R) and DGP gravity fall in the above cat-
egory, and as such, the lensing mass estimates, Mje,,, for these models would automatically
be the same as in GR. On the other hand, the velocity dispersion of surrounding galaxies as
they fall towards the clusters would be affected by the modifications to gravity. Therefore,
if one would interpret these observations assuming GR, then one would infer dynamical
masses, Mqyn, which are different from those estimated using lensing. A mismatch in the
estimates of the lensing and dynamical masses would therefore be a smoking gun for mod-
ified gravity [105, 396, 397] (see, however, Ref. [398] for a discussion of how complications
associated with assembly bias could affect these tests).

The merit of the test of gravity described above becomes less clear when applied to
models that also modify the lensing potential. Consider, for simplicity, a model that boosts
the dynamical and lensing potential by the same constant factor, o > 1,i.e. ®gyn = Pjen ~
a®CE, In such a model, the mass of a cluster inferred from the surrounding galaxy velocity
tield would be biased low w.r.t. GR. This is because, due to the enhanced gravitational
strength felt by the galaxies, the cluster does not need to be as massive as in GR to accelerate
the galaxies by the same amount. Following the same reasoning, the lensing mass estimates
would also tend to be biased low compared to GR: due to the fifth force felt by the photons,

the cluster can be less massive to induce lensing effects of the same magnitude. In such a
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model, both Mgy, and M, shift in the same direction. This therefore makes it harder to
tell the two values apart and hence, harder to detect a signature of modified gravity.

The Galileon model also modifies the lensing potential, but adds complexity to the case
described above in the sense that the modifications to gravity are scale dependent with
screening inside the cluster radius. Just outside the cluster radius, the screening becomes
less efficient and the fifth force significantly boosts the lensing convergence, as shown in
Fig. 9. Although these larger scales are not accurately probed by the current cluster lensing
data, they correspond roughly to the regions associated with galaxy infall, 2Mpc/h < 7 S
20Mpc/h. For these radial scales, the right panel of Fig. 9 shows that the total force profile
which surrounds the CLASH clusters in a Galileon cosmology can be up to 10% — 40%
higher than in ACDM. As a result, galaxies located at these distances from the cluster
center should feel the boost in the total force, which should translate into their velocity
distribution. On these scales, both the lensing and dynamical masses would be different in
a Galileon cosmology compared to ACDM. Inside the cluster radius, on the scales that are
probed by the CLASH data, # < 500 — 700 arcsec, the left panel of Fig. 9 shows that the
differences in the convergence profiles compared to those in ACDM are small enough for
the mass estimates to be almost the same in the two models. Therefore, inside the cluster
radius, this leaves us with a similar picture to thatin f(R) or DGP models: the lensing mass
estimates are not affected by the modifications to gravity, but dynamical mass estimates
using infalling galaxies are changed. We therefore conclude that, despite it being a model
that modifies the lensing potential, the fact that dynamical and lensing mass estimates are sensitive
to radial scales of different screening efficiency allows the Cubic Galileon model to be tested by the
methods proposed in Refs. [125, 126, 394].

In the case of the Nonlocal model, although the lensing mass estimates are also practi-
cally the same as in ACDM, the enhancement of the force profile on scales 2Mpc/h < r S
20Mpc/h is kept below the ~ 5% level. This makes it more challenging for this model to be
tested by these methods.

Galaxy-galaxy lensing

The left panel of Fig. 7.5 also shows that although the convergence profiles are very close
in the three models for R < Rago, they can be visibly higher (by ~ 20 —80%) in the Galileon

model on larger scales. The enhanced lensing signal outside dark matter haloes in Galileon-
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like models has been analysed by Refs. [399, 400], but in the context of theories that emerge
from massive gravity scenarios [353, 354, 355, 356, 357, 358]. In particular, the authors
investigate the possibility of such a signal being detected in galaxy-galaxy lensing obser-
vations (see e.g. Ref. [401]). The latter can be measured by cross-correlating the position of
foreground galaxies (the lenses) with their background shear field. Our results in Fig. 7.5
are in good qualitative agreement with the solutions explored in Refs. [399, 400]. For in-
stance, we also find the appearence of a bump in the relative difference to ACDM, which
we checked occurs at ~ 10R200. Quantitatively, the comparisons become less straight-
forward. On the one hand, in this chapter we show the results for cluster mass scales
between ~ [0.5,1.5] x 10'M/h, which are higher than the galaxy group mass scales
(10'3 — 10'* M, /h) probed in Refs. [399, 400]. Moreover, our models also differ at the level
of the cosmological background, exact screening efficiency and time evolution of the lin-
earized effective gravitational strength. Nevertheless, it seems reasonable to expect that the
predictions of the Galileon model studied here are also likely to be scrutinized by galaxy-
galaxy lensing observations. A more detailed investigation of the model predictions for
galaxy-galaxy lensing is beyond the scope of the analysis here.

In the case of Nonlocal gravity, the modifications to the lensing convergence are small
(< 5%) on all scales, which makes it much harder to distinguish from standard ACDM with

galaxy-galaxy lensing data.

Weak lensing on larger scales

The picture depicted in the left panel of Fig.7.5 that the lensing signal gets significantly en-
hanced on larger scales in the Galileon model should, in principle, also have an impact on
the lensing of CMB photons. Indeed, in Chapters 2 and 3 we have seen that the amplitude
of the CMB lensing potential angular power spectrum, Clw v, is very sensitive to the mod-
ifications to gravity in the Galileon model. To the best of our knowledge, the effect of the
Nonlocal model on the CMB lensing potential power spectrum has never been investigated
in detail. However, since the modifications to gravity on large scales are not as strong as in
the Galileon model, then the effects on the amplitude of C’lw ¥ should be less pronounced.
By the same reasoning the weak lensing cosmic shear power spectrum should also be sen-
sitive to the modifications to gravity in the Galileon model, but less so in the Nonlocal

case. Again to the best of our knowledge, cosmic shear data, such as that gathered by the
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Figure 7.5: (Left) Best-fitting lensing convergence profiles, x(f) = Ykoo, for the all of the
CLASH clusters in the Galileon (red) and Nonlocal (blue) gravity models, plotted as the
difference relative to the best-fitting profiles in ACDM (black). To guide the eye, the shaded
band represents approximately the regions that lie beyond Rygo for all clusters. (Right)
Same as the left panel, but for the total force profile ®,z. The shaded band encloses the
scales 2Mpc/h < R < 20Mpc/h which are approximately those associated with the infall

of surrounding galaxies.

CFHTLens Survey [20], have never been used in direct tests of the models studied here,
although Refs. [87, 97, 402] have used these data to constrain general parametrizations of

modified gravity.

7.3 Weak-lensing by voids

We now turn to the discussion associated with the lensing signal caused by voids in the
Cubic Galileon and Nonlocal gravity models. In this section, we make use of the following
formula to describe the void density contrast profiles found in the simulations of these two
models

1 - (R/s1)"

R = RJRy) = b 5

(7.17)

were R, is the void radius and 6, o, 3, s1 and s3 are fitting parameters. Figure 7.6 shows
the impact that each of the five parameters of Eq. (7.17) has on the density profiles and on
the associated lensing signal (see Sec. 7.3.5 for the meaning of A in Fig. 7.6). In Sec. 7.3.3,

we shall see that this formula provides a very good fit to the void density profiles found in
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Figure 7.6: Impact of each of the parameters of the void density contrast formula of Eq. 7.17
(upper panels). The bottom panels show the respective lensing signal AX. The curves are
colored by the values of the parameter that is varying in each panel (from left to right, these
are, 0,, o, 3, s1 and sy, respectively). The parameter values are indicated by the color bar
at the right of each panel. When one parameter varies, the others are held fixed at their
base values which are (6, a, 3, s1, s2) = (—0.6,3,7,0.9,1.1). The calculation of the lensing

signal was performed assuming GR.
the N-body simulations. The mass perturbation, 0M (< R) = 4mpy, fOR §(z)z2dx, admits a
closed formula given by

3

— dnp, 3 6+3 (R’
(5M(R) —47Tpmm6u (Oé+3) 2F1 (1’ﬁ7ﬁ’_ (52> )

INZAS a+3 a+B+3 (R’
3(81) 2F1 (17 ﬁ ’ /B ) <82> )]7

(7.18)

where 5 F is the Gauss hypergeometric series function. The existence of this closed formula

for M (R) facilitates straightforward calculation of the force and lensing profiles®.

®In Sec. 7.2, we denoted § M (R) by M (R), but both correspond to the mass perturbation enclosed by radius
R, and not to the total mass (i.e. including the contribution from the background matter distribution). In our
void related discussions, we opt to use 6 M (R) since close to the void center §M < 0, and this way we make it

explicit that what is negative is the mass perturbation, and not the total mass.
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7.3.1 Finding voids in the simulations

We make use of the N-body simulations of the variants of the Cubic Galileon and Non-
local gravity models presented in Chapters 5 and 6, respectively. We show results from
simulation boxes of side 400Mpc/h for the Galileon (this is not the same box size analyzed
in Chapter 5, but the results are convergent), and 200Mpc/h for the Nonlocal model, both
with 5123 dark matter tracer particles.

We find voids using the Watershed Void Finder (WVF) method of Ref. [362]. Our code
takes as input the discrete tracer distribution, which in our case are DM particles and/or
DM haloes, to construct a continuous volume-weighted density field using a Delaunay
Tessellation Field Estimator (DTFE) method [403, 404]. For computational convenience,
the DTFE field is sampled onto a regular grid, whose cell size is of the order of the mean
distance between tracers. The grid density field is smoothed with a Gaussian filter of size
2 h~'Mpc to reduce small scale features that could lead to spurious voids [362]. In the lan-
guage of the watershed technique, the resulting density field is viewed as a landscape that
will be flooded by a rising level of water. The regions around every local minima of the
density field are called catchment basins (Where water collects) and will be identified as the
voids. As the water level rises, the basins grow and, eventually, neighbouring basins meet
at the higher-density ridges that separates them. These ridges mark the boundary of each
basin/void, and are associated with the filaments and walls of the cosmic web [36, 405].
The process stops when the water level reaches the global maximum of the density field,
by the end of which all basin/void boundaries have been identified. To overcome wa-
tershed over-segmentation’, ridges whose density constrast is § < —0.8 are not classified
as void boundaries, as such low density boundaries are indicative of subvoids that have
merged [362, 406]. An appealing aspect of the watershed method is that it makes no a pri-
ori assumptions on the size, shape or mean underdensity of the voids (see Ref. [407] for a
comparison study of different void finders).

Our halo catalogues were obtained as in Chapters 5 and 6. The number density of
the haloes we consider is nypae = 5 x 107413 /Mpc?® and npae = 5 x 1073h3 /Mpc? for
the Galileon and Nonlocal gravity simulations, respectively. This is roughly the number

density of haloes after retaining only those haloes whose mass is at least 100 times the

"This refers to avoid finding too many small voids inside a large underdense region, where in fact the whole

underdense region should be classified as a single void that resulted from the merging of smaller ones.
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particle mass. This minimum mass is, 100M,, ~ 4 x 1012M, /h and 100M,, ~ 5 x 10 Mg /h,
for the simulations of the Cubic Galileon and Nonlocal models, respectively 8,

As is customary in void studies, we define the effective void radius R, as the radius of a
sphere whose volume is the same as the volume of the watershed void. We take the center
of the void to be the location of the barycenter which is defined as mharycenter = D ; 7i/Neell,
where 77 is the position of each grid cell identified as part of the void and N, is the total
number of grid cells associated with void. We evaluate the density profiles of the voids
using the DM density field (for voids found in both the DM and halo density fields) since
this is the mass distribution that determines the lensing signal. In what follows we limit

ourselves to analysing the simulation results at z = 0.

7.3.2 Void size function

Figure 7.7 shows the cumulative size function of the voids found in the simulations of the
Cubic Galileon (left panels) and Nonlocal (right panels) gravity models. For both mod-
els, the void population depends on the tracer type used. In particular, DM density field
voids (circles) are smaller and, in total, are found in greater number than voids in the halo
density field (squares). This follows straightforwardly from the fact that the distribution
of collapsed haloes is sparser than that of the DM particles. It is also noteworthy that, for
the same type of tracer, we find larger voids in the Cubic Galileon than in the Nonlocal
gravity model. This is simply due to the fact that the box size used in the simulations of
the Galileon model (400Mpc/h) is larger than that used in the simulations of the Nonlocal
one (200Mpc/h). One should therefore bear this difference in the box size in mind when
comparing the results between the two gravity models.

In terms of the relative difference to QCDM, the full and linear variants of the Galileon
model predict an enhancement of order the 10—20% for the larger DM field voids (15Mpc/h <
R, < 20Mpc/h). This is due to the enhanced gravity of these models which boosts the
evacuation of matter from inside the voids and the formation of large scale structures. In
other words, voids expand faster in the full and linear variants, which is why large voids

are more abundant. By the same reasoning, one should also expect the number of smaller

8Note that due to the different growth of structure, the halo mass function differs between the different
variants of the models. The halo catalogues of the different variants were cut at slightly different mass values

to yield the same number density of haloes.
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Figure 7.7: Cumulative void size function (number density of voids with radii above R,)
for the Cubic Galileon (left panels) and Nonlocal gravity (right panels) models. The upper
panels show the number density of voids found in the DM (circles) and halo (squares)
density fields for the full (blue), linear (green) and QCDM (red) variants of each model, as
labelled. The lower panels show the difference relative to QCDM. The errorbars depict the

variance across the five realizations of each variant.

voids to be suppressed in the linear and full variants, compared to QCDM. This is be-
cause the faster expansion of the voids makes it more likely for small neighbouring voids
to merge into larger ones. In Fig. 7.7, this suppresion can be seen for R, < 10Mpc/h, al-
though to a lesser extent than the enhancement seen for larger DM field voids. Another
interesting aspect that is seen in the void abundances of the Galileon model is that the re-
sults of the full and linear variants are rather similar. This is very different from what is
seen in the abundances of collapsed haloes, for which, due to the suppression effects of
the screening mechanism, the full model has considerably fewer massive haloes than the
linear variant (cf. Fig. 5.3). This illustrates that the effects of the screening mechanism are

much weaker around underdense regions, as expected.

In the case of Nonlocal gravity, the number density of DM field voids is, within the
errorbars, the same in the full and QCDM variants. Here, recall that the largest voids found

in the Nonlocal simulations are smaller than those in the Galileon simulations due to the
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smaller box size used. For instance, the largest DM field void found in the simulations of
the Nonlocal model has R, ~ 17Mpc/h. This, together with the fact that in the Galileon
model the enhancement is most noticeable for R, 2 15Mpc/h, suggests that the simulation
box of the Nonlocal gravity model is not big enough to capture the impact of the fifth force
on larger voids. Indeed, for large voids, there seems to be a trend for the full Nonlocal
model to overpredict the number of voids with R, 2 15Mpc/h relative to QCDM, although
this is not significant due to the size of the errorbars. Nevertheless, for R, ~ 15Mpc/h,
the enhancement in the full and linear variants of the Galileon model is already around
~ 10%, whereas in the Nonlocal model it is still consistent with zero. This shows that the
modifications to gravity in the Nonlocal model are, in general, weaker than those in the
Cubic Galileon, which is also expected.

The results become noisier for voids found in the halo field due to the smaller number
of tracers. For both the Galileon and Nonlocal gravity models, within the errorbars, the
number density of voids is essentially the same in all model variants. However, as an ex-
ercise, if one ignores the size of the errorbars for a moment, then one notes that, at least
qualitatively, the halo field voids show the same behaviour as their DM field counterparts.
In the case of the Galileon, for instance, the largest halo field voids, R, 2 40Mpc/h, are
~ 10 — 20% more abundant in the full and linear variants, compared to QCDM. This qual-
itative trend, backed up by the expectation based on physical intuition, suggests that with
improved halo field void statistics one should recover, at least to a certain degree, the same

physical behavior seen for the DM field voids.

7.3.3 Void density profiles

Figure 7.8 shows the spherically averaged DM density field and halo density field void
density profiles found in the simulations of the three variants of the Galileon model®, with
the void sample split to two size bins, as labelled. Figure 7.9 is the same as Fig. 7.8, but
for the Nonlocal model. The void density profiles are characterized by a density increase
from R’ = 0 towards R’ ~ 1; an overdense ridge at R’ ~ [1 — 1.5], which is associated
with the filaments and walls that surround the void (the ridge is less pronounced for larger

voids); and a steady decrease towards the cosmic mean, § = 0, at larger radii. In these

The average density profile of all the voids in each bin should be spherical to a good approximation, even

though each individual void is not.
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Figure 7.8: Void density profiles, p,,,/pm = 1+ 6, for the DM density field (circles, left
panels) and halo density field (squares, right panels) voids found in the simulations of the
three Galileon model variants (distinguished by the different colors, as labelled), plotted
as function of the scaled radius R' = R/R,. The solid (dashed) lines show the best-fitting
density profiles, using the formula of Eq. (7.17), for the bin of smaller (larger) void sizes,
as labelled. The choice of the two void size bins constitutes a compromise between having
enough voids in each bin, whilst making sure that the void properties do not vary too
much within a bin. The bottom panels show the relative difference to QCDM. The errorbars

depict the variance accross the five realizations of each variant.
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Figure 7.9: Same as Fig. 7.8 but for the Nonlocal gravity model.
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tigures, the curves show the best-fitting profiles obtained using the five-parameter formula
of Eq. (7.17), which fits the simulation results very well. We note that it is not our goal
here to determine if the voids found in our simulations are self-similar (i.e., independent
of the void size) or universal (i.e., independent of tracer type and/or redshift). For the
remainder of our analysis, what will be important is that the density profiles of the voids
in the simulations are well matched by our formula of Eq. (7.17)'%, which can therefore be

used in the calculation of the force profiles and lensing signal in the sections below.

The impact of the fifth force is better seen when comparing the difference relative to
QCDM. In the case of the Galileon model (Fig. 7.8), compared to QCDM, the voids in the
full and linear variants are ~ 2 — 3% emptier in the inner regions, i.e. R’ < 0.5, for both
the DM and halo voids (although the result is noisier for halo voids due to poorer statis-
tics, specially for the smaller radius bin). Physically, this is because the enhanced gravity
favours the piling up of matter in the outer regions, leaving less matter inside the void.
The fact that the prediction from the linear and full variants are so close illustrates, once
again, that the effects of the screening mechanism are weak around voids. In Ref. [117],
similar results were found in the context of f(R) gravity, using a spherical underdensity
based void finder [408]. In particular, the authors of Ref. [117] found that the voids in f(R)
models can be up to ~ 5% emptier than in ACDM. In Fig. 7.8, it is also worth noting that
for the smaller radius bin of DM field voids, at R’ ~ 0.5 — 1, the voids are more underdense
in the linear variant than in the full model. We shall present an explanation for this in the

next subsection, when we look at the force profiles in the Galileon model.

The effects of the fifth force on the void profiles of the Nonlocal model (Fig. 7.9) are
weaker than those seen in the Galileon case. In particular, for the DM field voids, the
smaller void size bin in the full variant shows a decrement of only ~ 1%, relative to QCDM,;
the difference becomes consistent with zero for the larger size bin. In the case of the halo
field voids, there is a systematic trend for the voids in the full Nonlocal model to be ~ 2—3%
emptier than in QCDM for R’ < 0.5, but the poorer statistics make it hard to draw any
decisive conclusions. Nevertheless, the result of Fig. 7.9 shows that, overall, the fifth force
effects on the void density profiles in the Nonlocal model are weaker than in the Galileon

model, which is expected.

9Even if one needs to fit the free parameters for different void sizes and for different density tracers.
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Figure 7.10: Radial force profiles around the DM field (upper panels) and halo field (lower
panels) voids in the variants of the Galileon model (distinguished by the different colors,
as labelled). The circles with errorbars (which are in most cases smaller than the circles),
linked by the dotted lines, correspond to the spherically averaged radial force field in the
simulations. The solid lines correspond to the analytical prediction computed using the
corresponding best-fitting void density profiles of Eq. (7.17), shown in Fig. 7.8. The differ-
ent panels show the result for the two void size bins, as labelled. What is actually plotted
is the radial force scaled by the mean void size in each bin, ®,5 /R,. A negative sign for

the force means that it points outwards.

7.3.4 Void force profiles in the Galileon model

Figure 7.10 shows the force profiles in the voids in the variants of the Galileon model. The
circles, linked by the dotted lines, show the simulation results. These were obtained by
spherically averaging the radial force field in the simulations, which was constructed by
using the force information at the N-body particle positions. The solid curves show the an-
alytical result computed using the best-fitting void density profiles of Eq. (7.17) (cf. Fig. 7.8).
Figure 7.10 shows that, for the linear and QCDM variants, the analytical calculation is in
very good agreement with the simulation results. However, the same is not true for the
case of the full variant of the Galileon model. In this case, the analytical result differs

from that of the simulations for R" < 1.25, for DM field voids, and for R’ < 1.0 for halo
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tield voids. More specifically, for all cases shown, the analytical result of the full variant
always predicts a stronger force (more negativ