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Abstract

This thesis reports on calculations of the scattering properties of a variety of ultra-

cold alkali-metal mixtures. In particular, we have calculated the scattering properties of

homonuclear mixtures of 85Rb, in a variety of incoming channels, and we have calculated

the properties of heteronuclear mixtures of the isotopologues of Rb and Cs, and K and

Cs. In general, we are interested in the location and character of Feshbach resonances in

these mixtures with a view towards ultracold molecule formation. In 85Rb there is a rich

Feshbach structure and potential uses for the resonances that we find, in the scattering

lengths of the various incoming channels, are discussed. In 85RbCs there is a rich Fesh-

bach structure and the prospects for ultracold molecule formation using this system are

detailed. Similarly, we detail the Feshbach resonances of 87RbCs and discuss our results

in the context of the successful formation of ultracold ground-state molecules. In the iso-

topologues of KCs each system has a rich Feshbach structure and we detail the location

and width of the resonances, as well as the potential for ultracold molecule formation us-

ing each of the isotopes of potassium. In addition to scattering calculations, we have also

calculated the location and character of the highest-lying bound states of each system. We

have investigated the energy dependence of the scattering length using accurate coupled-

channel calculations on 6Li, 39K and 133Cs to explore the behaviour of the effective range

in the vicinity of both broad and narrow Feshbach resonances. We present an alternative

parametrization of the effective range and further demonstrate that an analytical form

of an energy and magnetic field-dependent phase shift, based on multichannel quantum

defect theory, gives accurate results for the energy-dependent scattering length. Lastly,

we examine the effect of additional external fields on alkali-metal collisions and discuss

how external fields can be used to manipulate the interaction properties of a system.
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Chapter 1

Introduction

1.1 Ultracold atoms and molecules

In the day-to-day world we encounter three different types of objects: solid, liquids and

gases. Each has their own characteristics and properties that defines what it is and how

it behaves. However, with the advancement of scientific techniques we have become aware

that more states of matter exist which exhibit novel behaviour. At very low tempera-

tures we observe phenomena such as superconductivity, superfluidity, and Bose-Einstein

condensates.

The first person to introduce the idea of a minimum temperature was Guillaume Amon-

tons in 1703, when he was working on an air-thermometer. He suppositioned that a mini-

mum temperature must exist where the “spring” of the air disappears [1]. Lord Kelvin put

a more definite number on this limit, in 1848, by asserting that “a unit of heat descending

from a body A at the temperature T of this scale, to a body B at the temperature (T − 1),

would give out the same mechanical effect, whatever be the number T” [2]; he calculated

this point, at which no further heat could be transferred, to be independent of the sub-

stance, and to occur at −273◦C or 0 K. Temperatures as low as 194 K were reached in

1835 with the invention of dry ice [3], and in 1899 hydrogen was solidified at temperatures

of 14 K [4]. In 1911 superconductivity was first observed when Heike Kamerlingh-Onnes

cooled mercury to 4 K using liquid helium [5]. The phenomenon of superfluidity was

first observed in 1937 by Kapitza, Allen and Misener [6, 7] who cooled liquid Helium to

2.2 K. With laser-cooling techniques atomic clouds can be cooled to temperatures in the

µK range; W. Phillips, S. Chu and C. Cohen-Tannoudji were awarded the Nobel prize

in Physics in 1997 for their work on methods of cooling and trapping atoms with laser

1
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light [8–10]. In the following work we refer to temperatures below 1 K as “cold” and below

1 mK as “ultracold”.

Ultracold atoms

The phenomenon of Bose-Einstein Condensation was first predicted by Satyendra Nath

Bose and Albert Einstein in the 1920’s [11, 12]. The Bose-Einstein Condensate (BEC)

refers to a new state of matter which occurs when particles are cooled close to absolute

zero. At low enough temperatures a group of dilute atoms can be described as a wave

packet, rather than a particle. The length of the wave packet is described by the de

Broglie wavelength, λdB =
√

2π~/(mkBT ), where m is the particle mass and T is the

temperature. As the particles are cooled their deBroglie wavelengths eventually become

larger then the inter-particle spacing. At a critical temperature the wavelengths begin to

overlap and eventually, at condensation, bosonic particles form a single coherent matter

wave. The onset of the BEC can be quantised in terms of the phase-space density (PSD),

PSD = nλ3
dB, where n is the number density of the particles. Fermionic particles display

a different behaviour and instead are modelled as a Fermi gas, which has a non-zero

pressure even at zero temperature, due to the ‘degeneracy pressure’ associated with the

Pauli exclusion principle; this phenomenon can be used to describe the behaviour of white

dwarfs and neutron stars.

The first dilute BECs were observed experimentally in 1995 by E. Cornell and C.

Wieman [13] and by W. Ketterle [14], who were awarded the Nobel Prize in Physics for

their discoveries in 2001. The first quantum-degenerate gases of fermions were achieved

later, in 2003, by DeMarco and Jin [15]. The BECs were created by using laser-cooling

techniques followed by evaporative cooling [13]. Laser-cooling techniques combined with

magnetic traps can be used to create ultracold clouds of atoms with temperatures in the

µK range. Using evaporative cooling the hottest atoms are released from the trap and

cooler atoms allowed to rethermalise, thus lowering the average temperature of the atomic

cloud to tens of nK where condensation can be achieved.

Since the first successful BEC formations the field of ultracold atoms has rapidly

expanded. Among others, condensates of hydrogen, lithium, sodium, rubidium and cesium

have been created [16–20] as well as condensates of more exotic atoms such as erbium and

ytterbium [21,22]. As the field moves rapidly forward the cooling and trapping of ultracold

molecules provides the next challenge.



1.1. Ultracold atoms and molecules 3

Applications of ultracold molecules

The creation of ultracold polar molecules is of great interest as they provide numerous

new and exciting avenues of research. They offer a wide range of applications including:

studies of few-body quantum physics, high-precision spectroscopy, quantum simulators for

many-body phenomena and controlled chemistry [23–25]. The low temperature of ultra-

cold molecules correlates with a reduced Doppler broadening of the spectral lines [26].

This makes ultracold molecules ideal candidates for use in high-precision measurements

such as measurements of the electric dipole moment (EDM) of the electron [27, 28] and

measurements of the possible time-variation of fundamental constants such as the fine

structure constant and the electron-to-proton mass ratio [26]. Below 1 K the thermal

motion of molecules becomes small compared to perturbations from electric and magnetic

fields, and so reactions could be controlled and manipulated by the application of external

fields [29]. At ultra-low temperatures the dynamics of molecular reactions change, as quan-

tum mechanical effects dominate, and reaction processes can be dramatically enhanced

by quantum threshold phenomena [30, 31]. Different trapping geometries have also been

shown to have strong effects on reaction processes in the ultracold regime [29]. Ultracold

polar molecules have permanent electric dipole moments which give rise to anisotropic,

long-range dipole-dipole interactions. These dipole-dipole interactions can operate over

a larger range then optical lattice spacings and could be used in quantum simulation,

quantum information processing and to create novel quantum phases.

Methods of forming ultracold molecules

The laser-cooling technique used to produce ultracold atoms requires a well-defined ab-

sorption and emission cycle. In general, laser cooling does not work on molecules which

have a much more complex energy-level structure; although, there is a small sub-class of

molecules, with a large Franck-Condon overlap between the relevant levels of the absorp-

tion and emission cycle, where it has been shown to be effective [32]. The first molecule

to be successfully cooled and trapped was the radical CaH, in 1998, using a cold buffer

gas of 3He [33]. Ultracold bialkali molecules have been successfully produced using both

photoassociation and magnetoassociation techniques [34, 35]. There are two main classes

of techniques which have been developed to produce cold molecules;

• Direct cooling: Methods designed to directly cool a sample of high temperature

molecules to low temperatures such as sympathetic cooling and laser cooling.
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• Indirect cooling: Methods designed to associate pre-cooled atoms to form molecules

at low temperatures such as photoassociation and magnetoassociation.

Direct Cooling

Direct cooling techniques include a versatile group of techniques which can be used to

cool many different types of molecules to ‘cold’ temperatures. Sympathetic cooling works

by mixing a cloud of higher-temperature molecules with a cloud of cold atoms. Colli-

sions between the two species result in thermalisation of the two species which lowers the

temperature of the molecules; if there is a large enough cloud of atoms, or if the atoms

can be continuously cooled, then the temperature of the molecules can be lowered to the

temperature of the atoms. This technique relies upon there being a favourable ratio of

elastic (thermalising) collisions to inelastic collisions, which lead to loss from the trap.

Molecules can only be trapped if their translational energy is lower than the depth of the

trap. Buffer-gas cooling is a technique pioneered by the Doyle group [33, 36, 37] which

typically uses a cold buffer gas of liquid helium to cool molecules down to a few Kelvin.

The technique does not depend on any particular molecular properties and so can be ap-

plied to a wide range of molecules, and has been demonstrated successfully on molecules

such as CaH, CrH, MnH, ND and NH [38]. Another technique in this category is the

sympathetic cooling of molecular ions: molecules are sympathetically cooled via coulomb

interactions with laser-cooled atomic ions when both species are simultaneously trapped

in an ion trap [39]. This technique can produce molecular ions below 100 mK [40].

Laser cooling requires a complex set-up of lasers, that are utilised in the same manner

as for atomic cooling, to cool molecules with relatively simple energy levels, such as metal

hydrides. The first cooling of molecules using lasers was reported by Djeu et al., [41] in

1981, and remained the only successful experiment for over a decade. They used sponta-

neous anti-Stokes scattering and managed to drop the temperature of CO2 molecules by 1

K [41]. In 1996, Bahns et al. published a method for the laser cooling of molecules based

on sequential steps, first lowering the rotational energy, then the translational energy, and

finally the vibrational energy to produce cold molecules in the ground state [42]. The first

experimental success of laser-cooled cold molecules came in 2010, when SrF was success-

fully cooled to ≈ 1 K [32]. Recently, Zhelyazkova et al. have demonstrated cooling of CaF

down to temperatures around 300 mK [43] and Hummon et al. have demonstrated the

cooling and trapping of YO in a 2-d MOT [44]. In 2014 Barry et al. produced a 3-d MOT
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of SrF via laser cooling at a temperature of 2.5 mK which is the lowest temperature that

has currently been achieved via direct cooling methods [45]. However the laser cooling

of molecules, will always be restricted to simple molecular structures, with large Franck-

Condon overlap between the required molecular sub-levels and a small overlap between all

others.

A method of slowing molecules, in order to trap them, is via Stark deceleration. In

an inhomogenous electric field the Stark effect splits the energy levels of the molecule into

high-field seeking and low-field seeking states. Low-field seeking states will experience a

decrease in energy as they moves towards a high-field region of space. In a Stark decelerator

first the correct state of the molecule has to be selected, then the molecules travel down the

decelerator which generates time-dependent inhomogeneous fields at a series of stages so

that the molecule always experience an increasing potential. Using pulsed fields, molecules

can be grouped into bunches and at the end of the decelerator molecules can be caught

using a quadrupole trap. The first experimental demonstration of Stark deceleration was

performed on a beam of metastable CO molecules [46] in 1999. Since then it has been

used to cool a variety of molecules including OH radicals [47], ND3 which was cooled to

250 µK [48,49] and YbF [50]. Zeeman deceleration techniques, using magnetic fields, have

also been successfully demonstrated [51–53], as well as Rydberg decelerators [54, 55] and

optical Stark decelerators [56].

Indirect Cooling

Indirect methods combine two ultracold atoms to form an ultracold molecule. This ap-

proach is limited by the fact that only atoms which can be laser cooled can be used

to form molecules. Additionally, both photoassociation and magnetoassociation require

substantial spectroscopic knowledge of the specific molecular sub-levels involved, which

means the techniques cannot be generally applied. The benefit of the techniques is that

the molecules formed are at the same translational temperature as the constituent atoms

and are therefore ultracold.

Photoassociation uses a laser pulse to excite two cold atoms into an excited bound

state. The association occurs as two colliding atoms absorb a photon which excites them

to a bound level, X + Y + hν1 → XY ∗. The technique was first proposed by Thorsheim

et al. in 1987 [57]. The excited-state molecule is very unstable and can rapidly decay

back into the constituent atoms. To prevent this either spontaneous emission or a second
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laser pulse can be used to transfer the molecules into the ground state (or lower triplet

state). The probability of this transition is governed by the Franck-Condon factors between

the two levels, | 〈Ψexc
v′ |Ψ

ground
v′′ 〉 |2. Photoassociation has been used successfully to produce

ultracold homonuclear alkali-metal dimers in their vibrational ground state such as K2 [58]

and Cs2 [59]; it has also been used to produce ultracold heteronuclear alkali-metal dimers

such as LiCs [60], KRb [61] and RbCs [62].

Currently the most successful method of ultracold molecule formation is magnetoas-

sociation of ultracold atoms to create Feshbach molecules, followed by stimulated Raman

adiabatic passage (STIRAP) to transfer the Feshbach molecules into their rovibrational

ground state. A Feshbach resonance occurs when the energy of the two separated atoms

is degenerate with the energy of a bound molecular state. The atoms can then be ‘tuned’

through the resonance into molecules [35]. This process is discussed in further detail in

Section 2.4. The most common method used for associating Feshbach molecules is via

a ‘Feshbach ramp’ where the magnetic field is tuned adiabatically across the width of

the resonance [63–65]. Another method of forming Feshbach molecules uses an oscillating

field to modulate the applied magnetic field which induces a stimulated transition of two

colliding atoms into a bound molecular state [35]. The molecules can then be separated

from the atomic cloud using Stern-Gerlach separation or optical methods; this should be

performed quickly following molecule formation to reduce losses [35]. The ramp can also

be reversed, and the molecules will dissociate into atoms; this process is typically used to

detect Feshbach molecules.

Feshbach molecules formed by magnetoassociation are very weakly bound and have a

short lifetime in the range of 100 ms. The Feshbach molecules can be transferred into a

ground-state level using STIRAP. STIRAP is a two-photon transition process that trans-

fers molecules from the short-lived Feshbach state |F 〉 to a long-lived deeply bound state

(|G〉) via an intermediate excited state (|E〉). Transitions between |E〉 and |G〉 are driven

by the Stokes laser, with coupling strengths derived from the Rabi frequency ΩS. Transi-

tions between |F 〉 and |E〉 are driven by the pump laser, with coupling strengths derived

from the Rabi frequency ΩP. The Stokes laser is applied first, coupling the unpopulated

|E〉 and |G〉 states, then the pump laser is switched on. The molecules transfer through

a dark superposition of states |F 〉 and |G〉, |D〉 = cos θ |F 〉 − sin θ |G〉, where |D〉 is an

eigenstate of the dressed system on two-photon resonance [66]. The mixing angle θ is

θ = ΩP(t)/ΩS(t). The excited state does not appear in the eigenstate |D〉 and so by
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varying the values of ΩP(t) and ΩS(t) the molecules can be transferred adiabatically from

|F 〉 to |G〉. Bypassing |E〉 means that losses from the excited state do not have to be

considered and the transfer efficiency can theoretically be 100% [35].

Magnetoassociation followed by STIRAP has the advantage of being able to produce

large numbers of molecules at ultracold temperatures. The first ultracold absolute ground-

state polar molecules produced by this method were KRb [67]. Homonuclear Cs2 [68] and

triplet Rb2 [69] have also been produced in the ground state using these methods. Recently

ultracold ground-state molecules of 87RbCs have been produced at both Innsbruck [70]

and Durham [71]. This Thesis presents detailed calculations on the scattering lengths and

bound states of various alkali-metal systems and an outlook to using these systems for

ultracold molecule formation. We also use different basis sets to describe the quantum

numbers of the bound states and assess the energy-dependence of the scattering length

around Feshbach resonances. Finally, we briefly describe the effects of additional external

fields on alkali-alkali collisions.

1.2 Outline of Thesis

This Thesis is organised as follows:

• Chapter 2 gives a brief summary of scattering theory and introduces notation that

will be used throughout the Thesis. A description of how the programs molscat,

bound and field work is also given.

• Chapter 3 introduces the Hamiltonian for collisions of alkali-metal atoms under the

influence of an external magnetic field and the basis sets, and corresponding matrix

elements, used in the calculations presented in this Thesis.

• In Chapter 4 scattering and bound-state calculations on 85Rb, 87Rb and 133Cs are

presented. The work on 85Rb is published in Ref. [72]. This work involved a close col-

laboration between experiment and theory; where relevant, the experimental results

are discussed alongside the theoretical calculations. The experimental results were

all measured by Simon Cornish’s group at Durham University. This Chapter also

uses the results to develop a proposal to use solitons of 85Rb to generate mesoscopic

Bell states; this proposal is the work of Gertjerenken et al. [73] and Billam et al. [74],

my contribution was to identify areas with the requisite scattering properties.
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• In Chapter 5 scattering and bound-state calculations of the isotopologues of RbCs

and KCs are presented. The work on 85RbCs was published in Ref. [75]. This

work involved a close collaboration between experiment and theory; where relevant,

the experimental results are discussed alongside the theoretical calculations. The

experimental results were all measured by Simon Cornish’s group at Durham Uni-

versity. The work on 87RbCs was published in Refs. [71,76]; this work was performed

in close collaboration with Dr. Ruth Le Sueur, who produced the scattering length,

resonance position and widths, and quantum number assignments. The work on KCs

was published in Ref. [77]; this work was performed in collaboration with Hannah

Patel.

• In Chapter 6 the matrix elements of a molecular basis |SIFMF 〉 |LML〉 are derived.

An analysis of the singlet and triplet character of the bound states of 85RbCs is

given. A derivation of the transformation of the product states of the field-dressed

Hamiltonian to the |SMSmi,ami,b〉 basis set is also derived and the field-dressed

states of 85RbCs are analysed.

• In Chapter 7 we use accurate coupled-channel calculations on 6Li, 39K and 133Cs to

explore the behaviour of the effective range in the vicinity of both broad and nar-

row Feshbach resonances. We present an alternative parametrization of the effective

range that is accurate through both the pole and the zero-crossing and demon-

strate that an analytical form of an energy- and magnetic-field-dependent phase

shift, based on multichannel quantum defect theory, gives accurate results for the

energy-dependent scattering length. This work was published in Ref. [78].

• In Chapter 8 the Hamiltonian for collisions of alkali-metal atoms under the influence

of an external magnetic field and external rf-fields is introduced. The implementation

of rf-fields in molscat and the results obtained for rf-dressing of the aa channel of

85RbCs are presented.

• Chapter 9 gives a summary of the conclusions drawn in each of the previous chapters,

and an outlook into the future directions for work of this nature is given.
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Chapter 2

Scattering Theory

In the following Chapter a brief introduction to scattering theory is presented, along with

the notation that will be used in the rest of this Thesis. A more detailed treatment

of scattering theory can be found in Ref. [79–81]. Low-energy scattering and resonant

behaviour are specifically addressed with a description of the meaning and behaviour of

the s-wave scattering length, and a description of scattering and bound-state behaviour

around zero-energy Feshbach resonances. A brief summary of coupled-channel methods

and a discussion of the workings of the programs molscat, bound and field is also

presented. A more complete description of the capabilities and workings of these programs

can be found in Ref. [82]

2.1 Wavefunction Scattering

The collisional behaviour of two particles is described by the time-dependent Schrödinger

Equation,

i~
∂

∂t
Ψ(~r, t) =

[−~2

2µ
∇2 + V (~r, t)

]
Ψ(~r, t). (2.1.1)

where µ is the reduced mass of the system. If the potential is time independent, V (~r, t) =

V (~r), then the time-dependent wavefunction can be written as Ψ(~r, t) = ψ(~r) exp (−iEt/~),

where ψ(~r) is a solution of time-independent Schrödinger equation.

The initial wavefunction of the stationary system, in the absence of interactions, is

typically described by a plane wave ψ0 = ei
~ki·r with energy E = ~2k2/2µ. When the

plane wave scatters around a particle, it can be represented as an interference by outgoing

spherical waves, see Figure 2.1. If the interaction potential decreases faster than 1/r at

11
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Figure 2.1: The incoming plane wave (black) describes the incident particles and the spherical

wave (red) describes the scattered particles. The azimuthal angle, φ, is not shown.

long range then the scattering wavefunction behaves asymptotically as,

ψ+
~k0

(~r)
r→∞∼ A

[
ei
~k·~r + f(θ, φ)

eikr

r

]
, (2.1.2)

where ei
~k·~r is the incoming plane wave, f(θ, φ) is the scattering amplitude and eikr/r is

the spherical wave. The scattering amplitude |f(θ, φ)| describes the angular distribution

of the scattering and is related to the particle flux density. The integral cross-section of

the collision is given in terms of the scattering amplitude as,

σtot =

∫ π

0

∫ 2π

0
|f(θ, φ)| sin θdθdφ. (2.1.3)

The incident plane wave can be expanded in terms of the Legendre polynomials to give,

ei
~k·~r =

∞∑
L=0

(2L+ 1)iLPL(cos θ)jL(kr), (2.1.4)

where jL(kr) are the spherical Bessel functions, shown in Fig. 2.2. The angular momentum

is quantised in terms of L, but relates to the classical angular momentum, ~L = b~p, where

b is the impact parameter and ~p is the particle momentum.

2.1.1 The partial-wave expansion

The time-independent Hamiltonian in spherical polar coordinates is,

Ĥ = − ~2

2µ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂φ2

]
+ V (~r), (2.1.5)

which can be simplified using the orbital angular momentum operator L̂ = r × p̂, with

p̂ = −i~∇.
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Figure 2.2: Spherical Bessel functions of the first kind (left) and second kind (right) for L =

0, 1 . . . 5.

The orbital-angular-momentum operators in polar coordinates are,

L̂x = −i~
(
y
∂

∂z
− z ∂

∂y

)
= i~

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, (2.1.6a)

L̂y = −i~
(
z
∂

∂x
− x ∂

∂z

)
= i~

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
, (2.1.6b)

and

L̂z = −i~
(
x
∂

∂y
− y ∂

∂x

)
= i~

∂

∂φ
, (2.1.6c)

with

L̂2 = L̂2
x + L̂2

y + L̂2
z = −~2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

)
. (2.1.6d)

Substituting Eq. (2.1.6d) into Eq. (2.1.5) the Hamiltonian can be re-written as

Ĥ = − ~2

2µ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

~2r2

]
+ V (~r). (2.1.7)

Using the partial-wave expansion of the scattering wavefunction,

Ψ(~r) = r−1
∞∑
L=0

ΨL(r)PL(cos θ), (2.1.8)

allows for the separation of a radially dependent Schrödinger Equation[−~2

2µ

d2

dr2
+

~2L(L+ 1)

2µr2
+ V (r)

]
ψL(r) = EψL(r), (2.1.9)

which can be solved, subject to appropriate boundary conditions.



2.1. Wavefunction Scattering 14

Typical boundary conditions are based on a potential which is non-zero at short range

and which tends to zero at long range. This gives short-range boundary conditions ΨL → 0

as r → 0 and long-range boundary conditions,

ΨL(k, r)
r→∞∼ Al(k) [jL(kr)− tan δLnL(kr)] , (2.1.10)

where jL and nL are spherical Bessel functions of the first and second kind (shown in

Fig. 2.2), Al(k) is an energy-dependent normalisation factor, and δL is the phase shift.

Using the properties of the spherical Bessel functions as r → ∞ [83] Eq. (2.1.10) can be

re-written as,

ΨL(k, r)
r→∞∼ sin(kr − Lπ

2
+ δL), (2.1.11)

where the phase shift δL can be interpreted as the shift in the scattered wavefunction

compared to the free-particle solution, caused by the interaction potential.

By similarly expanding the scattering wavefunction, and substituting in the expansion

of the plane wave, we find an expression for the scattering amplitude as a sum of the

Legendre polynomials,

f(θ, φ) =
1

2ik

∞∑
L=0

(2L+ 1)(e2iδL − 1)PL(cos θ). (2.1.12)

The differential cross-section is dσ/dΘ = |f(θ, φ)|2, and the integral cross-section σtot is

given by,

σtot =

∫ π

0
dθ sin(θ)

∫ 2π

0
dφ|f(θ, φ)|2 =

4π

k2

∑
L

(2L+ 1) sin2(δL). (2.1.13)

2.1.2 Scattering S-matrix

The boundary conditions of Eq. (2.1.11) can also be defined in terms of incoming and

outgoing waves. Following Mott and Massey [79] the functions fl(±k, r) are defined as

fl(±k, r) ∼ exp (∓ikr + 1/2ilπ). (2.1.14)

Re-writing Eq. (2.1.11) using these functions gives

ΨL(r)
r→∞∼ 1

2
i
(
fl(k, r) + (−1)l+1Sl(k)fl(−k, r)

)
. (2.1.15)

The scattering matrix, S-matrix, acts as an operator which transforms the coefficients

of the incoming wave to the outgoing wave. In terms of the scattering phase shift, the

S-matrix has elements

Sl(k) = exp 2iδl. (2.1.16)
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For collisions in which the number of particles is conserved then the S-matrix is unitary. If

there is a single open channel then the S-matrix is single valued; if there is more than one

open channel the S-matrix is an N ×N matrix, where N is the number of open channels

and the diagonal element corresponding to the incoming channel is denoted S00.

2.2 Low-energy scattering

In the low-energy regime the centrifugal barrier limits the contribution of partial waves

with L > 0 and s-wave scattering dominates. For elastic scattering the s-wave phase shift

at low energy is given by the Wigner threshold laws [84] as,

tan δ0(k) ∼ k (2.2.1)

where k is the wavenumber of the incoming channel. The s-wave scattering length is

defined as [85],

a0(k) =
− tan δ0

k
=

1

ik

1− S00

1 + S00
, (2.2.2)

which can be real or complex. In the s-wave scattering regime the elastic cross-section

is [85],

σel(k) =
π

k2
|1− S00|2 =

4π|a0(k)|2

1 + |a0(k)|2k2 + 2kβ(k)
, (2.2.3)

and the total inelastic cross-section is,

σinel(k) =
π

k2

(
1− |S00|2

)
=

4πβ

k

(
1 + |a0(k)|2k2 + 2kβ(k)

)
, (2.2.4)

with a0(k) = α(k)− iβ(k), where α(k) is the real part of the scattering length and −iβ(k)

is the imaginary part of the scattering length.

At limitingly low energies, using the small argument limit, then δ0(k) ≈ −ka0(k) and

the dependence of a0 on k becomes negligible. The long-range form of the wavefunction

can be rewritten as ∼ sin(k(r − a0))/
√
k. The sine function is zero when r = a0 and the

scattering length thus defines the point at which a linear extrapolation of the long-range

tail of the wavefunction crosses the r-axis, as shown in Fig. 2.3. Physically, the asymptotic

form of the wavefunction corresponds to the wavefunction caused by scattering of a hard-

sphere potential with a radius equal to the scattering length.

The scattering length is correlated to the position of the highest-lying bound state

supported by the potential. If no bound state is supported then the scattering length is

negative. If there is a bound state exactly at threshold then a =∞, as the state becomes



2.2. Low-energy scattering 16

5 10 15 20 25 30
Internuclear distance (R)

0

a0 =-10

a0 =0

a0 =10

a0 =20

Figure 2.3: Diagram showing the asymptotic behaviour of a wavefunction at zero energy (solid,

coloured). The black line (solid) shows a van der Waals potential that tends to zero as R tends to

infinity. The dashed lines show the extrapolation of the scattering length for a variety of values.

more deeply bound the scattering length decreases, eventually passing through zero. As

the state becomes even more deeply bound the scattering length becomes negative, tending

towards a = −∞.

When the long-range interactions of the system can be described by a van der Waals

potential then various universal behaviours of the system can be defined based on the

long-range C6 coefficient. It is helpful to define a characteristic length and energy scale of

the system, [35]

RvdW =
1

2

(
2µC6

~2

)1/4

and EvdW =
~2

2µ

1

R2
vdW

, (2.2.5)

or alternatively the scales as defined by Gribakin and Flambaum [86]

ā =
4π

Γ(1/4)2
RvdW and Ē =

~2

2µ

1

ā2
, (2.2.6)

where Γ(x) is the gamma function and µ is the reduced mass of the system. When

R > RvdW then the wavefunction approaches its asymptotic form [87].

The characteristic energy and length scales also give information about the bound

states of the system. Gao [88] has calculated the energies of the bound states of all partial

waves as a function of the scattering length which can be used to define a set of “energy

bins” based on the value of EvdW. For s-wave scattering there will be a bound state
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corresponding to n = −1 between −39.5 EvdW and 0, a bound state corresponding to

n = −2 between −272 EvdW and −39.5 EvdW, and so on, where n is the vibrational

quantum number counted down from the threshold energy. For near-threshold bound

states, when a � ā, then the energy of the bound state, Eb is given by the scattering

length [35] as,

Eb =
~2

2µa2
. (2.2.7)

Information of this nature can give important insight into the scattering behaviour of the

system before full coupled-channel calculations are undertaken.

2.3 Scattering resonances

There are two different classifications of scattering resonances. Shape resonances are

caused by a quasi-bound state supported by the incoming channel; Feshbach resonances

are caused by a quasi-bound state from a different channel becoming degenerate with the

incoming channel. Away from resonance the phase shift is a slowly varying function of

the collision energy but near resonance it becomes quickly varying. Its behaviour can be

split into two components,

δ(E) = δbg(E) + δres(E), (2.3.1)

where δbg(E) represents the slowly varying background term and δres(E) represents the

resonance contribution. If the system has a single open channel then the resonance be-

haviour, of either kind of resonance, is characterised by a sharp variation of π in the phase

shift δL. The phase shift, as a function of energy, follows the Breit-Wigner form,

δL(E) = δbg + tan−1

(
ΓE

2(Eres − E)

)
, (2.3.2)

where Eres is the resonance position, and ΓE is the resonance width in energy space. The

equivalent formula for the phase shift as a function of magnetic field at constant energy

is,

δL(B) = δbg + tan−1

(
ΓB

2(B0 −B)

)
, (2.3.3)

where B0 is the resonance position and ΓB = ΓE/δµ. δµ represents the rate at which

the energy of the state causing the resonance, Eres, tunes with respect to the energy of

the open-channel threshold, Ethres. The S-matrix element, S = exp 2iδ, for an elastic

scattering resonance, describes a circle of radius one in the complex plane as a function of

magnetic field or energy [89].
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The variation of the scattering length around a resonance is described by [90]

a(B) = abg

(
1− ∆

B −B0

)
, (2.3.4)

where abg is the background scattering length which corresponds to the background phase

shift and the width ∆ is related to ΓB by ΓB = −2abgk∆B [89].

2.3.1 Inelastic scattering

Inelastic collisions occur when multiple outgoing channels are present during the collision.

The scattering S-matrix element of the incoming channel can be written in terms of a

complex phase shift as,

S00 = exp 2iδ0. (2.3.5)

In the low-energy limit the complex phase shift translates into a complex scattering length

[91]

a = α− iβ. (2.3.6)

With several open channels present, the quantity that follows the Breit-Wigner form across

threshold is not the phase shift of a particular channel but rather the S-matrix eigenphase

sum. The S-matrix eigenphase sum is the sum of the phase shifts obtained from the

eigenvalues of the S-matrix and is real, as the S-matrix is unitary. The variation of the

individual elements of the S-matrix, Sjj′ , across a resonance, in either energy or magnetic

field, each describe a circle in the complex plane with radius ≤ 1. As a function of magnetic

field at constant energy the individual S-matrix elements are [89],

Sjj′(B) = Sbg,jj′ −
igBjgBj′

B −Bres + iΓB/2
, (2.3.7)

where g2
Bj = ΓBj exp 2jφj . The radius of the circle is |gBjgBj′ |/ΓB and φj describes its

direction in the complex plane. The total width ΓB is given by the sum over all partial

widths ΓBj . A reduced partial width, which is independent of energy, can be defined for

the incoming channel as γB0 = ΓB0/2k.

The complex scattering length around a resonance can be described by,

a(B) = abg +
ares

2(B −Bres)/Γinel
B + i

, (2.3.8)

where ares characterises the strength of the resonance and is defined as [89],

ares =
2γB0

Γinel
B

exp 2i(φ0 + kαbg). (2.3.9)
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Figure 2.4: (a) an avoided crossing between the separated atoms and a molecular bound state;

(b) scattering length around a resonance caused by a molecular bound state becoming degenerate

with the scattering state; (c) potential energy curves denoting the relative energies of the incoming

scattering channel and bound states in the closed channel when the energy of a bound state in

the closed channel becomes degenerate with the energy of the scattering state then a Feshbach

resonance occurs.

Across a resonance the real part of the scattering length displays an oscillation of magni-

tude ares/2 and the imaginary part of the scattering length shows a corresponding peak

of height ares. If the background scattering length abg is real then the lineshapes are

symmetrical, however if abg has an imaginary component then the lineshapes can be as-

symetrical [92].

2.4 Zero-energy Feshbach resonances

Feshbach resonances occur when the energy of a bound state in a closed channel becomes

degenerate with the energy of the scattering state in the incoming channel. Historically,

Feshbach resonances were first predicted by both Fano and Feshbach, separately, around

1960 [93–95]. The first examples found experimentally were in high-energy systems where

the resonance was caused by tuning the energy of the scattering state [96, 97]. The first
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prediction of zero-energy Feshbach resonances, where tuning of the magnetic field causes

the energy of a molecular bound state to become degenerate with a low-energy scattering

state, were by Stwalley [98] in 1976, and the first use for them was suggested by Tiesinga

et al. [99] who showed that they could be used to tune the scattering length. The first

experimental discoveries, of these type of resonances, were by Inouye et al. [100] in a BEC

of 23Na and by Courteille et al. [101] in a BEC of 85Rb. In the following work whenever

Feshbach resonances are referred to we are referring to zero-energy Feshbach resonances.

The incoming scattering state has some small energy E with respect to the zero-

energy set by the energy of the individual atoms at infinite separation. The incoming

channel is therefore an ‘open channel’, with an asymptotic energy less than E. Within

the system there may also exist closed channels, with asymptotic energies greater than

E, which support bound states whose energies lie close to the energy of the incoming

scattering state. Fig. 2.4 (c) describes such a situation. The bound state with energy, Ec,

is supported by a closed channel. The energy of this state depends on magnetic field and

so it can be tuned with respect to the scattering state, as shown in Fig. 2.4 (a). Fig. 2.4

(b) shows the scattering length of the system, which varies strongly with the position of

the bound state. When the molecular state is above the the scattering state then there

is no bound state close to threshold and the scattering length is large and negative. The

bound state and the scattering state will become degenerate at the magnetic field denoted

by B0, after this point there is a near-threshold bound state and the scattering length is

large and positive.

Each resonance is caused by coupling between the scattering state and a bound state

the strength of which can be represented by V = 〈φscat|Ĥ|φbound〉 where Ĥ includes all

the terms which can couple the two states. The strength of this coupling is important to

characterise the resonance. If the resonance is open-channel dominated then the scattering

and bound states have the spin character of the open channel over a large fraction of the

resonance width ∆. If the resonance is closed-channel dominated then the scattering and

bound states have the spin character of the closed channel over a large fraction of the

resonance width ∆. Resonances that are open-channel dominated are also referred to as

broad resonances and tend to have a large value of ∆, and be caused by s-wave bound

states. Resonances can be defined as open-channel or closed-channel dominated based on

the parameter sres [35],

sres =
abg

ā

δµ∆

Ē
, (2.4.1)
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where abg is the “local” background scattering length, δµ is the difference between the

magnetic moment of the bound state and the magnetic moment of the separated atoms,

and ∆ is the width of the resonance. An open (closed) channel resonance corresponds to

sres � 1 (sres � 1).

One of the methods of magnetoassociation involves a linear magnetic field ramp across

a Feshbach resonance [102]. The speed at which the magnetic field is ramped requires a

balance between transferring the atoms slowly enough that the transfer is adiabatic and

quickly enough that significant three-body losses are not sustained. The efficiency of the

atom-molecule conversion has a Landau-Zener-like behaviour [34,35]

P

Pmax
= 1− exp

(
−αn ~

2µ

∣∣∣∣∆abg

Ḃ

∣∣∣∣), (2.4.2)

where n is the atomic number density, α is a dimensionless prefactor given in Ref. [34],

Pmax is the maximum conversion efficiency determined by the PSD of the atomic cloud as

this determines the number of atomic pairs available, and Ḃ is the ramp speed [34].

The location of Feshbach resonances can be determined experimentally by measuring

atom loss from the trapped sample. The three-body loss rate scales as ∼ a4 leading to a

drastically enhanced loss rate around the pole of a resonance where |a| is large. If inelastic

collisions exist then there is also a two-body loss rate, due to dipolar relaxations caused

by the spin-spin coupling and second order spin-orbit interactions. This loss rate K
(2)
loss is

proportional to the imaginary part of the scattering length β [91],

K
(2)
loss =

2~
µ
gnβ, (2.4.3)

where gn = 2 for a thermal gas of identical bosons, and 1 otherwise.

2.5 Coupled-Channel methods

In a multi-channel scattering problem numerical methods are essential to solve the Hamil-

tonian of the interacting system. The total Hamiltonian for a general system of colliding

particles in Jacobi coordinates is,

Ĥ = − ~2

2µ
R−1 d2

dR2
R+

L̂2

2µR2
+ Ĥint + V (R, θ) (2.5.1)

where R is the radial separation coordinate, θ represents all other coordinates in the

system, V (R, θ) is the interaction potential and Ĥint represents the R-independent internal

Hamiltonians of the particles. Using the coupled-channel approach the radial coordinate
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R is handled by direct numerical propagation on a grid, and all other coordinates using a

basis set [82]. The total wavefunction of the nth state of the system is

Ψn(R, θ) = R−1
∑
j

Ψj(θ)Fjn(R), (2.5.2)

where the functions Ψj(θ) form a complete orthonormal basis of the channels and the radial

channel function Fjn(R) describes the wavefunction for each channel j. The differential

equation for each channel function Fin(R) is

d2Fin(R)

dR2
=
∑
j

[Wij(R)− Eδij ]Fjn(R), (2.5.3)

where E is the energy scaled by 2µ/~2 and Wij(R) are the elements of the coupling matrix

given by

Wij(R) =
2µ

~2

∫
Ψ∗i (θ)

[
Hint + V (R, θ) +

L̂2

R2

]
Ψj(θ)dθ. (2.5.4)

The coupled-channel Schrödinger equation can be expressed more simply in the matrix

form,
d2F

dR2
= [W(R)− EI] F(R), (2.5.5)

where, in a basis consisting of N channels, W is an N ×N matrix with elements Wij and

F is an N ×N matrix made up of column vectors Fn of order N , with elements Fjn each

of which represents a linearly independent solution.

The wavefunction matrix F(R) can be propagated from short range to long range using

appropriate boundary conditions for each channel. At short range, inside the classically

forbidden region, all channels are closed and F(R) → 0 as R → 0. At long range, when

the effects of V (R) are negligible, the solutions are given by

F(R)
r→∞∼ J(R) + N(R)K, (2.5.6)

where J and N are diagonal matrices with open-channel elements made up of Ricatti-

Bessel functions [83]

Jij(R) = δijk
−1/2
j ĵlj (kjR), (2.5.7)

Nij(R) = δijk
−1/2
j n̂lj (kjR), (2.5.8)

and closed-channel elements made up of modified spherical Bessel functions of the first

and third kinds

Jij(R) = δijk
1/2
i,r Ilj+1/2(kjR), (2.5.9)

Nij(R) = δijk
1/2
i,r Klj+1/2(kjR). (2.5.10)
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The reaction matrix K is defined by the asymptotic behaviour of the wavefunction and

contains elements connecting the closed and open channels,

K =

Koo Koc

Kco Kcc

 . (2.5.11)

The S-matrix can be expressed in terms of the open-channel part of the K-matrix, Koo,

as

S = (I + iKoo)−1 (I− iKoo) , (2.5.12)

from which the scattering length can be determined using Eq. (2.2.2).

2.5.1 Propagators

Direct propagation of the wavefunction matrix F is numerically unstable, as any closed

channel elements increase exponentially and destroy the linear independence of the solu-

tions. In the following sections two methods which avoid this problem are detailed, the

renormalised Numerov propagator and the method of log-derivative propagation.

2.5.1.1 Renormalised Numerov propagator

The renormalised Numerov propagator allows for the stable propagation of closed channels

by propagating the ratio of Ψn/Ψn+1 [103]. It is derived by taking a series expansion about

the wavefunction, ψ(xn ± h),

ψn+1 = ψ(xn + h) = ψn + hψ′n +
h2

2
ψ′′n +

h3

6
ψ′′′n +

h4

24
ψ′′′′n +

h5

5!
ψ′′′′′n +O(h6), (2.5.13)

and

ψn−1 = ψ(xn − h) = ψn − hψ′n +
h2

2
ψ′′n −

h3

6
ψ′′′n +

h4

24
ψ′′′′n −

h5

5!
ψ′′′′′n +O(h6). (2.5.14)

These two expansions can be combined to give

1

2
[ψn+1 + ψn−1] = ψn +

h2

2
ψ′′n +

h4

24
ψ′′′′n +O(h6), (2.5.15)

which can be differentiated twice to give

1

2
[ψ′′n+1 + ψ′′n−1] = ψ′′n +

h2

2
ψ′′′′n +

h4

24
ψ′′′′′′n +O(h6). (2.5.16)

Multiplying through Eq. (2.5.16) by h2/12 and subtracting it from Eq. (2.5.15) gives

[ψn+1 +
h2

12
ψ′′n+1] + [ψn−1 +

h2

12
ψ′′n−1] = 2ψn +

10h2

12
ψ′′n +O(h6). (2.5.17)
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Using our initial second-order differential equation we can substitute in ψ′′ = f(x)ψ(x)

which gives the three-term recurrence relation

[1− Tn+1]ψn+1 + [1− Tn−1]ψn−1 = [2 + 10Tn]ψn +O(h6), (2.5.18)

where Tn is h2/12f(x). To reduce the number of matrix multiplication steps required one

substitutes in Cn = [1− Tn]ψn which makes Eq. (2.5.18)

Cn+1 − UnCn + Cn−1 = 0, (2.5.19)

where Un = (1 − Tn)−1(2 + 10Tn). The recurrence relation can be reduced from three

to two terms by replacing Cn+1/Cn = Rn, and Cn/Cn−1 = Rn−1. The propagation then

becomes

Rn = Un −R−1
n−1. (2.5.20)

The quantity Rn that is being propagated is stable in the energetically forbidden regions

as it is the ratio of the wavefunction to the wavefunction at the next step [103]. The actual

wavefunction can be recovered at any point in the propagation by keeping track of the

ratios and the corresponding normalisations at each step.

2.5.1.2 Log-Derivative propagators

An alternative solution to propagating the wavefunction matrix is to propagate the log-

derivative matrix which is numerically stable in the presence of closed channels. The

log-derivative matrix is defined as,

Y(R) = F′(R)F−1(R). (2.5.21)

Substituting the log-derivative matrix into the matrix form of the coupled Schrödinger,

Eq. (2.5.5), results in the matrix Ricatti equation [104],

Y′(R) = W(R)−Y(R)2. (2.5.22)

The log-derivative matrix cannot be propagated directly using standard numerical tech-

niques as it is undefined wherever F(R) = 0; it is instead propagated by invariant-

imbedding techniques. The imbedding propagator Y is defined on the interval [r1, r2]

by [105] F′(r1)

F′(r2)

 =

Y1(r1, r2) Y2(r1, r2)

Y3(r1, r2) Y4(r1, r2)

−F(r1)

F(r2)

 . (2.5.23)
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Post-multiplying the first equation by F−1(r1) and the second equation by F−1(r2), then

solving the first equation for F(r1)F−1(r2) and substituting it into the second equation,

gives a recursion relation for the log-derivative matrix,

Y(r2) = Y4(r1, r2)− Y3(r1, r2)× [Y(r1) + Y1(r1, r2)]−1 Y2(r1, r2). (2.5.24)

At the end of the propagation the reaction matrix K is given by [104],

K = −
[
Y(R)N(R)−N′(R)

]−1 [
Y(R)J(R)− J′(R)

]
. (2.5.25)

Various methods of log-derivative propagation have been derived, which define the

imbedding propagator in different ways. The original log-derivative propagator was pub-

lished by Johnson [104]; its derivation was not published in the original paper but was

re-derived by Mrugu la and Secrest [106] and later by Manolopoulos [107]. Two improved

versions of log-derivative propagation methods were published by Manolopolous [105,108]

and a further improvement which uses an Airy propagator at long range was published by

Alexander and Manolopoulos [109]. The Airy propagator allows a varying step size to be

used at long range which significantly decreases the computational time required for the

calculation.

2.5.2 moslcat, field, bound

The molscat [110], bound [111] and field [112] packages solve the set of coupled-channel

equations for N channels by propagating the solutions over a grid in R, with appropriate

bound state and scattering conditions applied at Rmin and Rmax. Both programs have

multiple propagators available, however all calculations in this Thesis were performed

using the diabatic modified log-derivative method of Manolopoulos [105] and the hybrid

modified log-derivative/Airy propagator of Alexander and Manolopoulos [109].

In molscat propagations were performed using the diabatic modified log-derivative

method from a value of Rmin to a value of Rmid using a fixed step size and then from

Rmid to Rmax using the Airy propagator. The log-derivative matrix can be propagated

in any specified basis set, however the boundary conditions described in Sec. 2.5 are only

appropriate for a basis set in which the asymptotic Hamiltonian is diagonal. At Rmax

the log-derivative matrix is transformed into the basis which satisfies this condition. The

log-derivative is then matched to the long-range solutions, as described in Section 2.5.1.2,

and the scattering length is extracted.
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In bound the bound states of the potential are calculated with respect to energy and

field. The log-derivative matrix is propagated outwards, denoted Y+, from a point Rmin,

which is chosen to be inside the inner-classically forbidden region, to a point Rmid. The

log-derivative matrix is also propagated inwards, denoted Y−, from a point Rmax, which is

chosen to be in the outer-classically forbidden region, to a point Rmid. If E is an eigenvalue

of the coupled equations then the condition

[
Y+(Rmid)−Y−(Rmid)

]
F(Rmid) = 0, (2.5.26)

will be satisified [82]. A non-trivial solution to this equation only exists if the determinant

|Y+−Y−| = 0 at Rmid. From Eq. (2.5.26) it can be seen that when a non-trivial solution

exists then F(Rmid) is an eigenvector of the log-derivative matching matrix Y+−Y− with

an eigenvalue of zero. The version of bound used in this Thesis [111] locates bound states

by converging on energies where the log-derivative matching matrix has an eigenvalue

of zero. bound has been adapted to work in external fields [113, 114]; all bound states

within a designated energy range are located for a specific magnetic field value. field

works in the same manner as bound but locates all states within a designated magnetic

field range for a specific energy value. The program field is particularly useful for locating

all Feshbach resonances in a system regardless of width, as it can be used to find all bound

states immediately below threshold, which correlate with the position of resonances in the

scattering length.



Chapter 3

Alkali-Alkali Scattering

In this Chapter we introduce the general Hamiltonian for collisions of alkali-metal atoms

under the influence of an external magnetic field, which is used for the calculations pre-

sented in the following Chapters. The basis sets, and corresponding matrix elements, used

in the calculations presented in this Thesis are also described, and the relevant quantum

numbers are defined.

3.1 Collision Hamiltonian in a static magnetic field

The collision Hamiltonian for a pair of alkali-metal atoms in an external magnetic field is,

~2

2µ

(
−R−1 d2

dR2
R+

L̂2

R2

)
+ Ĥ1 + Ĥ2 + V̂ (R) (3.1.1)

where R is the internuclear distance, µ is the reduced mass, L̂ is the rotational angular

momentum operator and V̂ is the interaction operator. Ĥ1 and Ĥ2 are the monomer

Hamiltonians of the free atoms in a magnetic field,

ĥj = ζjhfsîj · ŝj +
(
geµBŝjz + gnµBîjz

)
Bz, (3.1.2)

where ζjhfs is the hyperfine coupling constant of atom j, ge and gn are the electron and

nuclear g-factors, ŝ and î are the electron and nuclear spin operators and B is the magnetic

field. ŝz and îz are the projections of ŝ and î, respectively, along a space-fixed z-axis

defined by the magnetic field B. The monomer Hamiltonian provides the energies of the

separated atoms, in their respective hyperfine states, which is used as the threshold energy

in collision calculations.

27
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3.1.1 Monomer Hamiltonian

The Hamiltonian of a single atom in a magnetic field, Eq. (3.1.2), is known as the Breit-

Rabi Hamiltonian. For an alkali-metal atom, which has an electron spin s = 1/2 and

orbital angular momentum l = 0, the energy of the atom in a magnetic field is [115]

E|s=1/2ms,imi〉 =
−∆Ehfs

2(2i+ 1)
+ gnµBmfB ±

∆Ehfs
2

(
1 +

4mfx

2I + 1
+ x2

)1/2

, (3.1.3)

where mf = ms +mi,

x =
(ge − gn)µBB

∆Ehfs
, (3.1.4)

and

∆Ehfs = ζhfs(i+
1

2
). (3.1.5)

The ± sign is taken to be the same as the sign of ms. In the spin-stretched case when

mf = |s+ i|, then Eq. (3.1.3) is written more simply as,

E|sms,imi〉 = ∆Ehfs
i

2(2i+ 1)
± (ge + 2gni)µBB. (3.1.6)

The Breit-Rabi diagram for 85Rb is shown in Fig. 3.1. In the low-field region, where

the magnetic field splitting has a linear dependence, the hyperfine sub-levels are grouped

by quantum number f , where f is the atomic total spin quantum number given by the

coupling of s and i. However, in the high-field region they are grouped by the spin-

projection quantum number ms. The only conserved quantum number, for an alkali-metal

atom in a magnetic field, is mf , the projection of f along the magnetic-field axis.

3.1.2 Interaction Potentials

The interaction between the two atoms, V̂ (R) in Eq. (3.1.1), is given by the sum of two

terms [116],

V̂ (R) = V̂ c(R) + V̂ d(R), (3.1.7)

where V̂ c(R) is an isotropic potential operator that depends on the singlet and triplet

electronic potential curves and V̂ c(R) represents small spin-dependent couplings due to

the magnetic dipole-dipole interaction and the second-order spin orbit interaction. The

potential operator V̂ c(R),

V̂ c(R) = V0(R)P̂(0) + V1(R)P̂(1), (3.1.8)

depends on the potential energy curves V0(r) and V1(R) for the respective X1Σ+
g singlet

and a3Σ+
u triplet states of the diatomic molecule. The singlet and triplet projectors P̂(0)
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Figure 3.1: The hyperfine structure of 85Rb in an external magnetic field. At zero field the

states are grouped into two manifolds the upper one corresponding to f = 3 and the lower one

corresponding to f = 2. The magnetic field lifts the degeneracy of these states and they split into

mf sublevels. In the upper manifold, f = 3, the states run, in order of increasing energy, from

mf = −3 . . . 3; in the lower manifold, f = 2, the states run from mf = 2 · · · − 2.

and P̂(1) project onto the subspaces with total electron spin quantum numbers 0 and 1

respectively.

The potential energy curves used in this Thesis are defined in three different sections

based on the internuclear separation R: short range, intermediate and long range. In the

short-range region, at R < RSR the potential is dominated by a repulsive wall, which is

given by an inverse power in R,

V SR(R) = A+
B

RN
, (3.1.9)

where A, B and N are fitted parameters, which are chosen to match the short-range and

mid-range parts of the potential at RSR. The intermediate region, RSR ≤ R ≥ RLR, is

represented by a finite power expansion of a non-linear function ξ,

V IR(R) =

n∑
i=0

aiξ
i(R), (3.1.10)

where,

ξ(R) =
R−Rm

R+ bRm
, (3.1.11)

where ai, b and Rm are fitting parameters, and Rm is chosen to be close to the equilibrium
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value Re. The long-range region, R > RLR is represented by

V LR = −C6

R6
− C8

R8
− C10

R10
∓ Eexch, (3.1.12)

where Cn are the dispersion coefficients and are the same for both the singlet and triplet

potentials, and the exchange contribution is [117]

Eexch = AexchR
γ exp (−βR). (3.1.13)

The exchange energy adjusts for the tendency of electrons of the same spin to avoid each

other and is attractive for the singlet potential and repulsive for the triplet potential. β

and γ are related via γ = 7/(β − 1) and are obtained from the ionization energies of

the individual atoms and Aexch is a fitting parameter. The potential energy curves used

for RbCs [118] and KCs [119] are shown in Figures 3.2 and 3.3. The zero-energy of the

potential curves correlates with the energy of two separated 2S1/2 ground-state atoms and

at long range the hyperfine splittings of the various isotopologues are shown.

The spin-dependent couplings of V̂ d(R) both have the same tensor form such that

V̂ d(R) can be expressed as,

V̂ d(R) = λ(R) (ŝ1 · ŝ2 − 3 (ŝ1 · ~eR)(ŝ2 · ~eR)) , (3.1.14)

where ~eR is a unit vector along the internuclear axis, and λ(R) is an R-dependent coupling

constant,

λ(R) = Ehα
2

(
A exp (−βR) +

1

R3

)
, (3.1.15)

where α ≈ 1/137 is the atomic fine-structure constant. The coupling at long range is

dominated by the magnetic dipole-dipole term which has a 1/R3 dependence [90,116]. For

lighter atoms such as lithium this is a sufficient description of the R-dependent coupling.

For the heavier alkali-metals, such as rubidium and caesium, the second-order spin-orbit

coupling, represented by an exponential, provides an important contribution in the short-

range region of chemical bonding [120–123]. The parameters A and β in the spin-orbit

coupling are obtained by fitting to electronic structure calculations.

3.2 Matrix elements of the Hamiltonian

Most of the calculations presented in this Thesis are performed using a fully decoupled

basis set. The fully decoupled basis set is defined as

|sa,ms,a〉 |ia,mi,a〉 |sb,ms,b〉 |ib,mi,b〉 |L,mL〉 . (3.2.1)
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Figure 3.2: Main: Molecular potential energy curves V0(R) and V1(R) for the singlet and triplet

states of RbCs, respectively [118]. Inset: An expanded view of the hyperfine splittings in the

long-range part of the potentials for both isotopologues of RbCs; at this range the singlet and

triplet potentials are effectively equal. Zero energy correlates to the energy of two separated 2S1/2

ground-state atoms in the lowest hyperfine manifold.

The matrix elements of the Hamiltonian, Eq. (3.1.1), were first presented in Ref. [123].

Details of the rules of angular momentum coupling pertaining to the derivation of the

matrix elements can be found in Appendix A; only the results are presented in this Section.

The matrix elements of the V̂ c(R) isotropic potential operator are

〈sams,aiami,asbms,bibmi,bLML| V̂ c(R) |sam′s,aiam′i,asbm′s,bibm′i,bL′M ′L〉 =

δL,L′δML,M
′
L
δmi,a,m′i,a

δmi,b,m
′
i,b

∑
S

VS(R)(−1)2sa−2sb+ms,a+ms,b+m′s,a+m′s,b

× (2S + 1)

 sa sb S

ms,a ms,b −ms,a −ms,b

 sa sb S

m′s,a m′s,b −m′s,a −m′s,b

 .

(3.2.2)
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Figure 3.3: Main: Molecular potential energy curves V0(R) and V1(R) for the singlet and triplet

states of KCs, respectively [119]. Inset: An expanded view of the hyperfine splittings in the

long range part of the potentials for all three isotopologues of KCs; at this range the singlet and

triplet potentials are effectively equal. Zero energy correlates to the energy of two separated 2S1/2

ground-state atoms in the lowest hyperfine manifold.

The matrix elements of the V̂ d(R) dipolar spin-spin operator are

〈sams,aiami,asbms,bibmi,bLML| V̂ d(R) |sam′s,aiam′i,asbm′s,bibm′i,bL′M ′L〉 =

δmi,a,m′i,a
δmi,b,m

′
i,b

(−
√

30)λ(R)(−1)sa−sb−ms,a−ms,b−ML

×
[
sa(sa + 1)(2sa + 1)sb(sb + 1)(2sb + 1)(2L+ 1)(2L′ + 1)

]1/2L 2 L′

0 0 0


×
∑
qa,qb

 L 2 L′

−ML −qa − qb M ′L

 1 1 2

qa qb −qa − qb

 sa 1 sa

−ms,a qa m′s,a

 sb 1 sb

−ms,b qb m′s,b

 .

(3.2.3)

The matrix elements of L̂2 are

〈sams,aiami,asbms,bibmi,bLML| L̂2 |sam′s,aiam′i,asbm′s,bibm′i,bL′M ′L〉 =

δL,L′δML,M
′
L
δms,a,m′s,aδmi,a,m′i,a

δms,b,m
′
s,b
δmi,b,m

′
i,b
L(L+ 1).

(3.2.4)
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The matrix elements of the hyperfine interaction in the monomer Hamiltonians, for atom

a, are

〈sams,aiami,asbms,bibmi,bLML| ζahfsîa · ŝa |sam′s,aiam′i,asbm′s,bibm′i,bL′M ′L〉 =

δL,L′δML,M
′
L
δms,b,m

′
s,b
δmi,b,m

′
i,b
ζjhfs 〈sams,aiami,a| îa · ŝa |sam′s,aiam′i,a〉 ,

(3.2.5)

where

〈sams,aiami,a| îa · ŝa |sams,aiami,a〉 = mi,ams,a;

〈sams,aiami,a| îa · ŝa |sams,a ± 1iami,a ± 1〉 =

[sa(sa + 1)−ms,a(ms,a ± 1)]1/2 [ia(ia + 1)−mi,a(mi,a ± 1)]1/2 .

The matrix elements of the Zeeman operator, for atom a, are

〈sams,aiami,asbms,bibmi,bLML| geµBBŝz,a + gnµBBîz,a |sam′s,aiam′i,asbm′s,bibm′i,bL′M ′L〉 =

δL,L′δML,M
′
L
δms,a,m′s,aδmi,a,m′i,a

δms,b,m
′
s,b
δmi,b,m

′
i,b

(geµBBms,a + gnµBBmi,a).

(3.2.6)

The matrix elements of the monomer Hamiltonian, for atom b, are given by swapping the

indices a and b in both the Zeeman and Hyperfine terms.

In the case of homonuclear scattering the basis functions are symmetrised for the

exchange of two identical particles. The symmetrised basis functions are

|sms,aimi,asms,bimi,b〉 ± (−1)L |sms,bimi,bsms,aimi,a〉√
2

, (3.2.7)

where the (+) sign is applied for bosons and the (−) is applied for fermions.

There is also a partly coupled basis set available in the molscat, bound and field

programs. The partly coupled basis set is defined as

|(sa, ia)fa〉 |(sb, ib)fb〉 |F,MF 〉 |L,mL〉 . (3.2.8)

where fj is given by the coupling of sj and ij and F is given by the coupling of fa and fb.

The matrix elements of the partly coupled basis set are defined in Appendix A.2.

In Chapter 6 we define a molecular basis set,

|(sa, sb)S〉 |(ia, ib)I〉 |F,MF 〉 |L,mL〉 . (3.2.9)

where S is the molecular electron spin quantum number and I is molecular nuclear spin

quantum number. The matrix elements for this basis set are derived in Section 6.1.
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The only truly conserved quantum numbers, during collisions in the presence of a

magnetic field, are the projection of the total angular momentum Mtot = mf,a + mf,b +

ML = ms,a + mi,a + ms,b + mi,b + ML and the total parity (−1)L. This means that

the basis set for any collision system technically spans an infinite number of channels,

as the expansion over L is unbounded. However, both L and MF = mf,a + mf,b are

very good approximate quantum numbers because the only term in the Hamiltonian that

is off-diagonal in them is V̂ d, which is small. Calculations are therefore restricted by

limiting L to a subset of values. In this Thesis calculations are typically performed by

including subsets of L = 0 and 2, some calculations are also performed by restricting MF .

Calculations using different basis sets give the same scattering properties and bound-state

energies but allow for different views of the bound states.



Chapter 4

Homonuclear Scattering

In this Chapter, scattering calculations on homonuclear alkali-metal atom pairs are pre-

sented, and the prospects for ultracold homonuclear molecule formation are considered.

Three different atomic species are considered, 85Rb, 87Rb, and 133Cs. In 85Rb both the

ground (f,mf ) = (2,+2) + (2,+2) channel and the excited (2,−2) + (2,−2) channel are

considered as well as spin mixtures from the zero-field F = (2, 3) hyperfine manifold. The

interaction of the spin mixtures is proposed as a possible method for mesoscopic Bell state

formation via soliton collisions. In 87Rb the ground state is considered to gain a com-

plete understanding of its behaviour and its possible interactions with ultracold 87RbCs

molecule formation. Likewise, the ground state of 133Cs is also examined and its Feshbach

resonances and bound states are detailed.

4.1 85-Rubidium

85Rb is a promising species for ultracold atomic gas experiments, though it has often been

overlooked due to the challenges of forming a Bose-Einstein condensate (BEC) [124,125].

Recent work shows the benefits of 85Rb for RbCs production [75], discussed in Sec. 5.1.1.

However, for these experiments a full understanding of the scattering behaviour of 85Rb is

required. Most previous work on 85Rb has focused on the wide resonance near 155 G in the

(f,mf ) = (2,−2) + (2,−2) channel [126]. This resonance is suitable for experiments that

require precise tuning of the scattering length and has been used extensively in studies of

condensate collapse [125,127–129], the formation of bright matter wave solitons [130], and

few-body physics [131]. Further work using 85Rb includes spectroscopic studies of photo-

association [101, 132] and measurements of inelastic collision rates [133, 134], molecular

35
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binding energies [135], molecule formation [136–140] and Efimov states [129,131,141].

In the following Sections we discuss the results of coupled-channel calculations to

predict Feshbach resonances in both the (2,−2) + (2,−2) channel (designated ee), and

(2,+2) + (2,+2) channel (designated aa) and the experimental confirmation of 16 of the

resonances. In addition, we calculate the scattering length of the mixed spin channel

(2,+2) + (3,+3), and discuss one resonance which was experimentally confirmed, and

look at the possibility of using other mixed spin channels to study soliton collisions.

For 85Rb the coupled-channel scattering calculations are performed using molscat

[110], as described in Sec. 2.5.2. Calculations are carried out with a fixed-step log-

derivative propagator [105] from 0.3 nm to 2.1 nm and a variable-step Airy propagator [142]

from 2.1 nm to 1,500 nm. The wavefunctions are matched to their long-range solutions,

the Ricatti-Bessel functions, at 1,500 nm to find the S-matrix elements, and hence the

scattering length from Eq. (2.2.2). The scattering and bound-state calculations are car-

ried out using the potential curves and magnetic-dipole-coupling function from Ref. [143].

The R-dependent coupling function consists of the magnetic dipole-dipole interaction and

a small second-order spin-orbit contribution,

λ(R) = Ehα
2

(
ASO exp(−βSO(R−RSO)/a0) +

1

R3/a3
0

)
, (4.1.1)

where α ≈ 1/137 is the atomic fine-structure constant, βSO and RSO are adopted from

theoretical calculations by Mies et al. [120], and ASO was determined in Ref. [143] The

singlet and triplet potentials were obtained by fitting to spectroscopic data on both the

singlet [144] and triplet states of 87Rb2 and the triplet state of 85Rb2, together with several

Feshbach resonances in 87Rb2, 87Rb85Rb and 85Rb2. The singlet and triplet scattering

lengths for 85Rb on the potentials of Ref. [143] are aS = 2735 a0 and aT = −386 a0,

respectively.

Quantum numbers are assigned by carrying out approximate calculations with either

MF or F and MF restricted to specific values. For a homonuclear diatomic molecule, F

is a nearly good quantum number in the low-field region where the free-atom energies

vary linearly with B. 85Rb has s = 1/2 and i = 5/2 giving it f = 1, 2 in the molecular

state there are three hyperfine manifolds (2,2), (2,3) and (3,3). The energy levels of the

hyperfine/Zeeman states are shown in Fig. 3.1.

The theoretical calculations presented in this Section are discussed alongside experi-

mental results obtained by Simon Cornish’s group at Durham. Details of the experimental

apparatus and cooling scheme are presented in Refs. [72, 75,76,145,146].
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4.1.1 Scattering in the (f,mf ) = (2,−2) + (2,−2) channel

The highest excited state in the F = 2 hyperfine manifold of 85Rb is the (f,mf ) = (2,−2)

level; the incoming scattering channel for two atoms in this state has Mtot = −4. The

background scattering length of this channel is −450 a0. A large and negative background

scattering length means there is no high-lying bound state; the first L = 0 bound state

occurs around −200 MHz. As described in Sec. 2.3.1, for an excited-state channel, where

inelastic scattering can occur, the scattering length a(B) is complex, a(B) = α(B)−iβ(B).

The two-body inelastic loss rate is proportional to β(B). The upper panels of Figure 4.1

show the real and imaginary parts of a(B) for s-wave collisions in the ee channel. In

this case the inelastic collisions produce atoms in lower magnetic sublevels, with mf,a

and/or mf,b > −2. The lower panel shows the corresponding molecular bound states for

MF = −4, −5 and −6, obtained from calculations with MF fixed. We also carried out

calculations of the quasibound states with MF = −2 and −3 near the ee threshold in order

to identify the states responsible for the remaining resonances. These calculations use the

field program with propagation to reduced distances around 100 nm in order to reduce

interference from continuum states.

In the presence of inelastic scattering, a(B) does not show actual poles at reso-

nance [89]. If the background inelastic scattering is negligible, the real part α(B) shows

an oscillation of amplitude ares, while the imaginary part shows a peak of height ares.

The resonant scattering length ares is determined by the ratio of the couplings from the

quasibound state responsible for the resonance to the incoming and inelastic channels [89].

If there is significant background scattering, then there is a more complicated asymmetric

lineshape that may show a substantial dip in the inelastic scattering near resonance [92].

Fig. 4.1 shows resonances of all these different types: the resonances due to bound states

with MF = mf,a + mf,b = −4, −5 and −6 are pole-like, with values of at least ares > 20

a0 and with most ares > 1000 a0. These resonances produce pronounced features in α(B)

and sharp peaks in β(B), off scale in Figure 4.1.

By contrast, resonances due to states with MF = −2 and −3 show much weaker

features with ares < 15 a0 and some lower than 0.01 a0. These are barely perceptible in

α(B) on the scale of Fig. 4.1 and produce broader, weaker peaks in β(B). The distinction

occurs because all the inelastic channels have MF > −4: bound states with MF = −2 and

−3 are generally more strongly coupled to inelastic channels with the same MF than to

the incoming channel with MF = −4, whereas the reverse is true for bound states with



4.1. 85-Rubidium 38

Incoming s-wave (2,−2)+(2,−2) state

Experiment Theory

B0 δ Assignment B0 ∆ ares abg

(G) (G) L MF (G) (mG) (bohr) (bohr)

156(1) 10.5(5) 0 −4 155.3 10900 ≥10000 −441

- - 2 −6 215.5 5.5 4000 −374

219.58(1) 0.22(9) 0 −4 219.9 9.1 4000 −379

232.25(1) 0.23(1) 2 −4 232.5 2.0 400 −393

248.64(1) 0.12(2) 2 −5 248.9 2.9 5000 −406

297.42(1) 0.09(1) 2 −4 297.7 1.8 5000 −432

382.36(2) 0.19(1) 2 −3 382 - 15 −457

532.3(3) 3.2(1)† 0 −4 532.9 2300 ≥10000 −474

604.1(1) 0.2(1) 2 −4 604.4 0.03 700 −466

- - 2 −5 854.3 0.002 25 −481

924.52(4) 2.8(1) 2 −3 924 - 9 −476

Table 4.1: Location and assignment of Feshbach resonances for 85Rb2 in the (f,mf ) = (2,−2) +

(2,−2) channel in the field range between 0 and 1000 G. All resonances shown satisfy ares ≥ 1 a0.

All quantum numbers in the table refer to the molecular states. The experimental errors shown are

statistical uncertainties resulting from the fits as described in the text. The experimental width

labeled † was determined from the difference between the minima and maxima in the measured

atom number. Additional systematic uncertainties of 0.1 G and 0.5 G apply to resonance positions

in the field ranges 0 to 400 G and 400 to 1000 G respectively. The resonances near 155 G and

220 G have been measured previously [135,147].

MF = −4, −5 and −6. Many of the features show quite pronounced asymmetry in the

shape of the inelastic peaks.

Overall 18 resonances were found in the ee channel, the positions of which are marked

in Fig. 4.1. Of these 18 resonances, 11 were found to have ares > 1.0 a0 and are listed

in Table 4.1 along with their widths and approximate ares values. Nine of the predicted

resonances were confirmed experimentally; the experimental determination of the reso-

nance pole positions and widths are also listed in Table 4.1. All but two of the predicted

pole-like resonances were confirmed experimentally, together with two of the inelastically

dominated features. The pole-like resonances produce sharp drops in atom number which

are due to both the 3-body recombination rate, which scale as a4 and also by inelastic

loss through 2-body processes. As these mechanisms depend on the density of the atomic

cloud then there is a concomitant heating of the cloud observed alongside the atom loss.
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Figure 4.1: Top: The s-wave scattering length in the (f,mf ) = (2,−2) + (2,−2) of 85Rb2, with L = 0 and 2 functions. Bottom: The energies

of weakly bound molecular states. Only states with no continuum interference (MF ≤ −4) are shown in the bound-state map, but all resonances

are included in the scattering length. Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional to log10 ∆/µG.

Inelastically dominated resonances are not always evident in α but appear as peaks in β and are indicated by dashed vertical lines.
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In Fig. 4.2, fine scans of the atom loss signal for a broad and narrow Feshbach resonance

are shown. For a narrow resonance the final experimental determination of the position

of the resonance is determined by the weighted average of Lorentzian fits to both the

atom loss data and to temperature data. The experimental width is determined by a

fit to the loss feature and is an entirely different quantity to the theoretical widths. In

the broad Feshbach resonance the experimental measurements form a noticeably different

shape, there is both a trough and a peak that can be located rather than a single peak.

The trough (loss maximum) corresponds to the resonance position and the peak (loss

minimum) occurs near the zero-crossing of the scattering length; the experimental widths

reported for broad resonances were determined by the difference between these two points,

this is similar to but not exactly the same as the way theoretical widths are calculated

and there are still some discrepancies in the reported widths due to this and other factors,

such as 3-body recombination.

In the ee channel, the two inelastically dominated features that are seen experimentally

are those with the largest ares values. The experimental atom loss signal measurements

are shown in Figure 4.3(a) and (b). The inelastic collisions also lead to an increase in

temperature, as shown in Figure 4.3 (c) and (d). The rate coefficient for 2-body losses

due to inelastic collisions, calculated by Eq. (2.4.3), for the two resonances are shown in

panels (e) and (f); they peak around 1 × 10−11 cm3/s, which is an order of magnitude

higher than for any of the other inelastically dominated features.

Figure 4.2: Left: Atom loss measurements around a broad resonance in the (f,mf ) = (2,−2) +

(2,−2) channel of 85Rb, with width ∆ > 1 G. Right: Atom loss measurements around a narrow

resonance in the (f,mf ) = (2,−2) + (2,−2) channel of 85Rb. The error bars show the standard

deviation for multiple control shots at specific magnetic fields.

An understanding of the collisional behavior of 85Rb, as described here, is essential

for the production of the high phase-space density mixtures required for efficient molecule
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Figure 4.3: The two inelastically dominated features observed in the (2,−2) state. Figures (a)

and (b) show the atom number while (c) and (d) show temperature. Error bars show the standard

deviation for multiple control shots at specific magnetic fields. (e) and (f) show the calculated rate

coefficient for two-body loss Kloss.

formation. The previously unmeasured broad resonance in the ee channel offers a new

magnetic field region for evaporative cooling. The elastic to inelastic collision ratio in

the vicinity of this feature is potentially more favorable for evaporative cooling than near

the, previously measured, 155 G resonance, where direct evaporation of 85Rb to BEC

is possible [125, 148]. Figure 4.4 compares the scattering properties around the 532 G

resonance with those near the 155 G resonance. The results for the 532 G resonance show

a pronounced dip in the rate coefficient for 2-body loss near 570 G, due to interference

between the resonant and background contributions to the inelastic scattering [89, 92],

which offers a range of magnetic fields where more efficient cooling may be possible. No

such dip in the 2-body loss rate is present near the 155 G resonance.

4.1.2 Scattering in the ground state

The lowest hyperfine/Zeeman sub-level of 85Rb is the (f,mf )=(2,+2) level and therefore

the incoming scattering channel for two atoms in this state has Mtot = 4. The background

scattering length of this channel is −400 a0. A large and negative background scattering

length means there is no high-lying bound state; the first L = 0 bound state occurs around
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Figure 4.4: The rate coefficient for 2-body loss Kloss (red solid lines), which is proportional to the

imaginary part of the scattering length, and the corresponding real part of the scattering length

(dashed lines) for the two resonances with ∆ > 1 G in the (f,mf ) = (2,−2) + (2,−2) channel.

Note the dip in Kloss on the high-field side the 532 G resonance.

−200 MHz. The calculated s-wave scattering length for the aa channel is shown in the

top panel of Figure 4.5 and the binding energies of the near-threshold molecular states

responsible for the resonances are shown in the lower panel. The resonance positions are

given in Table 4.2, along with their widths. Figure 4.5 shows one wide resonance near

851 G (∆ = 1.2 G) that offers attractive possibilities for precise tuning of the scattering

length, and many narrower resonances that may be useful for molecule formation.

Along with the wide resonance, 11 narrow resonances are also predicted. These narrow

resonances range in width from 5 mG to 0.4 nG. In the ground state seven of the predicted

resonances, listed in Table 4.2, were confirmed experimentally. All the widest calculated

resonances are seen experimentally, with the exception of the two high-field resonances

where the experimental field is less reproducible [72].

In the ground state both F and (fa, fb) quantum numbers were assigned to the reso-

nances. The F quantum numbers are assigned by performing restricted calculations in the

partly coupled basis set, |fa,mf,a〉 |fb,mf,b〉 |F,MF 〉. The (fa, fb) quantum numbers were

assigned by comparison of bound-state calculations performed using a basis restricted only

in L to bound-state calculations performed using a basis restricted to individual values

of F , and by considering the possible hyperfine states of 85Rb2. The (3,3) manifold will

give rise to bound states of F = 6, 5, 4, 3, 2, 1, 0 states although some of these will be re-

stricted by our choice of Mtot. Likewise the (2,3) manifold will give rise to bound states

of F = 5, 4, 3, 2, 1 and the (2,2) manifold will give rise to bound states of F = 4, 3, 2, 1, 0.

By searching for these patterns, in the bound-state energy levels, then the correct (fa, fb)
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levels can be assigned, as well as the F quantum number. However, it should be noted that

fa and fb are not good quantum numbers, and whilst we assign them to each resonance

they apply predominately only at low magnetic fields, below 400 G.

The wide resonance offers the prospect of evaporative cooling free from two-body

loss. Although the background scattering length is moderately large and negative for

ground-state atoms (see Figure 4.5), the broad resonance at 851 G may be used to tune

the scattering length to modest positive values, improving the evaporation efficiency and

offering the prospect of BEC formation directly in the absolute ground state.

Incoming s-wave (2,2)+(2,2) state

Experiment Theory

B0 δ Assignment B0 ∆ abg

(G) (G) L (fa,fb) F MF (G) (mG) (bohr)

164.74(1) 0.08(2) 2 (2,2) 4 2 164.7 −0.0006 −432

171.36(1) 0.12(2) 2 (2,2) 2 2 171.3 −0.02 −431

368.78(4) 0.4(1) 2 (2,2) 4 3 368.5 −0.06 −413

- - 2 (2,3) 3 2 594.9 −0.4 × 10−6 −401

- - 2 (2,3) 5 3 685.0 −0.4 × 10−4 −396

- - 2 (2,3) 5 2 750.8 −0.0003 −392

770.81(1) 0.11(2) 2 (2,3) 5 4 770.7 −0.5 −390

809.65(3) 0.3(1) 2 (2,3) 3 3 809.7 −0.09 −383

819.8(2) 0.7(5) 2 (2,3) 5 5 819.0 −5.4 −380

852.3(3) 1.3(4)† 0 (2,3) 5 4 851.3 −1199 −393

- - 2 (2,3) 2 2 961.8 −0.01 −390

- - 2 (2,3) 4 4 980.5 −0.7 −387

Table 4.2: Location and assignment of Feshbach resonances for 85Rb2 in the (f,mf ) = (2,+2) +

(2,+2) channel in the field range between 0 and 1000 G. All quantum numbers in the table refer

to the molecular states. The experimental errors shown are statistical uncertainties resulting from

the fits as described in the text. The experimental width labelled † was determined from the

difference between the minima and maxima in the measured atom number. Additional systematic

uncertainties of 0.1 G and 0.5 G apply to resonance positions in the field ranges 0 to 400 G and

400 to 1000 G respectively.



4
.1

.
8
5
-R

u
b

id
iu

m
4
4

−460

−440

−420

−400

−380

−360

S
ca

tte
rin

g
Le

ng
th

(u
ni

ts
of
a

0
)

200 400 600 800 1000
Magnetic Field (G)

−500

−400

−300

−200

−100

E
ne

rg
y/

h
(M

H
z)

L = 2 MF = 2

L = 2 MF = 3

L = 2 MF = 4

L = 2 MF = 5

L = 2 MF = 6

L = 0 MF = 4
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Figure 4.6: Breit-Rabi diagram showing the hyperfine sub-levels of 85Rb2. The black lines show

all possible asymptotic energy levels; the red line shows the state corresponding to (famfa , fbmfb) =

(2,+2, 3,+3) at low field and the blue line shows a different state which also has Mtot = 5.

4.1.3 Scattering in mixed states

We have also investigated the scattering length for a series of mixed spin channels from the

(fa, fb) = (2, 3) hyperfine manifold, with the aim of identifying broad resonances suitable

for tuning interactions. By tuning the scattering length from positive to negative (or vice-

versa) using a Feshbach resonance then the overall behaviour of the condensate switches

between repulsive and attractive.

The energy of the state, which corresponds to the desired (famfa , fbmfb) state at low

field, can be calculated exactly. The asymptotic energy levels of 85Rb2 are shown in

Fig. 4.6, as black lines. Each molscat calculation is run for a specific projection of total

angular momentum for each mixed state, Mtot = mfa +mfb +mL. Limiting the asymptotic

energy levels of 85Rb2 to those corresponding to Mtot = 5 reduces the number of states

in the L = 0 basis to two, as shown by the blue and red lines in Fig. 4.6. The lower in

energy of these two states is the one which corresponds to the (2,+2, 3,+3) channel at

low field. The scattering length and associated plot of Kloss, for the (2,+2, 3,+3) channel,
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Figure 4.7: Scattering length of the (f,mf ) = (2,+2) + (3,+3) channel of 85Rb. Top: Real part

of the scattering length. Bottom: The coefficient of the two body loss rate.
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Figure 4.8: A resonance measured between the (2,+2) and (3,+3) spin states in 85Rb at

817.45(5) G. On resonance the increased inelastic collision rate in the mixture results in a loss

feature in the (2,+2) atom number as a function of magnetic field.

are shown in Fig. 4.7. All the states originating from the same hyperfine mainfold have

similarly large and negative background scattering lengths. Wide tunable resonances were

also found in the (famfa , fbmfb) = (2,+2, 3,+2), (2,+2, 3,+1) and (2,+2, 3, 0) states; the

scattering lengths for these states are shown in Appendix E.

Most channels exhibit strong inelastic decay with measured trap lifetimes of ∼ 100 ms.

However, the (2,+2) + (3,+3) channel is immune to inelastic spin exchange collisions,

resulting in trap lifetimes of ∼ 5 s. The scattering length in the mixed spin channel,

(2,+2) + (3,+3) shows two pole-like resonances at 818.8 G and 909.9 G, both with widths

of 2 mG, and ares= 1600 a0 and 800 a0 respectively.
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The resonance at 818.8 G was also measured experimentally. The experimental results

are presented in Figure 4.8 where a loss feature in the 85Rb (2,+2) number reveals the

location of the resonance. The experimentally determined resonance position and width

are 817.45(5) G and 0.031(1) G, respectively.

4.1.4 Potential application of a spin mixture

Solitons are non-dispersive solitary wave, which can be considered to behave in a particle-

like manner [130, 149]. Solitons have been suggested as promising candidates to study

quantum entanglement on a mesoscopic scale. In particular, solitons have been suggested

as a route to create mesoscopic Bell states in Refs. [74, 150]. A Bell state is

|ψBell〉 ≡
1√
2

(
|A,B〉+ eiα|B,A〉

)
, (4.1.2)

where |A,B〉 (|B,A〉) signifies that the BEC A is on the left (right) and the BEC B is

on the right (left). The initial proposal by Gertjerenken et al. [150] called for a dual-

species BEC of 85Rb and 133Cs. However, the use of a BEC of different hyperfine states

of the same atomic species, proposed by Billam et al. [74], fulfils the requirement that the

solitons are distinguishable whilst removing the need of creating a dual-species BEC, and

adjusting for the different atomic masses.

The general behaviour for a mean-field bright soliton in a soliton-barrier or soliton-

soliton collision is for the soliton considered to break into two parts, with only a fraction

of the atoms transmitted depending on the interaction potential [150–152]. However, it

was shown in Refs. [73,153] that at very low kinetic energies the solitons are energetically

forbidden from breaking apart and a mesoscopic superposition can be realised as a result

of the collision. Highly entangled states are characterised by a roughly 50:50 chance of

finding the soliton A (B) on the left/right when soliton B is on the right/left side. The

correlation function is,

γ(δ) ≡
∫ ∞
δ

dxA

∫ −δ
−∞

dyB|Ψ|2 +

∫ −δ
−∞

dxA

∫ ∞
δ

dyB|Ψ|2 , (4.1.3)

where Ψ is the many-particle wavefunction (normalised to one) and Bell states (4.1.2) are

characterised by γ ' 1.

The behaviour of a BEC, with a large number of particles, is usually modelled using
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the mean-field Gross-Pitaevskii Equation [154–156]

i~∂tϕA(x, t) =

[
− ~2

2mA
∂2
x +

gA

2
|ϕA(x, t)|2

]
ϕA(x, t)

+
[
VA(x) +

gAB

2
|ϕB(x, t)|2

]
ϕA(x, t)

i~∂tϕB(x, t) =

[
− ~2

2mB
∂2
x +

gB

2
|ϕB(x, t)|2

]
ϕB(x, t)

+
[
VB(x) +

gAB

2
|ϕA(x, t)|2

]
ϕB(x, t) ,

where V (x) = 1
2mSω

2x2 is the harmonic confinement potential and the single-particle

density |ϕS(x, t)|2 is normalised to NS, where S = A,B. The interaction parameters gS

(S = A,B or AB) are set by the scattering lengths aS where (S = A,B or AB) and the

radial trapping frequency, f⊥ [157]. In the description of low-kinetic-energy collisions of

bright solitons the GPE is combined with the Truncated Wigner Approximation (TWA)

for the centre of mass degree of freedom in order to model the true quantum behaviour,

as described in [150]. The TWA approximation accounts for quantum noise, not present

in the GPE equation, by modelling the noise classically. It is often used to model thermal

noise, however in this situation it is used to account for noise in the soliton centre-of-

mass wavefunction. The correlation function can then be calculated using Eq. (4.1.3) with

|Ψ|2 = |ΨA|2|ΨB|2 where |ΨS |2 is the single particle density of soliton S = A,B, and δ ≥ 0

serves as an indication of entanglement.

The physical requirements for the experiment are a negative background scattering

length for each of the two distinguishable soliton states, and a wide Feshbach resonance

in the mixed-state scattering length. Coupled-channels calculations were performed as

detailed previously on each of the (fa, fb) = (2, 3) hyperfine manifold. A wide tunable

resonance was found in the (f,mf ) = (2, 2)+(3, 2) channel. The resonance has a calculated

width of ∆ = 14 G. Whilst excited-state resonances are subject to decay from inelastic

collisions [89], the resonance has ares > 10, 000 a0 making it pole-like from an experimental

point of view. The real part of the scattering length and associated plots of Kloss, of both

the mixed-state and the individual states, are shown in Fig. 4.9. The three-dimensional

scattering can be converted into a one dimensional interaction parameter g by taking

account of the trapping frequency (f⊥). g1D is given in terms of a3D as [157,158]

g1D =
2~a
µa2
⊥

1

(1− Ca/a⊥)
≈ 2~a
µa2
⊥
, (4.1.4)

where C = −ζ(1/2) = 1.4603 . . . and a⊥ =
√
~/(2πωf⊥). a⊥ is the harmonic oscillator

length for a particle of mass m and trapping frequency f⊥. With the introduction of
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Figure 4.9: The s-wave scattering length for the (f,mf ) = (2, 2) + (3, 2), (2, 2) + (2, 2) and

(3, 2) + (3, 2) channels of 85Rb. (a) The real part of the scattering length is shown in the top plot,

the imaginary part is proportional to the inelastic decay-rate coefficient, Kloss, which is shown in

the bottom plot. (b) Zoom of (a), the wide resonance in the mixed spin state allows for tuning of

the scattering length.

harmonic confinement it is possible to cause a confinement induced resonance (CIR) as

predicted in [158]. A CIR occurs when the 3D scattering length approaches the same

length scale as a⊥, namely at a⊥ ≈ Ca3D. The CIR is caused when the incoming scattering

channel becomes degenerate with a transversally excited molecular bound state supported

by the trapping potential [157, 159]. Given the confinement parameters used in Ref. [74],

f⊥ = 50 Hz and f = 2 Hz, the CIR would occur when a3D ≈ 3.5 × 105 a0 which would

not interfere with any practical implementation of the proposed scheme.

Using the Feshbach resonance described above, centre-of-mass TWA-GPE simulations

were performed by Billam et al. [74] using the (f,mf) = (2,+2) and (3, +2) hyperfine

states of 85Rb as the two components of the mixture. The resulting calculations showed

a high (≈ 1) value of γ subsequent to the first collision, which indicates the formation of

a Bell state with high fidelity [74]. Compared to the scheme suggested in Ref. [150], the

scheme in Ref. [74] is feasible at higher atom numbers, less sensitive to magnetic bias field
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strength, and generates higher-fidelity Bell states.

4.2 87-Rubidium

It is important to have a complete understanding of the behaviour of the ground state of

87Rb in order to fully understand the mechanisms contributing to the magnetoassociation

of 87RbCs, which is presented in Section 5.1.2. The same potentials are used for 87Rb as

were used for 85Rb, as the potentials can be ‘mass-scaled’ for use with all Rb isotopes.

‘Mass-scaling’ refers to changing the reduced mass used in the scattering calculation but

using the same potential curves. This method works well with the heavier alkali elements

[75,160], but not as well with lighter elements such as lithium where corrections due to the

breakdown of the Born-Oppenheimer approximation are important [161–163]. 87Rb has

a different hyperfine structure to that of 85Rb; its nuclear spin is i = 3/2 giving atomic

quantum numbers f = 1, 2. The energy levels of a single rubidium atom in an external

magnetic are shown in Fig. 4.10. The singlet and triplet scattering lengths for 87Rb are

aS = 90 a0 and aT = 99 a0, respectively.

The lowest-energy hyperfine/Zeeman sub-level of 87Rb is the (f,mf ) = (1,+1) level
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Figure 4.10: The hyperfine structure of 87Rb in an external magnetic field. At zero-field the

states are grouped into two manifolds the upper one corresponding to f = 2 and the lower one

corresponding to f = 1. The magnetic field lifts the degeneracy of these states and they split into

mf sublevels. In the upper manifold, f = 2, the states run, in order of increasing energy, from

mf = −2 . . . 2; in the lower manifold, f = 1, the states run from mf = 1 · · · − 1.
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and therefore the incoming scattering channel for two atoms in this state has Mtot = 2.

Calculations were carried out using the methods described for 85Rb. The background

scattering length of the ground-state channel is 100 a0 and the scattering has little variation

with magnetic field. The calculated s-wave scattering length for the (f,mf ) = (1,+1) +

(1,+1) channel is shown in the top panel of Fig. 4.11 and the binding energies of the near-

threshold molecular states responsible for the resonances are shown in the lower panel.

The resonance positions are given in Table 4.3, along with their widths. The widest known

resonance in the system occurs just above the magnetic field range we include at around

1007 G; the scattering length at the high-field end of Fig. 4.11 can be seen to be turning

upwards which is the start of this resonance. The position and width of this resonance are

included in Table 4.3 for completeness. This resonance has been used to create Feshbach

molecules of 87Rb2 [164]. Experimental results on the resonance positions are available in

Ref. [165], as well as previous theoretical calculations, and we find good agreement with

these results.

Overall the moderately positive and relatively constant background scattering length

of 87Rb makes it an ideal component of heteronuclear mixtures, as it can be cooled to

degeneracy at almost any magnetic field. In Section 5.1.2 its use in the formation of

ground state 87RbCs is discussed.

Incoming s-wave (1,1)+(1,1) state

B0 (G) ∆ (mG) abg (bohr) L MF B0 (G) ∆ (mG) abg (bohr) L MF

248.45 5×10−5 100.3 2 1 631.81 2 100.3 2 4

305.67 1×10−5 100.3 2 0 685.57 7 100.3 0 2

319.3 0.1 100.3 2 2 718.65 0.9 100.3 2 3

377.76 1×10−6 100.3 2 0 819.32 3 100.4 2 1

387.25 0.1 100.3 2 1 830.33 0.2 100.4 2 2

391.56 0.5 100.3 2 3 857.22 4×10−3 100.4 2 1

395.32 9×10−4 100.3 2 0 911.12 2 100.5 0 2

406.33 0.5 100.3 0 2 929.57 4×10−2 100.5 2 2

532.6 0.08 100.3 2 0 977.69 3×10−2 101 2 1

551.36 0.3 100.3 2 2 1007.37 200 100.3 0 2

Table 4.3: Location and assignment of Feshbach resonances for 87Rb2 in the (f,mf ) = (1,+1) +

(1,+1) channel in the field range between 0 and 1008 G. All quantum numbers in the table refer

to the molecular states.
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Figure 4.11: Top: The s-wave scattering length in the (f,mf ) = (1,+1) + (1,+1) channel of 87Rb2, with L = 0 and 2 functions. Bottom:

The energies of weakly bound molecular states. Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional to

log10 ∆/µG.
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4.3 133-Cesium

The scattering properties and bound states of cesium are well known, and results from the

most recent potentials are presented in Ref. [166]. However, calculations using these po-

tentials are presented in the following Section for completeness, and to aid in the discussion

of their interactions as part of a heteronuclear mixture, which is discussed in the following

Chapter. The only stable isotope of cesium is 133Cs, which is the isotope considered. The

large nuclear charge of 133Cs gives rise to a large second-order spin-orbit contribution in

short-range interactions, which is fitted to experimental results from electronic structure

calculations [122] in Ref. [166]. For accurate representations of the scattering properties

of Cs we use a basis set that includes L = 0, 2 and 4 basis functions, as the second-order

spin-orbit contribution strengthens the higher-order L contributions.

The ground state of 133Cs is the (f,mf )=(3,+3) level and therefore the incoming

scattering channel for two atoms in this state has Mtot = 6. The calculated s-wave

scattering length for the ground-state channel including L = 0, 2 and 4 functions, an sdg-

basis set, is shown in the top panel of Figure 4.13 and the binding energies of the near-

threshold molecular states responsible for the resonances are shown in the lower panel.

Detailed information on the position, character and width of the Feshbach resonances can

be found in Ref. [166]. It is noted in [166] that the resonances around 490 − 510 G are

mixed as they cross threshold. In Fig. 4.13 the states are labelled with the colour which

corresponds to the colour of the bound state closest in position to the resonance, so that

the width of the resonance may still be shown; however, as explained in [166] the MF

labelling of these states should not be taken as exact.

The background scattering length for the incoming s-wave (f,mf ) = (3,+3) + (3,+3)

channel of 133Cs is around 3000 a0 and there is a corresponding very high-lying bound

state at around −50 kHz. This bound state contributes to two wide resonances in the

scattering length around 548 G and 782 G. The large scattering length of Cs means

that BECs can only be formed in very specific magnetic field ranges around the wide

resonances when the scattering length can be tuned to an acceptable value, typically

around 40 . |a| . 250 a0 [16, 17, 21, 167]. There is also a wide resonance around −12 G

which gives rise to the negative divergence of the scattering length which can be seen at low

magnetic fields. The variation in scattering length due to this resonance creates a region

where the scattering length is only moderately positive. This region was used to produce

the first Cs BEC [168] just above the zero-crossing at 17 G. Magnetoassociation of Cs2
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has been performed at the nearby resonance at 19.89 G [169], making use of the moderate

background scattering length. In Köppinger et al. [170] an optically trapped BEC of Cs

is used to show that repeated sweeps of the magnetic field over the 19.89 G resonance can

be used to produce multiple groups of ultracold molecules. The weakly bound molecular

states can be controlled by using the magnetic field to guide the molecules down to a state

with the desired magnetic moment, which can be determined from the the slope of the

bound states shown in Fig. 4.13. Feshbach molecules of Cs2 have also been used to form

ground-state homonuclear molecules [171].

Cesium has also been used to study Efimov states, which are high-lying bound states of

triatomic molecules that appear when the two-body interaction has a bound state near to

threshold [172]. Efimov predicted an infinite series of three-body bound states each with

a successive size of a
(n)
− = 22.7na

(0)
− , where a

(0)
− is the position of the first Efimov state and

commonly referred to as the three-body parameter, and a binding energy which is a factor

of 22.72n weaker than the first resonance. Several Efimov features have been observed in

Cs [173,174] including a resonance identified as the second Efimov resonance [175]. Efimov

states have generated great interest as a test of universality as the states should occur in

the same patterns for any system, once the three-body parameter is determined.
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Figure 4.12: The hyperfine structure of 133Cs in an external magnetic field. At zero-field the

states are grouped into two manifolds, the upper one corresponding to f = 4 and the lower one

corresponding to f = 3. The magnetic field lifts the degeneracy of these states and they split into

mf sublevels. In the upper manifold, f = 4, the states run, in order of increasing energy, from

mf = −4 . . . 4; in the lower manifold, f = 3, the states run from mf = 3 · · · − 3.
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Chapter 5

Heteronuclear Molecule Formation

The motivation for the formation of ultracold polar molecules was discussed in the Intro-

duction. The interesting uses of ultracold heteronuclear polar molecules require a strong

long-range, anisotropic dipole-dipole interaction. The maximal dipole-dipole interaction

energy, for a pair of aligned dipoles, is [176]

Vdd =
Cdd

4π

1− 3 cos2 θ

r3
(5.0.1)

where r is the distance between molecules and θ is the angle between the axis connecting

the molecules and the direction of polarisation. The coupling constant Cdd = d2/ε0 where

d is the electric dipole and ε0 is the permittivity of free space. If a polar molecule is left

to rotate freely the average dipole moment in the lab frame is zero, but an applied electric

field can be used to orient the dipoles and create a fixed dipole moment. The applied

electric field required to reach 1/3 of the permanent dipole moment of the molecule is

referred to as Ecrit and is given by Ecrit = Brot/d, where Brot is the rotational constant.

Molecules generally have the strongest dipole moment in the rovibrational ground state.

Table 5.1 shows the dipole moments, rotational constants and Ecrit values for the ground

state of various possible alkali-alkali combinations.

Another consideration in choosing a possible system of heteronculear molecules is their

reactivity. All possible alkali combinations are stable with respect to atom transfer reac-

tions such as XY + XY → X2Y + Y or XY2 + Y [177]; however, some of the alkalis are

not stable with respect to the exchange reaction

XY +XY → X2 + Y2.

Table 5.1 shows which alkali-alkali combinations are stable.

56
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In the following Chapter we consider isotopologues of RbCs and KCs, both of which

have large dipole moments and are stable to the exchange reaction. The scattering lengths

and near-threshold bound states are calculated and relevant experimental details are dis-

cussed. The formation of ultracold molecules of 87RbCs is detailed as well as the possibility

for molecule formation in KCs.

Species Dipole moment (D) Brot ×10−2cm−1 Ecrit (kV cm−1) Stable

RbCs 1.24 1.66 0.8 Yes

KCs 1.91 3.10 1.0 Yes

NaCs 4.61 5.93 0.8 Yes

LiCs 5.52 19.4 2.1 No

KRb 0.62 3.86 3.7 No

NaRb 3.31 7.11 1.3 Yes

LiRb 4.17 22.0 3.1 No

NaK 2.58 9.62 2.2 Yes

LiK 3.57 26.1 4.4 No

LiNa 0.57 38.0 39.9 No

Table 5.1: Permanent dipole moment, rotation constant and Ecrit for various alkali-metal het-

eronuclear molecule combinations in the lowest vibrational level of the singlet ground state.

Molecules labelled as stable are stable to exchange reactions. (Data taken from [60,177,178])

5.1 RbCs

RbCs is a good candidate for ultracold molecule formation as condensates of both Rb

and Cs have been successfully produced, as discussed in the previous Chapter. Table 5.1

shows the beneficial properties of ultracold RbCs molecules. The ground state of RbCs

has a relatively small rotational constant, Brot = 1.66× 10−2 cm−1, and therefore a small

electric field is required to achieve Ecrit.

Additionally, ultracold-scattering calculations require highly accurate scattering po-

tentials. In the case of RbCs highly accurate potentials were determined in Ref. [118], and

these potentials are used for all RbCs calculations in this Thesis. The singlet and triplet

potential curves, and the parameters of λ(R), were fitted to experimental results, of both

Feshbach resonance positions and bound-state measurements on 87RbCs, to produce high-

accuracy potentials [118]. The potentials were ‘mass-scaled’, as described for rubidium,

for use in 85RbCs scattering calculations. The change in reduced mass between the two
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isotopes of rubidium shifts the bound-state energy levels in both the singlet and triplet

wells; this effect, combined with the different hyperfine structure, results in drastically

different scattering length behaviours for the two species.

5.1.1 85RbCs

In the following sections scattering and bound-state calculations on 85RbCs are presented.

The calculated results are compared to experimental findings from Feshbach spectroscopy

on the system, and the outlook for molecule formation is discussed. The theoretical

calculations presented in this Section are discussed alongside experimental results obtained

by Simon Cornish’s group at Durham.

5.1.1.1 Resonances and bound states in the s-wave incoming channel

The hyperfine splitting of 85Rb is smaller than that of 133Cs, ∆ERb
hfs = 3.04 GHz and

∆ECs
hfs = 9.19 GHz, therefore the order of the hyperfine manifolds, with increasing en-

ergy, are (fRb, fCs) = (2,3), (3,3), (2,4) and (3,4). The lowest-energy hyperfine sublevel

of 85RbCs is the (f,mf ) = (2, 2) + (3, 3) state; the s-wave incoming scattering channel

therefore has Mtot = 5. Coupled-channel scattering calculations are performed for this

Mtot, including L = 0 and 2 basis functions, using molscat [110], as described in Sec.

2.5.2. Calculations are carried out with a fixed-step log-derivative propagator [105] from

0.3 nm to 1.9 nm and a variable-step Airy propagator [142] from 1.9 nm to 1,500 nm. The

wavefunctions are matched to their long-range solutions, the Ricatti-Bessel functions, at

1,500 nm to find the S-matrix elements, and hence the scattering length from Eq. (2.2.2).

The background scattering length of the ground-state channel is 15 a0 and there is a

rich Feshbach structure. Between 0 and 100 G, 32 resonances are predicted in the s-wave

scattering length. Of these resonances 5 are caused by L = 0 bound states and the other

27 are caused by L = 2 bound states. The calculated s-wave scattering length is shown

in the top panel of Figure 5.4 and the binding energies of the near-threshold molecular

states responsible for the resonances are shown in the lower panel. An expanded view of

the highest-lying-bound states is shown in Fig. 5.5. The interaction of the bound states,

which cause the resonances, with each other provides important information about which

states Feshbach molecules can be produced in. The resonance positions are given in Table

5.2, along with their widths.

The small background scattering length causes wide resonances, due to the definition of
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∆. This causes complications in fitting the widths of the resonances at 109 G and 642 G

via Eq. (2.3.4), as the two resonances overlap with each other. The theoretical widths

of the resonances at 109 G and 642 G are instead given by the difference between the

resonance pole position, B0, and the closest zero-crossing of the scattering length following

the resonance pole, B∗. The widths of the other resonances in Table 5.2 are calculated by

fitting to Eq. (2.3.4). For an exact fit to all the overlapping resonances of a system a more

complex model is required which takes into account the interference effects caused by the

overlapping resonances [179]. The wide resonances provide important regions where the

scattering length can be tuned, allowing precise control over the interatomic interactions

which dictate the miscibility of the atomic condensates and can be of use in studies of

Efimov physics in heteronuclear systems. The narrow resonances can be used for molecule

formation through magnetoassociation.

In 85RbCs the singlet and triplet scattering lengths calculated on the potentials of

Ref. [118] are aS = 585.6 a0 and aT = 11.27 a0 respectively. Due to the large difference

in scattering length, and corresponding difference in bound-state energy levels, the singlet

and triplet vibrational levels are very strongly mixed. This makes identification of the

vibrational quantum number of the bound states impossible. The first five vibrational

levels of the singlet well that appear below the (2, 2) + (3, 3) threshold are Eν,S=0 =

−0.2, −196.2, −1273.4, −4002.9 and −9179.8 MHz. The first five vibrational levels of the

triplet well are Eν,S=1 = −68.8, −761.4, −2834.2, −7052.9 and −14182.3 MHz. The F

state quantum numbers are obtained by performing calculations using the |(fa, fb)FMF〉
basis set and restricting the F quantum number, as shown in Fig. 5.1. The resonances are

assigned approximate F quantum numbers based on their low-field assignments, although

as the deviations between the states of Fig. 5.4 and the restricted basis set results of Fig.

5.1 show the F quantum number is not exact at high field. An attempt was made to assign

(fa, fb) quantum numbers by studying the patterns of the F bound states at zero-field.

The (3,4) manifold will give rise to bound states of F = 7, 6, 5, 4, 3, 2, 1 states although

some of these will be restricted by our choice of Mtot. Likewise the (2,4) manifold will

give rise to bound states of F = 6, 5, 4, 3, 2, the (3,3) manifold will give rise to bound

states of F = 6, 5, 4, 3, 2, 1, 0, and the (2,3) manifold will give rise to bound states of

F = 5, 4, 3, 2, 1. In Fig. 5.4 the states originating between −1.8 and −2.6 GHz correspond

to the (3,4) manifold and the states originating between −0.7 and −0.8 GHz correspond

to the (2,3) manifold. The states originating above −0.3 GHz are strongly mixed with
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Experiment Theory

B0 δ Assignment B0 B∗ ∆ abg

(G) (G) Li L F MF (G) (G) (G) (bohr)

s 2 5 3 3.1 3.1 5 × 10−5 27.5

s 2 5 4 4.27 4.27 3 × 10−4 27.8

s 2 5 5 6.8 6.8 9 × 10−4 28.6

s 2 3 3 66.36 66.36 0.002 71.6

s 2 4 3 77.51 77.52 0.01 93.6

s 2 5 3 82.75 82.75 1 × 10−4 115

107.13(1) 0.6(2) s 0 5 5 109.28 161.78 53 9.6

112.6(4) 28(5) s 6 6 6 112.29 112.12 −0.2 −628

s 2 4 4 114.33 114.21 −0.1 −246

s 2 6 5 117.4 117.35 −0.05 −169

s 2 6 4 128.29 128.28 −0.005 −139

s 2 6 3 131.09 131.09 −6 × 10−4 −121

s 2 5 4 141.87 141.87 −0.001 −78.3

187.66(5) 1.7(3) s 0 6 5 187.07 182.97 −4.0 −30.4

370.39(1) 0.08(4) s 2 7 7 370.41 374.31 4.0 1.57

395.20(1) 0.08(1) s 2 7 6 395.11 395.56 0.4 3.4

s 2 7 5 425.11 425.16 0.04 6.1

s 2 7 4 460.4 460.4 0.004 9.4

s 0 7 5 477.47 477.48 0.008 11.2

s 2 6 6 494.08 494.08 0.003 13.1

s 2 7 3 501.68 501.68 4 × 10−5 14.1

s 2 6 5 525.86 525.86 1 × 10−4 17.8

s 2 6 4 563.66 563.66 0.001 27.8

s 2 5 5 568.62 568.66 0.04 29.8

577.8(1) 1.1(3) s 0 6 5 578.37 578.71 0.3 32.2

s 2 6 3 607.32 607.32 1 × 10−5 57.5

s 2 5 4 625.29 625.3 0.01 123

641.8(3) 6(2) s 0 5 5 642.35 901.35 259 9.6

s 2 5 3 660.61 660.61 −0.002 −96.1

s 2 4 4 665.89 665.89 −6 × 10−4 −74.5

s 2 4 3 691.73 691.73 −0.002 −33.7

s 2 3 3 708.7 708.68 −0.02 −23.9

Table 5.2: Full listing of s-wave Feshbach resonances for 85Rb |2,+2〉 + 133Cs |3,+3〉 in the field

range 0 to 1000 G. The experimental errors δ are statistical uncertainties resulting from the fits

as described in the text. Additional systematic uncertainties of 0.1 G and 0.5 G apply to the

experimental resonance positions in the field ranges 0 to 400 G and 400 to 1000 G respectively.
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Figure 5.1: The bound states of 85RbCs calculated by restricting the F quantum number using

the |(fa, fb)F,MF 〉 basis set. Calculations were performed using L = 0 (dashed lines) and 2 (solid

lines) states. The states are coloured according to their F quantum number. As F is not an exact

quantum number the bound states shown are not the true bound states of the system. They are

almost exact at low field but deviate significantly from the true states at high field.

a set of states above threshold that cannot be identified. Additionally the states which

cross threshold between 400 and 900 G are mixed with a different and unidentified (fa, fb)

manifold above threshold. Due to these unknown factors the (fa, fb) assignments are not

given in Table. 5.2.

Seven of the predicted resonances, in the s-wave scattering length, were confirmed

experimentally in Ref. [75]. Details of the experimental set-up can be found in Ref.

[178,180]. A cloud of each species is prepared in the ground state and held within a dipole

trap. In previous experiments the location of Feshbach resonances has been determined

by an observation of atom loss at a fixed magnetic field. In the case of 85RbCs a different

method is possible as because of the small background scattering length the species do

not thermalise with each other off resonance. The Cs trap is ∼ 1.35 times deeper than

the Rb trap, due to their different polarisablities, therefore the two gases are at different

temperatures after the evaporation stage. The 85Rb temperature after evaporation is

1.50(3) µK and the Cs temperature is 2.4(1) µK. When the magnetic field is used to tune
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Figure 5.2: Temperature data for a mixture of 85Rb (closed circles) and 133Cs (open circles) in the

(2,+2) and (3,+3) state, respectively, evaporated at different magnetic bias fields from 0 to 700 G.

The positions of observed Feshbach resonances are marked with arrows, where solid (dashed) arrows

mark s-wave (p-wave - see Sec. 5.1.1.2) resonances. The dotted arrows mark features generated by

the dipole trap lasers (see Sec. 5.1.1.3). The standard deviation at representative magnetic fields

is shown with error bars.

the scattering length to a value a > 60 a0 then interspecies interactions thermalise the two

species. To locate resonances the evaporation process is undertaken at varying magnetic

fields between 0 − 700 G and thermalisation of the two species is used to detect the

location of Feshbach resonances. The experimental measurements from a coarse magnetic

field scan are shown in Fig. 5.2. As 85Rb, Cs and 85RbCs all have rich Feshbach structures

in the magnetic field range examined, it is important to distinguish intra and interspecies

resonances. Figure 5.3 shows experimental measurements for the temperature of both

clouds and the atom number of 85Rb around an intraspecies resonance at 368.8 G and

an interspecies resonance at 370.4 G. At the intraspecies resonance there is a peak in

temperature for 85Rb and a drop in atom number but there is no effect on the temperature

of the Cs cloud. At the interspecies resonance there is a drop in atom number for 85Rb and

a peak in temperature for 85Rb with a corresponding drop in temperature for Cs. The

experimentally determined widths and positions of the resonances, found in the s-wave

scattering length, are given in Table 5.2. The widths and positions are determined by

the same methods described in Sec. 4.1. The resonances found correspond to most of the

wider theoretically predicted resonances, especially those at lower fields. The discrepancy

in theoretical and experimental measurements of B0 for the resonances around 109 G

occurs because not all the resonances in this region can be resolved experimentally.

5.1.1.2 Resonances and bound states in the p-wave incoming channel

In higher-temperature experiments, although the s-wave scattering regime dominates the

interaction behaviour, resonances in higher L incoming channels can also be seen. The
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Figure 5.3: An intraspecies 85Rb resonance at 368.78(3) G neighbouring an interspecies resonance

at 370.39(1) G. Closed (open) symbols indicate 85Rb (133Cs) data. (a) Loss of 85Rb reveals both

resonances. (b) Temperature data allows the resonances to be distinguished as intra- or interspecies.

The 133Cs temperature is unchanged at the 85Rb alone resonance in contrast to the interspecies

resonance at higher field due to interspecies collisions causing sympathetic cooling. Error bars

show the standard deviation for multiple control shots at a specific magnetic field.

centrifugal barrier height is given by

VL(rbarrier) =

(
~2L(L+ 1)

2µ

)3/2

(54 C6)−1/2 . (5.1.1)

For 85RbCs the barrier heights are VL=1 = 55 µK, VL=2 = 290 µK and VL=3 = 810 µK;

however, resonances in these channels can appear at lower temperatures due to quantum

tunnelling effects.

Scattering calculations were performed for the p-wave incoming channel at 1 µK, in-

cluding L = 1, 3 (a p,f-basis) states, at collision energies of Ecoll = 1 µK. This collision

energy is close to the corresponding temperature measured in the experimental set-up.

The bound states relative to the lowest energy incoming threshold were calculated using

a L = 1 basis set. The calculated p-wave scattering volumes are shown in Fig. 5.6; there

are three separate components corresponding to the projection of the L quantum number,

ML = −1, 0 and 1. The bound states causing the resonances due to L = 1 states are also

shown as well as the ML quantum number of the bound states. The background scatter-

ing volumes of the ML = ±1 are the same, but there are resonances in different locations

for each ML. The background scattering volume of the ML = 0 channel is significantly

different.

Two of the predicted p-wave resonances are observed experimentally. The experimental

measurements and theoretical predictions are shown in Table 5.3. The two resonances

which are observed experimentally have calculated widths > 6 G; all other resonances in
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Experiment Theory

B0 (G) ∆ (G) B0 (G) ∆ (G) L

70.68(4) 0.8(1) 70.54 −12 1

614.8(3) 1.1(4) 614.98 −7 1

Table 5.3: Experimentally observed p-wave Feshbach resonances in 85RbCs.

this channel have calculated widths < 0.3 G. A complete list of the resonances calculated

in the p-wave incoming channel can be found in Appendix B.

5.1.1.3 Dipole-trap induced features

In the course of the 85RbCs experiment an additional two loss features were observed

experimentally that were not predicted by theory. These resonances were shown to be ar-

tifacts of the dipole trap. The features were measured at 233.9(2) G and 246.5(3) G [178],

and are responsible for the large dip in atom number around these field values (marked

by dotted arrows) in Fig. 5.2. It was determined that these features only appeared when

the dipole lasers, which are detuned from each other by 100 MHz, have perpendicular

polarisations. It was further determined that when the dipole lasers had parallel polar-

isations the features could be induced by applying a 100 MHz radio-frequency magnetic

field perpendicular to the quantisation axis of the static magnetic field. Calculations of

the position of bound states with Mtot = 4, 5 and 6 within 100 MHz of the (2,+2)+(3,+3)

state threshold show that around these magnetic field values coupling to both the MF = 4

and MF = 6 states is possible. Different polarisations of light allow for different couplings

which explains the appearance and disappearance of the features.

5.1.1.4 Outlook for molecule formation

The two wide resonances at 112.2 and 642.1 G can be used to tune the interspecies inter-

actions, giving precise control over the behaviour of the atomic mixtures. The resonances

could also be used to study Efimov physics in heteronuclear systems. The many narrow

resonances could be used for molecule formation, via magnetoassociation. The small in-

terspecies background scattering length reduces the losses due to three-body collisions in

85RbCs and allows for a good overlap of the atomic clouds. In the Durham group’s exper-

imental set-up, presented in Ref. [75], the phase-space density (PSD) of the two atomic

clouds is not yet high enough to allow for efficient magnetoassociation. A new dipole trap
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set-up which increases the initial number of 85Rb is being considered. With an increased

PSD in each of the atomic clouds then the production of 85RbCs Feshbach molecules

should be possible. The agreement between the experimental and theoretical resonance

predictions confirms the accuracy of the RbCs potential and validates the mass-scaling

approach. The bound states shown in Fig. 5.5 provide a detailed map of the possible

molecular states that could be reached via magnetoassociation.
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Figure 5.4: Top: The s-wave scattering length in the (f,mf ) = (2, 2) + (3, 3) channel of 85RbCs, with L = 0 and 2 functions. Bottom:

The energies of weakly bound molecular states. Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional to

log10 ∆/µG.
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5.1.2 87RbCs

The scattering and bound-state calculations on 87RbCs presented in this Thesis are an ex-

tension of the work which had already been done as part of Ref. [118]. During this earlier

work high-accuracy potentials were fitted to the results of experimentally determined res-

onance positions. Between 0 and 700 G, 30 resonances in incoming s- and p-wave channels

were calculated and experimentally determined. The bound states calculated in this work

were assigned |n(fRb, fCs)L(mfRb
,mfCs

)〉 quantum numbers, where n = −1 represents the

least-bound state with respect to threshold. The following sections detail the extension

of this earlier work to a set of higher-field resonances the results of which are presented

in Ref. [76]. A route to ultracold molecule formation through magnetoassociation and

STIRAP is also discussed, followed by the results of successful ultracold polar molecule

formation [71].

5.1.2.1 Feshbach resonances and bound states

The results of calculations on the scattering length, and resonance positions and widths

of 87RbCs are included in this Thesis for completeness; however, they are not submitted

as part of the degree material. A full list of calculated resonance positions and widths

between 0 − 1000 G, as detailed in Refs. [118] and [76], is given in Table 5.4. There are

a total of 31 resonances predicted in the s-wave scattering length between 0 and 1000 G.

Four of the resonances are caused by L = 0 bound states and the other 27 by L = 2

bound states. Table 5.4 also contains the experimentally measured resonance positions

and widths from Refs. [118] and [76]. Data for an additional high-field resonance at 1115 G

from Ref. [76] are also included.

The (fa, fb) quantum numbers of the bound states were identified during the work in

Ref. [118]. Additionally a vibrational quantum number of the bound state was assigned.

For near-dissociation levels a vibrational quantum n was assigned by comparing the zero-

field hyperfine threshold energy levels to the energy levels of the “bin” boundaries which

are derived from EvdW [35]. Using these methods |n(fRb, fCs)L(mfRb
,mfCs

)〉 quantum

numbers were assigned to each of the resonances listed in Ref. [118] and to the additional

resonances between 700 − 1000 G; all the resonances in Table 5.4 are listed with their

quantum numbers assignments, as given in Refs. [118] and [76].

The scattering length and corresponding near-threshold bound states for the full cal-

culation including L = 0 and 2 states, from 0 to 1000 G, are shown in Fig. 5.9. Fig.
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5.10 shows the interactions between the highest-lying bound states just below threshold.

This provides an important picture of which states can be reached following magnetoas-

sociation. There is a high-lying bound state which runs parallel to threshold at −110 kHz

this complicates magnetoassociation as molecules made in this state would have the same

magnetic moment to mass ratio as the disassociated atoms and therefore could not be sep-

arated from the atomic clouds. Magnetoassociation can still be performed by transferring

the molecules via avoided crossings in the bound-state energy levels to different molecular

quantum states. Details of the magnetoassociation route used by Köppinger et al. [76] are

given in Section 5.1.2.3.

5.1.2.2 Magnetic moments of bound states

The magnetic moment of a molecular state is an important quantity to know in order to

trap the Feshbach molecules and separate them from the remaining atomic clouds. If the

molecules have the same magnetic moment to mass ratio as the individual atoms then

Stern-Gerlach separation of the molecules from the atoms is not possible. The magnetic

moment of a molecular state is given by the slope of the bound state with energy µ =

∂E/∂B where µ is the magnetic moment of the bound state. The magnetic moment of the

molecular states that appear in the bound-state diagram are calculated by finite-difference

methods on the bound-state data,

µ(B′) ≈ E(B′ + ∆B)− E(B′)

∆B
, (5.1.2)

where ∆B is a small step in magnetic field. The bound states near threshold and corre-

sponding magnetic moments, between 180 and 185 G, are shown in Fig. 5.7. At an avoided

crossing the bound state changes character and correspondingly has a change in magnetic

moment; these transitions are smooth but not instantaneous.

5.1.2.3 Molecule formation

Details of the Durham group’s experimental route to ultracold molecule formation, using

the information from the previous sections, are presented in Refs. [76] and [71] and details

of the Innsbruck group’s experimental route are presented in Refs. [70], and only a brief

summary is given here. Efficient magnetoassociation was performed in both experiments

on the resonance at 197 G. This resonance is caused by the |−6(2, 4)d(2, 3)〉molecular state,

however, due to the least bound state at −110 kHz molecules formed at this resonance are
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Experiment Theory

Durham Innsbruck

B0 (G) δ (G) B0 (G) δ (G) B0 (G) abg (bohr) ∆ (G) Assignment

87.25 355.0 1 × 10−4 −2(1, 3)d(−1, 3)

123.09 357.5 2 × 10−6 −2(1, 3)d(0, 2)

181.55(5) 181.64(8) 0.27(10) 181.63 360.3 0.2 −6(2, 4)d(2, 4)

185.34 185.24 343.0 1 × 10−5 −2(1, 3)d(0, 3)

189.66 189.47 353.7 3 × 10−5 −2(1, 3)d(1, 1)

197.10(3) 0.1(1) 197.06(5) 0.09(1) 197.07 356.0 0.05 −6(2, 4)d(2, 3)

217.34(5) 0.06(1) 217.33 358.3 0.009 −6(2, 4)d(2, 2)

225.43(3) 0.16(1) 225.47 358.9 0.03 −6(2, 4)d(1, 4)

242.29(5) 242.25 361.7 0.001 −6(2, 4)d(2, 1)

247.32(5) 0.09(3) 247.28 361.9 0.02 −6(2, 4)d(1, 3)

272.80(4) 272.81 369.9 3 × 10−4 −6(2, 4)d(2, 0)

273.76(4) 273.69 369.6 0.002 −6(2, 4)d(1, 2)

279.03(1)0.11(1) 279.12(5) 279.02 369.5 0.03 −6(2, 4)s(2, 2)

286.76(5) 0.09(3) 286.68 370.9 0.01 −6(2, 4)d(0, 4)

308.44(5) 308.45 472.2 0.004 −6(2, 4)d(1, 1)

310.72(2)0.70(3) 310.69(6) 310.71 374.4 0.6 −6(2, 4)s(1, 3)

314.74(11) 0.60(4) 314.56 311.1 0.09 −6(2, 4)d(0, 3)

352.7(2) 2.9(5) 352.65(34) 0.18(10) 352.74 345.9 2.2 −6(2, 4)s(0, 4)

381.34(5) 2.70(47) 353.57 −580.5 −0.001 −6(2, 4)d(0, 2)

421.93(5) 381.28 321.1 0.02 −6(2, 4)d(−1, 4)

408.63 334.4 2 × 10−4 −2(1, 3)d(1, 2)

422.04 337.4 0.002 −6(2, 4)d(−1, 3)

552.75 346.6 6 × 10−7 −6(2, 4)d(−2, 4)

585.65 347.9 2 × 10−7 −5(2, 3)d(2, 0)

651.02 351.5 1 × 10−4 −5(2, 3)d(2, 1)

722.63 362.6 3 × 10−4 −5(2, 3)d(2, 2)

790.2(2) 6.8(2) 791.79 343.5 4.2 −5(2, 3)s(2, 2)

799.90 160.6 0.07 −5(2, 3)d(1, 1)

808.02 250.2 0.005 −5(2, 3)d(2, 3)

818.08 286.1 7 × 10−7 −3(1, 3)d(−1, 3)

910.6(8) 909.35 332.7 0.006 −5(2, 3)d(1, 2)

1115.2(2)10.0(6) 1116.55 9 −5(2, 3)s(1, 3)

Table 5.4: Full listing of s-wave Feshbach resonances for 87Rb |1,+1〉 + 133Cs |3,+3〉 in the field

range from 0 to 1000 G. The theoretical widths are calculated as described in the text and the

quantum number assignments correspond to |n(fRb, fCs)L(mfRb
,mfCs)〉. The Innsbruck experi-

mental data is taken from Ref. [118], the magnetic field uncertainties in these results arise from

noise in atom number and an estimated field calibration error of 0.03 G.
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Table 5.4 (previous page): The Durham experimental data is taken from Ref. [76], the exper-

imental errors δ are statistical uncertainties resulting from the fits, additional systematic uncer-

tainties of 0.1 G and 0.5 G apply to the experimental resonance positions in the field ranges 0 to

400 G and 400 to 1200 G respectively.
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Figure 5.7: 87RbCs: (top) Bound states of 87RbCs, with L = 0 and 2 functions; (bottom) the

magnetic moments of the bound states of the corresponding colour as shown in (top).

transferred directly into the |−1(1, 3)s(1, 3)〉 state. As discussed, Stern-Gerlach separation

cannot be used to separate the molecules when they are in this state so the molecules are

transferred, via a magnetic field sweep, to a state with a different magnetic moment.

The path of the magnetoassociation sequence, and the molecular moments of the bound

states, is shown in Fig. 5.8. Molecules are transferred to the |−6(2, 4)d(2, 4)〉 molecular

state, which is a weak-field-seeking state, to the high-field-seeking state |−2(1, 3)d(0, 3)〉,
using the avoided crossing around 181 G and −2.7 MHz. The probability of the molecules

being transferred adiabatically (p) can be described by the Landau-Zener model p =

1− exp
(
−Ḃc/|Ḃ|

)
[102] where Ḃ is rate of change of the magnetic field and

Ḃc =
2πV 2

~|∆µ| . (5.1.3)
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Calculations on the relevant bound states show that this avoided crossing has a coupling

strength V = 0.08 MHz and ∆µ = 3.7 µB. In the experiment at Durham up to ∼ 5000

molecules are observed with an observed lifetime of 0.21(ms) [76].

To create ground-state molecules Feshbach molecules are transferred from their highly

excited vibrational level to the ro-vibrational ground state via STIRAP. The Feshbach

molecules are transferred from their weakly bound state, |F 〉, to the ground state, |G〉,
via coupling to an excited level of the A1Σ+ + b3Π manifold, |E〉 [71]. Details of the

STIRAP methods used by both Durham and Innsbruck are presented in Refs. [71] and [70],

respectively.

For the observation of strong interaction effects, in an ultracold gas, the dipole-dipole

interaction energy must be comparable to, or greater than, the thermal energy. This

requires a system of high PSD and with a large dipole moment. Experiments at Durham

[71] have achieved a laboratory-frame dipole moment of 0.355(2)(4) D at an electric field

of 765 Vcm−1. These developments highlight the possibility of using stable ultracold

molecular gases to observe strong dipolar interactions in the near future.

Figure 5.8: Experimental 87RbCs magnetoassociation sequence from Ref. [76]. Experimental

determination of the interspecies Feshbach resonances at (a) 181.55(5) G and (b) 197.10(3) G

detected through loss in the 133Cs atom number. (c) Upper panel: The 87Rb133Cs s-wave scattering

length in the relevant magnetic field range. The grey shaded areas mark the field ranges shown in

(a) and (b). Lower panel: The weakly bound molecular states relevant to the magnetoassociation

sequence. Also shown are the magnetic moments for each bound state. Molecules are produced

at the Feshbach resonance at 197.10(3) G and then transferred into the |−2(1, 3)d(0, 3)〉 state at

181 G following the path shown by the solid black line.
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Figure 5.9: Top: The s-wave scattering length in the (f,mf ) = (1, 1) + (3, 3) channel of 87RbCs, with L = 0 and 2 functions. Bottom:

The energies of weakly bound molecular states. Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional to

log10 ∆/µG.
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5.2 KCs

Other promising candidates for producing ultracold ground-state polar molecules are the

isotopologues of KCs. Like RbCs, KCs is energetically stable to all possible two-body

reactions. KCs also has a larger dipole moment than KRb or RbCs (1.92 D) [181]. There

are three different isotopes of potassium, including bosonic and fermionic species, which

can be used: 39K, 40K and 41K. Each isotope requires a different ‘mass scaling’ of the

potential and therefore will exhibit a unique scattering behaviour. The singlet and triplet

potential curves used for KCs are taken from Ferber et al. [119]. Ferber et al. [119]

carried out calculations to identify Feshbach resonances using an L = 0 basis set, we have

extended these calculations to include L = 0 and 2 states. Unlike the RbCs potentials,

these potentials have not been fitted to Feshbach resonances therefore they are not as

accurate. Remaining uncertainties in the potentials may shift the resonances positions

calculated in the following sections by a few Gauss, but the qualitative picture of the

systems should be accurate.

5.2.1 39KCs

The hyperfine splitting of 39K is smaller than that of 133Cs therefore the order of the

hyperfine manifolds, with increasing energy, is (fK, fCs) = (1,3), (2,3), (1,4) and (2,4). The

lowest-energy hyperfine sublevel of 39KCs is the (f,mf ) = (1, 1)+(3, 3) state; therefore, the

s-wave incoming scattering channel has Mtot = 4. Coupled-channel scattering calculations

are performed for this channel, as described in Sec. 2.5.2. Calculations are carried out with

a fixed-step log-derivative propagator [105] from 2.5 a0 to 15 a0 and a variable-step Airy

propagator [142] from 15 a0 to 15,000 a0. The wavefunctions are matched to their long-

range solutions, the Ricatti-Bessel functions, at 15,000 a0 to find the S-matrix elements,

and hence the scattering length from Eq. (2.2.2).

For heavy atoms it is known that second-order spin-orbit coupling provides an addi-

tional contribution to the dipolar spin-spin operator that has the same tensor form as

the dipole-dipole term. This contribution dominates at short range for species contain-

ing Cs [120, 122] and has a large effect on the widths of resonances due to states with

L > 0. The dipolar spin-spin operator of KCs, V̂ d(R), takes the form described by Eq.

(3.1.14), where λ is an R-dependent coupling constant. For both Cs2 [122] and RbCs [118],

electronic structure calculations showed that the second-order spin-orbit splitting can be
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represented by a biexponential form, so that the overall form of λ(R) is

λ(R) = Ehα
2

[
Ashort

2SO exp
(
−βshort

2SO (R/a0)
)

+ Along
2SO exp

(
−βlong

2SO(R/a0)
)

+
1

(R/a0)3

]
, (5.2.1)

where α ≈ 1/137 is the atomic fine-structure constant. The second-order spin-orbit cou-

pling has not been calculated for KCs, but an estimate may be made from the values for

Cs2 and RbCs. It is physically reasonable to suppose that the coupling comes principally

from the Cs atom(s) and (for chemically similar species) does not depend strongly on

the identity of the other atom. Evaluating the second-order spin-orbit contribution to

λ(R) [118, 122] at the inner turning point of the triplet curve at zero-energy gives values

per Cs atom within about 40% of one another for Cs2 and RbCs. In the present work,

we simply shifted the RbCs function inwards 0.125 a0, to give the same value at the inner

turning point for KCs as for RbCs. We thus use βshort
2SO = 0.80 and βlong

2SO = 0.28, as for

RbCs [118], with Ashort
2SO = −45.5 and Along

2SO = −0.032. Figure 5.11 shows the scattering

length for 39KCs.

When only L = 0 basis functions are included (Fig. 5.11(a)), the scattering length

shows 5 resonances below 1000 G. These agree within 1 G with those calculated by Ferber

et al. [119]. When L = 2 basis functions are included, an additional 30 bound states cross

threshold below 1000 G. These are colour-coded according to MF in Fig. 5.11 (b) and

(c). If only the long-range spin-spin coupling is included (the R−3 term in Eq. 5.2.1), the

resonances due to d-wave states are quite narrow (Fig. 5.11(b)). However, if second-order

spin-orbit coupling is included, most of them become significantly broader, as shown in

Fig. 5.11(c) (note the logarithmic scale of the vertical bars used to indicate the resonance

widths). Some of the resonances have widths suitable for use in molecule formation.

The scattering length and corresponding near-threshold bound states, for the full cal-

culation including L = 0 and 2 basis functions and with spin-orbit coupling included, are

shown in Fig. 5.12. The positions and widths of some of the broader resonances are given

in Table 5.5, and a complete tabulation (all resonances, with and without second-order

spin-orbit coupling for 39KCs) is included in Appendix C. The effect of the spin-orbit con-

tribution on the width of the resonances we calculate show that it is an important factor.

Calculations on the other isotopes of KCs in the following sections all use the spin-orbit

coupling described here.
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B0 (G) ∆ (G) abg (bohr) L MF

49.57 0.001 73.2 2 4

341.90 4.8 79.0 0 4

375.35 0.006 68.5 2 4

421.36 0.4 74.7 0 4

697.02 0.03 80.0 2 6

760.13 0.004 80.3 2 5

813.14 3 × 10−4 81.0 0 4

860.52 0.05 82.0 0 4

907.54 0.02 92.7 2 3

915.56 1.2 80.1 0 4

Table 5.5: Listing of all s-wave Feshbach resonances and d-wave Feshbach resonances with widths

> 1 mG for 39KCs in the field range 0 to 1000 G.

5.2.2 40KCs

40K is the only alkali-metal isotope with an ‘inverted’ hyperfine structure. It is a fermionic

species with a nuclear spin of i = 4, giving atomic quantum numbers f = 7/2 and 9/2. The

larger of the two f values corresponds to the lower-energy manifold and the lowest-energy

hyperfine sublevel, in a magnetic field, is the (f,mf ) = (9/2,−9/2) state. The incoming

s-wave scattering channel, for (9/2,−9/2) + (3,+3) state has Mtot = −3/2. Scattering

and bound-state calculations are performed for this channel using the methods described

in Sec. 5.2.1.

The background scattering length for this channel is −40 a0 and there is a very dense

Feshbach structure. The scattering length and corresponding near-threshold bound states

are shown in Fig. 5.13. There are 84 Feshbach resonances in the region from 0 to 1000 G.

14 of the resonances are caused by L = 0 bound states and the other 70 are caused by

L = 2 bound states. There is a dense set of bound states which originate between −555

and −570 MHz at zero-field and cause a number of the resonances between 100 and 300 G.

Most of the resonances in 40KCs are incredibly narrow; the widest s-wave resonance has

a width of 0.1 G, the widest d-wave resonances has a width of 0.01 G, and many of the

resonances have widths < 1 nG. A tabulation of the calculated positions and widths of

all s-wave resonances and d-wave resonances with ∆ > 1 mG is given in Table 5.6 and a

complete list of all the resonances is given in Appendix C.

The narrowness of the resonances can be explained by the similarity in the singlet
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Figure 5.11: 39K133Cs: (a) L = 0 functions only; (b) L = 0 and 2 functions, but 2nd-order spin-

orbit coupling not included; (c) scattering length with L = 0 and 2 functions, and approximate

model of 2nd-order spin-orbit coupling included. Resonance widths greater than 1 µG are shown

as vertical bars with lengths proportional to log ∆/µG.

and triplet scattering lengths, aS = −52 a0 and aT = −41 a0 respectively, which directly

reduces the strength of L = 0 resonances and indirectly reduces the strength of L = 2

resonances [182]. A similar effect is seen in LiNa [183] and in 87Rb [182, 184]. There are

still some resonances, however, which are wide enough for molecule formation. Fig. 5.14

shows the interactions between the highest-lying bound states just below threshold.
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B0 (G) ∆ (G) abg (bohr) L MF

57.59 < 1 nG −40.3 0 −3/2

69.85 < 1 nG −40.3 0 −3/2

89.01 < 1 nG −40.3 0 −3/2

122.77 < 1 nG −40.3 0 −3/2

192.18 −0.001 −40.2 2 −3/2

196.71 −3 × 10−7 −40.2 0 −3/2

215.96 −0.01 −40.2 2 −1/2

230.24 < 1 nG −40.2 0 −3/2

234.15 < 1 nG −40.1 0 −3/2

239.55 < 1 nG −40.1 0 −3/2

246.44 −4 × 10−7 −40.0 0 −3/2

254.52 −1 × 10−4 −39.8 0 −3/2

264.34 −0.1 −40.3 0 −3/2

379.60 −0.002 −40.3 2 −5/2

470.25 −0.01 −40.2 0 −3/2

677.44 < 1 nG −40.2 0 −3/2

902.84 < 1 nG −40.2 0 −3/2

Table 5.6: Listing of all s-wave Feshbach resonances and d-wave Feshbach resonances with widths

> 1 mG for 40KCs in the field range 0 to 1000 G.

5.2.3 41KCs

41K has the same nuclear spin as 39K and therefore a similar hyperfine structure. The in-

coming s-wave scattering channel, for (f,mf ) = (1,+1)+(3,+3), has Mtot = 4. Scattering

and bound-state calculations are performed for this channel using the methods described

in Sec. 5.2.1. The singlet and triplet scattering lengths are aS = −73 a0 and aT = 205 a0,

respectively.

The background scattering length for this channel is 200 a0 and there is a rich Feshbach

structure. The scattering length and corresponding near-threshold bound states are shown

in Fig. 5.15. The Feshbach resonances in 41KCs are clustered into two groups, one group

is between 0 and 200 G and the other group is between 600 and 1000 G. There are 42

resonances in total and 27 occur below 130 G. Seven of the resonances are caused by

s-wave states and two of these have widths > 1 G; the other 35 resonances are caused by

d-wave states and the widest of these has ∆ = 0.03 G. A list of the calculated positions

and widths of all s-wave resonances and d-wave resonances with ∆ > 1 mG is given in
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Table 5.7 and a complete list of all the resonances is given in Appendix C.

Some of the narrow resonances below 130 G offer good prospects for molecule forma-

tion. There are three resonances around 30 G where the intraspecies scattering lengths

of 41K and Cs mean that both can be cooled to degeneracy. The resonances have similar

widths to the resonance at 19.8 G in Cs which has been used successfully to create Cs2

molecules [170, 185, 186]. Although the combination of intra- and interspecies scattering

lengths at these fields would lead to phase separation of the condesates, molecules could

still be formed by the use of thermal gases, as in 87RbCs [76]. Fig. 5.16 shows the inter-

actions between the highest-lying bound states just below threshold. A further discussion

of the required scattering length combinations for optimal routes to magnetoassociation

is presented in the following Section.

B0 (G) ∆ (G) abg (bohr) L MF

23.89 0.02 193.0 2 6

25.68 0.03 189.3 2 5

28.41 0.007 188.7 2 4

87.38 0.003 201.6 2 4

90.10 0.008 201.1 2 5

94.28 0.001 201.5 2 3

109.86 0.002 204.5 2 2

111.04 4.00 × 10−4 204.3 0 4

113.93 3.00 × 10−4 205.3 0 4

120.89 0.02 206.0 0 4

168.19 0.6 262.6 0 4

171.20 1.2 151.3 0 4

861.03 0.03 247.7 2 5

884.92 4.1 211.4 0 4

966.89 0.1 201.5 0 4

Table 5.7: Listing of all s-wave Feshbach resonances and d-wave Feshbach resonances with widths

> 1 mG for 41KCs in the field range 0 to 1000 G.
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Figure 5.12: Top: The s-wave scattering length in the (f,mf ) = (1, 1) + (3, 3) channel of 39KCs, with L = 0 and 2 functions. Bottom:

The energies of weakly bound molecular states. Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional to

log10 ∆/µG.
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The energies of weakly bound molecular states. Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional to
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The energies of very weakly bound molecular states. Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional

to log10 ∆/µG.
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The energies of weakly bound molecular states. Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional to

log10 ∆/µG.
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5.3 Prospects for alkali-alkali ultracold molecule formation

Magnetoassociation of Feshbach molecules has been performed successfully using ultracold

gases close to degeneracy. However, the maximum conversion efficiency is dictated by the

PSD of the atomic gas; therefore, using quantum-degenerate gases is always preferable.

To achieve degeneracy in an atomic gas requires the right balance of elastic and inelastic

collisions for evaporative cooling [187,188] typically it requires an s-wave scattering length

such that 40 . |a| . 250 a0 [16, 17, 21, 167]. In a mixed-species experiment there are

several different possible cooling routes. If the intraspecies scattering length of one of the

species (a11) is in the desired range and the interspecies scattering length (a12) is also in

the desired range then species 1 can be cooled directly and species 2 can be cooled via

interspecies collisions, provided a22 is positive and has a moderate value [189–194], as in

the case of 87RbCs [76]. If both the intraspecies scattering lengths are in the desired range

but the interspecies scattering length is not then the two species can be cooled separately

and spatially overlapped only after cooling [75, 118]. If neither of these scenarios are

possible then the species can potentially be cooled in different hyperfine states.

Once degeneracy is reached the behaviour of a two-species degenerate mixture is de-

scribed by a pair of coupled Gross-Pitaevskii equations with an additional non-linear term

which represents interspecies interactions [195],[−~2

2m1
∇2 + V1(r) + g11|ψ1(r)|2 + g12|ψ2(r)|2

]
ψ1(r) = µ1ψ1(r) (5.3.1)[−~2

2m2
∇2 + V2(r) + g22|ψ2(r)|2 + g21|ψ1(r)|2

]
ψ2(r) = µ2ψ2(r) (5.3.2)

where ψi is the wavefunction of species i = 1 or 2, and µi is the corresponding chemical

potential. The interaction coupling constants that govern the intraspecies interactions are

g11 =
4π~2a11

m1
and g22 =

4π~2a22

m2
(5.3.3)

and the interaction coupling constants that govern the interspecies interactions are

g12 = g21 = 2π~2a12
m1 +m2

m1m2
. (5.3.4)

For an individual condensate to be stable the scattering length must be positive (gii > 0).

Assuming both of the individual species have positive scattering lengths then the behaviour

of the mixture is determined by the relative strengths of the intraspecies interactions (gii)

and the interspecies interactions (gij) and can be characterised in terms of the interaction
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Scattering length (a0)

Field (G) 133Cs 39K 39KCs 41K 41KCs 40K 40KCs 85Rb 85RbCs 87Rb 87RbCs

17.7 35.2 −34.0 70.8 63.1 189.6 169.6 −40.3 −456.2 32.1 100.3 655.7

21.7 252.5 −30.7 71.1 62.9 192.2 169.9 −40.3 −455.2 33.8 100.3 657.2

556.2 28.2 −40.0 78.2 60.5 210.9 165.7 −40.3 −402.9 24.6 100.3 655.2

556.9 253.6 −40.0 78.2 60.5 210.9 165.8 −40.3 −402.9 24.6 100.3 655.2

882.3 39.3 −34.5 83.1 60.3 539.9a 167.8 −40.2 −406.6 −81.8b 100.4 619.5

892.2 251.3 −34.5 84.5 60.3 93.2 167.8 −40.2 −402.3 0.4 100.4 623.4

Table 5.8: Intraspecies and interspecies scattering lengths at fields that bound the regions where

40 a0 . aCs . 250 a0.

a41KCs has a resonance at 884.9 G that substantially affects its scattering length in this region.

b85RbCs has a resonance at 642 G that substantially affects its scattering length in this region.

parameter ∆int,

∆int =
g12√
g11g22

=
a12√
a11a22

√
(m1 +m2)2

4m1m2
≈ a12

a11a22
(5.3.5)

If |∆int| < 1 then the mixture is both stable and miscible. If ∆int > 1 then repulsive

interspecies interactions dominate and there is a phase separation of the two species, and

if ∆int > −1 then attractive interspecies interactions dominate and the mixture becomes

unstable against collapse. If these conditions cannot be fulfilled then a thermal gas close

to degeneracy must be used instead, or the instabilities avoided by loading the two species

into an optical lattice to form a Mott-insulator phase with one atom of each species per

lattice site [196].

Given the parameters discussed above, the scattering lengths of the isotopologues of

KCs and RbCs are examined. Three different criteria are defined for comparison:

• If 40 . |a11| . 250 a0 and 40 . |a21| . 250 a0 and |a22| . 600 a0 (or vice-versa

replacing species 1 with species 2) then one species can be cooled directly and the

other evaporatively and the region is marked in blue on Figures 5.18 and 5.19.

• If 40 . |a11| . 250 a0 and 40 . |a22| . 250 a0 then both species can be cooled

directly and the region is marked in red on Figures 5.18 and 5.19.

• If a11 > 0, a22 > 0 and g2
12 < g11g22 then the condensates are stable and miscible

and the region is marked in green on Figures 5.18 and 5.19.

The intraspecies scattering length of Cs has a very large background scattering length

which severely limits the regions in which Cs can be evaporatively cooled. Condensates
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Figure 5.17: Top: Real part of the scattering length of Cs in the s-wave incoming (f,mf ) =

(3,−3) + (3,−3) channel. Bottom: Loss-rate coefficient associated with the imaginary part of the

scattering length of Cs in the s-wave incoming (3,−3) + (3,−3) channel. The horizontal line at

1× 10−13 denotes experimentally acceptable loss rates for efficient evaporative cooling.

of Cs are usually produced just above the zero-crossing of the scattering length associated

with a broad resonance [20,166,197,198] due to the reduction in three-body loses in these

regions [174]. There are three such windows that appear in the region from 0 − 1000 G:

around 21 G above the zero-crossing in the scattering length at 17 G, around the zero-

crossing at 556 G associated with the resonance at 549 G, and around the zero-crossing at

881 G associated with the resonance at 894 G. The intraspecies and interspecies scattering

lengths of the isotopologues of KCs and RbCs at the boundaries of the regions of moderate

positive Cs scattering length are summarised in Table 5.8.

For 87RbCs the scattering lengths of ground state 87Rb, Cs and 87RbCs are compared,

shown in Fig. 5.18. There are several regions where the condensates are stable and miscible,

most notably a large region between 700 and 800 G; however, there is nowhere both

species can be cooled to degeneracy. In the molecule formation of 87RbCs described in

Section 5.1.2 the species are cooled to between 200 − 700 nK, just above degeneracy,

before the magnetoassociation stage [76] to prevent phase separation of the condensates.

In Refs. [70,118] the species are cooled to around 200 nK and a 1D optical lattice is applied

to reduce species interactions. Both of these methods succeed in making several thousand

Feshbach molecules, which are then transferred into the ground state.

For 85RbCs the scattering lengths of 85Rb in the (f,mf ) = (2,+2) + (2,+2) and
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(2,−2) + (2,−2) states are compared with the ground state of Cs and the ground state

of 85RbCs, shown in Fig. 5.18. For the excited states an additional restriction of Kloss <

1 × 10−13 cm3s−1 is applied to the regions where evaporative cooling is possible. This

number is based on the successful formation of condensates of 85Rb around 161 G where

Kloss = 5×10−14 cm3s−1 [148]. The excited-state scattering length of the (3,−3)+(3,−3)

state of Cs, shown in Fig. 5.17, is not considered in the possible combinations as there is

no significant field region in the range from 0−1000 G with Kloss < 1×10−13 cm3s−1. The

ground and excited-state scattering lengths of 85Rb are compared along with the ground

state of Cs to the ground state of 85RbCs. The excited state of 85Rb can be compared to

the ground state of 85RbCs because the time required to change the hyperfine state is on

the order of milliseconds [199] allowing this to be performed without sustaining significant

losses or causing condensate collapse. This means that other hyperfine states of 85RbCs

can also be considered and comparisons to the (2,−2) + (3,+3) and the (2,−2) + (3,−3)

scattering lengths are given in Appendix D; as these states all have associated inelastic

losses, molecule formation in the ground state is always preferable. Unfortunately, for

ground state 85RbCs there is only a very small region where the species can both be

cooled (around 48 G) and no region where the condensates are stable and miscible. In

the excited state of 85Rb the wide resonance at 155 G creates a small window between

155 − 166 G where the condensates are stable and miscible, however there is still only

a very small region where both species can be cooled. The large background scattering

length of Cs combined with the negative intra-species background scattering length of

both the ground and excited-states of 85Rb and the small interspecies scattering length

of 85RbCs causes a dearth in suitable cooling regions. Any molecule formation process

involving these two species would most likely have to involve the use of thermal mixtures

rather than degenerate gases.

For 39KCs the scattering lengths of ground state 39K, Cs and 39KCs are compared,

shown in Fig. 5.19. The background intraspecies scattering length of 39K, Fig. 5.19 (b),

is small and negative (around −35 a0) except near a wide Feshbach resonance at 402 G;

this makes a single-species condensate of 39K unstable at most fields. Condensation of

ground-state 39K has previously been achieved by sympathetic cooling with 87Rb [200]

by using the resonance at 402 G [201]. There is a wide region on the low-field side of

the 402 G resonance in 39K, between the zero-crossing of the scattering length (353 G)

and the pole of the resonance, where the condensates are stable and miscible. There
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Figure 5.18: Scattering lengths for isotopologues of RbCs, together with those of the correspond-

ing isotopes of Rb and Cs. The scattering lengths are shown with the same magnetic field axis,

to facilitate the identification of regions where the combination is conducive to molecule forma-

tion. Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional to

log10 ∆/µG.
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Figure 5.18 (previous page): The coloured bars beneath each interspecies scattering length

indicate the fields at which both species can be cooled evaporatively (red, top), the fields at which

one species can be cooled evaporatively and the other sympathetically (blue, center), and the

fields at which the condensates are miscible (green, bottom). For 85RbCs two comparison bars are

shown: the top bar corresponds to comparison with the (2,+2) state of 85Rb and the lower bar to

the (2,-2) state.

are two resonances with widths < 1 µG in the 39KCs scattering length in this region;

the wider of the two resonances, which has a pole at 375 G and a width of 6 mG, is

a promising option for magnetoassociation. There is also a resonance just below this

region, which has a pole at 342 G and a width of 4.8 G, that could possibly be used for

molecule formation if the magnetic field sweep can be performed before the 39K condensate

collapses. The background scattering length of 39KCs is around 70 a0, Fig. 5.19 (c), which

may allow for sympathetic cooling of 39K by Cs, in the three regions where Cs can be

efficiently cooled. The widest of these regions is the high field region around 894 G. There

are three resonances in 39KCs around this region at 861, 908, and 916 G where the Cs

scattering length is −630, 510 and 630 a0 respectively. These regions offer the potential

for magnetoassociation using thermal gases.

In the case of 40KCs the s-wave scattering length of identical 40K atoms in the ground

state is undefined due to their fermionic character, instead the scattering length of the

(9/2,−9/2)+(9/2,−7/2) is shown in Fig. 5.19 (f) and compared to the ground state of Cs

and 40KCs. The background scattering length of 40K is around 170 a0, Fig. 5.19 (f), and

the background scattering length of 40KCs is around −40 a0, Fig. 5.19 (g). In the regions

where Cs can be cooled evaporatively it may be possible to use Cs to sympathetically cool

40K in the (9/2,−9/2) state removing the need for the second spin state of 40K. There are

no resonances in the 40KCs scattering length near to regions where the two species can be

cooled, however there are resonances with suitable widths at 192, 216, 264 and 470 G.

For 41KCs the scattering lengths of ground state 41K, Cs and 41KCs are compared,

shown in Fig. 5.19. The background scattering length of 41K is around 63 a0, Fig. 5.19

(d). Similarly to 87Rb, the scattering length has little variation in the field range from

0−1000 G therefore efficient evaporation should be possible at most magnetic field values.

The background interspecies scattering length of 41KCs is around 200 a0, Fig. 5.19 (e),

which allows for sympathetic cooling of Cs using 41K in the regions around 21, 558 and

894 G. There is a large region in which the condensates will be stable and miscible from
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Figure 5.19: Scattering lengths for isotopologues of KCs, together with those of the corresponding

isotopes of K and Cs. The scattering lengths are shown with the same magnetic field axis, to

facilitate the identification of regions where the combination is conducive to molecule formation.

Resonance widths greater than 1 µG are shown as vertical bars with lengths proportional to

log10 ∆/µG.



5.3. Prospects for alkali-alkali ultracold molecule formation 94

Figure 5.19 (previous page): The coloured bars beneath each interspecies scattering length

indicate the fields at which both species can be cooled evaporatively (red, top), the fields at which

one species can be cooled evaporatively and the other sympathetically (blue, center), and the fields

at which the condensates are miscible (green, bottom, not shown for 40K).

38− 786 G and above 939 G. There is also a small (5 G) region of miscibility immediately

above the broad 41KCs resonance at 885 G (∆ = 4.1 G), where a40K = 63 a0 and aCs is

around 200 a0. These properties make this resonance a very promising option for cooling

a mixed gas directly to degeneracy, followed by magnetoassociation. There are also a

set of three 41KCs resonances below 30 G which lie close to a region where evaporative

cooling of both species is possible and which have comparable widths to the width of the

Cs resonance at 19.8 G where magnetoassociation is very effective.



Chapter 6

Analysis of singlet and triplet

character

The character of the molecular bound states is important when considering which states

are best for STIRAP transfer. In the following Chapter different methods for analysing

the singlet and triplet character of molecular bound states and of asymptotic energy levels

are discussed.

6.1 A molecular basis

Depending on the system studied and the various regions looked at different basis sets

give the most appropriate description of the system. For example at zero magnetic field

the |(sa, ia)fa(sb, ib)fbF 〉 quantum numbers are well defined, whereas at high field the

|ms,ami,a,ms,b,mi,b〉 quantum numbers better represent the system. Calculations in dif-

ferent basis sets also allow for different views of the molecular bound states and the

bound-state wavefunctions. Bound-state wavefunctions allow for the calculation of transi-

tion intensities and expectation values; therefore, finding a basis in which they are simply

represented can be useful. In the following sections we define the matrix elements of basis

set described by the molecular quantum numbers,

|(s1, s2)S〉 |(i1, i2)I〉 |F,MF 〉 |L,ML〉 (6.1.1)

where S is the molecular electron spin quantum number, I is molecular nuclear spin

quantum number, F is the molecular total spin quantum number given by the coupling of

S and I and MF is the projection of F . This basis set is known to describe the 6Li system

95
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well and we will examine how useful it can be in describing the bound states of 85RbCs

and of 6Li2.

6.1.1 The isotropic potential operator

In this basis, as the molecular electronic spin is a given quantum number, then the pro-

jection operator will be diagonal in S and the matrix elements of V̂ c are

〈S(s1, s2), I(i1, i2), FMF , LML|V̂ c|S′(s1, s2), I ′(i1, i2), F ′M ′F , L
′M ′L〉 ≡

δL,L′δML,M
′
L
δI,I′δF,F ′VS(R)δS,S′ .

(6.1.2)

6.1.2 The spin-spin interactions

In ground-state alkali-alkali interactions the V̂ d operator takes the form,

V̂ d(R) = λ(R)[ŝ1 · ŝ2 − 3(ŝ1 · ~eR)(ŝ1 · ~eR)],

describing the spin-dipolar coupling. This can be rewritten in irreducible tensor form

as [202]

V̂ d(R) = −λ(R)g2
eµ

2
B(µ0/4π)

√
6T 2(s1, s2) · T 2(C).

The two second rank tensors can be separated using the scalar product identity [203]

T k(Â) · T k(B̂) ≡W 0
0 ≡

∑
q

(−1)qT kq (Â)T k−q(B̂).

Applying this operator to the basis set one can separate out the terms based on |L,ML〉 so

that the expression for 〈S(s1, s2), I(i1, i2), FMF , LML|V̂ d|S′(s1, s2), I ′(i1, i2), F ′M ′F , L
′M ′L〉,

ignoring constants and λ(R) which will precede the summation in the complete expression,

becomes

∑
q

(−1)q 〈S(s1, s2), I(i1, i2), FMF |T̂ 2
q (s1, s2)|S′(s1, s2), I ′(i1, i2), F ′M ′F 〉

× 〈LML|T̂ 2
−q(C)|L′M ′L〉 .

Each of the brakets can now be treated separately and then recombined once evaluated

to give the total expressions for V̂d. Using the Wigner-Eckart Theorem

〈S(s1, s2), I(i1, i2), FMF |T̂ 2
q (s1, s2)|S′(s1, s2), I ′(i1, i2), F ′M ′F 〉 ≡

(−1)F−MF

 F 2 F ′

−MF q M ′F

√2F + 1 〈SIF ||T 2(s1, s2)||S′I ′F ′〉 .
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As the operator T 2(s1, s2) acts only on the electron spin components of the basis set we

can further simplify 〈SIF ||T 2(s1, s2)||S′I ′F ′〉 to

δI,I′
√

(2F ′ + 1)(2S + 1)(−1)2+I+F ′+S

F F ′ 2

S′ S I

 〈S(s1, s2)||T 2(s1, s2)||S′(s1, s2)〉 .

The component 〈S(s1, s2)||T 2(s1, s2)||S′(s1, s2)〉 can be separated into two separate oper-

ators ŝ1 and ŝ2. This reduction results in

〈S(s1, s2)||T 2(s1, s2)||S′(s1, s2)〉 ≡

√
5(2S′ + 1)(2s1 + 1)(2s2 + 1)


S S′ 2

s1 s′1 1

s2 s′2 1

 〈s1||ŝ1||s1〉 〈s2||ŝ2||s2〉 ,

where the reduced tensor elements can each be evaluated as

〈sa||ŝa||sa〉 ≡ δsa,s′a
√
sa(sa + 1).

The second braket in our spin-spin interaction term 〈LML|T 2
−q(C)|L′M ′L〉 can be reduced,

again using the Wigner-Eckart Theorem, to

〈LML|T 2
−q(C)|L′M ′L〉 ≡ (−1)L−ML

√
2L+ 1

 L 2 L′

−ML −q M ′L

 〈L||C2(L̂)||L′〉 ,

where the reduced tensor element 〈L||C2(L̂)||L′〉 with Ckq ≡ Ckq(θ, φ) = ( 4π
2k+1)1/2Ykq(θ, φ)

is given in our notation as

〈L||C2(L̂)||L′〉 ≡ −1L
√

2L′ + 1

L 2 L′

0 0 0

 .

Combining all the above expressions we find the total expression for the spin-spin operator

〈S(s1, s2), I(i1, i2), FMF , LML|V̂ d|S′(s1, s2), I ′(i1, i2), F ′M ′F , L
′M ′L〉 ≡ −λ(R)

√
30

×
2∑

q=−2

(−1)q
√

(2F + 1)(2F ′ + 1)(2S + 1)(2S′ + 1)(2s1 + 1)(2s2 + 1))s1(s1 + 1)s2(s2 + 1)

×

δI,I′δs1,s′1δs2,s′2(−1)F−MF

 F 2 F ′

−MF q MF ′

F F ′ 2

S′ S I



S S′ 2

s1 s′1 1

s2 s′2 1




×

(−1)−ML
√

(2L+ 1)(2L′ + 1)

 L 2 L′

−ML −q M ′L

L 2 L′

0 0 0

 .

(6.1.3)
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6.1.3 The hyperfine interactions

The hyperfine term ζhfsîa · ŝa, for either atom (1) or (2), can be written using the tensor

scalar product, and then have the Wigner-Eckart theorem applied such that the reduced

tensor elements of the hyperfine interaction can be written,

〈S(s1, s2), I(i1, i2), FMF , LML|ζhfsîa · ŝa|S′(s1, s2), I ′(i1, i2), F ′M ′F , L
′M ′L〉 ≡

δF,F ′(−1)F−MF

 F 0 F ′

−MF 0 MF ′

√(2F + 1) 〈SIF ||̂ia · ŝa||S′I ′F ′〉 .

The 3-j symbol in the above equation can be simplified using the expansiona b 0

α β 0

 ≡ (2a+ 1)
−1
2 δ(a,b)

(
a

βα

)
≡ (2a+ 1)

−1
2 δ(a,b)δ(α− β)(−1)a−α.

The square roots cancel and −1(F−MF )+(F ′−MF ′ ) = 1 in all non-zero evaluations due to

the delta functions, therefore the evaluation of the hyperfine interaction simplifies to

δF,F ′δMF ,MF ′ 〈SIF ||̂ia · ŝa||S
′I ′F ′〉 .

The dot product in 〈SIF ||̂ia · ŝa||S′I ′F ′〉 separates into two reduced components

(−1)S
′+I+F

S S′ 1

I ′ I F

√(2S + 1)(2I + 1) 〈(s1, s2)S||ŝa||(s1, s2)S〉 〈(i1, i2)I||̂ia||(i1, i2)I〉 .

The evaluation of these reduced tensor components now depends on whether a refers to

atom (1) or (2). Overall we arrive at a total expression for both hyperfine components of

〈S(s1, s2), I(i1, i2), FMF , LML| ζhfsî1 · ŝ1

+ζhfsî2 · ŝ2 |S′(s1, s2), I ′(i1, i2), F ′M ′F , L
′M ′L〉 ≡

δF,F ′δMF ,MF ′ δs1,s′1δs2,s′2δi1,i′1δi2,i′2(−1)S
′+I+F

√
(2S + 1)(2I + 1)(2S′ + 1)(2I ′ + 1)S S′ 1

I ′ I F

×
(
ζhfs1

√
(2s1 + 1)(2i1 + 1)

√
s1(s1 + 1)i1(i1 + 1)

×(−1)s1+S′+s2+i1+I′+i2

S S′ 1

s′1 s1 s2


I I ′ 1

i′1 i1 i2


+ζhfs2

√
(2s2 + 1)(2i2 + 1)

√
s2(s2 + 1)i2(i2 + 1)

×(−1)s1+S+s′2+i1+I+i′2

S S′ 1

s′2 s2 s1


I I ′ 1

i′2 i2 i1


)
.

(6.1.4)
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6.1.4 The Zeeman interactions

The magnetic field dependent terms are ge,1µBŝz,1, gn,1µBîz,1, ge,2µBŝz,2, and gn,2µBîz,2.

Each of the 4 terms can be expressed in the same reduced form

〈(s1, s2)S, (i1, i2)I, F ||gzµBĵz,aB||(s1, s2)S′, (i1, i2)I ′, F ′〉 ,

where ĵz,a represents the appropriate spin operator (̂iz,1, ŝz,1, îz,2 or ŝz,2) and gz the

appropriate g-factor. Each operator can be dealt with separately and then combined,

extracting any common factors. We arrive at a total expression for the magnetic-field

dependent terms;

〈S(s1, s2), I(i1, i2), FMF , LML| (ge,1µBŝz,1 + gn,1µBîz,1

+ge,2µBŝz,2 + gn,2µBîz,2)Bz|S′(s1, s2), I ′(i1, i2), F ′M ′F , L
′M ′L〉 ≡

(−1)F−MF +2I+2S
√

(2F + 1)(2F ′ + 1)

 F 1 F ′

−MF 0 MF ′


×
[

(−1)F
′+sa+sb

√
(2S + 1)(2S′ + 1)

F F ′ 1

S′ S I


×
(
geaδsb,s′b(−1)S

′√
sa(sa + 1)(2sa + 1)

S S′ 1

s′a sa sb


+geb(δsa,s′a(−1)S

√
sb(sb + 1)(2sb + 1)

S S′ 1

s′b sb sa


)

+(−1)F+ia+ib
√

(2I + 1)(2I ′ + 1)

F F ′ 1

I ′ I S


×
(
gnaδib,i′b(−1)I

′√
ia(ia + 1)(2ia + 1)

 I I ′ 1

i′a ia ib


+gnb

δia,i′a(−1)I
√
ib(ib + 1)(2ib + 1)

I I ′ 1

i′b ib ia


)]

.

(6.1.5)

6.1.5 Bound states of 85RbCs

The bound states of 85RbCs have previously been shown in Sec. 5.1.1. The results that

are shown in Sec. 5.1.1 are calculated in the decoupled basis described in Sec. 3.2 and

the labelling of the different MF states is enforced by a restriction of the basis set corre-

sponding to each possible MF value. As MF is a nearly good quantum number then the
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Figure 6.1: Bound states of 85RbCs, including L = 0 and 2, calculated from: a complete basis

(blue), a restricted basis including S = 1 only (green), a restricted basis including S = 0 only

(pink). Dashed lines indicate states with L = 2 and solid lines indicate states with L = 0. The

thresholds for each basis sent are shown in the corresponding colour with dotted lines (note for

S = 0 only the threshold does not appear as it occurs at 0 MHz).

restriction has little effect on the calculation of the bound states. Using the |SIFMF〉 ba-

sis the bound states are calculated again. Intially, the bound states were calculated using

an unrestricted basis set in the |SIFMF〉 basis and these results were compared to the

results from calculations using and unrestricted basis set in the decoupled basis; the good

agreement between these results shows that the matrix elements of the |SIFMF〉 basis

were calculated correctly. The bound states were calculated again, using the |SIFMF〉
basis, but this time with a restriction to each value of S, where S = 0 shows the pure

singlet states and S = 1 shows the pure triplet states, shown in Fig. 6.1. As the system is

not well represented by the |SIFMF〉 basis this restriction leads to a significant deviation

of the bound-state energies calculated. Unlike the previous bound-state figures, in Fig. 6.1

the states are not plotted with respect to the lowest-energy atomic threshold but rather

to the zero energy given by the degeneracy-weighted average of the Hamiltonian. The

individual thresholds of each calculation are given by the dotted lines of the same colour
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Figure 6.2: Bound states of 85RbCs between 300 and 400 G, including L = 0 and 2, calculated

from: a complete basis (blue), a restricted basis including S = 1 only (green), a restricted basis

including S = 0 only (pink). Dashed lines indicate states with L = 2 and solid lines indicate states

with L = 0. The thresholds for each basis set are shown in the corresponding colour with dotted

lines (note for S=0 only the threshold does not appear as it occurs at 0 MHz).

as the bound states; the S = 0 threshold cannot be seen as it is around 0 MHz. The

bound states corresponding to S = 0 can be seen to have little slope with magnetic field

as their slope comes only from the projection of I which is a much smaller contribution

then S. The bound states corresponding to S = 1 can have three distinct slope: those that

correspond to MS = +1 will slope strongly upwards; those that correspond to MS = 0

will be horizontal; and those that correspond to MS = −1 will slope strongly downwards.

Fig. 6.2 shows that the group of states, corresponding to F = 7 in Fig. 5.1 and which

cause resonances between 350 and 500 G, have MS = +1 character, as their slopes match

those of the S = 1 states. Most of the other high-field resonances also come from states

with similar slopes to the MS = +1 states whilst some of the low field resonances, below

200 G, come from MS = 0 states. States with MS = −1 character slope the wrong way

from the atomic threshold to cause resonances.

As the basis does not seem to characterise the bound states well, then it does not
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provide an ideal basis with which to describe the bound-state wavefunctions. For example,

the wavefunction of the bound state which causes the resonance around 187 G, shown in

Fig. 6.3, is comprised of three main components. The largest component is from the

|SIFMF 〉 = |1, 5, 6, 5〉 state but there are also significant contributions from the |1, 4, 5, 5〉
and |0, 6, 6, 5〉 states. The only state that is well-defined by this basis set is the MF = 7

state which causes the resonance around 370 G. The bound-state wavefunction, shown in

Fig. 6.4, consists of a single component corresponding to the |SIFMF 〉 = |1, 6, 7, 7〉 state.
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Figure 6.3: 85RbCs bound-state wavefunction for the state which causes the resonance around

187 G. The true wavefunction is a superposition of the different |SIFMF 〉 states; the three largest

components are shown.
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Figure 6.4: 85RbCs bound-state wavefunction for the state which causes the resonance around

370 G. The wavefunction is represented by a single component of the |SIFMF 〉 basis.
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6.1.6 Bound states of 6Li2

Unlike RbCs, the bound states of 6Li2 are well-defined by the |SIFMF〉 quantum numbers.

There are two bound states near threshold in the region from 0 to 1000 G. At energies well

below threshold then both of the states are strongly singlet in character. The state which

appears at slightly lower fields is the |SIFMF〉 = |0, 2, 2, 0〉 state and the state which

appears at slightly higher fields is the |SIFMF〉 = |0, 0, 0, 0〉 state. The |0, 2, 2, 0〉 state

causes the resonance at 543 G, whereas the |0, 0, 0, 0〉 state has an avoided crossing with

a pure triplet state which exists just above threshold. The bound states, calculated using

restricted and unrestricted basis sets, are shown in Fig. 6.5. The states calculated using the

|SIFMF〉 basis restricted to S = 0 are degenerate and correspond to the ν = 38 vibrational

level of the singlet potential. The highest-lying triplet state is around 2000 MHz below

threshold and therefore is not shown. The wavefunction of the bound state which causes

the resonance around 543 G is shown in Fig. 6.6.
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Figure 6.5: Bound states of 6Li2 in an L = 0 basis, calculated from: a complete basis (blue

dashed), a restricted basis including S = 1 only (green dashed - no state exists in the region

shown), a restricted basis including S = 0 only (pink dashed). The thresholds for each basis set

are shown in the corresponding colour with dotted lines (note for S = 0 only the threshold does

not appear as it occurs at 0 MHz).
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Figure 6.6: 6Li2 bound-state wavefunction for the state which causes the resonance around 543 G.

The wavefunction is represented by a single component of the |SIFMF 〉 basis

6.2 Transformation of the product states of the field-dressed

Hamiltonian to the |SMSmi,ami,b〉 basis set

The asymptotic energy levels of an alkali atom in a magnetic field are determined from

the eigenvalues of the Breit-Rabi Hamiltonian, which defines a set of field-dressed eigen-

functions for each atom. To calculate the singlet and triplet fraction of the products of

field-dressed atomic eigenfunctions, represented by |α,mf,a〉 |β,mf,b〉, we perform a trans-

formation from the field-dressed basis to the |SMsmi,ami,b〉 basis. For a given mf , each

state in the field-dressed basis can be re-written as a superposition of its |ms,mi〉 contribu-

tions. The |ms,mi〉 basis can then be transformed using 3-j symbols to the |SMsmi,ami,b〉
basis.

To transform between the asymptotic |α,mf,a〉 basis and the |ms,mi〉 basis we use the

Breit-Rabi hamiltonian,

Ĥa = ζhfsîa · ŝa +
µB

~

(
gsŝa + gnîa

)
B

= ζhfs

(
îz,aŝz,a +

1

2

(
î+ŝ− + î−ŝ+

)
+
µ

~

(
gsŝz,a + gnîz,a

)
B

)
,

where ĵ± are the raising and lowering operators and ĵz |jm〉 = m |jm〉. We restrict our-

selves to the case of two alkali-metal atoms such that ms = ±1/2 and mi = mf ∓ 1/2.

For each mf we therefore need to calculate a two-by-two Hamiltonian, which will have
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diagonal terms

〈±|Ĥ|±〉 ≡ ζhfs

(
±1

2

)(
mf ∓

1

2

)
+
µB

~

(
gs

(
±1

2

)
+ gn

(
mf ∓

1

2

))
,

and off-diagonal terms

〈∓|Ĥ|±〉 ≡ ζhfs

2

((
i+

1

2

)2

−m2
f

) 1
2

.

We can then extract the eigenvalues, λ±, and from them calculate the eigenvectors(
Ĥ1,1

Ĥ2,1

Ĥ1,2

Ĥ2,2

)
=

(
cos θ

− sin θ

sin θ

cos θ

)(
λ+

0

0

λ−

)(
cos θ

sin θ

− sin θ

cos θ

)
such that each |α,mf 〉 basis can be written as a sum of |ms,mi〉 basis terms,

|α+,mf 〉 = cos θ |1/2,mf − 1/2〉+ sin θ |−1/2,mf + 1/2〉

|α−,mf 〉 = − sin θ |1/2,mf − 1/2〉+ cos θ |−1/2,mf + 1/2〉 .

Combining the results for each atom, in the γ+ states for example, gives

|α+,mfa〉 |β+,mfb〉 = cos θa cos θb |1/2,mf,a − 1/2〉 |1/2,mf,b − 1/2〉

+ cos θa sin θb |1/2,mf,a − 1/2〉 |−1/2,mf,b + 1/2〉

+ sin θa cos θb |−1/2,mf,a + 1/2〉 |1/2,mf,b − 1/2〉

+ sin θa sin θb |−1/2,mf,a + 1/2〉 |−1/2,mf,b + 1/2〉 .

Each coefficient of the type cos θa sin θb is denoted Cmsamiamsb
mib

. To find the total singlet

or triplet percentage in an individual |α,mfa〉 |β,mfb〉 requires the sum

|α,mfa〉 |β,mfb〉 =
∑

msa,b
mia,b

Cmsamiamsb
mib
|msa ,mia ,msb ,mib〉

=
∑

S,MS ,mi,a,mi,b

|SMS〉 |mi,a〉 |mi,b〉
∑
msa,b

Cmsamiamsb
mib
〈SMS |msamsb〉 |mia〉 |mib〉 ,

where 〈SMS |msamsb〉 are Clebsch-Gordan coefficients. In the singlet case, S = 0 and

MS = 0 and the Clebsch-Gordan coefficients are

〈SMS |samsa , sbmsb〉 = 〈00|1/2msa , 1/2msb〉 = δmsa ,−msb

(−1)1/2−msa

√
2

.

The triplet fraction of each field-dressed atomic eigenfunctions, corresponding to the (2, 3)

hyperfine manifold at zero field, of 85RbCs is shown in Fig. 6.7. Each state is labelled by

its (mfRb
,mfCs

) and has (fRb, fCs) = (2, 3) quantum numbers at zero field although the
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Figure 6.7: Triplet fraction of the products of the field-dressed atomic eigenfunctions of

85RbCs. Each state is labelled by its zero-field (mfRb
,mfCs

) quantum number and correlates

with (fRb, fCs) = (2, 3) at zero field although the different f levels will be mixed at higher fields.

different f levels will be mixed at higher fields. The other eigenfunctions corresponding

the higher hyperfine manifolds are shown in Appendix F. All of the states show significant

triplet character and tend towards full triplet character at high fields. The average value

is centred around 3/4 triplet character at zero field as expected. In the other hyperfine

manifolds all states tend towards either 100% or 50% triplet character at high field, and

no state ever drops below 50% triplet character. This result was checked by examining

the value of each 〈SMS |αmf,aβmf,b〉 element and verifying that the sum of squares of the

rows and columns was equal to one. This results means that all the thresholds of 85RbCs

have at least 50% triplet character and that most are triplet dominated. This explains

why the background scattering length of different incoming channels is often close to the

triplet scattering length, but never close to the singlet scattering length.



Chapter 7

Effective Range Theory

The work presented in this Chapter comes from the work published in [78]. Studies of

cold atom collisions and few-body interactions often require the energy dependence of the

scattering phase shift, which is usually expressed in terms of an effective-range expansion.

In this Chapter we use accurate coupled-channel calculations on 6Li, 39K and 133Cs to ex-

plore the behavior of the effective range in the vicinity of both broad and narrow Feshbach

resonances and show that commonly used expressions for the effective range break down

dramatically for narrow resonances and near the zero-crossings of broad resonances. We

present an alternative parametrization of the effective range that is accurate through both

the pole and the zero-crossing for both broad and narrow resonances and further demon-

strate that an analytical form of an energy and magnetic field-dependent phase shift, based

on multichannel quantum defect theory, gives accurate results for the energy-dependent

scattering length.

7.1 Introduction to Effective Range Theory

The study of trapped samples of ultracold atomic gases is an extremely fruitful area

of experimental and theoretical research. It includes studies of Bose-Einstein condensa-

tion (BEC) of bosonic species [204–207], the crossover between the BEC and Bardeen-

Cooper-Schrieffer regimes of fermionic species [208–210], the production of ultracold polar

molecules [67, 69, 211], the manipulation of atoms in optical lattices [212, 213], and the

study of Efimov physics in few-body systems [214–217]. The theory of such phenomena

has been greatly simplified by the ability to characterize the zero-energy interaction of two

atoms in terms of the s-wave scattering length a. For many species, nearly any desirable

107
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value a(B) can be obtained by tuning a magnetic field B near the pole position B0 of a

threshold scattering resonance known as a Feshbach resonance. The scattering length is

approximately related to the magnetic field by the formula [90]

a(B) = abg

(
1− ∆

B −B0

)
, (7.1.1)

where ∆ is the width of the resonance and abg is the background scattering length far

from resonance.

The parametrization of low-energy interactions in terms of a(B) allows the detailed

chemical interaction between two ultracold atoms in the limit of zero collision kinetic

energy E → 0 to be replaced by a zero-range Fermi pseudo-potential whose strength is

proportional to a(B). However, as experimental probes of ultracold systems become more

powerful and sophisticated, the variation of atomic interactions as a function of energy

away from exactly E = 0 must be considered and understood. The usual way to describe

the variation with energy of the near-threshold s-wave scattering phase shift η(E) is to

use an effective-range expansion at small collision momentum ~k, where E = ~2k2/(2µ)

and µ is the reduced mass of the two atoms [218,219],

k cot η(E) = − 1

a0
+

1

2
reffk

2 + . . . , (7.1.2)

where the parameter reff is called the effective range and a0 is the zero-energy scatter-

ing length. We prefer a modified way of writing this expression and define the energy-

dependent scattering length a(E) by [89],

a(E) = −tan η(E)

k
=

1

ik

1− S(E)

1 + S(E)
, (7.1.3)

where S = e2iη is the diagonal element of the unitary S-matrix for the threshold channel in

question. With this formulation, both η(E) and a(E) are real when only elastic scattering

is possible but become complex in the presence of inelasticity. Eq. (7.1.2) becomes

a(E)−1 = a−1
0 −

1

2
reffk

2 + . . . , (7.1.4a)

or

a(E) = a0 +
1

2
reffa

2
0k

2 + . . . . (7.1.4b)

Far from a pole or a zero-crossing in a0(B), finite-difference equations based on either of

these relationships may be used to evaluate reff . However, those based on (7.1.4a) are
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numerically unstable near a zero-crossing and those based on (7.1.4b) are numerically

unstable near a pole.

Effective-range expansions have been invoked to include the role of collisions at finite

energy in few-body phenomena [220–224] and to correct for the zero-point energy in optical

lattice physics [225]. The energy-variation of the phase shift is needed to obtain the

contribution of two-body collisions to low-energy partition functions and thermodynamic

properties of cold gases [226]. The effective range is known to vary around Feshbach

resonances [215, 224, 227–230], but there has been no in-depth numerical study of the

behaviour of η(E), a(E) and reff as B is tuned across Feshbach resonances of different

types. In the present work we use accurate coupled-channels calculations to explore this

numerically for both broad and narrow Feshbach resonances. Our calculations demonstrate

that the effective-range expansion can fail in some circumstances for low-energy atomic

collisions and also elucidate the range of applicability of simple approximations that have

been developed to relate the effective range to the scattering length, given the form of the

long-range potential [231]. We also present an approach based on multichannel quantum

defect theory (MQDT) [231], which gives an analytic form for the energy-dependence of

the phase shift that applies even when the effective-range expansion breaks down. We

will demonstrate that this analytic representation gives excellent agreement with coupled-

channels calculations for both broad and narrow resonances.

We choose to study resonances in 6Li, 133Cs and 39K, in their lowest possible s-wave

collision channels, all of which are important in studies of Efimov physics [173, 215–217,

232–236]. The interaction potentials used in the coupled-channels calculations are those

of Zürn et al. [237] for 6Li, Berninger et al. [166, 217] for 133Cs, and Falke et al. [238] for

39K. The atomic hyperfine/Zeeman states are labelled using Roman letters a,b,c, etc., in

increasing order of energy.

7.2 Behaviour of the effective range near a Feshbach reso-

nance

In this Section we analyse the behaviour of the effective range in the vicinity of Feshbach

resonances of different types. A magnetically tunable resonance can be classified as broad

or narrow, based on the parameter sres [35], as described in Sec. 2.4 Using these scalings

allow us to define dimensionless length and energy parameters, a/ā and E/Ē, respectively.
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In the following discussion resonances with sres > 1 are referred to as broad resonances,

whilst those with sres < 1 are narrow resonances.

The effective-range expansion is the leading term in a Taylor series and breaks down at

‘high’ energies. However, in the present work it is always valid up to at least E/kB = 50 nK.

We therefore obtain reff at each magnetic field by performing coupled-channels calculations

at 1 pK and 10 nK and fitting the resulting values of a(E) from Eq. (7.1.3) to either

Eq. (7.1.4a) or Eq. (7.1.4b). The coupled-channels calculations are performed using the

molscat package [110], adapted to handle collisions in external fields [112]. Calculations

are carried out with a fixed-step log-derivative propagator [105] at short range and a

variable-step Airy propagator [142] at long range. The wavefunctions are matched to

their long-range solutions, the Ricatti-Bessel functions, to find the S-matrix elements;

these are related to the energy-dependent scattering length and phase shift by Eq. (7.1.3).

Gao [228] and Flambaum et al. [229] have developed an approximate formula relating

reff to a, based on the case of single-channel scattering with an R−6 potential,

reff ≈
(

Γ(1/4)4

6π2

)
ā

[
1− 2

(
ā

a0

)
+ 2

(
ā

a0

)2
]
. (7.2.1)

We show below that this formula works well near the pole of a broad resonance, but may

break down around a zero-crossing. In particular, Eq. (7.2.1) predicts that reff is always

positive, which is not in fact the case. For narrow resonances, we demonstrate that the

parabolic dependence on 1/a0 is retained, but quite different coefficients are required.

The scattering length a(B) and effective range reff(B) for 133Cs, in the (f,mf ) =

(3,+3) + (3,+3) s-wave scattering channel (designated aa), are shown in Figure 7.1. In

this channel the scattering length has many resonances between 0 and 1000 G which

overlap and interfere with each other; however, we highlight three distinct magnetic-field

regions that correspond to different scattering-length behaviours. Around 17 G there is

a zero-crossing in the scattering length due to a wide resonance, here the effective range

diverges to positive values. At the zero-crossing due to a narrow resonance at 227 G the

effective range diverges to negative values. Near the pole of the wide resonance at 787 G

the effective range is a slowly varying function of magnetic field.

To contrast the behaviour of the effective range across broad and narrow resonances,

we consider 6Li in its lowest (f,mf ) = (1/2,+1/2)+(1/2,−1/2) s-wave scattering channel

(designated ab). Using an L = 0 (s-only) basis set, the scattering length for this channel

has only two resonances at fields below 1000 G, one broad near 832 G (∆ = −262 G) and
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Figure 7.1: Top: The field-dependent effective range for the (f,mf ) = (3,+3) + (3,+3) channel

of 133Cs from coupled-channel calculations (red solid) and as calculated from Eq. (7.2.1) (blue

solid). The zero-energy s-wave scattering length (green dashed) and the s-wave scattering length

at 1 µK (black dashed) are also shown. Bottom left: An expanded view around the zero-crossing

of the scattering length at 17 G. Bottom centre: An expanded view around the narrow resonance

at 227 G. Bottom right: An expanded view around the pole of the wide resonance at 787 G.
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Figure 7.2 (previous page): (a) The field-dependent effective range for the (f,mf) =

(1/2, 1/2) + (1/2,−1/2) channel of 6Li from coupled-channel calculations (red solid or light gray)

and as calculated from Eq. (7.2.1) (blue solid or dark gray). The zero-energy s-wave scattering

length is also shown (green dashed). (b) An expanded view of (a) showing the narrow resonance

at 543.40 G. (c) and (f) The quantity reffa
2
0 (black solid), which is a smoothly varying function of

magnetic field through the zero-crossing of a0 (green dashed) for both the wide resonance (c) and

the narrow resonance (f). (d) The quantity reffa
2
0 (black), which is parabolic as a function of a0

across the width of the wide resonance, except around the narrow resonance. The red dotted line

shows the parabola v + r0(a0 − aext)
2 fitted to the coupled-channel results, while the blue dotted

(upper) line shows the corresponding parabola from Eq. (7.2.2). (e) The function f(reff) of Eq.

(7.2.4) (cyan), with parameters appropriate for the wide resonance, which is constant across the

width of the wide resonance in a0 (green dashed) except around the narrow resonance. (g) the

quantity reffa
2
0 (black solid), which is parabolic as a function of a0 across the width of the narrow

resonance; the red dotted line shows the parabola v + r0(a0 − aext)
2 fitted to the coupled-channel

results. (h) The function f(reff) of Eq. (7.2.4) (cyan), with parameters appropriate for the narrow

resonance, which is constant across the width of the narrow resonance in a0 (green dashed).

the other narrow near 543.40 G (∆ = 0.10 G) [237]. The system is somewhat unusual

because the narrow resonance is close to the zero-crossing of the broad resonance. However,

as the spacing in magnetic field between the two features is several orders of magnitude

greater than the width of the narrow resonance, the overall behaviour of the two features

is still distinct.

The scattering length a(B) and effective range reff(B) for 6Li are shown in Figure 7.2(a)

between 200 and 1000 G. For the wide resonance, the effective range is a smooth function

of magnetic field except near the zero-crossing in a0(B) close to 527 G, where it diverges

to negative values. This may be contrasted with the behaviour of Gao’s formula (7.2.1),

also shown in Fig. 7.2, which diverges to positive values. The quantity reffa
2
0, shown in

Fig. 7.2(c) as a function of field, is continuous through the zero-crossing, but naturally

diverges at the resonance pole, where reff itself does not. As shown in Fig. 7.2(d), it is

close to parabolic as a function of a0, except close to the narrow resonance. However, the

parabola dips below zero between a0 = 183 and −96 bohr, accounting for the fact that

reff is negative in this region. The corresponding parabola from Gao’s formula,

reffa
2
0 ≈

(
Γ(1/4)4

6π2

)[
ā3 + ā(a0 − ā)2

]
, (7.2.2)

is also shown in Fig. 7.2(d). It is similar to the true parabola but is offset from it and is



7.2. Behaviour of the effective range near a Feshbach resonance 114

System ā (bohr) B0 (G) ∆ (G) abg (bohr) sres

6Li 29.88 832 −262 −1593 27

6Li 29.88 543.40 0.10 59.0 8.1 × 10−4

39K 61.77 744.93 −0.005 −33.4 6.2 × 10−4

133Cs 96.62 226.73 0.076 2062 0.19

System r0 (bohr) aext (bohr) v (bohr3) −2R∗ (bohr) reff,bg at a0 = abg

6Li 87 43 −1.7 × 106 −2.2 90

6Li −71000 60 −4.9 × 106 −74000 44

39K −190000 −34 2.2 × 106 −200000 2100

133Cs −810 2800 1.8 × 109 −1000 260

Table 7.1: Parameters of Eq. (7.2.4) that characterize reff in the vicinity of resonances of different

types.

positive everywhere, with a minimum value of ā3Γ(1/4)4/6π2 = 77840 bohr3 at a0 = ā.

The values of reffa
2
0 from coupled-channel calculations may be fitted to a parabola

reffa
2
0 = v + r0(a0 − aext)

2, (7.2.3)

with parameters given in Table 7.1. By construction, r0 is the value of reff at the resonance

pole. The quantity

f(reff) =
reffa

2
0

v + r0(a0 − aext)2
(7.2.4)

is almost constant across the whole width of the broad resonance, except close to the

narrow resonance, as shown in Fig. 7.2(e).

In the narrow-resonance region, the effective range varies very fast with magnetic

field even very close to the pole, as shown in Fig. 7.2(b). An expanded view of reffa
2
0 in

this region is shown in Fig. 7.2(g). It is clear that reffa
2
0 is actually double-valued as a

function of a0: the narrow resonance contributes a second near-parabolic feature, but it

has completely different parameters from the parabola for the broad resonance. We have

fitted a parabola of the same form to points away from the region around a0 = 59 bohr,

where the narrow resonance reaches its background scattering length and rejoins with the

wide resonance, and the resulting curve is shown in Fig. 7.2(g). The parameters of the

parabola for the narrow resonance, also given in Table 7.1, bear no resemblance to those

from Gao’s formula (7.2.2).

Petrov [239] and Bruun et al. [240] introduced a parameter R∗, defined as

R∗ =
~2

2µabg∆δµ
=

ā

sres
. (7.2.5)
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For narrow resonances, this is large and positive and is related to the effective range at

the pole by R∗ ≈ −r0/2. The values obtained from this expression are included in Table

7.1; it may be seen that R∗ is within about 4% of −r0/2 for the narrow resonance in 6Li,

but (as expected) bears no resemblance to it for the broad resonance.

To explore further the behaviour of the effective range around narrow resonances, we

have carried out additional calculations on the resonances at 744.93 G in the (f,mf ) =

(1,+1) + (1,+1) s-wave channel of 39K (designated aa) and at 226.73 G in the aa channel

of Cs. The 39K resonance is caused by an L = 0 bound state, whereas the Cs resonance

is caused by an L = 2 bound state. The quantity reffa
2
0 was again found to be close

to parabolic in each case, with parameters given in Table 7.1. It may be seen that r0

and v may have the same or different signs; when they are different, reff diverges at

the zero-crossing with the opposite sign to its value at the pole. For narrow resonances,

the position of the extremum in reffa
2
0, aext, is typically close to abg. This is consistent

with the expression given by Zinner and Thogerson [227] for reff in the vicinity of a

narrow resonance, reff = r0(1− abg/a0)2. However, this expression gives reff = 0 far from

resonance. If we add a “background” effective range reff,bg, this may be generalized to

reff = reff,bg + (r0 − reff,bg)

(
a0 − abg

a0

)2

. (7.2.6)

The resulting parabola for reffa
2
0 is of the form of Eq. (7.2.3), with

aext = abg(1− reff,bg/r0) (7.2.7a)

and

v = abgaextreff,bg. (7.2.7b)

For resonances that are not very narrow, this effect can make aext significantly different

from abg, as seen for the Cs resonance at 226.73 G in Table 7.1. For the isolated resonances

in 39K and Cs, Gao’s formula (7.2.1), evaluated for a0 = abg, gives reff,bg and hence v and

aext within 10% of the values in Table 7.1.

Using Gao’s formula (7.2.1) to define an reff,bg(B) which varies with magnetic field,

Eq. (7.2.6) agrees with that of Werner and Castin [241] and Gao [230] and the resulting
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parabola reffa
2
0 is of the form of Eq. (7.2.3) with

r0 = −2R∗ +
Γ(1/4)4

6π2
ā, (7.2.8a)

aext =
−2R∗abg

r0
− Γ(1/4)4

6π2

ā2

r0
, (7.2.8b)

and

v =

(
−2R∗a2

bg + 2
Γ(1/4)4

6π2
ā3

)
− a2

extr0. (7.2.8c)

We find reasonable agreement with our values in Table 7.1 to those for r0, aext and v

calculated via Eq. (7.2.8), however there are some discrepancies. As the values in Table

7.1 were fitted around the whole resonance there will be some error introduced in the

fitting due to the fact that the resonances are not completely isolated, but in fact overlap.

In particular we find discrepancies in the 6Li resonances which overlap each other. Eq.

(7.2.3), together with parameters from Eqs. (7.2.1), (7.2.5) and (7.2.8), thus provides a

useful approximate expression for reff in the vicinity of an isolated resonance that does

not require coupled-channel calculations.

7.3 Limitations of the effective-range expansion

In this Section, we assess the range of energies over which the effective-range expansion

provides an accurate representation of the energy-dependent scattering length. We con-

sider the same 4 resonances as in Section 7.2, at collision energies ranging from 1 nK

to 1 mK. For each resonance, we calculate the energy-dependent phase shift at multiple

magnetic fields around the zero-energy pole position. For resonances at the lowest atomic

threshold, the state responsible for the resonance is always bound on the low-field side of

the zero-energy resonance pole. We therefore calculate η(E) at one field just below the

pole and several fields above it.

Fig. 7.3 compares the energy-dependent phase shift directly from coupled-channels

calculations with that from the effective-range expansion, Eq. (7.1.2), using the accurate

(field-dependent) values of reff from the previous Section. The values of the effective range

at the specific fields shown are given in Table 7.2. Significant deviations can be seen for

energies on the order of 1 µK. For Cs at B = 226.80 G, for example, the effective-range

expansion is inadequate at energies above 200 nK, corresponding to E/Ē = 2 × 10−3.
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Figure 7.3: Energy dependence of the phase shift η(E) at magnetic fields around narrow reso-

nances in 6Li, 39K and 133Cs. Coupled-channels calculations (solid lines) give the actual variation.

The effective-range expansions (dotted lines) are given by Eq. (7.1.2), except for those at 543.48

G for 6Li, 744.925 G for 39K, and 226.80 G for 133Cs, which are close to zeroes in a0(B) and

are therefore calculated with the phase-shift form of Eq. (7.1.4b). The effective-range expansions

deviate substantially from the coupled-channels results at collision energies on the order of µK.
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Figure 7.3 (previous page): The MQDT approach of Section 7.4 (dashed lines) gives an accurate

representation of η(E) over the full range of collision energies. Top: The resonance at B0 =

543.40 G in the ab channel of 6Li; center: The resonance at B0 = 744.93 G in the aa channel of

39K; bottom: The resonance at B0 = 226.73 G in the aa channel of 133Cs.

B (G) a0(B) (bohr) reff (bohr)

6Li 543.39 456.0 −5.4 × 104

543.42 −362.5 −9.7 × 104

543.45 −75.3 −2.3 × 105

543.48 −20.8 −1.1 × 106

133Cs 226.7 7680.6 −290

226.8 −103.4 −4.6 × 105

226.9 1152.2 −420

227.0 1485.6 86

39K 744.925 -4.6 −7.0 × 107

744.935 −82.0 −6.6 × 104

744.940 −54.1 −2.7 × 104

744.950 −43.1 −8000

Table 7.2: Parameters for effective-range calculations. At each magnetic field, the zero-energy

scattering length is given along with the effective range as calculated using the effective-range

expansion.

On the high-field side of the pole, there is a quasibound state at low collision energy;

as the energy passes through this, the phase shift η increases by π, and there is a pole

in the energy-dependent phase shift a(B) when η(E) = π/2; the location of this feature

is not well captured by the effective-range expansion. This is particularly true for the

Cs resonance at 226.73 G, where the non-resonant part of the phase shift has a general

downwards trend as a function of energy.

We have also analysed the broad s-state resonance in 6Li at 832 G, which has sres �
1, and the results are shown in Fig. 7.4. In this case the effective-range expansion is

indistinguishable from the results from coupled-channels calculations.

7.4 MQDT approach to an energy-dependent phase shift

A more complete theory of the energy dependence of the phase shift may be formulated in

the framework of Multichannel Quantum Defect Theory (MQDT). Julienne and Gao [231]
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Figure 7.4: Energy dependence of the phase shift η(E) at magnetic fields around the broad

resonance in 6Li. The results of coupled-channels calculations, the effective-range expansion and

the MQDT approach are indistinguishable on this scale.
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Figure 7.5: The resonance at 226.73 G in the (f,mf ) = (3,+3) + (3,+3) channel of Cs. The

two-channel model (dashed lines) includes a bare bound state which crosses threshold at Bn and a

reference potential whose first bound level is at E−1. The bound states from the coupled-channels

calculations (solid lines) have have an avoided crossing with the resonance pole at B0.

have described a two-channel MQDT approach to resonant scattering of ultracold atoms,

combining the MQDT approach of Julienne and Mies [242,243] with the analytic van der

Waals theory of Gao [88,228,244,245]. A similar theory has been described by Gao [246],

but in quite different notation.

For an isolated resonance, the complex set of many coupled channels can be approxi-

mated by a two-channel model where the closed channel is represented by a ‘bare’ bound
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state with energy En and the open channel by a ‘bare’ continuum state characterized by

the background scattering length of the resonance. The key quantities are illustrated in

Fig. 7.5 for the 133Cs resonance near 226.73 G. The energy of the bare bound state with

respect to threshold is En = δµ(B − Bn). The phase shift at fixed magnetic field follows

the Breit-Wigner form, η(E) = ηbg +ηres(E), where ηbg is the background component and

ηres is the resonant component,

ηres(E) = − tan−1

(
1
2Γn

E − E0

)
. (7.4.1)

Here Γn is the resonance width and the resonance position E0 differs from En by a shift

δEn, with E0 = En + δEn. Near threshold, ηbg(E), Γn(E) and δEn(E) are strongly

energy-dependent and their functional forms may be obtained from MQDT.

MQDT connects the energy-insensitive short-range potential to the energy-sensitive

long-range part of the potential, using the solutions for a reference potential that closely

resembles the true potential at long range. The solutions for the reference potential are

given at short range by WKB-normalized wavefunctions and at long range by asymptotic

Bessel functions. However, at energies near threshold the WKB description breaks down at

long range and the short-range solutions are connected to the long-range solutions using the

MQDT functions C(E) and tanλ(E). C(E) describes the breakdown in the normalization

of the WKB wavefunction at long range and scales the short-range solutions to match the

long-range ones. In addition the regular and irregular WKB solutions propagated out of

the short-range region lose their phase relationship, and this loss is corrected by a phase

shift given by tanλ(E) [87]. At sufficiently high energies, the WKB wavefunctions are

valid everywhere and C(E)→ 1 and tanλ(E)→ 0.

The threshold behaviour of the resonance width and shift may be written in terms of

the MQDT functions, Cbg(E) and tanλbg(E) [242,243],

1

2
Γn(E) =

1

2
Γ̄nCbg(E)−2; (7.4.2a)

δEn(E) = −1

2
Γ̄n tanλbg(E). (7.4.2b)

The full expression for the phase shift near a resonance is then

η(E,B) = ηbg(E) + ηres(E,B), (7.4.3)

where

ηres(E,B) = − tan−1

(
1
2 Γ̄nCbg(E)−2

E − δµ(B −Bn) + 1
2 Γ̄n tanλbg(E)

)
. (7.4.4)
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Figure 7.6: (a) The analytical functions that make the up the Zc-matrix for the s-wave case

as given in [88, 228, 244, 245], these functions vary only with scaled energy. (b) The function

Kl(E), (c) the function tanλ(E) and (d) the function C−2(E) for Cs, with a variety of different

background scattering lengths. The behaviour of these functions is determined by the reduced

mass, C6 co-efficient and the background scattering length.
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In the present work we follow Gao’s work on analytical van der Waals theory [88,

228, 244, 245, 247, 248] and choose reference functions that have the correct long-range

C6 coefficient and directly reproduce the background scattering length of the resonance.

The background phase shift ηbg(E) and the MQDT functions C−2
bg (E) and tanλbg(E) are

then determined analytically by Gao’s theory once the background scattering length abg

is specified. The expression for ηbg(E) is given by [88],

Kl(E) = tan ηbg(E) = (KcZcgg − Zcfg)(Zcff −KcZcgf )−1. (7.4.5)

Kc is a short-range parameter which results from the matching of the short-range and long-

range solutions. Within this model it can be considered to be approximately constant in

the region around threshold where its value is proportional to the background scattering

length [228]. The Zc(E) functions are analytical functions of energy which depend only on

the scaled energy of the system, shown in Fig. 7.6. The Z functions make up the Z-matrix

which is defined as the transformation between the long-range energy normalised solutions

and the short-range solutions with energy-independent normalisation [247]. Similar ex-

pressions for C−2
bg (E) and tanλbg(E) have been derived and implemented numerically by

Gao [249]

tanλ(E) =
(Zcff −KcZcgf )(Zcgf +KcZcff ) + (Zcfg −KcZcgg)(Z

c
gg +KcZcfg)

(Zcff −KcZcgf )(Zcff −KcZcgf ) + (Zcfg −KcZcgg)(Z
c
fg −KcZcgg)

(7.4.6a)

C−2
bg (E) =

1 + (Kc)2

(Zcff −KcZcgf )(Zcff −KcZcgf ) + (Zcfg −KcZcgg)(Z
c
fg −KcZcgg)

. (7.4.6b)

The energy dependence of ηbg(E), C−2
bg (E) and tanλbg(E) for 133Cs are shown in Fig.

7.6 for a variety of different abg. The threshold behaviour (accurate for kabg � 1) is

C−2
bg (E)→ kā(1 + (a− r)2) and tanλbg → 1− r as E → 0 [231], where r = abg/ā. In this

notation, 1
2 Γ̄n is related to the magnetic resonance width ∆ by

1

2
Γ̄n =

r

1 + (1− r)2
δµ∆. (7.4.7)

To implement Eq. (7.4.4), we first carry out coupled-channel calculations of a(B) and

(if necessary) extrapolate to zero energy. We then fit the zero-energy scattering length

to Eq. (7.1.1) to find the resonance position B0, magnetic field width ∆ and local abg.

Along with the van der Waals coefficient C6 and the reduced mass µ, this allows us to

find the MQDT parameters C−2
bg (E) and tanλbg(E) using Gao’s analytic van der Waals

routines [249]. The shift between Bn, the crossing of the bare bound state, and the
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System µ (mu) Ē (mK) ā (bohr) C6 (Ehbohr6) B0 (G) Bn (G) δµ (µB)

6Li 3.0076 32.3 29.88 1393.39 543.4 543.5 1.97

39K 19.4819 1.17 61.77 3926.9 745.93 744.93 3.95

133Cs 66.4527 0.14 96.62 6890.48 226.73 226.81 0.24

Table 7.3: The resonance parameters required for two-channel formula, along with those in Table

7.1.

coupled-channels resonance pole B0 is

B0 −Bn = ∆r

(
1− r

1 + (1− r)2

)
. (7.4.8)

Lastly, we need δµ, the difference between the magnetic moments of the bare bound state

and the separated atoms. To obtain this, we carry out coupled-channel calculations on

the near-threshold bound states of the system, using the approach described in Ref. [123].

Such calculations give the energies of real bound states rather than bare states, but it is

usually straightforward to find a region of magnetic field where the energies are only weakly

perturbed by avoided crossings, and to obtain magnetic moments by finite differences in

this region. If necessary, pairs of crossing states could be deperturbed to find the properties

of the underlying bare states, but this was not necessary in the present work. Typically

2-3 significant figures were found to be sufficient in our calculations.

7.5 Effectiveness of the MQDT formula

The MQDT formula for the energy-dependent phase shift, Eq. (7.4.4), was applied to the

same set of narrow resonances discussed in Section 7.3. The parameters obtained for the

MQDT approach are given in Table 7.3. Figure 7.3 compares the MQDT results with

those obtained directly from coupled-channel calculations at a variety of fields around

each resonance. There is excellent agreement in all cases, and MQDT succeeds in repro-

ducing the complicated variation of the phase shift with both energy and field (which

the effective-range expansion was unable to do). The MQDT approach also gives results

indistinguishable from coupled-channel calculations for the broad resonance in 6Li, shown

in Fig. 7.4, although in this case the effective-range expansion is also successful, provided

the field-dependence of reff is taken from coupled-channel calculations and not from an

approximate formula.

The MQDT approach can be used to generate a smooth and accurate representation
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Figure 7.7: Contour plot of sin2 η(E,B) for E > 0 where E = 0 is the energy of the two separated

atoms. (Left) around the resonance at B0 = 226.73 G in the (f,mf ) = (3,+3) + (3,+3) channel

of 133Cs and (right) around the resonance at B0 = 543.40 G in the (1/2,+1/2) + (1/2,−1/2)

channel of 6Li. η(E,B) is calculated using coupled-channel calculations (top), the effective-range

expansion, Eq. (7.1.2), (middle), and the MQDT approach, Eq. (7.4.3), (bottom).
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Figure 7.8: Contour plot of sin2 η(E,B) for E > 0 around the resonance at B0 = 554 G in

the (f,mf ) = (3,+3) + (3,+3) channel of 133Cs, where E = 0 is the energy of the two separated

atoms. η(E,B) is calculated using coupled-channel calculations (left) and the MQDT approach, Eq.

(7.4.3), (right). Around the pole of the resonance where the value of abg fitted by the pole formula

is roughly accurate then the MQDT approach works well, towards the edges of the resonance where

the value of abg is shifted the formula breaks down.

of the resonance with magnetic field both near threshold and at higher energies. Figure

7.7 shows contour plots of sin2 η as a function of both magnetic field and energy over the

width of the Cs resonance at 226.73 G and the Li resonance at 543.40 G, as obtained from

coupled-channel calculations, from the effective range expansion using reff as given by the

parabola determined by Eqs. (7.2.3) and from the MQDT approach. The states that arise

in the two-channel model for this resonance are shown in Fig. 7.5. The shift from B0 to Bn

between the dressed and bare state pictures can be clearly seen. It may be seen that the

MQDT approach reproduces the coupled-channel results very accurately over the whole

range of energy and field, while the effective-range expansion does not. In particular, the

peak of the resonance, where sin2 η = 1 and a(B) = ∞, follows a quite incorrect path as

a function of energy in the effective-range expansion.

All the calculations described above were carried out with MQDT functions that rep-

resent the ‘bare’ open channel derived from the local abg of the resonance, even if it is

not the overall abg of the system. This approach works well for the examples discussed,

but it is limited to resonances where abg remains reasonably constant over the width of

the resonance. This is true for most resonances with sres � 1, unless they sit very close
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to the pole of a much wider resonance; under such circumstances, however, there can be

a substantial variation in abg over the width of the resonance. As an example of this we

consider the resonance at B0 = 554 G in the aa channel of 133Cs, which is close to the

pole of a broad resonance at 548 G. In Fig. 7.8 the energy-dependent phase shift from

coupled-channel calculations is compared to the results of the MQDT approach with fixed

abg. Whilst the MQDT approximation is good at fields close to the pole of the resonance,

it quickly starts to fail at fields further away. This is because the two resonances need to

be treated together as a pair of interfering, overlapping resonances [179] instead of treating

them as independent. In such a case, the assumption of a constant background scattering

length is valid only close to the resonance pole.

7.6 Conclusions

An accurate description of the energy dependence of the scattering phase shift and hence

the scattering length is crucial to many experiments on few-body phenomena at finite

temperatures. We have explored the behaviour of the commonly used effective-range

expansion, and shown that is reasonably good at describing the energy dependence around

broad resonances and away from zero-crossings in the scattering length. However, around

narrow resonances the effective-range expansion can fail badly, even when the full field-

dependence of the effective range is taken from coupled-channel calculations.

Gao [228] and Flambaum et al. [229] have developed an approximate formula relating

the effective range reff to the scattering length. We have shown that this formula is

reasonably accurate near the pole of a broad resonance, but even for broad resonances it

breaks down badly near zero-crossings, and may give an effective range of the wrong sign.

However, it is possible to write a modified form of the formula (with a different parabolic

denominator) that gives a good representation of the effective range across the whole width

of the resonance. For narrow resonances, an analogous parabolic form may still be used,

but its parameters are completely different from those of Refs. [228] and [229].

To remedy the deficiencies of the effective-range expansion around narrow resonances,

we advocate the use of an MQDT approach that fully describes the effect of a resonance

as a function of both field and energy. This method entails representing the resonance

in a two-channel model in which a bare bound state interacts with a bare continuum

channel. The parameters of the model are obtained from coupled-channel calculations on

the bound states and scattering length of the system. This MQDT approach successfully
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characterizes the behaviour of the resonance for both broad and narrow resonances. It

can be used to include the role of collision at finite energy, correct for zero-point energy

in lattices, and to evaluate thermodynamic properties of cold atoms and molecules.

The MQDT approach described here is accurate only for individual isolated resonances

that have a reasonably constant background scattering term across their entire width. It is

not uncommon to find cases of overlapping resonances where treating individual resonances

as isolated can break down to a lesser or greater extent. A full treatment of overlapping

resonances would require a multi-channel treatment such as the generalized MQDT model

presented by Jachymski and Julienne [179]. The energy-dependent scattering length of

this model should be capable of describing the complicated variation of the scattering

phase shift with energy E and magnetic field B even when there are several resonances

that overlap within their widths.

Our analytic expressions for the the near-threshold energy-dependent scattering length

could benefit a number of active cold atom research areas mentioned in Sec. 7.1, since ener-

gies in the µK range are common with cold atom phenomena. This could be especially im-

portant for studies of optical lattice structures, where the finite zero-point or band energy

can lead to significant corrections to the energy of confinement-induced resonances [225]

and accounting for it requires the scattering length at finite energy [250, 251]. Accurate

finite-energy corrections to the phase shift could also be significant for the equation of

state of cold fermions [252] and for understanding few-body phenomena [220,222].



Chapter 8

Radio-Frequency dressing of

Feshbach resonances

Magnetic fields are often used to manipulate and control the behaviour of atoms and

molecules. The prior chapters of this Thesis have dealt with the use of static fields and

their effects on atomic interactions; however, oscillating fields such as radio-frequency

(rf) fields can also be used to control atomic interactions. Radio-frequency fields have

already been demonstrated to be of great use in ultracold gases as a probe of bound-state

energies and as a method for associating and dissociating molecules [137, 253–256]. Both

radio-frequency and microwave fields have also been used to create trapping potentials

and to dress single species traps [257–259]. They have also been used to associate Efimov

trimers [260,261] and to enhance interactions between atoms in different lattice sites [262].

It has also been shown both theoretically and experimentally that radio-frequency

fields can be used to create and manipulate Feshbach resonances [263–267], and to modify

the background scattering length of a species [266, 268]. As discussed in Ref. [266] the

coupling can occur through a variety of different mechanisms. The rf dressing couples

additional channels to the incoming scattering channel which can lead to the creation

of new resonances; it can also couple bound states together modifying their interaction

with the incoming scattering channel; thirdly it causes avoided crossings in the atomic

thresholds which modify the incoming channel and can cause significant changes in the

background scattering length without a resonance existing.

The field has progressed from dealing with the dressing of atomic states to calcula-

tions on the interaction of molecules in radio-frequency and microwave fields. Microwave

fields can be used as traps for cold polar molecules [269] and as a means of modifying

128
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and controlling molecular collisions [270–273]. In the following Chapter we will discuss

the implementation of rf fields in molscat and the results obtained for rf dressing of the

s-wave (f,mf ) = (2,+2) + (3,+3) channel of 85RbCs.

8.1 Collision Hamiltonian in a static magnetic field and

radio-frequency field

The Hamiltonian for the interaction of two atoms in a combined static magnetic field Bz

and an oscillating radio-frequency (rf) field of frequency ωrf is

Ĥ =
~2

2µ

[
− r−1 d

2

dr2
r +

L̂2

r2

]
+ Ĥ1 + Ĥ2 + V̂ (r) + Ĥωrf

. (8.1.1)

The monomer hamiltonians, Ĥ1 and Ĥ2, are

Ĥi = ζiîi · ŝi + (geµBŝiz + gnµBîiz)Bz + Ĥi,rf , (8.1.2)

where i = 1, 2 and Ĥi,rf is the interaction between atom i and the rf field. The rf-field

term is given by

Ĥωrf
= ~ωrf(a

†a−N), (8.1.3)

where ωrf is the frequency of the applied field, N is the initial number of photons and

Ĥwrf
|N + n〉 = n~ωrf where n represents the change in photon number from N . Following

Refs. [259, 274] and [275], the interaction of the atom with the rf field is given by the

coupling of the magnetic-dipole moment of the atom with the oscillating field such that

Ĥi,rf = −µi ·Brf . (8.1.4)

The rf field in quantised notation can be written as

Brf = λ
(
εa+ εa†

)
, (8.1.5)

where λ = Bosc/
√

2N , and ε is the polarisation vector of the rf field. Rewriting ε ·µi, with

µ = geµBŝ+ gnµBî, gives Ĥi,rf for each polarisation:

Ĥi,σ+ = λgeµB(ŝ+1â+ ŝ−1â
†) + gnµB(̂i+1â+ î−1â

†) (8.1.6)

Ĥi,σ− = λgeµB(ŝ−1â+ ŝ+1â
†) + gnµB(̂i−1â+ î+1â

†) (8.1.7)

Ĥi,σx =
λ√
2
geµB(ŝ+1 − ŝ−1)(â+ â†) + gnµB(̂i+1 − î−1)(â+ â†). (8.1.8)
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Figure 8.1: The energy levels of a spin-1/2 atom in a static magnetic field of frequency ω0 and

a circularly polarised photon field of frequency ωrf , with a background photon number N0.

8.2 A spin-1/2 system

In a spin-1/2 system, consisting of a single atom with s = 1/2 and i = 0, circularly

polarised photons only couple together states with the same ms +N value. Each unique

ms +N value corresponds to a two-dimensional subspace consisting of the states,

|ψa〉 = |−1/2, N + 1〉 |ψb〉 = |+1/2, N〉 .

Applying the asymptotic part of Eq. (8.1.1), Ĥ = ω0ŝz+ωrfa
†a+λ/

√
2(aŝ+ +a†ŝ−) where

ω0 ∝ Bz, on the subspace gives

〈ψa| Ĥ |ψa〉 = (N + 1)ωrf −
ω0

2
,

〈ψb| Ĥ |ψb〉 = Nωrf +
ω0

2
,

〈ψa| Ĥ |ψb〉 =
λ√
2

√
N,

〈ψb| Ĥ |ψa〉 =
λ√
2

√
N + 1.

As N � 1 then we can make the approximation 〈ψa| Ĥ |ψb〉 = 〈ψb| Ĥ |ψa〉 = λ/
√

2
√
N̄ =

Ω/2, where Ω is the Rabi frequency, determined from the dipole moment of the ab tran-
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Figure 8.2: The energy levels of a spin-1/2 atom in a static magnetic field of frequency ω0 and

a linearly polarised photon field of frequency ωrf , with a background photon number N0.

sition. Diagonalising the subspace gives eigenvalues,

Ea = (N + 1/2)ωrf +

√(
ωrf − ω0

2

)2

+

(
Ω

2

)2

Eb = (N + 1/2)ωrf −
√(

ωrf − ω0

2

)2

+

(
Ω

2

)2

.

The energy levels are shown in Fig 8.1. The unperturbed energy levels (dashed lines) follow

linear paths, while the dressed-state energy levels (solid lines) form sets of hyperbolas

which head asymptotically towards the unperturbed levels.

In the case of circularly polarised light there is an avoided crossing between the states

centred at ω0 = ωrf ; but there are no crossings between the states at higher values of

ω0, as all other crossings correspond to states of differing ms + N values. In contrast, a

similar diagram for the dressing of a spin-1/2 system by linearly polarised (σx) photons

shows a series of crossings and avoided crossings at αωrf = ω0 for even and odd values of

α respectively, Fig. 8.2. These additional crossings are the manifestation of the coupling

terms that exist in the linearly polarised photon case between 〈+1/2, N | Ĥ |−1/2, N ± 1〉 .
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8.3 Building an rf-dressed basis set

Figure 8.3: Visualisation of the rf coupling from an initial state (n = 0,MF = Mtot) (yellow)

for a variety of different polarisations: the blue arrows and squares represent coupling due to σ+

polarisation; the red arrows and squares represent coupling due to σ− polarisation; all red, blue

and grey arrows and squares represent couplings arising from σx polarisation. The white squares

indicate states that will never be coupled as for all polarisations considered only states where

n+ (MF −Mtot) is even can be coupled.

The rf field drives transitions between the atomic Zeeman states, which leads to cou-

pling between the states, and increases the number of channels that must be included

in a full scattering calculation. The character of the states that are coupled depends on

the polarisation and propagation of the rf field. In the following discussion, we consider

an rf field which is propagating in the same direction, z, as the static magnetic field; as

such, we conserve the projection of the total angular momentum along the z-axis, Mtot,

and consider three different types of polarisation σ+, σ− and σx. The circularly polarised

photons, σ±, couple in states of differing angular momentum such that MF ± n = Mtot

with the sign corresponding to the same sign as the polarisation. In the case of linearly

polarised, σx, photons, as σx can be written as a superposition of σ+ and σ−, then the

change in MF cannot be described by n alone as only the parity η(MF , n) = (−)Mtot+1/2+n

is conserved. The couplings arising from each polarisation are shown in Fig 8.3, as well
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as the MF block that each includes. For σx polarisation a lower-energy channel is always

coupled in by the rf field giving rise to loss via inelastic collisions from the system; however,

for σ± polarisations it is possible to pick an incoming channel of the system such that no

lower energy channels are coupled by the rf field, due to the constraints on the change in

MF.

We construct the basis set of rf-dressed channels in the fully decoupled form and

represent the change in the number of photons from the initial state with n. Depending

on the atomic system and the polarisation of the rf field the number of channels in the

basis set can be infinite. In practice we limit the basis set to include 2n+ 1 photon states,

which results in converged calculations for all systems considered.

The Hamiltonian given in Eq. (8.1.1) has two additional terms compared to that of the

static field Hamiltonian Eq. (3.1.1). Applying the basis set |ms,a,mi,a,ms,b,mi,b〉|L,ML〉|n〉
to the terms that both Hamiltonians have in common gives the same results as in Eqs.

(3.2.2)–(3.2.6) but with an additional factor of δn,n′ in each one. The matrix elements of

the rf field term, Ĥωrf
, are

〈ms,ami,ams,bmi,b, LML, n|Ĥωrf
|m′s,am′i,am′s,bm′i,b, L′M ′L, n′〉 ≡

ωnδn,n′δL,L′δmL,M
′
L
δms,a,m′s,aδms,b,m

′
s,b
δmi,a,m′i,a

δmi,b,m
′
i,b
.

(8.3.1)

The matrix elements of the Ĥi,rf are given for atom a = i for a given polarisation σ

〈ms,ami,ams,bmi,b, LML, n|Ĥi,rf |m′s,am′i,am′s,bm′i,b, L′M ′L, n′〉 ≡

− Bosc√
2N

(geµB 〈ms,ami,ams,bmi,b, LML, n|ŝσâ+ ŝ∗σâ
† |m′s,am′i,am′s,bm′i,b, L′M ′L, n′〉

+gnµB 〈ms,ami,ams,bmi,b, LML, n|̂iσâ+ î∗σâ
† |m′s,am′i,am′s,bm′i,b, L′M ′L, n′〉)

(8.3.2)

The photon creation and annihilation operator terms, 〈n| â† |n′〉 and 〈n| â |n′〉, give ex-

pressions of δn,n′+1

√
N + n′ + 1 and δn,n′−1

√
N + n′, respectively; as N � 1 we make the

approximation
√
N + n′ + 1 ≈

√
N + n′ ≈

√
N . The atomic spin operators each have

matrix elements of the form

〈j,mj |ĵq |j′,m′j〉 =

δj,j′δmj ,m′j+q(−1)q+m
′
j+j′−1

√
j(j + 1)(2j + 1)

 j′ j 1

−(mj + q) mj q

, (8.3.3)

where q = +1, 0,−1. The operators can be re-written as raising and lowering operators,

rather than in their spherical tensor form, ĵ+1 = −ĵ+/
√

2 and ĵ−1 = ĵ−/
√

2, and then
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their matrix elements are given more simply as

=
√
j(j + 1)−mj′mj

δmj ,m′j±1. (8.3.4)

In the case of homonuclear scattering the basis set consists of the symmetrised functions

|ms,a,mi,a,ms,b,mi,b〉|L,ML〉|N〉 ± (−1)L|ms,a,mi,a,ms,b,mi,b〉|L,ML〉|N〉√
2

, (8.3.5)

with the + sign for bosons and the − sign for fermions. Similar matrix elements can also

be derived by treating the rf dressing in a semi-classical manner and using Floquet theory

to derive the required terms. Examples of these derivations can be found in Refs. [276,277];

however, the overall result is the same using either a semi-classical or quantised description.

The asymptotic matrix elements of an example case of 87Rb in the (f,mf ) = (1,+1)+

(1,−1) channel dressed with σ+ polarised photons of frequency ωrf = 100 MHz, Brf = 1 G,

and Bz = 10 G, are shown in Fig. 8.4. The thick black lines delineate changes in photon

number, n. On the main diagonal each matrix element has a value of at least n~ω. The

main diagonal blocks correspond to blocks of a conserved MF and therefore include the

appropriate hyperfine coupling terms. The elements, in these blocks, with the largest

magnitude correspond to the hyperfine couplings ζhfsî · ŝ, as ζhfs is on the order of GHz.

The other couplings in these blocks correspond to the static magnetic field terms gjµBĵBz,

where j is s or i, which also appear on the main diagonal but are smaller in magnitude

than the other terms. The off-diagonal blocks contain the matrix elements due to Ĥi,rf .

The larger magnitude elements correspond to those from the atomic spin ŝ operator and

those smaller elements to î, as ge � gn.

8.4 RF-induced resonances in RbCs

In the initial investigations of 85RbCs, as detailed in Section 5.1.1, the loss features mea-

sured experimentally around 230 G and 245 G were found to have been induced by the

off-set in frequency of the dipole-trap lasers and could be reproduced using an applied rf

field. This situation is not one which we can model exactly using the current setup for

rf fields as the rf field in this instance was applied orthogonally to the static magnetic

field. However, we investigate a similar magnetic field range for resonances caused by an

applied rf field which propagates in the same direction as the static magnetic field and

find resonances induced by both σ+ and σ− polarised photons.
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Figure 8.4: Asymptotic matrix elements of the rf-dressed Hamiltonian Eq. (8.1.1) for 87Rb in

the (f,mf ) = (1,+1) + (1,−1) channel with σ+ polarised photons, Brf = 1 G, ωrf = 100 MHz and

Bz = 10 G. The diagonal blocks enclosed in thick black lines show the photon number blocks. The

colour of each matrix element corresponds to its absolute magnitude.

The incoming scattering channel in the ground state of 85RbCs has a total angular

momentum Mtot = 5. In the following examples we consider only L = 0 (s-wave) basis

functions and so Mtot = MF in the absence of photons. This means that absorption or

emission of a single photon couples in states with MF = 4 and/or 6. Fig. 8.5 shows the

bound-state levels for 85RbCs with MF = 4, 5 and 6. Each of the energy levels is shown

with respect to the energy of the MF = 5 threshold. The threshold for each MF value is

given by the dotted lines of the same colour as the bound states; the threshold for MF = 6

is not shown as it occurs around 4000 MHz. Dashed horizontal lines mark the change in

energy from the threshold caused by 50 and 100 MHz photons. From these lines we can

see that, for a σ+ polarised field, a resonance is expected around 198 G for an applied

field of ωrf = 50 MHz and around 216 G for an applied field of ωrf = 100 MHz. For a σ−

polarised field a resonance is expected around 220 G for an applied field of ωrf = 50 MHz
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Figure 8.5: Bound-state energy levels for 85RbCs with L = 0 and MF = 4 (red), 5 (blue) and

6 (green). The states are plotted with respect to the threshold energy level of the incoming s-

wave (f,mf ) = (2,+2) + (3,+3) channel. The thresholds of each MF is given by the dotted line

of corresponding colour; the threshold for MF = 6 is not shown as it occurs around 4000 MHz.

Dashed horizontal lines mark the energy transitions that would occur with 50 or 100 MHz photons.

and around 240 G a resonance with a quasi-bound state above the MF = 4 threshold will

occur for an applied field of ωrf = 100 MHz.

In performing molscat calculations in the rf-dressed basis the threshold should be

specified as the energy of the desired incoming channel with n = 0 or N0 photons. This

is close to, but not always exactly the same as, the energy of the undressed channel. To

find the energy and position of the incoming dressed channel the asymptotic energy levels

of the rf-field-dressed Hamiltonian, Eq. (8.1.1), are calculated for 85RbCs. The energy

levels are shown in Fig. 8.6; the levels are calculated with respect to the energy of the

undressed (f,mf ) = (2, 2) + (3, 3) channel, and only the levels from the lowest hyperfine

threshold are shown. This example is calculated using a σx polarised rf field, propagating
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in the same direction as the static field, with ωrf = 50 MHz and Bosc = 5 G and for up

to n = ±3 photons. The line which appears to be horizontal at 0 MHz corresponds to
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Figure 8.6: Asymptotic energy levels of 85RbCs with a σx polarised applied rf field, propagating

in the same direction as the static field, with ωrf = 60 MHz and Bosc = 5 G. A series of avoided

crossings occur around 250 G.

the (2, 2) + (3, 3) channel dressed with n = 0 photons; unlike the undressed channel it

has avoided crossings with some of the states that cross it. These avoided crossings in the

threshold can lead to changes in the background scattering length [266] and also mean that

particular care has to be taken with calculations to guarantee that the correct threshold

is being used. The asymptotic energy levels at zero field show the (2n + 1) manifolds,

of the hyperfine threshold with each possible n value, separated by 60 MHz. Only levels

which correspond to Mtot = 5 are allowed so for each n a different number of MF states

appear. These states have crossings and avoided crossings at higher field with manifolds

corresponding to different n, the strength of which is controlled by Bosc.

Using a σ− polarised rf field with Bosc = 5 G and varying ωrf between 120 and 140 MHz

a resonance is found which, based on Fig. 8.5, is induced by coupling to the MF = 4 state.
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Figure 8.7: Resonance caused by σ− polarised rf field in the s-wave (f,mf ) = (2,+2) + (3,+3)

channel of 85RbCs. The rf field is propagating in the same direction as the static field and has

a coupling strength Bosc =5 G. The frequency of the applied field is varied between ωrf = 120

and 140 MHz (coloured); at ωrf = 125 MHz the scattering length for a σx polarised rf field is also

shown (black dotted).

In Fig. 8.7 the resonance moves to higher field with increasing ωrf , as expected. The

resonance is strongly decayed, as there are multiple lower-energy channels coupled to the

incoming channel which give rise to inelastic losses. The value of ares for the resonance

decreases with increasing ωrf . The resonance length ares provides a means of controlling

the scattering length which will change depending on the value of ωrf . In this instance

if ωrf becomes small enough (below ∼ 80 MHz) then the incoming channel becomes the

lowest-energy channel allowed and the resonance is no longer decayed; in this case there

will be no inelastic losses and so Kloss = 0. A single case of σx polarisation is also shown

in Fig. 8.7 for ωrf = 125 MHz. As σx polarisation couples in more states it is possible

that its Kloss could deviate from that of σ− polarisation, but in this case there is no other
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Figure 8.8: Resonance caused by σ+ polarised rf field in the s-wave (f,mf ) = (2,+2) + (3,+3)

channel of 85RbCs. The rf field is propagating in the same direction as the static field and has a

coupling strength Bosc = 5 G. The frequency of the applied field is varied between ωrf = 75 and

125 MHz (coloured); at ωrf = 125 MHz the scattering length for a σx polarised rf field is also

shown (black dotted).

coupling near enough to cause a visible difference.

An additional resonance is found at slightly lower fields, shown in Fig. 8.8, using a σ+

polarised rf field with Bosc = 5 G and varying ωrf between 75 and 125 MHz. Based on

Fig. 8.5 this resonance is caused by coupling to the MF = 6 state. In this case the σ+

polarisation does not couple to any lower-energy channels and so there are no inelastic

losses involved. The bound state that causes the resonance is roughly linear in the region

observed and so varying ωrf has little effect on anything other than the position of the

resonance. The effect of σx polarisation is also shown for Bosc = 5 G and ωrf = 125 MHz;

the σx polarisation does couple in lower energy channels and therefore the resonance in

this case is a decaying resonance, there is also a resonance that appears due to higher-order
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coupling around 214 G.

The width of the resonance can be significantly varied by changing the value of the

coupling strength Bosc. In Fig. 8.9 four different values of coupling strength are compared.

When Bosc = 0 G then no coupling occurs and the resonance does not exist; as Bosc

increases so does the width of the resonance. As the resonance is caused by a single

transition to a bound state we expect the strength Γ and therefore the width ∆ of the

resonance to scale as B2
osc, and this relationship can indeed be seen in Fig. 8.9. The

resonance position B0 also shifts with increasing Bosc as the increased coupling between

the bound states perturbs the levels which shifts the crossing between the bound state

and threshold.
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Figure 8.9: Resonance caused by σ+ polarised rf field in the s-wave (f,mf ) = (2,+2) + (3,+3)

channel of 85RbCs. The rf field is propagating in the same direction as the static field and has a

frequency ωrf = 100 MHz. The coupling strength of the applied field is varied between Bosc = 0

and 10 G.
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We have shown that Feshbach resonances can be induced using an rf field in conjunc-

tion with a static magnetic field in the case of 85RbCs and that these resonances have

properties such as ares, Kloss, and ∆, as defined in Chapter 2, which can be controlled by

changing the coupling strength and frequency of the applied rf field. These type of res-

onances have previously been calculated for homonuclear systems in Refs. [266, 267, 278],

and demonstrated experimentally in Ref. [279]. In heteronuclear systems there can be an

additional effect from an rf-electric-field component, which interacts with the instanta-

neous dipole moment of the molecule, which we have not considered here [265] but may be

important in developing a complete picture of behaviour at each resonance. As research

in this field progresses, many different combinations of external fields, both magnetic and

electric, will be used to manipulate and control the atoms and molecules that are trapped.

A discussion of the future development of this work, towards the control of molecular

collisions using external fields, is presented in the following Chapter.



Chapter 9

Conclusions

In this Thesis scattering and bound-state calculations on alkali-metal mixtures of rubid-

ium, potassium and cesium have been presented. The Feshbach resonances detailed in

these calculations can be used to create samples of ultracold molecules, via magnetoasso-

ciation. In the case of heteronuclear mixturesm ultracold polar molecules can be created

which are of great interest as they provide numerous new and exciting avenues of re-

search. Ultracold polar molecules have permanent electric dipole moments which give rise

to anisotropic, long-range dipole-dipole interactions. These dipole-dipole interactions can

operate over a larger range then optical lattice spacings and could be used in quantum

processing applications and to create novel quantum phases.

Homonuclear Scattering

In Chapter 4 we presented the results of scattering calculations on various states of 85Rb.

Coupled-channels scattering calculations were used to predict Feshbach resonances in both

the (f,mf ) = (2,−2) + (2,−2) channel (designated ee), and (f,mf ) = (2,+2) + (2,+2)

channel (designated aa). In the ee channel 18 resonances were found. As inelastic scat-

tering can occur in this channel, some of the resonances are strongly decayed. Of the 18

resonances found 11 were pole-like and their positions and widths were calculated. Nine

of the resonances were confirmed experimentally in Ref. [72]. Two of the resonances found

are broad resonances which could be used to tune the scattering length to values which

are acceptable for evaporative cooling, thus providing regions where BECs can be created.

The lower-field resonance at 155 G has previously been used for this purpose [125,148] but

we have found that there is a higher-field resonance at 532 G which could also be used. In

142
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the aa channel 12 resonances are predicted and their positions and widths were calculated.

Seven of these resonance were confirmed experimentally in Ref. [72]. One of the resonances

found in the aa channel is a broad resonance which may be used to tune the scattering

length to modest positive values, improving the evaporation efficiency and offering the

prospect of BEC formation directly in the absolute ground state. The mixed-state scat-

tering lengths of the (fRb, fRb) = (2, 3) hyperfine manifold were calculated to find more

wide tunable resonances. A resonance in the mixed spin channel (f,mf ) = (2,+2)+(3,+3)

was also confirmed experimentally in Ref. [72]. In addition we presented an example of

a mixed-state scattering length for the (2,+2) + (3,+2) channel, which has the requisite

properties to be used in the proposal of Billam et al. [74] to create mesoscopic entangled

states from soliton collisions.

The scattering properties of 87Rb and Cs are also presented as it is important to have a

full understanding of the intraspecies behaviour of the components used in a heteronuclear

mixture in order to optimise molecule formation. Once the properties of homonuclear

mixtures had been determined we moved on to calculating the scattering properties of

heteronuclear mixtures.

Heteronuclear Scattering

The motivation for the creation of ultracold polar molecules was discussed in Chapter 1.

In Chapter 5 we present the results of scattering calculations on mixtures of Rb and Cs,

and K and Cs. The scattering results show that all isotopologues of RbCs and KCs have

a rich Feshbach structure in an experimentally accessible magnetic-field range between 0

and 1000 G. Furthermore we have analysed the bound states responsible for the resonances

and detailed their behaviour below the collision threshold.

In 85RbCs we predict 32 resonances in the s-wave scattering length, for the ground

state, between 0 and 1000 G. 14 of the resonances were confirmed experimentally in

Ref. [75]. Of these resonances several have widths suitable for use in magnetoassociation.

We have calculated the energies of the bound states just below threshold with varying

magnetic field, which can be used to find which molecular bound states the Feshbach

molecules can be created in. The calculations show that the interspecies background

scattering length is close to zero over a large range of magnetic fields. This reduces losses

due to interspecies 3-body collisions and means that good overlap of the atomic clouds

should be possible. The difficulty with this system is in simultaneously creating ultracold
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high phase-space-density mixtures of 85Rb and 133Cs as BECs of each can only be created

in very specific, and non-overlapping magnetic field ranges. Magnetoassociation could

still be performed using ultracold mixtures rather than BECs if a high enough density of

ultracold 85Rb can be achieved, for example via the routes discussed in Section 4.1.

In 87RbCs there are 31 resonances in the scattering length of the s-wave (f,mf ) =

(1,+1) + (3,+3) channel between 0 and 1000 G. 18 were confirmed experimentally in

Ref. [118] and 7 were confirmed experimentally in Ref. [76]. Of these resonances sev-

eral have widths suitable for use in magnetoassociation. Magnetoassociation has been

performed successfully on the 197 G resonance as detailed in Refs. [76, 118]. Following

magnetoassociation the Feshbach molecules can be transferred to various weakly bound

molecular states by further tuning the magnetic field. We have shown the near-threshold

bound states which can be reached, and calculated the magnetic moment of the relevant

states around the 197 G resonance. Ro-vibrational ground-state molecules have been suc-

cessfully produced via STIRAP from Feshbach molecules in the |−6(2, 4)d(2, 4)〉 state in

Refs. [70, 71]. The number of molecules produced is limited by the poor overlap of the

ultracold atomic clouds due to the high interspecies scattering length.

In 39KCs we predict 35 resonances in the scattering length of the s-wave (f,mf ) =

(1,+1) + (3,+3) channel between 0 and 1000 G. Of these resonances several have widths

suitable for use in magnetoassociation. We have calculated the energies of the bound

states just below threshold with varying magnetic field, these calculations show which

molecular bound states the Feshbach molecules can be created in. In 40KCs we predict 84

resonances in the scattering length of the s-wave (f,mf ) = (9/2,−9/2) + (3,+3) channel

between 0 and 1000 G. Most of these resonance are too narrow for magnetoassociation,

but there are some resonances caused by L = 0 bound states which have widths as high

as 0.1 G. We have calculated the energies of the bound states just below threshold with

varying magnetic field. In 41KCs we predict 42 resonances in the scattering length of the

s-wave (f,mf ) = (1,+1) + (3,+3) channel between 0 and 1000 G. Of these resonances 27

occur below 130 G and several have widths suitable for use in magnetoassociation both

in the low field and high field regions. Again we have also calculated the energies of the

bound states just below threshold with varying magnetic field.

For each isotopolog we have compared the intraspecies scattering lengths of the com-

ponents of the mixture and the interspecies scattering length of the mixture. For RbCs

we see that there are no magnetic-field regions which are suitable for both species to be
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cooled to degeneracy simultaneously. In 87RbCs there are regions where the condensates

would be stable and miscible but these regions do not coincide with regions where Cs

condensates can be formed. However, for KCs in all three of the isotopes there are re-

gions where both species can be cooled simultaneously. In 39KCs there is a small region

where the condensates would be stable and miscible and in 41KCs the condensates would

be stable and miscible for most of the region between 0 and 1000 G. In particular there

is a small region just above 885 G where both species can be cooled simultaneously and

the condensates are miscible. Our scattering calculations for KCs show that it is a very

promising system for the formation of high phase-space density ultracold samples of polar

molecules. The calculations are based on reference potentials which have not yet been

fitted to Feshbach resonance positions, and therefore are accurate only to within ∼ 5 G.

Once experimental measurements on the location of the Feshbach resonances in one of

the isotopologues have been made then higher-accuracy potentials can be fitted and more

accurate scattering calculations can be performed.

Energy dependence of the scattering length

Studies of cold atom collisions and few-body interactions often require the energy depen-

dence of the scattering phase shift, which is usually expressed in terms of an effective-range

expansion. In Chapter 7 we used accurate coupled-channel calculations on 6Li, 39K and

133Cs to explore the behaviour of the effective range in the vicinity of both broad and

narrow Feshbach resonances. We found that away from resonance the effective-range ex-

pansion is reasonably good at describing the energy dependence around broad resonances

and away from zero-crossings in the scattering length. However, around narrow reso-

nances the effective-range expansion can fail badly, even when the full field-dependence

of the effective range is taken from coupled-channel calculations. We have presented an

alternative parametrisation of the effective-range formula that is accurate through both

resonance poles and zero-crossings but the expansion can still fail at low collision energies.

To remedy the deficiencies of the effective-range expansion around narrow resonances, we

advocate the use of an MQDT approach that fully describes the effect of a resonance as a

function of both field and energy, as discussed in Chapter 7. The MQDT approach is only

appropriate for cases for individual isolated resonances that have a reasonably constant

background scattering term across their entire width. The MQDT approach for the near-

threshold energy-dependent scattering length could be important in numerous areas of
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cold-atom research. For example, corrections to the zero-energy scattering length are im-

portant for studies of optical lattice structures, where the finite zero-point or band energy

can lead to significant corrections to the energy of confinement-induced resonances [225]

and accounting for it requires the scattering length at finite energy [250, 251]. Accurate

finite-energy corrections to the phase shift could also be significant for the equation of

state of cold fermions [252] and for understanding few-body phenomena [220,222].

Future work

In Chapter 8 we briefly touched on the effects of a radio-frequency field being applied to

the alkali-alkali scattering Hamiltonian in addition to an external static magnetic field. In

future work we hope to expand this to perform scattering calculations under a variety of

external electric and magnetic fields. As the field progresses, future experiments will use

external fields to manipulate and control ultracold molecular samples to study their inter-

action properties, and so calculations that can account for these effects will be necessary.

External fields have been shown to affect the collision properties of ultracold molecules and

can be used to adjust the ratio of inelastic losses and to control reaction properties [280].

Electric fields are already being used to manipulate arrays of ultracold KRb molecules

in optical lattices with very interesting results [281]. The complex structure of molecules

means that additional fields such as microwave and infrared radiation fields can also be

used to interact with the rotational and vibrational spectra of molecules. All of these

methods offer ‘control knobs’ that can be used to aid in the study of our fundamental

understanding of reaction processes, chemical reactivity and control over many-body phe-

nomena. Before these results can be fully understood a framework for understanding the

interactions of these molecules in arbitrary combinations of external fields, at arbitrary

angles, will have to be developed.

Additionally, one of the long-term goals using ultracold polar molecules requires placing

them into optical lattices where there long-range anisotropic interactions can be studied

under the influence of an external magnetic field. Placing the molecules in an optical

lattice restricts their movement in one or more dimensions, which can dramatically alter

the scattering properties of the system. Collisions in confined dimensions, such as pancake

traps induced by optical lattices, experience quasi-2D confinement at collision energies

� ~ω0, where ω0 is the trapping frequency. Under this confinement only the ground

state of the axial harmonic oscillator is occupied. At collisions energies � ~ω0 there is
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a confinement-dominated 3D scattering regime [282]. The confinement effects of atoms

in optical lattices have been studied but a full theory for atom-molecule and molecule-

molecule behaviour does not exist. As we move forward with the creation of ultracold polar

molecules and their use in quantum processing applications and to create novel quantum

phases becomes a reality then these additional effects will need to be understood.

Ultracold molecules can also be used to study ultracold chemistry. In the same way as

magnetoassociation has been used to create ultracold alkali-metal dimers it could also be

used to create more complex molecules by associating one alkali-metal dimer molecule with

another alkali-metal atom to form polyatomic species, or by associating two molecules, or

various other perturbations. To fully understand these forms of ultracold chemistry will

require the development of interaction potentials for the more complex systems.

In this Thesis we have presented scattering and bound-state calculations which have

aided in the formation of ultracold polar molecules. Whilst the creation of these ultra-

cold molecules is a huge scientific step forward they are only a small step towards the

fundamental control and understanding that ultracold physics has to offer.



Appendix A

Angular Momentum coupling and

matrix elements

A.1 Notes on angular momentum coupling

The notes in this Section serve to give a brief summary of the more commonly used

expressions in angular-momentum algebra and to aid in the understanding of the derivation

of the matrix elements presented in this Thesis. A more complete treatment of angular

momentum theory can be found in Refs. [203, 283, 284]. We begin by summarising some

of the more commonly used matrix elements of angular momentum operators,

〈jm| ĵ2 |j′m′〉 = j(j + 1)δj,j′δm,m′ ,

〈jm| ĵz |j′m′〉 = m′δj,j′δm,m′ ,

and

〈jm| ĵ± |j′m′〉 =
√
j(j + 1)−m′(m′ ± 1)δj,j′δm,m′±1.

A system which is made up of two components of angular momenta j1 and j2, with a

total angular momentum j which is the sum of components of j1 and j2, can be expressed

in terms of both a decoupled representation |j1m1j2m2〉 and a coupled representation

|j1j2jm〉. The two descriptions are equivalent as both sets of angular momentum operators

contain the same number of observables. The two representations are connected by a

unitary transformation

|j1j2jm〉 =
∑
m1,m2

|j1m1j2m2〉 〈j1m1j2m2|j1j2jm〉 ,

148
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and by the inverse transformation

|j1m1j2m2〉 =
∑
j,m

|j1j2jm〉 〈j1j2jm|j1m1j2m2〉 .

The vector-addition coefficients 〈j1m1j2m2|j1j2jm〉 = 〈j1j2jm|j1m1j2m2〉 are referred to

as Clebsch-Gordan coefficients and can also be expressed in terms of Wigner 3-j symbols,

〈j1m1j2m2|j1j2jm〉 = 〈j1j2jm|j1m1j2m2〉 = C(j1j2j;m1m2m)

= (−1)j1−j2+m
√

2j + 1

 j1 j2 j

m1 m2 −m

 .

For a given j1 and j2 the values of j are restricted by the ‘triangle’ condition of Dirac

which states that

j1 + j2 ≥ J ≥ |j1 − j2|,

and the projection quantum number m is given by

m = m1 +m2.

The orthonormality of |j1j2jm〉 and |j1m1j2m2〉 leads to the orthogonality relations

∑
m1,m2

〈j1j2jm|j1m1j2m2〉 〈j1m1j2m2|j1j2jm〉 = δj,j′δm,m′ ,

and

∑
m1,m2

〈j1m1j2m2|j1j2jm〉 〈j1j2jm|j1m1j2m2〉 = δm1,m′1
δm2,m′2

.

6-j and 9-j symbols

The coupling of more than two angular momenta can be described by 6-j and 9-j symbols,

where 6-j symbols arise from the coupling of three angular momenta and 9-j symbols

from the coupling of four angular momenta. A decoupled representation of three angular

momenta |j1m1j2m2j3m3〉 may be coupled in different ways. Firstly, j1 and j2 can be

coupled to form the resultant vector j12 which in turn can be coupled to j3 to form j; the

eigenfunctions of which are,

|(j1, j2)j12j3jm〉 =
∑

m12,m3

〈j12m12, j3m3|j12j3jm〉 |j12m12, j3m3〉 .
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Alternatively j2 and j3 can be coupled to form the resultant vector j23 which in turn can

be coupled to j1 to form j; the eigenfunctions of which are,

|j1m1, (j2, j3)j23〉 =
∑

m1,m23

〈j1m1, j23m23|j1j2,3jm〉 |j1m1, j23m23〉 .

The two representations are physically equivalent, as in the case above, and are related

by the unitary transformation,

|j1j23jm〉 =
∑
j12

〈j12j3jm|j1j23jm〉 |j12j3jm〉 δj,j′δm,m′ .

The scalar product 〈j12j3jm|j1j23jm〉 can be expanded as

〈j12j3jm|j1j23jm〉 =
∑

m1,m12

〈j1m1, j2m12 −m1|j12m12〉 〈j1m1, j23m−m1|jm〉

〈j2m12 −m1, j3m3|j23m−m1〉 〈j12m12, j3m−m12|jm〉 ,

where the recoupling coefficient 〈j12j3jm|j1j23jm〉 has been re-written as a sum over four

3-j symbols. This sum can be rewritten as either a Racah (W ) coefficient or a 6-j symbol,

where

〈j12j3jm|j1j23jm〉 = (−1)−j1−j2−j3−j
√

(2j12 + 1)(2j23 + 1)

j1 j2 j12

j3 j j23


= (−1)−j1−j2−j3−jW (j1j2jj3; j12j23).

The 6-j symbol is invariant to the interchange of any two columns, or the interchange of

the upper and lower arguments in each of any two columns. For example,j1 j2 j3

j4 j5 j6

 =

j2 j1 j3

j5 j4 j6

 =

j1 j5 j6

j4 j2 j3

 .

The recoupling of four angular momenta can be described by a 9-j symbol. Two possible

coupling schemes are |(j1j4)j14(j2j3)j23jm〉 and |(j1j2)j12(j3j4)j34jm〉. As in the two

previous cases, the two cases are related by a unitary transformation,

|(j1j4)j14(j2j3)j23jm〉 =
∑
j12

∑
j34

〈(j1j2)j12(j3j4)j34jm|(j1j4)j14(j2j3)j23jm〉

× |(j1j2)j12(j3j4)j34jm〉 .



A.1. Notes on angular momentum coupling 151

The recoupling coefficient 〈(j1j2)j12(j3j4)j34jm|(j1j4)j14(j2j3)j23jm〉 can be written in

terms of a 9-j symbol,

〈(j1j2)j12(j3j4)j34jm|(j1j4)j14(j2j3)j23jm〉 =
√

(2j12 + 1)(2j34 + 1)(2j14 + 1)(2j23 + 1)

×


j1 j2 j12

j3 j4 j34

j14 j23 j

 .

Any 9-j symbol can also be expressed as a sum over three 6-j symbols or a sum over six

3-j symbols.

The Wigner-Eckart Theorem

A spherical ‘irreducible’ tensor, Tk,q, is defined as being a spherical tensor of rank k such

that any transformation under rotation must be equivalent to the transformation under

rotation of the spherical harmonic of equal rank k [285]. By definition, irreducible tensors

give the commutation relations [284,286]

[Ĵ±1, Tk,q] =
√
k(k + 1)− q(q ± 1)Tk,q±1,

and

[Ĵz, Tk,q] = qTk,q.

The Wigner-Eckart Theorem states that, for an irreducible tensor operator, the depen-

dence of the matrix element 〈jm|Tk,q|j′m′〉 on the projection quantum numbers m and m′

can be described by a Clebsch-Gordan coefficient, such that the matrix element can be

re-written in terms of a 3-j symbol and a ‘reduced’ matrix element,

〈jm|Tk,q|j′m′〉 = (−1)j−m
√

2j + 1

 j k j′

−m q m′

 〈j||Tk||j〉 . (A.1.7)

The reduced matrix element 〈j||Tk||j〉 contains the physical information relevant to the

system and the 3-j symbol contains the geometric information.
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Some common equations for the reduced matrix elements of composite systems are

〈j1, j2, j||Tk(Â1)||j′1, j′2, j′〉 =δj2,j′2(−1)j
′+j′1+k+j2

√
(2j + 1)(2j′ + 1)(2j1 + 1)

×

j′1 j′ j2

j j1 k

 〈j1||Tk(Â1)||j′1〉 ,

〈j1, j2, j||Tk(Â2)||j′1, j′2, j′〉 =δj1,j′1(−1)j+j1+k+j′2
√

(2j + 1)(2j′ + 1)(2j2 + 1)

×

j′2 j′ j1

j j2 k

 〈j2||Tk(Â2)||j′2〉 ,

and

〈j1, j2, j||Tk(Â1) · Tk(Â2)||j′1, j′2, j′〉 =δj,j′(−1)j+j
′
1+j2

√
(2j + 1)(2j1 + 1)(2j2 + 1)

×

j′1 j′2 j

j2 j1 k

 〈j1||Tk(Â1)||j′1〉 〈j2||Tk(Â2)||j′2〉 .

The reduced matrix element of a tensor of rank 1 is given simply by 〈j||T1(ĵ)||j′〉 =

δj,j′
√
j(j + 1) and the generalised reduced matrix element of a tensor of rank k is given

by 〈j||Tk(ĵ)||j′〉 = δj,j′
√

(2j + k + 1)!/(2k(2k)!(2j − k)!).

A.2 Matrix elements in the |(sa, ia)fa〉 |(sb, ib)fb〉 |F,MF 〉 |L,ML〉
basis set

The matrix elements of the Hamiltonian given by Eq. (3.1.1) for the

|(sa, ia)fa〉 |(sb, ib)fb〉 |F,MF 〉 |L,ML〉 basis set are presented in the following Section.
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The matrix elements of the V̂ c(R) isotropic potential operator are

〈(sa, ia)fa(sb, ib)fbFMFLML| V̂ c(R) |(sa, ia)f ′a(sb, ib)f ′bF ′M ′FL′M ′L〉 =

δL,L′δML,M
′
L
δF,F ′δMF ,M

′
F

∑
SMSM

′
S

VS(R)(−1)fa−fb+f ′a−f ′b+2ia+2ib+MS+M ′S

× (2S + 1)
√

(2F + 1)(2F ′ + 1)(2fa + 1)(2fb + 1)(2f ′a + 1)(2f ′b + 1)

×

 fa fb F

mf,a mf,b −MF

 f ′a f ′b F ′

m′f,a m′f,b −M ′F

 sa ia fa

ms,a mi,a −mf,a


×

 sb ib fb

ms,b mi,b −mf,b

 sa ia f ′a

m′s,a m′i,a −m′f,a

 sb ib f ′b

m′s,b m′i,b −m′f,b


×

 sa sb S

ms,a ms,b −ms,a −ms,b

 sa sb S

m′s,a m′s,b −m′s,a −m′s,b

 .

(A.2.1)

The matrix elements of the V̂ d(R) dipolar spin-spin operator are

〈(sa, ia)fa(sb, ib)fbFMFLML| V̂ d(R) |(sa, ia)f ′a(sb, ib)f ′bF ′M ′FL′M ′L〉 =

− λ(R)
√

30

2∑
q=−2

(−1)q(−1)F−MF +L−ML
√

(2F + 1)(2F ′ + 1)(2L+ 1)(2L′ + 1)

×

 F 2 F ′

−MF q M ′F

L 2 L′

0 0 0

 L 2 L′

−ML q M ′L



F F ′ 2

fa f ′a 1

fb f ′b 1


×

(−1)sa+ia+f ′a+1
√

(2fa + 1)(2f ′a + 1)(2sa + 1)sa(sa + 1)

sa f ′a ia

fa sa 1


× (−1)sb+ib+f ′b+1

√
(2fb + 1)(2f ′b + 1)(2sb + 1)sb(sb + 1)

sb f ′b ib

fb sb 1


 .

(A.2.2)

The matrix elements of L̂2 are

〈(sa, ia)fa(sb, ib)fbFMFLML| L̂2 |(sa, ia)f ′a(sb, ib)f ′bF ′M ′FL′M ′L〉 =

δL,L′δML,M
′
L
δF,F ′δMF ,M

′
F
L(L+ 1).

(A.2.3)

The matrix elements of the hyperfine interaction in the monomer Hamiltonians are

〈(sa, ia)fa(sb, ib)fbFMFLML| ζahfsîa · ŝa + ζbhfsîb · ŝb |(sa, ia)f ′a(sb, ib)f ′bF ′M ′FL′M ′L〉 =

δL,L′δML,M
′
L
δF,F ′δMF ,M

′
F
δfa,f ′aδfb,f ′b

(−1)2F

2
[ζahfs (fa(fa + 1)− sa(sa + 1)− ia(ia + 1))

+ζbhfs (fb(fb + 1)− sb(sb + 1)− ib(ib + 1))
]
.

(A.2.4)
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The matrix elements of the Zeeman operator in the monomer Hamiltonians are

〈(sa, ia)fa(sb, ib)fbFMFLML|µBB
(
ge,aŝz,a + gn,aîz,a

+ge,bŝz,b + gn,bîz,b

)
|(sa, ia)f ′a(sb, ib)f ′bF ′M ′FL′M ′L〉 =

µBB

2
(−1)F−MF

√
(2F + 1)(2F ′ + 1)

 F 1 F ′

−MF 0 M ′F


×
[
δfb,f ′b(−1)F

′+fb+fa
√

(2fa + 1)(2f ′a + 1)

f ′a F ′ fb

F fa 1


×

ge,a(−1)f
′
a+sa+ia

√
(2sa + 1)sa(sa + 1)

sa f ′a ia

fa sa 1


+gn,a(−1)fa+sa+ia

√
(2ia + 1)ia(ia + 1)

ia f ′a sa

fa ia 1




×δfa,f ′a(−1)F+f ′b+fa
√

(2fb + 1)(2f ′b + 1)

f ′b F ′ fa

F fb 1

ge,b(−1)f
′
b+sb+ib

√
(2sb + 1)sb(sb + 1)

sb f ′b ib

fb sb 1


+gn,b(−1)fb+sb+ib

√
(2ib + 1)ib(ib + 1)

ib f ′b sb

fb ib 1


 .

(A.2.5)



Appendix B

Complete list of p-wave resonances

in 85RbCs

The lowest-energy hyperfine state of 85RbCs is the (f,mf ) = (2, 2) + (3, 3) state. Scatter-

ing calculations on this state were performed for the p-wave incoming channel at 1 µK,

including L = 1 and 3 functions (a p,f-basis), at collision energies of Ecoll = 1 µK. Bound-

state calculations were also performed immediately below the zero-energy threshold given

by the energy of the separated atoms in their respective ground states. The magnetic-field

positions of the bound states in this calculation give the location of resonances in the

scattering length. The projection of L has three possible values for L = 1: ML = −1,

0 and 1. Calculations were therefore performed for total angular momentum Mtot = 4, 5

and 6. The resonance positions for each Mtot are listed in Tables B.1−B.3 along with the

L quantum number of the bound state causing the resonance.
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B0 (G) L B0 (G) L B0 (G) L B0 (G) L

16.18 3 70.54 1 427.06 1 570.36 3

19.66 3 154.98 1 442.56 3 601.34 3

23.18 3 163.57 1 444.19 3 609.71 3

32.07 3 299.02 3 460.67 1 614.81 1

37.74 1 323.66 3 475.12 3 628.95 3

46.76 3 345.57 3 509.95 3 642.13 3

48.35 3 373.18 3 526.42 1 967.88 3

51.57 3 401.05 1 550.51 3

52.76 3 405.22 3 561.54 1

Table B.1: Complete list of Feshbach resonances due to p,f-wave bound states in the scattering

volume of the incoming L = 1,ML = +1, (f,mf ) = (2,+2) + (3,+3) channel of 85RbCs in the

field range from 0 to 1000 G.

B0 (G) L B0 (G) L B0 (G) L B0 (G) L

1.64 1 54.68 3 459.43 1 605.33 3

10.36 3 70.15 1 474.96 3 609.18 3

12.13 3 155.55 1 486.71 3 613.27 1

13.9 3 163.51 1 497.05 1 628.02 3

16.28 3 165.68 1 499.42 3 640.9 3

17.05 3 191.28 1 509.59 3 663.16 1

19.58 3 217.15 1 528.15 1 704.73 1

23.09 3 299.05 3 549.14 3 725.72 3

32.11 3 324.17 3 550.3 3 781.03 3

37.52 3 345.78 3 560.07 1 820.19 3

46.8 3 373.1 3 569.2 3 865.5 3

48.32 3 405.06 3 570.39 3 967.47 3

51.3 1 428.8 1 573.33 3

51.77 3 442.53 3 600.22 3

53 3 444.4 3 600.8 1

Table B.2: Complete list of Feshbach resonances due to p,f-wave bound states in the scattering

volume of the incoming L = 1,ML = 0, (f,mf ) = (2,+2) + (3,+3) channel of 85RbCs in the field

range from 0 to 1000 G.
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B0 (G) L B0 (G) L B0 (G) L B0 (G) L

1.15 1 53.11 3 445 3 614.93 1

1.71 1 54.9 3 452.09 3 627.43 3

7.5 3 56.71 3 458.77 3 640.19 3

8.53 3 70.51 1 460.56 1 644.8 1

9.64 3 105.46 1 475.13 3 659.09 3

10.47 3 120.69 1 487.13 3 661.59 1

10.6 3 126.05 1 496.74 1 699.1 1

12.09 3 163.53 1 499.24 3 703.12 1

13.58 3 165.13 1 509.5 3 725.32 3

13.85 3 185.58 1 538.99 3 731.74 1

16.34 3 192.25 1 541.7 1 743.94 3

17.04 3 216.58 1 548.71 3 750.16 1

19.53 3 300.11 3 549.9 3 780.41 3

23.04 3 324.77 3 561.55 1 791.09 3

32.13 3 346.47 3 568.44 3 819.6 3

37.45 3 360.99 3 570.33 3 833.34 3

38.85 1 373.25 3 573.72 3 865.07 3

46.91 3 399.62 3 599.02 1 880.13 3

48.37 3 405.04 3 600.21 3 967.76 3

51.24 1 431.74 3 605.05 3

51.82 3 442.63 3 609.02 3

Table B.3: Complete list of Feshbach resonances due to p,f-wave bound states in the scattering

volume of the incoming L = 1,ML = −1, (f,mf ) = (2,+2) + (3,+3) channel of 85RbCs in the

field range from 0 to 1000 G.



Appendix C

Complete list of Feshbach

resonances in KCs

Scattering calculations were performed on mixtures of Cs and the isotopologues of K: 39K,

40K and 41K. Calculations were performed on the s-wave incoming channel corresponding

to each atomic species in the hyperfine ground state using an s,d-basis. Resonance posi-

tions were located by performing bound-state calculations at the zero-energy given by the

energy of the separated atoms. Both resonance widths ∆ and the background scattering

length abg were calculated for each resonance by fitting, of the scattering length around

the resonance pole, to Eq. (2.3.4). L and MF quantum numbers were assigned to each

resonance by performing calculations with an appropriately restricted basis set for each

quantum number. The resonance positions, widths, background scattering length and

quantum number assignments for resonances occuring between 0 and 1000 G are given in

Table C.1 for 39KCs, Table C.2 for 40KCs, and Table C.3 for 41KCs.
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with spin-orbit coupling without spin-orbit coupling

B0 (G) ∆ (G) abg (bohr) L MF B0 (G) ∆ (G) abg (bohr) L MF

3.00 1.00 × 10−5 69.4 2 2 3.01 5.00 × 10−6 69.4 2 2

5.48 7.00 × 10−5 69.6 2 3 5.50 4.00 × 10−5 69.6 2 3

10.78 4.00 × 10−7 70.1 2 2 10.80 1.00 × 10−6 70.1 2 2

16.31 6.00 × 10−6 70.6 2 2 16.28 1.00 × 10−5 70.6 2 2

18.15 5.00 × 10−6 70.8 2 3 18.21 2.00 × 10−6 70.8 2 3

49.57 0.001 73.2 2 4 51.22 9.00 × 10−4 73.3 2 4

202.90 3.00 × 10−6 80.0 2 2 202.80 4.00 × 10−7 79.9 2 2

240.22 6.00 × 10−5 81.5 2 3 240.24 3.00 × 10−5 81.5 2 3

255.73 3.00 × 10−6 82.4 2 2 255.78 5.00 × 10−6 82.4 2 2

298.58 1.00 × 10−5 87.2 2 3 298.47 1.00 × 10−5 87.2 2 3

318.14 8.00 × 10−5 94.5 2 5 317.91 9.00 × 10−6 94.3 2 5

323.90 6.00 × 10−7 99.6 2 2 324.18 1.00 × 10−7 100 2 2

326.94 3.00 × 10−5 103.8 2 4 327.57 0.001 104.9 2 4

341.90 4.8 78.8 0 4 341.89 4.8 78.8 0 4

373.85 2.00 × 10−6 68.3 2 3 373.55 9.00 × 10−7 68.3 2 3

375.35 0.006 68.5 2 4 377.04 0.003 68.5 2 4

412.43 1.00 × 10−6 77.2 2 2 413.07 < 10−9 77.5 2 2

421.36 0.4 74.7 0 4 421.37 0.4 74.7 0 4

697.02 0.03 80.0 2 6 695.40 9.00 × 10−4 80 2 6

714.61 5.00 × 10−4 79.8 2 5 715.32 1.00 × 10−5 79.8 2 5

734.71 5.00 × 10−6 80.0 2 4 736.16 3.00 × 10−7 80 2 4

757.46 < 10−9 80.4 2 3 758.18 < 10−9 80.4 2 3

760.13 0.004 80.3 2 5 760.68 1.00 × 10−4 80.3 2 5

778.98 1.00 × 10−4 79.9 2 4 780.02 1.00 × 10−7 80.5 2 4

798.34 2.00 × 10−7 80.7 2 3 798.91 2.00 × 10−9 80.7 2 3

813.14 3.00 × 10−4 81.0 0 4 813.07 3.00 × 10−4 81 0 4

819.98 1.00 × 10−7 81.1 2 2 818.98 3.00 × 10−7 81.1 2 2

848.78 2.00 × 10−4 82.0 2 4 850.31 4.00 × 10−4 82 2 4

849.80 4.00 × 10−4 82.0 2 3 850.44 6.00 × 10−5 82 2 3

860.52 0.05 82.0 0 4 860.45 0.05 82 0 4

869.41 9.00 × 10−6 81.9 2 2 868.59 2.00 × 10−6 81.9 2 2

907.54 0.02 92.7 2 3 908.07 0.004 92.7 2 3

915.56 1.2 80.1 0 4 915.48 1.2 80.1 0 4

926.77 1.00 × 10−4 71.4 2 2 925.97 3.00 × 10−5 71.4 2 2

983.40 4.00 × 10−6 79.1 2 2 982.47 2.00 × 10−7 79.1 2 2

Table C.1: Complete list of Feshbach resonances due to s-wave and d-wave states in 39KCs |1, 1〉
+ 133Cs |3,+3〉 in the field range from 0 to 1000 G. Resonances are colour-coded according to their

L and MF quantum numbers as in Fig. 5.12
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B0 (G) ∆ (G) abg (bohr) L MF B0 (G) ∆ (G) abg (bohr) L MF

27.11 < 10−9 −40.3 2 1/2 180.76 −3.00 × 10−7 −40.2 2 −7/2

29.04 < 10−9 −40.3 2 −1/2 181.08 −1.00 × 10−8 −40.2 2 −3/2

31.29 < 10−9 −40.3 2 −3/2 185.94 −2.00 × 10−6 −40.2 2 −3/2

31.61 < 10−9 −40.3 2 1/2 188.71 < 10−9 −40.2 2 −1/2

33.93 < 10−9 −40.3 2 −5/2 190.26 < 10−9 −40.2 2 −1/2

34.39 < 10−9 −40.3 2 −1/2 192.18 −0.001 −40.2 2 −3/2

37.03 < 10−9 −40.3 2 −7/2 192.99 < 10−9 −40.2 2 −1/2

37.70 < 10−9 −40.3 2 −3/2 196.71 −3.00 × 10−7 −40.2 0 −3/2

38.15 < 10−9 −40.3 2 1/2 196.98 −7.00 × 10−9 −40.2 2 −1/2

41.67 < 10−9 −40.3 2 −5/2 202.19 −1.00 × 10−7 −40.2 2 −1/2

42.37 < 10−9 −40.3 2 −1/2 208.40 −2.00 × 10−5 −40.1 2 −1/2

46.43 < 10−9 −40.3 2 −7/2 211.94 < 10−9 −40.2 2 1/2

47.55 < 10−9 −40.3 2 −3/2 213.62 < 10−9 −40.0 2 1/2

48.41 < 10−9 −40.3 2 1/2 214.74 < 10−9 −40.01 2 1/2

54.03 < 10−9 −40.3 2 −5/2 215.96 −0.01 −40.2 2 −1/2

55.44 < 10−9 −40.3 2 −1/2 216.62 < 10−9 −40.1 2 1/2

57.59 < 10−9 −40.3 0 −3/2 221.34 < 10−9 −40.3 2 1/2

62.30 < 10−9 −40.3 2 −7/2 224.77 −8.00 × 10−6 −40.2 2 −3/2

64.61 < 10−9 −40.3 2 −3/2 227.53 −1.00 × 10−9 −40.2 2 1/2

66.58 < 10−9 −40.3 2 1/2 230.24 < 10−9 −40.2 0 −3/2

69.85 < 10−9 −40.3 0 −3/2 234.15 < 10−9 −40.1 0 −3/2

76.91 < 10−9 −40.3 2 −5/2 235.27 −3.00 × 10−7 −40.1 2 1/2

80.52 < 10−9 −40.3 2 −1/2 239.55 < 10−9 −40.1 0 −3/2

89.01 < 10−9 −40.3 0 −3/2 246.44 −4.00 × 10−7 −40.0 0 −3/2

93.91 < 10−9 −40.3 2 −7/2 254.52 −1.00 × 10−4 −39.8 0 −3/2

100.74 −7.00 × 10−9 −40.3 2 −3/2 264.34 −0.1 −40.3 0 −3/2

107.66 < 10−9 −40.3 2 1/2 318.65 −3.00 × 10−7 −40.3 2 1/2

122.77 < 10−9 −40.3 0 −3/2 379.66 −0.002 −40.3 2 −5/2

131.53 −7.00 × 10−8 −40.3 2 −5/2 466.46 < 10−9 −40.1 2 1/2

146.13 < 10−9 −40.2 2 −7/2 470.25 −0.01 −40.2 0 −3/2

148.04 −7.00 × 10−7 40.2 2 −1/2 531.47 < 10−9 −40.3 2 −1/2

149.18 < 10−9 −40.2 2 −7/2 588.83 < 10−9 −40.3 2 −3/2

152.63 < 10−9 −40.2 2 −7/2 627.82 < 10−9 −40.3 2 1/2

156.29 −2.00 × 10−9 −40.2 2 −7/2 642.01 < 10−9 −40.3 2 −5/2

157.12 < 10−9 −40.2 2 −5/2 677.44 < 10−9 −40.2 0 −3/2

160.07 < 10−9 −40.2 2 −5/2 692.46 < 10−9 −40.2 2 −7/2

163.64 < 10−9 −40.2 2 −5/2 706.12 < 10−9 −40.2 2 −1/2

167.93 −5.00 × 10−9 −40.2 2 −5/2 779.66 < 10−9 −40.2 2 −3/2

170.86 < 10−9 −40.2 2 −3/2 850.61 < 10−9 −40.2 2 −5/2

172.61 −2.00 × 10−7 −40.2 2 −5/2 892.62 < 10−9 −40.2 2 1/2

173.42 < 10−9 −40.2 2 −3/2 902.84 < 10−9 −40.2 0 −3/2

176.82 < 10−9 −40.2 2 −3/2 920.11 < 10−9 −40.2 2 −7/2

Table C.2: Complete list of Feshbach resonances due to s-wave and d-wave states in 40KCs

|9/2,−9/2〉 + 133Cs |3,+3〉 in the field range from 0 to 1000 G. Resonances are colour-coded

according to their L and MF quantum numbers as in Fig. 5.13.
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B0 (G) ∆ (G) abg (bohr) L MF

23.89 0.02 193.0 2 6

25.68 0.03 189.3 2 5

28.41 0.007 188.7 2 4

32.10 8.00 × 10−4 190.4 2 3

36.63 3.00 × 10−5 192.0 2 2

39.24 3.00 × 10−7 192.7 2 5

42.86 1.00 × 10−5 193.5 2 4

47.27 1.00 × 10−5 194.5 2 3

50.85 2.00 × 10−6 195.2 2 2

53.03 5.00 × 10−4 195.6 2 4

55.54 6.00 × 10−5 196.0 2 3

56.61 1.00 × 10−7 196.2 2 2

64.87 2.00 × 10−5 197.6 2 3

68.54 5.00 × 10−8 198.3 2 2

87.38 0.003 201.6 2 4

90.10 0.008 201.1 2 5

90.44 2.00 × 10−4 205.7 2 3

91.56 3.00 × 10−4 200.3 2 2

94.28 0.001 201.5 2 3

98.50 8.00 × 10−4 202.5 2 2

98.54 3.00 × 10−4 202.3 2 4

108.84 7.00 × 10−7 204.7 2 3

109.86 0.002 204.5 2 2

111.04 4.00 × 10−4 204.3 0 4

113.93 3.00 × 10−4 205.3 0 4

120.89 0.02 206.0 0 4

126.59 1.00 × 10−4 206.4 2 2

168.19 0.6 262.9 0 4

171.20 1.2 151.0 0 4

629.69 1.00 × 10−4 212.6 2 2

737.86 5.00 × 10−5 216.3 2 2

746.95 1.00 × 10−4 216.8 2 3

755.11 7.00 × 10−6 217.3 2 2

806.40 7.00 × 10−5 222.2 2 4

818.33 3.00 × 10−6 224.3 2 3

830.92 3.00 × 10−9 227.5 2 2

861.03 0.03 247.7 2 5

877.70 7.00 × 10−4 330.8 2 4

884.92 4.1 212.7 0 4

894.13 4.00 × 10−8 119.1 2 3

910.60 < 1 nG 178.4 2 2

966.89 0.1 201.5 0 4

Table C.3: Complete list of Feshbach resonances due to s-wave and d-wave states in 41KCs |1, 1〉
+ 133Cs |3,+3〉 in the field range from 0 to 1000 G. Resonances are colour-coded according to their

L and MF quantum numbers as in Fig. 5.15.



Appendix D

Consideration of the intra- and

inter-species scattering-length

combinations in mixtures 85RbCs

The scattering lengths from the s-wave (f,mf ) = (2,+2) + (2,+2) and (2,−2) + (2,−2)

channels of 85Rb are considered along with the scattering length of the s-wave (f,mf ) =

(2,+3) + (2,+3) channel of Cs and the scattering length of the s-wave (f,mf ) = (2,−2) +

(3,+3) and (2,−2) + (3,−3) channels of 85RbCs, to find regions conducive to molecule

formation using degenerate condensates. Two excited-state scattering lengths of 85RbCs

are shown in Figures D.1 and D.2, respectively. The scattering lengths are compared using

the criteria detailed in Sec. 5.3 in order to find magnetic-field regions where the species

can be simultaneously cooled (marked in red and blue) and where the condensates would

be stable and miscible (marked in green). There is no combination of scattering lengths

which results in a magnetic-field region where both species can be cooled. There is a small

region for both interspecies scattering lengths, in the comparison with the (2,−2)+(2,−2)

channel of 85Rb, where the condensates would be stable and miscible. This occurs around

the wide resonance at 155 G in the (2,−2) + (2,−2) channel of 85Rb.
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Figure D.1: 85RbCs: (a) The s-wave scattering length in the (f,mf ) = (3, 3) + (3, 3) channel of

133Cs using an s,d,g-basis; (b) The s-wave scattering length in the (f,mf ) = (2, 2) + (2, 2) channel

of 85Rb using an s,d-basis; (c) The real part of the s-wave scattering length in the (f,mf ) =

(2,−2) + (2,−2) channel of 85Rb using an s,d-basis and below Kloss for this channel; (d) The

real part of the s-wave scattering length in the (f,mf ) = (2,−2) + (3, 3) channel of 85RbCs using

an s, d-basis and below Kloss for this channel. The coloured bars beneath the 85RbCs scattering

length indicate the fields at which both species can be cooled evaporatively (red, top), the fields

at which one species can be cooled evaporatively and the other sympathetically (blue, center),

and the fields at which the condensates are miscible (green, bottom): the top bar corresponds to

comparison with the (2,+2) state of 85Rb and the lower bar to the (2,-2) state.
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Figure D.2: 85RbCs: (a) The s-wave scattering length in the (f,mf ) = (3, 3) + (3, 3) channel of

133Cs using an s,d,g-basis; (b) The s-wave scattering length in the (f,mf ) = (2, 2) + (2, 2) channel

of 85Rb using an s,d-basis; (c) The real part of the s-wave scattering length in the (f,mf ) =

(2,−2) + (2,−2) channel of 85Rb using an s,d-basis and below Kloss for this channel; (d) The real

part of the s-wave scattering length in the (f,mf ) = (2,−2) + (3,−3) channel of 85RbCs using

an s, d-basis and below Kloss for this channel. The coloured bars beneath the 85RbCs scattering

length indicate the fields at which both species can be cooled evaporatively (red, top), the fields

at which one species can be cooled evaporatively and the other sympathetically (blue, center),

and the fields at which the condensates are miscible (green, bottom): the top bar corresponds to

comparison with the (2,+2) state of 85Rb and the lower bar to the (2,-2) state.



Appendix E

Mixed-state scattering lengths in

85Rb

Other scattering lengths for the series of mixed spin channels from the (fa, fb) = (2, 3)

hyperfine manifold were calculated as well as the scattering length discussed in Section

4.1.3. Of the possible combinations, a wide tunable resonance was found in the s-wave

scattering lengths of the (f,mf ) = (2,+2) + (3,+2), (2,+2) + (3,+1) and (2,+2) + (3, 0)

incoming channels. Wide resonances can be used to tune the scattering length of the

system; when the scattering length is tuned from positive to negative (or vice-versa)

using a Feshbach resonance then the overall behaviour of the condensate switches between

repulsive and attractive. The scattering length of the (2,+2) + (3, 0) channel is shown in

Fig. E.1; the wide resonance is located at 872.2 G and has a width of 27 G. The scattering

length of the (2,+2) + (3,+1) channel is shown in Fig. E.2; the wide resonance is located

at 133 G and has a width of 4 G. The scattering length of the (2,+2) + (3,+2) channel is

shown in Fig. E.3; the wide resonance is located at 309.4 G and has a width of 14 G
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Figure E.1: Scattering length of the (f,mf ) = (2,+2) + (3,+0) channel of 85Rb. Top: Real part

of the scattering length. Bottom: The co-efficient of the two-body loss rate.
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Figure E.2: Scattering length of the (f,mf ) = (2,+2) + (3,+1) channel of 85Rb. Top: Real part

of the scattering length. Bottom: The co-efficient of the two-body loss rate.
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Figure E.3: Scattering length of the (f,mf ) = (2,+2) + (3,+2) channel of 85Rb. Top: Real part

of the scattering length. Bottom: The co-efficient of the two body loss rate.
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Triplet fraction in products of

field-dressed eigenfunctions of

85RbCs

In Section 6.2 the transformation from the products of the field-dressed atomic eigenfunc-

tions to the |SMSmi,ami,b〉 basis is given. This transformation can be used to calculate the

singlet and triplet fraction of each field-dressed atomic eigenfunction. In Figures F.1−F.3

the triplet fractions of 85RbCs are shown. The field-dressed atomic eigenfunctions are

labelled according to their low-field (mfRb
,mfCs

) quantum numbers. The states which

correspond to the (fRb, fCs) = (3, 3) hyperfine manifold at zero field are shown in Fig.

F.1; the states which correspond to the (2, 4) hyperfine manifold at zero field are shown

in Fig. F.2; and the states which correspond to the (3, 4) hyperfine manifold at zero field

are shown in Fig. F.3. The spin-stretched state (fRb,mfRb
, fCs,mfCs

) = (3, 3, 4, 4) has

completely triplet character as expected.
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Figure F.1: Triplet fraction of the products of the field-dressed atomic eigenfunctions of 85RbCs.

Each state is labelled by its (mfRb
,mfCs) quantum number and correlates with (fRb, fCs) = (3, 3)

at zero field although the different f levels will be mixed at higher fields.



Appendix F. Triplet fraction in products of field-dressed eigenfunctions of
85RbCs 170

2000 1500 1000 500 0 500 1000 1500 2000
Magnetic Field (G)

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ip

le
t f

ra
ct

io
n

(-2,-4)
(-2,-3)
(-2,-2)
(-2,-1)
(-2,0)

(-2,1)
(-2,2)
(-2,3)
(-2,4)
(-1,-4)

(-1,-3)
(-1,-2)
(-1,-1)
(-1,0)
(-1,1)

(-1,2)
(-1,3)
(-1,4)
(0,-4)
(0,-3)

(0,-2)
(0,-1)
(0,0)
(0,1)
(0,2)

(0,3)
(0,4)
(1,-4)
(1,-3)
(1,-2)

(1,-1)
(1,0)
(1,1)
(1,2)
(1,3)

(1,4)
(2,-4)
(2,-3)
(2,-2)
(2,-1)

(2,0)
(2,1)
(2,2)
(2,3)
(2,4)

Figure F.2: Triplet fraction of the products of the field-dressed atomic eigenfunctions of 85RbCs.

Each state is labelled by its (mfRb
,mfCs

) quantum number and correlates with (fRb, fCs) = (2, 4)

at zero field although the different f levels will be mixed at higher fields.
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Figure F.3: Triplet fraction of the products of the field-dressed atomic eigenfunctions of 85RbCs.

Each state is labelled by its (mfRb
,mfCs

) quantum number and correlates with (fRb, fCs) = (3, 4)

at zero field although the different f levels will be mixed at higher fields.
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[156] Öhberg, P. and Santos, L. Phys. Rev. Lett. 86, 2918–2921 (2001).

[157] Bergeman, T., Moore, M. G., and Olshanii, M. Phys. Rev. Lett. 91(16), 163201 Oct

(2003).

[158] Olshanii, M. Phys. Rev. Lett. 81(5), 938–941 (1998).

[159] Haller, E., Mark, M. J., Hart, R., Danzl, J. G., Reichsöllner, L., Melezhik, V.,
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[212] Greiner, M. and Fölling, S. Nature 453, 736–738 (2008).

[213] Bloch, I. Nature Phys. 1, 23–30 (2005).

[214] Wang, Y. and Esry, B. D. New J. Phys. 13(3), 035025 (2011).

[215] Roy, S., Landini, M., Trenkwalder, A., Semeghini, G., Spagnolli, G., Simoni, A.,

Fattori, M., Inguscio, M., and Modugno, G. Phys. Rev. Lett. 111, 053202 (2013).



Bibliography 186

[216] Ferlaino, F., Zenesini, A., Berninger, M., Huang, B., Nägerl, H., and Grimm, R.
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