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Abstract

In this thesis the production of a Higgs boson in association with a hadronic jet
at the Large Hadron Collider is studied using the effective interaction between the
Higgs boson to gluons induced by a heavy quark. The Leading Order (LO), Next-
to-Leading Order (NLO) and Next-to-Next-to-Leading Order (NNLO) perturbative
QCD corrections are studied for all of the parton channels. The infrared (IR) diver-
gent behaviour of the various contributions to the partonic cross section is regulated
using the antenna subtraction formalism. This method has previously been used
at NNLO in the calculation of three jets production in the e*e™ annihilation and
for the gluonic dijet production via proton collision. The research presented in this
thesis extends the antenna formalism to include scattering processes in which the
initial state parton changes its identity. All contributions to the pp — H-jet pro-
cesses are calculated at LO, NLO and NNLO and numerically tested to demonstrate
the convergence between the matrix elements and the antenna subtraction terms in
the various unresolved limits. As an example of the phenomenological impact of
this work, numerical results for the total and differential Higgs plus one jet cross

sections are presented for the purely gluonic subprocesses.
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Chapter 1

Introduction to QCD and the

Hadron Collider Environment

The main part of the research in this thesis focuses on the study of higher order
corrections in QCD. In this chapter, I first introduce QCD at the level of the La-
grangian density from which the basic interactions of QCD particles can be derived
in perturbation theory. To use these basic couplings to calculate physical observ-
ables, the idea of renormalization is motivated to remove ultraviolet singularities and
fix the physical coupling constants. The physical cross section from parton model is
defined and the higher order QCD corrections are made explicit in the perturbative
expansion of the cross sections. At the Large Hadron Collider, protons are collided
at very high energies. The improved parton model describes these interactions and
is introduced by considering collinear factorization which links non-perturbative be-
haviour in the proton to the perturbative interactions of incoming partons. Both the
renormalization and factorization processes preserve the properties of a self-similar
system where one needs unphysical scales to describe the intermediate stages of
the calculation. The infrared (IR) singularities, which appear both implicitly and
explicitly during perturbative calculations, are one of the main challenges faced in
this thesis and are briefly introduced. Infrared safe observables are introduced to
help restrict the IR divergences in predictable structures which will be discussed

intensively in chapter 3 and 4.



1.1. QCD Lagrangian 2

1.1 QCD Lagrangian

Quantum Chromodynamics (QCD) is the theory of the strong interaction and is
based on a non-abelian Yang-Mills quantum field theory. The Lagrangian density for
Quantum Chromodynamics (QCD) is gauge invariant under SU(3) transformations

and contains four fundamental parts:
EQCD = Equark + Egluon + »Cgf + Egh/ost. (111)

The Lyueri and Lgyen terms describe the kinetic energy and interactions of the

quarks and gluons,
Equark = Z&f}(ZD/U - mqaz])wé (112)
q

1
'Cgluon - _Ztr (F,U,I/F'ul/) 5 (113)

where the summation of ¢ is over the quark flavours, m, is corresponding mass of
each flavour and wé is the quark field. The 4, labels represent the fundamental
representation indices of SU(3), i,j = 1,2,3. The covariant derivative and gluon

field strength tensor are defined as

B/ij = ’y“(I@M + igAu)ij; (114)

F, = é[Du,D,,] = 0,A, — 0,A, —ig[A,, A,], (1.1.5)

where g is the QCD gauge coupling strength, I is the three by three unit matrix and

A contains each of the SU(3) group generators in the adjoint representation,
A, = AT (1.1.6)

In the Lie Algebra of SU(3), there are eight independent group generators in the
adjoint representation thus a = 1,--- ,8. Each T* matrix is a three by three trace-
less Hermitian matrix with the structure constant f®° of SU(3) defined from the

commutators of T,

[T, T%) = iv/2f%eTe, (1.1.7)

The QCD Lagrangian is invariant under local gauge transformations. This means

that the physical properties of quarks are universal in different locations of space
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time. Under a general local gauge transformation of the quark field,

vy — Q) (1.1.8)
L = U (). (1.1.9)

To guarantee that Lyqr, and Lye, in Egs. (1.1.2) and (1.1.3) are unchanged under
such a local transformation, the covariant derivative must transform in the following
way

D, — Q(z)D,Q !(x). (1.1.10)

From Eq. (1.1.4), the local gauge transformation of D,, is satisfied by the gluon field

transformation,
A, — Al = éQ(:U)(Iaqu(:c)) + Q)AL Q0 (2). (1.1.11)

The above transformation rules out the possibility of having a gluon mass term
mgAF A, which is not locally gauge invariant.

Although the QCD Lagrangian is locally gauge invariant, it is not obviously
renormalizable as the path integral would sum over all the possible gauge trans-
formations. The solution to this problem is to introduce the gauge fixing terms,
Ly s + Lgnost- The gauge symmetry is broken by the gauge fixing terms. However,
the physical observables are independent from the choice of a specific gauge and the
full QCD field theory can be made renormalizable. Specifically, by introducing the
gauge fixing functional Q[Ag(x)], the gauge fixing condition can be inserted into the

functional integral through the Dirac function,

= /dQé(g[Aﬁ])det(égé[ém) (1.112)

The gauge fixing condition 5(Q[Af}]) in Eq. (1.1.12) leads to the gauge fixing
term,

Lyj = —%tr(G[AH]Q), (1.1.13)

where £ is a gauge parameter defining different gauge choices. For example, £ = 0
(Landau gauge), & = 1 (Feynman gauge) and £ = oo (Unitary gauge). There are
two classes of popular choices of the gauge fixing functional. For the Lorentz gauge

G[A)] = 9,A%, while for the axial gauge G[A'}] = n, A" where n, is a arbitrary
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space-time vector. The advantage of the Lorentz gauge is the simple formalism of
gauge boson propagator while the trade-off for the axial gauge is that ghost fields

are not required. The corresponding gauge boson propagators are

0ab p'p”
A (p) = — e — (1 — , 1.1.14
ab (p) p2 + i€ |:77 ( 6) p2 Lorentz Gauge ( )
y 10q 5 n? +ntp”  (n-n+&p-p)pp”
Al (p) = -5 {“ _P L P f)pp . (1.1.15)
p” + e p-n (p-n) Axial Gauge

where p is the propagating momentum of the gauge boson and n, is a reference
vector. Typically, in the light-like gauge, n - n = 0. More details about the above
propagators are discussed in section 5.1.1.

Similarly, the determinant of the functional derivative matrix det(0G[A}]/6€2) in
Eq. (1.1.12) can be replaced by a Gaussian path integral over Grassmann variables.

The exponent of the integral contributes to the QCD Lagrangian as,
Lyhost = —Tr(Co"D,C), (1.1.16)

where C = C*T* is the ghost field in adjoint representation and behaves fermion-
ically. From the definition of D, in (1.1.4) and Tr(T*T") = 0w, Lgnost can be

rewritten in the scalar form
Lohost = —C*(0*C* — gvV/2f" 0" AL C°). (1.1.17)

In QED, f®¢ = 0 such that the ghost field will not couple to the gauge field. The
first term in Eq. (1.1.17) will be integrated out during path integral and will not
affect the physical observables.

1.2 Renormalization of QCD

The quark and gluon fields, QCD gauge coupling strength and gauge-fixing param-
eters introduced in the QCD Lagrangian in section 1.1 characterize the QCD theory
but are not yet sufficient to fix physical observables. In perturbative QCD, the
self interactions of the fields reveals the detailed structure of quantum fluctuations
in the vacuum. Starting from the second order of the perturbative expansion, the

self interactions introduce loop calculations in Feynman diagrams. After applying
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Feynman rules and simplifying intermediate tensor integrals [1], one typically finds

the following type of integrals,

d? 1
12:/(%)4[2”_2))2, (1.2.18)

where d is the space-time dimension and [ is the internal loop momentum. This

integral is divergent when [ — oo and cause ultraviolet (UV) singularities to appear
during calculations of physical observables.

The aim of renormalization is to remove the UV singularities by redefinition of
the fields and parameters without generating new terms in the Lagrangian. For the
QCD Lagrangian as mentioned in section 1.1, one can rescale the bare Lagrangian
according to the quantum fluctuations. The UV singularities in the bare Lagrangian
can be absorbed into the rescaling factors and the physical observables calculated

from the renormalized Lagrangian are then UV finite [2-4]. Specifically,

77/}‘1 = Z21/2w7‘en,q) AZ = Z31/2A7Cfen,p7 C‘l = Zé/QCgEWJ
92 - Za‘gggem 5 - ZSgreny (1219)

where all Z; above are UV divergent and have perturbative expansions, Z; = 1+07;,
6Z; = O(g*). The variables on the left hand side of Eq. (1.2.19) are defined in the
bare Lagrangian. Inserting Eq. (1.2.19), and expanding in powers of the coupling
constant, the bare Lagrangian splits into two parts, a renormalized Lagrangian and
a counter term:

EQCD = ﬁren,QC'D + ‘Cc.t.- (1220)

This means that an UV finite physical observable calculated from L., ocp can be
calculated equivalently using the bare Lagrangian minus the correction of divergent
counter terms L.; produced by the §Z;.

To fix the L.; one needs to choose specific regularization and renormalization
schemes. First to quantify the UV divergent integrals as mentioned in equation
(1.2.18), a small parameter ¢ is introduced to regulate the divergent behaviour of
the integral. The regulator is introduced by continuing the four dimensional integral
into a d dimensional integral with d = 4 — 2¢ [4]. By taking ¢ — 0 after integration,

one recovers the integral in real world space time while the divergence of the integral
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in d dimension can be analytically expressed by inverse powers of €. In this thesis
we assume the integrals for both internal (loop momentum integral) and external
(phase space integral) particles are in d dimensions. This regularization scheme is
usually referred as conventional dimensional regularization (CDR) [2,5].

Using the regulator to evaluate the divergent loop integral, one can explicitly
construct the rescaling parameters Z; and check analytically that the UV diver-
gences are removed by L., in all orders of perturbative calculations. However, in a
truncated fixed order calculation, different finite shifts in the L., for a specific order
would cause different shifts of divergences in other orders. A renormalization scheme
is required to specify the finite shift at each order of L.;. The difference between
any two schemes leads to a finite change in the theoretical prediction. However the
value of coupling constants are also scheme dependent and the physical predictions
are independent from the scheme choice. In the minimal subtraction (M.S) scheme,
the L., has no finite contribution at each order. In this thesis I choose to use the
modified minimal subtraction (MS). For each 1/¢ pole in the UV divergence the
associated coefficient (in CDR regularization scheme) is,

—F(lj 2 (47)° = % +In(47) — y + O(e), (1.2.21)

where ~ is the Euler-Mascheroni constant. The same finite contribution can be
retained by rescaling the regulator ¢ — € that

— (4@666’?% = C_'(e)%. (1.2.22)

A

In MS scheme, the finite contribution of the UV pole in equation (1.2.21) are in-
cluded in the L.; term in all perturbative orders by rescaling the regulator as in
equation (1.2.22).

The idea of rescaling the parameters of a quantum field theory is profound and
links the mathematical properties of self-similar systems. A self-similar system is
a system that appears similar at different resolution scales. In other words, a self-
similar system can evolve from one scale to another while keeping the properties of
the system. In QCD theory the field strengths and couplings can evolve through
repeated emission and absorption. Before and after the rescaling in Eq. (1.2.19),

QCD maintains the same dynamical properties and the rescaled parameters are
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defined to remove the divergence from self-interactions in the vacuum corrections.
This means that the renormalizable QCD theory describes a self-similar physics
system and the rescaling parameters can be determined by the self-repeating pattern
allowed by the physics system.

For example, the QCD gauge coupling strength g(Q?) describes the quark-anti-
quark-gluon interaction vertex at a certain energy scale Q? (renormalization scale).
The same coupling constant can be computed as a function of g(u?) at a lower energy
scale p?, by iterating the quark-anti-quark-gluon interaction vertex an arbitrary
number of times. As the physical observables are related to the squared matrix
elements, here we define the strong coupling parameter related to g?(u?) that

g2 (1?)
4

O‘S(,UQ) =

(1.2.23)

From the Feynman rules we see that a,(Q?) can be expressed as a power series in
(%) such that
_ 9@

o = as(i) + e )al(l?) + es(p )W) 4o (1.224)

O‘S(Q2>

The ¢;(u?) parameters above can be determined by the actual calculations in higher
orders of quark-anti-quark-gluon interaction vertex. Taking the partial derivative of

p? in equation (1.2.24), one finds,

_ Oas(i) | Bea(1r?)
Ou? ou?

das (1)

0
ou?

az(p?) + 2ea(p?)as(1?) (1.2.25)

By inserting the actual value of ¢;(u?) and scaling by u? one obtains the QCD
beta-function (s (u?)),
Do, (1) as (1)) o (1)
2 s _ 2 s s 2\4
— = s = 0G| —=| — —— ) —0O(a, , (1.2.26
P = Bla) = = ) - (% ()", (1.2.26)
where the first two terms in the perturbative expansion are,

11N — 2N 17

50_—a 51:_N2

13 N
—°N a
6 6 12

N — 1.2.27
F+4Na ( )

where N being the number of colours and Ng being the number of light quark
flavours. The beta-function describes the changes of a strong coupling parameter
as(u?) when altering the renormalization scale. The physical properties of a renor-

malizable QCD theory should be independent of the choice of the renormalization
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scale. However, in a truncated calculation of perturbative QCD observables, the
missing higher order terms lead to a residual dependence on u?. Nevertheless, such
dependence in perturbative calculation decreases as more and more higher order
terms is included. When the renormalization scale is varied from a central choice
the range in which an observable varies is referred to the renormalization scale un-

certainty.

1.3 QCD cross sections

The cross section o is a physical observable that describes the probability per unit
flux for a scattering process to occur. In a scattering process with two colliding par-
ticles with momentum p;, p; and m final particles with momentum ps, - - - , P10, the
differential cross section do(p, p2) describes the probability per unit flux of finding
such event as the product of the momentum phase space measure d®,,(ps, . . ., Pni2; P1,D2)
and a transition probability density calculated from the scattering matrix elements
|M,.12)?. In order to map the final state produced in the scattering to a physical
observable, a selector that acts on the final state momentum is required in order to
test whether the final state particles contribute to that particular observable, typi-
cally a number of “jets”. Formally for an m-“jet” observable, the differential cross
section can be expressed as a sum over n-particle final states that contribute to the
m-“jet” observable,
1 1
do™ (p1,p2) = o > dd,(ps, ... ,pn+2;p1,p2);]_/\/ln+2|2j75;1)({p}n), (1.3.28)
n>m

where s,, is the symmetry factor for the final state particles and J is a selector
“jet” function to check if the momentum set {p}, = ps, ..., pni2 is separate or close
enough to form the required m final state “jets”. In practice, the selector function
need not identify jets, but should project the final state particles onto the particular
observable being studied.

In perturbation theory, the scattering amplitude M can be calculated according
to the order of the coupling parameter « so that,

(27)?

M, =M + %M; + M2 1 0(d), (1.3.29)
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where M2 M} and M2 corresponding to scattering amplitudes at tree, one-loop
and two-loop level. Inserting (1.3.29) into (1.3.28) and noting that in general
|M,,11]? is one a order higher than | M,,|?, one finds the differential cross section as
an expansion in « such that (omitting label m)

2

(8] [0}
do(pi,p2) = do—LO(plap2)+_dUNLO(p17p2)+WdUNNLO(p11p2)+' -, (1.3.30)

2T

where

1 1
dULO(plaPQ) = 2—Sd¢m(p3, e apm+2;p17p2)S_Bm+2 J&m)({P}m)y

m

Riys Jyy, Jim D ({P}m+1)

1
donro(p1,p2) = Q—Sd@mﬂ(m, o ,pm+3;p1,p2)8 )
m+

1 1
+ %dq)m(p:iu ce >Pm+2;p17p2)8 Vint2 J ({p}m)

RRy 4 Jr(rzm+2)({p}m+2>

1
dUNNLO(I)lypZ) = %dq)mw(m, cee 7pm+4;p17p2)8 )
m+

RVpss JG ({Phns)

1
+ 2—d<1>m+1(p3, oy Pm+3; D1, D2)
S Sm+

1
+ 5 AP (s, pm+z7p1,pz) VVm+2J '{p}m).  (1.3.31)

The matrix elements at tree, one-loop and two-loop level are given by,

Bpis = M, +2Mm+27
Rm+3 = Mm+3M’m+37
Vingo = ./\/lm+2./\/lm+2 + Myl,l+2Mm+2>
RRyq = Mm+4Mm+4a
RVpys = My, g ML+ M, o MO,
VVigz = MO oM+ M2 MO+ MY oM. (1.3.32)

The fixed order differential cross sections beyond the leading order have contribu-
tions from scattering matrix elements with more particles than observed in the final

states. The selector function J}nmﬂ)

, ensures that only the regions of real radiation
phase space with single unresolved (soft or collinear) particles will contribute to the
next-to-leading order (NLO) differential cross section. Similarly, only the double

unresolved regions of phase space are selected by the Jp, (™2 function in the double
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real contribution at next-to-next-to-leading order (NNLO) while single unresolved

(m+1)

regions of phase space are selected by JI) for the real-virtual contribution.

For the convenience of reference, we name each line in Eq. (1.3.31) that

dULo(pbpz) = d5B(p1,p2),
dUNLO<p17p2) = da'ZI\%fLO(plapQ) + d&]‘\/fLO(plap2>a

donnro(pi,p2) = donwro(P1,p2) + doNaro(pr,p2) + doXNio(p1,p2).  (1.3.33)

In the Large Hadron Collider, the typical scattering process is the head on col-
lision of two protons producing many new hadrons in the final states. Although
the hard scattering processes at the center of the collision can be perturbatively
calculated due to the asymptotic freedom of the strong coupling parameter, non-
perturbative effects must be considered when extracting quarks and gluons from ini-
tial state protons and also when final state quarks and gluons undergo the hadroniza-
tion process.

The initial state quarks and gluons from incoming protons can be described by
the parton model. In general, for an incoming hadron with momentum much higher
than the confinement scale, the parton distribution function (PDF) f,(¢) describes
the the probability of finding a parton of type a carrying a fraction £ of the parent
hadron momentum pg. The differential cross section for incoming hadrons is then

given by,
do(pn,, pa,) Z/d& d& [i(&) f5(&)do(&pm,, Eopms ), (1.3.34)

where the sum ¢, j is over all parton species and doy;(§1pm,, €2p,) is the partonic
differential cross section that can be calculated perturbatively as in Eq. (1.3.30). The
assumption in the naive parton model is that the emitted partons are considered
to be free particles and do not interact with the rest of the hadrons. More details
about parton distribution functions and factorization are given in section 1.4.
Phenomenological models inspired by QCD have been developed to describe the
final state hadronization process and usually include parameters that are determined
by fitting experimental data. More details about how to compare parton level final

states with hadron level states is discussed in section 1.6.
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1.4 Factorization and QCD improved parton model

For higher order calculations in perturbative QCD, initial state partons could ra-
diate other partons before entering the perturbative scattering in factorized cross
sections. This means that the parton distribution functions can be written as a
series expansion in the strong coupling parameter with different orders in the ex-
pansion representing multiple emissions. If the radiated parton is collinear with the
incoming hadron, then the (singular) radiation behaviour modifies the fraction of
the momentum which is actually carried by the partons entering the perturbative
scattering. If the radiated parton has a large transverse momentum that can be
distinguished as a final state particle, then the splitting should be included in the
perturbative scattering matrix elements. A momentum scale pp is introduced as a
cutoff to distinguish whether the initiate state radiation should be absorbed into a
redefinition of the PDF or the radiation should be considered to be part of the per-
turbative hard scattering process. The process of separating initial state radiation
into hadronic and partonic contributions is called factorization. The hadronic cross
section is independent of the choice of ur when including all orders of perturbative
corrections.

The redefinition of the PDF order by order in the strong coupling parameter
is another self-similar process. In analogy to renormalization, the bare PDF (now
labeled by f2(€)) in the naive parton model is related to the physical PDF (f, (&, ur))

by a convolution with a factorization kernel I'"! so that [6,7]

ff=fer
f(2) = /dxdyfj(x,,up)l“jil(y,pp)é(z — zy). (1.4.35)
where f;(x, jtr) is the physical PDF depending on factorization scale p1y and Fj’il (y, pr)
is expressed as a power series in a,(up) (the bold I'™! kernel contains the colour

factors associated with 7* matrix in splitting vertex). The inverse of the convolution

can also be defined,

f=f"aT, (1.4.36)
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and the expansion of I'"! and I' is symbolically given by,

r=1I+ grl (;)21“2 +0(ad), (1.4.37)
r- _I—Zﬂ“ (%)TW—H“®F@+OWQ (1.4.38)
— 1+ 6p. (1.4.39)
In full notation we have,
Ey o) =00 - 2) + LD eony o) + (LB gy o)+ ol
5 (o) = 8,00 )~ “YD oork o
e S ) R (R0

The details of I‘}j and I‘fj are discussed in section 3.4.2 and 4.6.2.

Now we replace the bare PDF in the differential cross section of proton pro-
ton collision in the native parton model by the physical PDF. Eq. (1.3.34) can be
rewritten symbolically as

do=f"-do- f”
—fet.do-T'®f. (1.4.41)

Now can now identify the factorized partonic differential cross section,
d6 =T"'-do-T7. (1.4.42)

so that the hadronic differential cross section in the QCD improved parton model is

given by,
d¢& d
Ao (pw, s pm,) Z/ o 52 fi(&, wr) fi(&os pr)doi; (§1pm, s S2pm, ), (1.4.43)

In analogy to the renormalization of the QCD Lagrangian, by inserting the value
of T™' in Eq. (1.4.39), the factorized differential cross section can be split into
two parts - the original differential cross section calculated from perturbative QCD

theory plus a counter term which contains dr,

d6 = do + dé, (1.4.44)
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where

d6ey =0r-do-1 4+ I-do-dopr + op-do-dr. (1.4.45)

By using the calculated value of dr in the expansion of oy, d.; can be arranged

also in expansion of ay that

dé.s = dANLo + (2 ) dodE o+ O0(ad). (1.4.46)

where the mass factorization counter terms at each order of a; are given by,
dodis = — Cle) (Fl dopo -I+1-dogo- I‘l) , (1.4.47)
doNx Lo =— Cle) <F1 ~donro -I+1-doyro - I‘l)
— C%(e) (I‘2 doro-I4+1-dopo -T2 —T' doo T
— eI -doro-I-1-doro- [l ® r1]> : (1.4.48)

Comparing above equation with the perturbative expansion of differential cross sec-
tion in Eq. (1.3.30) and combining terms according to the order of ay, we find the

factorized differential cross section to be,

doro =doro,
donro =donro +doNio,

dﬁNNLO :dUNNLO +d&%}€w- (1449)
The utilitization of the mass factorization terms is intensively discussed in chapter 3
and 4. In particular, the I‘1 and I‘2 functions are not infrared safe and are combined
with divergent subtraction terms to define a infrared safe differential cross section

in chapters 6, 7, 8 and 9.
The dod/¥, o term in equation (1.4.48) can further be arranged into two parts ac-

cording to the number of final state particles. Inserting do o according to equation

(1.3.33), the NNLO mass factorization counter term doi'%,  is
. ~MF,1 ~MF2
doNro = dynio + doNnLo: (1.4.50)
where

déNio == Cle) (r1 dof,, T+T1-dok,, - r1> (1.4.51)
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donito =—Cle) (Fl doYrp - I+1-dokp - rl)
—62<€>(I‘2 'dO’LO 'I—l—I'dULO 'F2 —Fl -dO'LO -Fl

— M ®TY doro-1-1-doo- ' ® r1]>. (1.4.52)

1.5 Infrared singularity cancellation

Renormalized quantum field theory has another type of divergence when two par-
tons becomes collinear or one parton becomes soft (and also iteration of these two
behaviour). These divergences are generically called infrared singularities. From
Eq. (1.3.31), in the higher order contributions in perturbative cross sections, higher
multiplicity processes from scattering matrix elements can contribute to lower mul-
tiplicity cross sections depending on the selector functions. As a scattering process
involving unresolved particles (collinear or soft) may be indistinguishable from the
one with lower multiplicity, the infrared singular regions of phase space will satisfy
the selector functions and be considered as a contribution to the lower multiplic-
ity observable. Similarly, during factorization process, if the radiation from initial
state parton is collinear with the incoming hadron, the collinear divergence is sim-
ply absorbed in the splitting kernel of bare PDF and the physical PDF is infrared
safe. Nevertheless, the mass factorization counter terms containing infrared singu-
larities will contribute to the factorized cross section. Another source of the infrared
singularity comes from loop integrals.

On the experiment side, physical cross sections are by definition finite. The
studies by Bloch and Nordseick [8], and Kinoshita [9], Lee and Nauenberg [10] (KLN)
showed that, although different contributions in renormalized quantum field theory
may be separately divergent, all infrared singularities will cancel when summed over

all degenerate states leading to a finite prediction for the cross section.
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Figure 1.1: A di-jet event from CMS

1.6 Jet observables in the hadronic final state

Jet observables are an important concept for bridging between the partons produced
in the hard scattering with the spray of hadrons produced via the hadronization
process that is observed in the detector. The hadronic jet direction and energy are
constructed by summing over the hadrons assigned to the jet. Likewise, one can
construct a partonic jet from the partons produced in the hard scattering. After
defining hadron-level jets from experimental data and parton-level jets from partonic
event generators, one can compare the jet distributions observed in experiment with
the corresponding theoretical predictions up to the uncertainties coming from, for
example, the hadronization process or the contamination of the jet from the under-
lying event.

A di-jet event from CMS experiment is shown in figure 1.1. [11]

A Jet Algorithm provides the criteria to define a jet. In a parton-level event
generator, the jet algorithm is applied via the selector functions as mentioned in
section 1.3. From experimental side, the jet algorithm is applied during the data
processing stage after identifying all particles related to a single event. To define a
jet one needs to set a jet resolution parameter and choose a combination scheme.
The popular choice for a class of combination schemes at LHC is sequential re-
combination [12,13], for example, the kr algorithm [12]. In general for sequential
recombination, a distance measure is calculated for every pair of particles in the

final state. Starting from the pairs with the smallest distance measure, final state
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momenta are combined together to form a composite particle as a prototype jet.
Repeating the process of calculating the distance measure with prototype jet and
combining final state objects until all prototype jets have a distance measure larger
than the resolution parameter leads to a set of well separated jets. Experimen-
tally, the jet is formed from the many hadrons that are produced in a single event.
Theoretically, the jet is created by clustering together the (relatively few) partons
that are produced in the event. Since QCD radiation produces infrared singularities
whenever a soft gluon is emitted or when a parton splits into two collinear par-
tons, it is very important that the jet algorithm does not spoil the cancellation of
infrared singularities between real and virtual contributions. In an infrared safe jet
algorithm, soft and/or collinear emissions do not change the observed jet. For ex-
ample, collinear emissions should automatically be recombined by the jet algorithm.
Similarly, soft emissions within the jet should not alter the jet energy, while soft
emission outside the jet should not generate additional jets. When the jet algorithm

is insensitive to soft and collinear radiation in this way, it is called infrared safe.



Chapter 2

Introduction to the Higgs Boson
and Higgs Phenomenology at the

LHC

In this chapter, I introduce the basic ideas of electroweak symmetry breaking and the
various Higgs boson interactions that are precisely predicted within the Standard
Model. Direct evidence of the Higgs boson is the ultimate test of our ideas of
electroweak symmetry breaking (EWSB). In 2012, CERNs Large Hadron Collider
(LHC) finally revealed experimental evidence, that through comparison with precise
predictions of the Higgs boson production and decay channels, is currently believed
to be compatible with being the Higgs boson of the Standard Model.

Of course, in a hadron collider like the Large Hadron Collider, the Higgs boson
production and decay processes are accompanied by large QCD corrections and
there are many sources of Higgs-like events that have nothing directly to do with
the Higgs boson - the background. Inspired by many phenomenological studies and
the need for a precise comparison with LHC data, higher order QCD corrections at
NNLO and boosted observables are necessary to study the precise properties of the
Higgs boson. The unique combination of NNLO QCD corrections and Higgs boson
phenomenology present in the pp — H+jet process makes this project central to

the successful exploitation of the LHC.

17
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2.1 Electroweak symmetry breaking

Electroweak symmetry breaking was studied in the 1960’s and is the foundation of
the Standard Model [14-18]. The essential feature is to introduce a scalar (Higgs)
field with a non-zero vacuum expectation value (vev) that gives mass to both vector
bosons and fermions spontaneously breaking the electroweak symmetry. The physi-
cal manifestation of the Higgs field is the Higgs boson that observed by the ATLAS
and CMS experiments at the LHC in 2012 [19-22]. In this section I introduce the

main features of spontaneous symmetry breaking.

2.1.1 Spontaneous symmetry breaking in U(1) gauge theory

The main aspects of a spontaneously broken gauge theory can be illustrated via the
simple example of an Abelian U(1) gauge group. I follow closely the notation in [23]
and the Lagrangian density of a scalar field with U(1) gauge symmetry is

L= (D) (D)~ {FuF™ ~V(5), (2.11)
where

D;ﬂ/} = (au - igAu)@/)»
Fl = 0,4, — 8,A,. (2.1.2)

V(1) is the potential of the 1) field and here we choose a potential with non-zero

vacuum expectation value (vev) that (the Mexican Hat Potential)

V(y) = —p*" + AWM (1* A > 0) (2.1.3)
The Lagrangian density is invariant under local gauge transformations,
b(x) = e Dy(a),
1
A (z) = A, (x) — =0,a(z). (2.1.4)
g

Note that a term proportional to A, A" is not allowed because such a term is not
gauge invariant. Because of the gauge symmetry, A, (z) is required to be a massless

gauge field.
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The potential V(1)) reaches its minimum when the strength of the scalar field is

[ w V() _
|| = \/; Sl = 0. (2.1.5)

This means that the scalar field ¢ has a vev,
{olui0)] = " (216
= —, v=14/—=. 1.
V2 A
For a physical system which is close to the bottom of the potential, the scalar field

can be expressed as a perturbative expansion close to its vev such that,

b(z) = %[v T n(e) + i€(@)), (2.1.7)

where the n(z) and £(z) fields have small values compared to v and have zero vev
so that
[{0In[0)| =0, 0I£]0)] = 0. (2.1.8)

If we insert (2.1.7) into (2.1.1) then there is no term proportional to |£(z)|?. This
means that the {(x) field corresponds to a massless Goldstone boson [24,25]. Eq. (2.1.7)

can be expressed as,
e 1

V2

which means that we can gauge transform away the £(z) field using Eq. (2.1.4) that

[v+n(z)], (2.1.9)

’ E(x)

¥ (2) = e () = %[v T (),
Bu(x) = A, (x) — giv (). (2.1.10)

The Lagrangian density after such a gauge transformation is

£ 5@~ B0+ n>)T(<au ~igB)o+ 1))

1 2 M 2 A 4
- Z(@By —9,B,)* + 7(11 +n)* — Z(U +n)
1 1 1
25(5;#7)2 - N2772 - Z(auBV - avBu)Q + 5(9“)2BMBM
+ O(n®, B,B"n). (2.1.11)

Apart from the new interaction terms of order O(n?, B, B"n), the Lagrangian density

after gauge transformation (2.1.10) contains the B, (x) field representing a massive
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vector boson and the massive scalar Higgs field n(x). The unphysical massless
Goldstone boson field £(x) is entirely removed from £ by the gauge transformation
and the corresponding gauge choice is known as the unitary gauge. The original
scalar field ¢ (carrying a single degree of freedom) is ‘eaten up’ by the massless
gauge field A, (with only two polarization states) to produce the new massive gauge
field B, (with three polarization states). Because of the presence of the mass term
for the B, field, the original U(1) symmetry is spontaneously broken close to the
minimum of the potential V(). This example of spontaneous symmetry breaking
is also known as the Abelian Higgs mechanism. The non-Abelian case relevant to

the Standard Model will be introduced in the next section.

2.1.2 Higgs mechanism in the Standard Model

The Standard Model is a spontaneously broken Yang-Mills theory with the SU(2), x
U(1)y non-Abelian symmetry. The Higgs mechanism is implemented through a

complex scalar SU(2) doublet, with hypercharge Y = 1,

s |
s | Jo L[t} (2.1.12)

¢° V2 ¢3 + 1y

where ¢, @9, ¢3, ¢4 are properly normalized real scalar fields. The Lagrangian for
the scalar field is
Lo = (D,®)" (D*®) — V(®) + Lyuxaa- (2.1.13)
The form of the covariant derivative is dictated by the SU(2) xU (1) gauge symmetry,
ig

- !
D, =10, + S1B,+ S W,. (2.1.14)

where g and ¢’ are the couplings of the SU(2) and U(1) gauge groups respectively,
I is the two by two unit matrix and W, contains the Pauli matrices 7* (group

generators of SU(2)) such that
W, =W (a=1,2,3) (2.1.15)
The Higgs potential V(®) is given by,

V(D) = —p2®Td + A(@TD)2. (12X > 0), (2.1.16)
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which, as in the Abelian case, has a non-zero vev.
The Yukawa interaction Lyuawa 1S introduced to generate the fermion mass via

gauge invariant couplings to the scalar field ® such that
Lygeawa = DI Q% duly + T QL by + T9LE DI, + hec. (2.1.17)

where ® = i72®* is the conjugate SU(2) doublet with hypercharge —1, and I, 4; are
matrices of free parameters which are determined by experiment from the masses of
fermions. Q% and L% (i=1,2,3 for generation index) are quark and lepton left handed
doublets of SU(2)r, and uk, di and I} are the right handed SU(2),, singlets.

Just as in the Abelian example in section 2.1.1, we expand the scalar field ¢

about the vev of the Higgs potential,

|(0[¢3]0)] = v,

such that,
+ .
1 +1
oo [T |2 L[ ot : (2.1.18)
¢ V2 \ v htig

where v = /p2/\ and &', €%, €%, I are real scalar field with zero vev. Choosing the
unitary gauge to transform away the three component (&3, &s,&3) of the scalar field,

we can rewrite the SU(2) doublet in equation (2.1.12) as

o= LeXp (ig%-a) ’ — S 0 . (2.1.19)
V2 v v+h V2 \ wih

The gauge transformation in Eq. (2.1.19) also changes the gauge fields W, W7, W

and B, just as in Eq. (2.1.10). However, it is the beauty of the Higgs mechanism

that after the gauge transformation, the Wj,Wi,Wi and B, fields will describe

massive bosons with the mass spectrum observed in experiment.

The quadratic terms for the gauge bosons in Eq. (2.1.13) come from (D, ®)" (D*®),

v? ig’ ig ig' ig
Loass = (0 1) (=218, — 2w, ) (Z1B, + Zw
p (01 ( 2T “) (2 Y “)

v /
= [PV + (W) + (~gW) + ¢'B,)"]. (2.1.20)

N
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If one replaces W, W7, W and B, by normalized fields,
W, = —2(W+ + W),
o _ 1 + -
W, = —E(WM W),
1
W, = (92, + 9'Aw),
P+g? '
1
B, = (—g'Z, + gA,), (2.1.21)
1 o 1 1
then
g2 . <g2—|— '>v2
Lonass = TW“ WTH 4 TZ“ZH. (2.1.22)
From equation (2.1.22), we identify the three massive vector bosons as,
+ 1 2 _gv
VV‘u E(W + W ) mw—?,
1 /o2 1 2
Iy = \/ﬁ(QWE — 9'By), mz = ¥, (2.1.23)
g°+g
while the massless photon is,
A, = ! Wi+4¢B =0 2.1.24
T B mast .
In the unitary gauge, the Yukawa interaction is given by,
1 ~ _
Lywkava ™~ Y5 (v + ) frfr + (v+h)frfr]
Yr
= v+ h
\/5( )f f
— (%) it - Ly (21.25)
(\/_ V2
showing that a fermion mass,
my = 22 (2.1.26)
V2

is generated by the Higgs mechanism. Furthermore, the coupling of the Higgs boson

to the fermions is proportional to the fermion mass.
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- — —TH

Figure 2.1: Higgs boson-gluon coupling through a quark loop in Standard Model at
LO.

2.2 Higgs-Gluon-Gluon effective coupling

The coupling to quarks also enables the Higgs boson to couple to gluons via a
quark loop, where the top quark gives the dominant contribution. The leading
order contribution to the Higgs boson-gluon coupling is thus at the one-loop level.
Because the top quark mass is assumed to be much larger than the Higgs boson
mass, the top quark loop can be integrated out yielding an effective Lagrangian
with new higher-dimensional interactions [26-28].

In the effective theory, the Higgs boson couples to the gluon field strength such
that,

rint _ gHtTGWGW NI (2.2.27)

where the terms in - -- are proportional to 1/m? and vanish in the m; — oo limit.
The Wilson coefficient C can be expressed in the expansion of a, and can be deter-
mined order by order from the fixed order calculation in the full theory. For example

at leading order, the Feynman rule for the effective coupling in Eq. (2.2.27) is

—i0™C (p1 - pon™ — piph) | (2.2.28)

where p; is the momentum of the gluons. In a light-like axial gauge where the

reference momenta are n; = p, and ny = pq, the scattering amplitude for H — gg is
MEff(H —g9) = —1 Z 0"°Cpy -p26’\(p1,n1) : 5_/\(192, ny) = i20"Cpy - ps. (2.2.29)
A=+

Here z—:l’)(pi,ni) is the polarization vector with helicity A and reference momentum

n;. From the full theory, we can calculate the triangle loop in Figure 2.1. In the
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my; — 0o limit, the amplitude is

; ab Us A A x
Mquz?%oo(H —g9) = _225 %Pl -p2e”(pr,m) - (€7 (p2,m2))" 4+ -+ (2.2.30)
where the terms --- are suppressed in the heavy top quark approximation. By

comparing Egs. (2.2.29) and (2.2.30), we can conclude that at leading order, the

coefficient C is given by,

A
6mv
For higher order terms in C, one needs to calculate MET . (H — gg) with more

loops. The NLO (O(a?)) and NNLO (O(a?)) results have been calculated in [29]
and [30,31].

Cro = (2.2.31)

Finite top and bottom mass effects typically induce contributions to the gg — H
cross section of only a few percent. When more partons are produced in association
with the Higgs boson, the finite top and bottom mass effect become more important
for Higgs boson production with increasing transverse momentum. From a com-
parison of NLO Higgs boson plus jet final states between the effective theory and
the full theory, the finite top mass effects lead to deviations of more than 5% when

prr = 200 GeV [32,33).

2.3 Higgs boson decay channels

The Higgs boson has a mean lifetime of 1.6 x 107*2s [34] which means that the
Higgs boson decays to other particles before it interacts with the detector. Through
the Lagrangian density (2.1.13), we can study the different processes through which
the Higgs boson decays. The Feynman diagrams for the possible Higgs boson decay
channels are listed in Fig. 2.2. The branching ratios for each decay depend on the
mass of the Higgs boson and are presented in Fig. 2.3 [35].

One type of Higgs boson decay is when the Higgs boson splits into a fermion-
antifermion pair. As the interaction strength is proportional to the mass of the
fermion, the Higgs boson is more likely to decay into heavy fermions than light
fermions [34-36]. Following this logic, the decay channel with the largest branching

ratio should be into a top-antitop quark pair. However as the top quark is heavier
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(a) H to fermion pair decay (b) H to W pair decay (c) H to Z pair decay
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(d) H to gluon pair decay  (e) H to yy(Z) g-loop (f) H to vy(Z) W-loop

Figure 2.2: Feynman diagrams for the Standard Model Higgs boson decay channels.

than the Higgs boson this decay mode is forbidden. The dominant decay channel is
then into bottom-antibottom quark pair with a branching ratio of about 56% [34-36].

Another type of Higgs boson decay is when the Higgs boson splits into a pair of
vector bosons. Although both W and Z bosons are heavier than half of the Higgs
boson mass, the decay mode proceeds via an off-shell vector boson. The most likely
decay channel is H — WW* which has branching ratio of around 23% [34-36]. The
H — ZZ* decay is much smaller because of the larger Z boson mass which pushes
the off-shell Z further off-shell. This branching ratio is ~ 3%.

The last type of decay channel is the decay into gauge bosons (gluons, photons,
Z) via a loop of virtual quarks or massive gauge bosons. The decay channel with
the highest branching ratio (8.5%) within this type is Higgs boson decay to gluon
pair [34-36]. The gold-plated H — ~~ decay has a branching ratio of around 0.23%.

2.4 Higgs boson production channels

In a hadron collider like LHC, there are four main production processes for Higgs
bosons: gluon fusion (GF), vector boson fusion (VBF), associated V H production

and ttH production. The corresponding Feynman diagrams are shown in Figure
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Figure 2.3: SM Higgs boson decay branching ratios as a function of my. From

Ref. [35]

2.4.

Gluon fusion to Higgs boson has the largest production cross section at the LHC
(about 85%) [34]. Using the effective Lagrangian, the fully differential NLO [37-39]
and NNLO [6,40-46] studies have shown that the QCD radiative corrections to this
production channels are large. The state-of-the-art is now N3LO which reduces
the theoretical prediction uncertainties to 5% [47-49]. The effects of a finite top
mass have also been calculated recently at NNLO [32,33,50-55] showing that the
deviation from the effective theory is small (about 2%).

The VBF channel cross section is about one tenth the size of that for gluon fu-
sion [34]. This channel has a distinctive experimental signature as the two incoming
quarks tend to be scattered by a relatively small angle, leading to two very energetic
jets pointing close to the beam line in opposite halves of the detector.

The cross section for associated V H production is about 5 — 6% of the inclusive
Higgs boson cross section [34]. The ttH production rate is about 1% of the inclusive
Higgs boson cross section [34]. However this channel is important as it directly
probes the Higgs boson coupling to top quarks. The Standard Model Higgs boson
production cross sections calculated as a function of Higgs boson mass are shown in

Fig. 2.5 [34].
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t

(¢) VH associated production (d) ttH production

Figure 2.4: Feynman diagrams for Standard Model Higgs boson production channels.

2.5 Discovery of the Higgs boson

To prove the existence of the Higgs boson in the collider environment is a tremendous
challenge. First, one needs a powerful accelerator like the LHC to provide sufficient
energy for a Higgs boson to be created through one of the production channels.
Second, the production of a Higgs boson has very small rate compared to other
interactions allowed in the Standard Model. One therefore needs to repeat the col-
lision processes at a high frequency. Third, the Higgs boson decays before it reaches
the detectors. The various decay channels pose different challenges to identify a
signal superimposed on a the large non-resonant background. Although the H — bb
mode has the largest decay branching ratio, the enormous QCD background from
di-jet production makes detection in this decay model impossible. The same holds
for the gg and c¢ decay modes. Final states involving charged leptons are much
easier to observe, since the charged leptons in the final states are easily detected
through tracking systems and electromagnetic calorimeters. Final state photons are
also well measured in electromagnetic calorimeters. The mass resolution of the LHC

detectors for lepton and photon pairs is excellent. Neutrinos do not interact in the
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Figure 2.5: Standard Model Higgs boson production cross sections. From Ref. [34].

detector and can be reconstructed as missing energy with a 4-m detector. The easily
observable decays have quite small branching ratios [34-36]. The branching ratio for
H — WTW~ = ["l~vvis about 1.1%. The H — ~~ channel has a small branching
ratio about 0.23% while the very clean H — ZZ* — 4l decay has a branching ratio
of ~ 0.013%.

The ATLAS and CMS detectors at the LHC independently searched for the
Higgs boson signals and announced the discovery of a new type of boson on the 4th
of July 2012 [56]. The new boson has a mass of 125.02+£0.27(stat) +0.15(syst) GeV
according to CMS experiment [57] and 125.36+0.37(stat)+0.18(syst) GeV according
to ATLAS experiment [58]. The discovery channels were firstly the H — v and
H — ZZ* channels [56] followed by the H — WV~ channel was later included [20,
59]. Studies of the H — 77 and H — bb channels shows strong evidence for a direct
coupling between the new boson and the down-type fermions. However the excesses
of events over the expected background from other Standard Model processes have
not reached 5 standard deviations yet [60-62].

The next key question is whether or not the newly discovered boson is the Stan-
dard Model Higgs boson. From the discovery itself, the new boson production and
decay rates agree with the predictions of a Standard Model Higgs boson. From stud-

ies to determine the spin and parity quantum numbers, a spin—0 and positive parity
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is tentatively confirmed [59,63-66] while spin—2 or negative parity are excluded with
high confidence level [63,65].

Studies show that an extended Standard Model with two Higgs doublets [67]
is disfavored by the ATLAS experiment when searching for the CP-odd Higgs bo-
son [66]. The Standard Model CP-even Higgs boson is supported by studying the
angular distributions of four lepton final states in H — ZZ* — 4l channel by CMS
experiment [68]. In the search for neutral Higgs bosons predicted by the Minimal
Supersymmetric Standard Model, no excess from background is observed in the tau-
lepton-pair invariant mass spectrum by both the ATLAS and CMS [69,70]. All these
studies provide strong evidence that the new boson discovered in the ATLAS and

CMS detectors at the LHC is indeed the Standard Model Higgs boson.

2.6 Motivation for Higgs boson plus jets events
at high precision

With the discovery of the Standard Model Higgs boson, the Higgs boson related re-
search focuses on the detailed testing of Higgs boson couplings and dynamic proper-
ties. As mentioned in previous sections, both the dominant Higgs boson production
(99 — H) and Higgs boson decay (H — bb) channels have large QCD backgrounds.
The VBF production channel also have associated energetic forward jets. To better
discriminate the Higgs boson signal from the QCD background and to study the
dynamic properties of the Higgs boson, it is important to improve our predictions

of exclusive Higgs boson plus jets events.

2.6.1 Higgs bosons with boosted kinematics

When a Higgs boson is produced in association with other particles, then from
momentum conservation, it will recoil against the associated particles and could
have large transverse momentum (boosted Higgs boson). The decay particles from
the boosted Higgs boson would have a much narrower separation angle than in

normal exclusive Higgs boson production where the Higgs boson is produced at rest
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and the decay particles would be back-to-back.

If the boosted Higgs boson decays into bb pair, then after the hadronization
process will in principle lead to two b-jets. The b-jets may be identified, or b-tagged,
because if the originating particle is a neutral B-meson, the origin of the hadrons
making the jet may be displaced from the beam line. This b-tagging is a powerful
tool for identifying the Higgs boson signal [71,72].

However, if the two bottom jets merge into a single “fat jet”, then the invariant
mass of the “fat jet” is directly related to the mass of the Higgs boson. The unique
features of events with a boosted Higgs boson could lead to improvements in the
detailed measurement of Higgs bosons properties, and specifically the coupling of
the Higgs boson to bottom quarks.

QCD backgrounds are reduced drastically if one selects events with pairs of b-jets
with large transverse momentum [73,74]. Experimentally , the “fat jet” substruc-
ture from H — bb is very different from QCD “fat jets” [74]. Selecting events with
boosted objects is commonly used in searches for the associated Higgs boson pro-
duction channels [75,76]. Boosted Higgs boson from V' H production channel can be
used to study possible BSM properties [77]. Different BSM models related to H f f
couplings can be distinguished from boosted events shapes [78]. From these stud-
ies, Higgs bosons with boosted kinematics have the potential to reveal more details
about the decaying particle. More accurate prediction of exclusive proton proton
collision to Higgs boson plus jets at NNLO will further improve our understanding

of the Higgs bosons properties.

2.6.2 Higgs boson differential cross section

Differential cross sections for boosted Higgs bosons (pr distributions, pseudorapidity
distributions etc. of the boosted object) provide information about both the rate
as well as the kinematic properties of the event for detailed comparison between
experiment and theory.

From the theory side, the boosted Higgs boson in the gluon fusion channel as
been implemented in many NLO Monte Carlo event generators [79-82]. Studies at

NNLO for pure gluon channel are also available [83,84]. In the associated Higgs
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boson production channels, the Higgs boson is boosted through recoil against the
vector boson and fully exclusive studies are available at NNLO [85,86]. In the ttH
production channel, the Higgs boson is boosted through its recoil against the top
quark pair. The simulation at NLO accuracy was first studied in [87,88] and is now
implemented in many NLO Monte Carlo event generators [89-91].

On the experimental side, as more and more data relating to boosted Higgs boson
becomes available, comparisons of differential cross sections with simulation results
become possible. Although with limited experimental statistics of LHC RUN 1 data,
the differential cross sections have been studied in the H — vy and H — ZZ* — 4l
decay channels [92,93]. With more data from LHC RUN 2, studies of Higgs boson
differential cross sections will become more and more important for revealing detailed

Higgs boson properties.

2.6.3 Jet-bin analysis

In a proton proton collider like LHC, events are usually classified according to the
number of jets in the event. These jets could come from a variety of sources, either
from the underlying event, or from QCD radiation from the hard scattering. Exper-
imental plots usually collect events with different numbers of jets into jet-bins. In
this thesis, we are mainly concerned with the analysis of H +n jets (n =0,1,2---),

with corresponding cross sections o,,, such that

O_tot — E O
n=0

The jet-bin plot from ATLAS for H — ~v and H — ZZ* — 4l is shown in
Fig. 2.6 [93] and 2.7 [92]. Although the Higgs boson decays themselves do not pro-
duce additional jets, the signal events contain different numbers of jets. For each
jet-bin in Fig. 2.6, the signal to background ratio varies. Figure 2.7, shows the
different statistic and systematic uncertainties for each bin, and these uncertainties
in general increase with higher jet multiplicities. From the theoretical prediction
at NLO shown in the same plot, we can see that the different Higgs boson pro-
duction channels contribute different proportions to each jet-bin. We also see that

the deviation between experiment and theoretical prediction increases with the jet
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Figure 2.7: pp — H — ~~ associated with n jets with different jet cut p];t

multiplicity. To study the detailed properties of the Higgs boson, these compar-
isons need to be improved both experimentally and theoretically. From the theory
side, more accurate predictions for exclusive Higgs boson plus jets beyond NLO are
needed to reduce theoretical uncertainty to match the anticipated experimental un-
certainty. As exclusive Higgs boson production from gluon fusion is now predicted
at N3LO accuracy [47-49], the next step is to increase the accuracy of exclusive
gluon fusion to Higgs boson plus one jet at NNLO accuracy [83, 84].

As introduced in section 1.6, jet observables are selected according to various

parameters. The jet cut p3#* is an important parameter to define a jet with transverse
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Figure 2.8: Jet veto efficiency in gluon fusion to Higgs boson channel

momentum p{fe b pt. As we see in Figure 2.7, changing the jet cut from 30 GeV

to 50 GeV has a big effect on both the data and theoretical prediction.

The jet veto efficiency ((preto)) is an important observable defined as the frac-
tion of the measured cross section that does not contain a jet above the jet cut
pZF ! [94-97]. In a jet veto analysis, the prediction for the 0—jet-bin is defined to be
00 = Ot — 0>1. For the various jet cuts used in Higgs boson production channels,
the prediction for the jet veto efficiency is shown in Fig. 2.8 for massless active
quarks [94]. The exclusive Higgs boson production is calculated at NNLO accuracy
in Fig. 2.8 while 0>, is at NLO. To further reduce the theoretical uncertainty, NNLO

calculations for o>, are needed.

2.6.4 Higgs boson plus jet at high precision

The main goal of this thesis is to make predictions for the specific process in which
proton proton collisions lead to a Higgs boson plus one jet final state at next-to-next-
to-leading order in the perturbative expansion. To do this, we will study the infrared
singularities associated with the various real and virtual contributions at NLO, as
well as the double-real, real-virtual and double-virtual contributions at NNLO. We
will describe the numerical implementation of the various contributions. Although

the infrared singularities ultimately cancel, each different final state multiplicity, is
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separately divergent. A key part of the work described here is the introduction of
subtraction terms that will produce an infrared finite integrand for each multiplicity.
Clearly the subtraction terms themselves will mimic the explicit divergences present
in the matrix elements as well as the implicit divergences in the single and double
unresolved regions of phase space. We will employ a particular technique known
as antenna subtraction to derive these subtraction terms analytically. The antenna
subtraction method has been successfully applied to the eTe™ — 3 jets and pp — gg
at NNLO [98-102]. The challenge of applying such method to pp — H+ jet is to
address the singular configurations involving different types of initial state partons
and phase space mappings.

The thesis is organized as follows: Chapter 3 describes the structure and di-
vergent behaviour of a general QCD process at NLO and the antenna subtraction
method for NLO calculations. Chapter 4 continues the discussion to NNLO which is
the main topic of this thesis. The tree and one-loop level matrix elements involved in
pp — H+jet at NNLO are discussed and recast in numerically stable form in chapter
5. The explicit antenna subtraction terms for pp — H-+jet at NLO and NNLO are
intensively studied in chapters 7, 8 and 9 for gluon-gluon, quark-gluon and quark-
quark initiated processes. In chapter 9, the numerical results for pp — H+jet in the
all-gluon channel are presented. In chapter 10, we draw our conclusions. Appendix
A, B and C contains more examples of the explicit antenna subtraction terms used
in chapter 7, 8 and 9. Appendix D provides a short review of mass factorization

terms at NLO.



Chapter 3

NLO Corrections to QCD

Scattering Processes

3.1 Colour ordered QCD amplitudes and matrix
elements at NLO

As QCD is a non-abelian theory, it is convenient to organise QCD amplitudes ac-
cording to the colour ordering of gluons and quarks. The colour ordering provides
information on the real radiation singularities present in unresolved limits as well
as the explicit pole structure present in loop amplitudes - all of these infrared sin-
gularities are produced by partons that are adjacent in the colour ordering. For
recursive calculation methods, colour ordered amplitudes form the building blocks
of the calculation and are easily extended to higher parton multiplicities.

One can extract the colour coefficients of each vertex allowed by SU(N) QCD
and use that to define colour ordered QCD amplitudes. The generators of SU(N)
are traceless hermitian N x N matrices 7% where a = 1,--- , N? — 1.

In the quark-gluon-quark vertex, the colour factor T} links a gluon with adjoint
colour index a to the quark pair in the fundamental representation with colour

indices 7 and j. In the three-gluon vertex, the structure constant ¢ defined by
[T, T% = iv/2f%eTe, (3.1.1)

links gluons with adjoint colour labels a, b and c. In the four-gluon vertex (with

35
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colour indices a, b, ¢, d), a pair of structure constant is used of the type f®°f where
e is a (summed over) internal colour index. The full four-gluon vertex is symmetric
under the interchange of the external gluons.

We can systematically replace the structure constants appearing in the Feynman
rules for the three- and four-gluon vertex by group generators using the following

identity:
abc __ _L
e

Similarly, for amplitudes with two or more quark pairs, we can use the Fierz lentity

(Tr(T°T"T¢) — Tr(T*TT")). (3.1.2)

to disentangle the non-abelian and the abelian part of the colour flow,
1

TeaToq = 9e@d0a —

wiloo = 04q000- (3.1.3)
The left-hand side of equation (3.1.3) represents the colour structure of an inter-
mediate gluon (a) connecting two quark pairs (¢ and QQ). The first term in the
right-hand side is the non-abelian colour flow, while the second term indicates a
“photon-like” connection between the two quark pairs (abelian part). For any given
QCD scattering amplitude, we can decompose the colour parts of the basic vertices
using Eqgs. (3.1.2) and (3.1.3) then collect terms according to the ordered products
of SU(3) generators. In this way we can decompose an amplitude into sets of partial
amplitudes which are grouped by colour-related coefficients - these are the colour
ordered amplitudes.

For example, by repeated use of Eq. (3.1.2), the pure gluon tree level scattering
amplitude for n external on-shell gluons with momenta k;, helicity A\; and colour a;
can be represented by

Mk, Miyai) = g" > D Tr(T* - T ) Mg+, gm). (3.1.4)
P2, n)
The sum of P(2,---,n) is the sum over all permutations of 2,--- n. In the RHS,
we use the obvious notation g;\i to denote a gluon with momentum k;, helicity A;
and colour index a;. M2(g}", -+, g) is the colour ordered amplitude.

Similarly, the tree level amplitude for one quark pair (with momenta k; and ks

and colour indices ¢ and ¢) and many gluons has the general form,

MO(ki hya) = g" 2 3 (T T MO(aY g o2 3?)  (3.15)
P(3,-+-,n)
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where the sum P(3,--- ,n) runs over the permutations of the gluons with momenta
ks, ..., k, and colour indices as,...,a,. For two and more quark pairs, more quark

indices are involved, leading to products of colour-strings such as,
(T T (T - T gy

At one-loop, the colour ordered amplitudes follows a similar pattern. Let us
consider the pure one-loop gluon amplitude as an example. Because of the loop,
there is an additional internal gluon (relative to tree-level) whose colour is summed
over. This produces two types of colour structure, one where the extra trace acts
on the unit matrix yielding a factor of N, and another one where two separate
traces are produced (that is formally sub-leading in powers of N). A third structure
proportional to the number of quark flavours is produced when there is an internal

quark loop. In general,

Myll(kla)\laal)
gn|: Z TT(Tal'”Tan)(NMnl(gl y " 797)2 )_'_NFMnl(gl )" 7g2n))

[n/2 J+1
a a, - a . a 0 >\O' n
Y Y Tr(T0 - T T (To e - T My (g0 ,ga(é)))],
c=2 P”C o')

(3.1.6)

where the Z[n/ 21 qum is for all the possible separations of gluons and the sum of
P"¢(0) is for all non-cyclic permutations of the inner string indices (o(1)---o(c)) ®
(o(c+1)---o(n)).

When squaring the matrix elements, the colour indices for each quark and gluon
appear in pairs. Using the Fierz identity (3.1.3), one can simply eliminate the
generators appearing in the colour factors and eventually simplify the colour factors
into scalar coefficients that are polynomials in N. At leading colour, that is retaining
only the highest powers of NV, the squared matrix elements are simply proportional
to sums of products of colour-ordered amplitudes with the same colour ordering.
The sub-leading colour contributions generally depend on the particular process,

both in terms of the type and number of particles involved in the scattering.
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For example, the colour leading contribution to the pure gluon (plus Higgs boson)

matrix elements is given by (following the notation in Eq. (1.3.32)),

|2, (ks Z MH g gn) MY (g1 g), (3.1.7)

| M, (i) [? o< 2R Z MG (g1, g)ME (g1, gn)}- (3.1.8)

P(2,- n)
The matrix elements on the right-hand side are implicitly summed over the helicity

of the gluons.

3.1.1 Matrix elements with identical quark pairs

In spin averaged cross-section calculations, one cannot distinguish between the two
quarks (or two antiquarks) if the quarks (antiquarks) share the same flavour. In this
case, one needs to consider additional squared matrix element structures. Consider
an scattering amplitude with at least two quark pairs and many other partons (plus
one Higgs boson): M .00..(m)- For identical quark (antiquark) flavours, ¢ = Q
(7 = Q), one needs to consider the amplitude where either the quarks (or antiquarks)
are exchanged: M,50q..r)- When the helicities of the two quarks are different, the
two quarks are not identical particles. In this case, M;00...ca) and M oqq...(r) can
be treated as independent amplitudes just as in the different flavour case. However,
when the helicity of the two quarks (and antiquarks) is the same, then one needs to
construct a new amplitude that satisfies anti-symmetry property when exchanging

identical fermions:

Q1q‘72 /\qqg\q‘h Aq"'(H) - _M‘I1qf74 Aqqg\q% Aq"'(H)' (319)

One can use the known amplitudes with non-identical quarks to construct M? gdad(H)
which satisfies equation (3.1.9):

Mqquz Aqqé\q%—Aq w(H =M ,\q, AQQQGQ—AQ (H) -M /\qQ Aquq, Aq (H)" (3.1.10)

For a general squared matrix element with at least two quark pairs of the same

flavour | Mygeq...cn)|*, the relation to the non-identical flavour case is as follows:

|MQQQQ'“(H)|2 - Z |:|Mquq—>\qQ)‘QQ)‘Q...(H)|2 + |MquQ*>‘QQ)‘Qq—>\q...(H)|2
AgFAQ
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2
T Z [qu*qMQ*QQ‘*Q--(H) ~ Mpigagreg o
Ag=Ao

2
=M, 97QQ- | +[M, 1QQq- (H)| _2%{quQQp p(H)MqQQq )}Aq=>\Q’
(3.1.11)

where | M ;06...(m)|* and |M,6qq..m|” are matrix elements summed with all possible

spin combinations, and 2R{M 00, H)/\/lT is a new structure with

@07} r=a

only identical spin sum.

3.1.2 Example for Higgs boson plus one jet at LO

To compute the LO corrections to Higgs boson plus one jet, we need the tree level
amplitudes for a Higgs boson plus three partons. We assume that the top quark
is sufficiently massive so that the Higgs boson couples to gluons via the effective

vertex. In terms of colour ordered amplitudes, we have the tree amplitudes:

C a; a; a ..
MgggH 95 Z Tr(T“TT™) MY (i, 4, k), (3.1.12)
Pik)
C -
Mygqrr = 95 (T*)aaMy (4,4, ), (3.1.13)

where we denote the gluon of momentum k; and colour a; simply by the label i. C
is the effective coupling in Eq. (2.2.27).
The squared matrix elements, summed over helicities and colours, involving a

Higgs boson and three partons at tree level are:
2 _ C2 2 0
Z‘ 9H| 92 N(N - 1)A3gH(27j7k')7 (3114)
,C? -
Z |Mgqu|2 _( - 1>B?QH<Q7 i,q), (3.1.15)
where for X = A, B

X3 (i, j, k) = MY (i, j, k) M3} (i, j, k). (3.1.16)

3.1.3 Example for Higgs boson plus one jet at NLO

To compute the NLO corrections to Higgs boson plus one jet, we need the tree level

amplitudes for a Higgs boson plus four partons and the one-loop amplitudes Higgs
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boson plus three partons. We assume that the top quark is sufficiently massive so
that the Higgs boson couples to gluons via the effective vertex. In terms of colour

ordered amplitudes, we have the tree amplitudes:

C
Miygn = 95 3 Tr(TTTT*) My (i, j. k. D), (3.1.17)
P(j,k,\l)
C a; a . P
M;)QQ(TH - 925 Z <T ‘T J)qu?{((L L s Q)a (3118)
PGi)

C - _ 1 _ ~
M;)QQQH = 925 (5qQ5QqM9{(q; Q7 Qa Q) - NéqqéQéM%@a q, Q7 Q>> 5 (3119)
where we denote the gluon of momentum k; and colour a; simply by the label i. C

is the effective coupling in Eq. (2.2.27). Note that in this special case we have

M3y (9, Q,Q,7) = My(q,3,Q, Q). (3.1.20)

For the one-loop amplitudes we have:

C a . = -
Mygorr :925 Z Tr(T“TYT™) NM%;lH(Zvjak) +NFM:15;1H(Z7]>]€)}7 (3.1.21)

999
P(j,k)

Cu o 1 —~ o —~ o
My = g2§quf [NM%,;lH(q,z, q) — NMé;lH(q,z, Q) + NeMip(q,4, Q)] (3.1.22)

Unusually, there is no double trace (or double colour string) one-loop contribution
because individual group generators are traceless. In general M and M represent
contributions that are proportional to Nr or 1/N respectively: M is the contribu-
tion from internal quark loops as explained in (3.1.6), M is the sub-leading colour
contribution from the gluon loop.

The squared matrix elements, summed over helicities and colours, involving a

Higgs boson plus four partons at tree level are:

C? . . L
Z |]\/[gogggH|2 - 94?N2(N2 - 1) [AZQH<Z7J> k7l) + AZQH<Z7J7Z7 k) + AZQH(Zv ka]a l):|a
(3.1.23)
0 2 4C2 2 0 L. 0 L. 1 0 ~ o~
ZquggciH| =g ZN<N - 1) BQgH(qun%CD +BQgH(q7.]727Q> - mBQgH(Q7Z’j7q> )
(3.1.24)

C? _
Z |Mz;)qQQH|2 = 94Z(N2 - 1)0891{(% Q,Q.q), (3.1.25)
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,C? - o1 o
Z ’ qqu|2 - .g A (N2 - 1) C(())gH(q> Qv Q7 Q) + C(())gH(Q’ g, Qa Q) - NDggH(q7 q,9, Q) )
(3.1.26)
where for X = A, B,C
X0 (0,5, k, 1) = MY (i, 4, k, VMY (3, 4, k., 1), (3.1.27)

and

B 1(¢,%,5.7) =M (i, 5,0) + M%(q. 5,4, D][M%(q. 1,4, 7) + M%(q., 5,4, )]
(3.1.28)

D8gH<iq7 jé? kqv lti) = 2%{/\/1?_[(1'(1, ]Q7 kQ? lQ)MOHT<iQ7j§7 kQ? ZQ)}/\q=>\Q' (3'1'29)

The spin sum in equation (3.1.29) follows the discussion in section 3.1.1. In general,
we use the notation A for squared matrix elements involving 0 quark pairs, B for
those involving one quark pair, C' and D for those involving two quark pairs. In the
sub-leading colour contribution é, the gluons are “photon”-like in the sense that
there is no singularity when two “photon”-like gluons are collinear.

Similarly, the interference of loop and tree amplitudes, summed over helicities

and colours, involving a Higgs boson plus three partons at one-loop are:

4C? . Np~ .
Z' ggH|2 _g NQ(N2 - 1) {AégH<Z7]7k> +WFA£1’>gH<Zajak):|7 (3130)
C2 . I~ .y, Nr 2 .
Z ’ ng|2 4 N<N2 - 1) |:B%gH(Q7Z7Q) - mBllgHQJJ%Q) + WFBllgH(q7Z7Q):|7
(3.1.31)

where for X = A,E,B, B and E,

Xy (i, . k) = 2R{MY (0, 5, k)M (i, 4, k) ). (3.1.32)

3.2 IR behaviour of real contribution at NLO

The expressions for scattering matrix elements are functions with Lorentz invariant

variables which, for massless particles, have the following general form,

sij = (p1+p;)* = 2pi - pj. (3.2.33)
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In the soft limit of parton 7 or j (pi;) — 0), then s;; vanishes. Similarly, in the
collinear limit of parton ¢ with j, s;; = 2E;E;(1 — cos(#)), where 6 is the relative
splitting angle between the two partons, s;; also vanishes. In both cases, one or
more partons are unresolved.

In computing the cross section, one needs to integrate over all possible momen-
tum configurations of final state particles and this means that unresolved phase
space regions should always be included. In the general case, matrix elements that
contain inverse powers of the vanishing Lorentz invariants will become divergent in
these unresolved regions. The divergent behaviour can be factorized by universal
functions (that contain the singular factors) multiplying reduced matrix elements
involving a smaller number of resolved partons [103,104].

In colour ordered matrix elements, the divergent behaviour involves the unre-
solved parton and its colour adjacent (or colour connected) neighbors [105]. Unre-
solved gluons can be either soft or collinear with a quark or another gluon. Quarks
may become collinear with a gluon or an antiquark of the same flavour. There is no
soft limit for quarks because they are fermions and couple via conserved currents.
The soft quark current causes the full matrix element to vanish..

At tree-level, in the limit where a single parton j becomes soft, the colour ordered
matrix element |MO(--- i, 7, k,---)|> where j is colour sandwiched by partons 7 and

k can be factorized as
MO i g k)P 22205 S MO ik, )2, (3.2.34)

where S;;; function is the soft Eikonal factor,

25ik

Sijk = (3.2.35)

Sij Sjk '
The partonic identities of ¢ and k£ could be either gluons, quarks or mixed.
Similarly, when i//j the matrix element satisfies the following factorization in

the spin averaged collinear limit,

|M0( 72.7.].7”')‘2 — _—PIJHK(Z)’MO( ,K,"')’Z. (3236)

i//j 1
Sii

J

Here P;;_, k(%) function is the collinear splitting function where z represents the

fraction of the almost light-like composite momentum px = p;+p; carried by parton
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1. The collinear splitting functions depend on the partonic identities of 7 and j. In

d = 4 — 2¢ dimensions the independent functions are

1+ (1—2)%—e2?
Pig—q = qu—@ = )

z
224+ (1—2)2%—¢
Pqé—>G:Pq’q—>G = (1—e> )
z 1—=2
Pyc= 2(1 — + . + z(1 —z)) (3.2.37)

The splitting functions in Eq. (3.2.37) are summed over the spins of the final
state partons and averaged over the spin of the parent parton. In general, the full
splitting functions do depend on the spin of the parent parton. In the case where
a parent quark splits into a quark and a gluon, there is no helicity correlation and
the spin averaged splitting function completely describes the factorization of the
corresponding matrix elements. However, in the case where a parent gluon splits
into either a quark pair or two gluons, the full splitting functions are tensorial and
related to the Lorentz index of the gluon. The factorization of the matrix element

including all spin-dependent effects is:

o i/)i 1 .
MO i )P P k)IMB (- )P
ij
1
=Py, (MO K bang. (32.39)

(%]
The full splitting functions are given by [128]:
kYR

K*

+ 1%2) +2:(1— )1 - 2)

P (2 k) = =" +42(1 — 2)

qq—G
M.y
kJ_kL
2 )
kJ_

P (2 k) = =2 {n’“’( (3.2.39)

1—=z
where K/ is the component of momentum perpendicular to the collinear splitting
axis.

The angular term in Eq.(3.2.38) depends on the azimuthal angle (¢) of the
two splitting partons relative to the parent parton direction and is proportional
to cos(2¢). These angular terms in principle vanish during the final-state phase
space integration if one performs an integration with an infinitely large number of
events. In my implementation, we consider pairs of phase space points related by a

rotation of A¢ = 7/2. The angular terms for the corresponding matrix elements will
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cancel exactly. The extension to triple collinear limits (when three partons become
simultaneously in the same direction) is similar. To make sure that the angular
terms cancel exactly during the final-state phase space integration, we combine of
pairs of phase space points related by a rotation of A¢ = 7/2 around the triple

collinear axis.

3.3 Antenna subtraction term for real level at

NLO

When calculating NLO cross sections, the divergent behaviour of the real matrix
elements in the unresolved phase space will spoil the numerical evaluation of the
real radiation contribution. One method to solve this problem is to remove the
divergent behaviour from the matrix elements by adding compensating divergent
subtraction terms. The subtraction terms are finite, but, after integration in d
dimensions over the unresolved phase space regions, the integrated subtraction terms
can be expressed as a Laurent expansion in €. The implicit divergent behaviour is
thus rendered explicit and cancels with the explicit poles from the virtual matrix
elements. In this section, we introduce the antenna subtraction method for NLO

cross sections.

3.3.1 Phase space mapping

In general, the singularities can be isolated in a particular region of phase space.
By factorizing the full Lorentz invariant phase space into a sub-space that depends
on the unresolved momenta and one that involved the remaining hard particles,
one can mimic the factorization of matrix elements. At NLO, the single unresolved
limit requires a mapping of n + 1 parton phase space to n parton phase space.
In the colour ordered matrix element, the unresolved behaviour only relates to the
colour adjacent partons, and therefore a three-particle sub-phase space involving the
unresolved particle and the two hard radiators is sufficient. Depending on whether

the colour adjacent partons are in the initial or final state, we need three different
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mappings: a final-final (FF) mapping where two hard radiators are in the final state;
initial-final (IF) mapping where one hard radiator is in the initial state and one is
in the final state; initial-initial (II) mapping where both hard radiators are in the
initial state.

Phase space mapping involves two parts. First is the momentum mapping itself,
where the momentum in the three parton sub-phase space is mapped on to two
hard radiators in the reduced sub-phase space. The on-shell condition of each hard
radiator are required while the momentum conservation are preserved. Part two is
the sub-phase space factorization. The sub-phase space is factorized from the full
Lorentz invariant phase space and contains all dependence on the momentum of the

unresolved particle.

Final-Final Mapping

In the final-final momentum mapping {7, j, k} — {I, K'} [106,107],

PP =pg = ap iyt
Phe = p/Zij) = (I—2)pf +(Q—=r)pf +(1—2)p, (3.3.40)
where,
! [(1+ ) 2 }
r = — Siik — 27 Sik |,
2(81']' + Sik) P ik ik
1
z = — (1 — Sii —2T’S«L"i|,
2 47”(1 — T) SijSik
p- = 1+ ) (3.3.41)

SijkSik
The mapping (3.3.40) preserves momentum conservation Py T PG = Di +pj + Pk
and has three free parameters. The two on-shell conditions for p; and py fix  and
z, and there is still one free parameter. For the convenience of integration, here we
choose r = s;1/(s;; + sjx). In the single unresolved limits where p} becomes soft,

Py — pf and p — pi. In the collinear limit when p4//p}, pf — (pi' + pf) and

Pl — Dl
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The full phase space as mentioned in section 1.3 is

n+3 n+3
APy 41 (ps, - - -, Puya; P1, 02) = (27)%6 <p1 + P2 — ZPZ) H dpi], (3.3.42)
1=3

where [dp] = d%pé+(p?)/(27)¢" is the phase space measure [108]. In the final-final

sub-phase space factorization, inserting the following identity

Z/Wﬁm*%ﬂﬁ+w—m—m—mWﬁWﬁ%
L—/gﬂgﬁél—mﬁﬂ—xﬁ (3.3.43)

one have [7,108]

d.CEl CL%’Q

d@n+1(]?3a e ,pn+3;p17p2) = ch)n(p?n ce s PI,PK - - 7Pm+3;p1,p2)x—1x—2

X 0(1—z1)0(1 — xz)d‘bxzjk(piapj,pk;pI,pK)-
(3.3.44)

The three to two final-final antenna phase space d@f(f; . 1s proportional to the three-

particle phase space [109],

1
- d®s(pi, pj P P15 P ), (3.3.45)

dq)X”k(pzapj7pk7pI)pK) P2

where the d—dimensional two particle phase space P, is a constant given by,

['(1—e¢)

P — 2—3+2e —1+e
2 T T2-2

(pi +pj+ pk)_e. (3.3.46)

The composite momentum p; and pg only appears in the reduced phase space such
that the phase space of d®,, is independent from d@fé‘; . in the integration. The
x;(i = 1,2) parameter is introduced to keep a unified form for the reduced phase

space as in the IF and II mapping.

Initial-Final Mapping

In the initial-final momentum mapping, the initial state momentum is rescaled by

the mapping. Using hat notation for initial state and bar notation for rescaling we

have {i,7,k} — {I,K} = {;, K} mapping [108],

T Y W
by = Py = ZTiDPi,
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P = p%kv) = p? + pp — (1= 2) pf. (3.3.47)

With the on-shell condition p = p% = 0 the #; parameter is fixed to be,

. Si; + Sik + 85

g = LIk TR (3.3.48)
Sij + Sik

For single unresolved limits where p become soft, p? — pf and ph — pi. In the

collinear limit when p%//p’, p — (pf' + p}) and pl — py.

Inserting the following identity

1= /ddq5 (¢ +pi—pj — Pr) (3.3.49)
2 dl’z
1= [0 [and @0+ v~ 1) (3.3.50)
™ ZT;
into the full phase space (3.3.42) and integrating over ¢, where Q? = —¢? and

q = p; + pr — pi- The full phase space can be rewritten as (for i = 1) [7,108]

dIl d.??g

d(I)nJrl(pSa cee 7kn+3;plap2) - d(bn<p37 «e sy DKy 3 Pn+t3; x1P1>P2)x_x_
1 2

X 5($1 - i1)5(1 - w2)d¢)§(§jk(pjapk;pi7Q)a (3~3~51)

where the three to two initial-final antenna phase space is defined as

2

Q
AN (P> Pr; pin @) = 5 Ao (ps, pii piy q). (3.3.52)

Initial-Initial Mapping

Finally for the initial-initial momentum mapping {E,j, l;;} — {f, K} = {;, l?:}, both
initial states are rescaled. As ¢ = p; + pr — p; in general is not on beam, a Lorentz

boost for all final state partons is needed to preserve momentum conservation. The

initial-initial mapping changes the momentum of all partons {¢, j, k,...,l,m,...} —
{I,K,....1,m,...} that [108],
pi=p; = @apf,
Pp =0 = Tkl
. 2pe- (¢ +q) . 2pe-q .
oo T 0
ppo= - =y (7 + q", (3.3.53)
‘ C g+ a2 ¢?

where ¢ # j and

" = pi+pp -1, ¢" = p; + Dy,
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P Sik + Sjk \/Sik + Sz‘j + Sjk

i )
Sik + Sij Sik

B = 2 \/ L LI (3.3.54)
Sik + Sjk Sik

This mapping contains a transverse Lorentz boost A(pe, pe) (A(pe, pe)pe = pe) that

preserves the Lorentz invariants p? = p7 = 0 and momentum conservation. In
the single unresolved limits where p? becomes soft or collinear with p{" or p}, the

intermediate momentum ¢* become proportional to ¢*. In this case, for each [ # j,

Py — p; and pt, pl. become the corresponding composite momentum. Further

details of the composite momentum in the single unresolved limits can be found in
[108,113].
In the initial-initial sub-phase space factorization (for i = 1,k = 2), inserting the

following identity

1= /ddqddgé (p1 +p2—pj — q) 0 (z1p1 + T2p2 — §), (3.3.55)

1= [ T 0~ Aton.i)mo)idp) (3.3.56)
(]

1= /dl’ld(L'Q(S(ij — 12‘1)(5(1'2 — fz), (3357)

into the full phase space (3.3.42) and integrating over ¢, ¢ and py,. One will have the
factorized phase space [7,108]

. . dz; dzs
dq)n+1<p37 e ,pn+3;p17]92> = dq)n(p?n <+ Pn+3; T1P1, x2p2)x_x_
1 X2

X0(xy — 1) 0(2g — i2)d@§m,

(3.3.58)
where the three to two initial-initial antenna phase space is defined as

d@ﬁgm = x,79[dp;). (3.3.59)

3.3.2 Antenna functions for real level at NLO

The essential ingredient of the antenna subtraction method are antenna functions

which mimic the various divergent behaviour of the colour ordered matrix elements.
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maple fortran/form | latex | comment

A30FF | FullA30FF A Eq. (5.5) of [109].
D30FF | FullD30FF DY Eq. (6.8) of [109].
DY = d3(iy, 149, 13) + d3(i1, i3, 12).

d30FF | d30FF d3 Eq. (6.13) of [109]. Only has i soft limit.
E30FF | FullE30FF EY Eq. (6.14) of [109].

F30FF | FullF30FF FY Eq. (7.9) of [109].

FY = f9(iy,i2,13) + [ (ia,i3,11) + f3 (43,91, 12).
f30FF | £30FF 1y Eq. (7.13) of [109]. Only has i soft limit.
G30FF FullG30FF GY Eq. (7.14) of [109]. Only has is||i3 collinear

limit.

Table 3.1: XJ antenna functions for final-final state. The nomenclature used in the

.map input files as well as in the numerical fortran codes are indicated.

These antenna functions are obtained from physical matrix elements and therefore
naturally describe the singular limits of matrix elements.

Antenna functions each have two hard radiators and one or two unresolved par-
tons. According to the type of the hard radiators there are three classes and each
class of functions are calculated from different physical colour ordered matrix el-
ements: for quark-anti-quark hard radiators, antenna functions are derived from
the matrix elements for virtual photon decay into quark-anti-quark pair plus addi-
tional (unresolved) partons radiated from the quark pair [110]; for quark-gluon hard
radiators, the antenna functions are derived from the matrix elements for heavy
neutralino decay into gluino and gluon plus (unresolved) partons radiated from the
gluino-gluon pair [111]; for gluon-gluon hard radiators, antenna functions are de-
rived from the matrix elements for Higgs boson decay into two gluons (via effective
vertex) plus (unresolved) partons radiated from the gluon-gluon pair [112].

At NLO, a single unresolved parton j is colour adjacent to the hard radiator

partons ¢ and k. To describe the unresolved behaviour of parton j, we construct the
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maple fortran/form | latex | comment
gA30IF FullgA30IF | A3, .. | Eq. (4.25) of [108]. Mixed flavour changing.

A3, = a3 g_>q(21, ia,13) + a3 g_>q(23, i2,11).
ga30IFgtoq | ga30IFGTOQ | aj, ., | Only contains 4|]iy collinear limit.

Flavour changing g — q.
gD30IF FullgD30IF Dgg Mixed flavour changing.

DY, =d3, (i1, 40, d3) + d3 (i1, 45, 12).
gd30IF gd30IF ds, Eq. (4.29) of [108]. i3 initial state iy soft.
gd30IFgtoq | gd30IFGTOQ | dI oq | BQ. (4.28) of [108]. Flavour changing g — q.
gF30IF FullgF30IF | Fy, | Eq. (4.32) of [108].

FQ, = f3 (i1 iz, i3) + f3 (i1, i3, 12).
gf30IF gf30IF £, Only contains i1||i2 collinear limit.
gG30IF FullgG30IF | G, | Eq. (4.33) of [108].
qA30IF FullgA30IF | A | Eq. (4.15) of [108].
gD30IF FullgD30IF | DY, | Eq. (4.17) of [108].

DY, = dS (i1, i, i3) + dS (i1, i3, 42).
qd30IF qd30IF ds, Only contains i1 ||is collinear limit.
qE30IF FullgE30IF | EY, | Eq. (4.18) of [108].
qpE30IF FullgpE30IF| £y, | Eq. (4.19) of [108]. Flavour changing ¢ — g.
qpG30IF FullgpG30IF Ggq g Ed. (4.23) of [108]. Flavour changing ¢' — g.

Table 3.2: X antenna functions for initial-final state.The nomenclature used in the

.map input files as well as in the numerical fortran codes are indicated.
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maple fortran/form | latex comment
ggD30II | FullggD301I Dg 99 Mixed flavour changing.
D5 gy = 599549 (i1, i,13) + 43 gg->4q (11, i3,12)-
gegd30II | ggd30II d3 9y ag | B (5.22) of [108].  Only contains iy
collinear limit. Flavour changing g — ¢.
ggF30II | FullggF30II | FY,, Crossing of FY.
gqA30II | FullgqA30II Ag,gq—>qq Crossing of AJ. Flavour changing g — q.
gqD30II | FullggD30II | D3 Crossing of DY.
gqG30II | FullgqG30II | GY,, .., | Crossing of GY. Flavour changing ¢ — g.
qgA30II | FullqgA30II qug_}qq Crossing of AJ. Flavour changing g — q.
qgD30II | FullqgD30II | Dj,, Crossing of DY.
qgG30II | FullqgG30II Ggqgﬁgg Crossing of GY. Flavour changing ¢ — g¢.
qpgpE30II| FullqpgpE30II| EY . Crossing of EY.
qgA30II | FullqqA30II | A3, Crossing of AJ.
qqG30II | FullqqG30II | GY . Crossing of GY.
qqpE30IT | FullqqpE30II | EY ., | Crossing of EY. Flavour changing ¢’ — g.

Table 3.3: X9 antenna functions for initial-initial state. The nomenclature used in

the .map input files as well as in the numerical fortran codes are indicated.
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following antenna function
M3(i, j, k)
M1, K

The XJ(i, 7, k) antenna function is defined as the ratio of the colour ordered matrix

X3, 5, k) = S, (3.3.60)

element MY (i, 7, k) to the underlying two-parton process MY (I, K). Partons ¢ and
k are hard radiators in j unresolved limits and I, K are the mapped momentum
introduced in section 3.3.1. S;ji/rk is a symmetry factor. The antenna functions for
the various parton types and initial or final state configurations are summarised in
table 3.1-3.3.

To help with the book keeping, we have established a maple scripting language
in which the various antenna functions, matrix elements and subtraction terms are
uniquely identified. Maple scripts converts input “.map” files, that are written in
condensed (but easily understood) analytical formulae, into Fortran, FORM and
LaTex codes for further numerical and analytical testing. These “.map” files are
the link between the human-intensive construction of subtraction terms, and their
numerical and analytic validation. They also guarantee that what appears in latex
form, is the same as what appears in the fortran or form routines and there is a one
to one correspondence between a name in the maple script and a function in the
Fortran or FORM libraries where the details are included in table 3.1-3.3. The maple
script also automatically deals with the momentum mappings associated with each
antenna function and with the reduced matrix elements freeing us to concentrate on
the physical information inside the antenna subtraction terms.

In general, X3 (i, j, k), analytically describes the divergent behaviour of the ma-
trix elements in the single soft (j — 0) and single collinear limits (i//j and j//k). In
some special cases, the M3 (i, j, k) matrix element used to define X7 also has colour
connections between ¢ and k. In these cases, the antenna function is also divergent
in the i soft, k soft or i//k collinear limits. However, the phase space mapping (e.g.
FF mapping) will not factorise onto the correct momentum required for the reduced
matrix elements. To avoid this problem, in the few cases where i and k are colour
connected, such as the gluon-gluon antenna FY and quark-gluon antenna DY, we
further decompose the full X{ antenna function into sub-antenna functions, f3 and

d, which eliminate the colour connection between parton i and k [108,113].
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If an antenna function contains unresolved limits that correspond to having dif-
ferent parton types in the initial state, then there is also an ambiguity in the type of
initial state parton in the reduced matrix elements. By taking advantage of the well
defined colour connection in the subantenna functions we can remove the ambiguity

in initial-state-identity-changing unresolved limits.

3.3.3 Antenna subtraction terms dé¥;,

d65 1o is designed to mimic the divergent behaviour of the matrix elements in the
NLO real contribution, d6*t. In the single unresolved limit of parton j, the colour or-
dered matrix behave as the factorized divergent functions times the reduced matrix
element with parton j pinched out (equation (3.2.34)(3.2.36)). In the antenna sub-
traction framework, X2 (i, j, k) antenna functions are used to mimic the unresolved
singularities of the matrix elements. The reduced matrix elements associated with
antenna functions involve mapped momentum produced by the {7, j,k} — {I, K}
mapping. In general, for a colour ordered matrix element |M°(--- 4,5, k, -+ )|? with
(n+1) final state partons with momenta in the set {p},1, the NLO real contribution

18

R Cle 1 .
Aoy Lo :NJI\/?LO%d@n—&-I(pS, e ,pn+3§P1,p2)s—H|M£+3(- i g k)P
< S ({phnin)- (3.3.61)

while the NLO antenna subtraction term has the structure

. Cle 1
dU%Lo = ﬁLo%dq’nﬂ(mw“ ,Pn+3;p1,p2)

Sn+1

A T IO le LI L0k, (G302

Here NVE, , is an overall constant containing the colour factors, momentum flux and
coupling constants while Jﬁm)({p}n) applies the jet algorithm to obtain m jets from
the n partons with momenta in the set {p},. The mapping applied to each term in
the sum over j could be either FF, IF or II type depending on whether the partons
adjacent to j, ¢ and k, are in the initial or final state. Note that the reduced matrix
element |MO(--- I, K,---)|? will diverge if additional particles are unresolved, but

this is prevented by requiring that m-jets are observed.
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The difference between d6%, , and d6%;, is now a finite contribution in all phase

space region, and the integration of the difference:

/ (d&ﬁw — d&f;w) (3.3.63)
de,

is mathematically well defined.

3.4 Divergent behaviour of virtual contributions

at NLO

3.4.1 Pole structure of one-loop matrix elements

The NLO virtual contribution contains explicit divergences coming from the inte-
gration of the loop momentum. In order to express the poles of one-loop matrix
elements in a way such that the cancellation of poles against the integrated real
radiation subtraction term can be analytically made, it is convenient to use the lan-
guage introduced by Catani [114,115]. The IM-operator [114,115] is an operator in
colour space such that the renormalised one-loop amplitude with Laurent expansion

in € can be written as

M(e) = IV (e)M° 4+ MBSim, (3.4.64)

where MU/ is a process dependent function that is finite in the e — 0 limit.

For the convenience of matching the integrated real radiation from colour or-
dered matrix elements, the IM-operator can be straightfowwardly recast to act on
renormalised colour ordered one-loop matrix elements [109].

Depending on the parton type and internal loop there are six independent I(V)-

operators given by

1
Iesn) = g |3+

0 B e 1 5 .
I (e, 549) = TWa—q |2 +3; R(—s549)",
. - e [1 11 B
Iég)(e, Sgg) = _m 6_2 + 6e R(—sg9)°

1
IE](]?F@?‘SQQ) = 0,
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(1) . ev 1 e
qu F(€7ng) - 2F(1 — 6) &%(_SQQ) )
(1) . 667 1 e
Igg F(E, Sgg) = m g %(_Sgg) . (3465)

The antiquark-gluon operators are obtained by charge conjugation:

1 1
I (e, 500) =10 (e, 55 and I (e, 550) = IV (e, 54q) -

The three IS) operators (without F' label) describe the pole structure of colour
adjacent partons ¢ and j in a colour ordered one-loop matrix element having a gluon

loop while the three 15]1.)

operators (with the F' label) are for the corresponding
matrix elements with a fermion loop. The dimensional regularization parameter e
exhibits the divergent behaviour of the loop integral in explicit form.

The IS) operators depend only on the colour connected partons ¢ and 5 and thus
can be used to describe the pole structure of one-loop matrix elements in a dipole for-

malism. In general, for a colour leading one-loop matrix element, [MI(--- 4,7, ---)]?

with n partons, the explicit pole structure is

P 6 S'L . P
M W“ZW>JM<ng
= 21£J><e,1 )| MR- g, )] (3.4.66)

3.4.2 Mass factorization terms at NLO

Apart from the pole structure of renormalised one-loop matrix element, for a proton
proton collision process, there is an explicit divergent contribution from the initial
colour particle radiation. As mentioned in section 1.4, the specific expression for

NLO mass factorization terms in equation (1.4.47) have the general structure
. dzy dx )
dolffsolt ot =~ [ “E20(0)|o(1 - )T )0of

+6(1 — 21)T};(22)d6 7] | (w161 Hy, w28 Ho)
(3.4.67)

where I‘Z-lj () contains an explicit divergence given by,

1
L(z) ~Tj(x) = —EPE?) (z). (3.4.68)
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The relation between I'};(z) and I'};(z) and explicit formulas for pg»))(x) are given
in Appendix F.1. The repeating indices k and [ imply a sum over parton types
(gluon, quarks and anti-quarks), while d&,fj is the Born level differential cross section

initiated by partons k£ and j.

3.5 Antenna subtraction term for virtual level at

NLO

The counter terms introduced to render the real radiation contribution finite, dé¥; o,
are unphysical and need to be removed in the full NLO calculation. At the virtual
level, one simply adds the integrated version of || d65 1o which contains both fi-
nite contributions and explicit pole structures that must cancel with the explicit

singularities present in the virtual and mass factorization contributions:
ONLO = / doN Lo +/ (doyro +donio)
de, 1 de,
= / (6N, 0 — doRio) + / (630 —doyL0) - (3.5.69)
Ao,y de,

Each bracket above is free of infrared divergence and the virtual subtraction term

in the antenna subtraction framework is,
doyro = — / d63 10 — doNLo- (3.5.70)
1

3.5.1 Integration of the antenna subtraction terms for real

contribution

The general form of NLO antenna subtraction terms is given in Eq. (3.3.62). The
full phase space d®,,,; is factorized into an antenna phase space that involves the
unresolved parton and a reduced phase space that described the re-mapped hard
radiators. The phase space factorization is described in Eqs. (3.3.44),(3.3.51) and
(3.3.58) for the FF, IF and II mappings. Integration of the real subtraction term

f1 do5 ;o is performed by integrating the antenna function over the antenna phase
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maple fortran/form | latex comment
calA30FF A30FFint A Eq. (5.6) of [109].
calD30FF D30FFint DY Eq. (6.9) of [109].
calE30FF E30FFint &Y Eq. (6.14) of [109].
calF30FF F30FFint F Eq. (7.9) of [109].
calG30FF G30FFint Gl Eq. (7.15) of [109].

Table 3.4: XY antenna functions for final-final state. The nomenclature used in the

.map input files as well as in the numerical fortran codes are indicated.

space. The general form can be arranged as:

[ @300 AoCto {ZXOIK! Ml 1K

T ({p}a), (3.5.71)

d[El dCL’Q 1

T1 T2 8n+1

where XJ(I, K) depends on the primary mapping {p;, p;, px} — {p1,px} that,

Xgo(],K) E) X (S]K,Zlfl,l'g /5 1 — I’z)d@)@XQ(i,j, k?),

XSO([,K) E}X (81](,33'1,33'2) W/(S(xl )(5(1—552)22—(1(1)2)(0(1 j,k),

)(30(1'7[() £> X (512,371,952 /5 332 - $2)$1$2[dPJ]X??<1aj, 2)7

(3.5.72)

Note that initial state labels 1 and 2 are exchangeable in these formulas. The

integrated antenna for the allowed combinations of hard parton radiators are sum-

marised in Tables 3.4-3.6.

3.5.2 Antenna subtraction terms dé%;,

The virtual subtraction term is a combination of the integrated real subtraction
term and the mass factorization contribution. It is convenient to combine inte-
grated antenna functions and tree-level mass factorization terms to form the dipole
functions J§ (I, K) [116]. Dipole functions associated with born level matrix ele-

ments are then used to cancel the explicit poles for each colour connected parton
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maple fortran/form | latex comment

calgA30IF gA30IFint A, | Eq. (4.26) of [108]. Flavour changing
g—q.

calgD30IF calgD30IF Dy,

calgD30gqIF | gD30gqIFint Dgg_)g Eq. (4.31) of [108].

calgD30qgIF | gD30qgIFint | DY, ,, | Eq. (4.30) of [108]. Flavour changing
9g—q

calgF30IF | gF30IFint | F, Eq. (4.34) of [108].

calgG30IF | gG30IFint Gy, Eq. (4.35) of [108].

calqA30IF qA30IFint A3, Eq. (4.16) of [108].

calgD30IF qD30IFint Dy, Eq. (4.20) of [108].

calqE30IF qE30IFint &3, Eq. (4.21) of [108].

calqpE30IF | qpE30IFint | &, | Eq. (4.22) of [108]. Flavour changing
q—9

calgpG30IF | qpG30IFint | G3 ., | Eq. (4.24) of [108]. Flavour changing

q—9

Table 3.5: XY antenna functions for initial-final state. The nomenclature used in

the .map input files as well as in the numerical fortran codes are indicated.
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maple fortran/form | latex comment

calggD301II | ggb301Ilint | DY . .. | Eq. (5.26) of [108] with z; < s
Flavour changing g — ¢ in P;.

calggD302IT | ggb302ITint | DY . ... | Eq. (5.26) of [108]. Flavour changing
g —qin P,

calggD30II | ggD30Ilint | DY, | €gD30int

calggF30II | ggF30Ilint | F3,, Eq. (5.29) of [108].

calggA30II | ggA30ITint | A3, ... | Eq. (5.23) of [108] with z; < o
Flavour changing ¢ — ¢ in P;.

calggD30II | ggd30Ilint | DY, Eq. (5.25) of [108] with x; <> 2.

calgqG30II | gqG30Ilint g??’gq_}gg Eq. (5.31) of [108]. Flavour changing
q— gin P.

calqgA30II | qgA30ITint | A3, .., | Eq. (5.23) of [108]. Flavour changing
g — qin P,

calqgD30II | qgD30IIint | DY, Eq. (5.25) of [108].

calqgG30II | qgG30ITint | GY .. .., | Eqa. (5.31) of [108] with z; < s
Flavour changing ¢ — ¢ in P.

calgpqE30IT | qpqE30ITint | &, .. | Ea. (5.28) of [108] with 21 <« .
Flavour changing ¢ — ¢ in P;.

calqpqpE301I| qpgpE30ITint &5, Eq. (5.27) of [108].

calqqA30II | qqA30ITint | A3, Eq. (5.24) of [108].

calqqG30II | qqG30IIint | Gj, ., Eq. (5.30) of [108].

calqqpE30IT | qqpE30ITint | &5 .., | Eq. (5.28) of [108]. Flavour changing

q— gin P;.

Table 3.6: XY antenna functions for initial-initial state. The nomenclature used in

the .map input files as well as in the numerical fortran codes are indicated.
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pair in the virtual contribution. In general, for a one-loop colour ordered matrix el-
ement |[M'(--- ,I,K,---)|> with n final state partons, the NLO virtual contribution

is given by

1
|M$+2("' ,[,K,~~-)|2

Sn

da—]‘\/fLO :N]I\?LOC’(G)dq)nJrl(p?n T ,pn+2;P17P2)

x I ({p}n)- (3.5.73)

while the virtual antenna subtraction term has the structure

. ~ dz; dz 1
doxro = — ﬁLoC(E)x—llm—;d@nﬂ(ﬁs,'“ ,pn+2;p17p2)8—
x {ZJé”(L K)}rM:zH(' LLEOPIOpL). (35.74)
I,K

The dipole functions ng)(l, K) in Eq. (3.5.74) depend on the parton types of the
hard radiators I and K in the radiation from the NLO real contribution, and is
defined to all orders in e.

There are two types of dipole functions - flavour preserving and flavour changing
- depending on whether or not the identity of the hard radiators change. In practice,
this occurs for IF or II antennas when an initial state quark is changed to a gluon,
or vice versa.

For identity preserving dipole functions, there are colour leading (N) J gl) func-
tions and the colour sub-leading functions J ;1) that depends on the number of quark
flavours Np. In the final-final hard radiator case, the dipole functions only contains
the integrated X9 antenna functions and are summarised in Table 3.7 for different
parton types [116].

In the initial-final and initial-initial hard radiator case, the dipole functions can
contain both the integrated antenna functions and a mass factorization contribution.
However, for some parton types, some of the Np contributions of the integrated
antenna functions and/or the tree-level splitting functions vanish. In particular,
the J ;1)(q,q_) functions have no contributions from either the integrated antenna
functions or the mass factorization splitting functions and are zero.

For identity changing dipole functions, one must insert the d-dimensional spin

averaging factor associated with the mass factorization splitting function when a
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Final-Final Integrated Antennae

o (1) Reduced matrix
Matrix element, M) 5 | Integrated dipole, J;’ and J,
element, MY,
Flavour Preserving
(o vig dogr ki) | aoe (si) = A3(s1x) (o Ly Kgeee)
(- g dgr kai-) | Jybg (i) =0 (o5 gy Ko -)
L 1LFF _ 1710 .
("'7lq>ngk97"') J2QG(51K)—§D3(31K) ( 'aIQaKg"")
o 51,FF )
(o igdai ko) | T ) = 1ER(sme) (i )
o FF
(- gy Jgr Kigs o *) JQI,GG(SIK) = 3 F3(s1k) (o gy Ky o)
o 51,FF
(- yigidaike, ) | Jyge (i) = G3(sixk) (oo gy Ky o)

Table 3.7: The correspondence between the real radiation matrix elements, M7, ,
and the integrated NLO dipoles J él) and reduced matrix elements, M}, for various

particle assignments and colour structures for the final-final configuration.

initial state quark (gluon) changes to a gluon (quark) after the initial state radiation.

Explicitly one has,
=1—k¢, (3.5.75)

Sg—)q -

= . (3.5.76)

Sgg =

For various partons types, complete summaries of the dipole functions with initial-
final and initial-initial hard radiators are given in Table 3.8 and Table 3.9.

The explicit pole cancellation is straightforward using the J él)(l , K) functions.
Comparing the definition of J gl)(f , K) functions with equation (3.4.65), one can
check that the identity preserving dipole functions satisfy,

IV K) Lt 21?;2»(6, SIK), (3.5.77)
while the identity changing dipole functions have no pole structure,

JVY (1K) 25 0. (3.5.78)

2,a—b

From equation (3.5.73) and (3.5.74) while inserting (3.4.66) and (3.5.79) one can
find that

d6Y, o 255 d6%, . (3.5.79)
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Initial-Final Integrated Antennae

. Reduced matrix
Matrix element, M) 5 | Integrated dipole, J gl) and J ;1)
element, MY,
Flavour Preserving
A . . 1 fay
(oo dgigizo) | Ian(sis) = A3 (s1s) — Tig (210 CERD PR/ ERED
(i lgigigir) | Jybg(sis) =0 (o5 1g, Jgse )
(- §1qaig»jga"') le,vclgg(si]) = QDg,q(SIJ) Loq (21)02 ( ;Lza‘]gv"')
. . 31,IF )
( ;1q7ztj’;]q’7"') JQ,QG(SiJ) = 2gi[’)),q(siJ) ( 7111"]97"')
I LIF 0 . 1(1) 1
(' ’ ’qujgvlg"") J2GQ(81J) :D3,g—>g(81J) - §F99 (xl)(S? ( 7‘]q7197"')
. SLIF (1 7 £
( ﬂqa]galg,"') JQ,GQ(SU) = - % gg)(x1)52 ( 7<]q7197"')
A 1,IF 1 T
(- Lgrigy dgr o) J2,GG(51J) = %f??,g(sif) - %Fgg)($1)52 (o g gy )
(- dgigides) | Dage(sis) = §G9,(s10) = 3150 (@)da | (- 1y Jy--)
Flavour Changing
P 1,IF .7 )
(ot gndg )| T yal510) = 5 A, (s1) (o T di)
- Sgﬁqrglg)@l)@
(o sigy g dgroo) | JEIE  (s1) = —=DY . (si)) CETES P A
s bgo g’jg7 2,QG,g—q\°1J 3,g—q\°1J y Lqr Y gy
- Sgach(z? (21)02
N 1,IF 7T
(g Ly dgs ) 2,GQ,q'—>g(51J) = _gg,q’%g(siJ) (o idgy L)
- Sq%gr&l)(xl)%
- . 1,IF b
( 729;1‘1/7]q/7.'.) JQ,GG,q’—)g(‘STJ) = _gg,q’—{q(si«]) ( 7‘]97197'“)
- Sq%gré? (21)2

Table 3.8: The correspondence between the real radiation matrix elements, MY 5
and the integrated NLO dipoles J gl) and reduced matrix elements, M), for various
particle assignments and colour structures for the initial-final configuration. For

brevity 6(1 — x;) = 9; for i = 1,2.
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Initial-Initial Integrated Antennae

Matrix element, o (1) Reduced matrix
Integrated dipole, J5 ' and J,
M., element, MY,

Flavour Preserving

(o3 1aig 20, ) | Taig(sia) = AS gy (s12) (o310 2--7)
— T3 (21)05 — T (22)8y
(s lguig 2 +0) | Jybp(s) = (1255
(3 1gig 2, ) | Jad(sia) = DYy (512) (o 514.2g00)
— T8 (21)8; — érég (72)01
(i dgrign 290 0) | Dyb(sa) = =405 (22)6y (- i1y 20 )
(o dgrig 2,0 | Tybe(sm) = Figy(st2) (o Tgy2g )
— 1700 (21)8s — 405 (22)0
(- grig: 2, | Jyda(sia) = =300 (21)0 — 3060 (@2)80 | (- 114, 20,-+)
Flavour Changing
(ol 200 ) | Tyt a0 saa(512) = —AS 4y gq(512) (o 51p. 20 )
Syal'ss (2)01
(i g 20 ) | Ty agsas(572) = — D ggsae (572) (1020 00)
Sgﬁqfqg (21)d
(5 0g 250, ) | g sas(512) = —E gy gq(512) (o 514.2g00)
— Sy TS ()61
("'vigaéqa2q7"') JQI,é'IG,gq/Hgg(SIQ) g3,gq%gg(81§> ("'jgvéga' )
— Sy T3 (22) 81

Table 3.9: The correspondence between the real radiation matrix elements, M2, ,
and the integrated NLO dipoles J gl) and reduced matrix elements, MY, for various

particle assignments and colour structures for the initial-initial configuration. For

brevity 5(1 — iL‘l) = 51, 5(1 — .1'2) = 52.



Chapter 4

NNLO Corrections to QCD

Scattering Processes

The NNLO calculation of total cross section in general contains three contributions:
double real (RR), real-virtual (RV) and double virtual (VV). Each level has a dif-
ferent final state parton multiplicity and produces an infrared divergent behaviour.
To regulate the implicit infrared divergences present in each contribution we use
subtraction terms to produce a well defined function that is finite over the full inte-

gration region so that,
. _ ~RR ~S ~S
ONNLO = / (doNNLo — d%nLo) + / doynro
dq}n+2 CDTH‘Q
~RV VS
+ / (doNNLo — doxA o) +/
Ao, Prnp1

+ / dé o + / dayrs. (4.0.1)
de, d

n

VS MF,1
donfro + / donnTLo
q>n+1

Here, d63 1o term is the double real subtraction term that mimics d6¥¥, , in all
singular limits. Likewise, the d6 X term is the subtraction term that removes
the implicit singular divergences from d6¥%;,. To make sure one doesn’t introduce
any unphysical contributions, the subtracted terms are added back in the integrated
form as [q,  do¥nzo and [q,, . dONAL0-

It is convenient to rearrange the integrated subtraction terms such that all the

explicit divergences in € cancel within the same phase space integral:

N o ~RR ~8
ONNLO = /d [dg NNLo — do NNLO}
LY

64
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+ / [dUNNLO délj\}NLO]
de,

+ /d@ [dUNNLO d61({fNLo]> (4.0.2)

where the combination in each of the square brackets is free from both explicit and
implicit divergences, i.e., is (a) finite and (b) well behaved in the unresolved regions

of phase space. More precisely,

AT _ ~S)1 ~MF,1
doynio = dé NN Lo — /dUNNLo —doynros (4.0.3)
1
U _ 5,2 ~MF2
doynro = /dUNNLo /dO'NNLO doynTo- (4.0.4)
2

Here we have decomposed do3 1o into two parts, one part that is integrated over
single unresolved phase space region and another part that is integrated over the

double unresolved phase space region.

/ d6 N0 —/ /dUNNLo "‘/ /d(}JSWQVLO (4.0.5)
do, o de,. de, J2

This means that the integrated double real subtraction term ( [ 6 y;.) contributes
to both real-virtual (d6% ;o) and double virtual (d6¥ ;) subtraction terms.

In this chapter, the NNLO contribution from the scattering matrix elements will
be introduced in the specific context of pp — H+ jet. We will then discuss the IR
singular behaviour of the relevant matrix elements at NNLO before reviewing the

NNLO antenna subtraction method [7,98,109,113,116,117].

4.1 Colour ordered amplitudes and matrix ele-

ments at NNLO

4.1.1 Colour ordered amplitudes and matrix elements at
two-loops

At NNLO, the scattering matrix elements contributes to the cross section at three
levels: double real, real-virtual and double virtual. The colour ordered tree and one-

loop matrix elements needed for the double real and real-virtual contributions have
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been introduced in section 3.1 while the new ingredient for NNLO is the two-loop
matrix element. The two-loop amplitudes can also be arranged according to the
colour connections of the partons [117-119]. The colour leading contribution to the
squared matrix elements for the n-gluon plus Higgs boson two-loop process has the

generic structure:

|Ms(gl7 e 7gn)|2 X 2%{/\4(}{(917 e 7gn)M§}(gl7 e 7gn)}
+ Mg, gn) M (g1, 5 gn)- (4.1.6)

4.1.2 Example for Higgs boson plus one jet at NNLO

Focusing on the pp — H+ jet process at NNLO, we need the scattering amplitudes

for
(a) Higgs boson plus five partons at tree level,
(b) Higgs boson plus four partons at one-loop level,
(c) Higgs boson plus three partons at two-loop level.

Following the convention introduced in section 3.1 and using colour ordered ampli-

tudes, we have the following tree amplitudes:

¢ i a; ag, ag oa ..
MgggggH - 93§ Z Tr(T*T%T*T"T* )M (i, j, k, 1, m), (4.1.7)
P(j,k,l,m)
C [e¥ a a
Mr?ggqu 5 Z (THTT%) e My (.5, 5, k, Q) (4.1.8)
P(i,5,k)
3C 1
Miiooam = 5 ( 500aMir(a,9,Q,Q,q) — N T300oMu(4, 9,7, Q, Q)>
C - ~ 1 _ _
+93§ (Tcggq‘quM%(%Q,Q,g,Q) NTéQéqq/\/lO (¢,3,Q, 9, Q)) . (4.1.9)

For the one-loop amplitudes we have [120-123]:

Np —
Ml g3g{ Z TT(TaiTajTakTal) leLlH(Zu?akal)—{—WFM}LJH(Z)jakal)]

9999H — 2 4
P(j4,k,0)
+ Tr(TST)Tr(TT™) Ml (i, , k. 1)

+Tr(TT)Tr (T T) Mgy (i k, 5, 1)
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+ Tr(T%T)Tr(TT™) Mjay (i, 1, 5, k) } (4.1.10)
1 3C a;a; 1 - 1 Aql .
ngqu =g 5 Z (T T ])qq |:M4;1H(q727.77 Q) - WMAL;lH(% 2, 7, Q)
P(i,5)
NF . L S
S Mian(0,,3.0)| + Tr(T*T%)5,, Ml (0,15, )
(4.1.11)
M, 3G 610010 M (0.0 Q, Q) — — M 1(0, 3,0, 0
q@QQH — =4 E qQ QQ[ 4;1H(Q7QaQ7Q) - m 4;1H(q7Q7 Qa@)
Np —~ L
+ WFM}I,lH(q7Q7Q7Q)i|
C 1 _ = 1 Nl _ =
+9 anq(SQQ |:M4;2H(Q7 q, Qa Q) + mMAL;QH(% q, Q7 Q)
Np — o
For the two-loop amplitudes we have [119]:
2 3C a; rpa; rpag, 24 42 O A A2 - 1 =2 -
MgggH =g 5 Z TT(T YT )|:N M3;1H(l7]7 k:) +M3;1H(7J7.77k) + mM?);lH(Zv]ak)
P(j,k)
T2 .o ]VF//\\/2 .o 2//\\2 ..
+ NNFM?);lH(Zvj? k) + WMS;IH@aj? k) + NF-M3;1H(Z’J> k?)},
(4.1.13)
2 C a; ) . 142 . /::/2 .
ngqH 2qu N MS lH((L@v Q) + M3;1H(Qa 3 q) + mMB;lH(% z, q)
= . Np=? o =2 o
+ NNFM%;lH(q,% q) + WFM?);IH(%Z: q) + NI%“M?);IH((]?Z; Q>} .
(4.1.14)

The squared matrix elements, summed over helicities and colours, for Higgs

boson plus five partons at tree level are:

C? . S
MOl = 6?N3(N2 —1) Z [AggH(z,j, k,Lom) + Ay (is k. j, l,m)} :
)

P(klm
(4.1.15)
2 GC2 2/ A2 0 o 1 =, -~
| ggqu| ZN (N _1) Z B3gH(Q7Z7]7k7Q)_mB?)gH(QaZ)]ykaq)
(4,3,k)
N?+1 N
T (N—4> |:B3gH(Q7 i3,k q)} } (4.1.16)

C2

| M, qQQgH|2 _9 4 {N<N2 —1) |:ClgH(q 9, Q. Q, Q)+019H(Q7Q Q. 9, Q)}
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N2 — _ =0 _
+ % |:C?gH( Q Q) 1gH(q q, Q 9, Q) ClgH(qv q, Q> Qa g)
(4.1.17)
¢C? ~ ~
Mo =N 1) 3 |Ch0.0,2. Q) + 0. 2. Qu5.)
P(Q.9)
N2 - —
+ % > {Clgﬂ(q 9:3,Q.Q) + CY1(9.3.Q.,9,Q)
P(Q.9)
=0 _
- ClgH(Qa q, Qv Q7 g):|
- (N2 o 1) |:D?9H(Q7 4,9,4, g) - 5?9H(Q7 4,99, g):|
2 _ ~
+%D?9H(Q7 Q767q_7g)}7 (4118)

where, for X = A, B, C, 5,
X%(Z7]7 k? l’m) :MOH<Z7.]7 kj7l7m)M(I){T(l7]7 k) l7m)7
E%miﬁh@=p@wmmhm+M%mmwm+A@@@ha@

xpﬁwmmhw+A%@@Ah@+w@@@ha@

~0 . T
ngH<q,i,j,k,q>:{ 3 Maf(q,z',j,k,q)H 3 M%,@,z',j,k,q)] L (a121)
P P

(4,5,k)

~0

Crgnig kg, lg.mg, j) =2R{[M(ig. 5, mq, lo, k) + M (ig, mq. g, J, kq)]
X (Mg, J, kg loymg) + My (i, kg, lg, 7, mg)]'}
=2| MGy (iq, j, mq. Lo, kg) + My (igmg,lg. j, ko), (4.1.22)
D?gH(iq,jq,kq—, lgymy) = — 2R{ MY, (ig, m, lg, jg. k iq: My g, Jg, ko

iq, M, kg, @yl

7)
+ MY, (ig, g, Jo. m, kg) M
iq,m; kg, Jq, 1q)
)

(i W (i )
( o (g, lg, g m, k)
+ M (i My (i 7
+ M (i, kg, jos m, 1) My (ig, kg, Ja s 19) }r=rg

(4.1.23)

ﬁ?gH(iqvjqu k?q» l(j7 mg) - - 2%{[/\4(]){(@!]7 m, l@?jQ7 kQ) + M(I){(llp lQuan m, k(j)]
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X [M?—[(iqa m, quQ» kQ) + M(}{(iqa lq, jQ’ m, kQ)]T})\q:)\Q’
(4.1.24)

where the identical spin sum (A, = A\g) follows the discussion in section 3.1.1.
The squared matrix elements, summed over helicities and colours, for Higgs

boson plus four parton at one-loop level are,
2 C 3 1 .. 1 .o 1 . .
’ gggH| _g N (N - 1) A4gH(7‘7j7k>l>+A4gH(Zajul7k>+A4gH(Z7k7.]7l)

+ N2NF<N2 - 1) |:A\éllgH(Z7.]7k7l> + &gH(i7j7l7k) + Ia\éllgH(ivkmL l)} }7

(4.1.25)
.C? 1 5 .
’ gqu‘2 61{ Z { 29H Q>Z ] Q> NQB%QH(%Z?%(])
P(i.5)
N
+ ]\I;B%QH(QaZa] q)
1 ~1 ~1
=4 T 5 T F 5 T T
—(N?=1) {Bng(q, 475 ) =~z Bagrr (4,7, @) + 7 Bogn (4,17, 4)
xl .~
(2 e o
| qQQH|2_g 4N(N2_1)|: OgH(qQQQ) NC(%QH((LQJQa(D
NF 1 A _
+ WCOQH(q7Q7Q7Q) ) (4127)
C2
2
| qqu| =49 Z{
_ ~ 1 ~ _ B
+ N<N2 - 1) Z |:C(%gH(Q7 Qa Q7 Q) - mcolgH<Qa Q7 Qa Q)
P(Q.)
Np ~ ~ _
WcégH(q7Q7Qaq)
SN D[D (00D D (. dad) — YEDL (q.d.4.
( ) OgH(QJq7q7Q) + N2 OgH(Q7QJq7q) N OgH(QJQ7Q7Q) )
(4.1.28)
where for X = A, B, C,
X (i, .k 1) =2R{M U (8, 5, e, DM (0,5, k. 1)} (4.1.29)

X (i, 5,k 1) =2R{ My (i, 5, B, DM (G, 5, ke, 1)} (4.1.30)
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X4, g,k 1) =2R{ME 1 (6, 5, B, DM (6, 4, K, DY, (4.1.31)

and

~1
B2gH(Q7 z, ] q 2%{[M41L,1H(Q7 ia ja Cj) + Mi;lH(Q?ja ia Cj)}

x [My(a,4, 5, @) + M (g, 5,4, )]}, (4.1.32)
~1

EQQH(‘]? g? ja (j) - 2§R{[']\_/lv411,1H(q7 ia ja Cj> + ']\—\/l/éll;lH(q7j7 ia Cj)}
x (M (q,1,4,7) + My (q, 5,1, 9]}, (4.1.33)

~1

§2gH(q7 ;7 57 Q) = 2%{[ﬂi,lH(q7 ia ja Cj) + M\AII;IH((Ljv ia Cjﬂ
x [Miy(a,1,5,@) + My (g, 4.4, 9)]'}, (4.1.34)

Boyn(4.3.3.2) = 2R { Mo 0.1.3.0) My 0.1.5.3) + Miy(g.3.i.0)]'}. (41.35)
Doyri(iq, ja: gy lg) = 2§R{M}L;2H(2m]qakQalQ>MH (iq lg: k@, Jo)
b Mgl I g j) MYy (i s i, 1)) (4.1.30)
Digrig: Ja: ks lg) = 2R{Miopg (ig: dg: kg 10) My (ig. . k. 7o)
+M}1;2H(Z(I lg: kq,Jo )M(I)JT(Z Jaskoslg)} (4.1.37)
Diginia: g b lg) = 2R{M o (ig, Ja: b 1) My (i 1. k. o)
+ Mo (i, g, ko, i) MY (i, ja ko, 10)}- (4.1.38)
The colour ordered amplitudes in [M__ 5, |* and [Mqp|* are related to the func-
tions for Higgs boson plus four partons given in [121] by
My g, kqy jg) =M (ig, Jas ks 1), (4.1.39)
Mian(ig, 1, kq. jg) =2M3 (ig, ja ks lg) + 2M iy, g Lo, ko)
+ Mg, dar Koy o), (4.1.40)
Mgy 10y oy ja) =M (ig, s ko, o), (4.1.41)
Mian g Jgs ks lg) =My “(ig, o Lo, kg), (4.1.42)
Mianlia: da: ko.1g) =M (ia, Ja. ko, o) + M (ig. s lo. ko)
+ Mg, dar Koy ), (4.1.43)

Mo (ig, s ko 1a) =M (ig, jar Ky lo)- (4.1.44)
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For Higgs boson plus three partons at the two-loop level, the squared matrix
elements, summed over helicities and colours are,

2 ~2

A~

C

2
|‘]\4gzggH’2 = QGENg(NQ - 1) |:A12’>gH(Zaja k) + %A\?’)gH(Z?jv l) + FZA?)QH(Z.’]-? l)
Npz* L= =2
+ WA&QH(Z? ka]) + mAggHO? ka]) + WASgH(% k?])} ) (4145)
2 2 ~2
|Mng(jH’2 = gﬁczNQ(NQ - 1) |:B%gH(q7 iv q_) + %§59H<Q7‘77 Cj> + %B\lgH(Quju (j>
Np =2 _ 1 =~ _ =2 _
+ 53 Baen (0.5, @) + 53 Bign (4, k. @) + 577 B1gu (¢, F, Q)} - (4.1.46)

Explicit expressions for Eqs. (4.1.45) and (4.1.46) are given in [119].

4.2 IR behaviour of the double real contribution

at NNLO

4.2.1 Classification

The double real contributions come from the tree level scattering matrix elements
which have two additional radiation of partons compared to the Born process:

. 1 .
do‘ﬁ%LO :N]]\?]}\%[:Lodq)n-iﬂ(p?n te 7pn+4;p17p2)8_2|Mr?+4(' D, ka la e )|2
n+

X Iy ({PYnsa)- (4.2.47)

The NEE, , factor is a normalisation factor related to strong coupling parameter as,
momentum flux s and colour factor N. The jet function Jr(lnH) selects the regions
of phase space where the (n + 2)— partons contribute to n—jet final states. This
means that both single and double unresolved behaviour are allowed. Depending
on the colour connection of the double unresolved partons, simple iteration of single
unresolved limits is not enough for describing the divergent behaviour. The following

configurations need to be considered separately:
(1) Zero unresolved partons but n jets observed.

(2) One unresolved parton and n jets observed.
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(3) Two unresolved partons which are separated by at least two hard partons in

the colour string (colour-unconnected).

(4) Two unresolved partons which are separated by only one resolved parton in

the colour string (almost colour-unconnected).

(5) Two unresolved partons which are colour-connected in the colour string.

Configurations (1) and (2) are similar to those occuring in the NLO real con-
tribution introduced in 3.2. The divergent behaviour in configurations (3) and (4)
can be described by the iteration of single unresolved limits. In configuration (4)
the phase space mapping is more involved as the common hard radiator between
the two unresolved partons causes the overlapping of two 3 — 2 mappings. The
order of the two 3 — 2 mappings could cause a mismatch in the single soft limit and
the details will be discussed in section 4.3.3. Nevertheless, the divergent functions
needed in configuration (3) and (4) are simple iterations of the functions in single
unresolved limits.

In the colour-connected double unresolved limits (5), the unresolved partons
may be either soft and/or collinear, and a new class of universal divergent functions

contributes in the various types of limits.

4.2.2 Factorization of colour-connected double unresolved
limits

Double soft unresolved partons

If partons a, i, j,b were colour connected (as part of a colour string) and parton i

and j became simultaneously soft, the matrix element containing those partons can

be described by double soft factorized functions times the reduced matrix elements

with parton ¢ and j pinched out:
IMOC- i gb,-- )2 2 G IO ayb, ) (4.2.48)

The partons ¢ and j could be a pair of gluons or a quark pair produced by a gluon
splitting. The double soft function S5 depends on the identities of the unresolved
partons [109,124,125] but not on the identities of hard radiator partons a and b.
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Triple collinear unresolved partons

When three colour-connected partons become simultaneously collinear, the matrix
elements also factorise into a triple collinear splitting function multiplied by a re-

duced matrix element [109,125-128],

|MO( 4L, k:f )|2 M) Pijk—>A<ZlazQ7Z3)|M0(' o 7Aa T ')|27 (4249)

where A is the composite parton produced by the three triple collinear partons,
Pijk— 4 is the triple collinear function and z;, 2;, z; are the fractions of composite
momentum p4 from parton ¢, 7 or k. The leading colour triple collinear limits come
from the configurations g//g//9. a//9//9. a//a//9, a//a//Q@ and q¢//q//q while the
sub-leading colour triple collinear limits are produced by ¢//g//g and ¢//g//G con-
figurations. Here g again represents a “photon”-like gluon and in the ¢//§//g limit,
both g are colour connected to the quark. The ¢//g//q configuration occurs when
the gluon emission is from within a quark pair rather than adjacent to a quark pair
as in the colour-leading case, ¢//q//g. Usually, we denotes the sub-leading triple

collinear functions by Pjjx_4(21, 22, 23).

Soft collinear unresolved partons

If partons a, i, 7, k are colour connected and parton ¢ becomes soft while simulta-
neously 7 is collinear with £, the matrix element can be described by a universal
soft-collinear function S, ;; multiplying the corresponding single collinear splitting

function [109, 124, 125]:

.o i soft, j//k 1
|M0( o, a,1, 7, k? T )|2 —j//> Sa,ijapjk—)K(Z”Mo( o ,CL,K, e )|27
j
(4.2.50)
where z is the momentum fraction of p; inside px and
Sish = (Saj + Sak) <Z 1 Sij + Zsjk)' (4.2.51)
SaiSij Sijk

In the p; soft limit, S,;jx — Ssij. The limit when p; — 0 and p;//pi is a special

case of the triple collinear limit when z; — 0.
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4.3 Antenna subtraction term for the double real

level at NNLO

In the single or double unresolved phase space, the double real contribution of the
NNLO cross section is divergent. Using the same idea as in NLO calculations,
in the antenna subtraction framework, we define antenna functions together with
the associated with phase space mapping that can compensate these implicit diver-
gences. The subtraction terms are subsequently added back in integrated form to

the real-virtual and double virtual subtraction terms.

4.3.1 Phase space mapping

One needs appropriate phase space mappings to prepare the momentum sets for the
subtraction terms and reduced matrix elements for each of the different unresolved
behaviour discussed in section 4.2.1. For single unresolved, colour-unconnected dou-
ble unresolved and almost colour-unconnected double unresolved behaviour, the
phase space mappings are simply (iterations of) the 3 — 2 mapping introduced in
section 3.3.1.

However, for colour-connected double unresolved behaviour the two unresolved
partons and their colour-adjacent hard-radiation partons are all involved in the
double unresolved limits and this requires 4 — 2 mapping. Just as for the 3 — 2
mappings, the two hard radiators could be either in final-final (FF), initial-final (IF)
or initial-initial (IT) states. The momentum mapping should keep the hard radiators

on-shell and preserve momentum conservation.

Final-Final Mapping

The final-final momentum mapping {i, 7, k, [} — {I, L} [113,129] is defined as

pr = péﬁ) = w1y + waplf + 3Pl + Tapy,
Ve =0 = (U= a)pf + (1= a2)py + (1= wa)py + (1= za)pf’, (4.3.52)
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where, in a similar manner to the 3 — 2 FF mapping, the on-shell conditions fix

the values of x; and x4, and leaving a choice for x5 and x3. We use,

1
= 1 ikl — e+ 28
= 2(s45 + Sik + Sa) [( T p)sign = @2l i)
SiiSki — SikS;
— x3(8j5 + 2581) + (2 — 3) (%)} ;
il
oy — Sk + Sji ’
Sij -+ Sik + S;i
Skl
T3 =",
Sik + Sjk + Sk
1
Ty = 1+ p)s;i — x2(8;; + 255
4 2(su + St 5x2) [( P) Gkl 2( j gz)
SiiSki — SikSj
— {L‘g(Sjk + 25zk) - (.172 - Ig) <w):| s (4353)
il
where p is given by,
2
Tog — &
p= [1 + %/\Qﬁ‘jskla SilSjk SikSil)
S35kl
+ (2(1‘2(1 — Ig) + 1'3(1 — l‘g))(SijSkl + Siksjl — Sjksil)
SilSijkl
2
-+ 4%2(1 — :C2)Sij$jl -+ 41’3(1 — $3)5ik5kl)1 s (4354)
where
Mz, y,2) = 2° + > + 22 — 2(xy + 22 + y2). (4.3.55)

For various double unresolved limits of p and py, pj and p} become the correspond-
ing composite momentum. For example, for double soft limits when p? D — 0,
Py — pi and pf — p)' . Further details of the behaviors in the double unresolved
limits can be found in [113].

The full phase space for 2 to n—final state partons for the double real contribution

18
n+4 n+4
APps2(ps, .- -, Doyt P1, p2) = (27)%6 (pl +p2— Zm) [ idpa). (4.3.56)
=3 =3

Using similar identities as in Eq. (3.3.43), the full phase space can be factorized into

the product of an antenna phase space and the reduced phase space:

dl’l dI‘Q

dq)n+2(p3>"'apn+4;plap2) = dq’n(?&---,plpr,---,pm+4;p1,p2)x—lx—2
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X (1 —21)d(1 = w)d®NT (piy Djs Prs P13 1, PL)-
(4.3.57)

Similarly, the four to two final-final antenna phase space d@f(f; ., 1s proportional to

the four-particle phase space [109],

1

A®YE (Di, Djs Phy D1 D1, PL) = 5 d®;jri(pi> Pj, Prs P13 D1, PL)- (4.3.58)

Initial-Final Mapping

In the initial-final momentum mapping, a technique very similar to that used for
the 3 — 2 IF mapping can be used to derive a 4 — 2 mapping such that for
{i gk} = {1, L} = {i,. L} [108],

P = Doy =0+ vt — (L= a) (4.3.59)

With on-shell condition p? = p2 = 0 the #; parameter is fixed to be,

5, = Sij+5ik+5i[+$]’k+5jl+5k[‘ (4.3.60)
Sij + Sik + Sal
For various double unresolved limits of p)/ and pj;, p; and pj become the correspond-
ing composite momentum. For example, in double soft limits p, p; — 0, p’If — p
and pf — pl'. Further details of the composite momentum in the double unresolved
limits can be found in [108,113].
The initial-final antenna phase space can be rewritten using identities similar to

Eq. (3.3.50) but with ¢ = p; + pr, +pi — pi, as (for i = 1),

dZL‘l dl‘g
d(bn+2(p37 ceey kn+4;pl7p2) - dq)n(pi%a <o sPLy -+ Pntas $1p17p2)x_x_
1 2

X 0z —11)0(1 — xz)d‘bgfgm (D> P> D1 P15 Q),

(4.3.61)
where the four to two initial-final antenna phase space is defined as
Q2
d<I>§§jM (Pj, Pk, P13 1, Q) = Edq)IS(pjapkapl;plaQ)' (4.3.62)
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Initial-Initial Mapping

Finally for the initial-initial momentum mapping {7, 7, k,f} — {f ,I:} = {;, f}, a
Lorentz boost similar to that employed in the 3 — 2 mapping is used but with

extended values of ¢ and ¢ [108],

Pi=p; = @ipl,
vi=p = @,
o 2p : (q + (D ~ 2p . q ~
where m # j, k and
q" = pf—l-pf—pg—p‘k‘, ‘?L:ﬁf-i-ﬁf,
1
o ((Sil = sty = Su) (S = $ig = S = Sy = S F Sjk)) |
K3
Sil(sil — Sij — Sik) ’
1
j:l — (Sil — Sij — Sik)(sil — 845 — Sik — Si; — Slk + Sjk) 2 (4 5 64)
si(si — S15 — Sik) : +9-

In the double unresolved limits where (p} +pj;) is along the beam line, the intermedi-
ate momentum ¢* become proportional to ¢*. In this case, for each | # j, k, pi' — p/'
and p‘lf , p“f( become the corresponding composite momentum. Further details of the
composite momentum in the double unresolved limits can be found in [108,113].
For the initial-initial antenna phase space (with ¢ = 1 and [ = 2), using similar

identities to Eq. (3.3.57), we find that,

_ . dz; dz
d®, . o(ps, - Dura; 1, 02) = AP, (Ds, - - - Prra; T1P1, x2p2)x_1x_2
1 T2
X5(I‘1 - i’l) 5(1'2 — :%2) dcpggi'ké’
(4.3.65)
where the four to two initial-initial antenna phase space is defined as
dq)ggijki = T17%2 [dpj][dpk] (4366)

4.3.2 Antenna functions for double real level at NNLO

The antenna functions used in the double real contribution must remove the various

single and double unresolved singular behaviour from the matrix elements. The
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X39(i,j,k) antenna functions introduced in section 3.3.2 are useful to remove the
single unresolved limits while iterated structures of the type X3 (4, j, k) X2(I, m, n) are
capable of removing the almost colour-unconnected and colour-unconnected double
unresolved limits.

To remove the colour-connected double unresolved limits, new antenna functions
with four colour-connected partons for various types of hard radiators are introduced
in [110-112]. As with the construction of XY, the X} functions are derived from
matrix elements with four partons normalised by the underlying two-parton process:

MY (i, 7, k,1)

T3 (4.3.67)

X0, 4,k 1) = Sijuyie

Partons ¢ and [ are hard radiators in the j and k double unresolved limits, and
I, L are the mapped momentum through 4 — 2 mappings introduced in section
4.3.1. Depending on the parton types of 4, j,k, 1, X{(i,7,k,1) in general contains
several divergent behaviour such as double soft (i.e. j, k& — 0), soft collinear (i.e.
j — 0, k//1), double collinear (i.e. i//j, k//I) or triple collinear (i.e. i//j//k) limits.
Besides double unresolved limits, X! is also divergent in single unresolved limits
which naturally reside in the M (i, j, k,1) matrix elements. From the definition of
X9 in Eq. (3.3.60), we see that in single unresolved limits X} (i, 7, k,[) is simply
equivalent to a single unresolved divergent function multiplying the reduced X3
antenna function, e.g., for single soft 7,

28,;k

X0, 4, k, 1) 224 X0(3i, k. 1). (4.3.68)

5ij Sk

In some special cases, the M2(i,j, k,[) matrix elements that form the core of
X9 have colour connections between the two hard radiators ¢ and [. This feature
generally means that the X antenna contains limits when either 7 or [ are soft. This
feature also occurred in some X3 antennae at NLO where it was possible to define
sub-antennae that did not have these limits, see section 3.3.2. Several studies have
discussed the splitting of full X antenna functions into well behaved sub antenna
functions [98,113]. The X! antenna functions for the various parton types are
summarised in Table 4.1.

Similarly, it is also possible to have an alternative colour connection such that

partons j, k are both colour connected to 7, . In general, we name this type
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of four parton antenna functions as X9(i,j,k,1) [116]. The X? antennae do not
contain colour connected double soft limits but are vital to mimic triple collinear
(i.e. j//i//k), soft collinear (i.e. k — 0, j//l) and double collinear (i.e. i//k, j//l)

limits.

4.3.3 Antenna subtraction terms d&]%NLO

d65 y1o is designed to mimic all the divergent behaviour of the matrix elements in
the double real contributions of NNLO (in Eq. (4.2.47)). From the classification of
the five configurations of double real contributions in section 4.2.1, the d6y ;o can

be decomposed according to the four unresolved configurations [98,109,113,130]:

~S _ 1~8a ~S,b ~S,c ~S,d
doXnro = donnro T d0xNLo + doxNro + doNNLos (4.3.69)

where

~S . . . . .
(a) doyyro Is to remove single unresolved limits as in configuration (1);

~S.b . o . .
(b) donro is to remove colour-connected double unresolved limits as in configu-

ration (5);

(c) d&f;}:\, Lo is to remove almost colour-unconnected double unresolved limits as

in configuration (4);

~S.d . .. .
(d) doyvro is to remove colour-unconnected double unresolved limits as in con-

figuration (3).

In the following sections, each contribution to do3 o will be discussed first in
the general case of multiple number of partons. Secondly some special considerations

in the case of five partons relevant for pp — H+ jet will be introduced.

. . ~S,a
Single unresolved subtraction term, doyy; o

To remove the single unresolved divergence from the double real matrix elements,
the antenna subtraction structure for the real contribution in the NLO calculation
would be sufficient,

1

8n+2

S, )
do_N?VLO :NJI\?]{ZILOdCI)n-f—?(p?n “, Pnta; D1, D2)



4.3. Antenna subtraction term for the double real level at NNLO

80

maple fortran/form | latex comment

A40 FullA40 Al Egs. (5.27) and (5.29) of [109].

At40 FullAt40 AY Egs. (5.28) and (5.30) of [109)].

At40a At40a Al Egs. (3.16) and (3.17) of [98] and
Eq. (5.30) of [109].

B40 FullB40 BY Egs. (5.37) and (5.38) of [109].

C40 FullC40 Y Egs. (5.42) and (5.43) of [109].

D40 FullD40 DY Egs. (6.43) and (6.44) of [109].

D40a D40a D" Eq. (3.23) of [98].

D40c D40c DY* Eq. (3.23) of [98].

E40 FullE40 EY Eq. (6.48) of [109].

E40a E40a B Eq. (3.18) of [98].

E40b E40b EY Eq. (3.19) of [98].

Et40 FullEt40 | £9 Eqgs. (6.49) and (6.50) of [109].

F40 FullF40 F) Eqs. (7.43) and (7.44) of [109].

F40a F40a 1N Eq. (4.41) of [113].

F40b F40b P Eq. (4.41) of [113]. Now labelled
F{(1,2,4,3).

G40 FullG40 G Eqs. (7.48) and (7.50) of [109].

G40a G40a Gy° unpublished work by Pires, J.

G40b G40Db Gg’b unpublished work by Pires, J.

G40c G40c G unpublished work by Pires, J.

Gt40 FullGt40 | G Eqs. (7.49) and (7.51) of [109].

H40 FullH40 HY Eq. (7.58) of [109].

Table 4.1: X{ antenna functions. The nomenclature used in the .map input files as

well as in the numerical fortran codes are indicated.
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4 XS RI o G GR P [ (o). (4370
J
As there is one more parton in the final states in the NNLO calculation, the jet

function requires only n-jets are identified from the (n + 1) final state partons.
Therefore, the jet function actually allows extra unresolved contributions in the
reduced matrix elements, which must be removed using other subtraction terms.
Depending on the colour connection between the first unresolved parton j and a
putative second unresolved parton (which could be any of the final state partons
in the reduced matrix element), one needs the d6%¢ and d6¢ subtraction terms to

compensate the spurious divergent limits.

Colour-connected double unresolved subtraction term, d&f,’?mo

The X ()N(ff) antenna functions along with 4 — 2 mappings are designed to remove
the double unresolved colour-connected limits, and are used to construct the first

part of the d&JS\f?VLo term,

s 1
dJ]%?VLO = ]I\/?]I\%TLOd(I)n-i-?(pSa s >pn+4;p1>p2)s i
4 X XU K DMl T, G- P (). (4371

jik
However, as discussed in section 4.3.2, the X{ and )?2 functions also contain spurious
single unresolved limits. Accordingly the second part of déyh, Lo must remove these
spurious divergences. For the hard radiators ¢ and [, the corresponding subtraction

terms that remove the single unresolved limits for j or k present in X?(i, j, k, 1) are,

. 1
da%\?Lo == ]]\?]I\%/LOdCI)TH-Q(p?n T 7Pn+4;p1,p2) S
Xy {X:?(w K)X9((i7), (), DIMS (-, ((65)(GK)), (GRD), -+ )P T ({p}a)

j?k

— —_~—

+ X35, b, XS, (7K), (RD) M2 o(- -+, (i(5R)), (GR)(RD), - )PI ({p}a)

(4.3.72)
For the hard radiators j and [, the corresponding subtraction terms that remove the

single unresolved limits for 7 or k present in )?ff (7,1, k,1) are,
1

Sn+2

~S,b _
doNNLo = _NJI\?]]\?/LOdCI)n-I-Q(p?n ot Dnta; D1y D2)

b
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X%{@Wﬁﬁ&ﬁ(mﬂwﬂ,@mﬂﬁﬁw%%Wmm

e~

—n@o&mx&@ém@ﬂwm@m~xummawmf~quqmm}

(4.3.73)

Note that there is potentially a secondary unresolved limit inside the second X9
antenna function in Bq. (4.3.73). Just as for do5% -, one needs subtraction terms
in d6%¢ that will compensate these spurious limits. Altogether, the full d&i,?VLO

subtraction term is given by,

~S,b ~ S, ~S.b
doNnro = doNNzo + A0NNLO- (4.3.74)

. ~S
Almost colour-unconnected double unresolved subtraction term, doyy;

To have almost colour-unconnected double unresolved limits, the scattering pro-
cesses needs to involve at least five partons. Besides the actual double unresolved
divergences from the matrix elements, both daN ~NLo and dot Lo would contribute

to the same double unresolved limits.

An iterating pattern has been found for part of doy5 ., [116]. For every X9(5,i,k,1)

antenna present in dONNLO which has hard radiator j and [, there is a block of
nine terms in d&N’N Lo that correctly compensates the over subtraction of double-

unresolved limits in the almost colour-unconnected configuration. For a general

structure of colour connection without the unresolved parton i and k, (- -+ ,a,j, 1, b, - -

the three possible unresolved regions can be diagrammatically shown as region I, II
and III in Figure 4.1. The primary unresolved parton ¢ could stay in any of the
three regions while the secondary emission of parton k stays in region I. The block

of nine terms are:

1

~S,c

dUNNLO = NJI\?]]\{/LOd(I)nJrQ(pSv T 7pn+4;p17p2) 5 Z {
Kk

5 XBG ) XG0k, () 1Mo, (GOR), (RG), b, )P
= L X0y, ) XSG ko 1) IO (@), (GOR), (RO, b, )P

2

—%X%mwmuh@»w&xwm@&me%ww2
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II IIT

N

Figure 4.1: The three regions associated with the radiation of almost colour-
unconnected partons.
1

- 5| S ~ S ~ utis ~ Suin) ~ oo~ Suw)|

X9((67), k. (D)) (M- <W>,m,b,...>\2} JO({pka).  (4.3.75)
The factor of half in Eq. (4.3.75) is from the symmetry of summing all colour or-
derings. The six large angle soft terms (terms with eikonal factors) are designed to
remove the over subtracted divergences when parton ¢ becomes soft. As the choice
of the primary emission of parton i in Eq. (4.3.75) may not cancel the correspond-
ing secondary emission of parton i in dg5%,, and do3%, 5, the six large angle soft
terms are grouped into three pairs with single and double mapped hard radiators
to compensate the mismatched ordering of emission. Note that in the case of five
parton scattering, the hard radiators a and b in Fig. 4.1 overlap.

Additional d555, o terms are needed on a case by case basis. Nevertheless, after
integration over the phase space of the first antenna function, || A6 o should
have all its divergences canceled at the real-virtual level. This means that the
rather simple structure of subtraction terms present at the real-virtual level gives a
hint to the terms that must appear in d&fﬁv Lo- A second iterating pattern has been
found from such a comparison with real-virtual terms. In general, for double real
subtraction terms that share the same primary X3 function that contains identity
changing limits (idc), one can regroup those terms into blocks which share exactly
the same primary antenna function and mapping. Inside each block like this, an
NLO structure for real subtraction terms can be found in the secondary X3 function

and the reduced matrix element. This structure guarantees that the secondary
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unresolved limits all cancel within each block,

; 1
~S,ide .
dUNNLo = Nﬁﬁwdq’nw(}?& T apn+47p1ap2)8 +2{

+X9 (@, 4 k) M5 (. (i), (K) - )
XS k) S XYL M, N) M. (LM, (MN), . .>|2} IO,
Me{ptn+1

(4.3.76)

The X$"“M?, , structure in the first line of Eq. (4.3.76) is produced by do 3% o
while knowledge of the single unresolved structure of MY, ; helps to predict the
Xy'e X9 MO o structures in the second line that are naturally part of either d&f,’]c\, LO

or d&f,’i, Lo- More details will be discussed in section 4.5.3.

. ~S,d
Colour-unconnected double unresolved subtraction term, daf,’N LO

In order to have colour-unconnected double unresolved limits, the scattering pro-
cesses must have at least six partons. Besides the actual double unresolved di-
vergences from the matrix elements, doy% Lo also contributes to the same limits.
In each single unresolved limit there would be one X{M? +3J,(L1)1 term, the colour-
unconnected double unresolved limits are double counted. This means that the
d&f;?lv Lo terms would have an overall minus sign to cancel the over-subtraction. In
general, 6% 1o uses the iteration of two XY antenna functions and is summed over

all the possible colour-unconnected partons,

1
~S,d )
dUNNLO = —NJ}\?J]\%fLod(I)n+2(p3, T 7Pn+47p1,p2)5 +2{

> X904, k)X (L,mon) [ MY o LK, -+ L, N,...)\?} J({phn).

j7m

(4.3.77)

As the sub-phase space factorization for both antenna functions have no common
momentum, the phase space integration of the antenna functions can be performed

simultaneously. After integration, the [, dse, o terms are added back to d6¥ yo-
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4.4 Divergent behaviour of real-virtual contribu-

tions at NNLO

The real-virtual contribution of NNLO calculations contains two parts: the one-loop
matrix elements and the real-virtual mass factorization counter term. Each of the
two contributions has explicit divergences in terms of Laurent expansion in € and

implicit divergences in single unresolved phase space.

4.4.1 IR behaviour of real-virtual matrix elements

The real-virtual contribution has one additional parton compared to the Born level

process,

dé—]]\%l‘J(fLO :NJI\?]‘\//LOdCI)n-I—l(p?n T 7Pn+3;p1>p2)

1 .
S +1|M'r%+3("' 727]7167"')'2

X mei)l({p}n-ﬁ-l)‘ (4.4.78)

The NZX ;o factor is a normalisation factor related to strong coupling parameter c,

momentum flux s and colour factor N. The relation between NZX ;5 and NEE,  is

Nifo 1
— 4.4.79)
NJ]\?]‘\//LO C(E) (

The one-loop matrix elements in Eq. (4.4.78) contain the explicit divergences dis-
cussed in section 3.4.1 over the full phase space. In addition, the jet function Jr(ﬁr)l
allows contributions from single unresolved phase space region where the one-loop
matrix elements would become implicitly divergent. The implicitly divergent be-
haviour of one-loop matrix elements follows a similar pattern as at tree level [131].

In the single soft limit the matrix element behaves as

MY (- iy g ks )] %SMMI(-“ Jisky )P A SHIMO (i k)
(4.4.80)

and for single collinear limit one has

o i/fi 1 1
MY,y 2 — Pk (2)|[M(- - ,K,'--)!2+;P1 (2)|M°(--- K, -
1 (¥

ij—>K
Sij

(4.4.81)

)%
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More precisely, S 1k is the general one-loop soft function studied in [132] which
also includes explicit poles up to 1/€*, and P, ;(2) is the general one-loop splitting
function as in [133]. As at tree-level, these universal divergent functions only involve

the unresolved parton and its colour adjacent neighbours.

4.4.2 Mass factorization terms at real-virtual level

The mass factorization terms contributing to the real-virtual level of the NNLO
calculation have a very similar structure to the mass factorization terms in the
real contribution of NLO discussed in section 3.4.2. Following the discussion of
section 1.4, the expression for NNLO real-virtual level mass factorization terms in

Eq. (1.4.51) has the general structure,

N dzy dx
do z]‘j/[]l:fNLO(SlHlaSQHQ x_1_20 €
1

|:5 ]_ — Ig)rkz(l’l) (dé-]]jj,NLO - da—lfj,NLO)

#OL— a0)T o) (AT — 0o ) | (onéa, anto)
(4.4.82)

. . . . A MF]
Note that here we made the replacement dolt, o — Aok, , — do% ;o in doy; Nnro

and add [, d65 ., accordingly in &7, vx1o-

The phase space integral in Eq. (4.4.82) is over real-virtual phase space at NNLO
which has the same parton multiplicity as the real contribution at NLO. For k =1
or [ = j, the terms in d&Mﬁ’}VLO are initial state identity preserving contributions
(idp) dAMﬁjl\;zpo while for £ # i or | # j, the terms in dU]z}\;NLo are initial state
identity changing contributions (idc) daf\f oade For the convenience of further use,

1R MF15
one usually defines daw ~vro and dog; vy to be,

N dxy dx
do gzizl\f]zo(lebQHQ /—1—26’ €

Tr1 X9
o(1 — $2)F11a($1)d&§j,NLo +4(1 - $1)Fz1j($2)d5ﬁNLo (2161 Hy, 2962 Ho)

(4.4.83)

N dzy dx
do’zj\]/[ﬁll\/LO(ngb£2H2 /—1—26’ €
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§(1 — o) (21)d6y; vpo + 0(1 — 20)T L (22)d65) v | (w161 Hy, 2260 Ho).

(4.4.84)

4.5 Antenna subtraction term for real-virtual level

at NNLO

The real-virtual contributions at NNLO contain both explicit and unresolved di-
vergences that the do}?; , subtraction term must remove. The integrated form of

do X0 will be added to do¥y o

4.5.1 Antenna functions for real-virtual level at NNLO

New loop-level antenna functions allowing single unresolved parton are needed to
remove the single unresolved divergence behaviour of the one-loop matrix elements
discussed in section 4.4.1. Using the same idea used to construct X9 and X7, one
would expect to use normalised one-loop three parton matrix elements to define
X1 antenna functions. From the single unresolved behaviour of one-loop matrix

elements in Eqs. (4.4.80) and (4.4.81), one can generalise the decomposition as
S M3, 5, k)|* = X301, 4, B)IM(L K + X5, 5, k) [Ma(L K, (4.5.85)

such that

MGG R
IR MY(T K 2

M1 K)P?

X;(i,j,k) = Si W-

— X3(i, 5, k) (4.5.86)

As in the XY case, parton 7 and k are hard radiators while in the soft j limit,

X3 (i, j, k) 2220 5L (4.5.87)

1,

and in the i//j single collinear limit,
1: - i 1 4
X;(1,5,k) — ;Pij—ﬂ(z)' (4.5.88)
ij
Depending on the type of one-loop matrix elements with three partons, one
finds X!, X! and X! functions for the leading colour, sub-leading colour and Np

contributions. Note that in general X3 (i, j, k) is renormalized at the scale of total
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maple fortran/form | latex | comment

A31FF | FullA31FF | A} Eqgs. (5.12) and (5.13) of [109].

Ah31FF | FullAh31FF | Al Eqs. (5.16) and (5.17) of [109].

At31FF | FullAt31FF | Al Eqgs. (5.14) and (5.15) of [109].

D31FF | FullD31FF | D Egs. (6.18) and (6.19) of [109].
D = di(iy, i, i3) + di (i1, i3, i2).

d31FF | d31FF d} Only has 75 soft limit.

Dh31FF | FullDh31FF | D)} Eqs. (6.20) and (6.21) of [109].
D} = dL(iy, iy, i3) + db(i, i3, d2).

dh31FF | dh31FF c% Only has iy soft limit.

F31FF | FullF31FF | F} Egs. (7.18) and (7.19) of [109].
Fy = f3(in iz, i3) + f3 (i, 3, 00) + f3 (i, 41, 8a).

f31FF | £31FF 3 Only has is soft limit.

Fh31FF | FullFh31FF | [} Eqs. (7.20) and (7.21) of [109].
B = f3(in,ia, i) + f3(in, s, 0) + f3 (is, i1, d2).

fh31FF | fh31FF fi Only has iy soft limit.

E31FF | FullE31FF | Fj Egs. (6.28) and (6.29) of [109].

Eh31FF | FullEh31FF | £l Eqs. (6.32) and (6.33) of [109].

Et31FF | FullEt31FF | E} Eqgs. (6.30) and (6.31) of [109].

G31FF FullG31FF | G} Egs. (7.28) and (7.29) of [109].

Gh31FF | FullGh31FF | G} Eqs. (7.32) and (7.33) of [109].

Gt31FF | FullGt31FF | G} Eqs. (7.30) and (7.31) of [109].

Table 4.2: X3 antenna functions for final-final state
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maple fortran/form | latex | comment

gA31IF FullgA31IF | A;, Crossing of A}. Mixed flavour changing.
gAh31IF FullgAh31IF /Al%’g Crossing of fl})) Mixed flavour changing.
gAt31IF FullgAt31IF flé’g Crossing of A}, Mixed flavour changing.
gD31IF FullgD31IF D%,g Mixed flavour changing.

D}, =d}, (i1 12, 13) + d} (i1, i3, 12).
gd31IF gd31IF d%,,g 13 initial state io soft.
gd31IFgtoq | gd31IFgtoq | d3,,, | Only contains ii[li; collinear limit.

Flavour changing g — q.
gDh31IF FullgDh31IF ﬁ%ﬁg Mixed flavour changing.

D}, =di, (i1, 02,13) + d§ , (i1, i3, 72).
gdh31IF gdh31IF di,, i5 initial state 4, soft.
gdh31IFgtoq| gdh31IFgtoq Czilﬂ,g—nz Only contains i;||iz collinear limit.

Flavour changing g — g.
gF31IF FullgF31IF | Fy, Crossing of Fy.

Fi, = f3,(i1,02,05) + f} 4 (in, s, i2).
gf31IF gf31IF f3q Only contains i1|]is collinear limit.
gFh311F FullgFh31IF| | Crossing of F}.

By = f3 (i ia,i8) + 3 (v, s, ).
gfh31IF gfh31IF f31 p Only contains i, ||iy collinear limit.
gG31IF FullgG31IF | Gy, Crossing of G1.
gGh31IF FullgGh31IF| G3, | Crossing of Gi.
gGt31IF FullgGt31IF| Gi, | Crossing of Gi.

Table 4.3: Gluon initiated initial-final state X} antenna functions
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maple fortran/form latex | comment

qA31IF FullqA31IF Az, Crossing of Aj.
gAh31IF | FullgAh31IF | Al | Crossing of Al
gAt31IF | FullgAt31IF | A} | Crossing of Al.
qD31IF FullgD31IF Dy, | Crossing of Dj.

Dy, =d} (i1, i, i3) + d} (i1, i3, 42).
qd31IF qd31IF d3, | Only contains i|[iy collinear limit.
gDh31IF | FullgDh31IF | D} | Crossing of D},

D, = d} (i1 iz, i5) + d5 4 (iv, i3, 32).
qdh31IF qdh31IF c% . Only contains i1]|]is collinear limit.
qE31IF FullqE31IF E3, | Crossing of Ej.

GEh31IF | FullgEh31IF | Ei_ | Crossing of El.

qEt31IF FullqEt31IF E?iq Crossing of Eé

qpE31IF FullqpE31IF Eiq, Crossing of Fi. Flavour changing ¢’ — g.
gpEh31IF | FullgpEh31IF Eiq, Crossing of Eé Flavour changing ¢ — g¢.
gpEt31IF | FullqpEt31IF E’qu, Crossing of Eé Flavour changing ¢’ — g¢.
qpG31IF | FullgpG31IF | G3, | Crossing of Gi. Flavour changing ¢’ — g.
gpGh31IF | FullgpGh31IF | G, | Crossing of G3. Flavour changing ¢ — g.
gpGt31IF | FullqpGt31IF Gé’q, Crossing of ézl,, Flavour changing ¢ — g¢.

Table 4.4: Quark initiated initial-final state X3 antenna functions
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maple fortran/form | latex comment
ggD31II | FullggD31II D;}M Mixed flavour changing.
D} g =d3 gy rag(it, i, 13) + b o 0o (i1, 3, 12).
ggd31II | ggd31II d3 49 qe | Only contains 4||iy collinear limit. Flavour
changing g — q.
ggbhh311I | Fullggbh311I ﬁ% 99 Mixed flavour changing.
D} 1y = a5 gosag(in. i, i3) + i oo (i1, 73, 12).
ggdh31II | ggdh31II c%,gg e | Only contains 4, ||y collinear limit. Flavour
changing g — q.
ggF31II | FullggF31II 31’gg Crossing of F}.
ggFh31II | FullggFh31II | Fi Crossing of F}.
qgA31II | FullqgA311I A%%qg_,qq Crossing of A}. Flavour changing g — q.
qgAh31II | FullqgAh31II flé’qg%qq Crossing of /Alé Flavour changing g — q.
qgAt31II | FullqgAt31II | A . | Crossing of A}. Flavour changing g — g.
qgD31II | FullqgD31II | Dy, Crossing of Dj.
qgDh31II | FullqgDh31II 15§7qg Crossing of DJ.
qgG31II | FullgqG31II Gé’nggg Crossing of G3. Flavour changing ¢ — g¢.
qgGh31II| FullgqGh31II| G3 . . | Crossing of G3. Flavour changing ¢ — g.
qgGt31IT | FullgqGt31II Gg?qg_}gg Crossing of éé Flavour changing ¢ — g.
gqA31II | FullqgA31II Aé’gq%qq Crossing of A}. Flavour changing g — q.
gqAh31IT | FullqgAh311I Aé,gqﬁqq Crossing of AL. Flavour changing g — .
gqAt31II| FullqgAt31II Aéygq_}qq Crossing of [1:1,) Flavour changing g — ¢.
gqD31II | FullqgD31II | Dy, Crossing of Dj.
gqDh31II | FullqgDh31II| D} Crossing of D}
gqG31IT | FullgqG31II | G, ,,, | Crossing of Gi. Flavour changing ¢ — g.
gqGh31II | FullgqGh31II C/;%?gq_}gg Crossing of CA?%) Flavour changing ¢ — g.
gqGt31II| FullgqGt31II éé,gq—mg Crossing of C;% Flavour changing ¢ — g.

Table 4.5: gluon-gluon, quark-gluon and gluon-quark initiated X} antenna functions
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maple fortran/form latex comment

qQpqpE31II | FullgpqpE31II | El

: 1
3,07 Crossing of Ej.

qpqpEh31I1 FullqpgpEh31II El Crossing of E‘%
qQpqpEt3111 FullgpqpEt31II) Ei | Crossing of L.

qgA311I FullqqA31II Al - Crossing of A}.

qqAh31II | FullqqAh31II A%,,qq Crossing of /Alé
qgAt31II | FullqqAt31II Aé’qq Crossing of flé
qqG311I1I FullqqG31II G Crossing of G3.
qqGh31II | FullgqGh31II | GL .. | Crossing of Gi.
qqGt31II | FullqqGt31II C?%’qq Crossing of G3.

qqpE31II | FullqqpE31II | F; Crossing of E}. Flavour changing ¢ — g.

,49' —qg

qqpEh31II | FullqqpEh31II | ! Crossing of EL. Flavour changing ¢’ — g.

3,49’ —qg

qqpEt31II | FullqqpEt31II E! Crossing of E% Flavour changing ¢’ — g.

3,99’ —qg

Table 4.6: quark-quark initiated X3 antenna functions

momentum flow, s;;, = si; + Sji + Si, while the one-loop matrix elements d&ﬁ,‘fv LO
are renormalized at p%. To ensure that the poles precisely cancels, we add the

corresponding scale fixing terms

Xa(i,4, k) — X3(i, 5, k) + %N (e)X39(i, 5, k) (('s"jkl)e — 1) : (4.5.89)

I
where for X1, X! and X}, By is by, 0 and by . The X} antenna functions depend

on the parton types, and on whether which hard radiators are in the initial or final

states. They are summarised in Tables 4.2-4.6.

4.5.2 Integrated eikonal factor in Initial-Final mapping
Full result

The large angle soft terms (LAST) are added to the double real subtraction term to
regulate single soft limits. The structure of the LAST is the product of an eikonal

factor, an XJ antenna function and a reduced matrix element. At the real-virtual
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level, the LAST need to be integrated over the soft phase space of the primary
mapping and added back in to d6% ;. In pp — di-jet processes, the LAST could be
written in a form where the first mapping is of final-final type [7] so that the eikonal
factor is integrated over a final-final sub-phase space d®y,,, . For the pp — H+jet
processes, there are not enough partons to ensure that the first mapping is of final-
final type. In this case, we are forced to write the LAST in a form where the first
mapping is of initial-final type. The eikonal factor is then integrated over the initial-
final sub-phase space d®,. From Eq. (3.3.50) and (3.3.51), before integration over

¢, one has

APy (p;, p; pir @) = APy, = (2)°[dp;][dpi]d?q6?(q + i — pj — pe)6*(q + wipi — pi).-

(4.5.90)

We need to consider the integrated eikonal factor in two scenarios: (a) unboosted
soft momentum and (b) boosted soft momentum.

When the unresolved momentum in the eikonal factor is unboosted (labeled by

{j}), the integrated eikonal factor is,

1 Q?
S(Sacystvyacny) = m/d(b%jkgsajc' (4.5.91)

The full result of the above integration is [134],

21— e)'(1+ €)e 2\ 1.0 19
—€ 1 € 1 _ i —1l—z€ —EA i
T I (22 ) ) o)

(4.5.92)

S<SGC7SfK7yac,fK> = (Qz) €

where

3a6|5fK‘
o _ 45.93
yac,IK(x) [SaK —+ (I—Tm) Saf] [SCK + (1_Tx) Scf} ( )

{i,7,k} are mapped into {f,K} in the primary mapping which is fixed to be of
initial-final type as described in [113]. {p,, p.} are from the single or double mapped
momentum set {p},+1 or {p},. By definition, {p;, px} are final state momenta while
{Pa, pc} could be either initial or final state momenta as the eikonal factor is invariant
under crossing.

When the unresolved momentum in the eikonal factor is boosted (labeled by

{j}), the integrated eikonal factor i,

~ 1 QQ
S(Sacvstayacny) = m /dq)%jkgsajc' (4.5.94)
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In this case, {pa,p.} are from the double mapped momentum set {p}, where the
second mapping is of initial-initial type. p; is the p; momentum boosted by the
secondary initial-initial mapping, A(p;,p;)p; = p;. Since S5, is composed of Lorentz

ajc

invariants, we can have the inverse Lorentz boost A~!(p;, p;) such that
S(Sacs Sixcs Yae,ire) = N (053 ) (Sacs S i1+ Yae i) = - /C@; ~kQ—25y2 (4.5.95)
a5 ac C(e) IR o
with p, = A~ (pj, p;)pa and p. = A (p;, B;)Pe-
The RHS has precisely the same form as Eq. (4.5.91) and can be replaced by
Eq. (4.5.92) with @ — a and ¢ — ¢,

—€ F2(1 B €>F(1 + 6)667 2 1+2¢ —1—2¢, —€

(4.5.96)

8(8%7 SiK> y%,fK> = (Q2>

Furthermore, we can exploit the fact that the above equation only depends on

Lorentz invariants so we can apply the same Lorentz boost such that

S(Sacs Sires Yae i) = M0j> P1)S (Sacs Sircs Yo i) = S(Sacs Sigo yacjfg)- (4.5.97)

As pk lies in the {p},;1 momentum set, px is the corresponding boosted momen-
tum after applying the initial-initial mapping to the {p}, set. p; is the boosted

momentum from p; and does not exist in {p},, set and is given by,

p; = AMpj, pj)p;- (4.5.98)

The denominator of y,. jr(7) could become zero in the case when ¢ (a) = K
and x = 1. In this case we need to combine the divergent denominator present in

Yae.ix (€) With the regulating (1 — z)~' 7> factor in Eq.(4.5.92). In general,

Yo (ZL‘) _ SaK|SfK| _ .CESQK‘SKH
e [sarc + (15%) Sai] [sxx + (55%) 5] (1= 2) [sar + (15%) 5ai] 547
Xz
= myak»j(l'). (4599)

The full result is thus,

S(sar, Sixcs yaK,fK) = S(Sak, SfK7yaK,f) =

(QQ)—eF (1 ;(El)i(;j)’ 6)667(—2)1‘;—’—6(1 . xi>_1_6ya_le(,l(xi)7

(4.5.100)
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where

_ SaK
Yarci(T) = ot (557 (4.5.101)

Expanding in distributions
General case K # ¢ (a)

In the general case when K # ¢ (a), expanding Eq. (4.5.92) in distributions yields

1 1 1 2

S(sue e Uaoir) 53wl | = 1000 (0) + 5 021 1) - T30 =)

e ) s (o) — s e (D)

+ O(e)}. (4.5.102)

The value of y,. ;r(1) is positive by definition. If the value of y,, ;- () is negative

then In(y,, 1, (z)) would give an imaginary contribution according to,

(e ix (%)) = [y 1 (2)]) — . (4.5.103)

However, we usually add S, ; - terms in pairs opposite signs, the imaginary contri-
butions tend to cancel each other. In the particular case when we pair S(sqc, Sjx, Yo f1c)
with —S(Sae, S e Yoo, 17(>7 the cancellation still holds as Lorentz invariance guaran-

tees Sjp = S

Special case K = ¢ (a)

In the special case when K = ¢, expanding Eq. (4.5.100) in distributions yields

2 2 w2

2 = 2 W) + W) - 5 30

S(sarcs 150 Yo 1) —<rsmr>ﬁ{ [

+

a N

(1 ="Do(x)) + 2D1(x) + 2In(Yx (1)) Po(x) — 2In(1 — )

T ) 4 ) — 1y e (1)

1—2
+ O(e)}. (4.5.104)
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When imaginary contributions are produced because y, ;(1) = —1 and y,; () is
negative, they undergo a pairwise cancellation as in the general case. In the case
of K = a, as we simply exploit the a, ¢ exchange symmetry present in Eq. (4.5.93),
and use Eq. (4.5.104) with a replaced by c.

4.5.3 Antenna subtraction term d&%NLO

The real-virtual antenna subtraction term is the bridge that links the double real
and double virtual subtraction terms. All contributions in the double real subtrac-
tion term that can be integrated over a single unresolved phase space region are
compensated at the real-virtual level while new terms introduced at the real-virtual
level will be later integrated and added back with minus sign at the double vir-
tual level. As discussed at the beginning of this chapter, do ;o has the following

structure,

. .8, N
d6tnio = doNvio — /ldaN]lVLO di o (4.5.105)

Note that,

All the explicit and implicit divergences in do&%;, should be canceled by d6% y ;-
Although they arise from various sources, the terms in do% ., can be catalogued

into four types.

(1) Terms that remove the explicit pole from do{% ;.
(2) Terms that remove the implicit divergence from dofiy;;
(3) Terms that remove the secondary emission from || daN ~NLo and da]‘\/,}gvaO
4) Terms that give a finite contribution déya%, due to identity changing transi-
NNZO
tions

Terms that remove the explicit pole from do&Y;,

The explicit pole structure of d6¥%;;, comes from the one-loop matrix elements

which have the general form given in Eq. (3.4.66). The following combination of
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integrated subtraction terms and mass factorization counter terms precisely cancels
this pole structure,

A5 _ ggMPIR _NfRV  4g 1 dxq daxs
ONNLO ONNLO NNLO9®n+1
1 Sn+1 X1 T2

<> T IME (g PIS (P ).
%,

(4.5.107)

Terms that remove the implicit divergence from dofly;;

From the construction of X3} in Eq. (4.5.86), one can use the following subtraction
terms to remove the implicit divergence from do&%,, in single unresolved phase
space regions,

“ 1 dxydx
doNNio = Nixrod®n— — x_llx_;é(l — x1)6(1 — x9)

XZ{ Z]’ M7?+2( '7[7[("')‘2

XY k)| My 1K >ﬂ D). (45.108)

As the explicit poles from one-loop matrix elements have already been removed by
Eq. (4.5.107), the explicit poles introduced in Eq. (4.5.108) must be removed by
additional terms. According to Eq. (4.5.86) the pole structure of X3 is given by,
X3 25 |30G,5) + 300 + IR = I 80| X8 )
(4.5.109)

where p;,p; and pj lie in the momentum set {p},.1, while p; and px are mapped

momenta in the set {p},. To cancel above pole structure, we add

/dAsz _ qeMEIS _ 1 dzy dzy

NNLO NNLO - NNLOd(I)n-H
Sn+1 L1 T2

XZ K (i,5) + T3 () Jf)+Jél)(lklf)>X§(i7ij)|M3+z('-- KT ({p)a) |-

(4.5.110)

The rest pole structure in Eq. (4.5.108) are canceled by constructing new terms,

1 d$1 dl‘g

~VSb
donNro = NNNLod@nH
Spn+1 L1 T2
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XZ{ DIK‘MS—W( ’[7[("')‘2

ST IO MY MO LM, >P] X900,4, 1) I (D).

LM
(4.5.111)

The sum of
~VS,a ~VS,b ~ S,bo ~MF,18
donyro T doNNLo — /dUNNLo donnLo; (4.5.112)
1
removes implicit divergences from dofl%;; , while introducing no new explicit poles.

e . ~S,a ~VSb
Terms that remove the secondary emission from fl doyno and doyy,o

In the various single unresolved limits at real-virtual level, the jet function in
fl d&f,’?v o allows the emission of one potentially unresolved parton. In constructing
d&xf\}bLO, the aim was to remove the explicit pole structure introduced in do}\/,}gv‘io.
Nevertheless the X9(i, j, k) antenna function in déyao (Eq. (4.5.111)) could be-
come divergent in single unresolved region. To compensate this over subtraction
we introduce a new term dcrN ~io together with f1 dUNNLo that regulate the phase
space integration at the real-virtual level.

The relevant terms in the double real subtraction term are a nine term block of
da3s, 1o in Eq. (4.3.75) that includes three primary antenna functions X3 and six

~S,c

eikonal factors S;jr. The new contribution in déy>% , for each block of Jid6NNro

are the three terms with the structure
X3 (L, M) X33, 5, k) [ My (- LM, - ) (4.5.113)

where p;, p; and p; are the momentum at real-virtual in final state {p},+1 set, and p,
and pys are the mapped momentum in final state {p}, set. Following the notation

in Eq. (4.3.75), for each block of [| d&i,’]cVLO one has,

~S,c VS,c 1 d.l’l dIQ
- /dUNNLo +donNLo = — NNNLOd(I)n+1
1 Sn+1 L1 T2

+ (XQ(J, L) —xg(ﬁ?j&)) X(J, K, L) [M2,(...,a,JK,KL,b,...)[>

- (X£<A, J) - X(A, ﬁ?)) XO(L K, L) Myl AT, KLb,..)
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- (BB - BELD) XKL DL, TR KL B, )P

- {(S(SJLa SJL,YJL.IL) — S(S(f;{)@fy SJL y(/ff{)(/z?f),u))

—(S(SaJ, S$JL» Yal JL) — S(Sa(/f}(/)’ SJL, ya(/J‘K/),JL))
—(S(SbL, SJLyYbL,JL) — S(Sb(’ff), SJL,Z/b(}?L/)’JL))] x

X(J, K, L) |M (..., a,JK,KL,b, .. .>|2} J ({p}h). (4.5.114)

Note that the integrated eikonal factor could be integrated with either an IF or a
FF mapping.

The explicit pole structure of in Eq. (4.5.114) cancels amongst itself in a pair-
wise manner. Together with Eqgs. (4.5.107) and (4.5.112), Eq. (4.5.114) removes all
the remaining divergences in single unresolved phase space regions. For the conve-
nience of the construction of the double virtual subtraction terms, d(}]‘\/,}q\}cLO is usually

decomposed into two parts d&z‘\/,}q\}%o and d&]‘\/,}q\}%o such that,

1 d[El dl’g {

~VSec RV
donNLo = -N NNLodPri1
Spn+1 L1 T2

—XO(JK,KL) X3(J,K,L) [M%,5(...,a,JK,KL,b,.. .)|2} J ({63,5,115)

~VS,co 1 RV
doNNro = D) NvLod®ni1

1 diCl dSIZ'Q {

Spn+1 L1 T2
+X)(JK,KL) X3(J, K, L) |M2,5(...,a,JK,KL,b,...)J?
+XY(A, JK) X9(J, K, L) M2, o(..., A, JK,KL,b,...))?

FAYRELB) XK. L) M2 TR R B b I (0410

Terms that give a finite contribution d&x,i}%o due to identity changing

transitions

So far, we have only discussed the contributions to d6¥=; that preserve the identity
of the initial state partons. The initial state identity changing terms coming from the
double real subtraction terms and the real-virtual mass factorization terms combine
to give a finite contribution to the total cross section. Adding Eq. (4.3.76) and the

corresponding initial state identity changing mass factorization terms in Eqs. (4.4.83)
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and (4.4.84), we find,

_ dAS,idC _ dAMF,lidC .
ONNLO ONNLO —
1

= NNLOYFn+1 -
Sp+1 L1 T2

I LMY (LK)

2,b—a

—_~— ———

S 0E) Y X§<L,M,N>1M2+2<...,<LM>,<MN>,...>P} T ({p}).

Me{p}n+l

(4.5.117)

where

TS (1K) = X1 K) =T (). (4.5.118)

The identity changing dipole functions are free from explicit poles as mentioned in

Eq. (3.5.78), while the NLO-like combination of terms ensures that Eq. (4.5.117) is

free from implicit divergences and gives a finite contribution to the cross section.
In some special cases where the double real subtraction term does not provide

sufficient identity changing contributions, we must add new terms of the type
A1), (TK))X3(L, M, N)|M,)| (4.5.119)

as a dé}\/,}qv"zo contribution. Note that py, pys and py are momenta in the {p}, 1
momentum set while pr; and p73 are mapped momentum in the {p}, momentum
set.

Another special case is when, after integration, a single subtraction term from
de3S o i left that does not fit into any of the terms in Eq. (4.5.117). For ex-
ample, Xy *“(I, K)XJ(K, M, N)|M?,,| type of term that would appear on its own
where XJ(K, M, N) contains only the py; soft or pys//px limit. The procedure is to
add a new term in d51‘\//?\}io to regulate both explicit and implicit divergences, the

combination,
(xg?’“cu, K) — X" (1, <f?7v1>>) XG( M, N)|M;|. (4.5.120)

The explicit pole cancellation in Eq. (4.5.120) can be achieved if one chooses X5"%(I, (KM))
to be the same type as Xy (I, K). The implicit divergences in X9(K, M, N) are
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regulated in the py; soft and pys//py limits such that,

Picar—PK
KM

(x:,?’idcu, K) — X, (m))) 0. (4.5.121)

The d&X,}g\}‘zO contribution must be integrated and added back at the double virtual
level. From the explicit pole cancellation at the double virtual level, these [, Ay,

terms are indispensable and they are constructed on a case by case basis.

4.6 Divergent behaviour of the double virtual con-

tributions at NNLO

4.6.1 Pole structure of two-loop matrix elements

The colour ordered two-loop matrix elements contains explicit divergences coming
from the integration of loop momentum in the one and two-loop amplitudes. Fol-
lowing Catani [114,115], tensorial operators in colour space, I") and I?), are used
to express the infrared singularity structure such that the renormalized two-loop

matrix element satisfies,
M2 (€) =TV ()M (€) + 1@ ()M + M> T, (4.6.122)

where M1 (¢) is the renormalized one-loop amplitude defined in Eq. (3.4.64), and
M?2F s infrared finite function in € — 0 limit. From the definition of the two-loop

matrix element in section 1.3, then for the n-parton scattering process,
IM21? = MOMZT 4+ M2MOT + ML (4.6.123)

For the convenience of matching the integrated double and single radiation from
tree and one-loop matrix elements, the pole structure of the colour ordered matrix
element | M?2|? can be expressed using the real scalar operators in a dipole formalism

such that,

.o !
‘M3< 727j7"')|2 m

- - B .
21;1)(6,---,zg,---)(]l\/[,}b(---,z,j,---)\Z—?O]MS(--~,z,j,---)\z
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_211(%1)(E ey gy P IMO g )P

I'(1

_,_Qe—wg ﬁo + K 11)(2 € iy gy )| MO iy g, )]
F(l—e)

+2H(2)(67"'7 R )’MO( ‘7]‘7"')‘27 (46124)

with I$" defined in Eq. (3.4.65) and (3.4.66), and
2
K=n({Z_T)_ N2
18 9 9
HO (e, i) =Y HP (o), (4.6.125)

The HZQ)(E) functions is process- and renormalization scheme-dependent. Using the
M S scheme, for each gluon involved in the two-loop matrix element [119],

e

H?(e) = ————H? 4.6.12
s (€) 4el(1—¢) 97 (4.6.126)
and for each quark (or anti-quark),
€y
H® 5 () 4.6.12
0 (€) 4el(1—¢) 97 (4.6.127)
so that
409 1172 1 41 72 3 3 w2\ 1
H? = N2 e — — i )
‘ ( G g6 T o6 ) T T o) Tl T T ) e
™ 25\ (N2—1)Np
— ) 4.6.12
* (48 216) N ’ (4.6.128)
1 5 1172 5 2 89 N
H® = (ZG+— N 4 N2t (- — — ) NNp— =5, (4.6.129
g (253 LUETRINEY! ) T YT\ T T 108 Foane )

4.6.2 Mass factorization terms at the double virtual level

Apart from the pole structure of two-loop matrix element, for a proton proton
collision process, there is an explicitly divergent contribution coming from the mass
factorization of initial state parton radiation in the double virtual level of NNLO
calculations. From the discussion in section 1.4, the explicit contribution from the

double virtual level mass factorization terms (doyxre in Eq. (1.4.52)) are,

d6zj\g41€fJ2\/Lo(f1H1, §oHy) =

- / doy 42 o [5(1 — 19)d (in(:cl) — [l ® FM:&))

T T2
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+ 5(1 — 5171)(5]“ (F%] (-732) - [I‘clbj ® Flla] ('TQ))
- Filci(ﬂﬁl)rzlj(m)} (w16 Hy, w262 Hy)
dxy dx A
/—1—20 { (1 — 2o)T(x )(dakj NLo t /1d0'I§j,NLO>

+ (5(1 - ZL’l)I‘llj<l’2) <d6ZVZ7NLO + /da-g,NLO>:| (ZElngl, xQé—QHQ).
1

(4.6.130)

Note that we replaced doy,,, — Ao} o + [, d6° as mentioned in Eq. (4.4.82). By
arranging the repeating indices and exploiting the NLO mass factorization term

Eq. (3.4.67), Eq. (4.6.130) can be rewritten as,

d6j;/11€7]2\1L0(€1H17 §oHy) =

N %%02(6)F?j;kz($h$2)d‘55($1§1H1,x2§2H2)
/ dx—xlldx—m;C ()T} (1, 2) <d?7,‘€/l’NLO — d&,{l’NLO) (2161 Hy, 2265 Hy),
(4.6.131)
where
Ta(@1,2) = 6(1 = 22) Tk (1) + (1 = 1) 34T () (4.6.132)

L7 (w1, 20) = 0(1 — )0, L%, (1) + 6(1 — 1) 0k T (22) + Ty (1) Ty ().

(4.6.133)
It is convenient to introduce F?j;kl(xla x9) such that,
= —2 —2
Fij;kl(gﬁl7 x2) = Iy (21)050(1 — z2) + Fjl($2)5ik5(1 — 1), (4.6.134)
where
Tij(w) ~ Tiy(w) = =5 vy (@) + —p(@) ). (4.6.135)

The relation between ffj(z) and f?j (z) is given in appendix of [116], and the details of
pj;(x) functions can be found in [135]. Now I';;,;(z1, z) can be further decomposed

as

1
0
F?j;kl(xlva) = Fij;kl(xlv Ty) — ?Filj;kl(xlva) leg ab @ lezb;kl] (21, 22).

5
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(4.6.136)
Inserting Eq. (4.6.136) in to (4.6.131), the double virtual mass factorization terms
can be arranged into three terms,
~MF?2 ~MF2,A MF2.B dgMF2.C

daz] NNLO — dazg NNLo +do O NNLo T 4045 NNLO>

(4.6.137)

where (omitting the dependence of x; and )
dxy dx B
~MF2,A 10X oA .
do. 045, NJ2VLO /__C lej ikl (dakl NLO T 7, C(e)do kl)
dxy dx 1 ~
~MF2B 14T . .
do; NNLo = / __C { - F}j;kldal{l,NLO +35 5 [leg ap @ Loy, kl]O(G)dazg}

I

. dx da: .
dé jﬁfvgo — / 1226 T, T, 65, (4.6.138)

These three terms will be combined with other double virtual subtraction terms
and fit into the three blocks as daw NNLO? dalj NyLo and daw ~nLo- Details will be

discussed in section 4.7.2.

4.7 Antenna subtraction term for the double vir-

tual level at NNLO

4.7.1 Integration of the antenna subtraction terms for VV

contribution

All the remaining antenna subtraction terms introduced at the double real level and
the new terms introduced at the real-virtual level must be integrated and added
back at the double virtual level. From the analysis in section 4.3.3 and 4.5.3, the in-
tegrated subtraction terms that contribute at the double virtual level are [, de3h NNLO>
[,dé%% 10 and [, d6X% 0. The new types of terms are,

N 1 d.fEl dxz
/d Nzo =NyX1od®n __{ZXE(]7L>|MS+2("' 717L7"')|2}
2 I,L

Sp+2 X1 X2

T ({p}n), (4.7.139)



4.7. Antenna subtraction term for the double virtual level at NNLO 105

1 dz;d
[ 40380 =~ N ot —— TR E ST S 00, K) @ 9(L )
2 Sp4+2 L1 T2 TK LN
X |Mp o(-++ I, K, LN, )|2} "({p}n), (4.7.140)
~VS,a 1 dz;dz
J e DL AL
1 n+2 L1 Tk
X MO LK, >|2} ({p}). (47.141)

while the [, dJ]‘\/,}ngLgd terms have similar structures as in (4.7.140) and therefore are
not repeated. The NV X factor is a normalisation factor related to strong coupling
parameter o, momentum flux s and colour factor N. The relation between NY X,
and NI%, o is
vio _ 1 : (4.7.142)
N¥Xo  Cle)?

The integration over the double unresolved sub-phase space in X} functions

depends on the primary mapping {p;, p;, px, i} — {pr,pr} that,

1 .
N1 L) 55 A srnsm1,) = e / 6(1 = 21)0(1 — w2)dPx, X (0. 5, K. 1),

IF 1 . Q° :
XB(I7L> — X£(51L7x17x2) = C2(¢ - xl)(S(l B x2>§dq)3X2(17j7 k, l)?

1
XB(I7L> £> Xf(SiQ,xl,QZQ) = 02(6)

(4.7.143)

The integrated four-parton antennae for various parton types, all X (s, 1, z2)
are summarised in tables 4.7 — 4.10. Here the functions with trivial exchange of
Ty < Ty in X)(s13, 71, 72) are not listed. The function 52(7, was omitted in the

original work [134], and the leading singularities are given by

1 1 17 7 5 5 1, 3
£, = 14— Sl Za— a2 — SH(0
1w =ta [ aT 2}%2[ >t 1o, Tt Tt 40

X1

(4.7.144)
where

H(0,z) =In(z),

2 3 2
+ —H(0,21) + 21:1]{(0 xy) —2H(1,x1) + - H(l r)+ o H(Lz)| +O(e”

— £1)8(22 — &2)m122[dp;][dpr] X1 (1, 4, k, 2).

ol
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maple fortran/form | latex comment

calA40FF A40FFint Af Eq. (5.31) of [109].
calAt40FF | At40FFint | AY Eq. (5.32) of [109].
calB40FF B40FFint BY Eq. (5.39) of [109].
calC40FF CAOFFint cY Eq. (5.44) of [109].
calD40FF D40FFint DY Eq. (6.45) of [109].
calE40FF E40FFint &) Eq. (6.51) of [109]
calEt40FF | Et40FFint | &9 Eq. (6.52) of [109).
calF40FF FA0FFint Fy Eq. (7.45) of [109].
calG40FF G40FFint gJ Eq. (7.52) of [109].
calGt40FF | Gt40FFint | GY Eq. (7.53) of [109].
calH40FF H40FFint HO Eq. (7.59) of [109].

Table 4.7: X antenna functions for final-final state

H(1l,z) = —1In(1 — 2). (4.7.145)

The functions 50q,g and quq, were also omitted in the original work [136], and

leading singularities are given by,

1 1 1

1 1 1 x a3
o _ ., | _ 4, - 2 4 2 S = - 2
54@'9 =t el 2 + 2r1 1y + T tr oo 4I1 2x1x2 * 2:L‘1x2
+0(e™h), (4.7.146)
g0 _ 1] 1 . 1 2 n 1 L 1 L 2
4ad T 2| 2 ap(4a)  ao(mi4wy)  2a0 l4x (214 29)?
L@ Ty Ty @ xy @

- +

214+ x1) z+xe 4 (v1+29)%2 x14+20 (21 + 22)2
sl T1 T1T2
2y 2 4

+O(e™). (4.7.147)

The expressions in Eqs. (4.7.144), (4.7.146) and (4.7.147) reveal that the secondary
quark pair in EY(q, q,q, g) antenna has no exchange symmetry and the anti-quark
g is colour connected to the gluon g. The integrated £Y functions then have four
different crossing combinations in the initial-final double unresolved sub-phase space,

and have six different crossing combinations in the initial-initial double unresolved
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sub-phase space.

Similarly, all X} functions are summarised in tables 4.11, 4.12 and 4.13.

4.7.2 Antenna subtraction terms d&%NLO

The double virtual contribution from two-loop matrix can be written as,

1
do g o =NNNLod®n(ps, - - - ,Pn+2;p1,p2)$—|Mz+2("' LK)

n

x I ({p}n). (4.7.148)

The jet-function ensures that there is no implicit divergence from unresolved re-
gions of phase space. Nevertheless, the explicit divergences from the pole structure
of the two-loop matrix elements and mass factorization terms (d&%gfo) need to
be regulated. In the framework of the antenna subtraction method, the integrated
double unresolved contributions from the double real subtraction term and the in-
tegrated single-unresolved contributions from the real-virtual subtraction term are
added back at the double virtual level (d6¥ ;) such that all counter terms cancel
each other at the level of the full NNLO cross section. The integrations of these
antenna subtraction terms are carried out in d—dimensions and the divergence can
be expressed explicitly as a Laurent expansion of the small parameter €. Those
explicit divergences cancel with the explicit pole structure from dok %, such that
the double virtual contribution do )Xo — doSy o is well defined in 4 dimensional

phase space integral. The d6¥ ;o term is defined as

. MF2
dU%NLO - /dUNNLO /dUNNLO daNNLO’ (47149)
and can be decomposed into three type of contributions:

d6§ N0 = d6NNLo + A0 N0 + AN Lo- (4.7.150)

~U,A .
do o subtraction term

The d&%’]‘?,LO term originates from integrated terms from real-virtual subtraction
terms ( doyuio,) in Bq. (4.5.108) (the second term), mass factorization terms

(dona2sl) in Eq. (4.6.137) and the integrated rescale term proportional to —1 in
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maple fortran/form | latex comment

calgA40IF gA40IFint Al gA40. Eq. (6.2) of [134].
calgAt40IF | gAt40IFint | AJ, gAt40. Eq. (6.3) of [134].
calgD402IF gD402IFint | D , gD402. Eq. (6.9) of [134].
calgD40IF gD40IFint DY, gD40. Eq. (6.8) of [134].
calgE40IF gE40IFint L, gE40. Eq. (6.10) of [134].
calgEt40IF | gEt40IFint | &) gEt40. Eq. (6.11) of [134].
calgF401IF gF40IFint Fi, gF40. Eq. (6.16) of [134].
calgG40IF gG40IFint Gy, gG40. Eq. (6.17) of [134].
calgGt40IF | gGt40IFint | G, gGt40. Eq. (6.18) of [134].
calqA40IF qA40IFint Al qA40. Eq. (5.2) of [134].
calqAt40IF | gAt40IFint | A} qAt40. Eq. (5.3) of [134].
calqB40IF qB40IFint B}, qB40. Eq. (5.4) of [134].
calqC40IF qC40IFint Y, qC40a. Eq. (5.6) of [134].
calqD40IF qD40IFint DY, qD40. Eq. (5.15) of [134].
calqE40IF qE40IFint &L, qE40. Eq. (5.16) of [134].
calqEt40IF | gEt40IFint | &, qEt40. Eq. (5.17) of [134].
calqG40IF qG40IFint 99 qG40. Eq. (5.29) of [134].
calqGt40IF qGt40IFint g:‘f,q qGt40. Eq. (5.30) of [134].
calqH40IF qH40IFint H3, qH40. Eq. (5.31) of [134].
calgbC40IF qbC40IFint | CJ. ... | qC40b. Eq. (5.7) of [134].
calgbbC40IF | gbbC40IFint | CP, ... | qC40c. Eq. (5.8) of [134].
calgbpE40IF | qbpE40IFint | &7, gbpE40. New in Eq. (4.7.144)
calgpB40IF qpB40IFint | BY qpB40. Eq. (5.5) of [134].
calqpE40IF qpE40IFint | &, qpE40. Eq. (5.18) of [134].
calgpEt40IF | qpEt40IFint giq, qpEt40. Eq. (5.19) of [134].

Table 4.8: X antenna functions for initial-final state
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maple fortran/form latex comment

calggh40II ggh40Ilint AQ 4 A34. Eq. (5.4) of [136].
calggAt40II ggAt40ITlint A9 0 At34. Eq. (5.7) of [136].
calggD40II ggD40ITint DY 4 D23. Eq. (5.17) of [136].
calggD40nadjII | ggD40nadjIlint Dgggdﬂ D24. Eq. (5.18) of [136].
calggF4011 ggF40Ilint Fiog F12. Eq. (5.27) of [136].
calggF40nadjII | ggF40nadjIlint Ff;gad] F13. Eq. (5.28) of [136].
calggG40Il ggG40Ilint Gl g G12. Eq. (5.29) of [136].
calggGt40Il ggGt40IIint g:‘f’gg Gt12. Eq. (5.33) of [136].
calgqG401I gqG40IIint G2 4q G13. Eq. (5.30) of [136].
calgqG40nadjII | gqG40nadjIlint | Gyoe¥ | G14. Eq. (5.31) of [136].
calgqGt40II gqGt40ITint 09 o Gt13. Eq. (5.34) of [136].
calqbpgE40I1 qbpgE40Ilint ELarg E34. New in Eq. (4.7.146)
calqgA40II qgA40ITint Al A13. Eq. (5.2) of [136].
calqgA40nadjII | qgA40nadjITint | AJ7e? | Al4. Eq. (5.3) of [136].
calqgAt40II qgAt40Ilint A9 9 At13. Eq. (5.6) of [136].
calqgD401I qgD40Ilint DY 4o D12. Eq. (5.15) of [136].
calqgD40nadjII | qgD40nadjIlint | Dy Z;d] D13. Eq. (5.16) of [136].
calqgE4011 qgE401lint EL ug E14. Eq. (5.20) of [136].
calqgEt40II qgEt40IIint Sffqg Et14. Eq. (6.68) of [137].
calgpgE40II qpgE40IIint EL g E24. Eq. (5.22) of [136].
calqpgEt40I1 | qpgEt40IIint 52” Et24. Eq. (5.26) of [136].

Table 4.9: gluon-gluon, quark-gluon and gluon-quark initiated X antenna functions
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maple fortran/form latex comment

calqpqpB40II qpqpB40Ilint B) .+ | B34. Eq. (5.10) of [136].
calgpqpC40II | qpqpC40ITint | Cf .. C34. Eq. (5.14) of [136].
calgpqpE40II | qpqpE40ITint | &£ . E23. Eq. (5.21) of [136].
calqpqpEt40II | qpqpEt40Ilint | &) . | Et23. Eq. (6.69) of [137].
calqqA40II qqA40ITint Al Al12. Eq. (5.1) of [136].
calqqAt40II qqAt40IIint Al ad At12. Eq. (5.5) of [136].
calqqB4011I qqB40IIint B} . B12. Eq. (6.71) of [137].
calqqC4011I qqC401ITint CY i C13. Eq. (5.12) of [136].
calqqC402I1 qqC402IIint Cl o Eq. (5.12) of [136] with z; <> xo.
calqqG401I qqG40IIint G2 v G34. Eq. (5.32) of [136].
calqqGt40II qqGt40ITint 9 i Gt34. Eq. (5.35) of [136].
calqqH40II qqH40IIint H3 4 H12. Eq. (6.65) of [137].
calqqbC4011I qqbC40Ilint Cl o C14 = C12. Eq. (5.11) of [136].
calqgbpE40II qqbpE40IIlint EL g E13. New in Eq. (4.7.147).
calqqpB40II qqpB40IIint B} . B13. Eq. (6.72) of [137].
calqqpE4011 qqpE40IIint EL 0 E12. Eq. (5.19) of [136].
calqqpEt401I qqpEt40IIint Equ Et12. Eq. (6.67) of [137].
calqqpH40II qqpH40IIlint HY o H13. Eq. (6.66) of [137].

Table 4.10: quark-quark initiated X antenna functions
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maple fortran/form | latex comment

calA31FF A31FFint Al Eq. (5.18) of [109].
calAh31FF | Ah31FFint | Al Eq. (5.20) of [109].
calAt31FF | At31FFint | A} Eq. (5.19) of [109].
calD31FF D31FFint D; Eq. (6.22) of [109].
calDh31FF | Dh31FFint | D} Eq. (6.23) of [109].
calE31FF E31FFint & Eq. (6.34) of [109].
calFh31FF | Eh31FFint | &) Eq. (6.36) of [109]
calEt31FF | Et31FFint | &) Eq. (6.35) of [109)].
calF31FF F31FFint Fi Eq. (7.22) of [109].
calFh31FF | Fh31FFint | F) Eq. (7.23) of [109)].
calG31FF G31FFint ] Eq. (7.34) of [109].
calGh31FF | Gh31FFint | Gi Eq. (7.36) of [109].
calGt31FF | Gt31FFint | G} Eq. (7.35) of [109).

Table 4.11: X] antenna functions for final-final state
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maple fortran/form | latex comment
calgA31IF | gA31IFint | A3z, Eq. (6.4) of [134].
calgAh31IF | gAh31IFint | Al Eq. (6.6) of [134]
calgAt31IF | gAt31IFint | A} Eq. (6.5) of [134]
calgD31IF | gD31IFint | Dj, Eq. (6.12) of [134].
calgDh31IF | gDh31IFint | D}, Eq. (6.13) of [134].
calgF31IF | gF31IFint | Fy, Eq. (6.19) of [134].
calgFh31IF | gFh31IFint ]:_317!] Eq. (6.20) of [134]
calgG31IF | gG31IFint | Gy, Eq. (6.21) of [134].
calgGh31IF | gGh31IFint | Gi, Eq. (6.23) of [134].
calgGt31IF | gGt31IFint | Gi, Eq. (6.22) of [134].
calgA31IF | gA31IFint | Aj, Eq. (5.9) of [134]
calqAh31IF | gAh31IFint | A}, Eq. (5.11) of [134].
calqAt31IF | gAt31IFint | A}, Eq. (5.10) of [134].
calgD31IF | gD31IFint | Dy, Eq. (5.20) of [134].
calgDh31IF | qDh31IFint | D}, Eq. (5.21) of [134].
calgE31IF | qE31IFint | &;, Eq. (5.22) of [134].
calgEh31IF | gEh31IFint <€'A3lyq Eq. (5.24) of [134].
calqEt31IF | qEt31IFint | &1, Eq. (5.23) of [134]
calqpE31IF | qpE31IFint | &3, Eq. (5.25) of [134].
calqpEh31IF| qpEh31IFint é’?}g, Eq. (5.27) of [134].
calqpEt31IF| qpEt31IFint| &5 Eq. (5.26) of [134].
calgpG31IF | qpG31IFint | G, Eq. (5.32) of [134].
calqpGh31IF| qpGh31IFint QAg,q/ Eq. (5.34) of [134].
calqpGt31IF| qpGt31IFint| Gi Eq. (5.33) of [134].

Table 4.12: X; antenna functions for final-initial state
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maple fortran /form latex comment
calggD311I ggD311Iint D3 4 ggD31
calggDh31II gghh31IIint 15%799 ggDh31
calggF3111I ggF31Ilint F3.99 ggF31
calggFh31II ggFh31ITint Fi g ggFh31
calgqG31II gqG31Ilint G344 gqG31
calgqGh31II gqGh31IIint g}m gqGh31
calgqGt31II gqGt31IIint g},gq gqGt31
calqgA3111 qgA31IIint E qgA3l
calqgAh31II qgAh31ITint AL, qgAh31
calqgAt31II qgAt31IIint fl{%’qg qgAt31
calqgD3111I qgD31ITint D3 40 qgD31. Eq. (B.1) of [138].
calqgDh31II qghh31IIint ﬁé’qg qgDh31
calqgG31II qgG31IIint giqg qgG31
calqgGh31II qgGh31IIint Gl qgGh31
calqgGt31II qgGt31IIint g},},qg qgGt31
calqpqE31I1I qpqE31IIint E3.qq qpqE31
calqpqpE31II qpqpE31IIint 5§7q/q, qpgpE31
calgpqpEh31II | gpqpEh31IIint E§§7q,q/ qpqpEh31
calqpgpEt31II | gpqpEt31IIint g31,q’q’ qpgpEt31
calqqA31II qqA31IIint A3 oo qqA31
calqgAh31II qqAh31ITint AL qqAh31
calqgAt31II qqAt31ITint /lé’qq qqAt31
calqqG31II qqG31IIint ggm qqG31
calqqGh31IT qqGh31ITint Qg’qq qqGh31
calqqGt31II qqGt31ITint Gi e qqGt31
calqqpE31I1 qqpE31IIint 3. qqpE31
calqqpEh31II qqpEh31ITint é§ a qqpEh31
calqqpEt31II | qqpEt31IIint | &5 qqpEt31

Table 4.13: X3 antenna functions for initial-initial state
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Eq. (4.5.89). From the definition of J) in Eq. (3.5.74), the doY4,, term can be

organised as

1 d$1 d.Z'Q L.
dUNNLo NNLOch s_a:_lx_gJ +2( gy )
. Bo . "
X <|M1i+2( 727.]7"')|2 - ?|M?’(L)+2( 7Z’]7"’)|2 Jr(L )({p}n)

(4.7.151)

From the pole structure of dipole functions of J gl), the explicit pole structure of
Eq. (4.7.151) matches the first line of the pole structure in two-loop matrix elements

in Eq. (4.6.124).

~ U B .
doy/y o subtraction term

The d6%yy, , term is the collection of integrated A da 33" , coming from Eq. (4.5.111),
IR déy 5, from (4.5.116), IR déy3e o, I A% o from (4.3.77) and the mass factor-
ization term d&%ﬁf’o’g in Eq. (4.6.137). By using the dipole functions J ,(11) and the

. . ~U,B .
convolution operation, the doy ;. term can be organised as

1 dz; dz
~UB 1 dxo
doynro = NNNLO n x_la:_Q
1 a 1 .
X§J’E7r|)’2<...’ 7.]’ )®J£L<|)»2(”'7Z7j7"')

It can be seen that the explicit pole structure in Eq. (4.7.152) matches the second
line of the two-loop pole structure given in Eq. (4.6.124).

~U,C .
doyyo subtraction term

The last double virtual antenna subtraction term collects all the remaining con-

tribution from integrated antenna subtraction terms from do3yro, o5y o and

double virtual mass factorization term d&%ﬁfo. More precisely, dg5¥ Lo contains

[,daR0, o from (4.3.71), [, dé o from (4.5.108) (the first term), [, dé v from

(4.5.115), the integrated rescaling term proportional to |s;x|/p% in Eq. (4.5.89) and
F2,0 .

the mass factorization term déy are in Eq. (4.6.137). All terms in d655,, are pro-

portional to the tree level matrix elements and can be arranged into dipole functions
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so that
1 dxy dx
~UC 1 dTo
doyNro = NNNLO n’g _$1 _:702
X ']512—&)—2( 47, )|M7(1)+2( 77;7j7 e )yzjén)({p}n), (47153)

where J 522 is the sum of two-loop dipole functions J éz) (analogy to one-loop dipole

functions J él)),

2 o 2. -

i,
Similar to the NLO J gl) functions, once determined, the J §2) functions with various
parton types and colour orderings would match the corresponding explicit poles in

the last two lines of dipole structures for two-loop matrix elements in Eq. (4.6.124)

such that,

TP, 5) 2 %7”2%1_€;<€? K)I (z:&ﬁ+2(ﬂﬂk)+ﬂfko) (4.7.155)

The J éQ) functions are also found to be universal for different scattering processes
from the studies of proton proton collisions to Higgs boson plus jet [84], vector
boson plus jet and di-jets at NNLO [102,116,117]. Details for specific J(22) dipole
functions will be introduced in chapters 6, 7, 8 and 9.

Now all the three types of double virtual subtraction terms in Eq. (4.7.150) have
been introduced. The full d6§,;, term has the general structure as the follow-

ing [116]:

. 1dl'1d[lf2
doynro = ~Nynrod®n— R —X
1 . .
{00 g (i P = B i R)
1

+§J§Lﬂ{2(... Vi )@ TN iy ) MOy i g )P
TP g )M (- ,z',j,--->12}J,s”><{p}n>. (4.7.156)

The explicit IR divergences in Eq. (4.7.156) is exactly the same as in Eq.
(4.7.148). The difference of do} o — do5 o is free from IR divergences. As we
simply combine the integrated antenna subtraction terms from dé% y;0, d6%nro
and day iy to form do¥ o, at exclusive cross section level, we introduce no un-

physical counter terms.



Chapter 5

Matrix Elements for Higgs Boson

Production in Association with a

Jet at up to NNLO

The scattering matrix elements relevant for the NNLO corrections to the pp —
H+ jet process are are Higgs boson plus three, four and five partons at tree-level,
Higgs boson plus three and four partons at one-loop, and Higgs boson plus three
partons at two-loop. In the formalism of colour ordered matrix elements, specific ex-
amples have already been introduced in section 3.1.3 and 4.1.2. Helicity amplitudes
for these matrix elements have already been calculated by different groups. How-
ever, these expressions have not been tested for numerical stability in the unresolved
phase regions relevant for NNLO calculations.

In this chapter, we first introduce the modern approaches for calculating tree
and one-loop helicity amplitudes. New (and stable) results for tree-level matrix
elements for Higgs boson plus five partons are obtained using the BCFW method
for the first time. Then, the numerical instability issues for the one-loop Higgs boson
plus four parton matrix elements are exposed and subsequently solved by rewriting
the analytical expressions to avoid cancellations of divergent terms in the single soft

phase space regions.

116
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5.1 Tree-level Higgs boson plus multi-parton ma-
trix elements

In the large top quark mass limit, the tree-level matrix elements for Higgs boson plus
multiple light-like partons are constructed using the Feynman rules for gluon and
(massless) quark interactions and self-interactions, supplemented by the effective
couplings of gluons with the Higgs boson. Traditionally, Feynman rules are used for
calculating scattering matrix elements in non-abelian gauge theories. However, with
the increasing of number of external particles, the number of Feynman diagrams and
kinematic variables for each diagram increase rapidly. Furthermore, when summing
all contributions of Feynman diagrams, the results for each diagram also experience
large internal cancellations. Modern approaches for calculating tree-level scattering
matrix element treat the growth of multiplicities of external particles recursively.
Instead of calculating a completely new set of Feynman diagrams for each scat-
tering process, previously constructed (and therefore on-shell) helicity amplitudes
with small number of external particles are joined together to calculate amplitudes
with higher multiplicities. These modern on-shell approaches include Parke-Taylor
helicity amplitudes [139], the CSW method [140], the BCFW method [141] and the
CHY method [142]. Here we compute the matrix elements for Higgs plus up to
five partons for the first time using the BCFW method. Compared to the previous
results calculated from Feynman rules, the modern approaches produce numerically
equivalent results while having much simplified expressions and much less internal
cancellations.

In this sub-section, we first introduce the general idea of the BCFW method,
before introducing the effective field theory used to describe the Higgs coupling
with gluons. Finally, we give explicit results for Higgs boson plus up to five parton

tree-level helicity amplitudes.
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5.1.1 The BCFW method

Spinors and spinor products

Modern approaches for calculating tree and one-loop helicity amplitudes largely
rely on the spinor helicity formalism. The spinor products, as a new set of kine-
matic objects, have nonlinear properties to help simplifying the expressions and also
concisely illustrate the divergent behaviour of helicity amplitudes. Following the no-
tation in [105], each massless spinor of quark has two degrees of freedom and can be
constructed as
NS N

1| Vper 1 —VpT
uy(p) = Zl s u_(p) = | e |

Vp ety N

(5.1.1)

where p* = (p°, p', p?, p?) is the four dimensional momentum with energy p° and

) 1 :|: < 2 1 j: < 2
e:l:wp = p % — p b , pi = po :|:p3, (5.1.2)
V2 + )2 VppT
In a shorthand notation we define
i) = p) = ue(ps), = | = ux(pi), (5.1.3)

where 4 (p;) is complex conjugate of ui(p;). The spinor products can then be

defined as
(i) = (7 |77) = u—(ps)us(p;) = \/ ‘Sij‘€i¢ij, (5.1.4)
(i3] = (i157) = @y (i)u—(py) = /|sigle” @5+, (5.1.5)

where ¢;; is a phase factor which depends on our choice of phase in Eq. (5.1.1). The

physical Lorentz invariants are free from the phase factor choice so that
(ig)lgi] = (@7 [57) (G Ni7) = 2ki - kj = sy5. (5.1.6)
Equation (5.1.6), together with the Gordon identity

(i) = 2k, (5.1.7)
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and the Fierz rearrangement

() BT ) = 2[ik] (1) (5.1.8)

are useful in BCFW method.
The polarization vector of a massless gauge boson with momentum p, and defi-
nite helicity A = £ can be defined in axial gauge with arbitrary light-like vector n,,

to be,
(n¥|y,lpT)

V2(n¥F|p*)

From the gauge invariant condition, the choice of light-like vector n,, does not change

Eff(p, n) ==+ (5.1.9)

the form of scattering amplitude. It is also guaranteed by the Dirac equation that
the polarization vector in eq. (5.1.9) is orthogonal to the momentum p, (¢*-p = 0).

The propagator of the gauge boson is defined to be,

Aw(p) = 3 Ap) e (). (5.1.10)

o
fyrd p* =+ 1€

Using the definition in Eq. (5.1.9), one can check that

A Z5ab A * Z(Sab iy p“ny + /n/'upy
) - ) =—— -, 5.1.11
Sl ) e (5,011

which agrees with the propagator of a massless gauge boson in a light-like axial
gauge given in Eq. (1.1.14). The polarization vector is normalised in 4-dimensional

space time such that,
Zn’“’gl);(p, n)(eh(p,n))* = —2. (5.1.12)
A=+

The BCFW method in a nutshell

The BCFW method exploits the fact that for a rational function M of a complex

variable z which vanishes at infinity such that,

— 0, (5.1.13)

then,
j{ %M =0, (5.1.14)
c
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Pmid

Figure 5.1: Pictorial representation of the separation of the amplitude into left and

right partial amplitudes.

where C'is the closed contour at infinity. The result of the contour integral is simply
the sum of the residues which includes M(0). The BCFW method [141] is essentially
a way of deforming the amplitude into a function of a complex variable z, whose
value at z = 0 is the desired quantity. In doing so, this enables the recursive use of
on-shell partial amplitudes to construct full amplitudes [141].

Let us consider a colour ordered tree-level amplitude M and separate it into
left and right partial amplitudes ./\/l%h and M%_h which are connected by inter-
mediate momentum p,,;q4 with helicity h as shown in Fig. 5.1. From momentum
conservation, the value of p,,;4 equals to the value of all external momenta in the
left (or the right) partial amplitudes (depending on the direction choice of the in-
termediate momentum). Different values for p,,;q reflect different separation choices
of the full amplitude. Assuming the external momenta in the left partial amplitude
are pr,Pri1,- - ,Ps, and intermediate momentum coming out from the left partial
amplitude, one has

Prnia = i+ P+ + 08 = Pl (5.1.15)

To deform the amplitude, we introduce the complex variable z by modifying
the external states in a way that keeps the momentum conservation and on-shell

conditions for the external particles. For example, one can apply the [, ) shift that

u(p;) = u(p;) — zu(p),  ulp) = u(p) + zu(p;), (5.1.16)
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where p; is one of the momenta from the left partial amplitude (j € r,--- ,s) and
p; lies in the set of momenta in the right partial amplitude. From Gordon identity
(equation (5.1.7)), the [j,[) shift also change the momentum that

Z,._ _
Py =P (2) =05 = 50710,

z . _
P — ) (2) =p7+§<J Ivi7), (5.1.17)

while keeping all other external momentum unchanged. The overall momentum
conservation is preserved under [j,[) shift, and the shifted momentums p/(z) and
P (2) are still on-shell (can be proved by using equation (5.1.8)). The most significant

change is that p! ., now depends on z,
Z, . _

One has successfully continued the full amplitude M° onto MO(z) which is
defined in the complex plane with variable z. If M°(z2)/z — 0 when 2z — oo, the
integral around the circle C' at infinity vanishes as in Eq. (5.1.14). Using Cauchy’s
theorem, the countour integral can be replaced by the sum of the residues in the

complex z—plane,

0= ZR&S{MOZ(Z)}, (5.1.19)

z=2z;
where z; are singular points for function M°(z)/z in the z—plane. One obvious

singular point is at z = 0 which yields,

z

= M°0) = M°. (5.1.20)

z=0

This implies the full amplitude can be calculated by finding all the other residues
of M%(2)/z on z—plane,
0o_ w}
M :Z;O Res{ - (5.1.21)
To find these residues, we can exploit our knowledge of propagators in Eqgs. (1.1.14)
and (5.1.10) to write the full amplitude in factorized form by joining two off-shell
partial amplitudes (MVO) with a gauge boson propagator,

MO(z) =" ﬂ%h(z)p2 Z(Z)/\A/T%‘h(z). (5.1.22)

Pmid
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Note that the two polarization vectors e, and &, in Eq. (5.1.10) have been absorbed
into the off-shell partial amplitudes, M%h(z) and M(]);g_h(z). The sum over all inter-
mediate momentum p,,;q represents all possible divisions of the full amplitude that
respect keeping one shifted momentum in the left hand set and one in the right hand
set.

For p?,.,(z;) = 0, one finds a singular point z; which occurs when the intermediate
momentum is on-shell. This means when calculating the residue of M%(2)/z at
such z; point, one can replace off-shell amplitudes MVOL’h and M%_h with on-shell
amplitudes. More precisely, by using on-shell momentum p,, in eq.(5.1.9) for the two
polarized vectors 5ﬁ and ¢, *, the partial amplitudes MOL’h and ./W?{h both become
on-shell amplitudes (M?),

M=% M%h(zi)Res{+(z)}

Zpe .
2=2;#0 Prnid

ME(z). (5.1.23)

z2=2z;

From Eq. (5.1.18), the on-shell condition p? ,(2;) = 0 gives,

2
zZ,._ _ - _
0= (Pr.=SUnhe)) = P2 sPed) (12)
for which the solution is
P2
Gl (51.25)

As z,.5 depends on the external momentums in the left partial amplitudes. To find all
singular points in z—plane, one simply find all possible independent combinations
of separating left and right partial amplitudes. Evaluating the residues in equation

(5.1.23), one have
1

1
The full amplitude can now be determined by
MO = ZM%’I(ZTS)P%M%—’I(ZTS), (5.1.27)

7,5,k
where the sum of helicity h of the intermediate parton is to make sure all the possible
combinations of left and right partial amplitudes are considered. From Eq. (5.1.27),
we see that we can recursively use on-shell results with lower parton multiplicities in

MY (2.5) and M% " (2) to construct amplitudes with higher parton multiplicities.
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The BCFW method is quite general. If the propagating particle is a massless
quark, the BCFW method works in the same way because the quark propagator has
similar structure to Eq. (5.1.10). To extend this method to Higgs boson plus multi-
parton amplitudes, one iteratively builds more complicated helicity amplitudes by
linking the vertices of Higgs boson coupling to quarks (standard model) or gluons
(effective field theory) and the normal QCD vertices via the appropriate intermediate
propagator ph ... The [j,1) shift never involves shifting the Higgs boson momentum.
Valid choices of the [7,1) shift must always satisfy MY (z)/z — 0 when z — oo and

this has to be checked with specific expressions during the calculation.

5.1.2 The effective Higgs boson-gluon interaction

In the Standard Model the Higgs boson couples to gluons through a quark loop.
Because the Higgs boson couples to proportional to the quark mass, the dominant
contribution is from the top quark. The bottom quark gives a few percent contri-
bution. As introduced in section 2.2, in the large m; limit, the top quark can be

integrated out, leading to the effective interaction,
int C %
g = 5 HirGuG". (5.1.28)

To NNLO in ay, the strength of the interaction in M S scheme is given by [31,143,144]

o= 0 {1+11 <a5>+(as>2(2777+191 wh 67NF+%10 @)]

2 T4 BT T 3 w2

“6mo| 2 \2n/  \or

+ O(ad), (5.1.29)

with v = 246 GeV.

Analytic expressions for the tree amplitudes for a Higgs boson plus four glu-
ons in the heavy top quark approximation were first computed using traditional
Feynman diagram methods by Dawson and Kauffman [27]. Kauffman, Desai and
Risal [145, 146] extended these results to the other four-parton processes. Subse-
quently, analytic formulae for the Higgs boson plus 5 partons were derived by Del
Duca, Frizzo and Maltoni [147]. Compact analytic expressions for tree-level ampli-
tudes were obtained for gluonic processes [148] and processes with quarks [149] using

MHYV rules. In the following sections I will present the compact analytic expressions
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for tree-level amplitudes for Higgs boson plus up to five partons in the heavy top

quark approximation.

5.1.3 Interpretation in terms of ¢ and ¢! fields

It is convenient to divide the Higgs boson coupling to gluons into two terms, one for
coupling to each of the self dual (SD) and anti-self dual (ASD) gluon field strength

combinations, where [148§]
uv 1 ji%4 * nv wv 1 nv * wv

where *G* is the dual gluon field strength,

G = %EW"GW. (5.1.31)

At the same time, it is helpful to identify the H field to be the real part of a
complex scalar field ¢ = (H + iA), such that

int, — %(HtrGWGW + At G, G (5.1.32)

= C(optrGspuwGs) + O'trGsp,, Gisn)- (5.1.33)

Due to self duality, the amplitudes for ¢ plus multi-partons, and those for ¢ plus
multi-partons, separately have a simpler structure than the amplitudes for H plus
multi-partons. In QCD calculations, amplitudes for ¢ can simply by obtained by
applying charge conjugation to the ¢ amplitudes. In the amplitudes presented by
spinor products ({ij) and [ij]), this simply means to swap (ij) <> [ji].

Because H = ¢ + ¢!, the Higgs boson amplitudes can be recovered as the sum

of the ¢ and ¢ amplitudes. For tree-level H plus multi-parton amplitudes we have
My (PP - Py = My(PP -+ PI) + My (PP - P, (5.1.34)

where Pihi is the label for parton ¢ of type P carrying light-like momentum p; and

helicity h;.
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5.1.4 Identities and properties of ¢, ¢! plus parton ampli-

tudes

The properties of the simpler ¢-(¢-)amplitudes are summarized below,

R S Gk L)
m%
Mg, 9598 -+ 1 9) =0, (5.1.37)
MG (97 95,95 - 1 97) = (5.1.38)
M(qr, 93,98 97 0,a7) =0, (5.1.39)
M (47, 92:95 s On15 T ) = (5.1.40)

Details of the proof of above equations can be found in [148,149].

5.1.5 Higgs boson plus two parton amplitudes

In the limit where the light fermion mass are ignored and the top quark is treated as
much heavier than the Higgs boson mass, the only non vanishing two-parton ampli-
tude is MY (g1, g2). There are four possible helicity combinations. The amplitudes
with one positive and one negative helicity are zero while the amplitudes with all

plus and all minus helicity are related by parity;

MY (g7 .97) = Mo(97,95) = —[12]%, (5.1.41)
MY (g 95) = Mi(g1,95) = 0. (5.1.42)

These amplitudes, together with the three-parton QCD vertex, can be recursively
used in BCFW method to extend the number of partons for ¢ (or ¢) plus multi-

parton amplitudes.

5.1.6 Higgs boson plus three parton amplitudes
Tree-level amplitudes: MY% (g1, g2, 93)

The three-gluon amplitude has eight possible helicity combinations. By applying

parity symmetry, amplitudes where the first gluon has positive helicity can be ob-
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tained from those where it has negative helicity,

MY (g7, 65%, 95°) = MYy(gr, 957, 95™). (5.1.43)

Furthermore, using cyclic symmetry, the three amplitudes with two negative and

one positive helicity gluon are related,

MY (97,95, 98) = M% (95,97, 97) = M% (95,97, 97)- (5.1.44)

There are only two independent amplitudes which are,

0 (am o= o) = M%a o= oF) = (12)* _<12>3
Mp(91,92:95) = My(91,92,95) = 12 @360~ @360 (5.1.45)
M3(g7,9,95) = M3(g1 .95, 93) = _[12]7[721%’ (5.1.46)

Tree-level amplitudes: MY (q1, g2, 33)

The two-quark, one-gluon amplitude has four helicity combinations. By applying
parity symmetry, one can always reduce the number of independent amplitudes
by half, for example, by requiring that the quark always carries negative helicity.

Further using line-reverse relation and charge conjugation symmetry
My(ar, 953 ) = My(a5.92 . @) (5.1.47)

we can always obtain the amplitude for a positive helicity gluon from that with a
negative helicity gluon. There is only one independent amplitude.

(12)*
(13)

MY (ar, 95,3 ) = My(ar,95.3) = (5.1.48)

5.1.7 Higgs boson plus four parton amplitudes
Tree-level amplitudes: MY (g1, g2, g3, 94)

The four-gluon amplitude has sixteen possible helicity combinations. Using parity
symmetry, amplitudes where the first gluon has positive helicity can be obtained

from those where it has negative helicity,

MY (g1, 932, 93%, 92") = MYy (g1, 9572, 957, g0 ™)1 (5.1.49)
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Furthermore, by applying cyclic permutation relations,

MOH gl_ 92793794 92793794

1 )

g 93’ 94791792,

9

( ) = My (g5 91)
Mi(91.95 .93, 95) = My (95, 95,91, 93),
( 91) = My (g 95 )
( 91) = My (g5 )

91 ), (5.1.50)

g1, 92793a 92a93794

we are left with only four independent amplitudes,

4
m
M (g7 .95, 95, 95) EMG(91,95 95,92 ) = [12“23]{; T (5.1.51)
Mgl 95,95, 95) =M(97 9595, 95)
_ mi (24)*
s124(12) (14) (2|ky|3]) (4|kg|3]
(4| kg |1]3 2|k |1]?
- (5152
s (@3] Bl )
My(g7, 93,95 ,90) =MG(9T. 9595, 90) + Mo (9F . 957 95, 97)
B (344 124
T 12)(23)(34) (A1) " [12][23][34][41]’ (5.1.53)
M?{(gf7g;7957g4> Mo(gl 792 7g3 794 ) + M¢T(g1 7g2 7g3 7g4)
(13)* 24" (5.1.54)

- (12)(23)(34)(41) ~ [12][23][34][41]
Here ky is the momentum of the Higgs boson, kg = kg = kyt = — (k1 + ko + ks + ka).

Tree-level amplitudes: MY (q1, 92,93, Q)

The two-quark, two-gluon amplitudes have eight different helicity combinations. By
applying parity symmetry, we can again reduce the number of independent ampli-
tudes by requiring that the quark always carries negative helicity. Further using

change conjugation symmetry and the line-reversal relation,

MY (ar, 93,95, @) = MY (a7, 95,95, @) (5.1.55)

The three remaining independent amplitudes are given by,

Mg, 95595, @) = M(ar 95,95, @) =
(1|kp|4]? mi(13)° (3| k|41 3|k |1]
23][34](1|km|2] ~ (14)(Ukx|2)(3|kx|2]s130  [12][14](3|k|2]5124”

(5.1.56)



5.1. Tree-level Higgs boson plus multi-parton matrix elements 128

MY (a4, 95,98, @) = My(ar, 95,98, @) + M (a1, 95,95 @)
[13][34]? (24)(12)2

T [12[23]41]  (34)(23)(41) (5.1.57)
- T~ T (5.1.58)

[23][34][41]  (12)(23)(41)
Tree-level amplitudes: MY (q1, Q2, Q3, 1) and MY (q1, G, Q3, Q4)

There are two separate four-quark amplitudes that are either leading in colour
(when the quark of one pair is colour connected to the antiquark of the other pair)
MO (q1, Qa, Q3, ) or colour sub-leading (when the quark and antiquark in the same
pair are colour connected) MY (q1, G2, Q3, Q).

The leading colour amplitude has four helicity combinations. From parity sym-

metry only two of them are independent,

My(qr,Q5,Q5, @) =MG(ar, Qs , Qs, @) + M (a1, Qs , Q3. @)
(13)? [24]°

T @3yl 23|41’ (5.1.59)

My (qr, Q. QF, @) =MG(qr, Q5 , QF, @f) + M (a1, Qs , QF, @)
(12)? [34]°

=T eaan | Il (5.1.60)

Similarly, the sub-leading colour amplitide has four helicity combinations. In
the special case of two quark pairs, they can be obtained directly from the leading

colour amplitudes,

MY (a7, @, Q5,QF) =My (¢, Q3. Q5. a7 ), (5.1.61)
MY(ar, 35, Q5,Qr) =My (7. Q3. Q7. af ). (5.1.62)

5.1.8 Higgs boson plus five parton amplitudes
Tree-level amplitudes: MY (g1, 92, 93, 94, g5)

The five-gluon amplitude has thirty-two different helicity combinations. Using par-

ity and cyclic permutation symmetry, it is straightforward to relate each helicity
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amplitude to one of four independent helicity amplitudes using equations analogous
to (5.1.49) and (5.1.50).

Explicit formulas for the independent amplitudes are,

MY (97.95.95.95.95) = M‘Z(gl,gz;gg,gngg)
My
T 12][23][34][45][51] (5.1.63)
M9, 92,95, 95,95) = Mg, 95,95,95,95)
m%(23) (5|2 + 3|1]*
 593512351235[12] (5| kg |4] (5|1 + 2|3][4] k4 (2 + 3)[1]
N m(25)
5125[34](21)(51) (2|1 + 5[4] (5|1 + 2|3]
(5]ky[1]?
s1234[12][23][34] (5| k| 4]
md (45) (2|4 + 5|1)*
545514551245 15] (2| K |3](2]1 + 5[4][1] (4 + 5)ky]3]
- (45)[1|(4 + 5)(2 + 3)|1]
545[12][23][15][1](2 + 3) kg |4][1](4 + 5) ks 3]
(45) (2| k|1)*
S1551315[15] [43] (2] o |3)
My (97, 05,95.95,95) = Mgl 05,95, 95,95) + MG (91,95, 95,91, 95),

(5.1.65)

(5.1.64)

with,

m[12](35)*
51251235<23>(15><3‘k¢|4]<5‘k¢‘4]
- [12)(5](1 + 2)(3 + 4)|5)
512[34] (51) (5] kg |4] (5|1 + 2[3](2[(3 + 4)k5)
B [12](5](1 + 2)ky|3)°
S12512551245(51) (3|ko|4] (21 + 5]4]
(32) (45)°[21]°
 s035123(4]2 + 3[1] (5|1 + 2[3]
(45) (3|4 + 5|1]3
s455145(23)[15] (21 + 5[4]
(34)% (541"
S3451234(23) (4]2 + 3|1](2|(3 + 4)/{:¢|5> ’
[12]*

M9, 93,95,91,95) = — R (5.1.67)

Mg(gi,gg_ag:&_agivgg> =

(5.1.66)
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and,

M98 95,93, 95,95) = = My(g5 95,99, 95,95) + M (97, 95,93 95595 )

with

N mi;[12](24)4(25)*

(5.1.68)

[12)(2]k|3](25)*

~s12(15)[34](2]1 + 54)(2](3 + 4)(1 + 5)[2)(2[k4 (3 + 4)[5)

[21](25)" (4] kg 3]
S12812551235 (H1) (5|1 + 2|3](4]ky (1 + 5)|2)
(45)°(2[ky|1])°
834551345 (34) (3|4 + 5[1](5[(3 + 4)ky[2)
(23) (4331
SwvssPAA2 + 311+ 23
(45)(2]4 + 5|1]*
8455145<23>[15]<3|4 + 5|1]<2|1 + 5|4]
) (20)" 5k, 1)
s 2 BB B2 + 31 Bls (3 + DB
13)
[12][23][34][45][51]°

Mg’r(.gii_’ggagg_’gzl_agg) - =

Tree-level amplitudes: MY (q1, 92,93, 94, 5)

512(15)(34)(32)(2[(3 + 4)k[5) (4]ke (1 + 5)[2)(2[(3 + 4)(1 + 5)|2)

(5.1.69)

(5.1.70)

The two-quark, three-gluon amplitude has sixteen different helicity combinations.

By parity symmetry, we can reduce this number to eight. By applying line-reversal

and charge conjugation symmetry we can further reduce the number of independent

amplitudes to four,

g4ag3792aqi~_ i

N

92;93,94;(]5

b

q g4ag37g27q1+T

My (g5 )
M ( )
MYy(g5, 95,9395, @ ),
My (g5 .

IS

q 7927g3 g47q5

Y

2

w(ar 7)
i ( 7)
(@95 595,91, @)
w(ar 7)

IS

92793 947615 g4a93792a€11

Explicit formulas for the four independent amplitudes are:

MY (ar,95,95,92,0) = Mo(dr.95.95.95. @)

5.1.71

e N N Y
oot
—_ =
o BN
w N
~— N~ ~—

0.1.74
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mi(12)(4]1 + 2|5]3(4]2 + 5]1]
512812581245[15] <4‘k¢>|3] <4|1 + 5’2] [5‘(1 + 2)k¢>|3]
(34)[51(3 + 4) (1 + 2)|5]*[1| k4 (3 + 4) 5]
534[12][15][45][2[ ks (3 + 4)[5][3[ ks (1 + 2)|5]
m‘}q<34)<1]3 +4\5]3
S1345534 (1| ko |2][45] 2| k(3 + 4)[5] (1[4 + 5]3]
 (Ukgl5P(34) miy (14)%[15]
531 (1ko[2]B2A5] " s155145(23](41 + 5|2] (1[4 + 5[3]
(4] |5)2 (4] ks 1]
s1235(12][23] [51](4] kg 3]

+

(5.1.75)

M4, 95,05,91,3) = Mglar, 95,9595, @) + My (ar, 95,95, 95 G ),
(5.1.76)

with

MY(ar .95 .95 .95 @) =
m?, (13)4(14)3[15]
515(23)(21) (1](4 + 5)ky[3])(1[(2 + 3) (4 + 5)[1](1[(2 + 3)ky|4)

" )
[15](14)3(1 ey 2]
(

* 515[23](1](2 + 3) (4 + 5)[1](1]4 + 5[3](4](2 + 3)kg|1)
(3o |2]°[15](41)

812458145815<4|]. + 5|2]<3|k¢(4 + 5)|1>

3 (34)° (1] kg 5]?
$234(23)(2[3 + 4[5](4] (2 + 3)ky|1)

N (13)° (4] kg |5)* (3] (1 + 2)ky|4)
s12351235(12) (23) (3[1 + 2[5](L[(2 + 3) kg [4)

B (34)(1]3 + 4|5]3
534(12)[45](2|3 + 4|5](1]4 + 5|3]

+

(34)°[25)°
" 5125[15) (3|1 + 2[5] (41 + 5]2] (5.1.77)
MGi(ar. 959591, G ) = [ 25 (5.1.78)

23][34][45][15]"

MG, 97,93, 90,0 ) = Mylar, 92,9995, G ) + M (qr, 9293 91 - @5 ),
(5.1.79)

with

M4y, 95,99, 95,0 ) =
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C(12)%(349)[35)(214 + 5/3]
$345345[45] (1|4 + 5[3](23 + 4[5]
L (12){4]1+2[53(4)2 + 5]1]
s125125(34)[15](3[1 + 2[5]{(4[1 + 5[2]
B (24) (1|5
5231(23) (34) (2|3 + 4[5]{4|(2 + 3)ky[1)
o (12)2 (4 5] (2] (L + 3) Ky 4)
$12351235(23) (3|1 + 2[5](1[(2 + 3)ky[4)
mi(24)4(14)3[15]
515(23) (34) (4](2 + 3) (1 + 5)[4](4](2 + 3) k| 1) (4](1 + 5)ky|2)
B (2[kg[3]*(14)°[15]
814581581345<1|4 + 5|3] <4|(1 + 5)k5¢|2>
N (4]k|3]>(14)°[15]
515(23](4](2 + 3) (1 + 5)[4]{4[1 + 5[2|(L](2 + 3)ky4))
[31][35]?
12][23][34] [45][51]’

_|_

(5.1.80)

MG (a7 592,93, 95,05 ) = i (5.1.81)

and finally,
Moy (a9 595,980,035 ) = Mylar, 92,9594 G ) + MG (a9 595914 @ ),
(5.1.82)

with,

Mg, 95 95953 ) =
(15)(23)2[54]2[14] (23) (112 + 31412(5]2 + 3|4
s1351052IL + 5A] (3[4 + 5[1]  Sas5a54(51) [34](5]3 + 4]2]
N (12)2(25) (3| kg |4]°
S12455125 (51) (2|1 + 54](5|(1 + 2)ky|3)
[45](35) (3]k[1] (3|(1 + 2) (4 + 5)[3]*
s15[12](34) (3| ko |2] (3[4 4 5|1](5](1 + 2)ky|3))
N my[45](13)*(35) [45](35) (1]k4 (4 + 5)|3)?
54551345 (15) (34) (1] k|2 (3|Kg|2] 5345545 (34) (1|kg[2] (5]3 + 4|2]
[41][45]?
12)[23][34][51]°

(5.1.83)

Tree-level amplitudes: M(]]'—[(QL 92, Q37 Q47 675) and M(}I(Qh QQ: Q37 94, 675)

There are two leading colour four-quark one-gluon amplitudes, MY (q1, g2, Qs, Qu, @5)
and M?J(le Q27 Q37 94, q_5> All of the M?{(Qla QQ? Q37 94, 65) a‘mphtUdeS are related

to the corresponding MY (q1, g2, Q3, Q4, G5) amplitudes by,

M@, Q3% Q5% 00" 35°) = My(Q5° 00" 3" 00", @2*). (5.1.85)
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With parity symmetry, charge conjugation symmetry and line-reverse relation

such as
MY(ar,97,Q5. Q1. @) = MY (Qs.95. @ . a5 . QF), (5.1.86)

only three of the eight helicity combinations are independent.

Explicit formulas for the independent amplitudes are:

MYy (g7 .93, QF, Q1. ) = My(ar 95, QF, Q1. @) + M (a1, 95, Q% . Q1. ¢,
(5.1.87)

MZT(QI79;’Q§_’QZW?;) =
(4]2 + 3|5)%(3]2 + 4]5] [23)2(14)2[15)(1]4 + 5|2]
" 530 (23) (34)[15](213 + 4[5] | S1assis(d]1 + 52](1[4 + 5|3]
[25]° 4]k, |3]?
s125[15] (4|1 + 5|2][3[ ks (1 + 2)[5]
_ (1[k|20%(34)[35][2[ ko (4 + 5)|3]
534813458345<1|4 + 5|3] [2|]{Z¢<3 + 4)|5]
m?;[25]3(34)[35)
s34 [1][5](3 + 4) (1 + 2)[5][3[ks(1 + 2)[5][2]ks (3 + 4)5]
B (1]ko|5]*(34) [35]*
s34(12)(2[3 + 4[5][5|(3 + 4)(1 + 2)[5]’
(31)(14)*

Mg, 95,078, Q1, @) = 13 (@3) (3] (1) (5.1.89)

+

(5.1.88)

Mg .95, Q5,QF G5 ) = MG(qr 93, Q5, Qa3 ) + M (a1, 95, Q3, Q1 @),
(5.1.90)

MZT(QI_793_7 Qi’:v qug_) =
(34)[42)° (1| k5]
5345934 (112 + 3[4][5|ky (3 + 4)|2]
[45]% (1]kg|2]%[2]ky (4 + 5)[3]
834581345[34]<1|4 + 5|3] [2|]{Z¢(3 + 4>|5]
B (1]4 + 5)2)? [45]2(13)3[23]
5145 (15) (1|4 + 53] (4|1 + 5|2]  s23(12)(1|2 + 3|4](3]1 + 23]
B (314 |2]* (4] ko |2](15) [25]*
s15(34) (4]1 + 5(2][2[(1 + 5)(3 + 4) 2] 2] k4 (3 + 4)[5]
b [24[25](15)
s A3]21(1+ 5)(3 + ) [2Alks(1 + 5)2][5[k,(3 + D2

+
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(3[ko|4]*(15)[25]°

s155125 (3|1 + 2[5][A[ko (L + 5)[2] (5.1.91)
0f,— o ey (13)3

My (41,97, Q5, Q4 @) = MGy, 92, Q5. QF @) + M (a1, 97, Q5. Q4 @),
(5.1.93)

Mglar, 05, Q5.Q1, @) =
(13)%[34] (3| |5]*(3](2 + 5)(1 + 4)[3)
s34(3[1 4 4|2] (3|1 + 4]5] (3|4 [ 2](L[ (2 + 5) ko 3)
miy (13)°[34] (1]k4[5]%(13)%[34]
53451345 (51) (1Ko |2] (3[R |2] s34 (1|Kg|2](1|3 + 4[2](L[3 + 4[5]
N (12)*(25) (3|k|4]*(1]2 + 5]4]
$125(15) (2|1 + 5[4](5[1 4 2[4](1[(2 + 5)ky|3)
(23) (1|2 + 3|42(112 4+ 4[3]  (23)2(15)[54]2(2|1 + 4[5]
S935234 (15)[34] (1|3 + 4]2]  s155145(2|1 + 5[4](3]1 + 4[5]
12)@IL+24? (12)*[45) (5.1.94)
s12(3[1 4 4|2](5[1 + 2[4]  s545[34] (1|3 + 4[5]’ o
[13][45]

Mi(ar,92,Q5, Q1. @) = EEENE (5.1.95)

Tree-level amplitudes: M(]];I(qla 92, 537 Q47 Q5) and M%I(Qh 627 Q37 94, Qf))

The two sub-leading colour four-quark one-gluon amplitudes are MY (¢1, g2, @3, Q4, Qs)
and MY (q1, G2, Q3, 94, Q5). As in the leading colour case, we can obtain the ampli-
tudes for My (q1, 92, 3, Qu, @s5) in a straightforward manner.

MO (q1, 92, @3, Qu, Qs) has eight possible helicity combinations. Besides the usual
charge conjugation symmetry and line-reversal relations, these photon-like colour

sub-leading amplitudes have the additional symmetry properties:

M(I){(ng27q37Q47Q5) - M?{(QIagQaq37Q57Q4) = M0H<q3a927q1a Q47Q5)7 (5196)

such that,

MY (a7, 97,0, QF,Q5) = MYy (a7, 95,3, Q5 , QF), (5.1.97)

MY (a1, 95,0, Q1.QF) = MY (a5, 97, @, Q5 , QF), (5.1.98)
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My(ar 9335, QF Q5) = Mif(a5.95. 0 Q1. Q7). (5.1.99)
There is only one independent amplitude that is given by,

MYy(ar 97,3 Q1 QF) =MY(ar . 95,35, Q1 Q) + M (a1, 97, @, Q1. QF),

(5.1.100)
0~ — = Ay (42232 (12)%(45)[35]*
Moldi g 05 0 @0 =5 s BN (AT 58] sasoaao (14 + 518
(12)(4]1 + 2|3]?
PRPRWIEICER (5.1.101)
Mei(ar 92,3, Q1 QF) _ B (5.1.102)
ot 1,925,434, W5 _[12“23”45]' s

5.2 One-loop Higgs boson plus multi-parton ma-
trix elements

The one-loop amplitudes involving a Higgs boson and up to four partons have been
studied analytically by different groups. In the gluonic case, there are several he-
licity configurations; the all-minus (—,—, —, —) [150], the MHV (4, +, —, —) [151]
and (+,—,+,—) [152] and the NMHV (+,—, —,—) [122]. In the two-quark, two-
gluon case, there are only two types, the MHV [121] and NMHV [123] amplitudes
while expressions for the four-quark amplitudes are also given in Ref. [121]. The
method used for calculating those one-loop amplitudes are based on four-dimensional
unitarity-based recursion relations. In this section, the unitarity method is briefly
introduced to classify different components inside the one-loop amplitude. The nu-
merical stability of the published analytical expressions is studied and improved for
the purposes of our NNLO calculation at the real-virtual level in chapters 6, 7, 8

and 9.

5.2.1 Unitarity based recursive relations for one-loop am-

plitude calculation

The unitarity property of the scattering matrix S is a fundamental requirement from

the conservation of probability. Writing S = 1447 where T is the transition matrix,
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then unitarity implies

—i(T =T =T'T. (5.2.103)

The left-hand side of (5.2.103) refers to the discontinuity in the scattering amplitude
while the right-hand side refers to a loop amplitude with a cut on the loop propa-
gators. At the diagrammatic level, this property implies the Cutkosky rules [153]

that
1
p? + i€

— 26 (p?). (5.2.104)

In the calculation of one-loop amplitudes, one needs to integrate the internal loop
momentum over all possible values. From the Cutkosky rules, cutting the loop
propagator simplifies the loop integral to a phase-space integral. By evaluating
the phase-space integral, one calculates the cut-constructable part of the one-loop
amplitude.

In general, n—point one-loop integrals would involve many internal propagators
which can be simplified to four or fewer-point (four or fewer internal propagators)
scalar integrals through tensor reduction procedures [154-158]. Generic one-loop
integrals are simplified to a set of well known master integrals after reduction and
the key problem is to calculate the coefficient of each master integral. In generalized
unitarity [159], quadruple-cuts are applied to calculate the coefficient of the box
(four-point) master integrals. For three or fewer-point integrals, triple- and double-
cuts can be applied to find the coefficients of the triangle (three-point) and bubble
(two-point) master integrals [160-162].

Cutting a propagator means constraining the internal momentum so that the
propagating particle is on-shell. The partial amplitudes between two cuts are well
defined tree-level components and the full loop amplitudes can be seen as the prod-
ucts of tree-level components with base loop integrals (box-, triangle- and bubble-
integrals). Collecting the tree components associated with different base integrals,
one can calculate the coefficients of each base integrals. In four dimensional calcula-
tions, those tree components can be calculated using the BCFW method in section
5.1.1.

In calculations where the helicities are evaluated in four-dimensions, any rational

parts of the loop amplitude cannot be determined directly from loop integrals and
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must be constructed using different recursive methods [122,163,164] inspired by the
BCFW method discussed in section 5.1.1. However, in D-dimensions, the rational

terms are sensitive to the unitarity cuts and can be directly determined [165-169].

5.2.2 Rewriting of the one-loop amplitudes in a numerically

stable form

The matrix elements for the one-loop Higgs boson with four partons are analytic
and have been numerically implemented in the MCFM code ! where they have been
applied to the study of H+2 jets at NLO [170]. However, they have not been studied
in the regions of phase space where one of the particles becomes soft - and where
we expect the matrix elements to have specific singular behaviour. In this case,
there can be large cancellations between different terms in the analytic expressions
so that although the behaviour is correct analytically, the numerical evaluation may
be unstable.

In this section, we discuss where the numerical stability of these matrix elements
is problematic and show how to rewrite the matrix elements in a numerically stable

form.

The NMHV amplitude M\ (g1, 95,95, 97)

The Higgs boson NMHV amplitude Mg) (97,95, 95,95 ) studied in [122] is the com-

bination of finite cut-constructible contribution and the rational part:

M (GF 95,95, 97) = —Fa(H,gf 05,95, 95) + Ra(H, g1, 05, 95, 97)- (5.2.105)

The finite cut-constructible contribution given in Eq. (5.12) of [122] is given by

Fi(H,9{,95.95.97)

_ { . 3%34 W
A1pw 2)(1|pm|4][23][34]
_ ( (2lpu|1]? (34)°my )W(Q)
25134 (2| |3][34][41]  2s134(1|px|2](3[pm |2](41)

Thttp://mecfm.fnal.gov/
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1 (3|pu1]* (24)*miy 3)
+48124 (<3\pH\2]<3’PH’4] [21][41] <12><14><2\PH|3]<4|]9H|3])W

+2Cs591034(0, 1), 2, , 3,4, ) F3™ (i, s1, 534)

N 3 112
* (1 B 4]\;‘: > <il|2]i}[¥2|4]]2 F}lg(5127 S14; 3124)

424 (3lpu|1)* ; 4(23) (4[py[1)? ;
- S124[42] Ly (s124,812) + S123(32] Ly (sraa, 812)>
Ny N\ ([12][41](3|ps|2](3|pr 4]
_( - Vf " E) ( 25104244
34)2[41]2ﬁ3 (5194, 512)

(34)[41] (35124(34) [41] + (24) (3[pu[1][42]) -
+ 3[42]2 Ly (8124, 512)

N (23124<34>2[41]2 <24><3|pH|1]2) )

Fi?(sm 514, 3124)

(24)[42]3 35124[42)]
(3|pu|1](4s124(34)[41] + (3|py|1](2514 + 524))£ (5120, 512)
8124<24> [42]3 012124, 12
_ 25123(23)(34)[31]° (23)(34)[31](4|px 1] -
3[32] Ls (8123, 812) 3[32]

+<2§l(iz[)§12|]1]2 L1 (5123, 1) ) } + {(2 - 4)}, (5.2.106)

Ly (3124, 812)

+

2 (81237312)

while the rational part is given in Eq. (5.13) of [122] (and originally derived in
Ref. [120]) is,

Ry(H,9\,95:95,91)
_ {<1 Ny n %)1(<23><34><4\p1{\1][31] _ (3lpul1)?
NC NC 2 38123<12>[21][32] 3124[42]2
(24) (523524 + s23534 + 524534) | (2lpur|U{4lpm[l]  2[12)(23)[31]?

3(12)(14)[23][34][42] 35034[23][34]  3[23]2[41][34]
T TP SO PN S

Note that in the last term of the first bracket of Eq. (5.2.107), the 2 <> 4 swapping
is applied compared to the original formula in [120].

F3™ is the three-mass triangle functions while the W, W® and W® functions
are combinations of the finite pieces of one-mass (FI®) and two-mass hard (F2mb)

box functions:

1 1m . 2mh . 2 2mh . 2
w = Fur (523, S345 5234) + Fip (Sa1, Soga; M7y, S23) + Fip (812, S234; S34, M73y),

2 1m . 2mh . 2 2mh . 2
W® = FlIN(s14,554; 5134) + FAP (519, 51343 m7%, 534) + FA (593, 51343 S14, M),
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3 1m . 2mh . 2 2mh . 2
w® = FiF (512, 5145 5124) + Fip (823, S124; My, 514) + Fip (834, S124; S12, M7y7).

(5.2.108)

The coefficient Cs.4|19/34 of the three-mass triangle function F3™ can be written

as [122],

my(K72)°(34)°
Chippappa(6,15,27,37,47) =) — 0 (5.2.109)
T e et R éizwwmmmmmwmmm
where massless vector K? is given by,
wo_ QKAL
(L S S (5.2.110)

PRI
where K7, K5 (and K3) are the momenta of the three off-shell legs and where ~ is
determined by the two solutions that ensure that K7 is light-like, that is,

v = 2K, - Koy + K?K3 =0, (5.2.111)

vi = Ky Ky (K, - Ky)? — K3K3 (5.2.112)

The momentum conservation condition implies that K + K5 + K3 = 0 and in this

case,
K =—pf—ps—ph—pi,  Ki=pi+ph,  EK§=ph+ph (5.2.113)

The logarithmic cut-completion terms are defined in terms of the following func-

tions,

Ls(s,t) = Lg(s,t)—ﬁ<é+%),

Ly(s,t) = LQ(S,t)—2(81_t> (§+%)

ﬁl(S,t) = Ll(S,t),

Lo(s,t) = Lo(s,t), (5.2.114)
with

_log (s/t)
Li(s,t) = G0 (5.2.115)

There are two separate numerical problems in the evaluation of this amplitude.

First, the coeflicient of the three-mass triangle Csy1934 as presented in [122] is
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unstable in the limit where the third momentum input of the triangle becomes
massless i.e. (p3 + ps)? — 0. Second, there are large cancellations between the cut-
constructable terms ﬁk(3124, s12) and the rational contribution in the limit where
gluon 2 is soft. In both cases, the expression can be rewritten to give a numerically

stable result.
Improving the numerical stability of the coefficients of the three mass
triangle integrals

In general the coefficient of the three-mass triangle Cs,g1234(¢, 17,25, 3, , 4, ) is sen-

sitive to the three massive momentum inputs K, Ky and K3 when one of the legs

becomes massless, e.g. K2 — 0. In this limit,
2K, - Ky — K? + K2, (5.2.116)
and equation (5.2.111) now implies
vy — —K3 oy — —KZ. (5.2.117)

By rearranging Eq. (5.2.110) in terms of K3,

Y- K} + K} (K} + KY)
V2 — K2K2 ’

K H =~ (5.2.118)

we immediately see that there is a potentially large cancellation between the first
and second terms in the numerator - both K7 and ~_ are large so that the coefficient
of K is given by the difference of large quantities. Since K. kl’ # is repeatedly used in
Eq. (5.2.109) there are large numerical instabilities.

Similarly, if we eliminate K' from the numerator of Eq. (5.2.110),

—4 (K + KY) — (K3 + K3)?KY

o % - KPK3

(5.2.119)

When K3 — 0, there are again large numerical cancellations.
The solution is quite straightforward. Quite generally, Eq. (5.2.112) are the
solutions of Eq. (5.2.111) and satisfy the following identities:

Yo+ = 2K, - Ko, (5.2.120)

Yiy- = KiK3, (5.2.121)
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(- + K7)(v4 + K7) = K{ K3, (5.2.122)
(- + K (v, + K3) = K;K3. (5.2.123)
In each of the last two equations, the LHS is composed of a “large” bracket and

“small” one (obtained by the cancellation of large terms). Therefore, we should

systematically make the replacement,

K2K?2
A+ K= 13 5.2.124
K2K?2
K2)=_———2"3 5.2.125
(’)q’ + 2) (’Yf _'_K22)7 ( )

ensuring that a large numerical cancellation is replaced by a precise determination
of the small remainder proportional to K3.

In other words, rewriting Eq. (5.2.109) as,

mig (34)° (2| K3 1] 2| K3[3](2| K7 14]

Chyopapsa(0, 17,27,3;7,45) = V;i PR 1 P ——— (5.2.126)
with

(2| K:|1] —_72“23;[31;(;%@ 41) (5.2.127)
s 77)2@_”][2(; T3] (5.2.128)

(o] i) =~ 77)52_”[[;;5 T2 (5.2.129)

S1kt _ ki +32)S_12[;12§3<813 o). (5.2.130)

SyKc) T +32) fli(_l;;?) — s, (5.2.131)

Sarc o +32) fl%;;;?) o (5.2.132)

then (2|K2|3], (2| K?|4], S1kts S3ie and sy can be seen to have large cancellations
in the K7 — 0 limits, i.e. p3 (or ps)— 0 limit or p3||ps. By repeatedly using the

identities in (5.2.124), s

s Can be rewritten as
1

2 2
- Y834 (mH812534

2 -+ S12

= — (514 + 824 + 834)7 ) .
BKY Y+(72 — m i) (my; +74) i

(5.2.133)
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Now s_ ., is explicitly proportional to the small parameter s34 and there are no large
1

cancellations. s K

r{amd i

, can be rewritten in a similar way.

Note that the same numerical instability issue appears in the coefficients of the
three mass triangle integrals from the NMHV amplitudes in the two-quark, two-
gluon case, namely Csg1934(9, 15,27, 3;,4,) and Csgajes(é, 15, 27,3,,4,). The
rewriting procedure is exactly the same for the two-quark, two-gluon case as for the

four-gluon case.

Improving the numerical stability of the cut-constructable terms and the

rational terms

In the single soft gluon limit, po — 0 there are multiple large cancellations between
the cut-constructable terms proportional to Lj (8124, 512) and the rational contri-
bution. In this limit, (2i) and [2:] are proportional to a small quantity A while
invariants s;; are proportional to A2. The large contributions come from a variety

of sources. First there are explicit factors of spinor products and invariants such as

[14]2(43)2 1
et O (E) . (5.2.134)

Second, there are hidden divergences within the definition of the rational parts of

the rational contribution,

the [:k(sl% s12) functions, so that,

% Fo(s121.51) o O (i) . (5.2.135)

These terms need to be rearranged so that the divergence of individual terms is no
worse than the overall divergence O (ﬁ) Finally, there is a logarithmic divergence
present In (‘1%‘*) which should be explicitly multiplied by spinor factors not more
divergent than O (é)

The cut-constructable contribution containing L; (S124,512) (i = 3,2,1,0) in Eq. (5.2.106)
is,

F4(ﬁz‘(81247 s12)) o¢ + 28124(2;?4%?)2[41]2%
L B B 3H141] + 24)(3lpr|1]142]) 7

3[42]?
(23124<34>2[41]2 (24) (3|pH|1]2) i,

<24> [42] 3 38124 [42]
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(Blpa|1](45124(34)[41] + (3|pm[1] (2514 + 524)) ;
+ NWETIIEEE Lo.  (5.2.136)

For the convenience of writing, all [A/Z (S124, 512) functions are now in short notation
L.
Inserting the definition of py and using the property (3|py|l] = —(32)[31] —

(34)[41], Eq. (5.2.136) can be arranged as,

. (34)2[41]2 - A 1 .
Fy(L; , R S 281943 — Ly — — L
1(Li(S124, 512)) o< + 3[42]? + 524(25124L3 2 S1o1 1)
A 3 -
+ 38124[/2 — _Lo
S$124
1 - - 612 »
+ —(65124L1 — 6Lg — 2LO))
S24 S124
34)(41((32)|21 - - 6 - 12 R
_< ) ]<2>[ ]<+324L2+2824L1—|— Lo+ S12 Lo)
3[42] S124 S124 5124524
<32>2[21]2( S04 3 3 . 6514 - )
— Li+—1Ly+ L 5.2.137
3422 S124 — Sig4 | S124524 ( )

The terms subject to large cancellations are concentrated in lines 2 and 3 of

Eq. (5.2.137) where the naive divergences of individual terms are O(A™%),

34)2[41)? . 3 .
% (38124L2 — 8_24L0) X O(A_4), (52138)
1
<34>2[41]2 ( ~ A 6812 N ) _4
———— | 651041 —6Lyg — — Lo | x O(A™7). 5.2.139
3[42]2524 12441 0 5124 0 ( ) ( )

According to the definition in Eqgs. (5.2.114) and (5.2.115), we have the following

identities:

sLs(s,t) = tLs(s,t) + La(s, 1),

: - . 1/1 1

sLo(s,t) =tLo(s,t) + Ly(s,t) — = (_ + _) :
2\s t

sLi(s,t) = tLy(s,t) + Lo(s, 1),
s - t - 1 /1 1
“Li(s,t) = Lo(s,t) — —Lo(s,t) + — | = + —
s 1(5:8) = La(s, 1) s 2(s,1) + 2s (S - t>’
1. A t .
“Lo(s:t) = L = L. (5.2.140)
S S

We can use these identities to rewrite Eqs. (5.2.138) and (5.2.139) so that the O(A™*)
divergence is made explicit (and can be cancelled directly against the rational con-

tribution (5.2.134)), the O(A~?) is cancelled and all remaining terms are explicitly
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O(A™?). Inserting (5.2.140) into (5.2.138) we have,

GO (. 3 NG se. 1(1 1
ACEvhl Galuy (P YR) Ry S NN A G iy (PR SRTINE- 2) R (L B
3[42)? e S124 [42]? s2fe S190 2 \ U124 * S12

(34)2[41]7

~ O(A™) - 2515422

(5.2.141)

Similarly, (5.2.139) becomes,

(34)2[41]? A . 6519 » (34)2[41]% [ 2s2%, . L
-——— |6 Ly —6Ly— —L Li| ~O(A™*).
3[42]% 594 o124 0 S124 0 [42]2 594 S124 ! ( )

(5.2.142)

With further rewriting of terms in (5.2.137) using identities in (5.2.140) and mov-
ing the rational terms from the rewriting into (5.2.107), we have the final numerically

stable result:

Fy(H,9{,95.95,97)

_ {_ 3334 wo
AL pr |2](Lpa|4][23][34]
_( (2|pu|1]? (34)%miy ) 2)
25134(2lpw[3][34][41]  2s134(1|pm|2](3|pm|2](41)

1 (3lpa|1]* (24)'my 3)
45124 ((3!PH|2]<3|PH|4] 21][41] ~ (12)(14)(2|pn|3] <4|pH!3])W

+2C5. 5121349, 15, 2, , 35,4, ) F3™ (i, 512, 534)

N 3 12
" (1 a 4]\]/j ) (;L]ZEL]]Q FiF (s12, 5145 S124)

ARG AR

s124(42] Ly (5124, 512) + $123[32] Fa o, 12)>

Ny Ny ([12][41](3|pw 2] (3|pa|4]
_<1_ﬁi+ﬁc>< 25154[24]4 s

F};?(Slza S14; 5124)

34)2[41]? . So4S10 ~
—<3[4>2][232]4 (2824812[/3(8124, s12) + 22;2 Lo(s124, S12)
2 3819 » 652,
+ 3812[/2(31247 812) + —12[/1(81247 812) + 12 L1(3124’ 312>>
5124 5245124
(34)[41)(32)[21] (- 2594 >
3[42)2 s94Lia(S124, S12) + 5101 1(8124, 512)
6 - 12515 -
+ ——Lo(s124, 512) + 12 Lo (5124, 312)>
5124 5124594
(32)%[21)? S24 7 3 - 6514 -
3[42]2 124 1(S124, $12) + S1a1 0(5124, 512) + S1o15on o(S124, S12)

28123 <23> <34>2 [31]2 A
B 3[32]

(28)BOBUEpE
3[32] B

3 (S123, S12) +
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+<2?;)l<iz[?§2|]1]zil (S193, 512) )} + {(2 VAN 4)}, (5.2.143)

Ry(H,97,95.95.91)

{( &+Ns)1(<23><34><4\pm1n31] (3pa| 112

N, TN, )2\ 3s123(12)[21][32] S124[42]2
_ (24) (523524 + $23534 + S:as34) | 2lpm[L(Alpr|l]  2[12](23)[31]?
3(12)(14)[23][34][42] 3s03[23][34]  3[23]2[41][34]
(24)(34)(32)[21][41] | (24) (34)2[41)? [14]2<43)2> }
38124812[42] 38%24[42] 8124[42]2
+{(2 s 4)}- (5.2.144)

With compact (and stable) result for Higgs boson plus up to five parton ma-
trix elements at tree level, stable Higgs boson plus four parton matrix elements at
one-loop level and two-loop results for Higgs boson plus three parton matrix ele-
ments [119], we have all the matrix elements needed for pp — H+jet process at
NNLO. We are going to use those matrix elements repeatedly for different initial

state parton channels in chapter 6, 7, 8 and 9.



Chapter 6

Production of a Higgs Boson Plus

Jet from Gluon Fusion

The subprocesses contributing to the pp — H+jet process can be categorized ac-
cording to the initial state parton identities. In general, for proton proton collision,

the initial parton combinations could be of three main types:

1) g9,
2) qg (including gg, gq 99),
3) qq (including g, 44, 3q, ¢Q, ¢Q Qq and Q).

In this chapter, I will discuss the gg — H-+jet processes for up to the third order
of the perturbative expansions (LO, NLO and NNLO) for the cross section that
is fully differential in the Higgs boson plus jet observables. I will take the leading
colour contribution in the gluons plus Higgs boson channel as an example of the
implementation of the antenna subtraction method as introduced in chapter 3 and 4.
The antenna subtraction method is used to construct the explicit subtraction terms
that regulate the infrared divergences at NLO and NNLO. Spike plots are introduced
to illustrate the numerical quality of the subtraction terms which must mimic the
matrix elements in the unresolved regions of phase space. Explicit IR divergences
from the matrix elements are analytically cancelled when combined with integrated

antenna subtraction terms and mass factorization terms. The numerical results

146
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in terms of differential cross sections for the transverse momentum and rapidity
distributions for both the Higgs boson and the associated jet are studied in [84]

and are discussed in chapter 10.

6.1 Normalisation factor for pp — H-jet cross
sections

For convenience, we collect all factors involving the strong coupling oy,

2

g
s =™ 611
as = (6.1.1)

the Hgg effective coupling in the heavy top mass limit (at LO),

Os

C_

= 6.1.2
- (6.1.2)
where v is the energy scale of the electroweak symmetry breaking (the vev of Higgs
field introduced in Eq. (2.1.19)), and the leading order colour factor as an overall

normalisation factor. At leading order, this overall factor is given by,

2
Nro = %gzN(NQ —1). (6.1.3)

This universal normalisation factor will be used through out all the pp — H+jet
processes at LO, NLO and NNLO in this chapter and chapter 7 and 9 and any
leftover dependence on a,, N and N made explicit for each separate contribution.

For example, for the colour ordered tree-level scattering amplitude for a Higgs

boson plus three gluons of Eq. (3.1.4), the normalisation factor for A3, is simply,
Nio = Nwo, (6.1.4)

while for the colour ordered tree-level scattering amplitude for a Higgs boson plus a
quark pair and a gluon at tree level given in Eq. (3.1.5), one finds the normalisation

factor for BY

1
B
= — . 6.1.5
LO NNLO ( )
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Each additional radiation (or loop) introduces additional factors of g>N so that
at NLO we have overall factors for the real rediation and virtual contributions such

that (the factor of N is made explicit elsewhere in the cross section),

Neo =Nro (2 )28 (6.1.6)
vio =Nro (2 )C() (6.1.7)
where
Cle) = (47)6687: , (6.1.8)
C(e) = (4m)e . (6.1.9)

A factor of C'(e)™! is produced when the parton multiplicity in the phase space is
increased by one and is ultimately absorbed into the integration of antenna functions
in Egs. (3.5.72) and (4.7.143). Note that each power of the (bare) coupling is
accompanied by a factor of C(e) that is absorbed in the process of renormalization.

At NNLO, we have separate normalisations for the double real, the real-virtual

and double virtual contributions,

A\ C(e)?
anco =Nio (;—W) 0232, (6.1.10)
o, *C(e)?
2
xvro =Nio (%) C(e)*. (6.1.12)

6.2 g¢g initiated cross sections at LO

The gluon fusion to Higgs boson plus one jet process at Born level (Leading order)
has only one contribution from the gg — H + g process. The spin and colour

averaged differential cross section is

da;;,:NggNLodc1>H+1<p3,pH;p1,p2>{2A29H<i,é,3>}J£1><pg>. (6.2.13)

The factor of 2 in above equation comes from the two non-cyclic colour orderings
of A3,;(1,2,3) and A ;;(1,3,2). By using line-reversal symmetry the two colour-

ordered matrix elements give equal contributions. The Nj; factor contains overall
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multiplicative factors due to spin and colour averaging of the initial state partons,
1
(28) 40@ 'Cj’

where /s is the hadron-hadron centre of mass energy and C; is the number of colour

states for initial state parton type i. For a quark or anti-quark C; = C; = N and
for a gluon C, = N? — 1.

6.3 g¢g initiated cross sections at NLO

6.3.1 Real contribution

The real radiation contribution comes from the g9 — H + gg and g9 — H + qq

processes,

A6 =Nyg N 1o AP 2(ps, pa, pr; P, pz){
2N 0 - 0 /4 o A
A4gH(1 2,3 ,4) + A4gH(1 ,4,3) + A4gH(1,3, 2,4)
IR A A 1 ~ T 9

N {BSQH@ 12,40 + B30 2.149) = 373 B3y, 12,47 }Jf (b5, ).
(6.3.15)
The details of the squared matrix elements in Eq.(6.3.15) are introduced in section
3.1.3 and 5.1.7. The 1/2! coefficient associated with Afj ; matrix elements is the
averaging factor for the two identical gluons in the final states. The Np factor
associated with Bj,; and EggH is to sum over all the active quark flavours in the

final state.

6.3.2 Virtual contribution

The one-loop contribution is from the gg — H + g process and the differential cross

section is given by,

~

Ngg NNLO d(I)H+1(p3upH7plap2) QNAil’)gH( 3) + 2NFA39H( 3)

x JU (ps) (6.3.16)

Details of the relevant matrix elements in Eq.(6.3.16) are given in section 3.1.3.
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subtraction term maple matrix element
A o(1,2,4,5) A4gOHXSNLO AY 5 (1,2,4,5)
Afprinio(1,4,2, ) A4gOHYSNLO A 5 (1,4,2,5)
By wrolig: 1,2, Jg) ggB2gOHXSNLO | BY p(ig, 1,2, j;)
BYYS 1 olian 1,2, 2) ggBt2gOHXSNLO | BY, p;(ig, 1,2, jg)

Table 6.1: NLO antenna subtraction terms for real contributions in gg — H+jet

process and their relation to the matrix elements

6.4 g¢g initiated subtraction terms at NLO

6.4.1 Real subtraction terms

Using the NLO antenna subtraction method introduced in section 3.3.3, one can
construct the antenna subtraction terms to mimic the implicit IR divergences in

Eq. (6.3.15) such that

465 nvro =NggNiro AP uia(ps, pa, pu; pl,pz){

2N | oxs 55 0,XS 55 0,YS SRS
o1 |:A4gH,NLO(17 2,3,4) + A4gH,NLO(17 2,4,3) + A4gH,NLO(17 3,2,4)

XS 24 XS A A
+NF {ngH,NLO(?’!I? 17 27 45) + ngH,NLO(3q7 27 17 4q—)

w12 45)] } (6.4.17)

L H0,XS (3

N2 Bng,NLo

Here AZ;IZ?NL0(L 2,4, 7), AZ;IZ?NLO(L i,2,7), Bg;lgNLo(im 1,2, jz) and ng[fNLo(im 1,2,4,)
are functions designed to remove the IR divergences in AggH(i, 2,1, 7), A?lgH(i, i,2,7),
B3, (g, 1,2,7;) and ESQH(iq,i 5, Jg) with {i,7} C {3,4}. The corresponding rela-
tionships between subtraction terms, file name in the NNLOJET maple script and

matrix elements are also summarised in Table 6.1.

Explicit formulas for each subtraction term are as follows:

0,X5 28 .
A4gH,NLO(17 2,i,j) =

92,4, 5) ASr (1,2, (47) 1Y ({ph)
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+ f5,(1,4,1) A, (1,2, (i) 1V ({ph), (6.4.18)
Aijifmd 2.5) =
+ Fy(1,4,2) A3 (1,2, 5) JV ({ph)
+ F:?gg(l 5,2) A% (1,5,2) 1 ({ph), (6.4.19)
ng)Ii(SNLO(Zm 1,2,j5) =
— Y gy 00(i:1,2) BY 4 (1,2, 5) J1V ({ph)
- dgggﬁqgm 1) BY (i, 1,2) J{V ({ph)
b3 G8,(1,.9) A,u((3).T.2) 1V ({ph)
b3 08,25, A (). 1,2) JO (), (6.4.20)
ng)firszvm( igy 1: P ) Jg) =
A (6,1, 5) BYy (1,2, (i) J1V ({ph)
A 0 (:2,5) By (2,1, (i) TV ({ph)- (6.4.21)

Note that the minus signs multiplying the d3 gg_ﬂlg(z, 1,2) and A3, (i,1,7) anten-
nae in BQQH NLO(ZtP 1,2 ,Jg) and BQQH NLO(ZtP 1, 2,jq) come from the unresolved limit
when a final state quark is collinear with initial state gluons. In this limit, crossing
a fermion from the final state to the initial state will cause the scattering matrix
element to automatically pick up a minus sign. In the subtraction terms that mimic
such unresolved behaviour, the minus sign is made explicit.

To numerically test that the antenna subtraction terms given in Egs. (6.4.18),
(6.4.19), (6.4.20) and (6.4.21) remove the implicit IR divergences in Eq. (6.4.17)
correctly, we generate a set of spike plots to illustrate that the subtraction terms con-
verge to the matrix elements when approaching the unresolved limits. For each unre-
solved limit, a set of momenta (phase space points) are generated using RAMBO [171]
such that the momenta satisfy a set of constraints that allow the unresolved limit

to be approached in a controlled manner. For each phase space point in each limit,

the ratio of the matrix element to the subtraction term is calculated,

dAR
R=—o—. (6.4.22)
doy o

The calculation is repeated for 1,000 different phase space points in each unresolved

limit. The constraints are then tightened to force the generating of phase space
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points closer to the unresolved limits and the ratio is calculated for another 1,000
points. The process is repeated for the third time for a even tighter constraint and

the histogram of the ratios of the three sets of constraints are plotted.

single collinear - Final-Final single collinear - Initial-Final
1000

T T T T T 1000 T T T T T T
#phase space points = 1000 ;ggii — #phase space points = 1000 X’S{)‘?{s —
0 outside the plot x=10"" == 0 outside the plot x=10"" ==
0 outside the plot 0 outside the plot
800 0 outside the plot Bl 800 0 outside the plot H
600 e 600 i
400 - | 400 Bl
200 e 200 4
(?9995 0. 9‘996 0. 9‘997 0. 5;998 0.9999 1 1.0001 1 0‘002 1 0‘003 1 0‘004 1.0005 8999 D.‘.;BQZ 0. 5;994 0.9996 0.9998 1 1.0002  1.0004 1.0‘006 1 0‘005 1.001
(a) Collinear limit between final-state (b) Collinear limit between initial-final
partons ¢ and j, such that = s;;/s12 partons 1 and ¢, such that z = s1;/s12
approaches zero in the unresolved limit. approaches zero in the unresolved limit.

single soft

1000 T T T T T

#phase space points = 1000 5
84 outside the plot x=107 =
0 outside the plot

800 [ Ooutside the plot

0 L L L 1L =
09999 099992 099994 099996 0.99998 1  1.00002 1.00004 1.00006 1.00008 1.0001

(c) Soft limit for soft parton ¢, such that
x = (81;+52;)/s12 approaches zero in the

unresolved limit.

Figure 6.1: Spike plots displaying the convergence of the subtraction terms in

d&fg ~ro to the matrix elements in d6 in various unresolved limits.

99

The spike plots for the final-final collinear limit, the initial-final collinear limit
and soft limits are displayed in Figure 6.1. As can be seen from each plot, the
distribution of ratios typically forms a spike around R = 1 indicating that the matrix
elements and subtraction terms have similar sizes. Furthermore, as the unresolved

limit is approached (green to blue to red), the spike typically becomes sharper.
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subtraction term maple matrix element
Asineo(1,2,9) A3g1HXTNLO ALy (1,2,4)
A vro(d.2,0) Ah3g1HXTNLO AL y(1,2,1)
BOXT L (12, g) ggBt2gOHXTNLO | IR safe

Table 6.2: NLO antenna subtraction terms for virtual contributions in gg — H+jet

process and their relation to the matrix elements.

These plots provide graphical evidence for the convergence of the subtraction term

to the matrix element in the unresolved limits.

6.4.2 Virtual subtraction terms

Using the NLO antenna subtraction method introduced in section 3.5.2, one can
combine the integrated real subtraction and mass factorization terms to construct
the virtual subtraction term, dé%;, which removes the explicit IR divergences in
Eq. (6.3.16),

dCL’l dZEQ

———=d® 1 (ps, P 1, p2) ¥
xT1 To

da’;jq,NLO :Ngg N, J‘V/Lo
A A ~ n A Np ~ A
X X F 50,X
QNAégH,TNLo(l» 2, 3) + 2NFA§9H?NLO(17 2,3) — mngH,TNLo(lq» 24, 3(7) .
(6.4.23)

The corresponding relationships between subtraction terms, file name in the NNLOJET
maple script and matrix elements are summarised in table 6.2.

The explicit formulae are as follows:
LXT 25
A3gH,NLO(1> 272) =

— |+ yba(s12) + Ty (sai) + Jg;éZ(su)] AY n(1,2,4) IV ({p}h) (6.4.24)

~NXT 34
A3gH,NLO(1> 2,1) =
51,F 1 $1,IF 51,07 N (1
— |+ Sga(su) + Jyoe(su) + J2,GG(312>1 AggH<1727Z) Jl( )({p}1)

1 o (1
— 5 2000000 (512) By (1,2,0) /iU ({p})

1 I1 . 1
5 1260 .0000(512) Biyn (i:1,2) 1 ({p}h)
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1 I . 1
5 12069900 (512) Biyn (1:2.1) TV ({p}h)

1 AT . 1
B T3 60,09 00(312) Blb(2,1,4) JV ({p}) (6.4.25)
=0,XT S~ oA
BlgH7NLO(1q7 2¢,1q) =
T . 1
2J21,Q€2,g—>q(81i) B{{]H(l’ 2,1) Jl( )({p}1)

2T3:60.g-54(520) By (2, 1,4) I ({ph) (6.4.26)

Note that the two-quark matrix elements B(ng appear in A\éé);TNLO(i,Q,i) and
E%;)I;TN 10(14:24,15) because of the initial state identity changing collinear limits in
do% ;o and the NLO mass factorization terms. As discussed in section 3.5.2; all the
identity changing dipole functions (J glg ;) are IR finite. The jet functions in Egs.
(6.4.25) and (6.4.26) guarantee that the reduced tree level matrix elements are also
IR safe. Thus the virtual subtraction terms associated with B} 5 only provide a
finite contribution to the differential cross section.

The cancellation of explicit IR divergence between do,, and do, v can be
checked analytically. The dipole functions associated with Agg g in Egs. (6.4.24)
and (6.4.25) precisely match the Catani dipole structure [114,115] in Ay and

11
A3gH .

6.5 g¢g initiated contribution at NNLO

6.5.1 Double real contribution

The double real contribution at NNLO for gg — H+jet comes from the gg —
H + ggg and gg — H + gqq processes,

d&;f :Ngg N]I\?]I\%/LO d‘I’H+3(p3,p4,p5,pH;p1,p2){

2N? N N
+ 3] Z |:A(5)gH(172727j7k) +AggH(1,Z,2,j,]{7):|
(4,5,k)E€P(3,4,5)
+NNg Z [ngH(4q,i,é,3,5q) + BY,(44,3,1,2,5;) +ngH(4q,i,3,Q,5q)}
P@i,2)
Np

N

{EggH(qu, 1,2,3,5;) + EggH(4q, 1,3,2,50) + BY ;;(4,,3,1,2, 5q)]
P@i,2)
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Np(N?*+1)[3
+—

N3 B3gH(4Q? 172 3 5g ):| }J1(3)(p37p47p5) (6527)

The squared matrix elements in Eq. (6.5.27) are discussed in section 4.1.2 and 5.1.8.
The 1/3! coefficient associated with A3 ;; matrix elements is the averaging factor for

the three identical gluons in the final state.

6.5.2 Real-virtual contribution

The real-virtual contribution at NNLO for gg — H+jet comes from the gg — H+gg
and gg — H + qq processes,

daRV =Ny N0 AP 1a(ps, pa, pa; phpz){

2N2 L
5 {A}lgHu 2,3,4) +A4gH(1 2,4,3) +A49H(1 3 2,4)}
2NN . .
T ZF {A}wa 2,3,4) +A4gH(1,2 4,3) +AigH(1,3,2,4)}
NN B! 3ié4f—i31 3,.1.2.4, &Bl 3,.1,2.4,
+ F Z 2gH( qr Ly q) N2 QgH( qr 14y q)_l— N 2gH( qs oy & q)
P(12)
N o ~1 o N =1 —
F ~ = F 5 A
_W |:B2gH(3¢I7 17 2745) WBZ‘(]HC)’% 17 27417) + WBZQH(S(]? 17 2745):|
N [=l odiog
+WF {B2gH(3¢J7 1,2, 4(;)} }J1(2)(p37p4)- (6.5.28)

The squared matrix elements in Eq. (6.5.28) are discussed in section 4.1.2 and 5.2.
The 1/2! coefficient associated with A}/, and 2}19 ; Matrix elements is the averaging

factor for the two identical gluons in the final state.

6.5.3 Double virtual contribution

The double virtual contribution at NNLO for gg — H+jet comes from the gg —
H + g process,

doy " =Ny N, NLOdq)H+1(p3,pH7p1,p2){

+2N2A2 5(1,2,3) + 2NNp A2 (1,2, 3) +2N2A39H(i 2,3)
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~2 2 =2

N - s =2
+2WFA39H(1, 2.3) + 2455 (1.2,3) + 5 Ay (1.2, 3)}J1(1)(p3). (6.5.29)

The squared matrix elements in Eq. (6.5.29) are discussed in section 4.1.2 and the

explicit formulas are in [119].

6.6 g¢g initiated subtraction terms at NNLO

6.6.1 Double real subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.3.3, one can

construct the double real subtraction term that mimics the implicit IR divergences

in Eq. (6.5.27),

dé—gg :j\/;zg N]}\?J}\%TLO d(I’H+3(p3, P4,Ps5,PH; P1, p2) {

2N2 2 A . . ~ A~
5| Dl A (L2 + A5y T(13,2.4, 5)}
" L (iyj,k)EPe(3,4,5)

+NNFB§§IS (44,1,2,3,5;)
Np [~ -~ . . ~ T
_WF {ngf,s(zlq, 3,1,2,5;) + Bgﬁ(zlq, 1,2,3, 55)}

Np(N? +1) [=0X5 >~
+1 F(N?’ ) {ngH (4, 1,2,3,55)} } (6.6.30)

Here P¢(3,4,5) contains the three cyclic permutations ({3,4,5},{4,5,3} and {5,3,4}).

The corresponding relationships between the subtraction terms, file name in the
NNLOJET maple script and matrix elements (or combinations of subtraction terms) in
Eq. (6.6.30) are summarised in table 6.3. In general, if the two initial state partons
are colour connected or colour almost unconnected, we name the corresponding an-
tenna subtraction terms with X or Y topology. For example, in Ag’;;{ys(i, i,2,7, k),
the initial state gluons 1, 2 are separated by final state gluon 7. We therefore name
the subtraction term A5gOHFYS.

The Ag’gilys(i,i,ﬁ, J, k) function is the subtraction term for a combination of
three Agg;ls(i, i,2,7,k) functions with cyclic permutations of P°(i,5,k) . Each

Ag’;;[S(i, i,2, 7, k) function does not mimic all the double and single unresolved limits
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subtraction term | maple matrix element
AZT%(1,4,2,5,k) | A5gOHFYS S AL (1,4,2,5,k)
P (i,j.k)
5.7 4 N
Agg)]({ (1,2,4,5,k) | ABgOHXS AggH( 2,1, 7, k) + 5gH( 1,2,k,j,1)
Ag;;{s(l,z,Q J, k) | ABgOHYS A5gH(1,Z,2,j, k) + 5gH(l,z,2 k,7)
FS(: 4 5
ngH ( Jgs 7 ’ 7k) ggBSgOHFS Z B3gH(jCI71727Z7k)
P(1,i,2)
XS/ T34 A
Bygy (a1, 1,2, kg) | geBt3g0HXS | 30 BY 1(j,1, 1,2, kg)
P(i,2)
YS/. 35 . =~ SN
ngH (]q7 1727 7k¢7) ggBthOHYS ZA [B??gH<Jq= 727Z=kti) +B§gH(jq71=Z727 k@)]
P(i2
=0X5 — ~~ :(0 : T T~
BSgH (]q7 172727]{; ) ggBtthOHXS BSgH(jqa 172>iaktj)

Table 6.3: NNLO antenna subtraction terms for the double real contributions to the

g9 — H-+jet process and their relation to the matrix elements (or combinations of

subtraction terms)

of two Y topology matrix elements. Only the three permutations together removes

all of the double and single unresolved limits of all six Y topology matrix elements.

The explicit formulae for A5 o (1 2,1, 4, k) and Agﬁ{ys(i, i,2,j, k) are,

AP (1,2,4,5,k) =

+

+ o+ o+ o+ o+ +

18,5(24,) AQ (12, (i), k) I\ ({p}2)
15,3, k) Ay (1,2, (i), (%)) T2 ({p}2)
1841k, 5) ASy (1,23, (k) T2 ({p})
1842k, 5) AQy (1,2, (kj), ) TP ({p}2)
19k, 5.1) Ay (1,2, (k). (51)) T2 ({p}2)
19,(1,1,5) Ay (T,2,k, (52) /2 ({p}2)
F{(2,4,j,k) A3, (1,2, (k) JV ({ph)

—_~—

£2,(200,9) F2 (2, (17), k) AS, (1,2, ((4)k)) I
£, k) F2 (2, (i), (k) AQyp (1

k) '({p})
2, g,j/%)) IV ({ph)
Y({ph)

10,2k, 5) FY (2,4, (k) AY (1,2, (i(jk))) J
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—~—

by B20) By@ () A (LT, (i) H ()
g F(1002) 13,2 k) A% (T3, () 0 ({0
5 PR00) 18,02 () A% (L2 (k50 /(o)
— 5| S~ Sk, ~ S+ SEE - ST+ St
X 2502,k (7)) A (1,2, (GR) /(o)

g 2 ) (2 (R3) A (1,2 (k) I ()
G Pk 2) £3,2,4.9) A3, (T2, () 7 (o))
—%ﬁuuwn&@a@mﬂwﬁi&wm ({ph)
- 5|+ Sin ~ Sl ~ St SH St + Stk

xﬁuzmﬁnﬂﬁdidﬁbxﬁwMo
+ FO(1k,5,0) AS (1.2, (ik)) TV ({ph)

—~—

— £k, ) FD (T, (j), i) ASy (1,2 @%»ﬂW@m
k) B (L (R). G7)) A (T2, (k7. 71) T (o)

—_—

— 1,(10,5) Fy(Lk, (1)) A8, (1,2, k(1)) T ({ph)

_

fSO,g(lv k?]) f3,g(17 iv (]k)) AggH<17 27 ((]k)l)) Jl ({p}l)

FY (1 k,2) 2 (T4, 5) A (1.2, (7)) 1 ({ph)

—~—

£2,2.k, 3) 2, (L4, (k) AS, (1,2, ((k5)i)) Ji ({ph)

- IF _ QIF _ QlIF IF _ QIF IF
3 | T uam STk((J'Nk)i) Sz + iz ~ S T Szk«}%)i)

xﬁﬂmxﬁnﬂwﬁﬁ<() Y({ph)

12,10 ) 12, (T, (i) A% (3.2, (Gik)) IO (o)

@W@umﬁyihﬁﬂwﬁi<>> '({ph)

—_~—

£2,(200,9) £3,(1, k., (1) A%y (1,2, (1)) I ({p})

P _ QIF IF 4 gIF _ gIF I
+ Li(j7) 11((31) ) SM2 * 5112 521 ﬂ) RACDL

< f0 (1 k, (G1)) A%, (1.2, (Gi)k)) SO ({ph)

[ NN ORI NG

) Ji
(1,2

NI~ NI RN RN -
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— FP(1,0,2,k) A3, (T.2,5) 1V ({ph)
Ff(1,0,2) Ff (T, k,2) AS (1,2, 5) 71V ({ph)
Ff (1, k,2) F9, 0 (1,0,2) AS (1,2, 5) J{V ({ph)

g F(1,6:2) (T k. 2) A%, (1,3,9) 10 ((ph)

b IR (L000) Py (T k. 2) A% (T2, G1) 70 (o))
1

g Sg(200) By (1K, 2) A8y (1,2, (1) 1 ({ph)

_ ; S SIE S SIS SIS
X F (1,5 2) 43,512, () 7 ({p})

G (1K 2) F,(T6.2) A% (1,3,9) 10 ((ph)

b IRk 0) Dy (T,6,2) A%, (T2, GR) 70 ()
1

g SRk ) Fgy(10.2) Ay (1,2, (k) 1 ({p})

IF IF IF IF IF IF
o l Slk2 + Slkg + Slk; 75 B Sm(m) + SQk:(]k‘) o SQk (jk)

< FY . (1,0,2) AS, (1.2, (k) 1 ({ph), (6.6.31)

S {4 A0 A TR0 I ()

+ 19,2, k) A (1,12, (k) TP ({p}2)
+ 19,1k, 3) ASy(T,4,2, (GK) 1 ({p}2)
+ F,(1,4,2) ALy (1.2, k, 5) I\ ({p}2)
+ S92k, ) ASy(1,4,2, (k) 1 ({p}e)
+ f3,(1,4 k) AS (1,02, (k5)) TP ({p}2)
+ F{(1,4,2,5) A3, (1,2, k) J{ ({ph)

— B, (L0,2) FY(T,5,2) AS,u (1,2,k) IV ({ph)
— P (2,5, 1) F (1,0.2) A (1.2, k) J{ ({ph)
g (102 FYy(T5.2) A3, (12, 1) 70 (o)

g PR ERy(T52) 43, (T2, (59) 70 ()
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12,200 k) EY  (1,5.2) AS, 1 (1.2, (k) J1V ({p}h)

IF IF IF IF IF IF
— S5+ S + Su(fk - Su (ik) + S22(k2 o S?i(i{i)

< FD0(1,5,2) Ay (1,2, (ki) IV ({ph1)
F (15,2 F,0(1,4,2) AS 5 (1,2, k) JiV ({p}h)
2,15, k) F2 (1,4,2) AS (1,2, (k5)) /L ({p})

5 S92, k) Flgy(1,0,2) A3 (1.2, () 71 ({p})
1

. IF IF IF _ IF _ IF
92 +Slj2 ST Slj(jk T 1J(Jk) 2j(kj) 2j(kj)

< FY0(1,4,2) A3 5 (1,2, (k7)) 1 ({ph)
+ FU(1,4,2,k) A% (1,2, 5) 11 ({ph)

— Fy,(1,4,2) F§ (T, k,2) A3, (1,2,5) /1 ({ph)

3,99

N — N~

|
N =N =D =

— B2k, 1) Y (T,4,2) A3,4(T,2,5) 7V ({ph)

FY,0(1,4,2) F 2,5) 1" ({ph)

1951, ) By (T K, 2) A3 (1,2, (51)) J1V ({ph)

= 5 13(200.) gy (1 k. 2) A8y (1,2, () 71 ({ph)
1

IF IF IF IF IF
+ 2 5112 ST Slz(z} B S S2z (47) B S22(]z

{rh)
FY 2,5) 11V ({ph)
1951k, ) Ffo, (T,4,2) A3 (1,2, (GK)) 7 ({p})
5 S92k, 5) Fgy(10.2) Aoy (1,2, (k) 1 ({p})
1

IF IF IF IF IF
T3 — St T 555+ St — Slk(jk) SorGh) ™ o)

X< F3 0(T,1,2) A3 (T2, (k) 1 ({p})
+ P25,k 1) AS(T,1,2) TV ({ph)
— 12,5, k) F (2, (5K), 1) A8, (T,4,2) 11V ({p})
— 1Lk 5) FYy (2, (GK), T) AS (1,3, 2) J{V ({ph)
+ P2k, 1) AS(T,1,2) TV ({ph)

(T, k,2) AS (1,

| =N =D =

XF3E)99<1’ k’ 2) AggH(I7§7 (Zj)) (
(1,k,2) F9,,(T,4,2) A 5 (T,

|
NS NN IS NN S
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£O20k, §) FD (2, (k5), 1) AY 1 (T,4,2) T ({p})

— 19, (L5 k) P2 (2, (k). T) AY (1,4,2) Jl(l)({p}l)}. (6.6.32)

The wide angle soft function, S7}, appearing in Egs. (6.6.31) and (6.6.32) is the
same Eikonal factor introduced in Eq. (3.2.35). The upper index [F here is a
reminder that this Eikonal factor needs to be integrated over the Initial-Final three
parton phase space at the real-virtual level.

Explicit formulae for the other antenna subtraction terms in table 6.3 can be
found in appendix B.1. The double real subtraction terms fit the general structure
described in section 4.3.3.

As at NLO, we use the spike plots introduced in section 6.4.1 to study the

convergence of the double real matrix elements and the subtraction term through

the ratio,
d&RR

D
doXnro

R (6.6.33)

For Higgs boson plus five parton matrix elements, there are 49 different double or
single unresolved limits. The spike plots are calculated and tested for all these unre-
solved limits. Sample results for four typical double unresolved limits are presented
in Figure 6.2 to provide graphical evidence of the convergence of the subtraction

terms to the matrix elements in each unresolved limits.
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Double collinear - Initial-Final Final-Final
1000

T T T —
#phase space points = 1000 e 5
33 outside the plot x=10"10 —=
34 outside the plot
800 [ 30 outside the piot
600
400 -
200
0
0995 099 0997 0998  0.999 1 1001 1002 1003 1004 1005

(a) Double Collinear limit between
Initial-Final and Final-Final partons
(1//i, j//k), where & = s1;/s12 = Sji/512

approaches zero in the unresolved limit.

Soft collinear - Final-Final
1000

N =
x=108 ==
#phase space points = 1000 ol =
0 outside the plot x=10% ==
0 outside the plot
800 [ 0 outside the plot 4
600 4
400 4
200 e
0 — 1 .
0.99999 1.00000 1.00000 1.00001 1.00001

(c) Soft collinear limit for soft partons i
and collinear Final-Final partons (j//k),
such that © = sji/s12 = (s1; + 52:) /512

approaches zero in the unresolved limit.

Double soft

T s
x=10% ==
#phase space points = 1000 e =
7 outside the plot x=107 ==
0 outside the plot
800 | 0 outside the plot 1
600 - 4
400 - 1
200 4
0 - 1L
0.99999 1.00000 1.00000 1.00001 1.00001

(b) Double soft limit for parton i and
j, where x = (s1; + s2; + 52; + S25)/512

approaches zero in the unresolved limit.

Triple collinear - Initial-Final-Final

#phase space points = 1000 x=107 ==

x=108 ==
13 outside the plot x=10° ==
5 outside the plot
800 [ 6 outside the plot
600 -
400 -
200
0 L . . -
0999 09992 09994 09996 09998 1 10002 10004 10006 1.0008 1.001

(d) Triple collinear limit for Initial-Final-
Final partons 1//i//j, such that z =
S51ij /s12 approaches zero in the unre-

solved limit.

Figure 6.2: Spike plots displaying the convergence of the NNLO subtraction terms

in d&fg to the matrix elements in d&;f in various unresolved limits.

6.6.2 Real-virtual subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.5.3, one can

combine the integrated double real level subtraction terms and real-virtual level

mass factorization term to construct the real-virtual subtraction term, déZ , which

99’
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removes both the explicit and implicit IR divergences from Eq.(6.5.28),
. dx, dx
64y =Ngg N¥X10 x—llx—;d¢H+2(p3,p4,pH;p1,pz){
2N? T 4
TA4:qH (17 2a 3’ 4)

2NNp TLXT /5 4 - - TLYT 3 5 4
T [ > A (,2,4,5) + Ay (1,3,2,4)
(3,7)€P(3,4)

A oA 1 ~ PR Np ~ P
+NNp |:B§;IZT(3Q> 1,2, 46) - _B;EJ)IZT(BW 1,2, 4(7) + _FB;Q)JSIT(?)(]? 1,2, 4(1)]

Np [=LXT >~ = ooy Np = Pdioy
_W B2gH (3(17 L, 274(7) - mB2gH (3117 1, 274é> + WBQgH (31,‘{7 172745)

(6.6.34)
The corresponding relationships between the subtraction terms, file name in
the NNLOJET maple script and matrix elements (or combinations of subtraction
terms) in Eq.(6.5.28) and (6.6.34) are summarised in table 6.4. Note that the
Ai’g)Ii,T(i, 2,i,7) or Ai;;{T(i, i,2, j) subtraction terms do not remove all the single soft
IR limits in A} ;(1,2,4,5) or A},5(1,1,2, ) matrix elements. Only the combina-
tion of Ai’;}?(i, 2.1,7j ) removes all the IR divergences of the colour leading one-loop
matrix elements with Higgs boson plus four gluons.

Explicit formulae for Aijff(i, 2,i,7) and Aiz{T( 1,4,2,7) are,
A (1,2,4,5) =
— [ Tyt (si2) + Tyt (s35) + Tyt (s1;) + Jé,’é’G(slz)} A (1,2,4,5) JP ({p}a)
#3200, | A (12,3801 = 21) 801~ )
(T3t o) + T8 ) + T ) ) AL (L2 )] (1)
#384(1,700) | A (12,5000 = 1) 801~ )
e (+ Thom) + T ) + T ) ) A (L2, )] o)
+ {f;g(m‘,j) §(1 — 1) 6(1 — xo)
(AR ) IS )+ 8 ) — 2 ) ) 225

x A n(1.2,(i7) 1 ({ph)
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subtraction term maple matrix element

Aphl(1,2,4,5) A4g1HFT > Ay (1,2,1,5) + Ay (1,4,2,5)
P(i.5)

Aot (1,2,4,5) A4g1HXT Atn(1,2,4, 7)

Al (1,i,2,5) | AglHYT Alyr(1,4,2, )

Ay (1,2,4,) | AndgiHXT Ay (1,2,4,5)

Ay (1i,2,5) | AndgiHYT Alyu (14,2, 5)

LXT/. 3 4 - . oA A5 .
BQgH (ZCP 727]@) ggBleHXT BQIQH(Z(]71727J(?>+B%gH<ZQ72717](I)
SLXT /. 2 5 - I~ .o~ oA -~ N
BQgH (Zg? 1’27j§) ggBthlHXT BQIQH(Z% 1727j(f> +B%gH<ZQ727 17](7)
~TXT  _ ~T —

B2gH (iqala27jli) ggBttthlHXT B2gH<iq71>27jq)
=T,XT =T

BQgH (iqv ia Qa ]lj) ggBttthlHXT BQgH<iq7 ia Qa ]Q)

B21;}(IT(iqv 172ajlj> ggBthlHXT BZIQH(?:Qv ia27j¢j) +B%gH<Z.q7éa ivj(j)
~1,XT ~ ~ ~1 ~ ~1 ~

~ ~ ~ N N

BZgH (i(h 17 27j¢?) ggBtthlHXT B2gH<iQ7 7Q7j17) B BQgH@QJ 17 Qv.jq)

Table 6.4: NNLO antenna subtraction terms for real-virtual contributions in
g9 — H+jet process and their relation to the matrix elements (or combinations

of subtraction terms)

| a0 801 = ) 801~ )
(BB )+ B o)+ T )~ 238 ) ) 1,01

x Ay (1.2, (17)) 1 ({ph)

DO | —

1,FI 1FI LIF
+ {"‘ Jyca(s@z) — aa(s2) — L2 aa(s1i)

LIF LIT LIT
+ Jyoc(s15) — Lga(s13) + Jyaa(s12)

= 8" (s5(5)> 520 T3(djy 0) + ST (527825 1) + 8™ (5455, 525 15.25)

— ST (s, 805, w1j95) | X £9,(2,7,5) A% (1,2, (1)) Tt ({ph)

1,IF

LIF LEI
+5 | + haas1i) — Laa(s1) — L ga(Syi)

N | —
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1LFI LIT LI1
+ Jyec(s2i) — Jo'ga(s12) + Joga(s12)

- SIF(SI@), S1i; 351@),1@-) + SIF(Sua 515, 1) + SIF(Sz(ij S1i; $2(fj),1¢)

—wﬂmmmMﬂx&@mm@@mﬁw%wﬂ (6.6.35)
A (14,2, 5) =

JhEL 1,i,2,5) J ({p}s)

: 1LFI LIF
+ Jyaa(si2) + Jyaa(s2) + J2,GG(51J'):| AggH(

- {ﬂL Ty (s15)

+ Fy 0 (1,0,2) | Agyy(1,2,5) 6(1 — 1) 6(1 — a3)
- (+ Thom) + I + TG ) A (.2.0)| S Gh)
+ Fy4(2,5,1) [A;,QH(T, 1,2)0(1 — 21) 6(1 — )

(T ) + TEE (52 + TEom) ) AL (1. D] (o)
+ [Fl

3,99

(1,4,2) 6(1 — 1) 0(1 — z2)

1,IF 1,FI 1,11 1,11 .
+(+aw@m+aw@a+aw@m—wm4m0Em@uﬂ

(Tt + TG s) + S (o) = 201 (o)) F,y(1.5:2)

x AS p(1,4,2) IV ({ph)

1 111 AL L
5 {—i_ Jca(s13) = hriaa(s12) = Jaga(sja)

LFI LIF LIF
+ Jycc(8i2) — Dhoa(s1;) + Lo ga(s1;)

+ ( — 8" (519, s1j, 0131;) + S (812, 815, T12.15) + SIF(S% 81j, ¥3;1;)

— 8" (595, 51, w2j,15) + ST (51, 515, 1) — 8™ (515, 515, 1))]
XY gy(1,6,2) Ay (1.2, 5) 1tV ({p})

1 111 1,11 1,FI
+§ [—i— JZGG(SE) — JQ,GG(812) - JQ,GG(Sﬁ)
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LFI LIF LIF
+ Jaa(si2) — o aa(st) + Jyiga(s1)
+( — S (513, 835, 213.31) + ST (812, 820, T19,24) + ST (53, 53, 1)

— 8" (524, 82, 1) + 8 (533, 595 ¥13.3:) — ST (514, 524, 111@',%))}

X F2 (1,5,2) A (1,4,2) 1V ({ph)- (6.6.36)
The integrated wide angle soft functions, S and S'¥', appearing in Eqs.(6.6.35)
and (6.6.36) are the same integrated Eikonal factors introduced in Egs.(4.5.102) and
(4.5.104). The upper index I F or FI here is a reminder that this integrated Eikonal
factor is integrated over the Initial-Final three parton phase space with parton 1
(IF) or parton 2 (FI) in the initial state.

Explicit formulas for the other antenna subtraction terms in table 6.4 can be
found in appendix B.2. The real-virtual subtraction terms fit the general structure
described in section 4.5.3.

To show that these subtraction terms correctly remove the explicit IR diver-
gences from the matrix elements, we construct spike plots retaining only the terms

2

proportional to €72 and ¢! from both the subtraction terms and the matrix ele-

ments,

d&RV d&RV

R . R (6.6.37)

a do{nro e B do{nro e
Since this cancellation takes place everywhere in phase space, Figure 6.3 shows R

for general phase space points. Of course, the explicit IR divergences cancellation
between dof?"" and do% ;, is analytical and should be achieved when the single
unresolved limits are approached. In each single unresolved limit, the spike plots for
R.-1 and R.—2 have a similar appearance as Figure 6.3.

The subtraction term should also correctly mimic the matrix elements in the
unresolved limits. For Higgs boson plus four partons at RV level, there are 7 different

single unresolved limits. We consider the quantity,
d&RV

S| >
donnLo |0

R = (6.6.38)

where only the finite part of the real-virtual subtraction terms and matrix elements
are used. The behaviour of R.o in various single unresolved limits is illustrated in

Figure 6.4.
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general phase space for 1/ general phase space for 1/e
, 1000 T

fphase space points = 1000
0 outside the plot
0 outside the plot

800 |- 0 outside the plot

600 4 600

400 |- g 400 -

200 4 200

0 0
0.99999 1.00000 1.00001 0.99999 1.00000 1.00001

(a) 1/€® pole cancellation (b) 1/e pole cancellation

Figure 6.3: Spike plots displaying the explicit IR divergence cancellation between

d6T and dgEY
6.6.3 Double virtual subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.7.2, one can re-
move the explicit IR divergences in the double virtual matrix elements in Eq.(6.5.29)

with the following double virtual subtraction term,

R dx, dz
dagg =Ny N3 Nzo x_llx_;dq)HJrl(pBapH;plapz){
A N ~2,XU A
2,XU F T2,XU
—N?Agy (1,2,3) — WAggH (1,2,3) = NNpAg, (1,2,3)

o XU N2 RLXU Ny ~1,XU
RPN = PR = P 1
_Ng'A?)gH <1a273) + F};BlgH (1q72736) - mBlgH (1(]72736)}]1( )(p?))

(6.6.39)
The relationships between the subtraction terms, file name in the NNLOJET maple
script and matrix elements in Eqs. (6.5.29) and (6.6.39) are summarised in table
6.5.

The explicit formula for A?;;U(i, 2,1) in terms of integrated antennae is,

2XU 5 & -
Asrn (1,2,7) =

- |:‘|‘ 2}? (812> — 2]‘_‘_5]1])('1'1) -2 Félg) ([EQ) + Fgo7g(52i)

99

+ —7::(3),9(811')} AégH(L 2, Z)

1 1
| Plore) © Py (o1 + TR o) © TR o) 4 5 D) 9 T )
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subtraction term maple matrix element
A3 (1,2,4) A3g2HXU A2 (1,2,4)
~2.XU _ =~z .,
Az (1,2,1) Aht3g2HXU Agyr(1,2,4)
APV (,2,4) Ah3g2HXU A2 4(1,2,0)
~2XU ~2 A
Agor (1,2,1) Ahh3g2HXU Ag,r(1,2,1)
=1,XU

By (14,2,49) ggBtth2glHXU | IR safe
~1,XU

Biyn (14,2,49) ggBttt2glHXU | IR safe

Table 6.5: NNLO antenna subtraction terms for double virtual contributions in

g9 — H+jet process and their relation to the matrix elements

1
— Félg)(lj) X fg’gg<812) — ng])(l'g) X .7:399(512) + 5 Fg]) (.CCQ) & Félg)(l'1>:|
XAggH(LQai)

1 1 1
_ |:—|— Z ]:5?79(822') & ]:??79(821') — 5 Péi}) ([EQ) (029 J—'}?’g(SQZ‘) + Z Fg}]) ({Eg) (24 FE]?(.I‘Q):|

x A3 p(1,2,4)

1 1 1
— |:+ Z Fg’g(Su) X ./—"379(812') — 5 Fg? ($1) & ]—"3?79(3”) + 4_1 Fé;) ($1) & Té;)(:cl)]

X AggH(L 27 Z)

1 1
- {+ F g9(512) ® F3 (82:) — 3 I (1) ® Fo ,(s2:) — 3 T (22) ® Fy ,(521)

1 1
— T (22) @ F§ gy (s12) + = T (22) @ T() (w3) + 5 T

2 5 Tl & T (o)

xAggH(l,Q,i)

1 1
|+ o) @ R0 - 5 TG00 8 (o105 T ) © 7 o)

1 1
- ) ® Py (o) + 5 o) @ T o) + 5 TR (oa) @ T o)
x Aggn (1, 2,1)

1 1 1
_ [+ 3 Fa 4 (s11) @ F3 (52:) — 3 I (x2) @ F,(51) — 5 PO (21) @ FL (s21)

1

"3

D) (22) @ T (21) | AS, (1,2, 0)
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bo [ 59\ € b
P Flsa+ (22 R0 - 2 R
R
(2)
R, 520 P50 + 2 119 o) = T o) | A (1,2.0)
bo [ s1i a 0 bo FO
+ Fy g(SlZ) + F3(s0) + . M_2 F3 g(slz) 3g(811)
R
b
FO (51) ® F (s15) + 2T W () — T (xl)] A9, (1,2,4)

99

N {_F 2]:2799(512) + ffynadj<512) - 2‘F??,gg(312) ® Fg,gg(‘gl?) + 2‘7:317gg<812)

by (s b b b
% (22) Ay (i)~ 2% Py o)+ 2T ) + 2T )
R

=(2) =) ‘
— T, (x1) — T, (@)} A p(1,2,4), (6.6.40)

where ® is the convolution operation defined in Eq. (1.4.35). The double virtual
subtraction term fits the general structure described in section 4.7.2.
Using the dipole functions introduced in section 3.5.2 and 4.7.2, Eq. (6.6.40) can

be re-expressed in the same structure as the two-loop poles in Eq. (4.7.156) as

Az (1,2,0) =
gH ’ <

] , b ,
| o)+ G s+ S 10| ¢ [243000,2) = 220 (1.2.0)

[ 1FI LIF | 11T 1LFI 1LIF
—faga(s12) + Joga(sei) + Jhga(si) | @ |:J2,GG(512) + Jyga(s2i) + J2,GG(51i):|
x A3, (1,2,1)

— | J3éa(s12) + Tyde(s1:) + Tyt (s20) | x 248, 5(1,2,1), (6.6.41)

where the NNLO integrated antennae are,

J22(I}IG(812) +‘7:4(L)gg(812) + fo nadj( ) fi?,gg(812) ® f??,gg(sm) + ‘F?},gg(‘sl?)

4,99
b 1) 1—(2)
]:Z?gg<512) - §Fgg ( ) 2Fgg ( ) (6642)
1 b S14 -
Tyt (s11) = + —]:f,g(su) + SFi () + o (5 ) F5, ()
2 2 2 2
1 e
= 5 Tog(51) ® Fyg(sn) = 5 gg( ), (6.6.43)
1 1 bo (50
Ty (s20) = + 57:2,9(522‘) + §~7:§,g(82z) + 2 —22> Ty g (52i)
e \ U5

1 2
1 Fag(s2:) @ F5 g (i) — F( )(5132

\_/

(6.6.44)



6.6. gg initiated subtraction terms at NNLO 170

Due to the complexity of the integrated antenna functions, we use a FORM pro-
gram to analytically check that the explicit IR divergences cancel between Agﬁ[(] (i, 2, i)
and A3, ;(1,2,4). The cancellation of all of the explicit IR divergences in the two-
loop matrix elements indicates that all the subtraction counter terms we introduced
at the double real and real-virtual levels are correctly compensated at the double
virtual level.

Explicit formulas for other antenna subtraction terms in table 6.5 can be found
in appendix B.3.

By taking the leading colour contributions to gg — H+jet at NNLO as an
example, we have given explicit examples of how the antenna subtraction terms
follows the structure introduced in chapter 4. The leading colour example we have
seen in this chapter has no initial state identity changing (idc) behaviour. However
the sub-leading colour contributions such as gg — gqqH at RR level and gg — qqH
at RV level do have such behaviour. More details about how to construct antenna
subtraction terms to remove initial state identity changing (idc) limits are introduced

in chapter 7 and 9.



6.6. gg initiated subtraction terms at NNLO

171

single collinear - Initial-Final single collinear - Final-Final
1000

T T T T T T T T 1000 T T T T T T T 1)
#phase space points = 1000 iilg?i =] #phase space points = 1000 =l g:; —
161 outside the plot x=10"" —= 0 outside the plot x=10° ——
25 outside the plot 0 outside the plot
800 0 outside the plot H 800 0 outside the plot H
600 | 600 |
400 | Bl 400 Bl
200 Bl 200 4
3999 0.9992 0.9994 0.9996 0.9998 1 1.0002 1.0004 1.0006 1.0008 1.001 3999 0.9‘992 0. 9‘994 0.9‘996 0.9998 \ 1.0002  1.0004 \.0‘006 1 D‘OOB 1.001
(a) Collinear limit between initial-final (b) Collinear limit between final-state
partons 1 and ¢ where x = s1;/s12 ap- partons 7 and j where x = s;; /s12 ap-
proaches zero in the unresolved limit. proaches zero in the unresolved limit.
single soft
1000 T T 5
#phase space points = 1000 e =
2 outside the plot x=107 ——=
0 outside the plot
800 | 0 outside the plot
600
400
200
0.09‘3999 1.00000 1 00000 1.00001 1.00001

(c) Soft limit for soft partons i, where
x = (s1; + s2i)/s12 approaches zero in

the unresolved limit.

Figure 6.4: Spike plots displaying the convergence of the subtraction terms in d&gg

to the matrix elements in d&g/ in various unresolved limits.



Chapter 7

Production of Higgs Boson Plus
Jet from Quark-Gluon Scattering

In this chapter, I will discuss the qg, ¢g, gq and gG§ — H+jet contributions to the
fully differential cross section for Higgs boson plus jet observables up to NNLO. I
will take the leading colour contribution to the q¢g — H + ¢ + X channel as an
example of the implementation of the antenna subtraction method as introduced in
chapters 3 and 4. Just as for the gluon initiated channel discussed in chapter 6,
the ¢g initiated channel contains initial state identity changing (idc) IR divergences.
The antenna subtraction terms are more involved to regulate the idc limits in double
real, real-virtual and double virtual contributiuons to the cross section and I will
illustrate through examples about how these idc limits are treated at NNLO using
the techniques introduced in section 4.3.3 and 4.5.3.

The spike plots introduced in chapter 6 are still used as a powerful tool to provide
graphical evidence for the convergence of the subtraction term to the matrix element
in the unresolved limits. For explicit IR divergences we use FORM programs to

analytically check the divergences cancel between dé¥ ;o and Aoy ;o

7.1 ¢g initiated cross sections at LO

The quark-gluon scattering to Higgs boson plus one jet process at Born level has

only one contribution from the qg — H + ¢ process. The spin and colour averaged

172
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differential cross section is given by,

1 .

A6y =Ny Nio d<I>H+1(p3,pH;p1,p2>{NB?gHuq, 2, %)}Jf”(p:g» (7.1.1)

Explicit formula for BY ;; are given in section 3.1.2 and 5.1.6.
Using the line-reversal relation and charge conjugation symmetry introduced in

chapter 5, the other quark gluon initiated channels are related to d&fq:

~B _ JAB
dog, = dao,,,
dog, =doy, (11 ¢ 12),
Aol =d6l (21 ¢ 22), (7.1.2)

where x1, 9 are the momentum fractions of the initial state partons as introduced

in Eq. (1.4.39).

7.2 qg initiated cross sections at NLO

7.2.1 Real cross sections

The real radiation contribution comes from the qg — H + qg process,

A6, =Ny N 1o d@H+z(p3,p4,pH;p1,pz){

A oA - A 1 ~ aA X~
+ ngH(lqa 27 37 4(7) + ngH(]-tp 37 27 4@) - WBSQH(lm 27 37 467)}‘]1(2) (p37p4)'
(7.2.3)

The squared matrix elements in Eq.(7.2.3) are discussed in section 3.1.3 and 5.1.7.

7.2.2 Virtual cross sections

The one-loop contribution is from the qg — H + g process and the differential cross

section is given by,

d‘}(z :/\/;19 N]‘\;LO dq>H+1(p3>pH;p1,p2){
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A oA 1 = PR Ny ~ A oA
+Blyn(13,2,30) = 5 Blgn(14.2.37) + 57 Blyn (15,2, 3q>}Jl‘”<p3>- (7.24)

Details of the relevant matrix elements in Eq. (7.2.4) are given in section 3.1.3.
Just as at leading order, the other quark gluon initiated contributions can be

obtained from déo gy nro:

dogg,Nr0 = 04y NLO,
doggnLo = doggNLO (21 <> 22),

doggnLo = d5g,NLo (21 ¢ T2). (7.2.5)

7.3 g initiated subtraction terms at NLO

7.3.1 Real subtraction terms

Using the NLO antenna subtraction method introduced in section 3.3.3, one can
construct the antenna subtraction terms to mimic the implicit IR divergences in

Eq.(7.2.3) such that

462 nvio =Ngg NiLo AP 2 (s, pas P 1, p2) {

PN N N 1 ~ " T~
0,XS 0,YS 0,XS
B2gH,NLO(1q7 2, 3746) + Bng,NLO(1q> 3,2, 4(7) - mB2gH,NLO(1q7 2,3, 4(7)}-

(7.3.6)
The corresponding relationships between subtraction terms, file name in the NNLO-

JET maple script and matrix elements are summarised in Table 7.1.

Explicit formulas for each subtraction term are as follows:

BgﬁﬂqNLodqa 2, i,jq) =

+ d,(5.1,2) BY y(1,2, (7)) 1V ({ph)

+ G (2,9, 1) AS 1 (1,2,0) S ({ph), (7.3.7)
B%Z?NLOGQ? 0,2, Jja) =

+ DY,,(1,4,2) By (1,2,5) 11V ({ph)

Ag,qg—>qq(17 27 ]) B?gH(Ta ia §> Jl(l)({p}1>
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subtraction term maple matrix element

XS Aa L. AL
ngH,NLO(LI? 2,1, Jti) qgB2gOHXSNLO ngH(LJ? 2,1, ]<7>

0,YSs Aa . AL A
B2gH,NLO(1q7 i,2, Jti) qgB2gOHYSNLO ngH(LP i,2, jq)
0,X S S aT . ~ . X~ .

Byrnio(lg:2,7,35) | qgBt2gOHXSNLO | By, (14, 2,7, ]

Table 7.1: NLO antenna subtraction terms for real contributions in qg — H+jet

process and their relation to the matrix elements

+ Gg:qgﬁQQ(Q’ 17]) AggH<Ta §7 Z) J1(1)<{p}1)7 (738)
BS;I??NLO<1£17 2,1, jg) =
o Ag,qg%qq(l’ 2,7) B?gH(Ta (2 §) Jl(l)({p}l)

+ A3, (L) Biyw (1,2, (i) 11V ({ph), (7.3.9)

To numerically test that the antenna subtraction terms given in Eqs. (7.3.7),
(7.3.8) and (7.3.9) remove the implicit IR divergences in Eq. (7.2.3) correctly, we
use the same spike plots defined in section 6.4.1 to test that the subtraction terms

converge to the matrix elements when approaching various NLO unresolved limits.

7.3.2 Virtual subtraction terms

Using the NLO antenna subtraction method introduced in section 3.5.2, one can
combine the integrated real subtraction and mass factorization terms to construct

the virtual subtraction term which removes the explicit IR divergences in Eq.(7.2.4),

dl‘l dl’g

6, nro =Nag Nxzo —x—2d<I>H+1(p3,pH;p1,pz){

T

~

A 1 ~ A Ne ~ A A
1,XT 1,XT f DLXT
BlgH,NLO(lq7 2,37) — N2 BlgH,NLO(1q7 2,3) + N BlgH,NLO(1q7 2, 3q)}
(7.3.10)

The corresponding relationships between subtraction terms, file name in the NNLO-
JET maple script and matrix elements are summarised in table 7.2.

The explicit formulae are as follows:

1LXT 5 oa
B1gH,NL0(1qv 2,ig) =
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subtraction term maple matrix element

LXT S h NP
BlgH,NLO(LI? 2,1q) qgB1g1HXTNLO BllgH(]'q7 2,1g)

S51LXT S =~ A A
Biynnio(lg 2,1g) qgBt1glHXTNLO | B, ;(14,2,144)
,2,ig

S1L,XT SRPA
B1gH,NLo(1q )

) | qgBhlglHXTNLO | Bl ;(1,.2,i)

Table 7.2: NLO antenna subtraction terms for virtual contributions in qg — H+jet

process and their relation to the matrix elements

— |+ (52 + Jyba(sio) | BY(1,2,9) IV ({ph)

. 1
B J2177C{2162,qg—>qq<312) B?QH(L i,2) Jl( )({p}1)

— 2% (s12) AS,r(1,2,0) 1V ({p ), (7.3.11)

,GG,q' g—g9

A

E%;JSITNLOGW 2,iq) =

Tybo(s1) BYy(1,2,1) J{V ({ph)

Ty b0 a0saa(512) Bl (1,3,2) T ({ph), (7.3.12)
B\%Q)IZ,TNLOGW 2, ig) =

o (s12) By (1,2.9) 11V ({ph)

Iy (521) Blgrr (1.2,8) 1V ({p}), (7.3.13)

Note the appearance of the three gluon matrix element Agg ;(1,2,4) and the quark
anti-quark initiated matrix element BY ;(1,4,2) in the above subtraction terms.
This is because of (a) initial state identity changing collinear limits present in the

do% ;o and (b) NLO mass factorization terms. As discussed in section 3.5.2, all
1)

2,a—b

the identity changing dipole functions (J ) are IR finite. The jet functions in
Egs. (7.3.11) and (7.3.12) guarantee that the reduced tree level matrix elements are
also IR safe. Thus the virtual subtraction terms associated with A§ ;(1,2,4) and

BY,1(14,1,27) only provide a finite contribution to the differential cross section.
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7.4 qg initiated cross sections at NNLO

7.4.1 Double real cross section

The double real contribution at NNLO for q¢g — H+jet comes from the qg —
H + qqg9, qg — H + qQQ and qg — H + qqq processes,

A6l =Ny NN Lo d<I>H+3(p3,p4,p57pH;p17p2){

~

N - o
+§ Z [ngH(lqv2aZ7]75§)+ngH(1q7 a2 ]75 )+ngH(]-q7 7]a2 94 ):|
" (i,))EP(3,4)

~ ~ ~

1 1 5 ” A 2 P
o D [BSQH<1q,2w,5)+ngH(1 2, ] 5)+339H(1q,z,],2,5q)}

(4,5)€P(3,4)

(N4 1)=0 . o+ s~
iy Bsarr(le:2,3,4,5)

+Nf {C?gH(iqv Qa 3@7 4627 56) + ngqua 3(27 4Q7 27 5(1)}

N =0 A
N2 |:C?gH<1q7 27 5q7 4@? 3Q) + ClgH(1Q7 5617 4@7 27 3Q) ClgH(l(b 5(17 4@7 36_27 2):|

1 ~ A A
2|N lD?gH<1qJ 4(17 5q7 3(17 2) D(l]gH(lqa 4q, 5(7, 3(7, 2):|
1 =~ - A
+2'N3 D?QH(LP 44 5g: 3q; 2)}J1(3) (P3; P4, s5)- (7.4.14)

The squared matrix elements in Eq.(7.4.14) are discussed in section 4.1.2 and 5.1.8.
The 1/2! coefficients in Eq.(7.4.14) are the averaging factors for two identical par-
ticles in the final state. The sum over active quark flavours gives the Np factor to
the CY, g, C’?g g and 6(1)9H matrix elements. The D} 5 and Dlg y matrix elements do

not have the N factor in front as the final state quarks are identical to the initial

state quarks where the flavours are fixed.

7.4.2 Real-virtual cross section

The real-virtual contribution at NNLO for gqg — H-+jet comes from the qg — H+qg

process,

dURV _N N NLOd(I)H+2(p37p47pH7p17p2){
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The squared matrix elements in Eq.(7.4.15) are discussed in section 4.1.2 and 5.2.

7.4.3 Double virtual cross section

The double virtual contribution at NNLO for qg — H+jet comes from the gg —
H + q process,

d6;/gv :NQQN]‘\?]‘\?LOd(I)H+1 (ps, pw; P15 P2) {

+NB%gH(ifI7 Q, 3‘7) + NFE%gH<1Q7 27 317) +

Np =2 A 1~ 1 =2

oz Bagn (10:2,30) + 5 Blarr (14 2:30) + 55 Bign (142, 3q>}Jf”<p3>
(7.4.16)

The squared matrix elements in Eq. (7.4.16) are discussed in section 4.1.2 and the

explicit formulas are given in [119].

Similar as at LO and NLO, the other quark gluon initiated cross section at NNLO

are related to dogg vnro:

dogg.nNLo = dogg NNLO,
doggnNLo = dOgg NNLO (-TC1 A4 sz),

doggnNLO = d@g,]VNLo (21 <> 22). (7.4.17)

7.5 g initiated subtraction terms at NNLO

7.5.1 Double real subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.3.3, one can

construct the double real subtraction term that mimics the implicit IR divergences
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in Eq. (7.4.14),

d&ﬁR :NqQNJI\?]}\%fLOd(I)H-i-Z% (p3, P4, Ps, PH; D1, p2) {

N1 orxs;;: 3 0,YS /2 A
a {BSQH (1q72>374? 5(?) + B3£;H (1q>3’2’4v 5(1)
1 ~,XSA7.. =0YS/s T 5
_2|N Z |:Bi(3)gH (1617 X j75(]) + ngH (1q,2,2,j,5q)
T (i.5)EP(34)
(N2 4 1)=0X5 = _

+ 2|N3 39H (iqa2a37475¢j) + Nfcgg])l({s(iq,é,BQ,4Q,5q)
Ny ~ S
+FJ;C?§FHXS(1Q7275§74Q73Q>
1 a A ~ N N
5N [D?’jff(lq, 44,54,33,2) — D55 (14, 44,54, 34 2)}
1 ~ A R
+—2N3D$’;]§5(1q,4q,5q-,3q, 2)}- (7.5.18)

The corresponding relationships between the subtraction terms, file name in the
NNLOJET maple script and matrix elements (or combinations of subtraction terms)
in Eq. (7.5.18) are summarised in table 7.3.

The Bg;%xs(iq,ﬁ,i, J, kg) function is the subtraction term for a combination
of two Bgﬁ[s(iq,i,z’, J. kg) functions with permutations of the two gluons. Each
Bgﬁ,‘g (iq,ﬁ,z’, J, k;) function does not mimic all the double and single unresolved
limits of two X topology matrix elements. Only the two permutations together re-
moves all of the double and single unresolved limits of all four X topology matrix
elements.

In the 5&’72){5(1(1, 2, kg,iq, jo) subtraction term, the momenta of the secondary
quark-antiquark pair (QQ) can be symmetrized as the jet function does not distin-
guish quarks and antiquarks. This symmetrization is designed to remove the implicit
IR divergences from the interference terms present in 5(1)5; i (see Eq.(4.1.22)), since
those interference terms are odd under the @ <+ Q interchange. The symmetrized
subtraction term éfﬂ[xs(iq, 2, ks,1q, jo) mimics the implicit IR divergences in the
combination,

1 2 1 > ) y ~ 7 . 5 :0 . .
5 Z [C?gH(1Q727 ki77ZQ7JQ) + ClogH(LI? k(77ZQ7 27](2) - ClgH<1Q7 ké? ZQ?JQ72) :
P(i.5)
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subtraction term maple matrix element
By (14,2,4,5,k;) | agB3gOHFXS | 3> By (14,2,4,4,k;)

P(ij)
By (14,2,1,5.kg) | agB3gOHXS | BY, (14, 2,4, 5, kq) + By (14, 5.1,2, kq)
By (14.1,2,5,kg) | agB3gOHYS | BS, (14,42, 5, kq) + By (14, 5.2,4, kq)
By (1, 30 ks) qgBt3gOHXS | BY (1, 50, kg)
ByY(14.4.2,5,kg) | agBt3gORYS | BY (14,7, 2, 5, kg) + Bl (14,7, 5. 2, k)
BZ:;S(iq, 27,j,ks) | agBtt3gOHXS| By, p(1,,2,7,7, kg)
C?g)lfls(imQ?iQ’jQ?kq) qgClgOHxs | CY.p(14,2,ig, jo, ke)+CL (14, ig, jo. 2. kg)
Cori (14,2, kg, jo)| agCt1gOHFXS| ;)5&?(%,2 kg 10, 0)

P(i,j

Croi’ (14,2, k., jg) | agCt1gOHXS éfglg(imé?k@ﬂinjQ>+5?gH(iqaktiﬂiQ?ijQ)

_519H(iq’k€77 iQan>Q)
DY (g0, Jg kg, 2) | agD1gORXS | DY, (14, g, jg. g, 2)
DY (1g,ig, g kg, 2) | agDt1goHXs | DYy (14, g, jg. k. 2)

Table 7.3: NNLO antenna subtraction terms for double real contributions in

qg — H+jet process and their relation to the matrix elements (or combinations

of subtraction terms)

Taking only the colour leading contribution as an example, the explicit formulae

for By (14, 2,4, 5, kg) and By (14.1,2, 5, kg) are,

0O.FXS/3 & - -
Bsin (14,24, 5, kq) =

£2.(2,4,7) BY, (1,2, (7). k) I ({p}2)

+ dS(k, 5,1) BY,y (1,2, (17), (k) I ({p}e)
+dS(1,5,0) BS, (1, (), 2, k) J1 ({p}e)

+ f2,(2,1,5) B,y (1, (70). 2. k) J1P ({p}e)

—  A°

3,49—qq

(1,2, k) BY (T, 5,1,2) J2 ({p}»)

+ DY(1,2,4,5) BY (1,2, k) J1V ({p})

— 92,4, 5) DY, (1,2, (1)) BY (1,2, k) I ({ph)
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— d3,(1,4,4) DY, (1,2, (7)) BY, (1,2, k) IV ({p}1)
—%D%mmmmﬂ<2wmﬂwwn
Bk i) DL (F). (7). 2) B (1,2, (R, i) IO (o))

o~

— £3,(2,4,5) D§ (K, (17),2) Bl (1,2, (k(i5)) J{ ({p})
— AY(1,2.5.k) BY,u(1.2,0) J ({ph)

+ A (L5 k) AS (1,2, () BYy (1,2.4) 11V ({ph)
— AY(L0,2,k) BY, (1.2, 5) 1V ({ph)

+ DY (1,4,2) AS (1,2, k) BY (T
o f9(200,) A gy ag(L2 k) BY (T,
— DY, (1,3,2) AY ol (1.2,K) BY 4y (1,

) 1Y (k)
+ dg<k7i7j)qug~>qq(7 ( ))Jl(l)({p}l)

— A (10, k) AY a1, 2, (iK)) BY (1,2, 5) 1 ({p})

+2d,(1,4,5) A ysag (1, 2.K) BY (1,2, (7)) J1V ({ph)

2,5) 1V ({ph)
i7)) 1 ({ph)

l\DII s

(1
5

2, (ki) By (1,2,

+ | S, + Sty — 2850 — Spie — Sile) + 2850
IF IF
—2512(;J + Sl(j)
= — -~ 1
x%wm@zmwﬂ@zw»%Mmo

+ 2Ag ,49—q9q 3qq( )B?gH@azj) Jl(l)({p}l)

(1,2,k)
— 248, .12,k d3 (2.4, 5) B (1,2, (17)) )V ({ph)
(1,2, k)

— 249, (L2 k) dS (T4, 5) B (1,2, (i) 1Y ({ph)
— AS(1,4,2,k) BY(1,5,2) /1 ({ph)

+ D8, (1,4,2) A 0o (T2 k) By (1,5,2) 1 ({ph)
+ o AY (1.2, k) A (1,02 BY(1,5,2) 1 ({ph)
+ Aﬂmﬁﬁwm@zMﬁ@<<>iﬁqmo
+ S (1,5,1) AS 4y e(T.2,K) BYy (T, (77),2) 11V ({ph)
— D8 ,,(1,0,2) A (T, 2,k) BY,u(1,5,2) 11V ({ph)
+ |+ S5 = S5 — Sauiy + Sz — St S5

% A3 gg0a (1, 2,8) By (T, (1), 2) I ({ph)
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G e (20K, 1) A (1,24, 5) I ({p)a)
- Gg,qg—>gg(2v kv 1) AggH(Taj> ia §) Jl(Z)({p}2>
— GY(2,k,1,5) A, (T,2,4) LV (o)

+ Gg,qg%gg(za k? 1) F?E),gg<T7 ja g) jélggH(T

DY (1,5,2) GY e (2 k1) AS 1 (1,2,49) TV ({ph)

+  AY

3,99—qq
— G2, 1k, ) AL (T,4,2) TV ({phh)
4\“y Ly yJ 3gH\+» % 1 Pr1

0
+ G3,qgﬁgg

(1,2, k) GY

+ dS,(k,j,2)GY
- Do

3,99

(1,4,2) G5

b S (1,5,1) G grge (2. 1K) ASyrs (T, (70, 2) TV ({ph)

+  f3(2,5,9) Gy
IF IF IF IF IF
R STﬁ ~ o) T %@ T YL@

XGY oes (21, k) AS (1,2, (9)) I ({ph)

- dg,g(k7 j7 2) Gg,qg—>gg (57 1, (I;]/)) AggH<Tu (2 5) Jl(l)({p}l)
b dS(k, 5,1) GY gy (201, (GK)) A (1,2, (19)) IV ({p})

+  f5,(2,7.1) GS

IF _ @IF _ QIF _ IF_ - QlF
+ 1+ Sk = S5 — S T 5 T Sk

M%wwﬂiww%aiz@»%W@hﬁ

ngis(iq,i,ij, kq) =

+ DY,,(1,4,2) By (1.2, 5.k) J{ ({p}2)
dS (k. 5.2) B,y (1,12, (jk)) JP ({p}2)
D3 ,(1,5,2) B,y (1,2,4, k) J{ ({p}2)
d3 (k. i,2) B,y (1,5,2, (ik)) J1* ({p}2)
DY(1,4,2,5) By (1.2, k) 11V ({p})

— DY, (1,3,2) DY ,(1.2,5) BS y(1,2,k) J” ({p})

N
N
N
N

Nl
.
N—
S
-
=
YamnS
~=
=
—
[
N—

37q9—>gg(j’ §’ T) AggH(T? 5’ Z) Jl(l)({p}l)
(2,1,k) FS,,(T,5,2) A3, (T,4,2) J{ ({ph)
3,qg—>gg(§7 (kj)> 1) AggH<T7 Zag) Jl(l)({p}l)

37q9—>gg(§’ T’ k> AggH (1 Qv Z) Jl(l) ({p}1)

8 g2 LK) AS (1,2, (7)) ) ({ph)

8 omrae (21, K) AS 1 (1,2, (7)) IV ({ph)

(7.5.19)
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- ngg(lﬁja 2) ngg(T § )B(l)gH(T7§7 k) J1(1)<{P}1)

Ds,,(1,5,2) DS, ,(1,i,2) BY (1,2, k) 1V ({p}1)
d3 (k. 5,2) DS ,4(1,4,2) BY, (1,2, (jk)) 1" ({p}1)
A, (1,5,k) DS, (1,1,2) BY (1,2, (k7)) /" ({p})

IF IF | gIF IF IF _ _ olF _
— St + ST Sza(gk 2GR T CTiGR) 15(jk)

{ph)
2.k) 1 ({ph)

d3,(k,i,2) DY, (1,7,2) B (1,2, (ik)) J{V ({p})

N NN =N -

Xngg(]"i’Q) B?gH(Ta§7( ))

D
+ nggu ,2) D3 (1, 4.2) BY,u (1,
AY (1,0, k) DY, (T,5,2) BY (1,2, (ka)) I ({p}1)

SIF SiF SIF~ . SIF SIF o SIF

142 12 2i(ik) 2i(ik) 1i(ik) 14(ik)

N~ N~ ~DN

x DY, (1,7.2) BY, (1,2, (ik)) J\" ({p}1)

+ DYk, 4,2,) By (1,2, (ijk)) J{V ({p})
(5,52 DR ((R).,2) By (1.2, GGR) I (o)
— ., (k,i,2) DY, <<kz>zy>B?gH<12<J<m>> IV ({p})
dS o (i, 2) dS (i), 5,2) B,y (1,2, (ki)

1
+ 5 (k) 1 (ph)
1 _
- 5 ngg(LZ?Q) dgg<k ]7 )B?QH(l 2 ( )) ({p} )
1 , I~
~ 3 AY (1,4, k) dS (i), . 2) B (1,2, ((ki)j NI ({ph)
_ l IF QIF . IF IF IF
R R e S“““ﬁsu(mm
xd3 (ki) j,2) By (1,2, (ki) ) 1) ({ph)
1 . = —
+t 3 dg,g(kd,?)dg,g((kj)m?) Bi,u(1, 2, ((k5),9) J" ({p})
1 . = — =~
— 5 D8,(1,5.2) d;{guc,z, 2) B?gHa, 2, (ki)) Jf”({p}l)
1 , =
1 IF IF IF IF IF
Ty T oum T Smum 5 "t St~ St Ti((k3).0)

xd} o((k),1,2) Blys (1,2, (k) 4) J ({ph)
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AS(1,4,5.k) BY, (1,2, (i) IV ({p})

N

AY (1 k) AS (T, 4, (k) BY, 5 (1,2, (. (1)) ]\ ({ph

/-\_/

)

A% J(L7.k) A (T,4, (&) BY (1,2, (i, (K))) It ({p}1)

—_—

A2q< i k) AS (1,4, (k) BY (1,2, G, (GK)) I+ ({ph)

—_—

= dg,gae,j, 2) A, (1,4, (kj)) BY, (1,2, (i, (k7)) /1 ({p}h)

; D8, (1,3:2) A3, (Li. k) B, (1.2, (i) /" (o)

1 IF IF IF _ IF Ir
= | — o5 = ST — = 1
2 LD g | H0 T g M

Xqu(T,i,(ﬁ))B?gH(l 2. (i, (k) J}' ({ 1)
(

| =
PN

/—\./

DY, (1,3,2) AS, (T, 7, k) B, (1,2, Gk)) J1 ({p})

SIF~ S[F SIFTV _SIF S
14(ik) + Ti(j, (zk‘)) T 2i(ik) 2i(7, (1k)) * 2t

N~ NN~ N

x A3 (T, (ik)) BY, (1,2, (G, (ik)) 1 ({p}h)
AY(1,2,5,k) BYy(1,4,2) J{'
d3 (k. 3.2) AS 4y sa(1. 2, (5F)
AY1,2,5,k) BY (1,2,4) M
d3 (K, 5,2) A3 4 0q(1,2, (G >B?QH<T§ i) /i ({ph)
AY(1,2,4,k) By (1,5.2) 11V ({ph)

d, o (k,1,2) AS 1000 (1,2, (iK)) BY (T, 5,2) 7V ({ph)
AY(1, 2,1, k) BY, (1,2, 5) J1V ({ph)

d o (k,1,2) AG 4 aq(1,2, (iK)) B?QH@ 2,5) 11V ({ph)
G 402k, 1) AY (1,4, 2,5) 1 ({p}2)

S gg (20, 1) Al (1,5,2,0) TP ({p}2)

3,99—99

(
(
)
(
)
(

2
GY(2,k,1,1) AY, (1,2, 5) ItV ({ph)
GO

3,99—99

(2,k, 1) F2 (1,4,2) A1 (1,2, 5) IV ({p 1)
DO

3 qg<17 i? 2) Gg qg—>gg(§7 va) AggH(Tu Z]) Jl(l)({p}1>

a5, (k,1,2) A (1, j, (ki) By (1,2, (G, (ki) 1 ({phs

IF
2451

0, (L, k) A (T, (ik)) BY (1,2, 5. (8) T (ph
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b A (1L 2.R) GS (6, 2,T) AS (1,2, 5) IV ({ph)

3,99—qq
— G2 1Lk i) AS(T,2,5) 1Y (ph)
t G e (21 K) FY(1,2,1) AS (1,2, 5) 1V ({ph)
+ S, (hy1,2) GY gy gy (21, (kD) A (1,2, 5) J{V ({ph)

— G2,k 1,5) A, (1,2,0) J{V({ph)
+ G ge (2 1) FS(T,5,2) A 4 (1,2,0) IV ({ph)
+ DY (1,3,2) GS 4y 02k, T) A (1,2,4) J{V ({p})
+AS (L2 k) G 0. 2,T) A5 (1,2,40) 11V ({ph)

— GY2.1,k,5) AS, 1 (1,2,9) SV ({p})

G g (2 1K) FD L (T,2,5) A (T, 2,4) I ({ph)
)k, 5,2) GS e (201, (K)) AS 1 (T,2,0) JEV ({ph). (7.5.20)

In Eq.(7.5.19) and (7.5.20), the initial state identity changing limits could change

an initial state quark into an initial state gluon, 1, — 1,. We use GY and GY

3,4—9
antenna functions to mimic the single and double unresolved limits related to these
idc behaviour.

Similarly, the initial state identity changing limits could change an initial state

0

gluon into an initial state quark (anti-quark), 2, — 2,. In this case, we use A3 4oaa

and A9 antenna functions to mimic the corresponding single and double implicit IR
divergences involving the idc behaviour.

In the initial state identity preserving (idp) limits, we use antenna functions
like D} (ky, jg,14,2,) in association with idp reduced matrix elements to remove the
triple collinear (j//i//2), double collinear (k//j;i//2), double soft (i, j — 0) and soft

collinear limits (j — 0;4//2) with a term like
+DY(k, 5,1,2) BY (1,2, (kji) J{V ({p}h). (7.5.21)

However, the DY (k,,jy,14,2,) antenna function also contains implicit IR divergent
in idc limits like k,//2,, k,//74//24 and k,//2,//i, because the quark k is also colour
connected to the gluon 2. These limits are idc because the initial state particle will
be a quark, k,//2, — 2,. However, these idc limits are unphysical in Eq.(7.5.21)

because the reduced matrix element requires parton 2 to be a gluon.
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The solution to remove these unphysical idc limits requires two steps. The first
step is to remove the idc double unresolved limits and idp single unresolved limits
using the following terms:

+ DS(k, .4, 2) BY (1,2, (ki) J ({p})

—_~—

— d3(k, j,9) DS ,((kj), (i), 2) BY, (1,2, (kj, 73) 1" ({p}1)

—_—~—

— 13,(2,4,5) D§ (K, (15),2) BYy (1,2, (k(i5)) J{V ({p})

— AY(1,2,5,k) By (1,2,4) J{ ({ph)

+ A3 (1,5.8) AY o 0a(1,2, () BY,y(1,2.49) 11V ({ph)

— AY(1,4,2,k) BY, (1,2, 5) J{V ({p})

+ D3, (1,4,2) AY 0o (1,2, K) BY, (1,2, 5) I ({p}). (7.5.22)

3,99

We use AY(14,2,, g, kq) and A(1,, 74, 2,, kg) to remove the k,//j,//2, and k,//2,//ig
triple collinear idc limits in DY(ky, jg,7g, 24). The do5%, , terms in Eq.(7.5.22) are
designed to remove only the single unresolved idp limits.

The second step is to remove the single unresolved idc limits from DY (kq, 74,74, 2,),
AY(14, 24, g, kq) and AY(1,, 14,24, k). By using the following terms together with the

colour permutation (i <+ j) in Eq.(7.5.19) we can remove the k,//2, limit,

+2 A9 (1,2,k) A3 o(1,4,2) BS 1 (1,2,5) 1 ({ph)

3,99—qq

2 A3l (1,2,k) dS,(2,4,5) BY, (1,2, (i7)) 1 ({ph).- (7.5.23)

The boosted momenta p;, p; after the initial-initial mapping in Eq.(7.5.23) pre-
serve the Lorentz invariant s;;. This means that the dg’q(g, i,7) antenna function in
Eq.(7.5.23) will have an implicit IR divergence in the i//j collinear limit. To remove
this implicit IR divergence, we introduce two new terms

S39(2:4,0) A3 gy s0q(L.2.K) By (1,2, (1) 1 ({ph)
(ki 5) A8 ggsgq (1,2, (R)) Bl (L2, () 1tV ({ph)- (7.5.24)

Note that the A9

3,99—qq

(1,2, k) function in Eq.(7.5.24) has a 2//k limit which is
designed to remove the corresponding limit in d&i;?v o- However, we have now over
subtracted implicit IR divergences in the 2//i and k//i limits present in f3 (2,4, 7)
and d3(k,1,7) in Eq.(7.5.24).
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In order to close the loop of removing over subtracted limits by introducing new

over subtracted limits, we note that the combination

+2d3,(1,4,7) A 0T, 2,K) B 4 (1,2, (7)) 1 ({ph)

2 A3 (1,2,k) S, (1,4, 5) B, (1,2, (1)) 1 ({ph).- (7.5.25)

only gives a contribution in the 1//i limit. In the i//j and 2//k limits, the two lines
in Eq.(7.5.25) would cancel each other. The only remaining implicit IR divergence
is from 1//4 limit in d (1,4, 7).

Therefore, we can use the Dj(1,,1,,2,) and A3(1,,1,, k;) antennae to remove all

four over subtracted limits,

— DY ,(1,0,2) AS o1, 2.K) BY (1,2, 5) 1V ({p}1)
— AY (1,0, k) A oo (1,2, (i6) BY (1,2, 5) IV ({ph).- (7.5.26)

The eight terms in Eqs.(7.5.23), (7.5.24), (7.5.25) and (7.5.26) remove the single
unresolved idc limits in Eq.(7.5.22) under colour permutation i <+ j. In addition to
the collinear limits we just analyzed, the single soft limits need to be removed by
eight corresponding large angle soft terms.

The usage of D{(ky, jg,24,1,) in Eq.7.5.20 contains double unresolved idc limits
(k//j//2and k//i//2). Just as in Eq.(7.5.22), we use AY(1,,2,, 14, ky) and A3(14, 2,4, 7, kg)
to remove the idc double unresolved limits. There are no single unresolved idc limits
in DY(ky, Jgs 24, 1g)-

Explicit formulae for the other antenna subtraction terms in table 7.3 can be
found in appendix C.1. The double real subtraction terms fit the general structure
described in section 4.3.3.

To numerically test that the antenna subtraction terms given in Eq.(7.5.18)
remove the implicit IR divergences in Eq.(7.4.14) correctly, we use the same spike
plots for double real contribution defined in section 6.6.1 to test that the subtraction
terms converge to the matrix elements when approaching various double and single

unresolved limits at NNLO.
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7.5.2 Real-virtual subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.5.3, one can

combine the integrated double real subtraction terms and real-virtual mass factor-

T

q9> Which removes

ization term to construct the real-virtual subtraction term, do

both the explicit and implicit IR divergences from Eq.(7.4.15),

~ dl‘l dxg
o, =Ny Nk ro o d<I>H+z(p3,p4,pH;p1,pz){
1 2

N{B;’gif(iq, 2,3,4;) — —B

1 ~1,XT  ~ _ 1 :\:/IXT o~ Nf/\lXT o~
_N |:B2gH (1(]7273’45) - _B2gH (1117273’4(?) + _B2gH (1117273’46)} :

The corresponding relationships between the subtraction terms, file name in the
NNLOJET maple script and matrix elements (or combinations of subtraction terms) in
Eq.(7.4.15) and (7.5.27) are summarised in table 7.4. Note that the §21’g)]?(iq, 2,4, ja)
or BMYT(q .1,2, j-) subtraction terms do not remove all the single soft IR limits

2g9H q q
in E%gH(iq,Q,i,jq) or é;gH(iq,i,Q,jq) matrix elements. Only the combination of
E;&ZT(iq, 2,1, j;) removes all the IR divergence of the Ny contributions of the one-
loop matrix elements with Higgs boson plus two gluons and one quark pair.

The explicit formula for BZZIT(iq, 2, i,74) 1s,

LFT 5 5 . -
B2gH (1q’ 2, Zv]ti) =
1,11 LFI 1,FF C (2
o) + 8520 + I8 )| B(1,2.0.0) 1((0)a)

LIF 1,FI 1,FI o 7(2
- {+ Trga(s1) + 1y g (s2) + JQ,QG@Q]-)} Byyn(1,6,2,5) 1 ({p}e)
+ dg,g<jai>2) |:B%9H(17§7 ([7)) 5<1 _xl)(s(l _xZ)

1,11 1,FT . =~ 1
+ ( + Ty qc(51) + JQ,QG@Q@)) @345 :2) By (1,2 <w>>] 1V ({ph)

- {D;g(j,z', 2)6(1 — 1) 5(1 — a)

FF FI FI FI .
+ (+ le,QG<5ji) + J21,GG(Si2) + le,QG(Sﬂ) - 2J21,QG<S2(z‘~j))) Dg,g(jﬂ (2 2)}

x B 1(1,2, (7)) 1V ({p}h)
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subtraction term maple matrix element
1LFT /5 8 - - oA Aa
B2gH (1Q’27Z7jtj) quleHFT B%gH(1(I7277'7.](7) + B%gH(lq’Z727j17)
E;;]FHT(:IQ’Q7Z.7J_) quhzngFT E;;JSIT(iméal.’jq) + -/B\;;;{T(itpia Qqu)
AN 7)('7'1 ~ A . . = 2 A . .
B%gH (1Q72JZ7](7> quhzngXT B2lgH(11172JZ7](7)
SLYT /3 A . 3 A a .
B;gH (11172727](7) quthlHYT B%gH(l%Z?QM]Q)
=I,XT =1 ~
B2gH (1Q727i7j(7> qutthzngXT B2gH(1Q727i7jl7)
~1,XT ~ ~1 _
BZgH (1(17 7i7j(7> quttthlHXT BZgH(1Q727i7j(f)
SULFT /5 A . = &~ A . = A a .
B;gH (11172727]7) quthlHFT B%gH(1Q72727367> + B%gH(lmlvzaj(f)
LXT %~ = T~ b T
BQQH (1(17277'7.](?) qutt2g1HXT B2gH(1Q72727j17) B2gH<1q72727.]lj)

Table 7.4: NNLO antenna subtraction terms for real-virtual contributions in

qg — H+jet process and their relation to the matrix elements (or combinations

of subtraction terms)

1 \FI \FI 1IT
-5 + Jroc(8i2) = Loa(8i3) — Jaga(s12)
1,11 1,IF 1,IF
+ JSoc(s12) = oo (s15) + L2 oo(s1i))

IF IF IF
+ 8 (575> 150 Ty(ijyay) — S (8255815, T2515) — 87 (843, 815, T1z 1)

+ SIF(S12, 5145 $12,1j) - SIF(Sl(;j), S145 $1(5j)71j) + S]F(Su, S145 1)}

xd3 ,(j,4,2) Bl (1,2, (7)) 1tV ({ph)

DO

3,99
( ;
B

1,11
J 2,QG

3,99

v+

(1.2,4)

1,IT
J2,QG

(s13) +

(1,7,2) [BllgH(T,Zj) §(1 — 1) 0(1 — x9)

DO

1,FI
‘]2,QG 3,99

)

(1,4,2)0(1 — 1) 0(1 — z2)

1,IT

1,FI 1LIF
(512) + Sy 'ga(s2i) + Jyloa(511) — 20500

IV ({ph)

11T LFI
) — JQ,QG

(s13) — Jooc(552)

LIF LIF
) = Ja00(515) + S5 00(515)

(5m)) D

0
3,99

(1,1,2) Bl 1, M} IO (ph)

(1,4, 2)1
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+ SJF(Sﬁa ST, T12,15) — S (s12, S1j, T12,15) — SIF(8§j, 51, 3;1;)
+ 8 (59, 515, w35.15) — 8" (15, 515, 1) + ™ (1, 515, 1)]
XDg,qg(]'? Z.’ 2) B?gH(T7 57]) Jl(l)({p}l)
- {Aé,q(1717j) 6<1_331>5(1—[E2)
N T . 1
(I8 — T (o)) AL(10.0)| BlL2, D) I

1 1,IF 1,IF 1,FI
3 {+ T2q0(517) = Looo(s1i) — Taga(8i2)

+ Jooa(8652) — Tga(s12) + Tga(s12)
= 8" (515815, 1) + S (535, 815, Tay ) + ST (512, 815, T12,15)
— S (579, 515, 012,1) + 8 (825, 815, 025.15) — S (5935 515 Taijy 1)
x A3, (1,4, 1) Bl (1.2, (7)) 71V ({ph)
[Aéqg_}qq(l, 2,7)0(1 — x1) 6(1 — )
(4 28 (on) = Itom) ) Ay n(1.2.0)| B(1.20) 5 (0
{A;qg%qq(l, 2,7)0(1 — 1) 6(1 — x)
e (+ Ihfeo) + IS o) Tilom) ) A8 -(1.2.5)
x Bl,u(1,2,0) J{ ({p})
- {ﬂL Ty (521) + Jylo6 (si5) = Jyon(515) — Jyoa(512)
+ 20y 66 (510) — 20506 (51:) + 205 60 (s13) — 25 0 (53:)
— 8" (591, 811, 2i1i) — ™ (553, 510, ji1i) + 287 (533, 513, 79, 13)
+ SIF(slj, S14, T1504) + SIF(Sm, S1i, T12,11) — 251F(3ﬁ» STis wﬁji)
— 28" (51, 815, 1) 4+ 28 (s1;, 515, 1)

] A (1,2,0) B o (1,20 IO ({ph)

BT JFI . . = ™ 1
+ {_ 2J21,GQ(3§@)) +2J21,QG(5§(1'~]’)) dg,g—m(]727z) B?QH(LZ?(Z]))Jl( )({P}l)
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i+ 3 b0.a9-saq(512) — J;:ég,wqwﬁ)_ A ,(1,4,2) BY 1(1,2,5) 1V ({ph)
i |- T3 60,09 sa0(512) + J;;ég,qﬁqq@ﬁ)' d3 (1,4, 5) By (1,2, (i) 11V ({ph)
b () TR ()| (201 0) Bl (L2, (7)) I (o)
bR () = TR ()] A9,0(1,5,2) B (T 2.0) T (p))
o | (s T (s 81,700 B (L2, () T (o)
i 3 60.00-saq(512) + J;;égg,qﬁqq<sm>— d3 (2,5.9) B, (1,2, (7)) 1V ({ph)
T (512) B (15,52 7 ({p):)

1 . -
5 P 00agman(51) B, (L1.4) Blon (T, (7). 2) 1 ({ph)

1 1,11 . >y 7y 71
T 5 Ta00assaa(319) d4(2.,8) By (1, (50),2) 1} ({ph)
ISt 1 1,11 . - .= 1
| 2 Ty boarsad(312) = = Taoagsa(573) | ASaa(1,4,2) By (T, 5,2) 1V ({ph)
2 2

1 . 2
5 J21,7({2[Q,qg—>qq(812> ngH(Ljv Z, 2) Jl( )({p}2)

2
1 11 .. - /T 1
T 5 P 00aan(51) 8, (1,4,8) By (T, (i), 2) 1V ({p})
L s o ~\ 5 (1
+ 5 JQI,QQ,qg—>qq(81§> dg,q(zu Z)j) B?gH(L (jZ)7 2) Jl( )<{p}1)
1 1,11 1 Ve . - . 5 1
+ [+ 5 1200.0000(512) = 5 120009500 (573) | A3 44(1,5.2) By (1,4,2) 1V ({p})

Ag,qgﬁqq(lv 27]) |:B119H(Ta Z,?) 6(1 - 1’1) 5(1 - x2)
+ (+ Ty oee(s1) + J;’gég(si?)) A3 osaa(1,2,9) B (T, ﬂ)} IV (1)

(1,2,7)6(1 — 1) 6(1 — xq)

|:Aé7qg—>qq
1,11 1,FI Ny .
T (+ TEI (51) + TEEL (50;) — J;,QQ<su>) A m}
x BY 1(1,1,2) 1) ({ph)
AT AT JF JF s ,
+ [+ le,QG(Sw) - le,QQ(Sﬁ) - le,QG<31i) + le,QG(STz‘) - le,gé(sﬂ) + le,g&rg(sﬁ)

+ ( — 8" (s12, 15, T12,1) + ST (5130 5150 v13.13) + S™F (5330 5735 1)

- SIF(Sm 514, 1) + SIF(S% STis xii,ﬂ) - SIF(SQiu S1iy l’mn))]
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X AY sae(1,2,9) By (1,4,2) 1 ({p})

- 26 (2 10) A (L2080~ 20) 801~ 1) + (S (om
TR 530 + TEEE) ) a2 1.9) A (L2 | (0
= 2| G2 1,0) 801 = 2) 801 = ) + (T
TG (5) — 2L (57) ) G (2 1.0)| AL (1200 H((51)

+ {WL J21,’30<512) - 2J21 éIG<512) 2J21 5é(52z> + 2J21£é(522)

— TR (513) 4 2JLE (s1,) + JEEL (525) — TEEE (s15)

- SIF(512> S14; fL’lz,u) + QSIF(SE: STis xﬁ,ﬂ) + Q'SIF(32¢> S1is $2i,1i)
— 28" (53, 515, 03,1,) + S (514, 510, 1) — 28" (s, 57, 1)
— SIF(Szj, 14, T2j1i) + SIF(sz‘, S1i> Tji,15)
| X G n(21.0) A8 (11,2 500
— Dy tagge($12) AL (1,2,1,5) TP ({p}a)
+ gl (sy3) £2.(2,4,5) A% (1,2, (i5)) JV
2,GG.q'g—gg\°12/ J3,g\“> ) 3gH\ > 7Zj)) 1 ({p}l)
t Ty ge(512) 5y (1,3, 1) ASy (1,2, (50) 1V ({ph)
+ { JZIéIquﬁgg(SIQ) + JZIéIquﬁgg(Su):| F3 gg(]'7172) 14ggH(T § )J1(1)<{p} )
= B Ggea(512) AT (1,2,51) 1P ({p}2)
gL 0 (25 iNVAC (1.9 (74 J(l)
+ ZGGq/gHgg(812)f3,g( 7.]7Z> 3gH(7 7(]Z>> 1 ({p}1>
+ Ty bGaases(5T2) Fog(Lyi, ) ASepr (1,2, (19)) 11V ({p}h)
+ |: JQIéIquﬁgg(SIZ) + J21éIquﬁgg(812):| F??,gg(Lj) 2) AggH<T’ §7 l) Jl(l)({p}l)
- J21CI¥Iqu—>gg(812)A (1 Z 2 ]) Jl ({p}2)
Ty g se(512) FS0g(1,1,2) AY (1,2, 5) 1V ({ph)

Ty baaas(512) Feoo(1,7,2) A%y (1,2,0) IV ({ph1)

+ |: + J21 C{QIQ q9—qq 312) <]21 CIQIQ qg—)qq(312):| Gg qq(Z 2 ]') AggH(l ]a ) ({p} )
+ |: J21 Cng q9—qq 812) J21,7C{2€2,qg4)qq( ):| Gg ,qq (]7 27 1) AggH (T7 i’ §) ‘]1(1) ({p}l)

(7.5.28)
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Eq.(7.5.28) shares some unconventional structures designed to remove initial

state identity changing IR divergences. Structures like

— 20y (535)) + 200 b6 (555)) | 45 q (G 24) By (1,2, (1)) 11V ({ph) - (7.5.29)

are designed to remove the leftover contributions in the j//2 collinear limit. The
terms in the square bracket are free from explicit IR divergences and the implicit IR
divergences appear only when the j//2 limit is approached. The terms in Eq.(7.5.29)
are newly introduced in d6% 5y, and need to be integrated and compensated at the
double virtual level.

The second unconventional structure is

1,11 1,11 . =5 - 1
+ |+ JQ,QQ,qgﬁqq(Su) - JQ,QQ,qgﬁqq(Sﬁ) Ag,q(j(L (2 2) B[l)gH(L 27 j) Jl( )({p}l)

.. - e 1
+ | - J21,7C{21Q,qg—>qq(812> + J21,7C{21Q,qg—>qq(si2) dg,q<17 Za]) B?gH(]-J 2, (Zj)) Jl( )({p}l)

AT AT . = =~ 1
+ | - J21,QQ,qg—>qq(812) + JQI,QQ,qgﬁqq(81§) dg,q<27 7'7.]) B?gH(]-a 2, (Zj)) Jl( )({p}l)

(7.5.30)

Eq.(7.5.30) contains integrated functions involving idc limits, however the full struc-
ture only give finite contributions in various single unresolved limits and the idc
divergences are well regulated. The terms in the square brackets are free from ex-
plicit IR divergences. As we approach the p; — 0 single soft limit, the finite terms
in the square bracket would cancel each other as discussed in the special case in
Eq.(4.5.120). The implicit divergence from the single soft behaviour is then regu-
lated by the term in each square bracket. Similarly, the terms in the square brackets
in the last two lines of Eq.(7.5.30) regulate the i//j collinear limit. In the 1//i or 2//i
collinear limits, the J217’éIQ7qg_>qq(sﬁ) term tends to J;;ég’qg_mq(sﬁ) or lev’ngg_)qq(sﬁ)
and cancels against the second or third line in Eq.(7.5.30). The implicit divergences
from 1//i or 2//i collinear limits are then regulated by the net effects of the cancel-

lation.

The third unconventional structure is

1 . 2
~5 D200 agsan($12) By (1,4.3.2) 11 ({p}2)

1 .. = 1
15 2 00ag-saa(572) 34 (17.3) Blgr (T, (i7),2) I ({p})
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1 . ~\ 3 (1
15 2000900 (513) 34 (2.4.9) Bl (1, (7). 2) /i ({ph)

L o L o . = .5\ (1
+| + 5 JQI,QQ,qg—>qq(812) - 5 JQI,QQ,qg—Wq(Sﬁ> Ag,qq<17 4 2) B(l]gH(L.]? 2) Jl( )({p}l)

(7.5.31)

As introduced in Eq.(4.5.117), the NLO-like combination of terms ensures that
Eq.(7.5.31) is free from implicit divergences in the p; soft and i//j collinear lim-
its. In the 1//i collinear limit, the last line in Eq.(7.5.31) cancels against the first
two lines. In the 2//j collinear limit, a similar NLO-like combination of terms with
1 <> j exchange would regulate the implicit IR divergences in the same fashion.
Eq.(7.5.31) together with the i <» j exchange does not introduce explicit or implicit
IR divergences to the real-virtual subtraction term B;;%T(iq, 2,4, jg)-

Explicit formulas for the other antenna subtraction terms in table 7.4 can be
found in appendix C.2. The real-virtual subtraction terms fit the general structure
described in section 4.5.3.

To numerically test that the antenna subtraction terms given in Eq.(7.5.27)
remove the implicit IR divergences in Eq.(7.4.15) correctly, we use the same spike
plots for defined in section 6.6.2 to test that the subtraction terms remove the
explicit IR divergence of the matrix elements in any phase space point and converge
to the matrix elements when approaching various single unresolved limits at the

real-virtual level.

7.5.3 Double virtual subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.7.2, one can re-
move the explicit IR divergences in the double virtual matrix elements in Eq.(7.4.16)

with the following double virtual subtraction term,

~ d$1 dl‘Q
daéjg :A/:ngJ‘\?z‘GLom_lx—Zd‘I)HH(p?,,pH;phpz){
2,XU (7 4 1l ~oxvu, & 1 x2.XU
_NBlgH (1117 29736) - NBlgH (111729736) - mBlgH (1117 29736)

Ny ~2,XU o XU n A N]%QZXU o )
_mBlgH (145295 3g) — Ny By (14:2¢,3¢) — WBLQH (145245 3¢) ¢ J1 (p3)-

(7.5.32)



7.5. qg initiated subtraction terms at NNLO 195

subtraction term maple matrix element
Bf;)ng(iqﬁg?ié) qgB1g2HXU B%gH(iq7ani<7>
éf;[irl](iqﬁ Qg? ig) qgBt1g2HXU E%gH(LP an ig)
B;;;Z( 1,,2,.47) qgBtt1g2HXU fé; a(1g.2,,40)
§1:qH (iq,ﬁg,iq) qgBth1g2HXU §1gH(iq=Qg7iz1)
§f£,U(iq, ng ig) qgBh1g2HXU B\%QH(iCN ng ig)
Bur (I 2i0) | 9gB0Rg2EX0 | By(ly, i)

Table 7.5: NNLO antenna subtraction terms for double virtual contributions in

q9 — H-+jet process and their relation to the matrix elements

The relationships between the subtraction terms, file name in the NNLOJET maple

script and matrix elements in Eqs.(7.4.16) and (7.5.32) are summarised in table 7.5.

The explicit formula for Bfﬁ[U(iq, Qg, ig) in terms of integrated antennae is,

2XU 4 & -
BlgH (1q729’zé) =
—[Dg,qg<sm> T ()

bo

— TW (@) + ngg%g(sm)} (BigH(1,2,z) — ?B?QH(M,Z'))

1
- { * 5 Dg7qg(512) ® Dg,qg(512) - Félq) (xl) ® Dg»qg<$12)

1 1
_ = rgq)(xg) ® DY (s12) + 3 rg}) (z1) ® rg}])(xl)

2 3,49
1 1 ,
T3 T4 (1) @ TS (a2) + 3 L8 () @ TS (132)} By (1,2,9)

1
- { 2 Félg) (22) ® Dg,qg(‘Sl?) + Dg,qg(‘SlQ) ® Dg’g—’g(S%)

1
+3 T (1) @ T (22) — T (21) @ DY, (52:)

1 1 4
+ Z Fg(];) (372) & Fé;) (,Iz) - 5 F!(]i])(,flj'z) X Dg79_>g($27;):| B?gH(lﬁ 2,2)

] 99 g
1

-+ 5 Dgg_)g(SQ’i) & Dgg—)g(‘gzi) B:(l)gH(l’ 27 2)

1 1
- [ + 3 Do (22) @ T (23) = 5 T4 (@2) @ D5 (521)
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1
-+ Dg,g<82i) + 5 Dg,g’(SQi) + Dé,g(sm) - Dg,g—m(sm) ® Dg,g%g(‘g?i)
— DYy q(521) @D (52;) + 2T (w2) @ DY, (520) — T (w2) @ DY, (52:)

bo 0 524 - bo 0 524 o
+?D3,g~>g<s2’i> (M—z + — D5, q(52:) )

R € R
bO 0 1 m(2) 0 ;
- Dy ysq(52i) — 5 Loy (x2) | Bigr(1,2,4)

9 4,99

1 nadj
N [ * Dg,qg(sl?) +5 Dy d](312) + Dé,qg(‘sl?) - Dg,qg<312) ® Dqug(‘sl?)
bo
€

- { — A, (s12) — AT8Y (s15) — AY  (512) — A} o (s12) — A 1, (512)

S12 - — 1 - .
+ ngg(‘gl?) <,U_2) - F((J?J)('Tl) D) FE;?(@)} B(l)gH(1727Z)

R

+ Fglg) (l’g) ® Ag,qg—mq(sm) -2 Fz(]}]) (1]2) ® Ag,qg—mq(sm)

by ( 512 -
+2 Ag,qg—wq(‘sl?) ® Agﬁqq(sm) T (M2 'Ag,qg%qq('sl?)
R

bo .
+ ? Ag,qg%qq(812)‘| B?gH(L 27 Z)

1 . - 1 .
S 5 o) = Ao+ A0 8 AL (o) | B (1,20

=268, (512) — 25,,00) <x1>] AL p(1,2,4)

[ = G 512) © T (50) — ST (1) © T (5)

T (20) © G, o (512) + SyorgT D (2) @ F;;)(xl)} A (1,2,4)
| = G128 P10 = Spma T ) 8 Ty (1)

+ T(21) ® GY g (512) + SygT D (21) ® rgg(;cl)] AS 4 (1,2,4)
- { —2G3 0 gg(512) ® F9 1 (512) = 2.5, T80 (21) @ T3, (512)
+ Fg?(xl) ® gg’qgﬁgg(su) + Sq_mFélg)(xl) ® Fg})(xl)
+ Fglg)(l’g) ® G grgq(512) + Sq_,gFélg)(xg) ® Fg?(xl)} Agn(1,2,9)

by

0,nadj 512 -
- [ -2 gg,qg(sm) -2 g4,qg ?(s12) — 2 gg,qg(sm) - 2? (M_Q) gg,qgﬁgg(sm)
R
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bo
+ 2? gg,qg%gg(slz) +4 g??,qg%gg(‘SlQ) ® ‘F??,gg(‘gl?)
+2 A9 (512) @GS (s12) —2TW (1) @ GI (s12)
3,q9—+qq \ 512 3,q¢\ 512 g9 \ X1 3,q9—+99\512
b

+2 Ft(;]) (x1> ® gg,qgﬁ\gg<812) + 2?0 Sqﬁgréz) (l’1>

- Sq%gpélg)(xl) ® Fg%;)@l) + Sq%gré? (1) ® Félq) (1)

-2 Sq%gfé%;) (xl):| AggH(lu 2, Z)

. bo ‘

_[_ AS 1gsqq(512) — Sgﬁqrgy(m)] (+BllgH(1,’L,2) — ?B?QH(I,z,Z))
- |: + F((]}]) (‘Tl) ® Ag,qg%qq('sl?) + SQ—NIF((;g) (ZBQ) ® F((]}]) (xl)

1

- 5 g,qg—)qq(sw) ® Dg,q(sli) -

1

5 Sl (02) @ D, (520 | By(1,12)

—[+ T (00) @ AL oo(512) + SyoraT (22) ® T ()

3,49—q9q

1

- 5 Ag,qg%qq(812) ® Dg,q(SQi)

1 .
5 Simal ) an) © DY )| P12

< by [ s -
,nad, 0 12
- [ - Ag,qg ](812) - ‘Aiqg(su) - Aé,qg(sl?) T e (,u_z) Ag,qg%qq(sm)
R

+ Ag,qg—mq(‘gl?) ® Ag,qq<812) - th;) (x2> ® Ag,qg—)qq(sm)
(1) 0 1 (1) ()
+ Fgg (l‘g) @ A3,qg—>qq(512) + 5 Sgﬁq]‘_\qg (.1'2) ® Fgg ('1'2)
1 = .
= 5 Sooalfy () @ TL) (22) — Sgﬁqrg‘?(xz)} Byu(1,i,2) (7.5.33)

The integrated antenna subtraction terms in Eq. (7.5.33) compensate the double real
and real-virtual sutraction terms we introduced in Eq.(7.5.19), (7.5.20) and (7.5.28).
These terms are arranged by the Lorentz invariant products s;; to further illustrate
the dipole structure of the antenna subtraction method.

Using the dipole functions introduced in section 3.5.2 and 4.7.2, Eq. (7.5.33) can
be re-expressed in a similar structure as the two-loop Catani pole structure of Eq.

(4.7.156) as,
BfﬁU(im ng ié) =

L b .
| = ) = A | (<BlaL 2.0+ 2 B2
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L ior FI 11 ,
) [Jz,’QG(SH) + Jooa(s2)| © | Jooe(si) + J;gé(sm) Biyn(1,2,4)
2,FI 2,11 w211 2. 1F ,
- |:J2,QG(322'> + J306(512) + J500.005q(512) + J22,QQ(312'):| B?gH(l? 2,1)
1,11 .
—2 JZ,GG,q/g%gg(SH) X Ail’;gH(L 2, Z)
1,11 1,FI LIF 1,11 <
20566 4 g9 (512) ® |:‘]2,GG(82i) + Jyee(s1) + JQ,GG(812):| Aggﬂ(la 2,1)

2,11 .
_2J2,GG,q’g—>gg<812) X AggH<17 2, Z)

, bo :
_JQIJCIQIQ,qg%qq@l?) X (+BllgH<17Z’2) - ?B?gH(LZ?Q))

LT LIF LFI .
—J500.49—4q(512) ® |:J2,GQ(81i) + ‘]2,QG(32’L'):| B?gH(la i,2)

_J22:C{2[Q7q9—>qq(512) X B(l)gH(]-aiv 2) (7.5.34)

where the NNLO integrated antennae are,

1
Ty oc(s2) =+ DY (s2i) + 5 DYy (s23) + Dy g(s21) — DYy (521) @ DY, (52)

4,9 9
- D§,g—>q(£2i) & Dg7q<32i) + 2 F‘(I}I) (332) & Df?,g—)q(S?i)

bo AN
- Félg)<x2) & Dg,y—»q(‘g?i) + e Dgy—m(sm) (E)
b() 524 - bO [
+ ?Dgg%q(sm) (@) T Dg,g%q(m) 3 FE,? (72),

1 nadj
Ji’élc(slﬁ =+ D ,(s12) + 3 Dg,’qg V(s12) + D3 ,4(s12) — D y(512) ® DY (512)
bo
€

Ty (512) = — Ag,qg(‘le) - Ao’nadj(sm) - Ag,qg(‘le) - Aé,qg(812> - Aé,qg(‘SlQ)

2,QQ,99—qq 4,99

s12\ ¢ = 1 _
Dg,qg(‘sl?) (ﬁ) - Fé?z)(xl) -5 Fé?(%% (7.5.36)

+
i 2

+ F!(];)({EQ) X qug_)qq(slg) — QF((;])(QZQ) X qug_)qq(SlQ)

F2A35 4 saa(512) @ Ay (512) — b?o (%ﬁ) h A3 4g-sqa(512)
+ % A graa(512), (7.5.37)
j;ég(sh) == % "leol,q(sli) - Aé,q(sli) + % A3 (1) @ A3 (s12), (7.5.38)
Ty 66 gasaa(512) = = G1g(512) — Gl @ (s12) = G5 4y (512) — % (Z—z) B G5 4999 (512)
+ % G5 4999 (512) 2G5 1 s00(512) © F3 o (512)
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+ Ag,qg—)qq(‘Sl?) ® gg,qq(su) - FE;;) (.771) ® gg,qg—)gg(812)
bo
€

1 1
—3 Syosgl0 (1) @ L) (1) + 3 SyosglW (1) @ T (1),

+ Fé;) (331) ® gi(’)),qg—>gg($12) + Sq—)gl—‘é}]) ('T1> - Sq%gf‘é?]) (-Tl)

(7.5.39)

: by [ S12\ ©
2,11 0,nad 0 12
J2,QQ,qg—>qq(312> == "44,3; "(s12) — Ag,qg(sl?) - A;’,qy(slz) T e (uz ) Ag,qg—mq(slz)
R

+ Ag,qg%qq<512> ® Ag,qq(812> - F((;]) (132) ® Ag,qg%qq(512)

1
+ ng)(ll'g) ® Aqug_)qq(&z) + 3 Sg_,qFfllg)(:vg) ® ng)(:vg)

1
-5 Syl (22) @ TS (22) — SyosgllD) (2). (7.5.40)

In Eq.(7.5.33) and (7.5.34), the terms proportional to B} ;(1,2,) and B}, (1,2, 1)
cancel directly against the explicit IR divergence in the two-loop matrix elements
in Eq.(7.4.16). Other terms proportional to Bj,;(1,4,2), B} ;(1,4,2), Az 5(1,2,1)
and A§ ;;(1,2,4) contain the initial state identity changing (idc) behaviours and thus
have no corresponding double virtual contributions from the matrix elements. We
use a FORM program to analytically check that these idc terms are explicitly finite.

By taking the leading colour contributions to qg — H+jet at NNLO as an
example, we have given an explicit example of how the antenna subtraction terms
removes the IR divergences from the quark-gluon initial state.

Explicit formulas for other antenna subtraction terms in table 7.5 can be found
in appendix C.3. For gq, g and gq initiated processes, the NNLO subtraction terms
are related as in Eq. (7.4.17).



Chapter 8

Production of Higgs Boson Plus
Jet from Quark-anti-Quark

Scattering

In this chapter, I will focus the discussion on the g4 — H+jet contribution to the
fully differential cross section for Higgs plus jet observables up to NNLO. The leading
colour contribution to the q¢ — H+jet channel will be taken as an example of the
implementation of the antenna subtraction method as introduced in chapters 3 and

4.

8.1 ¢q initiated cross section at LO

At Born level, only the q¢ — H + g process contributes. The spin and colour

averaged differential cross section is

- 1 N A
A6 =Ny Nro d®p1(ps, pus p1, p2) { NB?gH(lqa 3, 2@)}J1(1)(p3)- (8.1.1)

An explicit formula for B} ;; is given in section 3.1.2 and 5.1.6.
Using the line-reversal relation and charge conjugation symmetry introduced in

chapter 5, the gq initiated channels are related to dfffqz

(21 ¢ 72), (8.1.2)
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where x1, x5 are the momentum fractions of the initial state partons as introduced

in Eq. (1.4.39).

8.2 ¢q initiated cross section at NLO

8.2.1 Real cross section

The real radiation contribution comes from the q¢g — H + gg and ¢ — H + QQ

processes,

df}fq :'/\/“ZQNJ}\?LO d® g 12(ps3, pa, PH; pbpz){

1 A A A A 1 ~ Ao~ o~
+§ ngH(lm 37 47 21?) + ngH(lq’ 4a 37 2(1) - mngH(lqa 37 47 QQ):|

N A A 1 A oA 1 R R
+Wf0([))gH(1Q7 3Qa 4Q? 21?) + NcggHuqv 2(2’ 4627 3(?) - nggH(lm 3(1? 4(1’ 2!1)}
J(Q) 8.2.3
x J;7 (p3; pa) (8.2.3)

The squared matrix elements in Eq.(8.2.3) are discussed in section 3.1.3 and 5.1.7.

8.2.2 Virtual cross section

The one-loop contribution is from the ¢4 — H + g process and the differential cross

section is given by,

d6r¥7 :NQQNJ‘\;LO d®p41(ps, pri P15 D2) {

Details of the relevant matrix elements in Eq. (8.2.4) are given in section 3.1.3.
Just as at leading order, the NLO ¢q¢ initiated channels are related to the ¢q

contributions:

doygnro = dogenro (21 > 22). (8.2.5)
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subtraction term maple matrix element
0,XS S

By npo(les i 35 24) B2gOHXSNLO ngH(lq, )7, 24)

By ivio(ei, 7, 2) Bt2gOHXSNLO BY y(14,4,5,2,)

(14 (
X5 5 . . A ~ .. A
Comninro(aria,jq.27) | aqbCOgOHXSNLO | CO, 4 (14,40, jo, 27)
(14 (

0,XS A . .
Coninro(lg: 20530, 1) qqpbCOgOHXSNLO ngH

Table 8.1: NLO antenna subtraction terms for real contributions in qqg — H+jet

process and their relation to the matrix elements

8.3 ¢q initiated subtraction terms at NLO

8.3.1 Real subtraction terms

Using the NLO antenna subtraction method introduced in section 3.3.3, one can

construct the antenna subtraction terms to mimic the implicit IR divergences in

Eq.(7.2.3) such that

d&fq,NLO :qu NJ]\?LO d®m o (pa, P4, PH; D1, p2) {

1 0,X5 5 0,X5 5 I ~oxs 4 3575
2, BQgHNLO<1q7374>2 ) B2gHNLO(1q747372§) - mBng,NLO(lqv‘g?él? 2@)
Ny oxs s L oxs /5 3
ngH NLO(1 3 4Q7 2(7) + NCSQH,NLO(LP 2(27 4@7 3q)} (8~3-6)

The corresponding relationships between subtraction terms, file name in the NNLO-
JET maple script and matrix elements are summarised in Table 8.1.

Explicit formulas for each subtraction term in table 8.1 are as follows:

BSQ)ESNLO( i,5,24) =

d9.,(1,1,5) BYyu (T, (13),2) /I ({ph)

d,4(2,5,1) By (1, (i7),2) J{V ({ph) (8.3.7)
BS;ESNLO( 1,7, 2q) =

+AS.(1,4,2) BY, (1, 5,2) 11V ({ph)

+AS .(1,5,2) BY 5 (1,1,2) 1V ({ph) (8.3.8)
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XS ~. . A
ngH,NLo(lqv Q5 JQ; 29) =
1 . - = 1
5 B3,(11.) Bl (1, (7).2) 1 ({ph)

1 - ~\ 5

5 E34(2,5.0) Bl,u(1.(i5).2) 1 ({ph) (8.3.9)
XS 24 .

C(())gH,NLO(LP 26, Jq ig) =

+

o = = 1
~E3 g g(0:5.2) Blyw (1.2, (i) 1V ({p})
—Ef (321, 1) Bl (i), 1,2) /i ({ph) (8.3.10)
To numerically test that the antenna subtraction terms given in Eqs. (8.3.7),
(8.3.8), (8.3.9) and (8.3.10) remove the implicit IR divergences in Eq. (8.2.3) cor-
rectly, we use the same spike plots defined in section 6.4.1 to test that the subtraction

terms converge to the matrix elements when approaching various NLO unresolved

limits.

8.3.2 Virtual subtraction terms

Using the NLO antenna subtraction method introduced in section 3.5.2, one can
combine the integrated real subtraction and mass factorization terms to construct

the virtual subtraction term which removes the explicit IR divergences in Eq.(8.2.4),

. dz; day
dO-Z:j,NLO :A@q Nz‘v/Lo x_lx_2dq)H+1<p3apH§plap2){

A A 1 ~ . A Ny ~ . A
L,XT 1L,XT I pLXT
+BlgH,NLO(1q’ 3, 26) - mBlgH7NLO(1Q’ 3, 2(1) + WBIQH,NLO<1II’ 3, 2(1)

1 A
+ﬁ08§)1§,TNLO(1qa 273(1)} (8.3.11)

The corresponding relationships between subtraction terms, file name in the NNLO-
JET maple script and matrix elements are summarised in table 8.2.

The explicit formulae are as follows:
LXT TR
BlgH,NLO(1q7Z7 29) =
|+ higalsn) + J;;gas%)] Blyu(1,4,2) J;V({ph) (8.:3.12)
SLXT a0 .4
BlgH,NLO(LI’ i,2) =

1 1 :
—| + 5 hae(siz) + 5 J;&@m] Bl (1,4,2) 1V ({p})  (8.3.13)
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subtraction term maple matrix element
Biruvio(le i, 29) B1g1HXTNLO Blon (11 29)
Ellé)lfl?rNLo(iqﬁ i, 2) Bt1gI1HXTNLO E%QH(iq’ i-2y)
BT ol 2) BhiglHKTNLO | Bl (144,2,)
C(?jﬁ[?NLOﬁQ’ Q’ Zq) qgqpbCOgOHXTNLO | IR safe

Table 8.2: NLO antenna subtraction terms for virtual contributions in qg — H+jet

process and their relation to the matrix elements

Ellé)IiITNLO(im i,2g) =

-+ jzlcgg(su) + jzlgérg(szz) B,y(1,i,2) 1V ({ph) (8.3.14)
C(());Iir,TNLodqa iiq) =

— 0. g(81) Blyp (2,1,4) IV ({ph)

Ty bt s (520) Bl (1,2,0) IV ({ph) (8.3.15)

C’g;é’TNLO(iq, 2,i4) comes from the integrated idc term in Eq.(8.3.10) and NLO mass

factorization terms and only provides a finite contribution to the cross section.

8.4 qq initiated cross section at NNLO

8.4.1 Double real cross section

The double real contribution at NNLO for q¢ — H+jet comes from the qq —
H + gg9q, q¢ — H + ¢QQ and q@ — H + gqq processes,

dﬁqu :NQQN]I\?]I\%ILO dq’H+3(P37P47P57PH;P17P2){

N s .., A 1~y & o~ o4
_._y Z |:ng1_]<1[1,7,,], k’2(7) - mngH(lt;HL]J k7 2(]):|
" (4,4,k)EP(3,4,5)
(N2 + 1) o o~
+ 3|N3 BSQH(1Q73a47572§)
+Nf {C?gH(iqﬂS’BQvZLQ? Qq> + C?QH(LP?)Q’ZLQ? 57 QQ>‘|

Ne| ~ A A ~ P =0
+N_]; |:C?gH(1II7 57 2@7 4Q7 3@) + C?gH<1lI7 2(77 4Q7 57 3@) - ClgH(lfb 21774Q7 3@7 5):|
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+ [C?gH(iqa 5, QQ? 4Qa 3(?) + O?QH(:ALQ’ QQ? 4@? 57 3Q):|

1 |~ - A ~ - A =0 A
_'_m {C?gH(lm 5,3¢,4Q; 2@) + O?gH(lqa 33,4Q, 9, 2@) - OlgH(LZ? 33,40, 2¢, 5)
]. ~ ~ -~ A ~
_N {D?gH(lqv 44,24, 34, 5) - D?gH(lm 44,24, 3¢, 5)}
1 ~ A .
_'_WD?gH(lq?équzqv 34, 5)}J1(3)(p3,p47p5) (8.4.16)

The squared matrix elements in Eq.(8.4.16) are discussed in section 4.1.2 and 5.1.8.
The 1/3! coefficients in Eq.(8.4.16) are the averaging factors for three identical gluons
in the final state. The sum over active quark flavours gives the N factor to the
CYymrs 5?QH and 5(1]91{ matrix elements. The D{ 5 and E?QH matrix elements don

not have the N factor in front as the final state quarks are identical to the initial

state quarks where the flavours are fixed.

8.4.2 Real-virtual cross section

The real-virtual contribution at NNLO for q¢ — H+jet comes from the q¢ — H+gg,
qq — H + QQ and ¢ — H + qq process,

d&fqv :NQQNJ}\?J‘\//LO d® g 2(p3, Pa, PE; P15 D2) {

N 1~ - . . A Ni~y o~ . A
+§ Z |:B219H(1q72’]7 2@) - mB%gH(lq, 2,97 2@) + WfB%gH(]‘(PZ?]? 2q):|
" (4,5)EP(3,4)

1 Np ~
+Nf |:Cf}gH(1Q74Q73Q7 2q) moégH(lq’4Q73Q72q) + ]\;C(}gH<1Q74Q7 3Qa 2‘]):|
1 25 1 1 75 Nf i 5
+ COgH(ltJa 2Qa 30, 4q) WCOgH(]“P 2@7 3Qv4q) + WCOQH(]'(]’ 2@7 3Qv4q)

1 I 1 ~ PO N¢ ~ A A
| Pl 20:3040) + 5B 2030040) = - D203 40) }

x J? (ps, pa) (8.4.17)



8.5. ¢q initiated subtraction terms at NNLO 206

The squared matrix elements in Eq.(8.4.17) are discussed in section 4.1.2 and 5.2.
The 1/2! coefficients in Eq.(8.4.17) are the averaging factors for two identical gluons

in the final state.

8.4.3 Double virtual cross section

The double virtual contribution at NNLO for q¢ — H+jet comes from the qg —

H + g process,
d‘%«;/év :qu Nz‘\%Lo d®u1(ps, prip1, P2) {

+NB%gH(iq7 3, ti) + NFE%gH(iW 3, Qti) +

N
Ne22 o o 1~ . 1= )
+ 773 Bag (13, 20) + 5 Blon (1,3, 29) + 73 Bagn (14,3, 25)}J1( '(ps)

(8.4.18)

The squared matrix elements in Eq. (8.4.18) are discussed in section 4.1.2 and the
explicit formulas are given in [119].
Similar as at LO and NLO, the other quark anti-quark initiated cross section at

NNLO are related to doyg nvnro:

dogg,nnLo = dOggNNLO (71 ¢ T2). (8.4.19)

8.5 ¢qq initiated subtraction terms at NNNLO

8.5.1 Double real subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.3.3, one can

construct the double real subtraction term that mimics the implicit IR divergences

in Eq. (8.4.16),

6. =Ny Niv Lo d¢H+3(p37p4,p5,pH;p1,pz){

N 0,XS/5 - .1 4 1 S0FXS 5 S .
+§|: Z B3gH (111’27]7 k72(j) - mBS-‘]H (1q,3,4, 5, Qq>
(3,,k)EP(3,4,5)
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_l_

(N2 4 1)[=0%5 . -,
W BSgH (1q73747572§)

o N N, ~ N N
, XS f FXS
N O (14 5.3 40, 20) + 55 Cgir (145,24, 40, 3¢)
1

0,YS /4 A
+OlgH (1q7 5, 26—27 4q, 3(7) + N2

~0,YS /3 A
ClgH (1qa 5,37,4q; 2@)

+_D?’Q)I{IS<iQ74QJQ(Y7 SQ75>} (8520)

The corresponding relationships between the subtraction terms, file name in the
NNLOJET maple script and matrix elements (or combinations of subtraction terms)
in Eq.(8.5.20) are summarised in table 8.3.

The égégxs(iq’z 7, k, Qq) function is the subtraction term for a combination of
six Egﬁ,s(iq,z j, k, Qq) functions with full permutations of the three gluons (one of
which is a photo-like gluon). Each Eg;ﬁs(iq,z j, k, Qq) function does not mimic all
the double and single unresolved limits of one X topology matrix element. Only the
six permutations together removes all of the double and single unresolved limits of
all six X topology matrix elements.

In the 5&’72){5(1(1, 7, Qq, kg, jg) subtraction term, the momenta of the secondary
quark-antiquark pair (QQ) can be symmetrized as the jet function does not distin-
guish quarks and antiquarks. Similar to the structure introduced in qgCt1gOHFXS
in section 7.5.1, the symmetrized subtraction term 5’?&1}?5(1(},2’, Qq, kq,jo) mimics

the implicit IR divergences in the combination,

1 ~ - AL ~ aoA . =0
5 Z {C?gH(lqvk>2qv]QvZQ)+0109H(1q>2qv]Q7k7>2Q)_ClgH(lquq’]Q’Z@k) .
P(i,5)

In the 5?;25(1(1, i, Ja, ko, QQ) subtraction term, the quark labeled with QQ is in
the initial state. This means that for matrix elements,
~0

C?gH(ilbiajtjv kQa QQ) + C?gH(i(bjfﬁ kQaia QQ) - ClgH(iQajt?7 ka QQJ)?

we can not use the Q < Q interchange technique to avoid constructing subtraction
~0 N .
terms for C'y (14, kg, 2¢, g 1)-

Taking only the colour leading contribution as an example, the explicit formula
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subtraction term maple matrix element
Bygyi (1,3,5.k,27) | B3gOHXS BSyr (14,4, %, 29) + By (14, k. 5, 2)
By X5(14.,1,5,k,2) | Bt3gOHFXS > b Bogy (gs 1,4, K, 2)
By (14,1, k, 24) Bt.3gOHXS BY (14,1, k,2,)
Ezjf(iq,z 7.k.2:) | Btt3goHXs Ezg (107,75, %,2,)
Cro (4,4, 5, kg, 24) | qabClgOHXS | CF (14,4, 5o, kg, 24)
+C0 (14, 4o, ko, 1,29)
Cron (14,4, 20, kg, jg) | aqpbClgonys | 94 (1,.1,24, ko, j7)
+C (14,20, kg, i, jg)
Cri¥5 (1404, 24, kq. jg) | aabCt1gOHFXS| i (Z)@féﬁs(iq,i,éq,k@j@)
P(j,k
Coi’ (14,1, 2, kg, jg) | adbCt1gOHXS é?gg@q, i, 24, k@, 50)+ Oy (14, 24, ka4, o)
~Cryu(1y, 24, kg, g, )
Cov’ (14,4, jg ko, 20) | aapbCt1gOHYS 59915,(1[1, i, jo ko, 20)+ O i (1q, Jg ko, i, 20)
~Cyn(g da kg, 2. 1)
D?Q)ﬁls(iqakqaiéajqﬂ) qqbD1gOHXS D?gH(imkqvédajéai)
5?’9)25(1(1, kq, Qcﬁjcﬁ i) qqbDt1gOHXS ‘5?gH(iq7 kq, Q@J@ i)

Table 8.3: NNLO antenna subtraction terms for double real contributions in

q@ — H+jet process and their relation to the matrix elements (or combinations

of subtraction terms)
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for By (14,4,4, k,24) is
By (4,1, k,24) =

+d§ (1,4, 5) BS, (T, (1), k. 2) J1”) ({p}2)

+ 130, 5, k) Boy (1, (57), (5k), 2) 1\ ({p}2)

+d3 ,(2,k, 5) By (1,4, (5k),2) 1\ ({p}2)

+d3 (1, k. ) By (T, (kj),7,2) 11 ({p}2)

+ 13k, 5.3) B,y (1, (k7). (7). 2) /P ({p}2)

+d3 (2,1, 5) By (1, k, (71), 2) TP ({p})

+ D§(1,4,j, k) By (T, (i5k), 2) J{” ({ph)

) (1,4,3) DY, (T, (7). k) B (T, ((0)k),2) SV (o)

= £, k) DY, (1, (), ) B (T, (57, 78),2) ()

—_~—

—dS (1, k, ) DY, (1,4, (k7)) B, (T, (i(k)), 2) IV ({p})

—_~—

by 8,(1,1,3) 8, (T K () Bl (T, ()R),2) 1 (ph)

—_~—

g ,(2,0,3) 8, (1K () Bl (T, (k17)),2) 1 ({ph)

quq( 1 2) d3 (T k, ) BYy(T, (k),2) T ({p})

_1 L §IF. _glF__ _ gIF_ IF__ _ gIF | gIF

S =S ST
2 [N T Ty R T gy e
({ph)
((9)0),2) " ({ph)

—

-5 dgq(2 k3 d5 (1,4, (k) By (T, i(k5),2) 1 ({ph)

132

_

xd (1, k, (i7)) Bl (T, (k(ij)),2) J

)
1
1 _
5 da (1K, ) dg o (1,4, (k3)) Bly (T,

.. = A 1
Ag Lk 2)dS (1,4, 5) B (1, (i5),2) 1V ({ph)
1 IF IF I IF IF IF
—2 | T w5 Th((ky)i) ) S%(@) ~Ouz o

——

xdf (1, (k5)) Bl (T, (i(k5)), 2) SV ({ph)

+ DR,k 3,0) Blyn (1, (178),2) 1" ({ph)
2,k §) DYy 3, (K 1) By (1, (1(51) 7*)):2) 1" ({ph)
= 3k, 1,1 D3 (2, (), (G1)) By (1, (K5, ,50,2) 7 ({h)
8 (2,,) D3, K (7)) By (1, (7)), 2) 1 ()
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b (2,5, 9) (2., (57) Bl (1, (R, ) 1 ()
g (L 5) (2.1, () B (T, (1k)),2) ()

5 Ag qq(17 ka 2) dgq(?a Z?.]) B?QH(T7 (&)75) J1(1)<{p}1)

1 IF IF IF IF IF
+S - ~ - 55

ol

SIF

1k2 1k2

D) (kD) o)) RED T Tk

xd) (2,1, (k7)) By (T, (i(k5)),2) I ({p})
%d (200, 5) dS @,k (7)) B (L, (00K, 2) SO ({p )

e~

g (1,79 (2, (7)) By (. (+(1)),2) V()

Ag wa(1.2)dS (2, k. 5) BY (T, (k5),2) 1 ({ph)

1
e I
2 [0 T iy TR T gy

XS (2, 5, (7)) B (T, (k7)) 2) 1 ()

— AS(1,i, k,2) BYy(1,5,2) J f ({ph)

+ A 4q(1,5,2) A3 (1,1, 2) BYu(T,5,2) J{V ({ph)

+A3qq<1,z,2> AS (18, 2) By (1,5.2) 11V ({ph)
Ag i 1.7,2) /{) ({p})

o dg,q<2,k,j>A2qq<1,i,§> Blyu(1. (k). 2) 1" ({p})

b (1K) A o(T,6,2) Bl (T, (59).2) 70 (o))

IF IF IF IF IF IF
D) — St T Siki T SZk (k5) S% (k7) STk;(E}) o Sik(é})

><A2 ai(1,,2) B?QH& (k). 2) I ({ph)
5 A3,0(1,1,2) A3 (T k,2) By (1,3.2) J({ph)
by B,(2,,3) A2 (1,8, 2) By (T, (77),2) 17 (o))
b B (1,4,3) A3 (T, k. 2) Bl (T, (7),2) 1V (o))
5 | SISy SIS SIS
X A3 (T, k,2) BY (1, (17),2) J{ ({p})- (8.5.21)

Explicit formulae for the other antenna subtraction terms in table 8.3 can be
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found in appendix D.1. The double real subtraction terms fit the general structure
described in section 4.3.3.

To numerically test that the antenna subtraction terms given in Eq.(8.5.20)
remove the implicit IR divergences in Eq.(8.4.16) correctly, we use the same spike
plots for double real contribution defined in section 6.6.1 to test that the subtraction
terms converge to the matrix elements when approaching various double and single

unresolved limits at NNLO.

8.5.2 Real-virtual subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.5.3, one can
combine the integrated double real subtraction terms and real-virtual mass factor-
ization term to construct the real-virtual subtraction term, d&%, which removes

both the explicit and implicit IR divergences from Eq.(8.4.17),

~ dJJl de
635 =N Nk ro x—lx—2d®H+2(p37p4,pH;p1,pz){

N I R Nt ayxr
_'_5 |:B%£]};IXT(1(1’3,4, 2(1) - mB;;ISITﬂq’B’ZL’ 2@) + Z WfB;é)I{IT(lq7Z’j’2q):|
' (4,4)EP(3,4)
| [eLxT | ST N, SLXT
=5 N o~ o~ A ~ AN o~ o~ A f ~ A~ ~ A
o {325;11 (14,3,4,24) — 2 Bagn (14:3,4,29) + ~ Baon (14,34, Qq)]

. A 1 ~ - A Ny ~ . .
LEXT LFT f ALXT
+Nf |:COgH (1q>4Q> 3Q; 26) - mCOgH (1q74Q7 3Q; 21?) + WCOgH (1q74Q> 3Q; 2‘1):|
s A 1 ~ s oA Ny ~ A oA
LYT LYT fALYT

+ {COgH (1117 26—27 3Q; 46) - _COgH (147 2Q> 3¢ 46) + _COgH (1q’ 26—27 3¢ 4q)}

Ll ixris 5 L =i x74 5
-5 Do, (14,24,34.44) + mDogH (14,44, 34:25) (8.5.22)

The corresponding relationships between the subtraction terms, file name in the
NNLOJET maple script and matrix elements (or combinations of subtraction terms)
in Eq.(8.4.17) and (8.5.22) are summarised in table 8.4. Note that the antenna
subtraction terms B;&ZXT(L}, 1,7, Qq), CééZXT(iq,jQ, iQ, Qq) and 5&§ZT(iq,jQ, 1Q, Qq)
are combinations of sub-layer subtraction terms. Only the combination of the full

terms remove all the IR divergences from the corresponding matrix elements at RV

level.
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subtraction term maple matrix element
By (14,4, 5,29) B2g1HFXT By (14,4, 24) + Bojy (14.4.4, 24)
B;;;IT(imiaj? QQ) BleHXT B%gH(iCbivj? QQ)
é;&ﬁT(iq?i?j725) Bt2g1HXT Z é%gH(i(bi?j?Qlj)
P(i,j

~LXT = _ ~(1J) N ~1 e~ a
By (14,4, 7,2g) Btt2g1HXT Boyi(14,1,5,2q) — Boyr (14,4, 7, 24)
SLXT 5 - . 4 5 5
B;gH (14,7,7,24) Bh2g1HXT BQIQH(lq,z,j,Zj)
~1,XT ~1
BZgH (iq7iﬂj7iq> BttthlHXT B2gH(iQ7i7j7é(7)
~1,XT ~1
Bogn (17,7, 24) Btth2g1HXT B@Hdm@]»%)

JFXT 3 . .4 XT3 . . A
C’(}gH (1q7]Q72Qa2§) quCOngFXT % (Xz)cégH (1Q7]Q77'Q72§)

P(i,j

LXT /5 . . A L .. A
Cogrr (Lg,7051q; 2g) qqbCOg1HXT Cogrr(1g, 30,105 24)
~LFT /3 . . 4 ~LXT /2 - - A
COgH (1qa]QaZQ72ﬂi) quCtongFXT % ( )COgH (]‘Q7]Q71Q72Q)

P(i,j

~1.XT /5 - A ~1 /% - . A
Coprr (g, Jos1Qs24) qqbCtOgtHXT | Cy x(1y, g, g 24)
SNULXT /5 - . 4 -~ A
Cogrr (1g,7g51q; 2g) qqbChOg1HXT | Cf, (g, J0,iq, 24)

LYT /5 4 A .
C’OgH (1q72Q>lQ7.717) qqpbcongYT CSgH(1Q72Q7ZQ7](7)
S1LYT 7 A S5 5 .
C’OgH (1q>2Q>ZQ7Jti) qqprtOngYT C&gH(1Q72Q7ZQ7]q)
ALYT 5 5 A5 5 .
C’OgH (1(172Q7ZQ7]§) qqprhOngYT C&gH(LI?QQ’ZQu]q)

1LXT /5 4 . 5 5 .
DOgH (1(1,2(7,2(1,.](7) quDOngXT D(l]gH(1QJ2CY7Zl17]l7)
~1,XT /% A ~ 5 A .
DOgH <1Q7Zq7-]q7217) quDtOngXT D(l]gH(1QJ2CY7JQ7ZQ)

Table 8.4: NNLO antenna subtraction

terms for real-virtual contributions in

qq — H+jet process and their relation to the matrix elements (or combinations

of subtraction terms)




8.5. ¢q initiated subtraction terms at NNLO 213

The explicit formula for B;’;IZT(iq, i, 7, Qq) is,
LXT /5 . . 4
By (1g,,5,2) =
LIF LFF LFI . 2
| g + I ) + I )| Bl16,5:2) T ()

#,(1,09) | Bl (5230~ ) 601 — 22
(T8 1) + I sa) ) Ba(1,00) Bl (L0002 o)
| 0103800 = 20301~ 20) + (586 (s1) + 585 50)

+ Jybe(s17) — 2J§;¢§€<sl@>) d (1, m)] BY (T, (i7),2) 1 ({ph)
F L 2.0.) | Blyn(1, (3D 1) 001~ 22
(T ) + T ) ) (2000 B (1,0 2)| SV
+ {d})’q(?,j, i) 6(1— 1) 6(1 — x2) + (Jg,’gé(%) + 66 (si5)

I8 (s2) — 255 sn5) ) (2,00 | B (1,2 S (o)

— ~§7qq(1,z‘, 2)0(1 — 1) 6(1 — )

_I_

( + Ty b (s12) — J;:égg(s@) A3 (14, 2>] BY 4(1,5,2) 1V ({ph)
1
2

1,IF 1,IF 1,FI 1,FI 1,11
{"‘ J2,QG<ST(i~j)) - Jz,QG(Slj) - JQ,GQ(SQ@)) + JZ,GQ<32j) - Jz,QQ(STQ)
1,11
+ Jyoo(s12) + < — 8™ (51053 825> T1(55).05) T ST (815, 825, T15.27)
+ 8 (5075 5272 Toijy.05) — ST (525 525, 1))}
xd3 4 (L1, ) By(1, (17),2) ;" ({p})
3,q\1s % ] 1ga\L, 2] ), 1 Py
1 1,FI 1,FI 1IF 1IF 1,11
T3 ["‘ Jaca(s3i3) = Daao(s2) — Liga(syi) + Jaga(si) = Jago(sia)
+ ngféfQ(Su) + ( - SIF(SQ@-), S1is T3y 14) S (596, 811, T2i.1:)
+ SIF(Sl(;j)v S14y ml({vj)ﬂi) - SIF(Slia S14s 1)):|

xdS (2,7,9) BY (1, (i7),2) )1V ({ph)

1 11T 11T LIF LIF 1,FI
5 ["’ oo (s12) — JSgo(s12) — Joga(515) + Lo oa(s15) — Jogo(s3;)
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1L,FI
J7

+ Jyag(s2) + ( — 8" (513, 515, v121;) + 8" (512, 815, T12,15)

+ 8" (15,575, 1) = 8 (51,81, 1) + 8" (59, 15, w315)
— S8 (sy;, 51, xzj,lj))} AY o (1,3,2) B p(1,5,2) IV ({phy).  (8.5.23)

Explicit formulas for the other antenna subtraction terms in table 8.4 can be
found in appendix D.2. The real-virtual subtraction terms fit the general structure
described in section 4.5.3.

To numerically test that the antenna subtraction terms given in Eq.(8.5.22)
remove the implicit IR divergences in Eq.(8.4.17) correctly, we use the same spike
plots for defined in section 6.6.2 to test that the subtraction terms remove the
explicit IR divergence of the matrix elements in any phase space point and converge
to the matrix elements when approaching various single unresolved limits at the

real-virtual level.

8.5.3 Double virtual subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.7.2, one can re-
move the explicit IR divergences in the double virtual matrix elements in Eq.(8.4.18)

with the following double virtual subtraction term,

~ dxl dl’g
da(% =./\qu J‘\;J‘GLO x_lx_zd@HH(pz,pH;pl,pQ){

1 ~ 1 ~2,XU
XU XU
_NBng (1q’ 3, 2!?) - NBng (1q’ 3, 2(7) - mBlgH (1qv 3, 2(7)
;22XU ~ XU N} x2XU
_mBlgH (1qv3a 26) - NfogH (1q,3, 2(7) - WBlgH (1q»372q)

I A Np ~ 1
~Cign (15:3,2) + 55 Cign (10:3,29) = 7 Cigr’ (13, zq)}Jf (p3)

(8.5.24)

The relationships between the subtraction terms, file name in the NNLOJET maple
script and matrix elements in Eqs.(8.4.18) and (8.5.24) are summarised in table 8.5.

The explicit formula for Bf’g)éU(lq, i,2;) in terms of integrated antennae is,

2,XU ,
BlgH (14:4,29) =
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subtraction term maple matrix element
2,XU , .

BlgH (11177'72(7) B1g2HXU B%gH(LIvZ?QQ)

B%;)IZU<1Q77:72!7) Bt1g2HXU E%gH(l(I?Z'?Qq)

~2,XU ~2

By (14,4,24) Btt1g2HXU Bign(14,,24)

=2,XU =2

BlgH <1Q7Z72(7) BthngHXU BlgH(lq7i726)

B\%;I{IU<1Q7Z72§) BhngHXU E%gH<1q>i72(1)

=2, XU =2

BlgH (1(172726) th1g2HXU BlgH(]'q’iuzq)

Ciy (14,1,29) qqpbCOg1HXU | IR safe

Cr (14,1, 24) qqpbCtOglHXU | IR safe

O (10,4, 29) qqpbChOg1HXU | IR safe

Table 8.5: NNLO antenna subtraction terms for double virtual contributions in
qq — H+jet process and their relation to the matrix elements (or combinations of

subtraction terms)

1 1
|+ 5 Phatom) — Tea) 4 5 Do) — T
bo
« (Bla(13.2) - 2805,
1 o 0 ) 0 ) (1)
—| + g ,D3’q(823) & ,Dg’q(Sgg) — 5 qu (ZQ) (059 D37q<323) + 5 qu (ZQ) X qu (22)

X B(ngH(lv 37 2)
L o 0 Lo 0 1 o (1)
- g D3,q(513) & DS,q(Sl3) - 5 qu (Zl) ® D3,q<813) + 5 qu (Zl) ® qu (Zl)
X B(l]gH(L 37 2)
1
-+ ] PRl 9 D8, o) + T 1) @ T )

1 1
_ = rgg(@) ® Dg,q(slg) -5 rg};(zl) ® ng(sgg)] B?gH(L 3,2)

2
1 1 b S - 1

—|+ 2 DY, (s13) + = D3 (s13) + o (=5 ) DS, (s13) — = DY, (513) @ D o (513)
2 g 78 2 \ 12 , T ,
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1 1 b S - 1
—|+ 2 DY (s23) + = D3 (s23) + o= [ 5 | D(523) — = DY, (523) @ DS (523)
g g 8 2¢ \ 1% 1 ,

- F((i]) (Z2):| B?gH(]-J 37 2)

1 - ~ 1
_ [ — 5 A2’q5(812> — A§’qq(812) + 5 Ag7qq(812> X Ag’qq(slg):| B(l)gH(L 3, 2) (8525)

Using the dipole functions introduced in section 3.5.2 and 4.7.2, Eq. (8.5.25) can

be re-expressed in a similar structure as the two-loop Catani pole structure of Eq.

(4.7.156) as,
BE)JSIU(LN i, 2(?) =

b
- { + Jyoa(s13) + J%,’Sé(s%)} (BL,H(L 3,2) — —

€

B?gH(L 37 2))

1
5 [ + ngy’ég(sw) + J217’5é(523)] ® [—i‘ le,’gg(Sls) + le,’gé(%s)] B?gH(L 3,2)
- { + J3o6(s13) + S50 (s2s) + (75,’529(812)} B,y (1,3,2), (8.5.26)

where the NNLO integrated antennae are,

1 1 b S14 -
Jyoe(s1) =+ 5 DY (s1:) + = Dy, (s1) + -~ <—1) D3, (s1:)

2 2 2¢ \ 1%
1 _
— Z_l Dg’q(su) & Dqu(sli) - Fi(l?}{) (Zl), (8527)
Tt (sa) =+ 3 Dhfsa) + 5 Dhyton) + 2 (5] DA fon)
2i) — a 21 a 27 a5\ T2 21
Q,QG 2 4,q 2 3,9 26 M%% 3,q
1 _
— Z_l Dg’q(SQi) X Dqu(SQz‘) - Fi(l?}{) (22)7 (8528)
1

" ~ 1
Ty oo(s12) = Af a(s12) — Ag o (s12) + 3 A L (512) ® A3 (s12).  (8.5.29)

2
Explicit formulas for other antenna subtraction terms in table 8.5 can be found

in appendix D.3. For ¢q initiated processes, the NNLO subtraction terms are related
as in Eq. (8.4.19).



Chapter 9

Production of Higgs Boson Plus
Jet from Quark-Quark Scattering

In this chapter, I will focus the discussion on the gq¢ — H+jet contributions to
the fully differential cross section for Higgs plus jet observables up to NNLO. The
leading colour contribution to the qg — H+jet channel will be taken as an example
of the implementation of the antenna subtraction method as introduced in chapters
3 and 4. The quark (anti-)quark initiated channels contain identity changing initial
state divergences. However, as there is no soft-quark singularity, these processes
have a less complicated IR divergence structure than the processes considered in
chapter 7.

The other quark (anti-)quark initiated channels are ¢Q, 47, ¢Q, ¢Q and ¢Q —
H+jet (¢ and @ are used to denote different quarks). These channels give distinct
physical contributions to the total cross section. However, both the matrix elements
and antenna subtraction terms are closely related to those q¢ — H-+jet channel.

Details of the relationships between the different channels are discussed in appendix

A.

9.1 qq initiated cross sections at LO

As at least two quark pairs with the same flavours are involved in the ¢q initiated

cross sections and there is no Born-level ¢q initiated process. Similarly, there is no

217
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virtual NLO contribution, and no double virtual NNLO contribution.

9.2 ¢q initiated cross sections at NLO

9.2.1 Real cross sections

The real radiation contribution for the identical quark pair initiated contribution

comes from the qq¢ — H + qq process,

d&ﬁz :Mq NJJ\?LO dq’H+2(p37p4,pH;p1,p2){

1

& A 2 5 2
+_COgH<1qﬁ 3@’ 2Q7 4@) - WD(O)gH(lqa 3(}7 2q7 4(1)}‘]1( )(p37p4)7 (921)

The squared matrix elements in Eq.(9.2.1) are discussed in section 3.1.3 and 5.1.7.
There is no virtual contribution from the qq initiated channel. Using the line-
reversal relation and charge conjugation symmetry introduced in chapter 5, the qg

initiated channels are related to doy, nro:

=y

AR __ A
doqq = daqq.

(9.2.2)

9.3 qq initiated subtraction terms at NLO

9.3.1 Real subtraction terms

Using the NLO antenna subtraction method introduced in section 3.3.3, one can
construct the antenna subtraction terms to mimic the implicit IR divergences in

Eq.(9.2.1) such that
A6 nro =Ny Niro d®ri2(ps, pa, pi; pl,pz){

1 g . A
+NC(())£I;,NLO(1W3@72Q:4q)}- (9.3.3)

Note that the DggH(iq,fiq—, 24, 47) matrix element in Eq.(9.2.1) has no implicit TR
divergence. We only need to construct C’S;I;’SN Lo Subtraction term to remove the

implicit IR divergences from C{ ;.
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subtraction term maple matrix element
0,YS Sy S~ s
COgH,NLO(LI’ 14,2, Ja) qqpCOgOHYSNLO ngH(lzp 19,29, Ja)

Table 9.1: NLO antenna subtraction terms for real contributions in q¢ — H+jet

process and their relation to the matrix elements

subtraction term maple matrix element

Connro(1,2,1) qqpCOgOHYTNLO | IR safe

Table 9.2: NLO antenna subtraction terms for virtual contributions in qq¢ — H-+jet

process and their relation to the matrix elements

The corresponding relationships between subtraction terms, file name in the
NNLOJET maple script and matrix elements are summarised in Table 9.1.
Explicit formula for nggN LO(iq’ i9, QQ, Jg) is

0,YS S A oy
COgH,NLO(1q7 19, 2q; Jg) =

_Eg,q’—m(ja 27 Z) B?gH(lvia (Z’:})) Jl(l)({p}l)

—BS L, (.1,5) BY 5 (1), 1.2) IV ({p}). (9.3.4)

9.3.2 Virtual subtraction terms

The virtual subtraction terms is a collection of integrated real subtraction and mass
factorization terms. As there is no virtual contribution from the matrix elements.

The following virtual subtraction terms must have no IR divergence,

dl‘l d$2

d5g:1,NLo =N N 1o _x_2d(1)H+1 (p3, PH; D1, P2) {

T
L _oyr PN
+NCOQH,NLO(L 2,3) ¢, (9.3.5)

The corresponding relationships between subtraction terms, file name in the
NNLOJET maple script and matrix elements are summarised in Table 9.2.

Explicit formula for C’gé};’TN 1o(1,2,4) is

0,YT 5~ 8 .
COgH,NLO(17 2,1) =
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. 1
_J21,7CI?FQ7q’—>g(81’i) B?gH(27 17 Z) ‘]1( )({p}l)

_‘]21:£é,q’—>g(82i) B?gH(L 27 2) Jl(l) ({p}l) (936)

As usual, spike plots are used at real to provide graphic evidence of the conver-
gence between matrix element and antenna subtraction terms. The virtual subtrac-
tion terms only have idc dipole functions which have no explicit IR divergence.

The other NLO quark (anti-)quark initiated channels (¢7, ¢@, ¢Q, GQ and Qq)
are not independent from the gq channel. The details for the matrix elements and

antenna subtraction term for those channels are introduced in appendix A.

9.4 qq initiated cross sections at NNLO

9.4.1 Double real cross sections

The double real contribution at NNLO for q¢ — H+jet comes from the q¢ — H+qqg

process,

d&ﬁlR :qu N]I\?]@LO dq’H+3(p3,p4>P5>pH;p1,P2){

+ [O?QH(iq, 5,30, 2q,47) + Chyn (14,30, 29, 5,4(7)}

1 [~ .- X ~0 s X =0 .
+37 [Cng(1q, 5,44,2q,3q) + Clyn (14,44, 20,5,30) — Crau(1g, 44, 20, 39, 5)

1 2 A =~ A ~
_ﬁ |:D?9H(]-q> 2(17 4q’ 3@, 5) - D?gH(ltb 2(17 4q’ 3‘?’ 5):|
L B0, (3)
+2‘N3D19H(1q72q;4(j,3q,5) Jl (pg,p4,p5) (947)

The squared matrix elements in Eq.(9.4.7) are discussed in section 4.1.2 and 5.1.8.
The 1/2! coefficients in Eq.(9.4.7) are the averaging factors for two identical anti-
quarks in the final state. For identical quark pairs, we should have matrix elements
C’?QH, G?QH and E’LH together with the () <+ ¢ permutation as introduced in section
3.1.1 (also with the 1/2! averaging factor). In the gq initiated channel with massless
active quark assumption, the final state ¢ and ¢ quarks can not be distinguished
by the jet function. This means that after phase space integration, the result for

~ =0
. . . . . O 0 .
differential cross sections involving C7 p, C7, and C'y p will be the same before or
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after the () +» ¢ permutation. Here we combine the () <+ ¢ permutation and the

extra factor of 2 cancels with the 1/2! averaging factor.

9.4.2 Real-virtual cross sections

The real-virtual contribution at NNLO for q¢ — H+jet comes from the q¢ — H +qq

process,
A6 =Nag NN o d®H+z(p3,p4,pH;p1,pz){

A~ A~ ]_ ~ ~ A~ Nf ~ A~ ~
+ |:OégH(1tI74Qa 2@7 3@) - mcégH(1Q74Qv 2Q7 3@) + WcolgH(lqa 4(27 2Q7 361):|

1 A A 1 ~ N A N¢ ~ A R
_ﬁ |:DégH(1€I7 3(77 2f17 4@) + mDégH<1Q7 3@7 211745) - WfD(l)gH(l(b 3@7 21]7461):| }

x J{ (ps, pa) (9.4.8)

The squared matrix elements in Eq.(9.4.8) are discussed in section 4.1.2 and 5.2.
Here we sum the ) <> ¢ permutation in the same fashion as in section 9.4.1.

There is no contribution from the two-loop matrix element for gq initiated chan-
nels at double virtual level. However, we will have subtraction terms at the double
virtual level for this channel which contain no IR divergence.

Just as at NLO, the anti-quark anti-quark initiated cross section at NNLO are

related to dogyy NnroO:

doggnnLo = doggNNLO- (9.4.9)

9.5 qq initiated subtraction terms at NNNLO

9.5.1 Double real subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.3.3, one can
construct the double real subtraction term that mimics the implicit IR divergences

in Eq. (9.4.7),

d&fq :qu NJI\?Z{%/LO d‘bH+3(p3,p4,p5,pH;p1,p2){
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subtraction term maple matrix element

YS/a . N A N A N
C?gﬁ] <1qal7kQ72Q7]¢j) qqu1gOHYS O?QH(1Qa27kQ72Q7]q) + C?gH(1QakQ72Q717JQ)

~0,YS /2 . . A ~ A .. oA ~ A LA .
Cl (g4, Ja, 2. k) | aapCtigOHYS| C% (14,1, 7. 20, kg) + CLn (14, jar 2.1, k)
~0

QY

_ClgH(iquj(i? QQakQai)
YS/a A . ~A .
D?;;[ (1q72qak 7]@77’) qulgOHYS D(l)gH(LIaQqaklia]liaZ)
=0,YS /5 4 . =~ ~ A .
D(l)g)[/{ (1q72q7k6a]677’) qutlgOHYS D(l)gH(lq>2Q7klia]l?a7’)

Table 9.3: NNLO antenna subtraction terms for double real contributions in gqg —

H+jet process and their relation to the matrix elements

A A 1 ~ A A
) S 5 S
+C?g¥{ (1(]757 3@72Q74q) + mc’?g};{ (1q7574(77 2Q,3Q)

1 YS(3 5 ~0YS 5 4
- ﬁ Dg)gH (11172(174!773!77 5) - D?gH (1q72q74§73¢775>

L ~ovsis 3
+WD?§H (1Q72Q74¢77 3‘77 5)} (9510)
The corresponding relationships between the subtraction terms, file name in the
NNLOJET maple script and matrix elements (or combinations of subtraction terms)
in Eq. (9.5.10) are summarised in table 9.3.

Note that the quark labeled with QQ is in the initial state in the ¢Q(qq) initiated

processes. This means that for matrix elements,

=~ 2 . . A = o . A . :0 2 . A .
C?gH(Lb@a]qv 2@7 k@) + C?gH(lfh.]!L 2Q7 L, kQ) - ClgH(LIajq? 2@7 k@,l),

we can not use the QQ <+ @ interchange technique as introduced in qgCt1gOHFXS
(section 7.5.1) to avoid constructing subtraction terms for E’?QH(iq,jq, 20, ko, ).

Taking only the colour leading contribution as an example, the explicit formula
for C1% (14,4, kg, 20, Jg) i,

0YS/a .. 5
Clogn (4,4, kg, 2. Jg) =

+AS (1,4, k) O (T, (ik), 2, 7) I ({p})
_Eg,qq’ﬁqg(L k? 2) ngH(T7 Z7§7J> J1(2)({p}2>
—BS sg(2.5.1) BY, (2, 1,4, k) JP ({p})

— B(1,2,k,9) B (1,2, 7) 1 ({p})
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+ B s (15,2) DY (1,2,0) B, 1 (1,2, 5) 7V ({ph)

7qq’—>qg(

)
+ AY (1,0, k) BY (1,2, (i) BY 1 (1,2, 5) 1V ({ph)

— B9(2,5,1,4) B,y (2.1, k) 1V ({ph)

+ B rgg(2,3,1) D 02,4, 1) By (2,1, k) JV ({ph)
+ A3 0(1,0,2) BS 0 100(2,5,T) By (2.1, k) 1Y ({ph)
— A} 2(1,0,2) BS 0 00(2,5,T) By (2.1, k) 1Y ({ph)

+ A (L3, k) BS o r0g(2,9,1) B (2., (k) ItV ({p})
+AY(2,0,k) BY 02, 5:1) BY (2,1, (ik)) J1V ({ph)

IF IF IF IF IF IF
Slz(ﬁf + Slz ik) S2’L z7<: + S 8112 STE

X B rsag(209:1) BY (2,1, (ik)) Jf”<{p}1>
+BY(1,k,2,5) BY (1,1,2) J1V ({ph)
B e (1B, 2) AY (1,2, 9) BY 1 (T,4,2) J1 ({0 )

+HY(1,5,2,k) AS, 1 (1,4,2) IV ({ph)

— B gy (2,5: 1) GS 0y (T2, k) AS (1,0, 2) TV ({p}h)
— B gy (L E,2) G 02T, 5) AS (2.4, 1) TV ({ph)
+AY,(2,1,5) Cou (1,k,2, (1)) 1 ({p}2)
— B a0 (1, 5,2) BS, (1,21, 5) TP ({p}2)
B gy 20(2,3, 1) B, (24,1, k) JP ({p})
— BY(1,k,2,i) BY, (1,2, 5) J{ ({p})

FES e (1K,2) DY (T,4,2) BY (1,2, 5) 1V ({ph)
+ A?) qq(27 i: 1) Ei(’))qq —>qg(1 k 2) B(l)gH
_AO

3,99

+AY (2,4, 5) S yae (1,8, 2) BY (1,2, (7)) J1 ({ph)

,99' —qg

(
(2,0,1) BS prrqg (1, K, 2) BY (1

3,99’ —qg

. = — . 1
+AY (1,4, 5) BS oo (1K, 2) BY (1,2, (7)) JEV ({ph)
IF IF I1F i IF
Slz(z} B S 521 G5 SZ’L(Z] - 527,1 S@ﬁ

XEg,qq’ﬁqg(L k? 2) B?gH(l Z (U)> ‘]1 ({p}1)
— E%(2,1,5,9) B 4 (2,1,k) 1 ({p}h)
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+ B ag(2.5.1) DS 0 (2,T,0) BY (2.1, k) IV ({p}h)

+ AS (2,0,5) BS yr000(2: 1, (19)) BYu (2,1, k) 1 ({p}h)
+B3(2,5,1,k) By (2,.1) 11V ({ph)

— B3 sa0(25: 1) A 0 1K) BY (2,4, 1) TV ({ph)
+HY(1,5,2,k) A (1,4,2) 1V ({ph)

2,7:1) GS pysee (1.2, k) AS 1 (1,4,2) IV ({p}1)

3,99—99

_EY (

— B gy (LR, 2) G o0 (2.0, 5) AS (2.4, 1) TV ({ph)
(
(

3,49’ —qg

BY (2.1, (i) 11V ({p}h)
1,k,2) A}, (1,4,5) B (1,2, (7)) SV ({p}). (9.5.11)

Explicit formulae for the other antenna subtraction terms in table 9.3 can be
found in appendix E.1. The double real subtraction terms fit the general structure
described in section 4.3.3.

To numerically test that the antenna subtraction terms given in Eq.(9.5.10)
remove the implicit IR divergences in Eq.(9.4.7) correctly, we use the same spike
plots for double real contribution defined in section 6.6.1 to test that the subtraction
terms converge to the matrix elements when approaching various double and single

unresolved limits at NNLO.

9.5.2 Real-virtual subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.5.3, one can

T

construct the real-virtual subtraction term, do,,,

which removes both the explicit

and implicit IR divergences from Eq.(9.4.8),

A dl'l dili‘z
dUZ; =Ny J}\?XLO x_1$_2d(bH+2(p3>p4apH;plap2){

- A 1 ~ - A Ny ~ . .
LYT . LYT . fFALYT )
+|:COQH (14:40:20:30) = 375 C0sn (Lo 40220, 3¢) + 7 Cogrr (14,40, 20, 30)
1 LYT (3 5 I ~iyr s 5
_ﬁ DOgH (1117 3g, 2(174(1) + WDOQH (111’ 3g, 2q>46> (9'5-12)
The corresponding relationships between the subtraction terms, file name in the

NNLOJET maple script and matrix elements (or combinations of subtraction terms)
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subtraction term maple matrix element

YT/ - & - A
COgH (1Q7]Q72Q726> qqpCOg1HYT O&gH(1Q7]Q’2Q’l<7)

Coprt (14,75 20+15) | aapCtOGHYT | Cloyr(1g: jgs 20, i)
Coott (14:50:20.15) | aapChogtBYT | Ciypr(iy, ig. 20, 1)
( ) | qQ@DOg1HYT Diyrr(1gsi5: 24, Ja
( ) | QaDtOgIHYT | Dj(14,ig,2,,

Table 9.4: NNLO antenna subtraction terms for real-virtual contributions in qq —

H+jet process and their relation to the matrix elements

in Eq.(9.4.8) and (9.5.12) are summarised in table 9.4.
The explicit formula for CS&ZT(L]JQ, QQ, ig) is,
Cogn' (19,7, 20:77) =

+£$@M+¢md%ﬂ4@umzoAW@m

B E??,qq’%qg(laj» 2) [31191{(1 2,4)0(1 — x1) 0(1 — )

(s12
3009

3,99’ —qg

(4 Taetor) + T80 ) Elyroap(1.3:2) B (1.2:0] 170
| Bl 15200 = 2800 = ) + (4 T3t
’]2161;)2(51]) 2J21(IQIG( ) Eg,qq/ﬁqg(17j72):| B?gH(TJ g? Z) Jl(l)({p}l)
quq Hqg(27 i7 1) |:BllgH(§7 T7.]) 5(1 - 'rl) 6<1 - x2>
- (+ T5tom) + I 57) ) g2 1) B .50 (0010
1 1,11
|:E3qq —>qg(2’2’1) 5(1 —Zlfl) (1 —172) (_’_JQ,QQ(SU)

+E&@»2£&ma1&¢m@mﬂm@@1ﬁﬁmma

[ o) — i) = I s + I o) — Rt + T

—l—( - SIF(Sﬁ, S1i> :Eﬁj,-) + SIF(Sw, 514, T12,11) + SIF(S§i> S1is 3”51',1')

- SIF(S% S1iy Izz‘,u) + SIF(SIp STi» 1) - SIF(SU, S1i, 1))]
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. - 5 . 1
XES gr-10(1,5:2) By (1,2,0) 1 ({p}h)
|:+J21éIQ( 1) — haoa(s12) = hdo(sit) + haga(s1) — Salga(ss) + Jaog(s2)

+( - SFI(Sﬁ, S§j, $ﬁ,§j) + SF[(Slz, 525, 9512,2]') +

S (s1;, 595, 71,3;)

- SFI<81j7 595, T1j,25) + SFI(SEJ'» 5255 1) — SF[(82j7 S25, 1))]

x B9

3,99’ —qg

1,11
—Jy

2,GQ,q'q—9q

1H
+J. 2,GQ,q'q—gq\ 512

512

(
(
1 Na
Iy GQ. cng(512
1 A1 (
2 GQ q7'q—gq
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(
(

111
+Jy

2,GQ,q'q—9q

gLl s
Iy GQ.q'q—gq\512

S12

)
) ds
)
$12)
)
) A
)

(2.4,1) B (2,1, 5) 1V ({ph1)

BSyu(2,1,5,1) /P ({p}a)
G151 By (2.7, (G0) JiV ({ph)

3%mﬂm%£M@iﬂﬂW@M
BS,(2.5,1,4) J{” ({p}2)

D3 42,3, 1) By (2, T,0) J1V ({ph)

(2,1,4) BY (2,5, 71) IV ({p}h)
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%awwa23wmummﬁﬂii ) 1Y ({ph)
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+[ JQlé’IQqq—>gq(Sl2) leéé?qq—wq 512 1 (2,7,4) Biy(2,1 ,(§1)) J1(1)({P}1)
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_ gLl s
2,QG,qq' —qg \"12
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(512) ds

(512)

zlga qq’ ﬁqg(sm)
(512)

(s12)

(512)

1,11
—Jy

2,QG,qq'—qg\ 512

1,11
+ [ J2 ,QG,qq’' —qg
{ Jl g1

+ 2,QG,qq’' —qg

+

B3 (1,4,2,7) I ({p}s)
DS, (1,4,2) BY (1.2, 5) J{V ({p})
swm@zﬁmﬁﬁmmﬂ%@m

3qg—>gg(27]7 )"4ggH(T § ({p} )

(st3) + E&Wﬂwm] 1z2mﬂ@2ﬁAW@m
(s12) — E&MWWSH] (L0,7) B o (1.2, (7)) SV ({p}h).
(9.5.13)

Explicit formulas for the other antenna subtraction terms in table 9.4 can be

found in appendix E.2. The real-virtual subtraction terms fit the general structure
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subtraction term maple matrix element
Ci (14,2,4q) qqpCOg1HXU | IR safe
Cr (14.2,1g) qqpCtOglHXU | IR safe
Ci (1, 2,4q) qqpChOg1HXU | IR safe
Dy (14,2,14) qqDOg1HXU IR safe
ﬁ}ﬁ,U(lq, 2,i5) qqDtOg1HXU IR safe

Table 9.5: NNLO antenna subtraction terms for double virtual contributions in

qq — H+jet process and their relation to the matrix elements

described in section 4.5.3.

To numerically test that the antenna subtraction terms given in Eq.(9.5.12)
remove the implicit IR divergences in Eq.(9.4.8) correctly, we use the same spike
plots for defined in section 6.6.2 to test that the subtraction terms remove the
explicit IR divergence of the matrix elements in any phase space point and converge
to the matrix elements when approaching various single unresolved limits at the

real-virtual level.

9.5.3 Double virtual subtraction terms

Using the NNLO antenna subtraction method introduced in section 4.7.2, one can
combine the integrated antenna subtraction terms from do% ;o and d6% ;o with
double virtual mass factorization terms to the following double virtual subtraction

term,

A d.fEl dZEQ
daclzjq =Ny N xro o d®y41(ps, pr; p1, p2)
1 T2

1~ N ~
XU XU F A1,XU
_CllgH (147 2, 3@) + mcllgH (1q7 2, 3(7) - WcllgH <1Q7 2, 3@)
1 1 ~
Do (10:2,39) = 55 Digiy’ (1.2, 3q)}J1(1)(p3) (9.5.14)

The relationships between the subtraction terms and file names in the NNLOJET

maple script in (9.5.14) are summarised in table 7.5.
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The explicit formula for 011 é)f]U(lq, 2,15) in terms of integrated antennae is,

Ollé)lirU(lquJti) =
— =& (s512) — SqugTW(20) | BY, ;7(1,2,3)
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R
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bo 512 -
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R
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1 b _
+ 5 Samsg I (z1) @ L (21) + ?Osqﬁg T (z1) = SymsgT P (21) | BY 1 (2,1,3)

- |:+ Biqq/(slg) —+ Biq/q(slg) —+ Sq%gfgz)(zg) X qug_)qq(SlQ)

1 1
T Sasg Ty (21) @ A5 ggsgg(12) + 5 Tl (21) @ Ty (1) + 5 T (20) @ Ty (22)

=(2 I —e
- TR - T B2
— |+ 2HY o (512) + 20 gT W (20) @GS oo (s12) + 2T (21) @ GY . (512)
4,qq' (512 a—gt gq \F2 3,q9—gg \ 512 gq \*1 3,9q—+gg\ 512

a—9" 99

+252., TW(z)® P;};(zz)] A 1(1,2,3). (9.5.15)

Using the dipole functions introduced in section 3.5.2 and 4.7.2, Eq. (9.5.15) can be

re-expressed as,

1,XU .
ClgH (1617 2, Zé) =

- JL[I (812)B119H(1a273)

2,QG,qq'—qyg
1,FI 1,11 1,11
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N J22:é[G,q—>g,q—>g<512)AggH(17 2,3), (9.5.16)

where the NNLO integrated antenna functions are,

by (512 ©
2,11 o [ S12
JQ,QG,q—w(Sl?) - 52%,(812) - 52,(1(7’(812) - g?},qq’(ﬁ?) T (MQ ) g??,qq’%qg(sm)
R
bo
+ n Sg,qq’—mg<312) + QDg,qg(Sm) ® g?(’],qq/—mg(sw)

+ Ff(l}l)(ZQ) (24 8??,qq’—>qg(512) — Fé;) (22) (%9 gﬁ?,qq’—)qg(812)

1 1
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t Sy D5 (22) = Sqg DY) (22) (9.5.17)

2,11
J2,QQ,q—>g—>q<812) =+ Bg,qq’(‘sl?) + Bg,q’q(sm) + SQ—WFEJ}]) (22) ® Ag,qg%qq(‘le)
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1
+ Sq%gr‘g}]) (Zl) ® AO <812) + 5 Fg}]) (Zl) & Pt(;(lg) (Zl)

3,99—qq

+5 I I T2 (z) — I T2 (2y) (9.5.18)
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(9.5.19)

Explicit formulas for other antenna subtraction terms in table 9.5 can be found
in appendix E.3. All the antenna subtraction terms in table 9.5 contain the initial
state identity changing (idc) behaviour and thus have no corresponding double vir-
tual contributions from the matrix elements. We use the same FORM program to
analytically check that these idc terms are explicitly IR finite.

For gq initiated process, the NNLO subtraction terms are related as in Eq. (9.4.9).
The other NNLO quark (anti-)quark initiated channels (¢Q, ¢Q, ¢Q and Qq) are not
independent from the qq and qq channels. The details for the matrix elements and

antenna subtraction term for those channels are introduced in appendix A.



Chapter 10

Numerical Results

In this chapter I will discuss the numerical implementation of the parton level
pp — H+ jet processes up to NNLO. Using the numerically stable matrix ele-
ments introduced in chapter 5 and the antenna subtraction terms from chapter 6,

7, 8 and 9, we can compute the exclusive pp — H + jet cross section at NNLO

R o ~RR ~ S
ONNLO = / [dUNNLO - dUNNLO]
d@H+3
~RV AT
+ / [da NvLo — do NNLO]
d®H+2

+ / [doxNro — donio) (10.0.1)
d¢H+1

where each of the square brackets is finite and well behaved in the infrared singular
regions. The convolution of the partonic cross section and the parton distribution
functions as in Eq.(1.4.43) yields partonic predictions for final state observables at
a hadron collider like the LHC.

Analytic results for the matrix elements and the corresponding antenna subtrac-
tion terms have been discussed in the earlier chapters (and appendices) for pp — H
+ jet processes at LO, NLO and NNLO and we now have in principle all of the ingre-
dients necessary to develop a parton-level event generator for Higgs boson-plus-jet
production through to NNLO. Currently, we have implemented all purely gluonic
subprocesses [84]. With this numerical implementation, we can compute any in-
frared safe observable related to H+ jet final states to NNLO accuracy. The Higgs
boson decay to two photons is included, such that realistic event selection cuts on

231
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the photons can be applied. Renormalization and factorization scales can be chosen
on an event-by-event basis.

For our numerical computations, we use the NNPDF2.3 parton distribution
functions [172] with the corresponding value of a(Mz) = 0.118 at NNLO, and
mpg = 125 GeV. Default values for the factorization and renormalization scales are
Wr = g = mpyg, with theory errors estimated from the envelope of the scale varia-
tion between my /2 and 2my. To compare with previously obtained results for the
total cross section for purely gluonic H+ jet production at /s = 8 TeV, we use the
same cuts as in [83]: jets are reconstructed in the kr algorithm with R = 0.5, and
accepted if pr > 30 GeV. With this, we obtain the total cross section at different

perturbative orders as

g0 — 2724__(1)35 pb,
onro = 438757 pb,
ovnto = 6.34%0% pb, (10.0.2)

in very good agreement with [83].

In our kinematical distributions and ratio plots, the error band describes the scale
variation envelope as described above, where the denominator in the ratio plots is
evaluated at fixed central scale, such that the band only reflects the variation of the
numerator. Error bars on the distributions indicate the numerical integration errors
on individual bins.

The transverse momentum distribution of the Higgs boson is particularly im-
portant for discriminating between different Higgs production modes. A first mea-
surement has been studied by ATLAS [92], demonstrating the feasibility and future
experimental prospects for this observable. It has been computed previously to
NLO [173], combined with resummation to third logarithmic order (NNLL) [174-
178]. In Figure 10.1, we observe that the Higgs boson transverse momentum distribu-
tion receives NLO corrections which change both normalisation and shape compare
to LO contributions. The NLO and LO corrections are validated against the MCFM
program. We also observe that the Higgs boson transverse momentum distribution

receives sizable NNLO corrections throughout the whole range in py, which enhance



Chapter 10. Numerical Results 233

the NLO cross section by a quasi constant factor of about 1.4, slightly decreasing
towards higher py. Using the same scale variations pattern as for the inclusive cross
section above, we observe that the pr distribution of the Higgs boson has a residual
NNLO theory uncertainty ranging between 5% and 16%. At high values of pr, the
effective theory approximation used for the coupling of the Higgs boson to gluons
breaks down, since the large momentum transfer in the process starts resolving the
top quark loop. Consequently, one expects top quark mass effects for pr > m; to
be more important than the higher order corrections in the effective theory [32,33].
Nevertheless, within the effective field theory in high pr region, we observe large and
negative NLO effects such that NLO/LO ratio is much less than one. The NNLO
effects are small compare to LO but produces a large NNLO/NLO ratio with large
numerical uncertainty.

We note that at leading order pr g is kinematically forced to be equal to the
transverse momentum of the jet, and is consequently larger than the transverse
momentum cut on the jet. At higher orders, higher multiplicity final states are
allowed and this kinematical restriction no longer applies. A similar pattern to the
Higgs boson pr distribution, is also observed for the leading jet, Figure 10.2, which
displays a slightly smaller scale uncertainty amounting up to 12%, and displays rising
NNLO corrections for very large values of pr, again likely beyond the applicability
of the effective theory approximation.

The rapidity distribution of the Higgs boson and the leading jet are displayed in
Figures 10.3 and 10.4 respectively. In both cases, we observe that the NLO correc-
tions are largest at central rapidity, while becoming moderate at larger rapidities,
while the ratio NNLO/NLO remains rather constant throughout the rapidity range.
The jet cut at high rapidity implies large momentum flow into the effective Hgg
coupling where our prediction ability is limited. The residual theory uncertainty
at NNLO is quasi constant for both distributions, and amounts to 9%. Both the
transverse momentum and rapidity distributions highlight the fact that the NNLO
corrections to H + jet production in the gluon-only channel substantially enhance
the normalization of NLO predictions, while not modifying the NLO shape, except

around the production threshold.
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Our numerical implementation in purely gluonic subprocesses for pp — H + jet
through to NNLO reveals substantial NNLO corrections in the transverse momen-
tum and rapidity distributions of the Higgs boson and the leading jet. However, the
shapes of the distributions do not change dramatically from NLO to NNLO, except
around the production threshold in pr. For all of the observables considered here,
we observed a reduction of the respective uncertainties in the theory prediction due
to variations of the factorization and renormalization scales, resulting in a residual
uncertainty of around 9% on the normalization of the distributions. With this pro-
gram, we could expect to implement processes involving quarks in a similar fashion
using the available matrix elements from chapter 5 and antenna subtraction terms

from chapter 6, 7, 8 and 9.
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Figure 10.1: (a) Transverse momentum distribution of the Higgs boson in inclusive
H + jet production in pp collisions with /s = 8 TeV at LO, NLO, NNLO and (b)
Ratios of different perturbative orders, NLO/LO, NNLO/LO and NNLO/NLO.
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Figure 10.2: (a) Transverse momentum distribution of the leading jet in inclusive
H + jet production in pp collisions with /s = 8 TeV at LO, NLO, NNLO and (b)
Ratios of different perturbative orders, NLO/LO, NNLO/LO and NNLO/NLO.
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Figure 10.3: (a) Rapidity distribution of the Higgs boson in inclusive H + jet pro-
duction in pp collisions with /s = 8 TeV at LO, NLO, NNLO and (b) Ratios of
different perturbative orders, NLO/LO, NNLO/LO and NNLO/NLO.
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Figure 10.4: (a) Rapidity distribution of the leading jet in inclusive H + jet produc-
tion in pp collisions with /s = 8 TeV at LO, NLO, NNLO and (b) ratios of different
perturbative orders, NLO/LO, NNLO/LO and NNLO/NLO.



Chapter 11

Conclusions

At the Large Hadron Collider, a new boson signal has been discovered and current
studies provide strong evidence that this new boson looks very much like the Stan-
dard Model Higgs boson. Contemporary Higgs boson related research now focuses
on the detailed measurement of the couplings and dynamic properties of this new
particle. Boosted Higgs boson dynamics, differential cross sections and jet-bin anal-
ysis at high precision are desired to improve signal to background ratio, test Hbb
and Htt coupling, analysis jet-veto efficiency as well as many other phenomenology
studies. In this thesis we have studied the hadronic production of a Higgs boson in
association with one jet at NNLO accuracy. We perform the first fully differential
study of pp — H+jet at NNLO accuracy which hopefully will help improve our
understanding of the new particle and electroweak symmetry breaking.

In this thesis, we concentrated on three main aspects relevant for pp — H+jet at
NNLO. First, numerically stable matrix elements for Higgs boson plus five partons
at tree level and Higgs boson plus four partons at one-loop level were calculated and
tested in the various single and double unresolved phase space regions. Second, we
constructed and tested the subtraction terms in the antenna subtraction formalism
for pp — H-+jet processes through to NNLO in all parton channels. Finally, with
all of the ingredients necessary to develop a parton-level event generator through
to NNLO in place, we implemented the purely gluonic subprocesses (the dominant
channel) as an example for phenomenological studies.

In chapter 5, the scattering matrix elements relevant for the NNLO corrections
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to the pp — H+ jet processes are discussed. Although the tree and one-loop level
matrix elements involved have been calculated by different groups before, these ex-
pressions had not been tested for numerical stability in the unresolved phase regions
relevant for NNLO calculations. We used the BCFW method to calculated tree-
level matrix elements for Higgs boson plus five partons where the expressions are
more compact and stable. For one-loop matrix elements of Higgs boson plus four
partons, numerical instability issues are solved by rewriting the analytical expres-
sions to avoid cancellations of divergent terms in the single soft phase space regions.
With these numerically stable matrix elements, we can perform meaningful testings
for the convergence between matrix elements and subtraction terms in unresolved
phase space regions.

In chapter 6, 7, 8, 9 together with appendix A, the differential cross sections and
antenna subtraction terms related to pp — H+ jet process for all parton channels
are studied. A maple script is developed to convert antenna subtraction terms
written in a “.map” format to Fortran and FORM programs for testing IR divergence
cancellations and for Monte Carlo simulations. The main challenge for constructing
NNLO antenna subtraction terms for pp — H+ jet processes is to regulate the IR
divergences involving initial state identity changing (idc) behaviour. New structures
in the antenna subtraction framework involving idc limits are introduced. The
methodology is summarised in chapter 4 while explicit examples are given in chapters
7 and 9. The new structures for regulating idc divergences fit precisely into the dipole
prescription of the antenna subtraction method.

In chapter 10, we implement our analytical formulae of all purely gluonic sub-
processes as an example in a parton-level event generator through to NNLO [84].
With all parameter settings the same as used in previously obtained results for the
total cross section, our results are in very good agreement with [83]. Our event
generator further produce the first fully differential cross sections. We observe sub-
stantial NNLO corrections in the transverse momentum and rapidity distributions
of the Higgs boson and the leading jet. The shapes of the distributions do not
change dramatically from NLO to NNLO, except around the production threshold

in pr. For all of the observables considered here, we observed a reduction of the re-
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spective uncertainties in the theory prediction due to variations of the factorization
and renormalization scales, resulting in a residual uncertainty of around 9% on the
normalization of the distributions.

The next step is to implement processes involving quarks in our event generator.
Sizable NNLO corrections from ¢g initiated channels are expected in the large pr
region. Fully exclusive results for the physical cross section will enable a more
detailed comparison with LHC data from Run 1.

It is anticipated that beyond the value of the explicit examples presented here, the
techniques and structures derived during the research for this thesis will accelerate
the calculations of other processes and provide a greater understanding of precision
QCD and Higgs boson phenomenology. For example, the development of the antenna
subtraction to more complicated processes in which the identity of the initial state
parton changes can be immediately applied to pp — X-+jet processes where X
could be one of the Standard Model vector bosons or even Beyond the Standard
Model particles which couple to quarks and/or gluons. Because of the universality
of the antenna subtraction method and in particular the two-loop integrated antenna
functions J 22), the various identity preserving and identity changing J §2’ functions
derived in this thesis will also appear in processes such as pp — 2 jets or pp —

X+2 jets.



Appendix A

Cross section and antenna
subtraction terms for ¢Q, ¢Q, Qq
and ¢QQ — H+jet processes at NLO
and NNLO

A.1 Contributions at NLO

A.1.1 ¢Q initiated cross sections at NLO

The real radiation contribution for the ¢@QQ — H + QG process is,
d55@ = qQN]I\?LOdCI)H+2(p3ap4apH§p1ap2)
L0 (1020, 40,30) b I All
X N OgH( g5 4Q> *Q) t?) 1 (pg,p4). ( e )
There is no virtual contribution from the ¢() initiated channel.
do}s =0. (A.1.2)

The NLO antenna subtraction terms for ¢() initiated channel have been intro-
duced as part of the subtraction terms for the qq initiated channels in section 8.3.

Here I only list the results for the differential cross section,

4625 vio =N N 10w 12(ps, pa, pr; 1, p2)
240
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{ ng)I(JSNLO(iqvQQv4Qa3q)}J1(2)(p3,p4) (A.1.3)
dxy dx
quQ NLO /\/qQNNLo—l—qu’HH(Pa,pH,pbpg)
{ ng)l({TNLO(i 3q)}J1(2)(p3,p4) (A.1.4)

A.1.2 (Q)q initiated cross sections at NLO

Using the line-reversal relation and charge conjugation symmetry introduced in
chapter 5, the contributions to the Qq initiated channels are related to those from

the ¢Q channels,

dogynro = dog Lo (21 <> 2), (A.1.5)
where x1, 9 are the momentum fractions of the initial state partons as introduced

in Eq. (1.4.39).

A.1.3 ¢Q initiated cross sections at NLO

The real radiation contribution for the ¢@QQ — H + Qg process is,

A2y =NaoN{LodP12(p3, pa, pis p1, p2)

A

{ ~Cogn (1. 30, 20, 4(;)}%2) (P, Pa)- (A.1.6)
There is no virtual contribution from the ¢@) initiated channel.
dggq =0. (A.1.7)

The NLO antenna subtraction terms for ¢ initiated channel have been introduced
as part of the subtraction terms for ¢qq initiated channels in section 9.2. Here I only

list the results for the differential cross section,

d&c}gQ,NLO = qQN]}\?LOd(I)H—m (P3, P4 PH; P15 D2)

{ Costrvzo(le: 3a: 26, 4q)}J1(2) (P3; pa), (A.1.8)
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~ dxl dl’g
ngQ,NLO :NqQ ]‘\;LOm_lx_zd(I)HJrl(p?an;plapQ)

1 A R
% { NCSQ}EIZ,FNLO(lqv 34,2, 46) } J1(2) (p3, pa).- (A.1.9)

A.1.4 (g initiated cross sections at NLO

Using the line-reversal relation and charge conjugation symmetry introduced in
chapter 5, the contributions to the gQ initiated channels are related to those from

the ¢@) channels,

dosg.nLo = dogo.nro- (A.1.10)

A.2 ¢Q initiated cross sections at NNLO

A.2.1 Double real contribution

The double real contribution at NNLO for ¢QQ — H+jet comes from the ¢gQ —

H + gQq process,

d&fgz qQNJ]\?ﬁLodCDHJrS(pS,m,p5,pH;p1,p2){
+ |:C’?9H(iq7 5’ QQ’ 4@’ 3‘?) + C?gH(i(b QQ? 4@7 5a 3q):|
1 ""0 A A ~0 ~ N :O " R
+m |:ClgH(1q> 57 36’ 4Q’ 2Q) + ClgH(lqv 31?? 4Qa 57 2@) - ClgH(1Q7 3@7 4@7 2@, 5):|

x I (p3, pa, ps). (A.2.11)

A.2.2 Real-virtual contribution

The real-virtual contribution at NNLO for ¢Q — H-+jet comes from the ¢@Q —
H + Qq process,

doyy = qQNﬁz‘GLod®H+2(p3,p47pH;phpQ){

PO 1 ~ A A Ny ~ I
+ C(%gH(lfb 2@73Q74t7) - moégH(1Q72Q73Q74Q) + Wfo(%gH<1Qa 2Qa 3Q745):| }

x< 2 (p3, pa). (A.2.12)
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A.2.3 ¢Q initiated subtraction terms at NNLO

The NNLO antenna subtraction terms for ¢@Q initiated channel have been introduced

as part of the subtraction terms for ¢q initiated channels in section 8.4.
d&t}g(g = N NLOdCDH+3(p37p4ap5>pH p1>p2){

A 1 ~ ~ .
+C0pnr (14,5, 20,40, 3¢) + WC&ZS(% 5,34, 4, 2@)}, (A.2.13)

d[El dIg

da.‘?@ :NQNNNLO dq)H+2(p37p47pH7plap2){

PO PN Ny ~ PR
YT YT fFALYT
+Co (14,2, 30,47) — ngH (1420, 3¢, 42) + 7 Cog (1q,2Q,3Q,4q)},
(A.2.14)

. dz; dz
dO'gQ :N NNNLO 11 _Zd(I)H+1(p3 Pa;pi1, p2){

1 ~ Np ~ 1
~Cii (14:3,20) + 55Cag” (14:3,29) — =7 Chi (14,3, zq)}Jf (ps).

(A.2.15)

A.3 (Qq initiated cross sections at NNLO

Using the line-reversal relation and charge conjugation symmetry introduced in
chapter 5, the contributions to the Qg initiated channels are related to the ¢Q

subtraction terms:

d6gq nnvro = doyg NNzo (71 ¢ 22), (A.3.16)

where x1, 9 are the momentum fractions of the initial state partons as introduced

in Eq. (1.4.39).
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A.4 (@) initiated cross sections at NNNLO

A.4.1 Double real contribution

The double real contribution at NNLO for ¢Q) — H+jet comes from the ¢@) —

H + gQq process,
Ao ZNqQNﬁﬁLod%w(ps,m,p57pH;phpg){
+ |:ClogH(1Q7 9, 3@7 QQ? 46) + C?gH(ilb 3@7 QQu 9, 4(?):|
L 1 =0 = 5 ~0 (7 5 =" 1 9
+m ClgH(1q7 5,44, 2q, 3@) + ClgH(lqv 47,2, 9, 3@) - ClgH(1q7 43,20, 34> 5)

X J1(3) (p37p47p5) (A417)

A.4.2 Real-virtual contribution

The real-virtual contribution at NNLO for ¢g@Q — H-+jet comes from the ¢QQ —
H + Qq process,

d&fg = QQNJI\?]‘\/ZLOd(I)HJrQ (p3, P4, PH; D1, pz) {

A~ A~ ]_ ~ ~ A~ Nf ~ ~ ~
+ CégH(l(IleQa 2@7 3@) - mcégH(1€I74Q7 2Q7 3@) + WcégH(lw 4@7 2Q7 361)}

x I\ (ps, pa) (A.4.18)

A.4.3 Q) initiated subtraction terms at NNLO

The NNLO antenna subtraction terms for ¢() initiated channel have been introduced

as part of the subtraction terms for gq initiated channels in section 9.4.
d‘}c}gQ :A/:]QNJ]\?J]\?/LOdCDH+3(p37p4»p5,pH§ pl,P2){
N N 1 ~ N N
0,YS ) 0,YS )
+Cn (14,5,30,20,49) + 72 Cgn (16,5, 44, QQ,3Q)}, (A.4.19)

N d.ﬁEl diL‘Q
quTQ: aQ J]\?J‘\//LO:B_lx_2d¢H+2(p37p47pH;pl7p2){
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A A 1 ~ A A N~ N R
LYT LYT FALYT
+ COgH (1117 46—27 2q, 3!?) - mCOgH (111’ 46—2’ 2q, 36) + WCOgH (1q7 4Q> 2q, 36) }v

(A.4.20)
R dx, dzx
dbeq = qQNJWLo—l—2d<I>H+1(p3,pH;p1,p2){
1 T2
cbXU(1, 2.3 Lawxvg gy Neaixwg o g0 0
—Ci (14,2, q)+m e (14,2, ‘j>_W e (14:2,3) ¢ 1 (ps)-
(A.4.21)

A.5 ¢Q initiated cross sections at NNLO

Using the line-reversal relation and charge conjugation symmetry introduced in
chapter 5, the contributions to the g initiated channels are related to the ¢Q

subtraction terms:

dogg,nnvro = Aoy NNLO- (A.5.22)
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Explicit results of antenna
subtraction terms for gg — H-}jet

processes at NNLO

B.1 gg— H+jet at RR

The double real subtraction terms dé% y;, mentioned in section 6.6.1 are:
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e (b1, 1) ASy 0T, () B (T2, G 1 ({ph)

e (7,1 1) AS o) T ) B (T2, (650) T (o)

8 (,i,2) AS, (., () BB, GR)) T (o)

) (7,1,2) A () 2R B (B 1, (6G0) (b

A, G R) AD, (T, (1)) B (T, 2, GGR)) 1 ({ph)
FAD, G20 AL (i () BB, GGR)) 1 ()
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+2 A5, 1,2, k) By (1,4,2) 1}V ({ph)

—2A3 L R) Ay 0o(T,2, GR)) By (1,4,2) 1 ({ph)
—2A8 (5, 2.8) A 4y 021, (GR)) By (2,4, T) 1 ({p})
— A3(j, 1,1, k) By (1,2, (jik)) J ({p})

A (1K) A8 (T, (7R) Bl (1,2 <‘@>J‘”<{p}1>

+ AQ(, i, k) AG oo ((G0), 1, (iR)) BY, (1,2, (i, ik)) J ({ph)
_AZ(]727271€> B?gH<§ (jlk)) ({p} ) .
)

22

+ A og5:2,K) A (2,4, (%)) By (2,1, (iGR))) TP ({ph)

N

ji), 2, (ik)) BY (2,1, (i, ik)) JV ({p})

—_—

+Ao(jaz7k) 3g—>q(<
— AS i, k) A g (50), 1, (iK)) BYy (1,2, (i, k) TV ({p})

—_—~—

S, (7,i,2) AY g (ks 1, (7)) By (1,2, (k(j2)) 1 ({ph)

—_~—

o, (kei,2) Ao (G, 1, (kD) BY (1,2, (5(ki) IV ({ph)

IF _ QlF IF If'v IF
+| + S(zg)zk Sﬂ((fj) k) S(z])zQ + S((?Tj)k)7,2 Skz2 + 5112

P

xAY (7). 1,k) BY (1,2, ((i5)k)) It ({p})

—_—

— A5, 1, k) AS . ((50), 2, (i) B, (2,1, (73, 1k)) It ({p}1)

—_~—

5 (7,3, 1) A8 oo (2, (1)) By 2,1, (k(50))) 1 ({0 )

_

+d§ ki, 1) AS 4, (5,2, (k) BY, (2T, ((k0)) T ({ph)

IF IF IF IF
|+ Sy~ Shres ~ Sl + S~ SIE+ SiT
X A3 4y (18),2, ) Bl (2.1, ((8)7)) T ({ph) (B.1.3)
~0,XS ~

Bng (Jo» 1,2,2,k )=
— A 4G 1, k) B (T, 2,1, (GK)) J1P ({p}2)
— A, ,2,k) BS (21,1, (k) JP ({p}2)
+AY(j, i, k) By ((57), 1,2, (i) 1 ({p}2)
— A8, 1, k) By (1,2, (i5k)) J1V ({p})
)1 ({ph)
+A0(5,1,2,k) By (1,0, 2) J{V ({ph)

:(
—A%,2,i,k)BY (2,1
4(]7 2 ) 1gH( (
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_

+ AG (5,1, k) AS (T4, (k) BY, (T, 2 << ) 1Y ({ph)
+ AQ(j. 4, k) AY L ((50), 1, (1K) B, (1,2, (ﬂ ik) 1}V ({ph)
+AY (5,2, k) A (2,4, () BYyu (2,1, (i < ) 1Y ({ph)
A7, K) A4S, (0,2, () B (3,1, (7 ) IO ()
=AY G, L R) AS g (1,2, (GK)) By (1,0, 2) J1V ({ph)
—AY .2,k AY (21, GR) BY (2,0 T) V() (B.14)

B.2 gg— H+jet at RV

The real-virtual subtraction terms do% ;. mentioned in section 6.6.2 are:

A (.2,4,5) =
- { + Ty e (521) + Tyl (si5) + b (s1y) + J;;éaslz)} A (1,2,4,9) I ({p}a)
+ fi?,g<27 7’?]) {AégH(17§7 (Zy)) 6<]‘ - l’1> 5(1 - x2)
( IR (513) + FEEL (s) + JEE(s W) A9 412, @'))] I ({ph)
+ [f;,g@,z,j) 5(1— 1) 5(1 — )
(AR 520+ TS ) + I o) — 2085 o)) £,(211)
X AggH(17§7 ({7)) ’]11 ({p}l)
A0(15,) [A;,QH(T,z, ()81 = 2) 6(1 — z2)
+ ( + j21:éIG(STQ) ‘]21 gé'(SQ(zg ) ']21 éFG(Sl(z])>> AggH(T7 27 (2’3)):| J1(1)<{p}1>
n [f;,gu,j, ) 5(1— 1) 6(1 — )
(o) + 38 )+ Tl ) = 20585 ) ) #8400
x AS (1,2, (7)) 1V ({ph)

S1LIT 11 IF IF
+{+J21,GG<312) J2GG(512) lecc(sly) lecc( S1(57))

— Jyte(52)) + Tyt (55 | [94(2.1.5) ASyu (1,2, (7)) TV ({p})
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S1TT ST SLFT LRI
+ [ + Jca(s12) = Hga(s12) + hlaa(s2) — L ga(SyGiy)

— Jye(s1) + Jé,*éf;(sl(ﬁ))} £ 5,0 Ay (1,2, (7)) 1V ({ph) (B.2.5)

71,F1 7L, FI

— {WL JaGa(s10) + Tyt (s2) + Tyt (sa;) + j;ﬁ’é‘g(slj)} Afn(1,4,2,5) TP ({p}s)

)
+F??799(1’i’ 2> [AégH(T7§7]> 5(1 - 331) (5(1 - 1’2)

+ ( + Jy b (sm3) + T (s3,) + J%;éasu)) AggHu,M] JM({ph)

(1,2,2) 5(1 — [L’l) 5(1 — ZEQ)

|

+< + Tyt (su) + Taa(sa) + Ly ba(s2) — 2j21,’é2(312)) Fy (1,1, 2)}
T35 1

x AYn(1,2,5) 11V ({ph)

v J
+FY,(1,4,2) [AggH(T, 2,i)0(1 — 1) 6(1 — )
¥ ( TN () + JEL (55) + J;;éfasu)) 49,413, i)} 7O (ph)
+ [F;gg(l,j, 2)6(1 — x1) 6(1 — )
+< + Dy b (s1) + JyGa(s2) + Jyba(s12) — 2j21,’gc(812)> £ ,,(1, 4, 2)}
x ASp(1,2,4) 11V ({ph)
+ [ + Ty Ga(s25) — Tyt (s3;) + Ja b (s15) — Jabe (1))
— Jyba(sn) + J;;éaslg)] Fy,,(1,i,2) A, (1,2,5) 11 ({ph)
+ [ + o ba(s2) — Jyde(sz) + Ty (s1) — Jyte(s1)
— Jyb(s12) + f;;éasu)] FYo(1,5,2) A3, (1,2,4) J{V ({ph) (B.2.6)
By (ig 1,2, j3) =
- {+ Tybo(sn) + Ty ba(s12) + J%:Séwzj)] BY (i, 1,2,5) JP ({p}a)

- [+ T () 4 TEIL (s00) + J;;éz<slj>] By 1(6,2,1,5) 12 ({p}a)
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- Ay (1) | Bla(1.2,) 80— 20801~ )

i (+ T5om) + 585 ) ) B (T.2.0)] S (o)
— {A;g(z’, 1,7)6(1 — 21) 6(1 — a»)

(88500 + T ) — 5851 ) A8l 1.9
x BY (1.2, (19)) 11V ({ph)

Ay 0.2 | Bl 13001~ 1) 001~ )

(4 T5tom) + 550 ) B 1,D)] S (o)
— {A}))’g(i, 2,7)0(1 —21) 6(1 — )

(I8 + T ) — B (52 ) A8,-0l0.29)
x BY (2,1, (i) /i ({ph)

L (1) [Aégﬂﬁ, 2, (7)) 6(1 — 1) 8(1 — 2)

n ( TR (1) + T (5y00) + J;;ég(su)) A (1,2, @'))] I ()
+ [G;g(u,j) §(1—x1)6(1 — x)

+( M () 4 TR (1) 2J;;é2<sl@>) & (1, m)}

x A3 (1,2, (7)) 1V ({p}h)

+ngg(2,i,j) {A},)QH(Z 1, (z‘Nj)) (1 —x1)0(1 — x2)

+ ( + Ty (syi) + Dy (s5) + Jé,’éi;(sm)) Ay (21, @))] TV (p})
n {G;,,g@, 5 7)8(1 — 1) 6(1 — 22)

+( TR (sg) T () — 2J§;5é<82@>) (2, m‘)]

x A3 (2,1, (7)) 1V (o)

+ { + le,’ég(sjl) - J%,’ég(si@) - le,’gG(Sm)

LIT 1LFI 1LFI
+ Jooc(512) = ga(527) + o ga(835)2)
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+ ( - SIF(Slj, 515, 1) + SIF(ST(ZT}), 5154, xi(i}-)’lj) + SIF<812, 515, 1'1271]')

— 8™ (519,81, T12,15) + 8™ (595, 5155 X2515) = ST (890535 5155 x2(fj),1j>>:|
. . —_ . 1
% g0, 1,5) Bl (1,2, (15)) 11 ({p}h)

ILIF LIF LT
+ { + Sao(si) = S go(s1i) — Laa(s12)

LT 1LFI 1FI
+ Jooc(512) — Lolpa(520) + 2 oc(8i5)2)

+ ( — 8" (515,815, 1) + SIF(SI(JJ-), S1is 551(5)712-) + 8™ (s12, 514, T12,17)

- SIF(SE, S1is fﬁz,u) + SIF(Szz” 814, T2i11) — SIF<S2(i~j)7 S1i, wz(fj),u))]
. . —_ e 1
xS 4,05, 1,4) By (1,2, (7)) J{ ({ph)
1,FI 1,FI 1,11
+ [ + S oc(8i2) = 00 (85i5) — J2ca(s12)
_ JuIF

LIT LIF
+ Sco(s1z) — Liao(s17) + L ao(Si))

+ ( — 8" (55,505, 1) + SFI(Sg(;j), S2j, Ty .25) + S (51, 595, T12,25)

- SFI(S% 5245 9351,2]-) + SFI(Sljv S2j, T15,2) — SFI(Sl(fj)a 525 331@),2))]
. . = . 1
xa$ 5 (0, 2,5) B, (2,1, (17)) J{V ({ph)
1,F1 1,FI 1,17
+ [ + S ga(si2) = Jo00(s3i) — Lalaa(s12)
JLIF

LIT LIF
+ Jco(s1z) — Ligo(su) + Lo ao(s@n)

+ ( - SFI(S% Soiy 1) + SFI(SQ@), 52i; $§(5)72i) + SFI(Slz, S9i, T12,2i)

— SFI(S§1, S2i, xil,gi) + SFI(SM, S9i, £14,2i) — SFI(Sl(fj)a 52i5 $1(i~j),2i)):|
X0y g(3,2,1) By (2,1, (7)) JiV ({p})
—20y bt gsa(51) By (1,1.2,5) J1 ({p}2)
203 5 ara(510) Gy (0,3, 1) Ay (1,2, (1)) 1V ({p})
20y b gsg(510) DY 4 (1,3,2) BY (1,2, 5) 1Y ({ph)
g (510) A5y (5.2,7) Bl (1, (72),2) 11V ()
— Ty e g (5150 85 (5. 2.0) Bl (1, (71),2) 11V ({ph)
— 23 6 g (520) BSu(2,1.1,5) I ({p}a)

_2’]21,’5&,9—)(1(521) Gg,q/%g(% ja 2) AggH(lv §7 (Z])) Jl(l)({p}l)
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J21 gé g%q(82l) D3 qg(27 7’7 1) B][.)QH(§7 T? j) Jl(l)({p}l)

Iyl o520 d3 (7, 1,7) BY (2, (72), T) 1 ({ph)

_‘]21’(};6{2 g—)q( 2 ]z)) dg g—)q(]? 1, 2) B?gH(zv (ﬁ)?T) Jl(l)({p}l)

+

pLXT
B2gH

—2 2léIG gg—>qg<512) 2gH< 27 7’7.]) Jl(Q)({p}Q)
2‘]21({21Ggg%qg<812) 3qg—>gg( ])AggH( ) (1)({]7}1)
203 5 gasag (512) 45,455, 2) BY (1,2, (52)) 1V ({ph)
275 60.09+90($12) Boyrr(2,1,4,5) 11 ({p}2)
—2 21éIQ gg%gq(le) 3qg%gg(1 2 j) 14?’))9H(1 2 Z) J(l)({p}l)
J21é'IQ gg—)gq(le) (]7 Z, 1) B?gH(27 ) (]Z)) Jl ({p} )
+2J216{2FQg—>q(51]) 2‘]21({2FQg—>q( ):| qu(]72 1) BlgH(1 2 (]Z)) Jl ({p}l)
- 2J21 CIQ}C; g%q(slj) J21 g)FQ g—)q(slj):| Dg qg(l’ Z7 2) B?QH(T7 Q’ j) J1(1)<{p}1)
= 25,00.454(513) + 25200.5-4(516 >]d39<a,u2>BlgH<1,z<ﬁ>>Jf”<{p}1>
+ 2‘]2156[;) g%q(52j> 2‘]215612 g%q<82 ):| Ag q(J7 7, 2) B?gH<27 17 (jz)) J(l ({p} )
2‘]21 56{2 g—>q(82j) + 2‘]215é g—>q<82j>:| Dg qg<27 7:7 1) B?gH(§7 Ta ]) Jl(l)({p}l)
= 2300.6-4(521) + 21200 M(sﬂm)} d5,Gi,i 1) By (2,7, (G0) I (o)
(B.2.7)
(Zq> 17 27]1])
JULIF 0 /s )
+ Ly ao(si) + T GG(512) +.J, QG(3J2) Byyr(i,1,2,7) J; ({p}2)
+ ol (sin) + Jyga(s12) + J%,’Sé(sm} BY,;(i,2,1,5) Ji ({p}2)
Ag g%q(za 17]) BlgH(1 2 ( ])) 5(1 - xl) (5(1 - il'z)
AL (i,1,5) 6(1 — 1) 6(1 — @)

() + It + L) ) 45, f01.0)

X

BY (1,2, (7)) 11V ({ph)
Ag g—>q(Z 2 ]) BlgH(('gvj)’ 1a§) 5(1 - 561) 6(1 - 372)
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| (02,5800 )81 -

+< + Iybo(si) + Jybg(s12) + J%:Sé(sjz)) AS (i, 2,.7')}
x BYy((17),1,2) IV ({ph)

+ G, (1,4, 5) Ay (57),T,2) 6(1 — 1) 6(1 — 3)

+ [G;Q(Lz‘,j) 5(1—z1)0(1 — 2)

(T + IR + T8 ) ) 68,09

x AY (07, 7,2) IV ({p}h)

+ Gg,g(2>j> Z) AégH((ﬁ)a 175) 5(1 - .771) 5(1 - 'TQ)

¥ [é%,,gm, ) 6(1 — 1) 5(1 - 2)

#(+ I5tton) + Tftoe) + ghs) ) 63,241

x A% ((71),1,2) 1 ({ph) (B.2.8)

~1,XT

~ ~

B2gH (im 17 Q,jq) -
JFF . . . 2
_J21,QQ (Sij> ngH<Z7 17 27 j) Jl( )({p}Q)

A9, (01,) [B%gHﬁ, 2, (7)) 6(1 — 1) (1 — )
T80 B (12, 7))
— {A;g(z’, 1) o6(1 — 1) 6(1 — a3)
#((+ 585 0) — T (o1 ) A1) Bl L2, )
- Ay (1:2.0) | Bl 1) 00~ 20801~ )
+ I8 (on) Bl 1)) S (o)
— {flé,g(i, 2,7)0(1 — x1) 6(1 — )

+( R (o) — J;;Sasg@)) A m] B @1, (7)) 70 (ph)

(B.2.9)
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~1,XT

BQQH (iqa iv Qajtj) =
| TR ) T (s10) + fé;gé(sm] B 1(1.1,2,5) T2 ({ph)
Ay (0.2.9) Bl (2L () 60— 22) 801~ 1)

- Ail’),g(?:a 27]) 6<1 - l’1> 5(1 - ‘TZ)

(80 + It + I35k ) AL, 02,0
x Bl (2,1, (i7)) IV ()
Ag g%q(la 17]) B%gH(Ta 27 (&)) 5(1 - xl) 6<]‘ - (L’g)
- l:Aé7g(i7 17]) 5<1 - 1’1) 6(1 - ‘7:2)
(o T5tton) + T + TG Gon) ) A4S, (01.)

x BY 1(1,2, (7)) 11" ({p}h) (B.2.10)

B;;I{{T(Zq» 17 2 ]q)
. . 2
_‘]2155(81]) ngH(Z7 17 2aj) ‘]1( )({p}Q)

‘]2155(8U> BSQH(Zv 27 17]) J1(2)({p}2)

AL, G01,5) [BigH< ()51 — 1) (1 — )
+J§é§;( z]))B?gH 1 2 {p}
LAY, (0.2.) [B%QH@,L(m) 51— ) 6(1 — )

TR sy) B (31, @))} I (ph)

+( FIRER (5) — TR (50 >) 42,0 m)} B o2, () 70 (o))
— { ~;g(z’, 2,7)6(1 —x1) 6(1 — xq)

(TR (s) — TEEL (55 >)Aggﬁq<z m} B .21, (5) IV ({oh)
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I8 (04) 68,1,0.9)| AL (1.2, I (01
+{ Gh,(2,4,5) 6(1 — 1) 5(1 — )
TG 51) G2 00)| A% (1,2, 2 ()
—2300 o a(51) By (1,2,4,5) T\ ({p}2)
~ 2300 a(51) AS g sa(1,2,9) BY (1,1.2) I ({ph)
2030 s (515) AS (1,4, 7) BY (1,2, (i) TP ({p})
~2y b o a(52)) By (2.1,1,5) I ({p}2)
~ 2y s a(52) AS o sa(2.1,9) BYy (2,1, T) IV ({ph)
23 b s (520) AD (2,1, §) BY (2.1, (1)) T ({p})
_QJQéZgaq(Slj)ngH(l 2,1 J)Jl ({p}2)
203 b gsa(315)) 454 (21 2) Bl (1,2, (7)) J ({p}h)
2 asa(517) Gy e (2. 1,5) Al (1,2,7) 11V ({p}1)
—2Jy bt gsa(517) By (1,3,2,5) TP ({p}2)
2 asa(517) A gy 0a(1,2.3) BYy (1,3, 2) I ({p})
203 b g sa(515) D84 (1,4,2) BYy (1,2, 5) J1V ({p})
2J§é€; pa(517) G (0. 1,5) Ay (T, (i), 2) S ()
— 20350 g a(515) + 203 b gsa(513) | AS (1, 5) BY (1,2, (1)) JP ({p})
2J§é§é gosa(527) B (2,1,1,5) 1 ({p}2)
230 aa(Saiiy) 9621 1) By (2.7, (i) IV ({ph)
— 2y 1 a(527) G g gy (1:2,) ASyy (1.2,4) J ({p})
~2Jy 5 asa(52) By (2,3, 1,5) TP ({p}a)
203 5 asa(521) AY gy saa(2.1,9) BY, 1 (2,4.T) IV ({p}h)
+20; b g (53) D8, 0g (2.3, 1) BY, (2,1, 5) IV ({ph)
J;é?é ga(521) GS 0 (0,2,5) ASy (2, (i), 1) TV ({ph)
= 2030 o a(555) F 2T3 5 g va(521) | AS4(2,1.5) By (2.1, (1)) 11V ({ph)

(B.2.11)
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I35 = IG5 (50)| Bluio1.2.0) S (o)
A1) | Bl (T2, 3) 001 = ) 801~ 2
- (+ T5om) + 58 s ) B (T.2.0)] S (o)
— {Aéﬁg(i, 1,7)6(1 — 21) 6(1 — x2)
+< + Lag(s1) + Jogo(s1;) — le,’égFQ(51(5j))) A3 s 4, 1,j)]
x BY (1,2, (i) /i ({ph)
Ay 0.2 | Bl (), 1,2) 001 = 21) 801~ )
- (+ T3tlom) + (515 ) Bn():1.3)] S (o)
— {Aévg(i, 2,7)0(1 — 1) 6(1 — 9)
(580 + TG s) — 552 ) 28,-000.2.9)
x BY((i7),1,2) J{V ({ph)
|+ g o) — Tllor) + T )

1,FI 1,FF 1,IF
JQ,QG(%@)) - Jz,QQ<5ij) + J2,QQ(ST@))

+( — 8™ (55,595, 1) + ST (512, 5955 Tan(iy) — S (8215 525, T2i.27)

+ 8" (5555 Sa(iiy 1) + 87 (8155 527 Ti525) = ST (515, 525 9”1@),2@)))]
. . — ™~ 1
xAY (0,1, 7) BY 5 (1,2, (1) IV ({ph)
1,IF 1,17 1,IF
—{+am@m—am@@+am@m
_ JuIF _ JLEF

LFI
2,GQ(31@)) 200 (8ij) + JQ,QQ(SE@))

+( - S[F(Su, 814, T1511) + SIF(Sip S1(4) $§1,1(5j)) - SIF(Su, $1i5 1)

1F IF IF
+ S (513 15y D + ST (8560 810, Tjini) — S (Sz@w51@')’””2@),1(5]')))}

xAY (0.2, 5) BY 5 ((17),1,2) J1V ({p}h) (B.2.12)
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B.3 g¢gg— H+jet at VV

The double virtual subtraction terms dé¥ 5, mentioned in section 6.6.3 are:

~2,XU »
A3gH (17 72) =

- |:+ 2 A27gg(812> + Ag,gg(‘le) + 4 Sg_ﬂlrt(zii) (21) ® Ag,qg—)qq('le)
+4 S!JHQF((J;) (22) ® Ag,gq—)qq<812) +4 Sg%qrg? (Zl) ® Sgﬁqu(]? (ZQ) B?gH(L i, 2)

- { — AY,(s1) — 247 (s1) — A, (s11)

bg S1i e bO A
e (E) A3 gosg(510) + " A3 g q(510) = Az g (s11)
+ 243, (51) @ AS g (51) + TG (1) @ AT, (510) — 2740 () © A (51)

2)

_ ~(2)
—2 Sg—ﬂzrég (21) +2 Sq—qug (1) + Sgﬁqréi;)(zl) ® Fg;)(zl)

bo
€

—[—A%%@m—z&wmwaﬂmwa%w

—2 Sy PV (z) @ TL) (1) + 2 Sgﬁqrgy(zl)} B, (1,2,1)
- { — DY o (512) © A3, (s1:) — Dy, (521) ® A3, (51)

-2 SgﬁqFflé)(zl) ® Dg’qg(812> -2 Sg%qu?(zl) ® Dgﬁg_m(s%)

+ TW () @AYo (51) +2 Symsg TV (21) @ TV (21)

+ Tl (2) ® A3, (513) + 2 Syoyl (21) ® ng(zZ)} By (1,2,1)
—[— 8 gmsq(510) = 2 Sgsg T\ (21) | Bl (1, 2,4)
| o) 0 A 2 8T ) 8 A (o)

+ T3 (21) @ A3y (513) +2 ST (1) © Pé}z)(zl)} Bryy(1,2,4)
- { — A (52) — 2.A7 (s2) — A} (s2:)

- % (Z—z) B A3 g (s2i) + b?OAg,g—)q<82i) — A (52)

+2A3 (521) @ AS g (s20) + T3 (22) @ AG -, (s0:) — 2750 (20) ® A3, (524)
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—=(2 ~(2)
—2 Sg—ﬂ]l—‘tgg)(ZQ) +2 Sq—mrqg (z2) + Sgﬂqrg?(@) ® Félg)(ZQ)

b )
—2 Sy T (2) @ TL) (20) + 2?0 Sgﬁqrgy(@)} By, (2,1,1)
- { A, () 2 Sgﬁqrg?(za] Blu(2.1,1)
—| — D§ ,,(512) ® AG ., (s20) — DS, (51:) ® A3, (52:)
3’gq 12 379*)(1 21 379*)9 12 379*)(1 21

— 2 SggT) (22) @ DYy (512) — 2 SgsgT) (22) @ DY, (514)

+ Tl (22) ® A3, (52) + 2 Syl (22) ® Ff;?(z2)

+ T3 (21) @ AG g (520) +2 SgogTl) (22) ® Fé?(zl)} BY p(2,1,1)
o [ - g,g—>q(32i) -2 Sg%qrg?(zﬂ B%QH(27 1,i)
- { — A3 (521) @ AS o (520) = 2 STy (22) © AJ (52:)

+ T0) (20) @ A (520) +2 Sygll) (22) @ Félq)(@)} By (2,1,9)

50 50 50

- [Jr Gigg(812) + Gy g(s11) + Gy 4(52:)

+ G;,g(sli) + é;,g<82i) + 2 Sg—ﬂlrt(];) (Zl) ® gg,qg—)gg(‘ng)

+2 8 F(l)(z)®go (s1:) +2 S F(l)(z)®go (s12)

g9—=q+ qg \~1 3,/ —g\°li g9+ qg \72 3,99—gg\°12

~(2) ~(2)

+2 Sg%qrélg) (22) ® g??,q’—)g(82i) + 2Fgg,F<Zl) +2 Fgg,F(ZQ)

+2 Sg%qré?(Zl) ® Sq%grg?(zl) +2 Sg%qrglg)(@) ® Sq%gré?(@)} AggH<17 2,1)

(B.3.13)
9 P
Azl (1,2,0) =
— { +2D§ L (51) @ DY 4y (52) +2 Syl (21) © DY, (52)
+ 2 SQ—WJFI(J}J) (22) ® Dg,g—m(sli) + 2 SQ—WJFEJ? (21) X Sg—ﬂlrt(zz) (22):| B(l]gH(L i? 2)

— { — A3 L (s10) = 2 Sy T (1) | Bl (1,2,4)

- { - Dg,qg(sm) ® Ag,g—)q(sli) + Ft(;;)(zl) ® Ag,g—ﬂ](sli)
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1
+ 5 ngl)('z?) & Ag,g—w(sli) -2 ‘S'El—ﬂlrf(llg)(z1> ® ,ngg(SlQ)

+—%ﬁwgwn®r$uﬁ+2&ngwn®r$QQF&H@2@

1
- { — DY,y (52) @ A3, . (s15) + 3 I (2) ® A3, (s15)

—2 ST (21) @ DY, (520) + Sysgl Y (21) @ 1“;3(22)} By 1(1,2,1)

b S1; e
— |: — 2-’42,9(‘910 — Aé’g(sli) — ?0 <—1) Ag’g_ﬂ](sli)

1%

bo
+ 0 gmsq(s10) + AJ (1) ® AJ_ (s15) + T (21) @ A3 o (s1:)

(@) bo
= T4 (21) ® A3y (510) = 2 Sgag Ty (21) + 22 5al(g) (1)

a9
+ Syogll)(21) @ TL) (21) — SgogT (21) @ rg?(zl)} By ;(1,2,4)
o= Ao =2 S | Bl 1)
| Dhanls1) 8 o) 4 T ) 8 A, (o)

1
+3 T (21) @ AS o (52i) — 2 SyosgT'E) (22) @ DY (512)

+ Syl (22) @ T (21) 4+ 2 Sy T (22) ® Ff;,)(@)] Bl,u(2,1,1)

1
N { a ,Dg,g—xq(sli) ® 'Ag,g—ﬂl(sm) + 2 F.%)<Zl) ® 'Ag,g—ﬂl(sm)

- 2 Sgﬁqrglg) (22) ® Dg,gﬁg(sli) + SQHQF((];) (22) ® FS]? (21):| B(lng(27 17 Z)

bo ( S2i -
- { — 2A7  (s21) — Ag ,(s2) — - <—2) A3 g (52)
MR
b
+ ?0 AG g g(s21) + A (s21) @ AT (523) + T4 (22) @ AJ,,(521)

=(2)
— Tl (20) ® AJ L (52) — 2 Sysgl gy

bo
(22) + 2? Sgﬂql—‘élg)(ZQ)
+ Syl (22) @ TG (22) — Syoglly) (22) ® Fé};)(zz)] BYyp(2,1,9)
{+@ww+@ww—w&mn

b ,
—2 PEZ{F(ZQ)} <+A§1’>gH(17 27 Z) - ?OAggH<17 2, Z))
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- |:+ .Fgg(SQi) + .7:??79(811-) + 2./_"399(812)

br
a1z - 2Fé§><zz>] (+A5QH< i) -

AggH(l 2 z))
1 1
- {ﬂL 3 G3g(511) © Fag(s1:) + 3 Fag(s2) @ Gg g (s10) + G34(515) @ F3ge(s12)
1
_ Félg)(21) ® g§7g(81i) - Fé?(ZQ) ® ggyg(su) + 5 gg,g(sm) X fg’g<82i>

1
+3 TS o (511) ® Gy (520) + GS 5 (52:) @ Fg (s12) — T (21) © G (524)

1
— T (2) @ G2 (s0:) — 2TV 1 (21) © F9 o (s12) — 2T 1 (20) @ FY  (519)

99,F 99,F

1 1 1
=5 Toop(21) @ Fg(s10) = 5 Tylp(22) @ Fiy(s10) = 5 Tyl (1) @ F g (s2)
1 1 1
5 Doop(22) @ Fy(s20) + T (1) @ Ty p(z2) + T () @ Ty (1)

+ PO () @ T o (21) + T (2) @ T (20) | A, (1, 2,)

b S14 - ~
_ {—l— gig(Sh‘) + ?0 (,11,_12) gg,g(su) -+ fgl,g(su)

R

b S1i ¢
+ ?F (u—lz) F3,(s1:) + 2G4 ,(s15) — Gy 4(511) @ Fy g (s1:)
R

1
2 gLl (22) © G g (s10) = 5 Tyglr(21) © Fiy ()
IO () e B (sn) — 2T 4 (2)
9~ 99.F 3,9\5Li 99,7 \#

+2 Sy T (21) ® Spmg T (21) + T (20) @ T 1 (21) | AS, (1, 2,4)

b S9; e ~
- {Jr G g(52:) + ?0 (M—Qg) G g(52:) + Fi4(520)
R
br [ s
() o)+ 200, ) = G o) @ F o)

1
+2 Sy T (22) ® G5 g (521) — 5 Ty

9 99,F

(21) ® Fy ,(52:)

1
R0

9 99,F

(22) @ FYy(501) — 2T 1 (20)

99,F

+2 Sgﬁqrg;)(@) ® Sqﬁgrgz)('z?) + Fél)( ) ® F;g)F( ) AggH(L 2>i)

. b s127\ ¢
+2 F?},gg(sm) FS gg( ) (IULQQ) +2 gﬁ?,gg(slz)
R
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+2 Sg%qréi;) (22) ® g??,gq—)gg<$12) +2 Sg—ﬂlrt(zlg)(zl) & gg,qg—)gg(su)

1 .
+ IO ) @ T L (2) + TP () @ Fgg{F(zl)l AY n(1,2,4) (B.3.14)

br )
T gg,g(sli) - gg,g(SQi)] ( AégH<1727Z)+ ABgH(LZaZ))
| —2rW (z)—2rW (2 )}Al (1,2,4)
99,F 99,F 3gH\ s 4
—| = T8 p(21) @ G8 (s1) — Ty o(21) ® Gy (52:) — T p(22) @ G5, (s11)
99, F 1 3,9 1z 99, F 1 3,9 21 99,F 2 3,9 1z

_ Fég)F(ZQ) & g§7g(82i):| AggH(L 2, @)

be (51 ¢ .
S G+ 2 () (o0 + Gyl

R

br ([ S2i .
#2 (25) 08,500 + 2T (o) 8 T (e AL (12,0
R

|: A3 Q—W(Sh) 2 Sg%qrglg)(zl)} BllgH(]wQaZ)

I I
- |:+ 5 Fég{F(zl) ® Ag g—>q($1i) + 5 Fég)jF(ZQ) ® A3 g—>q(81i)

+ STV (1) @ TV (21) + Sy DD (1) @ T (2 >] BY 4 (1,2,4)

~ bF S14 ¢ bF
- [ - Aé,g(sli) - ( 2 ) gg—)q(sll) + g,g—)q(sli)
e \ g €

4 i

1
5 Loo. o(21) ® A gsq(810) + 5 5 F;g)F(ZQ) ® Ag,g—ﬂz(sli)
+ Semsal P (21) @ T p(22) + Sgmsg T (21) @ T (1)

2) .
4 8T (e0)| Bl (1,2

o [ - g,g—>q(32i) -2 Sg%qrg?(@)l B%gH(27 1,i)

1 1 1 1
- {—0— B Fgg),F(ZQ) ® 'A3 g%q(SQi) + 92 F;g),F(Zl) ® "43 9”‘1(82’)

t Syoalgy) (20) © Ty p(z2) + Sy Ty <Z2>®r;;F< 0| Blyu(2,1,4)

~ b S9;
- { - Aé,g(SQi) - ?F (é) A3 gﬁq(sQl) A3 g%q(SQZ)
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1 1 1 1
+ 5 F;g),F(zZ) ® Ag,g—w(sm) + 9 Fgg),F<Zl) ® A3 9_>Q<821)

t Symnally (22) @ Tyl p(21) + SgongTly) (22) @ Ty (22)

99,F 99,F
2) .
+4 Sgﬁqrqg F( )] B?gH(2u 172) (B315>
~1,XU
Bign (14,2,7g)

- ‘AS g%q<52l) 2 Sg%qré?(@)} 31191{(27 1,i)

br :
| 2? Sgﬁqrf]lg)<z2):| B?gH<27 ]-7 Z)

|+ TW (1) @ AT, (526) + DU (20) @ AT, (52)

99,F 99,F

+2 Sy TD(z) @ T (2 >}B?QH<2,1,z‘>

99,F

N b i
- |: - A§7g($2i) - ?F <,Z_22R) A3 g—)q(sQl) A3 g—)q(szl)

b
2 80T (20) +2 Sy Ll (22) ® rg;F(zQ) +4 Sy T 1 (22)

:| B?gH(27 ]-7 Z)

- A3 Q—NI(SM) 2 Sg%qrglg)(zl)} BllgH(LQaz)
L bF |
T 2? Sg%qré;)(zl)} B?gH(LQaZ)

1
- F.Ezg)F(Zl) ® Az gq(510) + Fég),F(22> ® A3 4 q(511)

+2 Sg‘)qrt(q (21) ®Fég)F( )1 B?gH<17272)

A b S1;
S e = (5] Ao+ A o)

HRr
2P g 25, . TW ) 45, 7%
+ e D9t ag (Zl)+ g—qt qg (Zl)® ggF(Z2)+ g—q ng( )
}B?QH(LQ,@‘) (B.3.16)

~1,XU

BlgH (LI? Qv Z@) -

—{—A%W@m—zaﬁwgwnBQALG
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| Al © A (o1 — 2 Sy 1) A0
+ D (21) ® A3 L (51) + 2 SymsgU (21) @ T (21) | BY, (1,2, 4)

- { — AY (s15) = A3, (s1) + A3, (51) ® AJ (s17)
- Ffﬁ])(zl) ® Ag,g%q(‘sli) - Sg%qrgz)@l) ® FEI};)(ZI) +2 Sq%g%zz)(zl)
}B?QH(L 2,1)

- [ - Ag,g—ﬂ](s%) —2 Sg_ﬂ]]‘—‘((zlg)(ZQ) B%QH(Q» 1,17)

| o) © A (o) — 2 Sy ) 0 Al ()
+ T3 (22) ® AG g (520) +2 Sggll) (22) @ T8 (20) | B (2,1, 4)

- { - Ag,g(sm) - Aé,g(Szz‘) + Ag,g—)q(‘S?i) ® Aj (52
— T (22) ® A3 0 (52) — Syl (22) @ T (22) + 2 Sqﬁgfz)(zg)
} By (2,1,4)

- |:+ Ag,gg(‘le) + 2 Sgﬁqrt(lt%])<zl) ® Ag,qg%qq(‘le) + 2 Sg—ﬂlrt(]lg) (22) ® Ag,gq—}qq(312)

+2 Sy T (21) ® SyogTY (22) | BY (1,4, 2) (B.3.17)



Appendix C

Explicit results of antenna
subtraction terms for qg — H-jet

processes at NNLO

C.1 gg— H+jet at RR

The double real subtraction terms do% y;, mentioned in section 7.5.1 are:
BYXS(1,,2,i,j,ky) =
A 4y aa(1,2,) B, (1,4,5.2) I ({p}a)

+d§ (1,4, 5) B, (1,2, (i7), k) J1 ({p}2)

+d3(k, 5,1) BY, (1,2, (71), (k5)) J1 ({p}2)

— AY(1,2,5,k) BY, ;1(1,1,2) 1V ({p}h)

+AY g (1,2, 8) AS 1a(T,,2) B (1,4,2) J ({ph)
+AS (1,5, k) AS 4y 01,2, (GK)) BYy(1,4,2) 1 ({ph)
+ AY(1,4,5,k) BYyu (1,2, (ijk)) “’({p} )
=811, 9) A (T, (1), ) B (5,2, (7)) 1 ()

/—v

— dS(k, 3, 1) A3 (1, (i), (k) BYs (1,2, (i, k) /i ({p})

qu(l i k) 3qg~>qq( (Zk)) ‘B?gH<T j72> 1 ({p}1>

3,4 (1,4, 5) A3 ggsq (1,2, %) BYy (1, (), 2) 11 ({p})
270
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+d3(k, i, §) AS gyaa(1, 2, (1)) BY (T, (i5),2) 1V ({ph)

IF IF IF IF IF IF
Slzk ST Skz (i7) + SZz (i5) Slz (i) Slz(z})

XA 01,2, 8) Bl (T, (i7),2) J ({p}) (C.1.1)
BOYS(1,,7,2,5, k) =

+AY,(1,4,k) B,y (T, 5,2, (ik)) J{ ({p}2)

+D8 ,5(1,5,2) BS, 1 (14,2, k) JP ({p}2)

— A8 4y ag(1,2,k) BS (14,5, 2) TP ({p}2)

+AY (1,1, k) BY, (1,2, 5, (ik)) TP ({p}2)

+d3 (k. 5,2) BY,(1,4.2, (k) 1 ({p}2)

+ AG(L 0,3, k) By (1,2, (0710) 1 ()

= A (14, K) A8, (T, . (1K) Bl (1,2, o@)) (rh)

— A3 (1,4, k) A (

1,4, (k) B, (1,2, (i(Gk))) I ({p})
— AS(1,4,2,k) BY (1. 5,2) 1V ({ph)
+ AS (]'7 i’ k) Ag qg—>qq( 727 (I;Z» ‘B?gH(T j ) ‘]1(1)<{p}1)

+ A3

1,2,K) AY,(1,4.2) BY,y (1.5.2) 1 ({ph)

— AY(1,5,2,k) BY, ;1(1,1,2) 1V ({p}h)

3 qg%qq(

+ D3 ,(1,5,2) AS a1, 2,k) BY 1 (1,4,2) IV ({ph)
+AS oaa(1,2,k) AS (T,5,2) BYy (1,0.2) 11V ({ph)

— AS(1,2,5,k) BY 1 (1,1,2) 1V ({ph)

8 g (8,3,2) 48 430001, 2: (k) Blyn(T,5,2) 1 ({ph)
A (1, 8) A (T, GR)) B (T, 2, G50 1 ()
= D (1,3:2) A5, (1,3, k) By (1,2, (iR) 1t ({ph)
(0, .2) A3, (1,4, () Bl (1.2, (G1)) O ({oh)

SIF SIF SIF I1F IF _ _ QIF

2 T P2 T PaGk T 2%GGR)  HUR) TGk

—~—

x A (1,1, (k) BYy (1,2, (1K) 1 ({p}h)
— G, 1, ki) AS (1,2, (jKi)) 1V ({p})
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—~—

+AY (1,4, k) Gy (0T, (5K)) A, (T, 2, (i(GK))) J1 ({p})

——

+ A9, (1,3, k) GS 4, (5. T, () A, (T, 2, (G (i) 11 ({ph)

~0,XS ~

~ ~

Byyy (10,2,1,5,kg) =
A8 4ag(1,2,k) BS (14,3, 2) TP ({p}2)

+AY,(1,4,k) BS,y (1,2, 5, (ik)) J{ ({p}2)

+A,(1, 5, k) BY,(T,2,4, (5k)) /P ({p}2)

— A5(1,2,4,k) BYy(T,5,2) 1V ({p})

+ A grag(1.2,K) A3 2(1,4,2) BY, (1, 5,2) IV ({p}h)
+ A (1,0, k) AS 01,2, (1K) BYy(T,5,2) J{V ({p}h)
AL 8) Bl (1,2, R 1 ()

= A8 (1,7, k) A3 (T, (i8)) B, (T2, (G0) I ({ph)

— A3 (1,4, k) A (T

Ll

L4, (k) B (T, 2, (i(5K))) 7 ({p )
— A8(1, 2,4, k) BY 11(1,1,2) 1V ({ph)
A orag(1,2K) AY o (1,5,2) BY 1 (1,4,2) I ({p})

+AY (1,5, k) AS (1,2, ) B (1,4,2) &V ({p})

Cr’(14,2,40, jg. kq) =

— A9 ggrga:2,1) Co (1,2, 5, 5) 1 ({p}2)
+E§(k, 5,1) By, (1,2, (7), (k7)) J{ ({p}2)
— B g5 k1) By ((K), 1,2,4) TP ({p}2)
+ B9 (K, 5,1,2) Blyu (1,2, (kji) Ji ({p})
— BY(k,j.4) DS ,((kj). (7). 2) BY, (1,2

— Ay ag (k1 2,1) ES (2, ,4) B (1,2, (7)) /1 ({ph)
+ B5 (K, 5,1) A3 g g (R5),2,1) BYy (1,2, (51)) J{V ({p})
— A%, , 1, k) AS (1,2, (i5k)) 1 ({p})

/-\_/

—_~—

+ B (5., 1) G, (1, (k) A%y (1,2, (i(5K))) It ({ph)

(k7. 70) 1t ({ph)

(C.1.2)

(C.1.3)
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Bk 4,8) GOy (i), L (B)) A (T, 2, G ) T ()

+ B3k, 1,4) By (1,2, (ki) JP ({ph

)
— ES L, k1) A (GF), 1,1) BY (T, 2, ((5k)1) TV ({p}h)

(]7 27 1) ngH(L Z',Q, k) Jl ({p}Q)

0
A3 49499

(k,2,1) CO (1,7, 3,2) I ({p}a)

— A3 oaq
+E5 (k. 1, 5) BY, (1, (i7), 2, (ki) JP ({p}2)
— B8 (ko 1) BY (0,1, 2, (58)) 1 ({p}2)
+ E9(1,4,5,2) BY, (1,2, k) 1}V ({ph)
— E§(k,i,5) D3 ., (1, (i7),2) BY, (1,2, (ki) J{ ({p}h)

A a2 D) ES 0 (1,0,2) BY (1,2, k) I ({ph)

— A1, ki, ) A (T, 2, (Ri)) Jf <{p} )

—_~—

B sy (s 1) G5 (T, (1)) A (1,2, (11 1 ({0h)

+ ES(k,i,) GY gy (7). 1, (ki) AggHu 2, (17, ki) J{V ({p})
+E9(j, k,1,2) BY 5 (3,1,2) SV ({ph)
4.k, 1) DS, ((jk),1,2) BY (3,1,2) J{V ({p})

A a5 201 ES g 20k, T) BY (6, 1,2) I ({p}1)

+ B0, k,1,2) B 1(5,1,2) 1V ({ph)
(i, k, 1) DS ., (1K), 1,2) B (5, 1,2) J” ({p}1)
(1:2,1) BS 00 (2.6, 1) BY 11 (7.1,2) J1V ({p}h)

)
(

- qu’ag(

0
E3q—>g

— A3 424
= BY(G: k. 11) Bly (49, 1.2) P (fph)
F Bk 1) A, G T, () B (G0, T 2) 10 ()
+ B (K, i, 5) A gy sgq((R1),2,1) Bl (T, (17),2) 11V ({p})
(1,2,1) B8 o (k, 3, 2) BYyu (1,2, ( J)) Y({ph)
(3,2, ) By (7)) By BT, (k) 72 ({ph)
((Gk),1,2) By (i,1,2) J{ ({p})
(7,1,2) B ((ik), 1,2) 1}V ({p})

((ik), 2, 5) BY (2,1, ((k)7)) /72 ({p}1) (C.1.4)

0
A3 4949

0
A3 94

+ Ei(%) q’—>g(]7 k 1) dg ,99—q9

—i—Eg’q/%g(z k, 1)Agg%q
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~0.XS /3 4 .
C'1gH <1q727k(17 ZQJQ) =

+A3 qg—>qq(17 2, k) ngH(T, i 7, 5) J1(2)({p}2)

+A3 g_>q(l 27]) ngH(]-aév ({j)a k) Jl(z)({p}Q)

—BS(k, i, 5) BS, 5 (1,2, (17), (ki) J{? ({p}2)
+ES (i,k, 1) BS 5 (1K), 1,2, 7) Ji ({p}2)
_Bg(1>i’ja k) B?gH<T’2a(ij))J <{ }1)

—_——

+ EY(k, §,i) AS (1, (1), (k7)) B, (1.2, (ji, k5)) IV ({p})

— BY(i,1,k, 5) By (1, 2, (ik5)) /1" ({p})
+E§,q/—>g(

— B(k,4,2,§) Bl (1,2, (kij)) J{” ({ph)

+AY L (0.2,5) BS o (K2, (7)) BY (1,2, (k(i ki) I (o))

—_—~—

+ B (i, k1) AS, L, ((iK),2,§) BY 1 (((i)7),T,2) iV ({p})
— BY(k, 1) AS gyge (1, 2, (k0)) BY, (1, (i7),2) 1V ({p}1)

D(l]g)lgs(]'miq?jq? kt?»é) =
QAJ(S] qg%qq( 27.7) D(())gH(Tu
(1,

—2A9 (1,2, k) DggH

3,99—+qq

2Ag qg—>qq(1’27i> DggH(T J § k J1(2)({p}2

+4C)(1,4,4,k) B,y (1,2, (i

+4C(j, k,1,1) 1gH(

+4C’0(kz j,Z,l)B?gH( ,2,

+4C9(i, 1,5, k) BY, (1,2, (ijk

D(ng);IS(qulquv kg, 2) =

— A3 4gaa(1,2,5) Dl (T,2,7, k) 1 ({p}»)
k

— A (1,2,1) Do, (1, 4,2,

3,99—qq

i, 1,k) AL ((08),T,9) By (1,2, (G(ik))) T ({p})

(C.1.5)

(C.1.6)
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— A8 4grqa(1,2,8) DY (T, 5,4,2) 1P ({p}2)
+2CY(1,4,j, k) BYyu (1,2, (1K) J” ({ph)
+2CY (k. j,i,1) By (1,2, (k3i)) J{” ({ph)
+2C8 (5, kyi 1) By (1,2, (ki) J ({ph)
+2C8(i, 1, k) By (1,2, (1K) J{V ({ph) (C.1.7)

C.2 gg— H+jet at RV

The real-virtual subtraction terms do%y;, mentioned in section 7.5.2 are:
B;;]);T(iq,é i\ jq) =
FF
|+ 2B ) 4 2038 )| B1.2,0.0) S (o1
+ Dg,g(j, i,2) Blyy (1,2, (j1)) 6(1 — 1) 6(1 — 2)

+[ D3 ,(5,4,2) 6(1 — 1) 6(1 — )

( L 2JREE(s) + 20 <312>) DY, (3. 2)] BY (1,2, Gi) IV ({oh)
AO

3,99—qq

|:A%) qg%qq(L 27]) 5(1 - xl) 5(1 — 1'2)

(1,2,5) Bl (1,2,4) 6(1 — 21) 6(1 — )

(2B ) 4 201E612) ) A8 (1.2.0)] Bl (12,00 57001
G sy, 3:1) A3y (1,2, (i) 6(1 — 1) 6(1 — )
— {égq,(z,j, 1)0(1 — 1) 6(1 — )
(- 28 ) — 23861 ) G0 1] AL (T2, ) S ()
(C.2.8)
By (14,1,2,57) =

—| + 20358 (si5) + 2J, Qc<su>] BY 1 (1,4,2,7) I ({p}s)

+ D§ wo(1,5,2) BLp(1,2,5) 6(1 — 1) (1 — )
+ Dé qg(Liv 2)6(1 —21)6(1 — x3)

( 2T (o) 4 2 QG<slz>) DY, (L, 2)} B 4(1.2,5) 7 ({ph)
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Ag qg—)qq(lv 27]) BllgH(]'

|:A%) qg%qq(L 27]) 5(1 - xl) 5(1 — x2)

( L2 () 4 2! QG<512>) A 2,3')] B o(T,1.2) 7O (o)
Gg,q’ag(iv 17]) AégH<T7 (&)7 2) 5(1 - Il) 6(1 - xQ)

| G3 (i, 1,5) 6(1 — 1) 5(1 — )

—( — 2@};55 (i) — 2j;;g)2,(slg)) G yog(is 1, j)] AS (T, (6 (i), 2) Y ({p})

LIF
—Jy

2,GQ,q'—g\5il Sgg(Zv 172) B?gH(]vT §> Jl ({p}l)

1,IF 35 1
IIF

%éfgq Lo(8i1) Bogw(i,1,2, ) I ({p}e)
— Sy G0 g (5i1) Bogr (1,2, 1,5) Ji ({p}e)
+aGgq—g(511) G <1,z,y>A3gH<<?>,T,2>J“><{p}1>
Ty by sg(5i1) G55 (1,3,4) ASy (7). T,2) TV ({ph)
— Ty b sg(5i1) AY 0 (i1,) BY (1), 2,T) 11V ({ph)
(s11)
(s1) d
(5:1)

3ggﬁqg<y, 2,1) BY (i, 1, é) JV({p})

2GQq%g Si1

II o
21QQ qg—qq\ 512 (1717372) Jl ({p}2)

11 ~N B 1
+200,09-q0 (512 E§q<2 31) Bl (1,(i7),2) JV ({ph)

JLII 5
Sy QQ.q9—qq\ 512

(s12) Ct
(513)

(s12) Coy (1,2, 7,1) I ({p}2)
éééz woman(512) B 100(2.1,0) B (2.T,5) T ({p})
~ 3 00ag-raa(512) w@ 3.2) By (1,2, (1)) J1" ({ph)
— 500 a9—saa(512) Coarr (1,4, 2, ) I ({p}e)

(512) B gr 109(1,7,2) By (1,2, 5) J1V ({p}1)
%éfQ sosan(512) ES g 00 (2, 3, 1) BY (2,1, >J1”<{p} )

1
+ J21éIQ qg—>qq(512) + JQICIQIQ q9—qq 512 2 j? lgH(1 2 (Z]>> Jl( )({p}1>

JLII 5
Sy QQ.q9—qq\ 512

| = 20580 0 a(527) + Jégégﬁq@m] EY (5,0, 1) B4 (2,T, (51) JE ({ph)

] = o)+ I8 5| Den5:1.2) B BT 00 )
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LIF LIF
—_Jb J

~1,XT

BQgH (iqu Qa iv.jtj) =
7 z ~ .. 2
—| Tt 2J21,’c§g(5ji) + 2J21,’gc(312)} ngH(L 2,4, 7) J1( )({p}Q)

_AO (1727J) BllgH(Tazaﬁ) 5(1 —331)(5(1—232)

3,99—qq

—| A (1,2,7)0(1 — 1) 6(1 — )

3,99—qq

+| + J21,’CI¥FQ,q’—>g(S]'1) - J21,7ég,q’—>g(s(7g)l):| Ag,g%q(a 1’ -7) B?gH((Z])? T’

2) 1" ({p})
. T T 1
+ 2,GQ,q’—>g(sj1> + 2,GQ,q’—>g(5j1)‘| dg,gg—)qg(27 17 2) B?gH(]? 17 2) Jl( )({p}l)

[ . . —_ . 1
|+ a b gy (Si1) — J;;ég,qqg@(ﬁ)l)} AY 0 (3:2,9) BY (2,1, (2) L ({ph)

(C.2.9)

T T . - .= 1
+( 2R () + 2J§,é€,~<m>) AL 27‘7)] B o(T,1.2) IO ({p})

+AS (1,4, 5) Bl (1,2, (1)) 6(1 — 21) (1 — )

+ [A;q(l, i,7)0(1 —21) 6(1 — a2)

+ ( + 2055 (s50) + 2J;;gzg<m>) A, (1,4, j)] B, (1,2,(19) 11 ({ph)

-y g (510) BSyr (21,2, 5) 11 ({p}2)
3 g (310) AS g (0,1, 7) By (1,2, (7)) I ({p}h)
bt arsg (510) AS g0, 2,5) Bl (2,1, (i7)) I ({p}h)
s 00 000 (512) Corr (1,1,5.2) JP ({p}2)

1 . -~ 1
~5 D200 ag-san(512) B o(1,1,5) By (T, (i7),2) /i ({p})
1

.. N B 1
=5 T200.a9aa(512) B 4(2:7.9) Blo (1, (7). 2) 1V ({p})

2035 gvg(521) Clun (1,24, 3) JP ({p}2)
20y 5 gsa(52) BS g 10(3:2,4) BY (1,2, (i7)) JiV ({ph)
+203 56 gsaSaiy) B g (i1, 3) By (2., (i) J ({ph)
~1,XT _
Eng (iq, ?,7, jq) =
— Ty (s17) By (1,2,1,5) 11 ({p}2)

— A9

3,99—qq

(1,2,4) | Bi,p(1,4,2) 6(1 — 21) 6(1 — x2)

(C.2.10)
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+ I5d(sm) B (T,02) | J0(0h)
— [quwqq(l, 2,7)6(1 — 1) 6(1 — a2)
(885 o0) = T o)) A y(12.0)| B (0.2 1 ()
AL, (10.9) | Bl (L2, 3301 = ) 301 = 22
585 51 Bl (12,0 | (1)
- {Aqu(u,j) 6(1 — 1) 6(1 — x2)
(8 ow) = I3 ) ALyl 6] Bl (L2, I (001
o T aaa(512) Bl (1,1,3.2) I ({p)2)
by T aan512) A1, 5:2) Blyn(T,5.2) 70 ()
b T (512 A2 o(1,5.2) B,y (16.2) I (o))
5 T aan512) Dhyia(1,5:2.) T2 ({p)2)

1 o 2
_§ JZI,ZIQIQ,qg—)qq(SlQ) DggH(L 4, 2) Jl( )({p}Q)

1

~5 126@ussaa(512) Doy (1,2,0,5) J? ({p}2) (C.2.11)

E;EJFI‘{T(im Qa i?j(j) =
—Jybe(s13) Bo, (1,42, 5) I ({p}e)
—Jy60(515) Byu(1,2,4,5) T2 ({p}a)
+ Dg’qg<1’ i’ 2) |:BllgH(T7 §7J> 5(1 — xl) (5(1 — LUQ)
FIRIE (51 B (T, zj)] IO (1)
+d3,(j,1,2) {BigH(l,Z (i) 6(1 — 1) 6(1 — )

TR (51) Bla(1,2 @'»] IV (k)

+ {flé,q(l,z‘,j) 6(1—x1) 0(1 — x5)
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T ( UM () Ji;ég(sl@)) 2,1, m)} B (L2, (7)) 7V ({p})

- A%,qg—)qq<17 27j) {BllgH(lZa?) 5(1 - *Tl) 5<1 - ib'g)

+ J21:CIQIQ(Sﬁ) B(l)gH<17 Z7§):| Jl(l)({p}l)

—{Al (1,2,5)0(1 — 1) 6(1 — x3)

3,q9—qq
. - . = 1
n ( FIME () - J;;(gg(slg)) A2 m} B o(L6,2) IO ((ph)

~2 {G( 1,5) 8(1 — 1) (1 — @) + Jy by (515) Gy (i Lj)}
x AY 1(T,2, (7)) I ({ph)

1 . 2
5 3 00agaa(512) By (1,3,5.2) 1P ({p}a)

1 - - =
+§ J;:éIQ,qg%qq(sTQ) dg,q(L L, j) B?gH(la (Z]>7 2) J1(1)<{p}1)

1 . ~\ =
15 T2:00.a9a0(512) 8, (2.3.9) Bl (1, (70, 2) 1 ({p})

L o T amr
+|+ 92 ‘]2,QQ7qg—>qq(512) ) JZ,QQ,qg%qq(8ﬁ>

. — . = 1
XAg#]lj(l’ L 2) B?gH(LL 2) Jl( )<{p}1>
1 . .
_5 lev’éfélqgﬁqq@l?) BSgHu’ 1% 2) J1(2)({p}2)

1 . -~ 1
15 T2:00.a0a0(572) B, (1.3.9) Blu (T, (7),2) 1 ({ph)
1 .. N B 1
15 2 00a-san(513) (2.4, 9) Byr (1, (70, 2) I ({p})

+ { + % T500.ag-aa(512) — % 300,090 (572)

x A3 0(1,5,2) By (T,4,2) 11V ({p}) (C.2.12)
~1.XT = ~ _
BQgH (1q’2ai7j<?> =

- [ + Jyoa(si2) + Jybe(s2) + Tne(s1) + Tyoe (si) — Jabo(s15)

X By (1,2,1.§) I ({p})

AL, (110.9) | Bl (L2, 3301 = 2301 = 22

+ ( + Jy o (s1) + J%:Sém))) BY (1,2, @))] TV ({ph)
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+ {Aé,q(l,z’,j) S(1 — 1) 6(1 — )

(I3 + I8 ) = o)) 43,0009
% By (1.2, () /i ({ph)

LIF 1LIF L,FI
- [ + J00(515) — oo (s15) — J2oa(52))
1L,FI 1,11 1,11
+ Jo0c(Syi) — Loa(s12) + Lo ga(s12)

+ ( - SIF(31j> s15,1) + SIF(SI@y S155 ZUI({]-)M) + SIF(SQja S155 T25,15)

— 8" (89053 8155 Ty 1) + ST (812,51, T12,15) — ST (539, 815, 9012,”))1
.. — s 1
x A3, (1,4, 5) By (1,2, (i) J{ ({p})

SA L (12,) [B%gHﬁ,z',?) 5(1— 1) 6(1 — )
+ ( + Ty e (51:) + Iyt (s3) ) Blan (T, z'ﬂ)] I ({ph)
- |:Aé,qgﬁqq<17 27.7) 5(1 - 271) 6<1 - x2)

+ ( + ‘]21,’éIG(812> + le,gé(SQJ) - J21:QIQIQ(812)> Ag,qgﬁqq(L 27 ]):|
x By (1,4,2) 11V ({ph)

LFF LEI LIF
- [ + J2,GQ (si5) — JQ,GQ(Sﬁ) - JZ,QQ(SU)

1,11 LIF 1IF
+ JZQQ(SW) + J2,QG(31i) - J2,QG(3D)

+ < — 8™ (i, 10, jins) + ST (8350 513, 315) + ST (51, 514, T14,10)

- SIF(Sﬁa STi» xﬁ,ﬂ) - SIF(SM S1iy 1) + SIF(SIia STis 1))]

. - . =5 1
) AS 0 ae(1,2,9) B 1 (1,4,2) 1 ({p})
1

,II ~ . . 2
—5 J21,QQ,qg—>qq<812) ngH<17 2,7, 2) ‘]1( )({p}2)

1 ) - .5 41
5 12.00us a0 (512) A3,49(1.1:2) B (1.3.2) 1 ({ph)

1 II . T .5 1
+§ JQI;QQ,qg—N]q(SU) Ag,qq(lv Js 2) B?gH<1’ Z 2) ‘]1( )({p}l)

T aar . N 7(2
_5 J217QQ,qg~>qq<812> D[())gH(17 7, 27 j) ']1( )<{p}2)

1 o

~5 D200 agsar($12) Dogrr(1.7.3,2) Ji” ({p}2)

1 .

— = Ty 0agsaa(512) Doy (1,24, 3) JP ({p}2) (C.2.13)

9 “2,0Q.99—qq
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C.3 qg9g— H+jet at VV

The double virtual subtraction terms dé¥ 5, mentioned in section 7.5.3 are:
D2XU (7 5

Biyn (1g:2g,1q) =

| Do) = T) = TG + DY) | (12,0

bo

€

-t qu(Sli) - FL(];)<21>‘| <+B11gH(1727Z) B[l)gH(LQaZ))

1
—| + D 4(s12) @ AS (s15) — TL (1) ® A3 (s1) — 3 I (22) ® A3 (511)
1
() Do)+ T (e + L T T
:| B?gH(la 27 Z)

1
Do) AL (1) 5 T ) A (1)

1 .
) @ D o) + ] T o) 0 TG | B2
A Al P A () (22
-t 47q(51i) + 3,q(31i> + — 37q(sli) —
€ I
p— 2 i
— Ag’q(Sli) & qu(su) — F;J(Zl)} B?gH(la 2’ @)
b A (1) + AL (510) + €O aa(510) + 2C0 (510) + €2 aa(510)
2 4,q\° 1% 3,q\°1i 4,4,Gqg \° 14 4,q\51i 4,G,q3\S1i
=) = 0
+ qu t<zl) + qu (21>:| BlgH(]-7 272)
- { - Ag,qg%qq(sl?) - Sg%qrg};)(@)} 31191{(1, i,2)
- {_‘_ Fé}l)(zﬁ © Ag’qgﬁqq(slg) T FEI}I)(’Z?) ® Ag,qg—mq(sm)
— A yga(512) @ A3 (512) + Sy T (22) @ T (21)
+ Syagl D (22) @ T8 (22) — Symsgl'Y) (22) ® A3 o (512) | BYyi(1,1,2)
N { - "Zlg,qg(su) - Aé,qg<812> + Ag,qg%qq(812> ® Ag,qq(sm)
=(2)

1
B Fg;)(z2) ® ‘Ag,qg%qq(sl?) 9 Sg%qrgzé)(@) ® Ff%)('@) + Sq—quqg <22)

:| B?gH(lu i7 2)
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. b .
| A lore) = Sy )| (B (1,02 - B (11.2))

1

- |:+ Fz(;]) (21) ® Ag,qg—)qq(su) - 5 g,qg—>qq(812> ® Dg,q(sli)

+ Sg*}qrglg) (ZQ) & F((Ilq) (Zl) — 5

1 .
Syl ) © DAy 51)| By(1.2)
Lo 0 1 (1) 0
| 9 ‘A3,qgﬁqq(312> ® D&q(sﬂ) ) Sg—ﬂzrqg (22) ® Ds,q(S%)
+ Fg}z)(ZQ) (%9 Ag’qg_n]q(slg) + Sg_ﬂzrt(];)(ZQ) X Ft(;])(ZQ):| B?gH(L i, 2)

_ { — AZ:Z;dj(slg) — Ag,qg(slg) — Aéqg(slg) — b—:Ag’qg_}qq(sm) (%j) —e
+ AR gggg(512) @ AZ g (512) — T (22) @ AF 1 (s12)
+ T (22) ® A3 1y gq(512) + % Sysql W (22) @ T (20)
- % Sg%qrgy(@) ® F((I;)(@) - Sg%qff;z)@ﬂ} B?gH(la i,2)

| Gl = 20 o) 4 2T ) 968,10

=(2) )
+2 Syglgy (21) + SqgTi (1) ® ng(zl)} AS 5 (1,2,4) (C.3.14)

~2,XU
BlgH (1Q7297ZQ) =

- |: - "Zlg,qg(slz) - A%,qg(s:l?) + Ag,qg—mq(sm) ® Ag,qq(sm)

~(2)

1
- Ft(z}z)(’z?) ® Ag7q9—>qq(sl2) + Sq%grq (22) — ) Sg%qrg;)(@) ® Félq)(zQ)

g
‘|B?gH<17 7;7 2)
- |: - Ag,qg%qq(su) - Sg%qrélg)('z?) BllgH(Lia 2)
—| = AS g (512) @ A (512) — Sgosglly (22) @ AG  (512)
3,q9—qq\ 512 3,qq\512 9—qt qg \*2 3,qq\512
+ Fz(I}I) (21) ® Ag,qg—}qq(sm) + F((I}I)(ZQ) ® Ag,qg%qq(‘ng)

+ Syagl D (22) @ T (21) + Syosgl') (22) @ T (20) | BY, (1,4, 2)

1 - -
— {—i— 5 Aiq(sli) + Cg = (sli) + 262,q<31i> + Ciq,qqq(sli) + Aé,q(sli)

7q7 qq
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~(2
2) =

0 = 1
_ FE]}I)<21> (%9 qu(Sh‘) + qu t(Zl) + qu (21> + 5 FEI}I)(21> X ]__‘((I}])<Zl)

:| B?gH(la 27 Z)

— {+ A3 (s1) — T (21) | Blyu (1, 2,4) (C.3.15)

~2,XU

- Ag,g—)q($2i> ® gf?,q’—)g(sli) - Sqﬁgrélq) (Zl) ® Ag,g%q(‘g?i)
-2 SgﬁqF(g? (22) 0% (C/‘?E)’q/_w(sli) -2 Sgﬁqrg?(ZQ) X Sqﬁgréz) (2’1):| B?gH(27 1, ’l)
|+ A (512) + Syl (20) | By (1,4, 2)
3,q9—+qq\ 512 g—at qg (72 1L %

1 1
B {+ 5 Aqugﬁfm(su) ® gg,q(sli) + 5 Ag,qgﬁqq(su) ® ESO,q(SZi)

1 1 .
+ 5 Sg%qPé;) (ZQ) X gg,q(sli) + 5 Sg%qrg;) (Zg) X 5:?,(1(321‘)} B?gH(L 1, 2)

1 br (512 br
- {—I_ Aili,qg(sm) + e <M_2 Ag,qg%qq(su) T e Ag,qg%qq(sm)
R

1 1 1 —=(2)
B Fég),F(ZQ) ® Ag,qg%qq(sl?) + 9 Sg%qrr(zlg)(%) ® F( : (ZZ) + SgaqF (22)

99,F q9,F

:| B?gH(L iv 2)

—| - qu(su) + Fg?(zl)} B}QH(I,Z,i)

99,F

-t F(l) (ZQ):|BllgH<1a27Z)

— o 1 b S14
| = Bly(s1) = By (su) — &) (s2) = A (s1) — = (_1

1%

br
+— AR (510) — SqgTiD(21) @ AJ L (515) = 2 Syl (22) @ €9 1 (52)

) A (512)

+ FE];),F(Z2> ® ‘Ag,q(sli) - Sq%grgt;)(zl) ® Sg%qré?(zl)

— Syt W (22) © Syoy PV (20) — TV (z1) @ T ()

99,F

2) =) =) =) .
qq,F(Zl) + FqQ(Zl) + FqQ('zl) - Fgg,F('ZQ) B?gH(lﬂ 271)

(C.3.16)

Fé}l) (z1) + T

€

p2,XU /3 4§ -
BlgH <1q72972¢?) =
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-+ Dg,g(32i> + Dg,qg(slz) - qug_}qq(SlQ) - th}g)(zl) - FE]::]) (22):| B%gH(L 272)

o _Fég)F< ):|BllgH(1727Z)

— |+ Symal(22) @ €3 sy (512) — T8 p(22) @ DY (24)

1 bF 512 -
_ Fég),F(Zz) X Dg,qg(slg) -+ Fé )(22) X Fég)F( ) 4+ — E ’ngg(SlQ)
bF S9; ¢ bo 1 bF bF
T (—) D%gw) 2T p(0) + T () = = Dy (512)
€ \Up € € €

b .
d DO (821) AS qgﬁqq(le) Ag’),qg(su) + Bl(l),q’(sli)

—=(2 =(2
- r( ) (21) — 2r§(§(z1)

qq,F

+ F( : (22) ® Ag,qg%qq(‘le) + Sq—th;}z)(Zl) ® Ag,g%q(sli)

99,F
+ Sq%gr;z)(zl) & Sg%qré?(zl) + Sq%gré;)(@) ® Sy%qrélg)(@)

+ T ) @ T (20) — AS g (512) ® EY(52:)

99,F

- =(2
+ Syl (20) ® ED L, (591) + Dy (521) — Too p(20)

99,F

+ &L (s01) + £y (512) + D3 4y (512)
br [ 512 br .
- ? (_2> AS qg%qq(‘gl?) + _FC(]}])<21>:| B?gH<17277')
KR €

- { — 2G93 yg(511) — 2 SqagF_ﬁ,i,)(m)] AégH(lv 2,1)

4 b S1i
— |: — 2%2,(1(8”) -2 g317q/($17;) — 2—F (—12
€ \HR

bF

1
+ 277Gl g (s511) = 2 Sy T (21) © G (510) + 2T p(22) © G (s500)

) g??,q’—)g(sli)

1 2)
28y o) ©Ty(5) = 8ol () @ T e(22) = 2 STy ()
} AggH(la 27 Z)
- |: - Ag,qg—>qq($12) - Sg%qré;)(%) BllgH(Liv 2)

o [ o qug—wq(sw) ® qu(s%) - Sg%qrég(z?) ® 5§,q(52i) B&H(L i,2)
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~ bF S
- { B Aiqy(SlZ) e (ﬁ) Ay ag—saq($12) T "43 ag—aa(512)
1

2)
Dl p(20) © AG s (512) = 5 Somall3) () O Ty () = Sypmsa T ()

:| B?gH(]-u i7 2)
- |:+ 2 gﬁ(l),q’g(‘le) - Bg,q’(sli) + gg,q’%g(slﬁ ® D?,gg—}gq(812)
+ Sq—>gr( )(21) ® D3 gg—>gq(812> g??,q’—)g(sli) ® Dg,gg%qg(slz)
- Sqﬁgr_f]}]) (Zl) ® Dg,ggﬁqg(sm) - gi?,q’—)g(sli) ® Dg,really(512)
+ Sgosglhe (21) @ D3 aury (512) + 5, (510) @ A o, (514)
q—gt gq \F1 3,really\ 512 3,4/ —g\S1i 3,g—q\S1i

+ 2 Sg%qfélg)(@) ® gg

,4'a—9q

(s12) + 2 SgsgT' () (22) @ Sgsg T\ (21) | BY, (2, 1,4)

(C.3.17)
2,XU

~

A 1
19H (1g,2g,iq) = F_E;g),F

we)))

(22)BllgH(172>i) (0318)



Appendix D

Explicit results of antenna
subtraction terms for gqg — H-+jet

processes at NNLO

D.1 ¢qg — H+jet at RR

The double real subtraction terms dé% ,;,, mentioned in section 8.5.1 are:
By (14,1, 5.k, 24) =
+A 44(1,4,2) BY 1 (1,5, k. 2) I ({p}2)
+d3 (1,4, k) BY, (1,1, (5k), 2) J{ ({p}2)
+d§ (2, k, §) BSy (L4, (7). 2) 1 ({p}a)
+ AL, 4, k. 2) By (1,6, 2) J{V ({ph)
—d§ (1,5, k) A 45(T, (jk),2) BY, i (1,4,2) S ({ph)
d%@kﬁgw<())E@@ .2) 7" ({ph)
+A9(1,4,5,2) By (1,5, 2) 7V ({ph)

— AY 0(1,4,2) AS (T, 5.2) By (1. k.2) 11V ({p})
@Wujmﬁwd 2) Blyu(T, k. 2) J{V ({ph)
+3 LAY (1,0,2) Ao (T,5.2) BY (T, 1. 3) T ({ph)
—§£meAmume@6ﬂh®AW@m

286
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5 B2, 8) A4 (1,5,9) By (T, (),2) 1V (o)

1 1F 1F 1F IF I1F 1F
+2 5122 + S + Sll(ﬁe - S S2’L ik) SQl('Lk

XA&ALJJ)B%Hﬁ( k),2 >A”q )
T Lk2) " ({ph)

+2 A 0(1,5.2) AY . (1,0,2) BY (T,
L (1,5, k) A8 1g(1,5,2) B?QH(T k), 2) 7 ({p})

1 _ _
5 dgq( ) J 7k> quq<]‘77’72) B?gH(l ( ) 2) ({p} )
1 IF IF I1F IF IF IF
5 | = ST T 5T TG STj(%) + 500 ~ S5iGw
X@wmabﬂﬁﬁ() 2) /" ({ph) (D.1.1)

,2) 1P ({p}a)
+@W< aﬂﬁH@a,mJﬁamg

H@ 5,2) 12 ({p}2)
(1

g,k
k

k,2) Jf ({p})

3%u%>3w,a>wwukmﬂan
+AY(1, 4, k,2) By (1,6, 2) J{V ({ph)
— A3 (1,5,2) A o (T,k,2)
— A3 (1, k,2) A3 (T, 5,2)
+ AY(1,4,k,2) B,y (T,5,2) I ({ph)
) 2)
2)

wll

) IV ({ph)
,2) 1V ({ph)

B?gH (_

B?gH<1

gwuz23m< BY 4(1,5.2) 11V ({ph)
— A (1,k,2) AY (1,4,2) B (1, 7.2) IV ({p}) (D.1.2)

C?;Ifls(iqa i?]@? ko, QCY) =
A (1,4,5) Cp (T, (1), K, 2) JP ({p}o)
A (2,0, ) C9 (1, 4, (Ki), 2) I ({p}2)
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+G3(i, 5, k) By (1, (i), (GK),2) /P ({p}2)
+G3(i, k. ) Bys (1, (GK), (K1), 2) JP ({p}2)
+ BY(L, b, j,1) Bl (T, (1K), 2) 1V ({p})
= G803, 8) DR, (1, G, () Bl (1, G 77),2) I ()

)

— AY (L4, ) BY (T, k, (7)) B?QHF L (k(j7)).2) 7V ({ph)

+ EQ(2, 5, k1) B (1, (7k),2) I ({p})
(

—_~—

=Gk 9) D32, GR), (60) Blou (1, G, £4).2) 17 ({0
— AY (2,1, k) BY,(2, 7, (ki) B, (1, (j(k2)), 2) 1" ({ph) (D.1.3)

0,YS
ClgH ( Qs aQQakQ ]q)

+48,45(1,1,2) €O, (1,2, k, 5) TP ({p}2)
— B (3, 5,2) BY (1,12, (k) /2 ({p}2)
— B g (ks 3, 1) BY ((k9), 1,4,2) JP ({p}a)
~ Bl 2.0 Bl (12, GR0) R ()
+ B3 g3,k 2) DS ((5K).2,1) Bl (1.2, (i(5K))) /P ({ph)
A (2,05) 3qﬁg<<m>k2>B?QH<15<<N>>> ({ph)
T AD(1,1,) B sy (), K, 2) BY o (1,2, (k) 7 (10 })
+ A (1,4,2) BS, (5., 2) BY, (1,2, (k) J{V ({p})

(

AL (200 0) ES (). 3) B (L2 (k) I (o)

L gIF_ _ gIF

IF IF IF
+| =S5~ S5 — 52 5112 2i(i7) 51((?;)76)

S (7 L

) By (), . 2) BY iy (1.2, (0)k) 7 ({ph)
+ BY(1,2,k,§) BYyu(1,2,1) /) ({ph)

— By (5.8, 2) A 0 (L2, () BY i (T.2,4) J{ ({ph)
— BY(k, 5,1,7) Bl ((kj7),T,2) J{ ({p})
+ B gk, 3, 1) DS (), T,1) Bl (2,1 i( i67)) 7 ({h)
+ A, (1,0, k) BS,, ((K), 5, >B?QH<2,1,<< k)7) 1 ({ph)
A (20 ) Dy (), 5, 1) B BT, (7)) T ({ph)
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+AY,.(1,4,2) S, (k, 5. T) BY (2.1, (k5)) J{” ({p})

P

—Ag,qu,z‘,k)ESW((zk) 1) BY (2.1, ((ik)5)) /1 ({p})

IF IF _ QlIF IF IF IF
O Oy T S e Y T O

B3, (i), j,1) Bl (2, T, ((ik)7)) J ({ph)
+BY(k, j,1,2) BY, (i, 1,2) 1}V ({p})

— B9 (k3 1) AS a2 T (R9)) BY (i, 1,2) 11V ({ph)
+B(1,k,2,5) BY,;(1,4,2) J{V ({p})
— By (G 2) A 00 (1,2, () Bl (L,
+BY(k,1,5,2) BY, 1 (1,1,2) 1}V ({p})

= B g (k,5.1) A 4y 02T, (B5)) BYy (2,
+4%(1, 5, k,2) A5, (1,1,2) 11V ({ph)

i,2) 11V ({ph)

1) 1 ({ph)

— B g (5.5.1) GY gy g (1.2, (k) A3, (1,1,2) 11V ({ph)
= B g 325, 2) G gy (201, (R)) A5, (2,4 T) IV ()
= By (k5. 1) A ((R),1,2) By (B T, (k) i(67)) 7 ({h)

=B 2) AL (), 1,1) B (T2, GGR)) 7 (o)

+AY(k, 1, 5) Coyr (1,2, (ki) (7)) 1 ({p}2)
— B (3, 5,2) BY(1,2,4, (k) /2 ({p}2)
— B gk, 5,1) B,y ((k5),1,T,2) JP ({p}2)

— B0(5, 2, k,1) Bl (1,2, (ki) J{ ({p})
Bk 2) DY, (1),1.2) Bl (1.2, (G0) I (ph)
+ Qi k) B g (7), (1K), 2) BYyr (1,2, (G, k) 1Y ({ph)
— B (k,1,5,1) By ((ijk), T,2) J ”({p})

B (k3o 1) D ((57), 1, T) B ((R)0),T.2) IO (o)
ARk, 1, ) Sy (R, (), 1) B (R, 1), T, 2) 1 ()
+ BY(1, k,2,5) By (T,2,1) JV ({p})

= B g (G, 2) A 4y 0 (12, () BYy(T,2,4) J ({ph)
+B(2,5,1, k) B,y (i,1,2) 1}V ({p})
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— By (ki 1) AY (2T, (B9)) BY 1 (2,1,4) 1 ({ph)
441, 4, k, 2) AY (1,4, 2) TV ({ph)
— B g (B, 5.1) S g (T, 2, (K5)) AS 1y (1.4, 2) TV ({p})

B,y 2) GS e (21, GR)) AS, 5 (2,4, T) NV ({ph) (D.1.4)

>—‘II

~0,X S
C'lgH ( q;Z,2q7kQ .]Q)

— 48 44(1,1,2) €8 1 (1,5, 5, 2) I ({p}2)
—A§(k, i, 5) Coy (1, (i9), (i), 2) I ({p}2)
—GS(i, k. 5) By (1, (1K), (k5),2) JP ({p}2)

— BY(1,4,k,2) B, (T,4,2) 1}V ({ph)

+ G,k §) A o1, (1K), 2) By (T, (k9),2) 11 ({p})
— B2 ki) By (T, (R),2) 1 (ph)

b G300k, 9) A3, (1, (k5),2) B,y (T, (5),2) 17 (o)

3 AR 57) B (0, R0, (7)) Blyn (T, (0, 13),2) 1 (o)
_% EQ(2, ki, ) By (L, (ki),2) JiV ({ph)

b G300k, 9) A3, (1, (+5),2) By (T, (5),2) 1V (o)

e~

b Ak, 5) B (2, (R0, () By (1, (F1,).2) SO () (D.15)

Cort (g, jg, kg, 20) =
—A8,(1,4,5) Cur (T, 2.k, (1)) T2 ({p}2)
—A,(2,1, k) C,y (1,2, (ik), 5) J1 ({p}2)
+ G g (i K, 2) BY (1, (i8), 2, ) T ({p}2)
+GS g i3, 1) BY, (K, (7). T,2) T2 ({p}2)
— BY(1,k,2,5) B,y (1,1,2) J{V ({p}h)

+ G (i k,2) AS o 0(1,2,5) By (T, (i8), 2) 11V ({ph)

— BY(k,1,5,2) BY,u(1,4,2) 1}V ({p})

)

+ G3,q/~>g(i7j7 ) Ag gqﬁqq(l{@ 17 2 1gH<TJ (ZT]),?) ']1(1)<{p}1)
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+ B (k. j,1,1) Bl (kji), 1,2) 7" ({ph)

LA (i) B (k. () B?gH<<A<v>>i2>Jf”<{p}l>

+ B9, k.1, 2) By (1,2, (ki) 11 ({ph)

—_~—

T)
— AY (ki 2) ES oy (KD), 2) BY, (1,2, ((K0))) TV ({ph)
)

—_—~—

= G g 03, 1) A3 (2, (), ) By ((0)K), T,2) TV ({p})

= Gy, 2) AL (1, (), ) BY, (1.2, ((70)7)) 1 ({ph)
+243 (1,4, k) Co,pr (1,2, (ik), 5) TP ({p}2)

+248 (2,1, 5) Co, (1,2, k, (7)) 1 ({p}2)

—248 ,1(1,4,2) C,u (1.2, k, ) 1 ({p}2)

—2A9(k, i, 5) OggHu, 2, (ki), (i) /¥ ({p}2)

+2 A9 (1,4, k (B
+2 A9 (1, k

+2 A% (2,i,5) E

al
al
Al
54(2,4,0) E

—2AY

3 qq(17 i, 2) EO

3,¢'—g\J

(j, k,2) B

2 A845(1,5:2) By (. T) Bl (k). 1,2)
=2 AQ(k,1,5) S g ((K), (zy>,1>B?gH<<kz m,i )/ ({ph)
=2 Ak, 1,7) By, (), (), 2) By (1,2, (5. K2) I ()

IF IF IF IF
=2+ ST ik 5112 + 521 1]) B Skl Zj

—_—~—

X B3 sy (b (10, T) Bl (i), T, 2,6) 11" ({ph)

IF IF IF IF
=21+ 5, W Stz + 55 — S(Zk i

—_—~—

—

ngq oG (iK),2) BY (1,2, (j(ik)), 6) J ({p}) (D.L.6)
D(l)g)lfls(l kq 2qu7qv i) =

+AS (1.4, 5) DY, (T, (i), k., 2) J12 ({p}2)

+AS (2,3, k) DS, (1, 7, (ki), 2) J2 ({p}o)

+A3,.(1,4,2) D, (T, 4, k,2) J12 ({p})



D.2. q¢ — H+jet at RV

292

+ Ak, i, §) DYy (1, (2), (Ki), 2) 72 ({p}a)

+4CY(1,k,5,2) BY 1 (1,4,2) IV ({p})
+409(2,5,k,1) BY 11(1,4,2) IV ({p})

DY (g kg, 24, 5g 1) =
+AY ,(1,4,5) DSy (T, (71), k. 2) J1 ({p})
+AS (2,4, k) DSy (1, 4, (ki),2) JP ({p}2)
+A,44(1,4,2) DS,y (T, 5.k,2) JP ({p})

+A(k, 4, ) DYy (1, (71), (i), 2) J1 ({p}e)

—AY (1,0, k) Dy (T, 4, (ki), 2) J{ ({p}2)
AO@unmw<<> 2) 7 ({p}2)
+2CY (1, k, 5,2) By (1,4,2) J{ ({ph)

+zc“@(%k1>B&H< 2) 11 ({ph)

D.2 ¢gqg— H+jet at RV

The real-virtual subtraction terms dé% 5, mentioned in section 8.5.2 are:

EQIE])ET(]-W 7]7 2’)
.. 2
—Jybo(s12) BY,p(1,4,5,2) It ({p}e)

-nébg@u>B%Hu, i,2) 1P ({p}2)

(D.L.7)

(D.1.8)
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L (2,0)) [BigHu, (G9),2) 6(1 — 21) 51 — )
TR (o13) BY (1, G, i)} IO ()

(1,4,2) 6(1 — 1) 0(1 — z2)

3,99

+ {[11
+< + Tagqlsr) - J21,’£21Q(312)> A3 (L1, 2)} B,u(1.5,9) 1" ({p})
+ |:A£1’»,qq(17jv 2) 5(]— - xl) 5(1 — ZL‘Q)

+( U (51 J;;ég(su)) A (LJ, 2)] B (L4,2) I ({ph)

~1.XT =
BZgH (1(17 (2R 2(7) =
1LFI 1LEI 1LIF LIF 1,11
- {+ Jyiaq(52i) + Iyao(s2i) + Jyioa(515) + Jaloa(s1i) — Jaigo(s12)
x BY (1,4,5,2) J{ ({p}a)

+AY (1,i,2) {BIIQH(T,j,Q) 6(1 —21) 0(1 — x2)

3,qq
- ( + Jy b (s1;) + J;;éas%)) B?gHﬁ,j,é)] IV ({ph)

(1,4,2)6(1 — 1) 0(1 — z2)

3,99

+{A1

(D.2.9)

+( I () 4 TEED (s0) J;;éasu)) AL (L, 2)] B (13,3 1 ((ph)

3,99

+ A% (1,5,2) [BllgH(T, 0,2)5(1 — 1) (1 — )

+ (+ Ty oee(s7:) + Jé,éé(s%)) BY (T, m)} JO({p})

+ [A;qq(l,j, 2)6(1 — 1) 6(1 — x5)

+( U (517)  JEED (5) — J;&;(su)) AL (1,5, 2)] B (L4,2) I ({ph)

F JFI

LIT LIT LI LIF 1 LFI
+ { + Jo00(512) — Jogo(512) — Joloa(s1) + Laiga(815) — Joag(535) + Joag(s25)

+ ( - SIF(Sﬁv STj7 xﬁij) + SIF(5127 S145 x12,1j) + SIF(Sij STja 1) - SIF<31j7 515, 1)

+ 81 (s, 517, 13575) — S™ (525,815, mj’lj))]

x A} o(1,3,2) BY (1, 4,2) IV ({ph)
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|+ Thltom) = Tilon) — THGE5n) + TS ) — T o) + TEhsn)

—l—( — 8" (513, 513, r1p7) + S (s12, 816, T12,11) + S (15, 5135 1) = 8" (514, 514, 1)

+ 8™ (sg;, 11, 7311) — ST (804, 5144 szi,u))}

x A3 o(1,5,2) BY. 1y (1.4,2) Y ({p})

B;g)I{IT(lmivjﬁ 27) =
—203 66 (547) By (14,5, 2) J1 ({p}2)
+d3 ,(1,4,5) B,y (T, (17),2) 6(1 — 1) 6(1 — 22)
000000801 = 1) 801 = )+ 255 ) 8,05
x BY (T, (17),2) J{V ({ph)
+d§ 1 (2.5.9) Bl (1, (1), 2) 6(1 — 1) 6(1 — 2)
+ [c%’q(Q,j, i) 6(1 — 21) 6(1 — @) + 2Jy 6 (si7) d3 4 (2., i)}

x BY 1(1,(i7),2) 11V ({p}h)

~1,XT
B2gH (1q, 7.] 2)

—Jyb(s12) BS (1,4, 5,2) I ({p}2)

+A3qq(17j72) |:B%9H(1 ?) (5(1—1’1)5(1—.1'2)
legQ(Su B?gH T } {p}
(

|:A£1’»qq(17j7 ) (1—1‘1) 1—$2)

+(+J§:ég<sl2> - J;;éas@) ququdpm} B .(1.0,2) S0 ()
+ A3 ,(1,4,2) {B%QH(T,j,Q) 6(1 — 1) 6(1 — z9)
I () B2 (T, >] D({ph)

[A§ a(1,4,2)6(1 — 1) 0(1 — x2)

+( LU () - J;;éasm)quq(Lz,z)] B ,(T.5.2) 70 (ph)

(D.2.10)

(D.2.11)

(D.2.12)
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~1,XT

~ AN o~ o~ A

B2gH <1Q77:7.j72(7) =
_2j21,7gg(8ij) ngH(la ia j? 2) Jl(Q)({p}Z)

+AO (17272) E%gH(TaJaﬁ) 5(1—1‘1) 6(1_1‘2)

3,99

+{A%JLL%5G—xﬂ&l—xﬁ+2££ﬂ&ﬂA%AL@%}

x BY 5 (1,5,2) 11V ({ph)
+A0(meégﬂ1@®5u—xg&1—@)

3,99

+ |:Aé7qq(17j7 2) (1 — 1) 6(1 — a2) + 20y 0c: (51) AS 4 (1, 4, 2)}

x BY 1(1,1,2) 1V ({ph)

LXT /5 - . 4
COgH (1q7JQaZQ>2(I) =

- [+ T (6 ¢ Jé,’gég(sm] 0 4(15.0,2) I ({p}a)

3 Ba(2000) | Bl (G231 - 2051 - )

n ( I (516) + J§:£5<sg@>) B (L, @)ﬁ)} IO (o)

1 .
"‘5 |iE§7q<2,Z,j> (5(1 — IE1) 6(1 - iL‘Q)

(b ) + TR on) 205 ) B (200)
% Byn(1, (i7),2) 1" ({ph)

3 BLa(10:0) | Bl (T, (3).2) 001 = 20) 801~ )

+ ( + Ty (145 + J;;é‘“asz@)) By (T, (17). 2)} IV ({ph)
1 .

—1—5 lEé’q(l,j, 1)0(1 —x1)0(1 — x2)

+< + Jybo(s1) + Iy ho(s15) — 2J21,’ég(31(5j))) E3 (1,4, i)}

x BY 1(1,(i5),2) 11V ({p}h)

~ULXT /5 - - 4
COgH (1q7JQ7@Q7217) =

(D.2.13)

(D.2.14)
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|+ Ihdtsi) + TG 5] (1.2 I (02
3 Ba(10.9)| Blyu(L(07).2)0(1 = ) 301 = )
 T5gosm) By (1.3, 2)] 1 (o)
= [Eé,qu, 0,701 = 1) 6(1 — 2) + JLEE (5) ES, (1,7, )
x By (T, (i7),2) J{V ({ph)
g Ba(20.0)| Bl (0). 2301 = ) 301 = )
+ I5fos) (1. (3.3 1 (0
g | BLa(20.0) 801 = ) 801 = ) + 585 ) B 2.0,
x By (1, (17),2) 11V ({ph) (D.2.15)
Coni® (14,35, 1g, 24) =
4 B (L10) Bl (T, (), 2) 61 — 22) 6(1 = 22)
3 Bl 5) BT, (), 2) 50— 2) (1 - 23)
o By (2,0,0) Bly(1, G0 D51 — 1) (1 )
+1 B} (2.5,9) BY (1, (51, 2) 6(1 — 21) 6(1 — x5) (D.2.16)

2
Copr (1g,2g,iq, ) =
- [+ Tga(s12) + Tyon <sﬁ>} Cun(1.2,1.5) 11V ({p}2)
= Eyis2) | Bl (1.2 801~ 20) 81~ )
(It + T8 ) ) B2, S (b
— {Eg,q,(j, i,2)0(1 — 21) 6(1 — )
+< + legg(sn) + le,’cgclg(s%) - 2‘]21,75([}(8(5]')2)) E3 5y (G, 1, 2)}

x BY 1(1,2, (7)) J1V ({p}h)
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|+ I8 s) — TR - TEetsa)
+ Jyo0(512) = Lo (s16) + Ja o (51))
+ ( — 8" (sy033ys 515 iy 1;) + ST (5255 5155 Ta515) + S (513, 815, T1315)
— 8™ (819, 815, T12.15) + SIF(sl(;j), 17, T1(ij)ag) — S (514, 515, 1))]
X B0 (,4,2) B (1.2, (1)) J1 ({ph)
SR (1) {Bw«m 1,2)8(1 — 21) (1 — 22)
T ( TN (s53) TR (505 >) B ((5),1 2>] I ({ph)
- [Eé,q«z',j, 1) 6(1 = 22) 6(1 — 1)
+< IREE (5,0) 4+ JAIE (51) — 2505 (s, )1>) B, (0], 1>]
x By ((i7),1,2) I ({p}h)
{+ TRIE (s 1) — T (s1) — ML ()
+ JQJQQ(SU) - le,’gclg(%(fj)) + legé<52z>

( SFI( 1] 8217 xl(zg) 2@) + S (81’57 52i, .7711'721') + SFI(ST% 5245 $T2,2i)

- 5F1(8127 524, $12,2i) + SFI(SQ@-), 524, 152@),21') - SFI(S% S92, 1)>}

X ES 0 (i.5.1) BYy((7),1,2) JV ({ph)
gléﬁ}ﬁg(&ﬁ 29H(271727J) 2 ({p}s)

g (515) 45,4, 1: 1) BY (2,1, (19)) JiV ({ph)
Ly gt (517) G (1,2, 3) ASyr(1,2,4) J1V ({p}1)
%égqﬁg(‘le)ngH(ZZ:lvj)Jl ({r}2)

Ly b g (575) DS g (2.3, 1) B (2,1, 3) JV ({ph)

— Ty gt (51) AD gy aa(201,9) BY, 1 (1,4,2) I ({p}h)
Ty b0 (517) GS g0 (1.2, 3) AS 1 (1,2,0) 11V ({p})

+|: J21éFQq—>g Slj) 2J21éFQq—>g :| j7271 lgH<27T7 (7:/7)) J1(1)<{p}1)
+ |: + 2J21CI¥FQ q'—g Slz) 2J21 CIJIC; q —>g(51]):| AS gqﬁqq(zv 17 j) B?gH(§7 T? 7’) J1(1)<{p}1)
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|+ Ty e (5155) = Datqrg(513) | A5 42,4, 5) B (2,1, (17)) J{V ({p})
— o6 sg(52) By (12,4, 5) J2 ({p}s)

g (535) 45,4 (,1.2) BY (1,2, (19)) J1V ({ph)

e 0 (52) G g9 (2. 1,3) ASo 1 (1,2,0) IV ({p})

%5éq~>g(82j>ngH(17Z72 7) 12 ({p}2)

(53;)

(52)

)

L DY, (1,4,2) B, (1,2, ) O ({p})

2,QG,q¢'—g\5Zj

Sy 1,2,5) B ,(1,i,2) J!

2,0G,q'—g\52j 3qg—>qq( ) 7]) lgH( 2 ) ({p}1>
_J2175éq/%g(52] 3qg—)gg(2’ 17])AggH(T Q ({p} )

FI 5 /7 1

2L sag) — 20N (5 ] 0:022) B (1,3, (7)) IO ()

[ FI FI == & (1
+ +2J§QGq—>g(Szz) J%Qqug(SQJ)}A?)qgﬁqq( j)B?gHu’Q’Z) Jl( )<{p}1)

+|+ J21 Cgé' q %g(82(m)> J21 gé q %g(SZJ):| Ag,q(L ia j) B?gH(TJ 27 (7:/7)) ‘]1(1)<{p}1)
(D.2.17)
Cl YT

0gH (1q’QQ’iQ7jq’) =
{+qu<sly> A (s21) — 240, (51)

= 20 )+ 2A80) 4 2 (50)| (1,20 I ()2
- Eyis2) | Bl (1.2, G 801 = 20) 801~ )
A, 515) By(1.2,G)] ()
| B G828 ) 600 = 02) 4 A8 50) B, 112

x BY 1 (1,2, (7)) J{” ({p}h)

- EZ?,q’%g(@j’ 1) |:BllgH((Z])7T7 2) 6(1 - 1'1) 6(1 - 'TQ)
A2, (535 B (7). T, 2>] T (o)
_ [E?iq,(i,j, 1)6(1 — 1) 6(1 — 22) + A3, (sj1) ES 4 ,4(i, 5, 1)

x BY 1((17),1,2) J1V ({p}h)

{+ AL (s10) + AL (507) — A, (s12) — AD(s1)
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+( — S (514, 514, 1) + 8™ (512, 514, 112.11) — ST (80, 814, Taj1i)
ST s s 50) )| B i3 1) Bl (), 1,2) 5 ()

e [ A (50) + A (527) — A (512) — AY(s1)

+( - SFI(SM; 895, T14,25) + 3F1(812, S9j; T12,2j) — SFI(Szj, 525, 1)

87 s ) ) | B8 014:2) Bl (12, G0 S ()
+G8 g (522) Bl (1,4,2,5) JP ({p}2)
+G8 g (52) A gy ag(1.2, ) BYy i (1,4.2) 11V ({ph)
=08 ysglsi2) AS (1,1, 5) BYy (1,2, (17)) J1” ({ph)
+G8 g (si1) Boy(2,1,1,5) J ({p}2)
(511) A8 gy r0q (G 1,2) By (1,4,2) J{V ({ph)
(s1) AS

J(2,4,0) B 1 (2.1, (i7)) 1V ({ph) (D.2.18)

0
+g&q’—m Sil

0
_g3,q’—>g Sil

Cogrt (g 29+, Ja) =
— B9 (3, 1,4) Blyy ((51), 1,2) 6(1 — 1) 6(1 — )
— B}, (j,1,1) B,y (1), 1,2) 6(1 — 1) 6(1 — )
— B9 (8,2, 5) Bl (1,2, (1)) 6(1 — 1) 6(1 — )
— E3 (5,2, 5) BY (1,2, (1)) 6(1 — 1) 6(1 — ) (D.2.19)

| g + I3 | (1,225 I )
(D.2.20)
DéﬁIT(iqviqajm Qc]) =
[+ le éﬁ}(sh) + J2 QQ(32J) + J2 QQ(SH) + J2 QQ(SU) J;:ég(slj) - J%&S(Szz)

x DY r(1,4,5,2) 1P ({p}e) (D.2.21)
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D.3 qgq— H+jet at VV

The double virtual subtraction terms dé¥ 5, mentioned in section 8.5.3 are:

~2 XU .
BlgH (1(17 2 26) =

1 1 ~ .
| = 5 Phalon) + T = g Phyto) + D) Blyu1i2)

2

| = A (1) + T () + rg?(z»] Bl p(1,i.2)

1 1
|3 D (s11) ® A} (512) + T (21) @ A3, (s12) + 5 I (z1) ® DS, (s1;)

1

:| B?gH(la i) 2)

1 1
— { — 5 Dgﬂ(SQi) &® Aggq(Sm) + F((;])(ZQ) ® Aquq(slg) + 5 Fg}l)(zl) &® ng(Sgi)

1

‘| B?gH(L ia 2)

1 .
- { — A a(s12) — 3 Af a(s12) = 2C] a(s12) — 2C) 1 (512) — A§ 4o (512)

b S A -
- ?O Ag,qq(512) (ﬁ) + ?O Ag,qq(‘slz) - A%,qq(su) + Ag,qq(‘sl?) ® Ag,qq(‘SlQ)

R
=(2) =(2) bo bo
+ Ty (z2) + Ly (z1) — - Fg}l)(zl) - FEI:;)(ZQ)
=(2) =(2) .
— qu (z2) — qu (21)} BlgH(l,z, 2) (D.3.22)

~2,XU
BlgH (147 7, 2@) =

— |:+ Ag,qq(sm) - Fé}z)(zl) - F‘(J}J)(ZQ):| BigH(l’i’Q)
1 -
— |:+ 5 Aiqq(312) + 202,(1@(‘912) + 262@(1(812)

+ A} (s12) = T (21) @ A3 (512) — TLD(20) ® A, (512)

1 1
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~2,XU

BlgH

52,XU
B

1gH

~(2) ~(2)
+T,, (2)+ T, (22)] B (1,4,2) (D.3.23)
(1q7i7 2(}) =
[ 1 0 1 0 H1 .
—3 s 4(s15) — 3 &3 4(52:) | Bigp(1,14,2)
: by |
- A o)+ TG + T | (4B (1,0.2) ~ B (11,2))
1, 0 L 2o 0 L o
~ 5 & 4(51:) ® Ag ,(512) — 5 & 4(52:) ® Ag o (512) + 5 5 L D(z1) ® &5, (s11)
+ = ! F(l (2 )®5 (s )—i—1 F(l)(z )@ & (s )—i—1 F(l)(z ) ® &y (52:)
B(l)gH<17Z72)
[ 2 S12\ .
— Bglon) - Aé,qq<slz> Y Ao (22) | B
L R
15 @) :
L) - g )+ quFczl)] B, (1..2)
- . ) |
2 8520 - 5§q(szl) + TP )} BY 4(1,4.2) (D.3.24)
(1q’la2 )=

1 .
+ 5 gg’q<811> + 5 (c:g’q(SQi):| BllgH(l, 1, 2)

1 1 . ,
b3 Dalor) = T + 3 Phyfoa) = T )| BlyuLi2)

1 1 | ,
1 5§,q(81i) & Dg,q(su) 3 Fé?(zl) ® 59?,q(31i) B?gH(L% 2)

1 1 ] ,
+ 1 5;?,,1(811‘) ® Dg,q(szi) -5 Fg?(@) ® 5g,q(31i) B(l)gH(lv i,2)

2

1 1 1 .
+7 £ y(521) @ D3 (s11) — 5 T8 (21) @ &3 4 (s26) | BYys (1,1, 2)

1 1 ] .
2 53(,)7(1(821‘) ® Dg,q(szz’) -5 Té?(Zz) ® 5??,51(321) B?gH(LZa 2)

2

1 br S\ bF
e+ D3q<sh>+ 5D, (510 (7) %y )

1 s\ ¢
+ - gg}’q(slz) 53?q Slz ( L ) g?(,)q(slz)

bF =)
+_F( )( >_ quF( ):|B19H(17272)
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1 br 524 - bF
b e o) ¢ Dg(,(sm + 20D (520 (;T) U g (sa)
R

1 S2i —¢

+—r<>< ) — r;?,F< >]BlgH<1z2>

BlgH (11177:72@) =
1 0 1 0 51 . bF 0 .
-+ ) 53,q(31i) + ) gS,q(S2i) BlgH(laZa 2) - ?B1gH(1a i,2)

[ 5 br ([ s1 - .
—| + 5 E34(50) + 2% (—2) 5g,q(51i)] Bip(1,4,2)
e \ p%

L s br 52 .
_ —}-5 ;31’(1(821')4‘%83(1(822‘) (E) :|B?9H(1,Z,2>

Cllé)l({U(lqv ia 2@) =
[ g??q —>g(32i) - Sqﬁgré?(@)} B119H(17 2, Z)

1
- { — D5 yg(521) @ E3 gy (52:) + 5 F(g?(zz) ® €5 g (52:)

(D.3.25)

(D.3.26)

ST ) @D, (52 5 SpoaT 2>®rglg><z2>] B u(1,2,0)

1
— l: — Dg’qg(slg) X gg’q/ﬁg(SQi) -+ 5 Fglg) (ZQ) ® 53?7(1/%9(82@')

+ P((I}I)(Zl) & gqu/%g(SQi) — S(Hglj( (ZQ) X D3 qg(SlQ)

1 .
Sy (22) @ TG (21) + 5 SangTgy) (22) © Félg)(zz)} Blyu(1,2,1)

- |: - gg’q/(SQi) - 52’q1<82i) + 2Bg’qq/(812)

b S9; b
B 5317‘1/ (321‘) - :0 (,u_22) ggq —>g(821) O gi(‘})q —)g(sQi)
R

+ 2,Dg,g(82’i> ® g!?,q’%g(‘gm) -2 Ag,qg%qq(sw) ® g!?,q’%g(‘gm)
+ T (20) @ 5y (520) — TS (22) ® €5y (52:)

@ 1 o) )
+ Sq—>gF (22) B Sq—>grgq (22) ® ng (22)

7(2) .
+§ Syl (22) @ T (20) — SggT oy (22) | By (1,2,4)
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— { — &9 yy(510) = Sqmgl'W(21) | Biyn(2,1,4)
| Do) @ B o)+ TG (1)

— Syl (21) @ D5 (1) + % Sqsgl g (21) @ F§1g)<21):| BYyp(2,1,1)
- { — D5 ge(512) ® €5 g (51) + % T (21) ® €3 4y (s10)

+ T (22) ® E yy(515) = Sqsgl\0)(21) @ DY (s12)

+ Syl (1) @ T4 (22) + % Sqsg Tl (21) ® ry;(zl)} By n(2,1,4)
| o) = )+ 2By o

- el =2 () e o)+ 2 o)

€ \Up €

+2D3 ,(51:) ® E3 g (515) — 243 4 g (512) ® E3 . (512)

T ) ® Eyglo) — T (1) © 8Dy (510) + 2 Sy TR (21)

5 SpaT (1) O TP (21) + 5 gm0 (22) ® T (1)

- Sqﬁgffq)(zl)] B 4(2,1,)
| Bl i) Bsa) 4 Sl ) 9.4 o)

+ Sqﬁgl“gl)(zl) ® Agygqﬁqq(su) + % Sqﬁgl“é?(zl) ® Sgﬁqfé?(zl)

+§&W%Mw®@wmﬂ@—F%wwi%@ﬂww@am
— {-1— 2 Hiqq/(Sm) +2 Sq—)grg}])(ZQ) ® gg,qgﬁgg(su)

a—9" 99

+2 STl (21) ® G gysgg(512) +2 S, Tl (22) ® ng)(zl)} AS 4 (1,2,4)
(D.3.27)
511;)1§U(1q7ia 2q) =
— {+ E9 yvg(520) + Sy T (22) | B,y (1,2, 4)

-{+a%ﬂ@M®A&ma+&ﬂ%mw®A%m»
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ST () © €L, (5m) — SengTD () ® Fg;)(zl)} B y(1.2,4)
| s + o) - TR 9D, o)
- % Sysa T (2) © T (23) — rg?z(zz)} BY 4(1,2,4)
— [+ 9 yvg(s1:) + Sq%grgy(zl)} Bl ;(2,1,9)
- [Jr E9 yg(510) ® AS (52:) + Symsgll) (21) © AJ (529
— 1—‘((1}1)(22) ® 5??7(1/_}9(812') — Sq%gfg?(zl) ® Fé}l)(zg)} B?QH(Q, 1,4)
S B+ Eplo) - TG @ Lo
— % SymgT W (21) @ T (21) — rg)t(zl)} By (2,1,4)
| ST © ALy ls12) = ST 1) © ALy o)
— B (s12) = B yy(s12) + D5 (1) + T'0(20)

1 1 .
) F;}I)(Zl) ® FS}}(zl) D) Fg?(@) ® Fglg)(zz)} B?gH(]wZa 2) (D.3.28)

A1LXU ,
ClgH (14:4,29) =

T 53?7,1/_)9(322-) - Sq%gréz)(zé)} BllgH(172ai)

1 1 .
-t Fég),F(Z?) ® 5??,q’—>g(52i) + Sqﬁgréz)(@) ® Fég),F(Zé)} B?gH(17 2,1)

N 53?7(1/_)9(5”) - Sqﬁgréz)(zl)} BllgH(27 1,i)

1 1 .
-t Fég),F(Zl) ® 83(1/%9(511') + Sq%grélq)(zl) ® Fgg),F(Zl)} B?gH(27 1,i)

[ 5 bF 594 - bF
—| = &34 (s21) — — (—2) E3 yg(52i) + — E5 gy g(52i)
e \ 4% €

_ F(l)

99,F

3
(22) ® £ g(520) = 5 Simsglly) (22) @ Ty p(22)

99,F

=(2) )
- Sqﬁgrgq,F(ZQ):| B?gH(L 27 Z)

5 N ECTAN br
— | — gyiq/(sli) - ? (M—Q) 537(]/_)9(811') + ? 53?7(1/_)9(811)
R



D.3. q¢ — H+jet at VV 305

_ F(l)

99,F

3
(20) ® £ sg(510) = 5 Symsgl ) (22) @ Ty (1)

q 99,F

—(2 )
- Sqﬁgréq),F(Zl) B?gH(27172> (D329)



Appendix E

Explicit results of antenna
subtraction terms for gq — H-+jet

processes at NNLO

E.1 ¢gqg— H+jet at RR

The double real subtraction terms do% y;, mentioned in section 9.5.1 are:

Coys(l i, jgr 29, ko) =
—A8,(1,4,5) Co,u (T, k.2, (17)) J1 ({p}2)
—AS (2,4, k) Co (1, (i), 2, 5) JP ({p}a)
+GY g (i k,2) BY (1, (i8), 2, 5) 12 ({p}a)
+G g (i3, 1) BY (2, (1), T, k) S ({p}a)
(

= BJ(1,k,2,j) Biyu(1,i,2) J; ' ({ph)

+GY 0k, 2) AS L 00(1,2,5) BY (T, (ik), 2) JiV ({p}h)
~ BY(k,1,5,2) BY 1 (1.4,2) )V ({p})
+GS (0,9, 1) AS e (B, 1,2) BY 4 (1. (1), 2) ItV ({ph)

+ B9 (K, 5., 1) Bl ((k57),T,2) J{ ({p})

—_~—

— AY (1,7,9) EY gy (K, (i), T) B g (R(i)), 1,2) IO ({p})

+ E9(j, k,i,2) B (1,2, (k1) I ({ph)
306
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—~—

)

- Gg H,(z',j, 1) Ag,q@ (i), k) Blyu (1)), T,2) 11V ({p})
— G ik, 2) AS (1, (1K), )

+2A3 2(1,4,2) Co,p (1, 5,2, 5) I\ ({p

+2A9(k, 4, §) COu (1, (Ki), 2, (i) J|

243 (1,i,k) Oy (T, (i), 2, j

/-\W—’
\_/

2 ({p}2)

—2A8 (2,1, 5) C, (1, k. 2, (1)

3qq(17i72) qu Hg(kvjuT

+2 A3 2(1,4,2) ES (4, k. 2

3,4'—g

+2A

EO
T
—~

=
Nl
Y
<.
w
S~—
S~—
S
e

+2Ag(l€77’7] E§q—>g(( ) (kl

3,¢ %g((kl) (

\_/\_/\—/\—/

)
+2A0(k,z,])
-2 qu 1,2,k

Lk

~— ~—
P
o

IF IF IF IF
+2 +Slzk Sm SQZ(W Sk:i(z‘”j)

XES g (b (77),T) By ((k(i5)),1,2,6) J1" ({p}1)

IF IF IF IF
2|+ Sl 10 k Slz? + SQZ] S Zk Z]
xESqﬁg< (ik),2) BY, (1,2, (j(ik)), 6) J{" ({p}) (E.1.1)

»—tl
\_/
—
—
—~
~=
3
——
=
~—
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+4CY(2,1,k,§) By (2,1, T) J{V ({ph) (E.1.2)

YS
Dg)gH (1 2 kg, Jg 1) =

\_/

— A9 4(1,1,2) D,y (1,5,2, k) 1 ({p}2)
—A§(k,i, §) Dy (1, (i), 2, (ki) JP ({p}2)
+2C1(0,2,, k) By (1, (igk), 2) J{” ({ph)
+2C8(0, 1, k, §) Bl (2, (1K), T) 1V ({p}) (E.1.3)

E.2 ¢gq— H+jet at RV

The real-virtual subtraction terms dé% 5, mentioned in section 9.5.2 are:

Coont (grig 20, ) =
[ + A3 q(slj) + A3 q(SQZ) 2Ag’qq(312)
— 2A9(si5) + 243 ,(527) + 2A2,q<sli)] Counr(1,3,2,5) 1\ ({p}2)
- B ) | Bl (L2, ()01 = 1) 801 — )
A 5) By(1.2,G)] ()
| B 06280 = 0080 = 22) + A8, 50) B2
x BY (1,2, (71) J{V ({ph)

= Efyyli00.1) | Bl 1,280 = )51~ )
A8, 55) By T2)] ()

_ [ B2 (6,4 1) (1 — ) 8(1 — 2) + AL (571) ES, . (ir4:1)

x BY 1((i7),1,2) 11V ({p}h)
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{ + A3 o (s12) + AS(si5) — A3, (s15) — A3, (525)

( + SI (3117 S1iy )

S’ (312,51171'12 1) + S’ (523‘,511',1'23‘,11)
— S8 (84, 814,75 (i,7,1) B) ((iN')TQ)J(l)({})
g1y 21iy Lji, 1Z 3q~>g .]7 1gH J)s Ly 1 Pr1
+2 [ + A3 4y (s12) + A3 (si5) — A3, (s15) — A3, (525)
+( + SFI(SM, S2j, X1i25) — 3F1(812, S2j, T12,25) + SFI(S% 525, 1)

= S g1y ) | B0 0:6:2) B (12, G0) 5 (o)
B, (1,1,2,5) /P ({p}2)
A3 4gr0a(1,2,5) Bl (1,0, 2) J1V ({ph)
A3 ,(1,4,5) By (1,2, (1)) J{V ({ph)

By 1(2.1,4,5) JP ({p}a)

1) A3 g0 (5 1,2) BYy(1,4,2) 11V ({ph)

A

04(2,4,5) B (2.1, (1)) 1 ({ph) (E.2.4)

Copr (14,30, 2q.1q) =
— B (3 1,4) Blyy(2,T, (i) (1 — 1) 6(1 — )
— B3, (j, 1,4) By (2,1, (i)
— B, ,(i,2,7) Bl,y (1,2, (i
)

— B} ,(3,2,5) B, (1,2, (1)) (1 — 21) 6(1 — @») (E.2.5)

YT/ . 35 -
DOgH (1g: g 245 Jg) =

[+ Ty b (312) + T by (55) | Dogrr(1,4,2,7) J12 ({p}2) (E.2.6)

~LYT PSS .
DOgH (1q7 ig, 2g; ]ti) =

1LIF LIF LFI 1LFI 111 1FF
+ [ + Jogo(510) + Jago(515) + Jolgo(s2i) + Joigo(525) — Jalgo(s12) — Joigg (sis)

x DYy (1,4,2,5) J1 ({p}2) (B.2.7)
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E.3 gq— H+jet at VV

The double virtual subtraction terms dé¥ 5, mentioned in section 9.5.3 are:
611§)I(JU<1q’ 2, itj) =
- |: + g?()),q’—>g(82i) + Sq%gréz) (ZQ) BllgH(]-) 27 Z)
0 0 (1) 0
- |: + 53,q’—>g(52i) ® AS,q(Sli) + Sq—)grgq (22) & ./437(1(317;)
—Fwwo®£¢w@»—&ngua®q%aﬂ&@uﬂw
- |i + ggq/(SQi) + 53171]/(821') — F((;])(ZQ) ® Eé)’q/ﬁg(SQi)
1 .
9 Sq%gré?('@) ® Fg?(@) - qu)t(@)} B?gH(lv 2, Z)
—|+ & )+ ST ()| BL, (2,1,
+ 3,(]/—)9(812) q—9~ gq 21 1gH 9 7Z>

—>{—F ES g (510) ® AJ ((52:) + Sqsg Tl (21) ® A3 (52:)

,4'—g

— Tl (22) ® €5 g (515) = Sqmrgl'S) (21) ®F£,1)<z2>} BY 11(2,1,9)
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Appendix F

Mass Factorisation terms at NLO

In this appendix, we review the conventions and notation for the mass factorisation
terms that contribute at NLO. In particular, we define the one-loop anomalous

dimensions I‘ilj that appear in the NLO mass factorisation counter term,

dxy dx R
A6} o (&, &Hy) = /—1—20 € { (1 — 29)Ty,(21)doy,

Ty T2
+0(1 — 1)L} (22)d6] | (w1&1 Hy, wa&o Hy),
(F.0.1)

and explictly write out the NLO contributions to the various initial states.

F.1 Conventions

As usual, we consider the parton types to be the gluons, g, and Ny different light
quarks ¢ and their antiquark partners g. Altogether there are 2Ny + 1 different
types of parton. When we study processes involving quarks of different flavours we
discriminate from ¢ using the label ¢ (which carries (N; — 1) different flavours).
The link between the colourful anomalous dimension I'' and the colour stripped

anomalous dimension I'! is given by,

Cho) = (S5 )i, (F.12)

N
L (x) =T, (), (F.1.3)
Il (2) = (NN_l)r;q(x), (F.1.4)

312
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T (v) = NT} (z) + N}, p(). (F.1.5)

The colour stripped anomalous dimensions are related to the LO splitting functions

through,
1 - 1
@) = —pi @), Tie) = —pfr(), (F.1.6)
while the splitting functions are given by,

2
P (x) = 2Dy(z) + ~ A2 22 4+ bod(1 — ),

Pyq (z) = Do(x) — 9 15(1_@7
1 T
0 _
péq)(x) - E -1+ Eu
1
P (z) = 5 —rta
Py (@) = pa(z) = py(x) = 0,
0
PO (x) = pl (x) = poi (=),
0 0
Pl (x) = pig () = pyoy (), (F.1.7)
where
11 1
by = — bor = —5- F.1.8
0 6 ) 0,F 3 ( )

F.2 NLO MF terms for various initial states

It is useful to expand Eq. (F.0.1) according to the initial parton type and colour

factor.

gg

A6 )1 o (€1 1, & Hy) =
/%@C { (F;g(xl)d(l — @) + Ly (22)0(1 — x1)>

T1 X2

9y (D 0030 =) + T )50 = ) ) 0
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