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Cover image: View onto the source area of a large rock avalanche event in Vaigat, West Greenland. 
The scar is characterised by clear, fresh surfaces and local accumulations of burnt lithologies 
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Abstract 

Risk assessments of the threat posed by rock avalanches conventionally rely upon 

numerical modelling of potential run-out. Such models are contingent upon a thorough 

understanding of the flow dynamics inferred from deposits left by previous events. Few records 

exist of multiple rock avalanches with boundary conditions sufficiently consistent to develop a set 

of more generalised rules for behaviour. This thesis uses a numerical modelling approach to 

investigate the emplacement dynamics of 20 adjacent events in Vaigat, West Greenland, which are 

sourced from a stretch of coastal mountains of relatively uniform geology and structure. 

Rheological calibration of the numerical flow code VolcFlow was performed using a well-

constrained event at Paatuut (AD 2000). The best-fit simulation assumes a constant retarding 

stress with a collisional stress coefficient and simulates run-out to within ±0.3% of that observed. 

Despite being widely used to simulate rock avalanche propagation, other models, that assume 

either a Coulomb frictional or a Voellmy rheology, failed to reproduce the observed event 

characteristics and deposit distribution at Paatuut. This calibration was then applied to 19 other 

events, simulating rock avalanche motion across 3D terrain of varying levels of complexity. The 

findings illustrate the utility and sensitivity of modelling a single rock avalanche satisfactorily as a 

function of rheology, alongside the validity of applying the same parameters elsewhere, even within 

similar boundary conditions. VolcFlow can plausibly account for the observed morphology of a 

series of deposits emplaced by events of different types, although its performance is sensitive to a 

range of topographic and geometric factors. These exercises show encouraging results in the 

model’s ability to simulate a series of events using a single set of parameters obtained by back-

analysis of the Paatuut event alone, suggesting that first-order run-out prediction is possible. 
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Chapter 1 

Introduction
 

 

Long run-out rock avalanches constitute one of the most hazardous geomorphic processes. Also 

known as rockslide-avalanches (Mudge, 1965), rockfall avalanches (Crandell et al., 1974) or 

sturzströms (Heim, 1882; Hsü, 1978), they are one of a number of forms of massive rock-slope 

failure (MRSF). Other forms of MRSF include rockfalls, rockslides, deep-seated gravitational 

bedrock landslides, large submarine landslides, and syn-eruptive flank collapses of volcanoes 

(Evans et al., 2006). Rock avalanches result from catastrophic rock-slope failure, and are so-named 

to emphasise the post-failure phenomena of rapid and excessive run-out (observed or inferred 

velocities can exceed 100 m s-1) and subsequent emplacement of large volumes (> 1x106 m3) of 

intensely fractured rock over distances commonly five to ten times the total fall height (Hewitt et 

al., 2008). Notable examples include the Elm rock avalanche in the Swiss Alps, Frank Slide in the 

Canadian Rockies, Blackhawk in the Californian San Bernardino Mountains, and the largest known 

terrestrial (non-volcanic) rock avalanche: the pre-historic Saidmarreh event in the Zagros 

Mountains of Iran (Table 1.1).  

 

Table 1.1) Characteristics of several well-known rock avalanche events. 

 

Name Year 
Volume 
(x106 m3) 

Inferred velocity 
(m s-1) 

Reference(s) 

Blackhawk, California ca. 10-55 ka 300 118 Shreve (1968) 

Saidmarreh, Iran ca. 9 ka 38,000 100 Harrison and Falcon (1938) 

Elm, Switzerland 1881 10-11 70 Heim (1882; 1932) 

Frank, Canada 1903 30 49 McConnell and Brock (1904) 

 
 

The exceptional run-out of rock avalanches represents a conspicuous divergence from the 

physics described by simple frictional models of granular motion, which assume that the shear 

stress at the base of a granular flow is proportional to the normal stress (Savage and Hutter, 1989). 

Frictional models are widely used to explain the mobility of small-scale landslides, and so the 

unusual behaviour of rock avalanches has thus been the subject of considerable debate (Hsü, 1975). 

This apparent decrease in frictional resistance is commonly attributed to the internal dynamics of 

rock avalanches, although the underlying mechanisms responsible remain contentious (Legros, 

2003), with a number of theories having been proposed. This constitutes one of several unique 

features of rock avalanches, which can be briefly summarised as follows:  

1. Run-out exceeds that predicted by simple frictional models, with rock avalanche mobility 

increasing with volume (Corominas, 1996); 

2. Despite being intensively comminuted, the source stratigraphic sequence tends to be 
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remarkably well-preserved in rock avalanche deposits (Hewitt, 2002), meaning that 

specific units and their shear histories can in theory be directly traced back through the 

deposit (Dunning, 2006); 

3. The complex surface morphologies (e.g. a coarse clastic carapace) and distinctive features 

(e.g. patterns of reflection and refraction) characteristic of rock avalanche deposits allow 

an insight into their emplacement dynamics (Smith et al., 2006). 

The distinctive dynamics, landforms and hazards involved in catastrophic rock-slope failure not 

only exert a significant influence upon landscape development but they can also be devastating, and 

mitigating this risk requires contributions from a range of scientific disciplines. 

 

1.1 Geomorphic significance of rock avalanches 

Catastrophic rock-slope failures exert a major and long-lasting influence on landscapes by 

virtue of their ability to mobilise large volumes of material (Fischer et al., 2012a), thereby limiting 

topographic relief and modulating sediment flux (Fort and Peulvast, 1995; Korup, 2006). Rock 

avalanches can also choke fluvial systems through blocking or saturation of loose material, which 

can represent a substantial long-term imprint upon orogens and their evolution (Korup et al., 

2007). The long-term geomorphic significance of catastrophic rock-slope failures has come under 

increased scrutiny in recent years owing to the reinterpretation of a number of deposits formerly 

attributed to glacial deposition as rock avalanche deposits (e.g. Wright, 1998; Hewitt, 1999; Fort, 

2000; Shulmeister et al., 2009; Kirkbride and Winkler, 2012; Ostermann et al., 2012; Reznichenko 

et al., 2012a). In addition, many deposits are poorly preserved owing to their frequent 

emplacement in narrow valleys or onto glacier surfaces, where they are subsequently modified or 

completely removed (as in the Southern Alps and the St. Elias Mountains; Whitehouse and Griffiths, 

1983; Spotila et al., 2004), as well as their tendency to occur in regions of high precipitation, uplift 

and denudation (as in the Himalayas; Burbank et al., 1996). It has therefore been suggested that 

such events have been systematically under-sampled, particularly in areas of mountainous terrain, 

leading to suggestions that their role is probably much more significant than is currently believed 

(Hewitt et al., 2008).  

 

1.2 Rock avalanches as a geohazard 

Rock avalanches occur with a measurable frequency in mountainous regions (ca. 1 yr-1), 

and have been responsible for some of the most destructive natural disasters in recent history 

(Evans, 2006). In particular, glacier retreat in the Cordillera Blanca, Peru, has triggered some of the 

deadliest rock avalanches, including the 1970 Huascarán rock-debris avalanche, which is estimated 

to have caused up to 25,000 fatalities (Keefer and Larsen, 2007). This event is thought to represent 

the deadliest landslide disaster in history (Evans et al., 2009). Notable more recent examples 

include the Hattian Bala rock avalanche triggered by the 2005 Kashmir earthquake, which is 

thought to have accounted for ca. 4% (700) of the deaths caused by coseismic landsliding (Dunning 

et al., 2007), as well as the 2006 Guinsaugon landslide in Leyte, the Philippines, which buried a 

village and resulted in 1,119 fatalities (Catane et al., 2008). Today, a number of rock avalanche 

deposits are densely populated, including that at Flims, Switzerland (ca. 8.2 ka; von Poschinger et 
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al., 2006), raising important questions about the potential severity of future catastrophic rock-slope 

failures in these regions. 

The consequences of rock avalanches can often be more far-reaching and severe than the 

events themselves, with far-field hazards such as dam breach and, where they run-out into water, 

tsunami, posing a much more extensive risk. The displacement waves generated by rock avalanches 

that enter water bodies in narrow fjords or confined bays are particularly destructive (Evans et al., 

2006), and represent a major natural hazard for coastal communities in the fjord regions of New 

Zealand (Dykstra, 2013), Norway (Olesen et al., 2004), British Columbia (Murty, 1979; Bornhold et 

al., 2007), Alaska (Miller, 1960), Chile (Sepúlveda and Serey, 2009), and Greenland (Dahl-Jensen et 

al., 2004). One of the best-known historical examples of an impact tsunami occurred in Lituya Bay, 

Alaska, following a Mw 7.7 earthquake along the Fairweather Fault in 1958 (Miller, 1960). The 

earthquake triggered a 30x106 m3 rock avalanche, which generated a displacement wave that 

reached a height of ca. 100-150 m, and ran up the opposite mountainside to an elevation of over 

500 m, constituting the highest wave run-up in recorded history (Weiss et al., 2009).  

Large-scale, on-going deformation can often be a precursor to catastrophic rock-slope 

failure. This is currently being witnessed at a number of rock-slopes, most notably in Storfjorden, 

western Norway, where the 30-40x106 m3 Åknes rockslide has been continuously moving at rates 

of up to 10 cm yr-1 for over 40 years (Jaboyedoff et al., 2011). The unstable slopes in the Norwegian 

Fjord represent a major threat for coastal communities with three major rock avalanche-generated 

tsunami events having occurred in the last century, causing 174 fatalities (Blikra et al., 2006). 

Considerable emphasis has therefore been placed on quantifying the associated risks of actively 

deforming rock-slopes, such as Åknes, based on the identification and monitoring of potential 

failures, estimation of rockslide properties and the modelling of slope stability, potential run-out, 

wave propagation and run-up using a combination of laboratory models and mathematical 

simulations (e.g. Blikra et al., 2005; Willenberg et al., 2009; Gigli et al., 2011). 

 

1.3 Risk assessments and the role of numerical modelling 

 Risk assessments of the future threats posed by possible rock avalanches rely upon 

numerical modelling of slope stability, potential run-out and tsunami propagation. This is 

contingent upon a thorough understanding of the emplacement dynamics and rheology inferred 

from deposits left by previous events (Rickenmann, 2005). However, the poor preservation of 

deposits and infrequent occurrence of rock avalanches often confutes the validation of models 

(Korup et al., 2007). This is compounded by difficulties in simulating the complex behaviour of the 

rock avalanche mass during propagation, where successful modelling is reliant upon the selection 

of appropriate approximations of the emplacement dynamics and rheology (Pirulli and Mangeney, 

2008). In addition, there exist few records of multiple rock avalanche events with boundary 

conditions sufficiently consistent to permit sensitivity analysis to changes in key variables. As a 

result, most research involving numerical modelling to date has consisted of the back analysis of 

individual events. This approach only provides a broad envelope of rheological properties unsuited 

to predictive scenario modelling, thereby precluding the development of a set of more generalised 

rules for behaviour across events in different settings (Evans et al., 2006).  
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1.4 Vaigat, West Greenland: A natural laboratory for investigating rock 

avalanche dynamics 

A unique cluster of 20 large rock avalanche deposits in the Vaigat Strait, West Greenland, 

offers an unparalleled opportunity to model a large sample of rock avalanches over a short stretch 

of coastline (ca. 25 km) of relatively uniform geology and structure. Unlike past events in other 

settings, the rock avalanches in Vaigat are characterised by their simple and unrestricted run-out, 

both on land and into water, permitting direct comparison of deposits from events of different sizes 

and ages. In particular, a tsunamigenic rock avalanche that occurred at Paatuut (AD 2000) 

represents one of the best-documented events of its type, and is therefore well-suited for 

calibration of numerical models by back-analysis (Pedersen et al., 2002; Dahl-Jensen et al., 2004). 

As many of the key variables are constant between Paatuut and neighbouring failures, it is then 

possible to investigate the variations in dynamics and emplacement style related to changes in 

landslide volume, drop height and thinning/spreading by applying this calibration to other events 

(Pedersen et al., 2002; Dahl-Jensen et al., 2004).  

 

1.5 Research aims and questions 

The research presented in this thesis aims to increase our understanding of rock avalanche 

dynamics by considering a suite of well-preserved analogous rock avalanche deposits with 

comparable boundary conditions. This will be used to undertake a sensitivity analysis of run-out 

uniquely validated by a proximal population of rock avalanche deposits, which will be achieved by 

back-analysing a well constrained event for model calibration before applying these parameters to 

a series of neighbouring failures. This aim will be achieved by addressing the following set of 

research questions: 

 

RQ1) What are the characteristics of rock avalanche run-out in the Vaigat Strait? 

RQ2) How suitable are simple rheological laws for simulating rock avalanche run-out in 

Vaigat?  

RQ3) Can a single set of rheological parameters successfully reproduce the dynamics of a 

series of events emplaced within comparable morphological and geophysical 

conditions? 

RQ4) What factors have the most influence on model performance? 

 

1.6 Thesis structure 

In this thesis, I focus on the propagation mechanisms and mobility of a series of rock 

avalanches in Vaigat, West Greenland. Specifically, I investigate the utility of modelling a single rock 

avalanche satisfactorily as a function of rheology, alongside the validity of applying the same 

parameters elsewhere. The thesis comprises seven chapters following the Introduction.  

 

Chapter 2 gives an overview of the Quaternary glacial history and relative sea-level change 

in the Vaigat Strait, West Greenland. This chapter describes the geology of the surrounding 
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Nuussuaq basin and discusses mechanisms of paraglacial rock-slope failure and its role in 

modulating post-glacial sediment fluxes. Evidence of rock avalanching in the area is presented and 

the recent tsunami-generating rock avalanche at Paatuut is described. The chapter concludes by 

describing the uniqueness of this site and its importance for this research. 

 

Chapter 3 discusses the current state-of-knowledge on long run-out rock avalanches and 

their emplacement dynamics, avalanche-substrate interactions and the geomorphological and 

sedimentological characteristics of their deposits.  

 

 Chapter 4 briefly reviews a number of numerical approaches to modelling the post-failure 

behaviour of rock avalanches discussed in Chapter 3. The use of simple rheological laws to govern 

the motion and run-out of mass movements in these models is discussed and the mathematical 

expressions of several commonly used laws are given. The chapter concludes by identifying one 

continuum dynamic model in particular, VolcFlow, which has shown particularly encouraging 

results in its ability to demonstrate process representation and is therefore used later in this work. 

  

Chapter 5 outlines the successive pre-, syn- and post-processing steps required to back-

analyse the Paatuut event using VolcFlow. This is followed by a summary of the methods used to 

apply this calibration to a series of other rock avalanche events in the Vaigat Strait. 

 

  Chapter 6 presents the results of the calibration and modelling procedures outlined in 

Chapter 5. This chapter first describes the characteristics of rock avalanche run-out in Vaigat, 

before presenting the results of the rheological calibration undertaken using data from the Paatuut 

event. The ability of the model to simulate a series of events of variable volumes, run-out and 

stalling characteristics using a single set of parameters is then assessed.    

 

 Chapter 7 discusses the results presented in Chapter 6 with regards to the use of simple 

rheological laws in numerical run-out models and their implications for model requirements. The 

implications of these results for forward modelling and for the incorporation of numerical run-out 

models into a risk assessment framework is also discussed, placing particular emphasis on their 

implications for tsunami hazard and risk assessments. 

 

 Chapter 8 summarises the major findings of this work and discusses directions for future 

research. 

 



Chapter 2: Rock avalanches in West Greenland 

 

6 

 

Chapter 2 

Rock avalanches in West Greenland
 

 

The north Vaigat coast, West Greenland, constitutes a unique geophysical setting that has generated 

a cluster of 20 large rock avalanche deposits. This offers the unprecedented opportunity to model a 

series of rock avalanches along a short stretch of coastal mountains (ca. 25 km) of relatively 

uniform geology and structure. In addition, Vaigat provides an unparalleled test-bed for assessing 

paraglacial slope response as the Greenland Ice Sheet retreats and rock-slopes are debuttressed. 

This chapter introduces the study site in Section 2.1 and gives an overview of the stratigraphic 

succession of the surrounding Nuussuaq Basin, conditions thought to be favourable to the 

generation of rock avalanches. The Quaternary glacial history and relative sea-level change in the 

area is also described before discussing mechanisms of paraglacial rock-slope failure and its role in 

modulating post-glacial sediment fluxes. In Section 2.2, the history of rock avalanching in the area is 

outlined before focussing on the recent tsunami-generating rock avalanche at Paatuut (AD 2000), 

which constitutes an important case study later in this research.  

 

2.1 Regional setting  

2.1.1 Geology 

 In most parts of Greenland, where gneisses and granites dominate, the relative strength of 

rock-slopes means that they are not conducive to catastrophic failure (Pedersen et al., 1989). By 

contrast, the stratigraphic succession in the Nuussuaq Basin, central West Greenland, comprises 

weakly consolidated sedimentary rocks such as sandstones interbedded with shales, which are 

overlain by a layer of dense basalts (Fig. 2.1). Due to local uplift during the Neogene                                    

(ca. 23.03-2.58 Ma), the Nuussuaq Basin represents the only exposed Cretaceous-Palaeocene                 

(ca. 145-56 Ma) sedimentary basin in West Greenland (Dam et al., 2009). The succession along the 

Vaigat Strait comprises hyaloclastite breccias and subaerial lava flows of the Palaeocene Vaigat and 

Maligât formations that overlie siliciclastic sediments of the Cretaceous Atane and the Danian 

Quikavsak formations (Pedersen and Pulvertaft, 1992; Dam and Sønderholm, 1998). The presence 

of dense, hard basalts underlain by weakly consolidated sedimentary rocks is favourable to the 

generation of landslides, rockfalls and rock avalanches in this area (Fig. 2.1), especially where 

erosion exposes the underlying soft units and rock-slope deformation is not inhibited by 

buttressing afforded by rock or glaciers (Strom, 2004). 

 

2.1.2 Quaternary glacial history and relative sea-level change 

The Vaigat Strait constituted a major northern drainage route for ice flowing from the 

Greenland Ice Sheet during the last glaciation (Long and Roberts, 2003). Its morphology therefore 

represents that of a typical glaciated fjord, with a U-shaped cross-section and depths reaching over  
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Figure 2.1) Geological map of the Nuussuaq basin with areas prone to rock-slope failure indicated. The basin comprises 

weakly consolidated sedimentary rocks, such as Cretaceous sandstones and shales, overlain by a thick pile of dense, 

Palaeogene volcanic rocks. This stratigraphical succession is favourable to (catastrophic) rock-slope failures. As a 

consequence, large parts of Disko, Nuussuaq and Svartenhuk Halvø are affected by landslides and rock avalanches. Adapted 

from Pedersen et al. (2002). 
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600 m in its south-eastern part (Hogan et al., 2012). At the Last Glacial Maximum (LGM), the margin 

of the Greenland Ice Sheet extended to the shelf break where it remained until the early Holocene 

when it then began to retreat, depositing Quaternary sediments several hundred metres thick into 

the Vaigat Strait (Denham, 1974). The retreat of the Ice Sheet is thought to have occurred in two 

stages, with initial retreat driven by sea-level rise (Weidick and Bennike, 2007). This caused the 

calving of ice grounded below sea-level and retreat of the ice sheet from the continental shelf, with 

relative sea-level (RSL) falling rapidly during the early Holocene and reaching close to the present 

coastline by ca. 10 ka BP (Funder and Hansen, 1996). Driven by surface melting, the ice sheet then 

retreated to a position inland of the present margin, reaching its minimum post-LGM volume by the 

end of the Holocene thermal optimum (ca. 5 ka BP; Simpson et al., 2009). During the mid-Holocene, 

RSL fell at rates of 10-30 m ka-1 to levels below present before beginning to rise to the present level 

in the Late Holocene (ca. 3 ka BP), a development that largely reflected a direct isostatic response to 

the ice-margin history (Long et al., 2011). Mass balance observations of the Greenland Ice Sheet 

show that it is currently undergoing rapid change (e.g. Rignot and Kanagaratnam, 2006; Holland et 

al., 2008; Joughin et al., 2008; Rignot et al., 2011), which may be a response to regional warming or 

natural variability in ice sheet behaviour (Roberts et al., 2009).  

 

2.1.3 Paraglacial rock-slope deformation and failure 

The potential response of rock-slope stability to climate change, particularly at high 

latitudes, has generated a considerable amount of interest, although relatively little research has 

been undertaken to date (Deline, 2009; Allen et al., 2011). The majority of cases indicate that large 

(>106 m3) post-glacial failures occurred some thousands of years after ice retreat (McColl, 2012). 

This lag-time has been attributed to the dynamic adjustment of rock-slopes to glacial debuttressing 

through gradual stress-redistribution (Ballantyne, 2002). However, whether these progressive 

processes of rock-slopes alone can sufficiently explain these lag-times is contentious, with some 

researchers instead suggesting that these slopes remain in a state of critical stability for a long time 

following deglaciation before being driven to failure by seismic or climatic processes (see McColl, 

2012 for a review). For example, one potential factor is enhanced seismicity resulting from regional 

glacio-isostatic rebound (Bungum et al., 2010). Although this link is widely accepted in the 

literature, it is unlikely to play a major role in Vaigat, which is characterised by a sparse record of 

seismic activity (Voss et al., 2007). Catastrophic rock-slope failures are also known to have a causal 

link with climatic change at various temporal scales, including extreme rainfall events, melting of 

snow and ice and permafrost degradation (Gruber and Haeberli, 2007). These processes are 

particularly relevant in Vaigat, where rock avalanches are known to be influenced by permafrost, 

glacial ice, high topographic relief and repeated freezing and thawing (Pedersen et al., 1989).  

Certainly, many historic rock avalanches have sources on slopes that were, until recently, 

supported by glacier ice (e.g. Fischer et al., 2006; Geertsema et al., 2006; Huggel et al., 2010; Allen et 

al., 2011). The potential association between glacial debuttressing and catastrophic rock-slope 

failure therefore raises important questions about the frequency of rock avalanching on steep, 

unstable alpine slopes as glaciers continue to retreat in the future (Hewitt et al., 2008). Widespread 

rock-slope destabilisation following deglaciation has significant implications for rock avalanche 
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hazard, understanding long-term erosion rates, paraglacial sediment budgets and landscape 

evolution (Kargel et al., 2013). The length and reach of the Vaigat Strait from the Greenland Ice 

Sheet therefore provides an unparalleled test-bed for assessing paraglacial slope response as the 

ice sheet retreats and rock-slopes are debuttressed. 

 

2.2 Rock-slope instability in the Vaigat Strait 

2.2.1 Rock avalanche history 

As discussed in Section 2.1, the stratigraphic succession in Vaigat is favourable to the 

generation of rock avalanches, especially where erosion exposes the underlying, weakly 

consolidated rocks of the Atane Formation and the rock-slopes are not buttressed by hard rock or 

glaciers. Field observations and aerial photographs taken in 1985 (scale 1:150,000) show that the 

north Vaigat coast is characterised by a series of 20 large rock avalanche deposits that have been 

generated over a small area (ca. 25 km of coastline) of relatively uniform geology and structure 

(Fig. 2.2). None of the deposits show glacial reworking and their superimposition over the 

underlying Quaternary cover indicates that they post-date the last glaciation. The deposits are 

likely to be younger than ca. 3 ka based upon their stratigraphic relationship with sea-level markers 

such as marine terraces and raised beaches (Pedersen et al., 2002), which were formed during the 

mid-Holocene when RSL fell (Section 2.1.2). Active faulting in Vaigat is minimal with only limited 

seismicity (Voss et al., 2007), suggesting that the rock avalanches in this area are more likely to 

have been triggered by progressive deformation of the valley side-walls in response to glacial over-

steepening, as discussed in Section 2.1.3. 

A number of source areas are characterised by self-combustion of carbon-rich shales in the 

Atane Formation, producing local accumulations of brick-red, hard and fissile burnt lithologies (Fig. 

2.3a). In most cases spontaneous combustion is reported ca. 1 year after the event, when the 

slipped shales have been exposed to the atmosphere long enough for exothermic oxidation 

reactions to take place and provide heat for combustion (Henderson, 1969). These lithologies are 

prominent at Paatuut and Ataata Kuua (Fig. 2.1), and indicate a high frequency of landslides (Dam 

et al., 2009). The 20 events are characterised by variable failure volumes, run-out and stalling 

characteristics, with some halting on or above topographic benches (Fig 2.3b) or alluvial fans, some 

running out to sea level and some collapsing into the sea, thereby generating tsunami (Fig. 2.3c). 

The landscape north-west of Paatuut is characterised by large tongues of blocks, stones and fines 

that can be seen from the coastline (Fig. 2.2). A number of the deposits are relatively younger with 

sharper, more well-defined morphologies, with steep terminals (Fig. 2.4a) and a carapace of coarse, 

clastic material (Fig. 2.4b). The surfaces of these deposits are well preserved and highly textured, 

with extensive fields of small, conical mounds (‘molards’) and longitudinal pressure ridges (Dahl-

Jensen et al., 2004). These features have sometimes been associated with the incorporation of ice 

into the flow, either within the failing rock-ice mass itself or through frictional heating of any ice 

entrained from the basal substrate (Huggel et al., 2005). In a number of cases, such as at Paatuut, 

the source stratigraphic sequence has also been preserved in the corresponding deposit (Fig. 2.4c).  

 Seismic profiles in Vaigat show chaotic local accumulations of sediment, which have been 

interpreted as the deposits of old submarine slides or subaqueous aggradations from subaerial rock
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Figure 2.2) Top – map of the south coast of Nuussuaq, West Greenland, showing 20 large rock avalanche deposits. The events occur over a short length of 

coastline (ca. 25-30 km) of relatively uniform geology and structure. Contours are drawn in 100 m intervals from the 25 m GIMP DEM (Howat et al., 2014). 

Bottom – vertical aerial photographs taken in 1985 (scale 1:150,000) showing the mapped rock avalanche deposits (yellow) and their source areas (red).  
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Figure 2.3) a) View onto the source area of event 4. The scar is characterised by clear, fresh surfaces and burnt lithologies (A). The scar measures approximately 600 m in height and has a maximum width of ca. 

500 m, b) view onto event 2 (white dashed line), which stalled on a topographic bench ca. 350 m above sea level. Scar dimensions are ca. 400 x 350 m, and c) view ca. 100 m offshore looking onto the deposit at 

Paatuut (white dashed line). The rock avalanche initiated ca. 1,000-1,400 m above sea level and ran out over 4 km. The toe of the deposit collapsed into the sea, leaving a steep escarpment ca. 25 m in height (B) and 

generating a tsunami. Source areas are delimited with red dashed lines. 
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Figure 2.4) a) Lobate deposits emplaced by event 4 (white dashed line). Near their terminations the deposits are thick, standing ca. 3-4 m high, and have slopes close to the angle of repose (C), b) view onto the 

surface of the deposit at Paatuut, which is covered by a carapace of coarse, clastic material, and c) view offshore looking onto the deposit at Paatuut. Of particular note is the superelevation of the flow down 

through the two adjacent gullies (D and E). There are also several areas (F) in the distal reaches of the deposit that have preserved the stratigraphy of the Atane Formation at ca. 600-800 m above sea level (white 

dashed line). Source areas are delimited with red dashed lines. 
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The main escarpment at Paatuut comprises two steep (ca. 60°) release surfaces that meet 

at a high angle, ca. 1,400 m above sea level (a.s.l). The eastern escarpment surface is thought to be a 

pre-existing fault plane where repeated freeze-thawing in the days prior to the event caused 

instantaneous fracturing, triggering a large rockfall (Dahl-Jensen et al., 2004). The mechanism by 

which the rockfall transformed into a rock avalanche is unknown, although it may have involved 

lubrication of the falling rock mass by black shales and/or snow. At the base of the escarpment lies 

a platform (800-900 m a.s.l; Fig. 2.6), which was covered in glacial drift prior to the event. Field 

observations made by Pedersen et al. (2002) indicate that the platform is now strewn with large 

blocks (some > 10 m in height), chaotic accumulations of material and frost mounds. Following the 

initial collapse, the material was channelled through two deeply incised gullies in the Atane 

Formation (ca. 300-900 m a.s.l; Figs. 2.5 and 2.6), where it has been suggested that a combination of 

grain flow and debris flow processes prevailed during transport (Pedersen et al., 2002). The 

material was then deposited on an alluvial fan below ca. 300 m a.s.l. where it aggraded to depths of 

up to 60 m. Blocks of all the volcanic and intrusive lithologies described in Section 2.1.1 have been 

recognised in the deposit. The subaerial part of the deposit terminates at a steep escarpment                   

(ca. 37°) where ca. 30x106 m3 of material collapsed into the sea (Fig. 2.5). The resultant tsunami 

caused heavy damage in the coastal areas of Vaigat, partially inundating the then abandoned mining 

town of Qullissat 20 km across the Strait (Fig. 2.1). 
 

 

The cold climate and remote nature of this environment means that evidence for the rock 

avalanche and corresponding tsunami remains remarkably well preserved. In addition, three 

broadband seismic stations positioned at Qeqertarsuaq (Fig. 2.1), Upernavik (ca. 250 km to the 

north of Paatuut) and Summit (ca. 550 km to the east) registered two seismic signals generated at 

Paatuut, the first of which resulted from the initial collapse with the second, stronger signal 

reflecting the surface waves generated by the movement of the rock avalanche (Pedersen et al., 

2002). These data indicate that the main event lasted for ca. 80 s. Owing to these records, the event 

at Paatuut is one of the best-documented events of its type. In addition, the boundary conditions 

(e.g. morphological and geophysical characteristics) at Paatuut are well constrained, which 

presents an excellent opportunity for calibration of numerical models by back-analysis and for 

further testing the use of a numerical modelling approach for investigating the emplacement 

dynamics of these events. 

Figure 2.6) Longitudinal transect through the deposit at Paatuut, trending from NE-SW. The transect shows the elevation of 

the path topography (black dashed line) and the vertical depth profiles of the source mass (solid red line) and deposit (solid 

black line). Profiles were taken using the Greenland Ice Mapping Project DEM, which has an overall RMS error of ±9.1 m 

(Howat et al., 2014). 
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Figure 2.5) View offshore looking onto the deposit at Paatuut. The source area of the rock avalanche is outlined in orange 

and situated between ca. 1,000-1,400 m above sea level. Gullies through the Atane Formation, which formed a bypass zone 

for the material, are approximately delimited by the white dotted lines. The lower section of the deposit comprises two lobes 

that merge downwards into one and have been reworked at the edges by debris flows (yellow). A steep escarpment 

terminates the subaerial part of the slide. All elevations are in m above sea level. 

 

avalanches (Marcussen et al., 2001). The majority of the sediments are from the southern coast of 

Nuussuaq and are known to exceed 200 m in thickness in some places (Pedersen et al., 2002). Rock 

avalanches that enter water bodies in narrow fjords or confined bays are particularly destructive as 

the resulting displacement wave may cause large oscillations, leading to a series of incident waves 

(Evans et al., 2006). The material flux at the point of entry into the water determines the magnitude 

of this wave, as the rock avalanche must almost instantly displace large volumes of water to 

generate a tsunami (Harbitz et al., 2014). This condition is more likely to be satisfied along steep 

coastlines such as the southern coast of the Nuussuaq peninsula where erosion rates are rapid 

(Humlum, 1992). Several tsunamigenic rock avalanches have occurred in Vaigat including an event 

in 1952, which generated a tsunami that inundated areas 50-100 m from the shoreline on the 

northern coast of Disko Island, and the AD 2000 event at Paatuut (Section 2.2.2). 

The majority of the rock avalanches in Vaigat are sourced from generally uniform 

lithologies and are characterised by open slope run-out zones, both on land and into water, 

permitting direct comparison of deposits of events of different sizes and ages. These diverse 

emplacement ‘styles’ may result from variable failure modes and mechanisms, volumes, drop 

heights and thinning/spreading, as well as the slope of the path topography and any interaction of 

the flowing mass with rugged terrain and/or deformable substrates. This distinctive setting clearly 

identifies a rationale for exploratory numerical modelling, which could be used to examine the 

sensitivity of rock avalanche run-out to changes in key variables.  

 

2.2.2 Tsunami-generating rock avalanche at Paatuut, AD 2000 

During the afternoon of the 21 November 2000 a large (>90x106 m3) rock avalanche 

occurred at Paatuut, ca. 40 km north-west of the town of Saqqaq on the south coast of the Nuussuaq 

peninsula (Fig. 2.1). The rock avalanche ran out into the Vaigat fjord at velocities of 140-200 km h-1, 

where ca. 30x106 m3 of the partly submerged deposit toe then failed again into the sea, generating a 

submarine slide and a tsunami with a run-up of ca. 20 m at Paatuut and up to 10 m on the opposite 

coast (Fig. 2.5; Szczuciński et al., 2012).  
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2.3 Summary 

Risk assessments of the threats posed by rock avalanches rely upon numerical modelling 

of potential run-out and spreading, which itself is contingent upon a thorough understanding of the 

flow dynamics and rheology inferred from deposits left by previous events. Few records exist of 

multiple rock avalanches with boundary conditions sufficiently consistent to develop a set of more 

generalised rules for behaviour across events. A unique cluster of 20 large rock avalanche deposits 

along the Vaigat Strait, West Greenland, offers a unique opportunity to model a large sample of 

adjacent events sourced from a stretch of coastal mountains of relatively uniform geology and 

structure. In particular, the event and corresponding tsunami at Paatuut (AD 2000) represents one 

of the best-documented events of its type and presents an excellent opportunity for calibration of 

numerical models by back-analysis. This series of rock avalanches therefore presents the unique 

opportunity to investigate the utility and sensitivity of modelling a single rock avalanche 

satisfactorily as a function of rheology, alongside the validity of applying the same parameters 

elsewhere, even within similar boundary conditions. This approach is also important for developing 

our process understanding of (paraglacial) rock avalanches in confined fjord settings, where 

correctly modelling the material flux at the point of entry into the water is critical in tsunami 

generation. 
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Chapter 3 

Rock avalanches (I)  
Occurrence and processes

 
 

Although considerable emphasis has been placed on assessing the associated risks of catastrophic 

rock-slope failure, quantifying risk remains a challenge due to the complex initial failure processes 

and, in particular, the unpredictable post-failure behaviour of rock avalanches (Crosta et al., 

2006a). The unusual characteristics of rock avalanches outlined in Chapter 1 have prompted 

researchers to propose a number of modes of transportation and deposition, some of which are 

based on the standard physics of granular materials, and some of which invoke more unusual 

mechanisms (De Blasio, 2009). Such hypotheses remain controversial despite decades of research. 

The majority of the relevant literature on rock avalanches comprises studies of individual events, 

with little consideration of multiple or suites of rock avalanches such as those in Vaigat (Chapter 2) 

and their relation to other surface processes. The following discussion draws upon this literature in 

order to address questions relating to the conditions that lead to rock avalanching and the various 

factors controlling run-out. The preconditioning of rock-slopes to failure and common triggering 

mechanisms of rock avalanches are first considered (Section 3.1) before more fully reviewing the 

current state of knowledge on rock avalanche dynamics (Section 3.2), avalanche-substrate 

interactions (Section 3.3) and the associated depositional processes (Section 3.4). The chapter 

concludes by highlighting some of the outstanding issues to be resolved that underpin the scope of 

this research (Section 3.5). 

 

3.1 Rock-slope instability and common trigger mechanisms 

 While it is commonly known that the majority of catastrophic rock-slope failures occur in 

massive, hard rocks exposed on incised valleys or fjord walls, there remains a paucity of research 

concerning the necessary conditions for rock avalanche initiation (Friedmann et al., 2003). One 

view suggests that tectonic histories ‘predesign’ the potential form and scale of rock-slope failure, 

with rock avalanches occurring on slopes that are predetermined to fail by virtue of a particular set 

of static tectonic, lithologic and slope characteristics (Scheidegger, 1998). A compilation of 814 

global in situ stress measurements suggests that the strength of rock in the upper, brittle crust 

depends on the stress and damage history of the rock mass during exhumation (Leith et al., 2014). 

The magnitude and distribution of near-surface stresses therefore reflects aspects of (i) the tectonic 

and exhumation history of the brittle crust, and (ii) topographic perturbation (Leith et al., 2014). An 

analysis of the basement terranes of a number of areas where rock avalanches have occurred has 

revealed that this typically includes conditions such as high relief (permitting >150 m drop height), 

steep slopes (>25°) and a pre-fractured (effectively granular at scale) rock mass (Keefer, 1984).  
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Figure 3.1) Examples of extensional fracture systems developed under high differential stress conditions: a) sheeting joints 

in a previously glaciated craton, and b) exfoliation joints on post-glacial valley walls. Blue arrows indicate maximum (σ1) and 

minimum (σ3) principal stress orientations, while red lines represent fractures formed in response to the illustrated stress 

state. Diagram adapted from Leith et al. (2014). 

a) b) 

 Attention has also been drawn to the role that ‘memory’ of antecedent shear could play 

both in the subsequent distribution of slope deformation and in setting the failure threshold of 

rock-slopes, with some suggesting that this memory could explain the spatial clustering of rock 

avalanche deposits (Friedmann et al., 2003). Detailed knowledge of the geomechanical properties 

of a rock-slope such as bedding, joints, foliation, and faults is required for a thorough understanding 

of patterns of rock-slope deformation and failure, as such factors govern the overall ability of a 

slope to resist the stresses acting on it and thus determine its stable geometry (Hoek and Bray, 

1981). However, while these preconditioning factors may set the inherent strength of a slope, 

grouping characteristics in such a way ignores a number of dynamic (‘preparatory’) processes that 

act to reduce slope stability. These processes vary in both time and space, leading to a range of 

distributions of rock-slope deformation in a single slope over time and differentially across 

landscapes (Glade and Crozier, 2005). 

 Preparatory factors for rock-slope failure include changes in the boundary conditions of a 

slope and the associated redistribution of stress (e.g. via glacial debutressing, as in Vaigat; Chapter 

2), near-surface chemical and physical weathering, and cyclic loading (e.g. thermal- and/or hydro-

mechanical; Gruber and Haeberli, 2007). These, in turn, can act to connect previously non-

persistent discontinuities in the intact rock mass through the progressive propagation of stress 

fractures and ultimately cause a reduction of rock mass strength over the long-term, conditioning 

the rock-slope towards failure (Prudencio and Van Sint Jan, 2007). 

 Rock avalanche triggers are defined as the direct stimuli that initiate rock avalanche 

emplacement (Wieczorek, 1996). Gradual stress release in steep rock-slopes may cause the dilation 

of joints, formation of sheeting joints, exfoliation joints and stress corrosion through fatigue (Fig. 

3.1), leading to the occurrence of some rock avalanches without a recognisable triggering event 

(e.g. for ca. 50% of those events that have occurred in the Sierra Nevada; Wieczorek, 2002). For 

those events where a trigger is known or can be inferred, the most common are those related to 

seismic shaking (e.g. Jibson et al., 2006) and heavy precipitation (e.g. Frayssines and Hantz, 2006). 

It should also be noted that a small number of historical rock avalanches have been attributed to 

human influences, including the 1881 event in Elm, Switzerland, where slope undercutting by a 

slate quarry caused an 11x106 m3 rock avalanche that resulted in 115 fatalities (Heim, 1932). 
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3.2 Emplacement dynamics 

3.2.1 Theoretical considerations: quantifying avalanche mobility 

 Following initial bedrock failure, the rock mass detaches itself from the source surface and 

disintegrates, collapsing into large blocks that progressively fragment during motion (Evans et al., 

2006). This property is unique to rock avalanches (Hewitt et al., 2008). Rock avalanche mobility is 

often quantified by the Fahrböschung, or apparent coefficient of friction, which is expressed as the 

ratio of vertical drop height, H (measured from the crest of the pre-failure rock mass to the lowest 

point of its path) to horizontal run-out, L (measured horizontally from the crest of the pre-failure 

rock mass to the most distal point of its path; Fig. 3.2).  

 

The Fahrböschung angle, β, of a rock avalanche may therefore be expressed as: 

 

                                                                            𝛽 = 𝑡𝑎𝑛−1 (
𝐻

𝐿
)                                                                       [Eq. 3.1] 

 

with low values indicating high levels of mobility (Heim, 1932). Since the introduction of this 

concept by Heim (1932), it has been applied to a number of types of mass movements, ranging from 

debris flows (Rickenmann and Zimmermann, 1993) to large landslides, debris and rock avalanches 

(Hsü, 1975; Corominas, 1996), volcanic debris avalanches (Dade and Huppert, 1998), submarine 

mass movements (Legros, 2003), ice avalanches (Alean, 1985), glacial lake outburst floods (Huggel 

et al., 2003) and mass movements on both the moon and Mars (Harrison and Grimm, 2003).  

 If a rock avalanche is simplified to a sliding block on an inclined plane then Coulomb’s 

frictional law states that, as the block descends under the influence of gravity, it is resisted by a 

frictional force, FF (Körner, 1976). This force is proportional to the compressive forces acting 

perpendicular to the contact surface (Fig. 3.3). The apparent coefficient of friction of the sliding 

block is therefore assumed to be dependent upon characteristics of the contact surface (e.g. basal 

composition, amount of surface water) but independent of its mass. This frictional force may be 

expressed as:  

 

                                                                           𝐹𝐹 = −𝑚𝑔µ cos 𝛼                                                                    [Eq. 3.2] 

Figure 3.2) Common metrics used to quantify run-out mobility: vertical drop height (H), horizontal run-out (L) and the 

Fahrböschung angle (β). 
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mg 

Figure 3.3) Free body diagram of a block 

sliding down an inclined plane under 

Coulomb’s frictional law. Here, mg is the 

gravitational force, mgsinα the component 

accelerating the mass, mgcosα the normal 

force and mgµcosα the frictional force 

Adapted from Erismann and Abele (2001).  

where m is the avalanche mass, g the gravitational 

acceleration, α the local slope angle and µ = tanφint, 

which is the coefficient of friction expressed in terms of 

the internal angle of friction, φint, an experimental 

property of rocks on the order of ca. 35-40° (Middleton 

and Wilcock, 1994). 

As the kinetic energy of the block is zero in the 

initial, I, and final, F, states, the overall change in 

potential energy of the mass must be equal to the work 

performed by FF. If δI is an infinitesimal displacement 

along the run-out path, the change in potential energy 

of the mass is given by: 

 

                      ∆𝑚𝑔𝐻 = − ∫ 𝐹𝐹𝛿𝐼
𝐹

𝐼

                   [Eq. 3.3] 

 

Upon substitution of FF (Equation 3.2), the change in 

potential energy is of the form: 

 

                                                                ∆𝑚𝑔𝐻 = − ∫ −𝑚𝑔µ cos 𝛼 𝛿𝐼
𝐹

𝐼

                                                        [Eq. 3.4] 

 

With solution of Equation 3.4 therefore yielding: 

 

                                                                  ∆𝑚𝑔𝐻 = 𝑚𝑔µ − ∫ cos 𝛼 𝛿𝐼
𝐹

𝐼

                                                         [Eq. 3.5] 

                                                                          𝐻 = µ − ∫ cos 𝛼 𝛿𝐼
𝐹

𝐼

                                                                 [Eq. 3.6] 

 

If the overall slope of the event in question is built up by vectorial addition of n partial lines of 

length δI, the overall run-out, L, may then be expressed as: 

 

                                                                           𝐿 = − ∫ cos α Ʃδ𝐼
𝐹

𝐼

                                                                  [Eq. 3.7] 

 

With division of Equation 3.6 by Equation 3.7 thus yielding: 

 

                                                                                       
𝐻

𝐿
= µ                                                                              [Eq. 3.8] 

 

It can therefore be shown that, under a simple Coulomb frictional law and taking typical values for 

φint (ca. 35-40°), µ ≈ 0.78-0.84. Under these conditions L should only be marginally greater than H, 

and the relative run-out of a rock avalanche should be independent of gravity and event size (Dade 

and Huppert, 1998). This behaviour has been confirmed by laboratory experiments with granular 

flows of sand as well as observations of small-scale landsliding and rockfalls (e.g. Hutter et al., 

1995; Iverson, 1997; Denlinger and Iverson, 2001; Pudasaini and Hutter, 2003; Ancey, 2005; Jop et 
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al., 2006; Pudasaini and Domnik, 2009).  

Conversely, the most remarkable 

feature of rock avalanches, and one that has 

been widely discussed in previous work, is 

their exceptional run-out (e.g. Hungr, 1995; 

Kilburn and Sørensen, 1998; Davies et al., 

1999; Hungr and Evans, 2004 and references 

therein). This behaviour is inconsistent with 

predictions made by simple Coulomb 

frictional laws described above. This is most 

apparent when considering the plot shown in 

Fig. 3.4, which is characterised by a marked 

decrease in H/L as avalanche volume 

increases from ca. 105-106 m3 to 109 m3. Over 

this range the displaced material ceases to 

assume a frictional behaviour, characterised 

by H/L > 0.6 (β ≥ 32°), and instead adopts a 

fluid-like behaviour, with H/L reaching 

values as low as 0.01 (β < 6°; Fig. 3.4). This has been labelled the ‘volume effect’, and many 

researchers have sought to identify a possible mechanism by which friction could be reduced in 

such large events (Legros, 2003). 

 

3.2.2 Rock avalanche mobility and run-out 

The complex behaviour of rock avalanches adds greatly to their destructive potential and 

hinders efforts to model their behaviour (Catane et al., 2008). The decrease in frictional resistance 

causes rock avalanches to exhibit excessive mobility such that they are able to: 

1. Run over and around significant obstacles in their paths (Hewitt et al., 2008); 

2. Abruptly change direction, commonly running perpendicular to the original direction of 

movement and at times reflecting off topography (Eisbacher, 1979); 

3. Run a considerable distance up distal slopes, leaving elevated deposits on opposing valley 

slopes and evidence of super-elevation in topographic bends (Evans, 1989; Evans et al., 

1994). 

Although topography is widely recognised to be an important influence upon rock avalanche 

dynamics, topographic constraints alone are unable to fully account for the excessive mobility of 

rock avalanches (Mudge, 1965; Shreve, 1968; Whitehouse and Griffiths, 1983; Evans, 1989). 

Potential mechanisms for the extensive propagation of rock avalanche masses remain contentious 

but principally involve two processes: the first, translation, is guided by basal friction, while the 

second, deformation, is driven by internal friction (Davies et al., 1999). A reduction in either basal 

or internal friction would cause the rock mass to run out further than dictated by the volume effect 

alone (Imre et al., 2010). This discussion therefore distinguishes between theories that involve 

variations in: a) the translation process, and b) the deformation process.  

Figure 3.4) Plot of H/L against volume for subaerial 

volcanic rock avalanches (black crosses), subaerial non-

volcanic landslides and rock avalanches (blue crosses) and 

rock avalanches onto glaciers (red crosses). The Paatuut 

event (AD 2000) is labelled in yellow. Data compiled from a 

literature review of rock avalanche events (Appendix A). 
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3.2.2.1 Basal friction 

 A number of authors have sought to explain the enhanced mobility of rock avalanches 

using mechanisms that infer a reduction in basal friction of the rock mass, effectively treating the 

movement as a slide rather than a flow. A distinction should therefore be made between 

lubrication, which is restricted to a thin basal layer, and fluidisation, which affects the internal 

dynamics of a considerable portion of the deforming mass (Erismann and Abele, 2001). The 

mechanism driving reduced basal friction is most commonly conceptualised as consisting of 

lubrication of the rock mass via either: a cushion of trapped air (Shreve, 1968); low-friction sliding 

on dissociated or melted rock confined along the basal sliding plane (Johnson, 1978; Erismann, 

1979); the presence of a wet basal shear zone (Voight and Sousa, 1994); or the liquefaction of 

saturated sediments entrained from the run-out path (Abele, 1974; Sassa et al., 1998).  

 The absence of evidence for massive air jetting, normally graded sediments and the 

elutriation of fines in rock avalanche deposits all counter theories that involve air cushioning of the 

rock mass (Cruden and Hungr, 1986). These theories were formerly challenged by observations of 

such events on the moon and Mars, where minimal air and/or water was thought to be available to 

act as a lubricant (Lucchitta, 1979), although recent evidence strongly implicates the presence of 

moisture or carbon dioxide in their emplacement (Quantin et al., 2004). Evidence for enhanced 

sliding due to the dissociation and/or melting of rocks under friction (frictionites) remains 

similarly limited, and although there exist several examples, including Kanchenjunga in the Sikkim 

Himalaya and Arequipa in Peru, these represent only a minority of cases (Legros et al., 2000; De 

Blasio and Elverhøi, 2008; Weidinger and Korup, 2009).  

 The longest standing hypothesis for the excessive mobility of rock avalanches involves 

basal liquefaction by rapid undrained loading as a mechanism for lubrication (Heim, 1882). 

Implicating water as a lubricant is considered to be more realistic than air owing to its 

incompressibility as well as its higher density and viscosity (Legros, 2003). Changes in pore 

pressure at the base of the moving mass can be initiated by shearing within a highly saturated layer, 

entrainment of river water and/or water-saturated valley-fill deposits, or the melting of ice or snow 

by frictional heating (Evans and Clague, 1988; Voight and Sousa, 1994; Prager et al., 2006). 

However, an interesting case is presented by rock avalanches that are confined to narrow valleys, 

such as those in the Karakoram Himalaya, which can reach hundreds of metres in depth (Hewitt et 

al., 2008). Detailed sedimentological investigations of these deposits have shown that, during such 

events, the majority of deformation takes place within and not at the base of the rock avalanche 

mass, indicating the importance of deformation processes and internal friction in their movement.  

 

3.2.2.2 Internal friction  

Fluidisation of the rock avalanche mass involves an overall reduction in frictional 

resistance to shear, developing differential strain throughout the entire failed volume. This could be 

driven by: trapped air or steam generated by the vaporisation of groundwater (Goguel and 

Pachoud, 1972); the presence of interstitial fluids (Crosta et al., 2009); or dilatation of the grain 

mass via ‘acoustic fluidisation’ (Melosh, 1979), ‘mechanical fluidisation’ (Scheidegger, 1973), or 

dynamic fragmentation (Davies et al., 1999). 
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A number of theories invoke an intergranular medium to account for the excessive mobility 

of rock avalanches, and although some suggest that high gas pressures are responsible (Goguel and 

Pachoud, 1972), rock avalanche deposits would be expected to exhibit features characteristic of the 

upward escape of gas, such as normal grading, elutriation of fines and cratering, none of which have 

been observed. Instead it has been proposed that, upon mixing the fines of rock avalanche debris 

with water, the rheology of the flow shifts towards that of a non-Newtonian fluid (McArdell et al., 

2007). Unlike Newtonian fluids, in which the viscous stresses are directly proportional to the local 

strain rate, non-Newtonian fluids are characterised by a load-independent shear resistance that is 

thought to result in the volume effect illustrated in Section 3.2.1 (Iverson et al., 2010). 

The role of dispersive pressure, where the grain mass is dilated by high impulsive contact 

pressures, also remains contentious (Davies, 1982). The dispersive grain flow theory first proposed 

by Hsü (1975) invokes fluidisation of the rock mass via the internal sorting of fines, which is then 

thought to fluidise coarser particles. However, this does not account for the volume effect, as larger 

volumes of debris would instead compact these particles and reduce fluidisation (Erismann, 1986). 

The energy required to cause these grain fluctuations has also been proposed to originate from 

acoustic-frequency vibrations at the boundaries of the moving mass (Melosh, 1979). Although this 

has been experimentally demonstrated, this mechanism would require a continuous source of 

energy and so is not deemed permissible unless the vibrations were self-perpetuating (Collins and 

Melosh, 2003). A similar decrease in shear resistance may be induced by mechanical fluidisation, 

which has been proposed to occur when rapid shearing of a granular mass causes the friction angle 

to spontaneously decrease, resulting in dynamic interactions within the mass that force particles 

away from each other (Davies, 1982). This is also yet to be shown experimentally.  

It has been suggested that dispersive pressure can be generated by dynamic fragmentation, 

whereby particles undergo an increase in elastic strain until they are crushed and the energy is 

converted into kinetic energy as particles fracture (McSaveney and Davies, 2007). Fragments are 

then forced away from the original centre of mass, causing a reduction of inter-granular friction and 

an increase in lateral and longitudinal spreading (Rait et al., 2012). Pressure-induced melting of any 

ice contained within the rock mass can also fluidise the moving mass and further increase mobility 

(Davies et al., 1999). Although gradual fragmentation does not increase the mobility of the centre of 

mass, it has been shown to more fully account for the energy budget of rock avalanches and is 

supported by some field (preserved but fragmented clasts) and laboratory (high particle surface 

areas, equivalent to fault gouge) evidence (Smith et al., 2006; Bowman et al., 2012).  

 The majority of theories of rock avalanche mobility discussed here are consistent with 

local observations but, crucially, they remain inconsistent with universal observations or physical 

constraints (Friedmann, 1997). All require either novel physics (e.g. fluidisation via air-cushioning 

or acoustic vibrations), or particular environmental conditions (e.g. undrained loading failure of a 

water-saturated substrate), meaning that there is no unifying theory that can adequately explain 

the wide range of conditions under which excessive mobility occurs (Davies and McSaveney, 2009). 

 

3.3 Rock avalanche-substrate interactions 

Although it is commonly known that the interaction with and subsequent entrainment of 
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rock avalanche run-out path materials can exert a significant influence on their emplacement 

dynamics and run-out behaviour, the specific processes acting at the base of rock avalanches during 

travel over (non-)deformable and erodible substrates remain poorly understood, exceedingly 

challenging to observe, and therefore difficult to model (Dufresne, 2012).  

 

3.3.1 Substrate erosion and entrainment 

During the failure process, fragmentation of the rock mass causes an initial increase in 

volume in the region of 7-26% (Hungr, 1981). Further increases in volume of up to 800% may then 

occur by entrainment of substrate material (Hungr and Evans, 2004). A detailed review of the main 

processes of entrainment is provided by Dufresne (2009). Rock avalanches must first exceed a 

minimum basal shear stress before substrate entrainment occurs. This entrainment rate is related 

to substrate properties, such as shear strength, as well as the velocity of the moving rock mass, 

avalanche loading, the heterogeneity of surficial materials and their stability on an incline (Crosta et 

al., 2008). Entrainment may therefore proceed progressively, or failure of the substrate may occur 

at greater depths where weaknesses are found between different substrates (McDougall, 2006). 

The entrainment of surficial materials into a rock avalanche can lead to changes in its bulk and/or 

basal composition to such an extent that the overall mechanical behaviour, or rheology, of the rock 

avalanche is affected (Hungr and Evans, 2004). It is well documented that, when rock avalanches 

entrain substantial amounts of saturated substrates and/or surface water, ice or snow, they 

develop a highly mobile flow regime that can increase run-out by several orders of magnitude (e.g. 

Pandemonium Creek, British Columbia: Evans et al., 1989; Huascarán, Peru: Keefer and Larsen, 

2007). Where the rock avalanche mass interacts with saturated sediments without significant 

entrainment, complex substrate deformation features may develop, which are discussed below.  

 

3.3.2 Substrate deformation 

Rock avalanches emplaced across deformable substrates may entrain, transport and 

compress large masses of sediment, generating prominent constructional landforms such as 

complex fold and fault structures (Yarnold, 1993; Abdrakhmatov and Strom, 2006; Hewitt et al., 

2008; Dufresne and Davies, 2009), shearing (Hewitt, 2006), erosion surfaces and bulldozer facies 

(Belousov et al., 1999). While thick, yielding substrates tend to deform, consuming momentum and 

thereby impeding rock avalanche mobility, run-out over more resistant substrates expends little 

energy and is thought to induce the basal shear stress and agitation necessary for dynamic internal 

processes to increase avalanche mobility (Section 3.2; Dufresne, 2012). The effect of deformable 

and erodible substrate conditions on the emplacement mechanisms and subsequent run-out of rock 

avalanches is therefore a balance between: (i) the energy required to mobilise substrate material, 

(ii) the reduction of frictional resistance within the failing substrate, (iii) how efficiently the 

substrate is mobilised (for example, whether or not the substrate deforms and impedes rock 

avalanche motion), and (iv) whether the rock avalanche mass entrains significant quantities of 

water or saturated substrates. Although numerical models are able to account for changes in 

topography as a result of these processes, the results are sensitive to the assumed erosion rate and 

maximum erosion depth, which remain difficult to quantify (McDougall and Hungr, 2005). 
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3.4 Deposit characteristics 

The energy dissipation and subsequent run-out of rock avalanches is strongly influenced 

by a number of factors, leading to a range of depositional features, surface morphologies and, at a 

local level, specific internal tectonic and facies characteristics (Okura et al., 2003). 

 

3.4.1 Sedimentology and internal structure 

Research on rock avalanches has primarily been driven by the need to quantify the 

frequency of such events for risk assessments, to understand their relative contribution to 

sediment budgets and landscape evolution, and to back-analyse specific case studies (Weidinger et 

al., 2014). This is reliant upon the successful detection of deposits emplaced by past events. 

However, few studies systematically examine the sedimentary and petrographic characteristics of 

rock avalanche deposits in non-volcanic settings (Wassmer et al., 2004). Some authors have 

attempted to create a set of diagnostic criteria for the identification of rock avalanche deposits, 

which include sedimentological characteristics such as: 

1. Surface matrix of angular boulders and megaclasts, commonly termed a carapace (Hewitt, 

2002); 

2. An abundance of finely comminuted rock within the main rock avalanche body (McSaveney 

and Davies, 2007); 

3. A ‘mélange’ of basal facies, including fluvial and glacigenic boulders that have been 

entrained into the base, which form banded layers of pervasively fragmented though 

otherwise coherent clasts (Weidinger et al., 2014); 

4. Preservation of source stratigraphy (Strom, 1999); 

5. Internal grain size distributions that are controlled by source lithological variation rather 

than variations in the transport mechanism (Dunning, 2006). 

6. Fine-sediment signatures, such as fines-coated grains and agglomerates, which are 

characteristic of rapid, high-stress comminution (Reznichenko et al., 2012b).  

These sedimentological facies are considered to be important criteria for distinguishing rock 

avalanches from macro- and microscopically similar glacial deposits, tectonic fault-zone breccias 

and impact breccias (Weidinger et al., 2014). 

 

3.4.2 Morphology 

A number of authors have defined a series of morphological criteria for identifying rock 

avalanche deposits, including: 

1. Evidence of the deposit having conformed to the local topography during its emplacement 

(Heim, 1932; Nicoletti and Sorriso-Valvo, 1991); 

2. Sharply-defined margins and steep terminations, with little spreading of any debris beyond 

these (Cruden and Hungr, 1986); 

3. Surfaces that are characterised by ridges and troughs (Dufresne and Davies, 2009); 

4. Evidence of super-elevation in topographic bends and elevated deposits where the rock 

avalanche has run up opposing valley slopes (Evans, 1989; Evans et al., 1994). 

Topographic interference can involve both longitudinal and transverse confinement of the rock 



Chapter 3: Rock avalanches (I) - Occurrence and processes 

 

25 

avalanche mass, as well as the effects of changes in slope, valley geometry, and junctions that can 

act to block, confine or diverge flow (Fig. 3.5; Hewitt, 2002). Such constraints are able to produce 

deposits that can reach hundreds of metres in depth, as in Flims, Switzerland (von Poschinger et al., 

2006). Flows that are channelised by topography, such as Köfels and Vaiont in the Alps or Tsergo Ri 

in Nepal, tend to run out further than free spreading flows or those impeded by a frontal impact 

(Heim, 1932; Heuberger et al., 1984). The resulting depositional features are therefore highly 

dependent upon the relations between rock avalanche volume and valley geometry. The effects of 

various cross-valley topographic constraints on the morphology and structure of rock avalanche 

deposits are summarised in the schematic diagram shown in Fig. 3.5.  

The final configuration of the depositional mass is further affected by the basal topography 

of the run-out path, which strongly conditions processes of flow compaction, resistance to and 

patterns of basal erosion (Section 3.3; Dufresne et al., 2010). The resulting surface flow structures 

include features such as sharply defined margins, digitated fronts, flow bands, transverse ridges, 

longitudinal ridges, conical mounds (or ‘molards’) and coarse boulder carapaces (Fig. 3.6; Strom, 

2004). These structures are believed to reflect processes active during the flow and are therefore 

important for inferring aspects of flow dynamics (Dufresne and Davies, 2009). Deposits that are 

emplaced across areas of rugged terrain tend to exist as isolated ridges or locally thickened and 

hummocky remnants that have been exposed by post-emplacement erosion and detached from 

their distant rock wall source, complicating the interpretation of past events (Hewitt, 2002). On 

open slopes, topographic irregularities may induce interactions between debris streams moving at 

different speeds or along different trajectories, generating transverse or longitudinal ridges 

hundreds of metres in length and that stand tens of metres above the rest of the deposit (Mollard, 

1977). In addition, compressional ridges and/or raised flow fronts are often found in the proximal-

medial reaches of deposits emplaced by smaller, low-velocity rock avalanches (Abdrakhmatov and 

Strom, 2006). Attempts to assess the complex behaviour of the Flims rock avalanche as it ran out 

over rugged terrain illustrate the weaknesses in using two-dimensional (2D) numerical models to 

capture such behaviour (von Poschinger et al., 2006). These models are unable to explicitly account 

for lateral variations in intensity, hindering their ability to account for energy losses within the rock 

avalanche mass that are caused by complex topography (Hungr and McDougall, 2009). 

 

3.5 Summary  

The majority of theories of rock avalanche mobility discussed in Section 3.2 are consistent 

with local observations but, crucially, they remain inconsistent with universal observations or 

physical constraints (Yarnold, 1993; Friedmann, 1997). All require either novel physics or 

particular environmental conditions, meaning that there is no unifying theory that can explain the 

wide range of conditions under which excessive mobility occurs (Davies and McSaveney, 2009). To 

date, few of these theories have been directly tested, either through physical or numerical 

experiments, and there remains a paucity of research seeking to determine their relative 

importance. Although many now have an equivalent empirical, analytical and/or numerical 

formulation that can be used for modelling rock avalanche propagation, none are currently able to 

predict the circumstances under which long run-out occurs, or the nature of that run-out. 
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Figure 3.5) Schematic long- and cross -sections, and plan forms of cross-valley rock avalanche deposits. The Brandung 

represents the culmination of the rock avalanche’s upward climb of an opposing slope and consists of a distal ridge with a 

steep front. In types 1, 2 and 4, subtypes are indicated where debris, initially confined in tributary chutes or canyons, is 

emplaced in the main valley. Diagram adapted from Hewitt (2002). 
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Although it is commonly known that the interaction with and subsequent entrainment of 

rock avalanche run-out path materials can exert a significant influence on their emplacement 

dynamics and run-out behaviour, these processes remain difficult to quantify as detailed field and 

experimental data are scarce. Laboratory experiments have been used to propose and test a 

number of constitutive relationships (Egashira et al., 2001; Takahashi, 2001); however, the validity 

of these relationships under field conditions is yet to be demonstrated. Although numerical models 

are able to account for changes in topography as a result of the erosional and depositional 

processes discussed in Sections 3.3 and 3.4, the results are sensitive to the assumed erosion rate and 

maximum erosion depth, which remain difficult to quantify (McDougall and Hungr, 2005). 

Studies of rock avalanche dynamics are based, with variable emphases, on theoretical 

Figure 3.6) Surface flow features characteristic of rock avalanche deposits. Centre-left: contextual image of several rock 

avalanche deposits and their situation on the Vaigat Strait, West Greenland (Chapter 2). Centre-right: 2 m satellite imagery 

showing in detail the surface flow features of these deposits. These include sharply defined margins (A), digitated fronts 

(B), transverse ridges (C), longitudinal ridges (D), fields of conical mounds, or ‘molards’ (E), and coarse boulder carapaces 

(F). 2 m orthoimages were acquired on 19 June 2012 by WorldView-1 and subsequently provided by Ben Smith (Polar 

Science Center). 
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considerations, field observations, laboratory analogue models and computer-based numerical 

models. While much of the relevant literature on rock avalanches comprises studies of individual 

events, these come at the expense of studies that are focussed on regional investigations of multiple 

rock avalanches. 3D numerical models offer an alternative approach to small-scale analogue 

modelling and the assessment of events in real-time, and are therefore well placed to act as a tool to 

investigate and better understand the diversity, complexity and regional contexts of suites of rock 

avalanches, such as those in Vaigat (Chapter 2). 
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Chapter 4 

Rock avalanches (II)  
Numerical run-out modelling

 
 

Quantitative risk assessments of the future hazard posed by potential rock avalanches rely upon the 

successful prediction of their extent and character of motion (Evans et al., 2001). Although 

laboratory models of granular flows are valuable for investigating scale-independent effects of 

motion, they are limited by their limited ability to scale physics and the mechanisms exhibited by 

rock avalanches (Manzella and Labiouse, 2013). Computer-based models present an alternative 

that can also be used for scenario testing, offering a compromise between small-scale analogue 

modelling and the assessment of events in real-time, where dynamic measurements are expensive 

or, more often, impossible (Hungr, 2006). Modelling the mobility of rock avalanches is complicated 

by the complex behaviour experienced by the fragmenting rock mass during motion (Crosta et al., 

2006b); this difficulty is manifest in the burgeoning number of theories of motion and mechanisms 

presented in the literature, as illustrated in Chapter 3. This is further compounded by the common 

lack of pre-, syn- and post-failure observations of such phenomena, which are fundamental 

constraints on the development, calibration and validation of any numerical model of rock 

avalanche run-out and behaviour (Dahl et al., 2013). As a result, the majority of numerical 

modelling studies focus on replicating the dynamics of a single, well-constrained event, and fail to 

consider the wider utility and sensitivity of the rheological calibration obtained. A series of 20 large 

rock avalanche deposits along the Vaigat Strait, West Greenland, presents the unique opportunity to 

undertake a case-specific calibration and investigate the validity of applying the same parameters 

to other events with similar morphological and geophysical conditions (Chapter 2). The following 

discussion reviews a number of numerical approaches to modelling the post-failure behaviour of 

rock avalanches (Section 4.1) and discusses the rheological laws commonly used to govern their 

motion in these models (Section 4.2). From this discussion, a continuum dynamic model, VolcFlow, 

which is suited to modelling the events observed in Vaigat is identified and described (Section 4.3). 

 

4.1 Numerical run-out models 

 Numerical models constitute an important tool for simulating the large scale and complex 

motion of rock avalanches, allowing researchers to simulate their behaviour, and, ultimately, to 

predict run-out and perform hazard zonation (Crosta et al., 2003). Currently, all numerical models 

used for this purpose are deterministic and produce a constant output for a given parameter input, 

with none incorporating a random (or probabilistic) aspect that prevents repeatability between the 

outputs for a given input (Hungr et al., 2005). Numerical run-out models are primarily divided into 

two types, both of which are discussed below. The first, empirical models, make use of statistical 
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analyses of empirical observations, while the second, dynamic models, simulate rock avalanche 

motion by solving a governing set of equations of motion at every time step. 

 

4.1.1 Empirical models 

 Statistical analyses of empirical observations correlate physical properties of a mass 

movement, such as fall height and failure volume, with the extent of its run-out and deposit (Glade 

and Crozier, 2005). The most commonly used method of run-out prediction is based on the 

empirical relation between failure volume and the apparent coefficient of friction (Section 3.2.1), 

allowing the run-out of a granular flow to be derived from a given failure volume (Scheidegger, 

1973; Hsü, 1975; Lucchitta, 1979; Nicoletti and Sorriso-Valvo, 1991; Corominas, 1996; Fannin and 

Wise, 2001; Devoli et al., 2009). A number of linear regression equations for calculating run-out 

have been developed, which typically take the following power-law form:  

 

                                                            𝑙𝑜𝑔10 (
𝐻

𝐿
) = −𝑎 𝑙𝑜𝑔10 𝑉 + 𝑏                                                              [Eq. 4.1] 

                                                                              𝐿 = 𝑎𝑉𝑏𝐻                                                                               [Eq. 4.2] 

 

where a is the slope and b is the intercept of the line at log10V = 0. The type of mass movement in 

question, and the morphology of its run-out path, conditions the values of coefficients a and b 

(McDougall et al., 2012). Similar statistical correlations between failure volume and inundation or 

deposit area have also been proposed by Iverson et al. (1998) to delineate the aerial extent of 

volcanic lahars, and, with the appropriate modification of the input datasets and statistics, this 

approach has been adapted to forecast the run-out of rock and debris avalanches (Iverson, 2006). 

This method has also been used to derive peak estimates of parameters such as flow velocity or 

discharge and is well-suited to probabilistic treatment, although little information is provided 

regarding the spatial distribution of the parameters in question (Rickenmann, 1999). 

Despite their ease of use, empirical approaches are difficult to apply with a high degree of 

certainty and on a case-specific basis owing to the large data scatter in the constitutive datasets 

(Hunter and Fell, 2003). In addition, empirical models are unable to fully describe the kinematics of 

rock avalanche motion, particularly when considering unconfined mass movements, as model 

outputs only consist of single point predictions (Fannin and Wise, 2001). Such an approach is not 

appropriate for answering the research questions outlined in Chapter 1, which require more 

complex and physically realistic models for simulating rock avalanche run-out and mobility. 

However, in spite of their limitations, empirical methods constitute a useful starting point for run-

out analyses, with the flexibility of statistical models allowing them to be applied even while in the 

field in order to carry out preliminary analysis for hazard assessments that may later be refined by 

more rigorous, physically-based models (McDougall et al., 2012).  

 

4.1.2 Dynamic models 

 Dynamic models simulate movement of the deforming mass by solving a governing set of 

equations of motion at every time step of the model (Savage and Hutter, 1989). This approach is 

thus able to explicitly account for local and geometrical material characteristics through time, 
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providing estimates of velocity and flow depth at different points along the run-out path that 

constitute a more complete description of rock avalanche motion in space and time. While lumped 

mass models idealise the motion of the mass as a single point (e.g. Hutchinson, 1986), such 

representations fail to account for internal deformation and are only able to provide what is 

deemed a reasonable approximation of the movement of the centre of gravity of the flowing mass 

(Evans et al., 1994). Conversely, deformable mass models are more computationally intensive and 

model the deformation of a rock avalanche throughout its emplacement, incorporating both solid 

(dislocation along the failure surface) and fluid (continuous flow) deformation (McDougall and 

Hungr, 2004). Among these are discontinuum models, which simulate large-scale deformation by 

modelling the interactions of multiple individual particles and the ground surface (e.g. Cundall and 

Strack, 1979; Cleary and Prakash, 2004; Banton et al., 2009), and continuum models based on the 

assumptions of fluid mechanics (e.g. Hungr, 1995; Denlinger and Iverson, 2004).  

For the purposes of this research, the most suitable approach for the dynamic analysis of 

rock avalanche propagation across 3D terrain is presented by the depth-averaged continuum 

dynamic models pioneered by Savage and Hutter (1989) and developed by authors such as Iverson 

et al. (1997) and McDougall and Hungr (2004). Motion in these models is primarily governed by 

mass and momentum balance equations based on the shallow water (or Saint Venant) equations, 

which are a set of hyperbolic/parabolic partial differential equations that describe fluid flow below 

a pressure surface (Mangeney-Castelnau et al., 2005). These equations are derived by integrating 

the Navier-Stokes equations, which themselves are derived from the equations for conservation of 

mass and linear momentum, with respect to flow depth in a procedure known as depth-averaging 

(Hungr, 1995). This assumes that stresses increase linearly with depth and neglects shear stresses 

in the depth-wise direction. It is also assumed that the depth of the flowing mass varies gradually 

and is small in relation to its overall extent, which is a classical shallow flow assumption of 

hydrodynamics (Chow, 1959). The continuum dynamic models commonly used in numerical run-

out modelling couple frictional internal stresses, which govern flow spreading, to basal shear 

stresses, which provide resistance to forward motion of the flowing mass (Section 3.2.2; McDougall 

et al., 2008). Such models are therefore able to account for the influence of internal shear strength, 

spatially variable rheology and erosion or entrainment of materials from the run-out path, with the 

simulated mass able to spread, contract, abruptly change direction, diverge or join in response to 

local topography (McDougall and Hungr, 2004). Continuum dynamic models therefore provide the 

most complete description of rock avalanche motion and offer the best possible opportunity to 

assess the emplacement dynamics of the rock avalanches in Vaigat (Chapters 1 and 2). 

 

4.1.2.1 Model classification 

Although a variety of ways exists to classify continuum dynamic models, key distinctions 

are commonly made between the dimension of the model, its reference frame, and whether or not 

the model requires measurement or calibration of its rheological parameters. 

 

Model dimensions 

Although natural processes occur in three spatial dimensions and a temporal dimension, 
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numerical models simulate rock avalanche motion across either 1D, 2D (prediction in the x and y or 

x and z coordinates) or 3D (prediction in the x, y, and z coordinates) terrain. While 2D models 

constitute a useful tool for the preliminary calibration of 3D models, the complex behaviour of rock 

avalanches is ultimately best captured using models that simulate their propagation across 3D 

terrain (Hungr and McDougall, 2009).  

 

Solution reference frame 

Continuum dynamic models formulate the depth-averaged equations of motion in one of 

two frames of reference: Eulerian or Lagrangian. In computational fluid dynamics it is conventional 

to use finite difference or finite element schemes in a Eulerian framework, using a fixed reference 

grid (e.g. O’Brien et al., 1993; Kelfoun and Druitt, 2005; Kwam and Sun, 2006; Medina et al., 2008; 

Pirulli and Mangeney, 2008; Begueria et al., 2009; Christen et al., 2010). While finite difference 

schemes discretise space in rows and columns of orthogonal lines, finite element schemes use an 

irregular discretisation of space and integrate the governing equations over each finite element, 

summing the solution over the entire problem domain (Cook et al., 2007). Models formulated in 

this framework require a dense, fixed computational grid for the solution of a more complex set of 

governing equations, while Lagrangian coordinates use a moving reference frame that is advected 

with the flowing mass (e.g. Pitman and Le, 2005; Chen and Lee, 2007; Hungr and McDougall, 2009). 

The use of fixed mesh, adaptive mesh or meshless techniques in a Lagrangian framework provides a 

higher resolution within the flow, although this is at the cost of instabilities arising from distortion 

of the computational elements of the reference grid. The severe deformation of rock avalanche 

materials can be problematic for simulation with both Eulerian and Lagrangian grid-based 

numerical methods and there are, at present, few combination methods capable of accurately 

simulating large-scale deformation while also tracking motion (Schwaiger, 2008). 

 

Model set-up, calibration and boundary conditions 

Accurate simulation of the dynamics of rock avalanche run-out is contingent upon selecting 

the correct boundary conditions, initial conditions and parameters (Crosta et al., 2006b). An 

important distinction can be made between numerical models that require the input of measured 

physical parameters and those that are calibrated through back analyses (McDougall et al., 2012). 

The majority of numerical models used for modelling rock avalanche run-out use a calibration-

based approach, which stems from the empirical methods of hydraulic engineering (Hungr et al., 

2007). This involves calibration of the model via the statistical back-analysis of full-scale prototype 

events, where rheological parameters are systematically adjusted until the simulated run-out is in 

close agreement with observed geometrical properties of the landslide, such as: travel distance, 

deposit thickness, trim-line tilting derived velocities, run-up distance and emplacement time 

(Hungr, 2006). This approach will therefore be used to calibrate numerical models of rock 

avalanche run-out in West Greenland, via back-analysis of the Paatuut event (AD 2000; Chapter 2). 

Calibration-based procedures are often criticised as being a form of tuning or curve-fitting 

exercise that encourages the arbitrary adjustment of variables in order to simulate an individual 

event (Iverson, 2003). Successful model calibration is therefore reliant upon the careful selection of 
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a series of events with consistent patterns of rheology type and ranges of parameter values, which 

can be used to reproduce the behaviour of large groups of similar events. There is a shortage of 

work of this kind, however, with previous modelling efforts having focussed on qualitative 

assessment of the best-fit parameter values for relatively small groups of events (Hungr and Evans, 

1996; Ayotte and Hungr, 2000; Revellino et al., 2004). This demonstrates the importance of this 

work in Vaigat (Chapter 2), a unique setting with boundary conditions consistent enough to allow 

for the investigation of the utility and validity of modelling a series of events using a single set of 

parameters obtained by back-analysis of one well-constrained case.   

 

4.1.2.2 Examples of dynamic run-out models 

 A number of dynamic models have been developed to simulate the run-out behaviour of 

rock avalanches, the most commonly used of which are summarised in Table 4.1. The majority of 

modern continuum dynamic models have evolved from the simple hydrodynamic model first 

introduced by Savage and Hutter (1989). These models are able to more fully account for 

behaviours characteristic of rock avalanches, such as the high velocities and strain rates they 

experience as they propagate across complex 3D terrain (McDougall and Hungr, 2005).  

 

4.2 Rheological laws 

Realistically simulating the emplacement dynamics of rock avalanches is complicated by 

the anisotropic nature of the materials involved, as well as the complex interactions that occur 

during their highly unsteady and non-uniform flow across steep and irregular terrain (Manzella and 

Labiouse, 2013). This renders any single material constitutive relationship valid only within a 

narrow domain of space and time, which limits both the formulation and subsequent incorporation 

of such laws into a numerical modelling framework (Scheidl et al., 2013). To address some of these 

challenges, the motion of rock avalanches in models is often governed by a series of simple 

rheological laws that can vary internally and/or along the path of motion (McDougall, 2006). 

Depth-averaging in these models allows the rheology to be represented as a single term that 

expresses the frictional forces occurring at the base of the flow (Luna et al., 2010). Choosing the 

correct rheological law is therefore crucial, as it governs the run-out distance, thickness, extension 

and velocity of simulated flows. In most dynamic models, the basal shear stress (τ) is governed by a 

basal rheological law that may be varied by the user depending on the boundary conditions of the 

event in question. A number of rheological laws have been invoked for the simulation of rock 

avalanches, the mathematical expressions for which solve for τ as a function of normal flow depth, 

density, mean flow velocity and the relevant rheological parameters. 

Frictional basal resistance assumes that the basal shear stress is a function only of the 

effective bed normal stress at the flow base (σz’) which is the difference between the total stress 

(σz) and the pore fluid pressure at the base (u): 

 

                                                    𝜏 = −(𝜎𝑧 − 𝑢) tan 𝜙 = −𝜎𝑧
′ 𝑡𝑎𝑛 𝜙,                                                    [Eq.4.3] 

 

where ϕ is the dynamic basal friction angle (Ayotte and Hungr, 2000). As pore fluid pressure within 



Chapter 4: Rock avalanches (II) - Numerical run-out modelling 

 

34 

 

Model Reference frame Rheology Variation Entrainment Reference 

Continuum integrated 

FLO-2D Eulerian Quadratic No None O’Brien et al. (1993) 

RAMMS Eulerian Voellmy Yes Process-based Christen et al. (2010) 

3dDMM Eulerian Frictional and Voellmy Yes Defined Kwam and Sun (2006) 

FLATMODEL Eulerian Frictional and Voellmy No Process-based Medina et al. (2008) 

VolcFlow Eulerian Frictional, Voellmy and Bingham No Process-based Kelfoun and Druitt (2005) 

RASH3D Eulerian Frictional, Voellmy and Quadratic No None Pirulli and Mangeney (2008) 

MassMov2D Eulerian Voellmy and Bingham Yes Defined Begueria et al. (2009) 

DAN3D Lagrangian (meshless) Frictional, Voellmy and Bingham Yes Defined Hungr and McDougall (2009) 

MADFLOW Lagrangian (mesh) Frictional, Voellmy and Bingham No Defined Chen and Lee (2007) 

TITAN2D Lagrangian (mesh) Frictional No None Pitman and Le (2005) 

Continuum differential 

TOCHNOG Differential Frictional (elastoplastic model) Yes Process-based Crosta et al. (2003) 

Discrete 

PFC3D Discrete elements Inter-particle/particle-wall interaction No None Poisel and Preh (2007) 

Cellular automata 

SCIDDICA S3-hex Eulerian Energy-based No Process-based D’Ambrosio et al. (2003) 

Table 4.1) Summary of the most commonly used dynamic run-out models. Entrainment rates may be defined by the user (‘defined’) or calculated by a prescribed algorithm that takes into account material 

properties (‘process-based’). Other characteristics are also listed, including the reference frame of the solution, basal rheology and whether or not the model can account for variation of rheology along the flow 

path. Common rheological laws are summarised in Section 4.2. 
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a mass movement is difficult to estimate, it is commonly assumed to be related to the total stress by 

a pore fluid pressure ratio (ru = u/σz) such that:  

 

                                                                        𝜏 = −𝜎𝑧(1 − 𝑟𝑢) tan 𝜙                                                              [Eq. 4.4] 

 

Here, ru and ϕ are rheological parameters that can be defined in the model and can also be 

expressed as one single variable, the bulk basal friction angle (φbed): 

 

                                                         𝜑𝑏𝑒𝑑 = arctan(1 − 𝑟𝑢) tan 𝜙                                                          [Eq. 4.5] 

 

If ru is assumed to be constant, Equation 4.4 can be simplified such that: 

 

                                                                     𝜏 = −𝜎𝑧 tan 𝜑𝑏𝑒𝑑                                                                   [Eq. 4.6] 

 

A laminar or viscous flow function is often assumed for the analysis of certain fully liquefied flows, 

such as granular materials, which resemble Newtonian fluids flowing at a relatively low ratio of 

inertial to viscous stresses. In laminar flow, shear stresses are directly proportional to the depth-

averaged flow velocity (vd) and dynamic viscosity () and inversely proportional to flow depth (h):  

 

                                                                         𝜏 = −
3𝑣𝑑

ℎ
                                                                        [Eq. 4.7] 

 

A number of rheological models invoke a velocity-dependent term (Wadge et al., 1998). Flow of 

water or granular mixtures with a low concentration of solids may transition to a turbulent regime 

at relatively higher ratios of internal to viscous stresses. Turbulent flow is characterised by intense 

mixing and the associated basal shear stress can be calculated using the Manning equation: 

 

                                                                       𝜏 = −
𝜌𝑔𝑛2𝑣𝑑

2

ℎ
1
3

                                                                      [Eq. 4.8] 

 

where n is the Manning roughness coefficient. An alternative to this is the Chézy equation, which 

relates n to the Chézy coefficient (C) by C = h1/6/n: 

 

                                                                          𝜏 = −
𝜌𝑔𝑣𝑑

2

𝐶2
                                                                       [Eq. 4.9] 

 

A plastic rheology is often used to describe the pseudo-static motion of liquefied soils, which remain 

at rest while the applied shear stress is below a threshold yield stress. Once movement begins, the 

shear stress exerted by the material is constant, irrespective of its thickness and/or its velocity 

(Dade and Huppert, 1998). The basal shear stress is thus assumed to be equal to a constant shear 

strength:      

                                                                                      𝜏 = −𝑐                                                                          [Eq. 4.10]   

 

A Bingham plastic is a visco-plastic material that behaves as a rigid body below a threshold yield 

stress (τyield) but flows as a viscous fluid above (Bingham, 1922). The Bingham constitutive equation 

is therefore derived by adding a viscous term to a plastic term. The resisting stress is a function of 
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flow depth, velocity, constant yield strength and the dynamic viscosity, and can be determined 

through solution of the following cubic equation: 

 

                                              𝜏3 = +3 (
𝜏𝑦𝑖𝑒𝑙𝑑

2
+
𝑣𝑥

ℎ
) 𝜏2 −

𝜏𝑦𝑖𝑒𝑙𝑑
3

2
= 0                                              [Eq. 4.11] 

 

The Voellmy resistance model takes into account both frictional and turbulent flow behaviours by 

combining the frictional and Chézy formulae (Voellmy, 1955), such that:  

 

                                                              𝜏 = − (𝜎𝑧𝑓 +
𝑝𝑔𝑣𝑥

2

𝜉
)                                                              [Eq. 4.12] 

 

where f is the friction coefficient and ξ is the velocity-dependent turbulence parameter. The 

frictional component of the Voellmy resistance model relates the shear stress to the normal stress 

and takes the same form as Equation 4.4, where f is analogous to tanφbed. The turbulence term can 

be likened to Manning’s n and empirically accounts for all possible sources of velocity-dependent 

resistance, representing the effect of turbulence and/or collisions during motion (Hutter and 

Nohguchi, 1990; Evans et al., 2001). 

 

4.3 VolcFlow 

VolcFlow is a geophysical mass flow code that was originally developed for the dynamic 

analysis of pyroclastic flows and debris avalanches, but is also suitable for modelling other mass 

flows including rock avalanches (Kelfoun and Druitt, 2005; Kelfoun et al., 2010). The governing 

momentum equations are solved using a shock-capturing, finite difference numerical method based 

on either a single (more stable) or double (more accurate) upwind Eulerian scheme. Upwind 

schemes are a class of numerical discretisation methods used to solve partial differential equations 

and are able to handle the shocks and rarefaction waves generated by discontinuous flows and 

strong variations in fluid flow height (Section 4.1.2.1; Mangeney et al., 2000). This means that 

VolcFlow is highly stable even when simulating rapid mass movements across complex 

topographies and on numerically ‘wet’ or ‘dry’ surfaces (Toro, 2001). In addition, the code is able to 

incorporate two fluids, allowing for the simulation of combined subaerial-submerged events such 

as the tsunami-generating rock avalanche at Paatuut (Section 2.2.2). VolcFlow therefore constitutes 

an important tool for exploring the dynamics of rock avalanches in confined fjord settings, such as 

Vaigat (Chapter 2). A summary of the numerical scheme and its implementation are provided in 

Appendix B. For full details, the reader is referred to Kelfoun and Druitt (2005). 

 

4.3.1 Governing momentum equations 

VolcFlow is governed by a series of mass and momentum balance equations based on the 

depth-averaged (Saint Venant) equations of shallow flow. The governing equations are solved using 

a shock-capturing, finite difference numerical method based on a single or double upwind Eulerian 

scheme. With reference to a topography-linked coordinate system, where h is measured normal to 

the sliding surface, the momentum balance equations are:  
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𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
(ℎ𝑣𝑥) +

𝜕

𝜕𝑦
(ℎ𝑣𝑦) = 0                                                     [Eq. 4.13] 

 

           
𝜕

𝜕𝑡
(ℎ𝑣𝑥) +

𝜕

𝜕𝑥
(ℎ𝑣𝑥

2) +
𝜕

𝜕𝑦
(ℎ𝑣𝑥𝑣𝑦) = 𝑔ℎ sin ⍺𝑥 −

1

2
𝑘𝑎𝑐𝑡𝑝𝑎𝑠𝑠

𝜕

𝜕𝑥
(𝑔ℎ2 cos ⍺) +

𝜏𝑥

𝜌
           [Eq. 4.14] 

 

           
𝜕

𝜕𝑡
(ℎ𝑣𝑦) +

𝜕

𝜕𝑥
(ℎ𝑣𝑦𝑣𝑥) +

𝜕

𝜕𝑦
(ℎ𝑣𝑦

2) = 𝑔ℎ sin ⍺𝑦 −
1

2
𝑘𝑎𝑐𝑡𝑝𝑎𝑠𝑠

𝜕

𝜕𝑦
(𝑔ℎ2 cos ⍺) +

𝜏𝑦

𝜌
          [Eq. 4.15] 

 

where:  x and y are local curvilinear coordinates parallel to the ground surface; 

ρ is the bulk density of both the landslide and the path material (kg m-3); 

h is the flow depth (m); 

t is time (s); 

vx and vy are the x and y components of the flow velocity (m s-1); 

g is the acceleration due to gravity (m s-2); 

τ is the basal shear stress (kg m-1 s-2); 

⍺ is the local ground slope (°); and 

kactpass is the earth pressure coefficient (-). 

 

4.3.2 Basal shear resistance 

VolcFlow can account for a number of rheologies, including those summarised in Section 

4.2. The default equation defining the basal shear stress in VolcFlow is: 

 

                           𝜏 = 𝜌ℎ tan 𝝋𝒃𝒆𝒅 (𝑣2𝑐𝑢𝑟𝑣 + 𝑔 cos ⍺) + 𝑻𝟎 + 
𝑑𝑣

𝑑ℎ
 + 𝜌𝑣2𝒄𝒐𝒆𝒇𝒖𝟐                           [Eq. 4.16] 

 

where:  φbed is the basal friction angle (°); 

v is the flow velocity (m s-1); 

curv is the curvature of the topography in the flow direction; 

 T0 is the cohesion (plastic rheology; kg m-1 s-2); 

  is the dynamic fluid viscosity (Bingham viscous rheology; kg m-1 s-1); and 

 coefu2 is the collisional stress coefficient (or ξ, Voellmy rheology; -). 

The terms in bold are to be defined in the model, depending on the boundary conditions.  

 

4.3.3 Pressure terms 

The constitutive equation used to calculate the earth pressure coefficient (kactpass) in 

VolcFlow states that if the internal behaviour of the sliding mass is frictional:  

 

                           𝑘𝑎𝑐𝑡𝑝𝑎𝑠𝑠 = 2 (
1 ± √1 − cos2𝜑𝑖𝑛𝑡(1 + tan2𝜑𝑏𝑒𝑑)

cos2𝜑𝑖𝑛𝑡

) − 1                                   [Eq. 4.17] 

 

where φint is the internal angle of friction of the rock or debris avalanche (Iverson and Denlinger, 

2001). The minimum and maximum values of the stress coefficients occur when the flow is 
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extensional (active) and compressional (passive), respectively. This expression is valid if φbed < φint. 

However, if φbed > φint, then kactpass is instead given by: 

 

                                                                𝑘𝑎𝑐𝑡𝑝𝑎𝑠𝑠 =
1 + sin2𝜑𝑖𝑛𝑡

1 − sin2𝜑𝑖𝑛𝑡

                                                                 [Eq. 4.18] 

 

4.3.4 Previous applications of VolcFlow 

VolcFlow has been tested on a number of volcanic debris avalanches and pyroclastic flow 

events, successfully simulating avalanche run-out and emplacement dynamics in a number of 

settings (Kelfoun and Druitt, 2005; Kelfoun et al., 2008; Kelfoun et al., 2009; Kelfoun et al., 2010; 

Giachetti et al., 2011; Kelfoun, 2011; Paris et al., 2011; Charbonnier and Gertisser, 2012; Dondin et 

al., 2012; Giachetti et al., 2012; Charbonnier et al., 2013). Notable results include the successful 

reproduction of the Socompa debris avalanche deposit, where it reproduced first-order structures 

such as deposit thickness, extension ridges, levées, distal lobes and the median escarpment, as well 

as reflected waves resulting from topographically driven secondary flows (Kelfoun and Druitt, 

2005; Kelfoun et al., 2008). The stability of the model and its ability to reproduce surface flow 

features, and thereby replicate flow dynamics, is encouraging and demonstrates model process 

representation. This is important for a number of applications, including scenario modelling and 

quantitative risk assessments, which are reliant not only upon the successful prediction of the 

extent, but also the character, of rock avalanche motion. 

 

4.4 Summary 

Studies of rock avalanche dynamics are based, with variable emphases, on theoretical 

considerations, field observations, laboratory analogue models and computer-based numerical 

models. Numerical models offer an alternative approach to small-scale analogue modelling and the 

assessment of events in real-time, constituting an important means for understanding rock 

avalanche mobility (Hungr, 2006). While empirical run-out models succeed in providing basic 

levels of run-out prediction, they fail to account for the complex interactions that occur within the 

rock avalanche mass as it flows across steep and irregular terrain (Manzella and Labiouse, 2013). 

Accurately simulating these processes instead requires dynamic models, which are physically 

based. However, successful calibration of these models is reliant upon the careful selection of a 

series of events with consistent patterns of rheology type and ranges of parameter values, which 

can then be used to reproduce the behaviour of large groups of similar events. A series of 20 large 

rock avalanche deposits in Vaigat presents the unique opportunity to do this (Chapter 2). Having 

reviewed the processes and mechanisms involved in rock avalanche emplacement (Chapter 3) and 

the numerical modelling approaches that have been developed to simulate these, a suitable 

numerical model for answering the research questions posed in Chapter 1 has been identified. The 

stability of the geophysical mass flow code VolcFlow, and its ability to simulate combined subaerial-

submerged events, makes it an important tool for exploring the dynamics of rock avalanches in 

confined fjord settings such as Vaigat. A framework for calibrating VolcFlow and applying this 

calibration to the rock avalanches in Vaigat will therefore be outlined and discussed in Chapter 5. 
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Chapter 5 

Methodology
 

 

The successful simulation of rock-slope failure, potential run-out and tsunami propagation in steep 

fjord environments is contingent upon a thorough understanding of the flow dynamics inferred 

from deposits left by previous events (Rickenmann, 2005). However, few records exist of multiple 

rock avalanches with boundary conditions sufficiently consistent to develop a set of more 

generalised rules for behaviour across events. As discussed in Chapter 2, a cluster of 20 large rock 

avalanche deposits along the Vaigat Strait, West Greenland, presents the opportunity to model a 

large sample of adjacent events sourced from a stretch of coastal mountains of relatively uniform 

geology and structure. In addition, the event and corresponding tsunami at Paatuut (AD 2000) 

represents one of the best-documented events in a confined fjord setting (Pedersen et al., 2002; 

Dahl-Jensen et al., 2004) and presents an excellent opportunity for calibration of numerical models 

by back-analysis (Chapter 4). As the boundary conditions in this landscape can be taken to be 

relatively uniform, it is possible to apply this case-specific calibration in order to investigate the 

variations in dynamics and emplacement style related to variable landslide volume, drop heights 

and thinning/spreading. This chapter therefore presents the methodology used to provide a 

calibration of the rheological parameters required to assess the run-out dynamics and 

emplacement of these rock avalanches. The successive pre-, syn- and post-processing steps 

required to run and evaluate the Paatuut case are first outlined (Section 5.1), followed by the 

methods used to apply this calibration to the other 19 cases (Section 5.2) and details of the 

sensitivity analyses performed (Section 5.3). 

 

5.1 VolcFlow model calibration 

Numerical simulations of the event at Paatuut (AD 2000) were performed using the 

geophysical mass flow code VolcFlow, which was introduced in Section 4.3. The reader is referred to 

Appendix B for details of the model and its numerical scheme, as well as Kelfoun and Druitt (2005) 

and Kelfoun et al. (2010) for full details of the model formulation and implementation. A step-by-

step scheme for the calibration procedure used in this work is detailed in Appendix C. 

 

5.1.1 Source conditions 

5.1.1.1 Defining path topography and source depths 

The rock avalanche at Paatuut was simulated on a 25 m resolution Digital Elevation Model 

(DEM) of the surrounding topography, which was provided by Trine Dahl-Jensen (Geological 

Survey of Denmark and Greenland; GUES). The pre-event DEM (10 m) was obtained by the GUES 

from photogrammetric work on a collection of aerial photos taken in 1985 (scale 1:150,000), while 

the post-event DEM (10 m) was derived from oblique colour stereo-photos taken with a small-
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Table 5.1) Observed features of the Paatuut event (AD 2000) and the associated deposit. Errors are stated in units of 

measurement.  

* Denotes measurements obtained from Pedersen et al. (2002) and Dahl-Jensen et al. (2004). 

frame camera survey from a helicopter in July 2001 (Dahl-Jensen et al., 2004). Both DEMs were 

downsampled to 25 m using cubic convolution so that the rheological calibration of VolcFlow could 

be undertaken at a model resolution corresponding to that of the Greenland Mapping Project 

(GIMP) DEM that covers the Vaigat Strait (Howat et al., 2014).  

Estimates of the magnitude and spatial distribution of erosion and deposition at Paatuut 

were derived by differencing the pre- and post-event DEMs to create a DEM of difference (DoD; 

James et al., 2012). A mask of the areas where erosion depths were greater than 10 cm was then 

used to extract post-collapse scar elevations from the 2001 DEM. These elevations were mosaicked 

onto the 1985 DEM to derive the topography of the sliding surface for input into VolcFlow. Vertical 

erosional depths from the DoD were then extracted and converted into source depths normal to the 

ground using the cosine of the local slope, as required by the model (Kelfoun, 2014; pers. comm; see 

Appendix D for the relevant equations). The path topography and source depths were then gridded 

using kriging at 25 m spacing and saved for input into VolcFlow. These processes are summarised in 

the schematic diagram shown in Fig. 5.1. 

 

5.1.1.2 Deposit characteristics 

A DEM of the observed depositional mass at Paatuut was obtained for comparison with 

modelled deposits by differencing the pre- and post-event DEMs. The DEM was then smoothed 

using a 5x5 pixel moving average filter for direct comparison with the smoothed deposits predicted 

by VolcFlow (Fig. 5.1). The maximum run-out, duration of emplacement, maximum velocity, average 

velocity, maximum deposit depth, average deposit depth, lateral extent at toe, surface area, 

hypsometric curve (and integral) and the horizontal displacement of the centre of mass of the 

deposit were all measured for comparison with modelled deposits (Table 5.1). These metrics and a 

DEM of the simulated deposit, longitudinal transects through the deposit and kinematic measures 

derived from the literature together constituted the criteria for model validation. Error bands for 

these measurements were then approximated based on measurement errors, which are also 

detailed in Table 5.1. These bands constituted a measure of the goodness-of-fit of the model outputs 

and their use is discussed in Section 5.1.3.  

 

 

 

Paatuut 
   

Observation Error % 

1 Max. run-out (m) 4,383 ± 100 ± 2% 

2 Max. flow velocity (m s-1) * 56 ± 20 ± 35% 

3 Duration of emplacement (s) * 80 ± 20 ± 25% 

4 Max. deposit depth (m) 60 ± 5 ± 8% 

5 Lateral extent at toe (m) 1,325 ± 100 ± 8% 

6 Surface area (m2) 4,138,971 ± 433,750 ± 12% 

 Hypsometric integral (-) 0.235 - - 

7 COM displacement (m) 2,353 ± 100 ± 4% 

8 Average flow velocity (m s-1) * 37 ± 20 ± 54% 

9 Average deposit depth (m) 18 ± 5 ± 28% 
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Figure 5.1) Schematic diagram of the steps used to define the source conditions (source depths and path topography) for 

input into VolcFlow. The deposit geometry and depth distributions were used later to validate model outputs. 
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5.1.2 Input parameters and calibration procedure 

 To test the ability of simple rheological laws to simulate the dynamics of rock avalanche 

emplacement, five rheologies were used to simulate the propagation of the event at Paatuut (AD 

2000): the Coulomb frictional rheology (1 and 2 equations; simulations 1.# and 2.#), the Voellmy 

rheology (simulations 3.#), a plastic rheology (simulations 4.#), and a plastic rheology with a 

velocity-dependent law (simulations 5.#; Table 5.2). These rheologies were chosen as they are 

those most commonly used to simulate rock avalanche propagation (Section 4.2). In total, 41 

models were run with the aim of reproducing: (i) the maximum run-out distance reached by the 

rock avalanche, (ii) the kinematics of the event (e.g. maximum flow velocity and duration of 

emplacement), and (iii) the first-order morphology of the subaerial rock avalanche deposit, based 

on the criteria in Table 5.1. The rheological parameters, φbed, φint, ξ and T0, were selected using a 

systematic approach and adjusted in fixed intervals for each rheology until the model outputs 

converged as closely as possible with these criteria, as described in Section 4.1.2.1. For the Voellmy 

rheology, φbed was selected first as to reach the observed distal end of deposition, followed by the 

adjustment of ξ, which controls the proximal end limit of the deposition and the flow velocity. For 

the plastic rheology with a velocity-dependent law, T0 was selected first as to reach the observed 

distal end of deposition followed by the adjustment of ξ. A diagram of the proximal and distal ends 

of deposition is shown in Fig. 3.5 (p. 26). Where possible, the calibration procedure was undertaken 

in keeping with the range of values commonly found in the literature on natural subaerial rock 

avalanches (e.g. Sosio et al., 2008; Giachetti et al., 2011; Kelfoun, 2011). 

All simulations assumed a single collapse of 94x106 m3 of basalt ( = 2850 kg m-3) that 

propagated across dry topography and were ended when the velocity of the flow front reached         

0 m s-1. Using the ‘en masse sliding’ capability in VolcFlow, the mass was initially forced to slide as a 

block before its cohesion decreased with time (see Appendix E for the relevant equations). This 

capability was enabled for the purpose of simulating the early sliding phase of the rock avalanche 

(Voight and Faust, 1982; Kelfoun, 2014; pers. comm.). Entrainment data (e.g. locally eroded depths, 

erosion rates and lag rate) were unavailable for the Paatuut event and difficulties in coding 

entrainment laws meant that these processes were not simulated. The collapse of the deposit 

tongue that originally formed the toe of the rock avalanche emplaced in the Vaigat fjord, which is 

believed to have triggered the subsequent tsunami (Pedersen et al., 2002), was also not simulated.  

 

5.1.3 Model validation 

Selection of the best-fit rheological parameters combined quantitative parameter selection 

with qualitative user selection. A normalised index, , comparing the modelled and observed 

measurements for the event characteristics listed in Table 5.1 was calculated for each simulation:  

 

                                       𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑖𝑛𝑑𝑒𝑥 () =
(𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 x 100                             [Eq. 5.1] 

 

Where positive/negative values indicate an overestimation/underestimation of the investigated 

characteristic (Mulligan and Wainwright, 2013). The error bounds of each of the observed event 

characteristics therefore provide a constraint on the goodness-of-fit for all simulations. For 
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Simulations        

Coulomb frictional – 1 equation  (φbed) 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 

20° 19° 18° 17° 16° 15° 14° 13° 

Coulomb frictional – 2 equations (φbed, φint) 

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 

10°, 30° 11°, 30° 12°, 30° 13°, 30° 14°, 30° 15°, 30° 10°, 35° 11°, 35° 12°, 35° 13°, 35° 14°, 35° 15°, 35° 

Voellmy (φbed, ξ) 

3.1 3.2 3.3 3.4 3.5 3.6 

13°, 0.1 12°, 0.1 11°, 0.1 15°, 0.01 14°, 0.01 13°, 0.01 

Plastic  (T0) 

4.1 4.2 4.3 4.4 4.5 4.6 

235 kPa 260 kPa 265 kPa 270 kPa 275 kPa 300 kPa 

Plastic with a velocity-dependent law (T0, ξ) 

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 

250 kPa, 0.01 255 kPa, 0.01 260 kPa, 0.01 250 kPa, 0.005 255 kPa, 0.005 260 kPa, 0.005 200 kPa, 0.05 210 kPa, 0.05 220 kPa, 0.05 

Table 5.2) Summary of simulations and corresponding input parameters (by rheology) used to simulate the event at Paatuut (AD 2000) for the calibration of VolcFlow. Numbers in bold (e.g. 1.#, 2.#) 

refer to the number of the simulation (41 in total). All model runs were performed using a single upwind scheme and with en masse sliding enabled, a time step of 0.02 s and a plotting step of 1.0 s. A 

density of 2850 kg m-3 was assumed based on the dominant rock type in the area (basalt; Suckro et al., 2013). 
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example, a model that produced a run-out within the error bounds of the observed maximum run-

out (±2%) was judged as an ‘excellent’ fit. The level at which an ‘excellent’ fit becomes a ‘good’ fit is 

more difficult to distinguish (e.g. McKinnon, 2010), and so in this study a ‘good’ fit is simply defined 

as one that is within twice the error bounds of the observed measurement.  

In addition to the normalised index for each measure, a DEM, the hypsometric curve and a 

longitudinal transect was taken through the crest-to-toe centreline of each modelled deposit for 

comparison with field observations. The hypsometric curve is a non-dimensional measure of the 

proportion of a landform, typically a catchment, above a given elevation (Strahler, 1964). It can be 

used as an indicator of the geomorphic form of landforms and therefore constitutes an important 

criterion for assessing model performance (Willgoose and Hancock, 1998). Together, these 

measures provided a more holistic view of how well each model was able to replicate the volume 

and material flux at the toe of the rock avalanches, in some cases immediately prior to their entry 

into the water. This is critical for accurately simulating the resultant wave generation and 

propagation, especially in the far field (Kelfoun et al., 2010). These parameters were used, 

qualitatively, in conjunction with the normalised indices of deposit characteristics to select the 

best-fit rheological parameters for simulating the Paatuut event, and for later use at other sites. 

 

5.2 Application to other cases (3D and contour-parallel 3D) 

 Numerical simulations of the other 19 rock avalanches in Vaigat were performed using the 

best-fit rheological parameters obtained by back-analysis of the Paatuut event (AD 2000). It was 

not possible to model all 19 cases on 3D topography, and so five events with variable run-out and 

stalling characteristics were simulated across 3D terrain while the last 14 events were modelled on 

contour-parallel 3D terrain. These events were chosen on the basis that they are examples of the 

key event types occurring in Vaigat and include: (i) one event that ran out to sea-level and 

generated a tsunami, (ii) one event that ran out to sea-level, (iii) one event that stalled on an alluvial 

fan, (iv) and two events that stalled on and above a major topographic bench. These events are 

representative of a range of event types occurring in Vaigat. In addition, the events run across 

contour-parallel 3D terrain provide a test bed for assessing the ability of the model to simulate run-

out on a reduced level of topographic complexity. All cases were modelled using the 25 m GIMP 

DEM (Howat et al., 2014). Step-by-step schemes for defining the source conditions and the 

procedure for numerical simulations for both sets of cases may be found in Appendices F and G. 

 

5.2.1 Source conditions 

5.2.1.1 Calculating initial source volumes 

The failure volumes of the rock avalanches were estimated using the measured present-

day volume of the corresponding deposit. The surface areas of the deposits were mapped and their 

volumes were calculated using the following volume-area scaling: 

 

                                                                                 𝑉 = 0.05𝐴1.5                                                                       [Eq. 5.2] 

 

which has been successfully applied for bedrock landslides in a number of settings (after: Hovius et 
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al., 1997; Malamud et al., 2004; Larsen et al., 2010). As entrainment was not coded into these 

models and VolcFlow cannot simulate the increase in volume of the mobilised mass due to bulking 

or fragmentation processes (Kelfoun et al., 2005), the source volume of each event was assumed to 

be equal to the deposit volume obtained from the DoD. This includes any changes during rock 

avalanche propagation due to generation of void spaces and general dilation of the mass during 

flow (McSaveney, 1978; Voight et al., 1983; Sosio et al., 2012). 

 

5.2.1.2 Defining path topography and source depths 

3D cases 

The pre-collapse topography of the five cases simulated across 3D terrain was estimated 

by manually interpolating the DEM within the area of the mapped deposit to represent the down 

slope profile (original topography) of the adjacent topography. This assumes open slope rather 

than channelised features, but is an optimal approach in the absence of pre-event topography. The 

volume change between this pre-event DEM and the present-day surface was then calculated and 

checked against that derived from the volume-area scaling relationship (Equation 5.2). Vertical 

erosional depths from each DEM of difference were then extracted and converted into source 

depths normal to the ground, as in Section 5.1.1.1. The path topography and source depths for each 

event were then gridded using kriging at 25 m spacing and saved for input into VolcFlow. 

 

Contour-parallel 3D cases 

The path topographies of the 14 contour-parallel 3D simulations were estimated using a 

profile taken along the central deposit axis, which was assumed to be a first order representation of 

the main streamline of motion. This profile was gridded using 25 m spacing along the down-slope 

(X) and cross-slope (Y) axes. An approximation for the average depth of the initial sliding mass was 

then derived by dividing the deposit volume by the surface area of the scar. The source depth for 

each event was then gridded by placing the source mass in grid cells that corresponded to the 

observed scar elevations in the path topography grid. The path topography and source depths for 

each event were then gridded using kriging at 25 m spacing and saved for input into VolcFlow. 

 

5.2.1.3 Deposit characteristics 

For each of the five cases simulated across 3D terrain, a DEM of the observed depositional 

mass was obtained for comparison with modelled deposits by differencing the pre- and post-event 

DEMs. These deposits then were processed and the observed features measured as described in 

Section 5.1.1.2 for the Paatuut case. The reduced complexity of the simulations run across contour-

parallel 3D terrain limited the useful data that could be output and validated, and so only the 

modelled run-out, H/L, lateral extent and surface area of each deposit was measured for 

comparison. This represents a test of the merits of using simplified approaches to modelling rock 

avalanche run-out across terrain of reduced topographic complexity. 

 

5.2.2 Run-out simulation and model validation 

 The rheological calibration obtained in Section 5.1 was applied in 3D and contour-parallel 
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3D simulations of the remaining 19 rock avalanches that have occurred in the Vaigat. Only the path 

topography and source depth was varied between model runs, with all other conditions (e.g. 

material density, en masse sliding, entrainment, time step, plotting step) kept as in Section 5.1.2.  

The normalised index for the event characteristics listed in Table 5.1 was calculated for 

each of the five simulations run on 3D topography. A selection of longitudinal profiles comparing 

the observed and modelled deposit depths were also used for qualitative assessment of model 

performance. The ability of the model to reproduce the bulk external behaviour (e.g. run-out, H/L, 

lateral extent and surface area) of each of the 20 cases was also assessed; this is especially 

important as the modelled deposit distributions are strongly affected by the chosen rheology 

(Pirulli, 2008). To assess overall model performance, and thereby the suitability of a single set of 

parameters for simulating behaviour across the rock avalanches, a reduced major axis regression 

was then fit to observed vs. modelled values of run-out, H/L, lateral extent and surface area. The 

residuals were plotted against observed values to identify structure in the performance of the 

modelling.  

 

5.3 Sensitivity analysis 

 The consistency in primary boundary conditions found across the 20 rock avalanches in 

Vaigat, including geology, palaeoenvironmental history, first-order order topography, and rock 

avalanche preparatory and triggering factors, provides a rare opportunity to assess the sensitivity 

of rock avalanche run-out to changes in key topographic and geometric factors. The ability of the 

model to reproduce the bulk external behaviour (run-out, H/L, lateral extent and surface area) of 

each of the 20 cases was therefore tested in terms of its sensitivity to a number of factors. The 

relationship between four primary geometric factors (failure volume, drop height, drop zone angle, 

slope concavity) and the normalised index of the bulk external characteristics of the rock avalanche 

deposits was first assessed using a scatter plot matrix. The normalised index of these bulk 

characteristics was then plotted against the case order of the rock avalanches (1-20, E-W along the 

Vaigat Strait) to assess any patterns in model under- or over-prediction and to relate these back to 

the influence of topographic factors and known substrate conditions.  

 

5.4 Summary 

This chapter has outlined a framework for calibrating a continuum dynamic flow code, 

VolcFlow, and for applying this calibration to a series of rock avalanches in the Vaigat Strait, West 

Greenland. The methods detailed in this chapter have been employed for the purpose of 

investigating: 

1) The utility and sensitivity of modelling a single rock avalanche satisfactorily as a 

function of rheology (Section 5.1); 

2) The validity of applying the rheological calibration obtained to events elsewhere, 

within similar boundary conditions (Section 5.2); and 

3) The performance of the model and its sensitivity to a range of factors (Section 5.3). 

The results of these procedures will now be presented in Chapter 6. 
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Chapter 6 

Results
 

 

This chapter presents the results of the calibration and modelling outlined in Chapter 5. 

The characteristics of rock avalanche run-out and the different styles of deposit emplacement 

observed in the Vaigat Strait are discussed (RCQ1). This initial assessment of rock avalanche 

characteristics in Vaigat is followed by the results of the rheological calibration of VolcFlow and a 

discussion of the ability of the model to successfully back-analyse a well-constrained event (RCQ2). 

The performance of the best-fit rheological calibration when applied to 19 other rock avalanches is 

then assessed (RCQ3) and the sensitivity of the model to a series of topographic and geometric 

factors is discussed (RCQ4).  

Section 6.1 first presents an updated map of the south coast of Nuussuaq, West Greenland, 

showing the 20 rock avalanche deposits that are the focus of this research. The results of a GIS-

based analysis of the geomorphometric characteristics of these events, which are also used in later 

sections, are presented (RCQ1). 

Section 6.2 presents the results of the rheological calibration of VolcFlow. Five rheologies 

were tested in Section 5.1 to simulate the propagation of the event at Paatuut (AD 2000), including: 

the Coulomb frictional rheology (using a one equation and two equation approach), the Voellmy 

rheology, a plastic rheology, and a plastic rheology with a velocity-dependent law. The overall 

behaviour of the simulated flows and its relation to each rheology is discussed. For each rheology, 

longitudinal transects through the modelled deposits are presented alongside a plot of deposit 

hypsometry and a 3D mesh plot of the best-fit modelled deposit. These are compared to field 

observations in order to assess the ability of each rheology to reproduce the deposit morphology 

and distribution observed at Paatuut (RCQ2). The relative successes of the chosen rheological laws 

in simulating the emplacement dynamics of the Paatuut event (AD 2000) are then discussed, and 

the best-fit rheological parameters for simulating the event are presented. 

 Section 6.3 presents a series of pairwise comparisons of the modelled and observed results, 

which together constitute an assessment of the ability of the best-fit rheological parameters to 

accurately simulate a series of events (RCQ3). This is split between the results obtained from six 3D 

analyses (Section 6.3.1) and those from all 20 cases, which includes 14 events simulated across 

contour-parallel 3D terrain (Section 6.3.2). In Section 6.3.1, the results of each case simulated across 

fully 3D terrain are presented alongside a series of lateral and longitudinal transects through the 

observed and modelled deposits. These are used to assess in detail the ability of the rheological 

calibration to replicate the behaviour of six of the key types of event occurring in Vaigat, which have 

variable failure volumes, run-out and stalling characteristics. In Section 6.3.2 the ability of the model 

to reproduce the bulk external behaviour (i.e. run-out, apparent coefficient of friction, lateral extent 

and surface area) of the 20 cases is then assessed using reduced major axis regression of the 
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observed and modelled values. The normalised index of these bulk characteristics is then plotted 

against the case order of the rock avalanches (1-20, E-W across the site) and trends are described. 

 The remarkable consistency in morphological and geophysical conditions across the 20 

rock avalanches in Vaigat provides a rare opportunity to assess the sensitivity of rock avalanche 

run-out to changes in key topographic and geometric factors (Chapter 2). Section 6.4 presents the 

results of a sensitivity analysis considering the influence of a number of topographic (i.e. situation 

of the rock avalanche along the Vaigat Strait, profile of the underlying topography) and geometric 

(i.e. volume, drop height, drop zone angle, slope concavity) factors on model performance. The 

relative successes of the best-fit rheological calibration for simulating rock avalanche behaviour 

across a number of events are then identified and the overall performance of the model is discussed 

(RCQ4). The key findings of this chapter are then summarised in Section 6.5. 

 

6.1 Rock avalanche characteristics in Vaigat 

Field observations and aerial photos taken in 1985 (scale 1:150,000) have shown that the 

south coast of Nuussuaq is characterised by a series of 20 large rock avalanche deposits (Fig. 6.1), 

which are identifiable from their geomorphological expression (Chapter 2). A GIS-based analysis of 

the geomorphometric characteristics of these rock avalanches has shown that they are 

characterised by variable failure volumes, run-out and stalling characteristics (Table 6.1; a full list 

of these measurements and the associated errors is found in Appendix H). Empirical volume-scaling 

laws applied in Section 5.2.1 show that the events have each mobilised >106 m3 of material, with 

estimated deposit volumes ranging from 3x106-94x106 m3 (Table 6.1). These deposits therefore 

contain >350x106 m3 of material along some 25-30 km of coastline, equivalent to a ca. 2 m drape of 

sediment across the entire landscape when a 5 km coastal slope is assumed. As discussed in 

Chapter 2, the deposits are likely to have been emplaced since ca. 3000 yr BP based on their 

relationship with various Holocene sea level markers (Pedersen et al., 2002). The volume of 

material contained in these deposits is therefore approximately equivalent to 4 mm yr-1 of average 

rockwall retreat.  

The run-out of the rock avalanches ranges considerably, from 1,270-4,383 m (Table 6.1). 

The deposits demonstrate variable stalling characteristics, with some halting on or above a 

topographic bench or alluvial fan (e.g. events 2-5), some running out to sea level (e.g. events 8 and 

9) and some collapsing into the sea, thereby presumably generating tsunami (e.g. events 1 and 16). 

Events 1, 13 and 14 are characterised by large volumes (30x106-94x106 m3) and long unimpeded 

run-outs (2,843-4,383 m), resulting in relatively low values of the apparent coefficient of friction 

H/L (0.33-0.40; Table 6.1). However, a smaller subset of these events (2, 3, 4 and 15) are large in 

volume and instead stall on topographic benches or superimpose onto alluvial fans and stall, 

resulting in higher values of H/L (0.46-0.56; Table 6.1). Although most of these events are 

characterised by simple and unrestricted run-out paths, they also show a considerable diversity in 

lateral spreading (113-1,325 m; Table 6.1). These diverse emplacement ‘styles’ may result from 

variable failure volumes, drop heights and thinning/spreading, as well as the slope of the path 

topography and interactions of the flowing mass with rugged terrain and/or deformable substrates 

(Chapter 3), clearly identifying a rationale for exploratory numerical modelling. 



C
h

a
p

ter 6
: R

esu
lts  

4
9

 

  

500 km 

Greenland 

Figure 6.1) Map of the south coast of Nuussuaq, West Greenland, showing 20 large rock avalanche deposits. The events occur over a short length of coastline (ca. 25-30 km) of relatively 

uniform geology and structure. Contours are drawn in 100 m intervals from the 25 m GIMP DEM (Howat et al., 2014). The events are numbered 1-20, E-W across the site, and their geometric 

characteristics are summarised in Table 6.1.  
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Event Notes 

Deposit Scar 

Surface area 
(A; m2) 

Volume  
(V; x106 m3) 

Run-out  
(L; m) 

Lateral 
extent (m) 

H (m) H/L (-) 
Concavity 
Index (-) 

Drop zone 
angle (°) 

Surface 
area (m2) 

1 Paatuut (AD 2000) – tsunamigenic 4,138,000 94 4,383 1,325 1,470 0.33 0.71 61 411,000 

2 Stalls above bench (1) 997,000 11 2,084 312 970 0.46 0.95 70 225,000 

3 Stalls above bench (2) 1,577,000 22 1,927 674 970 0.50 0.91 69 284,000 

4 Stalls at bench (elevation 330-350 m asl) 1,930,000 30 2,843 650 1,100 0.39 0.77 75 98,000 

5 Stalls above bench (3) 736,000 7 1,740 440 860 0.49 0.82 67 94,000 

6 Superimposed onto alluvial fan (1) 651,000 6 1,501 1,070 630 0.42 0.95 48 96,000 

7 Superimposed onto alluvial fan (2) 669,000 6 1,270 618 400 0.32 0.91 43 55,000 

8 Runs out to sea level (1) 1,037,000 12 2,340 396 990 0.42 0.79 46 118,000 

9 Runs out to sea level (2) 1,295,000 16 2,416 958 970 0.40 0.74 53 201,000 

10 Tupasaat – stalls above alluvial fan (1) 603,000 5 1,821 736 840 0.46 0.73 72 225,000 

11 Tupasaat – stalls above alluvial fan (2) 504,000 4 1,848 180 810 0.44 0.88 40 74,000 

12 Tupasaat – stalls above alluvial fan (3) 739,000 7 1,995 233 660 0.33 0.86 35 75,000 

13 Tupasaat – long run-out, stalls above alluvial fan 2,424,000 42 3,710 370 1,240 0.33 0.73 48 655,000 

14 Tupasaat – runs out to sea level 2,096,000 34 3,196 921 1,280 0.40 0.62 56 249,000 

15 Adjoining to (14) – stalls at bench 965,000 11 2,107 279 1,190 0.56 0.82 56 227,000 

16 1952 event – tsunamigenic 1,409,000 19 2,345 1,028 1,130 0.48 0.79 77 114,000 

17 Small event – stalls at bench (1) 405,000 3 1,313 281 970 0.74 0.82 62 165,000 

18 Small event – stalls at bench (2) 398,000 3 1,550 122 980 0.63 0.76 66 157,000 

19 Runs out to sea level 1,477,000 20 3,129 1,214 1,450 0.46 0.61 57 171,000 

20 Stalls at bench - channelised 633,000 6 2,320 113 1,330 0.57 0.58 55 62,000 

Table 6.1) The observed geometric characteristics associated with each event. Each event is given a number, ordered from 1-20 (E-W across the site), and is referred to by this number throughout the rest of this 

work. Deposit volumes were calculated using the volume-area scaling detailed in Section 5.2.1. Run-out and lateral extent at the toe were measured using aerial photographs (scale 1:150,000; Section 5.1.1). The 

total vertical drop height (H) and apparent coefficient of friction (H/L) were measured as defined in Chapter 3. The concavity index for each event represents the ratio between the integral of a longitudinal profile 

of the path topography and a straight line fit through that topography, indicating relative concavity. A value of 1.00 therefore constitutes a planar slope, with decreasing values of the index representing a 

progressive increase in slope concavity. The approximate angle of each drop zone was measured by masking and averaging the slope map of the scar in question. All measurements given to the appropriate number 

of significant figures. See Appendix H for details and a full list of these measurements and the associated errors. 
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6.2 Rheological calibration 

Over 40 simulations of the Paatuut event (AD 2000) were performed in VolcFlow varying 

the rheological parameters used to define the shear stress at the base of the rock avalanche. The 

rheological parameters, φbed, φint, ξ and T0, required for the back-analysis were selected using a 

trial-and-error approach and adjusted in fixed intervals for each rheology as described in Section 

5.1. Table 5.2 (p. 43) shows the ranges of parameter values used. For the frictional and Voellmy 

rheologies, which are commonly used to model rock avalanches, the calibration procedure was 

undertaken in keeping with the range of values found in the literature (e.g. φbed = 10-30°,                         

φint = 30-40°; Sosio et al., 2008; Giachetti et al., 2011; Kelfoun, 2011). The parameters and results of 

the best-fit simulation for each rheology are summarised in Table 6.2 and discussed in the following 

sections. The parameters and results of each individual model run are listed in full in Appendix I. 

 

 

 

Paatuut 

Rheology 

Frictional 
(1 angle) 

Frictional 
(2 angles) 

Voellmy Plastic 
Plastic + 

u2 

Mechanical behaviour      

Density (kg m-3) 2850 2850 2850 2850 2850 

Basal friction angle, φbed (°) 14 12 13 - - 

Internal friction angle, φint (°) - 30 - - - 

Collisional stress coefficient, ξ (-) - - 0.01 - 0.01 

Cohesion (kPa) - - - 270 250 

      

Model outputs      

Max. run-out (m) 4,503 4,319 4,134 4,334 4,368 

 (+3%) (-2%) (-6%) (-1%) (-0.3%) 

Max. flow velocity (m s-1) 89 100 48 72 66 

 (+59%) (+79%) (-14%) (+29%) (+18%) 

Duration of emplacement (s) 184 249 243 87 92 

 (+130%) (+211%) (+204%) (+9%) (+15%) 

Max. deposit thickness (m) 106 111 110 71 72 

 (+77%) (+85%) (+83%) (+18%) (+20%) 

Lateral extent at toe (m) 1,353 984 1,546 821 1,101 

 (+2%) (-39%) (+17%) (-38%) (-17%) 

Surface area (m2) 5,579,375 4,155,625 4,898,750 4,563,125 4,545,000 

 (+35%) (+0.4%) (+18%) (+10%) (+10%) 

Hypsometric integral (-) 0.138 0.100 0.150 0.272 0.269 

 (-41%) (-57%) (-36%) (+16%) (+14%) 

X-displacement of the centre of mass (m) 1,617 308 1,885 1,694 1,776 

 (-31%) (-87%) (-20%) (-28%) (-25%) 

Average flow velocity (m s-1) 25 29 7 10 19 

 (-32%) (-22%) (-81%) (-73%) (-49%) 

Average deposit thickness (m) 15 11 16 19 19 

 (-17%) (-39%) (-11%) (+6%) (+6%) 

Table 6.2) Parameters and results of the best-fit simulation for each rheology. All model runs were performed using a single 

upwind scheme and with en masse sliding enabled, assuming a density of 2850 kg m-3, with a time step of 0.02 s and a 

plotting step of 1.0 s. Numbers in brackets represent the normalised index, , which compares the modelled and observed 

measurements for each output (as calculated in Section 5.1.3). 
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6.2.1 Coulomb frictional rheology (one equation) 

 In all simulations the acceleration of the source mass following collapse was relatively slow 

(ca. 10 m s-1) as it flowed across a platform (ca. 6-7°) at the base of the escarpment (ca. 800-900 m 

asl; Fig. 6.2). At greater basal frictional angles (i.e. 17-20°) the mass accumulated over a very 

limited distance, with much of the source mass stalled on the plateau, as seen in the depth profiles 

presented in Fig. 6.2a. As a result, these parameterisations greatly underestimate the average 

velocity of the rock avalanche and thereby the run-out, lateral extent and surface area of the 

resultant deposit. The run-out of the event is more satisfactorily simulated at lower basal friction 

angles (i.e. 13-15°), with the best-fit model simulating the event to within ±3% of the observed run-

out (φbed = 14°; Table 6.2). For these cases, a higher proportion of the mass was able to leave the 

source area and flow through the gullies in the Atane Formation (ca. 300-900 m asl) before forming 

a sheet-like deposit with a rounded frontal lobe and gentle downstream slopes due to inertia of the 

flow (Figs. 6.2c and 6.3a). In all cases, the hypsometry of the modelled deposits is characterised by a 

smaller proportion of areas at shallow deposit depths compared to the observed deposit (Fig. 6.2b), 

as much of the mass accumulated to great depths (ca. 80-120 m) in the source area and gullies, with 

only thin debris sheets flowing over the alluvial fan (below ca. 300 m asl). Although the best-fit 

Coulomb frictional model is successful in reproducing run-out at Paatuut, it is unable to sufficiently 

replicate the deposit morphology and kinematics of the event and greatly overestimates the 

maximum velocity ( = +59%) and duration of emplacement ( = +130%), and underestimates the 

average velocity ( = -31%) of the flow (Table 6.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2) a) Longitudinal transects through the observed (solid black line) and modelled deposits (coloured lines) for the 

Coulomb frictional rheology (one equation). The dashed black line represents the elevation of the path topography along the 

same profile, b) normalised hypsometric curves for the observed (solid black line) and modelled deposits (coloured lines), 

and c) oblique view 3D mesh plot and transect (solid black line) of the best-fit modelled deposit. Note the concentration of 

the deposited mass in the proximal and medial reaches. 
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Figure 6.3) Simulated emplacement of the event at Paatuut (AD 2000) using the best-fit model for a) a Coulomb frictional rheology (1 equation), b) a Coulomb frictional rheology (2 

equations), c) a Voellmy rheology, d) a plastic rheology, and e) a plastic rheology with a velocity-dependent law. Snapshots were taken at 0%, 25%, 50%, 75% and 100% of the total 

simulation time. See text for full discussion. 

e) 

d) 
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6.2.2 Coulomb frictional rheology (two equations) 

When only the basal friction angle (φbed) is defined, as above, the internal friction of the 

flowing material, φint, implicitly equals φbed and the internal stresses of the flow are considered to 

be isotropic (i.e. kactpass = 1). In a two equation frictional law φint differs from φbed, thereby acting on 

kactpass, the earth pressure coefficient and modifying the stresses induced by the pressure gradient 

(Section 4.3). This allows for strain-dependent, anisotropic internal stresses that arise due to the 3D 

deformation of material during topographically steered flow (McDougall and Hungr, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In all cases the flowing mass behaved similarly to the previous set of simulations. However, 

as φint > φbed, the motion of flow was strongly opposed and the deposits were therefore emplaced 

closer to the source, forming thinning deposits (Figs. 6.3b and 6.4a). The hypsometry of the 

modelled deposits is characterised by a smaller proportion of areas at shallow depths in 

comparison to the observed deposit, as the majority of the source mass remained stalled on the 

plateau (Fig. 6.4b). Although the best-fit model is able to simulate the event to within ±2% of the 

observed run-out (φbed = 12°, φint = 30°), the simulated flows were emplaced slowly ( = +211%) 

and the model fails to replicate the horizontal displacement of the centre of mass observed in the 

field ( = -87%; Table 6.2). The run-out extent and spreading simulated by the model was only 

achieved by a fraction of the failed mass as a result of strong spreading of the frontal wedge by 

inertia, as shown by the mesh plot in Fig. 6.4c. Although several of the flows shown here are able to 

adequately reproduce the extent of run-out at Paatuut, combining a realistic internal friction angle 

(30° or 35°) with any realistic basal friction angle (10-15°) fails to reproduce the initial collapse of 

the source mass, the kinematics of the event or the overall morphology of the resultant deposit.  

Figure 6.4) a) Longitudinal transects through the observed (solid black line) and modelled deposits (coloured lines) for the 

Coulomb frictional rheology (two equations). The dashed black line represents the elevation of the path topography along 

the same profile, b) normalised hypsometric curves for the observed (solid black line) and modelled deposits (coloured 

lines), and c) oblique view 3D mesh plot and transect (solid black line) of the best-fit modelled deposit.  

a) 

b) c) 
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6.2.3 Voellmy rheology 

 The Voellmy rheology adds a collisional stress coefficient (ξ), which depends on the square 

of the flow velocity, to the Coulomb frictional model. With this additional velocity-dependent stress 

the basal friction angle must be lowered to reach the equivalent run-outs simulated in Section 6.2.1, 

where a simple Coulomb frictional law was assumed. As in previous simulations, the acceleration of 

the source mass following collapse was slow (Fig. 6.3c). However, the addition of ξ incorporates the 

effects of turbulence and/or collisions within the flow, reducing its maximum velocity and 

constituting a better fit than that simulated by either of the frictional laws ( = -14%; Table 6.2). 

The lower inertia of a Voellmy flow in comparison to a Coulomb flow allows the mass to accumulate 

closer to the point where the topographic slope equals φbed (Fig. 6.5a). A greater proportion of the 

collapsed mass was therefore able to flow out of the source area before being channelled through 

the gullies in the Atane Formation and out onto the alluvial fan below, as seen by the deposit 

morphology mesh plot in Fig. 6.5c. The deposits modelled assuming a Voellmy rheology therefore 

accumulated at greater thicknesses in the medial and distal reaches, which is in agreement with 

field observations at Paatuut (Chapter 2). In contrast to the hypsometry of the deposits emplaced by 

Coulomb flows, the hypsometry of deposits modelled using a Voellmy rheology begins to converge 

with the morphology of the observed deposit (Fig. 6.5b). Although the best-fit model fails to 

simulate the extent of the run-out as closely as the Coulomb frictional models ( = -6%; φbed = 13°,    

ξ = 0.01), it can better simulate the distribution of the resultant deposit and can also more 

accurately reproduce the horizontal displacement of the centre of mass ( = -20%), lateral extent 

( = +17%) and average depths of the deposit ( = -11%; Table 6.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5) a) Longitudinal transects through the observed (solid black line) and modelled deposits (coloured lines) for the 

Voellmy rheology. The dashed black line represents the elevation of the path topography along the same profile, b) 

normalised hypsometric curves for the observed (solid black line) and modelled deposits (coloured lines), and c) oblique 

view 3D mesh plot and transect (solid black line) of the best-fit modelled deposit.  

a) 

b) c) 



Chapter 6: Results 

 

57 

6.2.4 Plastic rheology 

The plastic rheology assumes a constant retarding stress, T0, which is independent of the 

depth or velocity of the flow. In all cases the acceleration of the source mass following collapse was 

slow as it flowed across the platform at the base of the escarpment (Fig. 6.3d). Lateral confinement 

by gullies caused the flow to deepen, thereby increasing the driving stress. The flowing mass then 

began to accelerate rapidly, reaching a maximum flow velocity close to that estimated from seismic 

records in AD 2000 ( = +29%, Table 6.2; Pedersen et al., 2002). As the mass flowed out onto the 

alluvial fan it thinned, lowering the driving stress to below T0 and thus causing the flow to quickly 

decelerate, achieving a run-out within ±1% of the observed distance (best-fit: T0 = 270 kPa; Table 

6.2). Previous simulations above have overestimated the relatively short duration of the event, 

which is best simulated with a plastic flow ( = +9%; Table 6.2). In all cases, the deposits emplaced 

using a plastic rheology are sheet-like on all slopes and form a rounded frontal lobe with a well-

defined flow front (Fig. 6.6), in keeping with field observations (Chapter 2). The plastic rheology 

therefore replicates the kinematics of the event and the morphology of the resultant deposit well, 

with close fits also obtained for the horizontal displacement of the centre of mass (-28%), average 

and maximum deposit thickness (+6% and +18%) and surface area (+10%; Table 6.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.5 Plastic rheology with a velocity-dependent law 

The addition of a velocity-dependent term (ξ) to the plastic rheology is principally to 

reduce the velocity of the flow. With this additional velocity-dependent stress the best-fit value of 

the constant retarding stress obtained in the previous section must be lowered to achieve the 

Figure 6.6) a) Longitudinal transects through the observed (solid black line) and modelled deposits (coloured lines) for the 

plastic rheology. The dashed black line represents the elevation of the path topography along the same profile, b) 

normalised hypsometric curves for the observed (solid black line) and modelled deposits (coloured lines), and c) oblique 

view 3D mesh plot and transect (solid black line) of the best-fit modelled deposit.  

a) 

b) c) 
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observed run-out. The maximum velocity of a flow simulated with this rheology is therefore 

reduced and is a closer fit to that derived using the seismic records ( = +18%; Pedersen et al., 

2002). In all cases the flowing mass behaved in a similar manner to the previous set of simulations, 

and the morphology of the modelled deposits share the characteristics modelled with a purely 

plastic flow: a progressive increase in deposit depth as the slope of the path topography decreases, 

and a rounded frontal lobe (Figs. 6.3e and 6.7). A number of combinations of T0 and ξ were tested, 

with the best-fit model simulating the event to within ±0.3% of the observed run-out (T0 = 250 kPa, 

ξ = 0.01; Table 6.2). The kinematics of the event and the morphology of the resultant deposit are 

simulated most closely when a collisional stress coefficient is added to the plastic model, which 

yields a closer overall fit between the observed and modelled event characteristics and deposit 

distribution (Fig. 6.7; Table 6.2). This rheology is most successful in reproducing the event 

kinematics, deposit mass distribution and deposit morphology to justify the assumption that it 

represents, to the first order, the dominant features of the emplacement dynamics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 Model performance 

6.3.1 Application to other 3D cases 

Five other rock avalanches in Vaigat were simulated across fully 3D model terrain using the 

best-fit rheological calibration obtained in Section 5.1 (T0 = 250 kPa, ξ = 0.01). These tests were 

performed to assess the ability of the model to translate to five further events with variable deposit 

volumes (5x106-94x106 m3), run-out (1,821-4,383 m) and stalling characteristics (Table 6.1). These 

were chosen on the basis that they each represent a different emplacement style of event occurring 

Figure 6.7) a) Longitudinal transects through the observed (solid black line) and modelled deposits (coloured lines) for the 

plastic rheology with a velocity-dependent law added. The dashed black line represents the elevation of the path topography 

along the same profile, b) normalised hypsometric curves for the observed (solid black line) and modelled deposits 

(coloured lines), and c) oblique view 3D mesh plot and transect (solid black line) of the best-fit modelled deposit.  

a) 

b) c) 
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in Vaigat and include: (i) an event that ran out to sea-level and generated a tsunami (16), (ii) an 

event that ran out to sea-level (14), (iii) an event that stalled on an alluvial fan (10), (iv) and two 

events that stalled on and above a major topographic bench, respectively (4 and 2). 

In general the morphology of the resultant deposits is simulated well, and the model yields 

a close overall fit between the observed and modelled event characteristics and the associated 

depths (Table 6.3). A realistic simulation of the observed run-out was obtained for five of the 

events, with all bar one event (10) modelled to within ±2% of the observed run-out (Table 6.3). The 

distribution of mass in the deposits was also simulated reasonably well, with the horizontal 

displacement of the centre of mass that took place during events 2, 4, 14 and 16 simulated to within 

±12% of the observed displacement (Table 6.3). The model failed, however, to adequately simulate 

the event characteristics of the smallest event, event 10 (5x106 m3), which ran out and stalled above 

an alluvial fan at Tupaasat (Fig. 6.1; Table 6.3). 

A number of the deposits, particularly those emplaced by events 1, 2, 4 and 16, are 

characterised by a convex upper deposit surface, steep fronts and sides close to the angle of repose 

(Fig. 6.8). The toe morphology of these deposits is reproduced particularly well, as shown by the 

longitudinal transects in Fig. 6.8. The overall distribution of deposit depths is also simulated well, 

with those emplaced by events 2, 4 and 16 closely approximating those of the observed deposits, 

within error (Fig. 6.9). In addition, several of these events (2, 4 and 10) are correctly simulated to 

stall at or above a major topographic bench (Fig. 6.9). However, in all cases, deposition is simulated 

along the full extent of the run-out path, while the observed deposits were only emplaced in the 

medial and distal reaches with little of the mass remaining stalled in the source area (Fig. 6.9).  

Cross-slope transects taken through the toe of each deposit show that the lateral depth 

distribution is also simulated well, with the deposits emplaced by events 2, 4, 10 and 14 closely 

approximating those of the observed deposits, within error (Fig. 6.10). In these cases, the lobes of 

the observed and modelled deposits are shown to have developed in response to the underlying 

topography, with evidence of upslope thinning (1), hole filling (2), and pinching out of the deposit 

at topographic highs (3) all apparent (Fig. 6.10). This suggests that the model can plausibly account 

for the observed morphology of a series of deposits emplaced by a range of event types. Thus far, 

the model shows encouraging results in its ability to simulate a series of events of variable 

 

 

 

 

 

 

 

 

 

Figure 6.8) Left:deposits emplaced by event 2. Centre: lobate deposits emplaced by event 4. Right: deposits emplaced by the 

1952 event (16). In all cases the deposit consists of a complex of partially overlapping and anatomising lobes. Near their 

terminations the deposits are thick and have slopes close to the angle of repose. The surface of the deposits emplaced by the 

1952 event are also characterised by conical mounds of debris, or ‘molards’, which can be seen in the foreground.   
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Rock avalanche 
1 2 4 10 14 16 

Observed Modelled Observed Modelled Observed Modelled Observed Modelled Observed Modelled Observed Modelled 

Max. run-out (m) 4,383 4,368 2,084 2,060 2,843 2,829 1,821 1,643 3,196 3,123 2,345 2,299 

 - (-0.3%) - (-1%) - (-0.5%) - (-9%) - (-2%) - (-2%) 

Max. flow velocity (m s-1) 56 66 - 61 - 83 - 36 - 64 - 59 

 - (+18%) - - - - - - - - - - 

Duration of emplacement (s) 80 92 - 52 - 50 - 59 - 61 - 54 

 - (+15%) - - - - - - - - - - 

Max. deposit thickness (m) 60 72 24 22 35 25 51 72 42 34 24 27 

 - (+20%) - (-8%) - (-28%) - (+41%) - (-19%) - (+12%) 

Lateral extent at toe (m) 1,325 1,101 312 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    650 702 736 716 921 889 1,028 1,055 

 - (-17%) - (-23%) - (+8%) - (-3%) - (-4%) - (+3%) 

Surface area (m2) 4,138,000 4,545,000 997,000 1,120,625 1,930,000 2,233,125 603,000 804,375 2,096,000 2,294,375 1,409,000 1,773,125 

 - (+10%) - (+12%) - (+16%) - (+33%) - (+9%) - (+26%) 

Hypsometric integral (-) 0.235 0.269 0.417 0.447 0.355 0.389 0.393 0.239 0.324 0.361 0.339 0.348 

 - (+14%) - (+7%) - (+8%) - (-39%) - (+11%) - (+3%) 

X-displacement of the centre 
of mass (m) 

2,353 1,776 957 843 1,558 1,373 873 667 1,473 1,448 1,394 1,302 

 - (-25%) - (-12%) - (-11%) - (-24%) - (-2%) - (-7%) 

Average flow velocity (m s-1) 37 19 - 24 - 33 - 9 - 27 - 24 

 - (-49%) - - - - - - - - - - 

Average deposit thickness (m) 18 19 10 10 12 10 20 18 14 13 10 9 

 - (+6%) - (0%) - (-17%) - (-10%) - (-7%) - (-11%) 

Table 6.3) Results of the simulations run using the best-fit rheological calibration obtained in Section 5.1 (plastic rheology with a velocity-dependent law; T0 = 250 kPa, ξ = 0.01). All model runs were performed 

using a single upwind scheme and with en masse sliding enabled, assuming a density of 2850 kg m-3, with a time step of 0.02 s and a plotting step of 1.0 s. Numbers in bold represent the case order number assigned 

to the rock avalanche shown in Section 6.1. Numbers in brackets represent the normalised index, , which compares the modelled and observed measurement for each output (as calculated in Section 5.1.3). 
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Figure 6.9) Longitudinal transects through the observed (solid black lines) and modelled deposits (dashed red lines)  for 

the six events simulated across 3D terrain. The pale grey shading represents the overall RMS error of the GIMP DEM 

(Howat et al., 2014). The dashed grey line represents the elevation of the path topography along the same profile. Note 

that, in all cases, the model simulates deposition along the full extent of the run-out path, while the observed deposit was 

only emplaced in the medial and distal reaches. 
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Figure 6.10) Cross-slope transects through the observed (solid black lines) and modelled deposits (dashed red lines) for 

the six events simulated across 3D terrain. Profiles are taken through the toe of the deposit. The pale grey shading 

represents the overall RMS error of the GIMP DEM (Howat et al., 2014). The dashed grey line represents the elevation of 

the path topography along the same profile. Labels refer to evidence of upslope thinning of the observed and modelled 

deposits (1), hole filling (2), and pinching out of the deposits at topographic highs (3). 
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volumes, run-out and stalling characteristics using a single set of parameters obtained by back-

analysis of the Paatuut event. 

 

6.3.2 Application to all cases 

The remaining 14 cases were modelled using contour-parallel 3D terrain in order to test 

the ability of the model to simulate rock avalanches at a reduced level of topographic complexity 

(Section 5.2). The ability of the model to reproduce the bulk external behaviour (i.e. run-out, H/L, 

lateral extent and surface area) of each of the 20 cases was therefore assessed using reduced 

major axis regression (RMA; Fig. 6.11). RMA was used instead of ordinary least squares to define a 

line of best fit for the relationship between the observed and modelled values, as both variables 

are measured with error (Clarke, 1980). 

The total run-out distance of 80% of the cases was simulated within an error of ±14% 

using a plastic rheology and a velocity-dependent law with a single pair of input parameter values 

(T0 = 250 kPa, ξ = 0.01). Half of these cases were simulated within an error of ±2%. The RMA fit to 

the run-out data is very close, with an r2 value of 0.99 (Fig. 6.11a). Residuals taken from the RMA 

Figure 6.11) Plots of observed against modelled values of a) rock avalanche run-out, b) apparent coefficient of friction, 

H/L, c) lateral extent at toe, and d) surface area, for all 20 cases. Supporting data for all plots is found in Appendix J. Solid 

red lines are the best-fit obtained by a Reduced Major Axis Regression. Dashed grey lines show the 1:1 correlation. P 

values are based on t statistics. Inset: residual vs. observed plots for each model. Summary tables of the results and 

associated diagnostics for these regressions can be found in Appendix K. 

a) b) 

c) d) 
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fit show spreading at relatively short run-out distances (ca. 1000 – 3000 m) and clustering around 

residuals equal to 0 at long run-outs (>3000 m). The RMA regression fit and associated residuals 

shown in Fig. 6.11a therefore indicate that the model simulates events that ran out over longer 

distances more accurately than those that ran out over a shorter distance. 

 Using the rheological calibration obtained in Section 5.1, the H/L of 65% of the cases was 

simulated within an error of ±5%. Residuals taken from the RMA fit are well distributed, although 

the modelled H/L for three events is considerably underestimated (events 3, 6 and 15; Fig. 6.11b). 

These events are characterised by relatively short run-out distances (ca. 1500-2100 m) and 

planar slopes with a concavity index ranging from 0.91-0.95 (Table 6.1). They stall at topographic 

benches or on an alluvial fan below, having travelled over wet, deformable substrates (Fig. 6.1; 

Table 6.1). 

 Lateral spreading at the toe of the rock avalanches is also simulated well. The RMA 

regression fit to the lateral extent data achieves an r2 value of 0.91 (Fig. 6.11c). Residuals of the 

regression are randomly distributed, although one large negative residual occurs where the 

modelled spreading (491 m) greatly underestimates the observed spreading (1,070 m). This 

residual corresponds to event 6, a relatively small (6x106 m3) event that spread out onto a convex 

alluvial fan (Table 6.1). The model often fails to simulate the spreading of relatively short run-out 

rock avalanches at topographic benches and onto alluvial fans, thereby considerably 

underestimating the lateral extent of a number of deposits (events 2, 3, 5, 6, 7, and 17; Fig. 6.11c; 

Table 6.1). In addition, the surface area of the simulated deposits is consistently overestimated by 

the model (Fig. 6.11d). As discussed in Sections 6.2 and 6.3.1, the plastic rheology combined with a 

collisional stress coefficient simulates deposition along the full extent of the run-out path as 

opposed to only the medial and distal reaches, causing an increase in modelled surface areas.  

 

6.4 Model sensitivity to topographic and geometric factors 

The remarkable consistency in boundary conditions across the 20 rock avalanches in 

Vaigat provides a rare opportunity to assess the sensitivity of rock avalanche run-out to changes 

in key topographic and geometric factors (Chapter 2). The ability of the model to reproduce the 

bulk external behaviour of each of the 20 cases, as discussed above, is therefore explained here in 

terms of its sensitivity to a number of factors, including: failure volume, drop height, drop zone 

angle, the situation of the rock avalanche along the Vaigat Strait, and the topography of its run-out 

path. 

 

6.4.1 Failure volume 

As discussed in Section 3.2.1, events of smaller volumes tend to run out over shorter 

distances. The RMA regression fit and associated residuals shown in Fig. 6.11a therefore indicate 

that the model simulates the run-out of smaller events less accurately than that of larger events 

(Section 6.3.2). This is confirmed by the log-log plot of the normalised index of run-out against 

volume (Fig. 6.12a), which shows that smaller events (3x106-7x106 m3) are characterised by a 

greater difference between observed and modelled run-out distances. This effect is likely to be an 

artefact of the model, where the constant retarding stress used in the best-fit rheology                               
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(T0 = 250 kPa) has a disproportionate influence on the simulated run-out of events of different 

magnitudes. Smaller rock avalanches are characterised by a high surface-to-volume ratio (Melosh, 

1986). When modelled using the best-fit rheology (T0 = 250 kPa, ξ = 0.01), the constant retarding 

stress acting at the base of the avalanche is therefore applied to a greater proportion of its total 

surface area. As a result, a greater proportion of the source mass remains stalled in the source 

area for smaller events, as shown in Fig. 6.12b, therefore causing a decrease in modelled run-out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.2 Drop height and drop zone angle 

Rock avalanches gain kinetic energy by conversion of the potential energy from their 

drop height (Section 3.2.1). In addition to failure volume, drop height therefore has an important 

influence on rock avalanche run-out and spreading (Straub, 1997). As discussed in the previous 

section, events with large failure volumes (33x106-94x106 m3) are characterised by long run-outs 

(>3000 m) and a smaller difference between observed and modelled run-out distances (Fig. 

6.12a). These events are also characterised by a greater drop height and steeper drop zone (Table 

6.1). Plots of the normalised index of run-out versus drop height and drop zone angle show a 

moderate positive correlation (Fig. 6.13), indicating that the model is also likely to be sensitive to 

these source conditions. The strong dependence of a constant retarding stress model on the 

source conditions of a simulation is a difficulty that has also been noted by Kelfoun et al. (2005; 

2009), who successfully reproduced the main features of a debris avalanche at Socompa and 

pyroclastic flows at Tungurahua using a constant retarding stress rheology (T0 = 50 kPa and 5 

kPa, respectively). 

Figure 6.12) a) Plot of the normalised index of run-out (log10) against volume (log10), b) plot of the volume of material 

remaining stalled in the source area: total volume (log10) against total volume (log10). In both plots the solid grey line is the 

best-fit obtained by an ordinary least squares regression. Dashed lines show 95% confidence intervals. Colours are 

assigned according to the event; these are plotted in case order below (c). Source data for the volumetric calculations are 

listed in Appendix L. Summaries of the results and associated diagnostics for these regressions are found in Appendix K.  

 

a) b) 

c) 
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6.4.3 Path topography 

As discussed in Section 3.2.2.1, the energy dissipation and subsequent run-out of rock 

avalanches is strongly influenced by topography, leading to a range of depositional plan forms and 

surface morphologies (Okura et al., 2003). In most cases the model is able to simulate the mobility 

of the rock avalanches (as quantified by the apparent coefficient of friction, H/L) well, and 

residuals taken from the RMA fit are randomly distributed (Fig. 6.11b). However, the mobility of 

events 3, 6 and 15 is considerably overestimated (i.e. the modelled H/L underestimates the 

observed H/L; Fig. 6.14b). These events are characterised by relatively short run-out distances 

(ca. 1500-2100 m) and stall above topographic benches or on an alluvial fan below, having 

travelled over deformable and erodible substrates (Fig. 6.1; Table 6.1). In these cases, the model is 

not simulating the processes involved in and effects of rock avalanche emplacement across 

different substrates (Section 3.3). In reality, the energy required to mobilise the substrate may 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13) Scatter plot matrix of the normalised index, , of the bulk external characteristics (run-out, apparent 

coefficient of friction, surface area and lateral extent) against a series of geometric characteristics (failure volume, drop 

height, drop zone angle and concavity). A number of relationships are apparent, particularly the influence of volume on 

run-out and of slope concavity on run-out, surface area and lateral extent. 
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Figure 6.14) Case order plots of the normalised index of a) rock avalanche run-out, b) apparent coefficient of friction, H/L, 

c) lateral extent at toe, and d) surface area, for all 20 cases. The events are ordered 1-20, E-W across the site. Supporting 

data may be found in Appendix J.  

have been too great and caused the avalanche mass to ‘sink’ into the alluvial fan or it may have 

been bulldozed into mounds (Dufresne et al., 2010). In both cases, this would have impeded 

avalanche momentum/motion and caused a decrease in mobility. 

 The concavity of the path topography also influences the ability of the model to simulate 

spreading, with events emplaced across more concave surfaces (concavity index 0.7) tending to 

spread to a greater extent than observed (Fig. 6.13). For those events emplaced across fully 3D 

terrain, the simulated depth distributions demonstrate evidence of topographically steered flow 

as well as upslope thinning, hole filling and pinching out at topographic highs (Figs. 6.9 and 6.10). 

This suggests that the model can plausibly account for the observed morphology of a series of 

deposits emplaced by a range of event types and is sensitive to the local topography.  

Difficulties are encountered when simulating the spreading of relatively short run-out 

events at topographic benches and onto alluvial fans, where the model considerably 

underestimates the lateral extent of a number of deposits (events 2, 3, 5, 6, 7, and 17; Fig. 6.14c). 

Conversely, lateral spreading is overestimated where, in reality, the flow has been laterally 

confined somewhere along its run-out path (events 11, 12 and 20). In these cases the rock 

avalanches were simulated across contour-parallel 3D terrain, which does not impose the 3D 

confinement effects of topography on the rock avalanche. This is also the case when considering 

areas of deposition, which are most poorly simulated when the event in question was emplaced 

across contour-parallel 3D terrain and for events that were partially confined, such as events 19 

and 20 ( = +56% and +83%, respectively; Fig. 6.14d; Table 6.3). These results attest to the 

importance of using realistic terrain models, as the dissipation of mechanical energy from the 

rock avalanche, and thereby its mobility and spreading behaviour, is more accurately simulated 

(Section 3.2.2.1; Nicoletti and Sorriso-Valvo, 1991; McDougall and Hungr, 2004).  

 

6.5 Summary  

Despite being widely used to simulate the propagation of rock avalanches, models 
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assuming either a constant dynamic friction or a Voellmy rheology fail to reproduce the observed 

event characteristics and deposit distribution at Paatuut (e.g. McEwan and Malin, 1989; Evans et 

al., 2001; Crosta et al., 2004; Sheridan et al., 2005; Pirulli, 2009; Kelfoun, 2011; Sosio et al., 2012; 

see Section 6.2). Although these models can account crudely for the observed run-out, the basal 

friction angles necessary to generate this run-out result in a long duration of simulated failure 

with deposition concentrated in the proximal reaches of the run-out path. The best-fit simulation 

of the Paatuut event instead assumes a plastic rheology with a velocity-dependent law (T0 = 250 

kPa, ξ = 0.01). This simulates the run-out of the rock avalanche to within ±0.3% of the observed 

run-out, which is well within the margin of measurement error (±2%; Table 5.2, p 42). This 

rheology is therefore successful in reproducing the event kinematics, deposit mass distribution 

and morphology to justify the assumption that it constitutes a first order representation of the 

dominant features of the emplacement dynamics.  

19 other events are simulated using the best-fit rheological calibration obtained by back-

analysis of the Paatuut event (Section 6.3). For those simulated across fully 3D terrain, the model 

is able to replicate the morphology and distribution of mass in the resultant deposits very well 

(Section 6.3.1). Depositional features observed in the observed and modelled deposits developed 

in response to the underlying topography, suggesting that the model can plausibly account for the 

observed morphology of a series of deposits emplaced by a range of event types. The bulk 

external characteristics of the 20 cases are simulated with varying degrees of success. The run-out 

of 80% of the cases was simulated within an error of ±14%. 

The performance of the model is sensitive to a range of topographic and geometric factors 

(Section 6.4). In particular, difficulties in correctly simulating the observed run-out and other bulk 

external characteristics of the rock avalanches are encountered when: 

1) The failure volume of the simulated event is small, as the constant retarding stress acting 

at the base of the avalanche is applied to a greater proportion of its total surface area. 

This means that a greater proportion of the source mass remains stalled in the source 

area and therefore that the rock avalanche is simulated to run out over a shorter distance. 

2) The event in question is emplaced across contour-parallel terrain, which cannot fully 

account for longitudinal and transverse confinement of the rock avalanche mass or 

topographic junctions that act to block, confine or diverge flow. 

3) The rock avalanche encounters a change in substrate along its run-out path and the 

model is unable to simulate the associated changes in avalanche mobility. 

These exercises show encouraging results in the ability of the model to simulate a series of events 

using a single set of parameters obtained by back-analysis of the Paatuut event alone. The results 

demonstrate that a plastic rheology with a velocity-dependent law describes the emplacement of 

these events and the resultant deposit more accurately than any other simple rheological law. The 

implications of this for our process understanding and the subsequent modelling of such events 

will be discussed in Chapter 7. 
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Chapter 7 

Discussion
 

 

As discussed in Chapter 4, accurately simulating the emplacement dynamics of rock avalanches is 

complicated by the anisotropic nature of the materials involved, as well as the complex interactions 

that occur during their propagation across steep and irregular terrain (Manzella and Labiouse, 

2013). Depth-averaging in continuum dynamic models such as VolcFlow  (Kelfoun and Druitt, 2005) 

assumes that the rheology of the flow can be represented as a single term that expresses the 

frictional forces interacting between the flow and basal path (Section 4.2; Luna et al., 2013). 

However, the common lack of pre-, syn- and post-failure observations of rock avalanches has meant 

that the majority of numerical modelling studies have focussed on replicating the dynamics of a 

single, well-constrained event, and fail to consider the wider utility and sensitivity of the 

rheological calibration obtained. A series of 20 large rock avalanche deposits in Vaigat, West 

Greenland, has presented the unique opportunity to undertake a case-specific calibration and 

investigate the validity of applying the same parameters to other events emplaced in similar 

conditions (Chapter 5). The results presented in Chapter 6 are now discussed with regards to the 

use of simple rheological laws in numerical run-out models (Section 7.1) and their implications for 

model requirements (Section 7.2). The implications of these results for forward modelling and for 

the incorporation of numerical run-out models into a risk assessment framework is then discussed 

(Sections 7.3 and 7.4), placing particular emphasis on their implications for tsunami hazard and risk 

assessments (Section 7.5).  

 

7.1 The suitability of simple rheological laws for simulating rock 

avalanches and implications for understanding their behaviour 

Despite being widely used to simulate the propagation of rock avalanches, models 

assuming either a constant dynamic friction or a Voellmy rheology failed to reproduce geometric 

and dynamic observations at Paatuut (e.g. McEwan and Malin, 1989; Evans et al., 2001; Crosta et al., 

2004; Sheridan et al., 2005; Pirulli, 2009; Kelfoun, 2011; Sosio et al., 2012; see Section 6.2). While 

both of the Coulomb frictional models and the Voellmy model are able to crudely account for the 

observed run-out at Paatuut, the basal friction angles necessary to generate this run-out result in a 

long duration of simulated failure with deposition concentrated in the proximal reaches of the run-

out path. This is at odds with the morphology of the observed deposit and the kinematic constraints 

of the event that were estimated from seismic records (Section 2.2.2). Instead, the main features of 

the Paatuut event can be reproduced using a plastic rheology with a velocity-dependent law, as 

shown in Section 6.2.5 (T0 = 250 kPa, ξ = 0.01). A number of studies have successfully used VolcFlow 

to simulate the run-out and emplacement dynamics of debris avalanches and pyroclastic flows 

assuming a plastic rheology (Table 7.1). The limited ability of frictional models to simulate the run- 
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Table 7.1) Examples of long run-out events successfully modelled assuming using a plastic rheology. Only calibration 

results obtained using VolcFlow are considered, as different dynamic models incorporate different internal stress 

assumptions. * Exact value of the best-fit constant retarding stress is dependent upon whether single or retrogressive failure 

of the rock mass was defined. ** Event collapsed into water. Exact value of the best-fit constant retarding stress is 

dependent upon the value of the stress exerted by the water as defined in VolcFlow. 

 

 

 

 

 

out of the events in Vaigat as well as the volcanic debris avalanches listed in Table 7.1 suggests that 

processes additional to those of granular flow dynamic are involved, such as dynamic 

fragmentation (Section 3.2.2.2). Unlike rock avalanches, the material derived from the edifices that 

source volcanic debris avalanches is normally-consolidated, often hydrothermally altered and 

therefore substantially weakened (Davies et al., 2011). This reduces the intact rock strength and 

therefore the frictional resistance of a fragmenting rock layer at the base of the flow (Davies et al., 

2011), generating run-outs that are 2-3 orders of magnitude longer than non-volcanic events of the 

same volume (Siebert, 1984). The high constant retarding stress required to correctly simulate the 

event at Paatuut remains difficult to physically explain (Table 7.1), although it may reflect 

differences in the intact rock strength of the materials involved or in the physical processes 

operating within the flowing mass (Kelfoun et al., 2009). Alternatively, a high constant retarding 

stress may be required to realistically simulate events where the failure and subsequent run-out of 

large volumes of material down steep slopes occurred over a relatively short period of time 

(Takahashi and Tsujimoto, 2000; Charbonnier and Gertisser, 2012), as in fjords and semi-enclosed 

basins. It is important to note that the reasons for this behaviour are speculative, and further work 

using a plastic rheology to simulate rock avalanches in other settings should be undertaken for 

comparison. 

The major implication of using a plastic rheology is that flow mobility is driven by a 

constant stress condition and not by a constant slope condition, as in the frictional models 

described in Section 3.2.1. This means that the friction angle at the base of these mass movements 

cannot be considered constant, as in frictional models. Instead, the ratio of driving to retarding 

stresses decreases as flow thickness increases, leading to very mobile and deep flows (Charbonnier 

and Gertisser, 2012). Although this appears to be in keeping with a number of field observations, it 

is difficult to explain from a mechanical point of view as it stipulates that the shear stress at the 

base of the flow is independent of its thickness and/or its velocity (Section 4.2; Dade and Huppert, 

1998). Rock avalanches exhibit complex time-dependent and spatially variable mechanical 

behaviour, which continuum dynamic numerical models often simplify into one- or two-parameter 

Event Notes 
Volume 

(m3) 
Run-out 

(m) 
Parameters 

(T0, ξ) 
Reference 

Fogo, Cape Verde Debris avalanche 115x109 40,000 90-95 kPa* Paris et al. (2011) 

Socompa, Chile Debris avalanche 25x109 40,000 52 kPa 
Kelfoun and Druitt 

(2005) 

Güìmar, Tenerife Debris avalanche 44x109 38,000 145-150 kPa* Giachetti et al. (2011) 

Réunion Island Debris avalanche 10x109 35-40,000 20-50 kPa** Kelfoun et al. (2010) 

Tungurahua, Ecuador Pyroclastic flows 20x106 8,000 5 kPa Kelfoun et al. (2009) 

Merapi, Indonesia Block-and-ash flows 6x106 7,000 3.5 kPa, 0.01 
Charbonnier and 
Gertisser (2012) 

Paatuut, Greenland Rock avalanche 94x106 4,400 250 kPa, 0.01 This study 
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rheological laws (Section 4.2; Iverson and Vallance, 2001). The constant stress condition invoked 

when using a plastic rheology is most likely to represent an average value of a retarding stress at 

the flow base that varies with time during rock avalanche run-out (Kelfoun, 2005). To explain this 

behaviour mechanically, a constant stress at the base of the flow can be obtained if the basal friction 

angle (φbed) decreases with increasing flow depth (h), assuming that the stress of the flow is defined 

by Coulomb friction (Mangeney et al., 2007). For example, the basal friction angle may increase 

more rapidly in thin flows relative to thick flows due to the presence of resistant blocks within the 

fluidised matrix, which act to increase the solid interaction with the ground as the flow thins 

(Kelfoun, 2011). Alternatively, an increase of the mechanical strength of the flows from their base 

or interior to the surface could also explain the apparent inverse relationship between flow depth 

and friction. This strength may vary in relation to the granulometry of the flows: for example, most 

deposits are composed of a fluidal interior of matrix-supported debris covered by a rafted and 

brittle crust of angular boulders (Section 3.4.1; e.g. Tsergo Ri, Nepal: Heuberger et al., 1984; Köfels, 

Austria: Brückl et al., 2001; Flims, Switzerland: von Poschinger et al., 2006; Val Pola, Italy; Crosta et 

al., 2007). In deeper rock avalanches, a greater proportion of the flow would therefore be 

constituted of fine particles, prolonging flow capability (Fig. 7.1).  

 

Although a plastic rheology fits the morphology of many rock avalanche deposits better 

than a frictional rheology, the reasons for its success remain unclear. The plastic-type rheology that 

was used in this research should therefore only be considered as a first order description of the 

rheology of the rock avalanches in Vaigat. This poses fundamental questions regarding the use of 

simple one- or two-parameter rheological laws for simulating rock avalanches. Although these laws 

are straightforward to implement, their use is contentious as the parameters governing the 

rheology of the flows often lack any physical meaning and remain difficult to physically quantify or 

Figure 7.1) Schematic diagram of the system described above. Here, rock avalanches are composed of a fluid-like interior of 

matrix-supported debris (depth = hf) surrounded by a more resistant outer layer (depth = hl). In deep flows (1), the low-

friction interior in contact with the ground would permit flow even on gentle slopes (small α), with the more frictional outer 

layer simply being rafted. This would act to prolong flow capability. In shallower flows (2), the influence of the resistant 

outer layer would increase, reducing the driving stress of the flow (τd). Diagrams adapted from Louge’s (2003) schematic of 

steady, fully developed flows down an inclined plane. 
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verify, despite a number of attempts (e.g. Schneider et al., 2010; Fischer et al., 2012b). In addition, 

the use of single-phase mass and momentum balance equations to govern flow mobility, such as 

those used in the one fluid version of VolcFlow (see Section 4.3.1), only passively incorporates the 

effects of mechanical lubrication and fluidisation of the flow. The large uncertainty associated with 

parameter selection for these models demands the development of more sophisticated models that 

use physically measurable and dynamically variable values of these parameters, which can actively 

take into account the presence of materials with different physical and rheological properties (e.g. 

rock, ice, snow, slurry, water and fine particles) and shifts between different flow regimes 

(Pudasaini, 2012). This property is particularly important when considering the melting of snow 

and/or ice due to frictional heating during rock avalanche propagation, which is likely to have 

occurred during the Paatuut event (AD 2000) and in a number of other cases at Vaigat (Section 

2.2.1). The development of a new rheological model by Pudasaini and Krautblatter (In Press) marks 

the first attempt to address some of these issues. Rather than treating the effective internal and 

basal friction angles as constant, the model includes interphase mass and momentum exchanges 

that correspond to spatial and temporal variations in the effective solid volume fraction, volume 

fraction of ice, friction coefficients, and lubrication/fluidisation factors that are a function of a 

number of physical parameters or mechanical variables (e.g. volume fractions, shear-rate and 

normal stresses). The development of such models, which are capable of performing dynamic 

strength weakening due to the effects of internal fluidisation and/or basal lubrication, represent an 

important direction for future research, and detailed quantitative evaluation of their performance 

with laboratory and field observations is required. 

 

7.2 Requirements for numerical run-out modelling 

 As shown in Section 6.3, the rheological calibration obtained by back-analysis of the 

Paatuut event can plausibly account for the observed morphology of a series of deposits emplaced 

by events of different types, although its performance is sensitive to a range of topographic and 

geometric factors (Section 6.4). This has important implications for model requirements when 

simulating either a single event or multiple events.  

The flow capacity of rock avalanches modelled using a plastic rheology is directly related to 

their depth, meaning that numerical simulations of their emplacement dynamics have a particularly 

strong dependence on the source conditions and path topography (Kelfoun et al., 2009). As 

discussed in Section 6.4.1, the constant retarding stress at the base of the avalanche has a 

disproportionate influence on the simulated run-out of events of different magnitudes, with a 

greater proportion of the source mass remaining stalled in the source area for smaller events 

(Melosh, 1986). This is indicative of a threshold volume below which rock avalanches in Vaigat, and 

perhaps other settings, cannot be modelled satisfactorily using a plastic rheology. Further 

calibration studies are therefore required to test this and to assess the extent to which this 

condition varies in different settings. In addition, as numerical models of rock avalanche run-out 

are highly sensitive to the initial collapse volume, accurately quantifying this volume is important 

for successful backward and forward analyses (Kelfoun, 2009). In Chapter 5, the failure volumes of 

the rock avalanches in Vaigat were estimated using the measured present-day volume of the 
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corresponding deposit, as no pre-event DEMs were available. The deposit volumes were calculated 

using a self-similar volume-area scaling (Equation 5.2) that has been successfully applied for 

bedrock landslides in a number of settings (after: Hovius et al., 1997; Malamud et al., 2004). This 

captures the central tendency in the scaling exponent for datasets consisting of such events, 

although the associated errors are large and it remains difficult to resolve how broadly this scaling 

can be applied (Larsen et al., 2010). However, the scaling exponents derived from measurements of 

scar versus deposit geometry for global bedrock landslides and rock avalanches are 

indistinguishable (Larsen et al., 2010). This means that the tendency for rock avalanches to 

increase in volume due to fragmentation, dilation and entrainment has not introduced significant 

errors into this scaling relationship and advocates its use for obtaining a first-order estimate of 

rock avalanche volume (Hungr and Evans, 2004). 

The availability of pre- and post-event DEMs, and at a resolution that is reasonable in 

relation to rock avalanche size, is essential for the success of retroactive simulations such as those 

run in Chapter 5 (Schneider et al., 2010). It is well known that the ability of a model to account for 

the energy losses caused during run-out over complex topography is, in part, conditioned by the 

resolution of the DEM used (Hungr and McDougall, 2009). However, at present it is unclear as to 

what extent the observed/modelled errors discussed in Section 6.3.2 scale with changes in grid 

resolution. The results shown in Chapter 6 demonstrate that a 25 m grid resolution is suitable for 

reproducing the dominant features of rock avalanche emplacement in Vaigat, although the ability of 

the model to replicate the small-scale structures that characterise the surfaces of these deposits, 

such as pressure ridges and hummocks, is compromised. These structures are believed to reflect 

processes active during the flow and are therefore important for inferring aspects of flow dynamics 

(Dufresne and Davies, 2009). However, few numerical modelling studies have focussed on 

replicating these structures (Pudasaini and Hutter, 2007). This is due, in part, to the poor quality of 

topographic data in areas of steep terrain, where many techniques for DEM generation suffer from 

the occlusion of features due to layover and shadowing (Raggam, 2006). Recent advances in the use 

(and combination) of LiDAR techniques and tri-stereoscopy, which acquires stereo triplets in the 

forward, backward and nadir view of an area, are beginning to overcome this problem (e.g. 

Giribabu et al., 2013; Basgall et al., 2014; Poli et al., In Press). Future numerical modelling efforts 

should therefore consider making use of newly available high-resolution (2 m) DEMs for the 

purpose of more accurately mapping and quantifying the morphological signature of rock 

avalanches in Vaigat (Fig. 7.2), and indeed in other areas. These models can also be extended to 

show 2D surface strain during emplacement, which allows for the deformation histories of chosen 

points on the rock avalanche surface to be tracked (Kelfoun et al., 2008). This will help to more 

correctly validate model outputs and perhaps shed light on dynamic flow processes occurring at a 

smaller scale within the rock avalanche mass.   

As discussed in Section 3.3, the interaction with and subsequent entrainment of run-out 

path materials can exert a significant influence on rock avalanche dynamics and run-out behaviour. 

However, uncertainty in these processes is large (Dufresne, 2009). In Chapter 5, each simulation 

treated the rock avalanche as a homogenous, incompressible continuum and did not explicitly 

account for basal erosion and/or entrainment, pore fluid pressure, density variations due to 
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material dilation or incorporation of air, ice or water (Pirulli and Mangeney, 2008). The model was 

therefore unable to simulate the associated changes in mobility and run-out if the rock avalanche 

had encountered a change in substrate along its run-out path (Section 6.4.3), demonstrating the 

importance of incorporating these changes into numerical simulations (Cuomo et al., 2014). 

Although these simulations would benefit from incorporating erosion and entrainment laws, the 

specific processes acting at the base of rock avalanches during travel over (non-)deformable and 

erodible substrates remain poorly understood and therefore difficult to model (Section 3.3). In 

addition, the rates of these processes are difficult to constrain, with the published literature lacking 

estimates of field-derived rock avalanche-induced erosion rates (Iverson, 2012; McCoy et al., 2012). 

Commonly, erosion laws predict that the volume growth of rock avalanches resulting from 

entrainment processes can be described either by an exponential law (Pirulli and Pastor, 2012), or 

by a monotonic increase in the amount of eroded material when the basal shear stress exceeds a 

given threshold (Pitman et al., 2003). Accurate incorporation of these laws into numerical models 

remains difficult, although recent developments have been made using VolcFlow to model 

pyroclastic density current erosion and bulking processes (e.g. Bernard et al., 2014) and should be 

pursued in future work.  

Successful model calibration is not only reliant upon reproducing the correct run-out 

distance, but must simultaneously fit with geometric, energetic, and dynamic observations 

(Schneider et al., 2010). As discussed in Chapter 4, the overall level of fit of the model to these 

observations gives an indication of how well the model demonstrates process representation. For 

large rock avalanches such as Paatuut, long-period seismic recordings are often the only data 

available for characterising avalanche dynamics (Suriñach et al., 2005). In addition to the single 

point predictions used for dynamic constraints in Chapter 5 (e.g. average and maximum velocity), 

inverse modelling of teleseismic data can be used in conjunction with geometric constraints from 

aerial/satellite imagery to determine rock avalanche force histories, yielding estimates of their 

duration, momenta, potential energy loss, mass, and run-out trajectory (Ekström and Stark, 2013). 

Figure 7.2) 3D perspective view of rock avalanche deposits in Vaigat, West Greenland, looking north from a position above 

the Vaigat Strait. 0.5 m satellite imagery was acquired on 19 June 2012 by WorldView-1 and orthorectified to produce a 2 m 

DEM. All data provided by Ben Smith (Polar Science Center). 
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This technique generally requires rock-slope failure and subsequent run-out on slopes steep 

enough to generate accelerations of approximately 1 m s-2 or greater. When considering the terrain 

and height drop of the rock avalanche at Paatuut, this is likely to have been the case (Chapter 2). 

Assuming a density of ca. 2850 kg m-3 for basalt (Suckro et al., 2013) and a failure volume of ca. 

94x106 m3, an approximate value for the long-period surface-wave magnitude (Msw) of the Paatuut 

event can be estimated from the failure mass (m; in 1012 kg) alone: 

 

                                                                 𝑀𝑠𝑤 =
12 + 𝑙𝑜𝑔10 (

𝑚
0.54

)

2.2
                                                               [Eq. 7.1] 

 

The peak force involved in the event would have been ca. 0.2x1012 N, generating an estimated 

surface-wave magnitude of Msw  5.3 (Stark, 2014; pers. comm.). This places the Paatuut event 

within the range of a typical analysis (Ekström and Stark, 2013). However, as much of the mass 

remained stalled on the plateau at ca. 800-900 m above sea level, the duration over which the peak 

accelerations and forces were generated may have been too short for detection and teleseismic 

inversion. Nevertheless, such techniques may help to better constrain the numerical models used 

here and they raise a number of important questions, including: what is the minimum magnitude of 

rock avalanche event that can be reliably detected by teleseismic source inversion?; Are there 

particular settings or dynamic factors that preclude the use of this technique for determining force 

histories?; and, how reliably can this technique distinguish between discrete geomorphic events, or 

pulses within single events? With the potential for the global seismic network to be used as a means 

of detecting the occurrence of rock avalanches in real time (Burtin et al., 2013), this technique 

represents an important avenue for further research. 

 

7.3 Implications for forward modelling 

Physically based simulations of rock avalanches using VolcFlow provide a useful tool for 

recognising flow patterns and for calculating potential flow magnitudes, velocities, and fluxes 

(Crosta et al., 2006b). The calibration discussed in Chapter 6 shows encouraging results in the 

model’s ability to simulate a series of events using a single set of parameters obtained by back-

analysis of the Paatuut event alone, suggesting that first-order run-out prediction is possible. 

However, it is important to recognise that the calibration results for these events may not be 

transferrable between other dynamic models, which incorporate different internal stress 

assumptions (Section 4.1.2; Hungr, 2007). As discussed in Section 7.1, it is also important to 

question how definitive this calibration is, as particular aspects of the boundary conditions in 

Vaigat remain unknown (e.g. free surface drag, lubrication, fluidisation, basal scouring and 

entrainment and/or deposition during motion, water absorption, material mixing, liquefaction, 

substrate conditions). When considering the model requirements discussed in Section 7.2 it is clear 

that, prior to the application of this model for predictive purposes, in-depth studies are required in 

order to consider the effects of these conditions and the relative importance of key factors on 

simulated run-out. Once these conditions are satisfied, a robust framework must be developed for 

the incorporation of the model into hazard and risk assessments. 
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7.4 Incorporation of numerical run-out models into a risk assessment 

framework 

 As discussed in Chapter 4, quantitative risk assessments of the future hazards posed by 

potential rock avalanches rely upon numerical modelling for the successful prediction of the extent 

and character of their motion (Evans et al., 2001). Building on the discussion in Section 7.3, it is 

clear that the application of a model for predictive purposes, and its subsequent incorporation into 

risk assessments, requires the development of a suitable framework. In addition to the model 

requirements outlined in Section 7.2, this framework should include (i) estimation of the failure 

volume of the unstable rock-slope in question, (ii) probabilistic run-out assessments using 

numerical run-out modelling, and (iii) quantification of the vulnerability of elements at risk. While 

detailed consideration of (iii) is beyond the scope of this thesis, the development of a robust 

approach for both (i) and (ii) is pertinent for future modelling efforts and so is discussed in further 

detail here. 

 Geometric and kinematic models of the motion of a rockslide can be identified and its 

potential failure volume quantified using differential satellite interferometric synthetic aperture 

radar (InSAR), as has been demonstrated in Norway (e.g. Lauknes et al., 2010; Blikra and 

Christiansen, 2014; Harbitz et al., 2014). However, the use of differential InSAR to estimate the 

potential failure volume of a rock-slope requires it to be actively deforming. Where this method is 

not applicable, a number of authors have proposed that failure surfaces in rock-slopes are 

controlled by their slope geometry, implying the existence of a potential sliding surface above 

which the rock mass is assumed to be potentially unstable due to the absence of buttresses (e.g. 

Jaboyedoff et al., 2009). This failure surface has been termed the isobase by Golts and Rosenthal 

(1993) and the Sloping Local Base Level (SLBL) by Jaboyedoff et al. (2004). Ideally, the SLBL should 

be constrained by geophysical, geotechnical and/or geomorphic data derived using methods such 

as seismic profiling and boreholes (Travelletti et al., 2010). This approach can be highly efficient for 

integrating and upscaling interpretations of any local multi-source data for the estimation of 

potential failure surfaces (Jaboyedoff et al., 2013). An estimate of the potential failure volume of an 

unstable rock-slope could therefore be obtained by differencing the elevation of this surface and 

that of the present-day topography. The sliding surface and corresponding failure volume could 

then be used to constrain the source conditions of a potential future event for input into numerical 

models of rock avalanche run-out. However, it should be noted that, in reality, the limits of stability 

are unlikely to be reached everywhere simultaneously and it is therefore unlikely that a future 

failure would develop as a single event, as predicted by the SLBL, and may instead proceed 

retrogressively (Jaboyedoff et al., 2009). This is particularly important for any numerical modelling 

efforts that aim to use the SLBL as a means of estimating the potential failure volume of an unstable 

rock-slope, given the strong dependence of simulated dynamics on source conditions such as failure 

volume and mode (Section 7.2).  

 Although continuum dynamic models are deterministic, they can incorporate probabilistic 

components by adopting a range of plausible parameter values associated with different probable 

conditions (e.g. material properties and source conditions) in order to compute a corresponding 

range in possible outcomes (Iverson, 2014). To date, the majority of studies concerned with run-out 
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prediction have been limited to manual parametric model runs (see Section 4.1.2.1). Classical 

methods of sampling input parameter values, such as Monte Carlo and Latin Hypercube sampling, 

can also be used, although these approaches tend to be computationally intensive for continuum 

dynamic models that are based on the solution of conservation laws, such as VolcFlow (McDougall 

et al., 2012). A number of more recently developed alternatives exist, including non-sampling 

methods such as stochastic collocation, polynomial chaos quadrature and spectral projection (see 

Dalbey, 2009 for a review). These methods are encouraging in their ability to produce high quality 

results while preserving the simplicity and robustness of Monte Carlo-type approaches in both 

simple settings and also when trialled using TITAN2D to simulate the 1991 block-and-ash flows at 

Colima Volcano, Mexico (Dalbey et al., 2008). 

Once a prospective failure is identified, hazard maps can be constructed for risk 

management practices by forward-modelling the event using a range of parameter values 

(Corominas et al., 2014). The calibration exercises undertaken in Chapter 5 have shown that a 

series of events that occurred within similar boundary conditions can be accurately simulated using 

a single set of rheological parameters. The parameter values required for scenario modelling in 

other settings could therefore, within theory, be derived from the back-analysis of any other event 

provided that it occurred within similar boundary conditions (McKinnon, 2010). To fully test this 

theory requires a database of back-analyses, as well as the corresponding rheological parameters, 

undertaken in different environments. If groups of events are similar in their simulated dynamics 

and behaviour this could indicate that they share some aspects of the underlying processes that 

govern excess mobility. These cases could then be used to differentiate between theories of rock 

avalanche dynamics such as those presented in Section 3.2.2. While empirical run-out models are 

commonly used in probabilistic risk assessments, further testing and refinement is required for 

dynamic models that are used in this manner; this will lead to improvements in their predictive 

ability and a more widespread use in practical applications (Iverson, 2014). 

 

7.5 Tsunami hazard and risk assessments 

 As discussed in Section 1.3, the consequences of rock avalanches can often be more far-

reaching and severe than the events themselves, with far-field hazards such as rock avalanche-

induced tsunami posing a much more extensive risk. The findings presented in Chapter 6 indicate 

that there is a need for further calibration studies using VolcFlow to simulate rock avalanches in 

other fjords and semi-enclosed basins. Rock avalanches that collapse into narrow fjords or confined 

bays commonly do so onto steep slopes and require targeted calibration initiatives that may involve 

unusual parameter sets (see Section 7.1). These initiatives should aim to establish whether a plastic 

rheology with a high constant retarding stress is characteristic of rock avalanche events in steep 

fjordlands such as Alaska (Miller, 1960), British Columbia (Bornhold et al., 2007), Chile (Sepúlveda 

and Serey, 2009), Norway (Olesen et al., 2004) and New Zealand (Dykstra, 2013). Being able to 

accurately simulate the distal reaches of rock avalanches is particularly important in these settings 

where the momentum of the rock avalanche at the point of entry into the water strongly controls 

the magnitude of the resultant displacement wave. However, parameters such as the velocity, 

volume and flux of material into the water are often poorly constrained, and the extent to which the 
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bathymetry and coastal morphology condition the propagation of tsunami waves and the resultant 

coastal inundation varies considerably between different locations (Harbitz et al., 2014). The 

development and expansion of these datasets would therefore provide an important foundation for 

future model evaluation and scenario simulations in fjord environments, as a two fluids version of 

VolcFlow has the unique capability of being able to simulate combined subaerial-submerged events 

(Kelfoun et al., 2010). 

 A number of recent events, including the rock avalanche at Paatuut, have emphasised our 

lack of understanding with regards to the magnitude and frequency of catastrophic rock-slope 

failures above flooded fjords and semi-enclosed basins, especially in tectonically quiescent terrain 

(Korup and Dunning, In Press). In general, the lack of pre-, syn- and post-failure observations of 

rock avalanches makes it difficult to distinguish between catastrophic inputs of sediment and 

background rates of erosion and sediment transport (Hewitt et al., 2008). While a number of 

notable submarine failures have been investigated (e.g. Løvholt et al., 2008; Tappin et al., 2008; 

Völker et al., 2010), investigations of subaerial rock avalanches that impact a water body and 

trigger further submarine landsliding, soft sediment deformation and tsunami waves are rare, as 

detailed (and seamless) topographic and bathymetric datasets are often unavailable (Hermanns et 

al., 2014). A future challenge will therefore be to compile a consistent, high quality database of 

submarine deposits by using techniques such as seismic profiling to locate submarine geomorphic 

and sedimentary archives of past tsunamigenic events. In addition to the use of submarine archives, 

further work must also be undertaken in order to capture and characterise evidence for the impact 

of rock avalanche-induced tsunami across key coastal features. Field evidence of the rock avalanche 

and corresponding tsunami at Paatuut (AD 2000) remains well preserved (Pedersen et al., 2002; 

Dahl-Jensen et al., 2004). In future work, mapping of the onshore and offshore deposits using high-

resolution hyperspectral and topographic data will provide the opportunity to develop combined 

spectral and morphological constraints that could be used to identify remnant tsunami deposits 

from other rock avalanches in the area. This work could then be extended by using the two fluids 

version of VolcFlow in order to back-analyse and examine the tsunamigenic potential of other rock 

avalanches in the Vaigat Strait. 

 When considering rock avalanche-triggered tsunami, multiple sources of hazard must be 

analysed in parallel and finally integrated into a multi-hazard, multi-risk analysis (van Westen, 

2005). Although the consequences of cascading sequences are well known, there remains no well-

established and widely accepted methodology for the identification and quantitative assessment of 

multi-hazard events (Corominas et al., 2014). These assessments must consider a number of issues, 

including: 

1. The integration of different hazard models into one system; 

2. The phenomenon of hazard cascades, whereby hazards are related and influence each 

other; 

3. Ways of calculating losses for different hazard and asset combinations; and 

4. Finding a common framework for multi-risk analyses that involves different hazards, 

methodologies, disciplines and terminologies. 

At present, there exist few projects worldwide that consider the risk assessment and management 
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of tsunamigenic rock avalanches in mountainous areas with fjords, lakes or reservoirs, and those 

that do are largely concentrated in the Norwegian fjords (Blikra et al., 2005; Eidsvig et al., 2011; 

Harbitz et al., 2014). In West Greenland, as glaciers continue to retreat and rock-slopes are 

debuttressed, the risk of catastrophic rock-slope failures and potential tsunami will be increasingly 

of interest to the burgeoning mineral and petroleum extraction industries that are active in the area 

(Smelror et al., 2008). The extension of this research to include the assessment of tsunami hazard 

and risk in Vaigat should take advantage of this unique setting in order to provide better 

constraints on the performance of two fluid numerical models, which can then be applied to similar 

hazards in more populous regions. 
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Chapter 8 

Conclusions
 

 

Perhaps one of the most pressing questions regarding catastrophic rock-slope failure in high 

latitudes is the potential response of rock-slope stability to climate change, specifically 

contemporary warming (Deline, 2009). The study presented here contributes to this active and 

growing area of research by using a unique cluster of 20 large rock avalanche deposits along the 

Vaigat Strait, West Greenland, as a test case for assessing paraglacial slope response as the 

Greenland Ice Sheet retreats and rock-slopes are debuttressed. Specifically, this research aimed to 

increase our understanding of rock avalanche dynamics by using a numerical model to undertake a 

sensitivity analysis of rock avalanche run-out, which was uniquely validated by a proximal 

population of rock avalanche deposits with comparable boundary conditions. 

The simulations of the rock avalanches in Vaigat were performed using VolcFlow, a 

geophysical mass flow code originally developed to simulate volcanic debris avalanches. 

Rheological calibration of the model was performed using a well-constrained event at Paatuut (AD 

2000). The best-fit simulation assumes a plastic-type rheology, using a constant retarding stress 

with a velocity-dependent law (T0 = 250 kPa, ξ = 0.01) and simulating run-out distance to within 

±0.3% of that observed. This calibration was applied to 19 other events, simulating rock avalanche 

motion across 3D terrain of varying levels of complexity and testing the sensitivity of the model to a 

range of topographic and geometric factors. The findings presented here illustrate the utility and 

sensitivity of employing a case-specific approach for the calibration of numerical models of rock 

avalanche run-out, alongside the validity of applying these rheological parameters elsewhere, even 

within similar boundary conditions. Specifically, this research concludes that: 

 

A plastic-type rheology can plausibly account for the observed morphology of a series of 

deposits emplaced by events of different types. 

Despite being widely used to simulate rock avalanche propagation, other models, that 

assume either a Coulomb frictional or a Voellmy rheology, failed to reproduce the observed 

event characteristics and deposit distribution at Paatuut. Instead, a plastic rheology with a 

velocity-dependent law best described the kinematics of the event and the morphology of 

the resultant deposit. A number of studies have successfully used a plastic rheology to 

simulate the run-out and emplacement dynamics of debris avalanches and pyroclastic 

flows. The limited ability of frictional models to simulate the behaviour of events such as 

these suggests that processes additional to those of granular flow dynamics are involved. 

Although the success of a plastic-type rheology over any other remains difficult to 

physically explain, it might indicate that the friction angle at the base of these mass 

movements cannot be considered constant as in many commonly used rheological models. 
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Provided that their morphological/geophysical conditions are regionally consistent, a series of 

events can be accurately simulated using a single set of parameters obtained by back-analysis 

of one well-constrained event alone.  

The majority of work to date has only provided broad envelopes of rheological properties 

unsuited to predictive scenario modelling, thereby precluding the development of a set of 

more generalised rules for behaviour across events in different settings. The rheological 

calibration obtained here shows encouraging results in the model’s ability to simulate a 

series of events using a single set of parameters obtained by back-analysis of the Paatuut 

event alone, suggesting that first-order run-out prediction of events in this landscape is 

possible. However, as discussed below, further in-depth studies, as well as the 

development of a suitable probabilistic framework, are required prior to the application of 

this model for predictive purposes. 

 

Numerical models of rock avalanche run-out are highly sensitive to the assumed source 

conditions. 

This work has demonstrated the value of applying a rheological parameter set to a group of 

rock avalanches that have occurred within regionally consistent boundary conditions (e.g. 

geology, palaeoenvironmental history, first-order order topography, and rock avalanche 

preparatory and triggering factors). However, the simulated run-out and behaviour of 

these events is strongly conditioned by the failure volume and its geometry, as well as the 

influence of substrate materials and path topography. Such aspects can vary strongly over 

short distances. This sensitivity of the model to the assumed source conditions attests to 

the importance of reliable and accurate data for successful model calibration and 

validation, and has important implications for future numerical run-out modelling. 

 

8.1 Directions for future research 

The findings presented here serve as a basis for future numerical modelling efforts 

concerned with rock avalanche run-out and the risks they pose in recently glaciated, fjord 

environments. It is clear that, while much research to date has focussed on more accessible and 

readily monitored sites, mountain ranges in polar regions such as Vaigat may be candidates for 

sudden regime shifts in rock-slope stability in the future (Kargel et al., 2013). Large (tsunamigenic) 

rock avalanches from steep, deglaciating coastlines are therefore a scenario that may need to be 

increasingly accommodated in risk assessments (Korup and Dunning, In Press). To this end, future 

research should build on that presented here in order to: 

 

1. Refine our understanding of the plastic rheology, its use in numerical run-out 

modelling and its implications for the mechanical behaviour of rock avalanches. 

This requires accurate field data from sites where a plastic rheology has been proven 

successful in reproducing the dynamics of past events, as well as the development of 

analogue modelling techniques that might be able to provide greater insights into how 

flows may be driven by a constant stress condition rather than a constant slope condition. 
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In particular, we need to establish whether there exist particular settings where a plastic 

rheology is most suitable for simulating rock avalanche propagation. Targeted calibration 

initiatives are required to determine whether a high constant retarding stress is 

characteristic of rock avalanches occurring along steep coastlines, where large volumes of 

material run out over limited distances and in a relatively short period of time. 

 

2. Determine whether there is a threshold volume below which a group of rock 

avalanches cannot be modelled satisfactorily using a single set of parameters.  

The findings presented in this work indicate that assuming a constant retarding stress at 

the base of a flow may have a disproportionate influence on the simulated run-out of 

events of different magnitudes. This is indicative of a threshold volume below which rock 

avalanches in Vaigat, and perhaps other settings, cannot be modelled satisfactorily using 

a single set of parameters. If this threshold does exist, it is pertinent for future risk 

assessments as smaller rock avalanches (ca. 1x106 m3) occur with greater frequency on 

human timescales. In addition, the deposits of such events are difficult to detect, often 

having been extensively reworked, resulting in the underestimation of their occurrence. 

Further calibration studies are therefore required to test whether this behaviour is 

exclusive to the plastic rheology, why such a threshold might exist and to assess the 

extent to which this condition varies across different settings. 

 

3. Elucidate the relative importance of key source conditions for successfully 

simulating rock avalanche run-out. 

Although the research presented here sheds some light on the sensitivity of numerical 

run-out models to a number of key controlling factors, further research should be 

undertaken using the events in Vaigat in order to elucidate the relative importance of 

these factors, which remain difficult to isolate and test in almost all other settings. This 

knowledge could be used to set standards for the quality of input data used to constrain 

future models of rock avalanche run-out. 

 

4. Improve calibration and validation datasets for numerical models of rock 

avalanche run-out, with the ultimate aim of compiling a consistent and high quality 

database for future use. 

Numerical run-out models critically depend upon realistic initial conditions. Successful 

back-analysis of past events and, by extension, predictive scenario modelling of future 

events, requires high quality data concerning: (i) the (potential) location and volume of 

rock-slope failure, (ii) the presence of erodible substrates, (iii) the location and rate of 

substrate entrainment, (iv) the presence of surface water (if any) along the run-out path, 

and (v) topographic constraints on run-out. In addition, recent advances in teleseismic 

source inversion techniques should be applied more widely to ensure that model results 

are dynamically consistent over the entire displacement process and not only in the final 

resting state. Targeted calibration initiatives involving these case studies could be used to 
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consider whether models truly demonstrate process representation, and whether there 

are particular environments or settings that preclude such analyses by virtue of a set of 

topographic and/or geometric characteristics.  

 

5. Develop a suitable framework that considers the application of numerical run-out 

models for predictive purposes and their incorporation into risk assessments.  

Quantitative assessments of the future hazards posed by potential rock avalanches are 

crucial for risk assessment and management practices. Prior to the application of a 

numerical run-out model for forward modelling a potential future event, a systematic and 

computationally feasible procedure must be developed for incorporating probabilistic 

components into deterministic continuum dynamic models. The cost of traditional 

methods for sampling input parameter values, such as Monte Carlo and Latin Hypercube 

sampling, makes them unsuitable for these models, which are governed by conservation 

laws that are computationally intensive to evaluate. At present, so-called ‘smart’ Monte 

Carlo methods such as polynomial chaos quadrature remain sparsely applied and should 

be further developed for use in probabilistic run-out assessments. 

 

6. Increase our understanding of rock avalanche-triggered tsunami and to better 

constrain the factors that condition the severity of these events.  

Although it is well known that the material flux at the point of entry into the water is 

critical in determining the magnitude of the resultant displacement wave, accurately 

modelling this flux remains challenging. A future challenge will be to compile a consistent, 

high quality database of subaerial and submarine deposits by using techniques such as 

airborne LiDAR and seismic profiling to locate geomorphic and sedimentary archives of 

past tsunamigenic events. Future work should therefore seek to expand the dataset 

presented here and use VolcFlow to back-analyse known subaerial-submerged events 

based on the location and form of their proximal marine deposits, with the ultimate aim 

of using this unique setting to provide better constraints on the performance of two fluid 

numerical models. 
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Appendix A 

Rock avalanche database 

The database given here has been compiled from a literature review of 258 rock avalanche 

events. Only events with estimates for failure volume, vertical drop height and run-out are included. 

 

Subaerial, non-volcanic landslides and rock avalanches 

Event 
Volume  

(x106 m3) 
Height  
(H; m) 

Run-out  
(L; m) 

H/L  
(-) 

Reference 

Acheron R. 6 550 2,000 0.28 Whitehouse (1983) 

Airolo 1 - - 0.64 Heim (1932) 

Aksu 1,500 1,900 4,600 0.41 Strom and Korup (2006) 

Allan 4 23 1,300 7,700 0.17 
Nicoletti and Sorriso-Valvo 

(1991) 

Allen 4 23 1,300 7,700 0.17 
Nicoletti and Sorriso-Valvo 

(1991) 

Antronapiana 12 1,650 4,190 0.39 
Nicoletti and Sorriso-Valvo 

(1991) 

Antronapiana 12 1,650 4,190 0.39 
Nicoletti and Sorriso-Valvo 

(1991) 

Ashburton R. (North Br.) 11 600 1,800 0.33 Whitehouse (1983) 

Ashburton R. (North Br.) 1 200 500 0.40 Whitehouse (1983) 

Ashburton R. (South Br.) 7 700 900 0.78 Whitehouse (1983) 

Bering 2 12 - 6,500 0.39 Schneider et al. (2011) 

Bering 3 7 - 5,400 0.37 Schneider et al. (2011) 

Beshkiol 10,000 2,500 10,500 0.24 Strom and Korup (2006) 

Blackhawk 283 1,100 9,860 0.11 Shreve (1968) 

Boulder B 152 400 4,000 0.10 
Hermanns and Strecker 

(1999) 

Brealito 30 700 2,250 0.31 
Hermanns and Strecker 

(1999) 

Broken R. (Leith Hill) 4 350 1,300 0.27 Whitehouse (1983) 

Casa de los Loros II 163 1,100 3,500 0.31 
Hermanns and Strecker 

(1999) 

Cerro Paranilla I 23 500 2,200 0.23 
Hermanns and Strecker 

(1999) 

Cerro Paranilla II 32 700 3,100 0.23 
Hermanns and Strecker 

(1999) 

Chisca 1 - 1,500 0.24 Geertsema et al. (2006) 

Chukurchak 1,000 1,200 7,500 0.16 Strom and Korup (2006) 

Claps de Luc 2 370 800 0.46 Scheidegger (1973) 

Clyde R. 10 500 1,900 0.26 Whitehouse (1983) 

Clye R. (McCoy Stm) 15 500 600 0.83 Whitehouse (1983) 

Constantino 20 940 2,240 0.42 
Guerricchio and Melidoro 

(1973) 

Corno di Dosté 20 1,200 3,700 0.32 Heim (1932) 

Craigieburn Rg. 500 1,200 2,700 0.44 Whitehouse (1983) 

Damocles 27 550 3,400 0.16 
Nicoletti and Sorriso-Valvo 

(1991) 

Damocles 27 550 3,400 0.16 Eisbacher (1979) 
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Dead Lakes 2,500 1,800 7,700 0.23 Strom and Korup (2006) 

Diablerets 30 1,200 5,500 0.22 Heim (1932) 

Diablerets 30 1,200 5,500 0.22 Eisbacher and Clague (1984) 

Disentis 20 740 2,100 0.35 Heim (1932) 

Djamantau 1,000 1,300 6,000 0.22 Strom and Korup (2006) 

Dŕínov 19 410 1,560 0.26 Špůrek (1974) 

Dřínov 19 410 1,560 0.26 
Nicoletti and Sorriso-Valvo 

(1991) 

Dulung Bar-Darkot 400 1,900 8,200 0.23 Hewitt (2006) 

Dusty Creek 7 970 2,490 0.39 Clague and Souther (1982) 

El Capitan 40 1,300 6,800 0.19 Yarnold and Lombard (1989) 

El Paso I 210 1,100 4,750 0.23 
Hermanns and Strecker 

(1999) 

El Paso II 225 700 2,850 0.25 
Hermanns and Strecker 

(1999) 

Elm 11 600 2,300 0.26 Heim (1932) 

Engelberg 2,500 1,600 7,400 0.22 Scheidegger (1973) 

Eperon de la Brenva 6 - 5,500 0.39 Deline (2001) 

Fairweather 26 3,300 10,000 0.33  Post (1967) 

Flims 12,000 2,000 15,600 0.13 Scheidegger (1973) 

Frank 37 800 3,290 0.24 Daly et al. (1912) 

Ghoro Choh I 60 1,300 7,000 0.19 Hewitt (1999) 

Glärnisch 800 1,900 7,500 0.25 Heim (1932) 

Goldau 40 1,120 6,100 0.18 Heim (1932) 

Gros Ventre 38 660 4,350 0.15 Alden (1928) 

Harper R. (Cass Sd) 2 500 850 0.59 Whitehouse (1983) 

Hope BC 47 1,220 4,240 0.29 
Matthews and McTaggart 

(1969) 

Huascarán (1962) 13 3,600 15,520 0.23 
Nicoletti and Sorriso-Valvo 

(1991) 

Huascarán (1970) 75 3,850 15,600 0.25 
Nicoletti and Sorriso-Valvo 

(1991) 

Jonas Creek (N) 2 880 3,250 0.27 Scheidegger (1973) 

Jonas Creek (S) 5 920 2,500 0.37 Scheidegger (1973) 

Kandertal 140 1,900 9,900 0.19 Heim (1932) 

Karakudjur 10,000 1,600 6,000 0.27 Strom and Korup (2006) 

Katzarah 120 2,400 11,000 0.22 Hewitt (1999) 

Khait 75 1,421 7,410 0.19 Evans et al. (2009) 

Köfels 2,500 800 2,500 0.32 Sørensen and Bauer (2003) 

Kokmeren 1,000 1,800 4,500 0.40 Strom and Korup (2006) 

Kugart 2,500 700 7,750 0.09 Strom and Korup (2006) 

Kuzulu 13 950 3,300 0.29 Scheidegger (1973) 

La Madeleine 71 1,561 4,500 0.35 Scheidegger (1973) 

Lavini di Marco 200 1,170 5,650 0.21 
Nicoletti and Sorriso-Valvo 

(1991) 

Lavini di Marco 200 1,170 5,650 0.21 Fuganti (1969) 

Lawrence R. 3 600 2,700 0.22 Whitehouse (1983) 

Lawrence R. 6 900 2,000 0.45 Whitehouse (1983) 

Lecco 0 - - 0.88 Heim (1932) 

Little Tahoma Pk 11 - - 0.29 
Crandell and Fahnestock 

(1965) 

Loma d. Aspereza 62 1,000 7,000 0.14 
Hermanns and Strecker 

(1999) 

Loma Redonda 65 1,000 7,000 0.14 
Hermanns and Strecker 

(1999) 

Luzon 20 810 3,800 0.21 
Nicoletti and Sorriso-Valvo 

(1991) 

Madison Canyon 29 430 1,680 0.26 Hadley (1959) 
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Maligne Lake 667 980 5,470 0.18 Mollard (1977) 

Martin River 2 12 - 4,000 0.28 Sosio et al. (2012) 

Martin River 3 9 - 5,000 0.28 Sosio et al. (2012) 

Martin River 4 11 - 5,900 0.40 Sosio et al. (2012) 

Martin River 5 4 - 3,700 0.32 Sosio et al. (2012) 

Martinez Mountain 380 1,850 8,560 0.22  Baldwin (1987) 

Mathias R. (Boundary Ck) 280 900 1,300 0.69 Whitehouse (1983) 

Mayunmarca 1,600 1,800 8,000 0.23 Kojan and Hutchinson (1978) 

Medicine Lake 86 320 1,220 0.26 Scheidegger (1973) 

Mombiel 1 370 800 0.46 Scheidegger (1973) 

Mont Granier 210 1,520 7,690 0.20 Eisbacher and Clague (1984) 

Monte Zandilla 40 1,390 3,950 0.35 
Nicoletti and Sorriso-Valvo 

(1991) 

Mosque Mountain 5 - 1,200 0.42 Lu  (2003) 

Mount Cayley 1 1,180 3,460 0.34 
Nicoletti and Sorriso-Valvo 

(1991) 

Mystery Creek 35 1,250 4,000 0.31 Eisbacher (1983) 

Nomash River 0 560 2,270 0.25 
Nicoletti and Sorriso-Valvo 

(1991) 

North Long John 25 1,338 1,560 0.86 Blair (1999) 

Nozzle 67 1,050 6,420 0.16 Eisbacher (1979) 

Obsersee 120 1,800 5,000 0.36 Heim (1932) 

Pamir 2,000 1,500 6,200 0.24 Scheidegger (1973) 

Parpan 500 1,340 6,550 0.20 Abele (1974) 

Pink Mountain 1 450 1,950 0.23 
Nicoletti and Sorriso-Valvo 

(1991) 

Poschiavo 150 1,500 4,100 0.37 Heim (1932) 

Poulter R (Casey Hut) 23 900 1,600 0.56 Whitehouse (1983) 

Poulter R (Mt Binser) 5 400 2,000 0.20 Whitehouse (1983) 

Poulter R (Thompson Stm) 5 500 800 0.63 Whitehouse (1983) 

Punta Thurweiser  3 - 2,900 0.48 Schneider et al. (2011) 

Queen Elizabeth 45 950 2,645 0.36 
Nicoletti and Sorriso-Valvo 

(1991) 

Rangitata R. (Bush Stm) 99 500 3,200 0.16 Whitehouse (1983) 

Rangitata R. (Forest Ck) 7 500 1,200 0.42 Whitehouse (1983) 

Rangitata R. (L. Camp) 2 300 900 0.33 Whitehouse (1983) 

Rangitata R. (Pudding Val.) 10 600 1,400 0.43 Whitehouse (1983) 

Rincón Ruins I 49 800 5,500 0.15 
Hermanns and Strecker 

(1999) 

Rockslide Pass 493 1,000 6,330 0.16 McLellan and Kaiser (1984) 

Round Top 45 570 4,800 0.12 Wright (1998) 

Rubble Creek 33 1,040 6,900 0.15 Moore and Matthews (1978) 

Saidmarreh 38,000 1,500 18,900 0.08 Scheidegger (1973) 

Sarychelek 2,500 1,700 6,250 0.27 Strom and Korup (2006) 

Sasso Englar 13 370 1,680 0.22 
Nicoletti and Sorriso-Valvo 

(1991) 

Sasso Englar 13 370 1,680 0.22 Fuganti (1969) 

Satpura 300 1,700 9,000 0.19 Hewitt (1999) 

Schächental 1 1,800 3,100 0.58 Heim (1932) 

Schwan 27 1,550 6,100 0.25 Post (1967) 

Scimada Saoseo 80 1,500 5,500 0.27 Heim (1932) 

Sherman 13 1,080 5,950 0.18 Shreve (1966) 

Sierra Carahuasi I 143 700 3,750 0.19 
Hermanns and Strecker 

(1999) 

Sierra Carahuasi II 54 700 3,100 0.23 
Hermanns and Strecker 

(1999) 

Sierra Laguna Blanca VIII 264 1,600 15,000 0.11 
Hermanns and Strecker 

(1999) 
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Silver Reef 227 760 6,670 0.11 Shreve (1968) 

Stalk Lakes 53 700 3,000 0.23 Mollard (1977) 

Steller I 20 1,200 6,700 0.18 Post (1967) 

Taipo R. (Hunts Ck) 35 650 1,750 0.37 Whitehouse (1983) 

Tamins 1,300 1,300 13,500 0.10 Scheidegger (1973) 

Taramakau R. (Otehake R.) 57 500 3,200 0.16 Whitehouse (1983) 

Tonco Syncline I 70 650 2,300 0.28 
Hermanns and Strecker 

(1999) 

Triple Slide 47 550 3,970 0.14 Eisbacher (1979) 

Turnoff Creek 4 - 2,000 0.28 Geertsema et al. (2006) 

Twin Slide (I) 7 900 4,670 0.19 Eisbacher (1978) 

Twin Slide (II) 7 820 4,400 0.19 Eisbacher (1978) 

Vaiont 250 500 1,500 0.33 Müller (1968) 

Val Lagone 1 1,050 2,400 0.44 Heim (1932) 

Val Pola 40 1,200 1,500 0.80 Crosta et al. (2004) 

Verney - Bishop's Bay 1 - 1,100 0.59 Geertsema et al. (2006) 

Villa Vil I 184 300 2,500 0.12 
Hermanns and Strecker 

(1999) 

Villa Vil II 247 350 2,250 0.16 
Hermanns and Strecker 

(1999) 

Villa Vil III 375 400 2,500 0.16 
Hermanns and Strecker 

(1999) 

Villa Vil IV 243 400 2,750 0.15 
Hermanns and Strecker 

(1999) 

Villa Vil V 34 400 1,500 0.27 
Hermanns and Strecker 

(1999) 

Villa Vil VI 15 250 1,000 0.25 
Hermanns and Strecker 

(1999) 

Voralpsee 30 1,100 3,400 0.32 Heim (1932) 

Waimakariri R. (Hawdon 
Stm) 

12 600 1,000 0.60 Whitehouse (1983) 

Waimakariri R. (Mt Binser) 40 400 1,800 0.22 Whitehouse (1983) 

Wengen 6 590 1,400 0.42 Altmann (1959) 

Wengen S 3 500 1,100 0.45 Altmann (1959) 

Wilberforce R. 9 650 800 0.81 Whitehouse (1983) 

Zarzo I 37 900 6,500 0.14 
Hermanns and Strecker 

(1999) 

Zarzo II 15 650 4,000 0.16 
Hermanns and Strecker 

(1999) 

Zymoetz 1 1,245 4,200 0.30 Boultbee et al. (2006) 

Rock avalanches onto glaciers 

Event 
Volume  

(x106 m3) 
Height  
(H; m) 

Run-out  
(L; m) 

H/L  
(-) 

Reference 

Black Rapids Glacier (W) 6 730 3,400 0.21 Shugar et al. (2013) 

Devastation Glacier 13 1,190 7,000 0.17 
Nicoletti and Sorriso-Valvo 

(1991) 

Howson II 2 1,296 2,700 0.48 Schwab et al. (2003) 

Illiamna - Red Glacier 17 - 8,600 0.23 Huggel  (2007) 

Kendall Glacier 0 204 1,200 0.17 Evans and Couture (2002) 

Kshwan Glacier 3 675 2,205 0.31 Mauthner (1995) 

Mount Meager 1 1,340 3,700 0.36 Jiskoot (2011) 

Mount Munday 3 875 4,700 0.19 Jiskoot (2011) 

Mt Steele 80 1,860 5,760 0.32 Jiskoot (2011) 

North Creek 2 745 2,800 0.27 Evans and Clague (1999) 

Pandemonium Creek Glacier 7 2,000 8,600 0.23 Jiskoot (2011) 

Tim Williams Glacier 3 935 3,700 0.25 Jiskoot (2011) 

Triolet Glacier 18 1,860 6,900 0.27 Porter and Orombelli (1980) 

Tsar Mountain 3 615 2,230 0.28 Jiskoot (2011) 
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Subaerial volcanic rock avalanches 

Event 
Volume  

(x106 m3) 
Height  
(H; m) 

Run-out  
(L; m) 

H/L  
(-) 

Reference 

Akagi 4,000 2,400 19,000 0.13 Siebert (1984) 

Allan Hills 1,800 500 10,000 0.05 Ui  (2000) 

Allan Hills 2,000 1,800 20,000 0.09 Ui  (2000) 

Allan Hills 18,000 3,000 30,000 0.10 Ponomareva et al. (2006) 

Asakusa 40 1,000 6,500 0.15 Hayashi and Self (1992) 

Asama 2,000 1,800 20,000 0.09 Hayashi and Self (1992) 

Bakening 450 1,800 12,000 0.15 Ponomareva et al. (2006) 

Banáhao 5,000 1,700 26,000 0.07 Geronimo-Catane (1994) 

Bandai-san 1888 1,500 1,200 11,000 0.11 Hayashi and Self (1992) 

Bezymianni 800 2,400 18,000 0.13 Hayashi and Self (1992) 

Bezymianny 800 2,500 17,500 0.14 Ui  (2000) 

Callaqui 150 3,100 15,000 0.21 Siebert et al. (1987) 

Cantal 1,000 3,500 30,000 0.12 Reubi and Hernandez (2000)  

Chaos Crags 150 650 5,000 0.13 Ui  (2000) 

Chimborazo 8,100 3,600 35,000 0.10 Siebert (1984) 

Chokai 1,800 4,000 85,000 0.05 Ui  (2000) 

Chokai 10,000 4,100 70,000 0.06 Luhr and Prestegaard (1988) 

Chokai 3,500 2,200 25,000 0.09 Hayashi and Self (1992) 

Colima 12,500 4,000 40,000 0.10 Hayashi and Self (1992) 

Dikii Greben' 2,250 900 8,000 0.11 Ponomareva  (2006) 

Dikii Greben' 400 1,500 14,000 0.11 Ui  (2000) 

Egmont (Opua) 350 2,500 27,000 0.09 Hayashi and Self (1992) 

Egmont (Pungarehu) 7,500 2,600 31,000 0.08 Hayashi and Self (1992) 

Fuji 1,800 2,500 24,000 0.10 Hayashi and Self (1992) 

Galunggung 2,900 1,900 25,000 0.08 Hayashi and Self (1992) 

Iliinsky (Ilynsky) 10,000 1,800 15,000 0.12 Ponomareva  (2006) 

Iriga 1,500 1,050 11,000 0.10 Siebert (1984) 

Ivao Group 1,000 1,400 6,600 0.21 
Belousov and Belousova 

(2007) 

Iwaki 1,300 1,600 14,000 0.11 Hayashi and Self (1992) 

Jocotitlán 2,800 1,150 12,000 0.10 Siebe et al. (1992) 

Kamen 5,000 4,400 30,000 0.15 Ponomareva  (2006) 

Kharimkotan (Harimkotan) 400 1,200 7,000 0.17 
Belousova and Belousov 

(1995) 

Kharimkotan (Harimkotan) 400 1,200 7,000 0.17 
Belousova and Belousov 

(1995) 

Kharimkotan (Harimkotan) 400 1,200 7,000 0.17 
Belousova and Belousov 

(1995) 

Komagatake 1,100 1,200 15,000 0.08 Ui  (2000) 

Komagatake 250 1,000 11,500 0.09 Hayashi and Self (1992) 

Kozel'sky 750 2,000 10,000 0.20 Ponomareva  (2006) 

Kurohime 120 800 6,000 0.13 Siebert (1984) 

Mageik 90 800 9,000 0.09 Hayashi and Self (1992) 

Mawenzi 7,100 4,500 60,000 0.08 Siebert (1984) 

Meru 15,000 3,900 50,000 0.08 Siebert (1984) 

Mombacho 1,200 1,345 11,900 0.11 Shea et al. (2008) 

Mombacho 1,880 1,500 12,400 0.12 Shea et al. (2008) 

Monbacho 1,000 1,300 12,000 0.11 Hayashi and Self (1992) 

Mt. St. Helens (1980) 2,500 2,550 24,000 0.11 Hayashi and Self (1992) 

Mt. St. Helens (20 ka) 1,000 1,750 16,000 0.11 Siebert (1984) 



Appendices 

 

89 

Mutnovsky 500 2,000 10,000 0.20 Ponomareva et al. (2006) 

Myoko (Sekikawa) 800 2,000 19,000 0.11 Siebert (1984) 

Myoko (Taguchi) 230 1,400 8,000 0.18 Siebert (1985) 

Nevado de Colima 27,000 4,800 120,000 0.04 Stoopes and Sheridan (1992) 

Nevado de Toluca I 2,000 2,200 55,000 0.05 Capra et al. (2002) 

Ontake (Ontake San) 340 1,550 12,900 0.12 Voight and Sousa (1994) 

Orizaba, Pico de 
(Citlaltépetl) 

20,000 4,750 95,000 0.05 Capra et al. (2002) 

Orizaba, Pico de 
(Citlaltépetl) 

1,800 4,130 85,000 0.05 Capra et al. (2002) 

Pacaya 650 2,500 25,000 0.10 Vallance et al. (1995) 

Pallas 1,000 900 4,800 0.19 
Belousova and Belousov 

(1995) 

Papandayan 140 1,500 11,000 0.14 Ui  (2000) 

Parinacota 6,000 1,900 22,000 0.09 Francis and Wells (1988) 

Peleroa 16,000 3,900 85,000 0.05 Siebert et al. (1987) 

Peteroa 16,000 3,900 85,000 0.05 Hayashi and Self (1992) 

Pico de Orizaba II 1,800 3,400 85,000 0.06 Carrasco-Núñez et al. (1993) 

Popa 800 1,200 11,000 0.11 Hayashi and Self (1992) 

Popocatépetl 28,000 4,000 33,000 0.12 Capra et al. (2002) 

Roque Nublo 14,000 3,360 28,750 0.12 Mehl and Schmincke (1999) 

Shasta 26,000 3,550 50,000 0.07 Ui (2000) 

Shiveluch 1,500 2,000 12,000 0.17 Hayashi and Self (1992) 

Shiveluch 2,000 2,100 21,000 0.10 Ponomareva  (2006) 

Shiveluch 1,200 2,600 20,000 0.13 Ponomareva  (2006) 

Shiveluch 3,000 2,850 24,000 0.12 Ponomareva  (2006) 

Shiveluch 1,000 2,250 15,000 0.15 Ponomareva  (2006) 

Shiveluch 1,500 2,550 16,000 0.16 Ponomareva  (2006) 

Shiveluch 1,500 2,550 17,000 0.15 Ponomareva  (2006) 

Shiveluch 10,000 3,300 40,000 0.08 Ponomareva  (2006) 

Sierra Velluda 500 3,400 25,000 0.14 Siebert et al. (1987) 

Socompa 17,000 3,250 35,000 0.09 Hayashi and Self (1992) 

Soufriere Guadeloupe 500 1,350 9,500 0.14 Siebert (1984) 

Tashiro 550 700 8,800 0.08 Ui et al. (2000) 

Tateshina 350 1,400 12,500 0.11 Hayashi and Self (1992) 

Taunshitz 400 1,600 19,000 0.08 
Belousova and Belousov 

(1995) 

Taunshitz 700 1,600 25,000 0.06 
Belousova and Belousov 

(1995) 

Tongariro 500 1,200 15,000 0.08 Lecointre et al. (2002) 

Unzen 340 850 6,500 0.13 Siebert (1984) 

Usu 300 500 6,500 0.08 Ui (2000) 

Volcan de Colima 8,000 1,720 43,000 0.09 Luhr and Prestegaard (1988) 

Yatsugatake (Nirasaki) 9,000 2,400 32,000 0.08 Hayashi and Self (1992) 

Yatsuhatake (Otsukigawa) 270 1,400 12,500 0.11 Hayashi and Self (1992) 

Zempoala 4,000 3,200 80,000 0.04 Capra et al. (2002) 
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Appendix B 

VolcFlow: Model details and numerical scheme 

Numerical scheme 

The governing momentum equations are solved using a shock-capturing, finite difference 

numerical method based on a single (more stable) or double (more accurate) upwind Eulerian 

scheme, as defined by the user. This scheme is able to handle shocks, granular jumps and 

rarefaction waves, implying that the model is highly stable even when simulating rapid mass 

movements across complex topographies and on numerically ‘wet’ or ‘dry’ surfaces (Toro, 2001). 

Using this scheme, scalars (flow depth, h and elevation, z) are defined and computed at the centre of 

each cell while vectors (fluxes of mass and momentum, and velocities, u and v) are at the edge of 

each cell. Mean values of h are computed at the edges of the cells, and mean values of u and v at the 

centres of cells. The source terms of the mass conservation equations are computed, followed by 

the advection terms, at every time step. The three acceleration source terms are: 

                                                    𝑎𝑤 = (−𝑔 sin 𝜃𝑧 sin ⍺ , −𝑔 cos 𝜃𝑧 sin ⍺)                                                     [1] 

 

                                          𝑎𝑝 = (−𝑔𝑘𝑎𝑐𝑡𝑝𝑎𝑠𝑠 cos ⍺
𝑑ℎ

𝑑𝑥
,−𝑔𝑘𝑎𝑐𝑡𝑝𝑎𝑠𝑠 cos ⍺

𝑑ℎ

𝑑𝑦
)                                           [2] 

 

                                                                   𝑎𝑟 = (−
𝜏

𝜌ℎ

𝑢

||𝐮||
−

𝜏

𝜌ℎ

𝑣

||𝐮||
)                                                                 [3] 

 

where θz is the horizontal azimuth of the local ground slope, ⍺. The source acceleration terms aw 

and ap are first used to define a first order approximation of velocity. From these terms the 

algorithm then calculates the retarding acceleration, ar, in the direction opposed to this velocity. 

The advection terms are then computed using an upwind scheme to calculate the fluxes of mass and 

momentum, thereby generating a new estimate of the mean flow thickness and velocity at the 

centre of each cell (as detailed in the governing momentum equations in Section 4.3.1). Finally, a 

second upwind scheme is used to calculate the x and y components of the new velocities, u and v, at 

the cell edges as modified by advection. 

 

Numerical implementation and model requirements 

VolcFlow consists of a graphical user interface, an input file and a representation file. The 

user can load in topography, define variables and code erosion/sedimentation laws in a number of 

steering files; these parameters and their linked files are displayed in the user interface prior to 

running the model. The model can output a variety of data files at user-defined intervals, which are 

displayed using the representation file.  

VolcFlow requires a path and a source topography file, both of which are gridded using 

kriging interpolation at 25 m spacing. In addition to the input topography files, the user is required 

to define a series of variables in the input .m file, including: rheology, unit weight, internal friction 

angle, basal friction angle, cohesion, material density, collisional stress, viscosity and curvature. A 
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series of control parameters may also be defined and adjusted, which include: the choice of a single 

or double upwind scheme, whether or not the path morphology is recalculated at each time step (to 

be used in conjunction with erosion/sedimentation laws), the maximum simulation time, time step 

and slide margin cut-off velocity. The model calculates the depth and velocity of the flow and its 

position at each time step based on the model spatial discretisation. These outputs are saved in a 

file that is run through a Reader, which populates multidimensional arrays of the variables required 

for analysis and saves them for later analysis. 
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Appendix C 

Scheme for VolcFlow calibration 
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Appendix D 

Conversion from vertical to normal source depths 

 Source depths were converted from vertical (hv) to normal (hn) depths by first calculating 

the gradient of the four nearest neighbours of each cell in the path topography DEM (z). In a three-

dimensional Cartesian coordinate system, the gradient, F, is a vector field whose components are 

the partial derivatives of F: 

 

                                                                     𝐹 =
𝐹

𝑥
 î +

𝐹

𝑦
𝑗̂ +

𝐹

𝑧
𝑘                                                                        [4] 

 

where î, ĵ, and k̂, are the unit x-,y- and z-vectors, respectively. The rate of change of the surface in 

the horizontal and the vertical directions from the centre cell defines the slope, α, which is 

calculated as follows: 

                                                                                 𝛼 = tan−1𝐹                                                                                [5] 

 

The source depth normal to the ground is then calculated using the cosine of the local slope: 

 

                                                                                  ℎ𝑛 = ℎ𝑣 cos 𝛼                                                                              [6] 
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Appendix E 

‘En masse sliding’ using VolcFlow 

 If lA is defined (e.g. lA>0 in the input .m file) the mass is initially forced to slide as a block 

before its cohesion then decreases in time following an exponential law. This capability was 

enabled in Chapter 5 for the purpose of simulating the early sliding phase of the rock avalanche. To 

simulate this, VolcFlow first calculates the velocity of each cell, v, independently. The mean velocity, 

vm, weighted by the thickness of the flow, h, is then calculated: 

 

                                                                                  𝑣𝑚 =
Σ(𝑣ℎ)

Σℎ
                                                                                 [7] 

 

Finally, the new velocity of each cell, vn, is calculated by its previous velocity and the mean velocity 

of the flow: 

 

                                                                        𝑣𝑛 = 𝑣(1 − 𝐴) + (𝑣𝑚𝐴)                                                                      [8] 

 

Where A is defined by: 

 

                                                                                       𝐴 = 𝑒(
−𝑡
𝑙𝐴

)                                                                                 [9] 

 

This allows a decrease of coherency with time (t), following an exponential law. In the simulations 

run in Chapter 5, a value of lA = 1 was used. 
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Appendix F 

Scheme for defining source conditions and application to other cases (3D)  
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Appendix G 

Scheme for defining source conditions and application to other cases 

(contour-parallel 3D)  
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Appendix H – Rock avalanche characteristics in Vaigat: measurements and errors 

 

 

Event Notes 

Deposit 

Surface area 
(A; m2) 

Error (m2) 
Volume  

(lower; m3) 
Volume  
(V; m3) 

Volume  
(upper; m3) 

Run-out  
(L; m) 

Error (m) 
Lateral 

extent (m) 
Error (m) 

1 Paatuut (AD 2000) – tsunamigenic 4,138,971 ± 433,750 79,739,992 94,144,204 109,324,391 4,383 ± 100 1,325 ±100 

2 Stalls above bench (1) 997,500 ± 117,702 9,226,338 11,138,440 13,166,956 2,084 ± 100 312 ±100 

3 Stalls above bench (2) 1,577,271 ± 180,067 18,464,805 22,146,972 26,045,802 1,927 ± 100 674 ±100 

4 Stalls at bench (elevation 330-350 m asl) 1,930,000 ± 180,817 25,864,734 29,977,193 34,287,101 2,843 ± 100 650 ±100 

5 Stalls above bench (3) 735,941 ± 143,870 5,093,488 7,058,614 9,226,549 1,740 ± 100 440 ±100 

6 Superimposed onto alluvial fan (1) 650,626 ± 132,737 4,166,869 5,867,483 7,751,740 1,501 ± 100 1,070 ±100 

7 Superimposed onto alluvial fan (2) 669,057 ± 124,869 4,488,266 6,118,564 7,909,055 1,270 ± 100 618 ±100 

8 Runs out to sea level (1) 1,037,008 ± 170,558 9,017,166 11,806,682 14,836,141 2,340 ± 100 396 ±100 

9 Runs out to sea level (2) 1,294,899 ± 167,066 13,391,275 16,474,363 19,763,339 2,416 ± 100 958 ±100 

10 Tupasaat – stalls above alluvial fan (1) 603,125 ± 104,405 3,937,681 5,236,800 6,653,836 1,821 ± 100 736 ±100 

11 Tupasaat – stalls above alluvial fan (2) 504,392 ± 103,261 2,840,436 4,005,045 5,295,882 1,848 ± 100 180 ±100 

12 Tupasaat – stalls above alluvial fan (3) 739,482 ± 136,741 5,231,801 7,109,620 9,170,160 1,995 ± 100 233 ±100 

13 Tupasaat – long run-out, stalls above alluvial fan 2,424,193 ± 257,394 35,660,133 42,199,354 49,095,632 3,710 ± 100 370 ±100 

14 Tupasaat – runs out to sea level 2,095,625 ± 193,438 29,331,545 33,917,619 38,720,551 3,196 ± 100 921 ±100 

15 Adjoining to (14) – stalls at bench 964,611 ± 173,173 7,871,913 10,592,135 13,568,915 2,107 ± 100 279 ±100 

16 1952 event – tsunamigenic 1,408,750 ± 143,489 15,912,022 18,694,158 21,621,845 2,345 ± 100 1,028 ±100 

17 Small event – stalls at bench (1) 405,274 ± 85,974 2,017,221 2,884,546 3,849,506 1,313 ± 100 281 ±100 

18 Small event – stalls at bench (2) 397,689 ± 95,588 1,856,449 2,803,950 3,873,390 1,550 ± 100 122 ±100 

19 Runs out to sea level 1,477,118 ± 312,520 14,051,388 20,071,407 26,767,186 3,129 ± 100 1,214 ±100 

20 Stalls at bench - channelised 633,119 ± 108,068 4,253,606 5,632,259 7,134,213 2,320 ± 100 113 ±100 

Observed geometric characteristics associated with each event. Deposit volumes were calculated using the volume-area scaling detailed in Section 5.2.1.1. Run-out, lateral extent at the toe, total vertical drop height 

(H) and the apparent coefficient of friction (H/L) were all measured as defined in Chapter 3. The concavity index for each event represents the ratio between the integral of a longitudinal profile of the path 

topography and a straight line fit through that topography, indicating relative concavity. The approximate angle of each drop zone was measured by masking and averaging the slope map of the scar in question. 

9
7
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Event Notes 

Deposit Scar 

H (m) Error (m) 
H/L 

(lower) 
H/L (-) 

H/L 
(upper) 

Concavity 
Index (-) 

Drop zone 
angle (°) 

Surface 
area (m2) 

Error (m2) 

1 Paatuut (AD 2000) – tsunamigenic 1,466 ± 18 0.32 0.33 0.34 0.71 61 411,202 ± 113,856 

2 Stalls above bench (1) 965 ± 18 0.43 0.46 0.50 0.95 70 224,876 ± 47,594 

3 Stalls above bench (2) 965 ± 18 0.47 0.50 0.54 0.91 69 284,041 ± 77,353 

4 Stalls at bench (elevation 330-350 m asl) 1,095 ± 18 0.37 0.39 0.41 0.77 75 98,912 ± 50,554 

5 Stalls above bench (3) 861 ± 18 0.46 0.49 0.54 0.82 67 94,189 ± 38,019 

6 Superimposed onto alluvial fan (1) 627 ± 18 0.38 0.42 0.46 0.95 48 95,982 ± 43,872 

7 Superimposed onto alluvial fan (2) 406 ± 18 0.28 0.32 0.36 0.91 43 54,971 ± 41,250 

8 Runs out to sea level (1) 994 ± 18 0.40 0.42 0.45 0.79 46 118,493 ± 42,281 

9 Runs out to sea level (2) 969 ± 18 0.38 0.40 0.43 0.74 53 201,107 ± 57,097 

10 Tupasaat – stalls above alluvial fan (1) 840 ± 18 0.43 0.46 0.50 0.73 72 224,866 ± 40,968 

11 Tupasaat – stalls above alluvial fan (2) 811 ± 18 0.41 0.44 0.47 0.88 40 74,052 ± 40,888 

12 Tupasaat – stalls above alluvial fan (3) 658 ± 18 0.31 0.33 0.36 0.86 35 74,507 ± 35,022 

13 Tupasaat – long run-out, stalls above alluvial fan 1,241 ± 18 0.32 0.33 0.35 0.73 48 655,043 ± 77,816 

14 Tupasaat – runs out to sea level 1,278 ± 18 0.38 0.40 0.42 0.62 56 248,756 ± 66,524 

15 Adjoining to (14) – stalls at bench 1,190 ± 18 0.53 0.56 0.60 0.82 56 226,836 ± 75,803 

16 1952 event – tsunamigenic 1,128 ± 18 0.45 0.48 0.51 0.79 77 113,556 ± 50,470 

17 Small event – stalls at bench (1) 966 ± 18 0.67 0.74 0.81 0.82 62 164,577 ± 51,672 

18 Small event – stalls at bench (2) 977 ± 18 0.58 0.63 0.69 0.76 66 157,404 ± 51,032 

19 Runs out to sea level 1,453 ± 18 0.44 0.46 0.49 0.61 57 171,469 ± 53,454 

20 Stalls at bench - channelised 1,328 ± 18 0.54 0.57 0.61 0.58 55 62,402 ± 39,090 9
8
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Surface areas 

Error 

 The error for each surface area measurement was calculated by measuring the perimeter 

of the corresponding shapefile and then multiplying this by 25 m (cell resolution of the GIMP DEM; 

Howat et al., 2014).   

 

Volume 

Error 

 Deposit volumes were calculated using the following volume-area scaling, which was 

detailed in Section 5.2.1.1: 

                                                                                𝑉 = 0.05𝐴1.5                                                                                [10] 

 

This has been successfully applied for bedrock landslides in a number of settings (after Hovius et 

al., 1997; Malamud et al., 2004; Larsen et al., 2010). Lower and upper bounds for the estimated 

deposit volumes were then derived using the corresponding estimates for surface area. 

 

Run-out and lateral extent 

Error 

The maximum horizontal measurement error for any given point on the 25 m GIMP DEM is 

50 m. Given that both the run-out and lateral extent of a deposit is measured between two points, 

this gives both characteristics an overall measurement error of ±100 m.  

 

Total vertical drop height 

Error 

 The error of total vertical drop height measurements was simply calculated by assuming 

an error of ±9.1 m (overall RMS error of the GIMP DEM; Howat et al., 2014) for both the height as 

measured from the crest of the pre-failure rock mass to the height at the lowest point of its reach (= 

±18 m). 

 

Apparent coefficient of friction 

Error 

 Lower and upper bounds for the estimated apparent coefficient of friction (H/L) were 

derived by using the corresponding estimates for total vertical drop height (H) and run-out (L). 
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Appendix I – VolcFlow calibration: simulation results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coulomb frictional – 1 angle (ϕbed)  

Input parameters         

Basal friction angle, ϕbed (°) 20 19 18 17 16 15 14 13* 

         

Model outputs         

Max. run-out (m) 3,096 3,328 3,585 3,821 4061 4,250 4,503 4,750 

 (-29%) (-24%) (-18%) (-13%) (-7%) (-3%) (+3%) (+8%) 

Max. flow velocity (m s-1) 72 76 78 82 85 87 89 97 

 (+29%) (+36%) (+39%) (+46%) (+52%) (+55%) (+59%) (+73%) 

Duration of emplacement (s) 148 154 159 164 172 177 184 192 

 (+85%) (+93%) (+99%) (+105%) (+115%) (+121%) (+130%) (+140%) 

Max. deposit thickness (m) 167 156 142 127 111 109 106 90 

 (+178%) (+160%) (+137%) (+112%) (+85%) (+82%) (+77%) (+50%) 

Lateral extent at toe (m) 87 152 193 536 891 1,138 1,353 1,593 

 (-93%) (-89%) (-85%) (-60%) (-33%) (-14%) (+2%) (+20%) 

Surface area (m2) 2,172,500 2,413,750 2,742,500 3,378,750 4,186,875 4,865,625 5,579,375 6,151,250 

 (-48%) (-42%) (-34%) (-18%) (+1%) (+18%) (+35%) (+49%) 

Hypsometric integral (-) 0.201 0.189 0.178 0.165 0.164 0.141 0.138 0.153 

 (-14%) (-20%) (-24%) (-30%) (-30%) (-40%) (-41%) (-35%) 

X-displacement of the centre of mass (m) 93 291 437 603 841 1,180 1,617 2,133 

 (-96%) (-88%) (-81%) (-74%) (-64%) (-50%) (-31%) (-9%) 

Average flow velocity (m s-1) 12 13 14 16 19 21 25 28 

 (-68%) (-65%) (-62%) (-57%) (-49%) (-43%) (-32%) (-24%) 

Average deposit thickness (m) 34 30 25 21 18 16 15 14 

 (+89%) (+67%) (+39%) (+17%) (0%) (-11%) (-17%) (-22%) 

Simulations performed using a Coulomb frictional rheology (one equation), with en masse sliding enabled. All model runs were performed assuming a density of 

2850 kg m-3 and with a time step of 0.02 s, a plotting step of 1.0 s and a maximum simulation time of 200 s. *  = Flowed out of domain space. 

1
0
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Coulomb frictional – 2 angles (ϕbed, ϕint) 

Input parameters             

Basal friction angle, ϕbed (°) 10 11 12 13 14 15 10 11 12 13 14 15 

Internal friction angle, ϕint (°) 30 30 30 30 30 30 35 35 35 35 35 35 

             

Model outputs             

Max. run-out (m) 4,869 4,609 4,319 3,982 3,696 3,311 4,871 4,580 4,339 3,970 3,622 3,292 

 (+11%) (+5%) (-2%) (-9%) (-16%) (-25%) (+11%) (+5%) (-1%) (-9%) (-17%) (-25%) 

Max. flow velocity (m s-1) 110 107 100 100 91 87 110 105 101 96 92 87 

 (+96%) (+91%) (+79%) (+79%) (+63%) (+55%) (+96%) (+88%) (+80%) (+71%) (+64%) (+55%) 

Duration of emplacement (s) 300 274 249 240 218 198 295 282 268 247 222 202 

 (+275%) (+243%) (+211%) (+200%) (+173%) (+148%) (+269%) (+253%) (+235%) (+209%) (+178%) (+153%) 

Max. deposit thickness (m) 73 94 111 112 125 129 88 103 113 119 123 127 

 (+22%) (+57%) (+85%) (+87%) (+108%) (+115%) (+47%) (+72%) (+88%) (+98%) (+105%) (+112%) 

Lateral extent at toe (m) 1,618 1,271 984 933 344 153 1,755 1,234 873 553 226 104 

 (+9%) (-17%) (-39%) (-43%) (-87%) (-102%) (+19%) (-20%) (-47%) (-71%) (-96%) (-105%) 

Surface area (m2) 6,121,875 5,523,750 4,155,625 4,059,375 2,479,375 2,206,875 6,245,000 5,285,000 4,014,375 2,974,375 2,482,500 2,251,875 

 (+48%) (+33%) (+0.4%) (-2%) (-40%) (-47%) (+51%) (+28%) (-3%) (-28%) (-40%) (-46%) 

Hypsometric integral (-) 0.121 0.097 0.100 0.110 0.134 0.155 0.086 0.078 0.093 0.109 0.132 0.154 

 (-49%) (-59%) (-57%) (-53%) (-43%) (-34%) (-63%) (-67%) (-60%) (-54%) (-44%) (-34%) 

X-displacement of the centre of mass (m) 1,615 832 308 290 69 48 1,040 447 193 106 79 61 

 (-31%) (-65%) (-87%) (-88%) (-97%) (-98%) (-56%) (-81%) (-92%) (-96%) (-97%) (-97%) 

Average flow velocity (m s-1) 34 30 29 28 24 23 35 33 30 28 25 22 

 (-8%) (-19%) (-22%) (-24%) (-35%) (-38%) (-5%) (-11%) (-19%) (-24%) (-32%) (-41%) 

Average deposit thickness (m) 10 10 11 12 17 20 6 8 11 13 16 19 

 (-44%) (-44%) (-39%) (-33%) (-6%) (+11%) (-67%) (-56%) (-39%) (-28%) (-11%) (+6%) 

Simulations performed using a Coulomb frictional rheology (two equations), with en masse sliding enabled. All model runs were performed assuming a density of 2850 kg m-3 and with a time step of 0.02 s, a 

plotting step of 1.0 s and a maximum simulation time of 300 s. 

1
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Voellmy (ϕbed, ξ)  

Input parameters       

Basal friction angle, ϕbed (°) 13 12 11 15 14 13 

Collisional stress coefficient, ξ (-) 0.1 0.1 0.1 0.01 0.01 0.01 

       

Model outputs       

Max. run-out (m) 3,564 3,874 4,180 3,665 3,850 4,134 

 (-19%) (-12%) (-5%) (-16%) (-12%) (-6%) 

Max. flow velocity (m s-1) 32 34 36 44 46 48 

 (-43%) (-39%) (-36%) (-21%) (-18%) (-14%) 

Duration of emplacement (s) 223 245 271 194 223 243 

 (+179%) (+206%) (+239%) (+143%) (+179%) (+204%) 

Max. deposit thickness (m) 113 100 83 121 120 110 

 (+88%) (+67%) (+38%) (+102%) (+100%) (+83%) 

Lateral extent at toe (m) 1,073 1,442 1,811 992 1,250 1,546 

 (-19%) (+9%) (+37%) (-25%) (-6%) (+17%) 

Surface area (m2) 4,127,500 4,719,375 5,083,125 3,858,750 4,329,375 4,898,750 

 (-0.3%) (+14%) (+23%) (-7%) (+5%) (+18%) 

Hypsometric integral (-) 0.170 0.171 0.195 0.170 0.153 0.150 

 (-28%) (-27%) (-17%) (-28%) (-35%) (-36%) 

X-displacement of the centre of mass (m) 1,398 1,784 2,188 1,056 1,429 1,885 

 (-41%) (-24%) (-7%) (-55%) (-39%) (-20%) 

Average flow velocity (m s-1) 5 5 5 5 6 7 

 (-86%) (-86%) (-86%) (-86%) (-84%) (-81%) 

Average deposit thickness (m) 19 17 16 21 18 16 

 (+6%) (-6%) (-11%) (+17%) (0%) (-11%) 

Simulations performed using a Voellmy rheology, with en masse sliding enabled. All model runs were performed assuming a 

density of 2850 kg m-3 and with a time step of 0.02 s, a plotting step of 1.0 s and a maximum simulation time of 300 s. 

1
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Plastic  (T0)  

Input parameters       

Cohesion (kPa) 235 260 265 270 275 300 

       

Model outputs       

Max. run-out (m) 4,725 4,391 4,378 4,334 4,264 3,978 

 (+8%) (+0.2%) (-0.1%) (-1%) (-3%) (-9%) 

Max. flow velocity (m s-1) 79 74 73 72 71 66 

 (+41%) (+32%) (+30%) (+29%) (+27%) (+18%) 

Duration of emplacement (s) 107 96 92 87 84 82 

 (+34%) (+20%) (+15%) (+9%) (+5%) (+3%) 

Max. deposit thickness (m) 63 68 69 71 73 78 

 (+5%) (+13%) (+15%) (+18%) (+22%) (+30%) 

Lateral extent at toe (m) 1,103 878 846 821 807 759 

 (-17%) (-34%) (-36%) (-38%) (-39%) (-43%) 

Surface area (m2) 5,349,375 4,766,875 4,664,375 4,563,125 4,458,750 4,009,375 

 (+29%) (+15%) (+13%) (+10%) (+8%) (-3%) 

Hypsometric integral (-) 0.264 0.275 0.276 0.272 0.270 0.279 

 (+12%) (+17%) (+17%) (+16%) (+15%) (+19%) 

X-displacement of the centre of mass (m) 2,065 1,777 1,743 1,694 1,642 1,430 

 (-12%) (-24%) (-26%) (-28%) (-30%) (-39%) 

Average flow velocity (m s-1) 10 10 10 10 10 7 

 (-73%) (-73%) (-73%) (-73%) (-73%) (-81%) 

Average deposit thickness (m) 17 18 19 19 20 22 

 (-6%) (0%) (+6%) (+6%) (+11%) (+22%) 

Simulations performed using a plastic rheology, with en masse sliding enabled. All model runs were performed assuming a density 

of 2850 kg m-3 and with a time step of 0.02 s, a plotting step of 1.0 s and a maximum simulation time of 130 s. 
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Plastic with a velocity-dependent law (T0, ξ)  

Input parameters          

Cohesion (kPa) 250 255 260 250 255 260 200 210 220 

Collisional stress coefficient, ξ (-) 0.01 0.01 0.01 0.005 0.005 0.005 0.05 0.05 0.05 

          

Model outputs          

Max. run-out (m) 4,368 4,340 4,216 4,387 4,345 4,306 4,260 4,061 3,922 

 (-0.3%) (-1%) (-4%) (+0.1%) (-1%) (-2%) (-3%) (-7%) (-11%) 

Max. flow velocity (m s-1) 66 65 64 69 68 67 56 56 55 

 (+18%) (+16%) (+14%) (+23%) (+21%) (+20%) (0%) (0%) (-2%) 

Duration of emplacement (s) 92 89 86 94 90 87 103 98 90 

 (+15%) (+11%) (+8%) (+18%) (+13%) (+9%) (+29%) (+23%) (+13%) 

Max. deposit thickness (m) 72 74 76 66 69 70 74 75 77 

 (+20%) (+23%) (+27%) (+10%) (+15%) (+17%) (+23%) (+25%) (+28%) 

Lateral extent at toe (m) 1,101 1,042 1,005 1,120 1,064 1,020 1,142 965 944 

 (-17%) (-21%) (-24%) (-15%) (-20%) (-23%) (-14%) (-27%) (-29%) 

Surface area (m2) 4,545,000 4,211,250 4,005,000 4,309,375 4,238,750 4,156,875 4,247,500 4,076,250 3,833,125 

 (+10%) (+2%) (-3%) (+4%) (+2%) (+0.4%) (+3%) (-2%) (-7%) 

Hypsometric integral (-) 0.269 0.268 0.264 0.273 0.271 0.268 0.244 0.242 0.238 

 (+14%) (+14%) (+12%) (+16%) (+15%) (+14%) (+4%) (+3%) (+1%) 

X-displacement of the centre of mass (m) 1,776 1,730 1,627 1,808 1,781 1,720 1,823 1,745 1,683 

 (-25%) (-26%) (-31%) (-23%) (-24%) (-27%) (-23%) (-26%) (-29%) 

Average flow velocity (m s-1) 19 19 19 20 19 19 16 16 17 

 (-49%) (-49%) (-49%) (-46%) (-49%) (-49%) (-57%) (-57%) (-54%) 

Average deposit thickness (m) 19 20 20 18 19 19 19 19 20 

 (+6%) (+11%) (+11%) (0%) (+6%) (+6%) (+6%) (+6%) (+11%) 

Simulations performed using a plastic rheology with a velocity-dependent law, with en masse sliding enabled. All model runs were performed assuming a density of 2850 kg m-3 

and with a time step of 0.02 s, a plotting step of 1.0 s and a maximum simulation time of 110 s. 
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Appendix J 

Simulation results for all cases 

 

 

 

Event 
Max. run-out (m) H/L (-) Lateral extent (m) Surface area (m2) 

Observed Modelled Observed Modelled Observed Modelled Observed Modelled 

1 4,383 4,368 0.33 0.32 1,325 1,101 4,139,000 4,545,000 

 - (-0.3%) - (-3%) - (-17%) - (+10%) 

2 2,084 2,060 0.46 0.46 312 241 998,000 1,120,625 

 - (-1%) - (0%) - (-23%) - (+12%) 

3 1,927 1,894 0.50 0.36 674 629 1,577,000 1,928,750 

 - (-2%) - (-28%) - (-7%) - (+22%) 

4 2,843 2,829 0.39 0.36 650 702 1,930,000 2,233,125 

 - (-0.5%) - (-8%) - (+8%) - (+16%) 

5 1,740 1,691 0.49 0.44 440 422 736,000 1,084,375 

 - (-2%) - (-10%) - (-4%) - (+47%) 

6 1,501 1,125 0.42 0.31 1,070 491 651,000 503,750 

 - (-25%) - (-26%) - (-54%) - (-23%) 

7 1,270 1,013 0.32 0.31 618 435 669,000 721,250 

 - (-20%) - (-3%) - (-29%) - (+8%) 

8 2,340 2,191 0.42 0.39 396 339 1,037,000 1,360,000 

 - (-6%) - (-5%) - (-14%) - (+31%) 

9 2,416 2,357 0.40 0.39 958 821 1,295,000 1,960,768 

 - (-2%) - (-3%) - (-14%) - (+51%) 

10 1,821 1,643 0.46 0.44 736 716 603,000 804,375 

 - (-9%) - (-4%) - (-3%) - (+33%) 

11 1,848 1,516 0.44 0.43 180 237 504,000 565,000 

 - (-18%) - (-2%) - (+32%) - (+12%) 

12 1,995 1,530 0.33 0.39 233 368 739,000 885,000 

 - (-23%) - (+18%) - (+58%) - (+20%) 

13 3,710 3,670 0.33 0.31 370 541 2,424,000 3,722,500 

 - (-1%) - (-6%) - (+46%) - (+53%) 

14 3,196 3,123 0.40 0.39 921 889 2,096,000 2,294,375 

 - (-2%) - (-3%) - (-4%) - (+9%) 

15 2,107 2,080 0.56 0.46 279 287 965,000 1,333,125 

 - (-1%) - (-18%) - (+3%) - (+38%) 

16 2,345 2,299 0.48 0.49 1,028 1,055 1,409,000 1,773,125 

 - (-2%) - (+2%) - (+3%) - (+26%) 

17 1,313 1,135 0.74 0.75 281 243 405,000 427,500 

 - (-14%) - (+1%) - (-14%) - (+5%) 

18 1,550 1,328 0.63 0.64 122 134 398,000 497,500 

 - (-14%) - (+2%) - (+10%) - (+25%) 

19 3,129 2,988 0.46 0.46 1,214 1,097 1,477,000 2,305,800 

 - (-4%) - (0%) - (-10%) - (+56%) 

20 2,320 2,038 0.57 0.58 113 212 633,000 1,156,250 

 - (-12%) - (+2%) - (+88%) - (+83%) 

Results of the simulations performed for all 20 cases. All model runs were performed using the best-fit rheological 

calibration obtained in Section 5.1. Numbers in brackets represent the normalised index, , which compares the modelled 

and observed measurement for each output. 
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Appendix K 

Regressions 

 Presented below are the results and associated diagnostics for a number of regression 

models fit throughout this work. 

 

 

 
 

Run-out 
(observed vs. 

modelled) 

Reduced major axis regression - estimated coefficients 

Estimate SE t statistic p value 

Intercept -357.26 m 83.654 m -4.0106 0.00082031 

x1 1.0913 m 0.0345 m 31.404 3.5713x10-17 

     

 RMSE R2 𝒙̅ 𝒚̅ 

 121 m 0.991 2292 m 2144 m 

 

H/L 
 (observed vs. 

modelled) 

Reduced major axis regression - estimated coefficients 

Estimate SE t statistic p value 

Intercept -0.0515 0.0489 -0.19564 0.84708 

x1 1.0636 0.1045 9.5033 1.9446x10-8 

     

 RMSE R2 𝒙̅ 𝒚̅ 

 0.0477 0.913 0.4565 0.4340 

 

Lateral extent 
 (observed vs. 

modelled) 

Reduced major axis regression - estimated coefficients 

Estimate SE t statistic p value 

Intercept 58.015 56.9314 1.8132 0.086519 

x1 0.8221 0.0811 9.4574 2.0927x10-8 

     

 RMSE R2 𝒙̅ 𝒚̅ 

 132 0.912 596 548 

 

Surface area 
 (observed vs. 

modelled) 

Reduced major axis regression - estimated coefficients 

Estimate SE t statistic p value 

Intercept 6.730x104 1.1460x105 1.0564 0.30477 

x1 1.2103 0.0758 15.548 7.057x10-12 

     

 RMSE R2 𝒙̅ 𝒚̅ 

 2.95x105 0.965 1.234x106 1.561x106 

 

Summary of diagnostics for Reduced Major Axis Regressions fit to observed versus modelled values of rock avalanche run-

out, H/L, lateral extent at toe and surface area, for all 20 cases (Fig. 6.11). Source data are found in Appendix J. 
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Normalised index 
of run-out vs 

volume (log10) 

Linear regression model (y~1+x1) estimated coefficients 

Estimate SE t statistic p value 

Intercept 8.9645 1.2948 6.9233 1.8001x10-6 

x1 -1.1833 0.18321 -6.4586 4.4671x10-6 

     

 RMSE R2 Adjusted R2 F-statistic 

 0.326 0.699 0.682 41.7 

 

 

 

Vol. in source 
area vs total 

deposit vol. (log10) 

Linear regression model (y~1+x1) estimated coefficients 

Estimate SE t statistic p value 

Intercept 5.8468 0.9048 6.462 4.4368x10-6 

x1 -0.69939 0.12803 -5.4629 3.4479x10-5 

     

 RMSE R2 Adjusted R2 F-statistic 

 0.228 0.624 0.603 3.45x10-5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Summary of diagnostics for a linear regression fit to the normalised index, , of run-out (log10)  versus volume (log10; Fig 

6.12a). Source data is found in Appendices H and J. 

Summary of diagnostics for a linear regression fit to the volume of material remaining stalled in the source area: total 

deposit volume (log10) against total deposit volume (log10; Fig. 6.12b). Source data is found in Appendix L. 
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Appendix L 

Volumetric data 

 Presented below are the source data for Fig. 6.12b. The volume of material stalled in the 

source area following each simulation was calculated using a mask of the scar. The ratio represents 

the ratio of this volume: total deposit volume.  

 

 

Event 
Volume (m3) 

Total Stalled in source Ratio 

1 94,144,204 2,803,500 0.02978 

2 11,138,440 601,875 0.05404 

3 22,146,972 850,480 0.03840 

4 29,977,193 1,291,250 0.04307 

5 7,058,614 549,000 0.07778 

6 5,867,483 1,619,500 0.27601 

7 6,118,564 1,029,000 0.16818 

8 11,806,682 643,730 0.05452 

9 16,474,363 1,378,200 0.08366 

10 5,236,800 328,600 0.06275 

11 4,005,045 595,430 0.14867 

12 7,109,620 633,680 0.08913 

13 42,199,354 2,929,700 0.06943 

14 33,917,619 940,625 0.02773 

15 10,592,135 1,606,200 0.15164 

16 18,694,158 604,375 0.03233 

17 2,884,546 1,009,800 0.35007 

18 2,803,950 1,391,300 0.49619 

19 20,071,407 775,390 0.03863 

20 5,632,259 423,150 0.07513 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


