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Abstract

In this thesis, we examine the relationship between the metal-enriched inter-

galactic medium (IGM) and galaxies at z < 1. In particular, we investigate the

nature and consequence of feedback from active galactic nuclei (AGN) and super-

novae, which shape the evolution of galaxies and are responsible for enriching

the IGM with metals. The IGM is surveyed in ultraviolet (UV) absorption lines

against background quasars (QSOs), whilst galaxies are surveyed in emission by

means of optical photometry and spectroscopy. Simulated samples of IGM ab-

sorption systems and galaxies are also extracted from the Evolution andAssembly

of GaLaxies and their Environments (Eagle) cosmological hydrodynamical simu-

lation for critical comparisonwith the data. We present the results of two primary

studies that are designed to address key questions on the nature and consequence

of feedback:

1. We examine complex absorption pro�les in the spectrum of a QSO at z ∼ 1,

that trace a metal-rich out�ow originating from the host galaxy. We show

that these absorption pro�les originate from dense, sub-pc scale gas clumps

at distances of a few kpc from the central AGN. The gas is likely to be dy-

namically unstable, and is potentially far from ionization equilibrium. We

favour a scenario in which the clumps are formed in-situ, and are entrained

in a hot (T > 106 K) out�owing wind that may trace the majority of the

mass, but is undetected in the UV. These observations provide a detailed
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set of constraints on the nature of feedback in QSO host galaxies.

2. We investigate the distribution and dynamics of metal-enriched gas around

galaxies at z < 1 through the two-point cross- and auto-correlation func-

tions of O VI absorbers and galaxies. We �nd that O VI absorbers show

little velocity dispersion with respect to galaxies on ∼ Mpc scales (. 100

km s−1). O VI absorbers and galaxies may not linearly trace the same un-

derlying distribution of matter in general. In particular, the distribution of

O VI around galaxies could bemore extended than the distribution of galax-

ies around themselves. As a result, we speculate that a fraction of the O VI

absorbers might trace the warm-hot intergalactic medium (WHIM). In ad-

dition, we �nd that O VI absorbers are equally likely to inhabit the same

regions typically occupied by star-forming galaxies as they are to inhabit

the same regions typically occupied by non star-forming galaxies. Further-

more, O VI absorbers are either not ubiquitous to galaxies, or their distri-

bution around them is patchy on & 100 kpc scales (or both). Comparisons

with the Eagle simulation indicate an unprecedented level of agreement be-

tween both the anisotropies in the cross-correlation functions, and their am-

plitudes and slopes. This result is both remarkable and robust, since the

feedback parameters in Eagle are not adjusted to ensure a match with ob-

servations such as these. We therefore �nd that the feedback implementa-

tions currently employed in cosmological hydrodynamical simulations are

su�cient to provide meaningful insights on the dynamics and distribution

of the metal-enriched gas surrounding galaxies.



Declaration

The work in this thesis is based on research carried out at by the author at the Ex-

tragalactic Astronomy andCosmologyGroup and the Institute for Computational

Cosmology, Department of Physics, Durham University, UK, under the supervi-

sion of Prof. Simon L. Morris and Dr Tom Theuns. No part of this thesis has been

submitted elsewhere for any other degree or quali�cation.

The results and analysis presented in Chapter 3 have been published in the fol-

lowing paper:

• Acompact, metal-rich, kpc-scale out�ow in FBQS J0209−0438: detailed diagnostics

fromHST/COS extremeUV observations, Finn, C.W.;Morris, S. L.; Crighton, N.

H. M.; Hamann, F.; Done, C.; Theuns, T.; Fumagalli, M.; Tejos, N.; Worseck,

G., MNRAS 440, 3317–3340 (2014).

The results and analysis presented in Chapter 6 are in preparation for publication.

During this time, the author has also contributed to the following publishedwork:

• Large scale structure in absorption: gas within and around galaxy voids, Tejos, N.;

Morris, S. L.; Crighton, N. H. M.; Theuns, T.; Altay, G.; Finn, C. W., MNRAS

425, 245–260 (2012).

• On the connection between the intergalactic medium and galaxies: The H I–galaxy

cross-correlation at z . 1, Tejos, N.; Morris, S. L.; Finn, C. W.; Crighton, N. H.

M.; Bechtold, J.; Jannuzi, B. T.; Schaye, J.; Theuns, T.; Altay, G.; Le Fèvre, O.;

Ryan-Weber, E.; Davé, R., MNRAS 437, 2017–2075 (2014).

v



vi

Most of the work in this thesis is entirely that of the author unless referenced

to the contrary in the text or in the following list:

• Acquisition and reduction of the infrared spectroscopy of FBQS J0209−0238

from Magellan/FIRE, presented in Chapter 3, was performed by Michele

Fumagalli.

• Galaxy data and spectral line measurements from the GAMA survey that

are not part of the current public data release, presented in Chapter 4, were

obtained from Madusha Gunawardhana, Peder Norberg, and the GAMA

survey team.

• The extraction of synthetic QSO sight-lines through the Eagle simulation

with SpecWizard, described in Chapter 5, was undertaken by Robert Perry.

Copyright © 2015 by Charles W. Finn.

“The copyright of this thesis rests with the author. No quotations from it should

be published without the author’s prior written consent, and information derived

from it should be acknowledged.”



Acknowledgements

Firstly, I’m am deeply grateful to my parents, Duncan and Edwina, and my two

younger sisters, Georgina andRachel, for their unwavering love and support through-

out my life and during this important time.

Many thanks to must go to Simon Morris, who has been an excellent supervi-

sor, and provided me with a wealth of support and guidance. He has been instru-

mental in my development as an independent working scientist, encouraging me

to question, to think critically, and to give due consideration to all manner of inter-

pretations in light of new results. I also thankmy second supervisor, Tom Theuns,

for his insight, and for always coming up with interesting new ideas to explore.

Special thanks must also go to Neil Crighton, who has been a constant source of

help and support, and is hugely responsible for my development as a competant

computer programmer. Much gratitude also goes to Nicolas Tejos, who was a

major source of inspiration to me early in my PhD, and has been a terri�c col-

laborator and friend. Thanks also to Rich Bielby and Michele Fumagalli for your

enthusiasm, help and insight.

Life in Durhamwouldn’t have been the samewithout all thewonderful friends

I havemade here. I would like to thankmy o�cemates, past and present, all those

who I worked with and participated in journal club meetings with; thank you for

your help and ideas, and for creating such a nice, friendly working atmosphere.

Special thanks to: Tamsyn, Rachel, Peter M., Peter C., Emma, Ewan, Will, Helen,

Alice, Chris, Violeta, Madusha, Michele, Gabriel, Tim, Steph, Nicolas, Rich, Alas-

dair, Danny, Matthieu, Ben, Andrew, Paddy, Sownak, Alex, Flora, Ben, Alice, Alix,

George, Nikki, James C., James T., James S., Rob, Wojciech, Mike and Michelle!

vii



Contents

Abstract iii

Declaration v

Acknowledgements vii

1 Introduction 1

1.1 The ΛCDM paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cosmological principles . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Geometry and dynamics of the expanding Universe . . . . . 4

1.2.2 Observations under a ΛCDM framework . . . . . . . . . . . 9

1.3 Galaxies and the intergalactic medium . . . . . . . . . . . . . . . . . 13

1.4 Rest frame observables . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Galaxy observables . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 IGM observables . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6 Motivation and structure of the thesis . . . . . . . . . . . . . . . . . 32

2 Detecting the IGM in absorption 34

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 The Cosmic Origins Spectrograph . . . . . . . . . . . . . . . . . . . 34

2.2.1 FUV design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 NUV design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.3 Flight performance . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.4 Noise properties . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



Contents ix

2.3 The QSO sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 COS data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Continuum �tting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Absorption line identi�cation . . . . . . . . . . . . . . . . . . . . . . 56

2.7 Voigt pro�le �tting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8 The absorber sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 A kpc scale out�ow associated to a QSO at z ∼ 1 68

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Observations of FBQS J0209-0438 . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2 Redshift measurement and black hole mass . . . . . . . . . . 74

3.3.3 The COS spectrum of Q0209 . . . . . . . . . . . . . . . . . . . 75

3.3.4 Spectral energy distribution . . . . . . . . . . . . . . . . . . . 76

3.4 Analysis of the associated absorption . . . . . . . . . . . . . . . . . . 80

3.4.1 Partial covering . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2 Column densities and line widths . . . . . . . . . . . . . . . 88

3.5 Properties of the associated absorbers . . . . . . . . . . . . . . . . . 94

3.5.1 Electron number density in the absorbing clouds . . . . . . 94

3.5.2 Photoionization analysis . . . . . . . . . . . . . . . . . . . . . 97

3.5.3 Collisional ionization equilibrium . . . . . . . . . . . . . . . 100

3.5.4 Gas metallicity and total column density . . . . . . . . . . . 103

3.5.5 Distance and size constraints . . . . . . . . . . . . . . . . . . 107

3.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . 109

3.6.1 Gas structure and dynamics . . . . . . . . . . . . . . . . . . . 110

3.6.2 Are the AAL clouds out of equilibrium? . . . . . . . . . . . . 113

3.6.3 The connection to associated X-ray absorption . . . . . . . . 117

3.6.4 Out�ow models . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4 Galaxy surveys along QSO sight-lines 121

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



Contents x

4.2 The galaxy sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Galaxy redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4 Global astrometry/photometry solutions . . . . . . . . . . . . . . . 128

4.5 Spectral line measurements . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Star formation activity . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Simulated IGM absorber/galaxy samples 136

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 The Eagle simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Creating the mock catalogues . . . . . . . . . . . . . . . . . . . . . . 140

5.3.1 Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.2 Absorption-line systems . . . . . . . . . . . . . . . . . . . . . 142

6 IGM-galaxy clustering at z < 1 148

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.4 Random catalogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4.1 Random galaxy catalogues . . . . . . . . . . . . . . . . . . . 159

6.4.2 Random absorber catalogues . . . . . . . . . . . . . . . . . . 161

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.5.1 2D two-point correlation functions . . . . . . . . . . . . . . . 163

6.5.2 Correlation functions projected along the line-of-sight . . . 170

6.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . 178

6.6.1 Comparisons with previous results . . . . . . . . . . . . . . 179

6.6.2 Interpretation of the results . . . . . . . . . . . . . . . . . . . 182

7 Summary and Conclusions 186

7.1 Key �ndings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.2 Future prospects and concluding remarks . . . . . . . . . . . . . . . 190



Contents xi

Appendix A 193

A.1 Time-dependent ionization modelling . . . . . . . . . . . . . . . . . 193

Appendix B 199

B.1 Data tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



List of Figures

1.1 Dimensionless distance measures in cosmology . . . . . . . . . . . 12

1.2 Composite rest-frame spectra of a typical star-forming, and non

star-forming galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 An illustration of the QSO absorption line technique . . . . . . . . . 20

1.4 Absorption line pro�les . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 The curve of growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 The layout of the Cosmic Origins Spectrograph (COS) . . . . . . . . 35

2.2 The COS FUV optical path . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 A schematic of the COS FUV detector . . . . . . . . . . . . . . . . . 38

2.4 The COS NUV optical path . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 A comparison between a Gaussian LSF and the model COS LSF . . 41

2.6 The COS G130M FUVB spectrum of 3C 273 . . . . . . . . . . . . . . 50

2.7 An example continuum �t to a region of the spectrum of Q0209 . . 55

2.8 Statistics of O vi absorbers in our survey . . . . . . . . . . . . . . . . 66

3.1 The Magellan/FIRE spectrum of Q0209 . . . . . . . . . . . . . . . . 75

3.2 The rest-frame HST/COS spectrum of Q0209 . . . . . . . . . . . . . 77

3.3 Rest-framemodel SEDs from optxagnf�tted to theHST/COS spec-

trum of Q0209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Prominent associated absorption lines in the observed-frameHST/COS

spectrum of Q0209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Velocity structure in the associated N iv absorption trough of Q0209 84

3.6 Q0209 associated absorption line covering fractions . . . . . . . . . 85

3.7 Reduced χ2 values for Voigt pro�le �ts to the N iv and O iv Q0209

associated absorption troughs as a function of temperature . . . . . 90

xii



List of Figures xiii

3.8 Voigt pro�les �tted to the Q0209 associated absorption lines . . . . 92

3.9 The electron number density, ne, as a function of the column den-

sity ratio between O iv∗ and O iv . . . . . . . . . . . . . . . . . . . . 97

3.10 Theoretical ionization fractions for a range of metal ions f (Mi) in

optically thin clouds in photoionization equilibriumwith theQ0209

spectral energy distribution . . . . . . . . . . . . . . . . . . . . . . . 99

3.11 Theoretical ionization fractions for a range ofmetal ions, f (Mi), un-

der CIE as a function of temperature . . . . . . . . . . . . . . . . . . 101

3.12 The predicted Q0209 associated O iv column density as a function

of gas temperature for a range of ionization parameters and a �xed

H i column density of 1015 cm−2 . . . . . . . . . . . . . . . . . . . . . 102

3.13 Ionization solutions for Q0209 associated absorption component v2 105

3.14 Ionization solutions for Q0209 associated absorption component v4 106

4.1 BPT diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1 Voigt pro�les derived from Eagle spectra . . . . . . . . . . . . . . . 144

5.2 The column density distribution function of O vi absorbers com-

pared to Eagle predictions . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3 Probability density functions of O vi column densities in the obser-

vations and the simulations . . . . . . . . . . . . . . . . . . . . . . . 147

6.1 The real and random galaxy redshift distributions . . . . . . . . . . 161

6.2 The real and random O vi redshift distributions . . . . . . . . . . . 162

6.3 Two-dimensional correlation functions for galaxies and O vi ab-

sorbers - full sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4 Two-dimensional correlation functions for galaxies and O vi ab-

sorbers - Eagle full sample . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5 Two-dimensional correlation functions for galaxies and O vi ab-

sorbers - star forming galaxies only . . . . . . . . . . . . . . . . . . . 168

6.6 Two-dimensional correlation functions for galaxies and O vi ab-

sorbers - Eagle star forming galaxies only . . . . . . . . . . . . . . . 169

6.7 Two-dimensional correlation functions for galaxies and O vi ab-

sorbers - non star-forming galaxies only . . . . . . . . . . . . . . . . 171



List of Figures xiv

6.8 Two-dimensional correlation functions for galaxies and O vi ab-

sorbers - Eagle non star-forming galaxies only . . . . . . . . . . . . 172

6.9 Correlation functions projected along the line-of-sight - full sample 173

6.10 Correlation functions projected along the line-of-sight - star-forming

galaxies only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.11 Correlation functions projected along the line-of-sight - non star-

forming galaxies only . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.12 Correlation functions projected along the line-of-sight for galaxies

and O vi absorbers - full sample - Eagle comparison . . . . . . . . . 177

6.13 Correlation functions projected along the line-of-sight for galaxies

and O vi absorbers - star-forming galaxies only - Eagle comparison 178

6.14 Correlation functions projected along the line-of-sight for galaxies

and O vi absorbers - non star-forming galaxies only - Eagle com-

parison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.1 A comparison between analytical and numerical calculations of the

non-equilibrium evolution in nH i for changes in number density

and incident �ux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.2 Non-equilibrium evolution in the number density, n, of ions H i,

O iv, O v, O vi, Ne viii, and Mg x following a step-function change

in number density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.3 Non-equilibrium evolution in the number density, n, of ions H i,

O iv, O v, O vi, Ne viii, and Mg x following a step-function change

in incident �ux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198



List of Tables

2.1 COS spectroscopic modes . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 The QSO sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 The QSO observations . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Commonly observed transitions in QSO spectra . . . . . . . . . . . 58

2.5 Additional transitions associated to the Galaxy . . . . . . . . . . . . 61

2.6 Additional transitions associated to the QSO . . . . . . . . . . . . . 62

3.1 A summary of the HST/COS observations of Q0209 . . . . . . . . . 74

3.2 Associated absorption lines inQ0209 detected at a> 3σ signi�cance

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Q0209 associated absorber covering fractions . . . . . . . . . . . . . 87

3.4 Q0209 associated absorber column density and Doppler broaden-

ing parameter measurements . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Total hydrogen number density in each Q0209 associated absorp-

tion component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 The galaxy sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 QSO sight-line �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3 Spectral index de�nitions . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 Box sizes and resolutions of the main Eagle simulations . . . . . . . 137

B.1 Catalogue of QSO absorption-line systems . . . . . . . . . . . . . . 200

B.2 Spectroscopic catalogue of galaxies around QSO sight-lines . . . . . 201

xv



Chapter 1

Introduction

The aim of this thesis is to investigate the relationship between galaxies and the

metal-enriched intergalactic medium (IGM). In this chapter, we will de�ne what

we mean when referring to these concepts, and summarise progress in the liter-

ature towards our understanding in this area. But �rst, to set the scene, we shall

brie�y review the observable facts and founding theoretical principles behind the

consensus galaxy formation paradigm, and describe the key observables.

1.1 The ΛCDM paradigm

The consensus model of the Universe we inhabit is one predominantly formed of

exotic forms of matter and energy entirely di�erent to those found on earth in our

every day experience. These completely hypothetical entities are referred to as dark

matter and dark energy, and neither have been directly con�rmed by experiment.

Astonishing as this may sound, there are nevertheless compelling arguments for

their existence.

Dark matter is so-named because it is hypothesised to interact only through

gravity and the electroweak force, and therefore does not emit or absorb any form

of electromagnetic radiation. The presence of this invisible form of matter has

been inferred from a number of observations, notably from the velocity disper-

sions of galaxies in clusters (e.g. Zwicky, 1937), the rotation curves of spiral galax-

ies (e.g. Rubin & Ford, 1970; Rubin et al., 1980), the gravitational lensing induced

bymassive galaxy clusters (e.g. Clowe et al., 2006), and the power spectrum of the

cosmic microwave background (CMB) (e.g. Komatsu et al., 2011; Planck Collab-

oration et al., 2014). The latest measurements from the latter suggest that nearly

85% of all the matter in the Universe is dark matter. The small amount remain-

ing is that which can, in principle, be observed directly via the emission and/or
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absorption of electromagnetic radiation, and is referred to as ‘baryonic’ matter.1

The other major component to the Universe is dark energy. Nothing is known

of this elusive component, except that it must be responsible for the accelerated

expansion of the Universe. A potted history behind this is as follows. Early ob-

servations of local galaxies indicated that their velocities are proportional to their

distances (e.g. Hubble, 1929), and it was quickly realised that this may be natu-

rally explained by a set of solutions to Einstein’s General Relativity (GR) equations

(Einstein, 1916) that predict a largely isotropic and homogeneous Universe must

be expanding at some point in its history (e.g. Friedmann, 1922; Lemaître, 1927;

Robertson, 1935; Walker, 1935). An extrapolation of these models also points to a

time in the past when all the components of the Universe were concentrated into

a single point of zero size and in�nite energy density - a singularity. This idea

has developed into a theory for the origin of the Universe, popularly termed the

‘Big Bang’ theory. Observational evidence for such a scenario comes from mea-

surements of the CMB (e.g. Penzias & Wilson, 1965), interpreted as the left-over

radiation from the ‘surface of last scattering’ (the point in time after the Big Bang

when radiation and matter decoupled, e.g. Dicke et al., 1965), and the primordial

abundance of light elements (e.g. Pettini &Cooke, 2012), which are consistentwith

those predicted from Big Bang nucleosynthesis (e.g. Alpher et al., 1948).

Determining the time evolution of the Universe requires some knowledge of

its matter-energy density, which determines its geometrical curvature. Observa-

tions of the CMB favour a Universe with e�ectively zero curvature, and for such

a Universe that is matter dominated, the gravitational force acts to decelerate the

expansion. However, observations of type Ia supernovae in distant galaxies have

shown that the expansion of the Universe is accelerating (e.g. Riess et al., 1998; Perl-

mutter et al., 1999). This behaviour requires that there be an additional component

to the energy density of the Universe that opposes the force of gravity. It is this

additional component that is referred to as dark energy, which can be described

1Electrons and neutrinos (fermions) are usually included in the de�nition of this component,
although they are considerably lighter than baryons and therefore do not contribute signi�cantly
to the total matter density of the Universe.
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by the addition of a constant to the �eld equations of GR, known as the cosmo-

logical constant, Λ. This must be present even in the absence of matter, and can

therefore be thought of as an intrinsic property of the vacuum. The energy associ-

ated with the vacuum is in fact predicted by quantum �eld theory (e.g. Weinberg,

1989; Carroll, 2001), but di�ers from the value inferred from astronomical data by

∼ 120 orders of magnitude! Reconciling the tension between measurements of Λ,

and those predicted in theory, will likely revolutionise our understanding of the

Universe.

The cosmological paradigm we assume throughout this thesis is referred to

as the ΛCDM paradigm, to mean that we exist in a Universe whose evolution is

primarily dictated by the presence of dark energy in the form of a cosmological

constant, Λ, and a form of dark matter known as cold dark matter. By ‘cold’ we

mean that the dark matter particle is both massive and non-relativistic. Such a

dark matter particle is needed to reconcile the measured clustering of galaxies

with the hypothesis that they are related to small over-densities at early times as

are traced by the (extremely) small, but statistically signi�cant temperature �uc-

tuations in the CMB. Since darkmatter should be collisionless and dissipationless

(it interacts only via gravity and the electroweak force), primordial baryonic ma-

terial is allowed to radiatively cool, condense, and form stars (and galaxies) at the

peaks of the underlying dark matter distribution (e.g. Press & Schechter, 1974;

Rees & Ostriker, 1977; White & Rees, 1978; White & Frenk, 1991; Kereš et al., 2005)

in so-called dark matter ‘haloes’. This idea forms the basis for galaxy formation

under a ΛCDM paradigm, and is a major backdrop to the work in this thesis. For

a thorough and extended description, we refer the reader to Mo et al. (2010).

1.2 Cosmological principles

Throughout this work, we assume a ΛCDM cosmology with best-�t parameters

as obtained from the latest measurement of the CMB power spectrum (Planck

Collaboration et al., 2014) unless stated otherwise. Here we describe a few key

aspects of this model, as are frequently adopted throughout the literature.
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1.2.1 Geometry and dynamics of the expanding Universe

For an isotropic and homogeneous Universe, the most general space-time metric

can be written as follows:

ds2 = c2dt2 − R2(t)
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2(θ)dφ2

)
, (1.2.1)

where c is the speed of light, t is cosmological time, r, θ, and φ are spherical coor-

dinates (radial distance, polar angle and azimuthal angle respectively), k denotes

the geometrical curvature of the Universe (k ∈ {−1, 0, 1}, corresponding to neg-

ative, zero, and positive curvature respectively), and R(t) is the time-dependent

scale factor, which accounts for the expansion of the Universe, making r, θ, and φ

time-independent comoving coordinates. It is common to de�ne a dimensionless

scale factor as

a(t) ≡ R(t)
R0

, (1.2.2)

where R0 is the present value of the scale-factor, so that a = 1 at the present time.

For a metric such as this, it is easy to see how we may recover a mathematical

description forHubble’s observations of an expandingUniverse, i.e. Hubble’s law,

v = Hr, where v is the recession velocity of a receding galaxy, and H is Hubble’s

constant. At small separations, where things look Euclidean, the proper separa-

tion of two objects is just R(t)dr, so we obtain Hubble’s law as

H = Ṙ
R
. (1.2.3)

In practice, we can measure this radial recession velocity in terms of a redshift, z,

which describes the shift in spectral lines (see Section 1.4), although this is only

valid for small separations, since at large separations spatial curvature becomes

important. In general, since photons travel on null geodesics,2 it is clear from the

2Geodesics with zero proper time, i.e. ds ≡ c2dτ2 = 0.
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metric that

r =
∫

cdt
R(t) . (1.2.4)

The comoving distance remains constant with time by de�nition, and the inte-

gral in time spans from temit to tobs, which are the times of emission and obser-

vation of a photon. Photons emitted at later times are received at later times, but

r must nevertheless remain constant, which enforces the condition dtemit/dtobs =

R(temit)/R(tobs). This means that events from distant galaxies time dilate accord-

ing to howmuch the Universe has expanded since the photons were emitted. It is

easy to see that this can be expressed in terms of frequency, ν, and thus

νemit
νobs

≡ 1 + z = R(tobs)
R(temit)

. (1.2.5)

In terms of the dimensionless scale factor, we have that a(t) = (1 + z)−1, so it is

clear that photon wavelengths stretch with the Universe.

The equation of motion for the scale factor is required if we are to know the

cosmological time at which photons are emitted (or absorbed) by any particu-

lar extragalactic object. With equation (1.2.1) in combination with Einstein’s �eld

equations, we can obtain the so-called Friedmann equation:

Ṙ2 −
8πG
3 ρR2 = −kc2. (1.2.6)

It is important to note that this equation applies for all contributions to ρ, i.e.

those frommatter, radiation, and the vacuum, so it is independent of the equation

of state. One astonishing feature is that there is a direct connection between the

density of the Universe and its geometry. This is seen by considering that there is

a critical density, ρcrit, that will yield k = 0, making the comoving part of themetric

in equation (1.2.1) look Euclidean:

ρcrit =
3H2

8πG
. (1.2.7)
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If ρ = ρcrit, the Universe looks Euclidean, and is spatially �at.3 On the other hand,

if ρ > ρcrit, the Universe is spatially closed, and if ρ < ρcrit, the Universe is spatially

open. Upon solving the Friedmann equation, it can be seen that closed Universes

are bound, and open Universes are unbound, to mean that the Universe either re-

collapses after a period of expansion, or continues to expand forever. Without ex-

plicitly solving the Friedmann equation, the case of the latter can easily be seen as

follows. First, we note that any open model will have an undecelerated expansion

so long as its equation of state is such that ρR2 is a declining function of R. In this

case, the potential energy (second term on the left-hand-side of equation (1.2.6))

becomes negligible with the total (right-hand-side of equation (1.2.6)), and the ki-

netic term, Ṙ2, tends to c such that R = ct. In this case, all objects are moving with

constant velocity, and the Universe continues to expand forever. To prove the case

of a closedUniverse requires explicitly solving the Friedmann equation, whichwe

shall not do here.

It is common to de�ne a dimensionless density parameter as the ratio of the

density to the critical density:

Ω ≡
ρ

ρcrit
=
8πGρ
3H2 . (1.2.8)

We can then re-write the Friedmann equation as

kc2

H2R2 = Ω − 1. (1.2.9)

A �at (k = 0) Universe therefore requires Ω = 1.

Since R, H, and Ω change with time, we denote their present day values with

a zero subscript. From the Friedmann equation, we can see that the present day

value for the scale factor is

R0 =
c

H0

(
Ω0 − 1

k

)− 1
2
. (1.2.10)

3Note that we still have curved spacetime in a �at Universe.
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This value becomes in�nitely large as Ω0 approaches unity, and so any model

with Ω0 very close to unity is virtually indistinguishable from a k = 0 model. In

practice, we shall denote Ω0 as Ω, and refer to the density parameter at all other

epochs by writing it as a function of redshift, Ω(z).

We also de�ne here the commonly used dimensionless (current) Hubble pa-

rameter as

h ≡
H0

100 km s−1 Mpc−1
. (1.2.11)

In these terms, the current density of the Universe is

ρ0 = 1.88 × 10−26Ωh2 kg m−3

= 2.78 × 1011Ωh2M� Mpc−3, (1.2.12)

and the current value of the scale factor is

R0 = 3000 |Ω − 1|−
1
2 h−1 Mpc. (1.2.13)

So far, we have not considered the e�ect of pressure on the evolution of the

Universe, which is important even for a matter dominated Universe at early times

when the temperature and density is high. To consider the e�ects of pressure,

we’ll take the time derivative of the Friedmann equation. We can deal with the

time derivative of the density by invoking conservation of energy: d(ρc2R3) =

−pd(R3), so that

R̈ = −4πGR
3

(
ρ +

3p
c2

)
. (1.2.14)

The unusual element to this equation is the occurrence of the term ρ+3p/c2, which

in fact arises because Einstein’s gravitational �eld equations in theweak-�eld limit

yield

∇2Φ = 4πG
(
ρ +

3p
c2

)
. (1.2.15)
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Pressure, therefore, acts as an extra form of gravity, which is outside the realms

of our everyday experience, but turns out to be important in cosmology.

Returning to the Friedmann equation in the form of equation (1.2.9), we recall

that Ω includes all contributions to the density of the Universe, from both matter

and energy. Matter and radiation (Ωm and Ωr) are obvious, but the third, Ωv ,

corresponding to the energy density of the vacuum, is less so. For this we �rst

note that the gravitational potential can be reduced to that which solves Poisson’s

equation: ∇2Φ = 4πGρ. In 1917, Einstein argued that, by symmetry, in a Universe

with constant density ρ, the gravitational potential, Φ, must also be constant, but

this does not solve Poisson’s equation. To allow for this, its modi�cation is as

follows:

∇2Φ +ΛΦ = 4πGρ, (1.2.16)

where Λ is a new constant of nature, termed the cosmological constant. We can

re-write this with a new quantity, ρrep = ΛΦ/4πG, as follows:

∇2Φ = 4πG(ρ − ρrep), (1.2.17)

i.e. with a constant repulsive density that has antigravity properties. This must be

present even in the absence of matter, and is therefore interpreted as an intrinsic

property of the vacuum. Weird as this sounds, for a vacuum with non-zero en-

ergy density, it can easily be shown that the vacuum must also have a non-zero

pressure, with a negative-pressure equation of state:

pvac = −ρvacc2. (1.2.18)

By analogywith equation (1.2.15), this indeed acts against gravity to cause a large-

scale repulsion. From a cosmological perspective, this is then the theoretical ex-

planation for what we term dark energy.

In order to solve the Friedmann equation for the expansion history of the Uni-

verse, we need to know how the density changes as R changes, which we can
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achieve by dividing the contents of the Universe into pressureless matter (ρ ∝

R−3), radiation (ρ ∝ R−4), and vacuum energy (ρ constant). In terms of quantities

that may be obtained from astronomical observations, we then have

8πGρ
3 = H2

0

(
Ωv +Ωma−3 +Ωra−4

)
. (1.2.19)

Using this, we can then always integrate the Friedmann equation numerically to

�nd R(t).

1.2.2 Observations under a ΛCDM framework

At many points during this thesis, we shall use the observed redshift, z, of an

extragalactic object to determine its comoving distance. From equation (1.2.4) we

have

r = c
∫ tobs

temit

dt
a(t)

= c
∫ a(tobs)=1

a(temit)

da
a(t)ȧ(t) , (1.2.20)

which in terms of observable parameters is

r = c
H0

∫ z

0
dz

(
Ωr(1 + z)4 +Ωm(1 + z)3 +Ωv + (1 −Ω)(1 + z)2

)− 1
2 . (1.2.21)

The latest observational constraints for these parameters are Ωr ≈ 0.000, Ωm ≈

0.307, Ωv ≈ 0.693, and H0 ≈ 67.77 km s−1 Mpc−1 (Planck Collaboration et al.,

2014), with Ω ≈ 1 and k ≈ 0. This corresponds to a Universe under a ΛCDM

paradigm that is consistent with being spatially �at, and presently expanding at

an increasing rate. It is of interest to note that only ≈ 16% of the contribution to

Ωm comes from baryonic matter. The majority is dark matter, presumably ‘cold’.

Another quantity of interest is the physical transverse size of an extragalactic

object, or the physical transverse separation between two extragalactic objects. For

the (k = 0) Universe implied by the cosmological parameters above, we may write
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the space-time metric in equation (1.2.1) as

ds2 = c2dt2 − R2(t)
(
dr2 + r2dψ2

)
, (1.2.22)

where dψ2 ≡ dθ2 + sin2(θ)dφ2 corresponds to the angular size on the sky. The

spatial part of this metric then tells us that we can �nd the proper transverse size

element as

dl⊥ = dψR(z)r = dψ R0r
1 + z

. (1.2.23)

The element of proper distance in the radial direction is R(z)dr, so we can also

calculate the cosmological volume element. For a region of sky whose area is A

steradians, combined with a depth in comoving distance dr, the proper volume

element corresponds to

dV =
(
R(z)rdψ

)2
× R(z)dr = AR(z)3r2dr. (1.2.24)

Often we are more interested in the comoving volume, which is as simple as re-

placing R(z) with R0 in the above equation.

One of the most important relationships for observational cosmology is that

between monochromatic �ux density and luminosity, which is encountered mul-

tiple times throughout this thesis. We start by assuming that an extragalactic ob-

ject emits light isotropically, so that photons pass through a sphere surrounding

the object with uniform �ux density. We next consider the origin of the metric in

equation (1.2.1) as being centred on the source, but because of homogeneity, the

comoving distance between the source and the observer is the same as it would be

had we placed the origin at the observer’s location. The photons from the source

therefore pass through a sphere of proper surface area 4π(R0r)2, on which the

observer sits. However, redshift a�ects the �ux density in four further ways:

1. Photon energies are redshifted, reducing the �ux density by a factor of (1+z).

2. Photon arrival rates are time dilated, reducing the �ux density by another

factor of (1 + z).
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3. The bandwidth, dν, is reduced by a factor of (1 + z), which increases the

energy �ux per unit bandwidth by one power of (1 + z).

4. The observed photons at frequency ν0 were emitted at frequency ν0(1 + z).

Overall, the �ux density is the luminosity at a frequency ν0(1 + z), divided by the

total area, divided by (1 + z):

Sν(ν0) =
L(ν0(1 + z))

4πR2
0r2(1 + z)

. (1.2.25)

Given an estimate of the functional form for L(ν), we can integrate over ν0 to get

the total �ux, known as the bolometric �ux.

Based on the form of the equations presented above, we can present two fur-

ther conventionally used comoving distance measures:

dA ≡
r

(1 + z) (1.2.26)

and

dL ≡ (1 + z)r, (1.2.27)

which are the angular diameter distance and the luminosity distance respectively. We

plot these distance measures in Figure 1.1, along with the comoving distance in

dimensionless form as a function of redshift. It is interesting to note in the middle

panel that the angular diameter distance turns over at z & 1.5. This is due to the

gravitational de�ection of light, which produces a focusing e�ect, as if we were

viewing distance objects through a massive �sh-eye lens!

Finally, we de�ne here the commonly used absolute magnitude, M, as the appar-

ent magnitude, m, of an extragalactic source if it were observed at a distance of

10 pc. This is simply a measure of luminosity. Absolute magnitudes are a�ected

by a shift of the emitted spectrum in frequency due to the redshift. This is ac-

counted for by the so-called K correction, K(z), which gives the di�erence between

the observed dimming with redshift for a �xed waveband and that expected on



1.2. Cosmological principles 12

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0
1
2
3
4
5
6
7
8
9

z

(c
/

H
0)
−

1 r(
z)

(c
/

H
0)
−

1 d A
(z

)
(c

/
H

0)
−

1 d L
(z

)

Figure 1.1: Dimensionless distancemeasures in cosmology as a function of redshift. From
top to bottom: comoving distance, angular diameter distance and luminosity distance.

bolometric grounds. We then have

m ≡ M + 5 log10

(
dL

10 pc

)
+ K(z). (1.2.28)
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1.3 Galaxies and the intergalactic medium

The major topic of this thesis is the IGM and its relationship to galaxies. Here we

de�ne what we mean when referring to these concepts, and summarise some key

�ndings in the literature.

Firstly, a ‘galaxy’ is a commonly used term in astronomy, but one that is not that

well de�ned (see Forbes & Kroupa, 2011, for a recent discussion). Often, from a

ΛCDM standpoint, galaxies are de�ned as being bound baryonic structures that

have formed stars, residing within the gravitational potential of a dark matter

halo. However, it would be nicer to �nd a de�nition that is not model dependent,

i.e. one that does not rely upon the presence of (as of yet still hypothetical) dark

matter haloes. Onemay therefore simply propose that a galaxy is a gravitationally

bound systemof stars and other baryonic components. However, there are a grow-

ing number of astronomical objects with extremely low luminosities and surface

brightnesses that �ll the gap between objects traditionally thought of as galaxies,

and far smaller collections of stars known as ‘star clusters’ (a few ×102M�; Mis-

geld & Hilker, 2011). To address this issue, Willman & Strader (2012) proposed a

new de�nition, stating: ‘a galaxy is a gravitationally bound collection of stars, whose

properties cannot be explained by a combination of baryons and Newton’s laws of grav-

ity’, which is rooted in the idea that galaxies should show evidence for what is

interpreted to be dark matter in the consensus theoretical paradigm. Neverthe-

less, there may be other kinds of objects to consider, such as the so-called ‘dark

galaxies’, having cold gas but very few, or no stars (e.g. Cantalupo, 2010; Gnedin

& Kravtsov, 2010; Kuhlen et al., 2012; Cantalupo et al., 2012). For the purposes

of this thesis, we shall simply refer to a galaxy as a gravitationally bound system,

whose observed spectrum is consistent with that of a population of stars and/or

gas in optical emission, having an integrated luminosity greater than that typical

of Milky Way globular clusters (& 106−7L�).

The IGM is loosely de�ned as the baryonic material that is not part of a galaxy.

Since galaxies likely do not evolve in closed boxes - there is almost certainly a cycle

of material �owing in and out (see Putman et al., 2012, for a recent review) - the
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de�nition of the IGM is, inevitably, closely linked to that of a galaxy. It is tempting

to de�ne a boundary at which a galaxy ends, and the IGM begins, but there is no

obvious choice for such a boundary. This was recently discussed at length by

Shull (2014), who consider a number of di�erent boundary conditions, including

the commonly used ‘virial radius’, denoting the characteristic separation between

collapsed structures in dynamical equilibrium, and externalmatter, whichmay be

infalling due to gravity, or out�owing due to winds from supernovae explosions

and/or active galactic nuclei (AGN). Characteristic radii such as this form a useful

reference point that scales naturally with galaxy stellar and halo mass, however,

there is no evidence or theoretical motivation for a sudden physical change in the

properties of the IGM at this, or any other boundary one cares to draw around

galaxies in general.

For the purposes of this thesis, we simply consider the IGM as baryonic mate-

rial that is not in the vicinity of galaxy discs and spheroids, where the majority of

the stars and sites of active star formation are to be found. Gas in these regions is

typically referred to as the interstellar medium (ISM), although it is important to

note that there is no clear de�nition for where the ISM transitions into the IGM ei-

ther. For example, there is growing evidence for the existence of hot (∼ 106 K) gas

‘coronae’ in and around galaxies, which are bound and in hydrostatic equilibrium

(e.g. Spitzer, 1956; Forman et al., 1985; Wang et al., 2001; Strickland et al., 2004a;

Fukugita & Peebles, 2006; Li & Wang, 2013a), and may form due to both infalling

gas that is shock heated to approximately the dark matter halo virial tempera-

ture4 (e.g. Rees & Ostriker, 1977; White & Rees, 1978; White & Frenk, 1991; Crain

et al., 2013; Li et al., 2014), and due to shocks associated with stellar winds and su-

pernova explosions (e.g. Mathews, 1990; Ciotti et al., 1991; Strickland et al., 2004b;

Parriott&Bregman, 2008; Li&Wang, 2013b). The full extent of the corona is uncer-

tain, but it may also play host to the cooler (but frequently ionized) gas observed

in absorption against background quasars (QSOs) (and against background stars

in the Milky Way, e.g. Wakker & van Woerden, 1997; Sembach et al., 2003; Shull

4Tvir = 106(vcirc/167 km s−1)2 K, where vcirc is the circular velocity. Gas at this temperature is
in quasi-hydrostatic equilibrium with the dark matter halo.
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et al., 2009; Lehner & Howk, 2011; Tumlinson et al., 2013; Werk et al., 2013, 2014)

in a region often termed the circumgalactic medium (CGM), and it is almost cer-

tainly coincident with the observed ‘extraplanar’ Hα emission (e.g. Hoopes et al.,

1999; Rossa & Dettmar, 2000, 2003a,b; Miller & Veilleux, 2003a,b; Strickland et al.,

2004a) and neutral H I 21 cm emission (e.g. Chaves & Irwin, 2001; Fraternali et al.,

2002; Matthews &Wood, 2003; Barbieri et al., 2005; Boomsma et al., 2005; Ooster-

loo et al., 2007). All of these cooler gas components may arise due to gas conden-

sations in the corona (perhaps driven by supernova events; e.g. Bregman, 1980;

Fraternali & Binney, 2008; Marinacci et al., 2010; Marasco et al., 2012; Fraternali

et al., 2013), or from gas falling in at larger distances with potentially lower metal-

licity (e.g. Richter, 2012; Hernandez et al., 2013; Schmidt et al., 2014). In addition,

analytic theory and cosmological hydrodynamical simulations indicate the exis-

tence of cold (∼ 104−5 K), metal-poor, �lamentary gas �ows that penetrate galaxy

haloes without shock heating, predominantly in lowmass haloes at high redshift,

and potentially delivering gas from distances of several hundred kpc directly to

the sites of star formation (e.g. Birnboim &Dekel, 2003; Kereš et al., 2005; Dekel &

Birnboim, 2006; Kereš et al., 2009b; Dekel et al., 2009). The prevalence of these �l-

amentary gas �ows is somewhat debated (e.g. Sijacki et al., 2012; Bird et al., 2013),

however the observations are not inconsistent with this picture (see, for example,

Fumagalli et al., 2011; Bouché et al., 2013; Crighton et al., 2013).

There is thus a slew of evidence for a continuous interplay between multiple

gas components at multiple temperatures, densities and metallicities, extending

from the very centres of galaxies to beyond the virial radius. Indeed, tidal in-

teractions between galaxies, as for example seen locally in the Magellanic stream

(Mathewson et al., 1974; Brüns et al., 2005), indicate that these gaseous interac-

tions extend toMpc scales, and in a cosmological setting, galaxy overdensities are

likely fuelled with gas falling, together with galaxies, along �laments on scales of

tens of Mpc. Beyond this, a signi�cant fraction of the IGM may also reside away

from galaxy overdensities in galaxy voids (e.g. Penton et al., 2002; Tejos et al., 2012,

2014).
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1.4 Rest frame observables

In this section, we describe the key rest-frame observables attributable to galaxies

and the IGM.

1.4.1 Galaxy observables

Galaxies are characterised �rst and foremost by their apparent magnitudes, their

colours, and their spectral features. Measuring a redshift also allows for a deter-

mination of their luminosities and rest-frame colours. These are the basic observ-

ables, which may be transformed into physical properties such as their star for-

mation rates and stellar masses by making a number of prior assumptions on, for

example, the initial stellar mass function, the star formation history, the density,

temperature, and metallicity of the star-forming regions, the local ionization pa-

rameter, and the amount of dust in the galaxies. Some of these can be constrained

from additional spectral information, but often these constraints are subject to

further assumptions.

The spectra of galaxies consist of a relatively smooth stellar continuum, to-

gether with a collection of emission and absorption lines (which are not always

present). The continuum is produced by the combination of many stellar spectra,

which are approximately blackbody emitters spanning a range in temperature.

The resulting continuum is therefore relatively �at. The emission lines are usu-

ally produced in the interstellar medium surrounding stars that are bright in the

extreme ultraviolet (EUV). These are typically young and massive stars that are

short-lived, and so the emission lines are almost always coincident with regions of

active star formation. The EUV photons from these stars ionize the surrounding

gas, and the resulting cascade of electrons through recombination is what gives

rise to the emission lines. The most commonly observed rest-frame optical emis-

sion lines in galaxy spectra are the Hα and Hβ (Balmer series) lines, the [O II]

λλ3726, 3729 and [O III] λλ4959, 5007 doublets, the [S II] λλ6717, 6731 doublet,

and the [N II] λλ6548, 6583 doublet (e.g. Kennicutt, 1992). Galaxies with AGN

often produce more highly ionized lines in addition to these, and they are some-
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times much broader, owing to the larger velocity dispersions of the gaseous re-

gions close to the super massive black holes (SMBHs) at their centres. In this case,

it is the EUV and X-ray radiation from the AGN that ionizes the gas, rather than

starlight, and this ionizing �ux also produces extended transition regions from

which low ionization lines are emitted. The absorption lines are usually produced

in the atmospheres of typically old, low-mass stars, and in cold interstellar gas. A

primary feature is the D4000 break, which is a break in the continuum at 4000 Å,

and is caused by both the break in the Balmer series, and blanket absorption of

radiation from metals in stellar atmospheres. In addition, the most common dis-

tinct absorption lines are the Ca II H and K lines, the CH molecule G-band line,

the Mg λ5175 and Na λ5894 lines, and the Ca II λλλ8498, 8542, 8662 triplet. In

the absence of Balmer emission lines, the corresponding Balmer absorption lines

are also often visible.

In Figure 1.2 we show rest-frame composite spectra of a typical star-forming

and non star-forming galaxy obtained from the Sloan Digital Sky Survey (SDSS;

Abazajian et al., 2009). We label all the prominent emission and absorption lines.

The di�erences between the spectra are striking. The star-forming galaxy spec-

trum shows an abundance of emission lines and a relatively �at continuum, with

only a modest D4000 break, whilst the non star-forming galaxy spectrum is dom-

inated by absorption lines, and shows a highly prominent D4000 break. Unsur-

prisingly then, the presence of optical emission lines (or lack thereof), and the

prominence of the D4000 break, are often used as indicators of star formation ac-

tivity. However, there are important caveats to bear in mind, such as the amount

of dust in the galaxy, the underlying absorption, and the ionization parameter and

metallicity in the ISM. All of these can a�ect the spectrum in di�erent ways, and

have to be taken into account.

The presence of dust in a galaxy will modify its spectrum by absorbing and

scattering photons. This preferentially happens at shorter wavelengths, and so

the net e�ect is often termed ‘reddening’. Reddening by dust can be corrected for

in a number of ways; one of the most common being the use of the Balmer decre-

ment (e.g. Seaton, 1979; Cardelli et al., 1989; Calzetti, 2001), which is themeasured
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Figure 1.2: Composite rest-frame spectrum of a typical star-forming (top panel) and non
star-forming (bottom panel) galaxy obtained from the Sloan Digital Sky Survey (SDSS;
Abazajian et al., 2009), with some of the most prominent emission and absorption lines
labelled.

ratio of Hα and Hβ line strengths. By comparing this ratio to that expected in the-

ory (for a assumed density and temperature; Osterbrock, 1989), and combining

this with amodel for the wavelength-dependence of the attenuation (e.g. Calzetti,

2001; Fischera et al., 2005), a ‘dust-free’ spectrum can be recovered.

Underlying stellar absorption beneath emission lines leads to measured line

�uxes that are lower than the intrinsic ones. This particularly a�ects the Balmer

lines, and can be corrected for by considering the absorption at weaker lines in the

series (where the absorption component may dominate, e.g. at Hδ; Hopkins et al.,
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2003), or by �tting templates generated from stellar population synthesis models

(e.g. Bruzual & Charlot, 2003; Maraston & Strömbäck, 2011).

Uncertainty due to the ionization parameter and metallicity in the ISM is typ-

ically minimised by considering emission lines that are less sensitive to these pa-

rameters, although they can be estimated to some degree by considering ratios

between emission lines in combination with photoionization and spectral energy

distribution (SED) modelling (e.g. Kewley et al., 2001). Calculations such as these

are also an important diagnostic on the contribution fromAGNactivity, which can

dominate substantially over that from star formation. Spectra that are dominated

by an AGN component are usually discarded in the construction of star-forming

samples, since it is often very di�cult (or impossible) to subtract away this contri-

bution.

1.4.2 IGM observables

Due to the extremely low density of the IGM, its observation is currently limited

and di�cult. In most circumstances, the only way to characterise it is through the

measurement of intervening absorption lines or �ux decrements in QSO spectra,5

as was �rst proposed and implemented in the mid 1960s (Gunn & Peterson, 1965;

Scheuer, 1965; Lynds & Stockton, 1966; Burbidge et al., 1966; Stockton & Lynds,

1966; Kinman et al., 1966). This limits the characterisation of the IGM to being one-

dimensional, but for spectra with reasonable signal-to-noise ratio (SNR) (& 10),

allows for the detection of gaswith very low column densities (log(N/cm−2) & 13)

in neutral hydrogen. Similarly low column densities may also be probed in some

metal transitions (see Chapter 2, Section 2.6 for an exhaustive overview). These

column densities are many orders of magnitude below that currently accessible

with emission-line studies, which are limited to the densest gas in and around the

immediate environments of galaxies and sites of star formation.

We show an illustration of the QSO absorption line technique in Figure 1.3. For

5There are also recent e�orts to do the same with high redshift galaxies that are bright in the
rest-frameultraviolet (e.g. Lee et al., 2014), although these galaxies are far fainter thanQSOs, which
makes this approach currently very challenging.



1.4. Rest frame observables 20

Figure 1.3: An illustration of the QSO absorption line technique. Neutral hydrogen along
the line-of-sight to a background QSO creates a ‘forest’ of absorption lines at wavelengths
shorter than the observed wavelength of the QSO Lyα emission line, known as the Lyα
forest. Absorption lines at wavelengths longer than the Lyα emission line are attributable
to intergalactic metals. © Michael Murphy.

z & 3, the Lyα emission line of atomic hydrogen is redshifted into the optical win-

dow, and is accessible from ground-based telescopes and instrumentation. Being

by far the most abundant element in the Universe, most of the absorption lines in

QSO spectra at wavelengths less than that of the redshifted Lyα line are expected

to come from the hydrogen Lyα transition. This is indeed what is observed, with

there being an apparent ‘forest’ of absorption lines at these wavelengths, com-

monly known as the Lyα forest. Other absorption lines at wavelengths greater

than the redshifted Lyα line are also present, attributable to intergalactic metals,

although these lines are far less common.

Fundamentally, the absorption of photons from a distant source is due to the

presence of atoms and electrons in the IGM that scatter the light. If we consider

a beam of light with intensity I, falling on a plane-parallel slab of material with

thickness s and number density n, then if some of the light is scattered by the
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material away from the beam, we can write

dI
I

= −σn ds , (1.4.29)

where σ is some constant that depends on the material, having dimensions of

surface area. For a constant number density, we can integrate this to �nd

I = I0e−σns = I0e−τ , (1.4.30)

where

τ = σns (1.4.31)

is the optical depth, and I0 is the unattenuated intensity. The constant σ then de-

scribes the strength of the interaction between light and the particles that make

up the slab.

A simple interaction between matter and radiation is the scattering of photons

by free electrons -Thomson scattering. In this process, the electric �eld of the incom-

ing electromagnetic radiation exerts an oscillating force on the electron, causing it

to oscillate and radiate energy. In the classical limit, the fraction of scattered light

is independent of frequency, and the cross-section is the Thomson cross-section:

σT = 8π
3

(
e2

m2
e c2

)2
, (1.4.32)

where e is the electron charge, me is the electron mass, and c the speed of light.

This can be substituted for the σ in the equations above to give the optical depth

for Thomson scattering.

Now let’s consider the scattering induced by a photon interactingwith an elec-

tron in a harmonic potential well (a harmonic oscillator). The equation of motion

is

me ẍ = −meω
2
0x + meζẋ + eE0 sin(ωt), (1.4.33)
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whereω0 is the frequency of the harmonic oscillator, ζ represents a damping term,

and E0 is the amplitude of the electric �eld associated with the external radiation

�eld, driven with frequency ω. In this case, the cross-section for scattering de-

pends on the frequency of the incoming radiation, ν = 2πω, and the harmonic

oscillator will radiate most e�ciently when in resonance with the incoming radi-

ation, i.e. when ω ≈ ω0:

σ(ν) = πe2

me c
4γ

16π2(ν − ν0)2 + γ2

= c

√
3πσT
8

4γ
16π2(ν − ν0)2 + γ2

≡ σ0φ(ν), (1.4.34)

where γ = ω2
0ζ. We note that

∫ ∞
0 dν φ(ν) = 1, so σ0 is the net cross-section of the

transition, and φ describes the line shape:

φ(ν) =
4γ

16π2(ν − ν0)2 + γ2
, (1.4.35)

which is called the Lorentz pro�le.

In reality, we’re concerned with interactions of photons with bound states of

atoms, whereby an atom in a lower energy state, l, can absorb a photon of energy

Elu = Eu − El , and attain an upper energy state, u. The cross-section is frequency

dependent, but strongly peaked at the frequency ν0 = νlu = Elu/h (where h is

Planck’s constant), and is accurately given by

σ(ν) = πe2

me c
flu

4γlu

16π2(ν − νlu)2 + γ2lu
. (1.4.36)

This is reduced from the cross section for a damped, driven harmonic oscillator in

equation (1.4.34) by a factor flu , referred to as the f -value for the transition, oth-

erwise known as the oscillator strength, and corresponds to the integral over the

product of wave-functions of the l and u states. The natural line width, γlu , ap-
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pears as a result of the Heisenberg uncertainty principle.6 Because the line shape

is so similar to that of a damped, driven harmonic oscillator, the extendedwings of

the Lorentz pro�le, which result from the damping term, are often called damping

wings.

Now let’s suppose the IGM is homogeneous, with proper density n(z). We let

ρcrit = 3H2
0/(8πG) be the present day critical density, and take y ≈ 0.24 to be the

helium mass fraction (from Big Bang nucleosynthesis). From equation (1.4.31),

the mean number density of hydrogen atoms at a redshift z is then

nH = n0a−3, (1.4.37)

where

n0 ≡ 1.7 × 10−7Ωbh2

0.02 cm−3, (1.4.38)

and Ωb is the baryon contribution to the dimensionless density parameter. For

z ≥ 1, we can assume H(a) ≈ H0Ω
1/2
m a−3/2, with Ωm ≈ 0.3. We’ll also assume that

the Lyα cross-section is very peaked, so that σ(ν) ≈ σ0δ(ν − ν0), where δ is the

Dirac delta function. The optical depth at a frequency ν is then

τ(ν) =
∫ 1

a
σ(ν/a)n(a) c da

aH(a)

= σ0n0c

H0Ω
1/2
m

∫ 1

a
da δ(ν/a − ν0)a−5/2

= σ0n0c

H0Ω
1/2
m

a−3/2

ν0

= 13 000h−1
Ωbh2

0.02 (1 + z)3/2. (1.4.39)

Inserting measured values for the above parameters implies the optical depth in

Lyα at z ∼ 3, for example, should be around 105. If thiswere the case, we shouldn’t

expect to see any transmitted �ux below the Lyα emission line at all. The only

6The Heisenberg uncertainty principle, ∆E∆t ≥ ~, implies that an energy level u has a width
∆E ≈ ~/τu , where τu is the level lifetime.
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reason we do see the Lyα forest is because the Universe is highly ionized, with

neutral hydrogen contributing only one part in every ∼ 105 to the total or less!

To obtain a quantitative physical description of the intergalactic matter that

gives rise toQSOabsorption lines, we seek a theoretical description for the absorp-

tion line pro�les. In reality, this is not just the Lorentz pro�le in equation (1.4.35),

because we have thus far neglected thermal motions in the gas. According to the

Boltzmann distribution, for a gas in thermodynamic equilibrium, the fraction of

particles with mass m and velocity in the interval [v , v + dv] is

N(v) = 1
√
2πkT/m

e−v2/(2kT/m). (1.4.40)

The fraction of photons absorbed at a Doppler shifted frequency ν is just propor-

tional to the fraction of particles with velocity v = c(ν/νlu − 1). Therefore the line

shape from thermal motions alone is

φ(ν) = N(v)dv
dν

= c
νlu

1
√
2πkT/m

exp

−

(ν − νlu)2

2ν2lukT/mc2


 , (1.4.41)

which we rewrite as

φ(ν) = 1√
π∆ν2D

exp

−

(ν − νlu)2

∆ν2D


 , (1.4.42)

where

∆νD ≡
νlu

c

√
2kT
m
. (1.4.43)

The net pro�le describing an absorption line, theVoigt pro�le, is then a convolution

between the Lorentz pro�le in equation (1.4.35), and the thermal Gaussian pro�le

(Maxwell-Boltzmann pro�le) in equation (1.4.42):

φ(ν) =
∫ ∞

−∞

dv
1
√
πb

exp
(
−

v2

b2

)
4γlu

16π2(ν − νlu(1 − v/c))2 + γ2lu
, (1.4.44)



1.4. Rest frame observables 25

where

b ≡

√
2kT
m

= c∆νD
ν0

(1.4.45)

is the Doppler broadening parameter (km s−1). In general, absorption lines may also

be broadened by turbulent motions, so when referring to the Doppler broadening

parameter, we typically mean

b2 = b2turb +
2kT
m
, (1.4.46)

where bturb parametrises the turbulent contribution to the line broadening (as-

sumed Gaussian).

Finally, the optical depth in an absorption line may be written

τ(ν) = πe2

me c
fluNlφ(ν), (1.4.47)

where

Nl ≡

∫
ds nl (1.4.48)

is the column density (cm−2), and nl is the number density of atoms in energy state

l. The dependence on the observed frequency, ν, can be re-cast into a dependence

on velocity, v, via

ν = νlu

1 + z

(
1 − v

c

)
. (1.4.49)

An absorption line may therefore be parametrised by three quantities: a redshift,

z, a column density,7 N , and a Doppler broadening parameter, b. Fitting a Voigt

pro�le to an observed absorption line therefore allows one to estimate these quan-

tities. In addition, for a Gaussian velocity distribution (equation (1.4.42)), taking

7For the majority of this thesis, we shall drop the subscript l.
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the limit ν → νlu , we have that the optical depth at line centre is

τ0 =
√
π

e2

me c
Nl fluλlu

b
, (1.4.50)

where λlu = c/νlu is the rest-framewavelength for the atomic transition of interest.

When taking a spectrum of a distant source, what is actually being measured

is the �ux density, Fν, as a function of ν (equation (1.2.25)). We observe the source

using an aperture of solid angle ∆Ω, and assume the properties of the foreground

gas are essentially uniform over ∆Ω. Integrating equation (1.4.30) over the (small)

solid angle ∆Ωwe obtain

Fν = Fν(0)e−τ , (1.4.51)

where Fτ(0) is the �ux density from the source in the absence of absorption. To

measure τ(ν), one therefore requires an estimate for the SED of the source over

the range of interest (see Chapter 2, Section 2.5 for details). Using this estimate,

one can also calculate the dimensionless equivalent width of an absorption line:

W ≡
∫

dν
νlu

(
1 − Fν

Fν(0)

)
=

∫
dν
νlu

(1 − e−τ), (1.4.52)

which is also sometimes quoted as the wavelength equivalent width:

Wλ ≡

∫
dλ (1 − e−τ) ≈ λluW. (1.4.53)

In this thesis, we shall mainly make use of the latter.

To conclude this section, it is instructive to examine various limits in τ. In the

optically thin regime, τ � 1, and expanding (1 − e−τ), we have

W ≈
√
π

b
c
τ0

(
1 − τ0

2
√
2
+ . . .

)
≈
√
π

b
c

τ0

1 + τ0/(2
√
2)

= πe2

me c2
Nl fluλlu

1
1 + τ0/(2

√
2)
. (1.4.54)
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Figure 1.4: Absorption line pro�les in three regimes, using the H i Lyα transition as an
example, with b = 20 km s−1 and N(H i) = 6.6 × 1012 cm−2, N(H i) = 1.3 × 1016 cm−2, and
N(H i) = 1.3 × 1019 cm−2 in the upper, middle, and lower panels respectively. Note the
range on the x-axis in the bottom panel.

This is exact for τ0 → 0, and we �nd that

Nl = 1.130 × 1012 cm−1 W
fluλlu

(τ0 � 1). (1.4.55)

Therefore, even if we do not resolve an absorption line that is optically thin, mea-

surement of W allows for determination of Nl . An example of an absorption line

in this regime is shown in the top panel of Figure 1.4. Away from the optically

thin regime, equation (1.4.55) gives a lower limit on Nl .

As τ increases, and the core of the absorption line starts to saturate, the quan-

tity (1−e−τ) becomes increasingly ‘box-shaped’, as is depicted in themiddle panel

of Figure 1.4. If we treat the optical depth as a delta function with only Doppler
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broadening, i.e.

τ(ν) = τ0e−(v/b)2 , (1.4.56)

then we can approximate W in this regime by the fractional full width at half

maximum (FWHM):

W ≈
(∆ν)FWHM

νlu
= (∆v)FWHM

c
≈

2b
c

√
ln(τ0/ ln 2). (1.4.57)

In this case, W is very insensitive to τ0 (and therefore Nl), which makes determin-

ing Nl extremely challenging.

As τ increases yet further, the core of the absorption line is completely satu-

rated, but the damping wings in the pro�le start to become apparent (see the bot-

tom panel of Figure 1.4). In the limiting case, we can entirely neglect the Doppler

broadening of the line, and assume that the wings follow a pure Lorentz pro�le

(equation (1.4.35)):

τ(ν) ≈ πe2

me c
Nl flu

4γlu

16π2(ν − νlu)2 + γ2lu
(|ν − νlu | � νlub/c), (1.4.58)

and

W =

√
b
c
τ0
√
π

γluλlu

c
. (1.4.59)

We are back to a linear dependence of Nl on W in this regime, and determining

the column density is once again straightforward.

In Figure 1.5, we plot W as a function of the product Nl fluλlu for di�erent b-

values in the range 10 – 100 km s−1, where we have taken γluλlu as appropriate

for the Lyα transition of atomic hydrogen. This function is known as the curve of

growth. The region where the curves for di�erent b-values separate is described

by equation (1.4.57), and is known as the �at portion of the curve of growth. Here,

the di�culty in measuring Nl is very much apparent. Numerous combinations

of Nl and b can give equivalent widths that are indistinguishable. The situation
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Figure 1.5: The curve of growth as a function of Doppler broadening parameter in the
range 10 – 100 km s−1 for a damping constant γluλlu = 7616 cm s−1 (appropriate for H i
Lyα).

is usually helped somewhat when multiple transitions of a given ion are avail-

able. These will have di�erent flu , λlu , and γlu , and therefore di�erent curves of

growth, thus providing a better constrained solution for Nl and b. The region on

the plot having smaller values of Nl fluλlu corresponds to equation (1.4.54), and is

referred to as the linear portion of the curve of growth. The region with higher val-

ues of Nl fluλlu corresponds to equation (1.4.59), and is referred to as the damped

portion of the curve of growth.

Draine (2011) provides a useful approximation formula for W(τ0, b , γlu , λlu),

which is continuous and accurate to within a few percent:

W ≈


√
π b

c
τ0

1+τ0/(2
√
2)

(τ0 < 1.25393),[(
2b
c

)2
ln

(
τ0
ln 2

)
+ b

c
γluλlu

c
(τ0−1.25393)√

π

]1/2
(τ0 > 1.25393).

(1.4.60)
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1.5 Numerical simulations

Galaxies and their environments are extremely complicated dynamical systems,

and it is usually very di�cult to obtain analytical solutions to the equations gov-

erning them unless we make a great number of simplifying assumptions. There-

fore,muchuse has beenmade of numerical simulations to guide the interpretation

of observational data. This has been made possible by the rapid increase in the

availability and capability of computer hardware and software in recent decades.

The simulations are now large enough to capture the non-linear growth of cosmic

structures, and to test the validity of the ΛCDM paradigm for galaxy formation.

In a numerical simulation, the distribution of matter is usually represented

either as a set of particles (a Lagrangian approach), or on a grid (an Eulerian ap-

proach). The motion of each mass element is then traced numerically by taking

into account its interactions with all other mass elements at each time step.8 If we

could take into account the motions of all elementary particles, with all the rele-

vant forces, simulations of this kind would give exact results. However, this is far

from realistic bearing in mind the computing power available today, with a single

galaxy such as our Milky Way containing ∼ 1068 protons! In practice, pseudo-

particles or mass elements are used to represent the distribution of matter, each

having a mass many orders of magnitude larger than that of an atom, or in simu-

lations over cosmologically signi�cant volumes, many order of magnitude larger

than that of a star. From a pessimistic viewpoint, this may represent a serious

limitation on the reliability of these simulations.

Initially, numerical simulations were concerned mostly with addressing the

gravitational forces at work in shaping the large-scale matter distribution (see

Davis et al., 1985, for one of the earliest examples). Gravity is the only force that

acts non-negligibly on the hypothesised (cold) dark matter that makes up nearly

85% of the matter in the Universe, so in simulating just the evolution of dark mat-

ter, one can neglect all other forces. These so-called ‘N-body’ simulations (Hock-

8In general, the most computationally e�cient codes only calculate interactions between indi-
vidual particle or grid cells pairs at small distances, with interactions between groups of particles
or grid cells providing an accurate approximation at large distances.
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ney& Eastwood, 1981) are able to addressmany of the key questions in the �eld of

cosmology, such as those regarding the formation of large scale structures, and the

abundance of darkmatter haloes. However, to simultaneously simulate the evolu-

tion of baryonic structures in theUniverse, one also needs to solve the equations of

hydrodynamics.9 Those simulations that solve both the equations of gravity and

hydrodynamics as a function of time, starting from an initial mass distribution set

by cosmological initial conditions constrained from observations of the CMB, are

referred to as cosmological hydrodynamical simulations.

In principle, cosmological hydrodynamical simulations can follow the evolu-

tion of both baryons and dark matter without relying on simpli�ed approxima-

tions for all the important processes. However, in practice, a number of approxi-

mations are still required due to the limited numerical resolution. These approxi-

mations are typically a set of ‘prescriptions’ or ‘recipes’ that are conditionally exe-

cuted at each time step to capture physics that is not resolved by the interactions of

mass elements alone. Since these processes occur below the resolution of the sim-

ulation ‘grid’, the implementation of these processes is commonly referred to as

the ‘subgrid’ physics. As an example, the detailed star-formation processes within

cold, dense molecular clouds are not directly captured by the simulations. There-

fore, the star-formation rate within a �uid element is usually modelled according

to the empirical Kennicutt-Schmidt law (Kennicutt, 1998b), based on the local cold

gas density (or pressure). Even the coldmolecular gas regions themselvesmay not

be resolved, requiring there to be a critical density threshold above which cold

molecular gas is expected to form.

In the simulations, galaxies are usually identi�ed as massive and dense collec-

tions of stars, whose luminosities and colours are obtained from their star forma-

tion histories (which are known), together with the use of stellar population syn-

thesis models (e.g. Bruzual & Charlot, 2003; Maraston & Strömbäck, 2011), which

predict the resulting galaxy SEDs. A common problem has been the failure to ad-

equately reproduce the galaxy stellar mass functions inferred from observations

9The equations governing �uid �ows.



1.6. Motivation and structure of the thesis 32

(e.g. Li & White, 2009; Baldry et al., 2012). This occurs predominantly when too

much gas is allowed to cool and form stars, and has been termed the ‘overcool-

ing problem’ (e.g. Katz et al., 1996; Balogh et al., 2001; Kereš et al., 2009a; Schaye

et al., 2010). To overcome this, a set of processes collectively termed ‘feedback’

are required to e�ciently couple the energy, mass, and metals released by super-

novae and AGN to the surrounding gas, which acts to regulate gas cooling and

suppress the rate of star formation.10 In particular, feedback from supernovae is

required to suppress the formation of low-mass galaxies, and feedback fromAGN

is required to suppress the formation of high-mass galaxies. Unfortunately, much

like star formation, feedback from supernovae and AGN cannot be treated from

�rst principles in the simulations, and so they are typically implemented as a set

of energy/momentum sources, whose e�ciencies are simply calibrated to match

statistical properties of the galaxy population, such as the galaxy stellarmass func-

tion, and the relationship between stellar mass and SMBH mass (e.g. McConnell

& Ma, 2013).

Due to their reliance on uncertain subgrid physics, the predictive power of

cosmological hydrodynamical simulations is currently limited, although they do

provide a promising avenue for the study of baryonic structure formation and

evolution. Currently however, comparisons to observational data, and the inter-

pretations drawn from the simulations, are often treated with caution. It is there-

fore of great interest to better constrain the subgrid physics that must inevitably

be included at present.

1.6 Motivation and structure of the thesis

In this thesis, we aim to advance our quantitative understanding on the relation-

ship between the IGM and galaxies. The broad expectation from theory is that

galaxies form stars via the accretion of cold gas along �lamentary streams and/or

via condensations from their hot coronae. Juxtaposed against this, feedback from

10Note that there is a subtly here, as the injection of metals actually acts to increase the rate at
which gas radiatively cools.
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supernovae and AGN redistributes metal-enriched gas back into the IGM. We

shall test this picture using QSO absorption line methods in combination with

spectroscopic surveys of galaxies to observationally constrain the dynamics and

distribution ofmetal-enriched gas in and around galaxies on scales of a few kpc, to

tens of Mpc. By computing correlation statistics, we will statistically characterise

the gas-galaxy connection over a large range of environments, from galaxy halo

environments, to regions surrounding galaxy groups, clusters and �laments, and

out to regions almost devoid of galaxies. These measurements will also provide

a set of observational constraints on the subgrid feedback prescriptions imple-

mented in cosmological hydrodynamical simulations that are potentially orthog-

onal to those used to calibrate them in the �rst place. Comparing these results

with the simulations should therefore glean crucial insights on the physics driv-

ing the evolution of galaxies and baryonic structure in the Universe.

The structure of this thesis is as follows: In Chapter 2, we present the QSO

sample and describe themethods used to construct a sample of IGM absorbers. In

Chapter 3, we present a detailed analysis of the intrinsic absorption associated to

one of theseQSOs, which provides powerful constraints on the nature of feedback.

In Chapter 4, we present the spectroscopic survey of galaxies constructed for this

work. In Chapter 5, we describe the creation of a set of comparison data drawn

from the Evolution and Assembly of GaLaxies and their Environments (Eagle)

cosmological hydrodynamical simulation. In Chapter 6, we present the results of

a cross-correlation study between galaxies and O VI absorbers, which we use to

characterise the distribution and dynamics ofmetal-enriched gas around galaxies.

These results are then compared to an identical calculation performed using the

data set extracted from the Eagle simulation. Finally, in Chapter 7, we discuss the

implications of these results and draw conclusions.



Chapter 2

Detecting the IGM in

absorption

2.1 Overview

In this thesis, we make use of quasar (QSO) absorption-line data obtained from

theHubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) and Faint

Object Spectrograph (FOS) to study the low redshift (z < 1) intergalactic medium

(IGM). This chapter presents a description of the data reduction and analysis lead-

ing to the creation of an absorption line list, which forms the basis for much of the

work that follows. We begin in Section 2.2 with an overview of COS, the primary

instrument employed for this work. The full sample of QSOs used in subsequent

sections of this thesis is summarised in Section 2.3, includingmany that have been

obtained, reduced, and analysed by other authors. In Section 2.4 we describe the

data reduction procedures. Analysis of our own fully reduced QSO set is then

described in Sections 2.5 to 2.7. These cover psuedo continuum �tting, absorption

line identi�cation, and absorption line �tting. We conclude with a description of

our absorber sample in Section 2.8.

2.2 The Cosmic Origins Spectrograph

The Cosmic Origins Spectrograph is a UV spectrograph that was installed on the

Hubble Space Telescope in May 2009. It was designed, for the most part, to dra-

matically increase the number of QSOs available for spectroscopic observation at

UV wavelengths, leading to a much denser sampling of the IGM in absorption

at low redshifts (z < 1; Green et al., 2012). The speci�c goal was to be 10 times

more e�cient at gaining the same signal-to-noise ratio (SNR) for a given object
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Figure 3.1: The COS Optical Path and the Locations of the Mechanisms
The optical path is drawn to scale, with all elements in proportion and in their correct
relative locations.

 3.1.2  The Apertures and Aperture Mechanism
After passing through the external shutter, the light from the OTA first encounters

one of the COS entrance apertures (Table 3.1), which are mounted on the Aperture
Mechanism (ApM). Selecting an aperture can involve movement of the Aperture
Mechanism.

Primary Science Aperture
The Primary Science Aperture (PSA) is a circular field stop 2.5 arcsec (700 Pm) in

diameter. It is located, not at the HST focal surface, but near the point of the circle of
least confusion. The aperture transmits t 95% of the light from a well-centered,
aberrated point-source image delivered by the HST optics. The PSA is used for almost
all COS science observations. It is in place, ready to use, at the start of a new visit.
Note that, when the PSA is in place, the Wavelength Calibration Aperture (WCA; see
below) is also in place and available to acquire simultaneous wavelength-calibration
spectra. External light entering the PSA and internal light entering the WCA are
dispersed by the same grating. Thus, for a given grating and central-wavelength
setting, no additional motion of the Aperture Mechanism is required to obtain a
wavelength-calibration exposure.

Calibration
Platform NUV Camera

Mirrors (3) NUV
Detector

OSM1

OSM2

NUV CollimatorAperture
Mechanism

FUV
Detector

Figure 2.1: The layout of COS. The optical path is drawn to scale with all items in propor-
tion and in their correct locations relative to one another. Sourced from the COS Instru-
ment Handbook (Debes et al., 2015).

(using ∼ 1/10th the observing time) compared to the previous generation ultra-

violet (UV) spectrograph, the Space Telescope Imaging Spectrograph (STIS). This

leads to 1000 times asmanyQSOs available for observation in a typical integration

time.

COS is a slit-less spectrograph designed for point-source spectroscopy, and

uses two circular 2.5 arcsec diameter science apertures: the primary science aper-

ture (PSA), which is open, and the bright object aperture (BOA), which contains

a neutral density �lter to reduce the �ux from bright objects. It has two channels:

a far ultraviolet (FUV) channel covering wavelengths of 900–2150 Å, and a near

ultraviolet (NUV) channel covering wavelengths 1650–3200 Å, o�ering bothmod-

erate resolution (R = λ/∆λ ' 18 000) and low resolution (R ' 3000) spectroscopy.

The NUV channel also o�ers limited imaging capability.

The purpose of the small science aperture was to minimise the light contri-

bution from the sky (i.e. geocoronal emission) and any potential confusion with

nearby point sources. It is set to lie at the minimum waist point in the HST opti-

cal tube assembly (OTA) point-spread function (PSF), which is the point at which

100% of the transmitted light is included in the minimum possible diameter. Fo-
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cusing COS on the sky results in the science aperture itself being out of focus, and

so the transmission curve from the sky as a function of o�-axis angle does not have

a sharp cut-o� (see �gure 2 in Green et al., 2012). In reality, the science aperture

passes slightly less than 100% of the original beam due to uncorrectable aberra-

tions attributable to the HST optical tube assembly, as well as scattered light due

to dust and surface imperfections. The layout of COS is illustrated in Figure 2.1.

2.2.1 FUV design

The FUV channel utilises just one grating and no other optical elements. This

choice was motivated by the low re�ectivity of surfaces at FUV wavelengths (at

best ∼ 80%). Since COS is a point-source spectrograph, limiting the �eld of view

to 2.5′′ removes the need for multiple optics to correct for the spherical aberration

in the HST OTA and the path-length errors introduced by the primary mirror,

such as those in STIS (Woodgate et al., 1998) and the Advanced Camera for Sur-

veys (ACS) (Ford et al., 1998). All these corrections are instead performed by a

single grating, in addition to its primary function of dispersing the light entering

the spectrograph. A slit-less design for COS is therefore key to ensuring that trans-

mission is maximal.1 The layout of the FUV optical path is shown in Figure 2.2.

COS focuses on the sky rather than on a slit, so that the spectral width of any

monochromatic point source is only as large as the corrected HST line-spread

function (LSF) (Ghavamian et al., 2009; Kriss, 2011), plus any aberrations in the

spectrograph. These aberrations are minimised in the design of COS by using a

holographic grating, which also delivers the desired spectral resolution. A holo-

graphic grating is one formed by exposing a polished substrate coated with a

light-sensitivematerial (photoresist) to an interference pattern produced from two

laser beams. The resulting pattern is one of straight lines with a sinusoidal cross-

section. Traditionally, holographic gratings have the advantage of producing less

scattered light than gratings that are mechanically cut, but they lose out on the

1Without correcting optics in front of the exit pupil, a point source does not form awell-de�ned
image with HST, so light is lost in the presence of a narrow slit.
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Figure 2.2: The COS FUV optical path, sourced from the COS Instrument Handbook
(Debes et al., 2015).

high groove e�ciency2 of the latter. However, the COS FUV grating design has

taken advantage of techniques that now exist for creating a blazed groove pro�le

on a holographic grating, produced by exposing the grating to an ion-etch beam

at di�erent angles for di�erent lengths of time. The result is a holographic grat-

ing with a triangular blazed pro�le (see �gure 3 in Green et al., 2012). The FUV

holographic gratings are coated on a roughly spherical substrate with polynomial

deformations in the fourth and sixth orders. This corrects for spherical aberrations

and the deviations in theHST primarymirror from its intended hyperbolic shape.

The FUV channel on COS utilises a large-format detector consisting of two

85 × 10 mmmicrochannel plate (MCP) segments, FUVA and FUVB, separated by

an 9 mm gap, and a cross delay line anode. A microchannel plate consists of a

slab of highly resistive material with a dense array of tiny tubes (microchannels),

each of which is a continuous electronmultiplier. TheMCPs have an opaque pho-

2The groove e�ciency is simply a measure of the proportion of di�racted light concentrated
into a given order at a particular wavelength. Higher e�ciencies are obtained by controlling the
cross-sectional pro�le of the grooves in a di�raction grating using a technique called blazing. A
triangular pro�le is the one most commonly used.



2.2. The Cosmic Origins Spectrograph 38

   The FUV XDL Detector    30

has separate traces for the dispersion (x) and cross-dispersion (y) axes. The location of
an event on each axis is determined by measuring the relative arrival times of the
collected charge pulse at each end of the delay-line anode for that axis. The results of
this analog measurement are digitized to 14 bits in x and 10 bits in y. In TIME-TAG
mode the total charge collected from the event, called the pulse height, is saved as a
5-bit number. 

Figure 4.1: The FUV XDL Detector.
This diagram is drawn to scale, and the slight curvature at the corners is also present on
the masks of the flight detectors. Wavelength increases in the direction of the increasing
x coordinate. The red and blue dots show the approximate locations of the stim pulses
on each segment. The numbers in parentheses show the pixel coordinates at the corner
of the segment’s digitized area; the two digitized areas overlap in the region of the
inter-segment gap. 

The detector electronics generate pulses that emulate counts located near the
corners of the anode, outside the active area of the MCPs. These “stim pulses” (see
Section 4.1.6) provide a means of tracking and correcting thermal distortions. 

The XDL’s quantum efficiency is improved by the presence of a series of wires,
called the quantum-efficiency (QE) grid, placed above the detector (i.e., in the light
path). These wires create shadows in the spectrum that are flagged and corrected by
calcos during data reduction. The XDL also includes an ion-repeller grid that reduces
the background rate by preventing low-energy thermal ions from entering the
open-faced detector. It acts as a 95% transmission neutral-density filter.

Figure 2.3: Aschematic of theCOSFUVdetector, sourced from theCOS InstrumentHand-
book (Debes et al., 2015).

tocathode deposited on the surface, and a �ne wire mesh suspended above this

to increase the quantum e�ciency. There is also an ion-repeller grid that pre-

vents low energy thermal ions from entering the detector, which reduces the back-

ground count rate. Each MCP segment is a ‘Z stack’, meaning that it consists of

three panels, each with microchannels angled away from the normal so as to cre-

ate a ‘Z’ shape. In this con�guration, the stacks operate at a gain of ∼ 107 electrons

per photon impact event (McPhate et al., 2000). The electron cloud produced by

each event is accelerated by an applied electric �eld onto the cross delay line an-

ode. This anode determines the position of each photon impact by splitting the

incident electron cloud into four components, each of which travels down a ‘delay

line’. The timing of the output signals from the delay lines gives the location of

the incident electron cloud along both the dispersion (x) and cross-dispersion (y)

axis, and hence a location for the initial photon impact (seeMcPhate et al., 2000, for

more details). The locations of the detected photons are then digitised and placed

into two arrays (one each for FUVA and FUVB), each with 16 384 × 1024 pixels,

although the active area of the detector is somewhat smaller than this. Each pixel

spans 6 × 24µm. A schematic of the detector is presented in Figure 2.3.

Five di�erent central wavelength settings for both the G130M andG160Mgrat-

ings are supported to enable full wavelength coverage across the MCP segment

gap in various con�gurations (see table 5.3 in the COS Instrument Handbook;

Debes et al., 2015).3 The large size of the detector means that most of the FUV

bandpass may be covered with just four exposures. This is hugely bene�cial to

3Available online at http://www.stsci.edu/hst/cos/documents/handbooks/current/cos_
cover.html.

http://www.stsci.edu/hst/cos/documents/handbooks/current/cos_cover.html
http://www.stsci.edu/hst/cos/documents/handbooks/current/cos_cover.html
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Figure 2.4: The COS NUV optical path, sourced from the COS Instrument Handbook
(Debes et al., 2015).

QSO absorption line studies, since one cannot know a priori where absorption

features of interest will be detected along the dispersion axis of the detector.

2.2.2 NUV design

The NUV channel was not originally planned by the COS development team, but

was added at the request of NASA shortly after its selection (Green et al., 2012).

It is intended as a backup facility to the already existing NUV channel on STIS,

and was designed to be low cost, so as not to hinder the development of the FUV

channel. As a result, three far smaller and cheaper multi-anode microchannel ar-

ray (MAMA) detectors are used for the NUV channels, labelled NUVA, NUVB

andNUVC. These detectors work in a very similar way to the FUV detectors. First

order holographic gratings are used, for which the detectors can only provide lim-

ited wavelength coverage in a single setting. Many settings are therefore required

to cover the entire NUV bandpass, which are selected via a scanning mechanism.

The available settings, and the wavelength regions they cover, are listed in table
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5.4 of Debes et al. (2015). The introduction of a scanning mechanism for the NUV

modesmeant that the gratings could not be used to correct for optical aberrations,

since they are a function of optical geometry, which changes upon selection of

di�erent wavelength regions in this way. As a result, additional optical elements

had to be incorporated into the NUV design. Flat gratings are used, with uniform

straight grooves, as well as three mirrors that correct, collimate and re-image the

light. These mirrors are labelled in Figure 2.4, which presents the optical layout

of the NUV channel.

2.2.3 Flight performance

All aspects of the original COS design speci�cations were met during in-�ight

testing except for the spectral resolution of the FUV gratings. In fact, the through-

put in the FUV, and the SNR compared to that of STIS in the same integration

time (aimed to be greater by a factor of 10), greatly exceeded design speci�cations

(Green et al., 2012). The spectral resolution of theCOSFUV ‘M’ gratingswere orig-

inally designed to be R ≥ 20 000 at all wavelengths, but the on-orbit performance

is below this level, with the majority of the wavelength coverage falling below

R = 20 000. The NUV channels meet pre-�ight expectations, but the spectral res-

olution of the FUV channels is degraded due to the wavefront errors present in

theHST primary and secondary mirrors (Ghavamian et al., 2009), and the rough-

ness of the primary mirror at the micron level (Kriss, 2011). These errors result

in a non-Gaussian line-spread function (LSF), with power moved from the core

of the pro�le to the wings. This e�ect is more prominent at shorter wavelengths,

and is the primary reason for the loss in spectral resolution. Absorption pro�les

in COS FUV data therefore have depths shallower than one would obtain if the

LSF was approximately Gaussian, and any line �tting must take into account the

appropriate LSF in order to model absorption line pro�les correctly. The LSF of

the NUV gratings also di�ers from a Gaussian, but to a lesser extent.

The COS FUV LSF at 3000 Å is shown in Figure 2.5, in comparison to a Gaus-

sian obtained from ground-based vacuum testing. Wavefront errors introduced

from the primary and secondary mirrors on HST are the dominant cause for the
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Figure 2.5: A comparison between a Gaussian LSF with FWHM = 6.5 pixels (dashed
line), consistent with the expectation from ground-based vacuum testing, and a model
LSF pro�le for the COS FUV G130M grating at 1300 Å (solid line) that includes both the
e�ects of wavefront errors in the HST primary and secondary mirrors, and micron-level
‘roughness’ in the HST primary mirror.

shape of the FUV LSF, which clearly deviates from a Gaussian, having far more

power in the wings of the pro�le. This makes the detection of narrow (b < 35

km s−1) absorption features more di�cult, and also impacts the ability to resolve

closely separated absorption components (see Ghavamian et al., 2009; Kriss, 2011,

for more details).

Further to the loss in spectral resolution, the other main �ight performance

concern for COS is the phenomenon of ‘gain sag’, whereby the FUV detectors start

to become less e�cient at turning photon impacts into the production of electrons

after prolonged exposure to light. The total charge carried by an electron cloud

(referred to as the ‘pulse height’) generated by an event determines whether or

not that event is considered a real photon impact or a background event via two
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threshold values (one high, and one low). When the e�ect of gain sag reduces the

photon-to-electron conversion e�ciency to the point where real photon impacts

occasionally produce pulse heights below the low threshold value, a loss in detec-

tor sensitivity starts to occur. In extreme cases, this can result in the appearance

of spurious absorption features in COS FUV spectra. Gain sag initially a�ects re-

gions of the detector exposed to bright geocoronal lines, but eventually a�ects the

entire detector.

Tomitigate the e�ects of gain sag, the Space Telescope Science Institute (STScI)

has implemented a number of di�erent strategies. Some of these enter the pipeline

reduction software, Calcos. In particular, the lower pulse height threshold value

in Calcos has been reduced over the course of time, at the expense of increas-

ing the detector background. In addition, low gain pixels are �agged, and may

be de-weighted or excluded by co-adding spectra from a number of grating po-

sitions, o�set in wavelength from the nominal values (known as ‘FP-POS’ posi-

tions). Changes have also been made to COS itself, one such example being an

increase in the voltage applied across the MCPs, so as to increase the detector

gain. Ultimately however, regions of the FUV detectors are becoming irreparably

worn out, so the position at which the object spectrum lands on the detectors has

to be moved. This occurred on 23 July 2012, when the COS FUV spectral position

was moved to ‘lifetime position 2’, and again on 9 February 2015, with a move

to ‘lifetime position 3’. Further details on the e�ects of gain sag on the COS FUV

detectors can be found in the COS Instrument Handbook (Debes et al., 2015).

Properties of the various spectroscopic modes derived from on-orbit perfor-

mance are summarised in Table 2.1.

2.2.4 Noise properties

The noise properties of the COS FUV modes have been analysed in detail by

Keeney et al. (2013). The key �nding is that the noise in the FUV data is not com-

pletely random. For random noise, the measured relationship between the SNR
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Table 2.1: COS spectroscopicmodes, sourced from theCOS InstrumentHandbook (Debes
et al., 2015).

Grating Wavelength
range (Å)

Bandpass per
exposure and
FUV gapa(Å)

Inferred PSA
resolving power
R = λ/FWHMb

Dispersion
(mÅ pixel−1)

FUV channel

G130M 900 – 1236 295 / 16 up to 11 500c 9.97
1065 – 1365 296 / 15.7 10 000 – 15 000c 9.97
1150 – 1450 292 / 14.3 16 000 – 21 000 9.97

G160M 1405 – 1775 360 / 18.1 16 000 – 21 000 12.23
G140L 1230 – 2050 > 1150 / 112 1500 – 4000 80.3

NUV channel

G185M 1700 – 2100 3 × 35 16 000 – 20 000 37
G225M 2100 – 2500 3 × 35 20 000 – 24 000 33
G285M 2500 – 3200 3 × 41 20 000 – 24 000 40
G230L 1650 – 3200d (1 or 2) × 398 2100 – 3900 390

a Width of the gap between FUV detector segments.
b The full width at half maximum (FWHM) is that of the empirically determined LSF, which is
not Gaussian. R increases approximately linearly with wavelength, unless otherwise stated.

c R falls with increasing wavelength. R ∼ 8500 – 11 500 between 940 and 1080 Å.
d Some shorter wavelengths are recorded in second order light.

in a spectrum smoothed over x pixels, (S/N)x , and the SNR per pixel, (S/N)1, is

η(x) ≡ (S/N)x

(S/N)1
= x1/2. (2.2.1)

However, the measured values of η deviate from this expectation in individual

FUV exposures, and they deviate to an even greater degree in the co-added spec-

tra. The co-addition process involves interpolating individual exposures onto a

common linearwavelength scale. Interestingly, the choice of interpolation scheme

produces varying levels of deviation from the Poissonian noise expectation,4 and

it is found that a nearest-neighbour interpolation schememinimises this deviation

in the co-added spectra.

The source of non-random noise in the COS FUV data is likely attributable to

the design of the FUV detectors. In particular, shadows are produced by the grid

wires used to improve the quantum e�ciency, and there are irregularities in the

4The COS detectors are photon counters, which means they have no read-out noise and their
gain is unity.
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digitised spectra introduced by �xed hexagonal and moiré patterns in the MCPs,

which are not completely corrected for by the Calcos �at-�eld. There are also the

e�ects of gain sag. Co-added spectra produced frommultiple exposures with dif-

ferent FP-POS positions are typically employed to dither around grid wire shad-

ows and regions a�ected by gain sag, however this introduces small di�erences in

the �xed hexagonal andmoiré patterns from theMCPs along the cross-dispersion

direction. These di�erences do not average out in general, and can constructively

interfere, which may explain the ampli�ed deviations from Poissonian noise in

the co-added data. For further details, see Keeney et al. (2013).

2.3 The QSO sample

In this thesis, we make use of HST/COS and FOS spectroscopy of 60 QSOs to

characterise the IGM through observations of intervening absorption systems. Of

these, 7 have COS data that were obtained by our collaboration (HST general ob-

server (GO) programmes 12264 and 11585), and are presented in published work

(Tejos et al., 2014; Finn et al., 2014). The remaining 53 come from a variety of scien-

ti�c programmes, and are presented by di�erent authors. The full sample of QSOs

is summarised in Table 2.2, where we also list the name of the �eld for which each

QSO is associated. For each of these �elds we have a spectroscopic catalogue of

galaxies constructed from a variety of di�erent instruments and surveys. For a

complete description of these galaxy surveys, see Chapter 4.

Data from GO programme 12264 were obtained with the goal of investigating

the statistical relationship between intergalactic absorbers and galaxies at z < 1.

Four QSOs were selected at z > 1 for this purpose, namely FBQS J0209−0438, HE

1003+0149, SDSS J135726.27+043541.4 and FBQS J2218+0052. These QSOs were

favoured for lying in �elds that were already well surveyed for their galaxy con-

tent, as well as being su�ciently bright in the FUV and NUV such that a SNR of

∼ 10was achievable with COS in a relativelymodest integration time. Speci�cally,

FBQS J0209−0438 lies in theVery Large Telescope (VLT)VisibleMulti-Object Spec-

trograph (VIMOS) Public Extragalactic Redshift Survey (VIPERS)W1�eld (Guzzo
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Table 2.2: The QSO sample

QSO name Field name αJ2000QSO (hms) δJ2000QSO (◦ ′ ′′) zQSO

PG 0003+158 J0005+1609 00:05:59.24 +16:09:49.00 0.451
PG 0026+129 J0029+1609 00:29:13.60 +13:16:04.01 0.142
HE 0056−3622 J0058−3606 00:58:37.36 −36:06:04.79 0.164

LBQS 0107−0235A J0110−0218 01:10:13.19 −02:19:53.72 0.960
LBQS 0107−0235B J0110−0218 01:10:16.30 −02:18:51.62 0.956
LBQS 0107−0232 J0110−0218 01:10:14.47 −02:16:58.40 0.726

B0117−2837 J0120−2821 01:19:35.70 −28:21:31.43 0.349
Ton S210 J0120−2821 01:21:51.50 −28:20:57.98 0.116

PG 0157+001 J0159+0023 01:59:50.25 +00:23:40.85 0.163
FBQS J0209−0438 J0209−0438 02:09:30.74 −04:38:26.30 1.132
HE 0226−4110 J0228−1904 02:28:15.17 −40:57:14.29 0.493
PKS 0405−123 J0407−1211 04:07:48.50 −12:11:37.00 0.574

RBS 542 J0426−5712 04:26:00.72 −57:12:00.97 0.104
PKS 0558−504 J0559−5026 05:59:47:30 −50:26:52.01 0.137

SDSS J080908.13+461925.6 J0809+4619 08:09:08.13 +46:19:25.54 0.656
PG 0832+251 J0835+2459 08:35:35.81 +24:59:40.20 0.330
PG 0844+349 J0847+3445 08:47:42.47 +34:45:04.39 0.064

Mrk 106 J0919+5521 09:19:55.34 +55:21:37.08 0.123
RXS J09565−0452 J0956−0453 09:56:30.13 −04:53:17.09 0.155
PG 0953+414 J0956+4115 09:56:52.39 +41:15:22.25 0.234
PG 1001+291 J1007+2929 10:04:02.61 +28:55:35.40 0.330
HE 1003+0149 J1005+0134 10:05:35.25 +01:34:46.13 1.081

FBQS J1010+3003 J1007+2929 10:10:00.69 +30:03:21.56 0.256
Ton 1187 J1013+3551 10:13:03.18 +35:51:23.76 0.079

PG 1011−040 J1014−0418 10:14:20.68 −04:18:40.28 0.058
LBQS 1019+0147 J1022+0132 10:22:18.99 +01:32:18.82 0.789
1ES 1028+511 J1031+5052 10:31:18.52 +50:53:35.88 0.360

1SAX J1032.3+5051 J1031+5052 10:32:16.14 +50:51:19.69 0.173
PG 1048+342 J1058+3412 10:51:43.90 +33:59:26.70 0.167
PG 1049−005 J1051−0051 10:51:51.44 −00:51:17.68 0.360
HS 1102+3441 J1058+3412 11:05:39.82 +34:25:34.64 0.509
SBS 1108+560 J1118+5728 11:11:32.17 +55:47:26.09 0.767
PG 1115+407 J1121+4113 11:18:30.29 +40:25:54.01 0.155
PG 1116+215 J1119+2119 11:19:08.68 +21:19:18.01 0.176
PG 1121+422 J1121+4113 11:24:39.18 +42:01:45.01 0.225
SBS 1122+594 J1118+5728 11:25:53.79 +59:10:21.58 0.852

Ton 580 J1131+3114 11:31:09.48 +31:14:05.50 0.290
3C 263 J1139+6547 11:39:57.02 +65:47:49.42 0.646

PG 1216+069 J1226+0319 12:19:20.93 +06:38:38.51 0.331
3C 273 J1226+0319 12:29:06.70 +02:03:08.60 0.158

HE 1128+0131 J1226+0319 12:30:50.04 +01:15:22.68 0.117
PG 1229+204 J1232+2009 12:32:03.63 +20:09:29.56 0.063
PG 1259+593 J1301+5902 13:01:12.93 +59:02:06.76 0.478
PKS 1302−102 J1305−1033 13:05:33.00 −10:33:18.00 0.278
PG 1307+085 J1309+0819 13:09:47.00 +08:19:48.25 0.155

SDSS J135726.27+043541.4 J1357+0435 13:57:26.28 +04:35:41.50 1.232
PG 1424+240 J1427+2348 14:27:00.40 +23:48:00.04 0.604
PG 1435−067 J1438−0658 14:38:16.16 −06:58:20.50 0.126

LBQS 1435−0134 J1437−0147 14:37:48.28 −01:47:10.79 1.310
Mrk 478 J1442+3526 14:42:07.47 +35:26:22.96 0.079
Ton 236 J1528+2825 15:28:40.61 +28:25:29.86 0.450
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Table 2.2: continued

QSO name Field name αJ2000QSO (hms) δJ2000QSO (◦ ′ ′′) zQSO

1ES 1553+113 J1555+1111 15:55:43.04 +11:11:24.32 0.414
Mrk 877 J1620+1724 16:20:11.28 +17:24:27.58 0.112

PKS 2005−489 J2009−4849 20:09:25.30 −48:49:53.00 0.071
Mrk 1513 J2132+1008 21:32:27.82 +10:08:19.18 0.063
PHL 1811 J2155−0922 21:55:01.50 −09:22:25.00 0.192

PKS 2155−304 J2158−3013 21:58:52.10 −30:13:31.01 0.117
FBQS J2218+0052 J2218+0052 22:18:06.67 +00:52:23.63 1.273
MR 2251−178 J2254−1734 22:54:05.80 −17:34:54.98 0.064

4C 01.61 J2351−0109 23:51:56.12 −01:09:13.36 0.174

et al., 2014), and HE 1003+0149, SDSS J135726.27+043541.4 and FBQS J2218+0052

lie in the VLT VIMOS Deep Survey (VVDS) F10, F14 and F22 �elds respectively

(Le Fevre et al., 2005). We note that FBQS J0209−0438 was originally selected on

the virtue of intersecting the Gemini Deep Deep Survey (GDDS) (Abraham et al.,

2004), however the more recent VIPERS supersedes this survey vastly in terms of

galaxy completeness and survey depth.

Data fromGOprogramme 11585were obtainedwith the goal ofmeasuring the

characteristic sizes of H I absorption systems, and investigating their connection

with galaxies at z < 1. For this purpose, three QSOs at z ∼ 1 were selected that

have a very close angular separation on the sky, such that the transverse distances

separating their sight-lines over the total redshift path-length probed spans the

range ∼ 0.01 – 2 Mpc. These are LBQS 0107−0235A, LBQS 0107−0235B and LBQS

0107−0232. This is the only known FUV-bright triplet that probes such small

transverse scales. These data were obtained from the FUV modes of COS, with

NUV data already being available from HST/FOS. The FOS data on this QSO

triplet, along with a modest galaxy survey around these sightlines, were already

analysed and presented in a paper by our collaboration (Crighton et al., 2010).

Since then, a much more comprehensive, deep galaxy redshift survey to z ∼ 1 has

been constructed around these sight-lines, making use of theDeep ImagingMulti-

Object Spectrograph (DEIMOS), Gemini Multi-Object Spectrograph (GMOS) and

VIMOS (see Tejos et al., 2014, and Chapter 4 for a complete desription).

The coincidence of the aforementioned QSOs with these galaxy redshift sur-

veys allows for an investigation into the galaxy-IGM connection up to z ≈ 1, which
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extends far beyond that available to shallower galaxy surveys such as the Sloan

Digital Sky Survey (SDSS), 2dF Galaxy Redshift Survey (2dFGRS) andGalaxy and

Mass Assembly (GAMA) survey. Nevertheless, a large number of QSOs observed

with COS overlapwith these and other low redshift surveys, for which a thorough

analysis has been performed by the COS guaranteed time observations (GTO)

team (Danforth et al., 2014). We therefore include this sample of QSOs in ad-

dition to those analysed by our collaboration to increase the statistical power of

the overall sample.

Details on the QSO observations are listed in Table 2.3, along with the pro-

posal IDs for those observations. The proposal abstracts relating to all of the QSOs

listed may be obtained by searching for that ID on the Mikulski Archive for Space

Telescopes (MAST).5 The QSOs in Table 2.3 were selected for a variety of di�er-

ent science cases, however we note that this does not bias any results we obtain

by studying the IGM-galaxy connection foreground to those QSOs, as these fore-

ground regions are essentially random for the majority of the science cases.

In the following sections, we describe the data reduction and analysis proce-

dures performed on our COS data set obtained from the GO programmes 12264

and 11585, and also on the QSO LBQS 1435−0134 obtained from GO programme

11741. For all the other QSOs in our sample, the reduction and analysis proce-

dures are described in Danforth et al. (2014), and for these we downloaded the

high-level science products available on the MAST archive.6

2.4 COS data reduction

COS data direct from HST are processed through the STScI Operational Pipeline

Uni�ed System (OPUS). This pipeline performs a simple conversion, unpacking

data from individual exposures on COS, and combining them into �les containing

raw, uncalibrated data. These �les are then downloaded from the MAST archive,

and the data reduced using the COS pipeline, Calcos. A complete description of

5http://archive.stsci.edu/hst/search.php
6http://archive.stsci.edu/prepds/igm/

http://archive.stsci.edu/hst/search.php
http://archive.stsci.edu/prepds/igm/
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Table 2.3: The QSO observations

QSO name G130M G160M NUVa Programme ID(s)
S/Nb S/Nb S/Nb

PG 0003+158 22 19 – 12038
PG 0026+129 18 – – 12569
HE 0056−3622 25 15 – 12604

LBQS 0107−0235A 9 8 30 11585, 6592, 6100, 5320
LBQS 0107−0235B 9 7 30 11585, 6592, 6100, 5320
LBQS 0107−0232 – 7 18 11585, 6592, 6100

B0117−2837 24 19 – 12204
Ton S210 41 26 – 12204

PG 0157+001 16 – – 12569
FBQS J0209−0438 12 10 12 12264
HE 0226−4110 34 24 – 11541
PKS 0405−123 59 30 – 11508, 11541

RBS 542 61 35 – 11686
PKS 0558−504 19 10 – 11692

SDSS J080908.13+461925.6 15 13 – 12248
PG 0832+251 14 12 – 12025
PG 0844+349 18 – – 12569

Mrk 106 28 18 – 12029
RXS J09565−0452 16 – – 12275
PG 0953+414 38 26 – 12038
PG 1001+291 21 17 – 12038
HE 1003+0149 9 9 – 12264

FBQS J1010+3003 17 10 – 12025
Ton 1187 16 – – 12275

PG 1011−040 29 18 – 11524
LBQS 1019+0147 6 5 – 11598
1ES 1028+511 20 13 – 12025

1SAX J1032.3+5051 12 6 – 12025
PG 1048+342 23 16 – 12024
PG 1049−005 14 12 – 12248
HS 1102+3441 17 13 – 11541
SBS 1108+560 4 14 – 12025
PG 1115+407 23 15 – 11519
PG 1116+215 39 28 – 12038
PG 1121+422 21 13 – 12604
SBS 1122+594 14 12 – 11520

Ton 580 21 16 – 11519
3C 263 34 23 – 11541

PG 1216+069 24 16 – 12025
3C 273 73 – – 12038

HE 1128+0131 44 36 – 11686
PG 1229+204 17 – – 12569
PG 1259+593 32 24 – 11541
PKS 1302−102 26 20 – 12038
PG 1307+085 18 – – 12569

SDSS J135726.27+043541.4 9 7 11 12264
PG 1424+240 21 21 – 12612
PG 1435−067 14 – – 12569

LBQS 1435−0134 23 16 – 11741
Mrk 478 18 – – 12569
Ton 236 18 15 – 12038
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Table 2.3: continued

QSO name G130M G160M NUVa Programme ID(s)
S/Nb S/Nb S/Nb

1ES 1553+113 33 26 – 11520, 12025
Mrk 877 18 – – 12569

PKS 2005−489 24 15 – 11520
Mrk 1513 32 20 – 11524
PHL 1811 36 24 – 12038

PKS 2155−304 45 – – 12038
FBQS J2218+0052 – – 10 12264
MR 2251−178 38 30 – 12029

4C 01.61 20 – – 12569
a FOS gratings G270H and/or G190H for LBQS 0107−0235A, LBQS 0107−0235B and LBQS
0107−0232, COS G230L grating otherwise.

b Median SNR per resolution element.

Calcos is beyond the scope of this thesis, however a few modi�cations are made

to the default Calcos reduction parameters, and we describe them here.

Calcos implements a simple boxcar extraction scheme to obtain one-dimensional

spectra from the �at-�eld corrected images. We optimise this scheme by narrow-

ing the source extraction box from its default size tomatch the apparent size of any

given source in the cross-dispersion direction upon inspection of each �at-�elded

image. Background extraction boxes are also enlarged to encompass more of the

background signal, making sure to avoid the BOA and regions close to the detec-

tor edges. By default, Calcos performs a boxcar smoothing on the background

counts at each pixel along the dispersion axis to provide a robust measure of the

background. This background smoothing is applied everywhere, including areas

a�ected by scattered light from strong geocoronal emission lines. Particularly for

optimised extraction windows, this leads to an overestimation of the background

in these regions and their immediate vicinity due to ‘smearing’ of the light. To

avoid this, we set the background smoothing length in Calcos to 1 pixel and per-

form our own background smoothing on the extracted spectra in post-processing.

This procedure masks out a�ected portions of the spectrum, namely the Lyα and

O I λλ1302 + 1306 geocoronal emission lines, then interpolates across the gap to

estimate the actual background level in these regions.

In Figure 2.6 we show an example spectrum, that of the QSO 3C 273, extracted

with Calcos. In the top panel is the �at-�elded image, with the object spectrum
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Figure 2.6: The COS G130M FUVB spectrum of 3C 273. The top panel shows the �at-
�eld corrected 2D spectrum, with the e�ective location of the PSA and BOA labelled,
and the background extraction window indicated in green. The bottom panel shows the
�ux calibrated 1D spectrum in black, and the 1σ statistical �ux uncertainty in green. The
zero-level is indicated by the dashed black line. The Lyα geocoronal line is clearly seen at
≈ 1215 Å.

clearly visible. The position and extent of the primary science aperture (PSA) and

bright object aperture (BOA) is shown, alongwith the background extractionwin-

dows. As is highly evident from the �gure, the background level for COS is ex-

tremely small. A large smoothing length must be applied in order to obtain a

robust estimate of the background level. Smoothing lengths are chosen to be as

large as possible, whilst still preserving background features in the dispersion

direction. Actual values vary from spectrum to spectrum, since the background

level varies as a function of time, but they are typically in the range of 100 – 1000

pixels, and are chosen based on visual inspection. The bottom panel shows the

extracted and �ux calibrated 1D spectrum, along with the statistical �ux uncer-
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tainty (proportional to
√

n, where n is the number of photon counts) and the zero

level indicated. The Lyα geocoronal line is particularly prominent, and can also be

seen in the 2D spectrum. In the latter, it is clear that the line is broader in the cross-

dispersion direction than the rest of the spectrum, and given the adopted source

extraction window in red, there is clear justi�cation for the modi�ed background

extraction procedure described.

After extracting 1D spectra using Calcos, individual exposures frommultiple

settings are aligned and co-added using custom-built Python routines developed

by the author.7 These are loosely based upon IDL routines developed by the COS

GTO team.8 They work as follows:

Individual x1d �les (*_x1d.fits) produced in the Calcos reduction are col-

lated, along with their header information. Each of these �les corresponds to a

one-dimensional extracted spectrum from a single central wavelength setting and

FP-POS position. FUV �les contain two data extensions corresponding to FUVA

and FUVB. NUV �les contain three extensions corresponding to NUVA, NUVB

and NUVC. Data quality �ags9 for all pixels are assigned new �ags to mean one

of three options: (i) retain pixel for co-addition with a weight equal to 1, (ii) retain

pixel for co-addition with a weight equal to 0.5, or (iii) discard pixel from the co-

addition process. Flags assigned with option (i) are those where no anomalous

condition is noted, or where some unusual features have been identi�ed in long

background exposures. The latter is not expected to have any e�ect on the �nal

data products except perhaps where the count rate is very low or the background

higher than normal. Flags assigned with option (ii) are those in regions where the

background count rate is apparently higher than the surrounding region and/or

is unstable, and in regions on the FUV detector where the gain is low enough so

as to a�ect the calibration (gain sag). For our observations, we made use of all

the available FP-POS positions, so the a�ect of gain sag should be minimal having

e�ectively dithered around these features, which are �xed on the detector plane.

7https://github.com/cw�nn/COS/
8http://casa.colorado.edu/~danforth/science/cos/costools.html
9http://www.stsci.edu/hst/cos/pipeline/cos_dq_�ags

https://github.com/cwfinn/COS/
http://casa.colorado.edu/~danforth/science/cos/costools.html
http://www.stsci.edu/hst/cos/pipeline/cos_dq_flags


2.4. COS data reduction 52

For the NUV channel only, regions a�ected by detector shadows (vignetting in

this case) are assigned option (ii). These vignetted areas a�ect signi�cant portions

of the NUV spectra. and so are retained to avoid large gaps in the �nal co-added

spectra. A weight of 0.5 ensures that the data in these regions contributes sig-

ni�cantly towards increasing the SNR, whilst minimising any additional error in

the �ux calibration. All other �ags are assigned option (iii). Data quality �ags

that are assigned either of the �rst two options are referred to as ‘good’, and those

assigned the latter option are referred to as ‘bad.’

Next, the background counts are re-estimated as was previously motivated,

boxcar smoothing only across pixels not a�ected by scattered geocoronal light and

with good data quality �ags. The error array fromCalcos is then re-calculated us-

ing the new background smoothing lengths and each spectrum is �ux calibrated

using the time dependent sensitivity curves provided by STScI, corrected to the

epoch of observation.

Exposures are now co-aligned by cross-correlating regions centred on strong

Galactic absorption features. Speci�cally, these are C II λ1334, Al II λ1670, Si II

λ1260, Si II λ1526 and Mg II λλ2796, 2803. Using these features allows for co-

alignment between all settings in the FUV gratings (assuming the FUV wave-

length scale from Calcos is relatively correct), and some NUV settings. For each

grating, we pick the centralwavelength setting and FP-POS positionwith themost

accurately determined wavelength solutions from STScI as a reference. We as-

sume thatCalcos correctly shifts these con�gurations into a heliocentric reference

frame. All other settings for each grating are then cross-correlatedwith these ones

if the reference and comparison settings both contain one of the absorption fea-

tures speci�ed. Wavelength o�sets are then applied to the comparison settings to

match the reference ones. These o�sets typically amount to a resolution element

or less. For those settings that cannot be aligned on any of the Galactic features

speci�ed, we search for other strong absorption lines on which to perform the

cross-correlation. Once each exposure has been aligned, they are then scaled so

that their median �ux values match in overlap regions.

Before performing the �nal co-addition of the data, �ux and error values as-



2.5. Continuum �tting 53

signed to pixels with bad data quality �ags are set to zero, and pixels �agged for

de-weighting have their exposure time halved. Following Keeney et al. (2012),

�ux and error values are then placed on a linear wavelength scale using a nearest-

neighbour interpolation to minimise the e�ects of non-Poissonian noise on the

co-added data products. For any point along this scale, the linear spacing is set

to the dispersion of the grating that provides the spectral coverage in that region.

The co-addition is then performed using modi�ed exposure-time weighting, i.e.

�ux values are co-added according to the following rule:

Fi =
∑

j F j × texp; j∑
j texp; j

, (2.4.1)

where i represents the ith pixel in the �nal, co-added spectrum, and j represents

the jth pixel that is co-added to make pixel i. Similarly, error values are co-added

as follows:

δFi =

√∑
j (δF j × texp; j)2∑

j texp; j
. (2.4.2)

Finally, the combined spectra are re-binned to ensure Nyquist sampling, i.e. two

pixels per resolution element.

In the sections that follow, we describe the analysis procedures performed on

the reduced, co-added data.

2.5 Continuum �tting

The �rst step in constructing an absorption line list from a QSO spectrum is to

obtain an estimate of the pseudo continuum (i.e. the continuum including emis-

sion lines), such that we may calculate the transmission of UV photons from the

QSO through the IGM. To do this, we use a technique similar to that described in

Young et al. (1979), Carswell et al. (1982) and Aguirre et al. (2002). This involves

�tting an arbitrary number of polynomial segments (a polynomial spline) to the

observed continuum emission. Continuum �tting is somewhat uncertain due to
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the fact that regions of the continuum emission can be completely lost to multiple

blended absorption features arising from the Lyα forest. Luckily, at z < 1, the in-

stances of multiple blended absorption features are few and far between, and this

only becomes a big problem at higher redshifts. Ideally, one would �t a physical

model for the observed continuum emission, but a full theoretical understanding

on the spectral energy distributions (SEDs) of QSOs is far from complete. We are

therefore resigned to estimating the continuum in an inherently phenomenologi-

cal way.

To �t the QSO continuum, the spectrum is �rst divided up into an arbitrary

number of segments in wavelength. These segments are on average around 12 Å

wide through the Lyα forest (blue-wards of the Lyα emission line), and narrower

in regions containing prominent emission lines (where the continuumvariesmost

signi�cantly). Larger segments are used outside the Lyα forest in regions free of

emission lines. An iterative, three stage process is then employed as follows:

1. The median �ux value is calculated for each segment.

2. A �rst order spline (a series of straight line segments that have matching y-

values at their boundaries) is �tted through the set of points de�ned by the

central wavelength and the median �ux value of each segment.

3. Flux values falling a speci�ed number of standard deviations (nσ) below the

�tted spline are removed.

This process is repeated until the continuum converges upon a solution. As a �nal

step, a cubic spline (a series of 3rd order polynomials that have matching zeroth,

�rst and second order derivatives at their boundaries) is �t through the set of me-

dian �ux values, so that a smooth continuum is achieved. The number of spline

segments, and the width of each is arbitrary, however choosing too few typically

results in a continuum that does not have enough small scale variation to capture

the data, and too many results in a continuum that is too strongly in�uenced by

absorption lines. So long as the absorption line density is low enough not to de-

stroy observable features in the continuum, a sensible choice for the number of
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Figure 2.7: An example continuum �t to a region of the spectrum of FBQS J0209−0438.
The data is shown in grey in the bottom panel, along with the error in green and the
continuum �t in blue. The top panel shows the residuals on the �t, along with a left inset
histogram illustrating the distribution of residuals above the continuum, which is roughly
Gaussian, indicating a good �t to the data.

spline segments and the nσ in step 3 of the process outlined above can produce a

reasonably robust continuum estimation.

To determinewhether or not a good �t has been achieved, we look to the distri-

bution of residuals above the continuum. In general, a good �t may be indicated

by a roughly Gaussian distribution of residuals above the �tted continuum, re-

�ective of the noise in the spectrum. In Figure 2.7, we show the continuum �t to

a portion of the spectrum of FBQS J0209−0438. The top panel shows the distri-

bution of residuals above the continuum as a histogram in black, which is clearly

well represented by a Gaussian. By trial and error, we are able to pick a number

of spline segments, and a value for nσ, that gives a result like that depicted in Fig-

ure 2.7. The best value for nσ varies as a function of SNR, spectral resolution, and



2.6. Absorption line identi�cation 56

location within or outside of the Lyα forest, but typical values are in the range 1.5

– 3σ.

After performing the continuum �t, even after �nely tuning the algorithm de-

scribed above, a small amount ofmodi�cation by hand is usually required around

strongly peaked emission lines, at the spectrum edges, and over Lyman limit sys-

tems, where the automated �t performs poorly. For this purpose we make use of

an interactive Python/Matplotlib environment, which enables the user to add

or remove boundary points between spline segments, thereby modifying the �t

(since the spline segments must match at the boundaries). The interactive envi-

ronment closely resembles the layout of Figure 2.7, so a visual inspection on the

quality of the �t is possible. This visual inspection is a crucial element of the �tting

process, since, despite being a useful diagnostic, a Gaussian distribution of resid-

uals above the �tted continuum may be achieved even with a poor �t to the data.

After �tting the continuum, the entire spectrum is normalised by this continuum

estimate to give the overall transmission of UV photons from the QSO through

the IGM.

2.6 Absorption line identi�cation

Before �tting Voigt pro�les to absorption lines in anyQSO spectrum, we �rst need

to obtain a guess as to what atomic element, ionisation stage, and transition each

line is attributable to. For this purpose, we have developed an algorithm to allow

reliable identi�cation of most of the resolved absorption lines due to the inter-

vening IGM. Identi�cation is performed by inspection of a ‘velocity plot’ within

an interactive Python/Matplotlib environment. This is simply a stack of plots,

each representing the expected location of an absorption line attributable to some

atomic element (in a particular ionisation stage anddue to a particular atomic tran-

sition) in velocity space relative to a particular redshift. Within this environment,

the user can scan through the spectrum in redshift space from the point-of-view

of any number of atomic transitions (based on their rest-frame transition wave-

lengths). In this way, one can easily identify absorption ‘systems’ (also referred to
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as ‘absorbers’) at di�erent redshifts by looking for absorption lines due to atomic

transitions that should align in velocity space, for example, the Lyman series of

transitions attributable to absorption by an intervening structure containing neu-

tral atomic hydrogen (H I).10

Due to the high Universal abundance of hydrogen, and the high oscillator

strength of the Lyα transition, a large majority of the absorption lines seen in any

QSO spectrum will be due to this transition, and indeed a large number from the

associated Lyβ and higher order Lyman series transitions. Some metal transitions

are seen however, the most common of which are listed in Table 2.4. This table is

adapted from that inMorton et al. (1988) to include themost recent data compiled

in Verner et al. (1994) and Morton (2003) (see references therein).

The ions in Table 2.4 are compiled using logical arguments, based on those in

Morton et al. (1988), for why certain atomic transitions may be more prevalent in

QSO spectra than others. It is �rst assumed that one ionisation stage dominates

the populations of a particular element in any particular absorbing structure, and

that this element has the solar abundance relative to hydrogen (N/NH). In this

case, the equivalent width, Wλ(Å), of an unsaturated absorption line with oscilla-

tor strength f at wavelength λ(Å) is given by:

log
(Wλ

λ

)
= log

( N
NH

)
+ log λ f + log NH − 20.053. (2.6.1)

Hence, for a detectability limit Wλ ≥ 0.015Å11 at 1500Å, the column density of

hydrogen in all forms NH(cm−2) is given by

log NH ≥ 15.053 − log
(
λ f N
NH

)
. (2.6.2)

10Here by an absorption ‘system’, we refer to any set of absorption lines attributable to a single
ion at a single velocity. Wedo not include in this de�nition adjacent absorption components, which
may or may not correspond to complex velocity structure in single physical structures. Our de�-
nition therefore does not make any implicit assumptions on the physical nature of the intervening
absorbers beyond the fact that they trace some gas moving with some velocity.

11This value is approximately the 3σ limiting equivalent width for a SNR ∼ 10 spectrum ob-
tained with the COS G130M and G160M gratings.
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Table 2.4: A list of the most commonly observed transitions in QSO spectra adapted from
that presented in Morton et al. (1988).

Ion λ (Å)a f -valuea log(λ f ) + 12.00 +
log(N/NH)b

H i 1215.6701 0.4164 14.704
H i 1025.7223 0.07912 13.909
H i 972.5368 0.029 13.450
H i 949.7431 0.01394 13.122
C ii 903.9616 0.007799 11.002
C ii 687.0526 0.336 10.883
C ii 1334.5323 0.1278 10.752
C ii 1036.3367 0.118 10.607
C iii 977.0201 0.757 11.389
C iv 1548.2049 0.1899 10.988
C iv 1550.7785 0.09475 10.687
N i 1199.5496 0.132 10.150
N ii 915.6131 0.159 10.113
N ii 644.6337 0.224 10.110
N iii 685.513 0.268 10.214
N iv 765.148 0.616 10.623
N v 1238.821 0.156 10.236
N vc 1242.804 0.077 9.931
O i 1302.1685 0.048 10.526
O i 877.8787 0.0589 10.444
O i 988.7734 0.0465 10.393
O i 791.9732 0.0464 10.296
O ii 834.4655 0.132 10.772
O ii 833.3294 0.0886 10.598
O iii 702.332 0.137 10.713
O iii 832.927 0.107 10.680
O iv 787.711 0.11 10.668
O iv 608.398 0.067 10.340
O v 629.73 0.515 11.241
O vi 1031.9261 0.1325 10.866
O vi 1037.6167 0.0658 10.564
Mg ii 2796.3543 0.6155 10.816
Mg ii 2803.5315 0.3058 10.513
Si ii 1260.4221 1.18 10.732
Si ii 1193.2897 0.582 10.402
Si ii 1190.4158 0.292 10.101
Si iii 1206.500 1.63 10.854
Si iv 1393.7602 0.513 10.414
Si iv 1402.7729 0.254 10.112
S ii 765.693 1.19 10.160
S iii 677.746 1.64 10.246
S iv 657.34 1.18 10.090
S v 786.48 1.42 10.248
Fe ii 2382.7642 0.32 10.382
Fe ii 2600.1725 0.2394 10.294

a Vacuum wavelengths and oscillator strengths from Verner et al. (1994)
and Morton (2003).

b A measure of the transition strength, which takes into account the os-
cillator strength and the cosmic abundance of the element in question
(although not its distribution over ion stages).

c Included to ensure both members of the N v doublet are present.
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The list is then limited to lines with

log
(
λ f N
NH

)
≥ −1.947, (2.6.3)

such that these lines are (in theory) observable for any absorbing structure with

log NH ≥ 17.00 and solar metallicity.12 We then impose further constraints as

follows:

1. Transitionswith rest-framewavelengths outside of the range 600 < λ < 2900

Å are excluded since they are not covered by our COS spectra in any part of

the redshift range of interest (0 < z < 1).

2. All neutral ions are omitted (as these are not common in QSO spectra, pre-

sumably because the ionising radiation �eld is too strong), except for N I

and O I, which both have ionisation potentials higher than that of H I.

3. Excited state �ne-structure lines are omitted, as the typical gas densities in

the IGM do not favour the formation of these lines.

4. Only the four strongest Lyman series transitions are kept.

The resulting list of atomic transitions, summarised in Table 2.4, is used as an ini-

tial search list for the purpose of identifying absorption lines in our QSOs spectra.

These are deemed to be the most common intervening absorption lines, but we

must also consider absorption lines arising from both gas in our Galaxy, and gas

in the QSO host galaxy. The local conditions in these environments are di�erent to

those typical in the IGM in general. In particular, the gas densities are expected to

be many orders of magnitude higher, and the gas metallicities are also expected,

in some cases, to be higher by up to ∼ 1 order of magnitude. This favours the

production of excited state �ne-structure lines, and a larger number of metal tran-

sitions. In QSO host galaxies, the local UV radiation �eld has an intensity much

12This limit is imposed somewhat arbitrarily, and the degree to which any particular line is
present is also dependent on the metallicity and the local ionization conditions in the gas, which
we do not take into account here. Nevertheless, the list is created in an objective way, and re�ects
in general those lines that are most commonly observed in the spectra of QSOs.
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higher than the UV background, which leads to the formation of a number of

more highly ionized species than are commonly seen in the IGM, such as Ne VIII

and Mg X.

Bearing in mind the considerations above, we also list additional transitions

that could potentially be observed in both Galactic (Table 2.5) and QSO host en-

vironments (Table 2.6). For the former, we refer to both the Galaxy ISM and halo

gas, which is known to contain a population of absorbers moving at velocities o�-

set from the local standard of rest, known as intermediate velocity clouds (IVCs)

and high velocity clouds (HVCs) (Wakker & van Woerden, 1997).

The line-identi�cation algorithm then proceeds as follows:

1. Inspect a velocity plot of transitions fromboth those in Table 2.4 andTable 2.5

that have wavelength coverage from the QSO spectrum centred at z = 0, and

identify any absorption lines seen at this redshift or±500 km s−1 away (typi-

cal velocities of HVCs; Wakker & vanWoerden, 1997) as absorption features

due to material in the Milky Way.

2. Inspect a velocity plot of transitions from both those in Table 2.4 and Ta-

ble 2.6 that have wavelength coverage from the QSO spectrum centred at

z = zQSO, and identify absorption lines seen at this redshift, or up to −5000

km s−1 o�set from this, as absorption features due to material in the QSO

host galaxy and/or its local environment.13

3. Scan through the spectrum with an interactive velocity plot systematically

from z = zQSO − 5000/c (where c is the speed of light in km s−1) to z =

0, identifying transitions from Table 2.4 that align in velocity, and have the

expected ratio of line-strengths. For the identi�cation of metal ions, two

transitions from that ion, or at least one accompanying H I transition must

be available to con�rm the identi�cation. Identi�cation of H I transitions is

13These absorbers may or may not show traits typical of QSO associated systems, such as an
abundance of highly ionized transitions and equivalent width ratios close to 1:1 (partial covering),
but we �ag everything to −5000 km s−1 o�set from the QSO redshift as a conservative assessment
of structures not considered intervening.
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Table 2.5: Additional absorption lines attributable to the Galaxy ISM and HVCs/IVCs.

Ion λ (Å)a f -valuea log(λ f ) + 12.00 +
log(N/NH)b

C i 1656.9284 0.149 10.912
C i 1560.3092 0.0774 10.602
C i 1277.2452 0.0853 10.557
C i 1328.8333 0.0758 10.523
C i 1193.03 0.0409 10.208
C i 1280.1352 0.0263 10.047
C i 1157.9097 0.0212 9.910
C i 1193.9954 0.0124 9.690
C i 1188.8329 0.0124 9.689
C ii* 1335.6627 0.01277 9.752
N ic 1200.2233 0.0869 9.968
N ic 1200.7098 0.0432 9.665
N ic 1134.9803 0.0416 9.624
N ic 1134.4149 0.0278 9.449
N ic 1134.1653 0.0146 9.169
Al ii 1670.7886 1.74 9.953
Si ii 1526.7070 0.133 9.868
Si ii 1304.3702 0.0863 9.611
Si ii* 1197.3938 0.145 9.800
P ii 1152.818 0.245 8.011
S ii 1259.518 0.0166 8.520
S ii 1253.805 0.0109 8.336
S ii 1250.578 0.00543 8.032
Fe ii 1144.9379 0.083 9.478
Fe ii 1608.4509 0.0577 9.468
Fe ii 1143.226 0.0192 8.841
Fe ii 1133.6654 0.00472 8.228
Fe ii 1142.3656 0.00401 8.161
Ni ii 1370.132 0.056 8.135
Ni ii 1317.217 0.057 8.126
Ni ii 1741.5531 0.0427 8.121

a Vacuum wavelengths and oscillator strengths from Verner et al. (1994)
and Morton (2003).

b A measure of the transition strength, which takes into account the os-
cillator strength and the cosmic abundance of the element in question
(although not its distribution over ion stages).

c Sometimes ignored due to the presence of contaminatingN i geocoronal
emission.
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Table 2.6: Additional absorption lines attributable to the QSO host galaxy.

Ion λ (Å)a f -valuea log(λ f ) + 12.00 +
log(N/NH)b

N iii 989.799 0.123 10.035
N iii* 685.816 0.32 10.291
N iii* 991.579 0.11 9.988
O iii* 833.742 0.0796 10.552
O iii* 702.899 0.0897 10.530
O iii** 703.85 0.1386 10.719
O iii** 835.292 0.0877 10.595
O iv 554.075 0.224 10.824
O iv* 554.514 0.279 10.920
O iv* 790.199 0.0994 10.625
O iv* 609.829 0.0669 10.341
Ne iv 543.891 0.116 9.860
Ne v 568.42 0.0928 9.782
Ne v* 569.83 0.081 9.724
Ne v** 572.337 0.096 9.800
Ne vi 558.59 0.0907 9.765
Ne vi* 562.805 0.12 9.890
Ne viii 770.409 0.103 9.960
Ne viii 780.324 0.0505 9.656
Na ix 681.725 0.0919 8.117
Na ix 694.13 0.045 7.815
Mg x 609.79 0.0842 9.290
Mg x 624.95 0.041 8.989
P iv 950.6569 1.49 8.711
S iii 698.731 0.85 9.974
S iii* 678.458 0.917 9.994
S iii** 680.681 1.38 10.173
S iv 748.397 0.459 9.736
S iv* 661.443 1.201 10.100
S iv* 750.225 0.597 9.851
S vi 933.376 0.436 9.810
S vi 944.525 0.215 9.508
Ar vii 585.748 1.21 9.250
Ar viii 700.24 0.375 8.819
Ar viii 713.802 0.18 8.509
Fe iii 859.723 0.115 9.495

a Vacuum wavelengths and oscillator strengths from Verner et al. (1994),
Morton (2003) and the NIST Atomic Spectra Database.

b A measure of the transition strength, which takes into account the oscil-
lator strength and the cosmic abundance of the element in question (al-
though not its distribution over ion stages).
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set to require at least one accompanying H I transition, or two transitions of

a particular metal ion.

4. Scan back through the spectrum (starting at z = zQSO − 5000/c), looking in

detail at strong H I systems with accompanying metal ions for the presence

of weaker metal transitions that aren’t listed in Table 2.4.

5. Classify remaining absorption lines (which aren’t otherwise constrained and

without corresponding Lyβ coverage) to be due to the Lyα transition. Re-

quire that these lines have Doppler broadening parameters b > 10 km s−1

(Lyα lines have typical b-values > 20 km s−1).14

The completion of this process results in a list of guessed transitions and their ob-

served wavelengths (and hence redshifts). These, accompanied by initial guesses

for the column densities and Doppler broadening parameters, provide the start-

ing point for �tting Voigt pro�les, which is the subject of the next section.

2.7 Voigt pro�le �tting

Identi�ed absorption lines in theQSO spectra are �ttedwithVoigt pro�les that are

�rst convolved with the COS LSF using the χ2 minimisation code vpfit (version

10.0).15 Convolutionwith the COS LSF is handled by vpfit internally, so long as the

user provides the tabulated information in an ascii �le. To obtain the appropriate

LSF at each wavelength, we interpolate between the tabulated LSFs that are pro-

vided by STScI in 50 Å intervals.16 The COS NUV LSF is described in Ghavamian

et al. (2009), and the best FUV LSF characterisation is detailed in Kriss (2011).

For each absorption system identi�ed by the algorithm in Section 2.6, we de-

�ne �tting regions, then pass both these, and the guessed Voigt parameters (z,

log N , b) as input to vpfit, along with the appropriate LSFs, and run the program.

14This condition also roughly limits these identi�cations to lines that are resolved, or nearly
resolved at the COS FUV ‘M’ grating resolution of ∼ 17 km s−1, thus partly eliminating the possi-
bility of identifying lines that are instrumental defects.

15http://www.ast.cam.ac.uk/~rfc/vp�t.html
16http://www.stsci.edu/hst/cos/performance/spectral_resolution

http://www.ast.cam.ac.uk/~rfc/vpfit.html
http://www.stsci.edu/hst/cos/performance/spectral_resolution
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Groups of lines at a particular redshift within some arbitrary window (typically a

few 100 km s−1) are �t together, but in general we do not tie parameters between

di�erent ions17 (although see Chapter 5). In this way we avoid any assumptions

aboutwhich groups of ions trace particular absorbing regions, althoughmanywill

indeed trace the same structures.18 In some instances, there may be blends of ions

from di�erent redshifts that produce compound absorption features. To ensure

accurate Voigt pro�le decompositions, we make every e�ort to �t these blended

absorption lines simultaneously, along with constraints from counterpart, non-

blended transitions where available. We also make sure to place �tting regions

over areas of the spectrum where absorption is inferred but not detected, as this

helps to provide robust upper limits on the best �t column densities.

Each time vpfit is run, we perform a visual check of the results, along with

an inspection of the reduced χ2 values. We then decide upon whether more or

fewer velocity components may be required to give the best �t for any given ion.

After some number of trials, we adopt the �t that has the minimum number of

velocity components for each ion required to minimise the reduced χ2 value. Due

to the �nite velocity resolution of COS, there may be instances where the true

number of velocity components in any given absorption complex is higher than

the number �tted. Nevertheless, our approach ensures that we make the best use

of the information available in the data.

2.8 The absorber sample

After performing a full Voigt pro�le decomposition of each spectrum, we are left

with a catalogue of absorbers for which we list the ions we have identi�ed, to-

gether with their best-�t column densities, Doppler broadening parameters, and

redshifts. We also assign a reliability �ag to each measurement, following a simi-

17Note that Voigt parameters between di�erent transitions of the same ion are tied in the �tting
process, and that in our experience, the wavelength calibration of COS is generally su�cient to
allow for this.

18This preserves our de�nition of an ‘absorber’ to mean a single velocity component of a single
ion.
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lar scheme to that outlined in Tejos et al. (2014):

• Secure (‘a’): systems that are detected on the basis of at least two transitions

(in the same ion), with log N/∆(log N) > 30, and each transition having an

equivalent width signi�cant at the > 3σ level.

• Probable (‘b’): H I systems detected on the basis of Lyα only (after ruling

out all other possibilities and with equivalent widths signi�cant at the > 4σ

level), or metal-line systems detected on the basis of one transition with

equivalent widths signi�cant at the > 3σ level and with one or more ac-

companying Lyman series transitions. Both possibilities also with the re-

quirement log N/∆(log N) > 30.

• Uncertain (‘c’): systems for which log N/∆(log N) < 30 and/or equivalent

widths detected at the < 3σ level.

Systems labelled ‘c’ are excluded from the analysis in this thesis. This scheme is

also applied to the measurements presented in Danforth et al. (2014). The scheme

ensures that we only include absorbers in our sample that are both well con-

strained and statistically signi�cant. The requirement that H I absorbers detected

on the basis of Lyα only must have equivalent widths signi�cant at the > 4σ level

is motivated in (Danforth et al., 2014), and reduces the number of spurious de-

tections to ∼ 3. For the QSOs we have analysed, we present a description and a

snapshot of the absorber catalogue in Appendix B, Section B.1 (for the others, see

Danforth et al., 2014). The full cataloguewill be available for download in a future

paper, or can be obtained upon request from the author.

For the purposes of this thesis, excluding Chapter 3, we consider just the O VI

samples. We focus on this ion for three main reasons: (i) metal ions in the IGM

are closely connected with galaxies, and therefore provide powerful constraints

on the interplay between the IGM and galaxies; (ii) O VI is the most commonly

observed metal ion in the low-redshift IGM; and (iii) O VI likely traces a wide

range of environments and gas phases. The O VI doublet is common because

the component transitions have high oscillator strengths, and possess rest-frame

wavelengths that make them accessible in the redshift range 0.1 . z . 0.7 with
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Figure 2.8: Statistics of O vi absorbers in our survey. The left panel shows the histogram of
column densities, and the right shows the histogram of Doppler broadening parameters.

current FUV instrumentation. O VI absorbers are thus a convenient tracer of the

metal-enriched gas in the IGM. They are thought to trace both cool, photoionized

plasmas in the temperature range 104 . T . 105 K, and hotter, collisionally ion-

ized gas phases at temperatures 105 . T . 107 K (e.g. Savage et al., 2014; Stocke

et al., 2014), the latter of which is commonly referred to as the warm-hot inter-

galactic medium (WHIM) (e.g. Cen & Ostriker, 1999; Davé et al., 2001; Fukugita &

Peebles, 2004), believed to harbour 30 – 40% of all the baryons in the low-redshift

Universe. Theymay also form inmore complicated scenarios, e.g. in conductive or

turbulent interfaces between gaseous components at multiple temperatures (e.g.

Borkowski et al., 1990; Kwak & Shelton, 2010). Therefore, although we suspect

that O VI is a good tracer of metal-enriched gas across a large range in gas tem-

perature, we need to bear in mind the many complex formation scenarios for this

ion in the interpretation of our results later.

In Figure 2.8, we show histograms of column density and Doppler broadening

parameter for our O VI sample. There are a total of 181 O VI systems that possess

reliability �ags ‘a’ or ‘b’. These absorption systems range over a factor of 100 in

column density down to our detection limit (log N(O vi) ≈ 1013 cm−2), in marked
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contrast to H I absorbers that are observed to span ∼ 10 orders of magnitude

in column density. The number of O VI absorbers drops o� fairly rapidly past

1014 cm−2, at which point we are typically 100% complete. Doppler broadening

parameters show a long tail to high values, and a sharp cut o� at ∼ 10 km s−1,

which roughly corresponds to the spectral resolution of COS. There may be a

population of very narrow O VI absorbers, but we are not sensitive to them here.



Chapter 3

A kpc scale out�ow

associated to a QSO at

z ∼ 1

3.1 Overview

In this chapter, we present Hubble Space Telescope (HST)/Cosmic Origins Spec-

trograph (COS) observations of highly ionized absorption lines associated with a

radio-loud quasar (QSO) at z = 1.1319. The absorption system has multiple veloc-

ity components, with an overall width of ≈ 600 km s−1, tracing gas that is largely

out�owing from the QSO at velocities of a few 100 km s−1. There is an unprece-

dented range in ionization, with detections of H I, N III, N IV, N V, O IV, O IV*,

O V, O VI, Ne VIII, Mg X, S V and Ar VIII. We estimate the total hydrogen number

density from the column density ratio N(O iv*)/N(O iv) to be log(nH/cm−3) ∼ 3.

Combined with constraints on the ionization parameter in the O IV bearing gas

from photoionization equilibrium models, we derive a distance to the absorbing

complex of 2.3 . R . 6.0 kpc from the centre of the QSO. A range in ionization

parameter, covering ∼ 2 orders of magnitude, suggests absorption path lengths

in the range 10−4.5 . l‖ . 1 pc. In addition, the absorbing gas only partially cov-

ers the background emission from the QSO continuum, which suggests clouds

with transverse sizes l⊥ . 10−2.5 pc. Widely di�ering absorption path lengths,

combined with covering fractions less than unity across all ions pose a challenge

to models involving simple cloud geometries in associated absorption systems.

These issues may be mitigated by the presence of non-equilibrium e�ects, which

can be important in small, dynamically unstable clouds. The dynamics and ex-

pected lifetimes of the gas clouds suggest that they do not originate from close to
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the active galactic nucleus, but are instead formed close to their observed location.

Their inferred distance, out�ow velocities, and gas densities are broadly consis-

tent with scenarios involving gas entrainment or condensations in winds driven

by either supernovae, or the supermassive black hole accretion disc. In the case

of the latter, the present data most likely does not trace the bulk of the out�ow

by mass, which could instead manifest itself as an accompanying warm absorber,

detectable in X-rays.

3.2 Introduction

Associated absorption lines (AALs) seen in QSO spectra o�er a unique physical

perspective on the gaseous environments in the vicinity of QSOs. Many AALs are

thought to arise in material that has been ejected from a region close to the super

massive black hole (SMBH) (within a few pc, e.g. Nestor et al., 2008; Wild et al.,

2008; Muzahid et al., 2013). The resulting out�ows might play a major role in the

quenching of star formation and in regulating the growth of SMBHs (Silk & Rees,

1998; King, 2003; Scannapieco & Oh, 2004; Di Matteo et al., 2005; Ostriker et al.,

2010; Hopkins & Elvis, 2010). Some may arise from material ejected in supernova

explosions (e.g. Veilleux et al., 2005). In addition, some AALs appear to probe gas

that is part of the host galaxy halo (e.g. Williams et al., 1975; Sargent et al., 1982;

Morris et al., 1986; Tripp et al., 1996;Hamann et al., 2001; D’Odorico et al., 2004). In

some cases, this gas may eventually condense in the disc to form new generations

of stars via Galactic fountain processes (Bregman, 1980; Fraternali et al., 2013). The

balance of gas accretion and out�ow shapes the galaxy luminosity function and

drives the evolution of galaxies (e.g. Benson et al., 2003; Bower et al., 2006). Ob-

servations of AALs therefore provide a detailed snapshot of these forces at work.

Constraints on the metallicity of these absorbers also provides a direct measure

of the star formation and chemical enrichment histories in the centres of active

galaxies (Hamann & Ferland, 1993, 1999).

AALs are loosely de�ned as having absorption redshifts within a few thou-

sand km s−1 of the QSO emission redshift, and velocity widths of less than a
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few hundred km s−1. These are narrow when compared to the so-called broad

absorption lines (BALs), which have velocity widths and displacements from the

QSO redshift that often exceed 104 km s−1 (Weymann et al., 1979; Foltz et al., 1986;

Weymann et al., 1991; Trump et al., 2006). The origin of the BALs is presumably

in a wind, driven by accretion processes close to the SMBH. However, the exact

origin of the AALs is far less clear. In addition, not all AALs are necessarily in-

trinsic to the QSO (e.g. Tripp et al., 1996; Ganguly et al., 2013). Those that may

be intrinsic show: (i) Absorption strength that is seen to vary on time-scales of

around a year (e.g. Hamann et al., 1995; Srianand & Petitjean, 2001; Hall et al.,

2011; Vivek et al., 2012); (ii) Metallicities & Z� (e.g. Petitjean et al., 1994; Hamann

et al., 1997; Muzahid et al., 2013); (iii) Partial coverage of the QSO accretion disc

continuum and/or broad-line region (BLR) (e.g. Barlow& Sargent, 1997; Srianand

& Shankaranarayanan, 1999; Gabel et al., 2006; Arav et al., 2008); (iv) The presence

of excited �ne structure lines (e.g. Morris et al., 1986; Srianand & Petitjean, 2000;

Hamann et al., 2001; Edmonds et al., 2011). These properties are rarely seen in

intervening absorption-line systems (although see Balashev et al., 2011, for an ex-

ceptional case), and so AALs with these properties are believed to trace gas that

originates near the QSO, or in the halo of the host galaxy.

AALs have been observed in optical, ultraviolet (UV) and X-ray spectra of local

active galactic nuclei (AGN) and QSOs, with the X-ray observations often reveal-

ing a plethora of absorption lines and K-shell absorption edges from species with

ionization potentials of a few hundred eV (e.g. O VII and O VIII). Collectively,

these are usually referred to as ‘warm absorbers’ (in ∼ 50% of Seyfert galaxies;

Crenshaw et al., 2003). Many authors have suggested that the presence of warm

absorbers is correlated with the detection of AALs and BALs in optical and UV

spectra, usually through species like C III, C IV and N V, with ionization poten-

tials . 100 eV (e.g. Mathur et al., 1994, 1998; Brandt et al., 2000; Kaspi et al., 2002;

Arav et al., 2007; Di Gesu et al., 2013). However, at present, it is not clear whether

these correlations imply a physical connection between the gas clouds traced by

these ions (see for example Srianand & Petitjean, 2000; Hamann et al., 2000, 2013).

To better understand the nature of associated absorbing clouds, more obser-
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vations of the most highly ionized UV species (ionization potentials > 100 eV) are

required, so that the ionization structure of the absorbing gas can be more exten-

sively characterised. At low redshift, observations ofmanyUV ions are impossible

due to the presence of Galactic Lyman limit absorption (the relevant transitions

have rest-frame wavelengths < 912 Å). Observations in the optical, which are lim-

ited to high redshifts, are complicated by contamination from the Lyman alpha

forest, together with a higher incidence rate of Lyman limit systems (e.g. Fuma-

galli et al., 2013). At intermediate redshifts 0.5 . z . 1.5, the problem of Galactic

absorption is virtually eliminated, and the Lyman alpha forest contamination is

less severe, making this a pro�table redshift range to study highly ionized AALs.

Observations must be conducted in the far ultraviolet (FUV), and with the ad-

vent of the COS on-board the HST, hundreds of QSOs are now observable in this

wavelength regime, thanks largely to a sensitivity more than ten times that of

the previous generation medium resolution UV spectrograph (Green et al., 2012,

Chapter 2). Together with the near ultraviolet (NUV) modes of COS, AALs with

ionization parameters of a few, to a few hundred eV are accessible. Detailed diag-

nostics on the ionization structure of associated gas clouds are thus available in

a large number of QSOs for the �rst time. In addition, coverage of strong transi-

tions due to �ne-structure excited states in ions such as O IV and O V (see �gure

1 in Arav et al., 2013, for a full summary) provide powerful density diagnostics

in highly ionized associated gas clouds, which provide crucial constraints on the

physical conditions in and around the absorbing regions.

In this chapter, we present observations of the radio-loud QSO FBQS J0209-

0438 obtained with COS. This QSOwas targeted as part of a larger programme of

observations to study two-point correlation statistics between intergalacticmedium

(IGM) absorbers and galaxies at z . 1 (PID 12264, PI: S.L. Morris, Tejos et al., 2014,

Chapter 6), and it is just one of the QSOs from the sample of 60 that are consid-

ered as part of this thesis (see Chapter 2, Table 2.2). A highly ionized system of

AALs is present, with complex velocity structure and an overall velocity width

≈ 600 km s−1. We also report the detection of absorption due to the �ne-structure

O IV* transition. A summary of the observations and data reduction, together
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with a characterisation of the rest-frame QSO spectral energy distribution (SED)

is presented in Section 3.3. A complete analysis of the AALs; their covering frac-

tions, column densities and line widths is presented in Section 3.4. In Section 3.5

we present the results of photoionization and collisional ionization models, in an

attempt to characterise the physical properties of the gas. In particularwe examine

the ionization state, metallicity, and density of the gas, and use these properties

to put constraints on the absorbing geometry and distance from the QSO. In Sec-

tion 3.6 we present a discussion of these results and draw conclusions.

3.3 Observations of FBQS J0209-0438

The QSO FBQS J0209-0438 (hereafter Q0209) was observed withHST/COS in De-

cember 2010. The observations made use of both the medium-resolution (R ∼

18 000) FUV and low-resolution (R ∼ 3000) NUV modes of COS, giving wave-

length coverage free from second-order light in the range 1240 – 3200 Å. Four

central wavelength settings were used in the FUV, and three in the NUV, to en-

sure that the resulting spectrum had no gaps. For each central wavelength setting,

multiple exposures were obtained at a number of positions o�set along the dis-

persion direction from the nominal one (FP-POS=3; see Table 3.1). Each o�set

position is separated by ∼ 250 pixels in the FUV channels, and ∼ 52 pixels in the

NUV channels, with FP-POS=1, 2 o�set to lower wavelengths from FP-POS=3,

and FP-POS=4 o�set to higher wavelengths. Merging these o�sets minimises the

e�ects of �xed-pattern noise in the COS FUV and NUV detectors by e�ectively

dithering around these features, allowing them to be de-weighted (or subtracted)

in the �nal co-added spectra. They are particularly crucial for the FUV modes,

which su�er from additional �xed-pattern noise attributable to grid wires that

produce shadows on the face of the detector. For more details, including a com-

plete description of the design and in-�ight performance of COS, see Chapter 2,

Section 2.2, Osterman et al. (2011) and Green et al. (2012).

On the 7th October 2013, under clear skies and excellent seeing conditions

(∼ 0.55′′), we obtained a near-infrared spectrum ofQ0209with FIRE (Simcoe et al.,
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2013), mounted on the Magellan Walter Baade 6.5m telescope at Las Campanas

Observatory. In echellemode, and for the adopted 0.6′′ slit, FIRE delivers a contin-

uous spectrum across the wavelength range 0.82− 2.51µm at a spectral resolution

of ∼ 50 km s−1. Data were collected in 2 × 729 s exposures while Q0209 was at

an airmass of 1.1. To correct for spectral features arising from the Earth’s atmo-

sphere, we also acquired 2 spectra of the A0V star HD25266 at similar airmass,

with exposure times of 729 s each.

3.3.1 Data reduction

Individual exposures from COS were downloaded from the Space Telescope Sci-

ence Institute (STScI) archive and reduced using Calcos v2.18.5. The boxcar ex-

traction implemented in Calcos was optimised by narrowing the source extrac-

tion box to match the apparent size of the source in the cross-dispersion direction

upon inspection of each �at-�elded image. This amounted to 25 pixels for all

G130M exposures, and 20 pixels for all G160M and G230L exposures. The back-

ground extraction boxes were also enlarged to encompass as much of the back-

ground signal as possible, whilst avoiding regions close to the detector edges and

the bright object aperture (BOA). We then performed a custom co-addition pro-

cedure that works from the x1d (*_x1d.fits) 1D extracted spectra produced by

Calcos (see Chapter 2, Section 2.4 for full details). These �les are listed in Table 3.1

along with the various instrument settings and exposure times.

Data from FIRE were reduced with the Firehose pipeline, which optimally ex-

tracts 1D spectra and associated errors in each order from �at-�elded 2D spectral

images. The pipeline also computes thewavelength calibration usingOHsky lines

and ThAr arc lamp spectra obtained after each science exposure. Slit tilts in each

order are measured and accounted for in the �nal wavelength solution, which is

in vacuum, and includes the heliocentric correction of 6.8 km s−1. Telluric lines

are corrected for in the �nal spectra, and each order is �ux calibrated using the

Spextool software package (Cushing et al., 2004). Finally, the 1D spectra are op-

timally combined, and each order is merged in a single spectrum. The resulting

signal-to-noise (order dependent) ranges between 18 and 36 per spectral pixel.
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Table 3.1: A summary of the HST/COS observations.

grating λcentre (Å)a FP-POS texp (s)b x1d rootname

G130M 1291 2 2321 lbj011ucq
G130M 1291 3 2948 lbj011v4q
G130M 1291 4 2948 lbj011vcq
G130M 1318 3 2948 lbj011vjq
G130M 1318 4 2948 lbj011vsq
G160M 1600 1 2276 lbj012vpq
G160M 1600 2 2948 lbj012vvq
G160M 1600 3 2948 lbj012w2q
G160M 1600 3 2948 lbj012waq
G160M 1600 4 2948 lbj012wiq
G160M 1623 1 2276 lbj013k8q
G160M 1623 2 2948 lbj013keq
G160M 1623 3 2948 lbj013kmq
G160M 1623 3 2948 lbj013ktq
G160M 1623 4 2948 lbj013l0q
G230L 2950 3 2373 lbj014vkq
G230L 2950 4 2985 lbj014vuq
G230L 2635 3 2985 lbj014w3q
G230L 3360 3 2985 lbj014wcq
G230L 3360 4 2985 lbj014wlq

a Central wavelength setting.
b Exposure time.

3.3.2 Redshift measurement and black hole mass

Wemeasure the redshift of Q0209 using the [O III] λλ5008,4960 doublet emission

lines, seen in the FIRE spectrum. The region around the [O III] and Hβ emission

lines is shown in Figure 3.1. An asymmetric pro�le in the [O III] lines is appar-

ent, with an extended blue wing, indicative of out�owing gas. We decompose

the spectrum in this region into the contribution from a power-law continuum,

blended Fe II emission lines (Gaussian smoothing over the template of Véron-

Cetty et al., 2004) and a multiple Gaussian �t to the [O III] and Hβ emission, us-

ing a similar method to that described in Jin et al. (2012). The blue curve shows

the resulting best-�t emission model. A two component Gaussian �t to each of

the [O III] lines e�ectively removes the out�owing component. From the line

centre in the stronger Gaussian component, we then derive a systemic redshift

measurement of zQSO = 1.13194 ± 0.00001, corresponding to a statistical velocity

uncertainty of ∆v ≈ 3 km s−1. The black hole mass is estimated from the full

width at half maximum (FWHM) of the broad Hβ component together with the
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Figure 3.1: A region of the Magellan/FIRE spectrum of Q0209, centred on the [O iii]
λλ5008,4960 andHβ emission lines. The blue curve shows the total �tted emission pro�le.
The model components - a power continuum, Fe ii template, and Gaussian emission lines
- are shown in magenta, red, and green respectively.

rest-frame 5100 Å �ux using equation (3) in Woo & Urry (2002). We �nd a value

MBH ≈ 1.9 × 109M�. This value compares favourably with an earlier estimation

of MBH ≈ 1.4 × 109M�, measured from a Keck/HIRES spectrum using the broad

Mg II emission line following themethod described inMatsuoka et al. (2013). The

latter black hole mass estimate is used as a constraint on the accretion disc mod-

els presented in Section 3.3.4, which de�ne the SED of Q0209 used in subsequent

photoionization modelling.

3.3.3 The COS spectrum of Q0209

Before performing a complete absorption line analysis on the COS spectrum of

Q0209, we �rst estimate of the unabsorbed QSO pseudo continuum (including

emission lines) using the method described in Chapter 2, Section 2.5. The spec-

trum is then normalised using this continuum. We note that the Lyα emission line
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strength is highly uncertain, due to strong absorption disguising the peak in the

line. However, the ratio of Lyβ to Lyα line strengths in the �tted spline compares

favourably with the same ratio seen in the Shull et al. (2012)HST/COS composite

spectrum of AGN, and the results presented in this chapter are not sensitive to the

exact placement of this peak.

The spline continuum is shown as a blue line on top of the rest frame spec-

tral data in Figure 3.2, corrected for Galactic extinction using the empirical mean

extinction curve of Cardelli et al. (1989). We calculate the extinction as a func-

tion of wavelength using a Galactic H I column density of 2 × 1020 cm−2, which

sits between the measured values of 1.85 × 1020 cm−2 (Kalberla et al., 2005) and

2.44 × 1020 cm−2 (Dickey, 1990) in this direction. We assume an E(B − V) to NH

ratio of 1.5 (Gorenstein, 1975), which gives E(B − V) = 0.028. The spectrum is de-

composed into the contribution from emission lines, plus that from the accretion

disc continuum. We do this by choosing regions of emission-line free continuum,

taking the minimum value inferred from the �tted spline in each of these regions,

and �tting a power law through the resulting data points, giving a spectral index

of αλ = −0.64. The �ux shortward of ∼ 600 Å (1280 Å observed frame) falls to

zero due to a Lyman-limit system at z ' 0.39. A large number of broad emis-

sion lines are present, including most of the lines seen in the composite spectrum

of Shull et al. (2012) over the same wavelength range. The expected locations of

many prominent broad emission lines are labelled.

3.3.4 Spectral energy distribution

For the purposes of photoionization modelling, we construct an SED that ex-

tends from the far infra-red (∼ 10−5 keV), through to the hard X-ray bandpass

(∼ 100 keV), which represents the range in photon energy over which most of the

emission is generated by gas accretion. This emission forms the dominant con-

tribution to the ionising photon �ux. Data points in the UV are taken from line

free regions of the COS spectrum as described in Section 3.3.3. Optical data in

the u, g, r, i and z photometric bands come from the SDSS (Ahn et al., 2012),



3.3. Observations of FBQS J0209-0438 77

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

W
av

el
en

gt
h

(Å
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CFHTLS (Cuillandre et al., 2012) and PanSTARRS1 surveys. Near-infrared data in

the J, H, and Ks bands comes from 2MASS (Skrutskie et al., 2006). X-ray points

are simulated from the ROSAT all-sky survey (Voges et al., 1999) �ux and spectral

index using the ROSAT detector response matrix.2 The data points are corrected

for Galactic dust extinction using the method described in Section 3.3.3, and for

the Galactic absorption cross-section due to gas, grains, and molecules using the

model presented inWilms et al. (2000). We then �t the datawith optxagnf – an en-

ergetically self-consistent accretion discmodel described fully inDone et al. (2012)

– using the spectral �tting package xspec.3 Brie�y, the model consists of three

main components: (i) a colour-temperature corrected blackbody spectrum pow-

ered by the outer regions of the black hole accretion disc; (ii) a soft X-ray excess,

attributable to Compton up-scattering of seed photons in the hotter, optically thick

inner region of the accretion disc; and (iii) an additional X-ray component formed

through Compton up-scattering in a hot, optically thin corona above the disc, cre-

ating a power law tail that extends through the hard X-ray bandpass. The model

assumes that all the energy used to power these three components is produced

through mass accretion. Therefore, the soft and hard X-ray components are phys-

ically constrained even though their origin is poorly understood. Inmodelling the

spectrum, we assume a black hole mass of 1.4 × 109M� (see Section 3.3.2).

The resulting rest-frame SED is shown in Figure 3.3. Two models in blue and

magenta are shown that �t the data well: one peaking in the soft X-rays, the other

in the UV, with reduced χ2 values of 1.218 and 0.526 respectively. The models

di�er quite dramatically over the soft X-ray bandpass, representing our ignorance

of the true SED shape in this region due to modelling uncertainties on the Galac-

tic extinction across the extreme UV bandpass, and a lack of high quality X-ray

observations. Crucially, it is over this energy range where the ions considered in

this paper are created (and destroyed). We therefore consider bothmodels in later

analysis. The models represent the extremes allowed by the data, and so it is use-

1http://www.ps1sc.org
2available from http://heasarc.gsfc.nasa.gov/docs/rosat/pspc_matrices.html
3http://heasarc.nasa.gov/xanadu/xspec/

http://www.ps1sc.org
http://heasarc.gsfc.nasa.gov/docs/rosat/pspc_matrices.html
http://heasarc.nasa.gov/xanadu/xspec/
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Figure 3.3: Rest-frame model SEDs from optxagnf, �tted to extinction-corrected photo-
metric data and line-free regions of the HST/COS spectrum using xspec. The magenta
curve is the best �tting model, which peaks in the UV. The blue curve is also a good �t
to the data, but peaks in the soft X-ray bandpass. Together, these models represent the
uncertainty in the SED shape over the soft X-ray region, where there is a large correction
for Galactic extinction. Dotted lines represent the ionization destruction potentials for a
range of ions that are used as constraints in photoionization modelling. Solid black lines
represent the range of energies over which these ions are formed. Crucially, these ions
are produced by photons with energies in a region where the SEDs are most markedly
di�erent, both in terms of luminosity and spectral slope.

ful to bear in mind that the true SED may be lie somewhere between these two

possibilities. Dotted vertical lines represent the ionization destruction potentials

for a range of ions later considered in photoionizationmodelling. Solid black hori-

zontal lines represent the range in energy where these ions are present (extending

down to their ionization creation potentials).
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3.4 Analysis of the associated absorption

Sections of the COS spectrum of Q0209, together with the spline continuum (blue

line) and power-law accretion disc spectrum (dashed magenta line) are shown in

Figure 3.4. The spectral resolutions up to, and above, 1750 Å are ∼ 16 km s−1 and

∼ 100 km s−1 per resolution element respectively. The plot labels just the most

prominent associated absorption troughs, but we report all of the AALs detected

with > 3σ signi�cance in Table 3.2. Equivalent widths are measured by integrat-

ing over the whole absorption trough in each ion (including all discrete velocity

components). Some of these troughs are blended with unrelated absorption lines

at lower redshifts, making the measured equivalent widths larger than the intrin-

sic ones. We subtract away the e�ects of line blending by �tting Voigt pro�les

with vpfit4 (Figure 3.8, Section 3.4.2). The velocity structure across all ions is tied

to that of N IV λ765 (Figure 3.5) in the �tting process, based on an empirical (by-

eye) similarity between the absorption troughs. This similarity suggests that all

the ions we detect in a particular velocity component are formed in regions that

are co-spatial. We choose N IV λ765 as a reference, due to a lack of line blend-

ing and the fact that almost all components are cleanly resolved in this absorption

trough. We have full coverage of the H I Lyman series transitions. Ions searched

for, but not detected above a 3σ signi�cance level in the AAL system are C III,

O III, O V*, S III, S IV, S VI and Na IX. The expected locations of these particular

lines also coincide with unrelated absorption at z � zQSO in some cases.

3.4.1 Partial covering

In this section, we look for the presence of partial covering, i.e. indications that

the absorbing clouds do not fully cover the background emission from the QSO

continuum and/or BLR. The clearest evidence for partial covering comes from

�at-bottomed, apparently saturated absorption troughs that do not reach zero in-

tensity (see for example the O V absorption trough in Figure 3.4). If the individual

line components are resolved, then these pro�lesmust be caused by optically thick

4http://www.ast.cam.ac.uk/~rfc/vp�t.html

http://www.ast.cam.ac.uk/~rfc/vpfit.html


3.4. Analysis of the associated absorption 81

1290 1310 1330 1350

−2
−1

0
1
2
3
4

O IV λ608 Mg X λλ609,624 O V λ629

1630 1650 1670 1690

−2
−1

0
1
2
3
4

N IV λ765 Ne VIII λλ770,780
S V λ786

O IV λ787
O IV* λ790

2100 2200 2300 2400 2500 2600 2700

−2
−1

0
1
2
3
4
5
6
7
8
9

10

H I λ1025
O VI λλ1031,1037

H I λ1215
N V λλ1238,1242

Wavelength (Å)
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Figure 3.4: The HST/COS spectrum of Q0209 in the observed frame, shown in regions
containing the most prominent AALs. The blue curve shows the unabsorbed continuum
�t including emission lines. The black dashed line shows the zero-�ux level. The ma-
genta dashed line shows the power-law accretion disc continuum. Markers indicate the
positions of the AALs. Labels indicate the ion (singlet or doublet) and rest-frame transi-
tion wavelengths giving rise to those absorption troughs.
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Table 3.2: AALs detected at a > 3σ signi�cance level, listed �rst in order of decreasing
solar abundance relative to hydrogen, second in order of increasing ionization potential,
and third in order of decreasing oscillator strength.

ion λrest (Å)a IPc (eV)b IPd (eV)c Wλ (Å)d

H i 1215.7 – 13.6 2.365 ± 0.031*
1025.7 1.030 ± 0.032
972.5 0.967 ± 0.074*
949.7 0.691 ± 0.045*
937.8 0.757 ± 0.059*

O iv 787.7 0.937 ± 0.015*
608.4 54.9 77.4 0.633 ± 0.008*

O iv* 609.8 – – 0.362 ± 0.009*
790.2 0.288 ± 0.020**
790.1 0.288 ± 0.020**

O v 629.7 77.4 113.9 0.914 ± 0.008*
O vi 1031.9 113.9 138.1 1.185 ± 0.040

1037.6 1.690 ± 0.039*
Ne viii 770.4 154.2 207.3 1.072 ± 0.011*

780.3 0.981 ± 0.011*
N iii 685.0 29.6 47.4 0.126 ± 0.011**

685.5 0.092 ± 0.011**
N iv 765.1 47.4 77.5 0.685 ± 0.014
N v 1238.8 77.5 97.9 1.076 ± 0.051

1242.8 0.768 ± 0.054
Mg x 609.8 328.0 367.5 0.433 ± 0.008*

625.0 0.362 ± 0.009*
S v 786.4 47.2 72.6 0.185 ± 0.015
Ar viii 700.2 91.0 124.3 0.165 ± 0.009

713.8 0.014 ± 0.011
a Rest-frame transition wavelength.
b Ionization potential for creation.
c Ionization potential for destruction.
d Observed equivalent width across the entire absorption trough.
* Measured value includes a contribution from blended, unrelated absorp-
tion.

** Measured value includes a contribution from absorption lines due to a
closely separated transition of the same ion.

absorption plus some unabsorbed �ux. Under the assumption that the absorbers

are spatially homogeneous, the residual �ux at an observed wavelength λ in the

normalised QSO spectrum may be written as

Rλ = (1 − C f ) + C f e−τλ , (3.4.1)

where τλ is the optical depth and C f the covering fraction, de�ned as the ratio

of occulted to total emitted photons from the background light source(s). Solving
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for τλ, we have

τλ = − ln
(

Rλ − 1 + C f

C f

)
. (3.4.2)

For ions with just one transition, estimating the covering fraction is only possible

when the line is saturated, in which case the exponential goes to zero, and C f =

1 − Rλ. Otherwise, we cannot estimate C f , as we do not know τλ. However, for

multiplets, where more than one transition is available, we can eliminate τλ by

noting that

γ = τλ1
τλ2

=
f1λ1
f2λ2

, (3.4.3)

where f1 and f2 are the oscillator strengths of each transition. This ratio is close

to 2 in the case of doublet lines. For two transitions of the same ion, with residual

�ux values Rλ1 and Rλ2, and covering fractions C f 1 and C f 2 respectively, we may

then write

Rλ1 = 1 − C f 1 + C f 1

(
Rλ2 − 1 + C f 2

C f 2

)γ
(3.4.4)

(Petitjean& Srianand, 1999). For simplicity, we can assume that C f 1 = C f 2 for each

ion, although in general this may not be true (Srianand & Shankaranarayanan,

1999). Complex velocity structure in the broad emission lines (e.g. the pres-

ence of both narrow and broad velocity components) can mean that absorbed

photons from di�erent parts of a broad line pro�le will originate from spatially

distinct locations (narrow-line region versus broad-line region). Unless the back-

ground emission intensity happens to be spatially homogeneous for any given

wavelength, this may imply that C f 1 , C f 2, even for doublets that have a rela-

tively small wavelength separation (see for example theO VI doublet in Figure 3.4,

which spans the centre and the blue wing of the Lyβ + O VI emission line). In ad-

dition, over the whole wavelength range of the QSO spectrum, there are regions

dominatedmore by the accretion disc continuum than by the BLR, and vice versa.

Since the BLR is larger in size than the continuum, if the absorbing clouds have
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Figure 3.5: Velocity structure in the N iv absorption trough. Voigt components are at
−402, −340, −249, −209, −148, −94, −63 and +148 km s−1 with respect to the QSO rest
frame. The vertical dashed line marks the rest-frame velocity of the QSO. Thin blue lines
are individual Voigt pro�le �ts to the data. The thick blue line represents the overall �tted
pro�le.

transverse sizes larger than the continuum region, this can also lead to an inequal-

ity. We expect deviations from C f 1 = C f 2 to be small in most cases, although the

relatively high Lyα emission line �ux can lead to situationswhere the Lyα absorp-

tion pro�le has a smaller apparent optical depth than the Lyβ pro�le (Petitjean &

Srianand, 1999). Nevertheless, we do not see strong evidence for this e�ect in our

data, and we therefore favour a scenario in which there are many clouds with

transverse sizes smaller than the continuum size (. 4 light-days; Jiménez-Vicente

et al., 2012). In what follows, we assume C f 1 = C f 2 within the measurement un-

certainties.

Residual �ux is clearly present in the saturated absorption troughs of O V λ629

and Ne VIII λ770 (at the blue end), which implies that C f < 1 for these ions (see

Figure 3.4). Taking the average normalised residual �ux across the �at portions

of these pro�les gives covering fractions of 0.91± 0.01 and 0.93± 0.01 respectively

(with τ � 1 in equation (3.4.1)). In these, and all following covering fraction es-

timates, the quoted statistical error does not include any contribution from the

error on the continuum �t. We also caution that the error bars assume Gaussian

statistics, which underestimate the true �ux error in absorption troughswhere the

number of counts in a given bin is low (. 100; Gehrels, 1986). Given the �at pro-

�le across the entirety of the O V absorption trough, there is no strong evidence



3.4. Analysis of the associated absorption 85

0.0

0.2

0.4

0.6

0.8

1.0

O IV λ608 C f = 0.92 ± 0.08

0.0

0.2

0.4

0.6

0.8

1.0

Ne VIII λ780 C f = 0.84 ± 0.10

−500 −400 −300 −200 −100 0

0.0

0.2

0.4

0.6

0.8

1.0

Mg X λ624 C f = 0.74 ± 0.10

Velocity offset (km s−1)

Tr
an

sm
is

si
on

Figure 3.6: Observed (solid black line) compared to predicted (dashed red line) pro�les
of O iv λ608, Ne viii λ780 and Mg x λ624 based on apparent optical depth measure-
ments of their stronger counterparts, O iv λ787, Ne viii λ770 and Mg x λ609 respectively.
The deeper observed compared to predicted pro�les indicate partial covering of the back-
ground emission. This situation is occasionally inverted or accentuated due to line blend-
ing (see the text for details). The velocity o�set is with respect to the QSO rest frame. The
green line is the 1σ error on the transmission in each pixel. Dashed blue lines represent
the velocity centroids of the lines not a�ected (or minimally a�ected) by blends from un-
related absorption. Vertical shaded regions represent the range of velocities over which
covering fractions are calculated (per pixel). Quoted C f values are the average of those
calculated within these regions.
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for covering fractions that change across the pro�les. We can check this further

by examining the apparent doublet ratio for Ne VIII in components that are un-

saturated, and una�ected by blending with unrelated absorption lines. There is

one component where this measurement is possible in the case of Ne VIII. Cov-

ering fractions can also be determined in this way for Mg X and O IV. The for-

mer has one velocity component available that meets the aforementioned crite-

ria, and the latter has one that is still mildly a�ected by line blending. We �rst

calculate the apparent optical depth as a function of velocity across the stronger

transition for each ion, then scale these optical depths by γ (equation (3.4.3)) to

predict the optical depths in the weaker transitions. The di�erence between the

observed and predicted pro�les for the weaker member of each ion can be seen

in Figure 3.6. Partial covering results in the predicted pro�le for the weak mem-

ber of each ion (red dashed line) having a higher overall transmission than the

observed one (black solid line). We note that where there is line blending contam-

inating the stronger transition, this situation is reversed, and where there is line

blending contaminating the weaker transition, this situation is accentuated. The

dashed blue lines show the velocity centroids of the components used to measure

the covering fractions. We determine covering fractions by numerically solving

equation (3.4.4) over a ∼ 40 km s−1 region centred on each velocity component

(blue shaded regions in Figure 3.6), and average the results. This procedure gives

covering fractions of 0.92 ± 0.08 for O IV, 0.84 ± 0.10 for Ne VIII, and 0.74 ± 0.10

for Mg X. For O IV, we note that the chosen velocity component is mildly a�ected

by blending, which may add an additional uncertainty on top of the measured

one. We also note that the Ne VIII covering fraction determined from this method

is consistent with that measured from the saturated blue wing of Ne VIII λ770

within the 1σ uncertainty, and adopt the latter result as the covering fraction for

this ion.

For O IV* λλ609,790 we �rst note that one of these transitions overlaps with

that of Mg X λ609. Therefore, to determine the covering fraction, we �rst per-

form a �t to the Mg X λ624 absorption trough, taking into account the covering

fraction already determined for this ion, and �xing the velocity structure to that
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Table 3.3: Adopted covering fractions.

ion measurementa C f
b ∆C f

c

H i inferred 0.92 –
N iii inferred 0.92 –
N iv inferred 0.92 –
N v inferred 0.91 –
O iv direct 0.92 0.08
O iv* inferred 0.92 –
O v direct 0.91 0.01
O vi inferred 0.91 –
Ne viii direct 0.93 0.01
Mg x direct 0.74 0.10
S v inferred 0.91 –
Ar viii inferred 0.91 –

a Measurements are either direct (based on saturated lines or from compar-
ing line ratios) or inferred (assumed to be the same as that measured di-
rectly from an ion with similar ionization potential).

b Assuming the covering fraction of the continuum is the same as the cover-
ing fraction of the BLR. Requires many clouds smaller than the size of the
continuum region.

c 1σ statistical uncertainty on the covering fraction (for directly measured
values only, not including errors on the continuum �t).

from the �t to N IV λ765 (Figure 3.5). We then re-normalise the spectrum using

the calculated Mg X pro�le, leaving just the absorption signature from O IV*. It

is subsequently apparent that the covering fraction for O IV* is consistent with

that of O IV. We do not attempt to explicitly calculate the covering fraction in this

case, due to the additional uncertainty imposed by subtracting the Mg X absorp-

tion. Examining multiplet ratios in N III and Ar VIII reveals that these ions are

consistent with a covering fraction of unity, however their detection signi�cance

is considerably smaller than for the rest of the ions detected here. Therefore C f

may still be less than 1, as found for ions with better measurements.

For the remaining AALs, covering fractions are even more di�cult to deter-

mine. In the case of N IV and S V, it is because they are singlet ions (only one

transition). In all other cases, it is because the lines fall in the NUV portion of

the spectrum, where the lower resolution complicates the process of determining

the true residual �ux in each line (since individual components are not resolved).

The relative contribution of partial covering fractions and resolution e�ects to the

line ratios are very di�cult (or impossible) to disentangle. For these lines, the

simplest approach is to take another ion with measured covering fraction that is
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assumed to trace the same gas, and adopt this covering fraction. We deem the

best (available) choice of ion for which this assumption might hold to be that with

the most similar ionization potential. We adopt this approach also in the case of

N III and Ar VIII. Matching ions under this criterion gives two groups: (O IV, H I,

N III, N IV, S V) and (O V, N V, O VI, Ar VIII), where only the �rst member of

each group has a measured covering fraction. Covering fractions for all ions are

summarised in Table 3.3. Despite the uncertainties in assigning covering fractions

for the absorption lines in our sample, we note that all measured values are high

(C f ∼ 0.9) with the possible exception of Mg X, and produce statistically good

results in Voigt pro�le �tting (Section 3.4.2). In general, we �nd that the results

of this paper are not sensitive to the precise values of the covering fractions. In-

deed, if we take the best measured covering fraction fromO V and apply this to all

ions, the results we obtain are largely consistent with those obtained later within

the measurement uncertainties. In addition, the �nding that covering fractions

are roughly the same across all ions supports the view that the AALs trace many

small gas clouds with transverse sizes less than the continuum size.

3.4.2 Column densities and line widths

To measure the column densities for each ion, we �rst perform a simultaneous

Voigt pro�le �t to all of the AALs in the medium resolution, FUV part of the

spectrum using vpfit. We do so with the assumption that all ions must share the

same 8 separate velocity components, this number having been determined from

an independent �t to the N IV λ756 absorption trough (see Section 3.4.1). Voigt

pro�les are �rst convolved with the wavelength dependent, non-Gaussian COS

line-spread function (LSF) (see Chapter 2, Section 2.7).

For the remaining ions in the low resolution, NUV part of the spectrum, indi-

vidual components are not resolved, and so these data give very poor constraints

on the Doppler broadening (b) parameters, which adds to the uncertainty on the

column densities. Crucially, coverage of the H I Lyman series absorption, for

which we require well constrained column densities in forthcoming photoioniza-

tion analysis, is limited to the NUV spectrum. One way of reducing this uncer-
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tainty is to �nd pairs of ions that likely trace the same gas, then require that the

b values for these pairs follow some scaling relation, thus reducing the number

of degrees of freedom in the χ2 minimisation. Tying b values sensibly requires

knowledge about both the thermal and turbulent motions in the gas. We de�ne b

as in Chapter 1, equation (1.4.46). The relationship between b values in two ions,

labelled b1 and b2, can then be expressed as

b21 =
(m2

m1

)
b22 + b2turb

(
1 − m2

m1

)
. (3.4.5)

If bturb is zero, then b values can be related by a simple mass scaling. We note that

if the gas is photoionized, with a nominal temperature T ∼ 104 K, then initial �ts

to the FUV data indicate that

bturb =
√

b2 −
2kT
m

> 0 (3.4.6)

(see Table 3.4). In fact, for T < 105 K, turbulence dominates the broadening for

these lines given the measured b values. Therefore, if the gas is photoionized, we

cannot relate b values by the masses of the ions alone.

We can try to determine a plausible range in T by choosing two ions that are

assumed to trace the same gas, and whose individual components would then

likely possess the same bturb. We note that O IV and N IV have almost identical

ionization destruction potentials, and very similar ionization creation potentials

(54.9 eV and 47.4 eV respectively), making it likely that these ions will satisfy this

criterion. We can then require that bturb be the same for each, such that

b(N iv) =

√
b2(O iv) + 2kT

(
1

m(N) −
1

m(O)

)
. (3.4.7)

We proceed by �tting Voigt pro�les to O IV and N IV, requiring that these ions

share the same 8 velocity components as before, but additionally force the b values

to scale as in equation (3.4.7) for a range of temperatures between ∼ 104 and ∼

106 K. The resulting reduced χ2 values on the �t as a function of gas temperature

are shown as the black curve in Figure 3.7. Above temperatures of ∼ 105.5 K,
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Figure 3.7: Reduced χ2 values for Voigt pro�le �ts to theN iv andO iv absorption troughs
as a function of temperature, assuming their b values scale as in equation (3.4.7). The re-
duced χ2 value is minimised in the range 104 . T . 105 K; temperatures characteristic
of photoionized gas. Green and red dotted curves show, for collisional ionization equilib-
rium, the predicted ion fractions ofN iv andO iv respectively as a function of temperature.
Both peak at ∼ 105 K, and we are therefore not able to rule out the possibility that the gas
is collisionally ionized.

reduced χ2 values on the �t start to increase dramatically, andwe conclude that the

data favours gas temperatures less than this value. Turbulence dominates the line

broadening at these temperatures, and so scaling b values between pairs of ions

based on their masses alone will not be su�cient. Green and red dotted curves

in Figure 3.7 show the expected ion fractions of N IV and O IV respectively as a

function of temperature for a gas in collisional ionization equilibrium (Mazzotta

et al., 1998). Both ion fractions peak at ∼ 105 K, and we are therefore not able to

rule out the possibility that the gas is collisionally ionized based on line widths

alone.

We proceed by assuming the gas traced by N IV and O IV has a characteristic
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temperature of 3×104K (a reasonable value based on Figure 3.7) anduse this infor-

mation to constrain the b values in H I. This procedure minimises the uncertainty

in the H I column densities, crucial for later photoionization modelling. We �rst

assume that bturb for N IV be roughly the same as that for O IV andH I, then apply

a b scaling between these ions like that in equation (3.4.7). The assumption that

N IV andO IV trace the same gas is alreadywell motivated based on the similarity

in their ionization potentials. To extend this argument to H I, with ionization po-

tential > 5 times smaller than these ions, we assume that most of the H I is locked

up in the same gas as traced by N IV and O IV. We note that this assumption is

justi�ed later in Section 3.5 upon consideration of the measured column densities

and the ionization fractions derived from photoionizationmodels. It is reassuring

to note that the column density measurements resulting from this approach are

insensitive to the assumed temperature over the range 104 . T . 105 K, where

the reduced χ2 values in Figure 3.7 areminimised. Therefore, the gas temperature

we assume in the O IV/N IV gas is (nearly) independent of any constraints later

obtained in Section 3.5.

All ions are now �tted simultaneously, tying the velocity structure to the 8

components identi�ed in N IV (Figure 3.5) as before, but with an additional b

scaling between N IV, O IV and H I as described. All other b values are allowed to

�oat. The resulting �t has a reduced χ2 value of 1.37 and is shown in Figure 3.8.

Transitions are ordered �rst by atomic mass, and second by oscillator strength.

The dashed vertical line indicates the rest-frame velocity of the QSO. Individual

blue Voigt pro�les represent those components attributable to the labelled ion and

transition, whereas red pro�les represent components from unrelated blended

transitions. Most of these blends are constrained by accompanying transitions of

the same ion. The two most prominent blends with O IV λ608, and the blend

with Mg X λ625 at ∼ 400 km s−1, are assumed to be H I Lyα. The thick blue

line represents the overall model absorption trough, and the green points show

the residuals on the �t, with the solid black linesmarking the±1σ standard devia-

tion. Line saturation is evident from the Lyα absorption trough, althoughwe note

that the column densities are well measured due to a large number of observed
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Figure 3.8: Voigt pro�les �tted to theAALs in theHST/COS spectrumofQ0209. Thin blue
lines are the individual velocity components for each labelled ion. Thin red lines are the
blended components. The thick blue line in each panel is the total summed pro�le. The
dashed line represents the rest-frame velocity of the QSO. Green points are the residuals
between the model and the data, with the solid black lines representing the ±1σ standard
deviation.
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transitions in the H I Lyman series.

Column densities and Doppler broadening parameters are listed on a compo-

nent by component basis (v1 – v8, ascending in velocity o�set), together with their

1σ error bars in Table 3.4. For components where no absorption line is detected in

any given ion, we calculate the upper bound on the equivalent width at the 3σ sig-

ni�cance level, derived using equations (4) – (5), (7) and (9) – (10) in Keeney et al.

(2012), then perform the conversion to column density assuming a linear curve of

growth. For column densities with 1σ uncertainties greater than 1 (typicallywhen

τ � 1, i.e. where the lines are saturated), we quote lower limits on the column

densities based on the apparent optical depth at the line centres (calculated using

equation (3.4.2)) and assuming a b value of 25 km s−1, which is approximately

typical of the well-measured lines. We do not list b values for components that

have upper or lower limits on the column densities. Error bars are not presented

for inferred b values.

3.5 Properties of the associated absorbers

In the following section, we �rst present constraints on the electron number den-

sity in the associated absorbers based on an analysis of the �ne-structure transition

O IV*. We then consider both photoionization and collisional ionization equilib-

rium (CIE) models, and use these to put constraints on the properties of the gas

clouds. Models are generated using version c13.00 of Cloudy, described in Fer-

land et al. (2013). We note that, in general, absorbers may not be in ionization

equilibrium (e.g. Oppenheimer & Schaye, 2013a,b). This possibility is discussed

later in Section 3.6.2.

3.5.1 Electron number density in the absorbing clouds

In this section we present analysis on the absorption due to the �ne structure,

metastable transitions in O IV, which enables us to estimate the electron number

density in the clouds giving rise to the absorption by O IV. First, we note that

O IV* arises from doublet �ne-structure (J = 1/2 and 3/2) in the ground state,
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which should behave approximately as a two-level atom, where the level popula-

tions are controlled by collisional processes and forbidden radiative decays (Bah-

call & Wolf, 1968). If we neglect stimulated emission, the only acting processes

are collisional excitation, collisional de-excitation and radiative decay. The energy

level spacing corresponds to 25.91 µm, or 1.2 × 1013 Hz, so we �nd this to be a

fair approximation on the basis of Figure 3.3, togetherwith the fact that stimulated

emission is extremely forbidden. We denote the ground state as level 0, the excited

state as level 1, and let n j be the number density (cm−3) of O IV in level j. If we

assume that collisional excitation is dominated by electrons, then the population

of the excited state must satisfy

dn1
dt

= ne n0k01 − ne n1k10 − n1A10 (3.5.8)

(Draine, 2011), where ne is the electron number density (cm−3), k01 and k10 are

the upward and downward rate coe�cients (cm3 s−1) respectively, and A10 is the

spontaneous decay rate (s−1). For a steady state (dn1/dt = 0), we then require

N(O iv∗)
N(O iv) = ne k01

ne k10 + A10
, (3.5.9)

where we have now replaced the number densities by the observed column den-

sities. Note that this implicitly assumes O IV and O IV* trace the same gas. We

can write k01 in terms of k10 as follows:

k01 =
g1
g0

k10e−E10/kT , (3.5.10)

where g0 and g1 are the level degeneracies, E10 is the energy level di�erence, and

T is the kinetic temperature of the gas. We can additionally de�ne the critical

electron density, at which the collisional de-excitation rate equals the radiative

de-excitation rate:

ncrit ≡
A10
k10

. (3.5.11)
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Table 3.5: Total hydrogen number density in each velocity component.

log
(
nH/cm−3

)
v1 v2 v3 v4 v5 v6 v7 v8

. 3.54 2.80 ± 0.13 . 2.63 3.03 ± 0.17 . 2.70 . 2.66 . 3.09 . 3.64

The electron number density can then be written as

ne = ncrit

(
N(O iv)
N(O iv∗)

k01
k10
− 1

)−1
. (3.5.12)

Assuming a temperature of 104 K, we can write

k10 = 8.629 × 10−8Ω10
g1

cm3 s−1, (3.5.13)

where Ω10 is the collision strength connecting levels 1 and 0. For electrons at

this temperature, the collision strength is Ω10 = 2.144 (Tayal, 2006). We take

A10 = 5.19 × 10−4 s−1 from the NIST atomic spectra database.5 The resulting

dependence of ne on the ratio N(O iv∗)/N(O iv) is shown in Figure 3.9. Compar-

ing to �gure 12 in Arav et al. (2013), we �nd an excellent agreement. For a highly

ionized plasma, assuming solar metallicity and abundances, we can relate ne to

the hydrogen number density nH as

ne = nH


1 + 2nHe

nH
+

∑
i≥3

Zi
nZi

nH


 ≈

1 + X
2X

nH, (3.5.14)

where Zi is the atomic number of element i, and X is the mass fraction in hydro-

gen. For a value X = 0.71, we have ne ' 1.2nH. We calculate nH in the gas traced

by O IV for each velocity component using equation (3.5.12), and summarise the

results in Table 3.5. Where there is a lower limit on the O IV column density, or an

upper limit on the O IV* density, this results in an upper limit on nH. We caution

that these upper limits are only approximate, as they are sensitive to the adopted

signi�cance level used to calculate limiting equivalent widths, and the assumed

5http://www.nist.gov/pml/data/asd.cfm

http://www.nist.gov/pml/data/asd.cfm
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Figure 3.9: The electron number density, ne, as a function of the column density ratio
betweenO iv∗ andO iv based on predictions from a theoretical level population assuming
a temperature of 104 K.

b value used to calculate the lower limit on the O IV column density. We �nd that

a value log(nH/cm−3) ∼ 3 is representative for the AAL region as a whole.

3.5.2 Photoionization analysis

In the following, we assume that the gas clouds are in photoionization equilib-

rium with either of the QSO SEDs determined in Section 3.3.4. The two main

parameters that best describe the photoionization structure are the total hydro-

gen column density (NH) and the ionization parameter (U). The latter is de�ned

as the dimensionless ratio between the number density of hydrogen atoms, and

the number density of photons that ionize hydrogen at the illuminated face of the

absorbing gas clouds. We express this as

U ≡
1

4πcR2nH

∫ ∞

νLL

Lν
hν

dν, (3.5.15)
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where ν is the frequency, c is the speed of light, Lν is the luminosity density of

the QSO (erg s−1 Hz−1), νLL is the frequency corresponding to the Lyman limit

(912 Å), R is the radial distance between the absorber and the QSO, and nH is the

total hydrogen density (i.e. H I + H II). The equations of ionization and thermal

balance are then solved using Cloudy. We run the code multiple times to form

three-dimensional grids of predicted quantities over (U,NH, Z) parameter space,

where Z is the metallicity of the gas, normalised to solar metallicity. We vary the

parameters U and NH in steps of 0.1 dex, and Z in steps of 1 dex, assuming a

constant total hydrogen density. The results from these grids are the subject of

this section and Section 3.5.4.

Shown in Figure 3.10 are theoretical ionization fractions of H I and various

metal ions for which we have reliable column density estimates as a function of

U. We show model curves for clouds in photoionization equilibrium with both

the ‘UV peak’ and ‘Soft X-ray peak’ SEDs (see Section 3.3.4). These results are not

sensitive to the abundances used in the calculations (in this case we have used so-

lar abundances), and neither are they sensitive to the total column densities. This

is because the model clouds are optically thin in the Lyman continuum, which

means that there are no steep gradients in ionization (e.g. due to shielding from

an H II – H I recombination front). We note that this situation is a good approx-

imation to the real one, given the absence of absorption at the Lyman limit. We

calculate the column density ratios N(O iv)/N(O v) and N(Ne viii)/N(Mg x) in

the components where those ratios are best measured, then �nd the range in ion-

ization parameter over which each is predicted within their 1σ uncertainties. For

N(Ne viii)/N(Mg x), we scale by relative solar abundances. The resulting con-

straints on U are plotted as a series of vertical bars.

From Figure 3.10, it is clear that the gas has a range in ionization parameter

that covers around two orders of magnitude. At a �xed distance R from the QSO,

this corresponds to a range in gas density that covers around two orders of mag-

nitude. Measuring the same column density ratios in di�erent velocity compo-

nents to those plotted (including column density lower limits) gives constraints

on the ionization parameter that are fully consistent with those obtained above.
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Figure 3.10: Theoretical ionization fractions for a range of metal ions f (Mi) in opti-
cally thin clouds in photoionization equilibrium with the ‘UV peak’ SED (top panel) and
the ‘Soft X-ray peak’ SED (bottom panel), plotted as a function of ionization parameter.
Curves are colour coded by ion. The H I fraction is shown on the top axis. Vertical bars
indicate the range in ionization parameter allowed for bymeasured column density ratios
in components where those ratios are best measured. For N(Ne viii)/N(Mg x) we scale by
relative solar abundances. These ratios indicate there is a range in ionization parameter
covering nearly two orders of magnitude under photoionization equilibrium.

This range ionization parameter is therefore representative for the AAL region

as a whole. This range can be considered a lower limit, since we cannot rule out

the presence of even more highly ionized species that lie outside the wavelength

coverage a�orded by COS, which may infer even higher ionization parameters.
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3.5.3 Collisional ionization equilibrium

We next consider a situation whereby the AAL clouds are in collisional ioniza-

tion equilibrium (CIE). To simulate CIE, we run Cloudy multiple times with

logU = −5 (so that the e�ect of the radiative �eld is negligible), holding tem-

perature constant for values in the range 4.5 ≤ T ≤ 6.5. Shown in Figure 3.11

are theoretical ionization fractions of various metal ions for which we have re-

liable column density estimates under CIE as a function of temperature. Like

Figure 3.10, the results are not sensitive to the speci�c abundances adopted, or

the total column density. Vertical bars indicate the range in temperature permit-

ted according to the best-measured column density ratios N(O iv)/N(O v) and

N(Ne viii)/N(Mg x) within their 1σ uncertainties. Again, for N(Ne viii)/N(Mg x)

we scale by relative solar abundances. It is clear that temperatures cover more

than an order of magnitude in the AAL region if the gas is in CIE. Similarly to the

case of photoionization, constraints on the temperature are consistent between

di�erent velocity components.

To determine whether CIE is allowed by the data, we model clouds illumi-

nated by the ‘UV peak’ incident continuum, assuming an H I column density of

1015 cm−2 (matching the observed value in velocity component v2), a total hydro-

gen density of log(nH/cm−3) = 2.8, and solar metallicity, for a range of ionization

parameters U, holding T constant, and repeating to create a grid of values (U, T).

We then plot the predicted O IV column density as a function of T for a range of

values of U in Figure 3.12. CIE is achieved in the limit of high T and/or low U.

The horizontal grey bar represents the 1σ constraint on the O IV column density

in velocity component v2. The dashed blue vertical line and accompanying arrow

represents the lower limit on the temperature based on the column density ratio

O iv/O v. This is then an indication of the characteristic temperature of the gas

hosting O IV in CIE. Temperatures to the right of the red dashed line at 105.5 K

have already been ruled out based on the observed line-widths (see Figure 3.7).

Given the lower and upper bounds on the gas temperature, it is clear that the

predicted O IV column density in Figure 3.11 is at least an order of magnitude

larger than that observed. All theoretical curves match the observed O IV column
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Figure 3.11: Theoretical ionization fractions for a range of metal ions f (Mi) under CIE
as a function of temperature. Curves are colour coded by ion. Vertical bars indicate
the range in temperature allowed for by measured column density ratios in components
where those ratios are best measured. For N(Ne viii)/N(Mg x), we scale by relative solar
abundances. These ratios indicate a range covering more than an order of magnitude in
gas temperature under CIE.

density for T . 104.85 K. We note that decreasing U further has no e�ect on this

result, since by logU = −5, the solution has converged to a value T ≈ 104.85 K.

The assumed H I column density is close to the maximum allowed by the data,

although this value would have to be reduced by at least an order of magnitude

to give agreement between the predicted temperatures. Similarly, the metallicity

would have to be lowered by at least an order of magnitude. In photoionization

equilibrium, the ionization parameter for the gas traced by O IV is logU ∼ −2,

which upon inspection of Figure 3.12 gives a temperature of T ≈ 104.5 K, fully

consistent with that predicted by the photoionization models. Changing the inci-

dent continuum to the ‘Soft X-ray peak’ model gives similar results. We therefore

conclude that the AAL gas traced by O IV (and ions with similar ionization po-

tential) is predominantly photoionized.

The data also provide indications that the most highly ionized species are pre-

dominantly photoionized. From Section 3.4.2, we found that the line widths in
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Figure 3.12: The predicted O iv column density as a function of gas temperature for a
range of ionization parameters and a �xed H i column density of 1015 cm−2. The dashed
blue vertical line and accompanying arrow denotes a lower limit on the temperature of
the gas clouds giving rise to the majority of the O iv absorption under CIE, inferred from
the ratio N(O iv)/N(O v). The vertical red dashed line marks the maximum temperature
allowed from an analysis of the absorption line widths. The horizontal grey shaded bar
represents the 1σ constraints on the O IV column density from velocity component v2.
Theoretical curves match this column density at temperatures nearly an order of magni-
tude lower than those inferred from CIE models, favouring a scenario in which the AAL
gas traced by O iv is predominantly photoionized.

O IV and N IV are dominated by the e�ect of turbulence. Taking velocity compo-

nent v2 as an example, given the measured line width in N IV, and a maximum

temperature allowed by the data of 3× 105 K, we �nd that bturb & 19 km s−1. We’ll

assume that this turbulent contribution to the line widths in velocity component

v2 is also representative for Ne VIII and Mg X, which is supported by the similar

velocity structure across all ions, suggesting that the gas traced by N IV and O IV

is co-spatial with that traced by Ne VIII andMg X. Then, given the predicted tem-

perature T ≈ 106 K for CIE, we should expect b & 35 km s−1 and b & 32 km s−1

for Ne VIII and Mg X respectively. These are in tension with the measured val-

ues, which are below these predictions. We see a similar situation across all other
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velocity components where we have good constraints on the line widths. There-

fore, the data suggest that the AALs are predominantly photoionized overall, and

we can largely rule out CIE as an ionization mechanism for the gas traced by the

AALs.

3.5.4 Gas metallicity and total column density

The metallicity, [M/H], of the gas giving rise to the AALs can be expressed as

[M
H

]
= log

(
N (Mi)
N (H i)

)
+ log

(
f (H i)
f (Mi)

)
+ log

(H
M

)
�

(3.5.16)

(Hamann & Ferland, 1999), where (H/M)� is the solar abundance ratio of hydro-

gen to some metal species M, N(H i) and f (H i) respectively are the column den-

sity and ionization fraction in H I, and N(Mi) and f (Mi) respectively are the col-

umn density and ionization fraction in some ion Mi of metal species M. If the gas

is well characterised by a single ionization parameter, equation (3.5.16) can be im-

plemented using the measured column densities in hydrogen and some arbitrary

metal ion, together with the inferred ionization fractions in each, and assuming

solar abundance ratios. When there is a range in ionization parameter, the situa-

tion is more complicated, since the measured column density in each ion will be

the sum of the column densities arising in each region (each characterised by a

di�erent value of U). In this case, the measured column density in some ion Mi

will be expressed as

N(Mi) =
∑

k

N(M)k f (Mi)k , (3.5.17)

where N(M)k and f (Mi)k are the k total column densities of element M and ion-

ization fractions of ion Mi respectively, for a set of k ionization parameters. In

the limit where there is a continuous distribution over ionization parameter, this

becomes

N(Mi)obs =
∫ ξmax

ξmin

dN(M)
dξ f (Mi) dξ, (3.5.18)
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where ξ = logU.

To estimate total column densities in velocity components v2 and v4 (where

we have the largest number of well-measured ions), we assume that all of the

gas is photoionized, and plot the locus of points that mark the observed column

densities in logU – log NH space as shown in Figures 3.13 and 3.14, where the

width of each contour indicates the 1σ uncertainty. The left-hand panels rep-

resent the case where the gas is photoionized by the ‘UV peak’ SED, with as-

sumed metallicities [M/H] = −2, −1, 0, and 1. The right-hand panels represent

the equivalent scenario, but with the ‘Soft X-ray peak’ SED. Various zones within

the absorbing region are physically characterised by the pair (U,NH) that best

predict the observed column densities. Constraints on the ionization parameter

are identi�ed on the basis of column density ratios that are labelled similarly to

those in Figure 3.10. Ratios that involve one ion having a lower limit on the col-

umn density give corresponding lower limits on the ionization parameter in Fig-

ures 3.13 and 3.14, plotted with vertical dashed lines and corresponding arrows.

In velocity component v2, we identify a minimum of two ionization components

(U,NH) that can account for all of the observed column densities. Ionization pa-

rameters in these components are inferred from the ratios N(O iv)/N(Ar viii) and

N(Ne viii)/N(Mg x). This conclusion comes with the caveat that we require there

to be an under-abundance of nitrogen (and an over-abundance of sulphur, in the

case of the UV peak SED) by factors of a few with respect to the solar values to

explain why the O IV, N IV, S V and Ar VIII contours do not all cross in the logU

range de�ned by N(O iv)/N(Ar viii). In velocity component v4, we require there

to be at least three ionization components, with a similar caveat on the assumed

overabundance of sulphur. This result contrasts with that from some previous,

similar studies, that �nd a maximum of two discrete ionization components are

required to adequately �t the data (e.g. Moe et al., 2009; Edmonds et al., 2011;

Borguet et al., 2012; Arav et al., 2013). In this case, the ionization components in-

ferred are no longer robust, since there are non-negligible fractional abundances

of e.g. O IV andN IV in both of the lower ionization components. The limiting sce-

nario, is one where there exists a continuous distribution of ionization parameters
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Figure 3.13: Ionization solutions for component v2 in the case of the ‘UV peak’ incident
SED (left panels) and the ‘Soft X-ray peak’ SED (right panels) for a range of metallicities.
Coloured regions represent the values of logU and log NH that predict the ±1σ bounds
on the column densities for each labelled ion. Vertical bars indicate the plausible range in
U for each of the ionization components identi�ed by the column density ratios labelled.
The crossing points between contours, de�ning the pair (U, NH), physically characterise
these components. Dashed vertical lines and arrows represent lower limits on U.
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Figure 3.14: Ionization solutions for component v4 in the case of the ‘UV peak’ incident
SED (left panels) and the ‘Soft X-ray peak’ SED (right panels) for a range of metallicities.
This �gure has the same format as Figure 3.13.
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through the absorbing region, which at a �xed distance R corresponds to a smooth

variation in gas density. This scenario is described by equation (3.5.18). To sim-

plify the problem, we assume that a (close-to) continuous distribution in U exists

in the AAL region, and �nd an approximate solution to equation (3.5.18) assum-

ing that each ion forms largely at the peak in its fractional abundance, f (Mi)max.

In this case, equation (3.5.18) becomes

N(M) ' N(Mi)
f (Mi)max

, (3.5.19)

and we can read o� a corresponding ionization parameter from Figure 3.10.

Assuming thatmost of the gas hostingH I also hostsmost of the low ionization

species in our sample (e.g. N III, N IV, O IV and S V), we can identify peak frac-

tional abundances of these ions with fractional abundances of H I in Figure 3.10,

and �nd the metallicity of the gas using equation (3.5.16). Incorporating uncer-

tainty in the SED, we conservatively conclude that 0 . [O/H] . 1. We �nd this

metallicity to be representative across all velocity components, and �nd the same

result for [N/H] and [S/H]. Peak fractional abundances correspond to column

density loci minima in Figures 3.13 and 3.14. Splitting the logU range in half at

logU = −1, it is clear that the high ionization gas traced by e.g. Ne VIII and Mg X

has a factor of ∼ 10 higher contribution to the total column density compared to

the low ionization gas traced by e.g. N III and O IV. Constructing plots like these

for all other velocity components (not shown), we conservatively conclude that,

for each of the velocity components v1 – v7, the total hydrogen column density is

1017 . NH . 1018.5 cm−2 in the low ionization gas, and 1018.5 . NH . 1020 cm−2

in the high ionization gas. In velocity component v8, we detect only O IV, O V,

and N IV absorption, and the total hydrogen column density through this region

is, conservatively, 1016.5 . NH . 1017.5 cm−2.

3.5.5 Distance and size constraints

Given the estimate on nH, combined with information on U and NH, we can put

a constraint on both the distance to the absorbing clouds from the QSO, and their
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geometry. To determine the distance, R, we simply rearrange Equation (3.5.15) to

obtain

R =
√

QH
4πcnHU

, (3.5.20)

where

QH ≡

∫ ∞

νLL

Lν
hν

dν (3.5.21)

expresses the rate of emission of photons having energies su�cient to ionize hy-

drogen. Incorporating the uncertainty in QH (due to uncertainties in the SED),

and conservatively estimating from Figure 3.10 that absorption due to O IV and

O IV* is expected to arise in gas with −2.4 . logU . −2.0 (from peak fractional

abundances), we �nd that 2.3 . R . 6.0 kpc. Since the velocity structure is consis-

tent with being the same across all ions, this distance is likely to be representative

for theAAL region as awhole. Therefore, if all of the gaswere photoionized, given

the expression for U in equation (3.5.15), we should expect clouds with di�ering

densities. The ionization parameter is around two orders of magnitude di�erent

between the gas hosting the majority of O IV and the gas hosting the most highly

ionized species (Ne VIII, Mg X), so this gas should have a characteristic density

around two orders of magnitude smaller, i.e. nH ∼ 10 cm−3.

We can now estimate the absorption path length through the AAL region as

labs = NH/nH. Adopting nH ∼ 103 cm−3 through the least ionized gas (1017 .

NH . 1018.5 cm−2) and nH ∼ 10 cm−3 through the most highly ionized gas we de-

tect (1018.5 . NH . 1020 cm−2), we derive characteristic absorption path lengths of

10−4.5 . l‖ . 10−3 pc and 0.1 . l‖ . 1 pc respectively in each velocity component.

Note that the absorption path length is even smaller for velocity component v8.

If we assume that the absorbing gas completely �lls the volume it encompasses,

then these path lengths are also representative of the cloud sizes along the line-of-

sight. If instead there are many clouds contributing to the total column density in

each component, then the cloud sizes will be smaller, and the volume they encom-

pass larger than the absorption path length. Additionally, based on indications
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in Section 3.4.1 that the QSO continuum is only partially covered by the absorb-

ing clouds, the transverse sizes of these gas clouds are likely to be l⊥ . 10−2.5 pc

(Jiménez-Vicente et al., 2012).

3.6 Discussion and conclusions

The main results from the data analysis and photoionization/collisional ioniza-

tion equilibrium models are as follows:

1. The gas traced by the AALs is predominantly photoionized.

2. Under photoionization equilibrium, multiple ionization parameters are re-

quired to reproduce the column density ratios seen in the data.

3. Based on the observed column densities and ionization fractions implied

from characteristic ionization parameters, incorporating uncertainties in the

shape of the QSO SED, the gas metallicity is conservatively 0 . [O/H] . 1.

4. Given the range in possible gas metallicity, the total hydrogen column den-

sity in each velocity component is 1017 . NH . 1018.5 cm−2 in the least

ionized gas (with slightly smaller values for velocity component v8) and

1018.5 . NH . 1020 cm−2 through the most highly ionized gas we detect.

5. Taking the column density ratio between O IV* and O IV, assuming the �ne

structure excited states are populatedmostly due to collisionswith electrons,

the total hydrogen density in the gas traced by these ions is found to be

log(nH/cm−3) ∼ 3 for solar metallicity.

6. Given the total hydrogen density, and the plausible range in ionization pa-

rameter for the gas traced by O IV and O IV*, the distance to the absorbing

clouds from the centre of the QSO is found to be 2.3 . R . 6.0 kpc. An

empirically identi�ed, shared velocity structure amongst all ions, suggests

this distance determination is likely to be representative for the AAL region

as a whole.
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7. Under photoionization equilibrium, the total hydrogen density in the most

highly ionized AAL gas is found to be two orders of magnitude lower than

that implied for the least ionized gas.

8. The ratio NH/nH sets limits on the absorption pathlength through the least

and mostly highly ionized regions we detect of 10−4.5 . l‖ . 10−3 pc and

0.1 . l‖ . 1 pc respectively in each velocity component.

9. Covering fractions less than unity (in all cases where they can be reliably

measured), suggest that the continuum region is only partially covered, re-

quiring clouds with transverse sizes l⊥ . 10−2.5 pc.

In summary, the analysis of the previous sections has revealed the presence of

metal-enriched (to at least solar), highly ionized gas clouds a few kpc from the

centre of Q0209 that are likely to be very small (sub-pc scale). In the following

sections we place these results in a wider context, and speculate on the origins

and fate of the absorbing gas. For simplicity, we shall speak of two co-spatial,

photoionized regions: a low ionization region with logU . −1, and a high ion-

ization region with logU & −1.

3.6.1 Gas structure and dynamics

A redshift measurement for Q0209 of zQSO = 1.13194 ± 0.00001 implies that the

AAL gas is mostly out�owing from the QSO with velocities up to ∼ 400 km s−1

(see Figure 3.8). This is unusually small, compared to the majority of the AALs

and BALs in the literature with high ionization species such as Ne VIII and Mg X,

which are typically out�owing with velocities closer to a few thousand or few

tens of thousand km s−1 (e.g. Hamann et al., 1995; Telfer et al., 1998; Petitjean &

Srianand, 1999; Arav et al., 1999;Muzahid et al., 2012, 2013), although seeHamann

et al. (2000) for a more similar example. If we assume that the gas is moving with

a constant radial velocity v, and originates close to the SMBH, then the time-scale

for reaching its current radius, R, is at least

t ≈ 107
(

R
2.3 kpc

) (
200 km s−1

v

)
yrs. (3.6.22)
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Di�erent velocity components in the AAL gas are moving at di�erent speeds, so

the overall region should possess an appreciable radial thickness after a time t,

even though we derive densities and ionization parameters that are consistent

with one another across the di�erent velocity components.

Given the small cloud sizes in the low ionization gas, a key question is how

long they are expected to survive. The free-fall time-scale for these clouds can

approximately be expressed as

t� ≡
1√
Gρ
∼ 2.4 × 1015 s

( nH
cm−3

)−1/2
, (3.6.23)

where G is the gravitational constant, ρ is the gas density, assuming that all of the

mass is baryonic, and setting the mass fraction in helium to 0.28 (assuming solar

abundances). In addition, for a characteristic cloud size l, the sound crossing time

in a highly ionized plasma can be approximated by

tsc ≡
l
cs
∼ 2.1 × 1015 s

(
l

kpc

)
T−1/24 , (3.6.24)

where cs is the sound speed in an ideal monatomic gas, and T = T4 × 104 K (e.g.

Schaye, 2001). For a stable cloud in hydrostatic equilibrium, tsc ∼ t�. We take

a value of nH = 103 cm−2, and a value of l = 10−6 kpc (assuming l‖ ≈ l). The

photoionization models indicate that T4 ≈ 2 in this gas, and so we �nd t� ∼

7.6 × 1013 s � tsc ∼ 1.5 × 109 s. This implies that the clouds will expand on

the sound crossing time-scale, so they should have lifetimes of . 100 years. This

is considerably less than the characteristic �ow time in equation (3.6.22), and so

the probability of observing these clouds at their implied distance from the QSO

is extremely small in this case.

The analysis presented above poses a problem, which may be overcome if the

clouds are being held in pressure equilibrium. This may be a thermal pressure

equilibrium with higher temperature, lower density, more highly ionized gas,

equivalent to the statement nH1T1 = nH2T2, where nH1, T1 and nH2, T2 are the

total hydrogen densities and temperatures of the low and high ionization regions
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respectively. From Section 3.5, under photoionization equilibrium, we found that

nH2 ∼ 10 cm−2, and these models also indicate that T2 ≈ 6 × 104 K. In this case,

nH1T1 > nH2T2, and the high ionization gas cannot pressure support the low ion-

ization gas. If the former is collisionally ionized, we now have temperatures that

di�er by more than an order of magnitude. Densities in the high ionization re-

gion may be low enough to allow for pressure support. Nevertheless, the high

ionization gas itself, accounting for the possibility that it is photoionized, should

have a lifetime . 105 years, which is still short enough to suggest that this gas

may also require pressure support from even more highly ionized gas that we do

not detect in the UV, and which would require larger total column density, higher

temperature, and lower density.

Massive galaxies are expected to host hot gas coronae, well within the implied

location of the AAL region, with T ∼ 106 K and nH ∼ 10−2 cm−2 (e.g. White

& Frenk, 1991; Fukugita & Peebles, 2006). Pressure from this external medium,

together with additional pressure support from magnetic con�nement (de Kool

& Begelman, 1995) may help to alleviate the problems outlined above, although

pressure supporting gas with varying internal pressure is clearly a complex is-

sue. We note that the analysis above does not incorporate the e�ects of turbu-

lence, which is almost certainly present given the observed line widths (see Ta-

ble 3.4). In addition, gas out�owing from a QSO will likely encounter the inter-

stellar medium (ISM) of the host galaxy on its journey out into the halo. At super-

sonic velocities, shocks will likely occur at the interface between the out�owing

gas and the ISM, heating the gas close to this interface. The resulting mix of hot

and cool gas creates instabilities that can destroy the clouds before they reach the

halo (see, for example, arguments in Faucher-Giguère et al., 2012). These authors

suggest an alternative scenario, in which small cloudsmay be formed in-situ from

moderately dense ISM clouds within hot, recently shocked gas. These clouds be-

come shredded by a passing blast wave, and gain momentum from an accom-

panying shock. The resulting ‘cloudlets’ in this model have sizes and densities

comparable to those derived here, and can possess a range of velocities that may

explain themulti-component velocity structure in the absorption pro�les. This in-
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situ condensation scenario may also be consistent with the observation of dense

molecular and atomic gas observed in other QSO out�ows (e.g. Feruglio et al.,

2010; Sturm et al., 2011; Aalto et al., 2012; Maiolino et al., 2012; Cicone et al., 2014),

which are also predicted by some out�ow models and simulations (e.g. Zubovas

& King, 2014; Costa et al., 2015).

Models such as thesemay o�er amore promising route to explain the structure

anddynamics ofAALswith properties (density, cloud size, velocity structure, dis-

tance from the QSO) similar to those found in Q0209 (e.g. Petitjean & Srianand,

1999; Hamann et al., 2000; Edmonds et al., 2011; Borguet et al., 2012; Arav et al.,

2013; Muzahid et al., 2013). Any viable model must additionally reproduce the

covering fractions seen in the present data. Covering fractions less than unity,

and with little variation, are seen in ions spanning a range in ionization potential

from a few tens to a few hundreds of eV, tracing gas with more than one possible

ionization mechanism. Vastly di�ering absorption path lengths through the AAL

region, as hinted at in the analysis of the previous sections, make it very di�cult

to account for the near constancy in covering fraction across all ions using sim-

ple geometrical models. We also note that these results di�er from e.g. Hamann

et al. (2000) and Borguet et al. (2012), who �nd more complete coverage in high-

ionizationUV transitions compared to those at lower ionization potentials. Cover-

ing fractions less than unity across our sample also go against general trends for

more complete coverage with lower out�ow velocities, as identi�ed in the COS

sample presented by Muzahid et al. (2013). It is therefore clear that simple trends

such as these may not produce robust predictions for individual systems, which

further highlights the apparent complexity in these absorbers.

3.6.2 Are the AAL clouds out of equilibrium?

Up to this point, our analysis and discussion has assumed that the AAL clouds are

in ionization equilibrium. However, in general, absorbers may be out of equilib-

rium when close to an AGN due to recombination time-scales that can be long

compared to typical AGN lifetimes and duty cycles (e.g. Krolik & Kriss, 1995;

Nicastro et al., 1999; Arav et al., 2012; Oppenheimer & Schaye, 2013a,b). The re-
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sulting recombination lag can lead to situations where high ionization stages like

O VI, Ne VIII, andMg X are enhanced relative to the expectation from equilibrium

models. We examine these issues here.

We de�ne the the photoionization rate, ΓMi (s−1), for a given ion Mi as

ΓMi ≡

∫ ∞

ν0,Mi

4π Jν
hν

σMi (ν) dν. (3.6.25)

Here ν is the frequency, ν0,Mi is the ionization frequency, Jν is the intensity of the

QSO radiation �eld (erg s−1 cm−2 Hz−1 sr−1), σMi is the photoionization cross-

section, and h is Planck’s constant. The recombination rate (s−1) into an ion Mi is

given by

RMi ≡ αMi ne , (3.6.26)

where ne is the electron number density, and αMi is the temperature dependent

recombination rate coe�cient (cm3 s−1) for that ion. Finally, the collisional ioniza-

tion rate for an ion Mi is

CMi ≡ βMi ne , (3.6.27)

where βMi is the collisional ionization rate coe�cient (cm3 s−1), which is also tem-

perature dependent. Neglecting Auger ionization and charge transfer, the popu-

lation in an ion Mi is then

dnMi

dt
= −nMi (ΓMi + RMi−1 + CMi ) + nMi+1RMi + nMi−1(ΓMi−1 + CMi−1). (3.6.28)

Nowsuppose that an absorber is in photoionization equilibrium, i.e. dnMi/dt =

0, at time t = 0, but there is a sudden change in the ionizing �ux, such that

ΓMi (t > 0) = (1+δ)ΓMi (t = 0), where −1 ≤ δ ≤ ∞. Taking the collisional ionization

rate to be negligible (a reasonable approximation for a photoionized plasma), it

can then be shown that the e-folding time-scale for change in the ionic fraction is
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given by

tchange =
[
−δαMi ne

(
nMi+1

nMi

−
αMi−1

αMi

)]−1
, (3.6.29)

(Arav et al., 2012), where negative time-scales indicate a decrease in the ionic frac-

tion, and positive time-scales indicate an increase. For changes in the ionizing

�ux within an order of magnitude (0.1 < 1 + δ < 10), these time-scales are typ-

ically ∼ 10 years for the densities implied by the O IV* analysis of Section 3.5.1,

assuming T ∼ 104 K. Since the gas densities in the AAL region are much higher

than those typical of the di�use IGM and circumgalactic medium (CGM), these

time-scales are much shorter than the typical AGN lifetime (∼ Myr time-scales;

e.g. Novak et al., 2011). Therefore, photoionization equilibrium might be a valid

assumption in our case, so long as these time-scales are also short compared to

the time-scale over which the QSO luminosity changes.

However, we must also consider the dynamical evolution of the AAL clouds.

In the previous section, we found that unless the clouds traced by O IV are pres-

sure supported by an external medium, they will expand on time-scales . 100

years. If this process is occurring, then the cloudsmaybe entering a non-equilibrium

state due to a recombination lag. To determine whether or not this scenario is

likely, we numerically solve the coupled, time-dependent ionization equations

(equation (3.6.28)) for a set of elements using a 4th order Runge-Kutta method.

We assume that the AAL region possesses a gas density of nH = 103 cm−3, and

is illuminated by the ‘UV peak’ SED at a distance of 2.3 kpc. Assuming a gas

temperature T = 104 K, we then calculate recombination rate coe�cients using

the Badnell (2006) �ts (assuming case A recombination), and collisional ioniza-

tion rate coe�cients using the data in Voronov (1997). We perform the integral in

equation (3.6.25) using the same photoionization cross-sections as used in Cloudy

c13.00. Equilibriumvalues of nMi are then calculated, assuming solar abundances.

We assume these values to hold at a time t = 0. We next perturb the gas density

such that n(t > 0) = (1+δ)n(t = 0), where −1 ≤ δ ≤ ∞, identical to the case of �ux

changes considered above. We do this for four di�erent values of (1+δ) = 0.1, 0.01,
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0.001, and 10. The latter is included for the interest of comparing both increasing

and decreasing density. For example, if the AAL clouds are the result of shocked

ISM clouds, we might expect them to be crushed prior to their subsequent expan-

sion (e.g. Faucher-Giguère et al., 2012). The resulting time-dependent evolution

in the number density of H I, O IV, O V, O VI, Ne VIII, and Mg X is shown in

Figure A.2 in Appendix A.1.

Simple inspection of Figure A.2 indicates that, for a decrease of more than an

order of magnitude in gas density, with the exception of H I, time-scales for reach-

ing a new equilibrium are > 100 years. Comparing this to the expansion time-

scale, we conclude that non-equilibrium e�ects are important if the density in the

AAL region is dropping by orders ofmagnitude. Time-scales are orders ofmagni-

tude shorter for an increase in density, and so we expect that a decrease in density

should form the dominant contribution to any non-equilibrium behaviour. We

note that the situation described is not physical – we expect a smooth change in

density with time, not a step-function change. Nevertheless, lacking a physical

motivation for the exact functional form, we present these results as an approxi-

mation. The non-equilibrium behaviour shown in Figure A.2 indicates consider-

able variation in the rate of change of ionic number density, with the more highly

ionized species changing more rapidly. Under photoionization equilibrium, the

AAL region was found to possess a range in density and absorption path-length

covering orders of magnitude. This situation was required due to the co-spatial

existence of ionic species tracing gas with multiple ionization parameters. If ionic

number densities are changing at highly variable rates, then is possible to envis-

age scenarios whereby the fractional abundances of ions spanning a large range

in ionization potential can all be high. We therefore speculate that it may be pos-

sible to �nd non-equilibrium models that reproduce all of the observed column

densities in a single phase, with a single density and absorption path length. Such

a scenario may be desirable, as it is in better concordance with the near constant

covering fraction seen across these ions.

It is important to note that the calculations leading to inferred cloud lifetimes

of . 100 years assume that the cloud sizes, l, are approximately equal to the ab-
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sorption path-length l‖ . However, in general, l < l‖ , which would make the cloud

lifetimes even shorter. Scenarios where l < l‖ have been put forward multiple

times in the literature, typically to explain situations where the derived covering

fractions in the data depend on velocity across the absorption pro�les, and the

ionization and/or true optical depth in the lines. This situation is referred to as

inhomogenous partial coverage (e.g. de Kool et al., 2002; Hamann & Sabra, 2004;

Arav et al., 2008), where there are many small clouds having a power-law depen-

dence in optical depth across their transverse extent. Covering fractions that vary

in the way just described are not found in our data. Nevertheless, we cannot rule

out the possibility that there are multiple small clouds along the line-of-sight. In

such a scenario, the case for non-equilibrium evolution in the ionic number den-

sities becomes more compelling.

In summary, if the AAL region is not pressure supported, then explicit numer-

ical calculations suggest that non-equilibrium e�ects may be important in these

clouds. A cloud expansion time-scale of . 100 years is su�ciently short that these

e�ects might be con�rmed with repeat observations. These observations will be

crucial in determining appropriate non-equilibrium models for the data.

3.6.3 The connection to associated X-ray absorption

We next consider the link between associated UV absorption and so-called ‘warm

absorbers’, often characterised by both bound-bound and bound-free absorption

in X-rays. A key question is whether or not this absorption is predicted by the UV

absorption lines characterised here. In the most highly ionized gas, under pho-

toionization equilibrium, the maximum predicted total hydrogen column density

is log(NH/cm−2) ≈ 20, and the ionization parameter logU ≈ 0.5. We assume an

upper limit on the gas metallicity of [O/H] ≈ 1. Explicit photoionization calcula-

tions using these parameters predict the presence of bound-bound transitions, but

no signi�cant bound-free absorption in X-rays. The same result is obtained in CIE

calculations. In this respect, and also in terms of their relatively small velocity shift

from the QSO, the AALs in Q0209 are similar to those reported in e.g. Hamann

et al. (2000). If there is continuous X-ray absorption, it should be in much more
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highly ionized gas with larger total column density. This gas may trace the bulk of

an out�ow that produces the gas condensations described in the previous section.

However, in general, the gas giving rise to warm absorbers need not be co-spatial

with UV and/or optical AALs, especially since these absorption systems arise

in gas with a wide range of physical parameters (out�ow velocities, ionization,

covering fractions, distance from the QSO etc.; see, for example, Ganguly et al.,

1999; Misawa et al., 2007; Nestor et al., 2008; Ganguly et al., 2013; Muzahid et al.,

2013; Sharma et al., 2013). Nevertheless, it is intriguing that the AALs in Q0209

shownearly identical velocity component structure over∼ 300 eV in ionization po-

tential, suggesting that absorption lines from many ionization stages can indeed

arise co-spatially. Simultaneous observations in the UV and X-rays will likely be

required to gain deeper insights into the connection betweenwarm absorbers and

associated absorption lines (e.g. Di Gesu et al., 2013; Lee et al., 2013).

3.6.4 Out�ow models

Before considering potential origins for the out�owing gas, we �rst perform a

rough estimate of the mass and kinetic energy in the AALs. We assume the ge-

ometry of the out�owing gas traced by these data to be that of a thin, partially

�lled shell of material moving radially outwards from the centre of the QSO, the

�ux fromwhich is modelled by the ‘UV peak’ SED. Under this geometry, themass

depends on the distance from the QSO (R ∼ 2.3 kpc), the total column density

through the AAL region (we �nd a value NH ≈ 2 × 1020 cm−2), and crucially, the

global covering fraction,Ω, of the AAL gas, as opposed to the line-of-sight cover-

ing fraction that we measure. A rough estimate of this quantity comes from the

incidence rate of associated absorption systems like that seen in Q0209. Muzahid

et al. (2013) presented a sample of 20 quasar spectra observed with COS, from

which associated absorbers were selected based on the presence of Ne VIII ab-

sorption. The incidence rate of these absorption systems was found to be ∼ 40%,

and we consider this to be the closest representative sample in the literature at

present, although the general conclusions below are not sensitive to reasonable

estimations of this value. We therefore express the total gas mass in the UV AAL
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region as

M ≈ 6 × 107
(
Ω

0.4

) ( NH
2 × 1020 cm−2

) (
R

2.3 kpc

)2
M� , (3.6.30)

where we have assumed a mean molecular weight per H particle of µH = 1.4. The

total kinetic energy in this gas is then

K ≈ 2 × 1055
(

M
6 × 107M�

) (
v

200 km s−1

)2
erg. (3.6.31)

We can derive the average mass out�ow rate Ṁ, by dividing M by the dynami-

cal time-scale R/v, and subsequently derive the kinetic luminosity of the gas as

K̇ = 0.5Ṁv2. This gives values of Ṁ ≈ 5M� yr−1 and K̇ ≈ 7 × 1040 erg s−1. It is

instructive to bear in mind that, while these quantities are useful, there are good

reasons to believe that the gas clouds traced by the AALsmay not travel a distance

R, and are instead accelerated close to their observed location (see Section 3.6.1).

We consider two primary sources for the gas �ow generating the AALs: (i)

line-driven winds, and (ii) supernova-driven winds. Line-driven winds, initially

accelerated through radiation pressure from the SMBH accretion disc, are com-

monly invoked to explain the winds traced by BALs and AALs with velocities of a

few 1000 km s−1, and are amajor source of energy injection into the ISM inmodels

of AGN feedback (e.g. Scannapieco & Oh, 2004; Di Matteo et al., 2005; Hopkins &

Elvis, 2010). Speci�cally, these models require kinetic luminosities to be K̇ & 0.1%

of the Eddington luminosity, LEdd. For Q0209, log(L/LEdd) & 0, which implies the

kinetic luminosity in theAALs is at least two orders ofmagnitude below this level.

In addition, models involving line-driven winds suggest they must be launched

close to the SMBH at velocities of a few 100 km s−1 (e.g. Risaliti & Elvis, 2010),

which is already the velocity of the AALs seen here at much larger distances. If

the AALs are pressure con�ned in a line driven wind such as this, they must en-

counter signi�cant drag from a surroundingmedium to slow them down, or keep

them from accelerating to much larger velocities. In the more likely case that the

AALs are formed in-situ, a variety of velocities could in principle be observed.



3.6. Discussion and conclusions 120

For example, in the radiative shock model of Faucher-Giguère et al. (2012), AAL

clouds will take a �nite time to accelerate up to the velocity of the passing blast

wave (see their equation (12)). Although the UV AAL clouds in Q0209 contribute

only a small percentage of the kinetic luminosity required for signi�cant AGN

feedback into the surrounding ISM (and IGM), a much larger percentage may be

carried by an associated, much more highly ionized warm absorber, with higher

total column density, detectable as bound-free absorption in X-rays (e.g. Cren-

shaw et al., 2003; Gabel et al., 2005; Arav et al., 2007). We note that bound-free

X-ray absorption is by no means ubiquitous, with some warm absorbers now be-

ing detected via absorption lines such as O VII. These can have NH consistent with

that seen in associated UV absorption lines (e.g. Di Gesu et al., 2013).

Supernova driven winds are thought to drive fountains of gas a few kpc into

the haloes of massive galaxies, some of which is then expected to fall back on bal-

listic trajectories (e.g. Bregman, 1980; Fraternali & Binney, 2006, 2008; Marinacci

et al., 2010). We �nd that the distance, velocity and density of the AAL gas in

Q0209 is typical of galactic winds (e.g. Veilleux et al., 2005; Creasey et al., 2013).

The infalling velocity component v8 also indicates that some of the AAL gas may

be on a return trajectory back towards the disc of the QSO host. The time-scale

derived in equation (3.6.22) is consistent with expected QSO lifetimes (e.g. Novak

et al., 2011), so if the clouds are a result of supernova driven winds, it is possi-

ble these winds were launched during a starburst phase. If we assume that the

starburst proceeded at ∼ 10M� yr−1, and that this star formation results in one

supernova per 100M� with energy ESN ∼ 1051 erg, then Ė ∼ 1042 erg s−1. Only

a fraction of this energy will be converted into the kinetic energy powering an

out�ow, and so the kinetic luminosity we derive for the AALs in Q0209 may be

consistent with this simple estimation.

At present, the data are consistent with both an out�ow driven by AGN and

starburst activity in Q0209. Future X-ray observations of this QSO may help to

distinguish between these two possibilities. In particular, associated bound-free

X-ray absorption tracing gas with high total column density and kinetic luminos-

ity would favour an origin closely tied with the AGN.



Chapter 4

Galaxy surveys along

QSO sight-lines

4.1 Overview

In our study on the relationship between the intergalactic medium (IGM) and

galaxies, we treat the galaxies as single entities (we do not consider their con-

stituent parts - bulge, disk, stellar and gas components etc.). Instead, we simply

measure their redshifts and their globally averagedmagnitudes. We also quantify

the globally averaged star formation activity in the galaxies via their spectral fea-

tures. We only consider galaxies with spectroscopic redshifts, because we need to

put constraints on the IGM/galaxy association down to <Mpc scales.

This chapter is split into �ve sections. In Section 4.2, we summarise the galaxy

sample constructed for this work, and describe the rationale behind it. In Sec-

tion 4.3, we brie�y describe the process of obtaining spectroscopic redshifts, and

present a redshift classi�cation scheme that is uni�ed across our sample. In Sec-

tion 4.4, we describe the processes involved in constructing global astrometry and

photometry solutions from combined data sets. In Section 4.5, we describe the

measurement of spectral features. Finally, in Section 4.6, we explain how these

measurements are transformed into an indication of star-formation activity.

4.2 The galaxy sample

The galaxy data is obtained from a number of di�erent instruments and surveys.

We include data collected by our own collaboration from theDeep ImagingMulti-

Object Spectrograph (DEIMOS), GeminiMulti-Object Spectrograph (GMOS), Canada-

France-Hawaii Telescope (CFHT) multi-object spectrograph and Very Large Tele-
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scope (VLT) Visible Multi-Object Spectrograph (VIMOS) (hereafter, T14 and T14-

Q0107;Morris & Jannuzi, 2006; Tejos et al., 2014). Wemake use of the SloanDigital

Sky Survey (SDSS) (Abazajian et al., 2009), 2dF Galaxy Redshift Survey (2dFGRS)

(Colless et al., 2001), Galaxy and Mass Assembly (GAMA) survey (Driver et al.,

2011), VLT VIMOS Deep Survey (VVDS) (Le Fevre et al., 2005) and VIMOS Public

Extragalactic Redshift Survey (VIPERS) (Guzzo et al., 2014). We also include data

from the Las Campanas Observatory (LCO)/Wide Field Reimaging CCD Camera

(WFCCD) galaxy survey of 20 �elds surroundingUV-bright quasars (QSOs) (here-

after, P11; Prochaska et al., 2011a), galaxy data around PKS 0405−123 presented in

Johnson et al. (2013); hereafter, J13, and galaxy data aroundHE 0226−4110 and PG

1216+069 presented inChen&Mulchaey (2009); hereafter, C09. The latter two sur-

veys made use of the Inamori-Magellan Areal Camera & Spectrograph (IMACS)

and Low Dispersion Survey Spectrograph 3 (LDSS3) at LCO.

Together, these surveys cover regions close to all of the QSO sight-lines used

to characterise the IGM (see Chapter 2, Section 2.3). Some were conducted for the

primary purpose of mapping galaxies close to a particular QSO sight-line, while

others serendipitously cover regions where there are bright QSOs with Hubble

Space Telescope (HST) spectroscopy. Those that fall in the latter category are the

large SDSS, 2dFGRS, GAMA, VVDS, and VIPERS surveys. For SDSS, we adopt

just those galaxies in the main sample, i.e. SDSS-I/II (see Abazajian et al., 2009,

for details). We restrict our combined galaxy sample to 4 × 4 square degree �elds

(0.00487 steradians) centred on eachQSO.1 Thismeans thatwe can sample galaxy-

absorber pairs to transverse separations of ∼ 15 comoving Mpc at the median

redshift of our sample, ∼ 10 comoving Mpc at z ∼ 0.07, and ∼ 1 comoving Mpc at

z ∼ 0.005. We discard all objects with z < 0.005, regardless of their classi�cation,

on the basis that they may be stars. Some �elds are made larger by virtue of there

being more than one QSO that inhabits a particular 4 × 4 square degree region.

We summarise our combined galaxy sample in Table 4.1. As an indication of

survey depth, we list the median redshift for each survey, and the 95th percentile

1Note that a number of surveys cover areas of sky that are smaller than this.
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Table 4.1: The galaxy sample

Survey Ngalaxies
1 zmedian

2 z953 mlimit
4 Reference

SDSS 41 342 0.10 0.19 r < 17.77 Abazajian et al. (2009)
2dFGRS 10 643 0.11 0.22 bJ < 19.45 Colless et al. (2001)
GAMA 8636 0.22 0.40 r < 19.8 Driver et al. (2011)
VVDS 18 181 0.58 1.07 I < 22.5 Le Fevre et al. (2005)
VIPERS 24 183 0.70 1.06 I < 22.5a Guzzo et al. (2014)
T14 1049 0.43 0.93 R < 23.5b Tejos et al. (2014)
T14-Q0107 962 0.55 1.07 variousc Tejos et al. (2014)
P11 900 0.16 0.36 R < 20d Prochaska et al. (2011a)
C09 810 0.36 0.64 R < 22 Chen & Mulchaey (2009)
J13 443 0.41 0.81 R < 23 Johnson et al. (2013)

ALL 107 149 0.19 1.00 – –
1 Number of galaxies with spectroscopically con�rmed redshifts (not labelled ‘c’ - see section 4.3
for details).

2 Median redshift for the survey.
3 The 95th percentile of the redshift distribution.
4 Magnitude limit for the survey.
a Colour cuts also applied.
b Priority given to objects with R < 22.5.
c VIMOS: R < 23, priority given to objects with R < 22. DEIMOS: R < 24.5, priority given to
brighter objects, colour cuts also applied. GMOS: Top priority given to objects with R < 22,
second priority given to objects with 22 < R < 23, last priority given to objects with 23 < R <
24. CFHT: R < 23.5 (indicative only).

d R < 19.5 for some �elds.

of the redshift distribution, which we denote z95. This is more informative than

themaximumof the redshift distribution, asmany surveys show long tails to high

redshift due to the presence of luminous active galactic nuclei (AGN). We also list

the magnitude limit for each survey, which in many cases is only indicative (see

the table footnotes for more details). There are 107 149 galaxies in our combined

sample, which has a median redshift of 0.19. In Table 4.2, we summarise the QSO

sight-line �elds. We list the number of QSOs in each �eld and give an indication of

the area and comoving volume covered by each. For the latter, we de�ne the edge

of the volume by the minimum of (zQSO, z95), where zQSO denotes the maximum

QSO redshift for the �eld.

The following sections describe the analyses performed on the 1D extracted

galaxy spectra and photometric parent samples. Much of this analysis builds

on that already presented in Tejos et al. (2014). For the SDSS, 2dFGRS, VVDS

and VIPERS surveys, and all galaxy data presented in Chen & Mulchaey (2009),

Prochaska et al. (2011a) and Johnson et al. (2013), we work from the catalogued
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Table 4.2: QSO sight-line �elds

Field name NQSO Area (sr)a Vc (Gpc3)b Instrument/survey

J0005+1609 1 0.00221 0.181 SDSS
J0029+1316 1 0.00003 0.002 WFCCD
J0058−3606 1 0.00218 0.153 2dFGRS
J0110−0218 3 0.00004 0.049 CFHT, VIMOS, DEIMOS, GMOS
J0120−2821 2 0.00487 0.623 2dFGRS
J0159+0023 1 0.00309 0.215 SDSS
J0209−0438 1 0.00314 4.700 VIPERS
J0228−1904 1 0.00005 0.024 IMACS, LDSS3
J0407−1211 1 0.00029 0.176 WFCCD, IMACS, LDSS3
J0426−5712 1 0.00135 0.041 2dFGRS
J0559−5026 1 0.00004 0.002 WFCCD
J0809+4619 1 0.00487 0.436 SDSS
J0835+2459 1 0.00487 0.369 SDSS
J0847+3445 1 0.00487 0.059 SDSS
J0919+5521 1 0.00487 0.201 SDSS
J0956−0453 1 0.00332 0.210 2dFGRS
J0956+4115 2 0.00487 0.452 SDSS
J1005+0134 1 0.00082 1.082 SDSS, VVDS, VIMOS
J1007+2929 2 0.01097 1.042 SDSS
J1013+3551 1 0.00487 0.088 SDSS
J1014−0418 1 0.00487 0.049 2dFGRS
J1022+0132 1 0.00004 0.027 SDSS, VIMOS
J1031+5052 1 0.00487 0.467 SDSS
J1051−0051 1 0.00289 0.213 SDSS
J1058+3412 2 0.01097 1.010 SDSS
J1118+5728 2 0.01950 1.697 SDSS
J1119+2119 1 0.00363 0.291 SDSS, WFCCD
J1121+4113 1 0.01097 1.060 SDSS
J1131+3114 1 0.00487 0.502 SDSS
J1139+6547 1 0.00487 0.378 SDSS
J1226+0319 3 0.01950 3.638 SDSS, IMACS, LDSS3, WFCCD
J1232+2009 1 0.00487 0.057 SDSS
J1301+5902 2 0.00487 0.488 SDSS
J1305−1033 1 0.00004 0.007 WFCCD
J1309+0819 1 0.00487 0.309 SDSS, WFCCD
J1357+0435 1 0.00091 1.225 SDSS, VVDS
J1427+2348 1 0.00487 0.372 SDSS
J1437−0147 1 0.00487 1.646 GAMA
J1438−0658 1 0.00182 0.078 2dFGRS
J1442+3526 1 0.00487 0.088 SDSS
J1528+2825 1 0.00487 0.382 SDSS
J1555+1111 1 0.00487 0.577 SDSS, WFCCD
J1620+1724 1 0.00487 0.169 SDSS
J2009−4849 1 0.00004 0.001 WFCCD
J2132+1008 1 0.00296 0.035 SDSS
J2155−0922 1 0.00003 0.003 WFCCD
J2158−3013 1 0.00487 0.183 2dFGRS, WFCCD
J2218+0052 1 0.00109 1.464 SDSS, VVDS, VIMOS
J2254−1734 1 0.00122 0.015 2dFGRS
J2351−0109 1 0.00256 0.201 SDSS

a Field area, approximating the survey region as a rectangle.
b Comoving volume covered by the survey up to the minimum of (zQSO , z95).
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magnitudes, redshifts, and spectral linemeasurements (where available).2 GAMA

galaxy catalogues used in this study are from phase II of the survey, and are not

publicly available at the time ofwriting. For SDSS, wemake use of the spectral line

measurements presented in Brinchmann et al. (2004) (see Section 4.6 for details).

4.3 Galaxy redshifts

The majority of the galaxy redshifts in our VIMOS, DEIMOS, GMOS, and CFHT

samples were obtained by cross-correlating galaxy, star, and QSO templates from

SDSS3 with each observed spectrum (seeMorris & Jannuzi, 2006; Tejos et al., 2014,

for a full description). Each galaxy was then assigned a quality �ag to indicate the

reliability of the assigned redshift. The scheme is designed as follows:

• Secure (‘a’): At least three well-identi�ed spectral features (emission or ab-

sorption lines) or two well identi�ed emission lines.

• Possible (‘b’): Only one or two spectral features.

• Uncertain (‘c’): No clear spectral features.

(Tejos et al., 2014). Flag ‘c’ is typically raised for spectra with low signal-to-noise

ratio (SNR), or due to an intrinsic lack of observable features at the instrumental

resolution. Wedonot use these redshifts in any of the forthcoming analysis. For all

other galaxy redshifts, we map the corresponding quality �ags onto our scheme

to ensure a uni�ed de�nition for ‘secure’, ‘possible’, or ‘uncertain’ as follows.

In SDSS, we simply adopt all galaxies with a warning �ag of 0 (indicating

no warnings) as being secure (label ‘a’), and �ag all other redshifts as ‘c’ (see

Stoughton et al., 2002, for details on SDSS �ags).

The 2dFGRS scheme is de�ned in terms of absorption redshifts and emission

redshifts separately. In brief, for absorption redshifts, a quality parameter Qa is

2Catalogues for 2dFGRS, SDSS, VVDS, and VIPERS galaxies are obtained from http://
www.2dfgrs.net, http://skyserver.sdss.org/casjobs, http://cesam.oamp.fr/vvdsproject/vvds.
htm and http://vipers.inaf.it/rel-pdr1.html respectively. Catalogues from the analysis in Chen
& Mulchaey (2009), Prochaska et al. (2011a), and Johnson et al. (2013) were obtained from http:
//vizier.cfa.harvard.edu/viz-bin/VizieR.

3http://www.sdss.org/dr7/algorithms/spectemplates/

http://www.2dfgrs.net
http://www.2dfgrs.net
http://skyserver.sdss.org/casjobs
http://cesam.oamp.fr/vvdsproject/vvds.htm
http://cesam.oamp.fr/vvdsproject/vvds.htm
http://vipers.inaf.it/rel-pdr1.html
http://vizier.cfa.harvard.edu/viz-bin/VizieR
http://vizier.cfa.harvard.edu/viz-bin/VizieR
http://www.sdss.org/dr7/algorithms/spectemplates/
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de�ned in terms of a variable R, being the ratio of peak to noise in the cross-

correlation with the best �tting template, as follows:

Qa =



4 R > 5.0,

3 R > 4.5,

2 R > 4.0,

1 R > 3.5,

0 otherwise,

with a further requirement that Qa = 3 andQa = 4 redshifts are obtained towithin

600 km s−1 across four and six of the eight spectral templates respectively. For

emission redshifts, the parameter Qe is de�ned as

Qe =



4 three or more detected lines,

2 two lines, or one strong line,

1 one weak line,

0 no lines.

The combined redshift quality �ag, Qb, is then determined as Qb = max(Qa,Qe),

unless the di�erence between the absorption and emission redshifts is< 600 km s−1,

in which case, Qb = max(Qa,Qe, 3), or if Qa ≥ 2 and Qe ≥ 2 and the di�erence

between absorption and emission redshifts is > 600 km s−1, in which case Qb = 1.

An overall redshift �ag, Q, is determined via human veri�cation of the automated

redshift measurement, with the option of manually �tting Gaussian lines to spec-

tral features as a means to obtain the redshift. The scheme is then as follows:

Q =



5 reliable redshift, high quality spectrum,

4 reliable redshift,

3 probable redshift,

2 possible, but doubtful redshift,

1 no redshift could be estimated.
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(see Colless et al., 2001, for a detailed description). We perform the mapping Q ≥

4→ ‘a’, Q = 3→ ‘b’, Q < 3→ ‘c’.

The GAMA scheme is virtually identical to the 2dFGRS scheme, and we adopt

the same quality �ag mapping (see Driver et al., 2011, for more details).

The VVDS scheme is de�ned according to the following numbering scheme:

(0) no redshift (no features); (1) tentative redshift (weak features, continuumshape);

(2) secure redshift (several features); (3) very secure redshift (strong spectral fea-

tures); (4) completely secure redshift (obvious spectral features); (9) redshift based

on on single secure feature. Added to this are the pre�xes 1 and 2, to mean broad

line AGN and secondary target respectively (see Le Fevre et al., 2005, for more

details). We perform the following mapping:

• {4, 14, 24, 214, 3, 13, 23, 213}→‘a’,

• {2, 12, 22, 212, 9, 19, 29, 219}→‘b’,

• {1, 11, 21, 211, 0}→‘c’.

The VIPERS scheme is identical to that of VVDS, but with the addition of a

decimal fraction to each �ag depending on the photometric redshift from the ac-

companying 5-band CFHT Legacy Survey (CFHTLS) photometry. If the spectro-

scopic redshift falls within the 1σ con�dence interval on the photometric redshift,

a value of 0.5 is added. If it falls within the 2σ con�dence interval, a value of 0.4

is added. If it falls outside the 2σ con�dence interval, a value of 0.2 is added, and

when there is no photometric redshift, a value of 0.1 is added (see Guzzo et al.,

2014, for more details). We adopt the same mapping as for VVDS, regardless of

the added decimal fraction.

Redshifts for galaxies presented in Chen & Mulchaey (2009) and Prochaska

et al. (2011a) are only provided where they are deemed reliable. We therefore

label objects having an assigned redshift with �ag ‘a’, and all other objects �ag ‘c’.

In Johnson et al. (2013), the redshift �agging scheme is de�ned (A) secure (≥ 2

features); (B) 1 feature; (C) observed but no features; and (N) not observed. We

perform the mapping A→‘a’, B→‘b’, {C, N}→‘c’.
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4.4 Global astrometry/photometry solutions

In two �elds, J1005−0134 and J2218+0052, VIMOS observations obtained by our

collaboration supplement VVDS galaxy data at small angular separations from

each QSO (Tejos et al., 2014). We have improved the photometric and astrometric

calibration for these data as follows.

Astrometry and R-band photometry was originally obtained from the VIMOS

pre-imaging data. However, these �elds overlap with the VIRMOS deep imag-

ing survey (Le Fevre et al., 2004), for which the astrometric and photometric cal-

ibration is superior. This photometric data set extends coverage to the B,V , and

I bands, and forms the basis for target selection in the VVDS. We therefore set

about matching these data sets to ensure global astrometric and photometric con-

sistency across these �elds. We made use of the SExtractor (Bertin & Arnouts,

1996) and Scamp (Bertin, 2006) software packages to automatically map galaxy

positions from the VIMOS detector plane to world coordinates using sources de-

tected in SDSS as a reference. This brought the astrometric solution to within

one arcsecond of the VIRMOS deep imaging survey, which is below the typical

seeing level. We then cross-matched the photometric catalogues, and calculated

the mean R-band magnitude o�set needed to bring the two into statistical agree-

ment. We did this for each VIMOS quadrant separately. The typical o�set was

∼ 0.4 magnitudes. Not all sources could be matched to those from the VIRMOS

deep imaging survey due to regions of the imaging for that survey that are poorly

calibrated. For these sources we keep o�set VIMOS R-band magnitudes, whereas

elsewhere we assign the appropriate matched BVRI photometry.

4.5 Spectral line measurements

For the VVDS and VIPERS surveys, no spectral line measurements or indications

of spectral type are made available. We therefore performed our own analysis

where possible, as a means to estimate the star-formation activity for the galaxies

in these surveys (see section 4.6 for details). We also performed this analysis on

the VIMOS, GMOS and CFHT data collected by our collaboration (Morris & Jan-
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Table 4.3: Spectral index de�nitions

Index Blue continuum (Å) Line (Å) Red continuum (Å)

[O ii] 3655−3705 3708.5−3748.5 3750−3800
Hδ 4030−4080 4082.0−4122.0 4125−4170
Hγ 4230−4270 4321.5−4361.5 4365−4400
Hβ 4785−4820 4842.5−4882.5 5030−5100

[O iii] 4785−4820 4988.0−5028.0 5030−5100
Hα + [N ii] 6460−6520 6544.5−6584.5 6610−6670

[S ii] 6640−6700 6713.0−6753.0 6760−6810

nuzi, 2006; Tejos et al., 2014). Originally, the spectral types for these galaxies were

determined by assigning the spectral type of the best �tting template as part of

the redshift determination process. We improve upon this by measuring spectral

line �uxes, as described below.

For each galaxy spectrum, where spectral coverage, resolution and SNR al-

lowed, we estimated the integrated �uxes and local continuum level around the

[O II], Hδ, Hγ, Hβ, [O III], Hα, [N II], and [S II] emission lines. For this, we used

the spectral line indicies de�ned in Table 4.3, and a direct integration over spec-

tral pixels. The continuum level is obtained by iteratively clipping points 1.5σ be-

low the estimated continuum in a manner similar to that described in Chapter 2,

Section 2.5, taking a mean of the ‘un-clipped’ pixels either side of the line, and

linearly interpolating between the points de�ned by these means. This makes the

continuum estimate reasonably robust to underlying absorption, but it occasion-

ally fails at the edges of some spectra where there is a loss in sensitivity, leading

to poor �ux-calibration, and a rapid fall-o� in the continuum. The other main

cause for continuum misplacement is the presence of occasional contaminating

zero-orders4 lying on top of the galaxy spectra, or regions of bad sky subtraction.5

Note that we do not accurately remove the stellar continuum (including the un-

derlying stellar absorption) in our procedure. This inevitably a�ects the reliability

of the inferred emission line �uxes (the Balmer emission lines in particular), how-

4Crowding on the detector can often lead to zeroth-order spectra landing on regions inhabited
by �rst-order spectra.

5A phenomenon known as ‘airglow’, caused by recombination of atoms and luminescence in
the upper atmosphere, produces a large number of contaminating narrow emission lines in the
spectra of astrophysical objects that cannot always be reliably subtracted.
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ever our approach su�ces for the purposes of splitting the galaxy sample into

star-forming and non star-forming populations (see Section 4.6 for details).

The line indicies in Table 4.3 are optimised for spectra taken with VIMOS at a

spectral resolution R = 200, appropriate for the VVDS and VIPERS surveys, and

for the VIMOS data presented in Tejos et al. (2014). For the GMOS andCFHT data,

we narrowed the line indicies to re�ect the higher spectral resolution obtained by

these instruments (see Tejos et al., 2014, and references therein for details). For

integrated line �uxes detected above a 3σ signi�cance threshold, we also attempt

to �t Gaussian pro�les, which are usually adopted in preference to the pixel mea-

surements. We revert to the pixel measurements when the �tting routine returns

a Gaussian with zero amplitude, indicating that the �t has failed. All Gaussian

�ts are performed with a χ2 minimisation employing the Levenberg-Marquardt

algorithm. The rest-frame standard deviation of each Gaussian line is bounded

between 0.5σLSF Å and
√
102 + σ2LSF Å, where σLSF is the standard deviation of

the (assumed Gaussian) line-spread function (LSF), which helps to identify broad

emission lines that are likely of AGN origin, and contaminating sky lines. We �t

the [O II] doublet, Hδ, Hγ, and [S II] doublet lines separately. The [O II] doublet

is not resolved by our spectra, so we �t it as a single line. For the [S II] doublet,

which is marginally resolved, we tie the Gaussian standard deviations in the �t,

and �x the line ratio [S II] λ6716 / [S II] λ6731 to the expected (but not �xed)6 ra-

tio of 1/1.4 (Osterbrock, 1989). We �t the Hβ/[O III] line complex simultaneously,

tying together the Gaussian standard deviations, and �xing the [O III] λ4956 /

[O III] λ5007 ratio to the expected value of 1/2.98 (Storey & Zeippen, 2000). We

also �t the Hα/[N II] complex simultaneously, tying together the Gaussian stan-

dard deviations, and �xing the [N II] λ6548 / [N II] λ6583 ratio to the expected

value of 1/2.95 (Osterbrock, 1989). The [N II] lines are barely resolved from theHα

line in our spectra, so we perform an alternative, single Gaussian �t to just the Hα

line in every case. If this �t gives a smaller χ2 value than the three-component �t,

we assign the resulting Gaussian parameters to the Hα line, and report no [N II]

6Assumes a gas density and temperature.



4.5. Spectral line measurements 131

measurements in these instances. Despite not having su�cient spectral resolu-

tion to properly resolve the [N II] components, in instances where these lines are

strong, the resulting line pro�le has de�nite asymmetry, which motivates us to

decompose the line pro�le. Uncertainties on the �tted Gaussian parameters are

estimated by generating 100 Monte Carlo realisations of the data. For each reali-

sation, we add a number to every pixel �ux, randomly generated from a Gaussian

distribution of values with standard deviation equal to its 1σ uncertainty. Each

of these 100 realisations are then �t using the same procedure as in the nominal

case, and the standard deviation over the resulting best-�t parameter values are

taken as the 1σ uncertainty on the measurement.

To identify bad measurements in our galaxy spectra, we have devised a �ag-

ging scheme as follows:

• Flag (0): No warnings.

• Flag (1): Measurement may be a�ected by the OH forest7 between 8600 and

8700Å.

• Flag (2): Line was �t with the maximum/minimum allowed Gaussian stan-

dard deviation.

• Flag (3): Line coincides with a region above a user-speci�ed sky spectrum

threshold.

• Flag (4): Line may be a�ected by the O2 telluric absorption at ∼ 7600 Å.

• Flag (5): Bad continuum reduced χ2 (> 10).

• Flag (6): No spectral coverage.

The quality of the sky subtraction in our spectramakes the linemeasurements rea-

sonably robust to �ag (1). Flag (2) is implemented to identify potential broad-line

AGN and contaminating sky lines. Flag (3) is mainly implemented to eliminate

contaminating zero-orders. We found that the VIMOS esorex pipeline reduction

7A well known region of densely-packed airglow emission lines, mostly attributable to hy-
droxyl ions, that are not always e�ectively subtracted.
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software often incorrectly identi�es zero orders o�set from the galaxy spectrum

of interest and tries to correct for them, leaving deep, arti�cial absorption features

in the extracted 1D galaxy spectra. Nevertheless, these appear as broad spikes in

the extracted 1D sky spectra, and can be identi�ed by adopting a threshold sky

value. Flag (4) is implemented because most of our spectra are not corrected for

the O2 telluric, and even in spectra that are corrected for this contaminating fea-

ture, the correction is highly uncertain due to the narrow ‘picket-fence’ nature of

the absorption. Flag (5) is implemented to pick up line measurements that are

marred by bad continuum estimation. We allow for relatively high reduced χ2

values in view of occasional absorption that raises the value of this statistic even

for reasonable continuum estimations. Flag (6) is implemented to identify lines

not measured due to insu�cient spectral coverage. We enforce coverage across

the entire region de�ned by each of the line indicies in Table 4.3. Line measure-

ments that do not raise any of the aforementioned �ags are assigned �ag (0), to

indicate that there are no warnings.

In all of our spectra, we reject measurements that raise �ags 2, 4, 5, and 6. For

VIMOS spectra reduced with esorex, we additionally reject measurements that

raised �ag 3. In practice, this �ag is reserved for those spectra only.

4.6 Star formation activity

For the VVDS and VIPERS surveys, and our VIMOS, GMOS, and CFHT data,

we use the spectral line measurements described in the previous section to split

the sample of galaxies in terms of their star formation activity. We also do the

same using a very similar set of line measurements provided by the GAMA sur-

vey team (see Hopkins et al., 2013, for a description). We aim simply to de�ne

galaxies as ‘star-forming’, ‘non star-forming’, ‘AGN dominated’, or ‘unclassi�ed’.

Although we could have calculated star formation rates for many of our galaxies

using standard procedures (e.g. Kennicutt, 1998a;Moustakas et al., 2006), estimat-

ing K-corrections at redshifts & 0.5 becomes increasingly uncertain, and in general

we lack a homogeneous set of multi-band photometric measurements across our
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Figure 4.1: The distribution of galaxies in our sample on a BPT line-ratio diagram. The
solid line indicates the discrimination line from Kewley et al. (2001), separating star-
forming galaxies from AGN. The dashed lines indicate the single-line ratio diagnostics
we also employ to identify AGN when two line ratios are not available.

sample to allow for a consistent approach. In any case, simply splitting our sample

purely on the basis of spectral line measurements su�ces for our requirements.

We adopt a very similar prescription to that outlined in Brinchmann et al. (2004),

whose classi�cation scheme was applied on the SDSS galaxies in our sample.

First, we attempt to identify galaxies whose spectra are dominated by an AGN

component. A number of broad-line AGN are already identi�ed on the basis of

their redshift determination via cross-correlationwithAGN templates (Tejos et al.,

2014). For the remaining galaxies, we perform a classi�cation on the basis of a

Baldwin, Phillips & Terlevich (1981, hereafter BPT) diagram, shown in Figure 4.1.

Kewley et al. (2004) performed spectral energy distribution (SED) and photoion-

ization modelling to �nd a theoretical discriminating line between star-forming

galaxies and AGN on a BPT diagram of log([N ii]/Hα) versus log([O iii]/Hβ).
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This discriminating line is shown in Figure 4.1, along with a subset of our galaxy

sample that have SNR > 3 in each of the measured Hα, Hβ, [N II], and [O III] line

�uxes, and no severe warning �ags associated with these (we accept �ags 0 and 1

in the scheme devised above). High values of log([N ii]/Hα) and log([O iii]/Hβ)

are driven by a hard extreme ultraviolet (EUV) spectrum attributable to AGN ac-

tivity in the host galaxies, pushing these galaxies to the top-right corner of the

diagram. Although we can make an AGN classi�cation on the basis of this dia-

gram regardless of SNR, we use this technique only for SNR > 3, since below this,

an increasing fraction of galaxies have measured line �uxes that are negative, and

the non-symmetric distribution of galaxies on this diagram leads to classi�cation

biases. Typically, only a very small subset of our galaxies for which we performed

spectral line measurements have all the required lines measured above our SNR

criterion, but we are able to expand the classi�cation by using only single line ra-

tios. These are indicated by the dashed lines in Figure 4.1, and they correspond

to log([N ii]/Hα) > 0.3 and log([O iii]/Hβ) > 1. Clearly these classi�ers are less

e�ective than that using both line ratios, however this does allow us to classify

AGN according to their line ratios over a larger number of galaxies. We �nd only

around 5% of our galaxies are classi�ed as AGN, but we cannot rule out a small

additional population that could not be identi�ed in the manner just described.

After identifying AGN, we assume that the rest of the galaxies are regular star-

forming or non star-forming galaxies. We identify star-forming galaxies as those

that show measured �uxes that are positive and with SNR > 2 in any one of the

Hα, Hβ, or [O II] lines. Those that do not meet this criterion are identi�ed as non

star-forming galaxies. Those galaxies that do not have good measurements of any

of the Hα, Hβ, or [O II] emission lines (due to bad �ags and/or lack of spectral

coverage) are marked as ‘unclassi�ed’. These galaxies nevertheless have redshift

measurements from e.g. the Ca IIH and K, CHmolecule G-band, Mg λ5175, and

Na λ5894 lines.

For all other galaxies in our sample, we obtain their spectral classi�cations

from the literature, typically found from principle component analyses (see Chen

& Mulchaey, 2009; Prochaska et al., 2011a; Johnson et al., 2013; Tejos et al., 2014,
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for details). Overall, we �nd that∼ 55% of the galaxies in our sample are classi�ed

as star-forming, ∼ 35% are classi�ed as non star-forming, ∼ 5% are classi�ed as

AGN, and ∼ 5% are unclassi�ed.



Chapter 5

Simulated IGM

absorber/galaxy samples

5.1 Overview

In this chapter, we present the methods used to extract a data set from a cosmo-

logical hydrodynamical simulation, which we then compare to the observational

data. The comparison set comes from the Evolution and Assembly of GaLaxies

and their Environments (Eagle) project, which is in fact a suite of hydrodynami-

cal simulations that follow the formation and evolution of galaxies and supermas-

sive black holes in volumes representative of aΛCDMUniverse. In Section 5.2, we

brie�y describe the pertinent aspects of the simulation, and discuss its key advan-

tages and limitations. We then follow in Section 5.3 with a detailed description of

the processes involved in generating mock catalogues of galaxies and absorption

systems, designed to mimic as closely as possible the observations.

5.2 The Eagle simulations

The Eagle project (Schaye et al., 2015) is a suite of cosmological hydrodynamical

simulations representative of a ΛCDM Universe. The simulations were run with

the smoothed particle hydrodynamics (SPH) code gadget3 in cubic volumes 12.5,

25, 50, and 100 comoving Mpc on a side.1 Numerous state-of-the-art numerical

techniques and subgrid models are used to capture various physical processes

important to galaxy formation and evolution. These include radiative gas cool-

ing, star formation, mass loss from stars, metal enrichment, energy feedback from

1There are also a set of high resolution ‘zoom’ simulations (see Sawala et al., 2015, for details).
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Table 5.1: Box sizes and resolutions of the main Eagle simulations, reproduced from
Schaye et al. (2015).

Name L (Mpc)a Nb mg (M�)c mdm (M�)d εcome εpropf

L025N0376 25 3763 1.81 × 106 9.70 × 106 2.66 0.70
L025N0752 25 7523 2.26 × 105 1.21 × 106 1.33 0.35
L050N0752 50 7523 1.81 × 106 9.70 × 106 2.66 0.70
L100N1504 100 15043 1.81 × 106 9.70 × 106 2.66 0.70

a Comoving box size.
b Number of dark matter particles (there is an equal number of baryonic particles ini-
tially).

c Initial baryonic particle mass.
d Dark matter particle mass.
e Plummer-equivalent gravitational softening length.
f Maximum proper softening length.

supernovae and active galactic nuclei (AGN), and gas accretion onto, and merg-

ers of, supermassive black holes. The e�ciency of stellar feedback and the mass

accretion onto black holes is calibrated tomatch the present-day stellar mass func-

tion of galaxies (subject to the additional constraint that the galaxies sizes need to

be reasonable), and the e�ciency of AGN feedback is calibrated to match the ob-

served relation between stellar mass and black hole mass. Calibrations such as

these are necessary, since the underlying physics behind galaxy feedback is nei-

ther well understood, nor well constrained observationally.

The box sizes, resolutions, and gravitational softening lengths2 of the main

Eagle simulations are listed in Table 5.1. Particle properties in each of the simula-

tion volumes are recorded at 29 points in time between redshifts 20 and 0. These

are referred to as ‘snapshots’. In this thesis, we use only the largest simulation

volume, L100N1504, and the snapshots between redshift 1 and 0. The resolution

of Eagle is marginally su�cient to resolve the Jeans scales in the warm interstellar

medium (ISM). The Jeans mass for a cloud with gas fraction fg is

MJ ≈ 107 f
3
2
g

( nH
10−1 cm−3

)− 1
2
( T
104 K

) 3
2

M� , (5.2.1)

2To prevent the occurrence of singularities in the force equation for N-body dynamics in close
encounters between particles, the gravitational interaction is modi�ed (‘softened’) on small scales
according to some functional form. In Eagle, the functional form for this softening is similar to a
Plummer pro�le.
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and the Jeans length is

LJ ≈ 2 f
1
2
g

( nH
10−1 cm−3

)− 1
2
( T
104 K

) 1
2
kpc. (5.2.2)

If we take �ducial values of fg ≈ 1, nH ≈ 0.5 cm−3, and T ≈ 5000 K for the warm

ISM, then we �nd MJ ≈ 1.6 × 106M� and LJ ≈ 0.6 kpc, which compare favourably

with the gas particlemasses andmaximumproper gravitational softening lengths

listed in Table 5.1. We shall refer to three particle types in Eagle: dark matter par-

ticles, star particles, and gas particles. Dark matter particles are evolved using the

N-body part of the code, which simulates just the gravitational interactions be-

tween particles, while gas particles are also subject to hydrodynamical forces. Gas

particles above a metallicity-dependent density threshold are converted to star

particles stochastically, following the observed Kennicutt-Schmidt star-formation

law (Kennicutt, 1998b). More details can be found in Schaye et al. (2015).

Note that there exists a high resolution variant of the 25 Mpc volume as part

of the Eagle suite, which allows for an investigation into numerical convergence

with resolution. For Eagle it is worth noting that there is only a demand for so-

called ‘weak convergence’. The meaning of this, and the motivation behind it, is

discussed at length in Schaye et al. (2015) (see their section 2.2), but in brief this

essentially means that simulation variants at di�ering resolution have the subgrid

physics re-calibrated. Therefore, the expectation is that only the re-calibrated runs

at higher resolutions to the nominal one should give converged predictions. This

di�ers from the condition of so-called ‘strong convergence’, whereby numerical

convergence must be achieved without the need for re-calibration.

Much like in other recent cosmological hydrodynamical simulations (e.g. Schaye

et al., 2010; Vogelsberger et al., 2014), the key to producing realistic simulated

galaxies in Eagle has mainly been the implementation of more e�ective subgrid

models for stellar feedback, and the inclusion of subgrid models for AGN feed-

back (see Chapter 1, Section 1.5 for a discussion). Although much work has been

devoted to improving the numerical techniques used to solve the hydrodynamical

equations, it is variations on the implementation of these subgrid models that has
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the largest impact on simulated galaxy properties (Scannapieco et al., 2012).

As already stated, the subgrid implementations of stellar and AGN feedback

in Eagle are calibrated against observed properties of the present-day galaxy pop-

ulation, as is standard practice. It is important to point out that this calibration of-

fers fairly limited insight into the physics driving these feedback processes. Con-

sider, for example, two simulations with the same treatment of the hydrodynam-

ics, but run with di�ering resolution. Unfortunately, it often turns out that the

best-calibrated subgrid models for feedback in each case can have substantially

di�erent e�ciencies. In particular, the e�ectiveness of feedback is often hampered

by excessive radiative losses. This problem is resolution dependent, to do with

the numerical implementation, and depends on how realistic the modelling of

the ISM is (e.g. Dalla Vecchia & Schaye, 2012). The inferred feedback e�ciencies

from calibration could be erroneous for other reasons too, for example if the en-

ergy/momentum in the subgrid model is coupled to the gas at the wrong scale,

or if too much of the momentum that is injected cancels out. Therefore, even if the

subgrid prescriptions for feedback produce a Universe that matches the observa-

tions perfectly, we cannot obtain constraints on the underlying physics governing

those feedback processes.

Calibrating subgrid models for feedback has an important impact on the pre-

dictive power of cosmological hydrodynamical simulationswith regards to galaxy

properties as well. A key insight from these simulations is that there likely exists

an equilibrium between the rate at which gas falls onto galaxies, the rate at which

that gas is turned into stars, and the rate at which it is ejected. This is seen, for ex-

ample, as driving the relation between stellar mass and gas-phase metallicity, the

abundance of damped Lyman alpha absorbers, and the linear relation between

star formation and H2 abundance (e.g. Finlator & Davé, 2008; Schaye et al., 2010;

Davé et al., 2012; Altay et al., 2013; Dekel et al., 2013; Feldmann, 2013; Lilly et al.,

2013). In this picture, galaxy evolution is self-regulated - the gas out�ow rate is

determined by the rate of infall, not by the feedback e�ciency. If gas out�ows

are driven by feedback from star formation, the star formation rate simply ad-

justs over time such that a balance between gas infall and out�ow is achieved.
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Similarly, if the out�ows are driven by AGN feedback, then the black hole accre-

tion rate adjusts over time to achieve this balance. Since star formation activity

builds up the stellar mass in galaxies, and black hole accretion builds up the black

hole mass, then it is these processes that are ultimately sensitive to the e�ciency

of the subgrid feedback implementation. This explains why subgrid feedback in

Eagle is calibrated to the galaxy stellar masses and black hole masses inferred

from observations. Since there is a need for calibration, it is clear that a cosmolog-

ical hydrodynamical simulation such as Eagle cannot make predictions for these

properties.

In view of the shortcomings outlined above, we are motivated to test the feed-

back prescriptions in Eagle by examining its predictions for the distribution and

dynamics of O VI absorbers around galaxies, which we can then compare to

our observational sample. A test such as this has considerable diagnostic power,

since the simulation was not calibrated to match observations such as these. Even

though we can’t hope to learn anything about the detailed physics governing su-

pernova and AGN feedback, a simulation that matches these observations should

nevertheless provide important insights on the gas �ows around galaxies, which

are responsible for driving the evolution of key galaxy properties, such as their

star formation rates, and the mass-metallicity relationship. To perform this test,

we need to generate mock catalogues of galaxies and absorbers from the simula-

tion, which is the subject of the next section.

5.3 Creating the mock catalogues

In creating mock catalogues of galaxies and absorbers, we aim to mimic as closely

as possible the observational procedure, and to achieve a sample whose selection

biases are matched to those of the observational one. We do this to ensure a fair

comparison between the real, and the simulated data. In addition, it is instructive

to assess the basic statistical properties of the simulated samples. If these do not

broadly match those observed, then this compromises our ability to draw any

meaningful conclusions between a comparison of more complex diagnostics such
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as their clustering amplitudes. In the following sections, we describe the data

extraction procedures, and present some preliminary comparisons.

5.3.1 Galaxies

Galaxies in Eagle are de�ned by the centre of the gravitational potential in ‘sub-

haloes’ identi�ed by the subfind algorithm (Springel et al., 2001; Dolag et al., 2009).

A ‘subhalo’ is de�ned in this algorithm as a gravitationally bound, locally over-

dense group of particles, identi�ed in the following fashion. First, dark matter

haloes are found by implementing the friends-of-friends (FoF; Davis et al., 1985)

algorithmon the darkmatter particles. Any twoparticles less than a linking length

of 0.2 times the mean inter-particle separation are called ‘friends’. A dark matter

halo is then a FoF group, de�ned by the set of particles for which each particle

in the set is connected to every other particle via a network of friends. Gas and

star particles in the simulation are then assigned to the same (if any) FoF halo as

their nearest dark matter particles. Next, substructure candidates are identi�ed

by �nding overdense regions within each FoF halo that are bounded by saddle

points in the density distribution. Finally, particles not gravitationally bound to

the substructure are discarded, and the resulting substructures are termed sub-

haloes. For Eagle it was also necessary to merge subhaloes separated by less than

the minimum of 3 kpc and the stellar half-mass radius, to remove a small num-

ber of very low mass subhaloes whose mass was dominated by a single particle

(Schaye et al., 2015).

The stellar mass of each galaxy in Eagle is de�ned to be the sum of the masses

of all the star particles that belong to the corresponding subhalo, and that are

within a 3D aperture of radius 30 kpc. The choice of aperture was motivated by

the fact that this gives a nearly identical galaxy stellar mass function as do the Pet-

rosian apertures used in the observations (Schaye et al., 2015). All galaxy proper-

ties in Eagle, including the star formation rates, are evaluated in this aperture. For

the purpose of matching to the observational sample, we limit the Eagle sample

to galaxies with stellar masses log(M?/M�) > 8. We perform this mass cut for two

reasons: (i) to eliminate galaxies consisting of . 100 star particles, as these galax-
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ies will have star-formation rates that are not statistically robust; and (ii) to re�ect

our observed sample, for which stellar masses log(M?/M�) < 8 are comparatively

rare due to the limiting magnitudes of the surveys (see, for example, Li & White,

2009; Baldry et al., 2012).

To split the Eagle sample of galaxies in terms of their star-formation activ-

ity, we adopt the same scheme as outlined in Schaye et al. (2015), whereby galax-

ies with speci�c star-formation rates Ṁ?/M? > 0.1 Gyr−1 are de�ned to be star-

forming galaxies, and all others are de�ned to be non-star-forming galaxies. We

do not attempt to �nd a cut in star-formation rate (or speci�c star-formation rate)

thatwillmatch the relative proportions of star-forming andnon star-forming galax-

ies in the observational sample, since the observational de�nition is subject to

signal-to-noise constraints not present in the simulation. We leave a more precise

comparison for future work.

Finally, we de�ne the z-axis of the simulation volume to be the pseudo-redshift

axis, and replace the z-coordinate of each galaxy with zpec = z + vpec(1 + z)/H(z),

where vpec is the peculiar velocity of the galaxy, and H(z) the Hubble parameter

for a redshift z corresponding to the snapshot redshift. This then mimics the dis-

tortions introduced by peculiar velocities along the line-of-sight (LOS) for galaxy

surveys constructed in redshift space.

5.3.2 Absorption-line systems

Observationally, the di�use baryonic material in the Universe - the intergalactic

medium (IGM) - is characterised by measurements of absorption-line systems in

quasar (QSO) spectra (see Chapter 2). We therefore characterise the IGM in Eagle

in a very similar manner, by drawing synthetic QSO sight-lines through the sim-

ulation volume. We follow the procedure outlined in Theuns et al. (1998) (see

their appendix A4), using a modi�ed version of the arti�cial transmission spec-

tra code, SpecWizard. This works as follows. For a given (x , y , z) coordinate and

orientation in the simulation volume at a given redshift snapshot, specifying a

one-dimensional sight-line, SpecWizard �rst extracts all SPH gas particles that

intersect that sight-line. The sight-line is then divided into velocity bins labelled
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from zero to ȧL, where a(z) is the dimensionless scale-factor as a function of red-

shift, and L is the box size in comoving coordinates. Each bin has a velocity width

∆ = 1 km s−1. For each bin, the code then calculates the local physical density, ρX ,

and temperature, TX , for an ionic species X, weighted by the SPH smoothing ker-

nel and abundance of species X, assuming ionization equilibrium in the presence

of a Haardt & Madau (2001) ultraviolet (UV) background radiation �eld. Then,

for a given atomic transition, i, of species X, assuming only thermal line broad-

ening, by analogy with equations (1.4.42) and (1.4.47), a bin k, corresponding to a

velocity v(k), will su�er absorption due to material in bin j, at velocity v( j), by an

amount e−τ(k), where

τ(k) = σXi

1
√
π

c
VX( j)ρX( j)a∆ exp


−

(
v(k) − v( j)

VX( j)

)2 , (5.3.3)

and

VX( j) =
2kTX( j)

mX
(5.3.4)

(Theuns et al., 1998). Here, σXi is the absorption cross-section of the transition, c

is the speed of light, and VX( j) is the Doppler width of species X with mass mX .

For the vast majority of the absorption along these sight-lines, the physical den-

sities are small enough that a purely thermally broadened line-pro�le is a good

approximation to the real one.

To create mock catalogues of O VI absorbers, we use the method above to cal-

culate the optical depth, τ(v), in O VI λ1031 along 25 000 randomly-drawn sight-

lines parallel to the z-axis (our pseudo-redshift axis) through each of 7 di�erent

redshift snapshots of the 100 Mpc volume over the range 0.1 . z . 0.7 (the dom-

inant range covered by our observational sample). We then take peaks in the τ

distribution above a threshold value of 0.0005 (arbitrary) along each sight-line to

correspond to the optical depth at the absorption line centres, and calculate the

absorbing column density using equation (1.4.50), assuming a Doppler broaden-

ing parameter equivalent to VX in the equations above. Each absorber is then
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Figure 5.1: Voigt pro�les derived from peaks in the optical depth distribution (plotted in
green) compared to the e−τ spectrum. The predicted Voigt pro�les show simpler veloc-
ity structure than is apparent in the spectrum, highlighting an important caveat to our
approach.

assigned the (x , y) coordinate of the sight-line it was extracted from, and the ve-

locity, v, at which it was extracted, which we convert to a position rz along the

z-axis via rz = v(1 + z)/H(z), where z is the redshift of the simulation snapshot,

and H(z) is the value of the Hubble parameter at that redshift.

It is important to note that the above procedure di�ers from the observational

one, whereby Voigt pro�les are �t to the absorption features in transmission spec-

tra (e−τ) in order to extract column densities andDoppler broadening parameters.

This approach enables de-blending of multiple-component absorption, and takes

into account the broadening of the lines due to the instrumental pro�le, enabling

accurate recovery of their column densities. The technique was originally devised

under the premise that the intervening absorption lines inQSO spectra arose from

discrete absorbing clouds, but this picture was challenged early by the smoothly

distributed IGM captured in cosmological hydrodynamical simulations (e.g. Cen

et al., 1994; Hernquist et al., 1996; Miralda-Escudé et al., 1996; Theuns et al., 1998;

Davé et al., 1999). Absorbers that have a large spatial extent take part in theHubble

expansion, which leads to a line pro�le that deviates from a Voigt pro�le. Voigt

pro�le �tting the transmission spectra will therefore glean slightly di�erent re-

sults to simply taking peaks in the τ distribution. In particular, we might expect a

slightly larger number of absorbers, and some di�erences in the derived Doppler
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Figure 5.2: The columndensity distribution function ofO vi absorbers fromDanforth et al.
(2014) (data points) compared to predictions from Eagle snapshots over the redshift range
0.1 . z . 0.7 (shaded magenta region). The shape of the column density distribution
function predicted from Eagle is not far from that in the data (left panel), but a shift of 0.3
dex in column density (right panel) is necessary to obtain the required number of high
column density absorbers from the simulation (see the text for justi�cation).

broadening parameters and column densities. As a check, we derived Voigt pro-

�les for lines recovered in some of the sight-lines extracted from the simulation

using our τ peak method, and plotted these on top of the transmission spectrum.

An example is shown in Figure 5.1. The transmission spectrum is shown as the

black dashed line, and the predicted Voigt pro�les are shown in green. More

structure is apparent in the real spectrum, which would yield a larger number

of Voigt components in Voigt pro�le �tting, and column densities and Doppler

broadening parameters that di�er slightly from those we have recovered via the

τ peak method. This an obvious caveat to our approach, which we bear in mind

when interpreting our results later on.

Having created a mock catalogue of absorbers from the Eagle simulation, we

now examine whether the global statistics of our mock population matches the

observed one. To do so, we investigate the column density distribution function

of O VI absorbers. This is de�ned as the number, N , of absorption lines per unit
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column density, dNO vi, per unit redshift, dz:

f (NO vi) =
d2
N

dNO vidz
. (5.3.5)

It is also sometimes de�ned in terms of the absorption distance dX, which is re-

lated to dz via dX/dz = H0(1+ z)2/H(z), where H(z) is the Hubble parameter. We

compare to the measurement presented in Danforth et al. (2014) (data points in

Figure 5.2), whose data form the majority of our O VI sample. To calculate this for

the O VI absorbers extracted from Eagle, we adopt the same bin size as was used

for the data, ∆(log NO vi) = 0.2, and note that we have nLOS = 25 000 sight-lines

through the L = 100 Mpc simulation volume, then calculate ∆z = nLOSLH(z)/c,

where c is the speed of light. We do this for each of the redshift snapshots in

the range 0.1 . z . 0.7, and plot the resulting curves as the shaded region in

the left-hand panel of Figure 5.2. The shape of the column density distribution

function from Eagle is not far from that of the observed one, although the ‘knee’

seen in the observed distribution is not so well pronounced in the simulation. We

note also that the distribution of simulated O VI absorbers falls o� at lower col-

umn densities than in the data. Uncertainties in the shape and normalisation of

the UV background are likely enough to account for this di�erence, along with

uncertainties in the metal yields from star-formation (Schaye et al., 2015). Thus,

given the broad agreement in the shape of the column density distribution func-

tion between the simulation and the data, we are motivated to shift the simulated

O VI absorption column densities by 0.3 dex towards higher values, resulting in

a greater concordance with the data (right-hand panel in Figure 5.2). This shift is

also necessary if we are to draw a sub-sample of O VI absorbers from the simula-

tion that is matched to the selection functions in the data. We therefore proceed

from this point on with simulated O VI absorbers whose column densities are

rescaled by an extra 0.3 dex in column density.

To create amatched sample of O VI absorption systems from the Eagle simula-

tion, we begin by optimally binning the column density histogram of the observed

sample using the method presented in Knuth (2006) (see Section 6.4 in Chapter 6
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Figure 5.3: Probability density functions for the observedO vi columndensities (blue), the
simulated ones (red) and the simulated subset (green). See the text for a full description.

for a description and motivation), then smooth the histogram with a Gaussian

having standard deviation equal to the bin size. We then interpolate a cubic spline

over the smoothed histogram, and normalise by the area underneath the curve to

produce a probability density function (PDF) for the observed column densities.

We also do the same on the column density distribution of simulated samples,

which exhibits a turn over at very low column densities (N(O vi) < 1011 cm−2) due

to the arbitrarily imposed optical depth cut. We then randomly draw a 10% subset

of the simulated O VI absorbers from the probability density distribution of the

data, inverse weighted by that of the simulation. We illustrate this in Figure 5.3.

The observed probability density function is shown in blue, the simulated one in

red, and that of the 10% subset in green. As is clearly evident from the �gure, we

are able to extract a sub-sample of O VI absorbers from the Eagle simulation that

reproduces well the selection bias towards high column densities in the data.



Chapter 6

IGM-galaxy clustering at

z < 1

6.1 Overview

In this chapter, we present new results on the auto- and cross-correlation func-

tions of galaxies and O VI absorbers in a ∼ 18 Gpc3 comoving volume at z < 1.

We use a sample of 51 296 galaxies and 140 O VI absorbers to measure two-point

correlation functions in the two dimensions transverse and orthogonal to the line-

of-sight ξ(r⊥, r‖). We furthermore infer the corresponding ‘real-space’ correlation

functions, ξ(r), by projecting ξ(r⊥, r‖) along r‖ , and assuming a power-law form,

ξ(r) = (r/r0)−γ. Comparing the results from the absorber-galaxy cross-correlation

function, ξag, the galaxy auto-correlation function, ξgg, and the absorber auto-

correlation function, ξaa, we constrain the statistical connection between galaxies

and themetal-enriched intergalacticmedium as a function of star-formation activ-

ity. We also compare these results to predictions from the Evolution and Assem-

bly of GaLaxies and their Environments (Eagle) cosmological hydrodynamical

simulation. Our results are consistent with the following conclusions: (i) O VI

absorbers show very little velocity dispersion with respect to galaxies on ∼ Mpc

scales, likely . 100 km s−1; (ii) O VI absorbers and galaxies may not linearly trace

the same underlying distribution of matter in general. In particular, the distri-

bution of O VI around galaxies could be more extended than the distribution

of galaxies around themselves; (iii) O VI absorbers are equally likely to inhabit

the same regions as star-forming galaxies as they are non star-forming galaxies;

and (iv) O VI absorbers are either not ubiquitous to galaxies, or their distribution

around them is patchy on scales & 100 kpc (or both), at least for the column den-

sities at which most are currently detected. We �nd a striking agreement between
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the observational results and those predicted from the Eagle simulation. Our re-

sults therefore suggest that cosmological hydrodynamical simulations are able to

make robust predictions for the distribution and dynamics of metal-enriched gas

around galaxies.

6.2 Introduction

The connection between the intergalactic medium (IGM) and galaxies is funda-

mental to our understanding of the formation and evolution of galaxies and the

large-scale structure of the Universe. This is because there exists a continuous in-

terplay between galaxies and the plasma around them, which fuels the formation

of stars and the hierarchical assembly of cosmic structures. Under a theoretical

Λ cold dark matter paradigm, the two main physical processes that drive this as-

sembly are: (i) the accretion of intergalactic matter in ‘hot’ and ‘cold’ modes (e.g.

Rees & Ostriker, 1977; White & Rees, 1978; White & Frenk, 1991; Kereš et al., 2005;

van deVoort et al., 2011); and (ii) winds emanating fromgalaxies generatedmostly

by supernova (SN) explosions and active galactic nuclei (AGN) (e.g. Baugh et al.,

2005; Veilleux et al., 2005; Bower et al., 2006; Lagos et al., 2008; Creasey et al., 2013).

Thesewinds are also thought to be responsible for enriching the IGMwithmetals.

Observational studies are producing results largely consistent with this picture,

but do not yet conclusively demonstrate it to be true.

To achieve a detailed understanding on the formation of galaxies and cosmic

structure, we must correctly describe the behaviour and evolution of the baryonic

matter in theUniverse. For thiswe require hydrodynamical simulations following

the evolution of baryons and dark matter together within a cosmological volume

(e.g. Crain et al., 2009; Davé et al., 2010; Vogelsberger et al., 2014; Schaye et al.,

2015). Large volumes are fundamentally important, since the simulations must

be able to reproduce the statistics of the present day galaxy population. Unfor-

tunately, due to the computational cost, there is a fundamental reliance on un-

certain ‘sub-grid’ prescriptions to capture the relevant physics on scales smaller

than the resolution limit (e.g. Schaye et al., 2010; Scannapieco et al., 2012, see also
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Chapter 1, Section 1.5, and Chapter 5, Section 5.2). To glean trust-worthy physical

insight from these simulations, we must therefore place tight constraints on the

sub-grid physics that must inevitably be included. Observations of the gaseous

environments around galaxies play a major role in this goal, as the simulations

are not typically calibrated to match these observations. They therefore provide

an important test that is independent of any ‘�ne tuning’.

Unfortunately, despite being the main reservoir of baryons at all epochs, the

extremely low density of the IGMmakes its observation both limited and di�cult.

The only viable method at present is through the analysis of absorption lines in

quasar (QSO) spectra (see Chapter 2). These lines appear due to the scattering

of ultraviolet (UV) photons by intervening gas along the line-of-sight (LOS) (see

Chapter 1, Section 1.4.2). The resulting characterisation of the IGM is therefore

limited to being one-dimensional. Nevertheless, by combining information from

multiple LOS, we are able to construct a statistical picture of the distribution and

dynamics of gas in the Universe.

Observations of the IGM at low redshifts (z < 1) have opened up dramatically

over the last few years with the advent of the Cosmic Origins Spectrograph (COS)

on the Hubble Space Telescope (HST) (Green et al., 2012, see also Chapter 2, Sec-

tion 2.2). With a sensitivity more than 10 times that of its predecessor, COS has

provided obervations of hundreds of QSOs in the far ultraviolet (FUV). Obser-

vations at these wavelengths are fundamentally important, as they allow for a

mapping of the H I andmetal content of the IGM to z = 0. The capabilities of COS

have been exploited extensively to probe both cool (T ∼ 104 K) gas, traced mostly

by the Lyα forest, and warmer (∼ 105 − 106 K) gas, traced by broad Lyα, O VI, and

Ne VIII absorption. These ions probably trace up to ∼ 60% of all the baryons, with

only ∼ 10% in the luminous constituents of the Universe (stars and galaxies), and

the rest in an even hotter plasma at T > 106 K.

Much of the work on the low redshift IGM in relation to galaxies to date has

taken a ‘galaxy-centric’ approach, with a primary focus on the properties of the

so-called circumgalactic medium (CGM). A number of successful programs have

been designed with this goal in mind, notably the ‘COS-Halos’ survey (Tumlin-
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son et al., 2013), and various programs by the COS guaranteed time observations

(GTO) team (e.g. Stocke et al., 2013; Keeney et al., 2013). These studies implicitly

assume a one-to-one correspondence between absorption systems and the closest

observed galaxy, which is problematic due to the incomplete sampling of galaxies

in any galaxy survey. Despite this shortcoming, it is clear from these studies that

there is a nearly ubiquitous presence of cool (T ≈ 104 − 105 K) metal-enriched

gas surrounding galaxies to impact parameters of ∼ 150 kpc (see e.g. Prochaska

et al., 2011b; Werk et al., 2013). Ionization models suggest this cool CGM, com-

binedwith an additional hotter component traced by O VI, can account for at least

half of the baryons expected from Big Bang nucleosynthesis that were originally

unaccounted for (Fukugita et al., 1998; McGaugh et al., 2010; Werk et al., 2014).

Nevertheless, 30 – 40% of the baryons may still be unaccounted for, residing in

the so-called warm-hot intergalactic medium (WHIM) predicted by cosmological

hydrodynamical simulations (e.g. Cen & Ostriker, 1999; Davé et al., 2001). An un-

ambiguous detection of the WHIM is needed if we are to validate the predictions

of these simulations.

In this chapter, we shall address the connection between the metal-enriched

IGM and galaxies at z < 1 via an analysis of their two-point cross- and auto-

correlation functions. We shall use the O VI λλ1031, 1037 doublet to trace the

metal-enriched components of the IGM, as these are themost commonly observed

metal transitions at low redshifts. They are also known to trace awide range of gas

phases and environments (see Chapter 2, Section 2.8 for a discussion). Using these

measurements, we shall investigate the distribution and dynamics of the metal-

enriched IGM around galaxies on both the CGM scale (. 300 kpc) and to much

larger scales (� 1Mpc). In addition, we shall critically compare our observational

measurements to predictions from the Eagle cosmological hydrodynamical sim-

ulation.

6.2.1 Outline

We shall make use of the sample of O VI absorbers described in Chapter 2, the

galaxy surveys described in Chapter 4, and the data sets drawn from the Eagle
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cosmological hydrodynamical simulation, described in Chapter 5, to examine the

two-point correlation functions of O VI absorbers and galaxies. We limit the QSO

sight-line �elds listed in Table 4.2 to just those where we found O VI absorption

in at least one QSO spectrum with con�dence label ‘a’ or ‘b’ (see Chapter 2, Sec-

tion 2.8). We also exclude O VI absorbers within 5000 km s−1 of the QSO redshift,

on the conservative assessment that these may be intrinsic to the QSO host galaxy.

Galaxies are limited to those with redshift con�dence labels ‘a’ or ‘b’ (see Sec-

tion 4.3). The resulting sample for this study then consists of 27 �elds and 32 QSO

sight-lines, which contain 51 296 galaxies and 140 O VI absorbers respectively.

Our full sample of galaxies and QSOs will be used to investigate the H I-galaxy

cross-correlation function in future work. This will serve as an update to the work

presented in Tejos et al. (2014).

In Section 6.3, we describe the mathematical formalisms used to measure the

O VI-galaxy cross-correlation and their respective auto-correlation functions. In

Section 6.4, we describe the process of generating random samples from our data.

In Section 6.5, we present our results, and in Section 6.6, we discuss the implica-

tions of our �ndings, and draw conclusions.

6.3 Correlation functions

To address the statistical connection between the metal-enriched IGM (traced by

O VI absorbers) and galaxies, we focus on a two-point correlation analysis. The

advantages of doing so are two-fold: (i) we do not rely on associating a particular

intergalactic absorber with a particular galaxy (or set of galaxies), which in many

instances is ambiguous; and (ii) we are robust to galaxy/absorber completeness

variations in our survey, sincewe aremeasuring a clustering excess as a function of

scale relative to a random expectation that takes into account the survey selection

function. For the latter, it is important to note that a de�cit of one population

relative to another at a given scale due to a selection biaswill bias themeasurement

at those scales if it is not properly modelled and corrected for.

The two-point correlation function, ξ(r), is de�ned as the probability excess of
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�nding two points separated by a distance r with respect to the random expec-

tation.1 We shall use the correlation function between pairs of galaxies, ξgg (the

galaxy auto-correlation function), between pairs of absorbers, ξaa (the absorber

auto-correlation function) and between absorber-galaxy pairs, ξag (the absorber-

galaxy cross-correlation function) to gain insights on the relationship between

them.

For each�eld, we assign a central coordinate in right-ascension anddeclination

(α0, δ0). Then, for every object in that �eld with a spectroscopic redshift z, we

calculate its position in Cartesian (x , y , z) coordinates as follows:

x ≡ r(z) cos(∆δ) cos(∆α),

y ≡ r(z) cos(∆δ) sin(∆α),

z ≡ r(z) sin(∆δ), (6.3.1)

where r(z) is the comoving distance, as de�ned in equation (1.2.21), ∆δ ≡ (δ − δ0)

and ∆α ≡ (α − α0) cos(δ0), both in radians. All of our �elds are away from the

celestial poles and have small angular coverage, making this transformation ac-

curate. The x coordinate is parallel to the LOS, while the y and z coordinates

are perpendicular (transverse) to it, so given that peculiar velocities contribute to

the redshifts of objects in addition to cosmological expansion, our coordinate sys-

tem is subject to distortions, often termed ‘redshift-space distortions’ (e.g. Kaiser,

1987). We therefore measure correlation functions parallel and transverse to the

LOS independently, i.e. we measure the two-dimensional two-point correlation

function ξ(r⊥, r‖), where for a given pair of objects denoted i and j, we have

r⊥ ≡
√
|yi − y j |2 + |zi − z j |2,

r‖ ≡ |xi − x j |. (6.3.2)

Deviations from an isotropic signal in these coordinates can then be attributed

to peculiar velocities along the LOS and/or large-scale bulk motions between ob-

1Assumes isotropy, since r in this case is a scalar quantity.
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jects in our sample. Nevertheless, it is also instructive to measure the correlation

function for three-dimensional separations in redshift space, ξ(s), where

s =
√

r2⊥ + r2
‖
. (6.3.3)

Weuse the Landy&Szalay (1993) (LS) estimator to calculate the auto-correlation

functions:

ξ(r⊥, r‖) =
DD/nDD − 2DR/nDR

RR/nRR
− 1, (6.3.4)

where DD, DR, and RR are the number of data-data, data-random and random-

random pairs respectively at a given r⊥ and r‖ (or at a given s for the redshift-

space correlation function), and the values of n correspond to their normalisation

factors:

nDD = N(N − 1)/2,

nDR = ϑN2,

nRR = ϑN(ϑN − 1)/2, (6.3.5)

where N is the total number of real objects, and ϑN is the total number of random

ones. We write the normalisation factors in this way to highlight that the ran-

dom samples always have an integer number ϑ times as many objects as the real

ones. For the absorber-galaxy cross-correlation function, we adopt the following,

generalised form of the LS estimator:

ξag(r⊥, r‖) =
DaDg/nDD

ag − DaRg/nDR
ag − RaDg/nRD

ag

RaRg/nRR
ag

− 1 (6.3.6)

(e.g. Adelberger et al., 2003; Tejos et al., 2014), where DaDg, DaRg, RaDg, and RaRg

are the data-data, data-random, random-data, and random-randomabsorber-galaxy
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pairs respectively, and their normalisation factors, n, are

nDD
ag = NaNg,

nDR
ag = ϑgNaNg,

nRD
ag = ϑaNaNg,

nRR
ag = ϑaϑgNaNg, (6.3.7)

where Na and Ng are the total number of absorbers and galaxies respectively, and

ϑaNa and ϑgNg are the total number of random absorbers and random galaxies

respectively. Landy & Szalay (1993) have shown that these estimators minimise

the variance in the correlation function, and so are preferable to other proposed

estimators.

Auseful quantity, whichwe also compute, is the projection of the two-dimensional

two-point correlation function along the LOS:

Ξ(r⊥) = 2
∫ ∞

0
dr‖ ξ(r⊥, r‖). (6.3.8)

In reality, one only integrates ξ(r⊥, r‖) up to a �nite r‖ where the correlation func-

tion ceases to bewell measured, or where it is consistent with zero. The advantage

of calculating this quantity is that it integrates over correlations smeared along the

LOSdue to peculiarmotions, and thus it is insensitive to redshift-space distortions

on small transverse scales where bulk �ows are not important (Davis & Peebles,

1983). We can therefore �nd a relation between the ‘real-space’ correlation func-

tion (free of distortions), ξ(r), and Ξ(r⊥) as:

Ξ(r⊥) = 2
∫ ∞

0
dr‖ ξ(r)

= 2
∫ ∞

r⊥
dr ξ(r) r√

r2 − r2⊥

, (6.3.9)
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which gives ξ(r) as the inverse Abel transform

ξ(r) = − 1
π

∫ ∞

r

dΞ(r⊥)
dr⊥

dr⊥√
r2⊥ − r2

. (6.3.10)

Davis & Peebles (1983) showed that when ξ(r) is described by a power law of the

form

ξ(r) =
( r

r0

)−γ
, (6.3.11)

equation (6.3.9) yields to

Ξ(r⊥) = A(r0, γ)r
1−γ
⊥ , (6.3.12)

where A(r0, γ) = rγ0 Γ(1/2)Γ[(γ−1)/2]/Γ(γ/2), and Γ is theGamma function. Fitting

a power law form to Ξ(r⊥) therefore allows determination of r0 and γ, and hence

ξ(r), for γ > 1. Here r0 is usually referred to as the ‘correlation length’, and γ is

the slope of the correlation function.

Given the volume-limited nature of any survey, all estimators are biased to-

wards correlation amplitudes that are lower than the real ones. This arises be-

cause themean density of objects is estimated from the survey itself, and is a well-

known bias commonly referred to as the ‘integral constraint’ (Groth & Peebles,

1977). Landy & Szalay (1993) showed that the ξ measured using equation (6.3.4)

or equation (6.3.6) and the real one, ξreal, are related as

1 + ξ = 1 + ξreal
1 + ξV

, (6.3.13)

where ξV is the (scalar) integral constraint, de�ned as

ξV ≡

∫
V
d2V G(r)ξreal(r) (6.3.14)

Here, G(r) is the normalised geometric window function, which gives the proba-

bility of having two volume elements separated by a distance r for a given survey
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geometry. For a large enough random catalogue, this is accurately approximated

as G(r) ≈ RR/nRR.

Although we cannot know ξreal a priori, we can still estimate the integral con-

straint by obtaining r0 and γ from a power-law �t to Ξ(r⊥), and taking the mean

of the random-random pair counts over all r‖ bins at each r⊥ bin to give a proxy

for ξV as

ξ̃V =
∑
r⊥

〈RR/nRR〉A(r0, γ)r
1−γ
⊥ . (6.3.15)

We can then make a (small) correction to our measured correlation function, ξ′,

to obtain ξ as follows:

ξ = ξ′ + ξ̃V (1 + ξ′). (6.3.16)

All of the correlation function measurements that follow have this correction ap-

plied.

To interpret our correlation functionmeasurements, we followAdelberger et al.

(2003) and Tejos et al. (2014) in using the Cauchy-Schwarz inequality:

ξ2ag ≤ ξggξaa. (6.3.17)

The equality can only hold at any given scale when the density �uctuations that

give rise to absorbers and galaxies are linearly dependent. In other words, both

populations must trace the same underlying distribution of matter with a linear

bias (independent of the scale) to achieve ξ2ag = ξggξaa in general.

We estimate the uncertainty in our correlation function measurements using

the bootstrap method, which in our experience provides the most conservative

measure of the uncertainty (see Tejos et al., 2014, for a discussion). We do this by

creating Nbs = 1000 sets of 27 �elds, randomly chosen (with replacement) from
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our set of 27 �elds, and compute the uncertainty as

∆2(ξ) = 1
Nbs

Nbs∑
i

(ξi − ξ̄)2, (6.3.18)

where ξi is the correlation function measured from the ith random set of �elds,

and ξ̄ is the mean of these measurements. Performing bootstrap realisations over

�elds ensures that we capture the sample variance, as well as the statistical uncer-

tainty in the measurement.

The bootstrap uncertainty estimation is clearly appropriate for our observa-

tional sample, for which we have a large number of independent �elds, but is not

so easily applied to the simulated sample we have assembled, which is drawn

from a single cubic volume, 100 comoving Mpc on a side (see Chapter 5 for de-

tails). To apply this uncertainty estimator, we would have to break the simulation

down into sub-volumes, which limits the scales on which we can measure the

correlation functions. For the simulated samples, we therefore quantify the statis-

tical uncertainty on the measurement via the approximate estimator presented in

Landy & Szalay (1993):

∆2LS(ξ) ≈
(1 + ξ)2

nDD(RR/nRR)
≈

(1 + ξ)3
DD

. (6.3.19)

Note that this greater than the commonly used Poissonian estimator,∆2DD(ξ) = (1+

ξ)/DD, by a factor of ∼ (1+ ξ)2, since it takes into account correlations introduced

by non-independent cross-pairs. In reality, we are able to achieve negligibly small

statistical uncertainties on themeasurements from the simulated data, butwe note

that the sample variance (whichmay bemuch larger than the statistical one) is not

taken into account.

6.4 Random catalogues

As is clear from the previous section, the construction of random samples is a

crucial part of any correlation function analysis. These random samples need to
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capture the selection functions in the data, so as not to bias the measurement. We

present in the following sections a detailed description of the method for gener-

ating random samples of observed and simulated O VI absorbers and galaxies.

6.4.1 Random galaxy catalogues

For our observational sample, we create random galaxies for each �eld and sur-

vey independently. This means that individual �elds containing galaxies from

multiple surveys have separate random catalogues constructed for each of those

surveys that are then combined at the end to form the random sample for that

�eld. We do this since the di�erent surveys in our sample have di�erent selec-

tion functions (see Chapter 4, Table 4.1), and it is easier to model these separately,

rather than attempting to model the combined selection functions. We note that

the T14-Q0107 survey listed in Table 4.1 has a complex selection function, since it

combines 4 sub-surveys constructed with di�erent instruments, each with their

own speci�c selection biases. Ideally, wewould further split this survey down into

its constituent parts, but the number of galaxies attributable to each of the di�er-

ent instruments is too small to reliably model their individual selection functions.

Our process for creating random galaxy catalogues for the observational sam-

ple expands upon that described in Tejos et al. (2014), and works as follows. For a

given galaxy, in a given �eld, and from a given survey, we create ϑg = 10 random

ones, varying the redshift of the galaxy, but preserving its position on the sky and

all of its other properties. The random redshifts are drawn from a probability den-

sity function that ismodelled on the observed redshift histogram for galaxieswith

matching properties in the survey from which the real redshift was obtained. We

take into account the observed magnitude of the galaxy (in the broadband �lter

that de�nes the magnitude limit for the survey), and whether it is a star forming

galaxy, a non star-forming galaxy, or neither of these. For example, if a galaxy

in a particular �eld is drawn from the Sloan Digital Sky Survey (SDSS), and is a

star-forming galaxy with an r-bandmagnitude r = 16, we randomly draw ϑg = 10

redshifts from a probability density function that is modelled on the redshift his-

togram in SDSS for star-forming galaxies with that magnitude. In this way, our
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random samples re�ect the survey sensitivity functions for galaxies of a given

magnitude and spectral type, and also the evolution in the star-forming fraction.

For galaxies that have no classi�cation of spectral type, or are classi�ed as AGN,

we use the redshift histogram for all galaxies with the same magnitude as that

galaxy. Our approach guarantees that we take into account the survey incom-

pleteness in the construction of the random catalogues.

The probability density distributions described above are constructed in the

following way. First, we optimally bin redshift distributions using the algorithm

presented by Knuth (2006). This is a maximum likelihood method for determin-

ing the optimum number of bins needed to both capture the dominant features in

the data and minimise the number of random sampling �uctuations. We create

histograms in this way for star-forming and non star-forming galaxies separately,

in magnitude bins of size 1, shifted by 0.5 magnitudes, over the range 13 to 25.

We iteratively increase the magnitude bin sizes at the bright and faint ends of

the magnitude distributions to ensure that there are a minimum of 20 galaxies in

each redshift histogram. We then smooth the histogramswith aGaussian smooth-

ing kernel having a standard deviation equal to the bin size, to remove spikes in

the redshift distributions attributable to large-scale structure (galaxy clusters, �la-

ments, sheets and voids). The probability density distributions are then obtained

by interpolating a cubic spline over the smoothed histograms, and by normalising

to the area underneath the resulting curve.

In Figure 6.1, we plot a histogram showing the redshift distribution of our total

galaxy sample in blue, and the random sample divided by ϑg in green. The green

histogram shows a smooth distribution, re�ective of the overall selection function

for our sample. Spikes are apparent in the real histogram attributable to large-

scale structure. The smooth redshift distribution apparent in our random sample,

following the overall shape of the real histogram, suggests that our approach is

robust.

Random galaxies for our sample extracted from Eagle simulation volume are

distributed uniformly for each of the redshift snapshots. We created ϑg = 10 times

as many random galaxies as there are real ones.
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Figure 6.1: The real galaxy redshift distribution for our total sample (blue), and the ran-
dom galaxy redshift distribution divided by ϑg (green). The smooth shape of the random
distribution, following the broad shape of the real distribution, suggests that our approach
to generating random catalogues of galaxies is robust.

6.4.2 Random absorber catalogues

For our observed O VI sample, which derives entirely from COS FUV spectra,

we created ϑa = 1000 random absorbers for every real one, varying the redshift,

but preserving all other parameters. In this way, we randomise absorbers only

along the QSO sight-lines, not transverse to them, so as to preserve the geome-

try of our survey. Random redshifts were chosen on the basis of an equivalent

width threshold. For every real O VI absorber with Doppler broadening param-

eter b, and equivalent width W , we calculated the minimum equivalent width,

W3σ, at which the weaker transition in the doublet (O VI λ1037) for that absorber

could still be observed above the required 3σ signi�cance threshold as a function

of wavelength in the spectrum from which that absorber was obtained. The sig-

ni�cance of absorption features in COS spectra cannot be estimated in the usual

way due to the non-Poissonian noise properties of the instrument (Keeney et al.,
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Figure 6.2: The real O vi redshift distribution for our total sample (blue), and the random
O vi redshift distribution divided by ϑa (green). The random redshift distribution follows
the same selection bias as the data, which suggests our procedure for generating random
absorber catalogues is robust.

2012, see also Chapter 2, Section 2.2). Nevertheless, Keeney et al. (2012) provide

a formalism for doing this, which we adopt (see their equations (4)–(5), (7) and

(9)–(10)). We then transformed wavelength coordinates to redshift coordinates to

obtain W3σ as a function of z, and distributed random absorbers in z where the

condition W > W3σ(z) was satis�ed. We enforced a maximum redshift equivalent

to a −5000 km s−1 o�set from the QSO redshift, as was done in the data.

In Figure 6.2, we show the redshift distribution of O VI absorbers for our full

sample in blue in comparison to the random sample divided by ϑa in green. A

larger number of O VI absorbers are found at lower redshifts, where they are

detected in the wavelength range covered by the COS G130M grating (see Chap-

ter 2, Section 2.2 for details). COS has greater sensitivity over this wavelength

range, and the spectra from this grating therefore typically have a higher signal-

to-noise ratio (SNR). The shape of the random distribution follows this closely,
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which indicates our procedure is robust.

For our simulated set of O VI absorbers extracted from the Eagle simulation,

we randomise absorber velocities uniformly along the sight-lines fromwhich they

are extracted. We created ϑa = 10 times as many random absorbers as there are

real ones.

6.5 Results

In this section, we present the results of our two-point correlation analysis, follow-

ing the mathematical formalism outlined in Section 6.3. The results that follow

were computed using the random samples described in the previous section. We

present results for our full sample of O VI absorbers and galaxies, and also for the

subsamples containing only star-forming and non star-forming galaxies.

6.5.1 2D two-point correlation functions

In Figure 6.3 we show the two-dimensional correlation functions (top panels) and

their uncertainties (bottompanels) for our full sample ofO VI absorbers and galax-

ies. The results are shown in bins of 1 Mpc (comoving) and are derived from pair

counts smoothed with a Gaussian kernel having a standard deviation of 1 Mpc.

We justify the use of a smoothing kernel by assuming that the underlying matter

distribution that gives rise to O VI absorbers and galaxies is also smooth. This

approach is desirable, as it strikes a compromise between lowering the shot noise

in the measurement, whilst keeping a relatively small bin size. From left to right,

the panels show the O VI-galaxy cross-correlation function (ξag), the galaxy auto-

correlation function (ξgg), the O VI auto-correlation function (ξaa), and the ratio

ξ2ag/ξggξaa.

On inspection of the �gure, we see that on small scales, the amplitudes of ξag,

ξgg, and ξaa are highly comparable within the uncertainties. Note that we are un-

able to probe ξaa on transverse scales > 2 Mpc with our data. This leads to the

ratio ξ2ag/ξggξaa being close to 1 on scales . 1 Mpc, which suggests that O VI

absorbers and galaxies are in close correspondence with one another on these



6.5. Results 164

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

−
2

−
1

01 −
2

−
1

01

−
2

−
1

01 −
2

−
1

01

−
2

−
1

01 −
2

−
1

01

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

lo
g(

ξ a
g
)

lo
g(

∆
ξ a

g
)

lo
g(

ξ g
g
)

lo
g(

∆
ξ g

g
)

lo
g(

ξ a
a)

lo
g(

∆
ξ a

a)

ξ
2 ag

/
ξ g

g
ξ a

a

∆
(ξ

2 ag
/

ξ g
g
ξ a

a)

Tr
an

sv
er

se
se

pa
ra

ti
on

,r
⊥

(M
pc

)

LOSseparation,r‖(Mpc)

Fu
ll

sa
m

pl
e

F
i
g
u
r
e
6
.
3
:
Tw

o-
di
m
en

si
on

al
co
rr
el
at
io
n
fu
nc

tio
ns

fo
r
ga

la
xi
es

an
d
O

vi
ab

so
rp
tio

n
sy
st
em

s
(to

p
pa

ne
ls
)a

nd
th
ei
r
re
sp

ec
tiv

e
un

ce
rt
ai
nt
ie
s

(b
ot
to
m

pa
ne

ls
),
as

a
fu
nc

tio
n
of

se
pa

ra
tio

n
pa

ra
lle

l(
r ‖
)a

nd
pe

rp
en

di
cu

la
r(

r ⊥
)t
o
th
e
LO

S.
Fr
om

le
ft
to

rig
ht
:t
he

ga
la
xy

-O
vi

cr
os
sc

or
re
la
tio

n
fu
nc

tio
n
(ξ

ag
),
th
e
ga

la
xy

au
to
-c
or
re
la
tio

n
fu
nc

tio
n
(ξ

gg
),
th
e
O

vi
au

to
-c
or
re
la
tio

n
fu
nc

tio
n
(ξ

aa
),
an

d
th
e
ra
tio

ξ
2 ag
/ξ

gg
ξ
aa
.N

ot
e
th
at

ou
rd

at
a

ar
e
no

ts
ui
ta
bl
e
fo
rm

ea
su

rin
g
ξ
aa

an
d
ξ
2 ag
/ξ

gg
ξ
aa

on
tr
an

sv
er
se

sc
al
es
>
2
M
pc

.T
he

co
rr
el
at
io
n
fu
nc

tio
ns

ar
e
ca
lc
ul
at
ed

us
in
g
a
bi
n
si
ze

of
1

M
pc

,a
nd

th
e
pa

ir-
co
un

ts
ar
e
sm

oo
th
ed

w
ith

a
G
au

ss
ia
n
ke

rn
el

of
st
an

da
rd

de
vi
at
io
n
1
M
pc

in
bo

th
di
re
ct
io
ns

.



6.5. Results 165

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

0
2

4
6

8
10

05101520

−
2

−
1

01 −
2

−
1

01

−
2

−
1

01 −
2

−
1

01

−
2

−
1

01 −
2

−
1

01

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

lo
g(

ξ a
g
)

lo
g(

∆
ξ a

g
)

lo
g(

ξ g
g
)

lo
g(

∆
ξ g

g
)

lo
g(

ξ a
a)

lo
g(

∆
ξ a

a)

ξ
2 ag

/
ξ g

g
ξ a

a

∆
(ξ

2 ag
/

ξ g
g
ξ a

a)

Tr
an

sv
er

se
se

pa
ra

ti
on

,r
⊥

(M
pc

)

LOSseparation,r‖(Mpc)

Fu
ll

sa
m

pl
e

-E
A

G
LE

F
i
g
u
r
e
6
.
4
:
Sa

m
e
as

Fi
gu

re
6.
3,
bu

tf
or

th
e
si
m
ul
at
ed

sa
m
pl
es

ex
tr
ac
te
d
fr
om

th
e

Ea
gl

es
im

ul
at
io
n.

N
ot
e
th
at

fo
rt
he

si
m
ul
at
ed

sa
m
pl
es

w
e
do

no
ta

pp
ly

a
G
au

ss
ia
n
sm

oo
th
in
g
ke

rn
el
.



6.5. Results 166

scales. Our data do not have su�cient statistical power to quantify the presence

of anisotropies in ξag or ξaa, but for ξag we can nevertheless examine the ‘isocor-

relation’ contours shown in these plots. We see a reasonably isotropic signal in

ξag, at least on the small scales where our measurement is signi�cant, which indi-

cates that O VI absorbers show very little velocity dispersion with respect to the

galaxies. There is a hint of some compression in the signal along the LOS on large

scales, indicative of large-scale bulk motions (e.g. Kaiser, 1987), but not at a sta-

tistically signi�cant level. Deviations from an isotropic signal are present in ξgg,

whichwe expect for a galaxy sample of the size presented here, where a signi�cant

fraction of the galaxies reside in groups and clusters, with velocity dispersions of

several 100 km s−1. We note that the deviation from isotropy in ξgg complicates

the comparison of clustering amplitudes between ξag and ξgg (and our inferences

based on ξ2ag/ξggξaa above), since the e�ect of the redshift-space distortions is to

‘smear’ the total correlation amplitude at a given r⊥ over a range in r‖ . The total

correlation amplitudes at a given r⊥ are therefore not necessarily as comparable

as they appear in Figure 6.3. We investigate this further in the next section.

In Figure 6.4 we present the same calculation illustrated in Figure 6.3, but this

time on the samples extracted from the Eagle simulation volume. For this, and all

the comparisons that follow, we present results from the z = 0.271Eagle snapshot,

which is roughly the median redshift of our O VI sample. Note that for the Eagle

calculations we don’t apply a Gaussian smoothing kernel. Much like in the real

case, the amplitudes of ξag, ξgg, and ξaa are all very similar at small scales within

the uncertainties. We note that the correlation amplitudes in Eagle are somewhat

higher than in the data at these scales, although the Gaussian smoothing kernel

employed in the latter does act to lower the correlation amplitude at small sepa-

rations where they are intrinsically peaked. Inspection of an unsmoothed version

of Figure 6.3 reveals that the correlation amplitudes on the smallest scales are in

fact comparable to those in Eagle within the uncertainties. Also much like in the

data, there is very little anisotropy on small scales in ξag. Even without model-

�tting, it is clear that the ‘anisotropy ratio’ along the LOS on < 4 Mpc scales is

no more than 2:1, which limits the velocity dispersion of O VI around galaxies
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to . 100 km s−1. A highly isotropic signal is seen in ξaa on < 4 Mpc scales as

well, which suggests that the O VI absorbers are virtually static with respect to

one another on these scales. Intruigingly, the hint of a compression along the LOS

in ξag, seen in the real data on large scales, appears in the simulated sample with

high signi�cance. The same is seen in ξaa. This then points to towards a picture in

which O VI absorbers show bulk motions towards both galaxies and themselves

on ∼ 10 Mpc scales. Given the extremely low signi�cance of this result in the real

data, we caution that this �nding is far from conclusive. We note that there are

some di�erences in ξgg between the data and the simulation. In particular, there

is a larger anisotropy in the signal along the LOS in Eagle compared to the data.

However, the galaxy auto-correlation functions are not the primary focus of this

study, and we shall therefore leave a more detailed comparison to future work.

Next we examine the 2D two-point correlation functions for O VI absorbers

and star-forming galaxies only. This calculation for the real data is shown in Fig-

ure 6.5. Again, we see that ξag, ξgg, and ξaa are all highly comparable within the

uncertainties. This leads to a ratio ξ2ag/ξggξaa that is highly consistent with 1 on

small scales. We see no signi�cant anisotropies in ξag either, which suggests that

on small scales, O VI absorbers and star-forming galaxies trace the same under-

lying distribution of matter, and show very little velocity dispersion with respect

to one another (certainly . 100 km s−1). Redshift-space distortions in ξgg are far

less evident for star-forming galaxies, and are qualitatively similar to those in ξag
and ξaa, which makes our �ndings based on ξ2ag/ξggξaa somewhat more robust

than those from the full sample.

In Figure 6.6 we show the same calculation in the Eagle simulation, again with

no Gaussian smoothing kernel applied. In agreement with the real data, ξag,

ξgg, and ξaa are all consistent within the uncertainties, and the ratio ξ2ag/ξggξaa
is highly consistent with 1. We see the same compression in ξag and ξaa along the

line of sight on large scales as was seen for the full sample. However, this is not

detected in the real data with any signi�cance. A small anisotropy is seen in ξag,

which amounts to a velocity dispersion between O VI absorbers and star-forming

galaxies of no more than ∼ 100 km s−1.
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Finally, we examine the 2D two-point correlation functions for O VI absorbers

and non star-forming galaxies only. We show this calculation for the real data

in Figure 6.7. Now we see that the correlation amplitudes of ξag and ξaa are

both comparable within the uncertainties, but the amplitude of ξgg is signi�cantly

higher than both of these on small scales. As a result, we see the ratio ξ2ag/ξggξaa
is nearly consistent with zero. This suggests that O VI absorbers and non star-

forming galaxies trace the underlying distribution of matter di�erently, although

in this casewenote that the interpretation of ξ2ag/ξggξaa is complicated by redshift-

space distortions that are highly-prominent in ξgg. Again, we see no evidence for

any anisotropy in ξag along the LOS, which implies that O VI absorbers show very

little velocity dispersion with respect to non star-forming galaxies.

The corresponding calculation for the Eagle simulation is shown in Figure 6.8.

We see a very similar situation to the data, whereby ξag and ξaa are both similar

within the uncertainties, but the amplitude of ξgg is signi�cantly higher than both

of these. This leads to a ratio ξ2ag/ξggξaa that is nearly zero on the smallest scales.

However, we note that in both the simulation and the data, the clustering ampli-

tudes of O VI absorbers around non star-forming galaxies are highly comparable

to those around star-forming galaxies. This suggests that we should be equally as

likely to �nd a O VI absorber close to a non-star forming galaxy as we are to �nd

one close to a star-forming galaxy. As is consistently seen in the simulation, there

does exist a small anisotropy in ξag along the LOS, but only at the level whereby

the velocity dispersion between O VI absorbers and non star-forming galaxies is

. 100 km s−1, which is broadly consistent with the real data within the uncertain-

ties.

6.5.2 Correlation functions projected along the line-of-sight

Comparisons on the clustering amplitudes between ξag, ξgg, and ξaa for the 2D

two-point correlation functions in the previous section are complicated by the

redshift-space distortions that lead to anisotropies in the signal. To better-compare

the clustering amplitudes as a function of scale, we now examine the correlation

functions that are projected along the LOS, as in equation (6.3.9).
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Figure 6.9: Correlation functions projected along the line-of-sight and divided by r⊥,
Ξ(r⊥)/r⊥, for our full sample ofO vi absorbers and galaxies. Ourmeasurement for the pro-
jected O vi-galaxy cross-correlation function, Ξag, is shown by the blue data points. Green
data points show themeasurement for the projected galaxy auto-correlation function,Ξgg,
and red data points show the measurement for the projected O vi auto-correlation func-
tion, Ξaa. The lines correspond to the best power-law �ts (equation (6.3.12)) to Ξag, Ξgg,
and Ξaa in blue, green, and red respectively. Note that the data points and their uncer-
tainties are correlated. Uncertainties smaller than the symbols are not shown.

In Figure 6.9, we show the correlation functions of O VI absorbers and galaxies

projected along the LOS anddivided by r⊥,Ξ(r⊥)/r⊥, for our full sample. We show

the projected O VI-galaxy cross-correlation function, Ξag, in blue data points, the

projected galaxy auto-correlation function, Ξgg, in green data points, and the pro-

jected O VI auto-correlation function, Ξaa, in red data points. For Ξgg we integrate

to r‖ = 45Mpc, and for Ξag and Ξaa we integrate to r‖ = 13Mpc. These integration

limits are the minimum for which the data points had converged to stable values,

indicating that we are fully integrating the reliablymeasured signal, andminimis-

ing the addition of shot noise. We note that the data points are correlated, and

that uncertainties smaller than the data points are not shown. The uncertainties

are bootstrap uncertainties that include both the variance and covariance in the
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measurement. The lines show the best-�tting power-law slopes to the data (equa-

tion (6.3.12)) using the same colour scheme. We only �t these power-law slopes

to the data at r⊥ < 10 Mpc, as deviations from a power-law are typically seen at

r⊥ > 10 Mpc. We do not attempt to �t a power-law slope to Ξaa, for which the

data show very low statistical signi�cance, and are likely not robust. It is impor-

tant to note that the measurement of ξaa in the 2D two-point correlation function

is dominated by O VI pairs along the LOS. These pairs do not contribute to the

measurement in Figure 6.9, which instead comes from transverse pairs in the very

few closely-separated QSO sight-line pairs (and triples) in our sample.

Firstly, we note that a power-law is a good description of the data for Ξag and

Ξgg at r⊥ < 10Mpc. We �nd that ξag(r) has a correlation length of rag0 = 3.35±0.63,

and a slope of γag = 1.35 ± 0.31, whereas ξgg(r) has a correlation length of rgg0 =

7.74±0.36, and a slope of γgg = 1.51±0.13. We therefore �nd that the clustering of

O VI absorbers around galaxies is less than the clustering of galaxies with them-

selves. The slope of Ξag is apparently shallower than that of Ξgg, although they

are consistent with one another within the uncertainties. The amplitude of Ξaa,

and the apparent slope, is comparable with bothΞag andΞgg. The di�ering slopes

between Ξag and Ξgg, combined with the di�erence in their correlation lengths,

suggests that O VI absorbers and galaxiesmay not linearly trace the same underly-

ing distribution of matter in general, however this is by no means de�nitive given

the uncertainties on the data, in particular for Ξaa.

As we did for the 2D two-point correlation functions, we now examine the cor-

relation functions with star-forming and non star-forming galaxies separately. We

show the projected correlation functions with star-forming galaxies only in Fig-

ure 6.10. Here we �nd that ξag(r) has a correlation length of rag0 = 1.55± 0.63, and

a slope of γag = 1.14± 0.43, whereas ξgg(r) has a correlation length of rgg0 = 5.28±

0.20, and a slope of γgg = 1.44±0.08. The clustering of O VI absorbers around star-

forming galaxies is therefore still less than the clustering of star-forming galaxies

with themselves, and there remains marginal evidence for a di�erence in slope

between Ξag and Ξgg, although not at a statistically signi�cant level. We neverthe-

less still �nd indications that O VI absorbers and star-forming galaxies may not
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Figure 6.10: Same as Figure 6.9, but for star-forming galaxies only.

linearly trace the same underlying distribution of matter, similar to the full sam-

ple, even though the clustering amplitudes in the cross-correlation function do

indicate that O VI absorbers have a strong association with star-forming galaxies

in general.

Finally, in Figure 6.11, we show the projected correlation functions with non

star-forming galaxies only. Here we �nd that ξag(r) has a correlation length of

rag0 = 2.63± 1.87, and a slope of γag = 1.25± 0.71, whereas ξgg(r) has a correlation

length of rgg0 = 9.61 ± 0.47, and a slope of γgg = 1.63 ± 0.15. The slopes of the

correlation functions are still consistent with each other within the uncertainties,

but there are nevertheless indications that the slope in Ξgg is steeper than that of

Ξag. This supports indications from Figure 6.7 that O VI absorbers and non star-

forming galaxies do not linearly trace the same underlying distribution of matter.

It is well known that non star-forming galaxies are more biased tracers of matter

than are non star-forming galaxies, as is clearly seen from the di�erence in the

correlation lengths and slopes of their auto-correlation functions. However, the
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Figure 6.11: Same as Figure 6.9, but for non star-forming galaxies only.

striking result is the similarity in slopes and amplitudes of the cross-correlation

functions of O VI absorbers with star-forming and non star-forming galaxies. This

suggests that O VI absorbers are equally likely to be found in the same locations

as star-forming galaxies as they are to be found in the same locations as non star-

forming galaxies, at least over the scales probed by our data.

We now compare the correlation functions projected along the LOS to predic-

tions from the Eagle simulation. In Figure 6.12, we show the samemeasurements

as in Figure 6.9 for our full sample, with the predictions from Eagle over the red-

shift range 0.1 < z < 0.7 shown as shaded regions with the same colour scheme as

the data. We see that the agreement inΞag between the real data and that from the

simulation is excellent. The simulation also produces predictions for Ξaa that are

entirely consistent with the data. We �nd a reasonable agreement in Ξgg at <Mpc

scales, but this agreement diverges at larger scales due to a discernable di�erence

in the slopes of the galaxy auto-correlation functions. We shall refrain from ex-

amining in detail the comparison between the galaxy auto-correlation functions,
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Figure 6.12: Same as Figure 6.9, but now comparing the data to the predicted slopes and
amplitudes of the correlation functions from the Eagle simulation. The shaded regions
represent the predictions over the redshift range 0.1 < z < 0.7, and adopt the same colour
scheme as the data.

and leave this to future work. The relative slopes between Ξgg and Ξag predicted

by the Eagle simulation reveal the same trend hinted at in the data, whereby the

slope of Ξag is shallower than that of Ξgg. It can also be seen that the slope of

Ξaa is shallower still. This indicates that O VI absorbers and galaxies in the Eagle

simulation do not linearly trace the same underlying distribution of matter.

In Figure 6.13, we show the same comparison but for star-forming galaxies

only. There is again a good agreement between the predicted and measured Ξag
within the uncertainties, albeit with a small discernable di�erence in the slopes

of the correlation functions. An excellent agreement is seen in Figure 6.14 for

the slope and amplitude of cross-correlation function of O VI absorbers with non

star-forming galaxies. We also see that the amplitudes in Ξag are in general lower

than those in Ξgg, and that this is more pronounced for non star-forming galaxies,

for which Ξgg is a more biased tracer of the underlying distribution of matter.
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Figure 6.13: Same as Figure 6.12, but for star-forming galaxies only.

Furthermore, the predicted relative slopes in Ξag and Ξgg show the same trends

hinted at in the data, whereby Ξag is shallower than Ξgg for both star-forming and

non star-forming galaxies, with this e�ect being more pronounced in the case of

the latter. The slope in Ξaa is also consistently shallower than both of these. We

can therefore infer from the simulation that O VI absorbers and galaxies do not

linearly trace the same underlying distribution of matter, and that this is most

markedly the case for non star-forming galaxies. In addition, the O VI absorbers

are equally likely to reside close to star-forming galaxies as they are to reside close

to non star-forming galaxies. These inferences are all entirely consistentwith those

that can be drawn from the data.

6.6 Discussion and conclusions

In light of these new results on the cross-correlation functions of O VI absorbers

and galaxies, we now explore some possible interpretations, and make compar-
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Figure 6.14: Same as Figure 6.12, but for non star-forming galaxies only.

isons to similar studies in the literature.

6.6.1 Comparisons with previous results

Chen & Mulchaey (2009) performed a very similar study to the one presented

here, in which they measured the two-point cross-correlation function of O VI

absorbers and galaxies projected along the LOS at z < 1. We note that all of

the galaxy data used in that study form a small subset of the galaxy data used

here, whilst their absorption-line data from the Space Telescope Imaging Spec-

trograph (STIS) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) have been

updated to that available from COS. We �nd that our results contrast with these

earlier results in two primary aspects: (i) Chen & Mulchaey (2009) �nd that the

clustering amplitudes of O VI absorbers around star-forming galaxies are com-

parable to those of star-forming galaxies with themselves, whilst we �nd that in

general they are smaller; and (ii) Chen &Mulchaey (2009) �nd that the clustering

amplitudes of O VI absorbers around star-forming galaxies are weaker than those
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around non star-forming galaxies, whilst we �nd that they are comparable. To ex-

plain these di�erences it is important to note the sample sizes. Chen & Mulchaey

(2009) used a sample of 13 O VI absorbers and 670 galaxies, which is substan-

tially smaller than the sample assembled for this study. The quoted uncertainties

on their measurements are also Poissonian, which underestimates the true un-

certainties (see Section 6.3). We therefore �nd that our measurements are almost

certainly more statistically robust, and that with more conservative estimates on

the uncertainties, the results between these studies may in fact be consistent.

Turner et al. (2014) performed a study that examined the distribution of O VI,

H I, and othermetal ions around star-forming galaxies at z ≈ 2.4. Their study uses

a di�erent technique to ours, in which they measure the median optical depth of

O VI in spectral pixels binned in terms of their transverse andLOS separation from

galaxies. Their study is optimised to investigate the association between absorbers

and high-redshift galaxies on small (< Mpc) scales, whereas ours is optimised to

investigate the association between absorbers and galaxies at z < 1 on predomi-

nantly large scales, spanning the range 0.1 . r⊥ . 10 Mpc. Given the di�erence

in approach between these studies, our comparison is restricted to being purely

qualitative. Nevertheless, we note that the distribution of O VI around galaxies

presented in Turner et al. (2014) reveals stronger anisotropies along the LOS than

are evident in our study. It is important to note that these anisotropies are revealed

on scales of a few hundred (proper) kpc, which are substantially smaller than the

∼Mpc scales (comoving) that are considered here. It will be interesting to investi-

gate the evolution in the distribution and dynamics of O VI around galaxies from

high redshifts, before the peak in star-formation activity at z ∼ 2, to the present

day, but there are no straight-forward comparisons at present.

Prochaska et al. (2011b) investigated the incidence of H I and O VI absorbers

around galaxies at z . 0.5. Note that we make use of a subset of their galaxy red-

shift data in this study (Prochaska et al., 2011a). By examining the incidence rate

of O VI absorbers as a function of galaxy impact parameter, they infer that the cov-

ering fraction of O VI around sub-L? galaxies is nearly unity to impact parameters

of 300 kpc. Comparing to the total incidence rate per absorption path length, they
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conclude that themajority ofO VI absorbers to an equivalentwidth limitW > 0.03

Å in O VI λ1031 arise within 300 kpc of sub-L? galaxies in the ‘extended CGM’,

and that they rarely originate in the WHIM predicted by cosmological hydrody-

namical simulations (e.g. Cen & Ostriker, 1999; Davé et al., 2001). The strategy

of Prochaska et al. (2011b) is (i) to identify galaxies at small (< 300 kpc) impact

parameters from the QSO sight-lines in their sample observed with the Goddard

High Resolution Spectrograph (GHRS), STIS, and FUSE, then to search for O VI

absorbers close to those sight-lines; and (ii) to search for galaxies close to particu-

lar O VI absorbers. In the latter, they �nd that 5 out of the 30 O VI absorbers do not

have a galaxy within 1 Mpc, although this result is sensitive to the completeness

limit of the galaxy survey, which may miss low luminosity galaxies. Our results

are robust to galaxy completeness, and indicate that the clustering amplitudes of

O VI absorbers with galaxies are weaker than those of galaxies with themselves.

This may imply that not all O VI absorbers can be found close to galaxies, or that

covering factors of O VI around galaxies on the scales probed (& 100 kpc) are less

than 100% (or both). The conclusions of Prochaska et al. (2011b) are based on as-

sumed covering factors of O VI around sub-L? galaxies of close to 100% to 300 kpc,

which highlights a potential source of tension with our results. Similar studies to

Prochaska et al. (2011b), e.g. Tumlinson & Fang (2005) and Stocke et al. (2013),

suggest that the covering fractions are signi�cantly below 100%. We suggest that

studies such as thesemay need to probe galaxies to fainter luminosities in order to

reconcile di�ering results that may be biased by the galaxy survey completeness

limits.

Tumlinson et al. (2011) performed another study on the incidence of O VI

absorbers around galaxies, and found a dichotomy between the incidence rate

around star-forming galaxies and non star-forming galaxies. In particular, they

�nd that O VI absorbers are nearly ubiquitous within 150 kpc of star-forming

galaxies, but only a small fraction of non-star forming galaxies showO VI absorp-

tion within this distance. This result contrasts strongly with ours, in which we

�nd that the presence of O VI around star-forming galaxies is equally as likely

as it is around non star-forming galaxies. However, it is important to note that
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our study is optimised for scales & 100 kpc away from galaxies, and so if this di-

chotomy only exists on the smallest scales, we would not have been able to detect

it.

6.6.2 Interpretation of the results

The principal �ndings of this study are as follows:

1. O VI absorbers show little velocity dispersion (. 100 km s−1) with respect

to galaxies on ∼Mpc scales.

2. The correlation length and (potentially) the slope of the O VI-galaxy cross-

correlation function is weaker than that of the galaxy auto-correlation func-

tion in general, which indicates that O VI absorbers and galaxies may not

linearly trace the same underlying distribution of matter.

3. On scales & 100 kpc, O VI absorbers are equally as likely to reside in the same

regions as star-forming galaxies as they are to reside in the same regions as

non star-forming galaxies.

Given that the enrichment of the IGM is likely attributable to galaxy feedback, it

is convenient to think of these results from a galaxy-centric viewpoint, as follows.

In item 2 from the list above, the lower correlation amplitudes in the O VI-

galaxy cross-correlation functions compared to the galaxy auto-correlation func-

tions imply that either O VI absorbers are not ubiquitous to galaxies, or that their

distribution around them is patchy, i.e. the covering factor of O VI around galaxies

is substantially less than 100%, as was suggested in the previous section. In real-

ity, both of these inferences could be true. This may be a function of O VI column

density and/or Doppler broadening parameter, although we have not attempted

to split the O VI absorber sample in this study due to low number statistics. We

also note that this conclusion may not necessarily apply to lower column density

O VI absorbers, below the detection limits of the present survey.

Also in item 2, indications of a shallower slope in the O VI-galaxy cross cor-

relation function compared to the galaxy auto-correlation function could indicate
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that the distribution of O VI around galaxies is more extended than the distri-

bution of galaxies around themselves in general. From the data, we cannot rule

out the possibility that O VI absorbers are primarily attached to galaxies, and that

the cross-correlation amplitudes are primarily driven by clustering of the galaxies

with themselves. Nevertheless, the inference of an extended distribution of O VI

around galaxies is supported by predictions from the Eagle simulation, which

also indicate a shallower slope in the O VI-galaxy cross-correlation function, and

an even shallower slope in the O VI auto-correlation function. The di�erence in

the slopes and amplitudes of these correlation functions leads to the possibility

that O VI absorbers and galaxies do not linearly trace the same underlying distri-

bution of matter, and that some O VI absorbers may be found far from galaxies.

This picture agrees well with the inferences made by Stocke et al. (2013), who �nd

that broad O VI absorbers may trace hot gas (T ≈ 106 K) that extends to large

distances (∼ 400 – 600 kpc) around galaxies.

This same scenario is seen in cosmological hydrodynamical simulations, such

as those presented in Hummels et al. (2013) and Ford et al. (2013), where O VI

is distributed far from galaxies with a relatively �at radial pro�le. Comparisons

made here with the Eagle simulation suggest that the simulations are capable of

reproducing the observed distribution of O VI absorbers around galaxies, as in-

ferred from the slope and amplitude of theO VI-galaxy two-point cross-correlation

function. These results also raise the tantalising possibility that a fraction of O VI

absorbers do in fact arise in the WHIM, outside of galaxy haloes and groups at

temperatures of 105 < T < 107 K, as predicted by the simulations. Nevertheless, a

targeted approach to detecting theWHIM is still needed if we are to con�rm these

predictions, and it is not yet clear whether the commonly assumed tracers of the

WHIM (O VI, Ne VIII, broad Lyα) trace the bulk of this hot intergalactic plasma

(e.g. Tepper-García et al., 2011, 2012, 2013).

In many respects, the outstanding agreement on the clustering of O VI ab-

sorbers around galaxies between the Eagle simulation and the real data is quite

surprising when we consider the potential origins the O VI absorbers, some of

which are expected to arise from conductive and turbulent interfaces (see Chap-
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ter 2, Section 2.8 for a discussion) that are clearly not resolved by the cosmological

simulations at present. Either these processes are relatively unimportant for the

overall population of O VI absorbers detected by current instrumentation, or they

are co-spatialwith other productionmechanisms (e.g. photoionization, collisional

ionization, shocks), the physics of which are well captured by the simulations.

Given the level of agreement seen here, we also suggest that the shortcomings of

our approach to extracting O VI absorbers from the Eagle simulation, described

in Chapter 5, Section 5.3.2, have little overall e�ect in the measured clustering sig-

nal of O VI around galaxies, although it will be important in future work to verify

our results with a rigorous Voigt pro�le �tting procedure.

Item 1 in our list of �ndings from the present study indicates that we have

not found substantial evidence for gas out�ows or in�ows traced by O VI around

galaxies on∼Mpc scales at low redshifts. This scenario is also consistent with that

predicted by the Eagle simulation, which implements subgrid prescriptions for

e�ective feedback from supernovae and AGN in order to match the present day

statistics of the galaxy population. Our constraints on the velocity dispersion of

O VI around galaxies are consistent with a scenario in which the majority of the

O VI absorbers detected with current instrumentation move with the galaxies,

and that those bound to galaxy haloes are not moving with velocities su�cient

to escape their local gravitational potential. This is then suggestive of a scenario

in which the wider IGM not bound to individual galaxy haloes may have been

enriched early in the history of the Universe (e.g. Wiersma et al., 2010).

Our other main �nding indicates that the presence of O VI absorbers on & 100

kpc scales around galaxies is in no way biased towards whether those galaxies are

star-forming or not. This situation is clearly echoed in the Eagle simulation also,

and indicates that the instantaneous star-formation activity in galaxies bears no

relation to the overall distribution of metals around them. This further supports

the inference that a signi�cant proportion of the metals in the IGM have been

distributed into the IGM early, and that the extent of ongoing star-formation has

no discernible e�ect on the metal enrichment of the IGM on & 100 kpc scales.
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Importantly for this study,wehave found that the dynamics anddistribution of

O VI absorbers around galaxies as inferred from the clustering of one population

relative to the other is very well reproduced by the Eagle simulation. This pre-

diction is made blind, since the simulation is not calibrated in any way to match

these observational results. We therefore suggest that the subgrid physics im-

plemented in cosmological hydrodynamical simulations is su�cient for the pur-

poses of making predictions on the dynamics and distribution of metal-enriched

gas around galaxies, which represents a crucial element in our understanding on

their formation and evolution.



Chapter 7

Summary and

Conclusions

7.1 Key �ndings

In this thesis, we have explored the relationship between the metal-enriched in-

tergalactic medium (IGM) and galaxies at z < 1. Galaxies have been surveyed in

emissionwith optical spectroscopy, while the IGMhas been surveyed bymeans of

ultraviolet (UV) quasar (QSO) absorption-line spectroscopy. We have presented

observational results on a complex absorption systemassociated to aQSO, and ad-

dressed some key questions regarding the nature of feedback in QSO host galax-

ies. We have also conducted a statistical study on the relationship between O VI

absorbers andgalaxies viameasurements of their two-point cross- and auto-correlation

functions.

The main methods for this work were outlined in three chapters:

• In Chapter 2 we outlined the methods for constructing a survey of the IGM

along QSO sight-lines. UV spectroscopy is required to provide coverage of

the key atomic transitions responsible for absorption lines attributable to in-

tergalactic gas at low redshifts. We thereforemade use of theCosmicOrigins

Spectrograph (COS) on the Hubble Space Telescope (HST), which has a sen-

sitivity in the far ultraviolet (FUV) more than ten times that of the previous

generation UV spectrograph. We performed a full data reduction, pseudo-

continuum normalisation, and Voigt pro�le decomposition on 7 QSOs, and

obtained similar measurements from the literature for 53 more. This set of

measurements, consisting of line identi�cations, column densities, Doppler

broadening parameters and redshifts, formed our observational survey of
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the IGM. We concluded this section by presenting some simple statistics on

the O VI absorber sample, which was the focus of our analysis later.

• In Chapter 4 we presented our combined survey of galaxies around the QSO

sight-lines presented in Chapter 2. Some of these were speci�cally targeted

around those sight-lines, while others provided serendipitous coverage. Many

properties of the galaxy sample were obtained from measurements in the

literature, primarily their redshifts, magnitudes, and spectral types. We de-

scribed procedures for creating a uni�ed redshift con�dence labelling across

our sample, and for ensuring the best possible photometric and astrometric

calibration. We also outlined spectral line measurements conducted on a

subset of our sample, for which spectral type classi�cations were not avail-

able, or poorly determined previously. Overall, wewere left with a set of 107

149 galaxies having secure redshifts, and many also with multi-band pho-

tometry and spectral type classi�cations. This then formed our base galaxy

sample.

• In Chapter 5, we outlined procedures for generating a comparison set of

data from the Evolution and Assembly of GaLaxies and their Environments

(Eagle) suite of cosmological hydrodynamical simulations. We used snap-

shots of the reference 100 Mpc volume over the redshift range 0.1 . z . 0.7

to construct our comparison sample. O VI absorbers were extracted from

the simulation along randomly placed one-dimensional sight-lines tomimic

the observational procedure. We performed measurements of their column

densities and Doppler broadening parameters using the optical depth dis-

tribution along those sight-lines, and the gas temperatures inferred from

the simulation. A subset was then extracted with the same selection biases

present in the observational sample. We also created a galaxy sample, iden-

ti�ed on the basis of saddle points in the density distribution of particles

within friends-of-friends haloes. Stellar masses were evaluated within cir-

cular apertures designed to mimic the observational procedure, and a mass

cut was applied to re�ect the selection biases in the data. This formed the
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simulated comparison set central to much of the analysis in Chapter 6.

The main results in this thesis came from two primary studies. In Chapter 3,

our analysis on the complex absorption pro�les associated to theQSOFBQS J0209-

0438 (Q0209) at z ∼ 1 resulted in the following primary �ndings:

1. The associated absorption line (AAL) system in Q0209 has complex velocity

structure, spanning an overall width of ≈ 600 km s−1, and traces gas that is

largely out�owing at several 100 km s−1. This is relatively small compared

to many AALs that show out�ow velocities of several thousand km s−1. It

is not yet clear whether the broad absorption lines (BALs) trace a di�erent

aspect of the same phenomenon, with out�ow velocities that often exceed

104 km s−1.

2. The out�owing material is constrained to lie at a distance of 2.3 . R . 6.0

kpc from the centre of Q0209, which appears to be typical for the highly-

ionized AALs detected in COS FUV spectra to date.

3. The absorber covering fractions are less than unity across all ions, and show

little variation. This implies that the absorbing structures have transverse

sizes . 10−2.5 pc.

4. Photoionization equilibrium models suggest ionization parameters cover-

ing around two orders of magnitude, and absorption path lengths covering

around four orders of magnitude. This, combined with the inferred trans-

verse cloud sizes, poses a challenge to models involving simple cloud ge-

ometries for associated systems. Our data are also di�cult to reconcile with

one, or even two-phase ionization models.

5. Collisional ionization equilibrium is e�ectively ruled out as a possible ion-

ization mechanism for producing the AALs.

6. The inferred (small) cloud sizes, together with the unprecedented range in

ionization parameter, suggest the absorbers may be far from both dynami-

cal and ionization equilibrium. Simple numerical experiments indicate that
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repeat observations may be able to pin down a non-equilibrium ionization

solution to the data, which would naturally be explained within a frame-

work involving continuous in-situ cloud formation in passing shock waves,

and dynamical expansion of the gas.

7. The gas out�ow velocities and densities inferred from the AALs, together

with the distance measurement, are all consistent with scenarios involving

gas entrainment or condensations in winds driven by either supernovae, or

the super massive black hole (SMBH) accretion disc. If the AALs arise from

the latter, then kinematic arguments suggest they may be entrained in a hot

wind not detected in the UV, that would trace the majority of the mass in

the out�ow. We speculate that this wind may be detectable as continuous

bound-free absorption in X-rays.

In Chapter 6, our analysis on the two-point cross- and auto-correlation functions

of O VI absorbers and galaxies at z < 1 resulted in the �ndings outlined below:

1. O VI absorbers show very little velocity dispersion with respect to galaxies

on ∼ Mpc scales at low redshifts. We estimate that this velocity dispersion

amounts to . 100 km s−1.

2. The slope of the O VI-galaxy cross-correlation function is potentially shal-

lower than that of the galaxy auto-correlation function in general. We there-

fore �nd that these populations may not linearly trace the same underlying

distribution of matter. In particular, these results indicate that the distribu-

tion of O VI around galaxies could be more extended than the distribution

of galaxies around themselves. We therefore speculate that a fraction of the

O VI absorbersmight trace thewarm-hot intergalacticmedium (WHIM) pre-

dicted by cosmological hydrodynamical simulations.

3. The clustering amplitudes of O VI absorbers around star-forming galaxies

are highly comparable to those around non star-forming galaxies. We there-

fore �nd that O VI absorbers are equally likely to inhabit the same regions

typically occupied by star forming galaxies as they are to inhabit the same
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regions typically occupied by non star-forming galaxies, at least on scales

& 100 kpc.

4. The amplitude of the O VI-galaxy cross-correlation is typically lower than

that of the galaxy auto-correlation function by factors of a few. This indi-

cates that O VI absorbers are either not ubiquitous to galaxies, or that their

distribution around them is patchy on scales & 100 kpc (or both), at least for

the column densities at which most are currently detected.

5. We �nd that predictions from the Eagle cosmological hydrodynamical sim-

ulation are remarkably consistent with the observational �ndings outlined

above. This suggests that simulations such as these may be regarded as a

powerful tool for understanding the distribution and dynamics of metal-

enriched gas in the Universe.

7.2 Future prospects and concluding remarks

In Chapters 3 and 6, we have presented speci�c prospects for future work relating

to the study of AALs in QSO spectra, and the clustering of gas around galaxies

respectively. Here we conclude this thesis by taking a step back to look at the

broader perspective.

In our theoretical understanding of galaxies and large-scale structure in the

Universe, a clear picture is emerging. In this picture, the gas �ows in and around

galaxies are some of the most important processes governing their formation and

evolution. Feedback from supernovae and active galactic nuclei (AGN) regulate

the process of star formation, which is fuelled by �lamentary gas �ows and gas

condensations from hot coronal reservoirs. These processes are thought to drive

the galaxy population towards the global propertieswe see today, in statistics such

as the galaxy stellar mass function. To advance our understanding on the forma-

tion of galaxies and large-scale structures, we therefore need to obtain detailed

observational constraints on the interplay between galaxies, and the gaseous en-

vironments in which they reside.
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Observations of the IGM and circumgalactic medium (CGM) are now provid-

ing crucial information on, for example, the distribution, dynamics, metal enrich-

ment, temperature, and ionization state in the gas surrounding galaxies. Thework

presented in this thesis is just one contribution to our pool of knowledge in this

area. Nevertheless, key questions remain. In particular, 30 – 40% of the baryons in

the low-redshift IGM are still not well accounted for observationally, with the pri-

mary indication from theory being that they should reside in the so-calledWHIM,

at temperatures in the range 105 < T < 107 K. There are some claims in the litera-

ture for a detection of the WHIM, but a complete census remains out of reach. It

is also not yet clear to what extent the commonly used tracers (e.g. O VI, Ne VIII)

account for this gas. The existence of theWHIM is a clear prediction from numer-

ical galaxy formation models that implement e�ective feedback to reproduce the

present day statistics of the galaxy population. Identifying theWHIM is therefore

a clear priority if we are to critically test these models further. Future experiments

may need to adopt a targeted approach to identifying the WHIM, for example by

investigating the gaseous environments of spiral-rich galaxy groups, where the

WHIM is expected to dominate the baryon budget.

The dynamics of gas around galaxies remains poorly constrained observation-

ally. In particular, separating infalling gas from out�owing gas in the regions

around galaxies remains a key observational challenge. Detecting gas out�ows

‘down-the-barrel’ in the absorption and emission spectra of AGN and galaxies

has proved to be a fruitful approach, and studies like the one in this thesis are

revealing a highly complex and multi-faceted picture. Nevertheless, it remains

hard to assess the e�ectiveness of this feedback in regulating the process of star

formation, and enriching the IGM with metals. An unanswered question is when

were the metals released into the IGM? Did it predominantly happen early in the

Universe’s history, or is it still ongoing? What fraction of the out�ows follow bal-

listic trajectories, and what fraction escape? Predictions are now available from

numerical simulations, but it still remains to test whether these predictions are

reasonable. We have made steps towards that goal in this thesis, but much work

is still required in this area.
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Detecting the �lamentary accretion �ows ubiquitous in hydrodynamical sim-

ulations is more di�cult than detecting out�ows due to the complex geometry

of the problem, and a lack of information tying the IGM dynamics to the galaxy

gas dynamics. A future avenue of approach will be to combine deep, spatially

resolved spectroscopy of galaxies and their immediate environments with QSO

absorption-line spectroscopy, which should help tie together the dynamics on

small scales with the dynamics on large scales. Another approach would be to at-

tempt IGM tomography via 3D reconstruction frommultiple QSO and/or galaxy

sight-lines. The space-density of QSOs alone is in general too low to make this

goal achievable, and the use of distant galaxies for this kind of work is highly

challenging with current instrumentation. Nevertheless, it promises to be a pow-

erful technique in the future.

Finally, the sources of feedback required by numerical simulations of galaxy

formation remain poorly understood. Various feedback mechanisms from both

AGN and supernovae have been proposed in the literature, but many lack fun-

damental observational constraints. The relative importance of these feedback

processes in the context of galaxy evolution is also not well determined. Better

observational constraints and numerical modelling techniques will undoubtedly

be required in the future, if we are to better understand the key aspects of feed-

back.

Many new questions have arisen from the work presented in this thesis, but

our work undoubtedly provides a modest and yet valuable contribution to our

understanding of the relationship between the IGM and galaxies, and the evolu-

tion of baryonic structure in the Universe.

Charles Finn

Durham 2015



Appendix A

A.1 Time-dependent ionization modelling

Here we explicitly describe the mathematical formalism for numerical calcula-

tions on the time-dependent ionization of dynamically evolving gas exposed to a

radiation �eld evolving in time, as motivated in Chapter 3, Section 3.6.2.

The set of time-dependent ionization equations (Chapter 3, equation (3.6.28))

may be compactly written as

∂t n = An , (1.1.1)

where n is a length N + 1 vector that speci�es the ionic number densities for an

element with N electrons, and A is the (N + 1) × (N + 1) matrix containing the

photoionization, collisional ionization, and recombination rate coe�cients, de-

rived assuming some temperature, incident radiation �eld and electron number

density, ne . These equations are closed by the condition that

N∑
i=0

nMi = ntotal, (1.1.2)

where ntotal can be related to ne in a highly ionized plasma, assuming solar metal-

licity and abundances, by

ntotal ≈
2X

1 + X
AZne . (1.1.3)



A.1. Time-dependent ionization modelling 194

Here AZ is the absolute elemental abundance relative to hydrogen, and X is the

mass fraction in hydrogen. In equilibrium, ∂t n = 0, and we �nd that

nMi+1

nMi

=
βMi ne + ΓMi

neαMi

≡ aMi . (1.1.4)

It is then straightforward to show that we can write any nMi for i > 0 in terms of

nM0 via

nMi =




i−1∏
j=0

aM j


 nM0 , (1.1.5)

where the scaling factors aM j are de�ned above. Therefore

ntotal = nM0 +
N∑

i=1




i−1∏
j=0

aM j


 nM0 =

2X
1 + X

AZne

=⇒ nM0 =
2XAZne

(1 + X)
(
1 +

∑N
i=1

(∏i−1
j=0 a j

)) . (1.1.6)

Eliminating nM0 , we �nally arrive at an expression that de�nes the equilibrium

number density of some ion nMi as

nMi ,eq =
i−1∏
j=0

aM j

2XAZne

(1 + X)
(
1 +

∑N
k=1

(∏k−1
j=0 aM j

)) , (1.1.7)

for i > 0.

We �rst calculate the equilibrium set nMi ,eq using equation (1.1.7), assuming

ne = 103 cm−3 (approximately that inferred from the analysis in Chapter 3, Sec-

tion 3.5.1) and X = 0.28. To examine the e�ect of changing gas density, we then

perturb these values and ne by a factor (1 + δ). For changes in the incident ion-

izing �ux, we perturb the photoionization rates, ΓMi , in an identical fashion. The

time-dependent evolution in the number densities, n, of H I, O IV, O V, O VI,

Ne VIII, and Mg X are then calculated by numerically solving equation (1.1.1), set

to initially contain the perturbed n and/or A (note that both n and A change if ne

changes). For A, we additionally assume a temperature T = 104 K, and illumina-
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tion by the ‘UV peak’ SED at a distance of 2.3 kpc.

In the case of H I, we can obtain an analytical solution to the rate of change

in the neutral fraction x ≡ nH i/nH, determined by the hydrogen photoionization

rate Γ, collisional ionization rate coe�cient β, and recombination rate coe�cient

α, as well as the electron number density ne , according to

dx
dt

= −
(
Γ + βne

)
+ αne(1 − x). (1.1.8)

For a pure hydrogen gas (X = 1), we can express the electron number density as

ne = (1 − x)nH and write dx/dt in the form of a Riccati equation:

dx
dt

= Rx2 + Qx + P, (1.1.9)

R ≡ (β + α)nH, (1.1.10)

Q ≡ − (Γ + αnH + R) , (1.1.11)

P ≡ αnH (1.1.12)

(Altay & Theuns, 2013). Assuming that P, Q and R are all constant, the time-

dependent solution can then be found by separation of variables:

x(t) = x− + (x0 − x−)
(x+ − x−) F

(x+ − x0) + (x0 − x−) F
, (1.1.13)

where x+ and x− are the roots of the quadratic term in equation (A9), x0 ≡ x(t = 0)

is the initial value, and

F(t) ≡ exp
(
− (x+ − x−) t

trec

)
(1.1.14)

trec ≡
1

(α + β)nH
. (1.1.15)

We identify trec as the recombination time-scale. It can be shown that x− repre-

sents the physical equilibrium solution (Altay & Theuns, 2013), so for the density

changes described, both x(t = ∞) and x(t = 0) take the form of x−, but with a dif-

ferent value of nH. The same applies for incident ionizing �ux changes, but with
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Figure A.1: Non-equilibrium evolution in nH i following a step-function, order of magni-
tude change in �ux (blue) and density (green) in a pure hydrogen gas. Numerical results
are shownwith solid lines, and analytical results are shownwith dashed lines. The results
are normalised with respect to the starting value at t = 0. We �nd an excellent agreement
between the numerical and analytical calculations.

di�erent values of Γ instead.

First, to check the validity of our numerical calculations, we compare the nu-

merically calculated non-equilibrium evolution in the number density of H I for

a pure hydrogen gas (X = 1) with that computed from equation (1.1.13). We do

so for an order of magnitude step-function decrease in both the incident ionizing

�ux and the gas density separately. The results of this comparison are shown in

Figure A.1. We �nd an excellent agreement between these two calculations, which

con�rms that our numerical results are robust. Full numerical results for the evo-

lution in n following a step-function change in density are plotted in Figure A.2

relative to the starting values n(t = 0), for a range of values of (1 + δ). A similar

calculation for changes in the incident ionizing �ux (described in Section 3.6.2) is

presented in Figure A.3. We �nd that the numerical results in the latter agree well

with the typical e-folding time-scales derived in Chapter 3, equation (3.6.29).
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Figure A.2: Non-equilibrium evolution in the number density, n, of ions H i, O iv, O v,
O vi, Ne viii andMg x relative to their starting values, following a step function change in
density given by n(t > 0) = (1 + δ)n(t = 0). We set n at t = 0 to the equilibrium values for
a temperature T = 104 K, a distance of 2.3 kpc from the QSO modelled by the ‘UV peak’
SED, and with ne = 103 cm−3. Numerical results for a range of (1 + δ) are presented with
di�erent coloured lines. Time-scales for a restored equilibrium are > 100 years for a drop
in gas density of more than an order of magnitude, with the exception of H I. Time-scales
are orders of magnitude shorter for an increase in gas density.
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Figure A.3: Non-equilibrium evolution in the number density, n, of ions H i, O iv, O v,
O vi, Ne viii and Mg x relative to their starting values, following a step function change
in incident �ux given by Γ(t > 0) = (1 + δ)Γ(t = 0). We set Γ at t = 0 to the photoionization
rate at a distance of 2.3 kpc from the QSO modelled by the ‘UV peak’ SED. Numerical
results for a range of (1 + δ) are presented with di�erent coloured lines. Time-scales for a
restored equilibrium are typically < 100 years. These results agree well with the typical
e-folding time-scales derived in equation (3.6.29).



Appendix B

B.1 Data tables

Here we present a snapshot of the tables containing data pertaining to the cata-

logue of quasar (QSO) absorption-line systems and the spectroscopic catalogue of

galaxies around QSO sight-lines, described in Chapters 2 and 4 respectively. The

full catalogues will be available in electronic format following future publication

in Monthly Notices of the Royal Astronomical Society, or can be obtained upon

request from the author. We use this space purely for illustration purposes.

In Table B.1, we provide a snapshot of the catalogue of QSO absorption-line

systems. This catalogue contains the best-�t Voigt parameters for absorption sys-

tems attributable to the identi�ed ions in just those QSOs analysed by the au-

thor and collaborators, namely, LBQS J0107−0235A/B, LBQS J0107−0232, FBQS

J0209−0438, HE1003+0149, LBQS J1019+0147, SDSS J135726.27+043541.4, LBQS

J1435−0134, and FBQS J2218+0052. All other catalogues of absorption-line sys-

tems for QSOs listed in Chapter 2, Table 2.2, are documented in Danforth et al.

(2014), and can be obtained from the MAST archive.1

In Table B.2, we provide a snapshot of the spectroscopic catalogue of galax-

ies around QSO sight-lines described in Chapter 4, excluding photometric mea-

surements available in a range of di�erent passbands. The full catalogue contains

just the data obtained and/or analysed by the author and collaborators. All other

galaxy data can be obtained from the various online sources detailed in Chapter 4.

1http://archive.stsci.edu/prepds/igm/

http://archive.stsci.edu/prepds/igm/
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Table B.1: Catalogue of QSO absorption-line systems

ion z b ( km s−1) ∆b ( km s−1) log(N/cm−2) ∆ log(N/cm−2) label QSO

Fe ii 0.0000 18.2 3.8 15.02 0.30 a Q0209
C iv 0.0001 32.3 3.0 13.99 0.03 a Q0209
C iv -0.0002 29.1 20.3 13.11 0.19 a Q0209
C iv -0.0006 22.4 5.3 13.33 0.06 a Q0209
C ii -0.0000 37.3 3.7 15.46 0.18 b Q0209
C ii -0.0003 15.9 2.8 14.29 0.05 b Q0209
C ii -0.0005 16.3 4.8 13.85 0.05 b Q0209
C ii -0.0007 11.8 4.3 13.77 0.06 b Q0209
C ii* 0.0001 22.4 2.7 13.98 0.03 b Q0209
Al ii 0.0000 17.4 14.6 14.56 2.61 c Q0209
Al ii 0.0002 57.8 39.6 12.70 0.46 b Q0209
Al ii -0.0002 15.9 11.1 12.80 0.18 b Q0209
Al ii -0.0004 27.2 4.5 13.88 0.22 b Q0209
Si ii 0.0001 18.0 5.4 15.11 0.58 a Q0209
Si ii -0.0001 15.9 17.5 13.57 0.46 a Q0209
Si ii -0.0003 16.4 5.3 13.58 0.06 a Q0209
Mg ii -0.0001 34.1 18.2 14.37 0.78 a Q0209
Mg ii -0.0006 102.5 127.6 13.11 0.56 a Q0209
H i 0.0779 14.4 2.8 13.69 0.09 b Q0209
H i 0.0850 40.7 23.5 12.86 0.16 b Q0209
H i 0.0846 22.6 7.0 13.14 0.07 b Q0209
H i 0.1015 28.0 16.6 13.69 0.16 b Q0209
H i 0.1013 18.8 17.9 13.46 0.24 b Q0209
H i 0.1135 28.5 9.2 13.01 0.08 b Q0209
H i 0.1213 43.9 3.2 13.90 0.02 b Q0209
H i 0.1290 30.6 3.7 13.61 0.04 b Q0209
H i 0.1421 41.1 1.8 14.25 0.02 b Q0209
H i 0.1361 41.2 5.3 14.33 0.08 b Q0209
H i 0.1359 38.6 14.4 13.69 0.32 b Q0209
H i 0.1367 35.0 11.3 13.13 0.09 b Q0209
H i 0.1597 26.3 9.6 13.01 0.09 b Q0209
H i 0.1592 52.1 6.0 13.57 0.04 b Q0209
H i 0.1619 21.3 35.4 13.10 1.41 c Q0209
H i 0.1617 21.5 31.5 13.60 0.73 c Q0209
H i 0.1615 22.7 56.1 13.42 1.24 b Q0209
H i 0.1614 22.5 128.4 13.08 5.54 c Q0209
H i 0.1610 25.7 35.7 14.06 2.54 c Q0209
H i 0.1605 18.9 21.9 12.74 0.61 c Q0209
H i 0.1744 27.4 5.6 12.99 0.05 b Q0209
H i 0.1885 34.4 9.7 12.91 0.08 b Q0209
H i 0.1981 28.0 3.4 13.22 0.03 b Q0209
H i 0.2108 12.5 5.0 13.03 0.06 b Q0209
H i 0.2076 25.7 5.6 13.14 0.05 b Q0209
H i 0.2079 16.6 7.8 12.89 0.09 b Q0209
H i 0.2086 20.5 10.2 13.28 0.45 b Q0209
H i 0.2087 30.1 49.3 12.93 1.04 b Q0209
H i 0.2178 48.5 8.1 13.24 0.05 b Q0209
... ... ... ... ... ... ... ...
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Table B.2: Spectroscopic catalogue of galaxies around QSO sight-lines

ID α (deg) δ (deg) z z label spec. type �eld

100134222 151.38993 1.41244 0.1233 a SF J1005+0134
100134638 151.43361 1.41204 0.7285 a non-SF J1005+0134
100136361 151.43515 1.41681 0.0003 a none J1005+0134
100136507 151.38073 1.41806 0.4136 a SF J1005+0134
100137150 151.41892 1.42058 0.8161 a SF J1005+0134
100137540 151.41231 1.42246 0.3828 a SF J1005+0134
100137663 151.45334 1.42228 0.0001 a none J1005+0134
100137939 151.46291 1.41920 0.4152 a non-SF J1005+0134
100138520 151.43410 1.42484 0.4213 a SF J1005+0134
100138951 151.39180 1.42591 0.0000 a none J1005+0134
100138968 151.48630 1.42438 0.5038 a SF J1005+0134
100139199 151.48095 1.42752 0.0002 a none J1005+0134
100139351 151.44041 1.42831 0.4158 a SF J1005+0134
100139579 151.40287 1.42801 0.0005 a none J1005+0134
100140371 151.46029 1.43139 -1.0000 c none J1005+0134
100140384 151.49829 1.43059 0.7278 a SF J1005+0134
100140525 151.37591 1.43247 0.3112 a SF J1005+0134
100140686 151.41957 1.43282 1.0906 a none J1005+0134
100140951 151.38717 1.43422 -1.0000 c none J1005+0134
100142272 151.44420 1.43629 -1.0000 c none J1005+0134
100143800 151.49250 1.44303 0.4136 a SF J1005+0134
100144427 151.23561 1.44324 0.4211 a non-SF J1005+0134
100145085 151.45159 1.44155 0.1990 a SF J1005+0134
100146086 151.47729 1.44903 0.2487 a SF J1005+0134
100147290 151.23951 1.45179 -1.0000 c none J1005+0134
100148644 151.48099 1.45468 0.4155 b non-SF J1005+0134
100149364 151.24412 1.45703 -1.0000 c none J1005+0134
100149646 151.45246 1.45286 0.8925 a SF J1005+0134
100151150 151.20591 1.46146 -1.0000 c none J1005+0134
100151155 151.45455 1.45846 0.9232 b SF J1005+0134
100151562 151.46457 1.46082 0.1251 a SF J1005+0134
100151728 151.37910 1.46260 0.6173 a SF J1005+0134
100152365 151.28212 1.46270 0.4033 a SF J1005+0134
100152404 151.24884 1.46421 0.6786 b non-SF J1005+0134
100152653 151.29703 1.46431 -1.0000 c none J1005+0134
100152922 151.46659 1.46281 -1.0000 c none J1005+0134
100152956 151.46713 1.46496 -1.0000 c none J1005+0134
100154854 151.21854 1.46888 0.8429 a SF J1005+0134
100154976 151.25714 1.46923 0.5952 a SF J1005+0134
100155273 151.46619 1.46731 0.3838 a SF J1005+0134
100155621 151.27899 1.46669 0.0962 b SF J1005+0134
100155669 151.38522 1.46709 0.5009 a non-SF J1005+0134
100156098 151.45119 1.47169 0.1739 a SF J1005+0134
100156302 151.49415 1.47138 0.0683 b SF J1005+0134
100156333 151.47185 1.47195 -1.0000 c none J1005+0134
100156818 151.27301 1.47474 0.7256 a SF J1005+0134
100157199 151.26538 1.47336 0.6038 a SF J1005+0134

... ... ... ... ... ... ...
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