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Abstract 

The timing and extent of former ice sheet fluctuations can demonstrate leads and 

lags during periods of climatic change and the forcing factors responsible, but this 

requires robust glacial chronologies. Patagonia, in southern South America, offers a 

well preserved record of glacial geomorphology over a large latitudinal range that is 

affected by key climatic systems in the Southern Hemisphere, but establishing the 

timing of ice advances has proven problematic. 

This thesis targets five southernmost ice lobes that extended from the former 

Patagonian Ice Sheet during the Quaternary; from north to south: the Río Gallegos, 

Skyring, Otway, Magellan and Bahía Inútil – San Sebastián (BI-SSb) ice lobes. The 

region is chosen because there is ambiguity over the age of glacial limits, which 

have been hypothesised to relate to different glacial cycles over hundreds of 

thousands of years but yield cosmogenic nuclide exposure data dominantly < 50 ka. 

This contradiction is the focus of the thesis: was the sequence of glacial limits 

deposited over multiple glacial cycles, or during the last glacial cycle? 

A new geomorphological map is used to reconstruct glacial limits and to help target 

new dating. Cosmogenic nuclide depth-profiles through glacial outwash are used to 

date glacial limits whilst accounting for post-depositional processes. These reveal 

that limits of the BI-SSb lobe hypothesized to date from MIS 12 (ca. 450 ka) and 10 

(ca. 350 ka) were actually deposited during the last glacial cycle, with the best-dated 

profile giving an MIS 3 age of ca. 30 ka, indicating an extensive advance prior to the 

global Last Glacial Maximum (gLGM). A glacial reconstruction indicates that this 

may not have been unique to the BI-SSb lobe, and a compilation of published dates 

reveals that similar advances during the last glacial cycle indicate related forcing 

factors operating across Patagonia and New Zealand. 

 

 

 



    

 
 

 

 

 

Resumen 

La datación y extensión de antiguas capas de hielo puede demostrar avances y 

retrocesos durante cambios climáticos así como factores responsables de esos 

cambios. Sin embargo, esto requiere de robustas cronologías glaciares. Patagonia, 

en el pico sur de Sudamérica, ofrece una buena preservación de la historia 

geomorfológica glaciar durante largas extensiones latitudinales, la cual es afectada 

por sistemas climáticos claves en el Hemisferio Sur, aunque el establecimiento de 

avances en las capas de hielo es problemático. 

Esta tesis tiene como objetivo estudiar cinco lenguas glaciares meridionales que se 

extendieron más allá de la capa de hielo que se formó en la Patagonia durante el 

Cuaternario. Estas son de norte a sur: El Río Gallegos, Skyring, Otway, Magellan y 

Bahía Inútil – San Sebastián (BI-SSb). Esta región fue escogida debido a la 

ambigüedad sobre la datación de los límites del glacial hasta la fecha. Hipótesis 

señalan que estos límites pertenecen a diferentes ciclos glaciares durante cientos 

de miles de años pero a los que se les ha establecido una edad dominante de <50 

Ka por medio de isótopos cosmogénicos. Esta contradicción es el centro de la tesis: 

¿fue la secuencia de límites glaciares depositada durante múltiples ciclos glaciares 

o durante el último ciclo glaciar? 

Un nuevo mapa geomorfológico ha sido elaborado para reconstruir límites glaciares 

y ayudar a establecer una nueva datación. Perfiles de los isótopos cosmogénicos a 

través de depósitos glaciares han sido utilizados para datar los límites del glaciar 

teniendo en cuenta procesos post-deposicionales. Estos revelan que los límites de 

la lengua glacial BI-SSb de supuesta edad de entre MIS 12 (ca. 450 ka) y 10 (ca. 

350 ka) son en realidad depósitos del último ciclo glacial, donde la edad mejor 

definida se sitúa en el estadio isotópico MIS 3 (30 ka). Esto indica que antes del 

último periodo glacial máximo global hubo un extenso avance. La reconstrucción 

glacial indica que esta datación no es única de la lengua glacial BI-SSb, y una 

compilación de dataciones publicadas revela que similares avances durante el 

último ciclo glacial indican factores responsables de los cambios climáticos 

similares a través de Patagonia y Nueva Zelanda. 
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SRTM Shuttle Radar Topography Mission 

SST Sea Surface Temperature 

STF Sub-Tropical Front 
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1.1 Rationale 

Southernmost South America is in a unique geographical position, heavily 

influenced by globally-important atmospheric and oceanic systems in the most 

southerly continental setting outside of Antarctica. However, despite the potential to 

improve our understanding of Southern Hemisphere and global climatic changes 

over multiple glacial cycles, the age constraints on the timing of pre-global Last 

Glacial Maximum (gLGM) advances of former ice-lobes in the region remain poorly 

constrained. An improved chronology for the southernmost ice lobes of the former 

Patagonian Ice Sheet could yield important insights into climate variability at 

southernmost latitudes as well as processes governing long-term glacial dynamics. 

Just 2% of the earth’s surface between 40°S and 60°S is land, mostly in 

southernmost South America (Zolitschka, 2009). These latitudes are dominated by 

the Southern Westerly Wind system (Figure 1.1), the strongest time-averaged 

oceanic winds in the world (Hodgson & Sime, 2010), which otherwise pass 

unhindered around the Southern Hemisphere. Southern South America is also fully 

exposed to changes in the Antarctic Circumpolar Current, a key component in the 

global oceanic circulation system. Both of these systems are thought to have a 

major influence on global climate: the Antarctic Circumpolar Current on the 

production of global deep-water (Corliss, 1983; Carter et al., 2008); and the 

Southern Westerly Winds on Southern Hemisphere precipitation, dust-fluxes and 

ocean-circulation (Kohfeld et al., 2013; Sime et al., 2013). Moreover, both are 

intrinsically linked by Antarctic (sea) ice extent and the positions of the oceanic 

frontal systems. Consequently, they are likely linked in their responses to climatic 

change (Boning et al., 2008; Wang et al., 2011). 

Terrestrial records at these latitudes can act as monitors of the strength of the 

Antarctic Circumpolar Current and latitudinal fluctuations of the Southern Westerly 

Winds and, by extension, changes within the Antarctic subcontinent and wider 

Southern Hemisphere (Sugden et al., 2005; Kaplan et al., 2008a). The location of 

southernmost South America, adjacent to the southern parts of the Atlantic and 

Pacific Oceans, means that the region may yield important insights into the 

contentious issue of inter-hemispheric climatic/glacial (a)synchrony (Broecker, 2003; 

Barker et al., 2009). Importantly, Patagonia is situated at the southernmost reaches 

of the former thermal bi-polar seesaw that may have operated in the Atlantic Ocean 

during periods of past climatic change. 
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Figure 1.1. Map of the southernmost Southern Hemisphere showing the Southern Westerly 
Wind System and Antarctic Circumpolar Current as well as oceanic frontal zones. Compiled 
from Carter (2009) and McGlone et al. (2010). 
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There is a rich terrestrial record in Patagonia, with Clapperton (1993) stating that: 

‘…the combination of arid climate, successively less ice extent in each glaciation, and 

the large scale of the deposits, has preserved what is probably the most complete and 

intact sequence of Quaternary moraines anywhere in the world.’ (p. 352) 

However, there remains ambiguity regarding the timing of ice advances from what 

was once the southernmost part of the Patagonian Ice Sheet. In particular, the 

timing and nature of pre-gLGM glacial advances is poorly understood. Without a 

comprehensive chronology of ice advances, it is difficult to appreciate how the 

different components of the land-ocean-atmosphere system fully interact during 

periods of climatic change (Lamy et al., 2007; Kaiser & Lamy, 2010). Significantly, if 

we are unsure of when glacial stages occurred in southernmost South America (e.g. 

at 30 ka or 1.1 Ma?), we cannot hope to properly calibrate regional and global 

models of climate, an essential step in effectively predicting future climate change. 

This problem is becoming more acute as longer ice core records are retrieved from 

Antarctica, spanning multiple glacial cycles (EPICA, 2004; 2006; 2010), that cannot 

be compared to terrestrial changes in Patagonia because of a lack of firm 

chronological control. This thesis focuses on constraining the timing of advances of 

five large ice lobes in the southernmost part of the former Patagonian Ice Sheet, 

from north to south: the Río Gallegos, Skyring, Otway, Magellan, and Bahía Inútil – 

San Sebastián (BI-SSb) lobes.  

 

 

1.2 Aims 

1. To reconstruct glacial changes of the southernmost ice lobes of the 

Patagonian Ice Sheet, with a particular emphasis on glacial chronology, to 

determine whether ice advances occurred over timescales of 104, 105 or 

106 years. 

 

2. To use this new chronological framework to examine the controls on glacial 

change in southernmost South America. 
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1.3 Research objectives 

To address these aims, this work will be conducted through completion of five 

specific objectives: 

1. Map the glacial geomorphology of southernmost South America from remote 

imagery and field-checking. 

2. Examine the nature and weathering of erratic boulders that have yielded 

ambiguous cosmogenic nuclide dates on Tierra del Fuego. 

3. Test the reliability of moraine boulder ages using a cosmogenic outwash 

depth-profiling approach. 

4. Derive a glacial history for the region and assess the likely timing of glacial 

advances using previously published chronological information and new 

outwash depth-profile results. 

5. Examine the trends in southern mid-latitude glaciation in order to explore ice 

sheet response to local, regional and hemispheric forcing. 

 

1.4 Thesis structure and results 

Chapter 2 outlines previous work on the southernmost ice lobes of South America. 

Following this, Chapters 3-7 of this thesis are composed of a series of research 

papers that have been published, submitted, or prepared for peer-reviewed journals. 

An introduction to each chapter is given below. The papers have been edited for 

consistency within the thesis: introductory material has been reduced where 

necessary to avoid excessive repetition and supplementary information has been 

incorporated into the chapters where applicable. Because the methods used are 

specific to each chapter, they are included throughout the thesis rather than as a 

separate section. Chapters 3-6 present the analytical results and accompanying 

discussion of research conducted for this thesis to address Objectives 1-4 above. 

Chapter 7 incorporates this new research into a wider review and synthesis, 

discussing the likely climatic forcing mechanisms of southern mid-latitude glaciation 

and addresses Objective 5. Finally, Chapter 8 draws together the main conclusions 

of the thesis and explains how these address the aims outlined at the start. 
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1.4.1 Chapter 3 

Darvill, C.M., Stokes, C.R., Bentley, M.J. & Lovell, H. (2014) A glacial 

geomorphological map of the southernmost ice lobes of Patagonia: the Bahía Inútil - 

San Sebastián, Magellan, Otway, Skyring and Río Gallegos lobes. Journal of Maps, 

10, 500-520. 

This paper outlines the methods and results of geomorphological mapping for the 

five southernmost ice lobes of the former Patagonian Ice Sheet. The centrepiece of 

the paper is a map that forms the basis for detailed analysis in subsequent chapters: 

contextualising the erratic boulder trains in Chapter 4; allowing targeted sampling of 

glacial limits in Chapters 5; and supporting the glacial reconstruction in Chapter 6. 

The map shows that meltwater landforms feature heavily in the region and reveals 

that limits associated with the Otway, Skyring and Río Gallegos lobes are marked by 

numerous clear moraine ridges, whereas the BI-SSb and Magellan lobes are 

marked by hummocky terrain and drift limits. The map also highlights cross-cutting 

landform relationships, suggesting multiple ice advances in those locations. 

In this paper, I undertook the mapping, wrote the manuscript and drew the figures. 

The map extended earlier work by Lovell for the Skyring and Otway area. All authors 

assisted with fieldwork, contributed ideas and edited the text. The paper has been 

published in Journal of Maps and the introduction has been edited for consistency. 

1.4.2 Chapter 4 

Darvill, C.M., Bentley, M.J. & Stokes, C.R. (2015) Geomorphology and weathering 

characteristics of erratic boulder trains on Tierra del Fuego, southernmost South 

America: implications for dating of glacial deposits. Geomorphology, 228, 382-397. 

The interpretation of cosmogenic nuclide exposure dates from boulders associated 

with erratic boulder trains on Tierra del Fuego is a critical component in the 

argument for the age of glacial limits in the region. Previously reported ages have 

consisted of lots of younger ages (< 50 ka) with occasional older ages (> 50 ka), 

with the latter interpreted as closer to the true age, and the former attributed to 

erosion and exhumation. This paper conducts the first comprehensive study of these 

boulder trains, analysing their distribution, likely formation, and weathering 

characteristics to help contextualise the dating. The boulder trains are consistent 

with one or more supraglacial rock avalanches and weathering indices show little 

difference between them, suggesting that they could be much closer in age than 

previously thought. With this in mind, it is possible that occasional older cosmogenic 
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nuclide exposure dates result from an inheritance signature that was not removed 

by erosion during supraglacial transport, in which case the majority of younger dates 

are closer to the true age of deposition. 

In this paper, I undertook the fieldwork and analysis; wrote the manuscript; and drew 

the figures. All authors contributed ideas and edited the text. The paper has been 

published in Geomorphology and the supplementary information from that paper has 

been incorporated into the main text of this thesis. 

1.4.3 Chapter 5 

Darvill, C.M., Bentley, M.J., Stokes, C.R., Hein, A.S. & Rodés, Á. (in prep.) 

Extensive MIS 3 glaciation in southernmost Patagonia revealed by cosmogenic 

nuclide dating of outwash sediments. Earth and Planetary Science Letters. 

In the light of the hypothesis raised in Chapter 4, this paper provides the first age 

constraints for the San Sebastián and Río Cullen limits of the BI-SSb lobe in a way 

that is not compromised by exhumation and erosion processes. These pre-gLGM 

glacial limits were previously hypothesised to date from Marine Isotope Stages 

(MIS) 12 and 10, but we demonstrate that they were deposited much more recently, 

during the last glacial cycle (MIS 4-2), including one clear MIS 3 advance. With this 

major reinterpretation of age, we suggest that the cause of such an extensive MIS 3 

advance was most likely a southward shift of the Southern Westerly Winds, 

delivering greater precipitation to the ice lobe at a time of cooler summers and 

warmer, wetter winters.  

In this paper, I undertook the fieldwork, including sampling; much of the laboratory 

analysis; and most of the depth-profile modelling. I wrote the manuscript and drew 

the figures. All authors contributed ideas and edited the text. Bentley and Stokes 

assisted with fieldwork; Hein and Rodés assisted with depth-profile modelling; and 

Rodés assisted with laboratory analysis. The paper has been prepared for Earth and 

Planetary Science Letters, but the supplementary information has been incorporated 

into the main text and the introduction has been edited for consistency in this thesis. 

1.4.4 Chapter 6 

Darvill, C.M., Stokes, C.R. & Bentley, M.J. (in prep.) The glacial history of five ice 

lobes in southernmost Patagonia. Journal of Quaternary Science. 

This paper brings together new mapping of glacial geomorphology in southernmost 

South America from Chapter 3 with new age constraints on glacial limits from 
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Chapter 5 to present a new reconstruction of the timing and nature of glaciation in 

the region. We present a series of relative time steps based on our reconstructed 

glacial limits and, where possible, constrain the timing of glacial advances. In 

particular, we reinterpret previous chronological information in the light of our depth-

profile dating campaign. All of the ice lobes are found to have displayed dynamic 

behaviour at times, with evidence for re-advances and the development of proglacial 

lakes that likely affected rates of advance and retreat. It is suggested that the 

Skyring, Otway and Magellan lobes were likely more extensive prior to the gLGM, 

similar to findings in Chapter 5 for the BI-SSb lobe. 

In this paper, I undertook the analysis, wrote the manuscript and drew the figures. 

Stokes and Bentley contributed ideas, edited the text and assisted with fieldwork. 

The paper has been prepared for Journal of Quaternary Science. 

1.4.5 Chapter 7 

Darvill, C.M., Bentley, M.J. & Stokes, C.R. (in prep.) Evaluating the timing and cause 

of glacial advances in the southern mid-latitudes during the last glacial cycle based 

on compiled exposure ages from Patagonia and New Zealand. Quaternary Science 

Reviews. 

Chapters 5 and 6 demonstrated that southern ice lobes in Patagonia advanced prior 

to the gLGM, and we argued that a similar pattern has emerged in other recent 

Southern Hemisphere studies, although it has not been widely discussed. In this 

paper, we compiled a large chronological dataset for Patagonia and New Zealand to 

compare the timing of regional ice advances and in so doing discuss the possible 

forcing factors behind Southern Hemisphere glacial advances during the last glacial 

cycle. We suggest that orbital parameters may underlie mid-latitude glacial activity, 

but that the migration of coupled ocean-atmosphere fronts, as part of a wider 

climatic feedback system, ultimately determines the timing of advances. 

In this paper, I undertook the analysis, wrote the manuscript and drew the figures. 

Bentley and Stokes contributed ideas and edited the text. The paper has been 

prepared for Quaternary Science Reviews. 
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Chapter 2. Study area and previous work 
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2.1 Study area 

The study area of this thesis focuses on the southernmost part of the former 

Patagonian Ice Sheet (Figures 2.1 and 2.2), specifically five ice lobes that extended 

eastward from the Andean Cordillera at times during the Quaternary period between 

around 51-54°S. From north to south, these were the Río Gallegos, Skyring, Otway, 

Magellan and BI-SSb lobes. At present, only a handful of ice caps or small valley 

glaciers remain, principally the North Patagonian, South Patagonian and Darwin 

Cordilleran icefields (Figure 2.1). However, the glacial geomorphology of the former 

ice lobes is exceptionally well preserved by the relatively dry, arid climate and by the 

preservation of older geomorphology due to decreasing ice extents over time. 

Numerous up-to-date reviews exist which summarise the previous literature on 

glaciations in this region (Rabassa & Clapperton, 1990; Meglioli, 1992; Rabassa, 

1992; Rabassa et al., 2000; Coronato et al., 2004; Rabassa et al., 2005; Rabassa, 

2008; Rabassa et al., 2009; Rodbell et al., 2009; Coronato & Rabassa, 2011; 

Harrison & Glasser, 2011; Martínez et al., 2011; Rabassa et al., 2011; Kilian & 

Lamy, 2012). However, a critical assessment of the evidence for the timing of 

glaciations in southernmost South America is useful to highlight gaps in knowledge 

and issues associated with previous attempts at chronology.  

Early observations of the presence of glacial deposits in southernmost South 

America were made by Darwin (1841; 1845; 1848). Subsequently, Nordenskjöld 

(1899) was the first to accurately map glacial deposits in Patagonia, but it was 

Caldenius’ (1932) seminal work that defined the four glacial limits for Patagonia that 

are still broadly referred-to today (Figure 2.3). He named these deposits Initioglacial, 

Daniglacial, Gotiglacial and Finiglacial after the Swedish/European system, which 

implied that they were all of the last glaciation. It has since been shown that the 

older glacial limits were deposited more than a million years old (Meglioli, 1992; 

Ton-That et al., 1999; Singer et al., 2004a; Singer et al., 2004b; Hein et al., 2011). 

However, the original geomorphological characteristics of Caldenius’ system were 

built upon by Meglioli (1992) to establish the current conceptual model of glaciations 

for southernmost South America (Figure 2.2). This Regional Stratigraphic Model has 

since been used widely (Coronato et al., 2004; Rabassa, 2008; Coronato & 

Rabassa, 2011; Rabassa et al., 2011), although few of the glacial deposits have any 

absolute age controls. 
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Figure 2.1. Location of the study area in southernmost Patagonia, South America. The 
present day icefields (numbered) are shown as well as the hypothesised gLGM, adapted 
from Singer et al. (2004a). 
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Figure 2.2. (A) Illustration of the flow paths of the five former ice lobes in the study area. (B) 
An overview of the place names mentioned in this chapter. (C) A conceptual diagram of the 
Regional Stratigraphic Model proposed by Meglioli (1992) showing the drift limits and their 
respective names for each lobe, as well as hypothesised age. See Table 2.1 for an overview 
of these drift deposits. 
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2.2 Previous work 

2.2.1 Nature of ice dynamics 

2.2.1.1 Glacial erosion and nested limits 

A decreasing extent of glacial limits over successive glaciations has been recorded 

at numerous locations in southern South America (the “nested” moraine formations 

observed in many glacial valleys; Caldenius, 1932; Figures 2.2 and 2.3). Kaplan et 

al. (2009) inferred that because these sequences do not match global climate 

variability, the decreasing ice extents cannot be linked to climate, and perhaps partly 

owe their origin to long-term erosional patterns, later modelled by Anderson et al. 

(2012). However, this hypothesis does not consider that the trends could be related 

to a regional (e.g. southern mid-latitude) climate trigger, which is not displayed by 

global climate records dominated by Northern Hemisphere signals.  

 

 

Figure 2.3. A section of the original glacial map of Patagonia by Caldenius (1932), cropped 
to the study area and with a key added to show his four proposed glacial stages. 
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Kaplan et al. (2009) suggested that over time, topographic changes (e.g. Jamieson 

et al., 2008) and changes in bedrock elevations (e.g. Montgomery, 2002) could 

jointly cause more negative glacier mass balances given a constant climatic forcing. 

In this way, the relationship between topography and Patagonian glacial extent is 

important to understand (Herman et al., 2013; Barr & Lovell, 2014), and may mask a 

climatic effect. To establish whether climate played a role, independent evidence is 

required to demonstrate that climatic changes occurred at the same time as glacier 

changes. For example, evidence of similar trends in glacial advances in other, distal 

locations at roughly the same latitudes would suggest that an external climatic 

forcing was responsible. These locations would need to be affected by similar 

atmospheric and oceanic systems for the argument to hold; ideal locations would be 

the glacier records of Patagonia and southern New Zealand (Figure 1.1).  

2.2.1.2 Ice flow dynamics 

There has been some work investigating the dynamics of ice advances and retreat 

in the study area. For example, numerous authors have mapped and commented on 

the spectacular drumlin field within the Otway lobe, around Laguna Cabeza del Mar 

(Clapperton, 1989; Clapperton et al., 1995; Benn & Clapperton, 2000b; Lovell et al., 

2012; Figure 2.2), with Benn & Clapperton (2000b) suggesting it may have been 

formed by ice streaming. More recently, Lovell et al. (2012) presented a detailed 

reconstruction for parts of the Skyring, Otway and Magellan lobes, and found 

evidence for possible ice-streaming and surge-like behaviour. Although Benn & 

Clapperton (2000b) inferred a cold-based margin for the Magellan lobe, Bentley et 

al. (2005) and Lovell et al. (2012) suggested that this was unlikely. Recent 

bathymetric work has suggested that basal morphology, including tectonic controls, 

could have also played a role in defining ice extent in at least the Otway and 

Magellan lobes (Breuer et al., 2013).  

2.2.1.3 Proglacial lakes 

Numerous raised shorelines have been mapped in the study area, corresponding to 

all five southern ice lobes (Clapperton et al., 1995; McCulloch & Bentley, 1998; 

Bentley et al., 2005; McCulloch et al., 2005a; Glasser & Jansson, 2008; Lovell et al., 

2011; Sagredo et al., 2011; Stern et al., 2011; Breuer et al., 2013; Kilian et al., 2013; 

De Muro et al., 2014; García et al., 2014). McCulloch et al. (2005a) and García et al. 

(2014) also presented detailed geomorphological and sedimentological evidence for 

proglacial lakes, as well as demonstrating post-glacial uplift of mapped shorelines 

due to isostatic and/or tectonic uplift. Recent work combining this evidence with 
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analysis of digital elevation models has provided some reconstructions of proglacial 

lake evolution that can supplement investigations into glacial advance and retreat 

(Lovell et al., 2012; Kilian et al., 2013; García et al., 2014). 

Porter et al. (1992), Clapperton et al. (1995), Bentley et al. (2005), McCulloch et al. 

(2005a), Lovell et al. (2012) and García et al. (2014) have commented on the 

formation and drainage of proglacial lakes in the region and the possible effects 

these had on ice dynamics. Porter et al. (1992) suggested that lakes in front of the 

Magellan and BI-SSb lobes may have increased the ice flow rate during recession, 

possibly even resulting in collapse. Similarly, Lovell et al. (2012) hypothesised that 

rapid flow of the Otway and Magellan lobes could have been linked to proglacial 

calving. However, the absence of evidence for ice-streaming in the Skyring lobe and 

for lake development in the Otway lobe makes it difficult to develop this argument 

further (Lovell et al., 2012). 

2.2.1.4 Ice sheet modelling 

Hulton et al. (1994) and Hulton et al. (2002) are the only studies to have modelled 

the entire Patagonian Ice Sheet, and this has provided useful insights into ice sheet 

dynamics and climatic forcing. For example, the modelling highlighted the marked 

contrast between the east and west of the ice sheet. However, this ice sheet-scale 

modelling has not been updated to include more recent insights into chronology and 

modelling power (e.g. compared to Golledge et al. (2012) for New Zealand). One of 

the reasons for this is the challenging nature of modelling the Patagonian Ice Sheet. 

It covered a long latitudinal range (and therefore north-south temperature gradient) 

and experienced differing regimes from west to east (Hulton et al., 2002; Sugden et 

al., 2002). On the western side of the ice sheet, glaciers were dominantly marine-

terminating, not reaching far from the Andean range but receiving high rates of 

precipitation carried by westerly winds from the Pacific Ocean. In contrast, the 

eastern side was relatively drier but was terrestrial terminating, with large ice lobes 

travelling far from the mountains (Coronato et al., 2008; Rabassa, 2008). 

Furthermore, Kerr & Sugden (1994) demonstrated a strong dependence of former 

glaciers on temperature changes, but also that the southern part of the ice sheet 

was particularly sensitive to precipitation. Uncertainty in changes in the delivery of 

precipitation by the Southern Westerly Winds, which may have migrated or 

expanded north and southward over time, makes it challenging to model the former 

ice sheet. Finally, Glasser & Jansson (2005) also noted that ice streaming within 
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parts of the ice sheet may help to explain why matching model outputs to the 

geomorphological record has proven so challenging. 

Nonetheless, modelling the whole ice sheet is important because more localised 

studies of individual glacier systems become limited by assumptions about ice-flow 

dynamics or chronological constraints that are ultimately difficult to answer without 

taking a broader, ice sheet-scale view. For example, studies such as Hubbard et al. 

(2005) for northern Patagonia and Fernandez et al. (2011) for the Marinelli glacier 

system in Cordillera Darwin offer a level of detail that may be missed by a coarser 

model, but struggle to ascertain whether glacier fluctuations are linked to external 

climate forcing or internal flow dynamics. There is great capacity for further 

modelling of the Patagonian Ice Sheet, though it is beyond the scope of this thesis. 

2.2.2 Timing of ice advances 

For this introductory chapter, previous dating of glacial limits is reviewed using the 

data and interpretations as originally stated in the published works. However, for 

techniques such as radiocarbon dating and cosmogenic nuclide exposure dating, 

there have been recent advances in age calibration and so, on subsequent use in 

the rest of the thesis, dates are re-calibrated where relevant. 

Whilst a range of dating techniques have been applied to glacial limits in the study 

area, these have been conducted and interpreted according to the Regional 

Stratigraphic Model by Meglioli (1992; Table 2.1). Numerous glacial drift deposits 

have been assigned relative stratigraphic ages in the region, which are thought to 

broadly correspond between ice lobes (Coronato et al., 2004). This is supported by 

relative weathering ages and a few absolute ages from intervening volcanic deposits 

(Meglioli, 1992). There has been lots of subsequent work on the younger, inner 

drifts, which date from around the gLGM (Coronato et al., 2004; Coronato & 

Rabassa, 2011; Rabassa et al., 2011), but little work on the older, outer drifts. An 

important argument in the age of the older drifts is that marine terraces can be 

linked to glacial limits (Bujalesky et al., 2001). However, a key geomorphic 

relationship has not been evidenced and dates on the marine terraces are 

themselves problematic. Most recently, work using cosmogenic nuclide exposure 

dating of boulders gave a spread of ages that were interpreted in light of the 

Regional Stratigraphic Model, such that a small number of relatively old ages were 

taken as closest ages for the drifts (Kaplan et al., 2007; Evenson et al., 2009). Given 

the complexity in these arguments, it is worth examining the evidence in detail. 
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Figure 2.4. Three of the original maps produced by Meglioli (1992) to illustrate his 
characterisation of drifts across the study area, with a key added to show his hypothesised 
age model. 

 

2.2.2.1 Drift characterisation 

The Regional Stratigraphic Model for southernmost South America proposed by 

Meglioli (1992) is based upon drift characterisation (Figure 2.4) and consists of 

isolated examples of the Rio Grande drift followed by local representations of the 

Greatest Patagonian Glaciation (GPG, ca. 1.1 Ma; Mercer, 1976), then three 

subsequent glaciations (Coronato et al., 2004) before the gLGM (Clapperton et al., 

1995; McCulloch et al., 2005b; Table 2.1). The drifts were defined by Meglioli (1992) 

based on the relationship of outwash deposits to moraines; moraine morphology; 

boulder frequency and weathering; presence or absence of cryogenic features; and 

some were also dated using weathering rind analysis and 40Ar/39Ar dating of basalts. 

For simplicity, these drifts are referred to as ‘glacial limits’ throughout the following 

Chapters and local names are used where necessary to avoid correlation without 

actual age constraints. 
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Table 2.1.  An overview of the drift deposits described and correlated by Meglioli (1992), along with glaciation names, weathering rind ages, robust argon 
dates (where available) and hypothesised MIS chronology, whereby MIS 2 corresponds to the gLGM. Grey shading indicates the GPG drifts. 

Río Gallegos 

lobe drifts 

Skyring lobe 

drifts 

Otway lobe 

drifts 

Magellan lobe 

drifts 

BI-SSb lobe 

drifts 
Glaciation 

Weathering 

rind age (ka) 

40Ar/39Ar 

ages (ka) 
MIS 

    Río Grande? ?   ? 

Bella Vista Pali Aike Pali Aike 
Sierra de los 

Frailes 
Pampa de Beta 

Sierra de los 

Frailes 
1200 ± 200 ca. 1100 20? 

Glencross Rio Zurdo Rio Ciake Cabo Vírgenes Río Cullen Cabo Virgenes 450 ± 0.1  12 

 Laguna Blanca Dinamarquero Punta Delgada San Sebastián Punta Delgada   10 

Rio Turbio Rio Verde Oazy Harbour 
Primera 

Angostura 
Lagunas Secas 

Primera 

Angostura 
140 ± 0.1  6 

Seno Almirante 

Montt 
Seno Skyring Seno Otway 

Segunda 

Angostura 
Bahía Inútil 

Segunda 

Angostura 
15.8 ± 0.2  2 
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2.2.2.2 Weathering analysis 

Meglioli (1992) conducted weathering analysis at 87 sites across the study area, 

which was used as the principal justification for assigning the different drifts to 

separate glacial cycles. Some important points should be made regarding the spatial 

distribution of these analyses. First, the Río Gallegos, Skyring and Otway lobes are 

distinctly underrepresented by analyses, with only 18 of the total 87 sites within 

these lobes. Secondly, within the Magellan and BI-SSb lobes, the distribution of 

sites between drifts is unequal. For example, the Lagunas Secas drift is only 

represented by one sampling location (correlated with a further fifteen on the 

Primera Angostura drift).  While Caldenius (1932) also recorded a distinct glacial 

limit (‘Las Morenas de Filaret’, assigned to the Gotiglacial), this is the only ‘dated’ 

sample from the Lagunas Secas drift. Finally, the precise positioning of some of the 

drift limits has large implications for the weathering results, even though Meglioli 

(1992) observed that the separation of some drifts was unclear. These issues are 

necessarily guided by the availability of suitable sampling sites, and are not 

problematic if one assumes that the correlation between lobes can be made. 

However, Meglioli (1992) also made it clear that calibration of the weathering rind 

age model was highly tentative. Of the four points that were used in the construction 

of a weathering rind calibration curve, one had an age range based on a distal argon 

date from northern Patagonia assumed to be equivalent in age (140 ka in Table 2.1) 

and two have large age ranges dictated by argon dates from capping lava flows 

(450 and 1200 ka in Table 2.1). Thus, the calibration curve has large age errors, 

though these are not necessarily clear from the age estimates presented in the 

Regional Stratigraphic Model. 

2.2.2.3 Argon-dating of basalts 

Argon-dating (including K-Ar and 40Ar/39Ar dating) of volcanic deposits capping drift 

sediments underpins much of the Regional Stratigraphic Model. Meglioli (1992) 

used 40Ar/39Ar dating of lava flows to constrain the ages of drifts north of the 

Magellan Straits and improve the chronology of Mercer (1976). The age of the 

Sierra de los Frailes drift (Figure 2.2 and Table 2.1) was constrained to between 1.4 

± 0.1 and 1.07 ± 0.03 Ma based on basalt flows below and above the drift, 

respectively. Furthermore, the Cabo Virgenes drift (Figure 2.2 and Table 2.1) was 

bracketed by the second basalt flow at 1.07 ± 0.03 Ma and a further overlying flow 

dated to 450 ± 10 ka. However, relating the dated tills to glacial limits is not 

necessarily straightforward. 
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Subsequent studies by Ton-That et al. (1999) and Singer et al. (2004a) improved 

the dating of Meglioli (1992) for the Bella Vista drift in the Río Gallegos depression. 

The accepted age for this drift is now 1.168 ± 0.014 Ma (Singer et al., 2004a), 

confirming mapping of the greatest glacial extent in Patagonia by Caldenius (1932) 

and the GPG proposed by Mercer (1976), now regionally bracketed to between 

1.168 and 1.016 Ma Singer et al. (2004a). The exact relationship between the Río 

Gallegos lobe, the Skyring lobe and the Bella Vista drift is less clear, although it is 

usually presumed that the two ice lobes coalesced, such that the drift date 

corresponds to both (Rabassa, 2008). There are no argon dates relating specifically 

to the BI-SSb lobe. 

2.2.2.4 Amino-acid racemisation 

Amino-acid racemisation analysis has been conducted on marine shells in the study 

area, although no analyses have been conducted in the Río Gallegos, Skyring or 

Otway lobes. Work by Rutter et al. (1989) and Meglioli (1992) has been cited as 

providing age constraint on glacial drifts of the BI-SSb lobe, but is actually related to 

raised marine terraces, and the former makes no connection between these and 

drift deposits. In contrast, Clapperton et al. (1995) and McCulloch et al. (2005b) 

presented analyses of shells from tills within moraines of the Magellan lobe relating 

to their Advances A (pre-Segunda Angostura drift) and B/C (Segunda Angostura 

drift). Combined with radiocarbon dates, shells from the Segunda Angostura drift 

imply a marine incursion occurred in the Magellan Strait around 35 ka, linked to 

considerable deglaciation and implying that the Magellan lobe could have advanced 

during MIS 4 or earlier (Clapperton et al., 1995). However, there are a number of 

assumptions associated with the calibration of the amino-acid racemisation analyses 

and they do not provide absolute ages (Clapperton et al., 1995). 

2.2.2.5 Radiocarbon dating 

Radiocarbon dating has been applied across the study area. Due to its limited 

applicable age span, the technique has been most useful in constraining ice 

fluctuations from the gLGM onwards. For example, Sagredo et al. (2011) and Stern 

et al. (2011) recorded ice recession and proglacial lake development from at least 

ca. 17.5 cal ka BP in the Río Gallegos lobe, following deposition of the Seno 

Almirante Montt drift. Subsequent re-advances may then have occurred before 16.2 

cal ka BP and around 14.8-12.8 cal ka BP (Sagredo et al., 2011). 

The Skyring and Otway lobes contain few radiocarbon dates, dominantly from 

marine cores within their respective sounds. In Seno Skyring, the oldest radiocarbon 
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age of 12.9 cal ka BP and the Reclus tephra age of ca. 14.8 cal ka BP support an 

age model that implies ice retreat before ca. 18 ka. Similarly, the oldest age from 

Seno Otway is ca. 14.8 cal ka BP, with an accompanying age model suggesting ice 

retreat before ca. 17 ka. This is consistent with a date of >14.2 cal ka BP for the 

abandonment of an overspill channel from the Otway proglacial lake into the Strait of 

Magellan (Mercer, 1976; McCulloch et al., 2005a; Kilian et al., 2013).  

The Magellan and BI-SSb lobes have been analysed extensively using radiocarbon 

dating of the Segunda Angostura and Bahía Inútil drifts. Shell samples from beyond 

the Segunda Angostura drift limit in the Magellan lobe, likely relating to Primera 

Angostura and Punta Delgada drift, were dated by Porter (1990) and Clapperton et 

al. (1995). The infinite ages were suggested to show that these drifts were deposited 

> 47 ka, and possibly during MIS 4 or earlier. However, McCulloch et al. (2005b) 

later suggested that the dates indicated a prolonged opening of the Strait of 

Magellan to the Pacific Ocean, and therefore any MIS 4 advance would have been 

less extensive than the gLGM. 

McCulloch et al. (2005b) also synthesised a large number of radiocarbon dates from 

shells and organic material within moraines and lacustrine sediments from the 

Magellan and BI-SSb lobes, along with cosmogenic nuclide exposure dates, and 

suggested three ice advances using their glacial stages: at ca. 25.2-23.1 cal ka BP 

(Stage B), before ca. 21.7-20.3 cal ka BP (Stage C) and before ca. 17.5 cal ka BP 

(Stage D). The compilation also reconstructed relatively rapid deglaciation following 

these advances and a re-advance during the Antarctic Cold Reversal. However, 

recent radiocarbon dating by Hall et al. (2013) implies ice retreat well into Cordillera 

Darwin by ca. 16.8 cal ka BP, significantly earlier than proposed by McCulloch et al. 

(2005b). These dates seem to be supported by a marine core from the Marinelli 

Fjord within the Cordillera (Boyd et al., 2008), but are controversial because 

radiocarbon dating and tephrochrological analyses indicate that proglacial lakes 

existed in the Strait of Magellan and Bahía Inútil until ca. 11.8-12.6 cal ka BP 

(McCulloch & Bentley, 1998; McCulloch et al., 2000; McCulloch & Davies, 2001; 

McCulloch et al., 2005a; McCulloch et al., 2005b). 

2.2.2.6 Uranium-series dating of marine terraces and glaciofluvial fans 

A key piece of evidence for the ages of BI-SSb lobe drifts is the relationship 

between marine terraces and glaciofluvial fans on the east coast of Tierra del Fuego 

(Coronato et al., 2004; Rabassa, 2008; Coronato & Rabassa, 2011; Rabassa et al., 

2011). Bujalesky et al. (2001) analysed three raised beach formations, and dated 
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them using Uranium-series analysis on shells within the terraces (Figure 2.5). These 

marine terraces are inferred to represent three marine transgressions, strongly 

implying that they were formed during (at least) three successive interglacials. If 

they can be linked geomorphologically to any of the drifts, therefore, they can be 

used as evidence for the separation of the drifts into different glaciations. 
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Two glaciofluvial terraces were also described by Bujalesky et al. (2001) as 

corresponding to the Río Cullen and San Sebastián drift limits (Figure 2.5), although 

there is no direct chronological evidence for their ages. The lower terrace has been 

eroded by the three marine terrace formations, suggesting that it formed prior to 

three marine transgressions. Crucially, the geomorphic link to the glacial limits was 

not described by the authors.  

The dating on the Las Vueltas and Laguna Arcillosa marine terraces (Figure 2.5) is 

uncertain given that a portion of the Uranium-signature of both samples implied 

terrestrial rather than marine origin. Weathering had occurred so that lack of 

contamination and a closed-system could not be guaranteed, particularly for the Las 

Vueltas sample. Bujalesky et al. (2001) suggested that issues of weathering and 

contamination affecting the Laguna Arcillosa samples would most likely lead to an 

age of >400 ka and <600 ka; and that the Las Vueltas age is probably unreliable 

given weathering and terrestrial contamination. The Las Vueltas terrace was only 

assigned an age of <300 ka based on dating and the stratigraphic position of the 

terrace. 

Coronato & Rabassa (2011; p.723) stated that “based on the stratigraphical position 

of paraglacial fans and raised marine beaches, Bujalesky et al. (2001) postulated 

that the Sierras de San Sebastián and Lagunas Secas glacial limits should 

correspond to MIS 10 and 6, respectively”. However, this link is not straightforward 

because: 

1. There is no independent dating of the Lagunas Secas drift and there is no 

definitive evidence to show that it formed in a separate glacial stage. 

2. There is no geomorphic link between the raised marine terraces and the 

Bahía Inútil or Lagunas Secas drifts with the raised beach formations. 

3. The correlation of the San Sebastián drift with MIS 10 is based on the 

assumption that it was a separate glacial stage, older than the Lagunas 

Secas drift (presumed MIS 6) and younger than the Río Cullen drift. MIS 

10 was selected by Coronato et al. (2004) and Coronato & Rabassa 

(2011) based on Uranium-series dating of the Las Vueltas formation, 

despite the fact that this dating is stated as being uncertain (Bujalesky et 

al., 2001). Given that the age of the Lagunas Secas drift is unknown, 

there is no reason why the San Sebastián drift cannot be of MIS 6 age or 

younger. 
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4. The system of three raised beach formations only incise the lower 

glaciofluvial fan, hypothesised to link to the Río Cullen drift (Bujalesky et 

al., 2001). This suggests that deposition of the Río Cullen drift was 

followed by three interglacial marine transgressions, the oldest of which 

was likely >400 ka and the youngest of which was at ca. 82 ka (MIS 5). 

However, this does not provide an absolute age for the Río Cullen drift, or 

any ages for the San Sebastián and Lagunas Secas drifts. Crucially, there 

is no evidence given to demonstrate that the glaciofluvial fans relate to the 

San Sebastián and Río Cullen drifts. 

2.2.2.7 Palaeomagnetism 

Walther et al. (2007) presented palaeomagnetic results from glacial sediments from 

northern Tierra del Fuego. Analysis of basal till from the Río Cullen drift exposed at 

Bahia San Sebastián demonstrated that it formed during the normally-polarised 

Brunhes chron and that the Río Cullen, San Sebastián and Lagunas Secas drifts 

formed after 760 ka (Walther et al., 2007; Rabassa et al., 2011). No similar 

palaeomagnetic studies have been conducted for the Río Gallegos, Skyring, Otway 

or Magellan lobes. 

2.2.2.8 Luminescence dating 

Luminescence dating has only been successfully used once in the study area, with 

Blomdin et al. (2012) obtaining an age of around 22 ka for the deglaciation of the 

Brunswick Peninsula area west of the Strait of Magellan, supporting the radiocarbon 

dating chronology in that location (McCulloch et al., 2005b). More important than the 

age estimates, their study, like that of Harrison et al. (2008) in northern Patagonia, 

highlighted the need to use alternative techniques to Optically Stimulated 

Luminescence (OSL) dating of glacial sediments in Patagonia. Blomdin et al. (2012) 

utilised K-Feldspar Infrared Stimulated Luminesce (IRSL), whereas Glasser et al. 

(2006) and Harrison et al. (2012) used single grain OSL dating. No luminescence 

dating has been conducted on the Río Gallegos, Skyring and Otway lobes, but the 

technique has great potential to help constrain glacial limits in the study area in the 

future. 

2.2.2.9 Cosmogenic nuclide exposure dating 

No cosmogenic nuclide dating has been published on deposits relating to the Otway 

or Skyring lobes, but the Río Gallegos lobe has been dated using 10Be and 36Cl 

analysis of erratic boulders. The Bella Vista drift was dated to 47 ka and 106 ka, with 
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both ages substantially younger than expected (Kaplan et al., 2007). Likewise, the 

Rio Turbio and/or Glencross drifts yielded five dates of 38-74 ka (Evenson et al., 

2009; the exact sampling strategy is unclear from their work). Sagredo et al. (2011) 

dated younger limits of the Río Gallegos lobe (which they refer to as the Última 

Esperanza lobe) using four boulders which yielded ages of 38-61 ka. There are 

issues of stratigraphic consistency within the combined cosmogenic nuclide 

exposure ages for the Río Gallegos lobe, and tying these ages to glacial drifts or 

limits is challenging. 

The Magellan lobe has been dated using 10Be and 26Al analysis. For the Segunda 

Angostura drift, the ages are consistent with the gLGM, as previously hypothesised 

(Meglioli, 1992; McCulloch et al., 2005b; Kaplan et al., 2007; Kaplan et al., 2008a). 

However, eight dates from the Primera Angostura, Punta Delgada and Cabo 

Vírgenes drifts yielded young ages <133 ka, with the six dates from the Primera 

Angostura drift yielding ages of 21-27 ka. This is a similar situation to cosmogenic 

nuclide exposure dating of the BI-SSb lobe. 

Erratics boulder trains within the southern margin of the BI-SSb lobe have been 

dated extensively by a number of studies, with those on the southern side of Bahía 

Inútil supporting other dating techniques and assigning the Bahía Inútil drift to the 

gLGM (McCulloch et al., 2005b; Kaplan et al., 2007; Kaplan et al., 2008a; Evenson 

et al., 2009). Kaplan et al. (2007) also measured combinations of 10Be, 26Al and 36Cl 

nuclides on erratic boulder trains from pre-gLGM limits within the BI-SSb lobe. They 

found that on the Rio Cullen and San Sebastián drifts (assumed to be >350 ka) 

erratics showed relatively young exposure ages (generally <50 ka; Figure 2.6). In 

light of the Regional Stratigraphic Model (Meglioli, 1992; Coronato et al., 2004), 

Kaplan et al. (2007) proposed that episodic exhumation and erosion of the vast 

majority of the boulders during the gLGM had caused anomalously young ages, and 

that the oldest ages were closest to the true age of glacial advance. This was 

supported by the large range of cosmogenic nuclide exposure ages compared to 

other ice lobes in northern Patagonia (Kaplan et al., 2004; Douglass et al., 2005; 

Kaplan et al., 2005; Douglass et al., 2006). Evenson et al. (2009) presented a 

further twenty 10Be and 36Cl cosmogenic samples for the BI-SSb lobe. There is little 

discussion of the analyses, but they suggested that the Laguna Secas drift may 

have been deposited during MIS 4, rather than MIS 6, and that wave-washing may 

have occurred during isostatic depression following MIS 4. Conversely, Evenson et 

al. (2009) also pointed out that excessive boulder erosion is unlikely to have 

occurred at the same rate on all boulders over hundreds of thousands of years, thus 
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producing relatively tightly clustered ages. Kaplan et al.’s (2007) explanation for the 

spread of cosmogenic ages is logical and is not contradicted by the Evenson et al. 

(2009) results. However, it is based on fitting to the Regional Stratigraphic Model, 

which presumes that dating prior to cosmogenic nuclide exposure analysis was 

robust and the ages of the limits were relatively well known. 

This chapter has highlighted that independent age-constraint of the drifts prior to 

cosmogenic nuclide exposure dating was not as robust as suggested and that the 

interpretation of the cosmogenic ages may be worth revisiting. 

 

Figure 2.6. The age ranges of all 
10

Be analyses previously published for the study area (see 
text for details). Dates are labelled according to the drifts (and hypothesised ages according 
to the Regional Stratigraphic Model) to which they relate. 
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2.2.3 Terrestrial palaeoenvironmental reconstructions 

Previous studies have demonstrated links between glacial activity in southern South 

America and wider past environmental changes. This section briefly outlines a 

selection of the terrestrial reconstructions from the study area, focussing on pre-

Holocene records. These can be used to help interpret glacial activity, but may also 

be affected by new insights into the timing of glacial activity in the area. 

2.2.3.1 Vegetative reconstructions 

Markgraf (1993) used pollen records from across southernmost South America to 

show the succession of vegetation change towards Nothofagus forest into the 

Holocene. This was later supplemented by D/H stable isotopic analyses to improve 

the temperature and moisture reconstructions, suggesting increased precipitation 

after ca. 15 cal ka BP (Pendall et al., 2001). Heusser (1993; 1995; 2003) and 

Heusser et al. (2000) also reconstructed vegetation changes along the Strait of 

Magellan, demonstrating that tundra-like vegetation (e.g. Empetrum and Acaena) 

existed during the late glacial, consistent with a cooler, drier climate. The pollen 

record of McCulloch & Davies (2001) supported this, suggesting warming and 

retreat of the Magellan lobe from ca. 17.3 cal ka BP but cooler temperatures until ca. 

12.3-12.1 cal ka BP. They also suggested that a period of cooler and drier climate 

during ca. 15.3-12.1 cal ka BP altered vegetation composition at the same time as 

an ice re-advance during the Antarctic Cold Reversal. In the Skyring lobe, Kilian et 

al. (2007) showed a shift towards Magellanic Rainforest in the region after ca. 11 cal 

ka BP, possibly indicative of the end of a similar Antarctic Cold Reversal in this ice 

lobe. 

Markgraf (1993), Heusser (1995) and Pendall et al. (2001) all noted the importance 

of the Southern Westerly Winds in determining vegetation spread. More recent work 

on post-late glacial pollen records has also suggested a link between environmental 

changes and the wind system, possibly invoking the Southern Annular Mode 

(Moreno et al., 2009a; Moreno et al., 2010; Moreno et al., 2012; Moreno et al., 

2014), but using pollen records in this way to reconstruct changes in winds intensity 

may be problematic (Kohfeld et al., 2013). 

2.2.3.2 Dust records 

Patagonia is one of the dominant sources of southern hemispheric dust found in 

Antarctic ice-core records (Kaiser & Lamy, 2010; McGee et al., 2010; Wolff et al., 

2010a; Martinez-Garcia et al., 2011). Sugden et al. (2009) demonstrated a 
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theoretical and geochemical link between glacial activity in southern South America 

(including the Magellan lobe), dust availability, and pre-warming dust deposition in 

Antarctic ice-cores. They suggested that as glaciers retreated in Patagonia, large 

outwash plains were exposed, and became sources of atmospheric dust which is 

preserved in Antarctic ice cores (Fischer et al., 2007). Importantly, as ice retreated 

into proglacial lakes, the dust source was effectively switched-off, explaining an 

early reduction in Antarctic dust compared to global temperature rise after ca. 20 ka 

(Sugden et al., 2009). It is possible that dust resulting from fluctuations of 

Patagonian glaciers was one of the major drivers of Quaternary global climatic 

change (Lambert et al., 2008). 

2.2.3.3 The Potrok Aike record 

The Potrok Aike Maar lake is situated within the study area, to the east of the Río 

Gallegos lobe and north of the Skyring lobe, and deserves special mention because 

it has been the subject of intense study over the last five years (Zolitschka, 2009; 

Recasens et al., 2012; Zolitschka et al., 2013). The lake is suggested to have 

remained stable and relatively free of glacial and glaciofluvial activity over the last 

ca. 800 ka (Coronato et al., 2013), though a core record has been shown to cover 

only ca. 51 ka (Buylaert et al., 2013; Kliem et al., 2013b; Lisé-Pronovost et al., 2013; 

Wastegård et al., 2013). Nonetheless, this record has been used to reconstruct 

changes in a variety of palaeoevironmental parameters, including lake level (Kliem 

et al., 2013a) and Southern Westerly Wind intensity (Lisé-Pronovost et al., 2014; 

Zhu et al., 2014; Lisé-Pronovost et al., 2015), and transfer functions for pollen and 

diatoms have been developed from around 16 ka to aid palaeoenvironmental and 

climatic reconstructions (Massaferro & Larocque-Tobler, 2013; Schäbitz et al., 

2013). Many of these proxies are still in the developmental stages, but recent work 

using stable isotopes (Zhu et al., 2014) and mineral magnetic properties (Lisé-

Pronovost et al., 2015) over the last 51 ka may help to show how the Southern 

Westlery Wind system operated during periods of significant climatic change. It is 

likely that the Potrok Aike site will yield further invaluable environmental and climatic 

information for the study area in the future. 

2.3 Summary 

There has been much work on the reconstruction of glacial dynamics in 

southernmost South America, but there remain several key issues that would benefit 

from further investigation. Of particular interest are the causes for reduced glacial 

extent over time (Kaplan et al., 2009; Anderson et al., 2012) and the possibility of 
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highly dynamic ice lobes (Lovell et al., 2012). However, without understanding the 

time frame within which the ice lobes advanced, it is difficult to fully assess the 

nature of glacial change. 

There is significant uncertainty in the age of glacial limits in the study area. Meglioli 

(1992) proposed the Regional Stratigraphic Model of four drifts deposited after the 

GPG (Caldenius, 1932; Singer et al., 2004a). Weathering rind data was used to 

separate these drift deposits into four different glacial cycles (Meglioli, 1992). The 

age of the GPG has been well constrained by Meglioli (1992), Ton-That et al. (1999) 

and Singer et al. (2004a) using argon-dating of basalts capping the Bella Vista drift 

of the Río Gallegos lobe to ca. 1.1 Ma. Porter (1990) and Clapperton et al. (1995) 

provided infinite radiocarbon ages for the Punta Delgada and Primera Angostura 

drifts of the Magellan lobe and Rutter et al. (1989), Meglioli (1992), Clapperton et al. 

(1995) and McCulloch et al. (2005b) used amino acid racemisation analysis to 

suggest that the Primera Angostura drift of the Magellan lobe formed prior to the 

gLGM. The gLGM is well constrained for the Magellan and BI-SSb lobes (and, to an 

extent the Río Gallegos lobe) by a variety of chronological techniques. 

There are few, if any, firm age constraints for pre-gLGM limits in the region, and 

large uncertainty surrounds those of the BI-SSb lobe. Bujalesky et al. (2001) 

suggested that the Rio Cullen drift of the BI-SSb lobe may have formed the lower of 

two glaciofluvial terraces eroded by three raised marine terraces, which would imply 

that the Rio Cullen drift was followed by at least three interglacial cycles, although 

this link is ambiguous. Cosmogenic nuclide exposure dating by Kaplan et al. (2007) 

and Evenson et al. (2009) produced scattered dates, but dominantly < 50 ka. 

However, dates from limits older than the gLGM limit were called into question 

because they did not fit the Regional Stratigraphic Model. 

This leads to an important, but not previously discussed observation. Specifically, 

there is at least as much chronological evidence to suggest that the glacial limits 

deposited after the GPG, but before the gLGM, were part of an earlier advance 

during the last glacial cycle, as there is to suggest that they were from several 

previous glacial cycles. Clearly, robust age constraints from these limits are 

required, and this is a key motivation for this thesis. These may then have important 

implications for the interpretation of other palaeoenvironmental and climatic records 

in southernmost South America.  
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lobes of Patagonia: the Bahía Inútil - San Sebastián, Magellan, 
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Abstract 

 

This paper presents a glacial geomorphological map of the landforms created by 

five large ice lobes that extended eastwards from the southernmost reaches of the 

Patagonian Ice Sheet during the Quaternary period. The study is focussed on Tierra 

del Fuego, but also updates previous mapping of the Skyring and Otway lobes, and 

the resulting level of detail and extent is a significant advance on previous work in 

the region. The map has been created as the necessary precursor for an improved 

understanding of the glacial history of the region, and to underpin a programme of 

dating glacial limits in the region. It was produced using Landsat ETM+ and ASTER 

satellite imagery and vertical aerial photography, supplemented by Google Earth™ 

imagery and field-checking. Eleven landform types were mapped: moraine ridges, 

subdued moraine topography, kettle-kame topography, glacial lineations, irregular 

and regular hummocky terrain, irregular dissected ridges, eskers, meltwater 

channels, former shorelines and outwash plains. The map reveals three important 

characteristics of the glacial geomorphology. First, the geomorphic systems are 

largely dominated by landforms associated with meltwater (channels, outwash 

plains and kettle-kame topography). Second, there is a difference in the nature of 

landforms associated with the northern three ice lobes, where limits are generally 

marked by numerous clear moraine ridges, compared to those to the south, where 

hummocky terrain and drift limits prevail. Finally, cross-cutting landforms offer 

evidence of multiple advances, in places, which has implications for the timing of 

limit deposition, and thus for the design and interpretation of a dating programme. 
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3.1 Introduction 

Patagonia contains some of the longest and best-preserved records of glaciation in 

the world (Clapperton, 1993). Contemporary glaciation in the region is restricted to 

three ice caps: the North and South Patagonian and Cordillera Darwin Icefields 

(Figure 3.1). However, it has been demonstrated that these advanced and 

coalesced at various times during the Quaternary, as part of an extensive 

Patagonian Ice Sheet centred on the southern Andes (Caldenius, 1932; Meglioli, 

1992; Coronato et al., 2004; Glasser et al., 2008; Rabassa, 2008). Given its location 

in a region heavily influenced by important atmospheric and oceanic circulation 

systems, such as the Southern Westerly Winds and the Antarctic Circumpolar 

Current, Patagonia has received increasing attention in recent decades because it 

may yield insight into the mechanisms of climatic change in the Southern 

Hemisphere (Ackert et al., 2008; Kaplan et al., 2008a; Moreno et al., 2009b; Strelin 

et al., 2011; Murray et al., 2012; Boex et al., 2013) and help in understanding 

interhemispheric glacial (a)synchrony (Moreno et al., 2001; Sugden et al., 2005; 

García et al., 2012). Combined with the numerous palaeoenvironmental records that 

now exist across Patagonia, the timing and pattern of glacial changes may be used 

to infer changes in past climate (Sugden et al., 2005; Kilian & Lamy, 2012; Moreno 

et al., 2012).  

Extending these investigations beyond the gLGM, however, has thus far proven 

problematic for the southernmost parts of the region. This is partly due to the lack of 

a comprehensive mapping of glacial landforms at an appropriate scale (> 30 m 

resolution) and coverage (regional rather than local), and partly due to uncertainties 

in existing chronological data (Kaplan et al., 2007). As such, the aim of this paper is 

to produce a comprehensive map of the glacial geomorphology deposited by the 

southernmost ice lobes of the Patagonian Ice Sheet that builds on and extends 

previous work in terms of detail and coverage (Section 3.1.1.1). The map is 

designed to enable a refined reconstruction of the glacial history of the region using 

glacial inversion techniques (Kleman et al., 2006) and will be used as the foundation 

for dating glacial limits in the area, particularly the enigmatic pre-gLGM limits that 

have thus far proven contentious.  
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Figure 3.1. Location of the study area in southernmost Patagonia (topography shown using 
shaded SRTM and ETOPO data). Also shown are the present day icefields (numbered) and 
the Last Glacial Maximum (gLGM) limit according to Caldenius (1932); adapted from Singer 
et al. (2004a). 
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3.1.1 Study Area and Previous Work 

3.1.1.1 Previous Mapping 

This mapping focuses on an area into which the five southernmost ice lobes (the BI-

SSb, Magellan, Otway, Skyring and Río Gallegos lobes; Figure 3.2) advanced from 

the main Patagonian Ice Sheet. Previous work suggests that these lobes were 

substantially more extensive compared to others in Patagonia (Caldenius, 1932). 

Early work by Nordenskjöld (1899) and Bonarelli (1917) suggested that Patagonia 

had been previously glaciated – possibly several times – but it was the seminal work 

of Caldenius (1932) that first extensively mapped the glacial geomorphology of the 

region and suggested that several different stages of glaciation were recorded by 

the nested nature of the geomorphological limits. 

Subsequently, there have been several studies that have built upon this early 

mapping. Raedecke (1978) produced a geomorphological map of the Chilean side 

of the BI-SSb lobe. It highlighted the complex nature of the geomorphology, 

describing thrust and en echelon moraines as well as bands of drift deposits, but the 

extent of mapping was limited to the central depression of the BI-SSb lobe. In 

contrast, Meglioli (1992) mapped the surface features of the southernmost ice lobes 

at a much broader scale. The study focussed on drift and soil characterisation rather 

than glacial landforms, resulting in a map which could be considered a 

representation of surficial properties, rather than depicting glacial landforms. 

Nonetheless, this work established the current conceptual model for the pattern and 

timing of glaciations in the region using both relative and absolute dating techniques 

(Figure 3.2) and was summarised in Coronato et al. (2004). More recently, Glasser 

& Jansson (2008) produced an extensive geomorphological map of the whole 

Patagonian region. However, the nature of such large-scale mapping meant that the 

resolution was necessarily coarse and some of the subtle complexity in the 

geomorphology of individual ice lobes was not recorded. 

In contrast to Glasser & Jansson’s (2008) map, small regions of the hypothesised 

gLGM geomorphology in the study area have been mapped in detail by Clapperton 

et al. (1995), McCulloch & Bentley (1998), Benn & Clapperton (2000b), Bentley et al. 

(2005) and Sagredo et al. (2011). Bujalesky et al. (2001) also mapped an area of 

older glaciofluvial fans to the south of Bahía San Sebastián and Coronato et al.  

described the geomorphology surrounding the Aike maar, east of the Río Gallegos 

lobe. Additionally, Ercolano et al. (2004) described a drumlinised area within the Río 

Gallegos valley of the Río Gallegos lobe.  
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Lovell et al. (2011) produced a map of the glacial geomorphology within the Otway 

and Skyring lobes region (area shown in Figure 3.3). It was the most detailed map 

produced of the area and was subsequently used to interpret the glacial dynamics of 

the ice lobes, including surge-like advances and the development of pro-glacial 

lakes during retreat (Lovell et al., 2012). 

 

 

Figure 3.2. The location and previously hypothesised Marine Isotope Stage (MIS) chronology 
of drift limits within the study area (Meglioli, 1992; Rabassa et al., 2000; Singer et al., 

2004a). 
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Figure 3.3. Overview of the study area showing the locations of other figures. Also shown is 
the area mapped by Lovell et al. (2011), with red boxes highlighting the key areas that have 

been updated. 

 

3.2 Map production 

The map was produced using a combination of remote sensing analysis and field-

checking, with multiple types (and resolutions) of imagery consulted to provide a 

rigorous interpretation of the glacial geomorphology (Figure 3.4). The central BI-SSb 

area is shown in an enlarged inset to help improve the clarity of the geomorphology 

in this lobe, which is substantially more complex than in the other lobes. A copy of 

this map can be found in the Appendix. 

3.2.1 Imagery 

Across the region, Landsat ETM+ scenes from the Global Land Cover Facility 

(GLFC; http://www.landcover.org) were used for mapping. These cover an area of 

185 × 185 km and have a spatial resolution of 30 m (or 15 m in band 8). Landsat 

imagery was supplemented by Google Earth™ imagery (version 7, available from 

http://www.earth.google.com), consisting of 2013 Cnes/SPOT images and 2013 

DigitalGlobe images (up to ~5-15 m resolution). ASTER images from the NASA 

http://www.landcover.org/
http://www.earth.google.com/
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Land Processes Distributed Active Archive Centre (http://lpdaac.usgs.gov) were also 

used. These cover an area of 60 × 60 km, with a spatial resolution of 15 m. 

Aerial photographs were used in preference to satellite imagery, where available, 

and revealed significant complexity that had been missed from some previous 

maps. A total of 76 vertical aerial photographs were used (12 digital with ~5 m 

resolution; and 64 scanned hard copies with ~8 m resolution; both from the Servicio 

Aerofotométrico del la Fuerza Aérea de Chile; Figure 3.4). Where aerial 

photographs were not available, Google Earth™ often provided imagery of only 

slightly lower resolution. 

Shuttle Radar Topographic Mission (SRTM) data (3 arcsec data, 90 m resolution) 

from the GLFC depository were used to identify some features only visible as subtle 

changes in topography and to provide topographic context as a shaded relief 

greyscale background to the map. 

Field seasons during 2012 and 2013 allowed cross-checking of features mapped 

from remote imagery, although it was not possible to cover the entire area in detail 

(~80,000 km2) so fieldwork focused on key mapping elements (Figure 3.4).  

The study area includes an area around Seno Skyring and Seno Otway that was 

previously mapped by Lovell et al. (2011; Figure 3.3), and their mapping is included 

and updated here for two reasons. Firstly, not doing so would leave a large gap in 

the final geomorphological map, making it difficult to assess the complete 

geomorphology across the region. Similar mapping criteria and styles have been 

adopted here as in Lovell et al. (2011) to maintain consistency across the entire 

area. Secondly, extensive field-seasons in 2012 and 2013 have allowed field-

checking of the previous work for the first time, and we have updated the mapping 

based on this (Figure 3.3). 

 

http://lpdaac.usgs.gov/
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Figure 3.4. The spatial coverage of different imagery used during mapping. Inset shows the 
approximate area in which field-checking was conducted. Spatial (pixel) resolution of the 
different imagery is given in the key. 

 

 

 

 

 

 

 

 

Table 3.1. Summary of the morphology, appearance and possible errors in mapping 
geomorphological features. The visibility of features on different imagery is also indicated: 
plus signs mean that features are normally visible; minus signs mean that features may 
sometimes be visible; and no sign indicates that features are not normally visible on the 
imagery. 
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Moraine 
ridges 

Distinctive linear or 
curvilinear ridges deposited 
at the ice margin or in 
medial positions. 

Arcuate ridges of positive relief (indicated by darker/lighter 
shading on opposing sides). Often, following the direction of 
fragmentary ridges leads to the identification of further 
features. 

Medial moraines could have been missed as they 
would be particularly difficult to identify under these 
criteria. Ridges and shorelines could potentially be 
confused. Often only visible in aerial photos. 

- - - + + + 

Subdued 
moraine 
topography 

Similar to ridges but much 
wider and with lower 
elevations, and break-of-
slope not as clear. 

Subtle changes in topography, with or without change in 
surface texture, which may be overprinted by more distinct 
features. Sometimes visible in the field and on SRTM data, 
very occasionally visible on aerial photographs or Landsat 
imagery. 

Almost certainly missed where ground-truthing was 
not possible or where they were not visible on 
SRTM. Difficult to pick-out on the ground and very 
difficult to identify from imagery. 

- -  - - + 

Kettle-kame 
topography 

Large belts consisting of 
disorganised hills and 
hollows. 

Distinctive areas with a pock-marked appearance, consisting 
of hills and sometimes small lakes. May contain ridges. 

Can become discontinuous in lower areas associated 
with outwash. Sometimes difficult to distinguish drift 
from terrain that has simply avoided meltwater. 
Texture can vary significantly (with the presence of 
kettle lakes, the shape of hills). 

- + + + + - 

Glacial 
lineations 

Linear, parallel landforms 
aligned to the direction of 
ice-flow. 

Linear features following the inferred direction of ice-flow 
and generally perpendicular to moraines, often occurring in 
groups. Not specifically associated with breaks in vegetation 
and often appear dark on one side and light on the other, 
indicating positive relief. 

Can be short and consequently difficult to identify, 
even on aerial photos (often invisible on 
Landsat/ASTER). Fence lines could be mistaken for 
lineations, and the features are often disrupted by 
small lakes or (melt)water drainage. 

 - - + + - 

Irregular 
hummocky 
terrain 

Areas of small, disorganised 
hills. 

Subtle patches of hills showing no obvious order and only 
visible in aerial photography. 

Only visible on aerial photographs, and therefore 
could have been missed in areas with no coverage. 
The boundaries of the hummocky areas can be 
difficult to discern. 

   - + + 
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Regular 
hummocky 
terrain 

Groups of small hills, 
elongated into small ridges 
and mirroring patches of 
small moraine ridges. 

Extremely subtle and only visible on high-resolution aerial 
photography. ‘Order’ is in the apparent form of several 
hummocks joined into a small ridge. These very short ridges 
are difficult to discern in the field without the aid of the 
aerial photography. 

Will be missed in areas not covered by high-
resolution aerial photography. The organised nature 
frequently becomes apparent only once numerous 
ridges have been mapped. 

    - + 

Irregular 
dissected 
ridges 

Groups of larger hills or 
constrained areas of higher 
relief, sometimes delineated 
by minor meltwater 
channels. 

Patches of raised topography, often marked by changes in 
surface texture or vegetation. Sometimes show a mosaic-
like pattern, divided by meltwater channels. 

Drainage can sometimes give the illusion of ridges. 
Actual changes in topography are often difficult to 
see in imagery, so identification can become over-
reliant on vegetation changes. 

 + + - - - 

Eskers 
Sinuous ridges, generally 
running sub-parallel to 
former ice flow. 

Sinuous ridges showing a change in colour due to the 
shadowing caused by positive relief. 

Difficult to identify. Moraine ridges, lineations 
(especially when deformed) or meltwater channels 
could be mistaken for eskers. 

  - - - - 

Meltwater 
channels 

Channels formed by large 
amounts of water from 
melting ice, often not 
containing contemporary 
drainage. 

Generally sinuous in form and often occurring in 
combination with moraine ridges, running against 
contemporary slope. Frequently do not follow modern 
drainage routes or contain modern drainage, though this is 
not universal. 

Often filled with contemporary drainage even 
though fieldwork has demonstrated they are over-
sized and were once filled with – or created by – 
meltwater. 

- - - + + - 

Former 
shorelines 

Raised terraces marking the 
previous level of a body of 
water (either sea-level or a 
lake). 

Normally parallel to the coast or an area occupied by a lake 
and forming concentric lines without relief on one side 
(shown by shading). Shoreline level is either flat or grades 
evenly along its length. 

Often discontinuous and may become difficult to see 
when their direction changes, particularly in satellite 
imagery. May be missed where the location of a 
palaeo-lake is unknown, and difficult to distinguish 
from moraine ridges. 

 - - - - - 

Outwash 
plains 

Large areas of material 
deposited by meltwater in a 
flattened, grading plain. 

Large, open, approximately flat surfaces, grading to a 
previous ice limit (marked by moraine ridges, drift, etc), and 
often dissected by meltwater channels. Generally 
distinguished by a clear block change in colour and texture 
on Landsat imagery. 

Exact limits of outwash are often difficult to define. 
Surface grading is often only apparent in the field or 
over large distances on SRTM. Often form narrow 
corridors, so can be difficult to distinguish from 
channels. 

 + - + + + 

Lakes 
Bodies of water surrounded 
by land (with no link to the 
sea). 

Blue, black or white in colour imagery; white or black in 
monochrome. Clearly delimited areas often linked to local 
drainage. Where transient, can show eastward migration 
patterns linked to westerly winds. 

Not always obvious in aerial photos (a counterpart 
photo is sometimes necessary). Extent of many lakes 
is very seasonally variable – so their size can vary in 
different imagery and in the field. 

 + + + + + 

Volcanic 
craters 

Hollows formed by volcanic 
eruptions. 

Rounded or elliptical and generally creating linear fields. Unlikely to be mistaken for glacial geomorphology. - + + + + - 
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3.2.2 Geomorphological mapping 

In total, eleven different glacial features were mapped as line and/or polygon 

symbols using ArcMap 10 software: moraine ridges, subdued moraine topography, 

kettle-kame topography, glacial lineations, irregular hummocky terrain, regular 

hummocky terrain, irregular dissected ridges, eskers, meltwater channels, former 

shorelines, and outwash plains. Lakes and prominent volcanic craters were also 

mapped to provide landscape context and because these systems have been used 

in previous dating studies in the region. 

3.3 Glacial geomorphology 

The glacial geomorphological features mapped in this study are summarised in 

Table 3.1 in terms of their morphology, appearance and any uncertainties in their 

identification. 

3.3.1 Moraine ridges 

Moraine ridges are linear or curvilinear, elongate features exhibiting positive relief. 

They may be level-crested or undulating, continuous or fragmentary, but are 

distinguished by their linearity and consistency with formerly expanded ice margins. 

In places, they may overprint lineations (Section 3.3.4) and subdued moraine 

topography (Section 3.3.2; Figure 3.5), and can coincide with areas of kettle-kame 

topography (Section 3.3.3) and irregular hummocky terrain (Section 3.3.5). Ridges 

are often discontinuous, and it is rare to find complete lateral-terminal moraine 

systems, with the exception of the Otway lobe, where continuous ridges run for tens 

of kilometres. These features range from small, fragmentary crested ridges, often up 

to a few hundred metres long and less than 10 metres high (only visible on aerial 

photography and in the field in the BI-SSb and Magellan lobes; Figure 3.5), up to 

larger, continuous or semi-continuous hilly ridges, which are up to tens of kilometres 

long and tens of metres high, such as those delineating the Skyring and Otway 

lobes. 

Much of what Glasser & Jansson (2008) mapped as moraine ridges in the BI-SSb 

and Magellan lobes, we map as hummocky terrain or kettle-kame topography 

because they form wide areas of hilly terrain rather than narrow elongate ridges. 

This is likely due to a difference in mapping criteria and resolution of imagery used, 

which may also help explain differences in mapping between Glasser & Jansson 

(2008) and Lovell et al. (2011). There is generally good agreement between our 

mapping and that of Clapperton (1995), McCulloch & Bentley (1998), Benn & 
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Clapperton (2000b), Bentley et al. (2005) and Coronato et al. (2013) who all worked 

at a higher spatial resolution. 

3.3.2 Subdued moraine topography 

These are somewhat elusive features, occurring mainly in the BI-SSb lobe, but also 

in the Río Gallegos lobe. They exist as subtle changes in relief, generally not more 

than 10 metres high and up to a kilometre wide, which are parallel to the orientation 

of moraine ridges. The features are distinguished as vegetation changes in some 

places on Landsat imagery and/or very low-relief changes on SRTM data and field-

observations helped to confirm their existence. North of Laguna Larga, in the BI-SSb 

lobe, the moraines exhibit regular fragmentation (Figure 3.5). 

The subdued moraines are significantly broader than moraine ridges and are not 

sharp-crested. Likewise, they are very low relief and low gradient, and are thus 

unlike hummocky terrain. It is suggested that both moraine ridges and hummocky 

terrain may be overprinted on the subdued moraines (Figure 3.5). These features do 

not seem to have been mapped previously. 

3.3.3 Kettle-kame topography 

Kettle-kame topography is common within the BI-SSb and Magellan lobes. Unlike 

moraine ridges, the drift constitutes wide bands (often > 2 km) of an irregular 

mixture of hills and hollows, some containing small kettle-lakes. The kame hills can 

be greater than 10 m high and rarely show any regularity in their arrangement. Other 

studies have depicted these deposits as moraine ridges (Clapperton et al., 1995; 

McCulloch & Bentley, 1998; Bentley et al., 2005; Glasser & Jansson, 2008), which is 

understandable given that the drift and ridges both record ice advance limits. 

However, we here follow Raedecke (1978) and Benn & Clapperton (2000b) in 

mapping the drift as a distinct feature given its clarity in imagery and on the ground. 

It is particularly prominent as two large, distinctive belts within the BI-SSb lobe 

(Figure 3.6), forming the Rio Cullen and San Sebastian drift limits of Meglioli (1992; 

previously mapped by Caldenius, 1932). 
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Figure 3.5. (A) Aerial photograph and (B) the mapped features in the central depression of 
the BI-SSb lobe. Thin, low moraine ridges (mapped as purple lines) are indicated by the 
black arrows and drape across the subdued moraine topography (mapped as pink polygons) 
and lineations (black lines). Locations shown in Figure 3.3. (C) Field photograph of one of 
these moraine ridges draped over subdued moraine topography; location shown in (A) and 
(B) by black circle with arrow. (D) Field photograph of the larger moraines in the Skyring 
lobe, separated by expansive outwash. Heights in metres above sea level (m.a.s.l.) are 
shown for the moraines and outwash plain. 
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Figure 3.6. Kettle-kame topography on the northern edge of the BI-SSb lobe. (A) Landsat 
ETM+ (bands 4, 3, 1) showing the characteristic pock-marked appearance of the drift. (B) 
Mapped bands of drift (purple polygons), separated by outwash surfaces (yellow polygons). 
Location shown in Figure 3.3. 

 

3.3.4 Glacial lineations 

Glacial lineations form beneath an ice sheet and are aligned with ice flow direction 

(Clarhäll & Jansson, 2003). They occur frequently throughout the study area, from 

scattered and subdued flutings (< 1m high) to tightly constrained clusters of classic 

oval-shaped drumlins tens of metres high (Figure 3.7). Where the break of slope 

could be readily identified, lineations were mapped as polygons, but this was only 

possible in localised, well-defined drumlinised areas, centred around the Skyring 

and Otway lobes (Lovell et al., 2011). Elsewhere, and particularly in the BI-SSb 

lobe, the lineations are mapped as lines.  

Raedecke (1978), Benn & Clapperton (2000b), and Glasser & Jansson (2008) also 

mapped lineations but identified fewer features. For example, we map a significant 

number of lineations within the BI-SSb lobe, which overlie subdued moraine 

topography and are cross-cut by moraine ridges. Ercolano et al. (2004) noted a 

swath of elongated drumlins within the Río Gallegos lobe geomormorphology, but 

did not map them individually. 
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Figure 3.7. Glacial lineations in the study area. (A) Aerial photograph showing a tightly 
clustered field of low-relief flutings on the coast of Bahía Inútil and (B) the flutings mapped as 
black lines. Shorelines are also shown running parallel to the coast (light blue lines). The 
circle and arrow in (A) show the direction of the field photograph in (C), looking across the 
flutings which have been highlighted with white lines; locations shown in Figure 3.3. At the 
other end of the scale, (D) shows a field photograph of the much larger, sharp-crested 
drumlins in the Laguna Cabeza del Mar field of the Otway lobe (see map). 

 

3.3.5 Irregular hummocky terrain 

We present two forms of hummocky terrain in the study area (irregular and regular), 

and opt for this nomenclature rather than hummocky moraine (Lukas, 2005; Graham 

et al., 2007; Lukas, 2007) or controlled moraine (Evans, 2009) to avoid genetic 

inference. In the field, the hummocky terrain appears as patches of small, semi-

rounded hills, rarely more than five metres high (and often less) and ten metres 

across. Irregular hummocky terrain is significantly more extensive than the regular 

version (Section 3.3.6) and lacks an organised pattern (Figure 3.8). Raedecke 

(1978) mapped these features in some parts of the BI-SSb lobe as kettle-kame 

deposits, forming semi-lobate areas in the centre of the depression. We distinguish 

hummocky terrain from kettle-kame topography (Section 3.3.3) on the basis of a 

significant difference in scale, highlighted by the difference in visible resolution 

(Table 3.1) and a general lack of obvious kettle-holes. Similarly to Raedecke (1978), 
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we also mapped a semi-lobate pattern, and we also note that the feature is 

exclusive to the BI-SSb lobe. 

3.3.6 Regular hummocky terrain 

Regular hummocky terrain is rare in the study area and consists of two or three 

small interconnected hills, forming ridges transverse to ice-flow (Figure 3.8). These 

features are distinguished from irregular hummocky terrain on the basis of their 

ridge-like nature and clear orientation. They differ from moraine ridges because the 

interconnected hills are very short and discontinuous, not marking a clear ice-

marginal limit. The main location of the features is north of Laguna Larga (Figure 

3.8). It should be noted that both forms of hummocky terrain could only be mapped 

from aerial photographs, and may have been missed in areas where aerial 

photography was unavailable (Figure 3.4). This makes it difficult to ascertain 

whether the features are inherently related to the dynamics of the BI-SSb lobe, 

explaining its prevalence there, or whether this is due to differences in imagery 

coverage. This may also explain why these features have not been mapped 

previously. 

3.3.7 Irregular dissected ridges 

Lovell et al. (2011) mapped features to the north of the Skyring lobe which they 

described as irregular dissected ridges (IDR), similar to features mapped by Storrar 

& Stokes (2007) and Greenwood & Clark (2008). Lovell et al. (2011) noted that 

these features tend to be characterised by interweaving meltwater channels. This is 

clearly the case in some settings, but extended mapping of the IDR reveals that 

channels are not always present (Figure 3.9). Like the subdued moraine ridges 

(Section 3.3.2), the IDR are identifiable on Landsat and Google Earth™ imagery due 

to changes in vegetation, but their low relief means that, in the field, they are 

clearest where meltwater channels are cut between them. 

Mapping of the Río Gallegos geomorphology highlights the presence of a large 

swath of lineations to the north of the IDR, oriented south-easterly, which were just 

beyond the mapping limit of Lovell et al. (2011). Consequently, it is now clear that 

the IDR sit in the junction between lineations of the Río Gallegos lobe and moraines 

of the Skyring lobe (Figure 3.9). 

3.3.8 Esker 

We found no further evidence of eskers in the study site beyond the one mapped by 

Clapperton (1989) and Lovell et al. (2011) to the north east of Laguna Cabeza del 
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Mar. In the field, this feature was consistent with the sinuous ridge-like form of an 

esker, but a lack of sedimentary exposures prevented further investigation. 

3.3.9 Meltwater channels 

A large number of meltwater channels are mapped in the study area. We identify 

these features as routes following previous ice-marginal positions, and sometimes 

flowing across the topographic slope, or issuing from a former ice margin and often 

– though not exclusively – containing no contemporary drainage. Some of these, 

particularly in northern Tierra del Fuego, are more than 600 m wide and contain 

narrow outwash corridors. It is suggested that much of the meltwater associated 

with the BI-SSb lobe occupied pre-existing drainage channels, probably re-shaping 

them to some degree. Throughout the study area, much of the contemporary 

drainage naturally follows the numerous larger meltwater channels, which do not 

exclusively run laterally, appearing as meandering mis-fit streams. Like Bentley et 

al. (2005), we also find that meltwater channels are clearer and better-preserved 

than much of the other geomorphology, often forming better indications of former 

ice-limits than moraines. 

3.3.10 Former shorelines 

Shorelines show a stepped, terrace-like change in relief and often run parallel to 

contemporary coastlines and lakes (Figure 3.7). Though roads or moraine ridges 

may be misidentified as shorelines from remote imagery, particularly where 

resolution is poor, they are generally clear in the field. In addition to shorelines within 

the Skyring lobe (Lovell et al., 2011), further examples of this feature have been 

mapped within the Río Gallegos lobe and around the coast of Bahía Inútil, 

supporting previous mapping (Bentley et al., 2005; Glasser & Jansson, 2008; 

Sagredo et al., 2011). 

3.3.11 Outwash plains 

The eastern part of the study area is dominated by glaciofluvial outwash plains. 

These are expansive surfaces of sands and gravels which gently grade away from 

former ice limits. The plains are identifiable on Landsat imagery as smooth, 

featureless surfaces, often emerging from the downstream ends of large meltwater 

channels (Figure 3.6). Coronato et al. (2013) highlighted the presence of differing 

terrace levels in outwash associated with the Río Gallegos lobe, and our fieldwork 

suggests that similar terraces, indicating multiple stages of outwash development, 

exist in parts of all four other lobes. However, given the difficulty in mapping different 
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outwash terraces from imagery, the features have been mapped as single units. 

This has the benefit of simplifying the representation of outwash, but should be 

taken into consideration when using the mapping to reconstruct glacial history. 

Where clear meltwater channels can be identified within the outwash, these have 

been mapped separately. 

 

 

Figure 3.8. (A) Aerial photograph and (B) mapped equivalent of the regular (yellow lines) and 
irregular (green polygons) hummocky terrain. Due to their ordered-nature and visibility on 
higher resolution aerial photographs, the regular hummocky terrain can be mapped as 
individual line features rather than grouped polygons. Location shown in Figure 3.3. 
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Figure 3.9. (A) Landsat ETM+ image (bands 4, 3, 1) and (B) mapped equivalent showing the 
intersection between lineations (black lines) and irregular dissected ridges (brown polygons) 
between the Skyring (to the south) and Río Gallegos (to the north and west) lobes. Also 
shown are moraine ridges as purple lines, meltwater channels as blue lines and outwash as 
yellow polygons. Location shown in Figure 3.3. 
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3.4 Summary and conclusions 

This paper presents a new, comprehensive map of unprecedented detail of the 

glacial geomorphology in an area once covered by the five southernmost ice lobes 

of the former Patagonian Ice Sheet. Mapped features include moraine ridges, 

subdued moraine topography, kettle-kame topography, glacial lineations, irregular 

hummocky terrain, regular hummocky terrain, irregular dissected ridges, an esker, 

meltwater channels, former shorelines, and outwash plains, many of which have not 

been previously recorded. This map will underpin further work on the glacial history 

of the ice lobes and will provide the necessary context for robust dating of the glacial 

limits. It also provides a useful test for numerical ice-sheet modelling in the region. 

Preliminary conclusions highlight three important characteristics of the glacial 

geomorphology: 

1. The glacial geomorphology is dominated by landforms associated with 

meltwater (channels and outwash plains) and possibly indicative of 

deposition in a slow-moving or stagnant outlet (kettle-kame topography and 

hummocky terrain). This contrasts with discrete areas of large, well-defined 

lineations within the inner reaches of the Magellan and Otway lobes, 

hypothesised to result from more active ice-streaming (Lovell et al., 2012). 

2. Moraines to the north differ markedly from those to the south. In the Otway, 

Skyring and Río Gallegos lobes, limits are generally marked by numerous 

clear moraine ridges, which are continuous or semi-continuous and relatively 

sharp-crested. By contrast, the BI-SSb and Magellan lobes are characterised 

and delimited by hummocky terrain and kettle-kame topography. 

3. Cross-cutting landforms offer clear evidence of multiple advances in places, 

which may have implications for the timing of limit deposition, and thus the 

dating programme. This is clearest in the BI-SSb lobe, where lineations and 

moraine ridges overlie and cross-cut subdued moraine topography; 

indicating at least two stages of advance at that location.  

3.5 Software 

Image processing and mapping was carried out using ESRI ArcMap 10. Some 

image processing, such as layer-stacking and mosaicking, was conducted using 

ERDAS Imagine 9.3. The final geomorphological map was produced in Adobe 

Illustrator CS4. 
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Abstract 

 

Erratic boulder trains (EBTs) are a useful glacial geomorphological feature because 

they reveal former ice flow trajectories and can be targeted for cosmogenic nuclide 

exposure dating. However, understanding how they are transported and deposited 

is important because this has implications for palaeoglaciological reconstructions 

and the pre-exposure and/or erosion of the boulders. In this study, we review 

previous work on EBTs, which indicates that they may form subglacially or 

supraglacially but that large angular boulders transported long distances generally 

reflect supraglacial transport. We then report detailed observations of EBTs from 

Tierra del Fuego, southernmost South America, where their characteristics provide a 

useful framework for the interpretation of previously published cosmogenic nuclide 

exposure dates. We present the first comprehensive map of the EBTs and analyse 

their spatial distribution, size, and physical appearance. Results suggest that they 

were produced by one or more supraglacial rock avalanches in the Cordillera 

Darwin and were then transported supraglacially for 100s of kilometres before being 

deposited. Rock surface weathering analysis shows no significant difference in the 

weathering characteristics of a sequence of EBTs, previously hypothesized to be of 

significantly different age (i.e., different glacial cycles). We interpret this to indicate 

that the EBTs are much closer in age than previous work has implied. This 

emphasises the importance of understanding EBT formation when using them for 

cosmogenic nuclide exposure dating. 
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4.1 Introduction 

Erratic boulder trains (EBTs) are a poorly understood glacial geomorphological 

feature. These linear clusters of erratic boulders record the flow lines of former 

glaciers by pinpointing the parent rock from which they have originated (Kujansuu & 

Saarnisto, 1990; Evans, 2007) and have frequently been targeted for cosmogenic 

nuclide exposure dating (Jackson et al., 1997; Jackson et al., 1999; McCulloch et 

al., 2005b; Kaplan et al., 2007; Ward et al., 2007; Kaplan et al., 2008a; Evenson et 

al., 2009; Vincent et al., 2010; Wilson et al., 2012). Consequently, they offer a 

valuable tool for reconstructing the nature and timing of former glacial advances. 

Despite their importance to palaeoglaciology, these features are rarely reported in 

detail, and understanding their formation will help contextualise dating studies. This 

paper brings together previous literature on EBTs to assess how they form and 

presents detailed observations of examples from Tierra del Fuego, southernmost 

South America. The Tierra del Fuego EBTs make an excellent case study because 

they are well preserved and easily distinguishable. They have also been 

investigated using cosmogenic nuclide exposure dating, but the resultant ages can 

be interpreted in two quite different ways (McCulloch et al., 2005b; Kaplan et al., 

2007; Evenson et al., 2009). This study aims to test between these two opposing 

hypotheses by combining spatial and volumetric measurements with weathering 

proxies to gain a better understanding of EBT formation. In this way, we test the 

interpretation of cosmogenic nuclide exposure dates. 

4.2 Definition and previous work on erratic boulder trains 

The EBTs are a subset of dispersal trains, which includes any dispersal of a 

particular lithology by former ice flow (DiLabio, 1981; Dyke & Morris, 1988; DiLabio, 

1990; Evans, 2007). However, whilst EBTs are linear clusters of boulders, other 

dispersal trains are not necessarily linear or clustered and can include a wide range 

of grain sizes: surficial and within glacial deposits. Given the lack of any previous 

compilation in the literature, we begin by providing a brief review of the limited 

number of detailed studies of EBTs, summarised in Figure 4.1 and Table 4.1, 

focusing on their formation and dating. It is likely that other EBTs exist, but they are 

rarely reported in the literature and are often only given cursory mention in wider 

studies.
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Table 4.1. Summary of the key characteristics of EBTs based on a review of the literature (NR = Not Reported). 

EBT name Location 
Length of 
train(s) 

Max. 
distance 
from 
source 

Boulder 
diameter 

Lithology 
Suggested transport 
pathway 

CNE 
dated? 

Age References 

Foothills Canada > 580 km >580 km 1 - 41 m 
Quartzite and 
pebbly 
quartzite 

Supraglacial 
36

Cl 18 - 12 ka 
Stalker (1956); Mountjoy (1958); Stalker 
(1976); Jackson et al. (1997); Jackson et 
al. (1999); Jackson & Little (2004) 

Athabasca 
valley 

Canada ca. 70 km 
ca. 120 
km 

Up to 
1 m 

Metamorphic 
schist 

Supraglacial 
- 

- Roed et al. (1967) 

Ruby 
Range 

Canada ca. 5 km ca. 5 km 
Some  
> 1.5 m 

NR NR 
10

Be 54 - 51 ka Ward et al. (2007) 

Snake 
Butte 

USA ca. 79 km 
ca. 80 
km 

Up to 
23 m 

Shonkinite Subglacial? - - Knechtel (1942) 

Assynt Scotland 
9 - 14 km 
(4 trains) 

>9 km NR Sandstone NR - - Lawson (1990); Lawson (1995) 

Norber England > 1 km >1 km 
Up to 
4 m 

Greywacke 
Likely subglacial over a 
short distance 

36
Cl 22 - 17 ka 

Davis (1880); Goldie (2005); Huddart 
(2002); Vincent et al. (2010); Wilson et al. 
(2012) 

Foxdale Isle of Man Up to 1 km ≤2 km 
Up to 
1 m 

Granite Subglacial 
- 

- 
Roberts et al. (2007); Roberts (pers. 
comm.) 

Bunger 
Hills 

Antarctica 
Up to 
4 km? 

≤4 km NR Dolerite 
Subglacial but only a 
short distance 

- - 
Adamson & Colhoun (1992); Augustinus 
et al. (1997) 

Allan Hills Antarctica  Up to 3km? ≤3 km 
Up to 
3 m 

Sandstone Subglacial - - Atkins et al. (2002) 

Monolith 
Lake 

Antarctica ca. 9 km 
ca. 12 
km 

Up to 
5 m 

Hyaloclastite Likely supraglacial - - Davies et al. (2013) 

Tierra del 
Fuego 

Chile / 
Argentina 

4 - 15 km 
(4 trains) 
95 km total 

ca. 250 
km 

Up to 
21 m 

Granodiorite Supraglacial 

10
Be 

26
Al 

36
Cl 

222 - 15 
ka 

Darwin (1841); Meglioli (1992); Coronato 
(1999); Bentley et al. (2005); McCulloch 
et al. (2005b); Kaplan et al. (2007); 
Kaplan et al. (2008a); Evenson et al. 
(2009); 
This study 
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Figure 4.1. Map showing the locations of erratic boulder trains reviewed in this paper (see 
Section 4.2). 

 

4.2.1 Formation: subglacial versus supraglacial 

No single model for the formation of EBTs exists, and it is possible that they can be 

formed in a variety of ways. This is not surprising given the reported variety in 

boulder size, train length, number of boulders, transport distance, and lithology 

(Table 4.1). Two hypotheses prevail: (i) subglacial entrainment and (ii) supraglacial 

debris. 

The Norber EBT in England, Foxdale EBTs on the Isle of Man, Bunger Hills EBT 

and Allan Hills EBT in Antarctica, and Snake Butte EBT in the USA (see Figure 4.1 

and Table 4.1) are all interpreted to have formed subglacially. The Norber boulders 

have been transported laterally more than 1 km and 120 m vertically upward from 

their source lithology (Huddart, 2002; Wilson et al., 2012). Given that the ice flowed 

over the source outcrop (Vincent et al., 2010), we suggest that subglacial transport 

of the boulders is most probable (although the formation mechanism has not been 

investigated further). The two Foxdale boulder trains were interpreted to have been 

initially transported and deposited subglacially by ice flowing southeastward, but 

with subsequent ice flowing southwestward and dispersing the larger train 

subglacially across a broader area of the southern part of the island (Roberts et al., 

2007). In the Bunger Hills, Augustinus et al. (1997) suggested that a lack of glacial 

polish or facetting on the boulders implied subglacial transport over only a very short 

distance, thereby explaining the limited extent of the EBT. Likewise, Atkins et al. 

(2002) considered the boulders of the Allan Hills EBT to have been eroded by 
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plucking of the Beacon sandstone bedrock prior to subglacial dragging and 

deposition on the stoss side of a bedrock ridge. Knechtel (1942) suggested that 

striations and polished surfaces of boulders of the Snake Butte EBT resulted from 

transport at the base of ice flowing southeastward and that they were then deposited 

with ground moraine. 

In contrast, the Foothills EBT and Athabasca Valley EBT in Canada, Monolith Lake 

EBT in Antarctica, and Tierra del Fuego EBTs in Chile/Argentina, are all suggested 

to have formed from material being deposited onto ice and then transported 

supraglacially. The Foothills boulder train formed in a medial ice position as two 

lobes converged around a nunatak and show no signs of subglacial transport 

(Jackson & Little, 2004). Similarly, the friable nature of the Monolith Lake boulders 

means that they are only likely to have survived if transported supraglacially (Davies 

et al., 2013). Meglioli (1992), Bentley et al. (2005), McCulloch et al. (2005b), and 

Evenson et al. (2009) all noted the tight distribution, large size, angularity, and 

monolithology of the boulders on Tierra del Fuego, which are unlikely to have 

survived subglacial erosion and are instead indicative of supraglacial transport 

(Evenson et al., 2009). 

The transport pathway has important implications for the likely exposure and 

depositional history of a boulder train. Few detailed studies of EBTs exist to be able 

to clearly define their formation based on physical characteristics. However, our 

synthesis of previously published data suggests an apparent trend between 

transport distance, boulder size, and the proposed transport pathway (Figure 4.2), 

with those moved greater distances (e.g. > ~10 km) more likely to have been 

transported supraglacially. The relationship with boulder size is unsurprising given 

the association between transport pathway and boulder erosion (Boulton, 1978), but 

it is important in the context of erratic dispersal more generally. For example, the 

principles of ‘half-distance’ transport (Salonen, 1986) and concentration peaks 

(DiLabio, 1981; 1990; Boulton, 1996) may better relate to subglacial EBTs, whereas 

supraglacial EBTs are also controlled by the maximum transport distance and the 

preservation potential of the boulders. 
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Figure 4.2. Maximum boulder diameter plotted against the maximum distance of boulders 
from their source lithology (note the log scale), as reported in studies of EBTs (labelled as 
per Table 4.1). Our review of the literature suggests that EBTs consisting of larger boulders 
(> 5 m) transported greater distances (> 10 km) are more likely to have been transported 
supraglacially. The Snake Butte EBT is an exception to this pattern; Knechtel (1942) inferred 
subglacial transport of these boulders. Of the reported studies, lithology does not appear to 
play a key role in determining the preservation of boulder trains through supraglacial or 
subglacial transport. 

 

4.2.2 Cosmogenic nuclide exposure dating 

The EBTs are useful targets for cosmogenic nuclide exposure dating, with the 

added benefit of being able to trace the source and transport pathway of the 

samples.  The Foothills boulder train in Canada was dated using 36Cl by Jackson et 

al. (1997; 1999), yielding dates of 18-12 ka and demonstrating the limits of the 

Laurentide Ice Sheet during its LGM. The dates implied a maximum transport time 

of ca. 3 ka (< 17% of the total exposure time; Jackson & Duk-Rodkin, 1996; Jackson 

et al., 1997) and yielded one anomalously old age of ca. 53.3 ka, which Jackson et 

al. (1997) ascribed to pre-exposure. 

The Norber boulder train in England was also dated to around 22-17 ka using 36Cl, 

which helped establish the timing of deglaciation in the region (Vincent et al., 2010; 

Wilson et al., 2012). The 10Be dates from the Ruby Range boulder train in Canada 

were clustered and suggested that the train was deposited during the penultimate 

glacial episode, with dates of 54-51 ka (Ward et al., 2007). The authors suggested 

no significant influence of inheritance given that the same pre-exposure prior to 

deposition of all four samples is unlikely (Ward et al., 2007), and subglacial transport 
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of the Norber and Ruby Range boulders may have removed any inheritance signal. 

Statistical modelling of supraglacial erosion and transport of boulders has also 

suggested that these processes can yield dateable inheritance signatures in erratic 

boulders (Applegate et al., 2010; Heyman et al., 2011; Applegate et al., 2012). 

As noted above, the Tierra del Fuego EBTs have been targeted for cosmogenic 

nuclide exposure dating (McCulloch et al., 2005b; Kaplan et al., 2007; Kaplan et al., 

2008a; Evenson et al., 2009). The established regional age model for the timing of 

glaciations implies that a series of four glacial limits are successively less extensive 

(i.e., ‘nested’) and correspond to different glacial cycles: MIS 12, 10, 6, and 2 

(Figure 4.3). This is based on palaeomagnetism, uranium-series dating, correlation 

between marine terraces, and relative weathering indices and augmented by 

radiocarbon, amino acid racemization, and tephra dating of the younger limits 

(Meglioli, 1992; Coronato et al., 2004; Rabassa, 2008; Rabassa et al., 2011; and 

references therein). Published cosmogenic nuclide exposure dates from two EBTs 

on the MIS 2 gLGM limit close to Bahía Inútil cluster around 20 ka (Figures 4.3, 4.4 

and 4.5) and agree well with radiocarbon dates of deglaciation in the region 

(Heusser, 2003; McCulloch et al., 2005b; Kaplan et al., 2008a; Hall et al., 2013). 

However, two EBTs on the outer two limits yielded dates significantly younger than 

expected, dominantly between 30 and 15 ka for the putative MIS 12 limit (n = 7) and 

two dates of 24 and 222 ka for the putative MIS 10 limit (Kaplan et al., 2007; 

Evenson et al., 2009). 

Our review of the literature highlights that EBTs can form in different ways, with 

different erosion, transport, and depositional histories. For supraglacial EBTs, this 

can result in incomplete erosion of inherited nuclide concentrations, which is 

important to understand if using the features for cosmogenic nuclide exposure 

dating. 
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Figure 4.3. The location of the study area, showing the extent of former ice lobes in 
southernmost South America. Thick dashed lines indicate inferred ice divides, and thin lines 
show the outermost limit of ice lobes based on geomorphology mapped in Chapter 3 or 
inferred (dashed) from the literature. For the BI–SSb ice lobe, the hypothesised limits and 
their ages are shown to illustrate how the EBTs relate to them. All other ice lobes are shown 
at maximum extent, although this does not imply that they advanced or retreated to these 
limits at the same time. A former flow line from the source lithology in the Darwin Cordillera 
to the EBTs on Tierra del Fuego is illustrated. The two possible origins of the granodiorite 
lithology are shown (from Natland et al., 1974), but only the lower Tertiary intrusive unit 

outcrops in the former accumulation area of the BI–SSb ice lobe. 

 

 

Figure 4.4. (A) Simplified overview of the glacial geomorphology from Chapter 3 for Tierra 
del Fuego. (B) Detailed glacial geomorphological maps showing the boulders mapped in this 
study on Tierra del Fuego. From our mapping, the boulders clearly form EBTs (rather than 
simply being boulders on moraines): the trains cut across the moraine morphology, form 
isolated discrete clusters, and are not found on equivalent moraines to the north. Boxes in 
the overview map are shown enlarged below — these three boulder trains are examined in 
this study. The sampled boulders are highlighted within each respective EBT. 
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Figure 4.5. Previous 
10

Be cosmogenic nuclide exposure dates from the boulder trains, as 
mean ages with standard errors (plotted in age order) and as probability plots; recalculated 
from the original data of McCulloch et al. (2005b), Kaplan et al. (2007), Kaplan et al. (2008a), 
and Evenson et al. (2009); and using the production rate of Putnam et al. (2010b) and the 
scaling model of Lal (1991) and Stone (2000). Note the substantial difference between the 
cosmogenic nuclide exposure dates and the hypothesised ages for RC 1 and SSb 1. 
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4.2.3 This study 

Kaplan et al. (2007) suggested that the occasional older dates for the EBTs on 

Tierra del Fuego were closer to the true age of the glacial limits and proposed that 

intense, episodic exhumation and/or erosion of the EBTs resulted in the samples 

yielding anomalously young ages (i.e., they are ‘old’ boulders that were exhumed; 

Figure 4.6). However, an alternative hypothesis, not previously considered, is that all 

of the EBTs in Tierra del Fuego were deposited during the last glacial cycle (i.e., 

they are ‘young’ boulders; Figure 4.6), and occasional samples are anomalously old 

owing to inheritance. The ‘old’ hypothesis fits with the established age model but 

requires intense physical exhumation and erosion to explain the dates (Kaplan et al., 

2007). The ‘young’ hypothesis does not require such extreme processes, but 

questions the established age model and implies that ice was much more extensive 

during the last glacial cycle. This study tests between these two opposing 

hypotheses, and a summary of the expected weathering characteristics that might 

be found under these two different scenarios is given in Table 4.2. 
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Figure 4.6. The different cosmogenic nuclide exposure dates from the RC 1 and SSb 1 
boulders on Tierra del Fuego can be explained by two different hypotheses. (A) and (B) 
Illustrate the first hypothesis, proposed by Kaplan et al. (2007), which suggests that the 
majority of the boulders were exhumed and eroded subsequent to deposition, yielding 
anomalously young ages. (C) and (D) Illustrate the second hypothesis, proposed in this 
study, which suggests that occasional boulders may be anomalously old owing to inheritance 
because they were not sufficiently eroded by supraglacial transport. In this case, the majority 
of the cosmogenic nuclide exposure dates are a better representative of the age of the 
EBTs. 
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Table 4.2. Age and likely weathering characteristics for the Tierra del Fuego EBTs. 

 Boulder train 

Properties BI 1 / BI 2 RC 1 if ‘old’ 
a 

RC 1 if ‘young’ 
b 

Hypothesised age 20 ka 
c
 ca. 450 ka 

c
 30 - 20 ka 

c
 

Cosmogenic ages ca. 20 ka 
d
 ca. 30 - 15 ka 

e
 ca. 30 - 15 ka 

e
 

Nature of erosion Possibly some erosion 
Intense exhumation 
and erosion 

f
 

Possibly some erosion 

Likely agents of 
erosion 

Wind erosion, frost 
action, dissolution, 
mild salt-spray 
weathering 

Wind erosion, frost 
action, dissolution, 
salt-spray weathering 

Wind erosion, frost 
action, dissolution, 
salt-spray weathering 

Possible weathering 
rates 

0.5 - 12 mm ka
-1

 
g
 > 25 mm ka

-1
 
h 

0.5 - 12 mm ka
-1

 
g
 

Likely surface erosion ≤ 240 mm 
i
 500 - > 11,250 mm 

j
 ≤ 360 mm 

k
 

Likely erosional 
difference compared 
to BI 1 / BI 2 

0 mm 260 - > 11,010 mm ≤ 120 mm 

Roughness compared 
to BI 1 / BI 2 

N/A Significantly rougher 
Possibly slightly 
rougher or the same 

Hardness compared to 
BI 1 / BI 2 

N/A Significantly weaker 
Possibly slightly 
weaker or the same 

a 
As hypothesised by Kaplan et al. (2007). 

b
 As hypothesised in this study.

 

c
 Approximate ages, based on Meglioli (1992); Kaplan et al. (2007); Kaplan et al. (2008a). 

d
 McCulloch et al. (2005b); Kaplan et al. (2008a); Evenson et al. (2009). 

e
 Kaplan et al. (2007); Evenson et al. (2009). 

g
 Kaplan et al. (2005) calculated apparent erosion rates of roughly 0.5 to 2.5 mm ka

-1
 over > 

760 ka for boulders deposited by the Lago Buenos Aires lobe in northern Patagonia. Kaplan 

et al. (2007) calculated apparent erosion rates of roughly 5 to 12 mm ka
-1

 over ca. 50-120 ka 

for boulders deposited by the Río Gallegos lobe in southern Patagonia. 

h
 Apparent erosion rate estimated by Kaplan et al. (2007). 

i
 Assuming up to 12 mm ka

-1
 erosion over 20 ka. 

j
 Assuming > 25 mm ka

-1
 erosion following rapid exhumation at 20 ka or continuous erosion 

at > 25 mm ka
-1 

over 450 ka. Kaplan et al. (2007) suggested that continuous erosion is 

unlikely given preservation of original surface geomorphology, so the amount of erosion is 

probably between these two end members. 

k
 Assuming up to 12 mm ka

-1
 erosion over up to 30 ka. 
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4.3 Methods 

4.3.1 Mapping and sampling 

We began by mapping all erratic boulders in the study area and then selected a 

sample of 150 boulders from three of the EBTs to compare trains hypothesised to 

be of similar and differing ages (Figure 4.3). Many of the boulders are sufficiently 

large and clear against the surrounding landscape for them to be mapped from 

remote imagery, so a map was produced to show their distribution using a 

combination of remote sensing analysis and field-checking. Aerial photographs from 

the Servicio Aerofotométrico de la Fuerza Aérea de Chile were used where possible 

as well as Google Earth™ imagery (version 7). Field-checking verified the broad 

spread of mapped boulders, and the locations of the 150 sampled boulders were 

recorded using a handheld Magellan eXplorist 610 GPS device. All boulders within a 

given area were sampled provided they were > 2 m in height. This was to avoid the 

effects of snow/vegetation cover and variable erosion on smaller boulders, and to 

avoid the chances of sampling fragments that may have broken off subsequent to 

deposition. Boulders were described in terms of basic lithology, surface appearance, 

and setting.  

4.3.2 Size approximation, angularity, and appearance 

Boulders varied in size and accessibility, so boulder dimensions and volume were 

estimated using eight photographs taken around each boulder at roughly equal 

bearings. All photographs included a 1-m measuring-staff that was later used to 

gauge boulder height, width, and depth. The greatest measurement of height and 

width was used for each boulder as well as the corresponding largest depth 

measurement (perpendicular to greatest width). Volume was then calculated in three 

ways to give approximate upper, middle, and lower values, respectively: 

Cubic volume, calculated as: 

𝑐𝑢𝑏𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝐻 × 𝑊 × 𝐷 

Maximum inscribed cubic volume in a sphere, calculated as: 

𝑚𝑎𝑥. 𝑖𝑛𝑠𝑐𝑟. 𝑣𝑜𝑙𝑢𝑚𝑒 =  (
8

3
1

3⁄
)  ×  𝐻

2⁄  ×  𝑊
2⁄  × 𝐷

2⁄  

Octahedral volume, calculated as: 

𝑜𝑐𝑡𝑎ℎ𝑒𝑑𝑟𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 =  1
3⁄  ×  √2 × (𝐻 × 𝑊 × 𝐷) 

Where H is boulder height, W is boulder width and D is boulder depth (Figure 4.7). 
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Figure 4.7. Visualisation of the three methods used to calculate boulder volume from the 
same measurements of Height (H), Width (W) and Depth (D). Volumes are approximations 
given the use of photographic analysis and that boulders are not regular shapes. 

 

 

Given the use of photographic analysis, measurements are given to the nearest 1 

m. Volumes are still approximations given that boulders are not regular hexahedrons 

or spheres, but the cubic and octahedral volumes do provide likely maximum and 

minimum values from the field measurements. For boulders resting on the surface, 

volumetric values are likely to be correct, but many appear to be at least partially 

embedded, so that their height, and possibly width and depth, may be greater than 

was recorded. For the reasons given above, we suggest that our boulder volumes 

and boulder train volumes are only minimum estimates. 

 

 

 

Table 4.3. Criteria used to visually assess boulder roundness (Benn, 2004). 

Abbreviation Class Description 

VA Very Angular Edges and faces unworn; sharp, delicate protuberances 

A Angular Edges and faces unworn 

SA Sub Angular Faces unworn, edges worn 

SR Sub Rounded Edges and faces worn but clearly distinguishable 

R Rounded Edges and faces worn and barely distinguishable 

WR Well Rounded No edges or faces distinguishable 
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We measured angularity in two ways. Firstly, we assessed the roundness of each 

boulder according to a visual scale (Table 4.3). From this, we could calculate RA 

values (the percentage of angular and very angular boulders) as a measure of 

angularity (Benn & Ballantyne, 1994). We did not create corresponding C40 values 

for the boulders because these would be biased by partial burial of some of the 

boulders. Secondly, we recorded the angularity of the most angular edge for each 

boulder in two of the boulder trains (BI 1 and RC 1; Figure 4.8). For this, we used an 

adapted version of the method of Kirkbride (2005). We used this technique in a 

simplistic way to compare relative differences in angularity between the boulder 

trains and did not manipulate the data beyond plotting the edge length against edge 

angle. Essentially, more angular edges create longer lengths and larger angles, and 

less angular edges create shorter lengths and smaller angles. The surficial 

characteristics and lithology of the boulders were also noted. 

 

 

 

 

Figure 4.8. Photograph and illustration of the technique used to measure angularity of 
boulder edges. The tool is similar to Kirkbride (2005) and measures the length and angle 
between two hinged points. Relative differences between the combinations of these values 
for different boulders relate to changes in edge angularity. 
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4.3.3 Schmidt hammer 

The Schmidt hammer has been used to measure rock-surface hardness as an 

indicator of the amount of time that rock has been exposed to subaerial processes 

(Matthews & Owen, 2010). Rebound values (R-values) produced by the impact of 

the hammer decline with increased rock-surface weathering, and can be used as a 

relative measure of exposure history (McCarroll, 1991; McCarroll & Nesje, 1993; 

Nesje et al., 1994; Goudie, 2006; Shakesby et al., 2011). We used an N-type 

Schmidt hammer to analyse 50 boulders from two of the boulder trains thought to be 

from different glacial cycles (BI 1 and RC 1). Fifty Schmidt hammer blows were 

recorded per boulder, with a total of 2500 blows per boulder train (5000 blows in 

total). On each boulder, 10 blows were recorded per face (approximately: north, 

east, south, west, and top) to explore whether aspect is a control on rock-surface 

weathering. The Schmidt hammer R-values were corrected for the angle at which 

the Schmidt hammer was held following Day & Goudie (1977), see Table 4.4. A 

correction was also made to account for instrumental drift based on an average 

trend, cross-checked against measurements on a calibration anvil. 

There are a number of potential limitations in using the Schmidt hammer as a 

relative dating tool. Small rock sizes and changes in lithology can influence results, 

although the boulders here were far larger than the minimum size suggested by 

Sumner & Nel (2002) and they were monolithological, and so this was not a 

limitation. Measurements can also be affected by discontinuities and moisture 

(especially in weak rocks), cracks, edges, and the surface roughness of the 

measured face (Goudie, 2006). Measurements were consistently taken on planar 

surfaces, away from cracks and edges, and our roughness measurements 

suggested little difference between the boulder trains. However, it is possible that 

the range of our results was caused by variability in these factors. Evans et al. 

(1999) also suggested that re-worked material may play a role in producing 

scattered R-values, although we suggest that this is unlikely to have been an issue 

given that the large size, high angularity and lack of subglacial abrasion of the 

boulders. 
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Table 4.4. Angle corrections applied to Schmidt hammer R-values (Day & Goudie, 1977). 

 Correction for inclination angle 

Rebound value Upward impact Downward impact 

R +90° +45° -45° -90° 

10   +2.4 +3.2 

20 -5.4 -3.5 +2.5 +3.4 

30 -4.7 -3.1 +2.3 +3.1 

40 -3.9 -2.6 +2.0 +2.7 

50 -3.1 -2.1 +1.6 +2.2 

60 -2.3 -1.6 +1.3 +1.7 

 

4.3.4 Profile gauge 

Rock surface roughness can be used to compare the effects of weathering where it 

is assumed that initial surface texture was roughly the same (McCarroll & Nesje, 

1993; 1996). This can then be used as an indicator of the relative time that a rock 

surface has been exposed to weathering processes. A profile gauge is a quick and 

easy tool for measuring rock surface roughness (McCarroll & Nesje, 1996), and we 

used a 25-cm gauge consisting of 250 × 1 mm independent pins to sample planar 

rock surfaces. The profile gauge samples only a small part of any surface and 

cannot characterise the overall roughness of a boulder, but with numerous samples 

on numerous boulders, it can demonstrate relative differences in roughness 

between populations (McCarroll & Nesje, 1996). Converting the profiles into 

numerical values of roughness is the principal source of uncertainty. This has been 

discussed in detail in the literature (McCarroll & Nesje, 1996) and can be accounted 

for, to some degree, by comparing roughness wavelengths (8, 16, 24 and 32 mm in 

this case; Figure 4.9) and statistical techniques (Index A and RMS in this case). In 

this study, we assume that the glacial erosion and transport of all of the EBTs is 

essentially the same and that, given that the boulders are monolithological, 

differences in roughness result from the time exposed to weathering or variable 

weathering processes. 

The gauge was pressed firmly against the surface and then traced onto graph paper 

in the field and later digitized (Figure 4.9). Pin positions were recorded every 8, 16, 

24 and 32 mm to evaluate different roughness wavelengths. We measured 

roughness profiles for 50 boulders in three boulder trains (BI 1, BI 2, and RC 2). Five 

profiles were recorded per boulder, making a total of 250 profiles per boulder train 

(750 profiles in total). On each boulder, one profile was recorded per face 
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(approximately: north, east, south, west, and top) to show whether roughness varied 

with aspect. 

 

 

Figure 4.9. The profile gauge used to measure rock surface roughness. Increasing the 
distance between measured points along the profile (i.e., the wavelength) has a smoothing 
effect, but also captures roughness at different resolutions. In this study, >20 mm 
wavelengths were the most useful. (A-D) illustrate the effects of surface slope on the 
recorded roughness. Hence, standard deviation removes the issue of surface curvature 
(adapted from McCarroll & Nesje, 1996). 

 

4.4 Results 

4.4.1 Distribution 

We mapped a total of 1248 boulders and distinguished four EBTs. From innermost 

(ice-proximal) to outermost (ice-distal), these are: BI 1, BI 2, SSb 1, and RC 1 

(Figure 4.4). In addition, a large spread of boulders lies between Bahía Inútil and 

Bahía San Sebastián (intermediates in Figure 4.4B). These are dispersed rather 

than tightly clustered and so are not classed as an EBT for the purposes of our 

study. However, we highlight that these intermediate boulders bridge the gap 

between BI 1 / BI 2 and SSb 1 / RC 1. It was not possible to access the SSb 1 EBT 

or some of the intermediate boulders for field-checking or analysis, but both were 

sampled for cosmogenic nuclide exposure dating by Kaplan et al. (2007). A 

summary of the characteristics of the boulder trains is given in Table 4.5 and 

example photos are given in Figures 4.10, 4.11 and 4.12. 
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Table 4.5. The spatial characteristics and geomorphological context of the EBTs on Tierra del Fuego. Hypothesised ages are from Meglioli (1992). 

EBT 
No. 
boulders 
mapped 

Approx. 
train length 
(km) 

Approx. 
train width 
(km) 

Approx. 
train height 
(m asl) 

Spatial distribution Geomorphological context 
Hypothesised 
ages 

BI 1 98 5.5 0.5 50 - 70 
A highly linear train extending to the 
coast of Bahía Inútil. 

On a moraine belt, parallel to 
meltwater channels and with one 
meltwater channel dissecting it. 

MIS 2 

BI 2 238 11.0 7.5 60 - 220 

Elements of linearity, but spread over 
a wider area than BI 1. May consist of 
more than one EBT, but not possible 
to distinguish in the field. 

Deposited across numerous 
moraines, with several meltwater 
channels cutting through. 

MIS 2 

Intermediates 267 26.0 8.0 30 - 80 
Boulder density is much less than the 
other EBTs, so the boulders were not 
studied further. 

Lies across several moraines. 

Possibly 
relates to 
more than 
one glacial 
limit 

SSb 1 476 15.0 4.0 0 - 80 
Boulder density varies, delimited to 
the north and south by the extent of 
kettle and kame drift. 

Sits on a broad band of kettle and 
kame drift and continues eastward 
into the Atlantic Ocean. 

MIS 10 

RC 1 162 20.0 4.0 0 - 40 

Boulder density varies, delimited to 
the north and south by the extent of 
kettle and kame drift. There are two 
tight, linear clusters of boulders 
roughly 1.7 km long and 1.5 km long. 

Sits on a broad band of kettle and 
kame drift and continues eastward 
into the Atlantic Ocean. 

MIS 12 
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Figure 4.10. Example photographs of the BI 1 boulder train (A), surface texture (B) and 
boulders (C-H). A person and 1 m measuring staff is featured in A and C-H for scale. 
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Figure 4.11. Example photographs of the BI 2 boulder train (A and B), boulders (C-F) and 
surface texture (G and H). A person and 1 m measuring staff is featured in C-F for scale. 
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Figure 4.12. Example photographs of the RC 1 boulder train (A and B) and boulders (C-H). A 
person is featured in C-H for scale. 



 

76 
 

4.4.2 Volume characteristics 

The total volume of rock within the measured boulders in BI 1, BI 2, and RC 1 

combined is > 22,000 m3, within which the total volume of BI 1 is > 5,000 m3, BI 2 is 

> 14,000 m3, and RC 1 is > 2,000 m3 (Figure 4.13). The largest boulders were in BI 

2, with three boulders exceeding 1000 m3. Of all boulders sampled, only one was 

found to be taller than it was wide, and we interpret this to indicate that almost all 

boulders are stable and ‘at rest’. Several examples of 4-6 near-consecutive boulders 

were found to increase in volume down-ice (Figure 4.13). This is masked in the field 

by scattered smaller boulders, and the pattern is least distinct in BI 2 where boulders 

are more dispersed. However, we suggest that these trends are real because they 

cannot be explained by measurement uncertainty or by changing the point from 

which EBT distance is measured. 

4.4.3 Angularity 

Little difference in angularity was recorded between boulder trains, and all showed a 

dominance of angular or subangular boulders, supported by RA values of 64% for BI 

1 / BI 2 and 54% for RC 1 (see Figure 4.14). 

4.4.4 Rock surface hardness 

The Schmidt hammer R-values were corrected for the angle at which the Schmidt 

hammer was held and for instrumental drift. The total mean R-values for the two 

boulder trains are 43.6 ±19.9 for BI 1 and 37.7 ±19.7 for RC 1 (Figure 4.15), and the 

means of different aspect faces also show consistently lower R-values for RC 1 than 

BI 1, in the range of 2.8-8.4. A Mann-Whitney U test reveals a statistical difference 

between the median values of the two EBTs at the 0.95 significance level (p = < 

0.05), when comparing total values and for each of the aspect faces. 
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Figure 4.13. The results of boulder volume measurements. (A) Shows the results for all three 
boulder trains, which are shown individually beneath: (B) BI 1; (C) BI 2; (D) RC 1. Arrows 
highlight an apparent repeated pattern of increasing down-ice volume across several near-
consecutive boulders in all three EBTs. 
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Figure 4.14. The results of angularity measurements. (A) Is a frequency histogram of 
observed boulder roundness, showing a dominance of angular boulders supported by high 
RA values (percentage of angular and very angular boulders). (B) Shows the similarity in 
boulder edge roundness between BI 1 and RC 1 

 

4.4.5 Rock surface roughness 

Following McCarroll & Nesje (1996), we present our roughness data in two ways. 

Index A uses the standard deviation of measurements and removes the influence of 

rock surface slope, whereas root mean square (RMS) represents roughness more 

accurately as the deviation from the mean, but will be affected by surface curvature 

(Figure 4.9). The profile gauge was used on all three boulder trains, and a strong 

correlation was found between Index A and RMS values (Figure 4.16), indicating 

that surface curvature did not affect the roughness results. Consequently, RMS 

values are used to assess differences in surface roughness (Figure 4.16). Reducing 

the wavelength reduces the mean roughness and spread of values, but McCarroll & 

Nesje (1996) suggested that lower wavelengths were unlikely to capture true 
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surface roughness. We found that the greatest rock crystal size was generally > 20 

mm; hence we focus on the 32-mm wavelength data. The different number and 

spacing of data points along the profiles when the wavelength was varied did not 

affect the mean results, suggesting that the results indicate actual changes in 

roughness and are not caused by sampling strategy. The total mean values for the 

three boulder trains are 2.4 ±1.8 mm for BI 1, 2.3 ±1.6 mm for BI 2, and 2.8 ±2.3 mm 

for RC 1 at the 32-mm wavelength (Figure 4.16). Like the Schmidt hammer data, 

patterns exists within the roughness results, with RC 1 consistently showing greater 

roughness — mean values 0.19-0.64 mm greater than the lowest mean value from 

BI 1 or BI 2 — for the total and different aspect faces. A Mann-Whitney U test shows 

a statistical difference between the total median values of all three EBTs at the 0.95 

significance level (p = < 0.05). Likewise, some, but not all, of the aspect faces also 

show a statistical difference when comparing all three of the EBTs, and this applies 

when comparing BI 1 and BI 2 as well as BI 1 / BI 2 and RC 1. 

. 

 

Figure 4.15. Results of Schmidt hammer rock hardness analysis on the BI 1 and RC 1 EBTs, 
as total data and split into directional faces. Mean data are shown with 2σ errors, in addition 
to frequency histograms that illustrate the overlap between the two boulder trains. 
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Figure 4.16. Results of profile gauge rock surface roughness analysis on the BI 1, BI 2, and RC 1 EBTs, shown as frequency distributions. (A – D) are Index A 
results and (E – H) are RMS results. Note the similarity between the results of the two methods. RMS data is used in this study, focussing on the 32-mm 
wavelength. 

 



 

81 
 

4.5 Discussion 

4.5.1 Source 

Kaplan et al. (2007) and Evenson et al. (2009) described the boulders from BI 1, BI 

2, and RC 1 as hornblende granodiorites. The only source for this lithology is a small 

area of the Cordillera Darwin mountain range (Figure 4.3), where lower Tertiary 

intrusive units outcrop within the former glacial accumulation area (Natland et al., 

1974; Nelson, 1980; Evenson et al., 2009). This source suggests that the BI–SSb 

ice lobe originated from the central Cordillera Darwin to the south. It also helps to 

position the ice divide between the BI–SSb and Fagnano ice lobes at peak 

glaciation; and the presence of supraglacial rock debris on Tierra del Fuego implies 

that granodiorite nunataks existed within the central Cordillera Darwin during peak 

glaciation. Thus, peak ice thickness could not have exceeded around 2500 m, which 

acts as a constraint on ice cap reconstructions. 

The large boulders in Tierra del Fuego (up to 1000 m3) are unlikely to have been 

transported subglacially given that erosion during the distance from their source (ca. 

250 km) should have considerably reduced their size (Figure 4.2). Furthermore, our 

data show that the boulders are dominantly angular or subangular. Numerous 

angular boulders up to 21 m in diameter are unlikely to have been transported 

beneath the ice over such a long distance. We found no evidence of subglacial 

abrasion (e.g. polishing or striae), and the angularity of the boulders suggests that 

such signs have not been removed by weathering. A similar conclusion was reached 

by Evenson et al. (2009). As such, the most likely formation mechanism is 

supraglacial debris at the source location in the Cordillera Darwin. 

Previous workers all noted the tight distribution, large size, angularity, and 

monolithology of the EBTs on Tierra del Fuego (Meglioli, 1992; Bentley et al., 2005; 

McCulloch et al., 2005b; Evenson et al., 2009); and we suggest that these features 

match the characteristics expected of a supraglacial rock avalanche deposit 

(Shulmeister et al., 2009). Studies routinely estimate total rock avalanche deposit 

volumes of > 1,000,000 m3 (Shugar & Clague, 2011; Sosio et al., 2012; Delaney & 

Evans, 2014) and even > 10,000,000 m3 (Jibson et al., 2006; McColl & Davies, 

2011; Shugar & Clague, 2011; Sosio et al., 2012), far in excess of our minimum 

estimates of > 22,000 m3 (or > 150,000 m3 assuming that the coarse fraction 

accounts for around 15% of the total volume; Delaney & Evans, 2014). This 

suggests that the size of the deposit is not unreasonable for a supraglacial rock 

avalanche. The clustering of the EBTs suggests that the erosion of the boulders 
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occurred in discrete events and implies that gradual erosion at the source is 

improbable. Debuttressing during glacial retreat could have resulted in episodic 

deposition of debris caused by joint failures. However, we note that the boulders cut 

across a range of glacial geomorphology — both small moraine ridges and kettle 

and kame topography (Figure 4.4) — and that the RC 1 EBT was deposited when 

the ice lobe was still fully extended. Additionally, whilst the EBTs might have been 

deposited during recession, they represent flowline features, not ice-marginal 

deposits.  

The production of boulder trains as a result of supraglacial rock avalanches has not 

been explicitly examined in previous work. Shulmeister et al. (2009) noted that for 

large supraglacial rock avalanches, a greater proportion of thicker debris remains on 

the glacier surface rather than being incorporated into the subglacial system, and a 

characteristic ‘carapace’ of coarser debris generally caps deposits (Reznichenko et 

al., 2011). Coarse distal rims are found in numerous deposits (Hewitt, 1999; 

Chevalier et al., 2009; Hewitt, 2009; McColl & Davies, 2011; Shugar & Clague, 

2011) and, theoretically, these could result in boulder trains, especially if divergent 

flowlines drew the boulders into a train prior to deposition (Evenson et al., 2009). 

However, large boulders may also be found across the debris sheet, with the rim 

simply representing a greater density of large boulders caused by bulldozing 

(Shugar & Clague, 2011). It thus remains unclear exactly how a rock avalanche 

debris sheet is transformed into EBTs, but we now discuss a conceptual model for 

their transport and deposition. 

4.5.2 Transport and deposition 

The lateral position of the EBTs on Tierra del Fuego probably resulted from ice to 

the north (the Magellan lobe) deflecting the BI–SSb lobe to the east (Figure 4.3), 

with divergent flow lines focusing the boulders in a lateral position (Evenson et al., 

2009). Thus, we envisage that the boulders were transported supraglacially from the 

central Cordillera Darwin, east of Isla Dawson, before turning sharply east into 

Bahía Inútil to be deposited on the south side of the former ice lobe (Figure 4.3). 

Given that the Cordillera Darwin has experienced seismic activity in the past 

(Cunningham, 1993; Klepeis, 1994; Bentley & McCulloch, 2005), the four distinct 

boulder trains may have resulted from separate rock avalanche pulses (Larsen et 

al., 2005; Jibson et al., 2006).  Ice crevassing, subaerial weathering, and meltwater 

may have acted to remove much of the finer material (Shulmeister et al., 2009), and 
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ice flow and the divergence of flow lines then dragged the distal rim and boulder 

carapace into trains (Evenson et al., 2009).  

Our mapping shows that the EBTs are significantly more extensive than previously 

thought (Evenson et al., 2009) and occur at several places along the southern limit 

of the former ice lobe. There are also numerous boulders that do not cluster as 

boulder trains (intermediates), but act as a continuum between BI 1 / BI 2 and SSb 1 

/ RC 1. Whilst the EBTs may represent distinct spatial and temporal events (as 

proposed by Kaplan et al., 2007, and Evenson et al., 2009), they could also 

represent rock avalanche pulses during the same period, possibly linked to seismic 

activity (Larsen et al., 2005; Chevalier et al., 2009). Studies in New Zealand have 

suggested that supraglacial rock avalanches may result in the deposition of non-

climatic moraines (Anderson & Mackintosh, 2006; Tovar et al., 2008; Shulmeister et 

al., 2009; Reznichenko et al., 2011). However, given the small area and isolated 

nature of the EBTs compared to the area covered by the BI–SSb ice lobe, a similar 

debris-induced, non-climatic model is improbable. 

The patterns of increasing down-ice boulder volume observed within each of the 

EBTs (Figure 4.13) are unlikely to have been preserved in any scenario other than 

deposition onto — and transport on top of — the former ice. However, the formation 

of these patterns is unclear. Little evidence suggests that gravitational sorting of 

avalanche debris occurs (Marangunic & Bull, 1968; Shugar & Clague, 2011), but 

trains of debris several metres wide and parallel to the direction of debris flow have 

been described (Hewitt, 2009; Shugar & Clague, 2011; Delaney & Evans, 2014). 

These likely resulted from snow ploughing of a large boulder, with finer material 

following behind on exposed glacial ice (Delaney & Evans, 2014), and currently offer 

the best analogue for the patterns of boulder size trends seen in Tierra del Fuego. 

4.5.3 Rock surface weathering 

The Schmidt hammer data show a statistical difference between the RC 1 and BI 1 

EBTs, indicating that the RC 1 boulders have been subjected to a greater degree of 

weathering than the BI 1 boulders. However, the differences are not as great as 

might be expected if intense, episodic erosion has taken place (Table 4.2). The R-

values showed a total average difference of 5.9, whereas McCarroll & Nesje (1993) 

demonstrated differences of 25-40 between Little Ice Age and late glacial sites in 

western Norway; and Matthews & Owen (2010) highlighted differences of 21-35 

between Little Ice Age and Preboreal sites in southern Norway. Rock weathering 

(and therefore R-values) could have reached saturation in Tierra del Fuego. 
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However, despite agreement that R-values will progress toward a dynamic 

equilibrium over time (White et al., 1998; Engel, 2007; Sánchez et al., 2009; Černá 

& Engel, 2011; Stahl et al., 2013), numerous studies have effectively distinguished 

gLGM and pre-gLGM deposits using the technique on timescales of 10s to 100s ka 

(Ballantyne et al., 1997; Rae et al., 2004; Černá & Engel, 2011; Stahl et al., 2013). 

Very high rates of weathering are required to reduce the ages of the RC 1 boulders 

(Table 4.2), yet no obvious jump in R-values occurs between these and the BI 1 / BI 

2 boulder trains. 

The roughness data show a statistical difference between the total values of RC 1 

and BI 1 / BI 2, but also between the BI 1 and BI 2 total values. Because BI 1 and BI 

2 are assumed to be roughly the same age (lying within the same ice marginal 

deposits; Figure 4.3), this implies that the difference between RC 1 and BI 1 / BI 2 is 

not necessarily related to a significant difference in age. Differences between BI 1 

and BI 2 could be driven by the highly variable values measured for the top aspect 

faces of the boulders, but statistical similarities also exist between the BI 1 / BI 2 and 

RC 1 aspect faces, suggesting that any differences are unlikely to be the result of a 

large difference in age between these EBTs. Most importantly, and like the Schmidt 

hammer data, we do not find a jump in values between RC 1 and BI 1 / BI 2 that 

might be expected if intense, episodic erosion has taken place (Table 4.2). The 

average total difference in roughness between RC 1 and BI 2 is 0.5 mm at the 32-

mm wavelength. Given that the large crystal size is > 20 mm and that the averages 

for all three boulder trains are between 2.3 and 2.8 mm, this difference is negligible. 

McCarroll & Nesje (1996) recorded much greater differences in roughness values 

when studying salt spray and chemical weathering of boulders. We cannot directly 

compare studies of different lithologies in different environments, but we would 

expect a clear difference in roughness values between the RC 1 and BI 1 / BI 2 

boulder trains if intense erosion has occurred. 

Kaplan et al. (2007) suggested that proximity to the coastline may have caused 

higher rates of salt-spray weathering of the RC 1 boulders. Similarly, the dominant 

effect of the westerly winds in the region could have caused increased aeolian 

abrasion. Figure 4.17 shows the results for averaged rock surface hardness and 

rock surface roughness from each boulder, with total boulder values and east/west 

faces shown. Correlations between these results and the distance from the start of 

the BI 1 and RC 1 boulder trains are negligible. Given the variability in the data, 

there is no indication that salt-spray weathering or aeolian abrasion has had a 
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variable effect on boulders within RC 1 or a markedly greater effect on RC 1 than 

BI1. 

Weathering could have been operating on a scale greater than that recorded by our 

proxies. However, whilst examples of microgullies and potholes are abundant on the 

top surfaces of the RC 1 boulders (Kaplan et al., 2007), similar features exist on the 

BI 1 and BI 2 boulders, and we found little difference in top surface weathering 

between the boulder trains (Figures 4.10, 4.11 and 4.12). The similarity in 

weathering results between the EBTs suggests that they have probably experienced 

similar local climatic conditions. This is important given that the intense weathering 

needed to reduce the ages of the RC 1 boulder train during, or since, the gLGM 

should have also reduced the ages of the BI 1 and BI 2 boulder trains. The 

cosmogenic exposure dates for the BI 1 and BI 2 boulder trains are believed to be 

good estimates of the time of deposition (around the gLGM), agreeing with 

radiocarbon dates in the area (Heusser, 2003; McCulloch et al., 2005b; Kaplan et 

al., 2008a; Hall et al., 2013) and factors that reduced the RC 1 boulder dates by 

hundreds of thousands of years are highly unlikely to have also reduced the BI 1 

and BI 2 dates. 
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Figure 4.17. The rock surface hardness and roughness results from Figures 4.15 and 4.16 
plotted to illustrate variations in aspect with distance along the boulder trains (data points 
relate to individual boulders and are only shown for BI 1 and RC 1). (A) Shows hardness 
results for the east and west faces of BI 1, and (B) shows roughness results for the east and 
west faces of  BI 1. (C) Shows hardness results for the east and west faces of RC 1, and (D) 
shows roughness results for the east and west faces of  RC 1. In all graphs, boulder values 
toward the right are located farther to the east and those toward the left are located farther to 
the west. No discernible trends are found in either of the boulder trains, as illustrated by very 
low R

2
 values, suggesting that salt weathering has not affected RC 1 significantly more than 

BI 1, as hypothesised by Kaplan et al. (2007), despite closer proximity to the coast. 
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4.5.4 Alternative (post-)depositional model 

The EBTs on Tierra del Fuego were thought to have been deposited during different 

glacial episodes (MIS 12, 10, and 2), but cosmogenic nuclide exposure dating from 

all of the EBTs yielded dates predominantly around 20 ka (Kaplan et al., 2007; 

Evenson et al., 2009). One hypothesis (the boulders are ‘old’) explains this anomaly 

by invoking intensive post-depositional exhumation and erosion of the RC 1 

boulders (Kaplan et al., 2007), but a second (the boulders are ‘young’) suggests that 

supraglacial debris may have an inheritance signature. Our study demonstrates that 

the distribution, volume, and monolithology of the boulder trains are indicative of 

supraglacial transport of rock avalanche material, and our rock surface weathering 

data do not support intensive post-depositional exhumation and erosion of the RC 1 

boulders. Given this information, our data support the second, ‘young’ hypothesis, 

whereby the EBTs were transported and deposited at roughly the same time (i.e. 

within a few thousands of years, rather than separated by 100s of thousands of 

years). Under this scenario, one would anticipate mostly young ages from the 

boulders, but with some anomalously old dates resulting from an inheritance signal 

owing to pre-exposure of boulders in the cliff face, which were not then sufficiently 

eroded during supraglacial transport (Applegate et al., 2010; Heyman et al., 2011; 

Applegate et al., 2012). 

This scenario is similar to that envisaged for the Foothills boulder train in Alberta, 

where Jackson et al. (1997) suggested that an erratic boulder that yielded a date of 

ca. 53 ka (four times older than the next oldest date) was improbable and most likely 

caused by pre-exposure prior to glacial transport. This implies that, for a 

supraglacial EBT deposit, a fraction of boulders should be expected to yield 

anomalously old dates. Assuming that the majority of 10Be cosmogenic exposure 

dates are roughly correct, three anomalously old dates are apparent from the Tierra 

del Fuego boulder trains (Kaplan et al., 2007; Evenson et al., 2009). For RC 1, one 

date (ca. 57 ka) out of 7; and for BI 2, one date (ca. 56 ka) out of 17 may have been 

pre-exposed. The similarity between these ages could indicate a consistent (pre-) 

exposure pattern, but more samples would be needed to support this idea. The 

outlier from SSb 1 is significantly older at ca. 222 ka, although this is only one of two 

samples from that boulder train.  

Leaving aside the anomalously old dates, substantial variability remains in the 

cosmogenic nuclide exposure dates of the RC 1 EBT, a fact that Kaplan et al. 

(2007) highlighted. Variability in the dates could have been caused by variability in 
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the residence time on the ice during transport. Hubbard et al. (2005) modelled ice 

flow velocities of up to 2000 m a-1 for the northern Patagonian Ice Sheet. Assuming 

similar velocities and a transport distance of up to 250 km for the BI–SSb lobe, 

transport time may have been as little as 0.125 ka: insignificant given dating 

uncertainty. Slower velocities of 100 m a-1 or even 50 m a-1 would have resulted in 

residence times of 2.5 or 5 ka, respectively; but given that the clustering of the EBTs 

suggests that they were deposited as discrete events, this could only have resulted 

in age differences between, not within, boulder trains. 

Rather, we suggest three mechanisms that could have produced the variability in 

RC 1. First, RC 1 has probably experienced greater erosion than BI 1 / BI 2 as it 

was deposited first, causing variable reduction in cosmogenic nuclide exposure 

dates. Secondly, we agree with Kaplan et al. (2007) that many boulders in the RC 1 

train show signs of surface weathering, although we find similar signs in the BI 1 / BI 

2 EBTs. Sampling of the RC 1 boulder train may have been more affected by 

weathered surfaces than BI 1 / BI 2 because fewer larger boulders are found in RC 

1 and this could have resulted in sampling of boulders that were ‘less ideal’ than 

those in the other boulder trains. 

Thirdly, Jackson et al. (1997) suggested that boulder orientation can affect the 

spread of dates in a boulder train. We have demonstrated that all boulders in Tierra 

del Fuego are likely ‘at rest’, but do not know how long they were sitting on melting 

ice before reaching this state. The RC 1 and SSb 1 boulder trains are located on 

large bands of kettle kame drift, a characteristic deposit of ‘dead ice’ terrain (Dyke & 

Evans, 2003; Schomacker, 2008), whereas BI 1 and BI 2 are located on small, 

sharp moraines interspersed by meltwater channels. Ground ice within the kettle 

and kame topography could have taken a long time to fully melt and settle, and 

occasional examples of boulders exposed at the coastline, within the kettle and 

kame deposits, may be a result of this slow process of settling (Figure 4.12H). Thus, 

the RC 1 boulder train may have taken ca. 10 ka to come to rest and implies that 

ground ice melting may have prevailed long after the recession of the ice lobe. 

To summarise, the main implication behind this alternative history of the EBTs on 

Tierra del Fuego is that the established age model for the timing of glaciations in the 

region may need re-examining. Whilst this study provides a new approach to 

interpreting the cosmogenic nuclide exposure dates, further independent age 

controls for the glacial limits are needed to investigate the timing of glacial 

advances.  
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4.6 Conclusion 

Erratic boulder trains make valuable targets for flow-line indicators and cosmogenic 

nuclide exposure dating, but few have been reported in detail and further studies are 

needed to understand their formation, transport, and deposition. Based on the 

limited number of EBTs that have been reported in the literature, we identify an 

apparent trend between boulder size, transport distance, and likely mode of 

transport. The EBTs containing boulders greater than ca. 5 m in diameter and/or 

demonstrating transport from the source lithology of greater than ca. 10 km are likely 

to have been transported supraglacially. 

In Tierra del Fuego, the distribution and volume of three boulder trains suggest that 

they were formed by a rock avalanche and transported and deposited supraglacially. 

This highlights a former ice flow line from the Cordillera Darwin and helps to 

constrain the position of ice divides and the maximum ice surface elevation. Using a 

variety of techniques and measurements, we do not identify any major changes in 

rock surface weathering characteristics across EBTs that have been previously 

interpreted to be from different glacial cycles. Thus, we suggest that they are much 

closer in age (probably within a few thousand years), which is also consistent with 

previous cosmogenic nuclide exposure dates from the boulders. Occasional, 

anomalously old samples should be expected from supraglacial boulder trains 

caused by pre-exposure prior to and during glacial transport, and an understanding 

of the likely history of an EBT should be an integral part of using the features for 

dating.  
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Abstract 

The timing and extent of former glacial advances can demonstrate leads and lags 

during periods of climatic change and their forcing, but this requires robust glacial 

chronologies. In southernmost Patagonia, dating pre-gLGM ice limits has proven 

difficult due to post-deposition processes affecting the build-up of cosmogenic 

nuclides in moraine boulders. Here we provide ages for the Río Cullen and San 

Sebastián glacial limits of the former BI-SSb ice lobe on Tierra del Fuego (53-54°S), 

previously hypothesised to represent advances during MIS 12 and 10, respectively. 

Our approach uses cosmogenic 10Be and 26Al exposure dating, but targets glacial 

outwash associated with the limits and uses depth-profiles and surface cobble 

samples, thereby accounting for surface deflation and inheritance. The data reveal 

that the limits formed more recently than previously thought, giving ages of 45.6 ka 

(+139.9/-14.3) for the Río Cullen, and 30.1 ka (+45.6/-23.1) for the San Sebastián 

limits. These dates indicate extensive glaciation in southern Patagonia during MIS 3, 

prior to the well-constrained, but much less extensive MIS 2 gLGM limit. This 

suggests the pattern of ice advances in the region was different to northern 

Patagonia, with nested limits relating to the last glacial cycle, rather than 

progressively less extensive glaciations over hundreds of thousands of years. 

However, the dates are consistent with MIS 3 glaciation elsewhere in the southern 

mid-latitudes, and the combination of cooler summers and warmer winters, with 

increased precipitation, may have caused extensive glaciation prior to the gLGM. 
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5.1 Introduction 

The terrestrial record of former Southern Hemisphere ice masses has been used to 

assess inter-hemispheric synchroneity of glacial advance and retreat (Sugden et al., 

2005; Kaplan et al., 2010; Putnam et al., 2013a) and how climatic forcing, such as 

changes in the Southern Westerly Winds (Figure 5.1), triggered ice growth or 

wastage through time (Kohfeld et al., 2013). Patagonia is an ideal location for such 

records given that it spans a large latitudinal range and exhibits well-preserved 

glacial geomorphology reflecting former advances of the Patagonian Ice Sheet. 

However, coupling glacial reconstructions with robust chronologies is challenging. 

 

 

Figure 5.1. (A) Location of the study area, with shading indicating the approximate present 
extent of the Southern Westerly Wind system. (B) Map of Patagonia with gLGM ice extent 
from Singer et al. (2004a). (C) Drift limits of the former BI-SSb ice lobe across northern 
Tierra del Fuego from Meglioli (1992) and Chapter 3. Dashed lines indicate inferred extents. 
Stars show approximate locations of previously published 

10
Be exposure dates from boulder 

trains (McCulloch et al., 2005b; Kaplan et al., 2007; Evenson et al., 2009), and the Filaret 
and Cullen depth profiles from this study are labelled. The Bahía Inútil drift (4) correlates with 
the gLGM. (D) Previously published 

10
Be dates, shown as cumulative probability density 

function plots (McCulloch et al., 2005b; Kaplan et al., 2007; Evenson et al., 2009). Graphs 
are labelled according to drift limits in C, along with the published hypothesised MIS age 
(Coronato et al., 2004) and the number of samples. One additional exposure date for limit 2 

is 222 ± 7 ka. 
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The established model for the timing of glaciations in this region hypothesises that, 

following the 1.1 Ma GPG (Caldenius, 1932), the Patagonian Ice Sheet lobes 

oscillated in unison, creating a pattern of ‘nested’ glacial limits resulting from a 

series of progressively less-extensive glaciations throughout the Quaternary 

(Coronato et al., 2004; Figure 5.1). Chronologies from northern Patagonia have 

demonstrated such a pattern (Singer et al., 2004a; Kaplan et al., 2005; Hein et al., 

2009; Hein et al., 2011), but the timing of glacial advances in southernmost 

Patagonia is more open to conjecture. On Tierra del Fuego, moraines hypothesised 

to have been deposited during MIS 12 (ca. 450 ka) and MIS 10 (ca. 350 ka) have 

been dated using cosmogenic nuclide exposure dating of erratic boulders and 

yielded dates centred around ca. 21 ka, similar to the gLGM limit (Figure 5.1; Kaplan 

et al., 2007; Evenson et al., 2009). It has been suggested that this could be due to 

intense post-depositional exhumation and erosion of the boulders from MIS 12/10 

limits (Kaplan et al., 2007), but an alternative hypothesis, suggested here, is that the 

dates are closer to the true age of the glacial advance whereby, following the GPG, 

the ice lobe was most extensive during the last glacial cycle (MIS 4-2).  

In this study, we test these two opposing hypotheses using a new method that can 

account for post-depositional exhumation processes. Specifically, Hein et al. (2009) 

demonstrated that cosmogenic nuclide depth-profiles through outwash associated 

with moraine limits can yield robust ages for glacial limits where post-depositional 

erosion and exhumation may compromise traditional moraine-boulder samples. We 

present 10Be and 26Al dates from two depth profiles through outwash associated with 

glacial limits of the BI-SSb ice lobe on Tierra del Fuego (53-54°S) and use these 

results to test the established age model for the timing of glacial advance. 

5.2 Study area 

The BI-SSb depression in central Tierra del Fuego was the former location of an 

eastward flowing ice-lobe sourced from the Cordillera Darwin range to the southwest 

(Evenson et al., 2009; and Chapter 4). Two large bands of kettle and kame drift 

(Figures 5.2 and 5.3) correspond with two former ice limits (Figure 5.1). The inner 

limit is the San Sebastián drift (Meglioli, 1992) and is hypothesised to date from MIS 

10 based on correlations to Uranium-series dated marine terraces (Bujalesky et al., 

2001; Coronato et al., 2004). The outer limit forms the Río Cullen drift (Meglioli, 

1992), and is hypothesised to date from MIS 12 (Coronato et al., 2004) based on 

ages of <760 ka by palaeomagnetism of basal till (Walther et al., 2007). However, 

direct cosmogenic nuclide exposure dating of boulders on both drifts yielded 
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substantially younger ages, ranging from 15 to 222 ka with most <50 ka (Figure 5.1; 

Kaplan et al., 2007; Evenson et al., 2009). 

5.3 Methods 

5.3.1 Sampling 

We identified locations where the San Sebastián and Río Cullen limits could be 

linked unequivocally to their associated outwash units. An overview of the glacial 

geomorphology of this part of Tierra del Fuego is shown in Figure 5.2, and an 

enlarged version of the sampling area is shown in Figure 5.3 (see also Appendix). 

The outwash is considered to relate unambiguously to the glacial limits in question 

and, in both cases, it was possible to walk directly from the sample locations on the 

outwash surfaces onto the kettle kame drift deposits of the glacial limits. 

The outwash surfaces retained original surface morphology and appeared to be 

relatively undisturbed. The path of meltwater issuing from the inner San Sebastián 

glacial limit could be clearly traced through the outer Río Cullen glacial limit, and 

formed an incised channel in the Río Cullen outwash surface that did not affect the 

Cullen profile (Figure 5.4). Furthermore, meltwater younger than the San Sebastián 

glacial limit was topographically confined to the central BI-SSb depression (Figure 

5.4), where it flowed directly east toward the Atlantic. Two depth profiles were 

sampled at these locations, relating to the San Sebastián glacial limit (Filaret profile) 

and the Río Cullen glacial limit (Cullen profile; Figure 5.1). The surfaces of these 

units possessed a well preserved morphology (e.g. braided meltwater channels), 

graded directly to the moraines of the drift limit (Figures 5.6 and 5.9), and showed 

no evidence of post-depositional reworking. Consequently, they are ideal locations 

for dating using outwash depth-profiles (Hein et al., 2009; Hein et al., 2011). 
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Figure 5.2. The glacial geomorphology of the former BI-SSb ice lobe in Tierra del Fuego, adapted from Chapter 3. 
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Figure 5.3. Zoomed version of Figure 5.2 to show the sampling area and the locations of the depth profiles, adapted from Chapter 3. 
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Figure 5.4. Transects A-A’ and B-B’ from Figure 5.3 showing the elevation change across 

the glacial drift limits and the sampled outwash. 
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The depth profiles were sampled from exposures within small, contemporary road-

side quarries. These were cleared and logged, exhibiting sediments ranging from 

silts to cobbles of various, mixed lithologies (Figures 5.6 and 5.9). Our field 

observations suggested that each outwash terrace accumulated continuously as a 

discrete deposit associated with the meltwater issuing from the nearby glacial limit. 

Both were covered in low grass and were capped by brown, silty, poorly-developed 

soils up to ~ 25 cm deep. Each contained a single outwash unit of silts, sands, 

gravels and cobbles at various grades, but with no obvious signs that their source 

had changed over time. There were no frost wedges within the sediments and no 

clear signs of cryoturbation or pedogenic carbonate formation. Depths through the 

outwash were measured with a tape measure from the surface and were 

demarcated for sampling using a spirit level and spray-paint. We followed Hein et al. 

(2009) in collecting depth and surface samples to allow modelling of cosmogenic 

10Be and 26Al accumulation to give a most probable unit age, whilst constraining 

inheritance and post-depositional surface erosion. 

Small (ca. 6 cm) quartz cobbles embedded within the outwash surface in the vicinity 

of the exposures were sampled, crushed whole, and analysed individually as 

independent estimates of exposure time – shown before and after sampling in 

Figures 5.7 and 5.10. We also collected ~1 kg samples of mixed lithology pebbles 

(>0.5 cm and <4 cm) at 25 cm depth intervals (depth error ≤4 cm), including a 

sample at the base of the section to help calculate inheritance in the profile. Each 

depth sample was amalgamated and analysed for 10Be and 26Al concentrations. One 

sample (FP025cs) consisted half of sand matrix due to insufficient clasts at that 

depth. In both profiles the lowermost sample consisted of two separate depth 

samples combined (i.e. an unprocessed weight of ~ 2 kg) due to insufficient quartz; 

hence the apparent thickness of these samples is greater. 

All physical and chemical preparation and 10Be/9Be and 26Al/27Al AMS 

measurements were carried out at the Scottish Universities Environmental Research 

Centre (SUERC) as part of the NERC Cosmogenic Isotope Analysis Facility (CIAF), 

as per Wilson et al. (2008). 
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Figure 5.5. Panorama of the Filaret profile location (top) with annotations (bottom). (W)est, (N)orth and (E)ast directions are shown. 
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Figure 5.6. (A) Photograph of the Filaret depth profile during sampling. The top of the profile 
was taken from the local soil level, given there was also some spoil from the quarry. (B) 
sediment log and description for the Filaret profile, highlighting the depths of samples 
analysed in this study. 
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Figure 5.7. Pictures of the surface cobble samples from the Filaret profile before (left) and 
after sampling (right). Each caption shows the sample name, and those on the right also 
show the calculated 

10
Be / 

26
Al ages from Table 5.2. 
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Figure 5.8. Panorama of the Cullen profile location (top) with annotations (bottom). (E)ast, (S)outh and (W)est directions are shown. 
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Figure 5.9. (A) Photograph of the Cullen depth profile during sampling. The top of the profile 
was taken from the local soil level, given there was also some spoil from the quarry. (B) 
sediment log and description for the Cullen profile, highlighting the depths of samples 
analysed in this study. 
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Figure 5.10. Pictures of the surface cobble samples from the Cullen profile before (left) and 
after sampling (right). Each caption shows the sample name, and those on the right also 
show the calculated 

10
Be / 

26
Al ages from Table 5.2. 
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5.3.2 Chemical analysis 

Surface cobbles were treated individually, whereas depth samples were treated as 

amalgams. All samples were crushed whole, milled and sieved, and the >125 μm 

<500 μm fraction was then magnetically separated using a Frantz machine prior to 

chemical analysis. They were treated with a 2:1 mixture of H2SiF6 and HCl on a 

shaker table to dissolve non quartz minerals. The quartz was then purified by repeat 

etching in HF on a shaker table to remove >30 % of the starting mass; with the ion 

concentration gauged using assays measured by ICP-OES. 

All samples were dissolved in 40% HF dry-downs on a hotplate. 0.2 mg of 9Be 

carrier was added to each sample and 26Al carrier was added to most samples so 

that 2 mg of Al per sample was reached. The solutions were passed through anion 

exchange columns to remove Fe and other contaminants, and then precipitated to 

remove Ti prior to being passed through cation exchange columns to separate Be 

and Al. The separate Be and Al fractions were precipitated and converted to BeO 

and Al2O3, before being prepared for AMS analysis. 

NIST-SRM4325 and PRIME-Z93-0005 primary standards were used for AMS 

measurements, with nominal ratios of 2.97 × 10-11 10Be/9Be and 4.11 × 10-11 

26Al/27Al, respectively. The reported uncertainties of the nuclide concentrations 

include 2.5% for the AMS and chemical preparation. Blank corrections ranged 

between 3 and 15% of the sample 10Be/9Be ratios and between 0 and 0.9% of the 

sample 26Al/27Al ratios. The uncertainty of the blank measurements is included in the 

stated uncertainties. 
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Table 5.1. Sample descriptions and nuclide concentrations. 

    
Latitude Longitude Altitude 

Elv. 
flag 

Thickness Density 
Shielding 

correction 

Erosion 10Be 1σ Be AMS 26Al 1σ Al AMS 

Be ID Al ID Type * Sample ID (DD) (DD) (m asl) (cm) † (g cm-2) § (cm yr-1) 
(atoms 

g-1) 
(atoms 

g-1) 
std 

(atoms 
g-1) 

(atoms 
g-1) 

std 

Filaret profile 
      

 
         

b6888 a1765 a FP025CS -52.9743 -68.8310 148 std 4 - 0.999999 0 123056 5543 NIST_27900 923474 34485 Z92-0222 

b6889 a1766 a FP050 -52.9743 -68.8310 148 std 4 - 0.999999 0 108030 4819 NIST_27900 756901 35858 Z92-0222 

b6890 a1767 a FP100 -52.9743 -68.8310 148 std 4 - 0.999999 0 72733 3034 NIST_27900 461039 17810 Z92-0222 

b6891 a1768 a FP125 -52.9743 -68.8310 148 std 4 - 0.999999 0 61958 2861 NIST_27900 382692 15694 Z92-0222 

b6892 a1769 a FP150 -52.9743 -68.8310 148 std 4 - 0.999999 0 38461 1812 NIST_27900 306046 11766 Z92-0222 

b6894 a1771 a FP200230 -52.9743 -68.8310 148 std 34 - 0.999999 0 50200 3342 NIST_27900 347187 22568 Z92-0222 

b6895 a1772 s FPSS1 -52.9743 -68.8310 148 std 6 2.7 0.999999 0 127390 3653 NIST_27900 856986 29261 Z92-0222 

b6896 a1773 s FPSS12 -52.9743 -68.8310 148 std 6 2.7 0.999999 0 118438 4222 NIST_27900 792773 35652 Z92-0222 

b6897 a1774 s FPSS13 -52.9743 -68.8310 148 std 6 2.7 0.999999 0 131073 5696 NIST_27900 819874 26226 Z92-0222 

b6898 a1775 s FPSS16 -52.9743 -68.8310 148 std 6 2.7 0.999999 0 118430 4081 NIST_27900 860572 36911 Z92-0222 

Cullen profile 
      

 
         

b6903 a1778 a CP025 -52.8899 -68.4244 17 std 4 - 0.999999 0 111182 5361 NIST_27900 840414 31669 Z92-0222 

b6904 a1819 a CP050 -52.8899 -68.4244 17 std 4 - 0.999999 0 101669 6596 NIST_27900 738532 32418 Z92-0222 

b6905 a1779 a CP075 -52.8899 -68.4244 17 std 4 - 0.999999 0 154494 5576 NIST_27900 1095953 37862 Z92-0222 

b6906 a1780 a CP100 -52.8899 -68.4244 17 std 4 - 0.999999 0 85944 3075 NIST_27900 579643 21486 Z92-0222 

b6908 a1820 a CP150 -52.8899 -68.4244 17 std 4 - 0.999999 0 58815 2940 NIST_27900 359452 15955 Z92-0222 

b6909 a1821 a CP250275 -52.8899 -68.4244 17 std 29 - 0.999999 0 72573 3981 NIST_27900 550438 23670 Z92-0222 

b6910 a1781 s CPSS5 -52.8899 -68.4244 17 std 6 2.7 0.999999 0 180591 4619 NIST_27900 868057 29274 Z92-0222 

b6911 a1782 s CPSS7 -52.8899 -68.4244 17 std 6 2.7 0.999999 0 99630 2922 NIST_27900 784025 27306 Z92-0222 

b6912 a1784 s CPSS8 -52.8899 -68.4244 17 std 6 2.7 0.999999 0 112414 3101 NIST_27900 806137 29141 Z92-0222 

b7197 a1785 s CPSS14 -52.8899 -68.4244 17 std 6 2.7 0.999999 0 130107 3377 NIST_27900 918950 33591 Z92-0222 

* a – amalgamated depth profile sample; s – individual surface cobble sample. 
† depth sample thickness set at a standard 4cm error, with amalgamated samples including the depth between samples; surface cobble samples set at a standard 6cm error. 
§ surface sample density is estimated at 2.7 g cm-3; depth samples density is constrained during modelling. 
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Table 5.2. Calculated ages for surface samples using CRONUS-Earth calculator (Balco et al., 2008). Grey shading indicates the production rate and scaling 

scheme used. 

Sample ID 

PNZ                   PPTGN 
 

PGLOBAL 

 
PNZ 

St 
 

De 
 

Du 
 

Li 
 

Lm 
 

Lm 
 

Lm 
 

Lm   

age (a) ± age (a) ± age (a) ± age (a) ± age (a) ± age (a) ± age (a) ± age (a) ± 

Filaret profile 
         

  
 

  
 

  

Be 
              

  

FPSS1 26050 944 26824 964 27102 974 26387 940 26633 961 26260 1163 22871 2048 26633 961 

FPSS12 24208 1017 24933 1041 25197 1052 24544 1019 24750 1036 24404 1199 21256 1956 24750 1036 

FPSS13 26808 1312 27603 1345 27885 1358 27145 1316 27407 1338 27024 1491 23536 2245 27407 1338 

FPSS16 24206 992 24931 1016 25195 1026 24542 993 24749 1011 24403 1178 21255 1946 24749 1011 

Al 
              

  

FPSS1 25892 1062 26660 1086 26936 1098 26229 1062 26469 1082 26088 1264 22741 2091 26469 1082 

FPSS12 23929 1210 24643 1241 24905 1254 24265 1216 24463 1234 24111 1368 21021 2029 24463 1234 

FPSS13 24757 969 25494 992 25762 1002 25093 969 25309 987 24945 1169 21747 1982 25309 987 

FPSS16 26001 1267 26773 1299 27049 1312 26339 1271 26582 1292 26199 1444 22838 2184 26582 1292 

Cullen profile 
         

  
 

  
 

     

Be 
              

  

CPSS5 42169 1431 43052 1447 43388 1458 42272 1407 43215 1459 42609 1811 37095 3298 43215 1459 

CPSS7 23154 850 23669 862 23936 872 23358 844 23704 867 23373 1044 20364 1827 23704 867 

CPSS8 26145 925 26717 937 27007 947 26332 915 26769 942 26396 1150 22995 2051 26769 942 

CPSS14 30291 1034 30944 1046 31257 1057 30457 1020 31022 1053 30588 1303 26643 2365 31022 1053 

Al 
              

  

CPSS5 29862 1216 30505 1235 30815 1247 30031 1207 30580 1241 30140 1454 26275 2416 30580 1241 

CPSS7 26933 1121 27519 1138 27812 1150 27117 1114 27575 1144 27179 1331 23699 2187 27575 1144 

CPSS8 27703 1185 28304 1204 28601 1216 27883 1178 28365 1210 27957 1397 24376 2262 28365 1210 

CPSS14 31640 1367 32318 1389 32638 1402 31800 1358 32404 1396 31937 1608 27839 2593 32404 1396 

Production rates: PNZ – New Zealand production rate of Putnam et al. (2010b); PPTGN – Patagonian production rate of Kaplan et al. (2011); PGLOBAL – global production rate of 
Balco et al. (2008) and Nishiizumi et al. (2007). Scaling schemes: St – Lal (1991) and Stone (2000); De – Desilets et al. (2006); Du – Dunai (2001); Li – Lifton et al. (2005); Lm – 
time-dependent version of Lal (1991) and Stone (2000). 
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5.3.3 Age determination 

5.3.3.1 Scaling scheme and production rate 

For consistency, the time-dependent scaling scheme of Lal (1991) and Stone (2000) 

was used in surface sample age calibrations and recalibrations of published data. 

Likewise, the production rate of Putnam et al. (2010b) from New Zealand was used 

throughout to calibrate 10Be and 26Al measurements, given that it is now in common 

use in Patagonia and the Southern Hemisphere and that it overlaps at 1σ with an 

independent production rate from Lago Argentino in Patagonia (Kaplan et al., 2011; 

see Table 5.2). We assessed the implications of choosing this production rate and 

scaling scheme combination using our surface sample ages calculated using the 

New Zealand production rate and Lal (1991) and Stone (2000) time-dependent 

scaling scheme. The global production rate gave ages <17% older or younger than 

our ages (irrespective of scaling scheme), but the Patagonian production rate gave 

ages <6% older or younger than our ages (irrespective of scaling scheme) or <5% 

older or younger when the same scaling schemes were compared. Using the New 

Zealand production rate, altering the scaling scheme resulted in <3% older or 

younger ages. Therefore, aside from not using the global production rate, our choice 

of production rate and scaling scheme does not alter our conclusions. 

 

Table 5.3. Details of comparison moraine boulder 
10

Be chronologies from Patagonia for the 
last 100 ka. Where appropriate, updated data from Kaplan et al. (2011) have been used. 

Ice lobe 
Total no. 

10
Be dates 

References 

Lago Buenos Aires 77 
Douglass et al. (2005); Kaplan et al. 
(2004); Kaplan et al. (2005); Douglass et 
al. (2006) 

Lago Pueyrredón 12 Hein et al. (2009); Hein et al. (2011) 

San Martín valley 10 Glasser et al. (2011) 

Última Esperanza 
(Bella Vista / Río Gallegos lobe) 

8 
Sagredo et al. (2011); Kaplan et al. 
(2007); Evenson et al. (2009) 

Magellan 17 
McCulloch et al. (2005b); Kaplan et al. 
(2007); Kaplan et al. (2008a) 

Bahía Inútil – San Sebastián 41 
McCulloch et al. (2005b); Kaplan et al. 
(2007); Kaplan et al. (2008a); Evenson et 
al. (2009) 
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5.3.3.2 Surface samples 

Apparent 10Be and 26Al exposure ages and internal uncertainties from surface 

sample measurements were calculated using the CRONUS-earth online calculator 

version 2.2 (available at http://hess.ess.washington.edu/math/; Wrapper script: 2.2; 

Main calculator: 2.1; Objective function: 2; Constants: 2.2.1; Muons: 1.1; see Balco 

et al., 2008). We assumed a density of 2.7 g cm-3 (equivalent to the density of pure 

quartz) and used a standard, excess thickness of 6 cm for all samples to correct for 

self-shielding. Topographic shielding was measured in the field using an abney level 

but this correction was minimal (scaling factor >0.999999). Present day snow and 

vegetation cover is thin, and is unlikely to have increased during glacial times, so no 

correction was applied for shielding by snow cover or vegetation. Likewise, no 

erosion correction was applied given that the quartz cobbles showed no significant 

signs of surface erosion. As a result of these assumptions, the ages should be 

considered minimum estimates. 

5.3.3.3 Depth profiles 

The depth profiles were modelled using Hidy et al. (2010; version 1.2), which applies 

Monte Carlo simulations to find the most probable values for surface exposure age, 

erosion rate and nuclide inheritance. For both depth profiles, there were samples 

that deviated from the theoretical nuclide decay curve: FP150 for the Filaret profile 

and CP75 and CP150 for the Cullen profile. We tested whether these were outliers 

by running the model with wide parameters, initially including all samples (the model 

would not run) and then excluding all the samples one at a time. The model would 

only run with the outliers mentioned above removed from the profiles and they were 

not included in further modelling. This resulted in normally decreasing nuclide 

concentrations with depth, though the modelling was constrained by fewer samples. 

The 26Al/10Be ratio for CP150 plotted well below the steady state erosion island 

(Figure 5.11), normally indicative of a period of burial that results in a lower 26Al/10Be 

ratio. However, it is unclear why the FP150 and CP75 samples yielded anomalous 

results, given that the 26Al/10Be ratios are not low. Furthermore, there is no evidence 

for changing sedimentary processes at any of these three depths. Alternatively, 

anomalous results could have been caused by issues with the physical or chemical 

preparation of these samples, though no issues were recorded at the time and it is 

not possible to state the exact cause. With only four samples in the Cullen profile, 

the model yielded weaker constraint in the final age estimates. 

http://hess.ess.washington.edu/math/
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There are two potential issues with using the Monte Carlo approach of Hidy et al. 

(2010) for our profile samples. First, it may artificially create a maximum age for a 

profile if the upper age-erosion rate area is narrow (Rodés et al., 2014). Secondly, 

without constraint on either erosion rate or age, our profiles may only yield minimum 

ages (see Hidy et al., 2010). We addressed the first issue by comparing initial 

results (from model runs with wide parameters) with an alternative model by Rodés 

et al. (2014). Both the Hidy et al. (2010) and the Rodés et al. (2014) models gave 

similar results, despite modelling the ages in different ways, suggesting that our data 

yielded minimum and maximum ages. We then continued modelling using the Hidy 

et al. (2010) model because it allows the user to constrain geological input 

parameters. We tackled the second issue by running sensitivity tests and also 

applying a priori knowledge to constrain the model parameters. We discuss the 

nature of these constraints in more detail in Section 5.4.2.  

5.3.3.4 Previous exposure dating studies 

We compare our chronology with other moraine boulder 10Be exposure ages from 

studies in Patagonia. For consistency, we re-calculated all ages using the New 

Zealand production rate of Putnam et al. (2010b) and the time-dependent scaling 

scheme of Lal (1991) and Stone (2000). Ages were re-calculated using the 

CRONUS-earth online calculator version 2.2 (available at 

http://hess.ess.washington.edu/math/); Wrapper script: 2.2; Main calculator: 2.1; 

Objective function: 2; Constants: 2.2.1; Muons: 1.1; see Balco et al., 2008). We 

used all information provided in the original studies and assumed a density of 2.7 g 

cm-3 where no density information was provided. Although almost certainly 

unrealistic, we applied no erosion correction so that the studies could be directly 

compared in a simple way.  

We present the data in the form of probability density plots, including all published 

10Be ages, with each moraine set normalised to one. This has the advantage of 

illustrating the cumulative ages from numerous samples and their errors and not 

biasing comparisons based on the assumptions of different authors regarding age 

reliability and geomorphic processes. However, this is a simplified presentation that 

is strongly influenced by the number of samples taken at different locations and 

does not take into account the likelihood that any samples may be anomalous, or 

that they have been affected by (variable) erosion. Therefore, we refer the reader to 

the respective studies for detailed discussions of all published dates. For reference, 

the details of the studies presented in Figure 5.3 are shown in Table 5.3. Data from 

http://hess.ess.washington.edu/math/
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the Chilean Lake District are the synthesized, recalibrated radiocarbon dates of 

Denton et al. (1999). 

5.4 Results 

5.4.1 Surface sample results 

The four Río Cullen surface sample 10Be exposure ages range from 23.7 to 43.2 ka. 

The oldest sample (CPSS5) yielded a 26Al/10Be ratio below the steady state erosion 

island, indicating a complex exposure-burial history (Figure 5.11). Removing this 

outlier reduces the range to 23.7 to 31.0 ka (n = 3). The four San Sebastián surface 

sample 10Be exposure ages are tightly clustered, ranging from 24.7 to 27.4 ka (n = 

4), with all samples showing 26Al/10Be ratios consistent with a simple exposure 

history (Figure 5.11). 

 

 

Figure 5.11. Cosmogenic nuclide results for the depth and surface samples from the Filaret 
profile (A,C,E,G) and Cullen profile (B,D,F,H). Circles are depth samples; diamonds are 
surface cobble samples; and crosses show excluded anomalies. A and B show results from 
100,000 model runs (grey lines) and the optimum χ

2
 profile (black line) through 

10
Be depth 

samples, with 
10

Be surface samples shown for reference. C and D show all samples as 
normalized 

26
Al/

10
Be ratios plotted against 

10
Be concentration. The predicted range for a 

stable and steadily eroding surface is also shown (shaded area; Lal, 1991); samples plotting 
beneath this area may have undergone post-depositional shielding. E and F show the 

26
Al 

(grey) and 
10

Be (black) surface cobble results in age order and associated cumulative 
probability density function plots. G and H show the age results for 100,000 

10
Be depth 

profile model runs plotted as frequency histograms with the χ
2
 optimum age (circle) and 

≤95% maximum and minimum ages (whiskers). 
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5.4.2 Depth profile modelling 

There is a paradox involved in modeling cosmogenic nuclide depth profiles. Often, 

parameters are unknown, but models require some constraint to produce an age. In 

theory, very wide, even unrealistic, parameters will yield the most reliable estimates 

of age, erosion rate and inheritance. However, the wider the constraints, the slower 

the model will run (if at all) and the wider the resulting error ranges. Consequently, a 

balance must be found between applying constraints to aid modeling and not 

inadvertently constraining the age, erosion rate and inheritance without good 

reason. In this section, we outline the conservative constraints that we applied to the 

Hidy et al. (2010) model. We present χ2 sensitivity tests to check that the model 

output was not inadvertently affected and discuss where there is good reason to 

apply constraint based on a priori knowledge. Model parameters are given in Table 

5.4 and a summary of the 10Be depth profile results is given in Table 5.5. 

5.4.2.1 Sensitivity tests 

χ2 sensitivity tests were conducted whereby broad model parameters were used 

(Table 5.4) and a single controlling parameter was then varied with each model run 

(Figures 5.12 and 5.13). Importantly, the controlling parameters only reduced the χ2 

maximum age, and did not significantly affect the χ2 optimum or minimum age 

estimates. The sensitivity tests demonstrated that there were three model 

parameters which controlled the χ2 maximum ages: maximum total erosion, 

maximum age, and inheritance. Of these, the maximum total erosion is the key 

determinant given that maximum age can be constrained to ca. 1100 ka by 

independent dating of the GPG across Patagonia (Meglioli, 1992; Singer et al., 

2004a) and inheritance can be constrained using the deepest samples. The 

maximum total erosion parameter differs from the erosion rate parameter in that the 

former is a threshold depth of erosion which the model is not permitted to exceed, 

regardless of the erosion rate or age of the sedimentary unit. 

5.4.2.2 Density 

Density through the profiles was unknown, and could not be measured in the field. 

However, it is an important age determinant in profile modelling, especially as most 

models behave according to the time-averaged density, rather than the present 

density (Rodés et al., 2011). We ran sensitivity tests with very wide constraints 

(between 1 and 3 g cm-3) and then used the change in maximum age outputs to 

constrain values slightly, although these were still extremely conservative given the 

nature of the sediments (between 1 and 2.7 g cm-3). 
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5.4.2.3 Inheritance 

Inheritance was essentially unknown. We ran sensitivity tests to assess the effect of 

inheritance constraint on maximum age outputs and then selected wide constraints. 

Given that we had deep samples in both profiles, we could also back-check the 

modelled inheritance in all model runs with the deep-sample nuclide concentrations. 

In all cases, our maximum inheritance constraints were well in excess of the 

measured deep nuclide concentrations. 

5.4.2.4 Age limits 

Initial modelling in conjunction with the Rodés et al. (2014) model gave maximum 

ages far older (5000 ka for the Filaret profile and 4000 ka for the Cullen profile) than 

the known age of the GPG at 1100 ka (Meglioli, 1992; Singer et al., 2004a). We 

used these extreme upper limits for sensitivity tests and then 1100 ka as a more 

reasonable, but still highly conservative, maximum age limit for all other modelling. 

We applied no lower age limit during sensitivity tests, but then used an age of 

14.348 ka for all other modelling. This is from a well dated Reclus tephra layer, 

known to have been deposited after the deposition of the gLGM glacial limit close to 

Bahía Inútil (McCulloch et al., 2005b; Wastegård et al., 2013). Again, this is highly 

conservative, and is only used to prevent a stratigraphic age reversal for the Cullen 

profile due to it containing fewer depth samples. 

5.4.2.5 Erosion rate 

The erosion rate was unknown, but sensitivity tests suggested it played no 

significant role in age determination (the maximum erosion threshold was always 

more important, see following sections), so we selected broad constraints 

throughout the model runs. 

5.4.2.6 Maximum erosion threshold 

Sensitivity tests showed that the maximum erosion threshold strongly affected age 

outputs, but is an unknown. It was, therefore, the key determinant in constraining 

maximum modelled age. 



 

114 
 

Table 5.4. Model parameters. 

Filaret profile 10Be 

Parameter 
Sensitivity tests Unconstrained 4 m erosion 0.5 m erosion 

Min. Max. Min. Max. Min. Max. Min. Max. 

Density (g cm-3) 1 3 1 2.7 1 2.7 1 2.7 

Age (ka) 0 5000 14.348 1100 14.348 1100 14.348 1100 

Erosion rate (cm ka-1) 0 5 0 5 0 5 0 5 

Total erosion (cm) 0 10000 0 10000 0 400 0 50 

Inheritance (atoms g-1) 0 200000 0 180000 0 180000 0 180000 

Cullen profile 10Be 

Parameter 
Sensitivity tests Unconstrained 4 m erosion 0.5 m erosion 

Min. Max. Min. Max. Min. Max. Min. Max. 

Density (g cm-3) 1 3 1 2.8 1 2.8 1 2.8 

Age (ka) 0 4000 14.348 1100 14.348 1100 14.348 1100 

Erosion rate (cm ka-1) 0 20 0 20 0 20 0 20 

Total erosion (cm) 0 10000 0 10000 0 400 0 50 

Inheritance (atoms g-1) 0 400000 0 300000 0 300000 0 300000 

Other parameters         

Location (deg):  Filaret profile: -52.9743, -68.8310;   Cullen profile: -52.8899, -68.4244 

Altitude (m.a.s.l.): Filaret profile: 148 m;                          Cullen profile: 17 m 

Strike/dip (deg) 0 Depth of muon fit 5 m 

Shielding 0.999999 Error in total production rate 0% 

Cover 1 Sigma confidence level 2 

10Be half-life 1.387 (5% error) # profiles 100,000 

Scaling scheme Stone (2000) after Lal (1991) No parallelisation 

Reference production rate 3.74 Neutrons 160 ± 5 
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Figure 5.12. Sensitivity tests for the 
10

Be Filaret profile. Plots in the left-hand column show 
the results of model runs when a single parameter was varied each time, with optimum χ

2
 

ages (circles) and ≤95% maximum and minimum ages (whiskers). Plots in the right-hand 
column show the same results but with only the ≤95% maximum ages. A solid vertical line 
shows the initial values used in modelling and a dashed vertical line shows where this was 
changed after sensitivity tests. The clear outcome of the sensitivity testing is that maximum 
ages are sensitive to the choice of some parameters, but that optimum ages are relatively 
insensitive. 
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Figure 5.13. Sensitivity tests for the 
10

Be Cullen profile. Plots in the left-hand column show 
the results of model runs when a single parameter was varied each time, with optimum χ

2
 

ages (circles) and ≤95% maximum and minimum ages (whiskers). Plots in the right-hand 
column show the same results but with only the ≤95% maximum ages. A solid vertical line 
shows the initial values used in modelling and a dashed vertical line shows where this was 
changed after sensitivity tests. The clear outcome of the sensitivity testing is that maximum 
ages are sensitive to the choice of some parameters, but that optimum ages are relatively 
insensitive. 
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5.4.2.7 Approach to modelling 

To provide the most reliable estimates of age, erosion rate and inheritance from the 

depth profile modelling, we ran three models for each profile. First, we ran the model 

‘unconstrained’ using very wide parameter ranges from the χ2 sensitivity tests. All of 

these parameters were essentially unrealistically wide (e.g. up to 10 m of erosion 

and 2.7 g cm-3 density), but this was useful to gauge if constraining the maximum 

erosion threshold altered the age results. Next, we constrained the maximum 

erosion threshold to 4 m, to test whether there had been significant surface deflation 

similar to the moraine exhumation of Kaplan et al. (2007), and then 0.5 m, which is 

more likely given field observations of preserved geomorphology and the tight 

clustering of surface cobble ages. 

Total erosion of the profile is a key parameter, and modelling shows that a minimum 

of ~4 m of moraine exhumation is required to have artificially reduced the ages of 

corresponding moraine boulders (Kaplan et al., 2007). However, a maximum of 0.5 

m of outwash surface deflation is more likely given: 

1) The surface cobble samples are susceptible to deflation, but do not show 

scattered ages as would be expected if surface lowering had occurred (Hein 

et al., 2011); 

2) The preservation of braided meltwater channels is not consistent with 

several metres of surface deflation. Consequently, we constrained the 

maximum total erosion parameter (i.e. outwash surface deflation) within 

these two hypothetical scenarios, and applied conservative constraints to all 

other modelling parameters according to sensitivity tests. A consequence of 

this conservative approach is wider age uncertainties, and only optimum χ2 

values are given with ≥95% confidence (see Hidy et al., 2010). 

5.4.3 Depth profile modelling results 

The modelled Río Cullen profile yielded a 10Be age of 45.6 ka (+139.9/-14.3) when 

constrained to a maximum of 4 m of surface deflation (Figures 5.14 and 5.15). 

Allowing 0.5 m of deflation created a stratigraphic age reversal younger than the 

gLGM, which is unrealistic compared to regional radiocarbon ages (McCulloch et al., 

2005b), and suggests that some (>0.5 m) surface deflation has affected the age 

estimate. However, even with an unrealistic 100 m of deflation, the optimum age 

remained below 50 ka. The model yielded an erosion rate of 48.7 mm ka-1 (equating 

to 2.2 m of apparent erosion after 45.6 ka) and a low inheritance signature of 6.73 × 
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104 atoms g-1. The San Sebastián profile yielded a 10Be age 30.1 ka (+45.6/-23.1) when 

constrained to 0.5 m of deflation (Figures 5.16 and 5.17) and, again, even allowing 

for 100 m of deflation, the optimum age remained below 50 ka. The model yielded 

an erosion rate of 0.59 mm ka-1 (equivalent to 0.2 m of apparent erosion after 30.1 

ka) and a low inheritance signature of 3.94 × 104 atoms g-1.  



 

 
 

1
1
9
 

Table 5.5. 
10

Be depth sample modelling summary. The optimum values used are highlighted. Bayesian values cannot be used because χ
2
 optimisation failed 

to reach a unique value. 

Filaret 
10

Be profile 
 Unconstrained (100 m) 4 m 0.5 m 

 
Age 
(ka) 

Inheritance 
(× 104 atoms g-1) 

Erosion rate 
(cm ka-1) 

Age 
(ka) 

Inheritance 
(× 104 atoms g-1) 

Erosion rate 
(cm ka-1) 

Age 
(ka) 

Inheritance 
(× 104 atoms g-1) 

Erosion rate 
(cm ka-1) 

Mean 582.5 2.18 2.93 80.1 3.4 2.31 31.6 3.82 0.76 
Median 597.8 2.18 2.93 75.7 3.42 2.42 31.2 3.87 0.79 
Mode 822.9 2.35 2.76 31.5 3.47 2.38 29.9 3.89 1.15 
Optimum χ2 35.5 3.84 1.25 34.6 3.92 1.11 30.1 3.94 0.59 
Maximum χ2 1100 4.81 4.14 206.8 4.86 4.04 45.6 4.91 1.63 
Minimum χ2 23.3 0 0 23.1 1.77 0 23.1 2.43 0 
Bayesian most probable 37.9 2.35 2.77 37.9 3.52 2.45 26.1 3.91 1.14 
Bayesian 2σ upper 1078.8 4.2 4.71 158.7 4.51 4.28 37.8 4.8 1.55 
Bayesian 2σ lower 36.1 0.03 1.82 17.6 1.12 0.29 14.8 1.42 - 

 

Cullen 
10

Be profile 
 Unconstrained (100 m) 4 m 0.5 m 

 
Age 
(ka) 

Inheritance 
(× 104 atoms g-1) 

Erosion rate 
(cm ka-1) 

Age 
(ka) 

Inheritance 
(× 104 atoms g-1) 

Erosion rate 
(cm ka-1) 

Age 
(ka) 

Inheritance 
(× 104 atoms g-1) 

Erosion rate 
(cm ka-1) 

Mean 575.7 7.53 7.46 40.1 6.63 5.11 17.9 6.71 1.54 
Median 590.5 7.29 7.18 35.7 6.66 4.95 17.5 6.75 1.59 
Mode 559.6 6.49 6.29 17.3 6.71 4.5 14.9 6.71 1.73 
Optimum χ2 25.6 6.84 3.81 45.6 6.73 4.87 15.8 6.92 0.85 
Maximum χ2 1100 12.93 15.25 139.9 7.81 13.28 29.6 7.84 3.46 
Minimum χ2 14.3 3.84 0.03 14.3 4.75 0 14.3 4.9 0 
Bayesian most probable 14.3 6.85 5.65 14.3 6.85 4.35 14.3 6.85 2.39 
Bayesian 2σ upper 1074.6 10.74 13.24 87.9 7.47 10.4 24.7 7.47 3.25 
Bayesian 2σ lower 25.7 4.88 3.63 NaN 5.28 0.45 - 5.36 - 
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Figure 5.14. Cullen 
10

Be profile age, erosion rate and inheritance output for the 4 m maximum erosion model run. Red bars/points show the results of 100,000 
model runs, blue line shows the frequency distribution and black line shows the optimum χ

2
 value. 
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Figure 5.15. Cullen 
10

Be profile age, erosion rate and inheritance output for the 4 m maximum erosion model run. Black line shows the smoothed χ
2
, blue line 

shows the probability density function and red line shows the cumulative distribution function. 
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Figure 5.16. Filaret 
10

Be profile age, erosion rate and inheritance output for the 0.5 m maximum erosion model run. Red bars/points show the results of 
100,000 model runs, blue line shows the frequency distribution and black line shows the optimum χ

2
 value. 



 

 
 

1
2
3
 

 

Figure 5.17. Filaret 
10

Be profile age, erosion rate and inheritance output for the 0.5 m maximum erosion model run. Black line shows the smoothed χ
2
, blue 

line shows the probability density function and red line shows the cumulative distribution function. 
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5.5 Discussion 

5.5.1 New ages for BI-SSb glacial limits 

The depth profile and surface sample ages for the outwash associated with the Río 

Cullen and San Sebastián glacial limits suggest that these surfaces are substantially 

younger than previously thought. For the depth profiles, the optimum ages are 45.6 

ka (+139.9/-14.3) for the Río Cullen limit and 30.1 ka (+45.6/-23.1) for the San Sebastián 

limit (Figure 5.11). The surface samples yield apparent mean ages of 27.2 ± 3.7 ka 

for the Río Cullen limit and 25.9 ± 1.3 for the San Sebastián limit, which suggests 

that there has not been substantial deflation of the outwash surfaces that would 

otherwise result in a scatter of ages. Moreover, the depth profiles and the surface 

samples are consistent with published dates from moraine boulders (Figure 5.1), 

which were previously hypothesised to be poor estimates of moraine age due to 

erosion (Kaplan et al., 2007). Rather, we show that the Río Cullen and San 

Sebastián limits were deposited during the last glacial cycle (MIS 4-2), with optimum 

ages during MIS 3. These new constraints radically alter the glacial chronology of 

the BI-SSb lobe and demonstrate that it was more extensive during the last glacial 

cycle, but prior to the gLGM. 

5.5.2 Geomorphic considerations 

As noted, high moraine exhumation rates have been invoked to suggest that 

exposure ages from moraine boulders on these glacial limits underestimated their 

age (Kaplan et al., 2007). Our data suggests surface deflation rates of 48.7 mm ka-1 

and 0.59 mm ka-1 for the Río Cullen and San Sebastián outwash, respectively. The 

former is relatively high because the age and erosion rates are not well constrained, 

which is due to fewer samples and our conservative modelling constraints. In 

contrast, the San Sebastián outwash age and deflation rate estimates are well-

constrained. The differences between ages from the depth profiles and those from 

surface samples are not due to deflation because the nuclide concentrations are 

lower than those modelled for the surface, and may instead be due to movement of 

clasts towards the surface from frost-heaving (Hein et al., 2009). Crucially, all 

modelled erosion rates are substantially lower than those required for the limits to be 

hundreds of thousands of years old (Kaplan et al., 2007), and the close agreement 

of the depth and surface ages suggests that deflation has not substantially lowered 

our ages. 
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Figure 5.18. An illustration of how geomorphic effects would be expected to alter the 
relationship between measured surface sample nuclide concentrations and the modeled 
nuclide decay curve from depth samples. The three diagrams show cosmogenic nuclide 
concentrations increasing towards the right and depth increasing towards the bottom. The 
nuclide decay curves, sample concentrations and depths are purely hypothetical. (A) 
Deflation of the outwash surface will result in surface cobbles that were within the original 
surface being uncovered at the present day surface. Such samples will show a scatter of 
nuclide concentrations greater than that modelled for the unit from the depth samples. (B) 
Little or no surface processes will result in accordance between surface samples and the 
modelled nuclide concentration for the unit, with the former showing little or no scatter. (C) 
Inflation of the surface samples due to processes such as upfreezing will raise cobbles to the 
surface, such that the surface samples will show a scatter of nuclide concentrations lower 
than that modelled for the unit from the depth samples. 

 

Kaplan et al. (2007) suggested that episodic exhumation and erosion of moraine 

boulders may have occurred during the gLGM, artificially reducing their ages. Our 

modelling does not support erosion rates consistent with the loss of metres of 

surface sediment that might be expected if this was the case (i.e. deflation of the 

outwash surface). However, our erosion rates are assumed to be steady over time, 

and do not consider rapid, episodic erosion. Nonetheless, there are three reasons 

why we believe that high rates of episodic exhumation and erosion has not 

occurred: 

1) Mass stripping of the outwash surfaces should have caused deflation of surface 

cobbles. However, the surface cobble sample ages are relatively tightly 

clustered, suggesting that surface deflation is unlikely (Figure 5.18). Our 

sensitivity tests showed that a maximum χ2 age of 350 ka (MIS 10) for the 

Filaret profile required ~ 6.4 m of erosion and a maximum χ2 age of 450 ka for 

the Cullen profile required ~ 17 m of erosion. This is unlikely given the tight 

clustering of surface cobble ages. 
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2) The exceptionally high erosion rates associated with exhumation and erosion of 

the moraine boulders would likely have destroyed the glacial geomorphology, 

including the kettle kame topography and braided meltwater channels. The 

good preservation of geomorphology and boulders suggests that this was not 

the case. 

3) Intense erosion to artificially reduce the ages of the moraine boulders 

associated with the San Sebastián and Río Cullen glacial limits should also 

have affected boulders associated with the Bahía Inútil glacial limit. However, 

the Bahía Inútil limit is independently dated to the regional gLGM and the Bahía 

Inútil boulders also yield cosmogenic ages consistent with other dating 

techniques, suggesting that intense erosion has not occurred. 

 

5.5.3 Comparison with other southern mid-latitude studies 

Our BI-SSb chronology is unusual because none of the preserved glacial limits of 

the BI-SSb lobe pre-date the last glacial cycle and two major limits were deposited 

~100 km down-ice from the gLGM limit during MIS 3. Other pre-gLGM glacial 

advances have been recorded at a similar time during the last glacial cycle in 

Patagonia, but none are as extensive (Figure 5.19). Glasser et al. (2011) reported 

ages of ca. 34-38 ka, 61 ka and ≥99 ka for limits of the San Martín valley lobe (49°S) 

and Sagredo et al. (2011) found ages of ca. 37-39 ka and 61 ka for the Última 

Esperanza lobe (52°S) in southern Patagonia. In northern Patagonia, Hein et al. 

(2010) found ages of 27-32 ka for the Lago Pueyrredón valley lobe (47.5°S) and 

Denton et al. (1999) suggested that glacial advances occurred by ≥34 ka in the 

Chilean Lake District (41-43°S). Elsewhere in the southern mid-latitudes, Rother et 

al. (2014) found an age of ca. 28 ka for moraines of the Rangitata glacier (43°S), 

and Putnam et al. (2013b) reported an age of ca. 33 ka for pre-gLGM moraines of 

the Ohau glacier (44°S) in the Southern Alps of New Zealand. These correlate with 

other pre-gLGM ages in New Zealand, Australia and Tasmania (e.g. Barrows et al., 

2002; Suggate & Almond, 2005) and support the assertion that, globally, not all ice 

sheets reached their maximum extents at the gLGM during the last glacial cycle 

(Hughes et al., 2013). Notably, however, these published advances for MIS 3 

glaciation across the southern mid-latitudes were only slightly more extensive than 

their respective gLGM limits. Our study supports the occurrence of MIS 3 glaciation, 

but also suggests that this was much more extensive in southernmost Patagonia 

than elsewhere. 
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Figure 5.19. (A) Published dating of selected former ice lobe advances over the last 100 ka 
in Patagonia from north to south, with MIS limits (light grey bars) from Lisiecki & Raymo 
(2005) and the gLGM (dark grey bar) from Clark et al. (2009). For each location except the 
radiocarbon dates from the Chilean Lake District, all moraine boulder 

10
Be data are shown 

as cumulative probability density function plots, with each curve corresponding to a moraine 
belt and normalized to 1 (n = no. of samples). All dates have been recalculated consistently, 
but note that: the number of samples varies between sites; no erosion or geomorphic 
processes have been considered; and some data have been truncated at 100 ka. (B) 
Surface cobble (dark shading) and depth profile (light shading) results for the BI-SSb lobe 
from this study (as in Figure 5.11). (C) Insolation data for summer and winter at 50°S and 
summer at 50°N (Berger & Loutre, 1991) and the δ

18
O record, with 10-pt moving average, 

from Dronning Maud Land (EPICA, 2006). Hatching in the southern insolation curves 
highlights times of low summer insolation and high seasonality during MIS 4-2. 
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Without further chronological controls on southern ice lobes, it is not possible to 

discount internal dynamic processes (e.g. surging) of the BI-SSb lobe as the cause 

of the MIS 3 glacial advances. However, if the lobe is representative of 

southernmost Patagonia, then an external forcing likely triggered glacial advance. 

The consistent occurrence of an MIS 3 advance across the southern mid-latitudes, 

centred on 34-30 ka, coincides with minimum summer insolation at ca. 32.5 ka in 

the Southern Hemisphere; in the Northern Hemisphere, the summer insolation 

minimum coincided with the gLGM (Figure 5.19). Southern winter insolation also 

peaked at ca. 32.5 ka, and the combination of cooler summers and warmer winters 

may have promoted ice expansion prior to the coldest global temperatures during 

the gLGM. Thus, the extensive advance of the BI-SSb lobe during MIS 3 could have 

been caused by increased ice accumulation due to decreased temperatures and/or 

increased precipitation. However, δ18O ice core records indicate that global 

temperatures reached a minimum after this time, and so the forcing is more likely to 

have been increased precipitation; indeed, Kerr & Sugden (1994) demonstrated 

latitudinal sensitivity of Patagonian glaciers to precipitation south of 50°S. It is 

therefore possible that a southward shift in the Southern Westerly Winds delivered 

greater precipitation to the BI-SSb lobe during MIS 3. That said, the uncertainty in 

the age of the Río Cullen limit does not preclude the possibility that it was deposited 

during the previous summer insolation minimum/winter insolation maximum at ca. 

61.5 ka. 

5.6 Conclusions 

Cosmogenic nuclide dating of depth profiles through outwash sediments 

demonstrate that two limits of the BI-SSb lobe on Tierra del Fuego previously 

ascribed to MIS 12 and 10 relate to the last glacial cycle, between MIS 4 and 2. The 

San Sebastián limit was deposited at ca. 30.1 ka, suggesting that there was an MIS 

3 glacial advance when the BI-SSb lobe was significantly more expansive than at 

the global gLGM. The Río Cullen limit is not as well constrained, but was likely 

deposited at ca. 45.6 ka and not before 139.9 ka. The results indicate extensive 

glaciation in southernmost Patagonia during MIS 3, which we interpret to reflect 

increased precipitation at this time, compared to the gLGM. 
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Abstract 

This paper presents a reconstruction of the glacial history of five ice lobes in 

southernmost South America: the Río Gallegos, Skyring, Otway, Magellan and BI-

SSb ice lobes. We use previous geomorphological mapping of glacial landforms 

from satellite imagery and field observations to reconstruct former glacial limits, 

demarcate flowsets from glacial lineations, reconstruct former proglacial lakes and 

evaluate possible landsystems represented in the region. We reconstruct between 

10 and 18 glacial limits for each ice lobe, a total of 26 different flowsets, and six 

major proglacial lakes across the region. We identify eight time steps that are 

supplemented with our interpretations of the nature of ice advances and previously 

published chronological information. 

A landsystem approach is used to help indicate the likely nature of advances based 

on landform assemblages. We suggest that there is evidence that the ice lobes 

operated under an active temperate glacial landsystem, with warm-based ice 

displaying active re-advances during overall retreat of the ice margin. This differs 

from previous hypotheses of cold-based ice margins in the region and suggests that 

the ice lobes responded to regional climate variability in a dynamic way. We 

reconstruct the potentially catastrophic drainage of the palaeo-Laguna Blanca 

proglacial lake associated with the Skyring lobe, as well as late-stage rapid retreat, 

or even collapse, of some of the ice lobes associated with proglacial lake 

development and calving at the ice margin. There is also tentative evidence for rapid 

ice flow and possible surge-like activity at times. 

Given recent dating suggesting that all of the limits of the BI-SSb ice lobe were 

deposited during the last glacial cycle, we use our glacial history to examine 

previously published chronological data for the ice lobes. There are few age 

constraints for the Río Gallegos, Skyring and Otway lobes. However, our glacial 

limits, combined with recalculated cosmogenic nuclide dates, suggest that several of 

the ice lobes advanced prior to the gLGM to deposit limits around 30 ka. More 

extensive limits may have been deposited during the last glacial cycle or during 

earlier glacial stages. 
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6.1 Introduction 

The well-preserved glacial geomorphology relating to the former Patagonian Ice 

Sheet provides an excellent record of the fluctuations of glaciers over the course of 

the Quaternary period (Clapperton, 1993; Glasser & Jansson, 2008; Glasser et al., 

2008). This record can be used to reconstruct ice-sheet dynamics (Glasser & 

Jansson, 2005; Lovell et al., 2012) and may be supplemented with chronological 

constraints to yield useful information about how the ice sheet changed over time as 

a result of climatic forcing (e.g. McCulloch et al., 2005b; Douglass et al., 2006; 

Kaplan et al., 2008b; Hein et al., 2010; Hein et al., 2011). For example, the 

southernmost part of the ice sheet is heavily influenced by the atmospheric 

Southern Westerly Winds and oceanic Antarctic Circumpolar Current, both tied to 

the position of the Sub-Tropical and Sub-Antarctic Fronts that influence oceanic 

temperature gradients (Lamy et al., 2007; Kaplan et al., 2008a; Kilian & Lamy, 2012; 

Kohfeld et al., 2013; Sime et al., 2013). Consequently, reconstruction of the 

southernmost ice lobes can help to establish the likely changes in these climatic 

systems over time. However, this process requires a combination of detailed 

geomorphological mapping and robust chronological techniques. 

Previous studies of the southernmost ice lobes of the Patagonian Ice Sheet have 

focussed on dating glacial limits, with a particular emphasis on the gLGM and late 

glacial limits, but there has been a lack of detailed mapping over a wide extent and 

there remains distinct uncertainty about the timing and nature of pre-gLGM glacial 

advances. Chapter 3 produced a high resolution map of the glacial geomorphology 

relating to five former ice lobes in this region as a basis for glacial reconstruction 

and chronological investigation. Furthermore, Chapter 5 demonstrated that the pre-

gLGM limits of the BI-SSb lobe, previously assigned to MIS 12 and 10 (Coronato et 

al., 2004), were in fact deposited during the last glacial cycle. This suggests that 

significant MIS 3 (and possibly MIS 4) glacier advances are represented in this area, 

and that much of the geomorphology may have been deposited more recently than 

previously thought. This paper builds on this work by presenting a detailed 

reconstruction and relative glacial history for the region and uses this to reinterpret 

the timing of glacial advances for the southernmost ice lobes. 
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Figure 6.1. (A) Location of the study area in southern South America. (B) Overview map of 
the study area, with key locations mentioned in the text and the locations of other overview 
figures. (C) Stylised representation of the southernmost portion of the former Patagonian Ice 
Sheet, with flow paths shown for the five former ice lobes discussed in this paper. 

 

6.2 Study area 

Our study area lies between 51-55°S and 68-73°W, and encompasses the area 

occupied by five former piedmont ice lobes extending from the Patagonian Ice Sheet 

(Figure 6.1). From north to south, these are: the Río Gallegos, Skyring, Otway, 

Magellan and BI-SSb lobes. The topography of the area changes dramatically from 

southwest to northeast, with the southern Andes (dominantly Cordillera Darwin) 

marking the western and southern boundaries and casting a strong rain shadow 

over the low, flat pampas and coastal areas to the north and east (Coronato et al., 

2008). The locations of the former ice lobes are marked by prominent straits and 

sounds, which may have been cut during one or more major glacial events during 

the Quaternary (Rabassa, 2008). The configuration of the former ice lobes within 

over-deepened valleys promoted the development of pro-glacial lakes during 

recession, which are recorded by numerous raised shorelines in the region (Chapter 

3). The reconstruction of these lakes can be useful both in terms of establishing ice 
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dynamics (when former lobes calved into proglacial lakes; Porter et al., 1992) and 

creating a relative history using lake drainage events (Kilian et al., 2013).  

The glacial geomorphology was first described in detail by Caldenius (1932), and 

Meglioli (1992) subsequently used weathering indices to establish a hypothetical 

age model for the region, whereby nested moraine limits were deposited during 

successive glacial episodes from MIS 12 to 2 (Coronato et al., 2004). Since then, 

little attention has been given to examining the nature of ice dynamics from the 

geomorphological record, apart from localised work on the gLGM or late glacial 

limits (e.g. Porter et al., 1992; Benn & Clapperton, 2000a; b; Bentley et al., 2005; 

Lovell et al., 2012). Techniques such as radiocarbon, amino-acid racemisation, 

optically stimulated luminescence and cosmogenic nuclide exposure dating have 

been used to constrain the age of some moraine limits deposited during the gLGM 

and late glacial (Rutter et al., 1989; Porter, 1990; Meglioli, 1992; Clapperton et al., 

1995; McCulloch et al., 2005b; Sagredo et al., 2011; Blomdin et al., 2012; Hall et al., 

2013). Age constraints prior to the gLGM are ambiguous (Kaplan et al., 2007; 

Evenson et al., 2009) or non-existent in this region, although argon dates suggest 

that the outermost limits of the Río Gallegos, Skyring, Otway and Magellan lobes 

could date to 1070-450 ka (Meglioli, 1992). Beyond this, the Río Gallegos lobe has 

only a few scattered cosmogenic exposure ages (Kaplan et al., 2007; Evenson et 

al., 2009; Sagredo et al., 2011) and the Skyring and Otway lobes have no pre-late 

glacial age controls at all (Kilian et al., 2007; Kilian et al., 2013). Given that Chapter 

5 demonstrated that the conceptual age model presented by Meglioli (1992) may 

need revising, there is a need for a detailed reconstruction of the nature and timing 

of glacial activity relating to the southernmost ice lobes, particularly prior to the 

gLGM. 

6.3 Methods 

6.3.1 Geomorphological mapping 

Geomorphological mapping was conducted by Darvill et al. (2014; see Chapter 3 

and Appendix) using remote sensing analysis and field-checking. Landsat and 

ASTER scenes, aerial photographs and Google Earth imagery and SRTM digital 

elevation data were used in combination to digitise glacial landforms (Figure 6.2). 

Much of the area was also cross-checked in the field, with an emphasis on verifying 

mapped landforms and checking cross-cutting features, though the Río Gallegos 

lobe was mainly studied using remote sensing. Further details can be found in 

Chapter 3. 
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Figure 6.2. Overview of the glacial geomorphology mapped in the study area. The mapped 
area from Darvill et al. (2014) is shown within a larger DEM for context, and a full and 
detailed version of the geomorphological map can be found in the Appendix. 

 

6.3.2 Glacial flowsets, limits and landsystems 

Glacial landforms can yield information on the extent of former ice advances and, 

using glacial inversion methods, can also be used to reconstruct the former 

dynamics of an ice sheet (Kleman et al., 2006). For example, ice flow indicators 

such as glacial lineation flowsets can demonstrate changes in flow direction. 

Furthermore, a landsystem approach can tie suites of glacial geomorphological 

features to particular styles of glaciation (Evans, 2003), many of which have modern 

analogues and are helpful in ascertaining former glacial and climatic conditions. 

Glacial lineations were grouped into flowsets according to their proximity and similar 

orientations, as well as relationships to ice marginal features such as moraines and 

meltwater channels (Clark, 1999). By mapping a range of glacial landforms, we were 

able to reconstruct glacial limits and assess landsystems based on landform suites. 

6.3.3 Proglacial lake reconstruction 

The reconstruction of former proglacial lakes can yield information on the relative 

position of ice lobes (Lovell et al., 2012) and their dynamics (Porter et al., 1992). 
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Following Stokes & Clark (2004) and Lovell et al. (2012), we modelled proglacial 

lake formation using a Digital Elevation Model (DEM) constructed from ca. 90 m 

resolution SRTM data for areas of land and a ca. 900 m ETOPO data for areas of 

sea that may have been previously exposed. This DEM was filled in 10 m 

increments to examine where lakes developed and over-spilled in relation to former 

shorelines. The DEM data is sufficient for the purpose of this exercise, but the 

coarser resolution of the ETOPO data means that over-spill channels beneath 

present sea-level may have been missed, and a lack of bathymetric data for 

present-day lakes means that their exact depths are unknown. Additionally, the 

DEM provides present-day land elevation and not that during glaciation, when the 

mass of the Patagonian Ice Sheet would have depressed the mountain range. This 

should be corrected for Glacio-Isostatic Adjustment (GIA), but the resolution of the 

ICE-5G model output (Peltier, 2004), which is the best global estimate of the solid 

earth at the gLGM, is too coarse to be of use for this purpose. Moreover, it does not 

reflect the timing of maximum ice thickness for this region based on Chapter 5. 

Consequently, we reconstructed palaeolakes based on a contemporary DEM, but 

with the caution that they are likely minimum estimates of lake depth. 

 

Figure 6.3. An overview of the glacial geomorphology associated with the Río Gallegos, 
Skyring, Otway and Magellan lobes (location shown in Figure 6.1) including key place names 
mentioned in the text. 
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6.4 Results 

This section briefly describes the nature of the principal glacial landforms mapped in 

the study area. Further details can be found in Chapter 3, and a full glacial 

geomorphological map can be found in the Appendix. 

6.4.1 Moraine ridges 

The clearest moraine ridges in the study area are those of the Skyring and Otway 

lobes, where numerous, relatively sharp-crested, arcuate ridges are nested around 

the main depressions (Figure 6.3 and Figure 6.14), marking the point at which the 

lobes were flowing onto higher relief areas (Barr & Lovell, 2014). These continuous 

or semi-continuous ridges, typically 5-10 m high, are delineated by meltwater 

channels and outwash trending northeastward. Similar moraines are found on the 

northern side of the Magellan lobe, particularly across Primera Angostura, and 

within ca. 10 km of Bahía Inútil in the BI-SSb lobe. The arcuate moraines nested in 

the Río Gallegos lobe depression also show this morphology in remote sensing 

imagery. 

Smaller, less distinctive ridges are often draped over other glacial features within the 

central Magellan and BI-SSb lobes. For example, on Punta Gente, ridges are 

draped over drumlinised terrain north of Porvenir (Bentley et al., 2005; Figure 6.5). 

Similarly, in the centre of the BI-SSb depression, ridges can be seen draped over 

both lineations and subdued moraine topography (Figure 6.6). In both cases, the 

ridges are less than 10 m high and are roughly parallel to former ice limits. 

6.4.2 Hummocky terrain 

Hummocky terrain is abundant in the BI-SSb lobe, but is also found in the Magellan 

lobe. It consists of semi-rounded hills and hollows on a markedly smaller scale than 

the kettle and kame topography, and forms arcuate bands running parallel to 

moraine ridges. Although the hummocks are dominantly irregular and chaotic 

(named ‘irregular hummocky terrain’), there is also a large swath north of Laguna 

Larga in the central BI-SSb depression that form regularly-oriented mini-ridges 

(‘regular hummocky terrain’ Figure 6.7). 
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Figure 6.4. The IDR and drumlin field at the intersection of the Río Gallegos and Skyring 
lobes (location shown in Figure 6.3). Boxes 1-4 Illustrate the likely formation of this 
geomorphology, starting with the advance of the Río Gallegos lobe (1) to deposit lineations 
(2) and probably terminal moraines. Following retreat of the Río Gallegos lobe, the Skyring 
lobe advanced over the lineations and moraines (3) creating a large area of irregular 
dissected ridges (4). 
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Figure 6.5. (A) Overview of the glacial geomorphology associated with the Magellan lobe 
(location shown in Figure 6.1). (B) Enlargement of Punta Gente to show a large field of 
rounded drumlins, in places draped by small moraine ridges. The location of Laguna Verde 
is shown, which is surrounded by rhythmically laminated palaeolacustrine sediments. (C) 
Enlargement of Península Juan Mazia, which may represent the terminus of a surge-like 
advance. 
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6.4.3 Kettle-kame topography 

Bands of kettle and kame topography mark the Primera Angostura and Segunda 

Angostura limits of the Magellan lobe, but are seen most clearly as a double band 

on both the north and south of the BI-SSb depression (Figure 6.2 and Figure 6.6). 

The topography consists of chaotic hills surrounding rounded hollows, with a relief of 

10 m or more and delimited by broad outwash plains. Chapter 4 mapped a series of 

erratic boulder trains along the southern edge of the BI-SSb lobe, two of which 

drape the kettle and kame topography. 

6.4.4 Glacial lineations 

Lineations occur in association with all five ice lobes, but vary in morphology in 

different parts of the study area, from low-relief flutings to prominent oval-shaped 

drumlins. For example, clusters of subdued flutings occur around Bahía Inútil 

(Figure 6.6), whilst large swaths of classic drumlins are found in the Río Gallegos, 

Skyring, Otway and Magellan lobes. Of particular note are the fields consisting of 

hundreds of elongate drumlins that occur in the outermost part of the Río Gallegos 

lobe (Ercolano et al., 2004; Figure 6.4), around Laguna Cabeza del Mar in the 

Otway lobe (Clapperton, 1989; Benn & Clapperton, 2000b; Figure 6.3) and on the 

eastern side of the Magellan Strait (Bentley et al., 2005; Lovell et al., 2012; Figure 

6.5). 

6.4.5 Subdued moraine topography 

Subdued moraine topography consists of low, arcuate changes in relief, often over-

printed by other moraine ridges or bands of hummocky terrain (Figure 6.7). The 

features are difficult to observe clearly on the ground are best picked-out in SRTM 

imagery as positive relief over a kilometre or more, or as changes in vegetation in 

Landsat imagery. Subdued moraine topography is dominantly found in the centre of 

the BI-SSb lobe and is fragmented in a regular pattern north of Laguna Larga. 

6.4.6 Irregular dissected ridges (IDR) 

These relatively disorganised ridges are found in association with the Skyring and 

Río Gallegos lobes, in places intersected by meltwater channels and most 

prominently to the southeast of the large swath of drumlins oriented southeastward 

in the Río Gallegos lobe (Figure 6.4). The formation of the features is unclear (Lovell 

et al., 2011), although the largest group appears to be situated at the intersection 

between the Río Gallegos and Skyring geomorphology. 
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Figure 6.6. Overview of the glacial geomorphology associated with BI-SSb lobe (location 
shown in Figure 6.1). Note the spillway marked by former shorelines associated with a 
proglacial lake that drained at Onaisin through Laguna Larga (see Figure 6.7). 
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6.4.7 Meltwater channels 

The glacial geomorphology of the study area is dominated by meltwater signatures, 

including hundreds of sinuous meltwater channels. In places, such as the outer 

moraines of the Skyring, Otway and Magellan lobes, the channels flow between 

clearly marked moraine limits, but elsewhere, such as the BI-SSb depression and 

inner parts of the Río Gallegos, Skyring, Otway and Magellan lobes, meltwater 

channels are clearer than associated moraines (see Appendix). The channels vary 

in size, from less than 50 m wide to more than 150 m wide, and are 

indistinguishable from channels of outwash in places where ice overtopped 

topographic constraints (e.g. northeast of the Skyring and Otway lobes or north of 

the BI-SSb lobe). 

6.4.8 Outwash plains 

Outwash plains are associated with moraines, kettle and kame topography and 

hummocky terrain in all of the ice lobes. Where they are unconstrained by 

topography, wide, open sandur plains grade eastward. A prominent exception is the 

outwash originating from Laguna Blanca in the Skyring lobe, which trends 

southeastward into the Strait of Magellan and has eroded a former moraine belt 

associated with the Otway lobe. 

6.4.9 Former shorelines 

Numerous fragmentary shorelines are found within ca. 10 m of contemporary 

coastal areas. In addition, continuous shorelines are found above 10 m and, further 

inland, around Lago Balmaceda in the Río Gallegos lobe; Seno Skyring; Seno 

Otway; Laguna Blanca in the Skyring lobe (Figure 6.3 and Figure 6.14); south of 

Primera Angostura in the Strait of Magellan; and Bahía Inútil. Whilst the Skyring, 

Otway, Magellan and Bahía Inútil shorelines are within ca. 60 m of present day sea-

level, those around Lago Balmaceda (Figure 6.3) and Laguna Blanca are 

substantially higher. 
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Figure 6.7. Enlarged portion of the central BI-SSb lobe geomorphology to show the cross-
cutting relationships between subdued moraine topography and moraine ridges, glacial 
lineations and hummocky terrain. The zoomed box shows the ordered nature of the regular 
hummocky terrain mini-ridges and the cross-cutting relationships more clearly. The location 
of the figure is shown in Figure 6.6. 

 

6.5 Interpretation 

6.5.1 Glacial limits and flowsets 

Our reconstruction used four sets of ice-marginal landforms to demarcate former 

glacial limits: morainic landforms (including hummocky terrain and kettle and kame 

topography), glacial lineation flowsets (see below), meltwater channels and 

proglacial shorelines (Figure 6.8). These were synthesised separately to illustrate 

former ice margins (Figure 6.9). The different lines of evidence yielded a consistent 

pattern and the data were combined to create a map of prominent glacial limits for 

each ice lobe (Figure 6.9). Many of these limits corroborate previous work defining 
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glacial limits in the region (Meglioli, 1992; Clapperton et al., 1995; Coronato et al., 

2004; Bentley et al., 2005; Lovell et al., 2012), although the wider scope of our 

mapping has revealed a more detailed pattern than has been previously reported. 

For completeness, we also included less extensive limits from Kilian et al. (2007) for 

the Skyring lobe, although these are not based on our own geomorphological 

observations. The accumulation areas for each ice lobe are hypothesised based on 

contemporary catchment systems. This is almost certainly unrealistic given that the 

former ice sheet need not have been confined to modern drainage divides and the 

division between different ice lobes would likely have changed over time according 

to ice dynamics and changes in precipitation. However, as there is no 

geomorphological evidence that can be used to define the former accumulation 

areas, contemporary catchments are a good approximation for the purposes of this 

study. 

We identified 26 flowsets in the study area (Figure 6.8). These flowsets were 

defined in a similar manner to Clark (1999) and Lovell et al. (2012) based on the 

parallel concordance, close proximity and similar morphometry of glacial lineations. 

For the Skyring and Otway lobes, our flowsets are similar to those proposed by 

Lovell et al. (2012). One key exception is FS 8 and 9 (Fs-4 of Lovell et al. (2012)), 

which we divide into two, either side of a clear band of moraines, based on differing 

morphology: the large swath of drumlins around Laguna Cabeza del Mar are 

noticeably longer, wider, and higher than the long flutings further to the northeast. 

This division is important because FS-9 corresponds with moraines dissecting the 

Otway depression. Many of the flowsets within the inner parts of the Río Gallegos, 

Skyring, Magellan and BI-SSb lobes have been discussed in previous studies (Benn 

& Clapperton, 2000b; Ercolano et al., 2004; Bentley et al., 2005; Lovell et al., 2012), 

but the outer flowsets of the Río Gallegos and BI-SSb lobes have not been reported 

previously. 
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Figure 6.8. (A) A simplified version of the glacial geomorphology to show the dominant ice 
flow and ice marginal features. (B) The twenty six flowsets identified from the mapped glacial 
lineations. 



 

145 
 

 

Figure 6.9. (A) The dominant limits associated with four different sets of ice-marginal 
features. These were then synthesized into glacial limits, shown in (B). 
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6.5.2 Glacial landform assemblages 

The different geomorphological features that have been mapped in the study area 

can be grouped into five broad landform assemblages according to their interpreted 

role in the glaciological system. 

6.5.2.1 Ice-marginal morainic landforms 

Ice-marginal morainic features mapped in the study area include moraine ridges, 

hummocky terrain and kettle and kame topography. The clearest are moraine 

ridges, which likely include terminal and recessional moraines, though it is difficult to 

distinguish their form based on morphology alone. Two exceptions are where we 

have supplementary sedimentological evidence to support the landform data. A 

section through one of the moraine ridges in the Otway lobe shows faulted sands 

and gravels (Figure 6.10). Similarly, sediments through a moraine in the BI-SSb lobe 

contain silts and sands that have been strongly faulted and folded (Figure 6.11). The 

deformation of moraine sediments in this way is indicative of proglacial tectonisation 

(Hart & Boulton, 1991; Hambrey & Huddart, 1995; Boulton et al., 1999), and we 

interpret the deformation to represent thrusting and folding during active re-

advances of the ice lobes (Price 1970, 1973; Sharp, 1984a, b; Evans & Twigg, 

2002). The BI-SSb moraine contains deformed lacustrine sediments, indicating that 

the timing and extent of retreat and re-advance must have been sufficient to allow a 

proglacial lake to accumulate. Our interpretation supports similar sedimentary 

evidence of thrust moraine complexes around the Strait of Magellan (Clapperton et 

al., 1995; Benn & Clapperton, 2000a, b). Although the focus of this study was on 

landform mapping and interpretation, it is clear that there is scope for future 

sedimentological work. 

Hummocky terrain is dominantly found in association with the BI-SSb lobe and 

exhibits morphology similar to hummocky moraine, though we opt for the generic 

term because we cannot be certain about how the features formed. This landform is 

indicative of supraglacial debris deposition (Boulton, 1972; Kjær & Krüger, 2001, 

Johnson & Clayton, 2003, Schomacker, 2008), and we suggest that it is consistent 

with a model whereby at least the BI-SSb lobe had supraglacial debris available to 

deposit (Chapter 4). The transport pathway of the debris resulting in hummocky 

moraine is controversial (Evans, 2009), with some authors advocating debris-

covered ice stagnation during recession (e.g. Johnson & Clayton, 2003 and 

associated references) and others suggesting supraglacial debris flows (Lukas, 

2005; 2007) or englacial thrusting (e.g. Graham et al., 2007 and associated 
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references). However, we infer that the disorganised nature of the landform may be 

indicative of periods of ice stagnation and down-wasting during overall recession of 

the ice lobes, leaving behind buried ice that resulted in the hummocky terrain 

(Clayton, 1964; Boulton, 1972; Kjær & Krüger, 2001; Schomacker, 2008). 

 

 

Figure 6.10. (A) Photographs and (B) sketch of a section through the glaciotectonised 
moraine associated with re-advance of the Otway lobe (location shown in Figure 6.3). (C-F) 
show photographs and accompanying sketches of normal thrust faults within the moraine 
sediments, particularly highlighted in (E) by a white tephra layer. The sediments are 
characteristic of outwash material that was likely deposited during retreat of the ice prior to 
re-advance and proglacial thrusting.  
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Figure 6.11. Photographs and accompanying sketches of proglacially tectonised lacustrine 
silts and sands within an end moraine of the BI-SSb lobe (location shown in Figure 6.6). 
There is a high degree of folding and faulting. The large section of lacustrine sediments 
suggests that the ice lobe retreated sufficiently for a sizeable proglacial lake to develop prior 
to re-advance. 

 

Kettle and kame topography is particularly clear in the wide bands to the north and 

south of the BI-SSb lobe. A section through the inner (San Sebastián) band shows 

two diamict units separated by outwash sands and gravels. This suggests that the 

ice lobe advanced to form the outer (Río Cullen) band first before retreating into the 

BI-SSb depression and re-advancing (Figure 6.12). We infer that, like the 

hummocky terrain, the kettle and kame topography was produced by supraglacial 

deposition of material at the ice margins during ice stagnation (Clayton, 1964; Benn 

& Evans, 1998; Schomacker, 2008). However, unlike hummocky terrain, the ice was 

likely stagnant at these locations for longer, allowing for greater quantities of 

supraglacial debris to be deposited. 
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Figure 6.12. (A) Google Earth™ Image of the kettle and kame topography on the south side 
of the BI-SSb lobe. (B) Photograph of the kettle and kame topography on the north side of 
the BI-SSb lobe. (C) A section through the inner kettle and kame topography on the north 
side of the BI-SSb lobe. The top diamict unit relates to this glacial limit (the San Sebastián 
drift) but overlies an earlier diamict and associated outwash (the Rio Cullen drift), indicating 
that the ice lobe re-advanced. 
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6.5.2.2 Subglacial landforms 

Subglacial features found in the study area include glacial lineations, subdued 

moraine topography and IDR. Glacial lineations are common across all of the ice 

lobes in the form of flutings and drumlins, indicating the active advance of ice. Given 

that all of the ice lobes were likely advancing over former glaciofluvial deposits, the 

lineations were probably formed by subglacial deformation during advances of wet-

based ice (Benn & Clapperton, 2000b), consistent with the presence of deformed 

sediments in at least the Magellan lobe (Clapperton, 1989; Benn & Clapperton, 

2000b). However, the precise formation processes that result in glacial lineations 

are contentious (Stokes et al., 2011). Generally, the lineations occur in conjunction 

with ice marginal features, but a few dense swaths of drumlins occur away from any 

apparent ice margin and show elements of convergence and divergence, most 

clearly in the area around Laguna Cabeza del Mar in the Otway lobe (Benn & 

Clapperton, 2000b; Lovell et al., 2012; Figure 6.3). In these locations, we suggest 

that the lineations are indicative of areas of rapidly flowing ice (Stokes & Clark, 

1999; Stokes & Clark, 2002; Evans et al., 2008; Lovell et al., 2012). 

Subdued moraine topography is considered morainic because of its arcuate form 

and consistency with other ice marginal features. Raedecke (1978) suggested that 

the topography represented linear en echelon deposits linked to crevassing in the 

BI-SSb lobe, but the subtle nature of the topography makes it difficult to ascribe a 

formation process. However, the topography is clearly draped by younger features 

such as moraine ridges, glacial lineations and hummocky topography (Figure 6.7). 

Consequently, we infer that the subdued topography resulted from ice-marginal 

moraines that were subsequently overridden and moulded subglacially, similar to 

landforms observed in Iceland that were formed during earlier glacial advances 

(Krüger, 1987; Evans & Twigg, 2002). Subdued moraine topography is only found in 

small sections of the BI-SSb, Magellan and Río Gallegos lobes, which may indicate 

differences in the re-advance patterns of these ice lobes compared to the Skyring 

and Otway lobes, but could also be linked to differential moraine preservation during 

subglacial moulding. 

IDR mainly occurs at the intersection between geomorphology of the Río Gallegos 

and Skyring lobes and takes the form of relatively disorganised, hilly ridges, 

sometimes interweaved by meltwater channels. It has previously been unclear what 

formed these features (Lovell et al., 2011; Chapter 3), but the presence of a large 

swath of drumlins (FS 2; see Section 6.5.1) oriented southeastward may help 
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explain how the IDR formed (Figure 6.4). We suggest that the Río Gallegos lobe 

advanced first into this area, depositing a drumlin field and moraine ridges. 

Subsequently, the Río Gallegos lobe retreated and the Skyring lobe advanced over 

the drumlins and moraines, causing subglacial deformation that resulted in an 

irregular pattern of hills and meltwater channels (Figure 6.4). The stratigraphic order 

is dictated by the fact that meltwater from the Skyring lobe drained into the Río 

Gallegos depression. 

6.5.2.3 Glaciofluvial landforms 

Glaciofluvial landforms are abundant within the study area and include meltwater 

channels and outwash plains. Hundreds of meltwater channels are associated with 

all of the ice lobes, often running parallel to former ice margins and sometimes 

exploiting former channels. Some of these meltwater channels are so large that they 

form corridors of outwash. For example, the meltwater issuing from the northern and 

southern lateral margins of the BI-SSb lobe was directed down large, pre-existing 

valleys, creating an outwash-fill. Broader outwash plains are also common and can 

be traced back to corresponding moraines and meltwater channels. The extensive 

nature of the glaciofluvial features implies that all of the ice lobes produced large 

quantities of meltwater both during stillstands (in association with kettle and kame 

topography and moraines) and during retreat. However, the absence of outwash 

associated with some glacial limits may mean that some outwash plains have been 

subsequently destroyed.  

Whilst meltwater channels and outwash plains are abundant within the study area, 

features such as ice contact fans, pitted outwash plains and eskers are not. One 

possible esker, mapped by Clapperton (1989), Lovell et al. (2011) and Darvill et al. 

(2014) remains highly ambiguous. It is likely that surface erosion and the vegetation 

of the landscape has removed some of these landforms. However, the general 

absence of eskers associated with the ice lobes, despite the apparent availability of 

sediment and meltwater, remains a mystery (Lovell et al., 2012; Darvill et al., 2014). 

6.5.2.4 Geometrical ridge landforms 

The swath of regular hummocky terrain located within the centre of the BI-SSb lobe 

resembles the geometrical ridge networks described by Bennett et al. (1996). These 

landforms are ridge-like but discontinuous; cross-cut one another in places; and are 

generally oriented perpendicular to former ice flow (Figures 6.7 and 6.13). They 

have not been reported prior to Darvill et al. (2014), but their similarity to geometrical 

ridge networks implies that they may be linked to crevasse-squeeze ridges (Bennet 
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et al. 1996), contrary to the suggestion that such features are not present in the 

region (Benn & Clapperton, 2000a). Studies of contemporary crevasse-squeeze 

ridges shows that they are formed by surging glacial systems (Sharp, 1985a, b; 

Bennett et al., 1996; Evans & Rea, 1999, 2003; Evans et al., 2007), where glacier 

movement and crevasse-filling occurs close to the ice margin during the overall 

melt-out of ice (Spedding & Evans, 2002). Whilst there are similarities between the 

morphology of the regular hummocky terrain and crevasse-squeeze ridges (Figure 

6.13), the genetic connection is only tentative because we have no sedimentological 

analysis to support our inferences. Furthermore, preservation of the terrain is 

unexpected given the abundance of supraglacial debris (Benn & Evans, 1998) and 

there is little additional evidence for surging activity in the study area (Lovell et al., 

2012). 

 

 

Figure 6.13. (A) The regular hummocky terrain from the centre of the BI-SSb lobe shown in a 
Google Earth™ image and (B) crevasse-squeeze ridges in front of the surging Brúarjökull 
glacier in Iceland shown in a Microsoft Bing Maps™ image. 



 

153 
 

6.5.2.5 Palaeolacustrine landforms 

There are abundant raised shorelines in the area that may be linked to former lakes. 

Of note are semi-continuous, well-preserved shorelines around the present day 

Seno Skyring, Seno Otway, the Strait of Magellan and Bahía Inútil. Similar 

shorelines also occur above Laguna Blanca in the Skyring lobe and Lago 

Balmaceda in the Río Gallegos lobe (Figure 6.1). Our glacial reconstruction, 

combined with DEM modelling, and the occurrence of palaeolacustrine sedimentary 

evidence in places, leads us to infer that these shorelines relate to several large 

palaeolakes, supporting previous work on palaeolacustrine reconstruction in the 

area (Porter et al., 1992; Clapperton et al., 1995; McCulloch et al., 2005a; Sagredo 

et al., 2011; Stern et al., 2011; Lovell et al., 2012; Kilian et al., 2007; Kilian et al., 

2013). The ice-marginal truncation of these shorelines suggests that they formed in 

front of the ice lobes, likely during recession into their respective topographic basins. 

The clearest palaeolacustrine landforms are within the Skyring lobe, where 

meltwater accumulated above the present day Laguna Blanca. Shorelines and DEM 

modelling indicate a maximum lake depth of ca. 190 m.a.s.l., which drained 

northward into the basin previously occupied by the Río Gallegos lobe. Our 

reconstruction is supported by the presence of rhythmically laminated silt and clay 

sediments containing dropstones northeast of Laguna Blanca (Figure 6.14). Unlike 

Lovell et al. (2012), our reconstruction of the lake also shows water accumulating on 

the northern lateral side of the ice lobe. Our ice limit for the Otway lobe also differs 

from Lovell et al. (2012), such that a similar proglacial lake did not form in front of 

the Otway lobe because meltwater could drain southeastward in front of the 

Magellan lobe. Once the Skyring lobe retreated beyond the topographic bluff 

separating it from the Otway lobe, the palaeo-Laguna Blanca proglacial lake drained 

in a south-eastward direction, in front of the Otway and Magellan lobes and into the 

Strait of Magellan. Large meltwater channels and an associated outwash plain 

record this potentially catastrophic drainage of the lake (Figure 6.14).  

Another lake formed in front of the BI-SSb lobe to a maximum depth of ca. 20 

m.a.s.l. and drained eastward at Onaisín (Figure 6.6) toward the Atlantic through a 

channel now marked by Laguna Larga (Figure 6.7). A similar lake formed in front of 

the Magellan lobe, draining eastward towards the Atlantic, though the height and 

route of the drainage are less clear as the channel is below present day sea-level 

(Clapperton et al., 1995; McCulloch et al., 2005a). The northern extent of the lake 

has been previously unclear, but our reconstruction suggests that it extended onto 
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the low plain in front of the Otway lobe. McCulloch et al. (2005a) reported sediments 

associated with both of these lakes. Small lakes also formed on the eastern flank of 

the Magellan lobe at ca. 10-20 m.a.s.l., north of Porvenir. One of these deposited a 

large section of rhythmically laminated silt and clay sediments at Laguna Verde, 

complete with dropstones (Figure 6.15). 

A proglacial lake formed in front of the Otway lobe once ice had retreated into the 

present-day Seno Otway (Figure 6.3), and there is evidence for a channel draining 

north-eastward into the contemporary Strait of Magellan (Mercer, 1976; McCulloch 

et al., 2005a). However, once the lake level had lowered to ca. 20 m.a.s.l., drainage 

would have been to the northeast through Canal Fitzroy (Figure 6.1) into a similar 

lake at ca. 10-20 m.a.s.l. within present-day Seno Skyring. The Skyring proglacial 

lake drained northward through Estero Obstruccion into a large lake in front of the 

Río Gallegos lobe, the extent of which is unclear (Sagredo et al., 2011; Stern et al., 

2011). There is a drainage channel eastward from the Río Gallegos lobe towards 

the Atlantic, which suggests that the maximum lake level was at ca. 150 m.a.s.l., but 

final drainage of the Rio Gallegos proglacial lake would have been westward 

through Golfo Almirante Montt (Figure 6.1) once ice had receded into the mountains. 
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Figure 6.14. The evidence for palaeo-Laguna Blanca and its drainage. (A) shows the glacial 
geomorphology and (B) shows the reconstructed ice limit and proglacial lake just prior to 
drainage, when discharge flowed northwards (location shown in Figure 6.3). (C) illustrates 
the geomorphological evidence for lake drainage eastward into the Strait of Magellan 
(location shown in Figure 6.3). (D-F) show raised shorelines, laminated sediments and a 
drainage channel associated with the former lake (locations shown in A). 
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Figure 6.15. (A) Rhythmically laminated sediments at Laguna Verde (see Figure 6.5 for the 
location of the lake). (B) Enlarged part of the section to show how several of the laminated 
layers have been heavily deformed. The cause of this deformation has not been determined. 
(C) In places, dropstones demonstrate that the sediments were deposited within a former 
proglacial lake.  
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6.6 Discussion 

6.6.1 Active temperate glacial landsystem 

The glacial geomorphology in the study area can be broadly divided into three 

principal landform assemblages: morainic, subglacial and glaciofluvial (Figure 6.16). 

Taken together these groups are consistent with an active temperate glacial 

landsystem in operation during the advance and retreat of the ice lobes (Evans & 

Twigg, 2002; Evans, 2003). Temperate glaciers are generally warm-based and are 

characterised by their ability to actively advance during periods of overall recession 

(Evans, 2003). Modern examples of this landsystem include Breiðamerkurjökull, 

Fjallsjökull, Heinabergsjökull and Skalafellsjökull in Iceland (Evans & Twigg, 2002; 

Evans & Orton, 2014). 

The wet-based active recession of this landsystem produces three characteristic 

landform-sediment associations (Evans & Twigg, 2002; Evans, 2003; Table 6.1). 

Firstly, dump, push and squeeze moraines composed of proglacial sediments mark 

the ice limit, sometimes displaying annual signatures or evidence for stillstands that 

create stacked features (Price, 1970; Krüger, 1987; Evans et al., 1999; Evans & 

Twigg, 2002). Low amplitude ridges formed from overridden push moraines may 

also be found, draped by glacial lineations and moraines (Evans & Twigg, 2002). 

Secondly, subglacially streamlined flutings and drumlins occur between these 

moraines (Krüger, 1987; Evans et al., 1999; Evans & Twigg, 2002). Thirdly, 

extensive glaciofluvial landforms occur where meltwater flows away from the warm-

based ice front. These features include ice-contact and spillway-fed outwash fans; 

ice marginal outwash tracts; kame terraces; pitted outwash and eskers (Evans & 

Twigg, 2002). 

The similarity between the landform assemblages in our study area (Figure 6.16) 

and those associated with active temperate glaciers supports the assertion that the 

ice lobes dominantly operated under an active temperate glacial landsystem (Table 

6.1). This is especially clear in the geomorphology of the central BI-SSb lobe (Figure 

6.6 and Figure 6.16). The other ice lobes show the characteristics associated with 

active temperate glaciers, but the geomorphology is either not as well preserved (as 

in the Río Gallegos and Magellan lobes) or the moraines are tightly nested due to 

topographic constraints (as in the Skyring and Otway lobes) so that the 

assemblages are not as clear. In addition, whilst outwash is associated with all of 

the ice lobes, subtleties such as fans and pitted outwash was not recorded, likely 

due to degradation hindering their identification. 
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An unusual aspect of the geomorphology in our study area is the evidence for 

supraglacial debris that formed the hummocky terrain and kettle and kame 

topography, particularly in the BI-SSb lobe. Evans & Twigg (2002) suggested that 

flutings and drumlins were prominent in this landsystem in part due to the lack of 

supraglacial sediment associated with active temperate glaciers in Iceland, so the 

presence of supraglacial landforms is surprising. However, the ice lobes are 

significantly larger than the Icelandic glaciers and so may have been able to 

transport greater quantities of debris. Additionally, Evans & Twigg (2002) did note 

that hummocks could be produced during the melting of debris-rich ice margins 

where marginal freeze-on of debris had occurred. Another complexity is the absence 

of eskers in the study area (Lovell et al., 2011; Darvill et al., 2014). Like the outwash 

features, this may be related to preservation, but the general lack of eskers in 

Patagonia (e.g. Glasser et al., 2008) suggests that there may be other reasons that 

are not yet resolved. Regardless, we suggest that, overall, the ice lobes are best 

represented by an active temperate landsystem. 

Table 6.1. The landforms expected in an active temperate glacial landsystem (adapted from 
Evans & Twigg, 2002; Evans, 2003) and where these landforms are present in our study. 

Landform 

group Landforms 

Río 

Gallegos Skyring Otway Magellan BI-SSb 

Morainic 

landforms 

Low-amplitude 

moraines (marginal 

dump, push and 

squeeze) 

     

Low amplitude, 

hummocky terrain 
     

Subglacial 

landforms 

Flutings and 

drumlins 
     

Overridden push 

moraines 
     

Glaciofluvial 

landforms 

Outwash 

(fans, ice margin-

parallel tracts, 

topographically 

channelized, pitted) 

     

Eskers   ?   
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Figure 6.16. The glacial geomorphology of the central BI-SSb lobe (A) and the Río Gallegos, 
Skyring, Otway and Magellan lobes (B), grouped according to the three landform 
assemblages indicative of an active temperate glacial landsystem (see Figure 6.6 and Figure 
6.3 for original versions). 



 

160 
 

6.6.2 Other landform signatures 

Although the ice lobes dominantly conformed to an active temperate landsystem, 

the glacial geomorphology also supports the presence of subglacial landforms, such 

as swaths of elongated drumlins and possible crevasse-squeeze ridges, which may 

be indicative of rapid ice flow. Furthermore, palaeolacustrine landforms indicate the 

presence of former proglacial lakes that may have induced ice-front calving. Both of 

these landsystems would have influenced ice lobe dynamics. 

6.6.2.1 Rapid ice flow 

A large swath of elongated, closely-spaced drumlins in the inner part of the Otway 

lobe (FS 9) has previously been hypothesised to relate to palaeo-ice streaming 

(Benn & Clapperton, 2000b; Lovell et al., 2012). Glacial lineations are found across 

the study area, but this drumlin field around Laguna Cabeza del Mar (Figure 6.3) 

displays some of the geomorphological characteristics expected from a terrestrial 

palaeo-ice stream, such as convergent flowlines, attenuated bedforms and abrupt 

lateral margins (Stokes & Clark, 1999; Clark & Stokes, 2003; Lovell et al., 2012). 

Additionally, Lovell et al. (2012) discussed the possibility for surge-like behaviour in 

the Otway lobe, though like Benn & Clapperton (2000a, b), they found no definitive 

evidence for cyclical surges from the landform evidence. However, some of the 

landforms associated with surging activity are exhibited in the study area (Evans & 

Rea, 2003; Schomacker et al., 2014). These include thrust moraines, flutings, 

drumlins, hummocky terrain and possible crevasse-squeeze ridges. The latter are 

particularly intriguing given that Benn & Clapperton (2000a, b) ruled out surge-like 

behaviour due to the lack of crevasse-squeeze ridges and ‘concertina’ eskers. 

However, there are no sediment-landform assemblages that display definitive 

evidence of palaeo-surging activity, and given the fragmentary nature of the 

geomorphology, it is not possible to say that any of the ice lobes surged.  

6.6.2.2 Proglacial lake development 

Raised shorelines indicate that a total of six different lakes existed at various times 

in front of all five former ice lobes. The sediments deposited within the proglacial 

lakes have been used as a source of chronological constraint (McCulloch et al., 

2005a; McCulloch et al., 2005b), and could yield further palaeoenvironmental 

records in the future. 
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6.6.3 Landsystem implications 

There are a number of significant implications associated with the assignation of an 

active temperate glacial landsystem in this study. Principally, Benn & Clapperton 

(2000a, b) suggested that the Magellan lobe operated under subpolar conditions, 

with a cold-based margin, during the gLGM. By contrast Bentley et al. (2005) 

advocated warm-based conditions extending to the ice margin based on differing 

moraine gradient evidence. The presence of proglacially tectonised moraines and 

glaciofluvial features such as meltwater channels and outwash plains are consistent 

with cold-based ice or a polythermal basal regime (Benn & Clapperton, 2000b; Ó 

Cofaigh et al., 2003; Dyke & Evans, 2003; Evans, 2009). However, there is also 

evidence for glacial lineations extending to the ice margins and overridden moraine 

topography, both of which indicate extensive warm-based ice (Evans & Twigg, 2002; 

Evans, 2003), and so our landsystem approach does not fit with a model of cold-

based ice margins. Rather, we suggest that the warm-based conditions that have 

been reconstructed for the interior parts of the ice lobes (Benn & Clapperton, 2000a, 

b; Lovell et al., 2012) extended to the margins. 

Additionally, Benn & Clapperton (2000b) noted that the landforms that they inferred 

to represent cold-based ice (thrust moraines, glacigenic debris flows, hummocky 

and controlled moraines and lateral meltwater channels) could only have occurred in 

a narrow strip around the ice margin due to the presence of drumlins in the interior. 

However, Evans & Twigg (2002) described a narrow frozen zone that can develop at 

the margin of some active temperate glaciers, which may help to explain the 

presence of these features. The hypothesis that the ice lobes operated under sub-

polar conditions invoked permafrost conditions at the gLGM (Benn & Clapperton, 

2000a, b). However, the presence of active temperate ice could still have operated 

alongside discontinuous permafrost and there is independent evidence of 

permafrost features such as ice-wedge casts in the region (e.g. Bockheim et al., 

2009). 

Evans (2003) suggested that the landform-sediment signature of an active 

temperate landsystem was indicative of glaciers controlled by regional climatic 

variability. Therefore, our reconstruction of active advance and retreat of the ice 

lobes suggests that the glacial dynamics were primarily controlled by climatic 

variability. Consequently, topographic controls (Kaplan et al, 2009; Anderson et al; 

Barr & Lovell, 2014) or internal dynamics (Benn & Clapperton; Lovell et al, 2012) 
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would have been of secondary importance, though these would also have varied 

between lobes. 

In addition to the overriding active temperate glacial landsystem, our reconstruction 

of fast-flowing ice would have affected ice dynamics in parts of the ice lobes. Similar 

fast-flowing systems in northern Patagonia during the gLGM are hypothesised to 

have resulted in greater ice discharge rates (Glasser & Jansson, 2005), and rapid 

ice flow across much of the eastern portion of the Patagonian Ice Sheet may help to 

explain mismatches between model outputs and landform reconstructions (Hulton et 

al., 2002; Glasser & Jansson, 2005). The presence of landforms possibly linked to 

surge-like advances implies that, at times, the ice lobes may have briefly advanced 

in response to non-climatic forcing. The evidence for palaeo-surges is very limited, 

but the possibility that they occurred in this area warrants further research, 

particularly given the paucity of examples of surging systems in the palaeo-record 

and the fact that some contemporary active temperate glaciers, such as 

Breiðamerkurjökull, have also displayed surging activity (Evans & Twigg, 2002). 

Former proglacial lakes would also have affected glacial dynamics by promoting 

increased rates of ice retreat (Porter et al., 1992; Teller, 2003; Lovell et al., 2012; 

Carrivick & Tweed, 2013). The presence of a proglacial lake at the margin of a 

glacier can trigger positive feedbacks such as increased englacial water pressure 

and temperature; increased subglacial pressure; and increased ice surface 

gradients, which can result in calving, ice-margin flotation and the flushing of 

sediment from beneath the ice (Carrivick & Tweed, 2013). This results in greater ice 

mass loss and glacial draw-down and was suggested by Lovell et al. (2012) as a 

possible mechanism to explain the rapid ice-flow in the Otway lobe. Porter et al. 

(1992) also suggested that calving of the Magellan and BI-SSb lobes could have 

resulted in a rapid loss of ice that may explain rapid retreat, or even collapse, of the 

ice lobes back into Cordillera Darwin during the lateglacial period (Hall et al., 2013). 

6.6.4 Glacial reconstruction 

The glacial limits that we have defined can be used to reconstruct a relative glacial 

history for the region, enhanced by information about ice dynamics from our 

landsystems approach. Correlating between the glacial limits of adjacent ice lobes 

can be problematic because they are generally reconstructed from fragmentary 

records, and joining-up limits can over-emphasise correlation without robust 

chronological controls. However, in places, our approach informs the relative timing 

of ice advance and retreat between lobes based on cross-cutting landform 
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assemblages. Of particular note is the interplay between the outermost limits of the 

Skyring and Río Gallegos lobes (Section 6.5.2.2); the large flowset of lineations (FS 

9) which crosses both the Magellan and Otway lobes (Section 6.6.2.1); and the 

drainage of the Skyring proglacial lake in front of the Otway and Magellan lobes 

(Section 6.5.2.5). The relative isolation of the BI-SSb lobe means that it is difficult to 

correlate between this and the other lobes. Based on our glacial limits, the nature of 

glacial dynamics from our landsystem approach and the logical (though 

conservative) configuration of the different ice lobes based on cross-cutting landform 

assemblages, we propose eight relative time steps for the region, against which 

chronological constraints have been applied where possible (Figures 6.17, 6.18, 

6.19 and 6.20). We now discuss these time steps in detail. 

6.6.4.1 Time step 1 

The Río Gallegos lobe flowed rapidly to its greatest extent, creating flowsets FS 1, 

FS 2 and FS 3 (Figure 6.17). The extent of the other ice lobes is unclear, but the 

Skyring lobe cannot have been fully extended because the geomorphology of the 

Río Gallegos and Skyring lobes overlaps and Skyring drainage later flowed into the 

former Río Gallegos depression (Figure 6.4). 10Be ages of 56.0 ka and 138 ka 

relating to the outer limits of the Río Gallegos lobe are substantially younger than 

the Bella Vista flow (Kaplan et al., 2007), which has been 40Ar/39Ar dated to 1.17 Ma 

by Singer et al. (2004a) and underlies till deposits thought to relate to the maximum 

glacial advance. This could be due to post-depositional processes affecting the 

sampled moraine boulders (Kaplan et al., 2007), but we also caution that it is difficult 

to tie distal drift sediments to limits defined by glacial geomorphology (Meglioli 

(1992) also dated flows to 8.0 and 8.5 Ma within this ice lobe); the Bella Vista flow 

only provides a maximum age for the limit; and it is not inconceivable that the ice 

lobe extended towards this maximum extent on several occasions. Consequently, 

we cannot rule out the possibility that this time step occurred more recently than 

previously thought. 
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Figure 6.17. (A) Time step 1 and (B) time step 2. Dates are shown in ka (see text for details) 
and flowsets are shown where appropriate. Black arrows indicate ice advance and the 
hypothetical ice sheet divide is shown by the red dashed line. 
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Figure 6.18. (A) Time step 3 and (B) time step 4. Dates are shown in ka (see text for details) 
and flowsets are shown where appropriate. The hypothetical ice sheet divide is shown by the 
red dashed line. 
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6.6.4.2 Time step 2 

The Skyring, Otway, Magellan and BI-SSb ice lobes advanced to their maximum 

extents, whereas the Río Gallegos lobe retreated (Figure 6.17). The Skyring lobe 

advanced into the Río Gallegos depression, overriding former moraines and glacial 

lineations to leave irregular dissected ridges (Figure 6.4; Lovell et al., 2011; Chapter 

3). The exact extent and timing of the advances is unclear, and correlation cannot 

be made between the ice lobes. The 10Be ages of 56.0 ka and 138 ka (Kaplan et al., 

2007) in time step 1 could reasonably relate to time step 2 if they were actually 

deposited by the Skyring lobe. Two further ages of 59.4 ka and 173 ka from the 

Magellan lobe are similarly young compared to local 40Ar/39Ar ages (Meglioli, 1992; 

Singer et al., 2004a; Kaplan et al., 2007). However, tying dated tills to glacial limits 

may not be straightforward. It is conceivable that the ice lobes advanced more than 

once to similar limits at radically different times, possibly due to topographic 

constraints (Kirkbride & Winkler, 2012; Barr & Lovell, 2014) or erosional feedbacks 

(Kaplan et al., 2009; Anderson et al., 2012). For example, The BI-SSb lobe was also 

close to this limit in at least time steps 3 and 4. The four cosmogenic dates available 

for time steps 1 and 2 may indicate two separate advances at around 173-138 ka 

and 59-56 ka, but the dates are not apparently in stratigraphic order, disagree with 

the conceptual age model for the region (Meglioli, 1992), and do not take into 

account erosion and/or exhumation processes (Kaplan et al., 2007). 

6.6.4.3 Time step 3 

The Río Gallegos lobe continued to recede and the Skyring and Otway lobes 

retreated to close to the limits of their topographic basins. The Magellan lobe may 

have re-advanced slightly, forming FS 14 (Figure 6.18), though this flowset may 

have formed in time step 1 or 2. There are no chronological constraints for the Río 

Gallegos, Skyring, Otway or Magellan lobes and correlation between the lobes 

cannot be made, but the BI-SSb ice limit has been 10Be dated (Kaplan et al., 2007; 

Kaplan et al., 2008a). Twelve ages range from 15.2 ka to 57.3 ka, though eight of 

these are within 26.8 ka and 33.0 ka. In addition, two 26Al dates of 24.8 ka and 30.4 

ka and four 36Cl dates of 18.7 ka, 25.2 ka, 27.1 ka and 51.5 ka have been recorded 

(Kaplan et al., 2007; Evenson et al., 2009). 

Post-depositional erosion and exhumation may have affected these boulder ages 

(Kaplan et al., 2007), so Chapter 5 used a 10Be/26Al depth profile through outwash 

associated with the same limit to obtain an independent estimate of age. The errors 

on the depth-profile are large, but it indicates that the limit was deposited during the 
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last glacial cycle, possibly around 45.6 ka. Thus, numerous dating campaigns have 

yielded ages younger than previously thought, and a best estimate of age may be 

somewhere between 26.8 ka and 57.3 ka. The large spread of ages may result from 

post-depositional processes, possibly linked to gradual melt-out of the dead ice in 

kettle and kame topography (Schomacker, 2008; Chapter 4), or boulder erosion 

(Kaplan et al., 2007). The latter could explain the offset between the dominant 

cluster of boulder ages between 27.0 ka and 36.2 ka, and the depth profile at 45.6 

ka, in which case, the depth profile may be a better estimate of the time of 

deposition (see Chapter 5). 

6.6.4.4 Time step 4 

The Skyring and Otway lobes retreated to skirt the edges of their respective basins, 

with the Otway lobe possibly re-advancing to form FS 8 (Figure 6.18). The Magellan 

lobe retreated to Primera Angostura and the Río Gallegos lobe continued to retreat, 

possibly re-advancing slightly to deposit FS 4. The BI-SSb lobe re-advanced close 

to the limit of time step 3, depositing a second band of kettle and kame topography, 

which has yielded 10Be dates of 24.3 ka and 224.1 ka (Kaplan et al., 2007). These 

dates are ambiguous, but a depth-profile through associated outwash yielded a 

more robust age of ca. 30.1 ka (Chapter 5). Like time step 3, there is scatter in the 

boulder ages, perhaps due to post-depositional processes. For the Magellan lobe, 

four 10Be ages between 24.8 ka and 36.9 ka and two 26Al ages of 31.0 ka and 32.6 

ka (Kaplan et al., 2007) imply that the limit may have been deposited at a similar 

time to that of the BI-SSb lobe. In addition, we suggest that four dates on Peninsula 

Juan Mazia, previously ascribed to a later advance, may have been deposited at 

this time, given the similarity between these 10Be ages of 27.4 ka to 29.9 ka and 

those on Primera Angostura (McCulloch et al., 2005b; Kaplan et al., 2008a). For the 

Río Gallegos lobe, two 10Be ages of 62.4 ka and 62.7 ka, and three 36Cl ages of 

38.1 ka to 55.2 ka (repeat samples; Evenson et al., 2009), imply that the limit may 

be older, but these dates are all from a single boulder, and the lateral configuration 

of this ice lobe is challenging to map. There are no ages for the Skyring or Otway 

lobes. 
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Figure 6.19. (A) Time step 5 and (B) time step 6. Dates are shown in ka (see text for details) 
and flowsets are shown where appropriate. Proglacial lakes are shown along with their 
drainage routes (blue arrows) and black arrows indicate advance. The hypothetical ice sheet 
divide is shown by the red dashed line. 
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Figure 6.20. (A) Time step 7 and (B) time step 8. Dates are shown in ka (see text for details) 
and flowsets are shown where appropriate. Proglacial lakes are shown along with their 
drainage routes (blue arrows) and black arrows indicate ice advance or retreat. The 
hypothetical ice sheet divide is shown by the red dashed line. 
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6.6.4.5 Time step 5 

The Río Gallegos, Magellan and Skyring lobes retreated, with the latter triggering 

the development of a proglacial lake – palaeo-Laguna Blanca – which may have 

further facilitated ice loss from a calving front (Figure 6.19). This lake drained 

northwards into the Río Gallegos depression, indicating recession of the Río 

Gallegos lobe. The Otway lobe re-advanced significantly, forming FS 9 around 

Laguna Cabeza del Mar and shifting the ice divide between the Otway and Magellan 

lobes south-eastward into the present-day Strait of Magellan. The BI-SSb lobe also 

re-advanced to a limit close to Bahía San Sebastián, depositing a large terminal 

moraine that is still preserved east of Laguna Larga and forming FS 20, 21 and 22. 

The re-advances of these two ice lobes may have been in response to rapid ice 

flow, or possible surge-like activity.  Thus, between time steps 4 and 5, all ice lobes 

receded and the Otway and BI-SSb lobes re-advanced. There are no chronological 

constraints for any of the ice lobes in this time step, but the thrust moraines 

deposited by the Otway lobe also indicate the position of the Skyring and Magellan 

lobes. 

6.6.4.6 Time step 6 

All ice lobes retreated during this time step (Figure 6.19). The Skyring, Otway and 

Magellan lobes did not retreat far because the potentially catastrophic drainage of 

palaeo-Laguna Blanca passed from in front of the Skyring lobe east to south-

easterly in front of the Otway and Magellan lobes. It is unclear how far the Río 

Gallegos and BI-SSb lobes retreated during this time step, but the presence of 

deformed lacustrine sediments in re-advance moraines of the BI-SSb lobe in time 

step 7 suggests that this ice lobe must have retreated sufficiently for a pro-glacial 

lake to develop. Again, there are no chronological constraints for any of the ice 

lobes in this time step, but we note that for the Skyring, Otway and Magellan lobes, 

time steps 5 and 6 are broadly constrained by dates in the Magellan lobe for time 

steps 4 and 7, and that the limits can be correlated reasonably robustly across the 

three ice lobes. Dating the drainage of palaeo-Laguna Blanca would improve this 

chronology and test our interpretation of the dates for time steps 4 and 7. 

6.6.4.7 Time step 7 

This time step has previously been defined as the gLGM limit (Figure 6.20). There 

are no supporting ages for the Río Gallegos, Skyring and Otway lobes, although 

they were likely situated within the present-day fjords, with the termini of the Skyring 

and Otway lobes splitting after time step 6. The Magellan and BI-SSb lobes had 
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retreated upstream – though it is not clear how far – and re-advanced during this 

time step, possibly displaying surge-like behaviour and forming FS 16 and FS 23 

and 24. The Magellan lobe has been 10Be dated four times on Peninsula Juan Mazia 

to between 18.3 ka and 23.2 ka. The BI-SSb lobe has also been dated, with 18 10Be 

dates yielding ages of between 15.6 ka and 55.8 ka, though with sixteen of these 

dates between 17.6 ka and 24.9 ka, one 26Al date of 26.6 ka, and two 36Cl dates of 

22.3 ka and 54.8 ka (McCulloch et al., 2005b; Kaplan et al., 2007; Kaplan et al., 

2008a; Evenson et al., 2009). The reason for the scatter in ages is unclear, though 

the 10Be date of 55.8 ka may be due to inheritance, given most of the dates are from 

a large erratic boulder train on the south-eastern side of Bahía Inútil (see Chapter 

4). Nonetheless, the dates for the Magellan and BI-SSb lobes generally support the 

assertion that this time step relates to the gLGM. 

6.6.4.8 Time step 8 

All of the ice lobes were in full post-gLGM retreat during this time-step, likely 

developing proglacial lakes in front of their receding margins that could have 

increased the rate of ice retreat due to frontal calving (Figure 6.20; Porter et al., 

1992; Kilian et al., 2007). The Magellan and BI-SSb proglacial lakes drained 

eastward toward the Atlantic, although their extent is uncertain. Drainage of the 

Otway proglacial lake initially occurred east to north-eastward into the Magellan lake 

(McCulloch et al., 2005a), but as lake levels dropped during ice retreat, drainage 

switched to north-westward into the Skyring proglacial lake (McCulloch et al., 2005a; 

Kilian et al., 2013), cutting the Fitzroy channel and depositing large deposits of 

climbing ripple structures. In turn, the Skyring proglacial lake drained into the Río 

Gallegos proglacial lake that, by this time, may have drained westward into the 

Pacific ocean through ice-free fjords dissecting the Andes (McCulloch et al., 2005a; 

Kilian et al., 2013). That said, it is possible that Río Gallegos ice was still extensive, 

such that drainage occurred later and was southward, reaching the Pacific through 

Seno Otway (Stern et al., 2011). Uncertainty in the configuration of the Río Gallegos 

lobe makes it difficult to assess drainage routes. 

The Skyring and Otway lobes were located well within their respective fjords, with 

cores suggesting ice-free conditions in Seno Skyring and Seno Otway dated to at 

least 14.8 ka and 14.7 ka, respectively, using radiocarbon dating and 

tephrostratigraphy (Kilian et al., 2013). Kilian et al. (2007) suggested that this was 

part of a rapid retreat of the Skyring lobe, likely linked in part to proglacial calving. 

The Magellan lobe has been 10Be dated to 20.4 ka and 20.6 ka on Península Juan 
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Mazia and also 15.1 ka and 16.8 ka on the western lateral side of the lobe (Kaplan 

et al., 2008a), perhaps indicating relatively rapid retreat of the ice lobe during and 

after this time step, and supporting ice recession by ca. 22 ka, as indicated by 

luminescence ages on the western side of the Strait of Magellan (Blomdin et al., 

2012). The BI-SSb lobe has yielded five similar 10Be dates between 18.7 ka and 

21.3 ka (McCulloch et al., 2005b; Kaplan et al., 2008a), and four 10Be dates from a 

boulder below the proglacial lake shoreline suggest that drainage may have 

occurred between 14.4 ka and 8.3 ka (Evenson et al., 2009). Numerous radiocarbon 

dates suggest that retreat of the Magellan and BI-SSb ice lobes was well under way 

by at least 14-15 ka (Clapperton et al., 1995; McCulloch & Bentley, 1998; McCulloch 

et al., 2005b), although the presence of the Reclús tephra within lake sediments 

suggests full retreat and lake drainage cannot have been before ca. 14.3 ka. The 

rapid retreat, and possible collapse, of the BI-SSb lobe during and after this time 

step is supported by radiocarbon dates in the accumulation area of the lobe in 

central Cordillera Darwin by Hall et al. (2013) that suggest that the constituent outlet 

glaciers that formed the ice lobe in this time step may have retreated into small 

interior fjords as early as 16.8 ka. These dates suggest early deglaciation and no 

significant re-advance during the Antarctic Cold Reversal, though the hypothesis 

remains a matter of debate (McCulloch et al., 2005b; Moreno et al., 2009b; Hall et 

al., 2013). 
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6.7 Conclusions 

This study presents a reconstruction of the relative history of five ice lobes in 

southernmost South America. We reconstruct eight time steps, which highlight the 

dynamic nature of the former ice and use a landsystem approach to show that the 

ice lobes dominantly displayed behaviour similar to active temperate glaciers. This 

involved warm-based ice actively re-advancing during overall retreat of the ice 

margin and refutes the hypothesis that the ice lobes displayed sub-polar 

characteristics with cold-based margins. The implication is that the active temperate 

ice lobes would have been primarily controlled by regional climate variability, and 

topographic or internal processes would have had only a secondary role in ice 

dynamics. 

There is also some evidence to suggest rapid ice flow at times, and even possible 

surge-like activity, particularly in the Otway and Magellan lobes, though this requires 

further investigation. Additionally, our field observations have confirmed the 

presence of the palaeo-Laguna Blanca proglacial lake, which developed in front of 

the Skyring lobe, and drained, potentially catastrophically, prior to the gLGM. The 

development of other proglacial lakes in front of all of the ice lobes would have also 

promoted calving of the ice margins and rapid retreat, or even eventual collapse, of 

the ice lobes after the gLGM. 

A critical issue is whether ice limits relate to successive glaciations through the 

Quaternary or were all deposited more recently, such as during the last glacial cycle. 

For the BI-SSb lobe, all limits seem to relate to the last glacial cycle (Chapter 5), and 

we use this as a catalyst to reassess previous dating evidence in the region. For the 

Río Gallegos, Skyring and Otway lobes, age constraints are scarce and 

contradictory, but our recalculation of cosmogenic nuclide dates for older limits of 

the Magellan lobe suggests that at least one limit of greater extent than the gLGM 

limit was deposited around 30 ka. This suggests that the BI-SSb and Magellan lobes 

advanced in a similar manner and at similar times. There is, therefore, a chance that 

all glacial limits could be substantially younger than previously thought. Similarities 

in the timing of ice advances from the available chronological information implies 

that, broadly speaking, underlying, external climatic forcing is likely responsible for 

glacial advances and supports our assertion that the ice lobes responded to climate 

variability. However, additional chronological controls are needed to test this further, 

especially for the Río Gallegos, Skyring and Otway lobes. 
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Abstract 

Advances of glaciers in the southern mid-latitudes during the last glacial cycle (ca. 

110-10 ka) were controlled by changes in temperature and precipitation linked to 

several important climatic systems. As such, the timing of advances can yield 

important insights into the mechanisms of Southern Hemisphere climate change. 

This is particularly important given that several recent studies have demonstrated 

significant glacial advances prior to the gLGM in Patagonia and New Zealand, the 

cause of which is uncertain. The large increase in recent chronological studies in 

these regions offers the opportunity to robustly compare regional trends in glacial 

activity. Here, we compile two 10Be exposure dating chronologies from published 

glacial records in Patagonia and New Zealand to highlight the broad pattern of mid-

latitude glacial advances. We assess whether pre-gLGM advances are a common 

feature, and examine whether glacial advances were synchronous between the two 

regions. Results suggest that the similarity between the chronologies from 

Patagonia and New Zealand indicate that they were driven by common factors 

during the last glacial cycle from at least 45 ka, with advances at 41-43 ka, 32-38 ka, 

26-27 ka, 18-19 ka and 13-14 ka. Hence, glaciers were generally advancing by the 

latter half of MIS 3. Subsequent advances, or stillstands, occurred both before and 

after the gLGM, and during the Antarctic Cold Reversal, rather than the Younger 

Dryas. Glacial advances in Patagonia and New Zealand were probably driven by 

underlying orbital parameters, involving a combination of summer intensity, 

seasonality and the duration of winter, but the precise timing is likely to have been 

intrinsically linked to migration of the coupled ocean-atmosphere system. For these 

reasons, late MIS 3 was conducive for glacial advances in these regions. Summer 

insolation reached a minimum, seasonality was reduced, winter duration was 

increasing, and sea ice had expanded significantly, inducing stratification of the 

ocean and triggering northward migration of oceanic fronts and the Southern 

Westerly Winds. 
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7.1 Introduction 

Patagonia in southern South America and South Island, New Zealand, have hosted 

the two largest non-Antarctic ice sheets in the Southern Hemisphere during 

Quaternary glaciations (Figure 7.1). The former Patagonian Ice Sheet extended 

from the Andean range to cover significant parts of Chile and Argentina between 

~36 and ~56°S (Coronato & Rabassa, 2011), and the New Zealand Ice Sheet 

occupied much of the southern Alps between ~40 and ~46°S (Barrell, 2011). 

Together, the glaciers extending from these two ice sheets covered a broad 

latitudinal range in the southern mid-latitudes and were influenced by key global 

climatic systems. These include the oceanic Sub Tropical, Sub Antarctic and Polar 

Fronts, the Antarctic Circumpolar Current and Agulhaus Current leakage, and the 

position and/or strength of the Southern Westerly Wind system. As a result, glaciers 

in Patagonia and New Zealand have been used to reconstruct past climatic change. 

Recent work (Glasser et al., 2011; Putnam et al., 2013b; Kelley et al., 2014; Rother 

et al., 2014; Chapter 5) has identified that some of these glaciers advanced to 

greater extents prior to limits deposited during the global Last Glacial Maximum 

(gLGM; ca. 26.5-19 ka; Clark et al., 2009). This is not necessarily surprising. 

Hughes et al. (2013) suggested that many ice sheets around the world did not 

achieve maximum extent at the same time during the last glacial cycle (ca. 110-10 

ka). However, it does indicate that our understanding of southern mid-latitude glacial 

advances is incomplete, with implications for our understanding of southern climate 

systems more generally. Specifically, the new glacial chronologies raise two 

important issues. First, it is unclear whether pre-gLGM ice advances were 

representative of the Patagonian and New Zealand Ice Sheets more broadly and, if 

so, whether the advances were synchronous across the southern mid-latitudes. 

Secondly, the forcing factors behind southern mid-latitude glaciation during the last 

glacial cycle are ambiguous, as is the relationship to climatic drivers in the Northern 

Hemisphere. 

Tackling these problems requires a synthesis of the evidence for the timing of glacial 

advances in Patagonia and New Zealand. Given the high volume of new 

chronological data that has been published in recent years, this paper compiles 

glacial chronologies for both regions during the last glacial cycle to examine if similar 

trends are evident from the published literature and whether these are replicated 

over a large geographic area. We then compare the timing of glacial advances with 

terrestrial, marine and ice core proxy records and test hypotheses regarding how 
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southern climatic systems operated over time. Whilst other ice caps and glaciers 

existed in Chile, Australia, Tasmania, North Island (New Zealand) and elsewhere in 

the sub-Antarctic during the last glacial cycle, we limit our focus to Patagonia and 

South Island in this review. This is because they hosted the largest ice sheets and 

produced similarly detailed and well-preserved glacial records that have been 

studied in the greatest detail. We also focus predominantly on 10Be cosmogenic 

nuclide dating because it offers direct age estimates for glacial moraine records and 

has been used extensively in both regions. 

7.2 Methods 

7.2.1 10Be dating compilation 

Our compilation consists of 10Be cosmogenic nuclide exposure data from studies 

across Patagonia and New Zealand (Table 7.1). We collated all 10Be dates 

presented by authors for moraine boulders and outwash cobbles, but excluded 

bedrock and moraine cobble samples due to potential issues with re-setting and 

because they do not necessarily represent glacial advances in the same way. We 

also excluded the depth profiles of Hein et al. (2009) and Chapter 5 because these 

broadly duplicate outwash cobble dates. For consistency, we recalculated all dates, 

applying the Putnam et al. (2010b) New Zealand 10Be production rate for dates in 

New Zealand and Patagonia, as well as the Kaplan et al. (2011) Patagonian 10Be 

production rate for dates in Patagonia. We also calculated ages using five scaling 

schemes and a range of erosion rates (1 mm ka-1 intervals between 0 and 10 mm 

ka-1) to evaluate the effects of these parameters on age distributions. All other 

parameters, including standards, were taken from the original literature or 

subsequent updates (e.g. Kaplan et al., 2011), and we used a standard density of 

2.7 g cm-3 where none was given in the original studies. To aid the identification of 

cumulative peaks in exposure time we employ cumulative Probability Density 

Functions (PDFs; Barrows et al., 2002) and we exclude any dates that, within errors, 

fall outside the last glacial cycle between 110 and 10 ka. 
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Figure 7.1. (A) Map of the Southern Hemisphere showing the positions of the Sub-Tropical 
Front (red), Sub-Antarctic Front (green) and Polar Front (blue), as well as the core region of 
the Southern Westerly Winds (yellow-brown) and the locations of ice and marine core 
records referred to in the text. Note the latitudinal difference of the oceanic frontal systems 
around Patagonia compared to New Zealand. (B) Comparison of the hypothesized size and 
latitudinal extent of the former Patagonian and New Zealand ice sheets at the global Last 
Glacial Maximum (gLGM) from (Ehlers et al., 2011). The size and latitude of the ice sheets is 
faithful, but they are not shown against actual longitude. (C and D) Details of the Patagonian 
and New Zealand ice sheets, shown at their hypothesized gLGM extents with the -250 m 
bathymetric contour included to give an impression of the likely drop in sea-level at that time. 
Glacial valleys or systems used in this study are labelled as well as major oceanic 
circulations (black arrows), Southern Westerly Wind direction (brown dashed arrows), the 
Sub-Antarctic Front (green line) and and Sub-Tropical Front (red line). 
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Table 7.1. Details of the original works compiled in this study, ordered by glacial system and showing the latitude, longitude and total number of dates without 
(no brackets) and with (in brackets) author-identified outliers removed. 

Glacier system Lat. 
(°S) 

Long. 
(°W/E) 

Total no. dates References 

Patagonia      

Lago Bueno Aires -46/-47 -71/-73 101 (82) (Kaplan et al., 2004; Douglass et al., 2005; Kaplan et al., 2005; Douglass et al., 2006; Glasser et al., 2012) 

Rio Bayo valley -47 -73 3 (3) (Glasser et al., 2006) 

Nef valley -47 -73 6 (5) (Glasser et al., 2012) 

Pueyrredon -47/-48 -71/-73 42 (36) (Hein et al., 2009; Hein et al., 2010; Hein et al., 2011; Glasser et al., 2012) 

San Martin valley -49 -72/-73 10 (10) (Glasser et al., 2011) 

Rio Guanaco -50 -73 21 (21) (Murray et al., 2012) 

Lago Argentino -50 -73 30 (28) (Ackert et al., 2008; Kaplan et al., 2011) 

Torres del Paine -51 -73/-74 57 (46) (Fogwill, 2003; Fogwill & Kubik, 2005; Moreno et al., 2009b; García et al., 2012) 

Rio Gallegos -51/-52 -71/-72 8 (6) (Kaplan et al., 2007; Evenson et al., 2009; Sagredo et al., 2011) 

Magellan -52/-53 -69/-71 18 (10) (McCulloch et al., 2005b; Kaplan et al., 2007; Kaplan et al., 2008a) 

Skyring/Otway/Magellan -53 -71 3 (1) Unpublished data 

BI-SSb -53/-54 -68/-70 49 (33) (McCulloch et al., 2005b; Kaplan et al., 2007; Kaplan et al., 2008a; Evenson et al., 2009; Chapter 5) 

Total 348 (276)  

Total within last glacial cycle 290 (235)  

New Zealand      

Cobb-Takaka -41 173 1 (1) (Thackray et al., 2009) 

Cobb Valley -41 173 12 (6) (Shulmeister et al., 2005) 

Taramakau -43 171/172 36 (34) (Barrows et al., 2013) 

Arthur’s Pass -43 172 5 (4) (Ivy-Ochs et al., 1999) 

Rakaia Valley -43/-44 171/172 56 (47) (Shulmeister et al., 2010; Putnam et al., 2013a) 

Cameron glacier -43 171 45 (39) (Putnam et al., 2012) 

Franz Josef -43/-44 170 8 (8) (Barrows et al., 2007b) 

Rangitata Valley -43/-44 171 56 (51) (Rother et al., 2014) 

Pukaki -44 170/171 83 (78) (Schaefer et al., 2006; Putnam et al., 2010a; Kelley et al., 2014) 

Ohau -44 170 116 (102) (Kaplan et al., 2013; Putnam et al., 2013b) 

Irishman Stream -44 170 35 (31) (Kaplan et al., 2010) 

Cascade Plateau -44 168 20 (15) (Sutherland et al., 2007) 

Boundary Stream Tarn -44 170 10 (10) (Putnam et al., 2010b) 

Total 506 (426)  

Total within last glacial cycle 414 (372)  
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7.2.2 Radiocarbon dating 

To cross-check with the 10Be chronology, we also compiled radiocarbon dates from 

the literature relating to glacial advances in Patagonia or New Zealand. The dates 

were separated into minimum or maximum ages according to the original studies or 

based on our own inferences if this was not stated explicitly. All dates were 

recalculated using OxCal version 4.2 (Bronk Ramsey, 2009) using the Reimer et al. 

(2013) calibration curve. To avoid bias between authors, we plot all data as PDFs 

and, where appropriate, highlight the authors’ interpretation of ages. Minimum ages 

are more relevant for this discussion because they indicate that a particular glacier 

advanced prior to that time. One notable exception is the chronology of Denton et al. 

(1999), who analysed 472 radiocarbon dates from moraine limits in the Chilean Lake 

District and then selected key dates to accurately bracket the moraine ages. 

7.3 Results 

7.3.1 10Be chronology 

Glacial advances have yielded cosmogenic nuclide exposure ages throughout the 

last glacial cycle, and show a similar pattern in Patagonia and New Zealand (Figure 

7.2). However, overlapping dates from different glaciers in both Patagonia and New 

Zealand begin at ca. 45 ka. Dates prior to 45 ka are scattered or are not reproduced 

across different glacial systems. There are also significant gaps in the record, with 

few or no dates between 57 and 110 ka (MIS 4 and 5). A key part of this study is to 

assess a large compilation dataset to see if there are regional trends that have 

previously been missed in individual studies. Therefore, it is important to ensure that 

author-identified outliers were not removed erroneously.  We calculated all of the 

ages twice, once with all data included (nPatagonia = 290; nNew Zealand = 414) and the 

second time with all author-identified outliers removed (nPatagonia = 235; nNew Zealand = 

372; Figure 7.3; Table 7.1). We only removed outliers that were clearly identified in 

the original studies – if there was ambiguity, we retained the data. Removing author-

identified outliers made negligible difference to the timing of the compilated PDF 

peaks, and so the reduced compilation was used for all other analysis in this paper. 
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Figure 7.2. The compilation of 
10

Be and radiocarbon dates from Patagonia and New Zealand 
used in this study, shown against the Marine Isotope Stages from Lisiecki & Raymo (2005) 
and the gLGM from Clark et al. (2009). (A and B) show all 

10
Be dates within 110-10 ka after 

author-identified outliers have been removed as mean ages with standard errors that have 
been recalculated using the Putnam et al. (2010) production rate, with no erosion rate 
applied. The dates are colour-coded according to the glacial system from which they are 
derived, and associated references can be found in Table 7.1. Also shown are cumulative 
relative probability density function curves, calculated from all of the dates within each 
region. (C and D) show all of the minimum and maximum radiocarbon dates that have been 
compiled, separated into minimum (light purple and light red) and maximum (dark purple and 
dark red) limiting ages and shown as recalculated mean ages with standard errors. 
Probability density function curves are shown for all of the minimum and maximum dates in 
each region. Note that unless stated, the 

10
Be dates, probability density curves, Marine 

Isotope Stages, and global Last Glacial Maximum boundaries used here are replicated in all 
other figures in this paper. 



 

182 
 

7.3.2 Radiocarbon dating 

The radiocarbon dates reproduce the 10Be model (Figure 7.2). Minimum ages 

extend back to 40.3 ka in New Zealand and 41.4 ka in Patagonia and maximum 

ages cap these timings at 43.1 ka in New Zealand and 47.1 ka in Patagonia. We 

caution that these ages are at the upper age limit of the radiocarbon dating 

technique, and that organic material may be less well preserved in heavily glaciated 

systems further back in time. Hence, the radiocarbon dating may be limited by 

factors other than the timing of glaciation, but the parallels with the cosmogenic 

nuclide chronologies are striking. 

7.3.3 Relating 10Be peaks to glacial advances 

Peaks in the PDF plots for all dates in Patagonia and New Zealand help to illustrate 

times when more glaciers are more likely to have advanced. This technique is useful 

for identifying patterns in a large number of dates but should be used with caution, 

as it does not convey the spatial distribution (e.g. down-ice extent) of dates and can 

be influenced by uncertainty in factors such as erosion rate and inheritance during 

age calculation, factors which are explored in the following sections. Different 

glaciers within the compilation likely advanced at different times, and the PDF 

technique removes this subtle variability. However, in a discussion about the 

possible forcing factors responsible for regional glacial advances, we are interested 

in the commonality between the timing of glacial advances and in using a robust 

chronological dataset, so this broad-brush technique is useful. It is worth noting that 

the fact that our compilation produces PDF peaks suggests that there is regional 

commonality in the timing of glacial advances during the last glacial cycle. 

The timing of PDF peaks in Patagonia and New Zealand is shown in Table 7.2. 

Additional, low amplitude peaks at 89.8 ka, 59.1 ka and 56.4 ka are intriguing, but 

because the replication of dates between glaciers is much weaker prior to 43 ka, we 

focus on peaks after this time. There appears to be a consistent offset between 

Patagonia and New Zealand in the timing of the three most recent PDF peaks. 

Before exploring whether there is a geographical or climatological reason for this, it 

is first necessary to examine whether inherent factors in the age calculation process 

can account for the offset. Specifically, we assess sensitivity to the production rate 

or scaling scheme used; the erosion rate applied; or possible inheritance issues. 

This exercise is also useful for assessing how the overall spread of ages changes 

when these parameters are varied. 
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Figure 7.3. Examining the effects of calculation parameters on the overall spread of ages in 
our compilation. (A and B) show the probability density functions from Figure 7.2 in dark 
purple (A, Patagonia) and dark red (B, New Zealand), where all author-identified outliers 
have been removed, as well as the functions when author-identified outliers are included. 
There is little resulting difference in the timing of peaks. (C) shows the effect of calculating all 
dates from Patagonia with the New Zealand production rate of Putnam et al. (2010) and the 
Patagonian production rate of Kaplan et al. (2011). (D and E) show the effect on the resulting 
probability density functions of incrementally increasing the erosion rate by 1 mm ka

-1
 during 

the calculation of all ages in Patagonia and New Zealand and (F and G) show the effect of 
altering the scaling scheme used. The scaling schemes are: the time-dependent Lal (1991) 
and Stone (2000; St); Desilets et al. (2006; De); Dunai (2001; Du); Lifton et al. (2005; Li); 
and time-independent Lal (1991) and Stone (2000; Lm). In (C, D, E, F and G), all author-
identified outliers have been removed, the New Zealand production rate is used and, where 
relevant, no erosion rate is applied. 
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7.3.3.1 Production rate and scaling scheme 

An offset in the timing of PDF peaks in Patagonia and New Zealand could be an 

artefact of recalculating all ages using the New Zealand production rate, even 

though this overlaps with the Patagonian production rate at 1σ. Figure 7.3 and Table 

7.2 show all dates recalculated using the Putnam et al. (2010b) Macaulay River, 

New Zealand 10Be production rate of 3.74 ± 0.08 atoms g-1 a-1, and also the 

Patagonian dates recalculated using the Kaplan et al. (2011) Lago Argentino, 

Patagonia 10Be production rate of 3.81 ± 0.13 atoms g-1 a-1. The production rate 

alone can only explain the offset in PDF peaks at 26-27 ka, although these peaks 

are very similar in age, regardless of the production rate used. When recalculated 

using the Patagonian production rate, the 43.1 ka peak can no longer be resolved 

and the 27.0 ka and 18.8 ka peaks become much broader. 

We also calculated ages using different scaling schemes (Figure 7.3; using just the 

New Zealand production rate). It is illogical to use different scaling schemes for the 

Patagonian and New Zealand datasets, so the important part of this experiment is to 

see whether the choice of scaling scheme can account for a discrepancy in the 

timing of PDF peaks. While the choice of scaling scheme can alter the timing (by as 

much as 1.6 ka for the 37.8 ka peak in Patagonia) it does not explain the difference 

between Patagonia and New Zealand. 

7.3.3.2 Surface erosion rate 

Differential surface erosion rates in Patagonia or New Zealand could have affected 

the timing of PDF peaks because increased erosion offsets the build-up of 10Be 

nuclides, artificially yielding older ages. To test the effects of the selected erosion 

rate, we recalculated all ages using increasing rates between 0 mm ka-1 and 10 mm 

ka-1 (Figure 7.3 and Table 7.2). When using the New Zealand production rate, 

Patagonia peaks occurred before New Zealand. However, the difference in the 

erosion rate required for the peaks in New Zealand to match Patagonia varied non-

uniformly, from 6 mm ka-1 to 1 mm ka-1. When using the Patagonian production rate, 

Patagonia peaks occurred before New Zealand, except for the ca. 26-27 ka peak, 

where the New Zealand peak was slightly earlier (though the 100 year difference is 

negligible given that 100 year bins were used in plotting probability density 

functions). At very high erosion rates (> 8 mm ka-1), some of the older peaks 

flattened-out because there were insufficient high-precision dates. Overall, high 

(though not necessarily unreasonable) erosion rates are required for the 13-14 ka 

and 32-38 ka peaks to have been synchronous in Patagonia and New Zealand. 
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Lower erosion rates are required for the 18-19 ka and 26-27 ka peaks to have been 

synchronous. Altering the erosion rate and production rate for the 41-43 ka (and 

even older peaks) results in a spread of ages that do not resolve a peak in 

Patagonia. 

7.3.3.3 Inheritance 

Consistent inheritance in boulder populations in Patagonia could have resulted in an 

offset in PDF peaks compared to New Zealand. To test this, we constructed PDF 

plots for individual moraine sets. The shape of the PDF was heavily influenced by 

the number of boulder samples if the plot was constructed from less than four 

samples, so we excluded all moraine sets containing three dates or fewer and 

removed any moraine sets that were not completely resolved between 0-110 ka. We 

then used a skewness test to examine if moraine sets showed greater inheritance 

tails in either region – a simplified approach to the modelling of Applegate et al. 

(2010). Author-identified outliers had already been removed, so any inheritance-

skew was in addition to the outliers that had already been removed (Figure 7.4). 

Patagonia contained moraine sets that were more skewed (max = 5.86) than New 

Zealand (max = 4.98), but the average for Patagonia (3.75) was less than for New 

Zealand (3.90). Hence, whilst individual moraine sets may show statistical signs of 

inheritance, there is no consistent signature that would lead to the observed offset in 

PDF peaks between Patagonia and New Zealand. 

 

 

Figure 7.4. Binned results from an analysis of skewness of probability density functions from 
individual moraine sets in Patagonia and New Zealand as a crude proxy for differential 
inheritance signatures. The data suggest that inheritance cannot fully explain the consistent 
offset between Patagonia and New Zealand. 
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Table 7.2. The timing of peaks in glacial advances identified from relative cumulative probability density functions for New Zealand (NZ) and Patagonia (P) 
using the New Zealand production rate of Putnam et al. (2010b), and using the Patagonian production rate (Ppr) of Kaplan et al. (2011) for Patagonia. The 
bold values are those quoted in our study, but other values are given to show the effect of increasing erosion rate on the ca lculated dates. ‘NZ erosion’ refers 
to the erosion rate required (to the nearest 1 mm ka

-1
) to create a peak in New Zealand at the same time as peaks in Patagonia with no erosion using both the 

New Zealand and Patagonian production rates (e.g. a 6 mm ka
-1

 erosion rate is required to result in a peak in New Zealand at 13.9 ka, the same time as a 
peak in Patagonia with no erosion and using the New Zealand production rate). ‘Ppr erosion’ refers to the same estimation but for the erosion rate required to 
create in a peak in Patagonia using the Patagonian production rate at the same time as a peak in New Zealand with no erosion rate ans using the New 
Zealand production rate. 

 

 Peaks 

Erosion 
(mm ka

-1
) 

ca. 13-14 ka ca. 18-19 ka ca. 26-27 ka ca. 32-38 ka ca. 41-43 ka 
NZ P Ppr NZ P Ppr NZ P Ppr NZ P Ppr NZ P Ppr 

0 13.0 13.9 13.7 18.0 18.8 18.5 26.4 27.0 26.3 32.4 37.8 37.2 41.4 43.1 - 
1 13.1 14.0 13.8 18.3 19.1 18.8 27.0 27.6 26.8 33.2 39.0 38.3 42.8 44.7 - 
2 13.3 14.2 14.0 18.6 19.4 19.1 27.6 28.2 27.4 34.2 40.2 39.6 44.4 46.4 - 
3 13.4 14.4 14.1 18.9 19.7 19.4 28.1 28.9 28.1 35.2 41.6 40.9 46.2 48.4 - 
4 13.6 14.5 14.3 19.2 20.1 19.7 28.8 29.6 28.7 36.3 43.1 42.4 48.2 50.6 - 
5 13.7 14.7 14.5 19.5 20.3 20.0 29.5 30.4 29.4 37.5 44.8 44.0 50.6 53.0 - 
6 13.9 14.9 14.7 19.8 20.7 20.3 30.3 31.2 30.1 38.8 46.6 45.8 53.4 55.8 - 
7 14.0 15.1 14.9 20.1 21.0 20.7 31.1 32.1 30.9 40.2 48.7 47.8 56.5 59.0 - 
8 14.2 15.3 15.0 20.5 21.4 21.1 31.9 33.1 31.7 41.8 51.0 50.0 60.2 62.7 - 
9 14.4 15.5 15.2 20.9 21.8 21.4 43.5 34.1 32.6 - 53.7 52.6 64.3 67.0 - 
10 14.6 15.7 15.5 21.3 22.3 21.8 45.5 35.2 33.4 - 56.7 55.4 69.4 - - 

                
NZ erosion  6 5  2 - 3 1 - 2  1   5 - 6 4 - 5  1 - 2  
Ppr erosion       0 - 1         
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7.3.4 Summary of peaks in timing 

Production rate, scaling scheme, erosion rate and inheritance all have an effect on 

the calculation of ages from 10Be dates. However, none of these factors can provide 

a satisfactory explanation for the offset between Patagonia and New Zealand. This 

is because the offset does not decrease or increase uniformly back in time. 

Changing the scaling scheme does not reduce the offset, and using the Patagonian 

production rate neither reduces the offset sufficiently, nor accounts for a variable 

offset over time. Increasing the erosion rate in New Zealand can reduce the offset, 

but does not explain why the difference increases back in time, and it is unlikely that 

inheritance is responsible for the difference. A combination of these factors may 

explain the offset observed in the timing of PDF peaks in Patagonia and New 

Zealand, but this starts to invoke cyclical arguments, some of which are themselves 

climate-related (e.g. variable erosion rates over time). A simpler explanation is that 

the offset is real and PDF peaks in Patagonia occurred earlier than in New Zealand, 

which we now discuss. 

7.4 Discussion 

7.4.1 The timing of glacial advances 

We interpret the peaks in the PDF distributions at ca. 41-43 ka, 32-38 ka, 26-27 ka, 

18-19 ka and 13-14 ka to reflect the deposition of moraine boulders and cobbles 

during glacial advances, or at the very least stillstands. The resolution of these 

advances is determined in part by sampling strategies that have targeted glacial 

limits, and the corresponding dating errors – hence the gLGM and late glacial peaks 

are the best resolved in both regions. This does not mean that the pre-gLGM 

advances were necessarily less distinct (and our method says little about the extent 

of advances other than that they were preserved).  

Our 10Be compilation from Patagonia and New Zealand reveals a broad similarity in 

the timing of glacial advances in both regions, especially during MIS 3 and MIS 2. 

This suggests that the same forcing factors may have controlled the timing of glacial 

advances in both regions over the last glacial cycle. Prior to around 45 ka, scattered 

dates have been recorded during MIS 5 and MIS 4 in both regions, but the timing of 

these advances is uncertain as they are heavily influenced by the erosion rate used 

and are not replicated over several glaciers. It is also unclear whether an absence of 

dates at times before 45 ka relates to a lack of sampling (i.e. no one has analysed 

boulders on down-ice moraines) or a genuine lack of advances (or advances 
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extensive enough to not have been subsequently destroyed). What is clear from the 

compilation is that the replication of dates over different glaciers in both Patagonia 

and New Zealand strongly suggests that glaciers had advanced by at least 45 ka, or 

mid-MIS 3, well before the gLGM. Although this study focuses on chronology, it is 

worth highlighting that several studies found the limits relating to these advances to 

be as extensive, if not significantly more so, than those deposited during the gLGM 

(Glasser et al., 2011; Putnam et al., 2013b; Kelley et al., 2014; Rother et al., 2014; 

Chapter 5). 

Generally speaking, there is good agreement between the broad spread of minimum 

radiocarbon dates and the 10Be chronology, in that the radiocarbon dates extend 

back to roughly 40-45 ka. The Chilean Lake District chronology of Denton et al. 

(1999) highlighted limits deposited at ca. 34.1 ka, 31.1 ka, 27.9 ka and 18.0 ka, 

which support 10Be peaks at ca. 27 ka and 18 ka and pre-30 ka advances during the 

last glacial cycle. The replication of 10Be dates over multiple glaciers in Patagonia 

and New Zealand, supported by radiocarbon dates, gives us confidence in 

discussing peaks in the timing of deposition as regional glacial advances. We now 

compare these events with other proxies for glacial and climatic change in order to 

assess possible forcing mechanisms within the terrestrial-ocean-atmosphere system 

during the last glacial cycle. 

7.4.2 Comparison with other records 

7.4.2.1 Ice-rafted debris and dust records 

The presence of Ice-Rafted Debris (IRD) in sites proximal to former marine-

terminating glaciers indicates when those glaciers advanced and produced icebergs 

through calving (Carter et al., 2002; Caniupán et al., 2011). Similarly, dust records in 

Antarctica have been linked to dust production in the southern mid-latitudes, and 

particularly Patagonia, whereby fine sediment is produced during glacial advances 

and then exposed to subaerial erosion on large proglacial outwash plains during 

retreat (Sugden et al., 2009; Kaiser & Lamy, 2010; McGee et al., 2010). 

Consequently, we would anticipate peaks in IRD during advances of marine-

terminating glaciers, such as the west coast of Patagonia and the northwest coast of 

New Zealand, and peaks in dust during and after advances, particularly in 

Patagonia. An IRD record from core MD07-3128 off the west coast of southern 

Patagonia shows a large IRD peak (>5%) centred on 27 ka that matches a 

Patagonian glacial advance at that time (Caniupán et al., 2011; Figures 7.6 and 7.7). 

Dust records from the East Dronning Maud Land (EDML) and EPICA Dome C 
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(EDC) ice cores show a significant increase in dust during MIS 4 and 2, and much 

lower levels during MIS 5 and 3 (Fischer et al., 2007; Figures 7.6 and 7.7). However, 

there are peaks during MIS 3 at ca. 56, 49, 44 and 42 ka (in the EDML ice core) that 

are separated by reductions in dust flux that align with glacial advances in Patagonia 

and New Zealand. 

In short, then, there are peaks in IRD and Antarctic dust that support glacial 

advances in Patagonia during the last glacial cycle. However, not all advances align 

with IRD and dust peaks and New Zealand is not well represented by similar 

records. 

7.4.2.2 Other terrestrial records 

It is worth comparing our glacial record with other terrestrial records of 

palaeoenvironmental change to see how they compare as records of climatic 

change. Records in Patagonia spanning the gLGM and late glacial period support 

the timing of cooler periods and glacial expansion in our compilation (Kilian & Lamy, 

2012). There are a limited number of terrestrial palaeoenvironmental studies in 

Patagonia that pre-date the gLGM, but a key exception is the Potrok Aike record 

that spans the last ca. 51 ka (Zolitschka et al., 2013). Lake level changes may 

indicate a slight increase in temperature around 40 ka, although the lake reached a 

maximum level indicative of glacial conditions between 34 ka and 17 ka (Hahn et al., 

2013; Kliem et al., 2013a). Median Destructive Field of Isothermal Remnant 

Magnetisation (MDFIRM), a proxy for wind intensity, does not show a great difference 

between MIS 3 and MIS 2 and, although magnetic susceptibility shows a significant 

increase during the gLGM, this increase begins after ca. 32 ka (Lisé-Pronovost et 

al., 2015). 

Unlike Patagonia, New Zealand contains several long records of 

palaeoenvironmental change. A compilation of 21 speleothem records by Williams 

et al. (2015) can be used to show relative changes in temperature and moisture 

availability over much of the last 130 ka. The compilation suggests cooler periods at 

67-63 ka, 51-45 ka and from 33 ka into the gLGM, marked by reduced growth at 

these times. Particularly wet conditions are recorded at 71-61 ka and around 24.7 

ka, despite cool temperatures (Williams et al., 2015). The stratigraphy of the Te 

Anau cave system in the southwest of South Island also suggests glacial advances 

at ca. 40 ka and 48 ka (Williams, 1996), although the Aurora Cave speleothem 

indicates continuous growth between 55.3 ka and 42.8 ka, suggesting local ice-free 

conditions at this time (Williams, 1996; Williams et al., 2015). Likewise, the 
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Hollywood Cave speleothem from the northeast of South Island shows continual 

growth from 73 ka to the Holocene, indicating relatively mild conditions despite 

glacial activity further south (Whittaker et al., 2011). 

Long pollen records also exist in New Zealand. Forest pollen declined significantly 

around 82 ka until after 20 ka (Ryan et al., 2012; Vandergoes et al., 2013), although 

an expansion of conifer woodland in North Island around the start of MIS 3 has been 

interpreted as indicating wetter conditions at this time (Shane & Sandiford, 2003). 

Barrell et al. (2013) suggested that full glacial conditions may have begun around 

28.8 ka based on a large increase in herb pollen around this time (Vandergoes et 

al., 2005). Climatic amelioration occurred around 18 ka, based on pollen 

assemblages and speleothem records (Williams et al., 2015). 

Overall, there are similarities between terrestrial palaeoenvironmental records and 

our glacial compilation. Cooler periods are exhibited in Patagonia and/or New 

Zealand around 67-63 ka, 47-38 ka and 33-18 ka, with a clear early deterioration 

into the gLGM. Two significant discrepancies are a glacial advance in our 

compilation at 32-38 ka that is not obviously recorded in other terrestrial records and 

the absence of significant evidence for glacial advances during MIS 4, even though 

palaeoenvironmental reconstructions clearly show this to have been a period of 

colder and possibly wetter climate, ideally suited for ice sheet expansion. 
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Figure 7.5. Orbital insolation parameters relevant to this study, from Berger & Loutre (1991). 
(A) Northern Hemisphere summer (June) insolation intensity at 60°N. This also shows 
Southern Hemisphere winter duration, given that decreasing northern summer insolation 
covaries with increasing southern winter length (Huybers & Denton, 2008). (B) Southern 
Hemisphere summer (December) insolation intensity at 60°S, 50°S, 40°S and 30°S to show 
any latitudinal variability. (C) Southern Hemisphere seasonality at 60°S, 50°S, 40°S and 
30°S, shown here as summer insolation subtracted from winter insolation at a given time, 
such that decreasing seasonality indicates cooler summers and warmer winters. Values are 
shown subtracted from the mean seasonality at each latitude for 110-10 ka, so increased 
seasonality is negative and decreased seasonality is positive (note the axis is reversed). 
There is a distinct latitudinal variability in changing seasonality between ca. 30 ka and 18 ka. 

(D and E) our 
10

Be compilation from Patagonia and New Zealand. 
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7.4.3 Possible forcing factors 

7.4.3.1 Insolation changes 

The expansion of large ice sheets in the Northern Hemisphere broadly followed 

decreases in summer insolation intensity, promoting the build-up of ice as recorded 

in the similarity between summer insolation and the global δ18O stack of Liesicki & 

Raymo (2003; Figure 7.5). There are two conundrums associated with this model in 

the Southern Hemisphere. The first is that, broadly speaking, the descent into and 

rise out of glacial and interglacial periods in the Southern Hemisphere happened in 

phase with the Northern Hemisphere, despite covariance of summer insolation 

(Berger & Loutre, 1991). Secondly, the occurrence of significant glacial advances 

prior to the gLGM, as observed in our compiled chronology, is at odds with a model 

whereby the conditions suited to maximum ice growth occurred during the gLGM 

(Barrows et al., 2007; Wolff et al., 2009). These issues might be explained by 

delayed climatic responses due to atmospheric or oceanic teleconnections. 

However, such teleconnections appear to lead to a bipolar seesaw system during 

deglaciation (Denton et al., 2010), and so it is unclear why covariance is observed 

during the rest of the last glacial cycle.  

Instead, Huybers & Denton (2008) used radiative equilibrium estimates to show that, 

for the Southern Hemisphere, the duration of seasons may exert a greater control 

on climate than insolation intensity. Thus, increasing southern winter duration in 

synchrony with decreasing northern summer insolation could explain why broad 

glacial-interglacial changes in both hemispheres occurred at the same time (Putnam 

et al., 2013b). Winter duration may also explain why glacial advances in the 

southern mid-latitudes occurred prior to the gLGM, given that there was a trend 

toward longer winters during MIS 3 and into MIS 2 (Huybers & Denton, 2008). 

Reduced seasonality might also have promoted ice sheet growth (taken here as 

times of cooler summers and warmer winters; Chapter 5), and any offset could 

explain the differences observed between the timing of advances in Patagonia 

compared to New Zealand (Figure 7.5). Greater seasonality occurs at lower 

latitudes earlier than at higher latitudes, perhaps indicating that the earlier rise in 

summer insolation (or drop in winter insolation) at lower latitudes resulted in delayed 

glacial advances in New Zealand compared to Patagonia.  
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Figure 7.6. A comparison of the timing of glacial advances in the southern mid-latitudes 
during 110-10 ka (red and purple dashed vertical lines) from our compiled 

10
Be chronology 

(N and O) with a range of other palaeoclimatic proxies. (A) The LR04 benthic foraminiferal 
stack from Lisiecki & Raymo (2005), which shows a combined signature of global 
temperature and ice volume. (B) The NorthGRIP (NGRIP) ice core δ

18
O record from 

Greenland as a proxy for North Atlantic temperature changes (Rasmussen et al., 2006). (C) 
The East Dronning Maud Land (EDML) ice core δ

18
O record (EPICA, 2006), (D) the EPICA 

Dome C (EDC) ice core δD record (EPICA, 2006) and (E) the Byrd ice core δ
18

O record 
(Blunier & Brook, 2001) as proxies for Antarctic temperature changes from different parts of 
the ice sheet. The NGRIP, EDML and EDC records are shown on the AICC2012 common 
timescale (Veres et al., 2013), whereas the Byrd ice core is plotted on its own timescale.  (F) 
The Southern Ocean Sea Surface Temperature (SST) Stack of Barrows et al. (2007) as a 
proxy for broad SST change around New Zealand. (G and H) The alkenone-derived SST 
reconstructions of Kaiser et al. (2005) for ODP-1233 off the western coast of northern 
Patagonia and Caniupan et al. (2011) for MD07-3128 off the western coast of southern 
Patagonia, both plotted on the same scale. (I) A diatom-based reconstruction of sea ice 
extent from south of the Sub-Antarctic Front by Crosta et al. (2004), measured as the 
number of months per year that sea ice covered site SO136-111. (J and K) Records of opal 
flux from two cores in the South Atlantic, south of the Polar Front, as a proxy for wind-driven 
upwelling (Anderson et al., 2009). Note that the scales are different. (L) Ca

2+
 flux as recorded 

in the EDC ice core as a proxy for dust deposition over Antarctica, thought to be sourced 
predominantly from Patagonia. (M) A record of Ice-Rafted Debris (IRD) from core MD07-
3128 (Caniupan et al., 2011). 
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Figure 7.7. As per Figure 7.6, but scaled to cover just 50-10 ka. 
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7.4.3.2 Ice core temperature changes 

Ice core temperature records from Antarctica and Greenland can help to illustrate 

interhemispheric climate (a)synchrony during the last glacial cycle (EPICA, 2006; 

Barker et al., 2009; Wolff et al., 2009; Wolff et al., 2010b; Stenni et al., 2011). 

Similarities between Antarctic ice core records and the Patagonia and New Zealand 

glacial advances would support the idea that temperature changes drove glacial 

advances, and operated across the southern mid-high latitudes. 

Broadly speaking, the EDML (EPICA, 2006), EDC (EPICA, 2004; 2006) and Byrd 

(Blunier & Brook, 2001) ice cores from Antarctica, and North GRIP (NGRIP; 

Rasmussen et al., 2006) ice core from Greenland, demonstrate a pattern of cooling 

through the last glacial cycle, with peak warmth during MIS 5 followed by a 

deterioration during MIS 4, warmer but decreasing temperatures during MIS 3, and 

peak cooling during MIS 2 (the gLGM), before warming into the Holocene (Figures 

7.6 and 7.7). In the Antarctic cores, warming events during MIS 4 and MIS 3 (A1-4) 

were proposed by Blunier & Brook (2001) and have been correlated to similar 

events in the southern mid-latitudes (Lamy et al., 2004; Barrows et al., 2007a). 

Additional Antarctic Isotope Maxima (AIM) events, identified in the EDML core 

(EPICA, 2006), occur between A1-4 and appear to coincide with Dansgaard-

Oeschger (D-O) events in NGRIP, implying that hemispheric climate changes 

occurred broadly in phase during much of the last glacial cycle (EPICA, 2006; Wolff 

et al., 2009). This system broke down during the last glacial termination, where 

warming in the Antarctic ice cores was not followed by an abrupt warming in 

Greenland, resulting in continued warming in the south (Lamy et al., 2007; Wolff et 

al., 2009).  

Taken together, the ice core records show broadly consistent global climatic 

changes throughout the last glacial cycle but also highlight short fluctuations which 

may represent short-lived temperature changes propagated across the southern 

hemisphere that could have induced glacier advances. 

7.4.3.3 Sea surface temperature changes 

Marine core records can be used to reconstruct more localised sea surface 

temperatures (SST) over time using microfaunal assemblages (e.g. foraminifera or 

diatoms) or geochemical alterations (e.g. Mg/Ca ratios from foraminifera or UK’37). 

This can help to show how oceanic fronts (which control surface temperature 

gradients) migrated over time. On the hemispheric level, similarities between SST 

and ice core temperature records would imply that temperature changes operated 
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across the Southern Hemisphere. Regionally, similarity between SST 

reconstructions implies that they were bounded by the same frontal systems, 

whereas significant difference suggests they were separated by an oceanic front, 

causing a significant difference in temperature. Mid-latitude glaciers are likely to 

have responded to cooler local SST changes. 

Alkenone SST records from the south-eastern Pacific, close to the western margin 

of the northern Patagonian Ice Sheet, have been reconstructed from core ODP-

1233 (Lamy et al., 2004; Kaiser et al., 2005; Lamy et al., 2007), and can be 

compared with the Barrows et al. (2007a) Southern Ocean SST stack, which is a 

good representation of SST changes off New Zealand (Figures 7.6 and 7.7). The 

stack is an average of an Mg/Ca SST record from core MD97-2120 from south of 

New Zealand (Pahnke et al., 2003) and a faunal-based SST record from core 

MD88-770 from the Indian Ocean (Labeyrie et al., 1996). These SST records show 

patterns of temperature change similar to the Antarctic ice cores across the last 

glacial cycle (Barrows et al., 2007a; Putnam et al., 2013b). However, numerous SST 

reconstructions suggest that the decline towards peak glacial temperatures had 

started by at least 30 ka in the south-eastern Pacific (Lamy et al., 2004; Kaiser et al., 

2005; Lamy et al., 2007; Caniupán et al., 2011), west of New Zealand and south of 

Australia (Pelejero et al., 2006; Barrows et al., 2007a; Calvo et al., 2007), the Indian 

Ocean (Labeyrie et al., 1996), and the southeast Atlantic (Barker et al., 2009). 

The millennial-scale events recorded in mid-latitude SST records occur rapidly, so 

likely reflect changes in the position of oceanic fronts (Barrows et al., 2007a). The 

migration of the Sub-Tropical Front (STF) and Sub-Antarctic Front (SAF) over time 

would have altered SSTs around Patagonia and New Zealand by altering heat-

transfer flows such as the Agulhas current off southern Africa (Barrows et al., 

2007a) and the position and/or intensity of the Antarctic Circumpolar Current (ACC) 

and Southern Westerly Wind system, whilst influencing latitudinal SST gradients 

(Shulmeister et al., 2004; Kaiser et al., 2005). Lamy et al. (2007) and Denton et al. 

(2010) described a coupled atmosphere-ocean system in which latitudinal shifts in 

the STF and Southern Westerly Winds occur in response to changes in the Inter-

Tropical Convergence Zone (ITCZ), driven by Northern Hemisphere sea ice extent, 

and changes in the sea ice extent around Antarctica. Several records suggest 

northward migration of oceanic fronts during globally cooler periods that resulted in 

reduced SSTs around Patagonia and New Zealand. In the southwest and central 

Pacific, the STF may have migrated 1-2° (Sikes et al., 2009) or more, whilst in the 

southeast Pacific the STF and SAF may have shifted substantially more, by as 
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much as 5-6° during MIS 2 (Gersonde et al., 2005; Kaiser et al., 2005; Caniupán et 

al., 2011). In both regions, this could have resulted in reasonably rapid changes in 

SST, triggering terrestrial cooling and glacial advances. 

In summary, SST records show broadly similar patterns of temperature change to 

the Antarctic ice core records, indicating hemispheric propagation of climate change 

over the last glacial cycle. However, SSTs had deteriorated by ca. 30 ka, earlier 

than Antarctic temperatures, which may have been due to northward migration of 

the oceanic fronts. 

7.4.3.4 Sea ice 

The build-up of sea ice may respond to northward migration of the Southern 

Westerly Winds and Antarctic Circumpolar Current, but also likely triggers these 

processes by altering overturning circulation and hence SST gradients. Unpicking 

the cause and effects within this system is challenging, but comparing sea ice 

records with the timing of glacial advances can at least help in evaluating whether 

there is a relationship between sea ice changes and the terrestrial realm. We might 

anticipate sea ice to generally reflect cooler conditions, and therefore increase at the 

same time that glaciers in Patagonia and New Zealand advanced. 

A reconstruction from south of the Polar Front by Crosta et al. (2004) suggests that 

sea ice duration increased markedly after ca. 78 ka until ca. 15 ka, with peak 

duration between ca. 32 and 21 ka, in a pattern consistent with decreasing 

temperatures in Antarctica. This pattern was developed further using diatom 

reconstructions from a core transect in the southwest Atlantic, east of the Drake 

Passage (Gersonde et al., 2003; Allen et al., 2011). Maximum summer sea ice 

extent around Antarctica occurred between ca. 30 ka and 22 ka, prior to the gLGM, 

but it had retreated to south of 61°S by ca. 22 ka, although winter sea ice did not 

retreat until ca. 19 ka, causing a large expanse of seasonally open waters within the 

Scotia Sea from 22 ka onwards (Allen et al., 2011). 

Antarctic sea ice has been invoked in several explanations for global climate change 

during the last glacial cycle (Allen et al., 2011). It is likely that increased sea ice 

would have increased deep water formation and expansion (Seidov & Maslin, 2001; 

Ferrari et al., 2014) and promoted stratification of the Southern Ocean due to 

freshening of the surface waters (Putnam et al., 2013b). Sea ice extent is also likely 

to have been reduced by a southward shift of the Southern Westerly Winds and 

oceanic fronts, helping to destabilise any stratification of the Southern Ocean. 
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There is, then, a potentially important link between Antarctic sea ice and global 

glacial-interglacial climate change (Denton et al., 2010), and an intrinsic link 

between sea ice and Southern Ocean stratification (Putnam et al., 2013b). 

7.4.3.5 Upwelling 

Upwelling of CO2 in the Southern Ocean can be reconstructed using records of opal 

flux. For example, Anderson et al. (2009) used records from cores TN057-13PC and 

-14PC to show that productivity south of the Polar Front was linked to upwelling of 

deep water masses during the last glacial cycle, driven by increased wind stress on 

the surface ocean. Upwelling broadly increased and decreased during episodes of 

warming and cooling, respectively, including the Antarctic A events. Thus, upwelling 

reached a minimum as sea ice extent peaked, likely due to stratification of the 

Southern Ocean (Putnam et al., 2013b), and we would anticipate increased 

upwelling during cooler periods. 

The Southern Ocean may have entered a fully stratified state by ca. 70 ka 

(Anderson et al., 2009), consistent with the build-up of Antarctic sea ice at this time 

(Crosta et al., 2004), and possibly linked to increased winter duration (Putnam et al., 

2013). Greater sea ice extent would not only have promoted stratification but would 

have pushed the oceanic fronts in the Southern Ocean further north, creating 

stronger SST gradients and triggering northward migration of the Southern Westerly 

Winds, further increasing sea ice expansion and reducing upwelling. This model, 

advocated by Denton et al. (2010) and Putnam et al. (2013b), amongst others, 

provides a theoretical link between sea ice formation, STF, SAF and Southern 

Westerly Wind migration, and SST changes around Patagonia and New Zealand. 

Thus, records of upwelling in the Southern Ocean suggest that it broadly followed 

global warming and cooling during the last glacial cycle linked to stratification of the 

water column. However, the ocean may have been partially or fully stratified by ca. 

70 ka, which would have forced oceanic frontal systems northwards. 

7.4.4 Summary of last glacial cycle time periods 

7.4.4.1 Late MIS 5 (ca. 110-71 ka) 

There is little evidence for glacial advances during MIS 5, apart from occasional 

dates from individual glaciers, such as around 90 ka (Sutherland et al., 2007; 

Glasser et al., 2011), supported by low dust concentrations in the EDML ice core at 

this time and low sea ice extent (Fischer et al., 2007). Antarctic temperatures were 

warmer, though with millennial-scale variability including a cooler period between ca. 
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92 ka and 87 ka (EPICA, 2006). Temperature changes were similar to Greenland, 

but it is unclear precisely whether the hemispheres were in-phase or out-of-phase. 

Localised records suggest that warmer SSTs followed Antarctic temperature 

changes (Barrows et al., 2007a), including the millennial-scale variability and the 

marked cooler period between 92 ka and 87 ka. Hemispheric temperature changes 

followed Northern Hemisphere summer insolation (Berger & Loutre, 1991), and 

winter duration in the Southern Hemisphere increased between 105 ka and 95 ka 

(Huybers & Denton, 2008), with no major latitudinal offset in seasonality. Whilst a 

cooler period between 92 ka and 87 ka could have triggered glacial advances in 

Patagonia and New Zealand, overall MIS 5 was not likely to have promoted ice 

sheet expansion in either region. 

7.4.4.2 MIS 4 (ca. 71-57 ka) 

There is limited evidence for glacial advances during MIS 4, although scattered 

dates suggest that some glaciers expanded during this time, supported by increases 

in dust production and sea ice extent (Wolff et al., 2006; Fischer et al., 2007) and a 

reduction in upwelling (Anderson et al., 2009). Antarctic temperatures showed a 

marked cooling with a cold period equivalent to the gLGM in temperature in both 

Antarctic and Greenland ice cores until around 63 ka (EPICA, 2006; Rasmussen et 

al., 2006). There was a similar drop in localised SST records around New Zealand 

(Barrows et al., 2007a), likely due to northward migration of the STF (Sikes et al., 

2009). An even greater SST reduction occurred off the west coast of northern 

Patagonia, where temperatures reached their lowest levels during the last glacial 

cycle due to a 5-6° northward shift of the STF (Kaiser et al., 2005). Northern 

Hemisphere summer insolation was increasing, but Southern Hemisphere summer 

insolation was decreasing (Berger & Loutre, 1991), and there was a period of longer 

duration winters just prior to MIS 4 (Huybers & Denton, 2008) followed by a period of 

decreased seasonality. Therefore, the evidence suggests that MIS 4 was a major 

cool period in the southern mid-latitudes, and should have instigated significant 

glacial advances. The absence of dates in our compilation either suggests that any 

glacial activity was not as extensive as later advances or MIS 4 moraines have not 

yet been sampled.  

7.4.4.3 Early MIS 3 (ca. 57-45 ka) 

There are only scattered dates from New Zealand during early MIS 3, and dust and 

IRD records show little activity beyond occasional small peaks (Fischer et al., 2007; 

Caniupán et al., 2011). The limited evidence does align in places, notably between 
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ca. 50 ka and 46 ka (Antarctic warming events A3 and A2), and may suggest that 

ice advances occurred but were of limited extent or have not been sampled. Overall, 

Antarctic temperatures warmed following MIS 4 (EPICA, 2006), though not as much 

as MIS 5 or MIS 1, and the rest of early MIS 3 showed a strong millennial-scale 

pattern of warming and cooling into and out of the A4-1 events (Blunier & Brook, 

2001), broadly covarying with D-O events in Greenland (Rasmussen et al., 2006; 

Wolff et al., 2010b). These events are propagated into local SST changes, causing 

significant variability of up to 3°C that could have been caused by fluctuating shifts 

in the oceanic fronts (Barrows et al., 2007a; Caniupán et al., 2011). The absence of 

prolonged cooling or build-up of sea-ice (Crosta et al., 2004; Wolff et al., 2006) 

suggests that these were only transient events and probably prevented any 

significant glacial advances, supported by decreasing, but variable, upwelling in the 

Southern Ocean (Anderson et al., 2009). Northern Hemisphere summer insolation 

peaked and then started to decrease during this time, and Southern Hemisphere 

summer insolation peaked alongside increasing seasonality (Berger & Loutre, 

1991). The implication is that while millennial-scale events may have caused some 

glacial activity that is not well recorded in our compilation (e.g. between 50 ka and 

46 ka), overall climatic conditions were not well suited for glacial advances during 

MIS 3. 

7.4.4.4 Late MIS 3 (ca. 45-29 ka) 

There is good evidence for glacial advances during late MIS 3, at 43.1 ka and 37.8 

ka in Patagonia, and 41.4 ka and 32.4 ka in New Zealand. This is marked by small 

peaks in IRD and dust flux (Fischer et al., 2007; Caniupán et al., 2011), though the 

latter increases towards the end of the period. Antarctic ice cores show a subtle 

cooling trend that is heavily overprinted by millennial-scale variability, including the 

A1 event, the cool periods of which broadly align with glacial advances (Blunier & 

Brook, 2001; EPICA, 2006; Wolff et al., 2009; Wolff et al., 2010b; Kelley et al., 

2014). Local SST records suggest that average temperatures had reached values 

similar to MIS 2 by this time, although Antarctic millennial-scale variability continued 

to be propagated across the mid-latitudes, likely related to continued fluctuations in 

the STF (Lamy et al., 2004; Kaiser et al., 2005; Barrows et al., 2007a). Significantly, 

there was a marked increase in Antarctic sea ice at this time (Crosta et al., 2004; 

Allen et al., 2011), correlating with a reduction in upwelling in the Southern Ocean 

(Anderson et al., 2009), which reached a minimum in the last glacial cycle at 30 ka. 

Northern Hemisphere insolation was slowly decreasing towards MIS 2 and, whilst 

Southern Hemisphere winter duration increased over the whole of MIS 3, there was 
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a switch to more rapidly increasing winter duration from ca. 36 ka (Huybers & 

Denton, 2008), which occurred whilst Southern Hemisphere insolation and 

seasonality both decreased between ca. 45 ka to 30 ka. In short, climatic conditions 

in the southern mid-latitudes were well suited for glacial advances during late MIS 3. 

Longer duration winters, decreasing summer insolation and decreasing seasonality 

promoted ice growth and were enhanced by fluctuations in the oceanic fronts, 

periodically delivering cooler temperatures to Patagonia and New Zealand. This was 

likely in tandem with increases in sea ice extent which reduced upwelling by 

stratifying the Southern Ocean and forcing the SAF, STF and Southern Westerly 

Winds further north to deliver cooler and wetter conditions to more of the glaciers 

(Putnam et al., 2013b).  

7.4.4.5 MIS 2 (ca. 29-14 ka) and the gLGM period (26.5-19 ka) 

There were clear glacial advances either side of the gLGM at 27.0 ka and 18.8 ka in 

Patagonia and 26.4 ka and 18.0 ka in New Zealand. These correlate with major 

peaks in IRD and dust flux during early MIS 2 (Fischer et al., 2007). However, whilst 

dust levels remained relatively high, IRD reduced markedly through the gLGM, 

perhaps due to a retreat of marine-terminating glaciers (Caniupán et al., 2011). The 

advances occurred at the very start and end of a period of intense cooling in 

Antarctica, similar to that in Greenland, and at the same time that significant 

millennial-scale variability ended in Antarctica (EPICA, 2006; Rasmussen et al., 

2006). This suggests that glaciers responded rapidly to a drop in Southern 

Hemisphere temperatures at around 27.5 ka, perhaps because they had already 

advanced during late MIS 3, and then did not advance in unison again until the very 

end of the cool period. Local SST records suggest a continuation of the cooler 

temperatures from late MIS 3 (Lamy et al., 2004; Kaiser et al., 2005; Barrows et al., 

2007a), with no marked change except for off the west coast of southern Patagonia 

where proximal ice melt likely caused enhanced cooling of surface waters 

(Caniupán et al., 2011). The advances at 18.8 ka and 18.0 ka align with a severe 

reversal in warming in SST around New Zealand (Barrows et al., 2007a), suggesting 

that the STF may have fluctuated rapidly: first southward, then northward, then 

southward again. This may have altered both the local temperature and precipitation 

regimes, triggering a glacial advance despite no obvious drop in hemispheric 

temperature. Other frontal reconstructions have suggested that the STF and SAF 

migrated northwards by 1-2° around New Zealand (Sikes et al., 2009) and 5-6° 

around Patagonia (Kaiser et al., 2005), although this likely happened during late MIS 

3. Sea ice extent remained relatively high from late MIS 3, but reduced markedly 
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after ca. 20 ka, with an associated increase in upwelling (Crosta et al., 2004; 

Anderson et al., 2009; Allen et al., 2011). This was a period of reduced summer 

insolation in the Northern Hemisphere (Berger & Loutre, 1991), and the large 

northern ice sheets responded by reaching maximum extents. In the Southern 

Hemisphere, summer insolation increased and peaked at around 21 ka, and 

seasonality increased, with a latitudinal offset from ca. 30 ka. 

Overall, conditions during much of MIS 2 were not as well suited for glacial 

advances as late MIS 3: summer insolation and seasonality increased; winter 

duration decreased; local SSTs did not decrease further; and IRD, dust flux and 

Antarctic sea-ice reduced significantly. Stratification may have deteriorated with 

southerly migration of the STF, SAF and Southern Westerly Winds. Glacial 

advances were likely still recorded only because global temperatures reached a 

minimum around the gLGM, indicated by a prolonged cooling in Antarctica without 

substantial millennial-scale variability. Advances towards the end of MIS 2 may have 

been triggered by northward fluctuations of the STF, providing cooler temperatures 

and increased precipitation at a time when most other factors suggest deglaciation 

had already started in the southern mid-latitudes. 

7.4.4.6 The late-glacial period (ca. 19-10 ka) 

Our compilation suggests that glaciers advanced during the Antarctic Cold Reversal 

at 13.9 ka in Patagonia and 13.0 in New Zealand. The absence of evidence for 

advances in the IRD or dust records suggests that the advance was either weak or, 

more probably, a prolonged stillstand. Antarctic temperatures decreased at this time, 

in antiphase with a warm period in Greenland and thus prior to the Younger Dryas 

(EPICA, 2006; Rasmussen et al., 2006). This temperature drop only registers as a 

plateau in warming in the local SST records (Caniupán et al., 2011), supporting a 

minimal advance of glaciers at this time. Northern Hemisphere insolation was 

increasing and Southern Hemisphere insolation was decreasing (Berger & Loutre, 

1991), but the sub-orbital timescale of the late glacial events suggests that they 

were not related to changes in insolation intensity. Sea ice does not seem to have 

expanded significantly, but there is an apparent drop in upwelling (Anderson et al., 

2009), which could indicate northern migration of the Southern Westerly Winds and 

oceanic fronts, triggering a slowdown in the recession of glaciers in Patagonia and 

New Zealand. This may have also caused the offset in timing between Patagonia 

and New Zealand, given that higher latitude glaciers would have benefitted first from 

a northward migration of precipitation. The effect on SSTs in northern Patagonia and 
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New Zealand (Lamy et al., 2004; Barrows et al., 2007a) compared to southern 

Patagonia (Caniupán et al., 2011) supports the assertion that the stillstand was 

driven by movement of the coupled oceanic-atmospheric frontal system, rather than 

by hemisphere-wide cooling. 

7.5 Conclusions 

The first compilation of previously published 10Be exposure dating for Patagonia and 

New Zealand suggests that glaciers advanced at various times throughout the last 

glacial cycle, supported by similar evidence from radiocarbon dating. There is 

commonality in the timing of glacial advances between numerous glaciers in both 

Patagonia and New Zealand, and we infer this to represent periods of broad, 

regional glacial advances. However, this does not mean that all glaciers advanced 

synchronously and does not provide information on the extent of the glacial 

advances. That said, the chronologies from Patagonia and New Zealand show 

remarkable similarities, suggesting that similar forcing factors may have been 

influencing both ice sheets during the last glacial cycle. In particular, both regions 

show a trend for glacial advances, replicated in different glaciers, from at least 45 

ka, with advances at ca. 41-43 ka, 32-38 ka, 26-27 ka, 18-19 ka and 13-14 ka. 

In general, our compilation reveals a number of significant characteristics in the 

timing of glacial advances in the southern mid-latitudes. Glaciers were advancing 

well before the gLGM, and indeed by the latter half of MIS 3, with two advances 

prior to 30 ka. Further advances were concentrated just before and after (but not 

during) the gLGM, and late glacial advances or stillstands in Patagonia and New 

Zealand occurred during the Antarctic Cold Reversal, rather than the Younger 

Dryas. Future work should target glacial limits beyond those dated to the gLGM. In 

particular, an absence of dated limits from MIS 4 is puzzling given that numerous 

proxy records suggest that this period resulted in significant climate deterioration in 

the southern mid-latitudes. 

There is no clear correlation between a single climatic forcing factor and the 

advances we identify. Rather, the forcing factors responsible likely changed over 

time. Our study suggests that ice sheet expansion in Patagonia and New Zealand 

was driven by underlying orbital parameters, involving a combination of summer 

intensity, seasonality, and winter duration, but that the precise timing is likely to have 

been intrinsically linked to migration of the coupled ocean-atmosphere system. 

Evaluating the various factors likely to have affected the timing of southern mid-

latitude glacial advances suggests that late MIS 3 experienced optimum conditions 
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for glaciers to have advanced. Summer insolation reached a minimum, seasonality 

was reduced, winter duration was increasing, and sea ice had expanded 

significantly. This may have induced stratification of the ocean and triggered 

northward migration of the STF and SAF, bringing cooler temperatures to more of 

Patagonia and New Zealand and inducing an equatorward shift in the moisture-

bearing Southern Westerly Winds system. 

Hence, whilst global temperatures did not reach a minimum until MIS 2, summer 

insolation in the Southern Hemisphere was much higher by that time, and Antarctic 

sea ice reduced markedly, possibly aided by southward migration of the coupled 

ocean-atmosphere frontal system as sea ice expansion in the Northern Hemisphere 

induced a southward shift of the ITCZ. Glacial advances during MIS 2 in Patagonia 

and New Zealand occurred rapidly with the onset of a prolonged globally cool phase 

across the gLGM, marked by a discontinuation of hemispheric millennial-scale 

variability. A consistent offset after 30 ka, in which Patagonian glaciers advanced 

before those in New Zealand, is unlikely to be an artefact of age calculation but 

could instead relate either to a latitudinal offset in the timing of changes in 

seasonality between ca. 30 ka and 18 ka, or a lag related to the latitudinal migration 

of the coupled ocean-atmosphere system. Either way, shifts in the oceanic fronts 

and atmospheric circulation, as part of a complex climate feedback system, are 

likely to have been pivotal in determining when mid-latitude glaciers advanced 

during the last glacial cycle. 

 

 



 

206 
 

 

 

Chapter 8. Conclusions and implications 

 

 

 

 

 

 

 

 

 

 

 

 



 

207 
 

8.1 Key conclusions 

This thesis set out to reconstruct glacial changes of the southernmost ice lobes of 

the Patagonia Ice Sheet during the Quaternary. Specifically, the aims were to test 

whether ice advances occurred over timescales of 104, 105 or 106 years and to use 

this new chronological framework to examine the controls on glacial change. This 

work has produced a new glacial geomorphological map for the area (Chapter 3); 

examined the geomorphology of erratic boulder trains used for previous dating 

(Chapter 4); and applied cosmogenic nuclide dating of outwash depth profiles to test 

the age of glacial limits (Chapter 5). The thesis also presented a new glacial history 

for the southernmost ice lobes, against which the timing and nature of ice advances 

were examined (Chapter 6), and a large dating compilation from across Patagonia 

and New Zealand to examine possible forcing mechanisms of glacial change 

(Chapter 8).  

8.1.1 Objective 1: Mapping of glacial limits 

Mapping of glacial landforms associated with the five southernmost ice lobes 

showed eleven types of glacial landform: moraine ridges, subdued moraine 

topography, kettle-kame topography, glacial lineations, irregular and regular 

hummocky terrain, irregular dissected ridges, an esker, meltwater channels, former 

shorelines and outwash plains. The geomorphological map reveals the dominance 

of meltwater landforms (channels, outwash plains and kettle-kame topography) in 

the study area. It also highlights a difference in the nature of landforms associated 

with the northern three ice lobes, where limits are marked by numerous clear 

moraine ridges, compared to those to the south, where hummocky terrain and drift 

limits prevail. In places, the analysis demonstrated cross-cutting relationships 

indicative of re-advances. 

8.1.2 Objective 2: Use of erratic boulder trains for dating 

Erratic boulder trains have been used to provide cosmogenic nuclide dates that 

have proven critical in the discussion of the timing of glacial advances in the region. 

Several boulder trains along the southern edge of the BI-SSb lobe have been 

previously hypothesised to have been deposited in different glacial cycles, even 

though exposure dating yielded ages within the last glacial cycle. A detailed 

examination of the boulders in this thesis suggested that they were produced by one 

or more supraglacial rock avalanches. Rock surface weathering analysis showed 

little difference in the weathering characteristics between the boulder trains, which is 
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interpreted to indicate that the EBTs are closer in age than previous work has 

implied. Thus, while erratic boulder trains can provide useful flow-line indicators and 

sources of cosmogenic nuclide exposure dating, it is important to understand their 

formation, transport, and deposition. Importantly, occasional, anomalously old dates 

should be expected from supraglacial boulder trains caused by pre-exposure prior to 

and during glacial transport. 

8.1.3 Objective 3: Depth profile dating of key limits 

Ultimately, testing the age of glacial limits in the region requires new, independent 

dating to provide robust ages not compromised by post-depositional processes. In 

light of the new mapping and analysis of the erratic boulder trains, cosmogenic 10Be 

and 26Al exposure dating of depth-profiles was conducted through outwash 

associated with the Río Cullen and San Sebastián glacial limits of the BI-SSb lobe, 

previously hypothesised to date to MIS 12 and 10, respectively. The limits formed 

more recently than previously thought, giving ages of 45.6 ka (+139.9/-14.3) for the 

Río Cullen, and 30.1 ka (+45.6/-23.1) for the San Sebastián limits. These dates 

indicate extensive glaciation in southern Patagonia during MIS 3, prior to the well-

constrained, but much less extensive MIS 2 (gLGM) limit that has been dated using 

cosmogenic dating of boulders and other independent chronological techniques. 

Whilst the errors from the depth-profile technique are large due to a conservative 

approach, and large scatter in boulder ages does not allow precise constraint on the 

timing of deposition of these glacial limits, all of the evidence points towards glacial 

advances during the last glacial cycle rather than numerous glacial cycles over 

hundreds of thousands of years. 

8.1.4 Objective 4: Reconstructing the regional glacial history 

The new age constraints for the BI-SSb lobe warranted further investigation into the 

timing and nature of ice advances of the five southernmost ice lobes. The 

geomorphological mapping was used to reconstruct former glacial limits, demarcate 

flowsets from landform assemblages, reconstruct former proglacial lakes, and 

evaluate possible glacial landsystems represented in the region. Eight time steps 

were reconstructed, which highlight the dynamic nature of these ice lobes. There is 

good evidence for rapid ice flow in the region, and possible surge-like activity, 

particularly in the Otway and Magellan lobes. Most of the ice lobes re-advanced on 

at least one occasion and there is evidence for potentially catastrophic drainage of 

the palaeo-Laguna Blanca proglacial lake. The relative history was used to re-

examine published chronological data for the ice lobes, which suggested that the 
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Magellan, Otway and Skyring lobes likely advanced prior to the gLGM, in a manner 

similar to the BI-SSb lobe, with similar limits around 30 ka in several of the ice lobes. 

More extensive limits may have been deposited during the last glacial cycle or 

during earlier glacial stages in the Quaternary. The evidence for dynamic ice 

advance and retreat highlights that climatic reconstructions from the glacial 

geomorphology are not straightforward. However, the similarity in timing elucidated 

from the available chronological evidence suggests that an underlying external – 

likely climatic – forcing factor controls glacial advances. 

8.1.5 Objective 5: Examining southern mid-latitude glaciation 

To examine the possible climatic forcing factors further, a large dataset of previously 

published 10Be exposure dates from Patagonia and New Zealand was compiled. 

This shows that glaciers across a broad range of the southern mid-latitudes 

advanced at various times during the last glacial cycle. Commonality in the timing of 

glacial advances implies periods of broad, regional glacial advances driven by 

similar forcing factors, although this does not mean that all glaciers advanced 

synchronously. Both regions show a trend for glacial advances, replicated in 

different glaciers, from at least 45 ka, with advances at ca. 41-43 ka, 32-38 ka, 26-

27 ka, 18-19 ka and 13-14 ka. Thus, glaciers were advancing well before the gLGM, 

and indeed by the latter half of MIS 3. The glacial advances were likely driven by 

underlying orbital parameters, involving a combination of summer intensity, 

seasonality and winter duration. However, the precise timing is likely to have been 

linked to the migration of the coupled ocean-atmosphere system. Late MIS 3 may 

have experienced optimum conditions for glaciers to have advanced: minimum 

summer insolation, reduced seasonality, increasing winter duration, and expanded 

sea ice. Ocean stratification and northward migration of the STF and SAF, would 

have brought cooler temperatures to more of Patagonia and New Zealand and 

induced an equatorward shift in the moisture-bearing Southern Westerly Wind 

system. 

8.2 Implications 

The main implication of this work is that during the last glacial cycle, extensive 

glacial advances occurred in southernmost South America prior to the gLGM. This is 

contrary to the established age model for the timing of glacial advances in 

Patagonia, but is supported by a compilation of dating evidence from the rest of 

Patagonia and New Zealand, which suggests that glacial advances during MIS 3 

may have been a common feature across the southern mid-latitudes. This finding is 
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important because it suggests that previous work on glacial chronologies around the 

world may have missed similar advances during the last glacial cycle. It also adds to 

a growing body of work that shows that glaciers in the southern mid-latitudes 

advanced prior to the gLGM and did not, therefore, follow global climate trends in 

the same way as large ice sheets in the Northern Hemisphere. The conclusions and 

implications of this thesis lead to a number of potential areas for future research. 

8.2.1 Further work 

8.2.1.1 Dating of the Río Gallegos, Skyring and Otway lobes 

The Río Gallegos, Skyring and Otway lobes remain broadly undated. Chapter 6 

demonstrated an age of ca. 30 ka for a pre-gLGM limit across the Magellan, Otway 

and Skyring lobes, but the glacial chronology could be significantly extended. An 

absence of boulders on moraines has likely hindered previous dating attempts, but 

Chapter 5 highlighted the suitability of depth profiles in outwash for dating glacial 

limits of the BI-SSb lobe, and this would be worth pursuing for the other 

southernmost ice lobes if suitable sampling locations can be found. 

8.2.1.2 Palaeo-Laguna Blanca drainage 

Chapter 6 reconstructed a significant lake drainage event associated with palaeo-

Laguna Blanca, first identified by Lovell et al. (2012). Given the need for new dates, 

and the suitability of outwash plains for dating glacial limits in the region, this would 

be an excellent target. An age from sediments relating to the lake drainage would 

also help to constrain the timing of the pre-gLGM limits of the Skyring and Otway 

lobes suggested to have been deposited at ca. 30 ka in Chapter 6. 

8.2.1.3 Ice thickness constraints 

The reconstruction in Chapter 6 provides useful information on glacial extent over 

time, but cannot say anything about ice thickness. Improved ice thickness estimates 

would allow palaeoclimatic modelling from the glacial geomorphological record, so 

this would make a useful addition to our reconstruction. Data on ice thickness would 

be best provided by identifying and dating trimline evidence, similar to Boex et al. 

(2013) for northern Patagonia. 

8.2.1.4 Investigations into possible palaeo-surges 

Chapter 6 presented evidence for possible surge-like behaviour of the BI-SSb, 

Magellan and Otway lobes, but this was based predominantly on discontinuous 

landform evidence, and none of the lobes display ‘ideal’ surging landform suites. 
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This initial, tentative work requires further investigation and would benefit from more 

detailed sedimentological work to assess features such as glaciotectonised 

moraines and crevasse-fill ridges. Work on glacial surges has largely been confined 

to contemporary systems, so palaeo-examples could help to improve our 

understanding of their triggers in relation to long-term climate and/or topography.  

8.2.1.5 Sedimentological work 

As mentioned above, the landsystem approach adopted in Chapter 6 was 

necessarily tentative. This thesis was primarily concerned with glacial chronology 

and reconstructing broad glacial changes from landforms, but sedimentological work 

would help to improve our understanding of former glacial dynamics across the 

region, in a similar manner to the localised work of Benn & Clapperton (2000a; b). 

8.2.1.6 Dating pre-gLGM moraines in Patagonia 

Chapter 5 demonstrated that glacial limits thought to date from MIS 12 and 10 were 

deposited during the last glacial cycle. This may not have been anomalous, and 

similar limits could have been deposited across Patagonia. Indeed, work by Glasser 

et al. (2011) has already suggested the presence of limits of similar age to the BI-

SSb lobe in the San Martín Valley. Thus, moraines beyond the gLGM limits in the 

rest of Patagonia could be targeted for dating to better resolve any regional 

differences associated with the migration of oceanic and/or atmospheric fronts. 

8.2.1.7 MIS 4 in Patagonia 

As noted in Chapter 7, the absence of glacial advances during MIS 4 is puzzling 

given that other palaeoclimatic records indicate significant climate deterioration at 

this time. Moraine chronologies in Patagonia could be re-examined to establish if 

MIS 4 moraines have been missed or whether they are truly absent from the 

southern mid-latitudes. 

8.2.1.8 Ice sheet modelling 

Modelling of the Patagonian Ice Sheet needs to be updated to reflect our increased 

understanding of the timing and nature of ice advances. Modelling power has 

advanced significantly since the last full ice sheet model by Hulton et al. (2002), and 

this thesis has provided a rigorous glacial reconstruction against which ice sheet 

models can be compared. In this way, our understanding of past climate change in 

southernmost South America can be improved further. 
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