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Abstract

In this thesis we carry out a detailed investigation of a class of four-dimensional

N = 1 gauge theories, known as Bipartite Field Theories (BFTs), and their utility in

integrable systems and scattering amplitudes in 4-dimensional N = 4 Super-Yang-

Mills (SYM). We present powerful combinatorial tools for analyzing the moduli

spaces of BFTs, and find an interesting connection with the matching and matroid

polytopes, which play a central role in the understanding of the Grassmannian.

We use the tools from BFTs to construct (0+1)-dimensional cluster integrable

systems, and propose a way of obtaining (1+1)- and (2+1)-dimensional integrable

field theories.

Using the matching and matroid polytopes of BFTs, we analyze the singularity

structure of planar and non-planar on-shell diagrams, which are central to modern

developments of scattering amplitudes in N = 4 SYM. In so doing, we uncover a

new way of obtaining the positroid stratification of the Grassmannian.

We use tools from BFTs to understand the boundary structure of the ampli-

tuhedron, a recently found geometric object whose volume calculates the integrand

of scattering amplitudes in planar N = 4 SYM theory. We provide the most com-

prehensive study of the geometry of the amplituhedron to date.

We also present a detailed study of non-planar on-shell diagrams, constructing

the on-shell form using two new, independent methods: a non-planar boundary mea-

surement valid for arbitrary non-planar graphs, and a proposal for a combinatorial

method to determine the on-shell form directly from the graph.
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Chapter 1

Introduction

Quantum field theory (QFT) underlies our description of fields as diverse as particle

physics, statistical mechanics and condensed matter physics. It leads to extremely

precise predictions which are constantly tested experimentally. It is thus remarkable

that despite QFT being such a fundamental and mature framework, our understand-

ing of it is still currently making tremendous progress. This progress is occurring

on multiple fronts, including holography, integrability and duality, to name a few.

Powerful mathematical and geometric ideas play a central role in some of the

most recent developments. A common theme in recent years has been the definition

of QFTs in terms of some underlying geometric or combinatorial object. In these

constructions, it is often possible to build theories by assembling certain elementary

geometric building blocks, which have gauge theory counterparts. Furthermore,

gauge theory dualities such as Seiberg duality [7], S-duality [8] and mirror symme-

try [9] are captured by basic transformations of the underlying geometric objects.

Similar advances have also occurred in the computation of scattering amplitudes

of QFTs, in particular planar maximally supersymmetric Super-Yang-Mills (SYM),

where the scattering amplitude can be constructed by assembling elementary graph-

ical building blocks, to form what are known as “on-shell diagrams”. These develop-

ments have enabled drastic simplifications in the computation of various quantities

of interest, as well as a deeper physical understanding of the dynamics that govern

these theories.

1
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Background to Bipartite Field Theories

In line with the modern developments outlined in the previous section, a new infinite

class of 4-dimensional N = 1 gauge theories was introduced by S. Franco [10]. Such

theories are called Bipartite Field Theories (BFTs) [1, 10–13].1 These theories are

special in that they may be defined by a graphical object, a bipartite graph tiling an

arbitrary Riemann surface.2 BFTs draw power from their simplicity: their graphical

description allows for combinatorial tools to compute quantities of interest. For

example, the space of vanishing F-terms and D-terms, known as the moduli space,

can be obtained with back-of-the-envelope calculations. Operations such as Seiberg

duality, confinement, Higgsing, and integration of massive fields are neatly encoded

in simple graphical manipulations.

Certain subclasses of BFTs have already appeared in the context of interesting

physical systems. D3-branes probing toric Calabi-Yau 3-folds provide particularly

important examples [15–19], in which the string-theoretic picture is dual to cer-

tain 4-dimensional N = 1 quiver gauge theories, known as dimer models. Quiver

gauge theories are thus named because of the graph typically used to represent their

gauge-theory and matter-field content; each symmetry group of the theory is repre-

sented by a node, and arrows represent bifundamental matter fields, transforming

in the fundamental representation of the node on the arrow’s head, and in the anti-

fundamental representation of the node on the arrow’s tail. An example is provided

in Figure 2.1.

Dimer models have been instrumental in the discovery of the first infinite families

of explicit AdS/CFT dual pairs in 4 dimensions [17,20]. In addition, they provide the

largest known classification of purely N = 1 superconformal field theories (SCFTs)

in 4 dimensions (cf. [21, 22]). They have also been utilized to construct duality-

cascading models [23–27] and string-theoretic inflationary scenarios [28,29].

Another interesting application of BFTs involves so-called cluster integrable

1A similar class of theories was simultaneously introduced in [14].
2A bipartite graph is a graph where the nodes are colored white or black, and white nodes are

only connected to black nodes (and vice-versa).
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systems [2, 30–32]. These applications were first discovered by Goncharov and

Kenyon [33] and appeared in the mathematics literature, where they found a corre-

spondence between dimer models and certain integrable models. The correspondence

associates any dimer model on a torus to a (0+1)-dimensional quantum integrable

system, which they dub a cluster integrable system.

More recently, BFTs have made much progress in the context of scattering am-

plitudes in 4-dimensional N = 4 SYM [3, 5, 6, 34, 35]. These developments rely on

the observation that the actual structures of BFTs have a very central role in the

computation of scattering amplitudes in N = 4 SYM. More precisely, a novel for-

mulation of scattering amplitudes in N = 4 SYM, involving a highly combinatorial

object known as the Grassmannian, makes direct use of the combinatorics of the

same bipartite graphs which define BFTs.

Many of the concepts in N = 4 SYM, and importantly their generalizations

beyond planar on-shell diagrams, have beautiful realizations in terms of BFTs. The

investigation of the utility of BFTs in the area of scattering amplitudes is indeed one

of the central goals of this thesis. The huge diversity of applications of BFTs suggests

we are only scratching the surface of their potential utility. Additionally, BFTs may

provide a more profound understanding of the physical connections between the

areas of their applicability.

Introduction to Toric Geometry

The moduli space of BFTs is a space called a toric variety. This section will de-

scribe more precisely what this means, and illustrate extremely useful diagrams that

completely encode the information of the toric variety in a simple and succinct way.

These diagrams are known as toric diagrams and will be used very heavily in this

thesis. To understand the tools and results of this thesis it is sufficient to know that

it is possible to recover the algebraic-geometric information of a toric variety from

the toric diagram, without needing to understand the precise details of this map.

This section will nonetheless expound on this connection with a concrete example,

providing useful context and understanding for the chapters to come.
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Algebraic geometry can relate algebraic quantities, such as polynomials of vari-

ables, to geometric objects called varieties, which are similar to manifolds. Alge-

braic geometry appears naturally for vacua of supersymmetric theories; these moduli

spaces are determined by the solution to the D-term and F-term constraints

Da =
∑
i

X†i T
aX i = 0 (1.0.1)

F †i =
∂W

∂X i
= 0 (1.0.2)

where theXi are chiral superfields, W is the superpotential and T a are the generators

of the gauge group. The key point is that the vacuum can be described by a set of

polynomial equations

p1(z1, z2, . . .) = 0 p2(z1, z2, . . .) = 0 · · · (1.0.3)

where the zi are traces of polynomial functions of the fields Xi.

There are particular supersymmetric theories, known as toric quiver gauge the-

ories, whose space of vacua is toric. We shall soon explain what this means. Much

of this introduction to toric geometry is based on an excellent set of lecture notes

by Cyril Closset [36].

Toric Varieties

A variety Σ is a simpler version of a manifold. Fundamentally, the difference is that

it is possible to describe a variety through a set of equations of the form f(z) = 0:

Σ = {z ∈ Cn | f(z) = 0} . (1.0.4)

In general such manifolds can be very singular, but this can be greatly improved by

limiting f(z) to be a polynomial. Toric varieties are additionally limited to having

rational coordinate transformations between different patches of the variety.

An important class of toric varieties consists of projective varieties. The most

famous one is

CP n =
Cn+1 \ 0

C∗
(1.0.5)

where C∗ is the action that multiplies all coordinates xi ∈ C by λ:

{x1, . . . , xn+1} 7→ {λx1, . . . , λxn+1} (1.0.6)
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One should think of CP n as the space of lines going through the origin in Cn+1. The

coordinates on CP n are

z
(j)
i =

xj
xi
, (1.0.7)

and the coordinate transformations between patches are z
(j)
i

(
z(k)
)

=
z

(k)
j

z
(k)
i

. There is

no function f(z) required to specify this space.

A toric variety is a generalization of a projective variety. It can be written as

XT =
Cn \ ZT

(C∗)p × Γ
(1.0.8)

where Γ is some discrete group, typically ZN . A non-trivial Γ corresponds to orb-

ifolding the theory. The action (C∗)p acts on the coordinates by multiplying each

coordinate by some power of λ. There are p different operations, each with a dif-

ferent λi. In order to have a well-defined action that can act non-trivially, we must

remove a set of points ZT . For CP n this was simply done by removing the origin.

At this stage an example is very useful. Consider the conifold, usually denoted

C0, defined by the equation

C0 = {(z1, z2, z3, z4) ∈ C4 | z1z2 − z3z4 = 0} . (1.0.9)

The conifold can equally be described as

C0 =
C4 \ ZT

C∗
, (1.0.10)

where the C∗ action is

(x1, x2, x3, x4) 7→ (λx1, λ
−1x2, λx3, λ

−1x4) . (1.0.11)

Notice that the action does not need to multiply the same power of λ to all coordi-

nates. In this case ZT = {x1 = 0 = x3} ∪ {x2 = 0 = x4}.
We shall now see how these two apparently very different formulations of the

conifold, i.e. (1.0.9) and (1.0.10), can be simply obtained through a study of the

conifold’s toric diagram.
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The Projective Variety from the Toric Diagram

A toric diagram is determined by a set of points on a d-dimensional lattice Zd.3

These points are expressed as a set of vectors {v1, . . . , vn}, where n ≥ d. For these

vectors to specify a toric variety they will turn out to satisfy certain conditions.

Before exploring these conditions, let us begin with a few definitions.

A strongly convex rational cone σ is the cone spanned by a subset of the vectors

vi. The “strongly convex” condition on the cone is that the cone should be “pointy”,

i.e. that σ ∩ (−σ) = {0}. A fan is a collection of cones that pairwise share faces,

where each face must also be a cone. In simple terms, a fan is simply a collection of

cones stuck together.

The prescription for obtaining the projective description of the variety begins by

associating a complex coordinate x to each lattice vector v. These n coordinates

{x1, . . . , xn} will be subject to p different C∗ actions, to give a variety of dimension

n− p = d, which is the same as the dimension of the lattice Zd.

The specific C∗ actions are determined by studying the different independent

relations among the lattice vectors

n∑
i=1

viQ
a
i = 0 (1.0.12)

where Qa
i are the coefficients of these linear combinations, and a = 1, . . . , p. The

way to translate the Qa
i into the specific C∗ action is simply by viewing the Qa

i as

charge vectors for the C∗ action under consideration, i.e.

{x1, . . . , xn} 7→ {λQ
a
1x1, . . . , λ

Qanxn} . (1.0.13)

From this it is also easy to find ZT : for each subset of the lattice vectors {vi1 , . . . , vik}
that do not form a cone of the original fan, there is a contribution {xi1 = · · · =

xik = 0} to ZT . ZT is the union of all such contributions.

3As we shall soon see, if a space is Calabi-Yau these lattice points all live on a (d−1)-dimensional

hypersurface. Strictly speaking, what is usually referred to as the toric diagram is a diagram of

this hypersurface.



Chapter 1. Introduction 7

Example. Let us see how this procedure works for the conifold. The conifold is

three-dimensional, and has a fan generated by the four vectors

v1 = (0, 0, 1) v2 = (1, 0, 1) v3 = (1, 1, 1) v4 = (0, 1, 1) , (1.0.14)

which are illustrated in Figure 1.1. The fan is composed of one three-dimensional

cone (pyramid-like), four two-dimensional cones (four faces), four one-dimensional

cones (edges between the faces), and one zero-dimensional cone (the origin). Each

v1
v2

v3
v4

Figure 1.1: The fan for the conifold.

vector is associated to a variable xi. Since we have four vectors in 3 dimensions,

they are linearly related through the equation

v1 − v2 + v3 − v4 = 0 , (1.0.15)

thus yielding the single charge vector Q = (1,−1, 1,−1). Hence, the C∗ action is

as given in (1.0.11). Since {v1, v3} and {v2, v4} are not cones of the original fan,

ZT = {x1 = 0 = x3} ∪ {x2 = 0 = x4}, which finally completes the expression in

(1.0.10)

The Algebraic Variety from the Toric Diagram

We have now seen how to obtain the expression of the projective variety (1.0.10)

from the toric diagram. The aim of this section will be to obtain the equivalent

algebraic formulation of the variety (1.0.9), i.e. the set of coordinates z and their

constraints f(z) = 0, from the same toric diagram. We start by finding well-defined
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coordinates z, which are invariant under the C∗ action, analogously to (1.0.7) for

the example of CP n. More generally we need to define each z as

z = xp1

1 x
p2

2 · · ·xpnn 7→ λ
∑
iQ

a
i pixp1

1 x
p2

2 · · ·xpnn = xp1

1 x
p2

2 · · ·xpnn . (1.0.16)

If we restrict ourselves to considering fans which are also cones, i.e. fans which are

“pointy” as defined above, we see that some Qi charges need to be negative. We

can use this fact to restrict ourselves to only considering pi ≥ 0.

Hence, to have coordinates z invariant under the C∗ action, we need to impose∑
iQ

a
i pi = 0. Because of the similarity to (1.0.12), it is natural to see pi as an inner

product between vectors w and vi, where w is a vector in the “dual lattice”. In this

way the dual cone

σ∨ = {aw, a ∈ R≥0, 〈w, vi〉 ≥ 0 ∀vi ∈ σ} (1.0.17)

can be defined. Under this definition, each pi for a given z is given by pi = 〈w, vi〉.
In this way we see that each vector w in the dual cone is naturally associated to a

corresponding z, much like vi 7→ xi in the previous section.

The wi are generally not all independent: there are relations∑
i

miwi =
∑
j

mjwj , mi,mj ∈ N . (1.0.18)

These conditions can be easily translated into conditions for the variables zi, by

remembering that the wi implicitly appear in (1.0.16), through the relation pi =

〈w, vi〉. Hence, the conditions are∏
i

zmii =
∏
j

z
mj
j ⇒ f(z) =

∏
i

zmii −
∏
j

z
mj
j = 0 . (1.0.19)

Example. Let us return to the example of the conifold to illustrate the procedure.

To find the dual variables zi, the dual cone vectors wk are needed. The dual cone

will be the cone generated by vectors that can lie a maximum of 90 ◦ from any vi.

From (1.0.14) we see that v1 will restrict dual vectors to be in the upper-half space

of Z3, v2 will restrict to the same space but rotated one step in the x-direction, v4 to

the rotated space one step in the y-direction and v3 will not impose any additional

restriction. We thus have the dual vectors

w1 = (1, 0, 0) w2 = (0, 1, 0) w3 = (−1, 0, 1) w4 = (0,−1, 1) . (1.0.20)
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The restrictions of v2 and v4 are seen in the third component of w3 and w4. It is

easy to verify that these form a good choice for dual cone vectors: using pi = 〈w, vi〉,
we obtain the coordinates z1 = x2x3, z2 = x3x4, z3 = x1x4 and z4 = x1x2, which are

transparently invariant under the C∗ action in (1.0.11). In this simple example we

could equally have inferred the wi from “guessing” the zi.

There is only one relation between these vectors:

w1 + w3 = w2 + w4 ⇒ f(z) = z1z3 − z2z4 = 0 , (1.0.21)

which is precisely (up to a trivial relabeling) the definition in (1.0.9).

Toric diagrams for Calabi-Yau manifolds

The moduli space of BFTs are toric varieties. Moreover, they are Calabi-Yau. We

shall now see how the Calabi-Yau condition manifests itself at the level of the toric

diagram.

A Calabi-Yau manifold has vanishing Ricci tensor. Combining the Calabi-Yau

condition with toric varieties gives a toric Calabi-Yau variety, which satisfies the

additional requirement that the powers of λ arising from the action (C∗) must all

sum up to zero, i.e. ∑
i

Qa
i = 0 . (1.0.22)

A toric Calabi-Yau manifold is of complex dimension d, and will hence be described

by d-dimensional vectors. The Calabi-Yau condition allows for a convenient simpli-

fication: through a suitable SL(n,Z) transformation, it is possible to express the

vectors vi as vi = (ṽi, 1). Hence, the fan can be projected down onto Zd−1 without

losing any information.

As an example, the conifold is a toric Calabi-Yau variety. Its vectors in (1.0.14)

can be projected down to the Z2 plane, to obtain the four points (0, 0), (1, 0), (0, 1),

(1, 1). It is standard to draw lines along the outer edge of the toric diagram, to

denote its boundaries.
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Toric singularities

In algebraic geometry, a singularity is defined as a point on the variety at which

the tangent space has a larger dimension than the variety. As an example, for the

conifold we have f(z) = z1z2 − z3z4 = 0. At z1 = z2 = z3 = z4 = 0 the equations

become trivial and the tangent space will have complex dimension 4; thus, there is

a singularity here. In general we have a singularity when dim (TzU) = dim (Uz) + 1,

where Uz is the variety and TzU is its tangent space at the point z.

A theorem in algebraic geometry states that for a cone σ, Uσ is non-singular iff σ

is a simplex.4 The theorem suggests a way to resolve toric singularities: by dividing

the fan into simplices, and treating each simplex separately. This process is known

as simplicial decomposition. On the toric diagram for Calabi-Yau 3-folds, this is

equivalent to triangulating the diagram. Triangulation for the conifold is illustrated

in Figure 1.2.

Figure 1.2: The conifold resolved in two different ways

There are two main ways to study a singularity: by resolution as in the above

example, or deformation of the variety. This second method corresponds to slightly

modifying the defining equation, e.g. modifying the conifold to z1z2 − z3z4 = c,

c 6= 0. Deformations will not be treated here but there is much more to say about

them; for a physicist-friendly account the reader is referred to [36]. Deformations

will make a brief recurrence in Chapter 5.

The resolution of the singularity described above is an example of what is known

as a “blow up”.5 This essentially replaces the singularity with a CPm, where m is

4We remind the reader that a simplex is the higher-dimensional analogue of a triangle.
5The mathematics literature distinguishes between “blow ups” and “small resolutions”. Figure

1.2 shows an example of the latter.
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smaller than the dimension of the variety. The blow up introduces new variables

which give the singularity the structure of a CPm but become redundant away from

the singularity.

In the conifold example, C0 becomes two C3’s. The first one will have coordinates

{z1, z3, y1} and the second will have coordinates {z2, z4, y2}. Since together they

form the conifold, we must have transition functions from one C3 to the other. The

transition functions are given by

z1

z2

=
z3

z4

, y1 =
1

y2

, z1y1 = z2 , . . . (1.0.23)

which are simply read off from the equations relating the vectors of the first cone

with those of the second cone, analogously to (1.0.21). Note that this generates the

defining equation for the conifold as well as equations for the new variables which

give the singularity a CP n structure.

Figure 1.3: The (p, q) web for the resolved conifold. For clarity, the original lines

(now dotted) have been included.

The (p, q) web. Of particular interest in the toric diagram is the (p, q) web [37].

It is the dual of the toric diagram; in practice this is a set of lines that cut across

those of the resolved toric diagram. For the resolved conifold on the left in Figure

1.2, we have the (p, q) web shown in Figure 1.3. In Chapter 3, the importance of the

(p, q) web will become clear when it appears as the backbone of the spectral curve

associated to an integrable system.
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Background to Scattering Amplitudes

Scattering amplitudes have undergone tremendous progress in the last two decades

(see e.g. [38–44] and reviews [45–48]). This progress is especially impressive for

amplitudes in planar 4-dimensional N = 4 super Yang-Mills theory, where explicit

results have been obtained up to high loop order [49–56]. Much of the recent progress

in computing the scattering amplitudes relies on making the full symmetry group

of the theory manifest. More specifically, it abandons Feynman diagrams as the

basic terms from which the amplitudes are constructed, in favor of summing over

terms which are manifestly invariant under the full symmetry group of N = 4 SYM.

While Feynman diagrams make the local description of amplitudes very manifest,

they often hide important structures which are displayed by the full amplitude; for

example, individual Feynman diagrams are not gauge invariant.

The construction of amplitudes through terms invariant under the full symmetry

group can be systematized through the celebrated BCFW recursion relations [43,

44], which at tree-level construct n-point amplitudes by gluing together lower-point

amplitudes. The BCFW recursion relations are not restricted to supersymmetric

theories, and indeed form the fundaments of highly successful unitarity methods

[38,39].

At loop-level, restricting ourselves to N = 4 supersymmetry, a similar set of

recursion relations exists to construct the integrand of the amplitude [52].6 Each

term in these recursion relations is invariant under the full symmetry group of the

theory, but is generally not local. The non-locality of each term is cancelled by the

non-locality of other terms, to finally produce a local amplitude which is invariant

under all symmetries of the theory.

An important question in the investigation of amplitudes is their singularity

structure. Indeed, it was precisely a thorough understanding of this which enabled

6Much of the recent progress in scattering amplitudes, and indeed that which this thesis will

focus on, is in constructing the integrand of the scattering amplitude. The integrated amplitude

suffers from IR divergences and is a more complex object to compute and study. Thus, in the

remainder of this thesis we shall continue to focus on understanding the integrand and its mathe-

matical and physical structure.
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the famous construction of the BCFW recursion relations. In fact, amplitudes in

planar N = 4 SYM are completely determined by their singularities, making their

study highly relevant to recent developments. In this thesis we shall find BFTs to

provide a very natural language in which these questions can be answered.

Symmetries of N = 4 Super-Yang-Mills

Planar 4-dimensional N = 4 Super-Yang-Mills enjoys a particularly large symmetry

group. First, it has the conformal symmetry which acts on the spacetime variables

xµ. Moreover, there is a completely separate symmetry which acts on what are

known as dual variables yµ, defined through the relation

yµi − yµi+1 = pµi , (1.0.24)

where pµi is the 4-momentum of the ith particle. The integrand of the amplitude

is invariant under conformal transformations of yµi , and this symmetry is known as

dual conformal symmetry [57,58].

Finally, the fact that we have N = 4 supersymmetry has very direct effects

on the computation of scattering amplitudes. First, the set of diagrams which are

N = 4 symmetric is greatly reduced as compared to non-supersymmetric Yang-

Mills. Furthermore, the evaluation of helicity sums over internal particles in the

BCFW recursion relations is simplified. This is due to the fact that in N = 4 it is

possible to put all helicity states in a single multiplet, and the sum over helicities

becomes a continuous Grassmann integral which scans over the multiplet.

All together, these symmetries form an infinite-dimensional symmetry known

as the Yangian [59], allowing planar N = 4 SYM to be integrable [60, 61]. This

infinite symmetry is obscured in the standard Feynman diagram approach, while it is

completely manifest in the newer, more mathematical formulation of amplitudes [34]

(see also [52,62–66] and recent work on a deformed version of the story [67–71]).

An important consequence of these symmetries is the dlog form of the integrand:

the degrees of freedom Xi can all be written as dlog(Xi) = dXi
Xi

, times some delta

functions. Singularities of the amplitude are obtained by shutting off these degrees

of freedom, i.e. sending Xi → 0. In physical terms, this corresponds to setting
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propagators of a process on-shell, or considering collinear singularities. The dlog

structure has the effect of making all poles and subpoles of the amplitude integrand

appear as simple poles. As an example, consider

dXdY

XY (X + Y )
. (1.0.25)

When we take the residue around the pole X → 0, we obtain

dY

Y 2
, (1.0.26)

which is not a simple pole. This illustrates how non-simple poles can arise from an

object that, at the outset, only appeared to have simple poles. Hence, we conclude

that (1.0.25) cannot be rewritten as a dlog form. The great achievement that made

the dlog structure of the integrand completely manifest was the use of on-shell

diagrams [34], which we introduce in the next section.

Finally, we shall comment on the symmetries of non-planar amplitudes. Al-

though there has been important progress in their study [72–76], they are far less

well understood than amplitudes in the planar sector. Recently, building on the

observation that the loop integrand in planar amplitudes has only logarithmic sin-

gularities and no poles at infinity, it has been conjectured that non-planar amplitudes

share the same property [77]. Further evidence supporting this conjecture was pro-

vided in [78], where the dlog form of the non-planar amplitude was found to hold to

3 loops.

On-Shell Diagrams

On-shell diagrams are extremely useful for studying scattering amplitudes, and pro-

vide a gateway for connecting amplitudes to the Grassmannian. In simple terms,

the Grassmannian is the space of k-dimensional planes in n dimensions and is de-

noted G(k, n). An element of G(k, n) is a specific k-plane in n dimensions, and is

conveniently described by its k basis vectors, juxtaposed to form a k×n matrix. We

will present the Grassmannian in greater detail in Chapter 4. The Grassmannian

description of scattering amplitudes enables the linearization of all the constraints of

a given process, which in turn has the benefit of making the mathematical structure

of the process very transparent.
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General on-shell diagrams are constructed by gluing elementary three-point on-

shell amplitudes together. For the three-point amplitude to be non-zero, the external

particles cannot all have the same helicity. Hence, there are two possibilities: either

we have a (−,−,+) helicity configuration, or a (+,+,−) configuration. The form is

known as maximally helicity violating (MHV), and the latter is its conjugate MHV.7

MHV

MHV

Figure 1.4: The construction of on-shell diagrams by gluing together 3-point ampli-

tudes. MHV amplitudes are denoted by black nodes, MHV amplitudes are denoted

by white nodes.

The vertex carries a helicity- and momentum-conserving delta function, and the

diagrams constructed by gluing together all the three-point amplitudes are known as

on-shell diagrams. Figure 1.4 illustrates an example of how 3-point amplitudes may

be glued together to form an on-shell diagram. In these diagrams, all particles are

on-shell. However, it is still possible to have unconstrained degrees of freedom, and

the amplitude is obtained by integrating over these. An important result is that,

in the planar limit, the all-loop integrand in planar N = 4 SYM can be expressed

in terms of on-shell diagrams [34, 52]. Moreover, the expression of the integrand

in terms of on-shell diagrams makes the dlog structure of the integrand completely

manifest: it is simply the product of dlog’s of all the degrees of freedom of the

diagram.

The on-shell diagrams are very closely tied to the BCFW recursion relations:

each term in the recursion relations corresponds to a specific on-shell diagram. Since

7Since every three-point amplitude also carries a color factor, so does the on-shell diagram built

from them. While important, the computation of this color factor falls beyond the scope of our

discussions.
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BCFW terms display the full Yangian invariance of the theory, each planar on-shell

diagram is invariant under the Yangian.

The Amplituhedron

Separately, enormous progress has been achieved in the construction of a geometric

object which simultaneously contains the information of all relevant planar on-shell

diagrams for a given process [5,79–83]. This object is known as the amplituhedron,

and is a new algebraic geometric object which generalizes the positive Grassmannian

and encodes scattering amplitudes in a maximally geometric way: they are simply

given by its volume.

The amplituhedron is the missing link explaining how to combine Yangian invari-

ant building blocks to give rise to the amplitude. The BCFW recursion relations are

seen to be merely one way in which Yangian-invariant terms can be combined, and

the combination of these terms is geometrically seen as a specific triangulation of the

amplituhedron. However, there are different ways to triangulate the same object,

each translating into a different representation of the amplitude. In this approach

the standard pillars of quantum field theory like locality and unitarity are properties

derived from the geometry of the amplituhedron. The existence of such a structure

in planar N = 4 SYM suggests that there might be a very different formulation of

the field theory which does not use the standard Lagrangian description of physics.

The correspondence between scattering amplitudes and the amplituhedron has

passed numerous tests, although it still remains conjectural and its study is in its

infancy. In this thesis we introduce tools analyzing the amplituhedron and present

the most comprehensive investigation of its geometry to date. A clear goal is to

achieve a systematic understanding similar to the one available for cells in the pos-

itive Grassmannian [84]. Among other things, we expect our ideas to be instru-

mental in triangulating the amplituhedron, and hence contribute to its practical use

in constructing scattering amplitudes. A beautiful interplay between experimental

exploration of examples, discovery of new structures and theoretical new ideas has

been a constant driving force for progress in the understanding of scattering ampli-

tudes. It is reasonable to expect that the examples we study, and the ones which
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will be studied in the future with the help of the tools we introduce, will nicely fit

into this trend.

Outline

This thesis is divided into 5 chapters which together contain the main results from

those publications completed during this doctorate related to the topics of BFTs,

integrable systems, and scattering amplitudes [1–6].

Chapter 2 is devoted to the introduction of BFTs. Since these theories have

benefited from continuous development over the years, the results of this chapter

draw from numerous articles. The chapter begins with a short review of BFTs,

primarily following [10], but importantly also identifies a new way of assigning gauge

symmetries to the corresponding graphs, as was first found in our paper [1]. It also

has an in-depth introduction to all of the necessary tools for the majority of the

results in this thesis, the material from which was principally taken from our papers

[1,3] but which also contains realizations from our papers [4,6]. Following the results

in [1], this chapter also introduces: a new procedure for determining the Calabi-

Yau moduli spaces of BFTs; a highly useful set of variables which are also used in

Chapters 3 and 6; a detailed discussion of equivalences and reductions of BFTs; and

a systematic BFT prescription for determining graph reductions, giving particular

emphasis to theories associated to non-planar graphs. Following the results in [3],

two very efficient algorithms are presented: a way of immediately obtaining the

moduli space of BFTs, and a method to quickly determine the reducibility of BFTs.8

Chapter 3 displays our results in [2]: we initiate the study of how to extend the

correspondence between dimer models and (0+1)-dimensional cluster integrable sys-

tems to (1+1) and (2+1)-dimensional continuous integrable field theories, addressing

various points that are necessary for achieving this goal. These developments are

quite separate from the main themes of this thesis, but are worthy of inclusion as

they illustrate part of the large diversity of the applicability of BFTs. We first study

8Notably, we omitted from this thesis powerful tools for constructing new theories from given

theories, which can be found in [1].
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how to glue and split two integrable systems, from the perspective of the spectral

curve, which in terms of the BFT corresponds to a resolution of the toric Calabi-Yau

singularity, or equivalently a Higgsing in the gauge theory on the D3-brane probe.

We identify a continuous parameter controlling the decoupling between the com-

ponents and present two complementary methods for determining the dependence

on this parameter of the dynamical variables of the integrable system. Interested

in constructing systems with an infinite number of degrees of freedom, we study

the combinatorics of integrable systems built up from a large number of elementary

components, and introduce a toy model capturing important features expected to

be present in a continuous reformulation of cluster integrable systems.

Chapter 4 studies the connection between BFTs and scattering amplitudes, fol-

lowing our results in [3]: we perform a detailed investigation of the combinatorial

and geometric objects associated to on-shell diagrams. We mainly focus on their re-

lation to polytopes and toric geometry, the Grassmannian and its stratification. Our

work extends the current understanding of these connections along several impor-

tant fronts, most notably eliminating restrictions imposed by planarity, positivity,

reducibility and edge removability. We also present a map, known as the boundary

measurement, between arbitrary non-planar graphs and elements of the Grassman-

nian, completing this picture by also including results from our later paper [6].

Because of the intimate relation between bipartite graphs and the Grassmannian,

our results can be conversely regarded as an expansion in the understanding of the

Grassmannian in terms of bipartite graphs.

Chapter 5 closely follows [5]: we initiate a comprehensive investigation of the

geometry of the amplituhedron. We do so by introducing and studying its strat-

ification, focusing on four-point amplitudes. The new stratification exhibits inter-

esting combinatorial properties and positivity is neatly captured by permutations.

As explicit examples, we find all boundaries for the two- and three-loop amplitudes

and related geometries. We recover the stratifications of some of these geometries

from the singularities of the corresponding integrands, providing a non-trivial test

of the amplituhedron/scattering amplitude correspondence. We finally introduce a

deformation of the stratification with remarkably simple topological properties.
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Finally, Chapter 6 displays our results from [6], where we initiate a systematic

study of non-planar on-shell diagrams in N = 4 SYM and develop powerful technol-

ogy for doing so. We use variables generalizing face variables, which make the dlog

form of the on-shell form explicit. We make significant progress towards a general

classification of arbitrary on-shell diagrams. Interestingly, non-planar diagrams ex-

hibit novel phenomena, such as the emergence of constraints on Plücker coordinates

beyond Plücker relations when deleting edges. Finally, we introduce a prescription,

applicable beyond the MHV case, for writing the on-shell form as a function of

minors directly from the graph.



Chapter 2

Bipartite Field Theories

In this chapter we will introduce an important infinite class of N = 1 quiver gauge

theories, which are known as Bipartite Field Theories. We will also introduce the

huge array of tools which will make frequent recurrence throughout this thesis.

2.1 Definition of BFTs

A BFT is a 4-dimensional N = 1 quiver gauge theory, whose Lagrangian is defined

in terms of a bipartite graph living on a Riemann surface, possibly containing bound-

aries. BFTs were first introduced in [10].1 4d N = 1 supersymmetric gauge theories

are determined by specifying the gauge symmetry group (vector superfields), mat-

ter content (chiral superfields), a real function of the chiral superfields (the Kähler

potential) and a holomorphic function of the chiral superfields (the superpotential

W ). In this thesis we will focus on theories with canonical Kähler potential in the

UV, so we will not mention it any longer.

We shall begin by defining the graph more precisely.

Bipartite Graphs. A graph is a collection of nodes and of edges connecting them.

The graphs we consider have two types of nodes, distinguished by a white or black

color. If white nodes are only connected to black nodes and vice-versa, the graph is

1Closely related theories were introduced in [14].

20
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bipartite. We denote the number of edges connected to a given node as its valence.

The framework discussed in this thesis deals with general bipartite graphs containing

nodes of arbitrary valence.

In many applications, it can often be useful to consider embeddings of the graphs

onto Riemann surfaces with boundaries. We shall call planar a graph which can

be embedded on the disk without edges crossing. Instead, those graphs whose

embedding involves edge crossings or multiple boundaries are referred to as non-

planar.

We divide nodes into two distinct categories: external nodes are defined as those

nodes which must lie on a boundary in any embedding of the graph, the remaining

nodes are internal. We shall only consider monovalent external nodes.

Once an embedding of the graph on a Riemann surface is specified, one can define

faces as those regions on the surface surrounded by edges and/or by boundaries.

Faces are also divided in two categories: internal faces are those which are only

surrounded by edges, and external faces are those whose perimeter includes at least

one boundary.

The map defining a BFT in terms of a bipartite graph on a Riemann surface is

as follows:

• Faces: each face represents a U(N) symmetry group.2 We shall soon describe

how to identify the gauge symmetries from the global ones.

• Edges: each edge between faces i and j represents a chiral superfieldXij trans-

forming in the bifundamental representation of the two groups, U(N)i×U(N)j,

associated to the two faces adjacent to the edge (or adjoint representation if

i = j). The chirality, i.e. orientation, of the bifundamental is such that it

goes clockwise around white nodes and counter-clockwise around black nodes.

Chiral fields associated to external legs, i.e. edges connected to external nodes,

are taken to be non-dynamical.

2The case of general ranks, i.e. not equal for all faces, is extremely interesting. It is however

not relevant for the questions discussed in this thesis, so we do not pursue it.
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• Nodes: each k-valent node represents a superpotential term given by the trace

of the product of k fields corresponding to edges terminating on the node.

The clockwise or counter-clockwise orientation associated to nodes determines

the cyclic ordering of fields in each superpotential term. The superpotential

term bears a positive sign for white nodes and negative sign for black nodes.

External nodes, by definition, do not map to any superpotential term.

The next section discusses in detail two possible ways of gauging the symmetries

in these theories. These alternatives give rise to two independent classes of BFTs.

As we will explain, for one of the possible gaugings the resulting theories are inde-

pendent of any embedding of the bipartite graphs into a Riemann surface, in other

words they can be defined without appealing to any Riemann surface at all. Keep-

ing the two possibilities in mind, it is still useful to invoke an underlying Riemann

surface in order to provide a unified presentation of the two classes of BFTs. The

use of an embedding will also allow us to use a generalized notion of face variables,

introduced in §2.5, which encode the degrees of freedom of the graph in the most

succinct way.

2.1.1 Two Alternative Gaugings

One possible way of gauging the U(N) symmetries of BFTs was considered in [10].

More careful thought reveals that there exists yet another natural way of gauging

them, introduced for the first time in [1]. We refer to the two possibilities as gaugings

1 and 2 and present them below. Each gauging leads to a different class of consistent

theories, expanding the realm of BFTs by effectively doubling it with respect to what

was originally considered in [10].

Gauging 1. In this case, the U(N) symmetries associated to internal faces of the

graph are gauged. It is straightforward to see that bipartiteness guarantees that

internal faces are even-sided. This implies that they are anomaly free and can be

consistently gauged. The remaining symmetry groups are global. Note that external

faces are generally not even-sided. We refer to the resulting class of gauge theories

as BFT1, and these are the ones considered when BFTs were introduced in [10].
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The theories in this class are quiver gauge theories. Their quivers, including

plaquettes representing the superpotential terms, are obtained by dualizing the bi-

partite graph [10], as illustrated in Figure 2.1. This quiver is such that its plaquettes,

i.e. the minimal oriented closed loops, encode the terms in the superpotential of the

BFT.
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Figure 2.1: A bipartite graph on a disk and its dual quiver. Every plaquette in this

quiver corresponds to a node in the original graph and hence a superpotential term.

Gauging 1 arises naturally when thinking about theories with a D-brane inter-

pretation. Indeed, a subclass of BFT1’s has already appeared in this context in the

literature, playing a prominent role. It corresponds to the 4d N = 1 worldvolume

theories on D3-branes probing toric Calabi-Yau 3-fold singularities. These theo-

ries are known as dimer models. For this subclass of theories, the Riemann surface

is a 2-torus without boundaries [16]. In this context, the corresponding bipartite

graphs are called brane tilings and have been the subject of extensive investiga-

tions [15–18, 85]. The correspondence between these gauge theories and bipartite

graphs has indeed been instrumental in several important developments such as the

determination of the superconformal field theories that are dual, via the AdS/CFT

correspondence, to infinite families of Sasaki-Einstein manifolds [17, 20, 86]. More

recently, a physical realization in terms of D3 and D7-branes on toric Calabi-Yau

3-folds has been introduced for a more general class of BFTs, which includes graphs

with boundaries [13].
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Gauging 2. Gauging 1 was motivated by both anomaly considerations and the

analogy with theories with a known D-brane realization. However, our previous

discussion makes it clear that the symmetries associated to internal faces are not

the only ones that are automatically anomaly free. In fact, every closed path in the

graph can be associated to an anomaly free symmetry. Those associated to linear

combinations of faces are U(N) symmetries. Other types of closed paths, such as

the ones along the fundamental directions appearing when the underlying Riemann

surface has genus greater than zero, correspond to U(1) symmetries.3 In general,

only a minimal set of independent closed paths has to be gauged. Considering this

gauging gives rise to a new class of theories which we call BFT2, and first appeared

in [1].

Gauging 2 extends gauging 1 by gauging some additional symmetries. While

the quiver associated to gauging 1 still provides useful guidance, BFT2’s are not

standard quiver theories since chiral fields can be charged under more than two

gauge symmetries.

If we restrict ourselves to the Abelian case, where all the symmetries are U(1), it

is straightforward to see that the definition of Abelian BFT2’s is actually indepen-

dent of any embedding of the bipartite graph into a Riemann surface. In fact, an

underlying Riemann surface becomes unnecessary for defining this type of theory.

However, removing the Riemann surface from the discussion is a step which needs to

be approached with care, since it was not only used for identifying some of the gauge

symmetries, but it was also necessary for providing nodes with an orientation that

determines the chirality of fields. It is possible to define chirality without the need

of a Riemann surface: one simply declares that for any gauge symmetry, the fields

associated to edges alternate between being in the fundamental and antifundamental

representations as one moves along the corresponding closed path.4

3Whether some of these symmetries can be consistently promoted to be non-Abelian is an

interesting question that deserves further study. Moreover, it is natural to address this question

in the context of a more general study in which arbitrary ranks for all symmetries are considered.
4An analogous chirality assignment is also possible for global symmetries associated to open

paths in the graph.
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The embedding-independence of BFT2’s will allow us to more naturally connect

them to scattering amplitudes, since both types of objects only care about the

connectivity of the graph. We shall see this connection utilized to great benefit in

Chapters 4, 5 and 6, where the powerful machinery of BFTs is exported to provide

new results in the novel setting of scattering amplitudes in 4-dimensional N = 4

Super-Yang-Mills. The relevant BFTs in this context are classical and Abelian,5

and are hence the theories we shall restrict ourselves to in the following sections.

For graphs on a disk there is no distinction between BFT1 and BFT2. The

difference between the two gaugings arises in the presence of multiple boundaries

and/or higher genus Riemann surfaces, as illustrated in Figure 2.2.

Gauging 1 Gauging 2

Figure 2.2: Difference between BFT1 and BFT2 in an example with two boundaries.

The orange loops are those which are gauged in each gauging. The surface has genus

g = 0 and hence there are no loops with non-trivial homology.

We refer those interested in extensive catalogues of explicit BFT examples to

[1,10] for general BFTs and to [87–89] for higher genus examples without boundaries.

5Since we focus on classical theories, we do not worry about issues concerning the UV completion

of Abelian BFTs.
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2.2 Moduli Spaces

The moduli space is a fundamental object in the study of SUSY QFTs. It is the

space of field configurations for which the scalar potential of the theory vanishes.

Since the scalar potential is positive semi-definite in SUSY theories, the points where

it vanishes correspond to absolute minima. Moreover, in SUSY theories such vacua

are not isolated, and the moduli space becomes an interesting continuous geometry.

The scalar potential is a sum of two types of contributions: F-terms (associated

to chiral superfields) and D-terms (associated to vector superfields). Every F- and

D-term enters the scalar potential with squared absolute value and hence needs to

independently vanish on the moduli space. We will not discuss the basics of F- and

D-terms in this thesis. A remarkable feature of BFTs is that due to the very special

structure of their superpotential, which follows from the bipartite graph as described

by the dictionary given in §2.1, the determination of the moduli space reduces to a

simple combinatorial problem.

As a first step towards a full investigation of BFTs, all our discussions of moduli

spaces in the following sections are going to refer to the case where N = 1, i.e. all

symmetries are U(1). This simplification has various motivations. First, Abelian

BFTs are relevant for the study of scattering amplitudes, which do not contain any

parameter related to a non-trivial N . In fact, the scattering problem can be mapped

to a U(1) gauge theory living on the graph [34] which, in turn, is directly related to

Abelian BFTs. This correspondence was studied for graphs on T 2 in [90, 91].

While in some cases, such as BFTs arising on stacks of D-branes, the moduli

space of the non-Abelian theory is a symmetrized product of N copies of the Abelian

one, a simple connection of this type need not hold for general BFTs. Elucidating

the structure of the moduli space of non-Abelian BFTs is a very interesting question

that certainly deserves to be studied in the future. We envision powerful tools such

as those based on Hilbert series are going to be useful for this endeavour [92–95].
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2.2.1 Master and Moduli Space

We shall now review the definition of the moduli spaces in terms of F- and D-term

constraints. The classical moduli space can be constructed in two stages. First, we

construct the space of vanishing F-terms, which is known as the master space of the

theory [96–98]. In doing so, we only require the vanishing of the F-terms for fields

associated to internal edges in the bipartite graph, without imposing zero F-terms

for external edges. There are both geometric and physical reasons motivating this

treatment, as explained in detail in [10], and discussed below.

Because fields are represented by edges in the graph, every internal edge X0

appears in exactly two terms in the superpotential, which thus takes the general

form

W = X0P1(Xi)−X0P2(Xi) + . . . , (2.2.1)

where P1(Xi) and P2(Xi) represent products of bifundamentals fields. The F-term

equation for every X0 is given by

∂X0W = 0 ⇐⇒ P1(Xi) = P2(Xi). (2.2.2)

As mentioned above, we do not impose zero F-terms for external edges. Since

these fields appear in a single superpotential term, setting their F-terms to zero

would set to zero the products of fields they couple to, reducing the master space

dramatically and potentially making it disappear. Also, in those BFTs with a D-

brane embedding, the fields associated to external legs have a higher dimensional

support and are hence naturally non-dynamical from a 4d viewpoint [13]. Being

non-dynamical, these fields should be regarded as couplings in 4d. However, our

treatment of external legs is instead to include them as continuous parameters in the

master space. We can think of the resulting geometry as a generalized master space,

which incorporates all possible values of the corresponding superpotential couplings.

This approach is useful because the resulting space can be nicely treated in terms

of toric geometry. In fact, if desired, it is straightforward to recover the standard

master space, in which the values of these couplings are fixed, from the generalized

one: we just consider slices of the toric generalized master space corresponding to
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setting every external leg Xe to a fixed value Xe,0.

The mesonic moduli space [15,16,95,99,100] of the BFT, which we refer to just

as the moduli space for brevity, is obtained by projecting the master space onto

vanishing D-terms, of which we have one per gauge group. As we shall see, due to

the restricted structure of BFTs arising from their definition in terms of bipartite

graphs on Riemann surfaces, both the master and moduli spaces are toric Calabi-

Yau manifolds [10, 35]. The precise CY for the moduli space will naturally depend

on the choice of gauging.

In §2.4 we shall see that the master and moduli spaces of BFTs can be obtained

using very powerful combinatorial machinery. Moreover, their toric diagrams form

polytopes which we shall use as invaluable tools in the rest of this thesis.

2.3 Bipartite Technology

In this section we review the fundamental tools related to bipartite graphs which we

shall make heavy use of throughout this thesis. We describe the notion of perfect

matchings, perfect orientations and flows, which will later be used to easily obtain

the master and moduli spaces.

Perfect Matchings. Perfect matchings are key combinatorial objects of bipartite

graphs. A perfect matching is a sub-collection of edges such that every internal node

is the endpoint of only one edge, while external nodes may or may not be contained

in the perfect matching.6 Usually, there are several ways to select sub-collections of

edges with this property, and each of these is a different perfect matching, which we

denote pµ. An example of a bipartite graph and its perfect matchings is provided

in Figure 2.3.

In §2.3.3 we will show how to find all perfect matchings for a given bipartite

graph in a systematic way.

6Strictly speaking, this is known as an almost perfect matching. For brevity, we simply refer to

these objects as perfect matchings in what follows.
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1 2 3 4

5 6 7

Figure 2.3: All seven perfect matchings for a bipartite graph with four external

nodes. Edges in the perfect matchings are shown in red. The graph is embedded in

a disk.

Perfect Orientations. A bipartite graph can equally be characterized by its per-

fect orientations. A perfect orientation is a way of assigning arrows to the edges of

a graph in such a way that we have for nodes of valency v:

• White node: 1 incoming and v − 1 outgoing arrows.

• Black node: 1 outgoing and v − 1 incoming arrows.

Figure 2.4 provides an example of a perfect orientation for a bipartite graph on

a disk, with 3-valent nodes.

1 2

34

1 2

34

Figure 2.4: A bipartite graph and a possible perfect orientation. Sources are marked

in red and sinks in blue.

Given a perfect orientation, external nodes can be naturally divided into sources

and sinks, as shown in the figure. The number of elements in each of these two sets

does not depend on the choice of the perfect orientation and is a characteristic of
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the graph itself. Note that different perfect orientations on a given graph can give

rise to the same sets of sources and sinks.

Flows. Given a graph and a perfect orientation, it is possible to specify the latter

by listing all oriented non self-intersecting paths in it. We refer to such paths as

flows and denote them as pµ. Flows may involve more than one disjoint component.

These components can connect external nodes or correspond to closed loops. The

trivial flow, i.e. the one which does not involve any edge of the graph, is also included.

2.3.1 Relation Between Perfect Orientations, Flows and Per-

fect Matchings

Perfect orientations are in bijection with perfect matchings. Given a perfect match-

ing, the way to obtain the corresponding perfect orientation is to assign arrows to

the edges as follows:

• Edges belonging to the perfect matching point from the black node to the

white node.

• All other edges point out of white nodes and into black nodes.

Since a perfect matching only touches each internal node once, the above definition

automatically satisfies the rules for arrows in a perfect orientation. Conversely, it is

possible to obtain the perfect matching from a perfect orientation by selecting the

incoming arrow for white nodes and the outgoing arrow for black nodes.

There is also a bijection between flows and perfect matchings. In order to find it,

we begin by choosing a perfect matching pref, called the reference perfect matching

(or just reference matching for short), and assigning to all of its edges an orientation

that points from white nodes to black nodes. We orient the edges of all other

perfect matchings in a similar way. Subtracting pref from all perfect matchings, i.e.

reversing the arrows in pref before combining them, creates a set of oriented paths.

These paths necessarily live in the perfect orientation associated to pref, because all

arrows point out of white nodes and into black nodes except for the ones belonging
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to pref, which have opposite orientation. These paths are thus precisely the flows in

the perfect orientation defined by pref.

In summary, for each perfect matching there is an associated perfect orientation.

The number of flows in each perfect orientation is equal to the number of perfect

matchings, and they are found by subtracting the reference perfect matching from

the corresponding perfect matchings. This is succinctly illustrated in Figure 2.5.

(a) (b)

(c)

Figure 2.5: An example of: (a) a perfect matching, (b) the corresponding perfect

orientation, and (c) a flow in this perfect orientation, corresponding to the perfect

matching shown on the right.

2.3.2 Oriented Edge Weights

We will often be interested in relating edge weights, which strictly speaking have

no associated orientation, to oriented paths. It is thus useful to devise a formalism

that consistently deals with such a connection. We will refer to edge weights as Xi,

where the index i = 1, . . . , E runs over all edges of the graph.

With the goal of describing oriented paths, we introduce new variables αi, which

are edge weights endowed with an orientation. In our convention the orientation goes
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from white to black nodes. We can thus associate an oriented perfect matching p̃µ to

every perfect matching pµ. The oriented perfect matching is given by the product

of the αi variables over all edges in the corresponding perfect matching. Figure

2.6 shows two perfect matchings p3, p4 and their corresponding oriented perfect

matchings p̃3, p̃4.

5,2

3p 5,23,24,13
~ p

4p

4,1

3,2

1,5

3,2 3,4

5,2X

4,1X

3,2X

1,5X

3,2X 3,4X

1,53,43,24
~ p

Figure 2.6: Example of ordinary perfect matchings pi and oriented perfect matchings

p̃i. Edges αi,j are oriented from white nodes to black nodes.

We can in fact write any oriented path on the graph as a product or ratio of

these new variables: if a segment of the path goes from a white node to a black

node, the relevant αi,j contributes to the expression of the path in the numerator; if

the segment goes from a black node to a white node, its αi,j contributes to the de-

nominator. In this parameterization all flows can be expressed as ratios pi = p̃i/p̃ref,

where p̃ref is the reference matching defining the underlying perfect orientation. An

example is provided in Figure 2.7, where the perfect orientation corresponds to the

perfect matching p4, and the flow is p3 = p̃3

p̃4
= α2,5α1,4

α5,1α4,3
. Note that the trivial flow is

pref = 1.

5,2

1,51 

4,1

3,41 

Figure 2.7: A flow in the perfect orientation corresponding to the reference perfect

matching p4. The flow shown is p3 = p̃3

p̃4
= α2,5α1,4

α5,1α4,3
.
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This parameterization is very convenient for the study of the connection between

bipartite graphs and the Grassmannian, and will be extensively used in Chapters 4

and 6.

2.3.3 Finding Perfect Matchings

Flows, perfect orientations and perfect matchings contain equivalent combinatorial

information about the bipartite graph. Among the three, perfect matchings are

those which are obtained most efficiently. This is done using a generalization of

Kasteleyn matrix techniques, which will be briefly outlined here. The reader is

referred to [10] for a detailed discussion of these techniques.

The starting point for finding the perfect matchings is the construction of a

weighted adjacency matrix, known as the master Kasteleyn matrix K0. When there

are multiple edges between two nodes their contributions are added. Denoting in-

ternal white and black nodes Wi and Bi, respectively, and external white and black

nodes We and Be, K0 takes the form:

K0 =


Bi Be

Wi ∗ ∗
We ∗ 0

 . (2.3.1)

The zero in the bottom-right corner arises because external nodes are only paired

with internal nodes. K0 is not necessarily square.

For any subsets We,del ⊆ We and Be,del ⊆ Be of the external nodes, we define the

reduced Kasteleyn matrix K(We,del,Be,del) as the matrix resulting from starting from

K0 and deleting the rows in We,del and the columns in Be,del.

All perfect matchings in the graph are given by the polynomial:7

P =
∑

We,del,Be,del

perm K(We,del,Be,del), (2.3.2)

where the sum runs over all possible subsets We,del and Be,del of the external nodes

such that the resulting reduced Kasteleyn matrices are square. Every term in this

7The permanent of a matrix is the determinant where all signs in the final expression are

positive.
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polynomial corresponds to the product of edges in a perfect matching.

Example. Let us see how this works in a specific example, shown in Figure 2.8.

For this example we have

1

4

2

3

1 26 4

5

3

X6,1

X1,3

X1,5 X5,2

X3,2

X2,4X2,1

X3,6 X4,3

X4,5X5,6

Figure 2.8: An example of a planar graph. Face labels are in green, edge labels in

red, and external nodes in black. The labeling of external nodes will be useful when

thinking about scattering amplitudes.

K0 =



X3,2 X2,1 X1,3 0 0

X2,4 X5,2 0 0 X4,5

0 X1,5 X6,1 X5,6 0

0 0 X3,6 0 0

X4,3 0 0 0 0


(2.3.3)

which yields

P =X1,3X1,5X2,4 +X1,3X1,5X4,3X4,5 +X1,3X4,3X5,2X5,6 +X1,5X3,2X3,6X4,5

+X2,1X2,4X3,6X5,6 +X2,1X2,4X6,1 +X3,2X3,6X5,2X5,6 +X3,2X5,2X6,1

+X2,1X3,6X4,3X4,5X5,6 +X2,1X4,3X4,5X6,1 . (2.3.4)

Each term is equal to the product of edges in each perfect matching; counting the

terms we see that we have 10 perfect matchings in this example.

2.4 Obtaining the Master and Moduli Spaces

We shall now use the combinatorial tools just presented to obtain the toric diagrams

for the master and moduli space. Along the way, we will uncover two polytopes
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which will be very important in this thesis: the matching and matroid polytopes.

2.4.1 Master Space

The characteristic polynomial in (2.3.2) contains all the information relating edges,

i.e. bifundamental fields, to perfect matchings. This information can be equivalently

recast in terms of an (E× c)-dimensional perfect matching matrix P , where E is the

number of edges Xi and c is the number of perfect matchings pµ. The components

of the matrix are defined as follows

Piµ =

 1 if Xi ∈ pµ
0 if Xi /∈ pµ

where i = 1, . . . , E and µ = 1, . . . , c. Viewing each column as the coordinate of a

vertex, P specifies a polytope known as the matching polytope [101] and gives the

toric diagram for the master space of the BFT.8 This stems from the fact that the

F-term equations are trivially satisfied with the following change of variables [10]9

Xi =
∏
µ

pPiµµ . (2.4.1)

Each perfect matching has a unique coordinate in the matching polytope, and

their positions encode the linear relations between the pµ variables associated to the

F-term equations. In general, the polytopes we will define live in high-dimensional

integer lattices. It is thus typically impractical to provide a graphical representation

8Note: This is the equivalent to the coherent component of the master space, and not the full

master space. The full master space usually decomposes into smaller irreducible spaces, most of

them being Cl. The coherent component is the largest irreducible subspace of the full master

space.
9It is important to emphasize the difference between (2.4.1) and the definition of oriented

perfect matchings introduced in §2.3.2, which are given by p̃µ =
∏
i α

Piµ
i . While edge weights

are naturally interpreted as products of perfect matchings for solving F-term equations, oriented

perfect matchings should be thought of as the product of oriented edge weights. In both cases, the

object controlling the map is the P matrix. Avoiding inconsistencies associated with this subtle

difference was one of the main reasons for introducing the concepts of oriented perfect matchings

and edge weights.
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of them. Instead, we will describe them in terms of matrices giving the position-

vectors of points in them. From the toric diagram representation of the master space,

it follows that the master space is a toric manifold. Moreover, it is CY [10,35].

Example. Let us see how this works in practice in the example from Figure 2.8,

whose perfect matchings are read off from (2.3.4). The perfect matching matrix

becomes:

P =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

X1,3 1 1 1 0 0 0 0 0 0 0

X1,5 1 1 0 1 0 0 0 0 0 0

X2,4 1 0 0 0 1 1 0 0 0 0

X3,2 0 0 0 1 0 0 1 1 0 0

X2,1 0 0 0 0 1 1 0 0 1 1

X5,2 0 0 1 0 0 0 1 1 0 0

X6,1 0 0 0 0 0 1 0 1 0 1

X3,6 0 0 0 1 1 0 1 0 1 0

X4,5 0 1 0 1 0 0 0 0 1 1

X4,3 0 1 1 0 0 0 0 0 1 1

X5,6 0 0 1 0 1 0 1 0 1 0



(2.4.2)

Generally, the matching polytope lives in a lower dimensional subspace of ZE

where E is the number of edges. This fact can be made explicit by row-reducing P ,

which for (2.4.2) results in the following matrix:

Gmatching =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 0 0 0 0 0 0 0 −1 −1

0 1 0 0 0 0 −1 −1 1 1

0 0 1 0 0 0 1 1 0 0

0 0 0 1 0 0 1 1 0 0

0 0 0 0 1 0 0 −1 1 0

0 0 0 0 0 1 0 1 0 1


. (2.4.3)

From this we see that the toric diagram lives in 6 dimensions, indicating that the

master space is a 6-dimensional toric variety. We can also see that the coordinates are

not all independent: summing over all 6 rows of Gmatching we obtain a row of 1’s. This

is simply the statement that the toric diagram lies on an 5-dimensional hypersurface

at unit distance from the origin, which is nothing other than the condition for the

toric variety to be CY. We deduce that we have the toric diagram of a 6d CY cone.
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From now on we refer to the dimension of the matching polytope as the dimension

of the hyperplane on which the points lie; in the example above this is 5 dimensions,

while the dimension of the master space in this example is 6.

The matrix P is extremely useful, and will be much utilized throughout this

thesis. It provides the fastest way to obtain the moduli space, as well as encodes the

full singularity structure of BCFW terms for scattering amplitudes in N = 4 SYM.

2.4.2 Moduli Space

We shall now move on to study the moduli space of BFTs. In order to construct

the moduli space, the master space has to be projected onto gauge invariants. To

this end, it is useful to introduce the gauge charge matrix dG×E of the BFT, where

G is the number of gauge groups and E is the number of fields.10 This procedure

was first introduced in [10]. The elements of the gauge charge matrix are

daj =


−1 if Xj is fundamental to U(N)a

+1 if Xj is anti-fundamental to U(N)a

0 if Xj is adjoint or neutral under U(N)a

where a = 1, . . . , G and j = 1, . . . , E. Note that the number of fundamental and

antifundamental fields for every gauge group is the same due to anomaly cancella-

tion.

Each gauge group contributes with a D-term. D-terms can be encoded in a

charge matrix QD, which is defined through the relation

dG×E = QD
G×c · Pc×E . (2.4.1)

This equation can be used to determine an assignation of QD
G×c charges on the perfect

matchings. Since the system is not invertible, the resulting charges QD are generally

not uniquely determined. The moduli space is however independent of the chosen

solution.

Since we need to simultaneously impose the F- and D-terms, we also define the

10G clearly depends on whether one considers gauging 1 or 2.
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matrix

QF = ker(Pc×e) . (2.4.2)

The moduli space is also a toric CY manifold [10] and its toric diagram is obtained

from the toric diagram of the master space by projecting it onto the null space of

the matrix of gauge charges of the perfect matchings:

G = ker

 QF

QD

 . (2.4.3)

Columns in the G matrix correspond to perfect matchings and contain the coordi-

nates of the associated point in the toric diagram.

As already mentioned, the construction of the toric diagram of the moduli space

has amounted to a projection of the coordinates in the matching polytope. Thus,

while perfect matchings each had a unique coordinate in the matching polytope,

there will typically be some identifications of perfect matchings under this projection,

i.e. several perfect matchings will map to the same point in the toric diagram of the

moduli space.

Gauging 2 will generally gauge more symmetries than gauging 1. Correspond-

ingly, the toric diagram will generally have a smaller dimensionality. An extremely

interesting result, proven in [1], is that the toric diagram of the moduli space, for

gauging 2, forms another very important polytope, known as the matroid polytope.

The matroid polytope is intimately related to the Grassmannian, and we shall make

heavy use of this connection when exporting the tools of BFTs to scattering ampli-

tudes.

Example. Let us compute the moduli space for the example in Figure 2.8. As

remarked in §2.1.1, on the disk there is no difference between gauging 1 and gauging

2. We can then take the two internal faces f1 and f2 to be our gauge symmetries

U(1)1 and U(1)2, respectively. The charge matrix d2×11 for this example is
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d =



U(1)1 U(1)2

X1,3 1 0

X1,5 1 0

X2,4 0 1

X3,2 0 −1

X2,1 −1 1

X5,2 0 −1

X6,1 −1 0

X3,6 0 0

X4,5 0 0

X4,3 0 0

X5,6 0 0



⇒ QD =


p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 0 1 1 0 0 0 −1 −1 0

0 0 0 0 0 1 0 −1 0 0



(2.4.4)

where our choice for QD is not unique. Using (2.4.2) to find QF , we obtain the

moduli space toric diagram from (2.4.3):

Gmoduli =



p1 p6 p8 p2 p10 p3 p4 p5 p7 p9

0 0 0 1 1 0 0 −1 −1 0

0 0 0 0 0 1 0 1 1 1

1 1 1 0 0 1 0 1 1 0

0 0 0 0 0 −1 1 0 0 0


(2.4.5)

where we have grouped together those perfect matchings with the same coordinates,

i.e. those which are identified under the projection. Here we see that the moduli

space toric diagram is composed of 6 points and is a 4-dimensional CY cone, and

that the projection caused some points to have multiplicities greater than 1.

Let us see what the matroid polytope formed by these points is. The polytope

is the convex hull of the coordinates in (2.4.5), which is most easily obtained by

translating the coordinates such that one vertex will be at the origin, and row-

reducing. Doing this we obtain

Gmatroid =


p1 p6 p8 p2 p10 p3 p4 p5 p7 p9

0 0 0 1 1 0 0 −1 −1 0

0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 1 1 1

 (2.4.6)

This polytope is of sufficiently low dimensionality to draw, and is illustrated in

Figure 2.9.
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Figure 2.9: Matroid polytope for the example in Figure 2.8.

2.4.3 A Fast Algorithm for Finding the Moduli Space

Here we introduce a practical implementation of the ideas in previous sections lead-

ing to an efficient algorithm for the determination of the matroid polytope of a

bipartite graph, which was introduced for the first time in [3]. This method stems

from the realization that the projection from the matching to the matroid poly-

tope corresponds to projecting away the gauge degrees of freedom, which are the

ones typically associated to internal edges. We remind the reader that the polytope

formed by the toric diagram of the moduli space is the matroid polytope only under

gauging 2.

In fact, for gauging 2, it is only the external edges which define the matroid

polytope. In analogy to the matching polytope, this correspondence implies that

the matroid polytope is given by a reduced perfect matching matrix, with columns

given by perfect matchings but rows only associated to external edges. Denoting

external edges X
(e)
i and perfect matchings pµ, we have:

Gmatroid,iµ =

 1 if X
(e)
i ∈ pµ

0 if X
(e)
i /∈ pµ

. (2.4.1)

From this equation it is clear that to obtain the toric diagram for the moduli space

under gauging 2, all we need to do is take the matrix P and discard all rows that

do not correspond to external edges. Those perfect matchings which only differ by

internal edges will thus be identified.
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Example. For the example in Figure 2.8 this is very easy to do: from (2.4.2) we

simply extract the final 4 rows, to obtain the matroid polytope

Gmatroid =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

X3,6 0 0 0 1 1 0 1 0 1 0

X4,5 0 1 0 1 0 0 0 0 1 1

X4,3 0 1 1 0 0 0 0 0 1 1

X5,6 0 0 1 0 1 0 1 0 1 0


. (2.4.2)

This can be row-reduced to the form

Gmatroid =


p1 p6 p8 p2 p10 p3 p4 p5 p7 p9

0 0 0 1 1 0 0 −1 −1 0

0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 1 1 1

 (2.4.3)

which is indeed identical to (2.4.6), as required. This example illustrates that on

the disk gauging 1 and gauging 2 are equivalent.

2.5 Loop Variables

In this section we begin by introducing canonical variables capturing the degrees of

freedom of arbitrary graphs in the most succinct way possible. Associating variables

to faces has huge advantages in relating a subclass of BFTs to integrable systems,

as elucidated in Chapter 3, as well as understanding the structure of scattering

amplitudes, as discussed in Chapters 4 and 6. Intrinsically, graphs have no notion

of faces; they only arise after we have specified an embedding for the graph. The

variables we will now present should be seen as a generalization of the face variables

for planar graphs, and are valid for arbitrary graphs on arbitrary Riemann surfaces.

They constitute an important step towards a unified understanding of non-planar

scattering amplitudes, as well as provide an alternative route to the master and

moduli spaces we have introduced above. This section is mostly based on the ideas

in [1] where the generalized face variables were first introduced; related ideas which

emphasize slightly different aspects can be found in [35].

The first step in the construction of the face variables is to embed the graph into

a (possibly bordered) Riemann surface. Once this is done, we can associate to the
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diagram F faces, B boundaries and a genus g. These ingredients are sufficient to

construct the basis, as follows:

• Faces: A variable fi, i = 1, . . . , F , is introduced for every path going clockwise

around a face, either internal or external. Faces are expressed as products of

oriented edge weights as described in §2.3.2. Face variables satisfy

F∏
i=1

fi = 1.

Hence, one of the face variables can always be expressed in terms of the others.

For graphs with boundaries, which are the relevant ones for scattering, a useful

convention is to discard one of the external faces.

• Paths between boundaries: For B ≥ 1, it is necessary to introduce B − 1

paths, which we call ba, a = 1, . . . , B−1, stretching between different boundary

components. The particular choice of these B − 1 paths is unimportant.

• Fundamental cycles: For genus g we need to consider αν and βν pairs of

variables, ν = 1, . . . g, associated to the fundamental cycles in the underlying

Riemann surface.

The paths ba, αν and βν are expressed as products of oriented edge weights in the

same way as for fi.

For brevity, in what follows we will commonly refer to all the above paths as face

variables.

2.5.1 Master Space from Flows

As for perfect matchings, every flow pµ maps to a point in the matching polytope.

To translate perfect matchings into flows, we need to first pick a perfect orientation

using a reference matching pref and study all flows pµ = p̃µ/p̃ref. Alternative choices

of pref lead to trivial modifications of the polytopes. Flows can be fully specified by

expanding them in terms of the face variables described above. The coordinate for

pµ in the matching polytope is then simply given by the vector of powers of the face
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variables required to specify pµ [1]:

pµ =
F−1∏
i=1

f
xi,µ
i

B−1∏
j=1

b
yj,µ
j

g∏
k=1

α
zk,µ
k β

wk,µ
k

7−→
Coordinate in Matching Polytope :

(x1,µ, . . . , xF−1,µ, y1,µ, . . . , yB−1,µ, z1,µ, . . . , zg,µ, w1,µ, . . . , wg,µ)
(2.5.1)

As already noted above, the face variables are the most succint way of containing

all degrees of freedom of the graph. This is reflected in the fact that the dimension

of the matching polytope is the number of independent face variables [1], i.e.

B 6= 0 : dmatching = F +B + 2g − 2

B = 0 : dmatching = F + 2g − 1
(2.5.2)

where we have distinguished the cases with and without boundaries. Because of the

Calabi-Yau condition, the matching polytope lives in one dimension lower than the

master space, hence

B 6= 0 : dmaster = F +B + 2g − 1

B = 0 : dmaster = F + 2g .
(2.5.3)

Since every flow has a unique description in terms of face variables it will be mapped

to a unique point in the matching polytope.

We will make ample use of flows when we construct a map between bipartite

graphs and the Grassmannian in Chapter 4.

Example. Let us return to our example in Figure 2.8. There we have 6 faces, 5

of which are independent, and no paths ba, αν or βν . The faces are written as

f1 =
α2,1α6,1

α1,3α1,5

f2 =
α3,2α5,2

α2,1α2,4

f3 =
α1,3α4,3

α3,2α3,6

f4 =
α2,4

α4,3α4,5

f5 =
α1,5α4,5

α5,2α5,6

.

(2.5.4)

If we choose the reference matching pref = p1 we obtain the flows

p1 = 1 p6 =
α2,1α6,1

α1,3α1,5
= f1

p2 =
α4,3α4,5

α2,4
=

1

f4
p7 =

α3,2α3,6α5,2α5,6

α1,3α1,5α2,4
=

1

f3f4f5

p3 =
α4,3α5,2α5,6

α1,5α2,4
=

1

f4f5
p8 =

α3,2α5,2α6,1

α1,3α1,5α2,4
= f1f2

p4 =
α3,2α3,6α4,5

α1,3α2,4
=

1

f3f4
p9 =

α2,1α3,6α4,3α4,5α5,6

α1,3α1,5α2,4
=

1

f2f3f2
4 f5

p5 =
α2,1α3,6α5,6

α1,3α1,5
=

1

f2f3f4f5
p10 =

α2,1α4,3α4,5α6,1

α1,3α1,5α2,4
=
f1

f4

(2.5.5)



2.5. Loop Variables 44

which translate into the following coordinates for the matching polytope:

Gmatching =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

x1 0 0 0 0 0 1 0 1 0 1

x2 0 0 0 0 −1 0 0 1 −1 0

x3 0 0 0 −1 −1 0 −1 0 −1 0

x4 0 −1 −1 −1 −1 0 −1 0 −2 −1

x5 0 0 −1 0 −1 0 −1 0 −1 0


, (2.5.6)

where we can easily confirm that the dimension of the matching polytope is indeed

5, as expected from (2.5.2). Translating all coordinates (2.4.3) such that p1 is at

the origin, and row-reducing both (2.4.3) and (2.5.6) will yield identical expressions,

thus confirming that the two polytopes are identical.

2.5.2 Moduli Space from Flows

Going from the master to the moduli space will depend on our choice of gauging.

We shall treat the two gaugings separately.

Gauging 1. Here the gauge symmetries correspond to internal faces of the graph.

The resulting projection simply amounts to dropping the coordinates associated to

(independent) internal fi’s. The dimension of the moduli space is then [1]

B 6= 0 : dmoduli = Fe +B + 2g − 1

B = 0 : dmoduli = 2g + 1 ,
(2.5.1)

where Fe is the number of external faces. Notice that, while all internal faces are

independent for B 6= 0, only F − 1 of them are independent for B = 0. Under

gauging 1, flows that differ by internal faces will project down to the same point in

the moduli space toric diagram.

Example. Returning to our example, the moduli space is simply obtained by

ignoring x1 and x2, i.e.

Gmoduli =


p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

x3 0 0 0 −1 −1 0 −1 0 −1 0

x4 0 −1 −1 −1 −1 0 −1 0 −2 −1

x5 0 0 −1 0 −1 0 −1 0 −1 0

 , (2.5.2)
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which upon row-reduction yields (2.4.6) and (2.4.3), as required.

Gauging 2. Under gauging 2 all internal loops are gauged: all internal faces,

fundamental cycles αν and βν , and any product of external faces which encloses a

boundary. As is made clear from the efficient method to determine the matroid

polytope in §2.4.3, what specify the coordinates of flows in the matroid polytope

are the external edges. Hence,

dmatroid = ne − 1 ⇒ dmoduli = ne (2.5.3)

where ne is the number of external edges. Under this gauging, flows are identified

according to which sources and sinks they use [1]. In particular, for graphs without

boundaries gauging 2 identifies all flows, i.e. the matroid polytope simply becomes

a single point.

2.5.3 Moduli Space from Source Sets

A corollary of the above is that we may construct the matroid polytope from the

source sets of the perfect orientations. Indeed, this is the definition of the matroid

polytope, which can be encoded in the matrix S as follows: denoting the external

edges by X
(e)
i and the source sets of the perfect orientations by sµ, we have

Siµ =

 1 if X
(e)
i ∈ sµ

0 if X
(e)
i /∈ sµ

(2.5.1)

where i runs over the external edges and µ runs over the source sets of the various

perfect orientations.

Example. Using again the example in Figure 2.8, we have the source sets encoded

in Siµ as follows:

S =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 1 1 1 0 0 1 0 1 0 1

2 1 0 0 1 1 1 1 1 0 0

3 0 1 0 1 0 0 0 0 1 1

4 0 0 1 0 1 0 1 0 1 0


, (2.5.2)
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where the row-numbering refers to the black labels in Figure 2.8 and denotes the

source set for the perfect orientation associated to pµ. It is easy to check that this

is indeed the same polytope as the one in (2.4.6), (2.4.3) and (2.5.2).

2.6 BFT Perspective on Graph Equivalence and

Reduction

Based on the BFT interpretation of graphs it is possible to introduce a natural

notion of graph equivalence. We say that:

Two graphs are equivalent iff

the corresponding BFTs have the same moduli space.

Of course the equivalence classes resulting from this definition depend on the specific

gauging under consideration. This definition was already advocated in [10], after

noting that the moduli space is a natural geometric object that remains invariant

under certain class of moves and reductions that are reviewed in §2.6.1 and §2.6.2.

On-shell diagrams for scattering amplitudes in N = 4 play an important role

when thinking about applications of BFTs. In this context, one needs to consider

gauging 2. Two on-shell diagrams are considered equivalent if they parametrize the

same region of the Grassmannian. As we shall see in Chapter 4, for graphs on a disk

the BFT definition of graph equivalence is completely equivalent to the definition

of equivalence for on-shell diagrams. For non-planar diagrams, the BFT definition

remains a necessary condition, and can be augmented by an additional condition

involving the linear dependences of points in the matching polytope.

Often we encounter situations where two diagrams are equivalent despite ap-

pearing drastically different in complexity. This leads us to the notion of reduced

graphs: a graph is reduced if its matching polytope has the smallest possible dimen-

sion within a given equivalence class. Expressed differently, a graph is reduced if

it has the minimum number of loops. From a BFT point of view, a reduced graph

has the minimal gauge symmetry. Reduced graphs in a given equivalence class are

not unique, since they are defined up to equivalence moves. Reduced graphs are of
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particular interest. For example, they play a central role in the context of scattering,

giving the simplest expressions for the integrand [34].

There are two natural questions that arise in connection with graph equivalence

and reducibility:

• How can one identify efficiently whether two graphs are equivalent?

• How can one determine whether the graph is reduced?

These two questions have elegant answers, which make excellent use of the BFT tool

kit, and will be the topic of the next sections.

2.6.1 Equivalence Moves

For BFTs the equivalences of the moduli space can be neatly encoded as simple

operations of the graph. Figure 2.10 shows two basic transformations that can

be applied to arbitrary bipartite graphs on arbitrary surfaces, which preserve the

moduli space and do not alter the number of face variables. These equivalences are

irrespective of gauging, as their field-theoretic interpretations makes clear. Here we

summarize a more detailed discussion, which can be found in [10,14]:

(a) Integrating out massive fields, which appear in the graph as bivalent nodes.

This equivalence move is also known as the merge-expand move, and can be

performed in either direction, since the moduli space will not depend on these

massive fields. If the bivalent node is attached to an external edge, we simply

turn both edges into a single external edge.

(b) Seiberg duality [7, 99, 100,102–105] on an Nf = 2Nc gauge group. This trans-

formation is also known as a square move, urban renewal, or spider move. Let

us emphasize that this rule correctly describes Seiberg duality even for faces

adjacent to external ones; there is no limitation of any sort in the type of

Nf = 2Nc gauge groups that can be dualized.

Seiberg duality requires the theory to be non-Abelian, i.e. to have N > 1.

In any case, the square move preserves the moduli space of the BFT even
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for N = 1 and hence leads to equivalent graphs. Turning this around, the

coincidence of the Abelian moduli space of two BFTs is a necessary condition

for the corresponding non-Abelian theories to be related by Seiberg duality.

For BFT2’s, the operation in Figure 2.10(b) can actually be performed on any

closed loop involving four edges in the graph.

(a) (b)

Figure 2.10: Graphical equivalences of bipartite graphs. They correspond to: (a)

integrating out massive fields, and (b) Seiberg duality on an Nf = 2Nc gauge group.

It is an amazing result that on-shell diagrams in scattering amplitudes have

precisely the same equivalences as those shown in Figure 2.10; we shall return to

this in Chapter 4.

2.6.2 Reductions

There are also operations which decrease the number of loops, and hence can be

used to reduce graphs. These operations leave the moduli space intact, but decrease

the dimension of the master space. These operations are illustrated in Figure 2.11,

whose interpretation is found in [10,14] and summarized here:

(c) Confinement of an Nf = Nc gauge group, staying on a branch of moduli space

on which mesons do not get expectation values. This operation is often called

a bubble reduction.

Again, since we restrict ourselves to Abelian theories, the coincidence of the

Abelian moduli space is a necessary condition for the interpretation of con-

finement in the non-Abelian theory.
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(d) Higgsing a bifundamental field [106], by turning on a vev for that scalar. This

corresponds to the deletion of that edge, which merges two faces into a single

larger face.

We note that (c) can be seen as a subclass of (d), and we shall therefore restrict

ourselves to only discussing (d), which is more general.

(c)

1 2 1/2

(d)

Figure 2.11: Reductions of the graph: (c) corresponds to confinement, (d) corre-

sponds to Higgsing, i.e. to turning on a vev for a bifundamental scalar, resulting in

the merging of two faces.

Only the removal of internal edges may preserve the moduli space. The possi-

bility of reducing graphs by removing edges was first discovered and investigated in

the language of leading singularities in scattering amplitudes [34].

Deleting an edge associated to the field Xi will force the elimination of all perfect

matchings which utilized that edge, i.e. of all perfect matchings pµ with Piµ = 1.

We can declare the moduli space to be invariant if, after the reduction, there is at

least one perfect matching for every point in the original toric diagram of the moduli

space, i.e. if the toric diagram for the moduli space remains intact. If on the other

hand we have killed perfect matchings such that some point in the moduli space no

longer exists, because we have killed all perfect matchings which contributed to that

point, the operation is not considered a reduction of the original graph.

It’s important to emphasize that in the context of scattering amplitudes, oper-

ations (a) and (b) always produce equivalent on-shell diagrams, but the invariance

under more general edge removals (d) requires both the invariance of the matroid

polytope, as well as an additional condition on the linear dependences of points in

the matching polytope. We shall return to this point in Chapters 4 and 6.
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One can scan over all edges of the graph and individually determine whether their

removal constitutes a reduction. Iterating this process, it is possible to determine

all combinations of edges that can be simultaneously removed. Reduced graphs are

reached when deleting edges without eliminating points in the toric diagram is no

longer feasible.

The procedure outlined above makes it possible to identify all combinations of

vevs that produce reduced graphs. Some of these sets of vevs can lead to different

reduced graphs. Whenever this happens, the original graph has multiple reductions.

In the language of scattering amplitudes, this phenomenon is a manifestation of

having multiple leading singularities. An attractive feature of the BFT approach is

that multiple reductions can be systematically identified.

Example. Let us verify that the equivalence moves and reductions shown above

preserve the moduli space. We will again use the example in Figure 2.8, whose toric

diagram for the moduli space is given by (2.4.2).11 The operations we will perform

are shown in Figure 2.12, which were first presented in [10].

4

1 26 4

5

3

3

1 2

21

3

4

5

6 2

3

4

5

6

1 2

34

1 2

34

Step 1 Step 2 Step 3

Figure 2.12: A reduction of the example in Figure 2.8.

Step 1: Here we have performed a square move on face 2. The resulting graph

has 9 perfect matchings, which we denote qµ. Following §2.4.3, we obtain the moduli

11Strictly speaking, (2.4.2) gives its matroid polytope; the moduli space is at unit distance from

the origin.
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space

Gmatroid =



q1 q2 q4 q3 q5 q6 q8 q7 q9

1 0 0 1 0 0 0 1 0

1 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1 1

0 0 0 1 0 0 0 1 1


, (2.6.1)

which is indeed equivalent to that of (2.4.2), modulo multiplicities of the lattice

points.

Step 2: This step consists of integrating out the massive fields, as shown in Figure

2.10(a). The graph still has 9 perfect matchings, denoted rµ. The moduli space is

now

Gmatroid =



r1 r8 r9 r2 r3 r4 r5 r6 r7

0 0 0 1 0 1 0 0 1

0 0 0 1 0 1 1 1 0

0 0 0 0 1 1 1 1 0

0 0 0 0 1 1 0 0 1


, (2.6.2)

which can again be seen to not have changed.

Step 3: The final step is in performing a bubble reduction on face 1. We obtain

a diagram often referred to as the square box, whose seven perfect matchings pµ are

illustrated in Figure 2.3. The moduli space is given by

Gmatroid =



p1 p2 p3 p4 p5 p6 p7

1 0 1 1 0 0 0

1 1 0 1 0 0 0

1 1 0 0 1 0 0

1 0 1 0 1 0 0


, (2.6.3)

which, again, has not changed.

Finding the reduction for this example was rather laborious: it required us to

perform two equivalence moves, and finally a bubble reduction. In the next section

we will construct an efficient way for finding the Higgsing that corresponds to this

reduction, thus circumventing the need for all intermediate steps. The tools pre-

sented there will also enable us to confirm that Step 3 has brought us to a reduced

diagram, and hence the simplest possible diagram for this moduli space.
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2.6.3 An Efficient Approach to Reducibility

Determining whether a bipartite graph is reduced is an important question for vari-

ous applications. For planar graphs, there is a combinatorial diagnostic for reducibil-

ity based on zig-zag paths (see e.g. [34] and references therein). Determining zig-zags

and their properties can however be rather impractical. Furthermore, whether and

how this method generalizes to non-planar graphs is currently unknown. In this

section we introduce an alternative test for reducibility, which first appeared in [3],

with two salient features: it is straightforward to implement and it applies to both

planar and non-planar BFTs. Non-planar scattering amplitudes are also subject to

an additional condition, as we shall explain in Chapters 4 and 6.

It is by now clear that the matroid polytope is the central player for determining

graph equivalence and hence reducibility. As already discussed in §2.6.2, to check

the full reducibility we would need to attempt to Higgs every internal edge, each

time removing those perfect matchings which utilized the edge in question, and

check whether the multiplicity of any point in the matroid polytope becomes zero.

For gauging 2, where the matroid polytope is quickly obtained using the proce-

dure in §2.4.3, there is an extremely efficient matrix implementation to determine

reducibility, which tells us which edges may be removed without having to try them

all out.

The procedure begins with the perfect matching matrix P , in terms of which

the effects of edge removal are very transparent. We now define a new matrix P,

by multiplying the entries of P associated to each point πα in the matroid polytope

(which may or may not have higher multiplicity than one) as follows:

Piα ≡
∏
pµ∈πα

Piµ . (2.6.1)

This results in a new E × np matrix P, where E is the number of edges, as it is for

P , and np is the number of distinct points in the matroid polytope.

A vanishing entry Piα = 0 implies that the removal of the edge Xi preserves the

point α in the matroid polytope, albeit not necessarily its multiplicity. Similarly,

Piα = 1 signifies that the removal of Xi kills all perfect matchings at point πα.
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The construction of P is very efficient given P and immediately displays the

reducibility of a graph: if P has a row of zeroes, the graph is reducible since it is

possible to remove the corresponding edge while preserving all points in the matroid

polytope.

Example. Let us illustrate this construction for the example in Figure 2.8. We

reorder the columns of the perfect matching matrix in (2.4.2), grouping together

those columns which project down to the same point in the matroid polytope:

P =



π1 π2 π3 π4 π5 π6

p1 p6 p8 p2 p10 p3 p4 p5 p7 p9

X1,3 1 0 0 1 0 1 0 0 0 0

X1,5 1 0 0 1 0 0 1 0 0 0

X2,4 1 1 0 0 0 0 0 1 0 0

X3,2 0 0 1 0 0 0 1 0 1 0

X2,1 0 1 0 0 1 0 0 1 0 1

X5,2 0 0 1 0 0 1 0 0 1 0

X6,1 0 1 1 0 1 0 0 0 0 0

X3,6 0 0 0 0 0 0 1 1 1 1

X4,5 0 0 0 1 1 0 1 0 0 1

X4,3 0 0 0 1 1 1 0 0 0 1

X5,6 0 0 0 0 0 1 0 1 1 1



. (2.6.2)

The horizontal line separates the internal edges from the external ones.12

We now construct the matrix P, as dictated by (2.6.1):

P =



π1 π2 π3 π4 π5 π6

X1,3 0 0 1 0 0 0

X1,5 0 0 0 1 0 0

X2,4 0 0 0 0 0 0

X3,2 0 0 0 1 0 0

X2,1 0 0 0 0 0 1

X5,2 0 0 1 0 0 0

X6,1 0 0 0 0 0 0

X3,6 0 0 0 1 1 1

X4,5 0 1 0 1 0 1

X4,3 0 1 1 0 0 1

X5,6 0 0 1 0 1 1



. (2.6.3)

12This organization of rows and columns in P is not obligatory, but it is convenient for simplifying

our analysis.
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This matrix contains rows of zeroes, so we conclude the graph is reducible: X2,4 or

X6,1 can be removed without eliminating points from the matroid polytope. As can

be verified by Figure 2.8, the removal of either of these edges will yield the square

box in Step 3 of Figure 2.12, after the trivial operation described in §2.6.1 (a).

Removable edges. Finally, we remark that P is also useful for finding those

edges which, in the language of [34], are removable edges. Removable edges are

defined as those which, starting from a reduced graph, yield a reduced graph after

being removed.13 In order to identify removable edges, we first generate a new

perfect matching matrix P ′ from P , by removing the putative removable edge k

and every column µ for which Pkµ = 1. Next, we construct the corresponding P ′

matrix. Removable edges are those whose P ′ does not display reducibility.

2.7 Conclusions

This chapter carried out a comprehensive study of BFTs, considerably extending

the understanding of these theories in various directions. We recognized that there

are two natural ways of assigning gauge symmetries to BFTs, which implies that

in fact there are two classes of gauge theories that can be associated to bipartite

graphs. BFT1’s require specifying an embedding of the graph into a Riemann surface

for their definition, while BFT2’s do not need a Riemann surface at all. The two

classes of theories are interesting in their own right and find applications in different

contexts. For example, a subclass of BFT1’s arises on D3-branes over toric CY

3-folds, while BFT2’s are related to scattering amplitudes.

Several alternative approaches for connecting BFTs and the toric CYs that cor-

respond to their master and moduli spaces were discussed. For planar BFTs, this

perspective allowed us to identify the toric diagram of the master and moduli spaces

13It is important not to confuse these edges with the ones discussed so far, i.e. those edges which

constitute a reduction: removing the edges highlighted by P could produce a graph which may

be subject to further reductions, and hence isn’t reduced. Also, removable edges exist on graphs

which are already reduced.
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with the matching and matroid polytopes, respectively. The vast array of tools

needed to perform these calculations was introduced.

We next investigated an array of graph transformations, interpreted as integra-

tion of massive fields, Seiberg duality, confinement, and reduction by Higgsing. We

introduced detailed and efficient procedures for determining the equivalence between

two theories as well as their reductions.

Notably, this thesis will leave out the investigation of the string theory embedding

of BFTs, which was elucidated in [13].

Our work suggests several directions for future investigation of BFTs, regarding

their properties and applications. It is also desirable to understand the physical

origin of the connections between the different contexts in which BFTs appear.

Below we collect some interesting open questions and thoughts on how to address

them.

• Superconformal Invariance: It is interesting to investigate whether, and un-

der which conditions, BFTs give rise to superconformal fixed points. In the

case of BFT1’s, it is indeed possible to map the R-charges of fields to angles

in the isoradial or rhombus embeddings of the graph [18, 107, 108].14 In such

embeddings, the vanishing of individual beta functions for gauge and super-

potential couplings translates into zero local curvature. For BFT1’s it thus

becomes natural to expect CFTs whenever the embedded graph has vanishing

curvature everywhere.

It would also be interesting to revisit the question of conformal invariance

while allowing different ranks for gauge and global symmetry groups.

• Gauge Theory and Reducibility: From a BFT viewpoint, the reduction of

degrees of freedom associated to graph reductions is strongly reminiscent of

an RG flow. It would be interesting to determine whether this connection

is indeed true. If so, it would provide an alternative perspective on reduced

graphs, which would be mapped to fixed points of the RG flow.

14BFT2’s are independent of a Riemann surface embedding and hence there is no simple graphical

translation of R-charges and beta functions.
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• Detailed Investigation of Non-Abelian BFTs: The Abelian version of BFTs is

sufficient for certain applications, such as scattering amplitudes, and also cap-

tures some features, like the connection by moves and bubble reductions, that

are also present for non-Abelian theories. Having said that, it is extremely

interesting to perform a more detailed study of non-Abelian BFTs. We envi-

sion that powerful tools such as Hilbert series [92–95] and the superconformal

index [109–111] can provide an interesting window into the dynamics of the

general theories.



Chapter 3

Towards the Continuous Limit of

Cluster Integrable Systems

As mentioned in Chapter 2, a subclass of BFT1’s known as dimer models are defined

by bipartite tilings of the torus without boundaries, and have played an important

role in the creation of infinite classes of AdS/CFT duals. In this chapter we will show

how dimer models are connected to a (0+1)-dimensional integrable system, and how

to utilize this connection to construct integrable systems of infinite size, paving the

way for generating continuous (1+1)-dimensional integrable field theories.

3.1 Newton Polynomial and Toric Diagrams

Let us begin by applying some of the technology of Chapter 2 to study the generic

structure of the moduli space of dimer models. We start by recalling that the

relevant gauging for dimer models is gauging 1, i.e. the one for which only internal

faces are gauged. We shall primarily be interested in expressing the moduli space

using the loop variables from §2.5, as these variables play an important role in the

associated integrable system [31,33], as will be clear presently. Dimer models require

face variables fi, and the fundamental cycles of the torus α and β. Recall that every

flow is expressed as a product of these variables (only F−1 faces are required). Since

all faces are gauge groups here, the coordinate in the moduli space toric diagram

associated to pµ is simply read off from the powers of α and β required to express the

57
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flow. This information is neatly captured by the so-called Newton or characteristic

polynomial

PN(α, β) =
∑
µ

pµ =
∑
µ

cµ α
v

(µ)
1 βv

(µ)
2 , (3.1.1)

which will play in an important role in this chapter. The points in the toric diagram

of the moduli space are simply given by the set of different powers {(v(µ)
1 , v

(µ)
2 )}.

The coefficients cµ are simply products of face variables fi.

We see that the toric diagram is specified by 2-dimensional lattice points; these

will often be shown pictorially in this chapter. As we shall see, the shape of the

toric diagram is intimately related to the spectral curve of the associated integrable

system, and will be of great importance in our analysis. Furthermore, points in the

toric diagram (which are constituted by perfect matchings) are related to conserved

charges of the integrable system.1

In this chapter we shall only be interested in the moduli space toric diagram,

rather than that of the master space; any mention of the toric diagram implicitly

refers to the 2-dimensional object just described.

3.2 Dimer Models and Cluster Integrable Systems

A remarkable correspondence linking dimer models to an infinite class of integrable

systems, denoted cluster integrable systems, was recently introduced in [33]. We now

provide a brief review of the correspondence.

The Poisson manifold of the integrable system is parametrized by oriented loops

on the dimer tiling. The face variables fi, α and β are the natural variables of the

cluster integrable system. Their Poisson brackets are given by

{fi, fj} = εfi,fj fifj , {α, β} = 1 + εα,β , {α, fi} = εα,fi , {β, fi} = εβ,fi

(3.2.1)

1From a gauge theory perspective, these points are also related to mesonic and baryonic sym-

metries in the theory. While this is a very interesting topic, its review falls beyond the scope of

this thesis; the interested reader is referred to [18] for an excellent presentation of these ideas.
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where εx,y is the number of edges on which the x and y loops overlap, with orienta-

tion. Then, εfi,fj is simply the antisymmetric oriented adjacency matrix that counts

the number of arrows between gauge groups in the quiver dual to the dimer tiling.

The integrable system can be quantized replacing the Poisson brackets by a

q-deformed algebra, which takes the form

XiXj = qnijXjXi , (3.2.2)

where Xi = exi , q is a complex number with |q| = 1 and nij = {xi, xj}/(xixj).
In [33], it was shown that the commutators defined by (3.2.2) and (3.2.1) give

rise to a (0+1)-dimensional quantum integrable system, whose conserved charges

are:

• Casimirs: they commute with everything and are given by the ratio between

contributions associated to consecutive points on the boundary of the toric

diagram.

• Hamiltonians: they commute with each other and correspond to the internal

points in the toric diagram.

The toric diagram of the Calabi-Yau 3-fold associated to the dimer model gives

rise to a Riemann surface of genus equaling to the number of internal points. The

equation for this surface is the zero locus of the Newton polynomial:

PN(α, β) = 0 . (3.2.3)

This Riemann surface is indeed the spectral curve of the integrable system.

The full Poisson manifold of the integrable system is obtained by gluing different

patches via cluster transformations, equivalently Seiberg duality in the associated

quiver gauge theories.

3.3 Gluing and Splitting

In this section we discuss the decomposition of a spectral curve into pieces and the

reverse procedure of gluing spectral curves. This process also arises in a different
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context: the desingularization, or Higgsing, of a Calabi-Yau space. The intimate

connection between the decomposition of integrable systems and Higgsing will be

the topic of forthcoming sections.

3.3.1 Spectral Curves

Let us consider the splitting process

Σ −→ Σ1 + Σ2 , (3.3.1)

where Σ is the “parent” spectral curve and Σ1,2 are the two daughters. In this

process we elongate certain throats of Σ until it breaks into two pieces. Since the

spectral curve is a thickening of the (p, q)-web [37, 112], which is the graph-dual to

the toric diagram, the connecting throats are dual to segments joining points of the

toric diagram along the boundary between the daughters, as shown in Figure 3.1.

Figure 3.1: A toric diagram split along the red and green lines. This causes the

splitting of Σ into two daughters.

The separation between components of the spectral curve is achieved by tuning

the coefficients cµ in the characteristic polynomial (3.1.1). In the limit of large

distance between components, the ci’s scale differently with respect to the separation

and develop a hierarchical structure.

In the limit of infinite separation the splitting of the spectral curve into two pieces

is naturally expected to reduce to the sum of the integrable systems associated to
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the two components. In §3.4 and §3.5, we provide a detailed explanation of how this

intuition is realized.

Taking the splitting process to an extreme we obtain a decomposition of any

Riemann surface into a collection of trinions, i.e. spheres with three punctures. Any

such decomposition is in one-to-one correspondence with triangulations of the toric

diagram. Each triangle gives rise to a trinion. Their number is thus equal to twice

the area of the toric diagram, which in turn is equal to the number of gauge groups

in the associated quiver gauge theory. These decompositions allow us to see the full

integrable system continuously emerge from the combination of trivial integrable

systems associated to trinions. Figure 3.2 shows a possible triangulation of a toric

diagram and its corresponding trinion decomposition.

Figure 3.2: A general triangulation of the toric diagram and the corresponding

trinion decomposition of the spectral curve.

A standard method in real (“tropical”) geometry to visualize Riemann surfaces,

which will prove useful in later sections, is the so-called amœba projection:

A : (α, β) 7→ (log |α|, log |β|) . (3.3.2)

The amœba can be thought of as a thickening of the graph-dual of the toric diagram,

i.e. we can draw the (p, q)-web from D and this will constitute the “spine” of the

amœba. In the actual plot, the “tentacles” which tend to infinity will have their

directions given by the (p, q)-vectors which are normal to the toric diagram. The
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resulting object will look very similar to Σ; explicit examples of this are found in

Figure 3.10 and Figure 3.13.

As explained in the introduction, what we ultimately wish to study is the inte-

grable system that emerges in the continuous limit where we glue a countably infinite

number of toric sub-diagrams, or equivalently, spectral curves. We conjecture that,

depending on how we assemble these building blocks, the integrable systems with

an infinite number of degrees of freedom that are generated by this procedure are

(1+1)- or (2+1)-dimensional integrable field theories. Figure 3.3 shows a number of

elementary spectral curves glued to generate a (1+1)-dimensional theory.

Figure 3.3: Combining an infinite number of elementary spectral curves to gener-

ate a (1+1)-dimensional theory. By performing a similar gluing along the vertical

direction we expect to generate a (2+1)-dimensional theory.

3.3.2 Partial Resolution of Calabi-Yau Singularities and Hig-

gsing

The splitting and gluing of Riemann surfaces of the type discussed in §3.3.1 also plays

an important role in the context of partial resolutions of toric singular Calabi-Yau

3-folds. We now review how to split toric diagrams from geometric, gauge theoretic

and dimer model perspectives. In §3.4 we elaborate on the intimate connections

with the (de)composition of integrable systems.

Geometrically, the partial resolution of a toric singularity corresponds to the

process illustrated in Figure 3.1: one takes the toric diagram and divides it into

components.2 For concreteness, we will focus on the case in which we split the toric

2In the dual cone picture of the toric variety, this is the process of stellar division [113].
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diagram into two parts, to which we shall refer as the parent with two daughters.

It is possible to deal with more components by iteration of this procedure.3

Let us now describe the resolution from the perspective of the quiver theory

on the worldvolume of D3-brane probes. This is technology dating back to the

early days of studying quiver gauge theories from toric Calabi-Yau singularities

[100,103,114,115]. The starting point is a set of N = n1+n2 D3-branes on the parent

singularity. All chiral fields in the parent quiver are (n1 + n2)× (n1 + n2) matrices.

The parent singularity is then resolved into two daughter singularities containing n1

and n2 D3-branes, respectively. As a result, we obtain two decoupled quiver gauge

theories, whose gauge group ranks are given by n1 and n2. From a gauge theory

viewpoint, this resolution corresponds to turning on non-zero vacuum expectation

values (vevs) for some block sub-matrices in the scalar components of these fields.

Fields charged under gauge groups in both quivers have masses controlled by the

expectation values and decouple from the low energy theory.

A pictorial representation of this process is given in Figure 3.4. One could

envisage, of course, the reverse process of gluing to produce a more singular parent.

This should correspond to an un-Higgsing mechanism (q.v. [106]). We will illustrate

these ideas with explicit examples in §3.5.

For our purposes, it is sufficient to focus on the simple case in which n1 = n2 = 1.

We focus on diagonal vevs of the form

〈Xij〉 =

 X
(1)
ij 0

0 X
(2)
ij

 , (3.3.1)

for the field Xij in the parent theory. We will stick to this case throughout the

chapter. Resolutions generally involve turning on several non-zero expectation val-

ues simultaneously. We restrict to the case in which all non-zero vevs have the same

magnitude, which will turn out to control the distance between the daughter singu-

larities.4 The acquisition of vevs in this fashion will split the parent theory into its

3Not all decompositions can be reduced to a sequence of binary splittings. A necessary condition

is that, at each step, the toric diagrams of the daughters are convex.
4Theories with different vevs give rise to multiple energy scales. If these scales are hierarchically

separated, the Higgsing process can be studied sequentially.
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Figure 3.4: The resolution of the parent singularity with parallel coincident N =

n1 + n2 D3-branes (on the left) results in two daughter theories with n1 and n2

D3-brane respectively. The blue cone signifies the Calabi-Yau singularity at the tip

of which the D3-branes sit.

two daughters.

Resolution in the Dimer Model

One of the greatest computational challenges to the resolution of toric singularities

by D3-branes was the identification of which fields in the parent acquire non-zero

vevs [100, 103]. This issue was resolved by the dimer model representation of toric

quiver gauge theories [15,16,19]. Dimer models are extremely useful for identifying

the non-zero vevs that are necessary in order to achieve a given resolution. An

elegant description of general partial resolutions, exploiting the map between the

dimer model and a tiling of the spectral curve, was introduced in [116]. We now

briefly review this procedure.

Like perfect matchings, zig-zag paths play a prominent role in connecting dimer

models to geometry. They are defined as paths that alternate between turning

maximally right and maximally left at consecutive nodes in the bipartite tiling.

Each edge, then, has exactly two oppositely oriented zig-zag paths, criss-crossing

before heading to nodes of opposite color, weaving an intertwined pattern on the

torus. For consistent gauge theories, these zig-zag paths never intersect themselves

and form closed loops wrapping (p, q)-cycles on the torus.

The untwisting map is an operation on zig-zag paths that exchanges the criss-
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cross on the torus, with faces on a different Riemann surface. This Riemann surface

turns out to be precisely the spectral curve Σ. Conversely, the zig-zag paths on Σ,

when untwisted, are the faces of the original 2-torus. We refer the reader to [19] for

a detailed explanation of the untwisting map whose effect on zig-zag paths of both

T2 and Σ is summarized below.

T2 Σ

zig-zag path ↔ face = puncture

face = gauge group ↔ zig-zag path

We note that the untwisting map does not change the graph, only the embedding of

the graph.

Starting from the parent spectral curve Σ, we elongate one or several internal

throats that connect the two daughters, Σ1 and Σ2. The daughters then decouple in

the limit in which these throats become infinitely long. From the viewpoint of the

daughters, these throats become new external legs, i.e. new punctures. Following

the map above, the appearance of new punctures translates to the appearance of

new zig-zag paths on T2.

This can easily be implemented in terms of dimer tilings. We consider one copy

of the original dimer tiling on T2 for each of the two daughters. On each copy, we

draw the zig-zag paths associated to the original punctures that will end up on the

corresponding component. Next, we introduce the paths which are the complement

to these zig-zag paths in the original set. These new paths correspond to the new

punctures that are generated in the splitting process.

In order for the new paths to become actual zig-zag paths, some edges must

be removed from the daughter tilings. The bifundamentals on the tiling that do

not have any paths running over them are removed. These are precisely the ones

that acquire non-zero vevs in the Higgsing. Generally, different edges are removed

from the tiling of the first and second daughter. This is the manifestation, in dimer

language, of the matrix vevs X
(1)
ij and X

(2)
ij in (3.3.1) being different. In §3.5, we

present explicit examples illustrating this procedure.5

5Bivalent nodes might be generated when removing edges. They correspond to massive fields
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From the perspective of the daughter integrable systems, the generation of new

punctures corresponds to the appearance of new Casimir operators, because each

daughter-toric-diagram will have new external legs.

Perfect Matching Perspective. As we recall from §2.6.2, when Higgsing the

rule for removing perfect matchings is simple: every perfect matching containing an

edge corresponding to a field with a non-zero vev must be eliminated. Since the

untwisting map turns the tiling on T2 into a tiling on Σ, we can gain an alterna-

tive understanding of which perfect matchings will survive the Higgsing process on

each daughter. The difference between two adjacent perfect matchings in the toric

diagram, say p and p′, creates a flow on Σ. Once Σ has been split, certain 1-cycles

will no longer be able to exist. If the difference between two perfect matchings

is contained in any of the sub-dimers, both perfect matchings will survive in the

corresponding component of the daughter singularity. On the other hand, if the

difference is not contained in any sub-dimer, one or both of the perfect matchings

will not survive the Higgsing process.

In general, there are multiple ways of Higgsing fields Xij that will result in the

same splitting of Σ→ Σ1 +Σ2. In §3.5, we will discuss the issue of multiple solutions

for an explicit example in detail.

3.4 A Continuous Control Parameter

As we have already mentioned, the splitting of the spectral curve follows from cer-

tain hierarchies between the coefficients in the characteristic polynomial. These

hierarchies are controlled by a continuous parameter, which we will denote Λ; in

quiver language it is connected to the non-zero expectation values of bifundamental

fields.

In this section, we introduce two complementary approaches for determining

the precise dependence of Λ on the coefficients of PN(α, β) that achieves a given

Σ→ Σ1 + Σ2 decomposition.

that can be integrated out [16].
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3.4.1 Scalings from VEVs

Without loss of generality, we can identify Λ with the non-zero vevs, i.e. 〈X(a)
ij 〉 = Λ.

The coefficients in PN(α, β) are polynomials in the fi variables, corresponding to

closed loops with vanishing homology on the dimer tiling. Recalling §2.5, we can

write any loop in terms of oriented edges in the tiling. We can thus obtain the Λ-

scaling of any loop from its expression in terms of the product of edge variables. The

conclusion is that we obtain the following factors when Xij develops an expectation

value 〈Xij〉 = Λ:

• Scaling Λ for each αi,j appearing in the numerator of the path, where αi,j is

an oriented edge variable.

• Scaling Λ−1 for each αi,j appearing in the denominator of the path.

We obtain

for a fi cycle : Λ for each 〈Xji〉 = Λ

Λ−1 for each 〈Xij〉 = Λ
(3.4.1)

where the subindices indicate gauge groups connected by bifundamentals. We show

some examples in Figure 3.5.

Λ

f

Λ–1 Λ0

Figure 3.5: Examples of Λ scalings of a fi cycle. We indicate the edge associated

with a field with a non-zero vev in blue.

Notice that we have not specified on which of the two daughter components,

which have different sets of non-zero vevs, the scalings in (3.4.1) must be calculated.

However, on physical grounds, it is clear that determining the scaling in any of the

two daughters leads to the same result. We shall present explicit examples which

will illustrate this in §3.5.
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3.4.2 Scalings from the Spectral Curve

Let us now introduce an alternative method for determining the Λ scalings directly

associated with a decomposition of the spectral curve in an algorithmic fashion,

wherein we obtain a set of explicit Diophantine inequalities which needs to be solved.

Since it is only the powers of α and β that specify the toric diagram point, we can

write (3.1.1) as

PN(α, β) =
∑
i

αv
(i)
1 βv

(i)
2

(∑
µ

cµ

)
=
∑
i

αv
(i)
1 βv

(i)
2

(∑
µ

F−1∏
j=1

f
x

(i)
j,µ

j

)
(3.4.1)

where i ranges over the distinct points in the toric diagram, and µ over those flows

that contribute to that specific point. Hence, we see that the ith term’s coefficient

is expressed as a sum of terms, where each term is a product of faces fj required to

express a given flow pµ.

Now, when we Higgs, the coefficients cµ separate into two categories: those which

belong to flows that survive the Higgsing, which we shall denote c
(s)
µ , and those which

do not, which we denote c
(h)
µ :

PN(α, β) =
∑
i

αv
(i)
1 βv

(i)
2

(∑
µ

c(s)
µ +

∑
ν

c(h)
ν

)
(3.4.2)

where µ and ν range over the appropriate values.

Now, let us introduce the scalings (we can take, without loss of generality, the

powers κj to be integers):

fj −→ Λκj , κj ∈ Z (3.4.3)

and substitute back into (3.4.2) to give

PN(α, β) =
∑
i

αv
(i)
1 βv

(i)
2

∑
µ

Λ

F−1∑
j=1

κjx
(i)
j,µ

+
∑
ν

Λ

F−1∑
j=1

κjx
(i)
j,ν

 . (3.4.4)

It is now clear what has to occur: for the c
(s)
µ ’s to survive, they must have the

same order in Λ; those which do not, must have strictly lower order. In other words,

for each i, we must have
∑F−1

j=1 κjx
(i)
j,µ1

=
∑F−1

j=1 κjx
(i)
j,µ2

= . . . ≡ C. This C must

be strictly greater than each of
∑F−1

j=1 κjx
(i)
j,ν . Finally, we recall that

∏F
j=1 fj = 1,
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so that
∑F

j=1 κj = 0. Since we know which flows survive a given Higgsing, we can

determine a priori which terms must have a relative Λ suppression.

In summary, we have the following set of Diophantine inequalities in κ: for each

i = 1, 2, . . . , t where t is the number of points in the toric diagram,

C =
F−1∑
j=1

κjx
(i)
j,µ for each pµ that survives

C >
F−1∑
j=1

κjx
(i)
j,ν for each pµ that does not survive

0 =
F∑
j=1

κj . (3.4.5)

3.5 Explicit Examples

Having abstractly discussed how the splitting should work by obtaining the weights

of the variables either from the acquisition of vevs in the dimer or from the coeffi-

cients in the spectral curve, we can now illustrate our proposal in detail with some

explicit examples. In this section, we will first study the cone over the double zeroth

Hirzebruch surface, i.e. the “double F0”, and then the space known as Y 4,0. These

will give ample demonstration of our technique.

3.5.1 Double F0

Let us consider a Z2 orbifold of F0, whose toric diagram is shown in Figure 3.7, to

which we refer as the double F0 theory. Figure 3.6 shows the corresponding tiling,

where we draw the unit cell of the torus with a dotted line. We see that there

are 8 gauge groups, twice that of F0, and 16 bifundamental fields which we shall

denote as Xij in standard nomenclature, signifying the field corresponding to the

edge bounding face i and face j in Figure 3.6. The superpotential terms are all

quartic and can also be instantly read off from the figure. We wish to consider the

decomposition of this geometry into two copies of F0, as shown in Figure 3.7.

Using the ideas of [116], which were summarized in §3.3.2, we conclude there are

four possible sets of expectation values leading to the same desired decomposition
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6 7 8 32

1 6

7 8 4321

14 5 6 87

2 3 54

1

Figure 3.6: Tiling for the double F0 theory.

Figure 3.7: Toric diagram for the double F0. The red line indicates how we split it

into two components.

of the geometry. They are:

Higgsing 1: X
(1)
41 , X

(1)
12 , X

(1)
85 , X

(1)
56 Higgsing 2: X

(1)
34 , X

(1)
41 , X

(1)
78 , X

(1)
85

X
(2)
83 , X

(2)
32 , X

(2)
47 , X

(2)
76 X

(2)
32 , X

(2)
25 , X

(2)
76 , X

(2)
61

Higgsing 3: X
(1)
27 , X

(1)
78 , X

(1)
63 , X

(1)
34 Higgsing 4: X

(1)
12 , X

(1)
27 , X

(1)
56 , X

(1)
63

X
(2)
25 , X

(2)
54 , X

(2)
61 , X

(2)
18 X

(2)
18 , X

(2)
83 , X

(2)
54 , X

(2)
47

(3.5.1)

In the above we have separated the 8 fields of the parent theory that get a non-zero

vev into its two daughters, which following the notation in (3.3.1) we denote by

superscripts (1) and (2) respectively. We see that each daughter contains four fields

with non-zero vevs. From these non-zero vevs and the rule prescribed in (3.4.1), we
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determine the weights of our fi variables for the four Higgsings:

Higgsing f1 f2 f3 f4 f5 f6 f7 f8

1 1 Λ 1 Λ−1 1 Λ 1 Λ−1

2 Λ 1 Λ−1 1 Λ 1 Λ−1 1

3 1 Λ−1 1 Λ 1 Λ−1 1 Λ

4 Λ−1 1 Λ 1 Λ−1 1 Λ 1

(3.5.2)

What is happening in the field theory, as graphically depicted by the dimer, is

shown in Figure 3.8. In each of the four Higgsings, we separate the parent dimer

model into the complementary dimers of the two daughters, (1) on the left and (2)

on the right. In order to facilitate comparison with the original parent tiling, we

have not integrated out massive fields. If we do so, we obtain the square lattice

characteristic of F0.

Higgsing 1 Higgsing 2

Higgsing 3 Higgsing 4

Figure 3.8: Dimer models for the four Higgsings of the double F0 theory into two

daughter F0 theories.

The weights associated to different Higgsings are simply related by an overall

shift, which follows from the fact that the Higgsed tilings are also connected by

shifts and rotations as shown in Figure 3.8.

The Integrable System

We now investigate the effect of continuously splitting the spectral curve, equiv-

alently Higgsing, on the integrable system. In this process some contributions to
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conserved charges, more specifically the perfect matchings which are removed by

the Higgsing, are continuously suppressed until the theory reduces to two decoupled

integrable systems.

We can also determine the Λ-scaling of fi variables by analyzing the behavior

of coefficients of the spectral curve. Indeed, we can find the weights in (3.5.2)

independently by the procedure outlined in §3.4.2. Reassuringly, the results of using

this method agree in all examples with the ones obtained from (3.4.1).

The tables below present the information in the integrable system for the double

F0 theory. The (v1, v2) row refers to the coefficient for the αv1βv2 term in the Newton

polynomial. For each of the Higgsings, we underline the contributions that survive

in the Λ → ∞ limit. The third column shows the surviving leading Λ dependence

of the coefficients in the characteristic polynomial.

Higgsing 1: Let us begin with Higgsing 1 and discuss it in a little more detail. For

each point in the toric diagram, here given as an integer 2-vector, we can specify the

coefficient in terms of the fi variables within the spectral curve using the technique

of [31], as reviewed in §3.2. The number of terms will correspond to the number of

perfect matchings for the point. Let us take the (1, 1) point of the toric diagram as

an example, which is an internal point with 8 perfect matchings; the term in the

spectral curve will be(
f1f3f4 + f3f4 + f3 + 1 + f−1

6 + f−1
5 f−1

6 f−1
8 + f1f2f3f4 + f−1

5 f−1
6

)
αβ ,

where we have underlined the terms which survive the Higgsing. The ones that

do not survive can be immediately determined: they are the ones containing edges

corresponding to fields with non-zero vevs.

In terms of (3.4.5), this means the weights fj → Λκj must be such that κ3 = 0 =

−κ5− κ6− κ8 = κ1 + κ2 + κ3 + κ4 coming from the underlined terms and that they

must all be strictly greater than any of {κ1+κ2+κ3 , κ3+κ4 ,−κ6 ,−κ5−κ6} coming

from the non-underlined terms. This thus constitutes one of the inequalities. We

do this for each of the 8 points in the toric diagram and combine all these relations,

supplementing by the inequality that
8∑
j=1

κj = 0, and solve the resulting system over

the integers. We will find precisely the first row of the solution table in (3.5.2). In
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the table below, we also include, for reference, the final leading order weight for the

surviving terms. For the (1, 1) term above, this is just 0, hence the entry Λ0 = 1

in the third column. These results are in full agreement with those derived using

(3.5.2) and (3.4.1). In the examples that follow, we have independently determined

the Λ-scalings using both methods and confirmed their agreement.

(v1, v2) Loops

(0, 0) 1 1

(1, 0) 1 + f1f2f5f6 Λ2

(2, 0) f1f2f5f6 Λ2

(1, 1)
f1f3f4 + f3f4 + f3 + 1 + f−1

6
1

+f−1
5 f−1

6 f−1
8 + f1f2f3f4 + f−1

5 f−1
6

(2, 1)
f1f3 + f1f

−1
8 + f−1

8 + f1 + f−1
6 f−1

8
Λ

+f−1
6 f−1

7 f−1
8 + f1f2f3f5 + f1f2f3

(1, 2) f3f4f
−1
5 f−1

6 Λ−2

(2, 2) f1f3f4f
−1
6 + f3f

−1
5 f−1

6 f−1
8 1

(3, 2) f1f3f
−1
6 f−1

8 1

(3.5.3)

Higgsing 2: We can now perform a similar analysis for the second Higgsing and

obtain:

(v1, v2) Loops

(0, 0) 1 1

(1, 0) 1 + f1f2f5f6 Λ2

(2, 0) f1f2f5f6 Λ2

(1, 1)
f1f3f4 + f3f4 + f3 + 1 + f−1

6
1

+f−1
5 f−1

6 f−1
8 + f1f2f3f4 + f−1

5 f−1
6

(2, 1)
f1f3 + f1f

−1
8 + f−1

8 + f1 + f−1
6 f−1

8
Λ

+f−1
6 f−1

7 f−1
8 + f1f2f3f5 + f1f2f3

(1, 2) f3f4f
−1
5 f−1

6 Λ−2

(2, 2) f1f3f4f
−1
6 + f3f

−1
5 f−1

6 f−1
8 1

(3, 2) f1f3f
−1
6 f−1

8 1

(3.5.4)
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Higgsing 3: So too we can now study the third Higgsing, confirming our results:

(v1, v2) Loops

(0, 0) 1 1

(1, 0) 1 + f1f2f5f6 1

(2, 0) f1f2f5f6 Λ−2

(1, 1)
f1f3f4 + f3f4 + f3 + 1 + f−1

6
Λ

+f−1
5 f−1

6 f−1
8 + f1f2f3f4 + f−1

5 f−1
6

(2, 1)
f1f3 + f1f

−1
8 + f−1

8 + f1 + f−1
6 f−1

8
1

+f−1
6 f−1

7 f−1
8 + f1f2f3f5 + f1f2f3

(1, 2) f3f4f
−1
5 f−1

6 Λ2

(2, 2) f1f3f4f
−1
6 + f3f

−1
5 f−1

6 f−1
8 Λ2

(3, 2) f1f3f
−1
6 f−1

8 1

(3.5.5)

Higgsing 4: Finally, we complete the story with the last Higgsing:

(v1, v2) Loops

(0, 0) 1 1

(1, 0) 1 + f1f2f5f6 1

(2, 0) f1f2f5f6 Λ−2

(1, 1)
f1f3f4 + f3f4 + f3 + 1 + f−1

6
Λ

+f−1
5 f−1

6 f−1
8 + f1f2f3f4 + f−1

5 f−1
6

(2, 1)
f1f3 + f1f

−1
8 + f−1

8 + f1 + f−1
6 f−1

8
1

+f−1
6 f−1

7 f−1
8 + f1f2f3f5 + f1f2f3

(1, 2) f3f4f
−1
5 f−1

6 Λ2

(2, 2) f1f3f4f
−1
6 + f3f

−1
5 f−1

6 f−1
8 Λ2

(3, 2) f1f3f
−1
6 f−1

8 1

(3.5.6)

Amœba Projections

As reviewed in §3.3.1, amœba plots provide a simple way of visualizing the spectral

curves. Thus, we can explicitly verify that a large value of Λ does indeed have the
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desired effect on the parent spectral curve, as an additional check that the scalings

we obtained indeed give rise to elongations leading to the desired splitting of Σ.

Let the Λ-weights for each point in the toric diagram be given by the third

column in the tables above. The leading behavior in Λ coincides for Higgsings 1 and

2 and for Higgsings 3 and 4. Furthermore, the two pairs are related to each other

by a 180◦ rotation, as shown in Figure 3.9.

Λ
−2

Λ
2 2

Λ

2
ΛΛ

2

−2
Λ

3 and 41 and 2

11

1 Λ

1

1

Λ 1

11

Figure 3.9: The corresponding weights of the coefficients in the Newton polynomial

for Higgsings 1 and 2 are connected to those of Higgsings 3 and 4 by a 180◦ rotation

of the corresponding toric diagram.

We see that, in perfect agreement, the amœba projections exhibit the corre-

sponding behavior. Figure 3.10 shows the amœbas for the four Higgsings for large

Λ. Indeed, the amœbas for the four models coincide, up to a trivial shift on the

(x, y) plane. This results from the simple relation between their scalings as given by

Figure 3.9. Furthermore, we see that the thin spine in the center controls precisely

the splitting of the double F0 into her two daughter F0 theories. The holes in the

spectral curve associated to internal points in the toric diagram have zero size in

Figure 3.10. This is due to the particular choice of coefficients in the character-

istic polynomial. These coefficients can be varied at will without modifying their

Λ-scaling and hence preserving the splitting.
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Higgsings 1 and 2 Higgsings 3 and 4

Figure 3.10: Amœba plots for the 4 possible Higgsings with Λ set to the numerical

value of e5. The patchy appearance of these and subsequent amoeba plots, with

some missing points in their interior, is due to the fact that we determine them

numerically.

3.5.2 Y 4,0

Fortified by the consistency of our story for double F0, let us move on to another

non-trivial example. We now consider Y 4,0, whose corresponding integrable system

has been worked out in [31]. We remind the reader of the dimer model in Figure

3.11. This is a theory with 8 gauge group factors, quartic superpotential terms and

16 fields, which we suggestively label as Vij, Ṽij and Hij in accordance with their

vertical and horizontal orientation. The toric diagram is shown in Figure 3.12, with

7 points.

We now study the two splittings depicted in Figure 3.12. We will refer to them

as Higgsings 1 and 2. Specifically, the acquisition of vevs is as follows:

Higgsing 1: H
(1)
32 , H

(1)
65 , H

(1)
14 , H

(1)
87 Higgsing 2: V

(1)
51 , V

(1)
73 , Ṽ

(1)
26 , Ṽ

(1)
48

H
(2)
34 , H

(2)
67 , H

(2)
12 , H

(2)
85 Ṽ

(2)
51 , Ṽ

(2)
73 , V

(2)
26 , V

(2)
48

(3.5.1)

We remark that the black and white nodes are exchanged with respect to [31].

This is of course only a matter of convention. As in the previous example, the

choice of vevs leading to each splitting is not unique. Having already illustrated this

possibility with the splitting of double F0 to two F0’s, we focus on the vevs given in

(3.5.1) for convenience.
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8

ij ijV
~

ijH

1

2

3

5

6

7

4

V

1

2

3

5

6

7

4

V

8

ij ijV
~

ijH

V

Figure 3.11: Tiling for Y 4,0.

Higgsing 1 Higgsing 2

Figure 3.12: Toric diagram for Y 4,0, showing the two splittings that we will investi-

gate. The splitting is indicated by the red line.

Once again, we determine the Λ-scalings associated to both decompositions using

the methods of §3.4, i.e. both the rule in (3.4.1) and the algorithm in §3.4.2, which

yield identical results. We obtain:

Higgsing f1 f2 f3 f4 f5 f6 f7 f8

1 Λ−1 Λ Λ−1 Λ Λ Λ−1 Λ Λ−1

2 Λ Λ−1 Λ Λ−1 Λ−1 Λ Λ−1 Λ

(3.5.2)

Higgsing 1: We follow the notation in the previous examples, write the coefficients

in terms of the fi variables and underline the terms which survive. We tabulate this

for each point, and in the third column write the overall leading behavior in Λ for
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the terms which survive.

(v1, v2) Loops

(0, 0) 1 1

(−1, 0)
f4 + f4f8 + f4f7f8 + f3f4f7f8

Λ
+f−1

1 f−1
5 f−1

6 + f−1
1 f−1

5 + f−1
1 + 1

(−2, 0)

f−1
1 f−1

5 f4 + f4f8 + f−1
1 f4f8 + f−1

1 f−1
5 f4f8

Λ2
+f−1

1 f−1
5 f−1

6 f4f8 + f4f7f8 + f−1
1 f4f7f8 + f−1

1 f−1
5 f4f7f8

+f3f4f7f8 + f−1
1 f3f4f7f8 + f−1

1 f−1
5 f3f4f7f8 + f−1

1 f−1
5 f−1

6

+f−1
1 f−1

5 + f3f
2
4 f7f8 + f4f

−1
1 f−1

5 f−1
6 + f3f

2
4 f7f

2
8

(−3, 0)

f−1
1 f−1

5 f4f8 + f−1
1 f−1

5 f−1
6 f4f8 + f−1

1 f−1
5 f4f7f8

Λ+f−1
1 f−1

5 f3f4f7f8 + f−1
1 f−1

5 f3f
2
4 f7f8 + f3f

2
4 f7f

2
8

+f−1
1 f3f

2
4 f7f

2
8 + f−1

1 f−1
5 f3f

2
4 f7f

2
8

(−4, 0) f−1
1 f−1

5 f3f
2
4 f7f

2
8 1

(−2, 1) f−1
1 f4f7f8 Λ2

(−2,−1) f2f3f
2
4 f7f8 Λ2

(3.5.3)

Higgsing 2: Likewise, we tabulate the result for Higgsing 2 and obtain:

(v1, v2) Loops

(0, 0) 1 1

(−1, 0)
f4 + f4f8 + f4f7f8 + f3f4f7f8

1
+f−1

1 f−1
5 f−1

6 + f−1
1 f−1

5 + f−1
1 + 1

(−2, 0)

f−1
1 f−1

5 f4 + f4f8 + f−1
1 f4f8 + f−1

1 f−1
5 f4f8

1
+f−1

1 f−1
5 f−1

6 f4f8 + f4f7f8 + f−1
1 f4f7f8 + f−1

1 f−1
5 f4f7f8

+f3f4f7f8 + f−1
1 f3f4f7f8 + f−1

1 f−1
5 f3f4f7f8 + f−1

1 f−1
5 f−1

6

+f−1
1 f−1

5 + f3f
2
4 f7f8 + f4f

−1
1 f−1

5 f−1
6 + f3f

2
4 f7f

2
8

(−3, 0)

f−1
1 f−1

5 f4f8 + f−1
1 f−1

5 f−1
6 f4f8 + f−1

1 f−1
5 f4f7f8

1+f−1
1 f−1

5 f3f4f7f8 + f−1
1 f−1

5 f3f
2
4 f7f8 + f3f

2
4 f7f

2
8

+f−1
1 f3f

2
4 f7f

2
8 + f−1

1 f−1
5 f3f

2
4 f7f

2
8

(−4, 0) f−1
1 f−1

5 f3f
2
4 f7f

2
8 1

(−2, 1) f−1
1 f4f7f8 Λ−2

(−2,−1) f2f3f
2
4 f7f8 Λ−2

(3.5.4)
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Figure 3.13 shows the amœbas corresponding to the scalings in (3.5.3) and

(3.5.4), confirming they produced the desired splitting.

Higgsing 1 Higgsing 2

Figure 3.13: Amœba plots for Higgsings 1 and 2 of Y 4,0 at Λ = e3.

3.6 Combining Multiple Components

In the previous sections, we have explained how to split integrable systems. Revers-

ing the logic, we also understand how to glue them. We have identified a continuous

parameter Λ that controls the distance between components of the spectral curve.

This parameter manifests itself in the associated quivers as non-zero vevs and sup-

presses certain contributions in the integrable system. We can now proceed towards

our goal of understanding the continuous limit of these systems.

3.6.1 Combinatorics of a Large Number of Components

Let us focus on the case in which we combine an infinite number of identical compo-

nents Σ0 along a single direction, effectively generating a new continuous dimension.

The amœba projection suggests a natural way to approach the continuum: we con-

sider all components equally separated in the amœba and then send the number of

components N contained in a finite interval of length L to infinity. More concretely,

defining Λ ≡ eα, we consider the limit

N →∞, α→ 0, L = Nα fixed. (3.6.1)
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This will give us a (1+1)-dimensional integrable system from the continuous limit of

an infinite number of (0+1)-dimensional ones. In principle, it seems possible to do

the same in both the x and y directions, generating a (2+1)-dimensional integrable

field theory in the process.

Before studying this limit, let us investigate how the number of contributions

to Hamiltonians behaves for large N . Following the dictionary in §3.2, this number

corresponds to the multiplicity of perfect matchings associated to internal points in

the toric diagram.6

Gluing N copies of an integrable system corresponds to considering a certain ZN
orbifold of the basic theory. In dimer model language, this corresponds to enlarging

the unit cell by a factor of N . While the number of points in the toric diagram

grows linearly with N , their multiplicity grows much faster. Let us illustrate this

growth in some explicit examples.

Y N,0. The cone over Y N,0 is the ZN orbifold of the conifold with toric diagram

given by Figure 3.14.

N−1H
1H H2

N/2+1

... ...

Figure 3.14: Toric diagram for Y N,0 for even N . The red circle indicates the reference

perfect matching and the green dots correspond to cycles with windings (−N/2−1, 1)

and (−N/2− 1,−1), which are fixed by the Casimirs.

The integrable system for this geometry was determined in [31] using the pre-

scription in [33], where it was identified with the N -site relativistic periodic Toda

chain. Our goal in this section is to investigate its behavior for large N .

6Casimirs are given by ratios of external points in the toric diagram. Hence, the same ideas

apply independently to their numerator and denominator.



3.6. Combining Multiple Components 81

i=1,...,N

even ieven i
c i

id

i−1c

i

i

i

Figure 3.15: A convenient set of cycles for Y N,0 with even N . The cycles of type c

only exist for even i.

For simplicity, let us focus on the case of even N . A similar analysis is possible

for odd N . It turns out that the resulting integrable system is considerably simpli-

fied when considering the basis of cycles given in Figure 3.15, instead of using the

standard face variables from §2.5.7 In terms of this basis, the Hamiltonians become

Hn =
∑∏

di cj︸︷︷︸
n factors

. (3.6.2)

The problem of finding the Hamiltonians is thus reduced to the combinatorics of

non-intersecting paths, which can be used to immediately determine the multiplicity

of internal points in the toric diagram. A closed expression for this multiplicity was

derived in [117] by using a Potts-model-like description for the dimers, and via a

recursion relation that was obtained from a map to a 1-dimensional monomer-dimer

system. The final result for the multiplicity of the nth internal point is

n∑
i=0

N

N − i

(
n

i

)(
N − i
n

)
, (3.6.3)

which applies for both even and odd N .

7Figure 3.15 shows 2N cycles. The two additional cycles that are necessary to form a basis, are

fixed by the Casimirs and hence not important in our discussion. They correspond to the green

dots in Figure 3.14.
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It is interesting to visualize how these multiplicities are distributed over the toric

diagram and how the distribution approaches some limit shape after appropriate

normalization. This is shown in Figure 3.16.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

n�N

Mult.

Figure 3.16: Normalized multiplicity of perfect matchings for the internal points of

the Y N,0 theory. We have also normalized the length of the toric diagram to 1. We

show results for N = 2a, a = 1, . . . , 20 (black to red).

Multiple F0. Similarly, we can investigate the generalization of the model con-

sidered in §3.5.1 to N copies of F0. Figure 3.17 shows its toric diagram.

N

Figure 3.17: Toric diagram for the N F0 model.

In this case, it is also possible to find closed formulas for the multiplicities of all

points in the toric diagram. They are

Boundary points:

(
N

m

)
Internal points: 2

(
2N

2n− 1

)
(3.6.4)

where N is the number of F0’s that have been glued together and m ∈ {0, N} and

n ∈ {1, N} index points on the boundary and in the interior of the toric diagram,

respectively.



3.6. Combining Multiple Components 83

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

n N

Mult.

Figure 3.18: Normalized multiplicity of perfect matchings for the internal points of

the multiple F0 theory. We have also normalized the length of the toric diagram to

1. We show results for N = 2a+ 1, a = 0, . . . , 20 (black to red).

These two examples illustrate a general behavior of large-N models: an explosive

growth in the number of perfect matchings associated to a given point in the toric

diagram, which translates into a huge number of contributions for each conserved

charge. It thus becomes clear that a continuous reformulation of cluster integrable

systems is desirable in order to deal with their large-N limit. In the next section we

take the first steps towards such a reformulation.

3.6.2 A Toy Model for the Continuous Limit

The two examples considered in the previous subsection share some common char-

acteristics. In both of them, the nth Hamiltonian corresponds to the sum over all

possible positions on the tiling of n paths, subject to the constraint of not overlap-

ping over edges. Furthermore, these paths are of a very specific type: they cross the

tiling along the short direction of the unit cell and are almost straight. By this we

mean that these paths are almost localized along the long direction of the unit cell.

Figure 3.15 shows the explicit form of these paths for Y N,0 and (3.6.2) gives the cor-

responding Hamiltonians. It is natural to assume that this structure is generic when
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gluing N copies of a cluster integrable system with a genus-1 spectral curve.8 In this

section, we introduce a toy model with these properties, which we expect captures

the main features of a continuous reformulation of cluster integrable systems.

Let us consider a system in the x ∈ [0, L] interval and introduce a path z winding

vertically at x = 0.

1F 2F kF 

z

0x Lx 

'z

Figure 3.19: A toy model for the continuous limit of cluster integrable systems. The

path z can be shifted by multiplying it by all the Fi’s contained in the strip between

its initial and final positions.

We can shift z horizontally by multiplying it by all the fi variables contained in

the strip between x = 0 and its final position.

z →
∏

i∈strip

Fi z . (3.6.1)

Here Fi stands in general for a product of fi’s contained in a slice of the tiling. The

explicit form of Fi is controlled by the details of the specific tiling under consid-

eration. Combining n paths and summing over their positions ki, i = 1, . . . , n, we

obtain

Hn =

 n∏
i=1

∑
ki<ki+1

ki∏
j=0

Fj

 zn , (3.6.2)

8Attaching N copies of a genus-N spectral curve results in g N Hamiltonians. We expect the

resulting theories to obey a similar structure.
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which we have suggestively called Hn, since it has the expected structure for Hamil-

tonian operators.9 We can readily generalize this expression in the continuous limit,

obtaining

Hn =

(
n∏
i=1

∫ L

xi−1

dxi e
∫ xi
0 dy lnF(y)

)
zn , (3.6.3)

where x0 ≡ 0. While we have derived (3.6.3) under rather basic assumptions that

try to capture the most basic features observed in explicit examples, we expect it

displays the main aspects of the actual continuous limit of cluster integrable systems.

We leave a detailed investigation of this limit in explicit models for future work.

3.7 Conclusions

We have taken the initial steps in extending the correspondence between dimer

models and (0+1)-dimensional cluster integrable systems to continuous (1+1)- and

(2+1)-dimensional integrable theories. In order to understand the transition be-

tween discrete and continuous theories, it is necessary to have a certain notion of

distance between elementary constituents, or “lattice spacing”, such that the con-

tinuous theory emerges when it is sent to zero. We identified such a continuous

parameter controlling the distance between daughters from the perspectives of both

spectral curves and the resolution of Calabi-Yau singularities, equivalently the Hig-

gsing of quivers. Furthermore, we introduced two procedures for determining the

integrable system dependence on this parameter, whose effect is to suppress certain

contributions to conserved charges, making them vanish in the infinite separation

limit.

We then explored the integrable systems that are constructed by combining a

large number of components, equivalently by gluing a large number of toric diagrams.

More concretely, we studied, in explicit examples, the behavior of the number of con-

tributions to individual Hamiltonians as the number of components grows. These

9Strictly speaking, Hamiltonians might also contain an n-independent power of the cycle or-

thogonal to z, as dictated by the position of the corresponding internal point in the toric diagram.

This fact can be trivially incorporated into our expressions so, for simplicity, we omit it from our

discussion.
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contributions are in one-to-one correspondence with perfect matchings of the under-

lying dimer model. For this reason, their number diverges much more rapidly than

the number of components, begging for an alternative continuous formulation of

cluster integrable systems. We also observed that each Hamiltonian is given by the

contributions of a number of simple paths summed over all their possible positions

on the dimer tiling. We used these insights to develop a toy model that we expect

reproduces the basic features of the continuous limit of cluster integrable systems.

Interestingly, our investigation of the continuous merging of integrable systems

has also resulted in a novel understanding of (un)Higgsing in quiver theories and the

associated desingularization of the corresponding Calabi-Yau spaces. Thus, we have

added a new angle of attack to the classical subject of D-brane resolution of singu-

larities. We have realized that when one refines the coefficients of the spectral curve

into polynomials in loop variables, the Higgsing/resolution simply corresponds to es-

tablishing a consistent scale Λ dictating which terms should survive or be suppressed.

Therefore, we have effectively generated a new algorithm, outlined in §3.4.2, for sys-

tematically studying all partial resolutions for a given toric diagram. It would be

worthwhile to exploit this procedure for classifying all consistent daughter theories

for a given parent.

What we have touched upon is, of course, only the beginning of a program.

The natural question that arises now is how to extend our continuous toy model to

theories that are actually constructible from dimers. For example, attempting to

recover simple integrable field theories such as Toda theories would be an obvious

next step. Given the simplifications afforded by dimer models, we expect it should

be possible to construct increasingly more elaborate integrable field theories.

We envision many applications of dimer models to continuous theories, such

as the study of integrability preserving lower-dimensional impurities or interfaces

between different integrable field theories. Indeed, in light of the correspondence

with dimer models, the often difficult condition of integrability simply amounts to

checking whether the field theory results from the infinite limit of consistent toric

diagrams, i.e. that they are given by convex lattice polygons.



Chapter 4

The Geometry of On-Shell

Diagrams

In this chapter we will explore the connection between BFTs and scattering am-

plitudes. After introducing the necessary mathematical concepts which will play a

crucial role in this and subsequent chapters, we will show how to map BFTs to the

Grassmannian, and show how the matching and matroid polytopes are sufficient for

obtaining the entire singularity structure of on-shell diagrams.

Since our methods don’t have any intrinsic restriction to planarity, i.e. graphs

that can be embedded on a disk without edge crossings, they allow us to initiate the

study of non-planar on-shell diagrams, which will be the topic of Chapter 6.

4.1 The Grassmannian and its Decompositions

A central object in recent developments in scattering amplitudes is the Grassman-

nian [34]. In this section we review basic aspects about the Grassmannian and its

stratifications. We refer the interested reader to [84, 118–121] for more comprehen-

sive discussions.

4.1.1 Definition

The Grassmannian GR(k, n) is the space of k-dimensional planes in n dimensions

that pass through the origin. Elements of G(k, n) are typically represented by k×n
87
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matrices where the plane is the span of the k n-dimensional row vectors. The action

of GL(k) on the basis vectors leaves the plane invariant, so the Grassmannian is the

space of k × n matrices C modulo GL(k). The GL(k) invariance can be used to fix

any k columns to form a k × k identity sub-matrix, e.g. for G(2, 4) we can fix C to

the form

C =

1 0 −c3 −c4

0 1 c1 c2

 , (4.1.1)

where the signs have been introduced for later convenience. When mapping bipartite

graphs to the Grassmannian, we will see that columns in this matrix correspond to

external nodes and rows correspond to those external nodes which are sources in

a given perfect orientation. From here on, we will always present elements of the

Grassmannian in a form that has fixed the GL(k) invariance.

4.1.2 Plücker Coordinates

The degrees of freedom of C can alternatively be expressed by its k× k minors ∆I ,

where I is a set with k elements describing which columns participate in the minor;

these are known as Plücker coordinates. These minors are invariant under the action

of SL(k) and scale by a common factor under GL(k). Since there are
(
n
k

)
of these,

it induces the Plücker embedding of the Grassmannian G(k, n) ↪→ RP(nk)−1. The

minors are not all independent, they satisfy relations known as the Plücker relations

k+1∑
i=1

(−1)i−1∆J1∪ ai ∆J2 \ ai = 0, (4.1.2)

where J1 is any (k−1)-element subset of {1, . . . , n}, J2 is any (k+1)-element subset

of {1, . . . , n} and ai is the ith element of J2. In each term, ai is removed from J2

and appended to the right of J1. In this embedding, the Grassmannian is simply

the subvariety described by the Plücker relations. For the example of G(2, 4) above,

we have

∆12 = 1 ∆14 = c2 ∆24 = c4

∆13 = c1 ∆23 = c3 ∆34 = c1c4 − c2c3

(4.1.3)

and the single relation ∆14∆23 − ∆13∆24 + ∆12∆34 = 0. The totally non-negative

Grassmannian G≥0(k, n) is given by those matrices C with all ∆I ≥ 0.
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4.1.3 Schubert Decomposition

There are many ways to decompose the Grassmannian into (possibly overlapping)

sets, according to certain properties. Schubert cells1 ΩI are defined as those C ∈
G(k, n) where ∆I is the first non-zero Plücker coordinate, counted in lexicographic

order2, i.e.

ΩI = {C ∈ G(k, n) | ∆I is the lexicographically minimal non-zero Plücker coordinate}.
(4.1.4)

For example,

C =

1 0 0 −c4

0 1 c1 c2

 ∈ Ω12, (4.1.5)

because there is no other non-zero Plücker coordinate with smaller lexicographic

ordering than I = 12. The cyclically shifted Schubert cell Ω
(i)
I is defined similarly,

but the lexicographic order is cyclically shifted to begin the counting at i, e.g. for

the same example in (4.1.5), C ∈ Ω12 but also C ∈ Ω
(2)
24 because the order is shifted

to 2 < 3 < 4 < 1, and since ∆23 = 0, the lexicographically smallest (with respect to

the shifted order) non-zero ∆I is now I = 24. Similarly, C ∈ Ω
(3)
34 and C ∈ Ω

(4)
41 .

Note that in each shifted Schubert cell Ω
(i)
I the Plücker coordinates lexicographi-

cally larger (with respect to the shifted order i) than I are free to be zero or non-zero.

The permuted Schubert cell Ωw
I is defined as in (4.1.4), except that the lexico-

graphic order is with respect to a permuted order w(1) < w(1) < · · · < w(n), where

w ∈ Sn.

4.1.4 Positroid Stratification

The positroid stratification of the Grassmannian G(k, n) introduced by Postnikov

[84] defines each stratum as

SI =
n⋂
i=1

Ω
(i)
Ii
, (4.1.6)

where I = {I1, . . . , In}, and Ii specifies which Plücker coordinates are non-zero, only

looking at those which are lexicographically minimal with respect to each shifted

1A cell is homeomorphic to an open ball and must have Euler number 1.
2Lexicographic order is 1 < 2 < 3 < 4, e.g. 1243 < 1324, analogous to alphabetical order.
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cyclic ordering starting at i. Note in particular that the Plücker coordinates lexi-

cographically smaller with respect to each shifted order must be zero, following the

definition of the Schubert decomposition. For the example in (4.1.5), the non-zero

Plücker coordinates are ∆12, ∆13, ∆14, ∆24 and ∆34. With respect to the first order

i = 1, the lexicographically minimal one is ∆12; for i = 2 the minimal one is ∆24;

for i = 3, ∆34; and finally for i = 4, ∆41 = −∆14. Hence, this element of the

Grassmannian is in the positroid stratum

SI = {C ∈ G(2, 4) | ∆12 6= 0,∆24 6= 0,∆34 6= 0,∆14 6= 0} . (4.1.7)

where ∆23 = 0 and we do not specify whether ∆13 is vanishing or not. Instead,

consider the following stratum

SI = {C ∈ G(2, 4) | ∆14 6= 0,∆24 6= 0} . (4.1.8)

This stratum contains those matrices for which lexicographically smaller Plücker

coordinates with respect to each shifted order are set to zero. For the shifted order

i = 1, we note that ∆12 = 0 and ∆13 = 0 since they are lexicographically smaller

than ∆14. For the shifted order i = 2, ∆23 = 0 since it is lexicographically smaller

than ∆24. For the shifted order i = 3, we additionally have ∆34 = 0 since it is

lexicographically smaller than ∆14 (along with ∆31 and ∆32). Finally ∆41 6= 0 is

the lexicographically smallest with respect to the shifted order i = 4. So a matrix

belonging to this positroid stratum is for instancec1 1 0 0

0 0 0 1

 ∈ SI = {C ∈ G(2, 4) | ∆14 6= 0,∆24 6= 0} . (4.1.9)

Since a positroid stratum is in general more restricted than a Schubert cell, the

positroid stratification refines the Schubert decomposition.

4.1.5 Matroid Stratification

In order to describe this stratification, we have first to introduce the concept of

matroids. The study of matroids is the analysis of an abstract theory of dependences.

We refer the interested reader to [120] for a comprehensive introduction; here we

review only some basic aspects.
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Definition of a Matroid. A matroid of rank k on a set [n] ≡ {1, . . . , n} is a

non-empty collectionM⊂
(

[n]
k

)
of k-element subsets in [n], called bases ofM, that

satisfy the exchange axiom:

For any I, J ∈M and i ∈ I, there exists a j ∈ J such that (I \ {i})∪ {j} ∈ M.

Matroid Polytope. We can construct a polytope which efficiently encodes the

linear dependencies among the bases of a matroid. Given a matroid M of rank k

on a set [n], the matroid polytope P(M) is the convex hull of the indicator vectors

of the bases of M
P(M) = convex{eI : I ∈M}

where by eI we denote eI =
∑

i∈I ei for any I ∈M, and {e1, . . . , en} is the standard

Euclidean basis of Rn. Linear relations among matroid bases translate into linear

relations between position vectors of points in the matroid. The construction of

matroid polytopes in the context of BFTs was discussed in detail in §2.4.2.

Matroid Stratification. Now we can discuss the matroid stratification of the

Grassmannian G(k, n), which further refines the positroid stratification. Let M ⊂(
[n]
k

)
be a matroid. A matroid stratum is defined as follows

SM = {C ∈ G(k, n) | ∆I 6= 0 if and only if I ∈M} . (4.1.10)

Note that each stratum is defined by which Plücker coordinates are non-zero and

which ones are zero; here all Plücker coordinates are specified. This stratification

can also be expressed as the common refinement of the n! permuted Schubert cells

Ωw
I .

To give an example for G(2, 4), the positroid given in (4.1.7) only contains one

matroid stratum, {12, 13, 14, 24, 34}, which corresponds to elements C ∈ G(2, 4)

with {∆12 6= 0,∆13 6= 0,∆14 6= 0,∆24 6= 0,∆34 6= 0,∆23 = 0}; the matrix (4.1.5) be-

longs to this matroid stratum. Note that there is no matroid stratum {12, 14, 24, 34},
i.e. where only ∆13 = 0 = ∆23. Indeed we observe that this object does not satisfy

the exchange axiom and hence is not a matroid: choosing I = 34 and J = 12, for

i = 4 there is no j ∈ J such that (I \ {i})∪{j} = {3}∪ {j} is inM. We can equiv-

alently deduce this from the Plücker relation ∆14∆23−∆13∆24 + ∆12∆34 = 0, which
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in this case reduces to ∆12∆34 = 0, which is not compatible with both ∆12 6= 0 and

∆34 6= 0.

4.1.6 Positroid Cells

Postnikov showed that intersecting the matroid stratification with the totally non-

negative Grassmannian G≥0(k, n) gives a cell decomposition of G≥0(k, n) [84]. Only

one matroid stratum in each positroid stratum has a non-empty intersection with

G≥0(k, n), and it is this intersection which is the positroid cell.3 Equivalently, the

positroid cell decomposition of G≥0(k, n) can be obtained as the intersection of the

positroid stratification with the totally non-negative Grassmannian G≥0(k, n). This

cell is the only one for which non-negative Plücker coordinates are compatible with

the Plücker relations.

The positroid cell whose Plücker coordinates are all different from zero (and

positive) is the top-dimensional cell, which we refer to as the top-cell. Postnikov

showed that the positroid cells are indexed by

Γ

diagrams and planar bipartite

graphs [84].

4.1.7 Perfect Matchings and Plücker Coordinates

In §2.5.3 we observed that different perfect matchings can give rise to perfect ori-

entations with the same source set and hence provide multiple “contributions” to a

given matroid element. This phenomenon manifests as non-trivial multiplicities for

points in the matroid polytope. We are now ready to explain in what sense these

objects contribute to the same matroid element in more detail.

Matroid elements {i1 . . . ik} are in one-to-one correspondence with Plücker co-

ordinates ∆i1...ik which, in turn, are given by minors of the Grassmannian matrix

C. As a result, every perfect matching is mapped to a specific Plücker coordi-

nate [35,84,101,122]. In summary, each point in the matroid polytope is associated

with a single Plücker coordinate, but may get contributions from multiple perfect

matchings.

3These are called cells since they are homeomorphic to an open ball of appropriate dimension.
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For the example in §2.5.3, (2.5.2) implies the following relation between perfect

matchings and Plücker coordinates:

Plücker coordinate ∆12 ∆13 ∆14 ∆23 ∆24 ∆34

Perfect matchings p1, p6, p8 p2, p10 p3 p4 p5, p7 p9

We shall see this relation become even more precise after discussing the boundary

measurement in §4.3.

4.2 Scattering Amplitudes

In this section we briefly review some of the recent results in scattering amplitudes

which are relevant to this thesis. For a broad introduction to the subject, the

interested reader is directed to an excellent review by Elvang and Huang [48]. For

the specific applications of the Grassmannian and the results in this chapter, a

detailed discussion can be found in [34,62].

4.2.1 The Grassmannian in Scattering Amplitudes

The leading singularity of a scattering amplitude is obtained by cutting internal

propagators, i.e. setting them on-shell, until there remain no integrals left to inte-

grate over.4

It is an extremely interesting result that leading singularities in N = 4 SYM are

given by contour integrals over the Grassmannian [62]. In fact, we can write any

loop amplitude of planar N = 4 SYM as a contour integral over the Grassmannian,

or a sum over such integrals.

Each process in N = 4 SYM scattering amplitudes is specified by the number of

external particles n, the number of negative-helicity5 particles k, and the loop level

L. Since treating all particles as incoming instead of outgoing does not change the

physics of the process, the amplitude for k and n− k helicities must be equal.

4Contrary to what their name suggests, leading singularities are finite quantities.
5The standard convention is to treat all particles as outgoing.
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It is a well-known result that if all particles have the same helicity, the amplitude

must be zero, i.e. the amplitude is zero for k = 0 and k = n. Also, the amplitude

is zero for k = 1 and k = n − 1, except for 3-point amplitudes, which will soon be

explained to be important in constructing general amplitudes. Hence, the smallest

value for k to generate a non-trivial process is k = 2; these are known as maximally

helicity violating (MHV) amplitudes. For k > 2 the amplitude is said to be a

Nk−2MHV amplitude.

The Grassmannian G(k, n) also has a k ↔ (n− k) symmetry, since a k-plane in

n dimensions can equally be specified by the space normal to that plane. Hence, the

Grassmannian G(k, n) is equal to G(n−k, n). This analogy to scattering amplitudes

has its origin in the fact that the Grassmannian specifies the scattering amplitude.

More precisely, Nk−2MHV leading singularities are given by [62]:

Lk,n =

∫
Γk,n

dk×nC

Vol(GL(k))

k∏
α=1

δ4|4 (CαaWa)

(1 · · · k)(2 · · · k + 1) · · · (n · · · k − 1)
, (4.2.1)

where Γk,n is the contour, i.e. a prescription for which particular combination of

k×k consecutive minors of the matrix C must be set to zero in order to compute the

residues, and Wa encode the kinematical data in terms of supertwistors. Here and

in what follows, (i1, . . . , ik) denotes the minor corresponding to columns i1, . . . , ik,

i.e. (i1, . . . , ik) ≡ ∆i1,...,ik .

4.2.2 On-Shell Diagram Formalism

The emergence of the Grassmannian in the context of scattering amplitudes was

fully understood with the introduction of the on-shell diagram formalism [34], which

is valid beyond leading singularities. In this section, we briefly review the main

properties of planar on-shell diagrams, with the aim of introducing the basic concepts

that will be generalized in coming sections to the non-planar case. For a detailed

presentation, we refer the reader to the original work [34].

On-shell diagrams are graphs constructed by connecting vertices which represent

three-point amplitudes along edges that represent on-shell momenta. There are

two types of (non-vanishing) three-point amplitudes, AMHV
3 and AMHV

3 , which are
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represented by black and white vertices, respectively. Nodes are glued together via

the integration over the on-shell phase space of the (super) momentum associated to

the edge shared by two vertices.6 We note that the graphs constructed in this way

will in general not be bipartite, but will be bicolored. We can turn bicolored graphs

into bipartite graphs simply by performing the merge/expand move introduced in

§2.6.1(a).

In the Grassmannian formulation, AMHV
3 is given by an integral over G(2, 3) while

AMHV
3 corresponds to an integral over G(1, 3). As vertices are glued together, they

give rise to a larger Grassmannian G(k, n). For a trivalent on-shell diagram with

nB internal black nodes, nW internal white nodes and nI internal edges, the value

of k is given by

k = 2nB + nW − nI . (4.2.2)

The number of degrees of freedom d of a general on-shell diagram is obtained

by starting from the edge weights and subtracting the GL(1) gauge redundancy

associated to every internal node. This means that for a diagram with E edges and

N internal nodes, we have

d = E −N. (4.2.3)

This expression is completely general. However, it is often significantly more conve-

nient to express the degrees of freedom of the graph in terms of the face variables

introduced in §2.5. In particular, it turns out that the degrees of freedom of an

on-shell diagram are equal to the dimension of the matching polytope as given in

(2.5.2), i.e.

d = dmatching = F +B + 2g − 2 , (4.2.4)

which despite appearances is independent of the embedding, and is manifestly valid

also for non-planar on-shell diagrams.

6Following a standard approach in the combinatorics literature, we choose to include external

nodes at the endpoints of legs of on-shell diagrams. We would like to emphasize that we are dealing

with ordinary on-shell diagrams and that such external nodes have no physical significance. They

are both useful bookkeeping devices when performing the transformations in §2.6.1, as well as

make the connection with BFTs more transparent.
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Generalizing (4.2.1) beyond leading singularities, every on-shell diagram, either

planar or non-planar, is associated to a differential form( ∏
int. nodes v

1

Vol(GL(1)v)

)( ∏
edges Xe

dXe

Xe

)
k∏

α=1

δ4|4 (CαaWa) , (4.2.5)

where the first product is taken over all internal nodes. We will refer to the form

excluding the δ-functions as the on-shell form Ω corresponding to a given on-shell di-

agram. The full on-shell form associated to a d-dimensional planar on-shell diagram

in terms of edge or face variables is of the “d log” form [34]

Ω =
dX1

X1

dX2

X2

· · · dXd

Xd

=
df1

f1

df2

f2

· · · dfd
fd
. (4.2.6)

In Chapter 6 we will see that for non-planar diagrams a very similar formula holds,

which makes full use of the generalized face variables from §2.5. We note that

expressing the on-shell form in terms of edge weights requires using the GL(1) re-

dundancies to identify d independent variables; this task is bypassed when using

face variables.

When the dimension of the graph coincides with the maximal dimension of

G(k, n), i.e. d = k(n − k), the on-shell form is said to be top-dimensional. If the

dimension of the graph is larger than the dimension of G(k, n), the graph may be

reduced into a graph of dimension d ≤ k(n− k). The precise details of equivalence

and reductions in the context of scattering amplitudes will be elucidated in §4.4.

If the dimension of the graph is smaller than the dimension of G(k, n), (4.2.6)

arises as a certain residue of the right-hand side of (4.2.1) (which we note is valid

beyond leading singularities); the residue is taken around the vanishing of those

minors which disappear once those graphical degrees of freedom have been turned

off.

4.2.3 Stratification and Singularity Structure of On-Shell

Diagrams

The delta functions in (4.2.5) impose 2n− 4 kinematical constraints on the external

data. Hence, depending on the degrees of freedom in the matrix C, i.e. on d,
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different situations arise. If d = 2n− 4 the integral over the differential form is fully

localized, and the result is an ordinary function of the external data; this is the

so-called leading singularity. If d < 2n − 4 we have more constraints than degrees

of freedom, so the leftover constraints impose conditions on the external data; this

is a singularity. If d > 2n− 4 there are some degrees of freedom left unfixed by the

delta functions which can be integrated over.

Moreover, reducibility of diagrams is closely tied to the existence of dlog factors

in the on-shell form Ω which involve variables that appear nowhere else in the

integrand; these degrees of freedom are precisely the degrees of freedom associated

with bubbles, which were introduced in §2.6.2(c).

Understanding the singularity structure of the differential forms associated to

on-shell diagrams is of great physical interest. For instance, in the case of planar

N = 4 SYM, the study of such singularities is connected to a generalization of the

BCFW recursion relation which fully determines the scattering amplitudes to all

loop orders [34,43,44].

Given a differential form related to an on-shell diagram, the singularity structure

contains the information of the residues at the poles of the differential form, which

are generally located at some Xi = 0.7 These singularities correspond to elements

in the Grassmannian where the number of degrees of freedom in the matrix C has

been reduced, by turning off some Xi.

The singularity structure can be organized in a layered partially ordered set

(poset). At the top level we have the original on-shell diagram and the associated

differential form. At the next level, there are the differential forms obtained at the

poles of the original one, with one less degree of freedom, and so on. This procedure

continues until it reaches the trivial configuration with no poles left. We provide

graphical realizations of this in §4.5, cf. Figure 4.8.

In terms of the Grassmannian element determining the differential form, the

number of degrees of freedom in C is reduced by one when going from one level

of the poset to the next one. In terms of the bipartite graph, each step coincides

7Many coordinate charts ~X are necessary to cover all the poles of the differential form.
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with the removal of so-called removable edges, which are those which yield reduced

subgraphs where d → d − 1. A quick way to identify removable edges was already

discussed in §2.6.3.

In summary, given a differential form related to an on-shell diagram, its singular-

ity structure can be understood from the corresponding bipartite graph by decom-

posing the graph into subgraphs by removing only removable edges. This provides

a lattice of subgraphs, whose corresponding differential forms are the singularities

of the original differential form, organized by number of degrees of freedom.

In the planar case, if the original graph is top-dimensional, this graph decompo-

sition is equivalent to the positroid stratification of the associated Grassmannian.

In §4.5, we will introduce a natural generalization of this decomposition which also

applies to the non-planar graphs.

4.3 Boundary Measurement for Arbitrary On-Shell

Diagrams

In this section we introduce how to map the graphical information of an on-shell

diagram to the corresponding element of the Grassmannian. This map is known as

the boundary measurement, and maps the edge weights of a bipartite graph with k

sources and n external vertices to an element of G(k, n). As is clear from (4.2.1)

and (4.2.5), the boundary measurement is an important ingredient in the study of

on-shell diagrams.

The boundary measurement was first constructed for planar graphs by Postnikov

[84] and for the annulus by Gekhtman, Shapiro and Vainshtein [123]. After a quick

review of the basics of how the boundary measurement works, we shall follow [3]

and [6] and show how to generalize the boundary measurement to arbitrary on-shell

diagrams. This will be particularly useful when computing non-planar scattering

amplitudes in Chapter 6.

Strictly speaking, the boundary measurement is independent of the embedding.

However, as in previous sections, considering an explicit embedding will turn out to

extremely useful. More importantly, we can regard on-shell diagrams that do not
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admit a genus-zero embedding as inherently demanding a higher genus treatment.

4.3.1 General Strategy

The first step in the construction is to pick a perfect orientation of the diagram.

For n external nodes and k sources in the perfect orientation, the entries Cij in the

matrix C ∈ G(k, n) take the general form

Cij(X) =
∑

Γ∈{i j}

(−1)sΓ
∏
e∈Γ

Xe , (4.3.1)

where i runs over the sources, j runs over all external nodes and Γ is a flow in

the perfect orientation going from i to j. In simple terms, the entries Cij are sums

of connected oriented paths that flow from source i to the external node j. The

orientation of the edges is determined by the perfect orientation. Moreover, each

of these paths is multiplied by a sign (−1)sΓ , whose determination constitutes the

main challenge when generalizing the boundary measurement, and which will be

discussed at length in the next sections.

The entries which contain paths that go from a source to the same source are

always equal to 1. Some entries are 0, representing the fact that sometimes it is

impossible to flow from a source to a given external node. In particular, there are

no oriented flows between two sources. The location of 1’s and 0’s depends on

the chosen perfect orientation, and this choice precisely translates to a choice of

GL(k) gauge symmetry of G(k, n), since we see that there is always a k× k identity

sub-matrix associated to the source nodes.

The paths contributing to entries in C can be identified with single component

flows, which we recall can be expressed in terms of oriented edge variables, and

take the form pµ = p̃µ/p̃ref for some oriented perfect matching p̃µ. In the presence

of loops in the perfect orientation, Cij will typically receive an infinite number of

contributions, each consisting of a path multiplied by an ever larger number of loops.

This infinite contribution is resummed and expressed in the generic form pµ
1−ploop

.

There is an extremely efficient matrix implementation to construct a matrix

MC , which is identical to C except for the signs (−1)sΓ , which is known as the path

matrix. This technique is reviewed in Appendix A.1.
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Conditions on the Boundary Measurement. In order to have a well-defined

boundary measurement we impose two conditions. The first is that for graphs on a

disk, the Plücker coordinates should be manifestly positive for positive edge weights.

This is simply the statement that planar on-shell diagrams are in one-to-one with

positroid cells, as discovered by Postnikov [84]. We shall soon discuss how to arrange

the signs (−1)sΓ in order to achieve this.

The second condition is that the Plücker coordinates must be written as sums of

flows (which are equivalent to perfect matchings), with coefficients ±1. This is the

statement that the matroid polytope as constructed using flows is indeed equivalent

to the matroid polytope associated to the Grassmannian. Expressed differently, it

ensures that §4.1.7 is true. Notice that while the entries in C are linear combinations

of flows, the fact that Plücker coordinates, i.e. the determinants of its k × k sub-

matrices, are sums of very specific sets of flows is a highly non-trivial property.

Satisfying both conditions for arbitrary non-planar on-shell diagrams is partic-

ularly complicated, and we shall see that the prescription for assigning the signs

(−1)sΓ is fine-tuned precisely to achieve this.

4.3.2 Boundary Measurement on the Disk

In order to gain familiarity with the full boundary measurement, we review the

original construction of the boundary measurement, which was only valid for planar

graphs embedded on a disk [84], i.e. on a surface with genus g = 0 and B = 1

boundaries.

In order to construct a matrix with definite non-negative minors, we have to

modify some signs in the entries of MC , so as to map MC 7→ C ∈ G(k, n). To

do this we first introduce an overall sign (−1)s(i,j) to the entry MC
i,j, where s(i, j)

is the number of sources strictly between i and j, neglecting periodicity. Secondly,

we introduce a (−1) factor to every loop. These two modifications conspire in such

a way to obtain a matrix C whose minors are all non-negative, and moreover such

that its minors remain simple sums of flows.
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Example. We now provide an example to illustrate this method. We begin with

the diagram displayed in Figure 4.1, and the perfect orientation associated to the

reference matching consisting of edges X1,2, X1,4.

12

3

4

5
4

1 2

3

α2,3

α3,1

1/α1,2

α4,3

α5,1
α2,5 α4,5

1/α1,4

Figure 4.1: Bipartite graph for the top-cell of G(2, 4). The reference perfect match-

ing is shown in red. Arrows indicate the corresponding perfect orientation.

The relevant subset of the path matrix, choosing the clockwise ordering of ex-

ternal nodes starting at the edge X2,3, is

MC =


1 2 3 4

2 α2,3α4,3α5,1

α1,2α1,4

(
1−

α3,1α5,1
α1,2α1,4

) 1 α4,3α4,5

α1,4

(
1−

α3,1α5,1
α1,2α1,4

) 0

4 α2,3α2,5

α1,2

(
1−

α3,1α5,1
α1,2α1,4

) 0 α2,5α3,1α4,5

α1,2α1,4

(
1−

α3,1α5,1
α1,2α1,4

) 1



=


1 2 3 4

2
p4

1−p7 1 p2
1−p7 0

4
p3

1−p7 0 p5
1−p7 1

, (4.3.2)

where the labeling of perfect matchings follows that of Figure 2.3. This example

has a loop in the perfect orientation, which manifests itself as several terms in the

denominator, as explained above and in Appendix A.1.

We proceed in modifying the signs of the matrix MC to obtain the element of

the totally non-negative Grassmannian. The (−1)s(i,j) factor implies that we have

to multiply the entry MC
4,1 by (−1), since between 1 and 4 we have precisely one

source, i.e. node 2. The (−1) factor for loops amounts to replacing p7 → −p7. These
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two operations mapMC into the relevant element of the Grassmannian C ∈ G(2, 4):

C =


1 2 3 4

2 α2,3α4,3α5,1

α1,2α1,4

(
1+

α3,1α5,1
α1,2α1,4

) 1 α4,3α4,5

α1,4

(
1+

α3,1α5,1
α1,2α1,4

) 0

4 − α2,3α2,5

α1,2

(
1+

α3,1α5,1
α1,2α1,4

) 0 α2,5α3,1α4,5

α1,2α1,4

(
1+

α3,1α5,1
α1,2α1,4

) 1



=


1 2 3 4

2
f1f3

1 + f1

1
1

f4(1 + f1)
0

4 − 1

f2(1 + f1)
0

1

f2f3f4(1 + f1)
1

 . (4.3.3)

where in the second equality we have expressed the degrees of freedom using loop

variables.

The maximal minors of C ∈ G(k, n) are the Plücker coordinates ∆I . For this

example the Plücker coordinates are:

∆12 =
1

f2(1 + f1)
=

p3

1 + p7

∆23 =
1

f2f3f4(1 + f1)
=

p5

1 + p7

∆13 =
1

f2f4(1 + f1)
=

p1

1 + p7

∆24 = 1

∆14 =
f1f3

1 + f1

=
p4

1 + p7

∆34 =
1

f4(1 + f1)
=

p2

1 + p7

(4.3.4)

Several remarks are in order. First, all the minors of C have the form of sums

of flows, divided by possible loops, thanks to non-trivial cancellations. Secondly,

all minors are non-zero, reflecting the fact that the element of the Grassmannian

associated to C has maximal dimension k(n − k) = 4. This can be independently

verified by counting the number of independent face variables, which in this case is

four. Thirdly, all minors are manifestly positive, for positive edge weights.

The attentive reader may notice that the reference matching p̃6 doesn’t seem to

appear in (4.3.4). This is simply due to the fact that, being the reference matching,

it has been divided out in all the Plücker coordinates; this is closely related to having

chosen a GL(k) gauge. In order to recover a transparent relation between Plücker

coordinates and perfect matchings we need to multiply by those perfect matchings

which have the same source sets as this perfect orientation, in this case (p̃6 + p̃7).
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This yields the required map

∆12 ↔ p̃3 , ∆13 ↔ p̃1 , ∆14 ↔ p̃4 , ∆23 ↔ p̃5 , ∆24 ↔ p̃6 + p̃7 , ∆34 ↔ p̃2 .

(4.3.5)

4.3.3 Boundary Measurement on Arbitrary Genus-Zero Di-

agrams

Non-planar graphs can also be mapped to elements of the Grassmannian. In this

section we demonstrate the subtleties that need to be addressed by a non-planar

boundary measurement, and the prescription to implement them introduced in [3].

We shall restrict our discussion to graphs with genus zero and multiple boundaries.

For cases on the annulus, a well-defined map to the Grassmannian already exists

[123]; the one presented here reduces to the known cases on the annulus and the

disk in the cases with two boundaries or one boundary, respectively, and can be seen

as a generalization of them.

It is important to note that in the non-planar case the Plücker coordinates are

no longer positive definite, given positive edge weights. Thus, the image of the

map is no longer restricted to the positive part of the Grassmannian. However, the

prescription we provide is a generalization of the known boundary measurements,

and hence recovers manifest positivity on the disk.

As in the planar boundary measurement, for a given perfect orientation, the

matrix entries Cij of the element of the Grassmannian are composed of paths con-

necting the k sources to the n external nodes. Insisting on the conditions in §4.3.1,

in particular that minors of C be expressed as sums of flows, typically requires a del-

icate assignation of signs in the matrix entries Cij. There are two principal sources

of difficulty:

• The ordering of external nodes determines the position of the corresponding

columns in C, thus affecting the signs associated with minors involving that

column.

• Each loop gives a (−1) sign to a given flow in Cij. We will need a more general

prescription for counting loops.
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For compatibility with the known planar boundary measurement, we will also need

to keep the sign (−1)s(i,j) introduced in §4.3.2 that is given to a matrix entry Cij.

To address both issues, we introduce cuts between boundaries. These cuts might

cross over some of the edges of the graph. Figure 4.2 shows two examples with B = 2

and their respective cuts.8

=
4

1

4

2

3 3

1

13

2

5

4

(b)(a)

2

Figure 4.2: (a) A graph with two boundaries. The cut is represented by the green

dotted line. (b) Crossing external legs can be eliminated by introducing a new

boundary.

Prescription for Ordering the External Nodes. The ordering prescription

for the external nodes is fixed by creating a path along the cuts and boundaries, in

a way which is reminiscent of the computation of residues in complex analysis: we

start at an arbitrary point on one of the boundaries, and follow the boundary until

reaching a cut. Then we follow the cut to the next boundary, follow the boundary

to the next cut, and so on, until reaching the original starting point. This should be

done without ever crossing over any cuts or boundaries. An example of this, taken

from [3], is given in Figure 4.3. External nodes are labeled according to the order

in which they appear along the path.

We note that this ordering recovers the cyclic labeling of external indices for

planar graphs, as well as the canonical ordering on the annulus as given in [123].

8Figure 4.2(b) illustrates how crossing external legs can be traded with additional boundaries.
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5 1

2

7
64

3

Figure 4.3: Labeling of external nodes by following boundaries and cuts. The cuts

are represented by green dotted lines.

Prescription for Counting Loops. Matrix entries Cij are composed of paths

from source i to node j. To count loops for each path, we first close the path by

starting from the sink and following a succession of boundaries and cuts in order

to get from the sink to the source. In general, the loop that is thus created has

self-intersections. The rotation number r of the loop is defined as the number of full

clockwise revolutions of the loop minus the number of full counter-clockwise revolu-

tions. The sign assigned to each path is (−1)r+1. Note that this sign automatically

accounts for the sign (−1) given to loops in the original boundary measurement

described in §4.3.2. Figure 4.4 provides two examples where the rotation number is

computed.

The cut essentially measures the non-planarity of a path, by counting how many

times it goes around the non-trivial direction of the annulus. For this reason, it is

heuristically clear that the results cannot depend on the choice of cut. This is shown

to be the case in [123].

For computational convenience, there is a significantly faster way to compute the

signs (−1)r+1, valid on any graph embedded on genus g = 0, which does not involve

drawing and analyzing the path. Each time a path runs across a cut, it picks up a
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13

2

5

13

2

5

44

Figure 4.4: The path is closed using cuts and boundaries. The example on the left

has r = 0 and gives a sign (−1) to this contribution in C24. The example on the

right has r = 1 and gives no additional signs to this contribution in C24.

minus sign iff it is going between two boundaries that can only be reached using this

cut. Each entry in C is specified by its source and sink; it is easy then to identify

which cuts are going to be actively used in this matrix entry. Thus, each matrix

entry activates sign flips for only those edges that run across the relevant cuts. In

addition to these signs, it is necessary to add signs to closed loops that are present in

the perfect orientation. From a computational standpoint, it is then only necessary

to provide information on how nodes are distributed over the different boundaries,

which cuts are activated by each pair of boundaries, and which edges are crossed by

the respective cuts.

For reference, the examples in Figure 4.2(a) and Figure 4.3 are explicitly com-

puted in [3].

4.3.4 Boundary Measurement for Arbitrary On-Shell Dia-

grams

We are finally ready to present the full boundary measurement for arbitrary on-shell

diagrams embedded on surfaces of arbitrary genus and number of boundaries. As is
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made clear in multiple examples in [6], the difficulty of generalizing the prescription

to higher genus is in computing the rotation number when closing the flow into a

loop. For example, it is sometimes possible for a loop to avoid the cut by circling

around a non-trivial loop αi or βi of the surface, thus avoiding a crucial minus sign

needed to preserve the map between Plücker coordinates and perfect matchings. The

prescription we are about to illustrate addresses this. It can also have additional

interesting consequences however, such as producing additional signs for flows even

in the absence of cuts, as is demonstrated in Appendix A.2.

Following [6], in order to extend the boundary measurement to higher genus, we

propose an explicit prescription for constructing the loop: it should be closed within

the unit cell. This is done as follows: every time a flow goes around a non-trivial

loop and thus uses the periodicity of the Riemann surface, we connect its exit and

entry points of the unit cell. This procedure is illustrated in Figure 4.5 for genus

g = 1. This process creates a closed loop which is entirely contained inside the unit

cell, whose rotation number r is used to determine the combinatorial sign (−1)r+1

associated to the corresponding flow.

Figure 4.5: A schematic representation of how to close a flow within the unit cell in

the case of a torus.

We emphasize that this prescription is a proposal, and it would be desirable to

develop a proof for it and to consider its dependence on things such as the choice

of unit cell. In order to arrive to it we have considered several explicit examples,

like the ones presented in this thesis, and verified that it works, as opposed to other

ways of determining the rotation numbers.
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Summary of the Method

In summary, the construction of the most general boundary measurement is the

following:

• Embed the on-shell diagram on a surface. Since the choice of surface is irrel-

evant, it is convenient to embed it on a surface of genus zero, if possible, and

with the fewest possible number of boundaries.

• Choose cuts. Label the n external nodes according to the prescription illus-

trated in Figure 4.3.

• Choose a perfect orientation, which determines a source set made out of k

external nodes.

• Construct a k × n matrix MC , with entries equal to the sum of connected

oriented paths from source i to external node j. To construct MC it is con-

venient to follow the algorithm reviewed in Appendix A.1. So far we have not

introduced any signs (−1)sΓ = (−1)s(i,j)(−1)r+1 .

• Give an overall sign (−1)s(i,j) to matrix entries MC
ij.

• For each contribution to MC
ij, close the path using the boundaries and cuts.

Every time the path goes around a non-trivial direction of the higher-genus

surface, close the path analogously to Figure 4.5. Count the rotation number

r of the resulting loop, and assign a (−1)r+1 to this contribution in MC
ij. For

graphs embedded on a surface of genus zero, it is not necessary to draw the

path: knowledge of which edges and cuts are used is sufficient, as described

at the end of §4.3.3. We have now completed the map to the Grassmannian

MC 7→ C ∈ G(k, n).9

Our boundary measurement applies to arbitrary genus, reducing to the already

known prescription on genus-zero graphs. For illustrative purposes and to provide

9Whether this way of assigning signs is unique is an interesting question, beyond the scope of

this thesis.
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evidence supporting our proposal, we shall now present a g = 1 example. Appendix

A.2 additionally presents a g = 2 example with a single boundary and hence no

cuts, illustrating that in general it is necessary to have (−1)r+1 signs even in the

absence of cuts.

A Genus-One Example. Let us explore the genus-one on-shell diagram pre-

sented in Figure 4.6, where we have drawn the perfect orientation associated to

the reference perfect matching p̃4 = α1,3α4,2α4,5α7,3α7,6. This diagram does not ad-

mit a g = 0 embedding. The figure also shows the cut we have chosen, and the

correspondingly correctly labeled external nodes.

X1,1

1

3

2

4

6

5

1

1

1

1

2

3

7

5

6

4

X1,1

X2,1

X1,4

X5,1X6,1

X1,7

Y1,1 Y1,1

X1,3

X3,2

X3,6

X4,2

X7,6

X7,3

X4,5

X2,5

Figure 4.6: A reduced on-shell diagram embedded into a torus with two bound-

aries. This graph cannot be embedded on any surface with g = 0. The dotted line

represents the cut.

This diagram has 34 perfect matchings; the corresponding flows in the perfect

orientation under consideration and their source sets are

p1 =
α1,4α1,7

α4,2α4,5α7,3α7,6
{1, 3, 5} p18 =

α2,5α3,6α′1,1
α1,3α4,5α7,6

{4, 5, 6}
p2 =

α1,4

α4,2α4,5
{1, 2, 5} p19 =

α2,1α2,5α3,6

α1,3α4,2α7,3
{2, 3, 6}

p3 =
α1,7

α7,3α7,6
{1, 3, 4} p20 =

α2,1α2,5α3,6α′1,1
α1,3α4,2α4,5α7,3α7,6

{3, 5, 6}
p4 = 1 {1, 2, 4} p21 =

α2,5α6,1

α1,3α7,6
{1, 4, 6}

p5 =
α′1,1

α4,5α7,6
{1, 4, 5} p22 =

α1,1α2,5

α1,3α4,2
{1, 2, 6}

p6 =
α2,1

α4,2α7,3
{1, 2, 3} p23 =

α2,1α2,5α6,1

α1,3α4,2α7,3α7,6
{1, 3, 6}
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p7 =
α2,1α′1,1

α4,2α4,5α7,3α7,6
{1, 3, 5} p24 =

α1,1α2,5α′1,1
α1,3α4,2α4,5α7,6

{1, 5, 6}
p8 =

α1,4α1,7α2,5α3,6

α1,3α4,2α4,5α7,3α7,6
{3, 5, 6} p25 =

α3,2α3,6

α1,3α7,3
{2, 3, 4}

p9 =
α1,4α2,5α3,6

α1,3α4,2α4,5
{2, 5, 6} p26 =

α3,6α5,1

α1,3α4,5
{2, 4, 5}

p10 =
α1,4α2,5α6,1

α1,3α4,2α4,5α7,6
{1, 5, 6} p27 =

α3,2α3,6α′1,1
α1,3α4,5α7,3α7,6

{3, 4, 5}
p11 =

α1,4α3,2α3,6

α1,3α4,2α4,5α7,3
{2, 3, 5} p28 =

α2,1α3,6α5,1

α1,3α4,2α4,5α7,3
{2, 3, 5}

p12 =
α1,4α3,2α6,1

α1,3α4,2α4,5α7,3α7,6
{1, 3, 5} p29 =

α3,2α6,1

α1,3α7,3α7,6
{1, 3, 4}

p13 =
α1,7α2,5α3,6

α1,3α7,3α7,6
{3, 4, 6} p30 =

α5,1α6,1

α1,3α4,5α7,6
{1, 4, 5}

p14 =
α1,1α1,7α2,5

α1,3α4,2α7,3α7,6
{1, 3, 6} p31 =

α1,1α3,2

α1,3α4,2α7,3
{1, 2, 3}

p15 =
α1,7α3,6α5,1

α1,3α4,5α7,3α7,6
{3, 4, 5} p32 =

α1,1α5,1

α1,3α4,2α4,5
{1, 2, 5}

p16 =
α1,1α1,7α5,1

α1,3α4,2α4,5α7,3α7,6
{1, 3, 5} p33 =

α1,1α3,2α′1,1
α1,3α4,2α4,5α7,3α7,6

{1, 3, 5}
p17 =

α2,5α3,6

α1,3
{2, 4, 6} p34 =

α2,1α5,1α6,1

α1,3α4,2α4,5α7,3α7,6
{1, 3, 5}

(4.3.6)

We are now ready to construct the corresponding element of the Grassmannian.

The first step is to introduce the positivity signs (−1)s(i,j) in MC , which yields the

following preliminary matrix
1 2 3 4 5 6

1 1 0 −p25 0 p26 p17

2 0 1 p3 + p29 0 −p5 − p30 −p21

4 0 0 p6 + p31 1 p2 + p32 p22

 . (4.3.7)

It is straightforward to verify that the minors of this matrix are not linear combi-

nations with coefficients ±1 of all the flows with the corresponding source sets; the

signs in (4.3.7) do not produce the necessary cancellations.

Figure 4.7 shows the closed loops associated to each flow and the corresponding

(−1)r+1 sign arising from our prescription. We see that only the flow p31 picks up

an additional minus sign. After including it, we obtain the Grassmannian matrix

C =


1 2 3 4 5 6

1 1 0 −p25 0 p26 p17

2 0 1 p3 + p29 0 −p5 − p30 −p21

4 0 0 p6 − p31 1 p2 + p32 p22

 . (4.3.8)
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Figure 4.7: Completion of flows into loops inside the unit cell for the example in

Figure 4.6, their rotation numbers and the resulting signs.
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This gives rise to the cancellations required to obtain the Plücker coordinates

∆1,2,3 = p6 − p31 ∆2,3,4 = p25

∆1,2,4 = 1 ∆2,3,5 = p11 + p28

∆1,2,5 = p2 + p32 ∆2,3,6 = p19

∆1,2,6 = p22 ∆2,4,5 = p26

∆1,3,4 = p3 + p29 ∆2,4,6 = p17

∆1,3,5 = p1 + p7 + p12 + p16 − p33 + p34 ∆2,5,6 = p9

∆1,3,6 = p14 + p23 ∆3,4,5 = p15 − p27

∆1,4,5 = p5 + p30 ∆3,4,6 = p13

∆1,4,6 = p21 ∆3,5,6 = p8 + p20

∆1,5,6 = p10 − p24 ∆4,5,6 = p18

(4.3.9)

A quick comparison with (4.3.6) will show that the Plücker coordinates are indeed

expressed as a sum of those flows whose source set is the index of the Plücker

coordinate, as desired. We note that this example not only is reduced and non-

planarizable, but also has multiple boundaries, constituting a rather non-trivial

check of our proposal.

4.4 Scattering Amplitude Perspective on Equiva-

lence and Reduction

There are an infinite number of on-shell diagrams. It is thus desirable to come up

with a classification of them, i.e. to endow this plethora of diagrams with some

structure and order. Such a classification is achieved by identifying equivalence

classes of diagrams, which are related by equivalence moves and reductions, as for

BFTs. Graph equivalences and reductions are well understood for planar graphs

[34]. In particular, they are all captured by and can be defined in terms of the

operations discussed in §2.6. The realm of non-planar graphs will turn out to be

more complicated, since the edge-deletion operation in §2.6.2 is not guaranteed

to be a reduction—though all reductions are guaranteed to be of the form of an

edge deletion. In this section we will take important steps towards developing a

systematic and combinatorial approach, based on the generalized matching and



4.4. Scattering Amplitude Perspective on Equivalence and Reduction113

matroid polytopes, to the classification of general on-shell diagrams, including non-

planar ones. For this purpose, it is convenient to define:

• Region matching: This term indicates the case in which the regions of

the Grassmannian parametrized by different on-shell diagrams coincide. Two

necessary conditions in order for two on-shell diagrams to be equivalent are

region matching and having the same number of degrees of freedom.

• Reduction: An on-shell diagram B is a reduction of an on-shell diagram A,

if it is obtained from A by deleting edges and it covers the same region of the

Grassmanian as A.

For amplitudes, reducibility is essentially the statement that there exists a variable

transformation in (4.2.5) such that one or more variables only appear in the dlog

form. In particular, these variables are absent from the matrix C. The idea of

reduction leads to the concept of a reduced graph:

• Reduced graph: A graph is reduced if it is impossible to remove edges from

it while covering the same region of the Grassmannian.

The importance of reduced graphs stems from the fact that there are a finite number

of them for every scattering process and they contain all information required for

addressing certain questions, e.g. determining leading singularities.

Let us be specific about the difference between planar and non-planar diagrams.

For planar diagrams, the region of the Grassmannian covered by the graph is fully

determined by specifying the non-vanishing Plücker coordinates. Expressed differ-

ently, to know which region of the Grassmannian is covered by the degrees of freedom

of the on-shell diagram, through the boundary measurement we have introduced in

the previous section, it is sufficient to know which points in the matroid polytope

are present.

For non-planar diagrams, it is in general not sufficient to simply know which

points in the matroid polytope are present, or equivalently which Plücker coordinates

are non-zero: it is possible that constraints between Plücker coordinates beyond

Plücker relations might exist. These new relations are discussed in detail in §6.4.

Finally, let us mention that non-planar diagrams exhibit additional new features,

such as having non-unique reductions [1, 124]. This does not modify the definition
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of reductions, but is rather a consequence of the definition.

4.4.1 Combinatorial Implementation in Terms of Polytopes

The characterization of on-shell diagrams outlined above has a powerful implemen-

tation in terms of matching and matroid polytopes. First, we note that for diagrams

that do not admit constraints among Plücker coordinates beyond the Plücker re-

lations, the matroid polytope is already a perfect diagnostic for graph-equivalence

and reducibility. Hence, all of the discussion in §2.6 applies directly to all such

diagrams; in particular, the efficient approach to reducibility can be used without

modifications.

In the presence of new constraints, preserving the matroid polytope is a necessary

but not sufficient condition for ensuring graph-equivalence and reductions. As we

shall see in §6.4, these new constraints are completely characterized by the matching

polytope. Hence, in order to determine whether two diagrams are move-equivalent

or related by a reduction, we must:

• Ensure that the matroid polytope is preserved, and

• Use the matching polytope to determine whether the two diagrams are subject

to the same constraints among Plücker coordinates.

Together, these two conditions can check the move-equivalence or reduction be-

tween any pair on-shell diagrams. In particular, cases without new constraints

among Plücker coordinates, e.g. all planar diagrams and a vast proportion of non-

planar diagrams, are diagnosed by the same two conditions, with the second condi-

tion being trivially satisfied.

4.5 Singularity Structure of On-shell Diagrams:

New Methods

We have studied how the degrees of freedom of the on-shell diagram are mapped

to elements of the Grassmannian. These then appear in the on-shell form whose
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integration yields the corresponding scattering amplitude. As already explained in

§4.2.3, the full singularity structure of the amplitude is obtained by starting from a

reduced graph, and sequentially deleting removable edges.

From a mathematical viewpoint such a decomposition is interesting because,

for planar graphs, it corresponds to the positroid stratification of the totally non-

negative Grassmannian. Recall that the positroid stratification can also be regarded

as the intersection between the matroid stratification and the totally non-negative

Grassmannian. More generally, as we discuss in §4.5.2, for arbitrary graphs the

decomposition considered in this section can be regarded as a partial matroid de-

composition, which we shall call the combinatorial decomposition. This will allow

us to go beyond the positive regions of the Grassmannian, which are specific to the

planar diagrams.

The combinatorial decomposition stratifies a region or cell in the Grassmannian

into its constituent lower-dimensional components, and can be seen as characterizing

the entire boundary structure of this region. In this way it provides a detailed

geometric characterization of the Grassmannian element.

The combinatorial decomposition can be nicely visualized in terms of a poset, in

which every node corresponds to a reduced graph and arrows indicate the deletion

of a removable edge. For planar graphs, every site in the poset corresponds to a

positroid stratum, represented by a specific matroid stratum. Figure 4.8 presents

the simple example of the positroid decomposition of the top-cell of G(2, 4), obtained

by this procedure.10

In the following sections we shall show that the combinatorial decomposition of

the Grassmannian can be obtained in a different but very efficient way, which makes

heavy use of the geometry already associated to the graphs [3]. This alternative

way of stratifying the Grassmannian element is computationally very powerful, and

never makes explicit use of Plücker coordinates, removable edges or reducibility. It

is deeply motivated by thinking of graphs and geometry in terms of BFTs, and

works for all on-shell diagram that do not admit new constraints among Plücker

10In the physics literature, the positroid stratification of G(2, 4) has appeared in [34].
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Figure 4.8: Positroid decomposition of G(2, 4). Each site corresponds to a positroid

stratum, and we indicate the associated graph and surviving perfect matchings.

coordinates.

4.5.1 Combinatorial Decomposition Via Polytopes

We will first apply our ideas to planar graphs, which are well-known to experts. We

shall then move on to treating the non-planar case, which deserves a detailed study

of its own, since it remains relatively unexplored.

Step 1: Edge Removal. The first step of the process corresponds to removing

every possible equivalence class of edges of the graph, one at a time. Two edges

are considered equivalent if they participate in the same set of perfect matchings.
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Edges can become equivalent after removing other edges and the associated perfect

matchings. This process terminates when the surviving graph coincides with a

perfect matching of the original one, i.e. to a vertex in the matching polytope.

Notice that any edge can be removed, i.e. there is no restriction to removable edges.

The graphs generated by this procedure and their relations can be organized into an

Eulerian poset, which is different from the poset discussed in the previous section.

Interestingly, removing edges is equivalent to constructing the face lattice11 of the

matching polytope [101]. Let us explain in more detail the structure of the poset

for the matching polytope. Consider a matching polytope of dimension dmatching.

Its boundary has dimension equal to (dmatching − 1) and is a union of facets. Each

facet is defined as the intersection of the boundary with a (dmatching−1)-dimensional

hyperplane. In turn, each of these facets has a (dmatching − 2)-dimensional bound-

ary, which can also be decomposed into faces, and so on. The face lattice of the

matching polytope is generated by iterating the boundary operator until reaching

0-dimensional faces.

In this approach, faces are directly determined from the positions of points in

the matching polytope. Computer applications constructing the set of faces for

arbitrary polytopes are publicly available, see e.g. Polymake [125]. Contrary to the

method based on removing edges, Polymake only requires a single bipartite graph

at the initial step, for determining the matching polytope.

Example. Let us consider the planar graph associated to the top-cell of G(2, 4),

which is shown in Figure 4.1. The matching polytope has seven different points

corresponding to its perfect matchings and is given by the following perfect matching

matrix

P =



p1 p2 p3 p4 p5 p6 p7

X1,2 0 1 0 0 0 1 0

X1,4 0 0 1 0 0 1 0

X3,1 0 0 0 0 1 0 1

X5,1 0 0 0 1 0 0 1

X2,3 1 0 1 1 0 0 0

X2,5 1 0 1 0 1 0 0

X4,5 1 1 0 0 1 0 0

X4,3 1 1 0 1 0 0 0


. (4.5.1)

11In the face lattice we do not include the empty set.
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This matrix defines a 4d polytope, as becomes clear by row-reduction.

Let us briefly discuss the relation between edge removal and lower-dimensional

faces of the matching polytope. Recall that removing an edge Xi results in eliminat-

ing the perfect matchings pµ for which the corresponding entry Piµ is equal to 1. In

this example, we obtain eight different subgraphs at the first level, corresponding to

eight 3d faces. We then continue removing additional edges, successively obtaining

lower-dimensional faces until reaching the vertices of the matching polytope, which

correspond to the 7 perfect matchings. The resulting face lattice is shown in Figure

4.10.

Step 2: Identification. The final step in the combinatorial decomposition in-

volves identifying perfect matchings associated to the same point in the matroid

polytope, equivalently to the same Plücker coordinate. This results in the identifi-

cation, or more precisely merging, of nodes in the poset for the face lattice of the

matching polytope we constructed in the previous section.

The identification of perfect matchings can give rise to two qualitatively different

types of identifications. We refer to them as horizontal and vertical identifications,

following their effect on points on the poset. They are defined as follows:

• Horizontal identifications: they merge nodes in the poset that sit at the

same level. Their effect on the matching polytope is to identify different faces

without affecting their dimensionalities.

• Vertical identifications: from the viewpoint of the poset, they merge nodes

at different levels. They identify different points in a given face of the matching

polytope and result in a lower-dimensional one.

Figure 4.9 shows simple examples of each class of identification at the level of

the matching polytope. We emphasize that this figure is only schematic; generally,

more than two perfect matchings can be simultaneously involved in identifications,

and the identification of faces will in general produce an object which can no longer

be seen as a polytope.

This approach to decomposition makes certain general properties of the final

poset obtained after identifications rather clear. In particular:
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(a) (b)

Figure 4.9: Two types of identifications: (a) horizontal and (b) vertical. Here we

show the action on points in the matching polytope. Points, i.e. perfect matchings,

to be identified are shown in blue and red. Purple dots indicate the resulting points

after identification.

• The number of levels is equal to the dimensions of the matching polytope of

a reduced graph in the equivalence class of the starting point plus one. This

number is invariant under graph equivalence, and does not depend on the

initial graph being reduced.

• The number of sites in the lowest level of the poset is equal to the number of

points in the matroid polytope.

Finally, we note that the combinatorial decomposition does not require irre-

ducibility at any step. Not only is restricting to removable edges, i.e. to reduced

graphs at intermediate steps, not necessary, but the starting point also does not

need to be a reduced graph. In [3] we illustrated this point with the example of the

reducible graph in Figure 2.8, which as shown in §2.6.2 reduces to Figure 4.1.

Example. Returning to the G(2, 4) example, the matroid polytope in this case is

given by:

Gmatroid =



p1 p2 p3 p4 p5 p6 p7

X2,3 1 0 1 1 0 0 0

X2,5 1 0 1 0 1 0 0

X4,5 1 1 0 0 1 0 0

X4,3 1 1 0 1 0 0 0


. (4.5.2)

The 7 perfect matchings are mapped to 6 points, with p6 and p7 becoming coinci-

dent. Figure 4.10 shows the face lattice for the matching polytope. Colored nodes
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need to be merged with some of the white ones, following the identification of p6

and p7: green and blue nodes are subject to horizontal and vertical identifications,

respectively. White nodes correspond to the nodes in Figure 4.8. It is straightfor-

ward to verify that the entire structure of Figure 4.8, i.e. including its arrows, is

recovered by the identifications.

1234567

13457 25672467 3467 356712346 12356 12457

346 356 247 257 347 357 267 367 467 567124 125 134 135 1236 1457 246 256

35 26 36 46 56 27 37 47 57 6712 14 13 15 24 25 34

4 5 6 71 2 3

Figure 4.10: Face lattice of the matching polytope for the graph in Figure 4.1. At

each point, we indicate the corresponding graph and the surviving perfect matchings.

When p6 and p7 are identified, green and blue nodes in the poset are subject to

horizontal and vertical identifications, respectively.

4.5.2 Relation to the Matroid Stratification

In the previous section we introduced the combinatorial decomposition of a bipartite

diagram and discussed different implementations.

Here we consider another natural decomposition we can relate to a bipartite

graph, which is the matroid stratification of the associated Grassmannian element,

and comment on their relation. As was made clear in §4.1.7, and further emphasized
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in the construction of the boundary measurement, perfect matchings pµ are associ-

ated to the Plücker coordinates ∆I whose index I is the source set of the perfect

orientation of pµ, i.e. ∆I ↔ {pIµ}.
In this way it is possible to translate sites in the combinatorial decomposition

to matroid strata. However, generally not all matroid strata can be generated by

removing edges from a fixed starting graph. The combinatorial decomposition can

thus be regarded as a partial matroid decomposition. In Appendix A.3, we speculate

on possible ways to achieve the complete matroid stratification in terms of bipartite

graphs.

In practical terms, the combinatorial decomposition is given by the intersection

between the matroid stratification and the lattice generated by all possible edge

removals. For planar graphs, this reduction can be alternatively obtained by inter-

secting the matroid stratification with the totally non-negative Grassmannian, as

explained in §4.1.6.

Example. Returning to the example in Figure 4.8, we can read off the relation

between Plücker coordinates and perfect matchings from (4.3.4). Using the figure,

the matroid strata we are left with are

d = 4 {12, 13, 14, 23, 24, 34}
d = 3 {12, 13, 14, 23, 24}, {12, 13, 14, 24, 34},

{12, 13, 23, 24, 34}, {13, 14, 23, 24, 34}
d = 2 {12, 13, 14}, {12, 13, 23}, {12, 14, 24}, {12, 23, 24}, {13, 14, 34}, {13, 23, 34},

{14, 24, 34}, {23, 24, 34}, {12, 13, 24, 34}, {13, 14, 23, 24},
d = 1 {12, 13}, {12, 14}, {12, 23}, {12, 24}, {13, 14}, {13, 23}, {13, 34}, {14, 24},

{14, 34}, {23, 24}, {23, 34}, {24, 34},
d = 0 {12}, {13}, {14}, {23}, {24}, {34},

(4.5.3)

where we have used the Plücker relation

∆12 ∆34 + ∆23 ∆14 = ∆13 ∆24 (4.5.4)

in order to recognize the dimension of each matroid stratum and to arrange it at the

correct level. The only matroid strata which do not appear are {12, 13, 14, 23, 34},
{12, 14, 23, 24, 34} and {12, 14, 23, 34}.
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The table in (4.5.3) is indeed the positroid stratification depicted in Figure 4.11,

which is identical to Figure 4.8. For each graph we show its matroid labels (dark

green) and its positroid labels (light green).

{12,13,14,23,24,34}

{12,23,34,14}

{12,13,14,23,24}{12,13,14,24,34,} {12,13,23,24,34} {13,14,23,24,34}

{12,14,24} {12,23,24}{13,14,34} {13,23,34} {12,13,14} {12,13,23}{12,13,24,34}{13,14,23,24}{14,24,34} {23,24,34}

{12,23} {24,34} {12,24} {14,24} {23,24}{13,34} {13,14} {12,13} {13,23} {14,34} {23,34} {12,14}

{14} {23} {24}{13} {34} {12}

{12,24,34,14} {12,23,34,24} {13,23,34,14} {12,23,13,14}

{13,34,14} {13,23,34} {12,13,14} {12,23,13} {12,24,34} {13,23,14} {14,24,34} {23,34,24} {12,24,14} {12,23,24}

{23,24}{13,34} {13,14} {12,13} {13,23} {14,34} {23,34} {12,14} {12,23} {24,34} {12,24} {14,24}

{13} {34} {12} {14} {23} {24}

Figure 4.11: Positroid stratification of G(2, 4). Each graph maps to a matroid

stratum whose matroid is indicated in dark green. The positroid stratum containing

the matroid stratum is shown in light green. We see that all positroid strata are

present, and no two graphs are in the same positroid stratum.

4.5.3 Combinatorial Decomposition of Non-Planar Graphs

In this section we will apply the techniques introduced in §4.5.1 to a non-planar

diagram. We present in detail an example and construct its decomposition. As we

will see, the combinatorial decomposition of non-planar on-shell diagrams does not

correspond to the positroid stratification of the Grassmannian, but is still a subset

of the matroid stratification. Appendix A.3 collects some ideas about how the full
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matroid stratification might be achieved by combining different graphs. Additional

examples can be found in [3].

Example: Graph on the Annulus. We begin by illustrating our techniques

with the example displayed in Figure 4.12. This example has 15 perfect matchings.

13

2

5

4

6

2 3

1
4 5X4,1 X1,5

X2,1 X1,3

X5,4

X5,6

X6,1

X3,6

X3,2

X1,6

X6,4

X6,2

X2,3

Figure 4.12: A non-planar graph for a top-dimensional region of G(3, 5). The cut is

indicated by a green dotted line. Arrows show the perfect orientation associated to

the perfect matching p1, which contains edges X1,3, X1,6, X2,3 X5,4 and X5,6.

The matching polytope is given by

P =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

X1,3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

X1,6 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0

X3,6 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1

X6,1 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0

X1,5 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1

X2,1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1

X4,1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0

X6,2 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0

X2,3 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0

X5,4 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0

X5,6 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0

X3,2 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0

X6,4 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1



(4.5.5)
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and is 6-dimensional. The matroid polytope is given by the last 5 lines of P and

has dimension 4. This example has 10 non-vanishing Plücker coordinates, and the

following Plücker relations:

∆125∆134 −∆124∆135 + ∆123∆145 = 0 , ∆125∆234 −∆124∆235 + ∆123∆245 = 0 ,

∆135∆234 −∆134∆235 + ∆123∆345 = 0 , ∆145∆234 −∆134∆245 + ∆124∆345 = 0 ,

∆145∆235 −∆135∆245 + ∆125∆345 = 0

of which only 3 are independent.

The face lattice of the matching polytope contains 412 elements of various di-

mensions; it is therefore very impractical to draw the full poset. Below we present

the first level in detail; subsequent levels follow analogously.

First Level: Dimension 5. This example has 13 edges. We now proceed by remov-

ing them to obtain the first level of the face lattice of the matching polytope, which

contains the following faces:

Removed
Face

edge

X1,3 p6, p7, p8, p9, p10, p11, p12, p13, p14, p15

X1,6 p3, p4, p5, p9, p10, p11, p12, p13, p14, p15

X3,6 p1, p2, p3, p4, p5, p6, p9, p10, p12, p14

X6,1 p1, p2, p3, p4, p5, p7, p8, p11, p13, p15

X1,5 p1, p3, p4, p6, p7, p9, p10, p11, p12, p13, p14

X2,1 p1, p2, p3, p4, p5, p6, p7, p8, p12, p14

X4,1 p1, p2, p3, p5, p6, p7, p8, p9, p11, p12, p15

X6,2 p1, p2, p6, p7, p8, p9, p10, p11, p13, p15

X2,3 p3, p4, p5, p7, p8, p11, p12, p13, p14, p15

X5,4 p2, p4, p5, p8, p10, p13, p14, p15

X5,6 p2, p5, p6, p8, p9, p10, p12, p14, p15

X3,2 p1, p2, p3, p4, p5, p9, p10, p11, p13, p15

X6,4 p1, p2, p4, p6, p7, p8, p10, p13, p14

(4.5.6)

where the faces in the table show the surviving perfect matchings after removal of

the corresponding edge. In order to find the decomposition we are interested in,

we proceed by identifying perfect matchings which have the same coordinate in the
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matroid polytope, as explained in §4.5.1. This can be done by looking at (4.5.5)

and is:

{p1} {p2, p10} {p3, p11} {p4, p13} {p5, p15} {p6} {p7} {p8, p14} {p9} {p12} .
(4.5.7)

The faces then become:

Removed
Face Plücker Coordinates

edge

X1,3 p6, p7, p8, p9, p10, p11, p12, p13, p15 ∆123,∆234,∆134,∆125,∆135,∆245,∆124,∆345,∆145

X3,6 p1, p2, p3, p4, p5, p6, p9, p12, p14 ∆235,∆135,∆245,∆345,∆145,∆123,∆125,∆124,∆134

X1,5 p1, p3, p4, p6, p7, p9, p10, p12, p14 ∆235,∆245,∆345,∆123,∆234,∆125,∆135,∆124,∆134

X2,1 p1, p2, p3, p4, p5, p6, p7, p8, p12 ∆235,∆135,∆245,∆345,∆145,∆123,∆234,∆134,∆124

X4,1 p1, p2, p3, p5, p6, p7, p8, p9, p12 ∆235,∆135,∆245,∆145,∆123,∆234,∆134,∆125,∆124

X6,2 p1, p2, p6, p7, p8, p9, p11, p13, p15 ∆235,∆135,∆123,∆234,∆134,∆125,∆245,∆345,∆145

X1,6 p3, p4, p5, p9, p10, p12, p14 ∆245,∆345,∆145,∆125,∆135,∆124,∆134

X6,1 p1, p2, p3, p4, p5, p7, p8 ∆235,∆135,∆245,∆345,∆145,∆234,∆134

X2,3 p3, p4, p5, p7, p8, p12 ∆245,∆345,∆145,∆234,∆134,∆124

X5,4 p2, p4, p5, p8 ∆135,∆345,∆145,∆134

X5,6 p2, p5, p6, p8, p9, p12 ∆135,∆145,∆123,∆134,∆125,∆124

X3,2 p1, p2, p3, p4, p5, p9 ∆235,∆135,∆245,∆345,∆145,∆125

X6,4 p1, p2, p4, p6, p7, p8 ∆235,∆135,∆345,∆123,∆234,∆134

(4.5.8)

In the table above we show the surviving perfect matchings after removing the

corresponding edge in the graph, and after the identifications in (4.5.7). We also

show the non-vanishing Plücker coordinates for each subgraph.

As a consequence of the identifications, the faces in the lower half of the table

are of dimension lower than 5 and get identified with other lower-dimensional ones,

i.e. they are subject to vertical identifications. This can be deduced by counting the

surviving Plücker coordinates and relevant Plücker relations (4.5.6). Hence X1,6,

X6,1, X2,3, X5,4, X5,6, X3,2 and X6,4 are not removable edges. For the remaining

6 boundaries there is no horizontal identification at this level, so the 6 removable

edges are X1,3, X3,6, X1,5, X2,1, X4,1 and X6,2. The removal of any of these edges

yields a 5-dimensional element of the Grassmannian. Each of these corresponds to

a differential form which is a singularity in the sense explained in §4.2.3. Moreover,
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each of the boundaries also corresponds to a matroid stratum with 9 elements each,

where the elements are given by the indices of the Plücker coordinates in (4.5.8).

Full Combinatorial Decomposition. To represent the boundaries of the entire poset,

we group the elements in each level of the poset by how many perfect matchings they

have, thus presenting the information of each level by pairs of numbers, where the

first specifies the number of faces of a certain type and the second specifies the type.

For example, 14[6] means there are 14 faces, each containing 6 perfect matchings.

This information is presented in Table 4.1.

d Faces of matching polytope

5 1[8], 2[9], 8[10], 2[11]

4 11[5] 14[6], 23[7], 12[8]

3 67[4], 46[5], 13[6]

2 112[3], 19[4]

1 67[2]

0 15[1]

Table 4.1: Faces of the matching polytope. At each level of dimension d, a pair of

numbers m[n] indicates that there are m boundaries consisting of n perfect match-

ings.

After the identification (4.5.7), 272 of the faces get identified with other bound-

aries, to yield a poset with 140 elements, described by Table 4.2. It is straightforward

to verify that these tables agree with the detailed analysis of the first level presented

before.

As a further check, using the methods introduced in §2.6.3 and applying the

identification (4.5.7) it is straightforward to check that Table 4.2 is consistent with

the poset obtained by deleting only removable edges.
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d Matroids

5 6[9]

4 5[6], 6[7], 6[8]

3 5[4], 5[24], 6[6]

2 30[3], 12[4]

1 30[2]

0 10[1]

Table 4.2: Matroids in the decomposition of the diagram shown in Figure 4.12. At

each level, a pair of numbers m[n] indicates that there are m matroids consisting of

n bases.

4.5.4 Non-Eulerian Posets

The face lattice of a convex polytope is a graded poset. Moreover this poset is

Eulerian, which means that the number of elements of even dimension is one more

than the number of elements of odd dimension, i.e.

d∑
i=0

(−1)iN
(i)
B = 1, (4.5.9)

where d is the dimension of the polytope and N
(i)
B is the number of faces of the

polytope of dimension i.12 This quantity is known as the Euler number.

As a check that the face lattice of the matching polytope for non-planar graphs

can be obtained through successive edge removal, we evaluate the Eulerian number

in the previous example:

6∑
i=0

(−1)iN
(i)
B = 15− 67 + 131− . . .+ 1 = 1 . (4.5.10)

While the positroid stratification was shown to be Eulerian [126], for non-planar

cases the combinatorial decomposition is in general not Eulerian. The example

12If we were to include the empty set in our face lattice, the number of boundaries would sum

to 0 rather than 1.
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above is an excellent confirmation of this fact:

6∑
i=0

(−1)iN
(i)
B = 10− 30 + 42− . . .+ 1 = −1 . (4.5.11)

In [3] we provide an additional example where the Euler number is seen to be 14.

The appearance of non-Eulerian posets should not be surprising: due to the nature of

the identifications involved in the combinatorial decomposition, the resulting poset

will in general not describe the face lattice of a geometric polytope.

4.6 Conclusions

We presented a detailed investigation of the geometric and combinatorial structures,

which are ingrained in N = 4 SYM scattering amplitudes at a fundamental level.

Such objects become manifest when formulating gauge theories in terms of on-

shell diagrams, equivalently bipartite graphs. We extended these correspondences

along various directions, most notably by the inclusion of non-planarity. The new

structures we uncovered are natural candidates to arise in scattering amplitudes

beyond the planar limit.

As part of our investigation, we introduced a new combinatorial decomposition

of the Grassmannian, which reduces to its positroid stratification for planar graphs.

We explained how this decomposition can be directly obtained from the matching

and matroid polytopes.

We also extended the boundary measurement, which maps bipartite graphs to

the Grassmannian, to graphs on surfaces of arbitrary genus and arbitrary number

of boundaries.

Our work suggests that general bipartite graphs, i.e. including non-planar ones,

can lead to a more refined description of the Grassmannian. It would be extremely

interesting to continue investigating, along the lines of Appendix A.3, how they can

be exploited for the matroid stratification of the Grassmannian.



Chapter 5

Anatomy of the Amplituhedron

This chapter initiates a comprehensive investigation of the geometry of the ampli-

tuhedron, a recently found geometric object whose volume calculates the integrand

of scattering amplitudes in planar N = 4 SYM theory.

5.1 The Amplituhedron

In this section we provide a brief introduction to the amplituhedron. We refer the

reader to [79,80] for further details.

5.1.1 Tree-Level Amplituhedron

The amplituhedron is a generalization of the positive Grassmannian conjectured

to give all scattering amplitudes in planar N = 4 SYM theory when integrated

over with an appropriate volume form. The amplituhedron can be regarded as a

generalization of the interior of a set of n vertices ZI of dimension (k + 4), where

(k+2) is the number of negative-helicity gluons, I = 1, 2, . . . , k+4, and n is the total

number of external gluons. In this notation, k = 0 corresponds to MHV amplitudes,

contrary to our definition in Chapter 4. This shift by k → k − 2 will simplify many

of the expressions in this chapter; we hope the reader will not be confused by it.

These vertices can be combined into a matrix ZI
a , where a = 1, 2, . . . , n. In order

to have a notion of interior we need vertices to be ordered in a specific way. In the

familiar 2-dimensional case of polygons, vertices must be cyclically ordered to avoid
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the crossing of external edges connecting consecutive vertices. The generalization of

this cyclicity constraint takes the form of a positivity condition on the matrix ZI
a : all

maximal minors of ZI
a must be positive, i.e. ZI

a ∈M+(4 + k, n) where M+(4 + k, n)

is the space of positive (4 + k)× n matrices.

External vertices form a polytope. For k = 1 we consider a point in the interior

of this polytope, which corresponds to a linear combination of the external vertices,

where the coefficients must be positive. Each of these points will be considered

projectively, and can thus be seen as 1-planes (or lines) in k + 4 dimensions. For

general k, we consider a k-plane and impose positivity conditions on the matrix of

coefficients of its expansion in terms of external points. Explicitly, a k-plane Y in

the interior of the tree-level amplituhedron is given by

Y = C · Z , (5.1.1)

where Z is the (k+4)×n matrix of external vertices, C is a k×n matrix in G+(k, n),

and Y is the tree-level amplituhedron interior, given by a k × (k + 4) matrix.1 We

are not imposing positivity on each of the k rows of the matrix C, but a condition

on how the rows of C interact with each other such that minors are positive. As

a result, the amplituhedron is not simply given by k copies of “the interior of the

vertices”, but it is a more complicated geometric object. We can also think of the

amplituhedron as a map:

G+(k, n)
Z−→ G(k, k + 4) . (5.1.2)

The GL(k) degree of freedom of the Grassmannian, which acts on C, must also

apply to Y , thus implying that the matrix Y ∈ G(k, k + 4).

1A warning to the reader: whenever we refer to the positive Grassmannian G+(k, n), we mean

the totally non-negative Grassmannian. The boundaries of this space arise when the positive

degrees of freedom become zero. Similarly, we will use positive as a synonym of non-negative

and emphasize when a given quantity is not zero. This slight abuse of terminology will persist

throughout; we hope it will not cause any confusion.
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5.1.2 Loop Geometry

Each point of the tree-level amplituhedron spans a k-plane in (k + 4) dimensions;

the full amplituhedron spans all possible k-planes in (k + 4) dimensions. For each

point, the transverse space is 4-dimensional and this is where the loop-level part of

the amplituhedron lives. The degrees of freedom of each loop span a 2-plane in this

transverse space. Let us start our discussion with the k = 0 case, which at tree-level

is given by the empty projective space P3, since Y is 0-dimensional. At loop level,

it corresponds to what we call the pure loop geometry. In this case, every loop L(i)

is a different linear combination of the external vertices, which lies in P3:

L(i) = D(i) · Z , (5.1.3)

where the Z’s are 4-dimensional vectors, D(i) ∈ G+(2, n) maps the vertices in Z

to the transverse space, and so L(i) ∈ G(2, 4). Multiple loops are implemented by

increasing the number of matrices D(i):
L(1)

L(2)

...

L(L)

 =


D(1)

D(2)

...

D(L)

 · Z . (5.1.4)

The matrices D(i) satisfy extended positivity conditions, i.e. for any subset of

them we define

D(ij) =

 D(i)

D(j)

 , D(ijk) =


D(i)

D(j)

D(k)

 , etc. (5.1.5)

and demand all maximal minors of each of these extended matrices to be positive,

namely D(ij) ∈M+(4, n), D(ijk) ∈M+(6, n), etc. In general, D(a1···am) ∈M+(2m,n).

These conditions apply only for m ≤ n/2. In the special case of n = 4 and arbitrary

L, the only surviving conditions are mutual positivities: D(ij) ∈ M+(4, n) for all

pairs of i and j.
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5.1.3 The Full Amplituhedron

To obtain the full amplituhedron for any n, k, L, we combine the tree-level space

and the loop space into a larger matrix

L(1)

L(2)

...

L(L)

Y


=



D(1)

D(2)

...

D(L)

C


· Z (5.1.6)

or more neatly

Y = C · Z , (5.1.7)

where C is the (k + 2L) × n matrix specifying the set of (k + 2L) different linear

combinations of external vertices, and Y is the full amplituhedron interior. Here the

positivity condition for C is not the same as the one for C: C 6∈ G+(k+2L, n) (in fact,

k + 2L may be much larger than n). As for the pure loop geometry, the positivity

condition is now an extended positivity. The requirements are that the combination

of C with any subset of the D(i) matrices is positive, i.e. all their maximal minors

are positive, as long as the matrix has at least as many columns as rows, i.e. that

(
C
)
,

D(1)

C

 , · · · ,

D(L)

C

 ,


D(1)

D(2)

C

 , · · · (5.1.8)

are all positive, where we stop stacking D(i)’s onto C when the resulting matrix has

more rows than columns. Note that there is no condition that only relates the various

D(i)’s to each other, except in the absence of C, i.e. for k = 0. This novel space

inhabited by C, characterized by the extended positivity, is denoted G+(k, n;L).

5.1.4 The Scattering Amplitude

The scattering amplitude is obtained by integrating over all of the degrees of free-

dom of the amplituhedron, with a specific form constrained to have logarithmic

singularities on the boundaries of the space. This form is the amplitude integrand,
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and can in principle be constructed using methods such as Feynman diagrams, uni-

tary cuts or BCFW recursion relations. For arbitrary numbers of particles and

loops such methods become very laborious, and it would be desirable to construct

the integrand directly from the definition of the amplituhedron. There are several

strategies for doing this: the first one is to try to triangulate the amplituhedron in

terms of smaller elementary spaces which have trivial dlog forms. Recursion rela-

tions via on-shell diagrams provide examples of such triangulations, where the rules

for triangulating are dictated by the physics rather than the amplituhedron geom-

etry.2 Another strategy is to nail down the integrand directly, by requiring that

all spurious singularities (which do not correspond to amplituhedron boundaries)

cancel. In either approach, an understanding of the boundary structure of the space

will be crucial for systematically constructing the integrand form.

5.2 Stratification of the Amplituhedron: Loop Ge-

ometry

In this section we develop tools for stratifying the amplituhedron, by which we mean

finding its boundary structure.

In this chapter, we focus our attention on the k = 0 case, i.e. on the pure loop

geometry, and also restrict to n = 4. For k = 0, the matrix C disappears, and we

are only left with the D(i) matrices:

C =


D(1)

D(1)

...

D(L)

 . (5.2.1)

The structure at loop level is rather non-trivial due to the extended positivity con-

dition imposed on matrices. Note that C is not an element of the positive Grass-

mannian, except for L = 1.

2See [82] for alternative diagrammatic tools for addressing this problem and [127] for interesting

new ideas on the computation of volumes of polytopes associated to scattering amplitudes.
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For n = k+ 4, the positivity of external data, encoded in the matrix Z, is trivial

and the stratification of the amplituhedron corresponds to the stratification of C.3

Even in this simplified situation, the geometry of the amplituhedron will exhibit

extraordinary richness. For general n, the process we will discuss can be regarded as

the stratification of G+(0, n;L) rather than the stratification of the amplituhedron.

Independently of its relation to the amplituhedron, the stratification of G+(0, n;L)

is an interesting geometric question in its own right.

5.2.1 The Degrees of Freedom of C

Each D(i) ∈ G+(2, n) has 2(n−2) degrees of freedom, best parametrized by its 2×2

minors, i.e. its Plücker coordinates. There are
(
n
2

)
different Plücker coordinates ∆

(i)
I .

As discussed in §4.1, the ∆
(i)
I ’s are not all independent but are subject to Plücker

relations. C gets a contribution from each D(i), giving a total of 2L(n − 2) degrees

of freedom.

Note that extended positivity, despite imposing a condition on the degrees of

freedom of different D(i), does not decrease the dimension, for the simple reason that

it is just an inequality and cannot determine any Plücker coordinate in terms of the

others. This is akin to the fact that the restriction to the positive Grassmannian,

i.e. that ∆
(i)
I > 0, does not create new relations between the coordinates ∆

(i)
I , but

simply constrains them to be positive.

However, extended positivity can restrict the allowed domain of the ∆
(i)
I further

than the simple ∆
(i)
I > 0 condition. This additional restriction can in certain cases

be quite non-trivial, and may even split the domain into disjoint regions. Later

in this section, we will introduce a mini stratification of C which is insensitive to

this subtlety, and a full stratification which refines the mini stratification and fully

accounts for it. The full stratification in effect counts all domain regions of the

amplituhedron.

Regardless of which stratification we are interested in, for the purposes of count-

3This follows directly from the fact that when Z is a square matrix we may choose a basis for

which Z equals the unit matrix. Then from (5.1.7) we see that Y = C · Z = C.
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ing dimensions we only count the number of independent equalities between various

∆
(i)
I ’s. For example, when C is top-dimensional the only relations come from the

Plücker relations which are independently present in each D(i), e.g. for i = 1 there

is a Plücker relation between various ∆
(1)
I ’s, for i = 2 there is a separate Plücker

relation between the ∆
(2)
J ’s, but we cannot write any ∆

(1)
I in terms of ∆

(2)
J ’s.

5.2.2 Extended Positivity and Boundaries

For k = 0, extended positivity enforces the condition that all D(i) are positive, as

well as all subsets of them when stacked onto each other, i.e. that

(
D(i)

)
,

D(i)

D(j)

 , · · · (5.2.2)

are all positive. This translates into various conditions on the Plücker coordinates.

To unify the conditions it is convenient to define 2m × 2m minors ∆
(i1,...,im)
I , m =

1, . . . , L, which are all the maximal minors when stacking the matrices Di1 , . . . Dim .4

First, all ∆
(i)
I must be positive. Extended positivity also requires the ∆

(i1,...,im)
I ’s,

which are polynomials of order m in the ∆
(i)
I ’s, to be positive. In order to emphasize

the contrast with Plücker coordinates ∆
(i)
I , we will often refer to the m > 1 minors

as non-minimal minors.

For a given number of loops L, there are
(
L
m

)
ways of choosing m matrices D(i) to

form a ∆
(i1,...,im)
J . For each of these choices, there are

(
n

2m

)
ways of choosing the set

J of 2m columns out of all the n external nodes. Hence, the number of non-minimal

minors becomes
m≤n/2∑
m=2

(
L

m

)(
n

2m

)
. (5.2.3)

These larger minors are not all independent, there are Plücker-like relations among

them.

Boundaries of C are reached by killing degrees of freedom in it by setting minors

to zero. In other words, ∆
(i1,...,im)
I ≥ 0 has its boundary when ∆

(i1,...,im)
I = 0. The

4This notation includes the 2×2 Plücker coordinates. In order to maintain an economic notation,

we use a single subindex I to indicate the set of columns in the larger minors.
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more complicated inequalities arising from minors with m > 1 give rise to relations

between ∆
(i)
I ’s. Each independent relation of this form reduces the degrees of free-

dom by 1. A more precise characterization of boundaries is given below, when we

discuss the stratification.

Labels. To every boundary we can associate the corresponding list of vanishing

∆
(i1,...,im)
I . In each list, all ∆

(i1,...,im)
I , i.e. for both m = 1 and m > 1, are treated

democratically. We will refer to such lists of minors as labels. The minors which

are not in the label are not vanishing. Labels are very useful for characterizing

boundaries and other configurations of minors, although they do not fully specify

them.

These labels will form the basis of the mini stratification described in §5.2.3,

which will only distinguish elements in the stratification by them. However, moti-

vated by the physical problem of using the amplituhedron to identify all possible

singularities of the integrand, we will refine this counting in §5.2.4 by noticing that

there are several independent domain regions for each label, or equivalently by iden-

tifying independent solutions consistent with a given label.5 It is thus important to

emphasize that, generally, labels do not fully specify boundaries.

However, labels are still subject to interesting restrictions, since not every arbi-

trary set of minors can be set to zero. There are two sources of hindrance:

• Plücker relations relate different ∆
(i)
I ’s and hence it is sometimes impossible to

kill a given Plücker coordinate without some other coordinate also becoming

zero. The same is in fact true for all ∆
(i1,...,im)
I ’s: they are not all independent,

since there are Plücker-like relations between them. As a result, it is not

possible to exclusively set any arbitrary combination of ∆
(i1,...,im)
I ’s to zero.

• Relations belonging to different levels of minors may be incompatible, i.e.

the full extended positivity can become impossible to satisfy, despite only

5As will become clearer in §5.2.4, and exemplified in §5.5.2, the definition automatically accounts

for the information about the sequence or path in which minors are turned off to reach a given

boundary.
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being given in terms of inequalities. This is because the relations arising from

non-minimal minors typically contain positive and negative terms, and the

sum must be non-negative. When all the Plücker coordinates are turned on,

extended positivity is easily satisfied. On the contrary if, for example, we kill

a subset such that only the negative terms survive, we can no longer satisfy

positivity. Similarly, setting a ∆
(i1,...,im)
I to zero becomes impossible if only

positive terms in it are turned on. We shall later see explicit examples of both

of these occurrences.

From the above discussion we conclude that while Plücker relations and their gen-

eralizations for m > 1 may invalidate boundaries in an automatic way, extended

positivity does so more aggressively: it imposes by hand an ulterior check to deter-

mine whether a given boundary exists or not. This is analogous to what happens

when imposing positivity on the Grassmannian: G(k, n)→ G+(k, n) kills “by hand”

a subset of boundaries. In our case, we go from G(k, n;L) → G+(k, n;L). For the

tree-level case G+(k, n; 0) ≡ G+(k, n), it is a beautiful result that certain potential

boundaries6 are removed in such a way so as to generate an Eulerian poset [126].

5.2.3 Mini Stratification

As mentioned above, the full stratification of the amplituhedron counts all indepen-

dent solutions for a given positivity-preserving label. At this point in our discussion,

it is natural to define an unrefined counting, which we call mini stratification, which

serves as a close proxy of the full stratification introduced in next section. The mini

stratification corresponds to only considering the labels of the boundaries. This

counting can be used to generate a label stratification, in which multiple solutions

for a given label are collapsed into a single point, which is assigned the highest

dimension of all these solutions. In other words, the mini stratification combines

boundaries into equivalence classes determined by the labels. For brevity, we will

simply refer to these equivalence classes as the boundaries of the mini stratification.

While the mini stratification does not capture the full singularity structure of

6By this we mean configurations in which some minors vanish.
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the amplitude, it is valuable for various reasons. First, it provides a rather complete

geometric characterization of the amplituhedron. More importantly, as we discuss

in §5.4, its value follows from the fact that it admits a very efficient combinatorial

implementation. We will present examples of the mini stratification in §5.5 and §5.6.

5.2.4 Full Stratification

As already discussed above, labels only include information on which minors are

vanishing and which are non-vanishing. Their level of refinement is identical to that

of the matroid strata for G+(k, n). It is often possible, however, that there are

disjoint regions of domain for the minimal minors ∆
(i)
I which satisfy the equalities of

a given label, i.e. that there are multiple solutions to the set of equalities described

by the label.

We are thus naturally led to the definition of a region, which is a set of equalities

and inequalities for the ∆
(i1,...,im)
I , m = 1, ..., L, which has a unique solution. In

general, the equalities and inequalities needed to describe a region are more than

those specifying a label: given the label, we must also specify which of the solutions

the region refers to. In the future, when we refer to a boundary of G+(k, n;L) we will

mean a region as defined here. The full stratification is defined as the stratification

which distinguishes all such regions. This suggests a natural extension of the labels

introduced in the last section, to which we refer as extended labels. Extended labels

correspond to specifying not only the vanishing ∆
(i1,...,im)
I ’s but also all other relations

between minors. Such an extended label then fully specifies a given boundary. While

the mini stratification is based on labels, the full stratification uses extended labels.

For concreteness, let us focus on n = 4, for which all non-minimal minors are

4× 4. Consider one such minor which, without loss of generality, we can assume to

be ∆
(1,2)
1234.7 When all ∆

(i)
I are turned on, ∆

(1,2)
1234 can be expressed in terms of Plücker

coordinates as follows:

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
34 ∆

(2)
12 + ∆

(1)
14 ∆

(2)
23 −∆

(1)
13 ∆

(2)
24 −∆

(1)
24 ∆

(2)
13 . (5.2.4)

7The simplest situation in which such a minor arises is for 2-loops, i.e. G+(0, 4; 2). In this case,

this is the only non-minimal minor.
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After using the Plücker relations ∆
(i)
12 ∆

(i)
34 + ∆

(i)
23 ∆

(i)
14 = ∆

(i)
13 ∆

(i)
24 for i = 1, 2, this can

be turned into the convenient form

∆
(1,2)
1234 =

(
∆

(1)
12 ∆

(2)
13 −∆

(1)
13 ∆

(2)
12

)(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
∆

(1)
13 ∆

(2)
13

+

(
∆

(1)
23 ∆

(2)
13 −∆

(1)
13 ∆

(2)
23

)(
∆

(1)
13 ∆

(2)
14 −∆

(1)
14 ∆

(2)
13

)
∆

(1)
13 ∆

(2)
13

. (5.2.5)

If we now turn off ∆
(1)
23 = ∆

(1)
14 = 0, we obtain

∆
(1,2)
1234 =

(
∆

(1)
12 ∆

(2)
13 −∆

(1)
13 ∆

(2)
12

)(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
∆

(1)
13 ∆

(2)
13

− ∆
(1)
13 ∆

(2)
23 ∆

(2)
14

∆
(2)
13

(5.2.6)

The mini stratification label for this is simply {∆(1)
14 ,∆

(1)
23 }, which is the full set

of vanishing minors. All other ∆
(i)
I ’s are strictly positive. However, we notice that

there are two regions in which we may satisfy ∆
(1,2)
1234 > 0:

• Region 1:
(

∆
(1)
12 ∆

(2)
13 −∆

(1)
13 ∆

(2)
12

)
> 0 and

(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
> 0

• Region 2:
(

∆
(1)
12 ∆

(2)
13 −∆

(1)
13 ∆

(2)
12

)
< 0 and

(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
< 0

These two regions are very easy to understand: denoting x ≡
(
∆

(1)
12 ∆

(2)
13 −∆

(1)
13 ∆

(2)
12

)
,

y ≡
(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
and k ≡ ∆

(1)
13 ∆

(2)
23 ∆

(2)
14

∆
(2)
13

, we have the simple condition that

∆
(1,2)
1234 ≥ 0 ⇔ xy ≥ k (k > 0) (5.2.7)

which on the x–y plane simply corresponds to two regions whose boundary is the

hyperbolic curve xy = k. Here we see that to specify the regions within this label,

all we need to do is additionally specify the sign of x and y. The relations specifying

regions 1 and 2 are explicit examples of the type of relations included in extended

labels.

In this example, if we go to a different label where we have also shut off ∆
(1,2)
1234,

i.e. {∆(1)
14 ,∆

(1)
23 ,∆

(1,2)
1234}, we again have two regions: xy = k with x, y > 0, and xy = k

with x, y < 0.

The full stratification contains all possible poles of the integrand. In fact, it is

even more refined than the integrand: while there are several different integrand

poles that correspond to the same label in the mini stratification, here it sometimes
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happens that there are several regions contained within the same integrand pole.

The example above is an instance where this happens: as will be clear in subsequent

sections, the pole of the integrand when we set ∆
(1)
23 = ∆

(1)
14 = 0 is

〈AB34〉〈CD12〉+ 〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉 . (5.2.8)

We have just shown that this object is composed of two disjoint regions. Provided

the amplituhedron proposal holds, identifying those regions in the full stratification

which correspond to the same integrand pole exactly reproduces the pole structure

of the integrand.

5.2.5 Summary of the Method and Structure of the Strati-

fication

In this section we summarize the general procedure for stratifying C ∈ G+(0, n;L).

As stated earlier, in this thesis we will almost exclusively focus on the case of k = 0,

n = 4 and arbitrary L. This case is particularly simple owing to the fact that for

n = 4 the ZI matrix can be chosen to be diagonal, and hence trivial, thus positivity

of external data becomes unimportant and the stratification of G+(0, 4;L) actually

coincides with the one for the loop amplituhedron.8

As previously mentioned, every boundary of G+(0, n;L) has an associated label,

i.e. a list of vanishing minors. For any given label, there is one boundary (or region)

for each independent solution giving rise to it, in general specified by some additional

inequalities.

All minors should be treated democratically. When implementing the stratifica-

tion, however, it is natural to give the Plücker coordinates ∆
(i)
I a special treatment.

The reasons for this choice include the facts that every minor ∆
(i1,...,im)
I is an order m

polynomial in ∆
(i)
I ’s and, as we discussed in §4.1.7, the ∆

(i)
I ’s are related to perfect

matchings of simply connected graphs. Moreover, the Plücker coordinates for each

8The case of k > 0 is further complicated by the fact that the minors of the D(i) matrices do not

have a definite sign, and tuning these to zero does not constitute a boundary of the amplituhedron.

Boundaries are only obtained by shutting off degrees of freedom that have a definite sign.
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D(i) scale with a common factor under the GL(2) acting on D(i). The dimension of

each boundary is given by the number of degrees of freedom in the ∆
(i)
I ’s:

d = N∆I
−Nrel − L , (5.2.9)

where N∆I
is the number of non-vanishing ∆

(i)
I on the boundary and Nrel is the

number of independent equations relating the ∆
(i)
I .9 These equations may be Plücker

relations or follow from non-minimal minors that have been independently set to

zero on a given boundary. In the mini stratification, each label is assigned the

dimension of the top-dimensional region associated to it.

In this way we split the positivity constraint on the matrix C in two:

• ∆
(i)
I ≥ 0.

• Larger minors ∆
(i1,...,im)
I , expressed as sums of products of ∆

(i)
I , also satisfy

∆
(i1,...,im)
I ≥ 0.

The aforementioned distinction between Plücker coordinates and non-minimal

minors leads us to a natural separation of the stratification of G+(0, n;L) into two

stages. First, we obtain all possible sets of vanishing Plücker coordinates ∆
(i)
I , sub-

ject to extended positivity conditions. At this step larger minors are not set to zero,

unless they trivially vanish as a result of the vanishing Plücker coordinates. If we

are considering the full stratification, some of these configurations can be further di-

vided in different regions, specified by inequalities among the non-vanishing Plücker

coordinates. Next, we introduce for each of these elements a further structure cor-

responding to the vanishing of non-minimal minors. This second stage reduces the

dimension of boundaries by imposing constraints on the non-vanishing ∆
(i)
I ’s. De-

pending on whether we are interested in the mini or the full stratification, it is

implemented slightly differently.

The first stage in the stratification thus corresponds to the following two steps:

9The subtraction of L degrees of freedom follows from the fact that Plücker coordinates are

projectively defined.
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1. Classify potential boundaries according only to the vanishing Plücker coordi-

nates. This corresponds to independently performing the positroid stratifica-

tion of each D(i), i.e. of each G+(2, n).

2. Some of these collections violate the extended positivity of the larger minors

∆
(i1,...,im)
I ≥ 0 and are thus removed. The surviving collections of ∆

(i)
I represent

all the labels of G+(0, n;L) for which non-minimal minors can be non-negative.

Step 1 produces the Lth power of the positroid stratification of G+(2, n) and is

independent of what type of stratification we are considering. We will denote the

numbers of potential boundaries with dimension d obtained at this first step as N(d),

where d is determined using (5.2.9). Step 2 represents a further refinement of this

decomposition, removing some of the potential boundaries obtained at step 1 by

demanding extended positivity. We refer to the number of remaining boundaries

as N (d). These boundaries can be organized in a poset that we denote Γ0, where

the top element corresponds to all minors non-vanishing. Every element in Γ0 is

associated to a set of vanishing ∆
(i)
I ’s. In the case of the full stratification, this

information might not uniquely fix the element of Γ0, due to the multiplicity of

regions. A combinatorial approach for constructing Γ0 in the mini stratification will

be introduced in §5.4.

Independently of whether we are constructing the mini or the full stratification,

for each element in Γ0 there are, generally, multiple boundaries, which arise from

setting to zero non-minimal minors which are not automatically vanishing due to

vanishing Plücker coordinates. The procedure for systematically constructing these

boundaries is:

3. For each element of Γ0 and its collections of surviving ∆
(i)
I , we first classify

non-minimal minors ∆
(i1,...,im)
I ≥ 0, m > 1, into three categories:

(i) Those that are trivially zero given the list of vanishing ∆
(i)
I .

(ii) Those that are manifestly positive, because only positive terms are turned

on by the given collection of non-zero ∆
(i)
I .

(iii) Those that have both positive and negative terms turned on.
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4. Given the previous classification, for each element of Γ0 the additional bound-

ary structure is obtained by turning off combinations of type (iii) ∆
(i1,...,im)
I .

Additionally, for the full stratification we may sometimes obtain additional

boundaries from type (i) non-minimal minors. The mini and the full stratifi-

cations differ in the structure arising from this step.

This new set of boundaries can be nicely captured by additional posets Γ1 em-

anating from every point in Γ0. It is important to emphasize that, in general, each

point in Γ0 can have a different Γ1. In addition, the explicit form of Γ0 and the Γ1’s

generally depends on whether we are considering the mini or full stratification. The

top element of each Γ1 is characterized by having all non-minimal minors of types

(ii) and (iii) non-vanishing. Figure 5.1 shows a cartoon of the structure of the full

stratification poset.

Γ0 Γ1 

Figure 5.1: A natural decomposition of the poset associated to the stratification. Γ0

corresponds to 2× 2 minors and Γ1 corresponds to non-minimal ones.

Note that the construction of the Γ1’s requires caution. First, not all type (iii)

minors can always be set to zero. Non-minimal minors are in general not indepen-

dent and it is necessary to explicitly check whether it is possible to shut them off

while preserving the positivity of the type (ii) and type (iii) larger minors and of

the Plücker coordinates ∆
(i)
I . This becomes particularly important when trying to

turn off combinations of them. Moreover, if considering the full stratification, for

every label we should consider all separate regions. Finally, the computation of the

dimension of the boundaries via (5.2.9) can be subtle. The vanishing of the larger

minors should be taken into account as extra relations among Plücker coordinates,
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and hence contribute to Nrel in (5.2.9), only if they are independent from the other

conditions, i.e. Plücker relations plus the possible vanishing of other larger minors.

Explicit examples of all these issues are given in §5.5.

5.3 Simple Examples: Basic Properties

This section further illustrates some of the basic properties of positivity in terms of

simple examples.

5.3.1 Stratification of G+(0, n; 1) = G+(2, n)

Let us first consider the 1-loop geometry. A top-dimensional cell of G+(0, n, 1) ≡
G+(2, n) has all

(
n
2

)
= 1

2
n(n − 1) Plücker coordinates turned on. There are (n

2

2
−

n
2
−2n+3) independent Plücker relations; together with the GL(2) invariance which

removes one extra degree of freedom by rescaling the coordinates, we get

1

2
n(n− 1)− (

n2

2
− n

2
− 2n+ 3)− 1 = 2(n− 2) (5.3.1)

degrees of freedom. Boundaries are obtained by setting some ∆I ’s to zero in a way

that is compatible with the Plücker relations and ∆J > 0. Since in this case there are

no non-minimal minors, there is no distinction between mini and full stratification.

An example is provided in Figure 4.11, where we illustrate the stratification of

G+(2, 4).

Some remarks are already in order:

• At the first step, going to the 3-dimensional boundaries, we only turn off

one Plücker coordinate. Since there are six Plücker coordinates that can be

turned off, we would naively expect six different 3-dimensional boundaries.

Instead, as shown in Figure 4.11, there are only four of them. This is because

once we restrict the ∆I ’s to be positive, two of these would-be boundaries are

inconsistent with the Plücker relations. For example, killing ∆13 gives

∆12∆34 + ∆23∆14 = 0 , (5.3.2)

which can only be satisfied if we do not restrict ourselves to the strictly positive

domain. This is the first example of positivity killing boundaries “by hand”.
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This phenomenon was already studied in §4 and emerged naturally from the

methods therein. We note that this is not imposing extended positivity yet,

which imposes compatibility of relations from different loops; this is positivity

at a single loop level.

• For several 2-dimensional boundaries some extra ∆I had to be set to zero in

order to satisfy the Plücker relation. For example, starting from the boundary

with non-vanishing (12, 13, 14, 24, 34), i.e. where we have turned off ∆23, it is

not possible to only kill ∆12, because the Plücker relation would then become

∆13∆24 = 0 , (5.3.3)

which is not possible on any non-zero domain. Note here that positivity is not

the issue, it is the violation of the Plücker relation.

• As already mentioned, the boundaries constructed in this way form an Eulerian

poset, i.e.
4∑
d=0

(−1)dN(d) = 1 , (5.3.4)

where N(d) is the number of boundaries of dimension d.

• The full extent of extended positivity never comes into play in this example.

Having only one matrix, we never need to consider whether minors of different

matrices are compatible. This will however not be the case for the example of

G+(0, n;L = 2).

5.3.2 Non-Minimal Minors

Before developing a practical implementation of our ideas in the coming section, it is

illuminating to consider a few explicit examples of the classification of non-minimal

minors introduced in §5.2.5.

Let us consider the simple case of G+(0, 4; 2), which has 12 Plücker coordinates.

From Figure 4.11, we see that G+(0, 4; 1) has 33 boundaries. The square of this

positroid stratification then has 332 = 1 089 configurations, the top-dimensional one

being that with all 12 ∆
(i)
I ’s turned on, giving dimension 8. All these configurations
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automatically satisfy the two Plücker relations ∆
(i)
12 ∆

(i)
34 + ∆

(i)
23 ∆

(i)
14 = ∆

(i)
13 ∆

(i)
24 as well

as the non-negativity of all Plücker coordinates.

Some of these configurations, however, do not satisfy the extended positivity

∆
(1,2)
1234 ≥ 0, with ∆

(1,2)
1234 given in terms of Plücker coordinates in (5.2.4). One such

configuration corresponds to the set of vanishing Plücker coordinates, i.e. label,

{∆(2)
12 ,∆

(2)
23 ,∆

(2)
14 ,∆

(2)
34 , ∆

(2)
24 }. In this case, we have

∆
(1,2)
1234 = 0 + 0 + 0 + 0 + 0−∆

(1)
24 ∆

(2)
13 , (5.3.5)

which is explicitly negative. We hence conclude that this label does not correspond

to a boundary.

Let us now present examples of the three different types of behaviors identified

in §5.2.5.

• Type (i): for the label {∆(1)
12 ,∆

(2)
12 ,∆

(1)
14 ,∆

(2)
14 ,∆

(1)
13 ,∆

(2)
13 }, we automatically

have

∆
(1,2)
1234 = 0 . (5.3.6)

• Type (ii): for the label {∆(2)
12 ,∆

(2)
23 ,∆

(2)
14 ,∆

(2)
13 ,∆

(2)
24 }, we have

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + 0 + 0 + 0− 0− 0 , (5.3.7)

which is strictly positive. We then cannot reach new boundaries by only

turning off ∆
(1,2)
1234.

• Type (iii): for the label {∆(1)
12 ,∆

(1)
34 }, we obtain

∆
(1,2)
1234 = 0 + 0 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
14 ∆

(2)
23 −∆

(1)
13 ∆

(2)
24 −∆

(1)
24 ∆

(2)
13 , (5.3.8)

which has both positive and negative contributions. This type of non-minimal

minor can in principle be turned off without turning off Plücker coordinates.

This is possible whenever there are no obstructions coming from relations with

other non-minimal minors, which in this particular case do not exist.

In the combinatorial approach we will introduce in the coming sections, the

building blocks naturally correspond to entire terms in the non-minimal minors

rather than only factors within them.
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5.4 The Combinatorics of Extended Positivity

There is a natural, combinatorial implementation of the mini stratification of the

loop geometry. This extension includes the more general cases that appear in

G+(0, n;L), for which extended positivity can be systematically incorporated as ex-

plained in §5.4. The combinatorial structures discussed in this section only depend

on labels and hence correspond to the mini stratification.

5.4.1 Multi-Loop Geometry and Hyper Perfect Matchings

The natural approach for treating the k = 0, L-loop geometry G+(0, n;L) is to

introduce one bipartite graph associated to the top dimensional cell of G+(2, n) per

loop, and to regard the union of these L identical disjoint graphs as a unified object

in its own right.

Figure 5.2: The starting graph for the stratification of two loops is simply two

separate identical planar graphs for the top-dimensional cell ofG+(2, n) (here n = 4),

each representing one loop.

As for G+(k, n), perfect matchings of the multi-component bipartite graph play

a central role. In order to emphasize the disjoint nature of the underlying graphs we

will refer to them as hyper perfect matchings, reserving the term perfect matching for

those on each component. Denoting pi the perfect matchings on the first component,

qj the ones on the second component, and so on, a hyper perfect matching takes the

form

Pi,j,k,... = piqjrk . . . . (5.4.1)

The first step, before incorporating the effect of extended positivity, is to produce

the Lth power of the 1-loop stratification, as done in §5.3.2. This can be done in
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two ways:

• Performing the combinatorial stratification introduced in Chapter 4 of the

L-component graph, considered as a unified object. This involves construct-

ing the face lattice of the matching polytope and identifying hyper perfect

matchings that correspond to the same point in the matroid polytope.

• Taking L copies of the 1-loop stratification in which perfect matchings from

different loops are given a distinct name and multiplying them together. Effec-

tively, this is equivalent to directly taking the Lth power of the 1-loop result,

whilst keeping track of which graph component perfect matchings belong to.

The second method is computationally much easier to implement and faster to exe-

cute, and will therefore be adopted from here on. However, it is often conceptually

useful to think in terms of the first one.

Like the positroid stratification of the positive Grassmannian, its Lth power au-

tomatically gives rise to a poset with Euler number E = 1. This can be understood

in different ways. First, as we mentioned above, this is in fact the positroid strat-

ification of a graph made out of L disjoint components. Alternatively, one can

understand this by thinking that there are L nested Eulerian posets. Our explicit

results in §5.5, §5.6 and §5.8 confirm this general result.

Let us see how these ideas work for G+(0, 4; 2). In this case, we need to consider

two graphs for the top-dimensional cell of G+(2, 4) as shown in Figure 5.2. Each

of them has 7 perfect matchings, which we call pi and qj, i, j = 1, . . . , 7. The

combined graph thus has 72 = 49 hyper perfect matchings Pi,j = piqj. The matroid

identification of perfect matchings on each loop, p6 ↔ p7 and q6 ↔ q7, implies the

identification of hyper perfect matchings P6,j ↔ P7,j and Pi,6 ↔ Pi,7.

5.4.2 Hyper Perfect Matchings: Good, Bad and Neutral

The hyper perfect matchings automatically implement the Plücker relations and the

positivity of the ∆
(i)
I ’s, but not yet the full extended positivity. The next step of

the process is to shrink the poset we have just generated by eliminating those points

which violate extended positivity.
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Before introducing a combinatorial approach, let us revisit our discussion of ex-

tended positivity from §5.2.2 and the observations made for explicit examples in

§5.3. Boundaries can be associated to labels, i.e. to lists of vanishing minors, gener-

ally of different dimensions, ∆
(i1,...,im)
J , m = 1, . . . , L. Extended positivity demands

the non-vanishing ones to be strictly positive. The ∆
(i1,...,im)
J ’s, are polynomials in

which every term is an order m product of ∆
(i)
I ’s coming from different loops. For

illustration purposes, consider the single 4×4 minor that exists for G+(0, 4; 2), which

was presented in (5.2.4). It is given by

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
34 ∆

(2)
12 + ∆

(1)
14 ∆

(2)
23 −∆

(1)
13 ∆

(2)
24 −∆

(1)
24 ∆

(2)
13 . (5.4.2)

We see that there is a rather obvious distinction between those terms which appear

with a positive sign, appear with a negative sign or do not appear. The different

types of contributions to a given minor can be translated into a classification of

hyper perfect matchings.

We recall that there is a correspondence between Plücker coordinates ∆
(i)
`a`b

in

G+(2, n) and perfect matchings: the Plücker coordinate associated to a given perfect

matching is determined by the source set of the corresponding perfect orientation.

Since every term in a 2m× 2m minor is a product of m Plücker coordinates coming

from different loops, the previous map implies that every such term can be identified

with a hyper perfect matching.10 For m > 1, however, the sign of terms vary, as e.g.

in (5.4.2).

For every non-minimal minor, we will thus define the following classification of

hyper perfect matchings:

• Good: it corresponds to a positive term in the minor.

• Bad: it corresponds to a negative term in the minor.

• Neutral: it does not appear in the minor.

10Extending what we did for perfect matchings, here we also discuss hyper perfect matchings

after identifications following from the matroid polytope or, equivalently, distinguishing them only

by their external edge content.
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Let us investigate in more detail how these concepts work for the example in

(5.4.2). The corresponding graph is shown in Figure 5.2 and the map between

perfect matchings for each loop and Plücker coordinates is given in (4.3.5). In terms

of perfect matchings and hyper perfect matchings, we have

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
34 ∆

(2)
12 + ∆

(1)
14 ∆

(2)
23 − ∆

(1)
13 ∆

(2)
24 − ∆

(1)
24 ∆

(2)
13 .

p3 q2 p5 q4 p2 q3 p4 q5 p1 q6 p6 q1

P3,2 P5,4 P2,3 P4,5 P1,6 P6,1

(5.4.3)

For this minor, we thus have:

• Good: P3,2, P5,4, P2,3, P4,5

• Bad: P1,6, P6,1

while all other hyper perfect matchings are neutral.

We now have a powerful technology for incorporating extended positivity into

our stratification. For a given minor to be positive, some of its good hyper perfect

matchings must survive. Conversely, a minor violates positivity if only bad hyper

perfect matchings are present. We can also see how to, in the language of §5.2.5,

go from Γ0 to Γ1 by turning off m > 1 minors. Such minors can vanish without

sending to zero additional Plücker coordinates only if both good and bad hyper

perfect matchings are simultaneously present. Note that this condition is necessary

but not sufficient.

Practical Implementation. In cases with multiple m > 1 minors, a good ap-

proach for implementing extended positivity is as follows:

• For every minor, determine whether a given hyper perfect matching Pi is

good, bad or neutral. For each hyper perfect matching, this information is

easily stored in a vector whose length is the number of non-minimal minors.

If Pi is bad for a given minor, the corresponding entry is set to be the complex

number i; if Pi is good, the entry is set to 1; if Pi is neutral, the entry is 0.

• We then generate a single vector for each boundary, by adding the vectors

associated to all hyper perfect matchings in it.
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• If in the final vector the argument of the complex number in any entry is π/2,

the boundary has at least one relation with only negative terms turned on, so

it violates extended positivity and should be removed. If the argument is 0,

the corresponding minor has only positive terms turned on or none at all, and

hence cannot be further turned off to go to a lower dimensional boundary.

It is straightforward to implement this method with any algebraic manipulation

software. We stress that sticking to this method is however not strictly necessary

to obtain the stratification. For it, only knowledge of vanishing minors is necessary

and, as we have just seen, hyper perfect matchings provide a highly efficient language

for dealing with them.

5.4.3 Classification of Hyper Perfect Matchings Using Per-

mutations

We shall now demonstrate a very efficient method for determining whether a hyper

perfect matching is good, bad or neutral with respect to a given m > 1 minor.

Consider a hyper perfect matching Pi,j,k,... = piqjrk . . .. Let us call {si, ti},
{sj, tj}, {sk, tk}, . . . the pairs of sources for each of the constituent perfect matchings.

The union of these source sets determines which term in the minor corresponds to

Pi,j,k,..., as in (5.4.3). The classification of the hyper perfect matching is determined

by the parity of the number of crossings in the source set. Let us denote a1, a2 the

ordered source set for the first loop under consideration, b1, b2 the ordered source set

for the second loop, etc. Then, define εa1a2b1b2··· to be the ordinary antisymmetric

tensor, with the slight modification that the ordered indices are not necessarily con-

secutive, but do need to be monotonically increasing. For example, ε1256 = ε1234 = 1

and ε5739 = 1 but ε2648 = −1 and ε4849 = 0. The classification of hyper perfect

matchings then reduces to:

εa1a2b1b2··· =

{ 1⇒ good

−1⇒ bad

0⇒ neutral

(5.4.4)

Let us discuss in further detail the graphical implementation of extended posi-
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tivity. For doing so, we draw a line connecting the pairs of sources for each perfect

matching in a given hyper perfect matching and superimpose them on a single graph.

Bad hyper perfect matchings. Bad hyper perfect matchings are those for which

the lines between sources intersect an odd number of times in the interior of the

graph, and no edges touch at external nodes. Figure 5.3 shows an example of a bad

perfect matching for the n = 4, 2-loop case, P1,6 = p1q6.11 The sources for p1 are

{1, 3} and the ones for q6 are {2, 4}. Their union occupies all 4 external nodes and

hence all the columns in the minor. The lines between sources cross once. Indeed,

ε1324 = −1.

1 2

34

Bad

1 2

34

Neutral

616,1 qpP  313,1 qpP 

1p
6q

1p

3q

Figure 5.3: P1,6 is a bad perfect matching. P1,3 is instead neutral, since the crossing

does not occur in the interior of the graph. In fact P1,3 does not occupy all four

external nodes, equivalently all columns in the minor.

Good hyper perfect matchings. They are those whose lines intersect an even

number of times in the interior of the graph. Two examples are presented in Figure

5.4.

Neutral hyper perfect matchings. When the lines joining sources touch on

external points, the configuration does not occupy all columns in the minor and

11Notice that P1,7 = p1q7 is also a bad perfect matching, but it coincides with P1,6 after the

matroid polytope identification.
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1 2

34

Good

1 2

34

Good

545,4 qpP 
323,2 qpP 

4p 5q

2p

3q

Figure 5.4: P2,3 and P4,5 are two examples of good perfect matchings.

hence it does not contribute to it. An example is shown in Figure 5.3.

We would like to emphasize that, generally, a hyper perfect matching can be good

in regard to a non-minimal minor but bad in regard to another one. An example of

this situation is provided in Figure 5.5.

1

mlkjmlkj srqpP ,,,

5
2 4

3

10 6
79

8

jp kq lr

ms

Figure 5.5: This hyper perfect matching is good in regard to the 4×4 minor involving

loops p and q and matrix columns 2, 3, 8, 9 and is bad in regard to loops r and s and

columns 3, 5, 7, 8.
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5.5 Two Loops

To illustrate the techniques presented above, we stratify the amplituhedron and

the log of the amplitude in the case of k = 0 for 4 particles at 2 loops. We first

present the mini stratification introduced in §5.5.1. As a cross-check, the results have

been derived both in terms of hyper perfect matchings and directly using Plücker

coordinates and the relations between them. The full stratification, accounting for

all solutions arising from factorization, is presented in §5.5.2.

5.5.1 Mini Stratification

Let us begin our analysis by classifying boundaries according to their labels.

The Amplituhedron

For G+(0, n; 2), the starting point is the graph in Figure 5.2, which has 72 = 49 hyper

perfect matchings. The 1-loop stratification was obtained in Chapter 4. To square

it, we produce an equivalent set of boundaries for the second graph; the boundaries

of both are summarized in Table 5.1. Every boundary in the left table must be

Dim Boundaries of graph 1

4 {p1, p2, p3, p4, p5, p6}

3
{p1, p2, p3, p4, p6}, {p1, p2, p3, p5, p6},
{p1, p2, p4, p5, p6}, {p1, p3, p4, p5, p6}

2

{p1, p2, p4}, {p1, p2, p5}, {p1, p3, p4},
{p1, p3, p5}, {p1, p2, p3, p6},
{p1, p4, p5, p6}, {p2, p4, p6},

{p2, p5, p6}, {p3, p4, p6}, {p3, p5, p6}

1

{p1, p2}, {p1, p4}, {p1, p3}, {p1, p5},
{p2, p4}, {p2, p5}, {p3, p4}, {p3, p5},
{p2, p6}, {p3, p6}, {p4, p6}, {p5, p6}

0 {p1}, {p2}, {p3}, {p4}, {p5}, {p6}

Dim Boundaries of graph 2

4 {q1, q2, q3, q4, q5, q6}

3
{q1, q2, q3, q4, q6}, {q1, q2, q3, q5, q6},
{q1, q2, q4, q5, q6}, {q1, q3, q4, q5, q6}

2

{q1, q2, q4}, {q1, q2, q5}, {q1, q3, q4},
{q1, q3, q5}, {q1, q2, q3, q6},
{q1, q4, q5, q6}, {q2, q4, q6},

{q2, q5, q6}, {q3, q4, q6}, {q3, q5, q6}

1

{q1, q2}, {q1, q4}, {q1, q3}, {q1, q5},
{q2, q4}, {q2, q5}, {q3, q4}, {q3, q5},
{q2, q6}, {q3, q6}, {q4, q6}, {q5, q6}

0 {q1}, {q2}, {q3}, {q4}, {q5}, {q6}

Table 5.1: List of boundaries, in terms of perfect matchings, for each component of

the graph in Figure 5.2.
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multiplied by all boundaries in the right table. This automatically accounts for the

Plücker relations and the positivity of all Plücker coordinates ∆
(i)
I > 0. Organizing

these boundaries according to their dimension we obtain the results summarized in

the first column of Table 5.2, where we show the number of boundaries N of each

dimension. This corresponds to performing step (1) in §5.2.5.

Dim N NM NM

8 1 1 1

7 8 8 9

6 36 36 44

5 104 104 140

4 208 178 274

3 288 224 330

2 264 216 264

1 144 128 136

0 36 34 34

Table 5.2: Number of boundaries NM of the n = 4, 2-loop amplituhedron, of various

dimensions. N is the number of boundaries before the positivity of ∆
(1,2)
1234 is imple-

mented. NM is the surviving number of boundaries after this condition is enforced,

but before the non-trivial vanishing of ∆
(1,2)
1234 is considered. We use a subindex M to

emphasize quantities which are computed in the mini stratification.

In agreement with our general statement in §5.4.1, the poset for the square of

the positroid stratification of G+(2, 4) is Eulerian:

8∑
i=0

(−1)iN(i) = 36− 144 + 264− . . .− 8 + 1 = 1 . (5.5.1)

Extended positivity only imposes one additional condition: that the 4× 4 minor

∆
(1,2)
1234 ≥ 0. The bad perfect matchings here are quickly found to be the one shown

in Figure 5.3 and the one where p and q are swapped, i.e. P1,6 and P6,1; the good

perfect matchings are those shown in Figure 5.4 and their p ↔ q counterparts, i.e.

P2,3, P4,5, P3,2 and P5,4, cf. (5.4.3).
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Next, we remove all boundaries containing P1,6 or P6,1, unless they also contain

any of P2,3, P4,5, P3,2 or P5,4. This procedure corresponds to performing step (2) in

§5.2.5 and yields the middle column in Table 5.2. It is very interesting to see that

this column also forms an Eulerian poset:

8∑
i=0

(−1)iN (i)
M = 34− 128 + 216− . . .− 8 + 1 = 1 . (5.5.2)

This is in general not true at higher loops. However, we will later observe in §5.8.1

that this is also the case at 4-loops.

Finally, we construct new boundaries by further imposing the vanishing of the

4 × 4 minor ∆
(1,2)
1234 on those boundaries on which it is possible and not automatic

due to the vanishing of Plücker coordinates. Its expression in terms of Plücker

coordinates is given in (5.4.2). This corresponds to steps (3) and (4) in §5.2.5. For

every boundary in the NM column of Table 5.2 for which it is possible to impose

the equality in (5.4.3), we get an additional boundary of one dimension less. The

final answer for the total number of boundaries of the amplituhedron is displayed in

the right-hand column in Table 5.2. The poset is no longer Eulerian:

8∑
i=0

(−1)iN
(i)
M = 34− 136 + 264− . . .− 9 + 1 = 2 . (5.5.3)

Remarkably, in §5.7 we will reproduce the right column of Table 5.2 by studying the

singularities of the integrand.

The Log of the Amplitude

Let us now investigate the geometric properties of another object related to the

amplitude. While the fundamental object of interest in field theory is the amplitude,

in order to make a connection with the S-matrix we are really interested in its log,

S ∼ log(A). Writing the loop expansion of A as

A = 1 + gA1 + g2A2 + . . . , (5.5.4)

where AL is the L-loop contribution, and expanding log(A) we find the second-order

correction to the log of the amplitude to be g2(A2 − A2
1

2
).
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Physically, the log of the amplitude is a very interesting object. All amplitudes

are IR divergent, with the divergence going as 1
ε2L

for the L-loop contribution, in

dimensional regularization. However, the divergence of the log of the amplitude has

a fixed order, always going as 1
ε2

. In the 2-loop case this manifests itself in an exact

cancellation of higher order divergences between the A2 and
A2

1

2
terms.

Let us continue focusing on k = 0, n = 4 and L = 2. The amplitude A2 can be

viewed as two D(i) ∈ G+(2, 4) with the additional condition that the 4 × 4 minor

∆
(1,2)
1234 ≥ 0. On the other hand, A2

1 is simply the square of the 1-loop amplitude,

and corresponds to two D(i) ∈ G+(2, 4) with no extra condition imposed (the factor

of 1
2

corresponds to the symmetrization of loop variables and is of no geometric

importance). Then, the difference between these two objects is clearly given by two

D(i) with ∆
(1,2)
1234 ≤ 0. We thus conclude that, from a geometric standpoint, the log of

the amplitude at 2-loops can be seen as a complement of the amplitude. At higher

loops the story is more complicated, so we shall here only focus on understanding

the geometric significance of the complement of the 2-loop amplituhedron.

It is straightforward to modify our combinatorial methods to incorporate the

change from ∆
(1,2)
1234 ≥ 0 to ∆

(1,2)
1234 ≤ 0. The results of the stratification of the log of

the amplitude are summarized in Table 5.3. Very interestingly, E is once again

8∑
i=0

(−1)iN
(i)
M,Log = 32− 120 + 220− . . .− 9 + 1 = 2 . (5.5.5)

Gluing the Amplitude to its Log

The amplitude and its log are characterized by having ∆
(1,2)
1234 ≥ 0 and ∆

(1,2)
1234 ≤ 0,

respectively. Their gluing corresponds to the square of the positroid stratification

of G+(2, 4), since it is obtained by not imposing any restriction on ∆
(1,2)
1234. Here we

discuss in detail the emergence of this simple geometric object from its components.

The 7-dimensional gluing subspace is characterized by ∆
(1,2)
1234 = 0. We can study

its structure by demanding ∆
(1,2)
1234 = 0 and proceeding with our standard stratifi-

cation. The numbers of boundaries at different dimensions NM,∆(1,2)=0 are given in

Table 5.4. These boundaries can be divided into two disjoint categories:
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Dim NM,Log

8 1

7 9

6 44

5 132

4 240

3 274

2 220

1 120

0 32

Table 5.3: Number of boundaries NM,Log of various dimensions of the log of the

k = 0, n = 4, 2-loop amplituhedron.

• Boundaries on which the condition ∆
(1,2)
1234 = 0 imposes a constraint on 2 × 2

minors.

• Boundaries on which the condition ∆
(1,2)
1234 = 0 is trivially satisfied because at

least six of the 2× 2 minors vanish, cf. (5.4.2).

The first category corresponds to boundaries of both the amplitude and its log, but

which are not present in the square of the positroid stratification of G+(2, 4). It is

given by the first column on the left of Table 5.4. The second category consists of

boundaries of the amplitude, its log, and the square of the positroid stratification of

G+(2, 4). The corresponding number of boundaries is simply the difference of the

two columns in this table. Note that the first category also represents the difference

between the last two columns of Table 5.2, and for this reason we have denoted it

NM −NM .

Let us investigate the interplay among the boundaries of the two components

and the gluing region. One should be particularly careful in not double counting

boundaries which are present in both the amplitude and its log. Moreover, there

are boundaries of the gluing subspace which are not boundaries of the square of the

positroid stratification of G+(2, 4). Table 5.5 presents a useful classification of the
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Dim NM −NM NM,∆(1,2)=0

7 1 1

6 8 8

5 36 36

4 96 104

3 106 162

2 48 164

1 8 104

0 0 30

Dim (NM −NM )(+1)

8 1

7 8

6 36

5 96

4 106

3 48

2 8

1 0

0 0

Table 5.4: On the left: number of boundaries NM,∆(1,2)=0 for the space with ∆
(1,2)
1234 = 0

in the n = 4, 2-loop case. The first column NM −NM lists those boundaries where

the condition ∆
(1,2)
1234 = 0 imposes a non-trivial constraint among the 2 × 2 minors.

On the right: the list of boundaries NM−NM considered as of one dimension larger,

following the explanation in the text.

boundaries of all the objects under consideration based on the properties of the 4×4

minor.

The last row in Table 5.5 corresponds to the (NM − NM) boundaries of Table

5.4. The first row in the table specifies those boundaries for which ∆
(1,2)
1234 contains

both positive and negative terms but it is not set to zero. Starting from such

configurations, ∆
(1,2)
1234 can be turned off non-trivially, reducing the dimension by one

and producing the boundaries in the last row of Table 5.5. We thus conclude that

the list of the boundaries in the first row is also equal to (NM −NM), but where the

dimension of the boundaries is increased by 1. We denote this set (NM −NM)(+1)

and show it on the right of Table 5.4.

Given the structure shown in Table 5.5, the relation between the number of

boundaries at each dimension is

N = NM + NM,Log −NM,∆(1,2)=0 − (NM −NM)− (NM −NM)(+1) . (5.5.6)

The validity of this equation can be explicitly checked using Tables 5.2, 5.3 and 5.4.



5.5. Two Loops 160

∆
(1,2)
1234 property

Square of G+(2, 4) Amplitude Log Gluing space

N NM NM,Log NM,∆(1,2)=0

6= 0, (+) and (−) terms × × ×
> 0, only (+) terms × ×
< 0, only (−) terms × ×

= 0 trivially × × × ×
= 0 non-trivially × × ×

Table 5.5: Boundaries of the different geometries, classified in terms of the properties

of ∆
(1,2)
1234: whether it is vanishing (trivially or not once vanishing Plücker coordinates

have been fixed), and if it contains positive, negative or both types of Plücker

coordinates, cf. (5.4.2).

For instance, at dimension 4 we have 274+240−104−96−106 = 208. The relation

extends to the Euler numbers of the different objects. E = 2 for NM and NM,Log,

the Euler numbers of (NM −NM) and (NM −NM)(+1) are opposite by construction

and cancel in (5.5.6), while E = 3 for NM,∆(1,2)=0. The combination of all these

pieces beautifully produces the E = 1 for the square of the positroid stratification

of G+(2, 4).

5.5.2 Full Stratification

Let us now consider the full stratification of G+(0, 4; 2). As explained in §5.2.4,

the full stratification refines the mini stratification by distinguishing the different

regions satisfying each positivity condition. In the G+(0, 4; 2) case, the positivity

condition being satisfied in different regions is the extended positivity of the 4 × 4

minor ∆
(1,2)
1234, and the domains are characterized by additional inequalities imposed

on (combinations of) 2 × 2 Plücker coordinates. In this way, each boundary is

specified by a list of minors, and by a set of inequalities for the 2× 2 minors.

The refinement to obtain the full stratification changes the mini stratification in

two ways:

• The boundaries in Γ0 are now distinguished by the set of vanishing Plücker
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coordinates and the region. For every set of vanishing Plücker coordinates, the

minor ∆
(1,2)
1234 may or may not be trivially zero; if it is not, the separate regions

are generated by the condition ∆
(1,2)
1234 > 0 which can be satisfied on disjoint

regions of the ∆
(i)
I parameter space. If instead ∆

(1,2)
1234 = 0 trivially, there may

still be multiple regions: they descend from higher-dimensional configurations

where the 4 × 4 minor is different from zero and splits into separate regions.

Of course, it is also possible that ∆
(1,2)
1234 = 0 trivially and we only have a single

region. We will illustrate explicit examples of each of these phenomena in the

examples below.

• The structure of Γ1, which is obtained by setting ∆
(1,2)
1234 = 0 non-trivially when

it is possible to do so, changes in general. The new Γ1 takes into account the

explicit form of the regions in Γ0.

For convenience we again reproduce the expression for the only 4× 4 minor present

at 2-loops, expressed in terms of the 2× 2 Plücker coordinates:

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + ∆

(1)
34 ∆

(2)
12 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
14 ∆

(2)
23 −∆

(1)
13 ∆

(2)
24 −∆

(1)
24 ∆

(2)
13 . (5.5.7)

By using the Plücker relations this may be turned into the convenient form

∆
(1,2)
1234 =

1

∆
(1)
24 ∆

(2)
24

[
(∆

(1)
23 ∆

(2)
24 −∆

(1)
24 ∆

(2)
23 )(∆

(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) +

(∆
(1)
12 ∆

(2)
24 −∆

(1)
24 ∆

(2)
12 )(∆

(2)
34 ∆

(1)
24 −∆

(2)
24 ∆

(1)
34 )
]
. (5.5.8)

An equivalent expression exists where all {24} indices are replaced by {13} indices;

this simply amounts to solving for the Plücker relations in terms of ∆
(i)
13 instead of

∆
(i)
24 . To avoid ambiguity, when the Plücker relations are non-trivial we shall always

explicitly solve for them, and plug the answer into ∆
(1,2)
1234, in a form similar to (5.5.8).

The inequalities that characterize the full stratification only involve the factors

in the expression for ∆
(1,2)
1234 shown in (5.5.8). Explicitly, the inequalities specifying

the regions can only be one or more of the following:

(∆
(1)
23 ∆

(2)
24 −∆

(1)
24 ∆

(2)
23 ) ≷ 0 (∆

(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) ≷ 0

(∆
(1)
12 ∆

(2)
24 −∆

(1)
24 ∆

(2)
12 ) ≷ 0 (∆

(2)
34 ∆

(1)
24 −∆

(2)
24 ∆

(1)
34 ) ≷ 0 (5.5.9)
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or their equivalent counterparts where ∆
(i)
24 is replaced by ∆

(i)
13 . The choice of whether

we need to consider the expressions with ∆
(i)
13 or ∆

(i)
24 is determined by which ones

are equal to zero: if any ∆
(i)
13 = 0 we need to use the expression with ∆

(i)
24 ’s, and

vice-versa. If both ∆
(i)
13 = ∆

(j)
24 = 0 are zero (where i = 1, 2 and j = 1, 2), there are

no non-trivial inequalities which we may consider. When there are no non-trivial

inequalities, we only have a single region for the label in question.

Given a set of vanishing Plücker coordinates, the full list of cases for which there

cannot be any non-trivial inequalities is the following:

• Configurations where the expression (5.5.7) for ∆
(1,2)
1234 only has positive terms.

• Configurations where ∆
(i)
13 = ∆

(j)
24 = 0, where i and j are individually free to

be 1 or 2.

• Configurations where the following combination of 2 × 2 minors is vanishing:

∆
(i)
12 = ∆

(j)
14 = ∆

(k)
23 = ∆

(l)
34 = 0, where i, j, k, l are individually free to be 1 or

2. These configurations ruin all 4 inequalities in (5.5.9).

For these cases, the construction of Γ1 is identical to that of the mini stratification.

For the remaining cases we now identify eight prototypical configurations, which

exhaust all possibilities which may arise at 2-loops. In each separate case, we specify

the Γ1 structure, and in this way construct the full stratification. We indicate with

(. . .) the factors in the 4 × 4 determinant which are “non-trivial”, e.g. (∆
(1)
23 ∆

(2)
24 −

∆
(1)
24 ∆

(2)
23 ), and which may thus define a region through the inequalities (5.5.9). We

indicate with ki a positive quantity made up of a product of 2×2 Plücker coordinates,

e.g. k = (∆
(1)
24 ∆

(2)
24 ).

The eight possible configurations are the following:

1. Cases where the 4× 4 is different from zero and has the expression12

∆(1,2) =
1

k

[
(. . .) (. . .) + (. . .) (. . .)

]
.

12For notational convenience we suppress the subindex of the 4×4 minor, since for four particles

it can only be {1234}.
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At 2-loops there is in fact only one such case in Γ0, which is the 8-dimensional

element. Here ∆(1,2) > 0 specifies a single region, with a single boundary at

∆(1,2) = 0. Thus, Γ1 only gives rise to one additional boundary of dimension

7, precisely as in the mini stratification.

2. Cases where the 4× 4 is different from zero and has the expression

∆(1,2) =
1

k1

[
(. . .) (. . .) + k2 (. . .)

]
.

All 7-dimensional elements in Γ0 are of this type, e.g. the configuration with

∆
(1)
23 = 0. ∆(1,2) > 0 specifies a single region, with a single 6-dimensional

boundary at ∆(1,2) = 0, similarly to the case above.

3. Cases where the 4× 4 is different from zero and has the expression

∆(1,2) =
1

k1

[
(. . .) (. . .)− k2

]
.

Here ∆(1,2) > 0 is divided into two regions, each bounded by a hyperbolic

curve, as explained in §5.2.4. The regions are specified by the parentheses

being both positive or both negative. The condition ∆(1,2) = 0 gives rise to

two boundaries of one dimension less, because we can solve ∆(1,2) = 0 on these

two different regions, each region being one of the two hyperbolic curves. An

example of this type is ∆
(1)
23 = ∆

(1)
14 = 0.

4. Cases where the 4× 4 is different from zero and has the expression

∆(1,2) =
1

k1

[
(. . .) (. . .) + k2

]
.

This is a single connected region, bounded by two hyperbolic curves. Hence,

the condition ∆(1,2) = 0 gives rise to two extra boundaries of one dimension

less. As an example for this category, consider the case

∆
(1)
12 = ∆

(2)
34 = 0 .

Using (5.5.8), the region with ∆(1,2) > 0 is defined by the inequality

(∆
(1)
23 ∆

(2)
24 −∆

(1)
24 ∆

(2)
23 )(∆

(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) > −(∆

(1)
24 ∆

(2)
12 )(∆

(2)
24 ∆

(1)
34 ) .
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Parametrizing x = (∆
(1)
23 ∆

(2)
24 − ∆

(1)
24 ∆

(2)
23 ), y = (∆

(2)
14 ∆

(1)
24 − ∆

(2)
24 ∆

(1)
14 ) and k =

(∆
(1)
24 ∆

(2)
12 )(∆

(2)
24 ∆

(1)
34 ), this is the connected region in the xy plane inside the

hyperbola xy = −k. The two extra boundaries of one dimension less are the

two branches of the hyperbola.

5. Cases where the 4× 4 is different from zero and factorizes as

∆(1,2) =
1

k

[
(. . .) (. . .)

]
.

This type of configuration is a bit more subtle, as it is the limit of the hyper-

bolic cases above where the two branches of the hyperbola meet at the origin.

Parametrizing the first (. . .) as x and the second one as y, the ∆(1,2) > 0 condi-

tion is satisfied in the first and third quadrant of the xy plane, thus giving rise

to two regions. Here there are four boundaries of one dimension less, where

∆(1,2) = 0, corresponding to the positive and negative x and y axes. The origin

corresponds to a single boundary of two dimensions less. These boundaries

may be seen as setting x = 0 while remembering that y 6= 0 was composed of

two separate regions, or setting y = 0 and x 6= 0, and finally setting x = y = 0.

An example for this category is

∆
(1)
12 = ∆

(2)
12 = 0 .

6. Cases where the 4× 4 is different from zero and does not contain parentheses

(. . .) that are multiplied together, i.e.

∆(1,2) =
1

k1

[
(. . .) k2 +(. . .) k3

]
or ∆(1,2) =

1

k1

[
(. . .) k2±k3

]
or ∆(1,2) = (. . .) k .

Each of these cases consist of a single region and the condition ∆(1,2) = 0 gives

rise to a single boundary of one dimension less. This can most clearly be seen

by studying the xy plane as done above. An example of this category is

∆
(1)
12 = ∆

(2)
23 = 0 .

7. Cases where the 4 × 4 trivially vanishes but two of the four inequalities in

(5.5.9) (or their {13} ↔ {24} counterparts) remain untouched. This is most

transparently written as

∆(1,2) =
1

k

[
0× (. . .) + 0× (. . .)

]
.



5.5. Two Loops 165

These cases are the most subtle of all. Although the 4 × 4 minor vanishes,

we still have four separate regions, specified by the two possible inequalities

which are still present in each (. . .). To see why this is the case, we need to

know how these configurations arose from higher dimensional ones: here the

path taken to reach this configuration will specify the region.

To this end, let us denote the first bracket as x and the second one as y.

A detailed investigation shows that all these cases arise from Type 5 cases

described above, where additionally one of the brackets is trivially shut off

by turning off some ∆
(i)
I ’s. Here, the remaining bracket is still split into two

regions, while the brackets that do not appear in Type 5 are completely free.

Thus, the only possibilities are as follows: either x is split into two regions

while y is free, or y is split into two regions while x is free. In total we then

have four regions.

From these four regions descend two extra boundaries of one dimension less:

either x = 0 and y is free, or y = 0 and x is free. From here there are no

further boundaries, as we may not set a free variable to zero.

An example for this category is given by the following set of vanishing Plücker

coordinates

∆
(1)
12 = ∆

(1)
23 = ∆

(1)
13 = ∆

(2)
12 = ∆

(2)
23 = ∆

(2)
13 = 0 .

Here the four 4-dimensional regions are

Regions 1 and 2: (∆
(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) ≷ 0

Regions 3 and 4: (∆
(2)
34 ∆

(1)
24 −∆

(2)
24 ∆

(1)
34 ) ≷ 0

while the two extra lower dimensional boundaries of dimension 3 are charac-

terized by the conditions

Region A: (∆
(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) = 0

Region B: (∆
(2)
34 ∆

(1)
24 −∆

(2)
24 ∆

(1)
34 ) = 0 .

8. Cases where the 4 × 4 trivially vanishes but one of the four inequalities in
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(5.5.9) can be imposed. These are most transparently written as

∆(1,2) =
1

k1

[
0× (. . .) + k2 × 0

]
or ∆(1,2) =

1

k1

[
0× (. . .)

]
and can be obtained from the Type 7, above. These cases consist of two re-

gions, determined by the sign of the non-vanishing parenthesis. They give rise

to one extra boundary of one dimension less, when we saturate the inequality.

The results of the full stratification are summarized in Table 5.6. To give an

example of how these numbers are obtained, let us discuss in detail the 6-dimensional

boundaries of NF . At dimension 6, there are four possible sets of vanishing Plücker

coordinates which are cases of Type 3, four cases of Type 4, four cases of Type 5, and

24 cases of Type 6. On top of that, there are 8 other boundaries descending from 8

7-dimensional configurations of Type 2, where we have imposed ∆(1,2) = 0. In total

this gives the entry at dimension 6 in Table 5.6, i.e. 4× 2 + 4 + 4× 2 + 24 + 8 = 52.

We can then adopt the same strategy to obtain the full stratification of the log

of the amplitude; the only difference is that we have to impose ∆(1,2) ≤ 0 to identify

the different regions. This modification takes a very simple form on the classification

described here: we only need to interchange Types 3 and 4. Table 5.6 also shows the

results for the log of the amplitude, as well as the gluing region defined by ∆(1,2) = 0,

which is obtained in a very similar way.

We note that for the full stratification, the relation (5.5.6) which connects the

amplitude, the log and the gluing region is no longer valid.

The Euler numbers for the full stratification of the different spaces can be easily

computed to be:

• NF : E = 8,

• NF,Log: E = 8,

• NF,∆(1,2)=0: E = 7

Interestingly, the Euler number of the amplitude and of the log of the amplitude

coincide; the reason for this is that there is an equal number of cases of Types 3 and

4.



5.6. Three loops 167

Dim NF NF,Log NF,∆(1,2)=0

8 1 1 0

7 9 9 1

6 52 52 8

5 168 160 56

4 328 294 156

3 392 336 224

2 306 262 206

1 144 128 112

0 34 32 30

Table 5.6: Full stratification of the n = 4, 2-loop amplituhedron. NF gives the

number of boundaries for the amplitude. NF,Log gives the number of boundaries for

the log of the amplitude, and NF,∆(1,2)=0 describes the full stratification of the gluing

space.

5.6 Three loops

In this section we initiate the investigation of L = 3, for which we construct the mini

stratification. Our results should be valuable for any future study of this geometry.

5.6.1 Mini Stratification

The matrix C takes the form

C =


D(1)

D(2)

D(3)

 . (5.6.1)

Its largest minors are 4× 4 and we have three of them. C has 3× 4 = 12 degrees of

freedom.

Taking three identical copies of the graph in Figure 4.8 and doing the decompo-

sition followed by identification as done in §4.5, we obtain the left-hand column of

Table 5.7. This is the same as taking the 3rd power of the 1-loop stratification. In

total we get 333 = 35 937 different boundaries. At this stage extended positivity has
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not yet been fully implemented; we have only performed step (1) in §5.2.5. Again,

we note in agreement with the general discussion in §5.4.1, we obtain an Eulerian

poset:
12∑
i=0

(−1)iN(i) = 216− 1296 + . . .− 12 + 1 = 1 . (5.6.2)

Dim N NM NM

12 1 1 1

11 12 12 15

10 78 78 117

9 340 340 611

8 1 086 1 002 2 244

7 2 640 2 160 5 908

6 4 960 3 490 10 996

5 7 200 4 440 13 956

4 7 956 4 656 12 044

3 6 480 3 960 7 488

2 3 672 2 520 3 504

1 1 296 1 008 1 128

0 216 186 186

Table 5.7: Number of boundaries NM of G+(0, 4; 3), of various dimensions. N is

the number of boundaries before the extended positivity conditions on the larger

minors are implemented, and NM is the surviving number of boundaries after these

conditions are enforced, but before taking into account the boundaries arising from

the ∆
(i,j)
I ≥ 0.

Next, we need to impose three additional conditions from extended positivity:

∆
(1,2)
I ≥ 0, ∆

(1,3)
I ≥ 0 and ∆

(2,3)
I ≥ 0, where I = 1234 as in the rest of this section.

This can be done either by checking them individually or employing the method

expounded in §5.4. Deleting the boundaries that violate extended positivity gives

the second column in Table 5.7. We note that this column does not correspond to
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an Eulerian poset:

12∑
i=0

(−1)iN (i)
M = 186− 1008 + . . .− 12 + 1 = 13 . (5.6.3)

Let us now perform a complete classification of the possible Γ1 sub-posets in the

mini stratification of G+(0, 4; 3), i.e. the new structure arising from turning off 4×4

minors. Points in Γ0 can be discriminated according to the number of ∆
(i,j)
I ’s with

both positive and negative terms, i.e. of type (iii) in the discussion of §5.2.5. We

denote the three possibilities as N∆
(i,j)
I , where N = 1, 2, 3.

Figure 5.6 shows the possible Γ1’s emanating from 1∆
(i,j)
I and 2∆

(i,j)
I points. This

is a result of careful analysis which shows that in both cases, all type (iii) ∆
(i,j)
I can

be independently turned off.

),(),( kiji 

),( ji ),( ki

),( ji

(a)

(b)

Figure 5.6: The general structure of Γ1’s emanating from: (a) 1∆
(i,j)
I and (b) 2∆

(i,j)
I

points

The possible structures become far richer for 3∆
(i,j)
I points. In general the de-

termination of Γ1’s is challenging, because it requires solving equations in which

variables and certain combinations of them are restricted to the positive domain.

To illustrate the subtleties involved, let us consider a 3∆
(i,j)
I example, i.e. one in

which it naively seems possible that any of the three 4× 4 minors can be turned off,

but this is not the case once relations are properly taken into account. For example,

if we have a relation like

∆
(1,3)
I = a∆

(1,2)
I − b∆

(2,3)
I , a, b > 0 , (5.6.4)
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we see that it is not possible to turn off ∆
(1,2)
I while keeping both ∆

(1,3)
I and ∆

(2,3)
I

positive. In this expression, a and b are functions of non-vanishing Plücker coordi-

nates. We also see that it is not possible to turn off only two of the three ∆
(i,j)
I .

From any boundary that has a reduced set of Plücker coordinates from the maxi-

mum possible, such that the larger minors ∆
(i,j)
I satisfy the relation above, we expect

a Γ1 as in Figure 5.7 Type A.

Other structures in Figure 5.7 result from relations of the following general forms

Type B: ∆
(i,j)
I = a∆

(j,k)
I − b∆

(i,k)
I − c , a, b, c > 0

Type C: ∆
(i,k)
I = k

(
a∆

(i,j)
I − b∆

(j,k)
I

)
, a, b > 0, k free

Type D: ∆
(i,k)
I = k

(
a∆

(i,j)
I − b∆

(j,k)
I

)
− c , a, b, c > 0, k free

(5.6.5)

and so on. Here a, b, c and k represent functions of non-vanishing Plücker coordi-

nates. For Type H structures, all the ∆
(i,j)
I ’s may be turned off completely indepen-

dently. In §5.8 we consider an explicit example of these relations and discuss it in

more detail.

Figure 5.7 provides a comprehensive treatment of 3∆
(i,j)
I boundaries. We stress

that all the boundaries in a given Γ1 have the same set of non-vanishing Plücker

coordinates; different sites only differ by ∆(i,j)’s that have been set to zero.

Table 5.8 shows the number of boundaries of each dimension with the structures

in Figure 5.7, and the added contribution to the total number of boundaries. This

contribution must be added to those boundaries in column NM of Table 5.7, to

yield the total NM , also quoted in Table 5.7. This procedure implements step (4)

in §5.2.5.

We can use these results to compute an Euler number, which is

E =
12∑
i=0

(−1)iN
(i)
M = 186− 1128 + . . .− 15 + 1 = −14 . (5.6.6)

This, however, should only be interpreted as a possible characterization of the space

based on the mini stratification. It should not be assigned much geometric signifi-

cance beyond this. In fact, as we have seen for L = 2, the value of E associated to

the full stratification will most likely be different.
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Type A Type B Type C

Type D Type E Type F

Type G Type H

),(),( kiji  ),(),( kjji  ),(),( kjki  )3,2()3,1()2,1( 

)3,2()3,1()2,1(  ),(),( kiji  ),(),( kiji  ),(),( kjki )3,2()3,1()2,1( 

),(),( kiji  ),(),( kjki  ),(),( kiji  ),(),( kjki ),(),( kjji 

)3,2()3,1()2,1(  )3,2()3,1()2,1( 

),(),( kiji  ),(),( kjki  ),(),( kiji  ),(),( kjki ),(),( kjji 

),( ji ),( ki ),( kj ),( ji ),( ki ),( kj

),( ji ),( ki ),( ji ),( ki ),( ji ),( ki ),( kj

),( ji ),( ki ),( kj ),( ji ),( ki ),( kj ),( ji ),( ki ),( kj

Figure 5.7: Full classification of possible Γ1’s emanating from 3∆
(i,j)
I points in Γ0

in the mini stratification of G+(0, 4; 3). In each green box we indicate which 4 × 4

minors have been set to zero. Interestingly, for Type A it is not possible to turn

off only two of them due to positivity. Furthermore, for types B, D and E it is also

impossible to turn off the three 4× 4 minors.
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3 ∆
(i,j)
I

2 ∆
(i,j)
I 1 ∆

(i,j)
I

Total

Dim A B C D E F G H contribution

12 0 0 0 0 0 0 0 1 0 0 +0

11 0 0 0 0 0 0 0 12 0 0 +3

10 0 0 0 0 0 0 0 78 0 0 +39

9 0 0 0 0 0 4 0 324 0 12 +271

8 0 12 48 0 0 12 0 726 96 108 +1 242

7 48 96 144 96 48 12 12 600 576 528 +3 748

6 144 120 144 96 0 2 0 144 1 080 1 584 +7 506

5 144 0 24 0 0 0 0 0 792 2 424 +9 516

4 24 0 0 0 0 0 0 0 240 1 848 +7 388

3 0 0 0 0 0 0 0 0 24 672 +3 528

2 0 0 0 0 0 0 0 0 0 96 +984

1 0 0 0 0 0 0 0 0 0 0 +120

0 0 0 0 0 0 0 0 0 0 0 +0

Table 5.8: Number of boundaries with N = 1, 2, 3 number of 4 × 4 minors which

have both positive and negative terms, and may hence be set to zero non-trivially.

The cases with 3 ∆
(i,j)
I are refined according to which type they are, cf. Figure 5.7.

The final column contains the added contribution to the total number of boundaries.

5.7 An Alternative Path to Stratification: Inte-

grand Poles

The amplituhedron was introduced as a geometric object whose properties replicate

those of the amplitude integrand. In particular, boundaries of the amplituhedron

directly correspond to singularities of the integrand. The same holds for the log of

the amplitude. This implies that the corresponding integrands provide an alternative

way of obtaining the stratification of these spaces.

In this section we will focus on n = 4 and L = 2 and discuss how the stratification

of the amplitude and its log can be derived from the corresponding integrands.

In particular, we will manage to obtain the entire mini stratifications for the two
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objects. The full agreement with the ones attained via the amplituhedron constitutes

substantial non-trivial evidence for the amplituhedron conjecture. It should be

straightforward to extend our analysis to the full stratification. It may be possible

that agreement at the level of the mini stratifications implies agreement of the full

stratifications. While very interesting, investigating this claim is beyond the scope

of this chapter.

We stress that looking for poles of the integrand is a substantially different

approach to the one adopted in previous sections involving minors and positivity,

and it is very satisfactory to see that the two methods agree beautifully. From the

integrand perspective, positivity is not an ingredient that is introduced by hand; the

integrand accounts for positivity in an automatic way, and positivity emerges as a

result.

5.7.1 The Amplitude

For the amplitude, the integrand in question is

〈AB34〉〈CD12〉+ 〈AB23〉〈CD14〉+ 〈AB14〉〈CD23〉+ 〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉 . (5.7.1)

The stratification results from looking for poles of this integrand.

We have seen in previous sections that positivity eliminates many of the po-

tential boundaries which one might naively expect from just taking the square of

the positroid stratification of G+(2, 4). The integrand achieves this through the

presence of a nontrivial numerator, which for certain would-be boundaries cancels

with factors in the denominator, to eliminate those poles which would violate pos-

itivity. Conversely, positivity eliminates configurations for which the integrand is

non-singular.

It is useful to highlight that for n = 4 at arbitrary L there is a very simple map

between brackets and minors, as shown in [80]. For L = 2 it is

〈AB12〉 = ∆
(1)
34 〈AB13〉 = ∆

(1)
24 〈CD12〉 = ∆

(2)
34 〈CD13〉 = ∆

(2)
24

〈AB14〉 = ∆
(1)
23 〈AB23〉 = ∆

(1)
14 〈CD14〉 = ∆

(2)
23 〈CD23〉 = ∆

(2)
14

〈AB24〉 = ∆
(1)
13 〈AB34〉 = ∆

(1)
12 〈CD24〉 = ∆

(2)
13 〈CD34〉 = ∆

(2)
12

〈ABCD〉 = ∆
(1,2)
1234

(5.7.2)
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This map generalizes in the obvious way for higher loops. In this language, (5.2.4)

translates into an expression for 〈ABCD〉 in terms of 〈ABij〉 and 〈CDij〉 brackets:

〈ABCD〉 = 〈AB34〉〈CD12〉 − 〈AB24〉〈CD13〉+ 〈AB23〉〈CD14〉

+ 〈AB14〉〈CD23〉 − 〈AB13〉〈CD24〉+ 〈AB12〉〈CD34〉 . (5.7.3)

Similarly, (5.2.5), which was obtained by using Plücker relations, becomes

〈ABCD〉 =

(
〈AB24〉〈CD34〉 − 〈AB34〉〈CD24〉

)(
〈AB12〉〈CD24〉 − 〈AB24〉〈CD12〉

)
〈AB24〉〈CD24〉

+

(
〈AB24〉〈CD23〉 − 〈AB23〉〈CD24〉

)(
〈AB14〉〈CD24〉 − 〈AB24〉〈CD14〉

)
〈AB24〉〈CD24〉 .

(5.7.4)

It is possible to use the integrand to construct both the mini and the full stratifi-

cations. As usual, for the latter it is necessary to properly account for the possible

factorization of 〈ABCD〉. This can be done exactly as explained in §5.5.2.

When going to poles by shutting off brackets, it is necessary to take into account

the Plücker relations associated to each of the 2-loops. In bracket language, they

become

〈AB14〉〈AB23〉 + 〈AB12〉〈AB34〉 = 〈AB13〉〈AB24〉
〈CD14〉〈CD23〉 + 〈CD12〉〈CD34〉 = 〈CD13〉〈CD24〉

(5.7.5)

We do not substitute these relations explicitly, but account for them implicitly, by

only shutting off allowed combinations of brackets. For example, when shutting off

〈AB12〉 = 0 and 〈AB14〉 = 0 we see that we are forced to also shut off 〈AB13〉 = 0

and/or 〈AB24〉 = 0.

The main result of this section is that we have implemented the procedure de-

scribed above and, focusing on labels, reproduced the entire mini stratification of

G+(0, 4; 2) given by the third column of Table 5.2 starting from (5.7.1). It is im-

portant to emphasize that we have not only reproduced the counting of boundaries

obtained from the amplituhedron, but have managed to establish a one-to-one map

between all boundaries constructed with both methods. In order to illustrate this,

in Appendix B.1 we present representative subsets of the boundaries at each di-

mension. The examples have been chosen to showcase the conceptually different
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scenarios that might arise. Each of them is presented in geometric and integrand

language.

The procedures for deriving the mini stratification based on the integrand and

the amplituhedron are path-independent: the order in which minors are turned off

to arrive at a given boundary is irrelevant. However, in a few cases, it is logically

simpler to arrive at a given boundary using one route rather than another. In

particular, it is usually preferable to set 〈ABCD〉 → 0 as late as possible.

5.7.2 The Log of the Amplitude

Let us now investigate the log of the amplitude in terms of the integrand. Using the

integrand for A2 given in (5.7.1) and the square of the 1-loop

1

〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉 , (5.7.6)

the integrand for the 2-loop log of the amplitude becomes

〈AB34〉〈CD12〉+ 〈AB23〉〈CD14〉+ 〈AB14〉〈CD23〉+ 〈AB12〉〈CD34〉 − 〈ABCD〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

=
〈AB13〉〈CD24〉+ 〈AB24〉〈CD13〉

〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉 . (5.7.7)

We still have the two Plücker relations (5.7.5). For convenience, we shall usually use

the form in (5.7.7); this makes it explicit that once 〈ABCD〉 is zero, the singularities

of the log integrand are the same as those of the ordinary integrand.

As in the previous section, we obtain the singularities by setting to zero brack-

ets which explicitly appear in the denominator of the integrand. Due to Plücker

relations, this may force other brackets to turn off. Again, we stress that the order

in which we turn off minors to arrive at a given singularity is irrelevant. But as

previously done, it is often simpler to set 〈ABCD〉 → 0 as late as possible.

Using the singularities of (5.7.7), we have managed to derive the mini stratifi-

cation of the log of the amplitude previously obtained by geometric methods and

summarized in Table 5.3. As for the amplitude, we stress that we have not only

reproduced the counting of boundaries, but have managed to establish a one-to-

one map between all boundaries constructed with both methods. This matching

provides additional strong support for the amplituhedron conjecture.
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5.8 The Deformed G+(0, n;L)

A remarkable property of cells in the positive Grassmannian is that they are topo-

logically balls. In other words, it is possible to prove that the posets encoding the

positroid stratification of the Grassmannian are Eulerian, i.e. have E = 1 [126]. The

same is true for the Lth power of the positroid stratification, i.e. the initial step for

the stratification G+(0, n;L).

Given the detailed information on the boundary structure of the amplituhedron

(or more precisely of G+(0, n;L) when discussing general values of n) we have gath-

ered it is natural to ask whether general statements regarding the topology of the

amplituhedron can be made.

In this section we would like to report on some striking experimental evidence

based on explicit examples suggesting that there is a simple generalization ofG+(0, n;L)

which might exhibit a remarkably simple topology.

Let us introduce the deformed G+(k, n;L). It is convenient to define it through its

stratification as we explain below. For our purposes, it is equivalent to think we are

considering not the original G+(k, n;L), but a modified or deformed stratification.

All the discussion in this section will be in the context of the mini stratification.13

Recalling the general discussion in §5.2.5, given a point in Γ0, which is defined

by a list of vanishing Plücker coordinates, we can identify non-minimal minors of

type (iii). These are minors that, at least initially, can be turned off. In fact, in

general, sometimes some of these minors cannot be switched off due to relations. For

example, turning off one of them might impose a relation that forces another one

to be strictly non-zero, or might be forbidden because it would force another minor

to violate positivity. We have already encountered this kind of restriction in §5.6.1,

when constructing the mini stratification of G+(0, 4; 3). The deformed G+(0, n;L)

corresponds to assuming that all such minors can be independently switched off at

will in the Γ1 that emanates from that point in Γ0. Of course we know that this is

not true for G+(0, n;L): as we turn off non-minimal minors, relations between them

13It would be interesting to investigate how the full stratification is affected by the deformation.

In order to do this, however, a more detailed definition of the deformation is necessary.
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generally become important and determine the actual structure of Γ1.

Example. Let us demonstrate the difference between the deformed and standard

stratifications with an explicit example from G+(0, 4; 3), for which a general dis-

cussion of all possible relations which can arise between non-minimal minors was

presented in §5.6.1. Consider the point in Γ0 corresponding to the vanishing of

∆
(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23

∆
(3)
14 ,∆

(3)
23

(5.8.1)

with all other Plücker coordinates being non-zero. In this case, only the Plücker

relation associated to the third loop remains non-trivial and reduces to

∆
(3)
12 ∆

(3)
34 = ∆

(3)
13 ∆

(3)
24 . (5.8.2)

The 4× 4 minors become

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 −∆

(1)
13 ∆

(2)
24

∆
(1,3)
1234 = ∆

(1)
12 ∆

(3)
34 −∆

(1)
13 ∆

(3)
24

∆
(2,3)
1234 = ∆

(2)
34 ∆

(3)
12 −∆

(2)
24 ∆

(3)
13 . (5.8.3)

The three of them are of type (iii) in the classification of §5.2.5, i.e. they contain

both positive and negative contributions and it naively appears that any of them

can be independently set to zero while preserving extended positivity. However, this

is not the case. Imagine we set to zero only ∆
(1,2)
1234. In this case, the remaining 4× 4

minors take the form

∆
(1,3)
1234 =

∆
(1)
13

∆
(2)
34

(
∆

(2)
24 ∆

(3)
34 −∆

(2)
34 ∆

(3)
24

)
∆

(2,3)
1234 =

∆
(3)
12

∆
(3)
24

(
∆

(2)
34 ∆

(3)
24 −∆

(2)
24 ∆

(3)
34

)
(5.8.4)

We have rewritten the first one using ∆
(1,2)
1234 = 0 and the second one using (5.8.2).

Since the prefactors are positive, we conclude it is impossible for ∆
(1,3)
1234 and ∆

(2,3)
1234

to be simultaneously positive.
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An alternative way of reaching the same conclusion is as follows. Using (5.8.2)

to rewrite ∆
(2,3)
1234 as before, it is possible to prove the relation

∆
(1,2)
1234 =

∆
(2)
24

∆
(3)
24

∆
(1,3)
1234 +

∆
(1)
12

∆
(2)
12

∆
(2,3)
1234 . (5.8.5)

This is an explicit realization of the relations of Type C of (5.6.5). Once again, we

see we cannot turn off ∆
(1,2)
1234 while preserving the positivity of the other two 4 × 4

minors. We conclude that the Γ1 emanating from this point in the underformed mini

stratification does not contain a point in which only ∆
(1,2)
1234 vanishes. In contrast,

the deformed stratification is precisely defined such that all type (iii) minors can be

independently turned off in Γ1.

This example illustrates why we refer to the object defined by the new stratifi-

cation as a deformation. The relaxation of the constraint imposed by each relation

between non-minimal minors can be regarded as the introduction of a new degree

of freedom, i.e. a deformation parameter. Very schematically, each relation gets an

independent deformation of the form14

R(∆
(i,j)
I ) = 0 → R(∆

(i,j)
I ) = ε (5.8.6)

Similar deformations are possible in the presence of higher dimensional minors. In

what follows, we assume all relations between non-minimal minors can be indepen-

dently relaxed. Determining how many independent deformation parameters are

necessary for achieving this for each geometry is certainly an interesting problem

that we will not pursue here.

As a result of the relaxation of relations in the deformed stratification, the struc-

ture of Γ1’s is considerably simplified. Figure 5.8 shows the Γ1’s for the cases of 1, 2

and 3 type (iii) ∆
(i,j)
I s. They coincide with types (a) and (b) of Figure 5.6 and type

H of Figure 5.7, from the mini stratification of the undeformed G+(0, 4, 3). We see

the deformation substantially reduces the number of possible Γ1’s.

14As in (5.8.5), these relations generally depend on smaller minors, too.
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Figure 5.8: Γ1’s for the deformed G+(0, n;L) in the cases of 1, 2 and 3 type (iii)

∆ij
I ’s.

5.8.1 Examples

We will now stratify the deformedG+(0, 4;L) for 1 ≤ L ≤ 4. Taking an experimental

approach, we will observe that the resulting data gives rise to a natural conjecture

about the topology.

1-loop

For L = 1, there are no non-minimal minors and hence the deformed G+(0, 4; 1) is

equal to the standard G+(0, 4; 1) ≡ G+(2, 4), which was discussed in detail in §5.3.1

and Chapter 4. The resulting poset has E = 1.

2-loops

G+(0, 4; 2) coincides with its deformation, since this example contains a single 4× 4

minor ∆
(1,2)
1234. Then, the right-hand column of Table 5.2 also gives the boundaries of

the deformed G+(0, 4; 2), which we reproduce in Table 5.9 for easy reference. The

total number of boundaries is 1232. As noted in (5.5.3), the Euler number is equal

to 2:

E =
8∑
i=0

(−1)iN
(i)
M = 34− 136 + 264− . . .− 9 + 1 = 2 . (5.8.7)
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Dim NM,deformed

8 1

7 9

6 44

5 140

4 274

3 330

2 264

1 136

0 34

Table 5.9: Number of boundaries at each dimension for G+(0, 4; 2), which coincides

with its deformation.

3-loops

It is straightforward to directly construct the stratification of the deformedG+(0, 4; 3).

However, for illustration, here we take a shortcut and derive it from a detailed anal-

ysis of the undeformed mini stratification presented in §5.6.1. In the deformation,

we simply assume that the non-minimal minors ∆
(i,j)
I are completely independent.

Thus, we just need to know how many ∆
(i,j)
I naively appear to be tunable to zero,

i.e. the total number of N∆
(i,j)
I ’s. We can determine this by just collapsing the

various types of 3∆
(i,j)
I ’s in Table 5.8 into a single total number. The boundaries in

this column are assigned the structure of Type H in Figure 5.7. The remaining two

columns do not change, and give rise to the same additional contributions as before.

The result of this modification is displayed in Table 5.10. The fourth column adds

up all of the contributions from the first three columns. Adding these contributions

to the NM column in Table 5.7 will indeed give the number of boundaries NM,deformed

of the deformed G+(0, 4; 3). The total number of boundaries is 61 354 and, once

again, the Euler number is

12∑
i=0

(−1)iN
(i)
M,deformed = 186− 1152 + 3720− . . .− 15 + 1 = 2 . (5.8.8)
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Dim 3 ∆
(i,j)
I 2 ∆

(i,j)
I 1 ∆

(i,j)
I Total contribution NM,deformed

12 1 0 0 +0 1

11 12 0 0 +3 15

10 78 0 0 +39 117

9 328 0 12 +271 611

8 798 96 108 +1 242 2 244

7 1 056 576 528 +3 756 5 916

6 650 1 080 1 584 +7 666 11 156

5 168 792 2 424 +10 236 14 676

4 24 240 1 848 +8 598 13 254

3 0 24 672 +4 346 8 306

2 0 0 96 +1 200 3 720

1 0 0 0 +144 1 152

0 0 0 0 +0 186

Table 5.10: Number of boundaries with N = 1, 2, 3 number of 4 × 4 minors which

have both positive and negative terms, and the corresponding added contribution to

the total number of boundaries, obtained by assuming these minors to be completely

independent and setting them to zero. The final column shows the number of

boundaries NM,deformed of the deformed G+(0, 4; 3).

4-loops

Let us now consider the deformed G+(0, 4; 4). In this case there are six 4×4 minors

∆
(i,j)
1234. As usual, the first step is to obtain the 4th power of the positroid stratification

of G+(2, 4). This contains a total of 334 = 1 185 921 potential boundaries, which

are stratified as shown in the first column N of Table 5.11. In agreement with the

general result, this has Euler number equal to 1:

16∑
i=0

(−1)iN(i) = 1296− 10368 + . . .− 16 + 1 = 1 . (5.8.9)

Many of these boundaries explicitly violate the positivity of some ∆
(i,j)
I , as can be

easily found using the methods of §5.4.3. Keeping only those boundaries which

satisfy extended positivity, we obtain the column labeled NM in Table 5.11. Inter-
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estingly, similarly to the L = 2 case this again has Euler number equal to 1:

16∑
i=0

(−1)iN (i)
M = 994− 6976 + . . .− 16 + 1 = 1 . (5.8.10)

For each of these boundaries it is then necessary to classify which ∆
(i,j)
I may

be turned off without turning off any 2 × 2 minors; this corresponds to step (3) in

§5.2.5 and is also easily implemented as in §5.4.3. The additional boundaries which

stem from the boundaries in the column NM are added assuming that the ∆
(i,j)
I are

completely independent. For example, if it is possible to turn off all six ∆
(i,j)
I , we see

that a large number of boundaries is added:
(

6
1

)
= 6 boundaries of one dimension

lower,
(

6
2

)
= 15 boundaries of two dimensions lower, and so on; this will add a total

of
∑6

i=1

(
6
i

)
= 63 boundaries. The result of adding the boundaries from the ∆

(i,j)
I is

the deformed G+(0, 4; 4), whose boundaries are shown in the right-hand column of

Table 5.11. Remarkably, there is a total of 4 828 226 boundaries, but cancellations

are such that the Euler number is again

16∑
i=0

(−1)iN
(i)
M,deformed = 1162− 10880 + . . .− 22 + 1 = 2 . (5.8.11)

The explicit examples presented in this section hint that the deformedG+(0, n;L)

might have a remarkably simple geometry. Summarizing our findings for G+(0, 4;L),

we obtained E = 1 for L = 1 and E = 2 for 2 ≤ L ≤ 4. If such simplicity is indeed

general, it would be interesting to understand how the complicated geometry of

Γ0 that arises after demanding extended positivity on the Lth power of positroid

stratification gets “fixed” by the deformed Γ1’s. These questions certainly deserve

further study.

5.9 Conclusions and Outlook

The amplituhedron is a new geometric formulation of scattering amplitudes in pla-

nar N = 4 Super Yang-Mills theory which can potentially lead to a completely

new, geometric formulation of quantum field theory. In this chapter we initiated a

systematic investigation of the geometry of the amplituhedron. To do so, we intro-

duced a stratification for it and developed a combinatorial implementation based
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Dim N NM NM,deformed

16 1 1 1

15 16 16 22

14 136 136 247

13 784 784 1 860

12 3 376 3 212 10 243

11 11 392 9 856 42 846

10 30 928 23 288 138 421

9 68 512 43 616 346 320

8 124 552 67 626 666 654

7 185 664 88 128 974 212

6 225 312 96 496 1 061 154

5 219 456 90 720 843 992

4 167 616 73 144 480 870

3 96 768 47 744 193 980

2 39 744 22 944 55 362

1 10 368 6 976 10 880

0 1 296 994 1 162

Table 5.11: Stratification of the deformed G+(0, 4; 4).

on graphs and hyper perfect matchings. The stratification of the amplituhedron

considerably generalizes the positroid stratification of the positive Grassmannian

and its graphical implementation [84, 101]. Extended positivity plays a central role

in the definition of the amplituhedron. Our stratification efficiently takes care of

it. Furthermore, we explained how extended positivity is beautifully captured by

permutations.

We then proceeded to the stratification of explicit examples, focusing on k = 0

and n = 4. We first considered a mini stratification which lists boundaries with

distinct labels—lists of vanishing Plücker coordinates and non-minimal minors (in

this case 4 × 4 determinants). This is an interesting simplification of the structure

which follows from the definition of the amplituhedron. To capture all boundaries
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we have to consider the full stratification which uses extended labels—not only

listing all vanishing Plücker coordinates and non-minimal minors but also additional

conditions between Plücker coordinates which come from factorizing non-minimal

minors.

We first studied the amplitude at 2-loops. In the mini stratification, it contains

1 232 boundaries which interplay to produce an extremely simple topology with

E = 2. We repeated the analysis for the log of the amplitude at 2-loops, which

has 1 072 boundaries and, once again, found E = 2. We also discussed how these

two objects beautifully combine into the square of the positroid stratification of

G+(2, 4). In the full stratification there are 1 434 boundaries in the amplitude and

1 274 boundaries in the log and both have E = 8, while the gluing region has E = 7.

This shows that the topology is substantially different from the square of G+(2, 4).

We also performed the mini stratification of the L = 3 amplitude. Unlike the

2-loop result, we obtained a rather large Euler number (in absolute value), E = −14

which also shows that the topology is much more involved than [G+(2, 4)]3. The fact

that a relatively complicated topology can in general arise from the simple definition

of the amplituhedron is certainly a logical possibility and, perhaps, the most natural

expectation. Note that the available Euler numbers for the mini stratification are

even Catalan numbers. It would not be surprising if this persists at higher loops,

as Catalan numbers play an important role in the positive Grassmannian, so it is

tempting to conjecture that for L = 4 we should get E = 132. We should of course

warn that this conjecture is based on extrapolation from very limited data.

We rederived the entire mini stratifications of the L = 2 amplitude and its log in

terms of the integrand. It is important to remark that the computations involved in

this approach are completely different from the ones based on the amplituhedron. In

particular, this method is based on looking for singularities of a function and makes

no reference to positivity. We succeeded in not only reproducing the counting of

boundaries at each dimension but also in explicitly verifying that the identities of all

boundaries obtained by the two methods match. This is a very important piece of

explicit evidence supporting the amplituhedron conjecture and which supplements

the direct triangulation provided in [80].
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Finally, we introduced the deformed amplituhedron, which corresponds to de-

forming the relations between non-minimal minors in order to make them indepen-

dent. The stratification of this object is considerably simpler than the one for the

ordinary amplituhedron. We computed several explicit examples and, quite remark-

ably, they exhibit an extremely simple topology: E = 1 for L = 1 and E = 2 for

2 ≤ L ≤ 4.

There are several directions worth investigating in the future, among them:

• One of the main questions we expect to address in future work is how to

exploit the combinatorial tools we developed for triangulating the amplituhe-

dron. Different triangulations should correlate with the different forms the

integrand can take.

• Another natural next step is to study how our ideas need to be extended to

deal with k > 0 and n > 4. In this cases, positivity becomes more involved due

to the addition of a tree-level contribution to the matrix C and the importance

of external data, respectively.

• As a mathematical question, it would be interesting to investigate the geom-

etry of G+(0, n;L) for n > 4. Notice that, contrary to the amplituhedron,

G+(0, n;L) does not have additional positivity constraints involving external

data for n > 4. In fact, the mini stratification and its combinatorial imple-

mentation can be applied without modifications to this geometry for arbitrary

n and L and provide a powerful handle on it.

• The amplituhedron is just one example inside a large list of spaces which are

related to it by relaxing some of the extended positivity conditions [128]. For

example, for k = 0 and n = 4 the parent of all these spaces corresponds to the

Lth power of the positroid stratification of G+(2, 4). Dealing with extended

positivity is straightforward in our stratification, so our tools can be readily

extended for the stratification of these spaces. These geometries are relatively

simpler than that of the amplituhedron and it is expected that they can be

exploited to constrain or even infer the structure of the integrand [128]. It

would also be interesting to investigate whether the deformed amplituhedron,
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which similarly results from the relaxation of some relations, can likewise be

used for determining the integrand.

• From a purely mathematical standpoint, it would be interesting to investigate

whether the simplicity of the deformed stratification we have observed in ex-

plicit examples holds more generally. If so, it would interesting to understand

the underlying reason for this. It is important to keep in mind that the general

definition of deformation might turn out to be more sophisticated than the one

we have considered. On a related note, it is possible that the deformations

of relations cannot be arbitrary but must obey a certain structure in order to

preserve a simple geometry. Further exploration of these questions can poten-

tially uncover a rather rich story. It would also be interesting to investigate

whether the deformed stratification has any physical significance.

• Similarly to the story for 4d N = 4 SYM, a connection between scattering

amplitudes in the planar ABJM theory in 3d [129] and the positive orthogonal

Grassmannian has been established in [130, 131]. It would be interesting to

investigate whether something like the amplituhedron exists for this theory

and, if so, how our ideas extend to it.



Chapter 6

Non-Planar On-Shell Diagrams

In this chapter we shall use the machinery developed in Chapters 2 and 4 to compute

the integrand associated to non-planar on-shell diagrams. We’ll find that the gener-

alized face variables of Chapter 2 make the d log form of the on-shell form explicit,

and we’ll use the boundary measurement of Chapter 4 to compute the integrand

for non-planar diagrams. We shall also introduce a completely different approach

to obtaining the same answer, through a prescription applicable beyond the MHV

case for writing the on-shell form as a function of minors directly from the graph.

Finally, we present a discussion of equivalence and reductions for non-planar dia-

grams in terms of the matching and matroid polytopes. We’ll explicitly see that

non-planar diagrams exhibit novel phenomena, such as the emergence of constraints

on Plücker coordinates beyond Plücker relations when deleting edges.

6.1 Non-Planar On-Shell Diagrams and Non-Adjacent

BCFW Shifts

Before embarking on a fully general investigation of non-planar on-shell diagrams in

the coming sections, we would like to collect a few thoughts about a concrete scenario

in which non-planar on-shell diagrams appear and are important: the computation

of tree-level amplitudes in N = 4 SYM via non-adjacent BCFW shifts [44].

It is a well known fact that there is a one-to-one correspondence between the

quadruple cut of a two-mass-hard box and a BCFW diagram with adjacent shifts

187
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[132], as shown in Figure 6.1. In fact, this is how the BCFW recursion relations for

tree-level amplitudes were originally derived in [43]. As emphasized in the figure, one

can further recursively express the tree-level amplitudes entering the two massive

corners of the box in terms of two-mass-hard boxes, obtaining a representation of

the BCFW diagram with adjacent BCFW shifts in terms of on-shell diagrams.

1̂2̂

3

i i+1

n ⇔

12

3

i i+1

n

Further Expand

Figure 6.1: A one-to-one correspondence between a BCFW diagram with an adjacent

shift and a two-mass-hard box. The tree-level amplitudes in the two massive corners

can be further expanded into two-mass-hard boxes until reaching an on-shell diagram

representation of the BCFW diagram.

Since tree-level amplitudes can also be expressed in terms of BCFW diagrams

with non-adjacent shifts, it is natural to wonder whether there is a corresponding on-

shell diagram representation. Indeed, such a representation exists and the resulting

objects are precisely non-planar on-shell diagrams. Similarly to what happens for

BCFW diagrams with adjacent shifts, there is a one-to-one correspondence between

a BCFW diagram with non-adjacent shifts and a non-planar two-mass-hard box, as

shown in Figure 6.2. Once again, the tree-level amplitudes in the two massive corners

can be further expanded into two-mass-hard boxes, either planar or non-planar.

Doing this recursively, we can express any BCFW diagram with non-adjacent shifts

in terms of non-planar on-shell diagrams.

It is possible to represent a given amplitude in terms of different on-shell dia-

grams obtained via different BCFW shifts. This procedure thus generates interesting

identities between on-shell diagrams. We present an example of such an identity in

Figure 6.3, where we provide two alternative expressions for the tree-level five-point

MHV amplitude AMHV
5 . One of the expressions involves two non-planar diagrams
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⇔

1̂r̂

r+1

i i+1

n

1r

r+1

i i+1

n

Further Expand

2

jj+1

r−1

2

jj+1

r−1

Figure 6.2: A one-to-one correspondence between a BCFW diagram with non-

adjacent shifts and a non-planar two-mass-hard box. The tree-level amplitudes at

two massive corners can be further expanded into either non-planar or planar two-

mass-hard boxes until reaching an on-shell diagram representation of the BCFW

diagram.

and the other one involves a single planar diagram. Furthermore, it is known that

there are additional relations between BCFW diagrams with non-adjacent shifts due

to the so-called bonus relations [133–135]; it would be interesting to explore their

application to non-planar on-shell diagrams. Finally, it would be interesting to in-

vestigate how general the construction of non-planar on-shell diagrams in terms of

non-adjacent BCFW shifts can be.

13

2

4 5

13

54

2

1

2

5

4

3

Figure 6.3: Tree-level five-point MHV amplitude in terms of non-planar on-shell

diagrams (left) and a planar on-shell diagram (right).
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6.2 Face Variables and the dlog Form

In this section we will discuss the dlog form using generalized face variables. We

recall that in order to use face variables, we need to embed the on-shell diagram into

a bordered Riemann surface. While only the connectivity of an on-shell diagram

matters, choosing an embedding will turn out to be very convenient. Given a graph,

the choice of embedding is not unique. However we will later see that, as expected

from the embedding-independence of the boundary measurement, physical results

are independent of it.

It is interesting to notice that a choice of embedding is already implicit in the

usual discussion of planar diagrams. Indeed, face variables are not an intrinsic

property of planar graphs, but arise when imagining them to be embedded on a

disk.

As we recall from §4.2.2, another feature of generalized face variables is that they

precisely contain all of the degrees of freedom d of a general on-shell diagram, which

is simply determined by

d = F +B + 2g − 2 . (6.2.1)

There is a simple, alternative way of understanding the origin of this expression.

Notice that for an on-shell diagram with E edges and N internal nodes, we have d =

E−N . Now, let us consider an embedding of the diagram with Euler characteristic

χ, such that the diagram gives rise to F faces. Since χ = F −E +N , we obtain the

compact expression

d = F − χ , (6.2.2)

which agrees with (6.2.1).

6.2.1 The dlog Form

An important feature of on-shell diagrams is the d log form of the on-shell form,

which arises automatically when using generalized face variables, without the need

for solving for the GL(1) redundancies associated to internal nodes when using edge
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variables.1 For planar diagrams, it is simply given by

Ω =
F−1∏
i=1

dfi
fi
. (6.2.3)

For arbitrary diagrams, this expression beautifully generalizes to

Ω =
F−1∏
i=1

dfi
fi

B−1∏
a=1

dba
ba

g∏
m=1

dαm
αm

dβm
βm

(6.2.4)

when using generalized face variables. The general form in (6.2.4) is an embedding-

independent statement, since ultimately it is only the connectivity of the graph

which is of importance.

Appendix C.1 illustrates embedding independence in a very simple example: a

box diagram embedded on a disk and on an annulus. By flipping an external leg,

we lose the internal face but give rise to an additional boundary, which in turn

produces a new cut. The independent set of generalized face variables then goes

from {f1, f2, f3, f4} to {f1, f2, f3, b1}. The on-shell form, in both sets of variables,

becomes
df1

f1

df2

f2

df3

f3

df4

f4

=
df1

f1

df2

f2

df3

f3

db1

b1

. (6.2.5)

If instead of using generalized face variables we are interested in expressing the

on-shell form in terms of minors of C, which is only possible for reduced graphs, it

takes the generic form

Ω =
dk×nC

Vol(GL(k))

1

(1 · · · k)(2 · · · k + 1) · · · (n · · · k − 1)
×F , (6.2.6)

where the non-trivial factor F accounts for the non-planarity of the on-shell dia-

gram.2 Explicit examples with non-trivial F factors will be presented in §6.3.

A Genus-One Example. Let us verify (6.2.4) in the explicit example shown in

Figure 6.4, which already appeared in Figure 4.6.

Since the diagram is embedded into a torus, additionally to the face variables

there is a pair of variables α and β corresponding to its fundamental directions, and

1The expression of the on-shell form in terms of edge variables (4.2.6) remains valid for non-

planar diagrams.
2We remind the reader of the standard notation (i1, . . . , ik) ≡ ∆i1,...,ik .
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Figure 6.4: A reduced on-shell diagram embedded into a torus with two bound-

aries. This graph has already appeared in Figure 4.6 and is reproduced here for

convenience.

a path b connecting the two boundaries. Figure 6.5 shows a possible set of these

variables; as we mentioned earlier, the choice of these paths is not unique. In terms

of edges, the generalized face variables are given by

f1 =
α2,1α5,1α6,1

α1,3α1,4α1,7
f2 =

α3,2α4,2

α2,5α2,1
f3 =

α7,3α1,3

α3,2α3,6
f4 =

α1,4

α4,2α4,5
f5 =

α4,5α2,5

α5,1

f6 =
α3,6

α6,1α7,6
f7 =

α1,7

α7,6α7,3
α =

α1,7α1,4

α′1,1α2,1
β =

α1,1α1,7

α6,1α2,1
b =

α7,3α2,5

α3,2
.

(6.2.7)

The faces satisfy
∏7

i=1 fi = 1 so, without loss of generality, we can discard f7.
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Figure 6.5: Possible choices of the α, β and b variables.
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Let us first construct the dlog form in terms of edge variables. It is possible to

gauge fix the GL(1) redundancies of the 6 internal nodes by setting to 1 one edge

for each of them. One consistent way of picking these edges corresponds to setting3

X7,6 = X3,6 = X4,5 = X4,2 = X1,3 = X1,7 = 1. (6.2.8)

The remaining edges are

X1,1, X1,4, X2,1, X2,5, X3,2, X5,1, X6,1, X7,3, Y1,1. (6.2.9)

We thus conclude that this on-shell diagram has d = 9 degrees of freedom. This

counting of course agrees with the one based on generalized face variables: we have

7 faces (6 of which are independent), an α and a β cycle from being on a torus and

B − 1 = 1 path b.

After this gauge fixing, the independent generalized face variables become

f1 =
α2,1α5,1α6,1

α1,4
f2 =

α3,2

α2,5α2,1
f3 =

α7,3

α3,2
f4 = α1,4 f5 =

α2,5

α5,1

f6 =
1

α6,1
α =

α1,4

α′1,1α2,1
β =

α1,1

α6,1α2,1
b =

α7,3α2,5

α3,2
.

(6.2.10)

Let us now translate the on-shell form from the edge variables in (6.2.9) to

generalized face variables. It becomes

Ω =
dα1,1

α1,1

dα1,4

α1,4

dα2,1

α2,1

dα2,5

α2,5

dα3,2

α3,2

dα5,1

α5,1

dα6,1

α6,1

dα7,3

α7,3

dα′1,1
α′1,1

=
f 2

1 f2f
4
4 f5

α2f3

α

bβf 3
1 f

2
2 f

5
4 f

2
5 f6

df1 df2 df3 df4 df5 df6 dα dβ db

=
df1

f1

df2

f2

df3

f3

df4

f4

df5

f5

df6

f6

dα

α

dβ

β

db

b

(6.2.11)

where, in the middle line, the first factor comes from the Jacobian of the variable

transformation and the second factor comes from the product of edge variables,

expressed in terms of face variables. We see that the on-shell form takes the general

3For planar diagrams, this way of fixing the gauge fits nicely into the construction of the

diagrams in terms of BCFW bridges [34]. It is interesting to mention that other natural ways of

gauge fixing exist. For example, it is possible to treat all edges symmetrically by demanding that

the product of edges at every internal node is equal to 1.
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form in (6.2.4). In other words, generalized variables can be used to directly write

the on-shell form in d log form without having to work through the GL(1) gauge

fixing that is necessary for arriving at (6.2.9).

It is also easy to verify that the d log form of the on-shell form is independent

of the explicit choice of generalized face variables. For example, we could trade α

for another path α′ also wrapping the torus along the horizontal direction, such as

the one shown in Figure 6.6. Once again, the Jacobian of the change of variables is

such that the d log form is preserved.

1

3

2

4

6

5

X1,3

X5,1X6,1

Y1,1 Y1,1

α' 

Figure 6.6: An alternative choice for one of the fundamental cycles of the torus.

The Jacobian of the change of variables is such that the on-shell form preserves its

d log in terms of generalized face variables.

Finally, let us see how face variables appear in the boundary measurement. It is

straightforward to check that (4.3.9) can be rewritten using (6.2.7) into the form

C =



1 2 3 4 5 6

1 1 0 − 1

f3
0

b

f3f5

b

f3

2 0 1
1

f1f2f3f4f5f6
+

1

f3f6
0 − b

f1f3f5f6α
− b

f3f5f6
− b

f3f6

4 0 0
1

f2b
− f1f4f5β

b
1 f4 + f1f4β f1f4f5β


.

(6.2.12)

From this expression it is particularly transparent that the 9 degrees of freedom

of C, corresponding to the 9 non-trivial entries, are the same 9 degrees of freedom

contained by the face variables. Utilizing this will be the topic of the next section.
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6.3 The Non-Planar On-Shell Form

We shall now study the differential form associated to each non-planar on-shell

diagram. As we have already seen, there are multiple ways of expressing it:

• Using edge variables, which straightforwardly extends to non-planar graphs.

This has the advantage of manifestly displaying the d log form of the on-shell

form. A disadvantage is that it depends on the choice of GL(1) gauge at every

internal node, which needs to be taken into account to identify d independent

edges.

• Using generalized face variables as in (6.2.4). This approach has the advantage

of both displaying the d log form as well as being independent of the choice

of GL(1)’s. The determination of generalized face variables naturally involves

an embedding of the diagram.

• Using the minors of the Grassmannian, i.e. Plücker coordinates, such as in

(6.2.6). While this representation hides the d log form and has a GL(k) redun-

dancy, it has the advantage of having a more direct connection to the geometry

of G(k, n), naturally expressed in terms of Plücker coordinates.

In this section we will primarily be concerned with the third point. In particular, the

on-shell forms obtained in this section correspond to having non-trivial factors F
in (6.2.6). While the discussion in the previous sections applies to general on-shell

diagrams, here we focus on reduced ones. This is physically motivated by being

interested in leading singularities, which imply the diagrams are reduced. Formally,

it is also required by a dimensionality argument: in order to express the on-shell

form in terms of minors, its rank needs to match the number of independent Plücker

coordinates, implying the diagram must be reduced.

6.3.1 From Generalized Face Variables to Minors

A possible way of obtaining the on-shell form in term of minors of C is to use

generalized face variables and the boundary measurement. More explicitly, starting

with the form in (6.2.4), we can use the boundary measurement from Chapter 4 to
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obtain the map between Plücker coordinates and generalized face variables. Solving

for the generalized face variables will then yield the desired expression:

F−1∏
i=1

dfi
fi

B−1∏
j=1

dbj
bj

g∏
m=1

dαm
αm

dβm
βm

= |J | ddimC
∏
i,j,m

1

fi(∆)bj(∆)αm(∆)βm(∆)
, (6.3.1)

where ∆ is the relevant set of Plücker coordinates, and J is the Jacobian for the

transformation between entries in the Grassmannian and generalized face variables.4

Example. We shall now illustrate how this works in practice in a top-dimensional

example in G(3, 6) with two boundaries, shown in Figure 6.7.
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Figure 6.7: A top-dimensional on-shell diagram in G(3, 6) embedded on an annulus.

The selected perfect orientation has source set {2, 3, 4}.

This example has 9 independent generalized face variables: 8 independent fi

variables and one bj. In terms of oriented edge weights, the generalized face variables

are given by

f1 =
α9,1

α1,2α1,4
f2 =

α5,2α1,2

α2,3α2,9
f3 =

α7,3α2,3

α3,4α3,5
f4 =

α1,4α3,4

α4,7
f5 =

α6,5α3,5

α5,7α5,2

f6 =
α7,6α9,6

α6,8α6,5
f7 =

α′8,7α5,7α4,7α8,7

α7,6α7,3α7,9
f8 =

α6,8

α8,7α′8,7
f9 =

α2,9α7,9

α9,6α9,1
b1 =

α1,4α8,7

α7,9

(6.3.2)

4Of course it is possible to do a similar thing starting from the on-shell form in terms of edge

weights and using the boundary measurement to connect it to Plücker coordinates. The advantage

of using generalized face variables is that they automatically produce the starting point (6.2.4).
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Eliminating f4 using
∏9

i=1 fi = 1 we obtain the on-shell form

Ω =
db1

b1

9∏
i 6=4

dfi
fi
. (6.3.3)

Using the boundary measurement in Chapter 4, we obtain the following matrix

C =



1 2 3 4 5 6

2 f1(1 + f9) 1 0 0 b1f1f8f9 b1f1f9

3 −f1f2(1 + f5)f9 0 1 0 −b1f1f2(1 + f5 + f5f6)f8f9 −b1f1f2(1 + f5)f9

4 f1f2f3f5(1 + f6f7f8)f9 0 0 1 b1f1f2f3f5(1 + f6)f8f9 b1f1f2f3f5f9


.

(6.3.4)

The variable transformation from generalized face variables to elements of the above

matrix, i.e. to
∏9

i=1 dci ≡ d9C, carries a Jacobian, which can also be expressed in

terms of the generalized face variables. For this example c1 = f1(1 + f9), . . . ,

c9 = b1f1f2f3f5f9.

Using (6.3.4) we can express the Plücker coordinates in terms of generalized

face variables. Solving for the generalized face variables, we obtain the following

differential form:

Ω =
9∏
i 6=4

dfi
fi

db1

b1

= d9C
(246)2

(234)(345)(456)(612)(124)(146)(236)(256)
. (6.3.5)

An important remark is that the resulting expression in terms of minors is indepen-

dent of the chosen embedding. The simple example in Appendix C.1 illustrates this

point.

6.3.2 A Combinatorial Method

In this section we present an alternative systematic procedure for computing the non-

planar on-shell form in terms of Plücker coordinates for any MHV degree k, which

allows us to construct it without the need to compute the boundary measurement.5

This is a generalization of the method developed in [124] for general non-planar MHV

leading singularities. We will begin by quickly reviewing the procedure in [124], and

5Since we are again dealing with on-shell diagrams, we shall use the definition for k as used in

Chapter 4, as opposed to that in Chapter 5: here k = 2 is MHV.
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then propose its generalization to any k. As a consistency check, all results in this

section have also been obtained using the method in §6.3.1, providing substantial

support for our proposal.

MHV Leading Singularities

A general method for obtaining non-planar MHV leading singularities was recently

introduced in [124]. We now review this method with a simple example, shown in

Figure 6.8.

1

2 3

4

5

Figure 6.8: A five-point MHV on-shell diagram with two boundaries.

A general feature of MHV leading singularities is that every internal black vertex

can be associated to a set of three external legs. These legs are those that are

connected to the black node either directly or through a sequence of edges and

internal white nodes. The previous sentence applies also to non-bipartite on-shell

diagrams. As explained earlier, every on-shell diagram can be turned into a bipartite

one. We will continue focusing on bipartite diagrams, for which it is clear that there

can only be at most one internal white node connecting an internal black node to an

external leg.6 The fact that for MHV leading singularities this rule precisely gives

6It is natural to speculate that this basic observation can be turned into a new quantitative

characterization of reduced graphs. It seems to suggest that a necessary condition for a bipartite

on-shell diagram to be reduced is that all internal black nodes must be at a distance equal or

smaller than 2 (as measured in terms of edges following our prescription) from some external node.

Not surprisingly, this would tell us that reduced graphs need to be “small” or “narrow” in some

sense. We leave a more detailed investigation of this thought for future work.



6.3. The Non-Planar On-Shell Form 199

rise to three end points for every internal black node is indeed a rather non-trivial

graph-combinatorial result.

The procedure for obtaining the differential form is as follows:

1. For each internal black node, we find the three external legs associated to it.

Then we construct a nB×3 matrix T , where nB is the number of black nodes.

Each row in T contains the labels of the three external nodes associated to

each black node. For the example in Figure 6.8, T is given by

T =


1 2 3

1 3 5

1 3 4

 . (6.3.6)

2. Next, we construct an nB × n matrix M , where n is the number of external

nodes, in the following manner. For each row {i, j, k} in T we construct a

corresponding row in M by inserting (i j) at position k, (j k) at position i,

(k i) at j, and zero for the remaining entries. For our example, we get

M =


(23) (31) (12) 0 0

(35) 0 (51) 0 (13)

(34) 0 (41) (13) 0

 . (6.3.7)

3. We delete two arbitrary columns a and b from the matrix M , to obtain the

square matrix M̂a,b of size nB × (n − 2) = nB × nB. We then compute

det(M̂a,b)/(ab). This quantity turns out to be independent of the choice of

a and b. For the case at hand, we have det(M̂a,b/(ab)) = −(13)2.

4. Finally, the on-shell form corresponding to a diagram for which

T =


i
(1)
1 i

(1)
2 i

(1)
3

i
(2)
1 i

(2)
2 i

(2)
3

...
...

...

i
(nB)
1 i

(nB)
2 i

(nB)
3

 (6.3.8)

is given by

Ω =
d2×nC

Vol(GL(2))

(
det(M̂i,j)

(i j)

)2
1

PT(1)PT(2) · · ·PT(nB)
, (6.3.9)
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where we denote by PT(i) the Parke-Taylor-like product corresponding to each

row i of T ; for instance in (6.3.8), PT(1) = (i
(1)
1 i

(1)
2 )(i

(1)
2 i

(1)
3 )(i

(1)
3 i

(1)
1 ). For the

example in Figure 6.8, the differential form obtained from the above procedure

is

Ω =
d2×5C

Vol(GL(2))

(13)4

(12)(23)(31)(13)(35)(51)(13)(34)(41)
. (6.3.10)

The original rules [124] are formulated in terms of spinor brackets 〈i j〉; for MHV

leading singularities these are equivalent to (i j) on the support of the kinematic

constraints. Writing them in terms of minors hints at an appropriate generalization

to Nk−2MHV diagrams, for which the minors are k × k, which we now investigate.

Generalization to Nk−2MHV On-Shell Diagrams

Here we propose a generalization of the procedure shown above to k > 2. Subsequent

sections will illustrate its inner workings with some non-trivial examples. In [6] we

prove the method for certain subclasses of diagrams.

MHV leading singularities only require us to take into account on-shell diagrams

with trivalent black vertices, but for k > 2 we will need to consider more general

bipartite graphs. The complications arising when k > 2 are twofold:

• In order to have k × k minors we need a T matrix with k + 1 columns. For

k > 2 it is possible that some internal black nodes do not connect to k + 1

external legs in the way described for k = 2.

• The number of black nodes may exceed (n− k), forcing M̂ to have more rows

than columns, thus preventing us from taking its determinant.

The first point is related to the valency v of internal black nodes. There are two

possible reasons why internal black nodes might fail to connect to k + 1 external

ones. The first one is that the valency of the node is v > k+1. Generally, performing

a square move changes the valency of nodes in a diagram. In what follows we will

assume that it is always possible to perform a series of equivalence moves to turn

a diagram into one where every black node has v ≤ k + 1. An example of this

procedure is given in Figure 6.9.
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Figure 6.9: On the left, an NMHV diagram where the black node attached to

external node 1 has valency v > k + 1. This is resolved by performing a square

move, leading to the diagram on the right, where all nodes have v ≤ k + 1.

If, on the other hand, the valency of an internal black node is v < k + 1, we

assign the first entries of the corresponding row in T to the external nodes to which

the black node connects, ordered clockwise,7 and leave the remaining entries free:

{i1, . . . , iv, ∗v+1, · · · ∗k+1} . (6.3.11)

We then fill these additional entries with external labels, chosen arbitrarily from

the set of nodes that do not already appear in the row, i.e. ∗j /∈ {i1, . . . , iv}.
Finally, we need to order the new entries ∗j among the {i1, . . . , iv}, such that

det(M̂a1,...,ak)/(a1 · · · ak) is independent of {a1 · · · ak}, up to an overall sign (−1)
∑k
j=1 aj .

In all cases we have considered, it is always possible to do this, but it would be inter-

esting to understand better how to determine the correct ordering in the T matrix

in general.

The second complication listed above, regarding the total number of black nodes,

typically arises when the diagram has internal white nodes which are completely

surrounded by black nodes. Notice that for bipartite graphs, this is always the case,

except when the internal white nodes are directly connected to some external leg. In

7Defining a clockwise ordering requires considering an embedding. In practice, this is how we

have dealt with the examples in §6.3.4. Since the result should be independent of any embedding,

it would be interesting to understand what notion generalizes the ordering in its absence.
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the examples we have studied, it appears that nB = n−k+α, where α is the number

of such white nodes in the diagram. This issue is resolved by adding an auxiliary

external leg to every internal white node contributing to α.8 Once the form has been

obtained, through the generalization of the steps taken for MHV diagrams which we

will outline shortly, we integrate over the extra variables Cij, j = n + 1, . . . , n + α

around Cij = 0. We will see this done in detail in several examples.

In summary, the procedure to obtain the differential form for general Nk−2MHV

on-shell diagrams is as follows:

1. If any internal black node is connected to more than k+1 external nodes either

directly or through a succession of edges and internal white nodes, perform a

series of equivalence moves until all internal black nodes only connect to k+ 1

or fewer external nodes. Also, if nB > n − k, add auxiliary external legs to

the internal white nodes which are totally surrounded by internal black nodes,

until nB = n− k.

2. Construct the nB×(k+1) matrix T where each row corresponds to an internal

black node. Every time there is an internal black node that connects to fewer

than k + 1 external nodes, choose the remaining entries freely as described

above; the correct ordering will be determined by point 4, below.

3. Construct the nB × n matrix M in the same way as for the MHV case. For

each row {i1, . . . , ij, . . . , ik+1} in T we populate the same row in M : at each

position ij, insert the minor (ij+1 · · · ik+1i1 · · · ij−1) formed by removing ij; all

other entries are zero.

4. Remove k columns from M , chosen arbitrarily, to form M̂a1,...,ak . Then com-

pute the ratio det(M̂a1,...,ak)/(a1 · · · ak). We emphasize that this quantity must

be independent of the choice of {a1 · · · ak}; if this is not the case, the ordering

8It is interesting to notice that, when thinking in terms of an embedding, this operation can

generate new boundary components. In addition, if applied to a reducible graph it can turn it into

a reduced one. This is related to our comment in footnote 6.
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of the rows in T was chosen incorrectly, i.e. the position of the free entries ∗j
must be modified.

5. The on-shell form corresponding to a diagram for which

T =


i
(1)
1 i

(1)
2 · · · i

(1)
k+1

i
(2)
1 i

(2)
2 · · · i

(2)
k+1

...
...

i
(nB)
1 i

(nB)
2 · · · i

(nB)
k+1

 (6.3.12)

is given by

Ω =
dk×nC

Vol(GL(k))

(
det(M̂a1,...,ak)

(a1, . . . , ak)

)k
1

PT(1)PT(2) · · ·PT(nB)
, (6.3.13)

where we denote by PT(i) the Parke-Taylor-like product corresponding to each

row i of T , for instance in (6.3.12), PT(1) = (i
(1)
1 · · · i(1)

k ) · · · (i(1)
k+1 · · · i

(1)
k−1). If

there was no need for introducing auxiliary external legs, this is the final

answer.

6. In the presence of auxiliary legs, we now need to integrate over the extra

variables Cij, j = n + 1, . . . , n + α around Cij = 0. Below we present various

examples in which this is done.

6.3.3 The Meaning of ∗

In (6.3.11) we proposed that when an internal black node in an Nk−2MHV on-shell

diagram has valency v < k + 1, this leads to arbitrary entries on the matrix T ,

denoted by ∗. In this section we want to address the physical meaning of this

freedom of choice: a row in T of the form {i1, . . . , iv, ∗v+1, · · · ∗k+1} implies that the

columns ~ci1 , . . . ,~civ of the matrix C ∈ G(k, n) are linearly dependent vectors, which

implies that (i1, . . . , iv) = 0.

This is a general statement that can be understood by splitting the original

diagram into two sub-diagrams: CR containing the black node in question and all

possible internal white nodes and external legs attached to it, and CL, the rest of

the diagram. The original diagram is obtained by “amalgamating” CL and CR, cf.



6.3. The Non-Planar On-Shell Form 204

§3 of [34]. The main purpose of splitting the diagram is that the minors of C can

be written in terms of products of minors of CL and CR. Importantly, the diagram

CR has kR < k, therefore every k× k minor of C with labels that belong entirely to

external nodes in CR will be expressed as a product of a kR × kR minor from CR,

and a kL × kL minor from CL but which contains labels from CR. In other words,

the kL × kL minor has labels which are not present in CL, and must hence be zero.

Example. To illustrate this argument let us consider a leading singularity in

G(3, 6) presented in Figure 6.11, and split it as shown in Figure 6.10.

3

41

2

6 5

1

2

6

A

B

C

3

4

5

A’

B’

C’

C ~ C’
B ~ B’
A ~ A’

CL CR

Figure 6.10: On the left, NMHV leading singularity corresponding to (345) = 0.

This diagram can be obtained by the two diagrams on the right upon direct product

and projection of the edges A ∼ A′, B ∼ B′, C ∼ C ′ .

Notice that kL = 4 and kR = 2, thus the minors of the matrix C of the original

diagram can be related to the minors of CL and CR as

(345)
∣∣∣
C

= (ABC3)
∣∣∣
CL

(45)
∣∣∣
CR

+ (ABC4)
∣∣∣
CL

(53)
∣∣∣
CR

+ (ABC5)
∣∣∣
CL

(34)
∣∣∣
CR

= 0 ,

(6.3.14)

since 3,4, and 5 only appear in CR, so (ABC3)
∣∣∣
CL

= (ABC4)
∣∣∣
CL

= (ABC5)
∣∣∣
CL

= 0.

In diagrams with α > 0, the T matrix may gain ∗ entries when introducing

auxiliary external edges. These will only impose the vanishing of minors containing

the auxiliary edges, however.
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6.3.4 Examples

We now illustrate the rules introduced in the previous section on various explicit

examples.

NMHV with Low Valency

Our first example illustrates how to deal with cases when we need to introduce ∗
into the matrix T . The diagram is shown in Figure 6.11. We will also show that

this diagram is decomposable into a sum of Parke-Taylor factors through the use of

Kleiss-Kuijf relations [136], thus independently confirming the answer.

3

41

2

6 5

Figure 6.11: NMHV leading singularity with (345) = 0.

Since nB = n−k and all internal black nodes connect to a maximum of k+1 = 4

external nodes, no manipulations of the diagram are required. The T matrix is given

by

T =


1 2 6 4

2 3 5 6

5 3 4 ∗

 , (6.3.15)

where we may choose ∗ = 1, 2 or 6. The final answer is independent of this choice,

and in the following we choose ∗ = 2. From the bottom row we can also immediately

read off that the minor (345) = 0, as proven in §6.3.3.
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We shall now construct the matrix M . We have

T =


1 2 6 4

2 3 5 6

5 3 4 2

 → M =


(264) (641) 0 (126) 0 (412)

0 (356) (562) 0 (623) (235)

0 (534) (425) (253) (342) 0

 .

(6.3.16)

Deleting columns 2, 3, and 4 we get

M̂2,3,4 =


(264) 0 (412)

0 (623) (235)

0 (342) 0

 ⇒ det M̂2,3,4

(234)
= −(264)(235). (6.3.17)

Thus, the on-shell form corresponding to the leading singularity in Figure 6.11 is

given by

Ω =
d3×6C

Vol(GL(3))

(264)2(235)

(126)(641)(412)(356)(562)(623)(342)(425)(345)

∣∣∣∣
(345)=0

. (6.3.18)

Although we do not have a general proof for the independence of the choice of

∗ and the deleted rows of M , this example provides strong evidence to believe this

is indeed the case. For the example at hand, we have checked explicitly that this

result agrees with the differential form in terms of edge or generalized face variables

for any choice of GL(3) gauge fixing, deleted rows, as well as for ∗ = 1 or 6. For this

particular example, (6.3.18) can be explicitly confirmed to be correct: this leading

singularity can be written in terms of planar integrals, with the help of the Kleiss-

Kuijf relations [136] on the four-point nodes present in the diagram in Figure 6.11.

Explicitly, using Plücker relations at the pole (345) = 0 one may rewrite the ratio

in (6.3.18) as

(264)2(235)

(126)(641)(412)(356)(562)(623)(342)(425)(345)

∣∣∣∣
(345)=0

= I(1, 6, 2, 3, 5, 4) + I(1, 6, 2, 5, 3, 4) + I(1, 2, 6, 3, 5, 4) + I(1, 2, 6, 5, 3, 4),

(6.3.19)

where I(i1, i2, i3, i4, i5, i6) stands for the planar integrals with ordering indicated by

their arguments:

I(i1, i2, i3, i4, i5, i6) =
1

(i1i2i3)(i2i3i4)(i3i4i5)(i4i5i6)(i5i6i1)(i6i1i2)
. (6.3.20)
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For MHV diagrams, [124] showed that every non-planar leading singularity can

be re-expressed as a sum of Parke-Taylor factors with coefficients +1. This is not

a general feature of Nk−2MHV leading singularities, as will become clear with the

final example in this section. In Appendix C.2 we present a similar, higher genus,

example.

NMHV with Too Many Black Nodes

Let us now consider diagrams with nB > n−k. An example of this type is provided

in Figure 6.12, which is obtained by adding a BCFW bridge to legs 5 and 6 in Figure

6.11. Hence, the two examples must agree on the pole (345) = 0, which provides us

with an additional check of the validity of the procedure in §6.3.2.

6 5 7

3

41

2

Figure 6.12: NMHV leading singularity with nB > n − k. This requires the intro-

duction of an auxiliary leg, indicated by a dashed line and numbered 7.

This example has α = 1. Following §6.3.2, we must introduce an auxiliary leg as

shown in Figure 6.12. This new diagram yields the T matrix

T =


1 2 6 4

2 3 7 6

7 3 4 ∗
5 6 7 ∗


Choice of ∗−−−−−−→ T =


1 2 6 4

2 3 7 6

7 3 4 2

5 6 7 2

 . (6.3.21)

Notice how from the last two rows of T we learn that (734) = (567) = 0.
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This gives the following matrix M

M =


(264) (641) 0 (126) 0 (412) 0

0 (376) (762) 0 0 (237) (623)

0 (734) (427) (273) 0 0 (342)

0 (567) 0 0 (672) (725) (256)

 , (6.3.22)

which results in the on-shell form

Ω =
d3×7C

Vol(GL(3))

(264)2

(126)(641)(412)(623)(234)(256)
× I|7 , (6.3.23)

where I|7 stands for the piece containing the dependence on the auxiliary external

node 7 and must be evaluated at the poles (347) = (567) = 0. On these poles, it

can be recast as

I|7 =
(256)

(456)(347)(567)(725)
. (6.3.24)

The final step is to remove the effect of the auxiliary edge. This is done by taking

a generic element of the “extended” Grassmannian G(k, n+ 1) and integrating the

extra variables Ci7 around Ci7 = 0. To do so, we write a generic 3× 7 matrix C and

compute the residues of I|7 around Ci7 = 0, i = 1, 2, 3. We obtain

Ω =
d3×6C

Vol(GL(3))

(246)2

(234)(345)(456)(612)(124)(146)(236)(256)
. (6.3.25)

As expected, this result agrees with the leading singularity (6.3.18) on the support

of (345) = 0.

With the previous two examples, we have illustrated the full set of our tools.

As an additional demonstration of the power of this procedure, in Appendix C.3 we

compute a highly non-trivial N2MHV example.

NMHV with a New Type of Pole

We shall now apply our tools to computing a top-dimensional example in G(3, 6)

which exhibits a novel feature: a differential form with a singularity which is not

of the form (ijk) = 0. This fact ultimately prohibits the diagram from being able

to be written as a sum of planar terms. The on-shell diagram is shown in Figure
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Figure 6.13: Left: a NMHV top-dimensional diagram in G(3, 6). Right: this diagram

requires the addition of two auxiliary legs, here shown with dashed arrows and

terminating on external nodes 7 and 8. This example has a non-standard singularity

when (124)(346)(365)− (456)(234)(136) = 0.

6.13. This example will also be revisited in §6.4, where the consequences of such a

peculiar differential form will be studied in detail.

The T matrix is

T =



1 8 6 7

5 6 7 ∗
6 8 3 ∗
8 2 4 ∗
7 3 4 ∗


Choice of ∗−−−−−−−→ T =



1 8 6 7

5 6 7 2

6 8 3 2

8 2 4 6

7 3 4 2


, (6.3.26)

from which we can immediately read off that

(347) = (567) = (368) = (248) = 0. (6.3.27)

From T , we construct the matrix M

M =



(867) 0 0 0 0 (718) (186) (671)

0 (567) 0 0 (672) (725) (256) 0

0 (683) (268) 0 0 (832) 0 (326)

0 (468) 0 (682) 0 (824) 0 (246)

0 (734) (427) (273) 0 0 (342) 0


. (6.3.28)
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The resulting on-shell form can be simplified on the poles (567) = (368) = (248) =

(347) = 0 to

Ω =
d3×8C

Vol(GL(3))

(346)2(356)

(234)(345)(456)(561)(136)(236)
× I|7,8 (6.3.29)

where I|7,8 encodes all the dependence on the extra legs 7 and 8,

I|7,8 =
1

(781)(567)(368)(248)(347)
. (6.3.30)

As in the previous examples, we now compute the residues of I|7,8 around Ci7 =

Ci8 = 0 for i = 1, 2, 3 and obtain

I|7,8 →
1

(124)(346)(365)− (456)(234)(136)
. (6.3.31)

Thus we find that the on-shell form of the six-point diagram in Figure 6.13 is given

by

Ω =
d3×6C

Vol(GL(3))

(346)2(356)

(234)(345)(456)(561)(136)(236) ((124)(346)(365)− (456)(234)(136))
.

(6.3.32)

The appearance of the factor (124)(346)(365)−(456)(234)(136) in the denomina-

tor through this process is rather non-trivial and shows that this diagram, unlike the

NMHV leading singularity (6.3.18), cannot be written as a linear combination of pla-

nar diagrams. This example thus provides concrete evidence for a behavior already

announced in [124], that already for k = 3 and n = 6 not all leading singularities can

be expressed as linear combinations of planar ones. This diagram certainly deserves

further study, and we will come back to it in §6.4.1. There we will use a matroid

polytope perspective to fully understand reducibility in the context of non-planar

diagrams. For this diagram we will indeed find an edge which, when removed, does

not set any Plücker coordinates to zero but instead relates Plücker coordinates to

each other, i.e. it will impose the relation (124)(346)(365) − (456)(234)(136) = 0.

The leading singularity that arises through the removal of this edge is fully computed

in [6].
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6.4 Novel Features of Non-Planar Reductions

In §4.4 we discussed reductions and reducibility of on-shell diagrams and introduced

a combinatorial framework that can be used to study edge removal. In this section

we will work out an example in detail. We will construct its matching and matroid

polytopes, establish the precise connection between points in the matroid polytope

and Plücker coordinates using the boundary measurement and investigate its re-

ducibility. The example has been chosen to illustrate a new phenomenon that can

occur when removing an edge from a non-planar diagram: the set of non-vanishing

Plücker coordinates can remain the same while new non-Plücker constraints are gen-

erated. This has a direct impact on the issue of reducibility. If a new constraint

arises, the new diagram does not cover the same region of the Grassmannian as the

original one and hence it is not a reduction.

This story has an interesting counterpart in terms of the on-shell form. The

killing of degrees of freedom associated to removing an edge corresponds to taking

the residue of the form at the pole where that degree of freedom goes to zero. On-

shell forms for planar diagrams have a particularly simple structure; they are just

one over a product of Plücker coordinates. Every pole of the on-shell form thus

corresponds to setting some Plücker coordinate to zero. New things can, however,

happen for non-planar diagrams: the on-shell form can have poles at which no

Plücker coordinate vanishes.

Non-Plücker constraints should also be taken into account when determining

whether two diagrams cover the same region of the Grassmannian. We leave a

more detailed investigation of on-shell diagrams with constraints for future work.

They certainly arise, as we explicitly show, as limits of more standard diagrams. At

present we do not have any argument indicating that they should not be physical.

6.4.1 An Example

Let us consider the example on the left of Figure 6.13. For convenience, the on-shell

diagram is reproduced in Figure 6.14. The perfect orientation is the one correspond-

ing to the perfect matching p̃ref = α1,3α1,7α4,5α6,7α8,3α8,7α
′
4,5. The new possibilities
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X6,7 X3,6 X6,8

X8,3

X2,8

X3,2

X3,3

X3,1 X1,3

X1,7 X2,1

X1,4X5,1

X7,5

Y4,5

X4,5

X5,2

1

X8,7

Figure 6.14: An on-shell diagram embedded on a genus-0 surface with three bound-

aries. Faces are labeled in green, external nodes in black and edges in red.

might be anticipated by looking at the denominator of the on-shell form (6.3.32),

which contains a factor ((124)(346)(365)− (456)(234)(136)). This means that there

is a pole when this factor vanishes, which can be reached without shutting off any

Plücker coordinate. Furthermore, we expect that this can be achieved by deleting

edges in the graph. Notice that ((124)(346)(365) − (456)(234)(136)) = 0 does not

kill any minors but instead imposes a new constraint on them.9 We shall now see

how this happens.

The perfect matching matrix P for this graph is given in (6.4.1), below, where

we have organized the rows such that the final six correspond to external edges.

We have also highlighted the row corresponding to X5,2 for future convenience. It is

straightforward to check, e.g. by shifting the coordinates such that one of them lies at

the origin and then row-reducing P , that the matching polytope is a 9-dimensional

object. This fact nicely matches the counting in terms of generalized face variables:

9It is interesting to point out that this is very reminiscent of the detailed discussion of bound-

aries of the amplituhedron presented in [5], in which certain boundaries correspond to setting

combinations of minors to zero. In that case, too, all boundaries can be mapped to poles of the

on-shell form.
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there are 8 faces fi (7 of which are independent) and B − 1 = 2 variables bj, which

totals 9 degrees of freedom. This will become important later.

P =



X1,3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X1,4 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X1,7 1 1 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X2,8 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

X3,6 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

X3,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0

X3,2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0

X5,1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0

X5,2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0

X7,5 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1

X7,3 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1

X8,3 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1

Y2,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1

X3,3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1

X6,7 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0

X6,8 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0

X8,7 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0

X4,5 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1

Y4,5 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0


(6.4.1)

The matroid polytope is obtained by taking (6.4.1) and keeping only the 6 coordi-

nates associated to the external edges. Doing this projects multiple perfect match-

ings down to the same point in the matroid polytope. The points in the matroid

polytope are summarized in (6.4.2), where for every point we list the corresponding

perfect matchings and Plücker coordinate.

0 0 0 0 0 0 0 0 0 1

0 1 1 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 0 0

0 0 1 0 0 0 1 0 1 1

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 0 1 1 1 0

p1, p4 p2, p16 p3, p34 p5, p12 p6, p33 p7, p35 p8 p9 p11, p29 p13, p39

p10, p15 p26, p31 p30

p25, p28

∆1,2,5 ∆1,4,5 ∆2,4,5 ∆1,2,6 ∆1,4,6 ∆1,2,4 ∆2,4,6 ∆1,5,6 ∆2,5,6 ∆2,3,5
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1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 1 1 1 0 0

1 1 0 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1 1 0

0 0 1 1 1 1 1 0 0 1

0 0 0 0 1 1 0 1 1 1

p14 p17, p27 p18, p20 p19, p22 p21 p23 p24 p32 p37 p38

p36 p40

∆3,4,5 ∆1,3,5 ∆1,2,3 ∆1,3,4 ∆2,3,6 ∆3,4,6 ∆2,3,4 ∆4,5,6 ∆3,5,6 ∆1,3,6

(6.4.2)

Using (6.4.1) it is straightforward to check that there is a single edge, X5,2, which

can be removed without killing any point in the matroid polytope. Eliminating this

edge removes all perfect matchings that contain it, i.e. p7, p10, p20, p22, p28, p31, p36,

which are shown in red in (6.4.2). Following our previous discussion, none of the

Plücker coordinates are set to zero. We now investigate what happens to them in

more detail, by considering the effect on the boundary measurement.

Boundary Measurement for the Original Diagram. Before removing X5,2,

the matrix C associated to Figure 6.14 is

C ≡


1 2 3 4 5 6

2 c1 1 c2 0 c3 0

4 c4 0 c5 1 c6 0

6 c7 0 c8 0 c9 1



=


α6,8α2,8

α8,3α8,7
+
α6,8α3,2α3,1α7,5

α8,3α1,3α1,7α8,7
1

α6,8α3,2α3,3

α8,3α1,3
0

− α3,6α2,8

α6,7α8,3α8,7
− α3,6α3,2α3,1α7,5

α6,7α8,3α1,3α1,7α8,7
− α7,3α7,5

α6,7α1,7α8,7
0 −α3,6α3,2α3,3

α6,7α8,3α1,3
1

α5,2

α′4,5α8,7
− α2,1α3,1α7,5

α′4,5α1,3α1,7α8,7
0 −α2,1α3,3

α′4,5α1,3
0

· · ·

· · ·

−α6,8α3,2α3,1α5,1

α8,3α1,3α1,7α4,5
0

α7,3α5,1

α6,7α1,7α4,5
+

α3,6α3,2α3,1α5,1

α6,7α8,3α1,3α1,7α4,5
0

α1,4

α′4,5α4,5
+

α2,1α3,1α5,1

α′4,5α1,3α1,7α4,5
1

 . (6.4.3)
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All minors of this matrix are generally non-zero:

∆1,2,3 = −p18 − p20 − p40 ∆2,3,4 = p24

∆1,2,4 = p7 − p35 ∆2,3,5 = p39 − p13

∆1,2,5 = p1 + p4 + p10 + p15 + p25 + p28 ∆2,3,6 = −p21

∆1,2,6 = p5 + p12 + p30 ∆2,4,5 = p3 + p34

∆1,3,4 = p19 + p22 ∆2,4,6 = 1

∆1,3,5 = p17 + p27 + p36 ∆2,5,6 = p11 + p29

∆1,3,6 = p38 ∆3,4,5 = p14

∆1,4,5 = p2 + p16 + p26 + p31 ∆3,4,6 = p23

∆1,4,6 = p6 + p33 ∆3,5,6 = p37

∆1,5,6 = p9 ∆4,5,6 = p32

(6.4.4)

The flows for perfect matchings containing X5,2 are shown in red. In total we have 9

independent minors, which tells us that C is in the top cell of G(3, 6). Thus, we see

that if generalized face variables are to parametrize all degrees of freedom of C, we

cannot lose any fi or bj, as we already have the minimal number possible to account

for a 9-dimensional C. Naively, this is in tension with the fact that edge X5,2 can

be removed without eliminating points in the matroid polytope, i.e. without setting

Plücker coordinates to zero. As we now explain, while this is true, the removal of

X5,2 does not kill any ∆I , but it removes a degree of freedom in such a way as to

create a new constraint on the ∆I , independent from the Plücker relations. We then

conclude that the graph is not reducible.

Boundary Measurement After Removing X5,2. Let us understand in detail

how the new constraint arises. We will do so from the perspective of the boundary

measurement and the matching polytopes. If we remove X5,2, i.e. set X5,2 = 0, the

only entry in C that is affected is c7.10 The Plücker coordinates now become

10Let us say a few words on how to eliminate edges that appear in the denominator of entries

in the boundary measurement. Once a perfect orientation is chosen, a given oriented edge weight

appears either only in numerators (as is the case for X52 in this example) or denominators. This

is determined by whether the perfect orientation coincides or is opposed to the conventional ori-

entation we picked for the edge under consideration. If we want to remove an edge appearing in

denominators, all we need to do is to send the corresponding edge weight to infinity. The fact that
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∆1,2,3 = −p18 − p40 ∆2,3,4 = p24

∆1,2,4 = −p35 ∆2,3,5 = p39 − p13

∆1,2,5 = p1 + p4 + p15 + p25 ∆2,3,6 = −p21

∆1,2,6 = p5 + p12 + p30 ∆2,4,5 = p3 + p34

∆1,3,4 = p19 ∆2,4,6 = 1

∆1,3,5 = p17 + p27 ∆2,5,6 = p11 + p29

∆1,3,6 = p38 ∆3,4,5 = p14

∆1,4,5 = p2 + p16 + p26 ∆3,4,6 = p23

∆1,4,6 = p6 + p33 ∆3,5,6 = p37

∆1,5,6 = p9 ∆4,5,6 = p32

(6.4.5)

These equations can also be directly obtained from (6.4.4) by removing the red

flows. In addition, that same information, up to signs, can be directly obtained

from the matroid polytope encoded in (6.4.2).

Here we see the new situation we anticipated from our knowledge of the matroid

polytope: no Plücker coordinates are shut off despite losing a face variable.

Let us now consider the generalized face variables. In addition to the ordinary

faces, we will use the paths

b1 =
α1,3α8,3

α3,3α3,2α6,8
b2 =

α4,5α7,5

α5,1α8,7
. (6.4.6)

At this point, a natural question is whether it is even possible to express all paths

in the matrix C using the generalized face variables that remain at our disposal.

The answer is yes: we have

c1 =
1

f3f6f7
+

1

f1f3f4f2/5f6f7
c4 = − 1

f7
− 1

f3f7
− 1

f1f3f4f2/5f7
c7 = −b2f1f4

c2 =
1

b1
c5 = −f6

b1
c8 = −b2f1f3f4f6f7

b1

c3 = − 1

b2f3f6f7
c6 =

1

b2f3f7
+ 1

b2f7
c9 = f1f4 + f4

(6.4.7)

We see that only the 8 variables f1, f2/5, f3, f4, f6, f7, b1 and b2 are used, where

f2/5 ≡ f2f5 indicates the combination of f2 and f5. It is possible to invert this map

some edges are removed by sending them to zero while other ones are removed by sending them to

infinity is thus a matter of conventions and another reflection of the symmetry of on-shell diagrams

under the inversion of the edge weights.
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without using c7, obtaining

f1 =
c3c8

c2c9 − c3c8

f4 =
c2c9 − c3c8

c2

f6 = −c5

c2

b1 =
1

c2

f3 =
c2c6 − c3c5

c3c5

f2/5 =
c1c5 − c2c4

c8(c3c4 − c1c6)
f7 =

c2

c1c5 − c2c4

b2 =
c1c5 − c2c4

c2c6 − c3c5

.

(6.4.8)

This implies that c7 can indeed be expressed in terms of the other ci’s as follows

c7 = −b2f1f4 =
c8c3(c2c4 − c1c5)

c2(c2c6 − c3c5)
. (6.4.9)

We have just shown that although it appears that all 9 entries of the matrix

C are independent, this is not the case. This condition can be translated into a

constraint on the Plücker coordinates, by noting that

c1 = ∆1,4,6 c4 = −∆1,2,6 c7 = ∆1,2,4

c2 = ∆3,4,6 c5 = ∆2,3,6 c8 = −∆2,3,4

c3 = −∆4,5,6 c6 = ∆2,5,6 c9 = ∆2,4,5

(6.4.10)

Hence, (6.4.9) becomes

∆1,2,4 =
∆2,3,4∆4,5,6(−∆3,4,6∆1,2,6 −∆1,4,6∆2,3,6)

∆3,4,6(∆3,4,6∆2,5,6 + ∆4,5,6∆2,3,6)
= −∆2,3,4∆4,5,6(∆1,3,6∆2,4,6)

∆3,4,6(∆3,5,6∆2,4,6)

⇔ ∆1,2,4∆3,4,6∆3,5,6 = −∆2,3,4∆4,5,6∆1,3,6 (6.4.11)

where we used two Plücker relations to simplify the expression. This constraint

is equivalent to the one we expected from the denominator ((124)(346)(365) −
(456)(234)(136)).

We then see a novel and interesting feature appearing in non-planar graphs:

by removing an edge we have created a constraint on the Plücker coordinates that

is independent of the Plücker relations. We conclude that the original graph was

indeed reduced. Irreducibility can manifest when deleting edges as the vanishing of

Plücker coordinates (as for planar graphs) or as the emergence of new constraints

on them.

This constraint can alternatively be simply determined by using (6.4.1) and

(6.4.2), because it just reflects the linear dependencies of vectors in the matching
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polytope. From (6.4.2) we see that (6.4.11) is

p35 p23 p37 = p24 p32 p38

⇔



0
0
0
0
0
1
0
0
0
1
0
1
1
0
1
0
0
1
0



+



0
0
1
0
0
0
1
0
0
0
0
0
0
1
1
1
1
1
1



+



0
0
0
0
0
0
1
1
0
0
1
0
0
1
0
1
1
0
1



=



0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
0



+



0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
0
1



+



0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
1
1



(6.4.12)

Now we understand how the new constraint arises. While (6.4.12) is always true, we

need to set X5,2 = 0 in order to translate it into a constraint on Plücker coordinates

∆I . Phrased differently, before removing X5,2, (6.4.11) would imply that (p35 −
p7) p23 p37 = p24 p32 p38, which is not true. Once X5,2 has been removed, however,

p7 disappears and (6.4.11) becomes equivalent to the known relation among perfect

matchings (6.4.12).

6.4.2 A Systematic Approach to Reducibility

One lesson we should draw from the previous section is that for non-planar graphs

the preservation of the matroid polytope under edge removal is a necessary but

not sufficient condition for reducibility. It is nonetheless possible to establish a

systematic procedure for determining whether a non-planar graph is reducible or not,

which goes as follows. Simply remove as many edges as possible while preserving the

matroid polytope, and count the degrees of freedom of the generalized face variables

fi and bj in the resulting graph.11 This number should be compared to the expected

number of degrees of freedom based on the surviving points of the matroid polytope,

11Generally, multiple combinations of removed edges are possible at this step. In addition, these

combinations might involve different numbers of edges.
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i.e. a naive counting of dimensions of C that assumes the absence of constraints other

than the Plücker relations. Two scenarios may occur:

• The surviving points of the matroid polytope suggest a dimension that is equal

to the number of independent generalized face variables. This means that the

graph is now maximally reduced, and there are no new constraints on the ∆I .

• The surviving points of the matroid polytope suggest a dimension that is larger

than the number of independent generalized face variables. This means that

the collection of removed edges, which did not affect the matroid polytope,

has reduced the graph “more than the maximal amount”. The difference δ

between the naive and actual dimensions gives the number of new constraints

on non-vanishing Plücker coordinates which have been generated. Whenever

δ > 0, it means that too many edges have been removed and the graph was

already reduced after deleting a subset of them.

For illustration, let us reconsider the graph in Figure 6.14. As we saw, it is

possible to remove the edge X5,2 while preserving the matroid polytope. The number

of points in the matroid polytope after this operation is 20, which for G(3, 6) suggests

a naive dimension equal to 9 (i.e. as many dimensions as the top cell). However,

we only have 6 + 2 = 8 independent generalized face variables, so δ = 9 − 8 = 1.

We conclude that the original graph was already reduced and by deleting X5,2 we

generate a new constraint on Plücker coordinates.

These operations are very simple to implement algorithmically on a computer

and thus provide a quick check for whether a graph is reduced or not.

6.4.3 Discovering Non-Plücker Constraints

As mentioned above, δ > 0 indicates the existence of constraints on the ∆I that

are independent from the Plücker relations. It is natural to want to find these

constraints. To this end, we suggest the following strategy:

• Solve the linear relations among column vectors in P to obtain all constraints

on linear combinations of these vectors.
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• Solve the Plücker relations.

• Rewrite the perfect matchings in terms of Plücker coordinates, by inverting

the map in (6.4.4).

• Plug the expressions of perfect matchings into the constraints obtained from

the first point, to obtain the corresponding constraints in terms of Plücker

coordinates.

• Insert the solution of the Plücker relations into these constraints. The number

of new constraints that do not trivialize should be δ.

6.5 Conclusions

We have established several concepts and machinery to undertake the study of non-

planar on-shell diagrams. Some of our main results are: the use of generalized

face variables together with the boundary measurement to obtain the on-shell form

for general non-planar diagrams, a generalization of the prescription of [124] for

obtaining the on-shell form in terms of minors that applies beyond the MHV case,

and a thorough study of reducibility of non-planar diagrams.

The natural goal of this general program is to achieve a level of understanding

of non-planar diagrams similar to the existing one for planar diagrams. As we have

repeatedly witnessed in this chapter, the non-planar realm is far richer.

In addition, there are several concrete questions for future investigation, and we

now mention a few of them. First, it would be interesting to investigate in further

detail the interplay between our combinatorial tools and the classification of dia-

grams based on equivalence moves. For example, a concrete problem is to classify

the on-shell diagrams associated to all permutation inequivalent top-dimensional

cells for various G(k, n)’s. It would be interesting to find an algorithm to construct

non-planar on-shell diagrams. Similar methods exist for constructing planar on-shell

diagrams from permutations [34] and for constructing dimer models from toric dia-

grams [19,107]. It would be worth studying whether the stratification of non-planar

on-shell diagrams hints at some interesting topologies of the associated geometries
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and, if so, what its physical significance is.12 It is also natural to investigate whether

there are non-planar counterparts for some of the objects which followed on-shell di-

agrams in planar N = 4 SYM, such as deformed on-shell diagrams [67–70,137–139]

and the amplituhedron [79, 80]. Another question to explore is whether there is a

non-planar generalization of the connection between scattering amplitudes in the 3d

ABJM theory [129] and the positive orthogonal Grassmannian [130,131].

12Here we have in mind the approach to stratification introduced in Chapter 4, based on the

matching and matroid polytopes.
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[122] K. Talaska, A formula for Plücker coordinates associated with a planar

network, International Mathematics Research Notices 2008 (2008)

[arXiv:0801.4822].

[123] M. Gekhtman, M. Shapiro, and A. Vainshtein, Poisson Geometry of Directed

Networks in an Annulus, Journal of the European Mathematical Society 14

(2012) 541–570, [arXiv:0901.0020].

[124] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. Postnikov, and J. Trnka,

On-Shell Structures of MHV Amplitudes Beyond the Planar Limit,

arXiv:1412.8475.

[125] E. Gawrilow and M. Joswig, polymake: a framework for analyzing convex

polytopes, in Polytopes Combinatorics and Computation (G. Kalai and

G. Ziegler, eds.), vol. 29 of DMV Seminar, pp. 43–73. Birkhuser Basel, 2000.

[126] L. K. Williams, Shelling totally nonnegative flag varieties,

J. Reine Angew. Math. 609 (2007) 001, [0509129].

[127] M. Enciso, Volumes of Polytopes Without Triangulations, arXiv:1408.0932.

[128] J. Trnka, Work in progress, .

[129] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N=6

superconformal Chern-Simons-matter theories, M2-branes and their gravity

duals, JHEP 0810 (2008) 091, [arXiv:0806.1218].

[130] Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal

grassmannian, JHEP 1402 (2014) 104, [arXiv:1309.3252].

[131] Y.-t. Huang, C. Wen, and D. Xie, The Positive orthogonal Grassmannian

and loop amplitudes of ABJM, arXiv:1402.1479.



Bibliography 234

[132] R. Roiban, M. Spradlin, and A. Volovich, Dissolving N=4 loop amplitudes

into QCD tree amplitudes, Phys.Rev.Lett. 94 (2005) 102002,

[hep-th/0412265].

[133] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, What is the Simplest

Quantum Field Theory?, JHEP 1009 (2010) 016, [arXiv:0808.1446].

[134] M. Spradlin, A. Volovich, and C. Wen, Three Applications of a Bonus

Relation for Gravity Amplitudes, Phys.Lett. B674 (2009) 69–72,

[arXiv:0812.4767].

[135] B. Feng, R. Huang, and Y. Jia, Gauge Amplitude Identities by On-shell

Recursion Relation in S-matrix Program, Phys.Lett. B695 (2011) 350–353,

[arXiv:1004.3417].

[136] R. Kleiss and H. Kuijf, Multi - Gluon Cross-sections and Five Jet Production

at Hadron Colliders, Nucl.Phys. B312 (1989) 616.

[137] N. Kanning, T. Lukowski, and M. Staudacher, A shortcut to general

tree-level scattering amplitudes in N = 4 SYM via integrability,

Fortsch.Phys. 62 (2014) 556–572, [arXiv:1403.3382].

[138] J. Broedel, M. de Leeuw, and M. Rosso, A dictionary between R-operators,

on-shell graphs and Yangian algebras, JHEP 1406 (2014) 170,

[arXiv:1403.3670].

[139] J. Broedel, M. de Leeuw, and M. Rosso, Deformed one-loop amplitudes in

N = 4 super-Yang-Mills theory, JHEP 1411 (2014) 091, [arXiv:1406.4024].



Appendix A

Appendices to Chapter 4: “The

Geometry of On-Shell Diagrams”

A.1 The Path Matrix

In this appendix we describe an efficient algorithm to extract the paths for a given

perfect orientation of a bipartite diagram, planar or non-planar. This is an important

step of the boundary measurement which maps bipartite graphs to elements of the

Grassmannian. The path matrix M is an nv × nv matrix, where nv is the number

of vertices in the diagram. Given a perfect orientation, each entryMab contains the

sum of edge weights for all oriented paths connecting vertices a and b. We shall now

show how this matrix can be obtained using the Kasteleyn matrix.

The perfect orientation is determined in terms of a reference perfect matching

pref as explained in §2.3. We now construct two matrices as follows: we define Kr

as the Kasteleyn matrix where we have set to zero the edge weights Xi,j ∈ pref and

replaced all other Xi,j → αi,j; we define K̃r as the Kasteleyn matrix where we have

set to zero all the edge weights not belonging to pref, and sent Xi,j → 1/αi,j for the

edge weights Xi,j ∈ pref. We then arrange the following nv × nv matrix:

C =

 Inw×nw −Kr

−(K̃r)T Inb×nb

 , (A.1.1)

where nw and nb is the number of white and black nodes, respectively. The path
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matrix is M = C−1. The k × n dimensional matrix MC is simply a sub-matrix

of M, obtained by extracting those entries that correspond to sources flowing to

external nodes.

The entries Mab are generally sums of ratios of edge weights αi,j, where the

denominator contains those αi,j in p̃ref which are relevant to the path. We remind

the reader that an edge in the numerator signifies that the direction of that edge

is from the white node to the black node, an edge in the denominator signifies the

opposite direction.

Sometimes a path from a vertex a to a vertex b contains a loop. This results

in an infinite number of paths from a to b, which differ in the number of times the

path runs over the loop. The entryMab will thus contain the infinite sum of paths:

(1− loop)−1 = 1 + loop + (loop)2 + . . . . Explicit examples of the construction ofM
can be found in the appendices of [3].

A.2 A Genus-Two Example

Let us now apply our boundary measurement prescription to an on-shell diagram

embedded into a genus-2 surface with a single boundary. This example admits an

alternative embedding into a genus-0 surface with multiple boundaries, which allows

for a non-trivial check of our proposal. Genus-2 surfaces have four fundamental

cycles: α1, β1, α2, β2. The diagram is shown in Figure A.1, where we present

the fundamental cell of the surface and segments on its perimeter are periodically

identified according to their color and orientation. We pick a perfect orientation

corresponding to the perfect matching p̃ref = α1,2α1,3α4,2α4,3α5,1α5,2α
′
5,2.

Let us now determine the boundary measurement. To do so, we first list all flows

and their source sets.

p1 =
α1,5α3,1α4,1α4,5

α1,2α1,3α4,3α5,1α5,2α′5,2
{1, 2, 3} p15 =

α2,1α3,1α3,4α4,5α′2,1
α1,2α1,3α4,2α4,3α5,1α5,2α′5,2

{1, 2, 3}

p2 =
α1,5α2,4α3,1α4,1

α1,2α1,3α4,3α5,2α′5,2
{1, 3, 5} p16 =

α1,4α2,1α3,1α3,4

α1,2α1,3α4,2α4,3α5,1α′5,2
{1, 2, 3}

p3 =
α1,4α1,5α2,4α3,1

α1,2α4,3α5,1α5,2α′5,2
{1, 3, 4} p17 =

α2,1α2,4α3,1α3,4α′2,1
α1,2α1,3α4,2α4,3α5,2α′5,2

{1, 3, 5}

p4 =
α1,5α2,3α4,1α4,5α′1,4

α1,2α1,3α4,2α4,3α5,1α5,2α′5,2
{1, 2, 3} p18 =

α2,1α2,3α4,1

α1,2α1,3α4,2α′5,2
{1, 2, 5}
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1

1

X1,2

2

3

4

5

2
3

5

4

4

2

1

4

1 2

3

5

1
Y2,1

X5,1

X4,5

X1,4

X4,1

X3,4

X2,4

X3,4

X4,3

X4,2

X2,1

Y1,4

X3,1

X1,5 X2,3

X4,2

X1,2

Y2,1

Y5,2

X1,5

X5,2

X1,3

Figure A.1: An on-shell diagram embedded into a genus-2 surface with a single

boundary. The unit cell is an octagon. Dashed arrows of the same color are identified

respecting their orientation. Faces are labeled in green, external nodes in black and

edges in red.

p5 =
α1,5α2,3α2,4α4,1α′1,4

α1,2α1,3α4,2α4,3α5,2α′5,2
{1, 3, 5} p19 =

α2,3α4,1α′1,4
α1,2α1,3α4,2α4,3

{2, 3, 5}

p6 =
α1,5α4,5

α5,1α5,2α′5,2
{1, 2, 4} p20 = 1 {2, 4, 5}

p7 =
α1,5α2,4

α5,2α′5,2
{1, 4, 5} p21 =

α2,1α2,3α4,5α′2,1
α1,2α4,2α5,1α5,2α′5,2

{1, 2, 4}

p8 =
α1,5α3,4α4,5α′1,4

α1,3α4,2α4,3α5,1α5,2α′5,2
{1, 2, 3} p22 =

α2,3α4,5α′1,4α
′
2,1

α1,2α4,2α4,3α5,1α5,2
{2, 3, 4}

p9 =
α1,4α1,5α2,3α2,4α′1,4

α1,2α4,2α4,3α5,1α5,2α′5,2
{1, 3, 4} p23 =

α1,4α2,1α2,3

α1,2α4,2α5,1α′5,2
{1, 2, 4}

p10 =
α1,5α2,4α3,4α′1,4

α1,3α4,2α4,3α5,2α′5,2
{1, 3, 5} p24 =

α1,4α2,3α′1,4
α1,2α4,2α4,3α5,1

{2, 3, 4}

p11 =
α3,1α4,1

α1,2α1,3α4,3
{2, 3, 5} p25 =

α2,1α3,4

α1,3α4,2α′5,2
{1, 2, 5}

p12 =
α3,1α4,5α′2,1

α1,2α4,3α5,1α5,2
{2, 3, 4} p26 =

α2,1α2,3α2,4α′2,1
α1,2α4,2α5,2α′5,2

{1, 4, 5}

p13 =
α1,4α3,1

α1,2α4,3α5,1
{2, 3, 4} p27 =

α3,4α′1,4
α1,3α4,2α4,3

{2, 3, 5}
p14 =

α2,4α3,1α′2,1
α1,2α4,3α5,2

{3, 4, 5} p28 =
α2,3α2,4α′1,4α

′
2,1

α1,2α4,2α4,3α5,2
{3, 4, 5}

(A.2.1)
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Including the (−1)s(i,j) signs, we obtain the following matrix
1 2 3 4 5

2 p7 + p26 1 p14 + p28 0 0

4 −p18 − p25 0 p11 + p19 + p27 1 0

5 p6 + p21 + p23 0 −p12 − p13 − p22 − p24 0 1

 . (A.2.2)

The minors of this matrix cannot be written as a sum of flows. It is sufficient

to determine the combinatorial signs for only those flows appearing in the matrix,

which are shown in Figure A.2 along with their respective signs. This then yields

1 2

3

4

5

1 2

3

4

5

1 2

3

4

5

,6p  1r ,7p  1r ,11p  1r

,13p  2r ,14p  2r ,18p  1r

1 2

3

4

5

,12p  1r

,19p  0r

,21p  1r ,22p  0r ,23p  0r

,25p  2r ,26p  1r ,27p  1r

,24p  1r

,28p  1r

1 2
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4

5

1 2

3

4

5

1 2
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5

1 2
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1 2
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1 2

3

4

5

1 2

3
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1 2

3
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5

1 2

3
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5

1 2

3
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5

1 2

3

4

5

1 2

3

4

5

Figure A.2: Flows contributing to (A.2.2) completed to loops within the unit cell,

the corresponding rotation numbers and the resulting signs.
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the Grassmannian matrix

C =


1 2 3 4 5

2 p7 + p26 1 −p14 + p28 0 0

4 −p18 + p25 0 p11 − p19 + p27 1 0

5 p6 + p21 − p23 0 −p12 + p13 + p22 − p24 0 1

 . (A.2.3)

Interestingly, here we observe a new phenomenon, exclusive to higher genus. For

genus-0, in the absence of closed loops in the perfect orientation, all flows whose

source and sink lie on the same boundary do not pick up any (−1)r+1 signs. This

is because they do not use cuts to be completed into loops, which in this case are

the only possible sources of self-intersections. On the contrary, despite the fact that

this example has only one boundary, several flows pick up this type of minus sign.

This effect is precisely tuned such that the minors of C are subject to important

cancellations that result in the simple expressions

∆1,2,3 = p1 − p4 + p8 + p15 − p16 ∆1,4,5 = p7 + p26

∆1,2,4 = p6 + p21 − p23 ∆2,3,4 = p12 − p13 − p22 + p24

∆1,2,5 = p18 − p25 ∆2,3,5 = p11 − p19 + p27

∆1,3,4 = p9 − p3 ∆2,4,5 = 1

∆1,3,5 = p2 − p5 + p10 + p17 ∆3,4,5 = p28 − p14

(A.2.4)

We would like to stress how non-trivial this example is. Not only were we required

to introduce signs for paths that start and end on the same boundary, but the signs

in (A.2.3) seem not to have any particular pattern, yet they magically produce the

cancellations required to obtain (A.2.4). Based on the examples presented, it is rea-

sonable to conjecture that we have identified the full set of rules for constructing the

boundary measurement for on-shell diagrams embedded on surfaces with arbitrary

number of boundaries and genus. It would be interesting to confirm that this is the

case and to find a formal derivation of our proposal.

A.3 Matroid Stratification from Multiple Graphs

As already explained in §4.5.2, the combinatorial decomposition yields a subset of

the matroid stratification: only certain strata appear in the decomposition. It is
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then natural to ask whether it is possible to extend it such that it produces the full

matroid stratification. This leads us to the following reasonable conjecture:

• Conjecture: The full matroid stratification can be obtained by simultane-

ously considering the combinatorial decomposition of multiple bipartite graphs

associated to Grassmannian elements with a maximal number of degrees of

freedom. Some of these graphs are non-planar. The matroid stratification is

given by the union of the resulting strata.

This proposal follows from the definition of the matroid stratification in §4.1.5.

Analogously to the positroid stratification, where we take the common refinement

of n cyclically permuted Schubert cells, hence n cyclic permutations, the matroid

stratification is in general the refinement over all n! permutations. Here we remind

the reader that every permutation specifies a lexicographic order that characterizes

the Schubert cell, analogously to §4.1.3. The distribution of external nodes over

boundaries gives rise, following the discussion in §4.3.3, to different orderings, which

we map to these permutations.

In essence, to access all the permutations and hence all the matroids, we have to

consider permutations which cannot be obtained by cyclic rotations of 1, 2, . . . , n,

which are the only ones that can be realized on planar graphs. The other permuta-

tions can be obtained only by introducing new boundaries, thus making the graphs

non-planar.

To illustrate this idea, let us consider the decomposition of the diagram in Figure

4.2(b) which, after introducing an additional boundary and the corresponding cut, is

the same as the square box but with ordering 1243. The decomposition is obtained

through the procedure explained in §4.5 and is shown in Figure A.3, where the

matroid label is given in dark green and the positroid label is in light green. The

matroid labels are identical to those of Figure 4.8, but with 3 and 4 interchanged.

The fact that we no longer have the positroid stratification is confirmed by the fact

that the positroid stratum {C ∈ G(2, 4) | ∆12 6= 0,∆23 6= 0,∆34 6= 0,∆14 6= 0} has

multiple representatives, and some positroid strata are missing, e.g. {C ∈ G(2, 4) |
∆12 6= 0,∆24 6= 0,∆34 6= 0,∆14 6= 0}. However, we note that the decomposition just

obtained is precisely the same as that of §4.1.4 but where each component is the
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{12,13,14,23,24,34}

{12,23,34,14}

{12,13,14,23,24}{12,13,14,23,34,} {12,14,23,24,34} {13,14,23,24,34}

{12,13,23} {12,23,24}{13,14,34} {14,24,34} {12,13,14} {12,14,24}{12,14,23,34}{13,14,23,24}{13,23,34} {23,24,34}

{12,24} {23,34} {12,23} {13,23} {23,24}{14,34} {13,14} {12,14} {14,24} {13,34} {24,34} {12,13}

{13} {24} {23}{14} {34} {12}

{12,23,34,14} {12,23,34,14} {13,23,34,14} {12,23,13,14}

{13,34,14} {14,24,34} {12,13,14} {12,24,14} {12,23,34} {13,23,14} {13,23,34} {23,34,24} {12,23,13} {12,23,24}

{23,24}{14,34} {13,14} {12,14} {14,24} {13,34} {24,34} {12,13} {12,24} {23,34} {12,23} {13,23}

{14} {34} {12} {13} {24} {23}

Figure A.3: Decomposition of the square box with flipped legs and two boundaries.

It corresponds to the permutation 1243. The dark green label indicates the matroid

stratum corresponding to the graph, the light green label indicates the positroid

stratum.

simultaneous refinement of 4 cyclically permuted Schubert cells with respect to the

lexicographic order specified by the permutation 1243.

In the decomposition of the non-planar graph, the matroid strata that were miss-

ing from the decomposition of the planar case with ordering 1234, as described in

§4.5.2, are now present. Hence we conclude that the union of the matroid strata

of the decomposition in Figure 4.8 and Figure A.3 gives the entire matroid strati-

fication, at least at the combinatorial level. We provide in Figure A.4 a depiction
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of how the two decompositions together form the entire matroid stratification. The

matroid strata are marked by a green circle, where the matroid labels have been

included underneath.

{13} {34} {12} {14} {23} {24}

{12,13,14,24,34} {12,13,23,24,34} {13,14,23,24,34} {12,13,14,23,24} {12,13,14,23,34} {12,14,23,24,34}

{12,13,14,23,24,34}

{13,14,34} {13,23,34} {12,13,14} {12,13,23} {12,13,24,34}{13,14,23,24}{12,14,23,34} {14,24,34} {23,24,34} {12,14,24} {12,23,24}

{23,24}{14,24}{12,24}{24,34}{12,23}{12,14}{23,34}{14,34}{13,23}{12,13}{13,14}{13,34}

Figure A.4: Matroid stratification of G(2, 4) via a pair of graphs, both planar and

non-planar. Matroid strata are indicated by green circles. Red and yellow arrows

belong to the combinatorial decompositions of the planar and non-planar graphs,

respectively.

Generally, including all n! permutations of external edges modulo cyclicity will

include all matroid strata, but in practice it can be sufficient to consider fewer

permutations.

Let us explain why this is the case and show how to determine the diagrams

required for the matroid stratification in the case of G(2, 4), whose matroid contains

the 6 bases 12, 13, 14, 23, 24 and 34. We begin by only discussing the problem in

terms of permutations and lexicographic orders, and explain how the graphs fit into

this picture at a secondary stage.
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Each permutation of 1, 2, 3, 4 specifies a lexicographic order, to which we can

associate a Schubert cell analogously to the definition in §4.1.3. The positroid

stratification uses n permutations, related to each other by cyclic shifts, and the

corresponding Schubert cells, and is then specified by n entries. To put a label in

each entry, we select the lexicographically minimal non-zero element with respect

to the permutation in question. For example, the permutation 2413 will select the

matroid element (24), if present, otherwise select (21), if present, etc.

The matroid stratification generally uses n! permutations. However, in order to

find all the strata, it is sufficient to refine over the set of Schubert cells such that

for each base there exists a Schubert cell whose lexicographic order has that base

as minimal element. Thus, to specify all matroids in the example at hand, we will

need 6 permutations, each permutation having a different lexicographically minimal

order of the form:

12XX, 13XX, 14XX, 23XX, 24XX, 34XX, (A.3.1)

where XX may be any order of the remaining two digits, e.g. it does not matter

whether we choose 1342 or 1324. For example, the first lexicographic order will

always find the matroid base 12, regardless of the presence or absence of other

bases; the second one will always find 13 regardless of the other matroid bases, and

so on. Strictly speaking the order of the first two digits is also irrelevant, since either

order specifies the same matroid element. In this way, each matroid base, if present,

will appear in one of the six entries associated to the different lexicographic orders.

A set of 6 permutations as in (A.3.1) is sufficient for labeling all matroids with the

correct matroid labels.

Graphs fit into this picture as follows. Each graph specifies an ordering, dictated

by the arrangement of the external edges. Because of cyclicity of the starting point,

the graph actually specifies n orderings, related to each other by cyclic shifts. In this

example, the planar graph has the ordering 1234, which specifies the permutations

1234, 2341, 3412, 4123, (A.3.2)
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which simply differ in which edge of the graph we call “1”. We see that such a

graph contains 4 of the required lexicographic orders.1 We are however still missing

a permutation of the form 13XX and one of the form 24XX. If we introduce a

second graph with the ordering 1243, we obtain the permutations

1243, 2431, 4312, 3124, (A.3.3)

which contain the lexicographic orders given by 3124 and 2431 as desired, and two

more which were already covered by the previous graph. Thus, we see that the two

graphs with ordering 1234 and 1243 are sufficient to cover all lexicographic orders

and corresponding Schubert cells which are required to specify the matroids. We

then argue that their decomposition will cover the combinatoric structure of the

entire matroid stratification.

As a check at the first level, we indeed see that the decomposition of the two

diagrams does indeed overlap in the matroids obtained by removing 12 or removing

34, which are precisely the lexicographically minimal sets of those permutations

which in the arguments above were covered by both orders 1234 and 1243, and by

3412 and 4312, respectively. Likewise, at the first level the decompositions do not

overlap precisely on the matroid labels which are lexicographically minimal to those

permutations which do not overlap for the two orderings. This is also true at the

second level, where {12, 13, 24, 34} is missing 14 and 23, which are precisely those

which are not lexicographically minimal of any permutation in equation (A.3.3).

Also, {12, 14, 23, 34} is missing 13 and 24, which are precisely those which are not

lexicographically minimal of any permutation in equation (A.3.2).

It is reasonable to expect that it might be possible to find which graphs are

necessary to cover the entire matroid stratification by simply listing the set of all

possible matroid elements, a set of permutations for which these elements are the

lexicographically minimal subsets, and finding graphs whose ordering can achieve

these permutations. We leave a detailed study of this interesting possibility for

future investigation.

1We again remind the reader that it does not matter whether it is 4123 or 1423: either way the

lexicographically minimal element will be the one corresponding to the Plücker coordinate ∆14.



Appendix B

Appendices to Chapter 5:

“Anatomy of the Amplituhedron”

B.1 Geometric Versus Integrand Stratification: Ex-

plicit Examples

In §5.7.1 we obtained the mini stratification of G+(0, 4; 2) using the integrand. We

have explicitly verified the one-to-one agreement of all boundaries obtained with

the stratifications based on the integrand and the amplituhedron. In this appendix

we collect several explicit examples of this precise match for illustration purposes.

They have been chosen to provide a good representation of all qualitatively different

cases that arise.

Strictly speaking, the language used in this study is the one of labels, i.e. the

mini stratification. As explained in §5.2.3, labels really correspond to classes of

boundaries. In particular, for every label in which the 4 × 4 minor vanishes, there

can be multiple boundaries, i.e. different integrands. Furthermore, these boundaries

in general have different dimensions. For these cases, the table below provides the

integrand corresponding to the maximal vanishing of the 4 × 4 minor. As in the

mini stratification, we list this configuration at the highest dimension at which the

4× 4 vanishes. All other integrands corresponding to the same labels can be easily

constructed.

245
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Dimension 8. There is only one 8-dimensional boundary, which is the top dimen-

sional one. It is the integrand (5.7.1), where the lines AB and CD are completely

free. In the table below, we compare the integrand and geometric methods. The

same format will be used for all other examples. The first two rows show the in-

tegrand and the restrictions on the lines. The comparison with our other method

is seen in the last two rows, where we specify the set of Plücker coordinates and

hyper perfect matchings present. The hyper perfect matchings contributing to the

4× 4 minor 〈ABCD〉 are highlighted in color, with the ones contributing positively

(P23, P32, P45, P54) in blue and the ones contributing negatively (P16, P61) in red.

Notice that 〈ABCD〉 can vanish while some of them are present due to cancella-

tions. However, if none of these perfect matchings are present, 〈ABCD〉 is forced

to automatically vanish.

Integrand 〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

Constraints on AB and CD Free

Plücker coordinates ∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,

turned on ∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4,

Hyper perfect P2,5, P2,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2,

matchings present P4,3, P4,4,P4,5, P4,6, P5,1, P5,2, P5,3,P5,4, P5,5, P5,6,

P6,1, P6,2, P6,3, P6,4, P6,5, P6,6

Dimension 7. There are 9 integrands corresponding to 7-dimensional boundaries.

We present all of them below.

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈ABCD〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈ABCD〉 → 0 〈AB12〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 , ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4,

P2,5, P2,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2, P3,5, P3,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6, P5,1, P5,2,

P4,3, P4,4,P4,5, P4,6, P5,1, P5,2, P5,3,P5,4, P5,5, P5,6, P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6

P6,1, P6,2, P6,3, P6,4, P6,5, P6,6
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〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB34〉〈CD12〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB14〉 → 0 〈AB23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
24 ,∆

(1)
34 , ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4,

P2,5, P2,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2, P2,5, P2,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P5,1, P5,2,

P4,3, P4,4,P4,5, P4,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6 P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD14〉〈CD23〉〈CD34〉

〈AB34〉 → 0 〈CD12〉 → 0

∆
(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 , ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4, P1,1, P1,3, P1,4, P1,5,P1,6, P2,1,P2,3, P2,4, P2,5, P2,6,

P2,5, P2,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6, P5,1, P5,2, P3,1, P3,3, P3,4, P3,5, P3,6, P4,1, P4,3, P4,4,P4,5, P4,6,

P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6 P5,1, P5,3,P5,4, P5,5, P5,6,P6,1, P6,3, P6,4, P6,5, P6,6

〈AB34〉〈CD12〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD23〉〈CD34〉

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD34〉

〈CD14〉 → 0 〈CD23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 , ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4,P1,6, P2,1, P2,2,P2,3, P2,4, P2,6, P1,1, P1,2, P1,3, P1,5,P1,6, P2,1, P2,2,P2,3, P2,5, P2,6,

P3,1,P3,2, P3,3, P3,4, P3,6, P4,1, P4,2, P4,3, P4,4, P4,6, P3,1,P3,2, P3,3, P3,5, P3,6, P4,1, P4,2, P4,3,P4,5, P4,6,

P5,1, P5,2, P5,3,P5,4, P5,6,P6,1, P6,2, P6,3, P6,4, P6,6 P5,1, P5,2, P5,3, P5,5, P5,6,P6,1, P6,2, P6,3, P6,5, P6,6

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉

〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,4, P1,5,P1,6, P2,1, P2,2, P2,4, P2,5, P2,6, P3,1,P3,2, P3,4, P3,5, P3,6,

P4,1, P4,2, P4,4,P4,5, P4,6, P5,1, P5,2,P5,4, P5,5, P5,6,P6,1, P6,2, P6,4, P6,5, P6,6

Dimension 6. There are 44 integrands corresponding to 6-dimensional bound-

aries. We present some examples below.

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈ABCD〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0 〈AB12〉 → 0, 〈AB34〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P4,1, P4,2, P4,3, P4,4,

P3,5, P3,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6, P5,1, P5,2, P4,5, P4,6, P5,1, P5,2, P5,3,P5,4, P5,5, P5,6,P6,1, P6,2,

P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6 P6,3, P6,4, P6,5, P6,6
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〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈AB34〉〈ABCD〉〈CD14〉〈CD23〉〈CD34〉

〈AB14〉〈CD23〉+〈AB23〉〈CD14〉+〈AB34〉〈CD12〉
〈AB14〉〈AB23〉〈AB34〉〈ABCD〉〈CD12〉〈CD14〉〈CD23〉

〈AB12〉 → 0, 〈CD12〉 → 0 〈AB12〉 → 0, 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,3, P1,4, P1,5,P1,6, P3,1, P3,3, P3,4, P3,5, P3,6, P1,1, P1,2, P1,4, P1,5,P1,6, P3,1,P3,2, P3,4, P3,5, P3,6,

P4,1, P4,3, P4,4,P4,5, P4,6, P5,1, P5,3,P5,4, P5,5, P5,6,P4,1, P4,2, P4,4,P4,5, P4,6, P5,1, P5,2,P5,4, P5,5, P5,6,

P6,1, P6,3, P6,4, P6,5, P6,6 P6,1, P6,2, P6,4, P6,5, P6,6

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈ABCD〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6

Dimension 5. There are 140 integrands corresponding to 5-dimensional bound-

aries. We present some examples below.

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈AB34〉〈CD14〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB34〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈CD12〉 → 0

∆
(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P4,1, P4,2, P4,3, P4,4, P1,1, P1,3, P1,4, P1,5,P1,6, P3,1, P3,3, P3,4, P3,5, P3,6,

P4,5, P4,6, P5,1, P5,2, P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P4,1, P4,3, P4,4,P4,5, P4,6, P5,1, P5,3,P5,4, P5,5, P5,6,

P6,3, P6,4, P6,5, P6,6 P6,1, P6,3, P6,4, P6,5, P6,6

〈AB14〉〈CD23〉+〈AB23〉〈CD14〉+〈AB34〉〈CD12〉
〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈ABCD〉〈CD14〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈CD34〉 → 0 〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,2, P1,4, P1,5,P1,6, P3,1,P3,2, P3,4, P3,5, P3,6, P1,1, P1,3, P1,4, P1,5,P1,6, P4,1, P4,3, P4,4,P4,5, P4,6,

P4,1, P4,2, P4,4,P4,5, P4,6, P5,1, P5,2,P5,4, P5,5, P5,6, P5,1, P5,3,P5,4, P5,5, P5,6,P6,1, P6,3, P6,4, P6,5, P6,6

P6,1, P6,2, P6,4, P6,5, P6,6

1
〈AB23〉〈ABCD〉〈CD12〉〈CD34〉

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

∆
(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4,P1,6, P4,1, P4,2, P4,3, P4,4, P4,6, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4,

P5,1, P5,2, P5,3,P5,4, P5,6,P6,1, P6,2, P6,3, P6,4, P6,6 P3,5, P3,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6

1
〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

1
〈ABCD〉〈CD12〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ∆

(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2, P4,3, P4,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P4,1, P4,2, P4,3, P4,4,

P4,5, P4,6 P4,5, P4,6
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1
〈AB34〉〈ABCD〉〈CD23〉〈CD34〉

〈AB23〉〈CD14〉+〈AB34〉〈CD12〉
〈AB23〉〈AB34〉〈ABCD〉〈CD12〉〈CD14〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD12〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,3, P1,4, P1,5,P1,6, P3,1, P3,3, P3,4, P3,5, P3,6, P1,1, P1,2, P1,3, P1,5,P1,6, P3,1,P3,2, P3,3, P3,5, P3,6,

P4,1, P4,3, P4,4,P4,5, P4,6 P4,1, P4,2, P4,3,P4,5, P4,6

Dimension 4. There are 274 integrands corresponding to 4-dimensional bound-

aries. We present some examples below.

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈CD14〉〈CD23〉〈CD34〉

1
〈AB23〉〈CD12〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD14〉 → 0

∆
(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,3, P1,4, P1,5,P1,6, P4,1, P4,3, P4,4,P4,5, P4,6, P1,1, P1,2, P1,3, P1,4,P1,6, P4,1, P4,2, P4,3, P4,4, P4,6,

P5,1, P5,3,P5,4, P5,5, P5,6,P6,1, P6,3, P6,4, P6,5, P6,6 P5,1, P5,2, P5,3,P5,4, P5,6,P6,1, P6,2, P6,3, P6,4, P6,6

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈ABCD〉〈CD14〉〈CD23〉

1
〈CD14〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0, 〈CD34〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0

∆
(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1)
12 ,∆

(1)
13

∆
(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,4, P1,5,P1,6, P4,1, P4,4,P4,5, P4,6, P5,1,P5,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4,

P5,5, P5,6,P6,1, P6,4, P6,5, P6,6 P3,5, P3,6

1
〈AB34〉〈CD23〉〈CD34〉

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈CD12〉 → 0 〈CD23〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,3, P1,4, P1,5,P1,6, P3,1, P3,3, P3,4, P3,5, P3,6, P1,1, P1,2, P1,3, P1,5,P1,6, P3,1,P3,2, P3,3, P3,5, P3,6,

P4,1, P4,3, P4,4,P4,5, P4,6 P4,1, P4,2, P4,3,P4,5, P4,6

1
〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

1
〈ABCD〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈AB24〉 → 0 〈CD14〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P3,1,P3,2, P3,3, P3,4, P3,5, P3,6 P1,1, P1,2, P1,3, P1,4,P1,6, P3,1,P3,2, P3,3, P3,4, P3,6
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1
〈AB23〉〈AB34〉〈CD14〉〈CD23〉〈CD34〉

1
〈AB34〉〈ABCD〉〈CD23〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD12〉 → 0

〈CD12〉 → 0 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P3,1, P3,3, P3,4, P3,5, P3,6, P4,1, P4,3, P4,4,P4,5, P4,6 P1,1, P1,4, P1,5,P1,6, P3,1, P3,4, P3,5, P3,6, P4,1, P4,4,

P4,5, P4,6

1
〈AB23〉〈AB34〉〈CD14〉〈CD34〉

1
〈AB34〉〈ABCD〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD12〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD12〉 → 0

〈CD13〉 → 0, 〈CD23〉 → 0 〈CD23〉 → 0, 〈CD24〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
23 ∆

(2)
12 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,3, P1,5, P3,1, P3,3, P3,5, P4,1, P4,3,P4,5 P1,3, P1,5,P1,6, P3,3, P3,5, P3,6, P4,3,P4,5, P4,6

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈ABCD〉〈CD12〉〈CD14〉

1
〈AB23〉〈AB34〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD23〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈CD24〉 → 0, 〈CD34〉 → 0 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14

P1,2, P1,5,P1,6,P3,2, P3,5, P3,6, P4,2,P4,5, P4,6 P1,1, P1,3, P1,4, P3,1, P3,3, P3,4, P4,1, P4,3, P4,4

Dimension 3. There are 330 integrands corresponding to 3-dimensional bound-

aries. We present some examples below.

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈CD14〉〈CD23〉

1
〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈CD34〉 → 0 〈AB23〉 → 0, 〈CD14〉 → 0

∆
(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,4, P1,5,P1,6, P4,1, P4,4,P4,5, P4,6, P5,1,P5,4, P1,1, P1,2, P1,3, P1,4,P1,6, P3,1,P3,2, P3,3, P3,4, P3,6

P5,5, P5,6,P6,1, P6,4, P6,5, P6,6

1
〈AB34〉〈CD23〉

1
〈AB34〉〈CD12〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈CD12〉 → 0, 〈CD34〉 → 0 〈AB24〉 → 0, 〈CD14〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,4, P1,5,P1,6, P3,1, P3,4, P3,5, P3,6, P4,1, P4,4, P3,1,P3,2, P3,3, P3,4, P3,6

P4,5, P4,6

1
〈ABCD〉〈CD34〉

1
〈AB23〉〈AB34〉〈CD14〉〈CD23〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0

〈CD14〉 → 0, 〈CD23〉 → 0 〈CD12〉 → 0, 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,2, P1,3,P1,6, P3,1,P3,2, P3,3, P3,6 P3,1, P3,4, P3,5, P3,6, P4,1, P4,4,P4,5, P4,6
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1
〈AB34〉〈CD14〉〈CD23〉〈CD34〉

1
〈AB34〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0 〈CD12〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0

∆
(1)
12 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
23 ,∆

(2)
24

P3,1, P3,3, P3,4, P3,5, P3,6 P1,3, P1,5,P1,6, P3,3, P3,5, P3,6, P4,3,P4,5, P4,6

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈CD12〉〈CD14〉

1
〈AB34〉〈CD12〉〈CD23〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈CD23〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD34〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
34

P1,2, P1,5,P1,6,P3,2, P3,5, P3,6, P4,2,P4,5, P4,6 P1,1, P1,2, P1,4, P3,1,P3,2, P3,4

1
〈ABCD〉〈CD23〉

1
〈AB23〉〈AB34〉〈CD14〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0

〈CD14〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
23

P1,2, P1,4,P1,6,P3,2, P3,4, P3,6 P3,1, P3,3, P3,5, P4,1, P4,3,P4,5

1
〈AB34〉〈CD23〉〈CD34〉

1
〈AB23〉〈AB34〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ∆

(1)
12 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14

P1,1, P1,3, P1,4, P3,1, P3,3, P3,4 P3,1, P3,3, P3,4, P4,1, P4,3, P4,4

Dimension 2. There are 264 integrands corresponding to 2-dimensional bound-

aries. We present some examples below.

1
〈CD34〉

1
〈AB34〉〈CD12〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈AB23〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0 〈AB24〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3,P1,6, P3,1,P3,2, P3,3, P3,6 P3,1,P3,2, P3,3, P3,6

1
〈AB34〉〈CD14〉〈CD23〉

1
〈CD23〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD34〉 → 0 〈AB23〉 → 0, 〈CD14〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0

∆
(1)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P3,1, P3,4, P3,5, P3,6 P1,2, P1,4,P1,6,P3,2, P3,4, P3,6

1
〈AB34〉〈CD12〉〈CD23〉

1
〈AB34〉〈CD12〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈AB24〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD34〉 → 0 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
13 ,∆

(2)
34

P3,1,P3,2, P3,4 P1,1, P1,2, P3,1,P3,2



B.1. Geometric Versus Integrand Stratification: Explicit Examples 252

1
〈AB34〉〈CD12〉〈CD23〉

1
〈ABCD〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
14 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
24 ,∆

(2)
34

P1,2, P1,4,P3,2, P3,4 P1,2,P1,6,P3,2, P3,6

1
〈AB23〉〈AB34〉〈CD14〉〈CD34〉

1
〈AB34〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0 〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD14〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
23 ∆

(1)
12 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14

P3,3, P3,5, P4,3,P4,5 P3,1, P3,3, P3,4

1
〈CD23〉〈CD34〉

1
〈AB34〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0 〈AB23〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0

〈CD14〉 → 0 〈CD23〉 → 0

∆
(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ∆

(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13

P1,1, P1,3, P1,4 P1,1, P1,3, P3,1, P3,3

1
〈AB34〉〈CD23〉〈CD34〉

1
〈AB23〉〈AB34〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0

〈CD24〉 → 0 〈CD24〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
14 ∆

(1)
12 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
14

P1,3, P1,4, P3,3, P3,4 P3,3, P3,4, P4,3, P4,4

Dimension 1. There are 136 integrands corresponding to 1-dimensional bound-

aries. We present some examples below.

1 1
〈AB34〉〈CD12〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈AB23〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0 〈AB24〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0

〈CD34〉 → 0 〈CD34〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(2)
13 ,∆

(2)
34

P1,2,P1,6,P3,2, P3,6 P3,1,P3,2

1
〈AB34〉〈CD12〉〈CD23〉

1
〈AB34〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB24〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD24〉 → 0 〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD34〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(2)
14 ,∆

(2)
34 ∆

(1)
12 ,∆

(2)
12 ,∆

(2)
13

P3,2, P3,4 P3,1, P3,3
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1
〈AB34〉〈CD23〉〈CD34〉

1
〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0 〈AB23〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD14〉 → 0, 〈CD24〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0

∆
(1)
12 ,∆

(2)
12 ,∆

(2)
14 ∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13

P3,3, P3,4 P1,1, P1,3

Dimension 0. There are 34 integrands corresponding to 0-dimensional bound-

aries. We present some examples below.

1
〈AB34〉〈CD12〉

1
〈AB34〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB24〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0 〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD24〉 → 0, 〈CD34〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(2)
34 ∆

(1)
12 ,∆

(2)
12

P3,2 P3,3

1
〈AB34〉 1

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0 〈AB23〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD34〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD34〉 → 0

∆
(1)
12 ,∆

(2)
13 ∆

(1)
13 ,∆

(2)
13

P3,1 P1,1



Appendix C

Appendices to Chapter 6:

“Non-Planar On-Shell Diagrams”

C.1 Embedding Independence

Here we illustrate the independence of the embedding of the on-shell diagram with

the simple example shown in Figure C.1. It is clear that the non-planarity of this

diagram is fake, since it can be embedded on a disk by flipping X1,1.

4

1

2 3

X4,1
X2,4

X1,1

X1,2 X1,4

X2,3

X3,1 X4,3

2

4

1

3

Figure C.1: An on-shell diagram on an annulus. This particular graph can be

planarized by flipping the X1,1 edge.

Here we have four face variables, three of which are independent, and one path

b1. In terms of oriented edge weights, they are given by

f1 =
α3,1α4,1

α1,2α1,4

, f2 =
α1,2

α2,3α2,4

, f3 =
α2,3α4,3

α3,1

, b1 =
α4,1

α1,1α2,4

. (C.1.1)
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Let us consider the perfect orientation corresponding to the reference perfect

matching p̃ref = α1,4α2,3α2,4, which has source set {2, 3}. Using our prescription for

the boundary measurement, we obtain the Grassmannian matrix

C =


1 2 3 4

2
α1,2

α2,3α2,4
+

α3,1α4,1

α1,4α2,3α2,4
1 0 −α1,1α3,1

α1,4α2,3

3 −α4,1α4,3

α1,4α2,4
0 1

α1,1α4,3

α1,4



=


1 2 3 4

2 f1f2 + f2 1 0 −f1f2

b1

3 −f1f2f3 0 1
f1f2f3

b1

 . (C.1.2)

The on-shell form becomes

Ω =
df1

f1

df2

f2

df3

f3

db1

b1

. (C.1.3)

In terms of minors, it becomes

Ω =
d2×4C

Vol(GL(2))

1

(12)(23)(34)(41)
, (C.1.4)

which is simply the form for the planar embedding, i.e. the ordinary square box in

Figure 4.1. This illustrates the independence of the on-shell form on the embedding

and shows that the generalized face variables maintain a d log form regardless of its

choice.

C.2 On-Shell Form for a Genus-One NMHV Di-

agram

To show that the method prescribed in §6.3.2 works just as well for graphs with

higher genus, we now consider the non-planarizable genus-1 example studied in

§6.2, where we choose the perfect orientation shown in Figure 4.6.

Following the prescription in §6.3.2, we find the matrices T and M to be

T =


1 6 4 2

3 2 4 6

5 4 2 6

 , M =


(642) (164) 0 (216) 0 (421)

0 (463) (246) (632) 0 (324)

0 (654) 0 (265) (426) (542)

 .

(C.2.1)
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It is easy to see that the simplest way to obtain the on-shell form is by deleting

columns {2,4,6},

M̂2,4,6 =


(642) 0 0

0 (246) 0

0 0 (426)

 ,
det M̂2,4,6

(246)
= (246)2 , (C.2.2)

which gives the on-shell form

Ω =
d3×6C

Vol(GL(3))

(246)3

(164)(421)(216)(324)(463)(632)(542)(265)(654)
. (C.2.3)

We have checked that this result coincides with the result obtained by using the

boundary measurement as described in §6.3.1, giving further evidence to both meth-

ods as well as to the validity of the boundary measurement in Chapter 4.

C.3 N2MHV Example with Two Auxiliary Edges

Let us consider the N2MHV example in Figure C.2. The T matrix is given by

T =



6 1 9 ∗ ∗
1 7 9 ∗ ∗
8 10 9 ∗ ∗
10 3 5 9 ∗
5 3 8 1 4

2 3 10 ∗ ∗


Choice of ∗−−−−−−−→ T =



6 1 9 3 8

1 7 9 3 8

8 10 9 1 3

10 3 5 9 1

5 3 8 1 4

2 3 10 1 8


. (C.3.1)

This leads to the following matrix M

M =



(9386) 0 (8619) 0 0 (1938) 0 (6193) (3861) 0

(7938) 0 (8179) 0 0 0 (9381) (1793) (3817) 0

(38109) 0 (81091) 0 0 0 0 (10913) (13810) (9138)

(10359) 0 (59110) 0 (91103) 0 0 0 (11035) (3591)

(4538) 0 (8145) (5381) (3814) 0 0 (1453) 0 0

(82310) (31018) (10182) 0 0 0 0 (23101) 0 (1823)


.
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14

6

5

2

3

7

8

910

Figure C.2: An N2MHV on-shell diagram for which nB = n − k + 2. In this case

it is necessary to add two auxiliary external nodes, 9 and 10, for determining the

on-shell form.

The result of the procedure in §6.3.2 gives

Ω =
d4×10C

Vol(GL(4))

(1358)3(1389)5(13810)2(13910)2

(1238)(12310)(12810)(1345)(1348)(1359)(13510)(1368)(1369)(1378)(1379)

× 1

(1458)(15910)(1689)(1789)(18910)(23810)(3458)(35910)(3689)(3789)(38910)
.

This can be simplified using the fact that the points {1, 6, 7, 9} are collinear,

{8, 9, 10} are collinear, {2, 3, 10} are collinear and {3, 5, 9, 10} are coplanar, as can

be read off from (C.3.1). After these simplifications, the dependence on nodes 9 and

10 is encoded in the ratio

I|9,10 =
1

(38910)(12310)(1369)(1689)(18910)(23810)
, (C.3.2)

which after the residues around Ci9 = Ci10 = 0 for i = 1, . . . 4 gives

I|9,10 =
1

(1368)2(1238)2
. (C.3.3)

Putting everything together, we obtain the following on-shell form

Ω =
d4×8C

Vol(GL(4))

(1358)3(1386)

(7812)(1345)(1348)(1356)(1458)(1568)(1376)(6781)(2345)(3528)(3568)(3782)
.

(C.3.4)

This differential form has been independently confirmed using the boundary mea-

surement procedure from §6.3.1.


