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Abstract

In recent years it has become increasingly clear that our universe is far more
intricate than we might ever have imagined. While theoretical formulations of the
fundamental aspects of Nature have, for many years, hinted at its vast and elusive
complexity, suggesting that our known world is but a tiny facet of the greater re-
ality in which it is embedded, it has only been within the last several decades that
observations have really begun to confirm this. Indeed, while deep-field surveys
of the universe have uncovered myriads of galaxies, constituting an untold number
of gravitationally bound microcosms such as ours, precision cosmological measure-
ments have revealed that all of this luminous baryonic matter is a near negligible
fraction of the total energy and matter in the universe. The vast majority of our
cosmos is a dark universe, comprised of some kind of invisible substances or dark
fluids that only interact gravitationally with visible matter.

Even among the objects that are visible to us, there are many mysterious entities
which are predicted by theory and which may or may not as yet have been glimpsed
in the cosmos. In the first part of this thesis we will study the interactions between
two such entities, namely cosmic strings and rotating black holes. In the latter part,
we will turn to the invisible sector and explore whether or not the dark phenomena
in the universe could in fact be the shadows of fundamental objects moving in higher

dimensions beyond our own.
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Preface

Impermanent are all component things,
They arise and cease, that is their nature:
They come into being and pass away,
Release from them is bliss supreme.

~Mahaa-Parinibbaana Sutta

THE physical universe in which we find ourselves is a vast flux of fleeting forms
of energy, where as time progresses, objects arise, interact with other objects, and
then dissolve away again in apparently tireless succession. In this sense, what we
call time is a measure of the changefulness of the universe.

Hot gases can give birth to stars, a temporary home for planets and lifeforms such
as ourselves, which may eventually collapse into black holes, which may themselves
ultimately evaporate into radiation. As conscious lifeforms, we are observers of the
flux while at the same time, components of it.

From observations we have made of our cosmic environment, we now know that
our world of baryonic stars and galaxies is but a small island floating on a sea
of more subtle, “dark” forms of energy that are apparently not in communication
with our visible world. Visible matter clusters in halos of dark matter, an invisible,
gravitating substance whose existence is an inference we have made based on the
dynamical and structure-forming behaviour of visible matter. On even larger scales,
the dark halos themselves are diluting away within an elusive substance known as
dark energy, as is infered from the redshifting of light emitted from the structures

contained in the haloes.



Preface 2

The principle of impermanence persists at the quantum level, where quantum
particles, tiny packages of energy, are also in a state of flux. As time progresses,
particles appear, interact with other particles, and then may either decay into lighter
particles, or leave behind a relic density that fades as the universe expands. Thus the
particle spectrum of the universe evolves dynamically over time, with its symmetry
forged by a series of phase transitions occuring at different cosmological epochs.
The changing of microscopic, quantum symmetry at these transitions can result in
the formation of macroscopic, classical objects known as cosmic strings, which enter
the flux of forms and ultimately interact with other forms that exist at that energy
scale.

In the pages that follow, we will theoretically study a subset of interactions that
could occur within both the visible sector and the invisible sector of the cosmic flux.
We will first examine the possible configurations which can arise from interactions
between cosmic strings and rotating black holes in the visible sector, extending this
study to the more abstract case of the interactions taking place within a spacetime
containing negative vacuum energy. We will then turn to the invisible sector, and
explore the possible interactions between the dark fluids in the universe, which will
take us into higher dimensions of spacetime and fundamental theories of the natural

world.



Chapter 1

Theories of Gravity

WE begin with a discussion of the fundamental interaction which governs the
behaviour of the universe on cosmological scales, namely the force of gravity. The
paradigmatic theory which describes this force is Einstein’s classical general theory
of relativity. Gravity sculps the cosmic landscape by endowing it with a geometry,
along which matter moves. Looking at smaller and smaller scales however, the
other fundamental interactions of nature, namely the strong, the weak, and the
electromagnetic force, which all have a description as quantum field theories, begin to
become more and more relevant for describing the behaviour of matter. On the other
hand, the gravitational interaction retreats into the background, becoming irrelevant
at the typical energy scales associated with particle physics. In order to smoothly
connect these regimes, one must find a deeper theory of nature that contains both
general relativity and quantum field theory in suitable limits, but that goes beyond
these limits and adequately describes the physics in between, and underpinning,
them. The theory that has made the most progress in this regard is string theory, a
quantum theory of gravity that unifies all of the known fundamental forces of nature
as arising from the vibrations of fundamental strings in a ten dimensional spacetime.
Starting from a theory of gravity in ten dimensions, the four dimensional description
can contain new couplings between gravity and other fundamental fields which are
part of the spectra of the oscillating strings. In this way, general relativity in four

dimensions becomes modified by the presence of these fields. Interestingly, these
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new interactions can in principle provide a context for understanding some aspects
of the most elusive of the cosmological phenomena that have yet been observed,
namely the dark sector of the universe.

In Section 1.1 we will discuss general relativity in some detail, beginning with an
exposition of the theory in ts Lagrangian formulation in Section 1.1.1, and then de-
scribing some important solutions in Sections 1.1.2 and 1.1.3. In Section 1.2 we will
then discuss gravity in higher dimensions, outlining some of the key developments
in Section 1.2.1 before discussing string theory in Section 1.2.2. Finally, having
provided a motivation, in Section 1.3 we will move back to the effective four dimen-
sional description of gravity, and discuss the scalar-tensor class of modified gravity

theories.

Units and Conventions

Nature exhibits three fundamental dimensionful constants which are the the speed of
light ¢, Planck’s constant h, which sets the scale at which the quantum uncertainty
principle becomes important, and Newton’s constant GG, which sets the strength of
the gravitational field. In what follows, we will work with natural units such that
c=h=1,and 817G = M ? = K where M, is the reduced Planck mass, which defines
a mass scale of M, ~ 2 x 10®*GeV. We will choose the metric to be of (—,+,+,+)

signature.

1.1 General Relativity

1.1.1 Lagrangian formulation

The intricate structural patterns in the large scale structure are produced by lu-
minous galactic fluids that are tracing out the intrinsic curvature of spacetime as
they freefall under gravity. Freefalling objects follow paths of minimum distance
called geodesics, which are straight lines in a curved space. Formally, spacetime
is described by a four dimensional Riemannian manifold with a metric g,,, which

allows for a notion of distance in the spacetime. Choosing a path parameterised by
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an affine parameter A, the distance along it is

s:/d)\\/gw,t“t”, (1.1.1)

where t# = dz# /d) is a tangent vector to the path. Extremising this distance gives
the geodesic equation,

V=0, (1.1.2)

where the covariant derivative V, is the generalisation of the partial derivative in a
curved space, V" = 9yt + T, 17, and the connection I'7 is built from the metric

and its derivatives,

1
Lo0 = 59"(0900 + Op9vo = 0u9op) - (1.1.3)

The intrinsic curvature of the manifold is characterised by a quantity known
as the Riemann curvature tensor, R s, which is constructed from the connection
and its derivatives, giving rise to an object which is second order in the metric
derivatives,

R%505 = D5 = Uiy + Doy — T, T - (1.1.4)
As a clump of matter freefalls under gravity, in addition to its changes in position
and velocity, it can also experience changes in its shape and volume as a result of
these second order geometrical effects. Changes in volume are quantified by the
trace component of the Riemann tensor, known as the Ricci tensor, R, = R,
while changes in shape are quantified by the traceless component, known as the
Weyl tensor. If the Riemann tensor vanishes identically, the spacetime is said to
be flat, and is thus endowed with a Minkowskian geometry. However, even in the
presence of globally non-trival curvature, Riemannian manifolds admit a tangent
space at each point where the geometry is locally Minkowskian.

Thus, in a Riemannian spacetime, all geometrical information stems from a single
quantity, the metric g, .

The great insight of Einstein, formalised into the general theory of relativity that
constitutes the modern understanding of the gravitational force, is that the intrinsic
curvature of spacetime is itself created by the various forms of matter and energy
that move along it. The gravitational force that is sourced by matter and energy

may then be identified with spacetime geometry, namely the metric g,,. Rather
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than fixed and immutable, spacetime then becomes dynamical, thus the metric may
be treated as a dynamical field from a classical field theoretic point of view.

Einstein’s theory may then be formulated as an action principle for the dynamical
field g,,. The action functional is constructed in the standard way, namely from
invariant quantities that are formed from the dynamical field and its derivatives.
While other quantities are possible, the simplest invariant quantity that can be
constructed from the metric and its derivatives is the trace of the Ricci tensor,
called the Ricci scalar, R = g"”R,,,,. One must then construct an invariant measure
on the space. As usual, this is achieved by the invariant volume element, \/—gd*z,
which in this case, most unlike all other field theory cases, depends itself upon the
dynamical field being described by the theory.

Putting these quantities together yields the Einstein-Hilbert action,

1
SE.H. = ﬁ/dzlx \/—gR, (115)

which expresses the geometrical content of the theory. To specify the dynamics of
guv in terms of general equations of motion, one must then write down an action for

the matter fields, which act as sources for the geometry. The total action is
S =Spgu + Sn, (1.1.6)

where
S, = /d%\/—gcw,-,auwi) (1.1.7)
is a general action for the matter fields ;. We may now obtain the equations of

motion for the gravitational force by a variation of (1.1.6) with respect to a general

perturbation of the contravariant metric d¢g"”, which yields

1 4 1 " 4 0Sm o
0S8 = 2m/d T4/ g(RW 2gWR>5g —|—/d xéguv gt . (1.1.8)

Defining the stress energy tensor as

2 0Sn

Tw=——es—w, 1.1.9
H /_g 591111 ( )
the action principle 0.5 = 0 yields the Einstein field equations,
1
G,u,l/ = R/,Ll/ - _g/,LVR — /{T/_u/, (1110)

2
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where G, is known as the Einstein tensor.

The geometrical quantities on the left hand side of the field equation (1.1.10)
are only those which pertain to the trace part of the Riemann tensor. Thus, we
see that non-gravitational® matter fields only source the Ricci tensor, R,,. On the
other hand, in the case that 7}, = 0, and in the absence of a cosmological constant,
the field equations read

R, =0, (1.1.11)

which describe the dynamics of the gravitational field in a spacetime devoid of all
but geometry. These are known as the vacuum equations. A trivial solution is
flat Minkowski spacetime, for which, as we have mentioned, the Riemann curvature
tensor vanishes identically. However, more generally, (1.1.11) is simply the statement
that the equations of motion do not force the traceless component of the Riemann
tensor, namely the Weyl tensor, to vanish. There are in fact many non-trivial
solutions to (1.1.11), the most notable of which are the black hole solutions which
describe the empty spacetime outside of gravitationally collapsed objects. As there
are no matter sources about, the fact that there are non-trivial solutions to (1.1.11)
implies that gravity itself can generate gravitational effects, and produce a non-
vanishing Weyl tensor. This is a consequence of the non-linearity of the theory,
which entails that even in the absence of gravitating matter fields, spacetime may
be non-trivially curved because the gravitational field itself contains energy, and
thus can produce more gravity.

Going back to our clumps of matter freefalling under gravity, we see that in an
empty spacetime, the clumps may experience changes to their shape, while only in
the presence of distinct sources for the gravitational field will they experience changes
in volume. An example for the latter is an expanding spacetime in cosmology:
probe matter is diluted by the expansion, which is sourced by the presence of the
cosmological fluid, or by a cosmological constant. An example for the former is the

behaviour of matter in the vicinity of black holes, where strong tidal forces act to

!By “non-gravitational” we mean that they do not form part of the gravitational sector. This

distinction will become important when we discuss modifications of general relativity.
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distort the morphology of nearby objects, sourced purely by the non-linear effects
of gravity.

Having derived the field equation for g,,,, we require further information in order
to specify the dynamics of the system, because at this stage we do not have an

equation for the non-gravitational degrees of freedom 1); which are packaged into

T,

w- 1t turns out that by virtue of the properties of Riemannian geometry, this

equation is already implicit in the Einstein equations. An important property of the

Riemann tensor is the so-called Bianchi identity,

RO’

pluvsal

=0, (1.1.12)
and contraction of this identity yields a constraint on the Einstein tensor,
V.G" =0. (1.1.13)

From the field equations (1.1.10), this implies that V, 7" = 0, which gives us an
equation for v; in the form of a conservation equation for the collective stress-energy
of the non-gravitational fields.

From a variational point of view, the contracted Bianchi identity emerges as
a natural consequence of general covariance, which is the principle that the laws
of physics should be invariant under diffeomorphisms, which are general coordi-
nate transformations. General covariance requires that the action functionals, from
which the laws may be derived as equations of motion, are coordinate invariant
by construction. Symmetries in the action correspond to conservation laws, thus
the Bianchi identity, expressing the conservation of stress-energy, appears as the
conservation law associated with the symmetry of .S, under diffeomorphisms.

To derive the conservation law, we perform a general variation of (1.1.7) with

respect to the field perturbations d; and dg,,, yielding

5S, 55,
_ 4 m sl 4,20 . 1.1.14
55’”_0_/dxéwiéler/dx(Sgw(ng ( )

Variation of the matter action with respect to the covariant metric g, allows us to

define the stress energy tensor with raised indices as

2 0S5,

T — —_27m
vV —9 5guu

(1.1.15)
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which features the opposite sign to (1.1.9) due to the variational identity dg"” =
_ga,ugpv(ggap.
For an infinitesimal diffeomorphism z'* = z# + (#(x®), the infinitesimal changes

in the fields ¢; and g, are given by the Lie derivative, which acts on a general tensor

K. as
£cKap = KasC s+ Ksp(’f + Kaga(7 (1.1.16)

yielding
py = Loy = CHOubi (1.1.17)
0w = Lcguw = VG + V(. (1.1.18)

In the case that the second equation (1.1.18) vanishes, the vector (* is called a
Killing vector, and represents a symmetry of the metric, which we will discuss in
greater detail in Section 1.1.2.
With these specific expressions for the field perturbations, one may use the sym-
metries of 7" to obtain
/ d%(gi . vu%i)gawi . / d*2¢, Y, T" = 0. (1.1.19)

The term in parentheses is the equation of motion for ;, which vanishes identi-

cally. Thus, for an arbitrary vector (*, the stress-energy tensor is constrained to be
divergence-free, V, 7" = 0.

Let us now discuss the general form of the stress-energy tensor. The metric
guv 18 a symmetric tensor, thus to reflect the symmetries of spacetime, one usually

considers the stress-energy tensor to take the form of a perfect fluid,

T = puyy, + P(gu + u,u,) (1.1.20)

where p is the energy density of the fluid, P is its pressure, and u® is a timelike
vector utu, = —1, which represents the four-velocity of the individual particles
which comprise the fluid. Going back to the action 1.1.1, the four-velocity is the
tangent vector to a path which is parameterised by the proper time 7.

The equation of motion for the fluid, V, 7" = 0, then yields the following two
equations:

u'Vup+ (p+ P)V,u" =0, (1.1.21)
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(P + p)u"V, u” + (¢" +u'u”)V,P =0. (1.1.22)

For a perfect fluid, (1.1.21) and (1.1.22) completely specify the motion of the fluid,
thus the Einstein equations contain all the information about how spacetime and
stress-energy behave under the influence of each other. For the case of “dust”
particles, P = 0 and (1.1.22) then tells us that the individual particles move on
geodesics,

u'Vyu” =0. (1.1.23)

This is a very important result as it implies that all test particles, namely particles
upon which no other external forces are acting, are constrained by energy conserva-

tion to follow geodesics of g, .

1.1.2 Black holes

Among the most exotic solutions to Einsteins equations are most certainly the black
hole solutions, which showcase some of the most interesting and varied ways in
which the gravitational field can manipulate the behaviour of matter. In general,
these are solutions which describe the empty spacetime outside of gravitationally
collapsed objects, but they can also describe the spacetime around very massive
objects that totally dominate their local gravitational environment. As with all
solutions to Einstein’s equations, they are characterised by the various symmetries
of the gravitational field, or equivalently, by spacetime symmetries. As mentioned
above, such symmetries are described by Killing vectors.

For a general vector k*, one can find local coordinates such that k* = (9/9¢)",
where £ is one of the coordinates. k* is a Killing vector in the case that the Lie

derivative acting on the metric satisfies

0

Jgom =0, (1.1.24)

£kguu =

thus the metric coefficients are independent of &.

For example, spherical symmetry of the spacetime entails that the solution ad-
mits an SO(3) rotational symmetry. Then, for the spacetime to be stationary, the
solution should possess a time-translation symmetry, t — ¢ + to, while static space-

times require in addition that time is symmetric under reversal, t — —t. Therefore,
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a static solution should admit a timelike Killing vector that is orthogonal to all
spacelike surfaces, meaning that there can be no cross terms that mix the timelike
and spacelike directions in the metric. On the other hand, stationary spacetimes
feature a mixing of the timelike and spacelike directions. In fact, as originally shown
by Hawking and Wald, stationarity implies that instead of spherical symmetry, the
spacetime is axisymmetric. Working in coordinates {t,r,0, ¢}, there are in general

two Killing vectors associated with these symmetries, namely
(00)", (9p)", (1.1.25)

where an additional two Killing vectors are present for full spherical symmetry.
These symmetries of the spacetime have corresponding conserved quantities. Each

Killing vector k* leads to a constant of motion for a particle moving in the spacetime,

dzt

R v

= const. (1.1.26)

For the Killing vectors in (1.1.25), this leads to the conservation of energy and of

angular momentum.

Schwarzschild

Let us now discuss the particular solutions. The Schwarzschild solution is the unique
static and spherically symmetric solution to the vacuum Einstein equations. It de-
scribes the gravitational field outside of a static, spherically symmetric body of mass
M, such as a star. Within our solar system, where the planets may be considered as
test particles moving in the gravitational field exterior to our home star, the sun, it
correctly predicts deviations from Newtonian orbital motion, as well as inherently
relativistic effects, such as gravitational redshift, time delay and the bending of light.

The Schwarzschild solution is described by the metric

ds? = —(1 - QGTM)dtQ v (1 - 2(7;M>_1dr2 4 r2d0? (1.1.27)

where d2? = df? +sin® d¢? is the metric on a 2-sphere. This solution asymptotes to
flat space at large r, therefore the gravitational effect of a massive object dimishes

if one moves far enough away from the object, as one would expect.
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The solution becomes singular at the points r = 2GM and r = 0. The first of

these points defines the Schwarzschild radius,

2GM M
rg = ~ 3<ﬁ) km | (1.1.28)
©

2
where M., is the mass of the sun. In the case of a typical star, this radius is well
within the interior of the star, where the vacuum solution is not expected to be
valid. However, very massive stars that undergo complete gravitational collapse will
fall well within their Schwarzschild radii, eventually forming a black hole centred
at r = 0. In this case, the Schwarzschild radius becomes an event horizon, a null
surface separating regions of spacetime which may and may not causally interact
with one another.

A spacetime is said to be geodesically complete if all geodesics are extendable
to arbitrarily large values of their affine parameters. A spacetime containing a gen-
uine singularity is geodesically incomplete, meaning that geodesics terminate at the
singularity for some finite value of their affine parameter. In the case of the space-
time which is described by (1.1.27), this appears to occur at rg, because geodesics
can reach this singularity at a finite value of their affine parameters. However the
Schwarzschild spacetime may be maximally analytically extended beyond rg by
choosing appropriate coordinates. One then sees that rg is a mere coordinate sin-
gularity, and there is no obstruction in continuing the paths of particles beyond this
surface. All infalling particles will then travel onwards to » = 0, which is a true,
irremovable singularity of the spacetime, where the geodesics terminate. However,
looking at (1.1.27) one can see that for r < rg, the radial direction becomes timelike.
This means that the particles can only move in one direction along the radial path,
so that all future-directed paths are in the direction of decreasing r. Therefore no
particles or signals of any kind may leave the interior region of the black hole, and

no information may be glimpsed from beyond rg.

Reissner-Nordstrom

We mentioned earlier that the Schwarzschild solution is unique. This is a conse-

quence of Birkhoff’s theorem, which states that any spherically symmetric vacuum
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spacetime solution must be static. In other words, such a solution must be the
Schwarzschild solution.

More generally, one can consider spacetimes that contain non-trivial electromag-
netic fields. Such spacetimes are no longer vacuum spacetimes, but are sometimes
refered to as electrovacuum spacetimes, and are solutions of the coupled Einstein-
Maxwell equations. One may then generalise Birkoff’s theorem to the electrovac-
uum case, for which it stipulates that the only spherically symmetric solution is the
Reissner-Nordstrom solution describing a charged black hole.

The Reissner-Nordstrom solution is the unique spherically symmetric solution to

the Einstein-Maxwell system, described by the action

_ 1 4 Uy
S = ﬂ/d x\/—g<R—FuyF ) , (1.1.29)

where F' = dA is the field strength for the Maxwell potential A. The metric is

ds? = — 22 + ier + 72d§)? (1.1.30)
= A 1.
and the gauge field is
A= (1.1.31)
r

In these expressions, A = r?> — 2GMr + ¢?, where ¢ = GQ and Q is the electric
charge of the black hole. The metric function A = (r —r,)(r — r_) has two distinct

roots,
ry =GM £+ +/(GM)? — ¢?, (1.1.32)

corresponding to the inner and outer event horizons of the charged black hole. In the
case that the two horizons coincide, r, = r_, the black hole is said to be extremal.

This occurs when GM = ¢ and thus r, = GM. Under a change of coordinates
p=r—GM, (1.1.33)

the extremal metric takes the isotropic form

GM\ 2 GM\?2
ds? = —(1 + —) dt* + (1 + —) (dp? + p2dP?). (1.1.34)
p P
In these coordinates, the metric becomes singular when p = 0, thus there is an event

horizon located at this point. In the near-horizon region where p — 0, the metric
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becomes

2

M 2
ds* ~ — (G’])W)th? + (Gp2 ) dp?* + (GM)*dQ? (1.1.35)

which, compared with (1.1.43) below, is the line element for AdS; x Sy, where the

2-sphere has radius GM. For an observer at a radial point p = pg, we learn that the
event horizon p, is at an infinite proper distance away,
Po

1
s = lim —dp = lim
py P p+=0

In(po) — In(p)] = oo, (1.1.36)
located at the end of an infinite throat-like region in the spacetime.

While the Schwarzschild solution contains only one parameter, the mass of the
black hole M, the Reissner-Nordstrom spacetime is then a two parameter family

of solutions, where the parameters are M and (). Together they form the static,

spherically symmetric class of black hole solutions.

Kerr and Kerr-Newman

Let us now consider stationarity. As we have mentioned, this implies that the
spacetime is axisymmetric, which means that there is a Killing vector d, which
is spacelike near infinity, and for which all orbits are closed. As we will elucidate
upon, stationary spacetimes are rotating spacetimes. In the presence of pure gravity
and no other fields, the unique stationary solution is the Kerr solution, with two
parameters, M and J, where J is the total angular momentum of the black hole.

The Kerr geometry in Boyer-Linquist coordinates reads

12 A—a? sin29dt2 4G Mar sin*0
ST = _—__—

r )Y
2 29 g 9 2
v S dtde + Xdo” + 5 sin 0dp” + —dr”,

A
(1.1.37)
where a = J/M and

Y =12 1a2cos?0, A =r%—2GMr+a? I = (r*+a®)?*— Ad’sin®0. (1.1.38)

The geometry has a coordinate singularity when A = 0. As for the Reissner-
Nordstrom case, writing A = (r —r, )(r — r_) we find that there are in general two

distinct event horizons, this time given by

re = GM 4 /(G —a. (1.1.39)
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For the extremal Kerr, these horizons coincide when GM = a. As with the Reissner-
Norstrom case above, one can consider the metric in the extremal limit, and show
that the spatial distance to the extremal horizon is infinite.

The geometry has a genuine curvature singularity when ¥ = 0, therefore at
r =0 and 6 = 7/2. Moving to a different coordinate system, one can show that the
singularity in fact takes the form of a “ring”, meaning that particles following ingoing
radial geodesics on the equator will hit the singularity at » = 0, however particles on
radial geodesics along the polar axis will instead pass through the ring into another
region of the spacetime that can be obtained by analytic continuation. However,
just inside the ring singularity the spacetime exhibits closed time-like curves, as the
gss component of the metric (1.1.37) can change sign, such that a vector dy can
become timelike in this region. These curves imply a global violation of causality,
which makes this region unphysical.

Let us now discuss the rotational features of the spacetime. Due to the fact that
the timelike and azimuthal spacelike directions are mixed in the Kerr spacetime, a
particle falling towards the black hole on a radial geodesic will aquire non-vanishing
angular momentum and start to rotate, even though no non-gravitational forces are
acting on it. This is known as frame-dragging, and is a result of the fact that a
test particle cannot move in time without also moving in the ¢-direction. For static
spacetimes on the other hand, a particle on a radial geodesic will simply remain on
this geodesic as it plummets towards the black hole.

A “non-test” particle falling towards the black hole could however remain sta-
tionary with respect to infinity by a way of a sufficient amount of propulsion. This
is also true for the static black holes considered above, everywhere outside of the
event horizon. However, for the Kerr case, it turns out that even outside of the
event horizon, a particle may enter a region within which it is impossible to remain
stationary with respect to asymptotic infinity, as remaining stationary would require
superluminal propulsion. This occurs within the ergoregion.

We mentioned above that within the ring singularity, the gs¢ component of the
metric can change sign. Even outside of r, in this spacetime, another component

of the metric may change sign, this time the g;; component. The g;; component in



1.1. General Relativity 16

(1.1.37) is negative only if
A —a*sin® 60 > 0, (1.1.40)

which implies that

r>GM +\/(GM)? — a2 cos2 6. (1.1.41)

The boundary of this region is known as the ergosphere. Between this boundary
and the horizon r,, in the ergoregion, the vector 0; becomes spacelike, meaning
that physical particles, which must follow timelike paths, can no longer move in
time only relative to an asymptotic observer. Instead, regardless of their state of
propulsion, they are forced to rotate with the black hole.

As with the static families of solutions, the Kerr spacetime is also subject to a
uniqueness theorem. The Carter-Robinson theorem states that any asymptotically-
flat stationary and axisymmetric spacetime is a member of the Kerr family. This can
be generalised to the stationary electrovacuum case, for which the rotating black hole
acquires an extra parameter, namely a charge, (). The resulting spacetime, known
as the Kerr-Newman spacetime, may be described in Boyer-Lindquist coordinates

by the metric (1.1.37), but now the metric function A becomes

A=7r?+a*-2GMr+GQ*. (1.1.42)

The “no-hair” theorems

As it involves no changes in time and thus no evolution is taking place, a stationary
configuration is a steady-state configuration that a system could settle down into
after gravitational collapse. The uniqueness theorems mentioned above then seem
to insist that gravitational collapse to a stationary state leads to the formation of
a black hole endowed with mass M, charge (), and angular momentum J only. In
other words, it appears that the black hole cannot pick up any other parameters,
which implies that all other information is destroyed during the collapse. These
considerations gave rise to a body of classical results known as the black hole “no-
hair” theorems, which state that the only long-range information that a black hole

can support is its mass, charge, and angular momentum (see [1-4] for a review).
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The logic is that the black hole will absorb everything it can absorb. However,
M, J and @) are “special” because they are conserved quantities associated with
the exact local symmetries of the spacetime, such as U(1) symmetry and Poincaré
symmetry. Indeed, as we mentioned above, the presence of the Killing vectors d; and
0y, which correspond to symmetries of the gravitational field for stationary space-
times, give rise to the conservation of energy and of angular momentum respectively.
Furthermore, in an electrovacuum spacetime, local U(1) symmetry implies the con-
servation of charge. In fact, the presence of the electrovacuum can itself be viewed as
deeply linked to spacetime geometry. As we will review in Chapter 4, Killing vectors
can act as a 4-vector potential for an electromagnetic field on Ricci flat backgrounds,
which can lead to an initially electrically neutral black hole picking up a charge.

These conserved quantities cannot be destroyed during gravitational collapse.
Instead they appear as charges or parameters of the collapsed object that can be

measured at spatial infinity by Gauss’s law.

Black holes in AdS

Finally, we will briefly mention the non-asymptotically flat classes of black hole
solutions. One example is the generalisation of black hole spacetimes to include a
non-vanishing cosmological constant.

A spacetime containing a negative cosmological constant is known as an Anti de
Sitter (AdS) spacetime. In static coordinates, a general AdS spacetime is described

by the line element

2 _ ﬁ 2 ﬁ 1o 2 7002
ds® = 1—|—€2 dt® + 1+€2 dr® 4+ r<dQ”, (1.1.43)

where £ is the AdS length. The simplest AdS black hole solution is the Schwarzschild-

AdS solution,
ds? = —(1 _M ﬁ)dtQ + (1 M T—2>_1dr2 +r2d0?, (1.1.44)
r 2 r 2
which is the unique spherically symmetric solution to the Einstein equations in
the presence of a negative cosmological constant. This spacetime looks like a
Schwarzschild black hole spacetime at low r, but approaches an AdS spacetime

at large r.
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In Chapter 5 we will look in detail at the spacetime of a rotating, charged black
hole in AdS.

1.1.3 Cosmology

When matter is present to source it, the gravitational field acts to change the vol-
ume of spacetime. This very simple fact, that the volume of spacetime changes due
to the matter distribution it contains, allows for the energy scale of the universe
to progressively decrease, and thus for a myriad of physical processes to take place
within that volume, which ultimately shape the universe in all its complexity into es-
sentially everything which we observe today. Indeed, this process allows for galaxies
to grow from quantum fluctuations, for the standard model gauge group to emerge,
and for atoms to form and combine so as to eventually enable complex lifeforms to
develop.

The geometry of the universe is characterised by various symmetries in the pres-
ence of a matter distribution, which expands the spacetime while respecting the
symmetries. The symmetries are large-scale homogeneity and isotropy of the spa-
tial hypersurfaces, meaning that on the largest scales, the universe looks the same
at every point, and in every direction. These symmetries, which imply that there is
no special place in the universe, are manifest in the cosmic microwave background
(CMB), a thermal background of free-streaming photons against which the evolu-
tion of all structure takes place, and which may be considered the oldest “object”
in the universe.

The scale at which the clustering of matter becomes dominant is about 10 Mpc,
where 1 Mpc = 3.3 x 10° light years. Above this scale, the universe is mostly smooth,
with the clumpy matter distribution appearing as a perturbation. Below this scale,
the non-linear clustering effects of matter become more and more important.

The line element that reflects the large-scale symmetries of the universe is the
Friedmann-Robertson-Walker (FRW) metric,

2

ds? = —dt* + () |7 +17d) | (1.1.45)

where symmetry restricts the allowable changes in volume to express themselves as a
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Figure 1.1: A visualisation of the large-scale structure from the Millennium-XXL
Stmulation, on a scale of a few hundred Mpc. The bright regions are very dense

clusters of galaxies which form where the filaments intersect each other.

single time dependent scale factor a(t) acting on the spatial hypersurfaces, and K is
a constant that quantifies the curvature of the universe. Combining this ansatz with
the perfect fluid form for the energy-momentum tensor, and including a cosmological

constant A, the Einstein equations become
(1.1.46)

and

a K A
- = —= 3P —. 1.1.47
b Eprap et (1.1.47)

These two equations are known as the Friedmann equations. They determine the
dynamics of the scale factor a(t), where we have defined the Hubble parameter, H =
a/a, which quantifies the rate of the cosmic expansion. They may be supplemented
by the (non-independent) conservation equation for matter (1.1.21), arising from

the Bianchi identities V,T*" = 0, which for this background becomes
p+3H(p+P)=0. (1.1.48)

The relation between the energy density and pressure of the cosmological fluid is
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expressed by its equation of state,
P =wp. (1.1.49)

Measurements of the CMB indicate that the universe is spatially flat on large scales.
For a flat universe, K = 0, one can broadly categorise the components of the fluid
in (1.1.46) as radiation, defined as particles which are either massless, or are moving
sufficiently relativistically such that their rest mass is significantly smaller than their
kinetic energy, and non-relativistic particles or matter. Matter or “dust” particles,
in the absence of kinetic energy and thus of pressure, simply follow geodesics of
the spacetime, as we saw in Section 1.1.1. In addition, the universe may contain
non-trivial vacuum energy A, which may also be categorised by its equation of state.

From (1.1.48) one sees that a cosmological constant, for which p is constant,
implies p = —P. For pressureless particles, w = 0 and thus p,,, ~ a2 from (1.1.48),
therefore the dust particles simply dilute with the expanding three dimensional
volume. For radiation, the theory of electromagnetism yields w = 1/3, leading to

4

p ~ a~*, which implies that the radiation particles lose energy quicker than dust

particles due to an additional redshifting of their wavelengths or momenta.

Cosmic inflation

From (1.1.47) we see that the expansion rate of the universe will increase with time
if w < —1/3, therefore if the cosmological constant dominates the energy of the
universe, it will inflate. This behaviour may seem an usual curiosity associated with
the vacuum, however it turns out that certain dynamical fields in the spacetime can
produce a similar effect. For example, a canonical scalar field that is moving very
slowly along a flat potential can emulate, for a while, the behaviour of a cosmological

constant. From the general action

S = —% / d4x\/—_g[au¢53“¢ + 2V(¢)] , (1.1.50)

one can compute the energy momentum tensor

1
T/u/ = u¢au¢ - Guwv [58a¢8a¢ + V(¢):| ) (1151)
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thus the energy density and pressure of the scalar field in a flat, FRW background
are

po= T3 =3B TV(), P=Ti=H-V(). (1.152)
The equation of state for the scalar field is

Py

1.1.53
P ( )

’LU¢:

for which one finds that w, — —1 in the case that ¢* < V(¢). This can occur for
a very flat potential, V' < V thus V ~ const. Instead of a cosmological constant,
we then find that the universe can inflate due to the constant potential energy of a
suitable scalar field.

From the Hubble parameter H one may define the inverse quantity, H !, which
is a time scale or length scale, ¢!, known as the Hubble radius. One can then
compare the timescale for particle interactions, ¢t; = 1/I" where T" is the rate of

interactions, with the timescale for expansion, ty = 1/H. As long as
tr Lty (1.1.54)

the particles have plenty of time to interact before the expansion acts to dilute them,
thus the expansion does not impact microphysical processes such as thermalisation of
particles. Equivalently, the length scale for particle interactions is then much smaller
than the Hubble radius, thus at the scale relevant for microphysical processes to take

place, the expansion of the universe is negligible. On the other hand, for
tr >ty (1155)

the interactions of particles are negligible compared to the expansion, with the
universe expanding profusely before the particles have had time to interact.

To explain the observed flatness, homogeneity and isotropy of the universe, it is
believed that a period of exponential growth took place at very early times. Com-
pellingly, such a paradigm can also explain how the initial conditions for structure
formation, the so-called “seeds” of cosmic structure, were originally generated.

The observable universe is thought to have began as a small, causally connected

patch within a larger universe. Two regions of spacetime can causally affect each
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other if a photon can pass between them, and such regions are said to be within each
other’s particle horizons. For an observer at a time ¢y, the particle horizon is the
future light cone emitted from their position at ty,. Therefore, the particle horizon
separates regions which have already been observed at ty from regions which have
not yet been observed at t;.

The story of cosmology goes that at some very early point in its history, the
universe entered a phase of superluminal expansion that drove all scales in this
original patch, including quantum scales, outside of the Hubble radius. This period
of expansion, known as cosmic inflation, could have been sourced by the presence of
a cosmological scalar field as outlined above, as such fields are ubiquitious in high-
energy particle theories. During inflation, all particle horizons in the observable
patch were expanded enormously, allowing regions of the universe that appear today
to have been out of causal contact at the time the CMB was formed, to have had
plenty of time to interact and thermalise in the past, thus accounting for the observed
homogeneity and isotropy of the CMB.

The expansion was s