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Abstract

With the Large Hadron Collider about to start its second run, we are in an
era of high—energy collider physics. The discovery of a Standard Model-like Higgs
boson with a mass of 125 GeV is a fantastic achievement, but the non—observation
of supersymmetry (or any other mechanism of choice that stabilises the electroweak

scale) is a tantalising puzzle.

In this work, we investigate the possibility that a particular non-minimal reali-
sation of supersymmetry — one with Dirac gauginos — can be a reasonably natural
way of explaining this nonobservation, but can still can stabilise electroweak physics.
We construct a simple UV completion of a model with Dirac gluinos dubbed Con-
strained Dirac gluino mediation and determine the characteristic low energy spectra,
the production cross sections of key processes at the Large Hadron Collider and the
degree of fine tuning for a representative range of parameters. Noting that theories
with Dirac gluinos have a tendency to lose asymptotic freedom due to the presence
of extra matter content, we then cast our eyes towards Seiberg Duality and its gener-
alisation to include adjoint chiral superfields — Kutasov duality and investigate how
a Dirac mass maps across this duality. We provide evidence that a Dirac gaugino

mass maps between electric and magnetic Kutasov descriptions as

. mp . mp
lim — — lim .
P00 g K FHT pu—0 g RFH

using renormalisation group arguments and harmonic superspace techniques.
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Introduction

X-rays will prove to be a hoax.

— Sir William Thomson (a.k.a. Lord Kelvin)

1.1 Non—-technical overview

The world’s largest and most powerful particle collider, the Large Hadron Collider
(LHC), is about to start its second run after being shut down for upgrades and
maintenance in February 2013. It will start taking data at an energy of 13 TeV —
that is, the average proton-proton collision energy will be 2.08 x 107¢ .J, or roughly
the energy of a flying mosquito. This may not seem like much, but when you consider
that a mosquito contains roughly 10?* = 1,000, 000, 000, 000, 000, 000, 000 atoms®,
then we see that 13 TeV is rather a lot of energy for two protons to have.

The LHC was primarily designed to find the Higgs boson: a detectable ‘leftover’
of the Higgs mechanism that gives the fundamental particles, like electrons and
quarks, mass?. The discovery of the Higgs boson was announced in July 2012,

experimentally validating the Standard Model (SM), our mathematical description

of all observed particles to date and their interactions.

In the original version of this thesis I used 1 gram as an estimate for the mosquito mass.
This is roughly three orders of magnitude out and corresponds to a mosquito of around 10 cm in
length. I thank my examiners for pointing out to me that we have been fortunate enough to not
yet encounter such a species.

2Tt is important to note that the Higgs mechanism is not responsible for most of the mass of
the proton — this comes from the energy required to bind the quarks together inside this proton.
This energy has a mass due to Einstein’s famous formula E = mc? that is much larger than the
sum of the masses of the three quarks.



1.1. Non—technical overview 2

In truth, as is typical in science, the discovery of the Higgs boson raised more
questions than it solved. One question that is at the forefront of the theoretical
physics community’s attention, and the work in this thesis is primarily concerned
with, is ‘Why aren’t the fundamental particles much much heavier?’, or stated
another way, ‘Why is the Higgs boson so light?’.

The SM is a Quantum Field Theory (QFT), and so everything in the theory un-
dergoes quantum corrections. What this means is that if a measurement of anything
in a QFT is performed, and yields a value n, then secretly we know this actually the

i

sum of the normal or classical part Neassical and its quantum corrections Nguantum

i
N = Nclassical T § Nquantum- (1.1.1)
i

In a QFT after doing a certain number of measurements, we can make a prediction
for each n in the theory that can be tested. Indeed, all the n’s of the SM match
up precisely with their predicted values. There is, however, a conceptual problem
with the Higgs mass. We have measured the Higgs mass (our n for the moment) to
be roughly 100 (in some units), but we know that there should be some 1, at

roughly 10%. If we are to get the correct result we need something like3
100 = 10, 000, 000, 000, 000, 100 — 10, 000, 000, 000, 000, 000 (1.1.3)

to happen. In any scenario it is unusual that a cancellation between very large
numbers to get a small number occurs unless there is a rationale behind it. There

are three popular schools of thought:

e These cancellations are well-defined within a QFT and so we shouldn’t worry

about them,

e We haven'’t properly understood the underlying theory and there are no large

numbers present to be cancelled,

3Actually in the real calculation this is even worse since the Higgs physics is quadratically
sensitive to the quantum corrections, and we should get a cancellation of

100% = (10%%)% — [(10%)? — 100?]. (1.1.2)
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1.1. Non—technical overview 3

e The cancellation is engineered to happen by the theory itself.

The third option is the conspiracy in theoretical physics known as symmetry. To

be explicit, imagine for each ng,, ., there is an accompanying 7ng,.neum Where
Nguantum = —Mquantum- L 1€N We see automatically
Z i Z =i
L = TNclassical + nquantum + nquantum = TNeclassical (114)
i i

%

quantum 1. The specific symmetry

irrespective of how large each quantum correction n
that can achieve this for the Higgs mass is known Supersymmetry (SUSY). If the
SM enjoys SUSY then this answers our question.

No SUSY has been observed experimentally, so if it is there at all, is relegated to
a broken symmetry. Part of this thesis is devoted to the exploration of various novel
extensions (i.e. with new particles and new forces) to the SM with broken SUSY
to see if they can be a reasonable description of reality and, if so, whether the LHC
can find a remnant of such a theory.

The remainder of the thesis involves the study of the same class of extensions
but within the context of duality. Here, duality is taken to mean two different
descriptions of anything. A familiar example of this could be different spoken or
written languages. In English, if we say ‘hello,” it should have the same impact to
someone who understands English as saying ‘bonjour’ to someone who understands
French. We would technically say that the English and French languages are dual

or there is a duality between them, accompanied with dictionary that map the

operators (or here words) into each other

hello < bonjour. (1.1.5)

There are of course words that cannot be one—for—one translated. A good example
is the word ‘boh’ in Italian, which translates into English, not as a single word, but
as the phrase ‘I don’t know,” and so we have a mapping of a composite operator (or

here phrase) into a word and vice-versa

I don’t know — boh. (1.1.6)

The interesting thing about dualities in a SUSY QFT is that there are special cases
February 19, 2015



1.2. Outline of thesis 4

calculation that cannot be performed in one language can be performed in the dual
language. In order to to this, one must have first established the map between
the theories. The development of the map that incorporates the novel SUSY SM

extensions is the focus of the final part of the thesis.

1.2 Outline of thesis

We begin our journey in Chapter 2, where we quickly review the SM and take
some time to look its shortcomings. We then briefly review Effective Field Theories
(EFTs) since being clear about decoupling and matching in a mass independent
renormalisation scheme will be important for performing a consistent calculation
with the Ultraviolet (UV) models introduced in Chapter 4. We then go over some
SUSY basics to clear up our conventions (of which there are a staggering number
of in the literature) before introducing the more advanced topics that may be less
familiar to graduate students — R symmetry, non-renormalisation, Seiberg duality
and mapping soft terms. The Minimal Supersymmetric Standard Model (MSSM)
and SUSY breaking are also covered.

We continue into Chapter 3 where we bring the reader up to speed on Dirac
gauginos. The advantages and disadvantages of a Dirac gaugino compared to its
Majorana counterpart are discussed before moving in to a discussion on generic
differences between Dirac and Majorana particles. The minimum requirements for
a theory with a Dirac gaugino are outlined with specific focus on symmetries and
matter content. The renormalisation properties of Dirac gauginos known as super-
softness are then discussed, before moving on to explain supersafeness, the mech-
anism that can suppress the LHC cross sections for sparticle production. Finally,
since the remainder of this thesis mainly concerns Dirac gluinos, we take some time
to look at the properties of MSSM extended with gauginos for all gauge groups with
particular focus on the Electroweak (EW) sector.

Chapter 4 contains the phenomenological study of a simple UV completion of
the MSSM with a Dirac gluino based upon [1]. After a discussion of the various
possible effective operators, the UV model is introduced and the numerical setup is
outlined. The characteristic spectra, Leading Order (LO) cross sections and tuning

are then discussed.
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1.2. Outline of thesis 5

Finally, Chapter 5 contains the work based upon [2]. We identify the Renor-
malisation Group (RG) invariant that will give us the mapping across the Kutasov
duality, but it is unfortunately not the spurion of any coupling in the theory. We
show how one can get between the Kutasov duality and the A/ = 2 duality via defor-
mations in the N' = 1 picture. We then show how one can describe an N' = 1 theory
as an N = 2 theory, bypassing the two-into—one-won’t-go theorem with a special
type of SUSY breaking, before showing how the same mechanism can produce N’ = 0

deformations, including Dirac and Majorana gaugino masses.

February 19, 2015



Foundations

The most exciting phrase to hear in science, the one that heralds new dis-
coveries, is not “Eurekal”, but “That’s funny...”

— Isaac Asimov

2.1 The Standard Model of particle physics

2.1.1 Introduction

Almost all observed physical phenomena are accurately described by the SM of par-
ticle physics, a renormalisable QFT of quarks, leptons and gauge bosons with the
gauge group SU(3)cxSU(2), xU(1)y. The associated properties of the gauge groups
in the SM are detailed in table 2.1. The incredible success of the SM is well demon-
strated by looking at the electroweak sector governed by SU(2);, x U(1)y and the
strong sector or Quantum Chromodynamics (QCD) governed by SU(3)¢ separately.
In figure 2.1 one can see that there is a fantastic agreement between the theoretical
predictions and experimental measurements of a range of electroweak production
cross—sections at the LHC. The amount of ‘physics’ that goes into these calcula-
tions is huge — the calculation of the hard processes to sometimes many orders in
perturbation theory, the extraction of Parton Distribution Functions (PDFs) from
existing datasets of numerous past experiments at many different energy scales and
the development showering algorithms just to name a few. At every stage of the cal-
culation the SM is being tested and there is no apparent faltering yet. In figure 2.2

we can see that the theoretical predictions using lattice QCD and experimental mea-
6
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Standard Model Total Production Cross Section Measurements siaus: Juy 2014
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Figure 2.1: Several Standard Model total production cross section measurements com-
pared with the corresponding theoretical expectations. All theoretical expectations were
calculated at NLO or higher. The W and Z vector-boson inclusive cross sections were
measured with 35 pb™! integrated luminosity from the 2010 dataset. All other measure-
ments were performed using the 2011 dataset or the 2012 dataset. The luminosity used for
each measurement is indicated close to the data point. Uncertainties for the theoretical
predictions are quoted from the original ATLAS papers. They were not always evaluated
using the same prescriptions for PDFs and scales. Taken from [3].

surements of the baryon spectrum are also in good agreement. Together, these show
the SM working in its perturbative and non-perturbative regimes within the realm
of what we can calculate and should be considered a triumph for experimentalists

and theorists alike.
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Gauge Gauge Defining  Structure
field  coupling | generators constants Indices
U(1)y B, g Y 0 N/A
SU@)L | W, g T =2 gidk i,j=1,23
SUB)c | G g3 =2 fabe a,b=1,...,8

Table 2.1: Properties of gauge groups in the SM. Defining generators means generators in
the defining or fundamental representation. Here, o and A are the Pauli and Gell-Mann
matrices respectively.

The SM is governed by the lagrangian®

__ pkinetic yuk theta
£SM — ESM + 'CSM ‘l’ ‘CSM - VSM,

o 1
Elsﬂl\r/lletlc _ |DMH|2 +1 Z @Z)l ot D,y + 1 Z AZVA%W’
X y

GYM

theta __ a,uv oia
Lan™ = 3272 ' G’“”
Loy =yaH - qd +y H b6+ 9y, H g +he,

1
Vawr = —?HP + 5 AH[",

'Here we use “” to denote the SU(2) invariant product

a'bzso"@aabg:albz—agbl.

February 19,
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(2.1.3)

(2.1.4)
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(2.1.6)

(2.1.1)
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2.1. The Standard Model of particle physics 9

where we have suppressed generation indices. The sum over x and y indicates a sum

over all fermions and gauge bosons,
Ve ={g 0,0, d,e},, A ={B,W,G}"; (2.1.7)

the gauge covariant derivative D, is determined by what it acts upon

D,0 = (au — i B Yo — i oW T —igs GO tffo> O; (2.1.8)
the gauge field strengths of the SM are
B, =0,B,-9,B, (2.1.9)
W, = 0,W, —,W! + ge"Wiw}, (2.1.10)
Gy, = 9,Gy — 0,G) + g3 f°GLG; (2.1.11)

Yd, Yo and gy, are the Yukawa couplings — 3 x 3 complex matrices in generation
space — and

Go, = ZeMPGe, (2.1.12)

DN | —

is the Hodge dual of the gluon field strength tensor. The lagrangian in 2.1.2 is the
most general renormalisable, Lorentz invariant, gauge invariant lagrangian that can
be written with the SM field content given in table 2.2.

In the SM, p is taken positive such that the scalar potential in eq. 2.1.6 is min-
imised for a non-zero value of H — the famous Mezican hat or wine bottle potential?.
Consequently, the bottom component of the Higgs SU(2);, doublet acquires a Vac-
uum Expectation Value (VEV)

1
HO%E(U—Fh—H’U) (2.1.13)

leaving the combination of generators

Q=T"+Y (2.1.14)

20One issue with the SM is that there is no reason why the terms in the potential should take
these relative signs. As we sill see later, one of the triumphs of SUSY is its ability to determine
each term in the Higgs potential and, given some reasonable assumptions about the UV physics,
predict the relative signs. This is known as Radiative Electroweak Symmetry Breaking (REWSB).

February 19, 2015
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Spin  Generations | SU(3)c  SU(2);, U(1)y
H=(H",H%) | 0 I 1 0 I
q=(ug,d) % 3 O n %
(= (v,e;) 3 3 1 O —3
u= ul, : 3 O 1 —2
d=dj ' 3 O 1 4
e =ch 1 3 1 1 1

Table 2.2: SM field content.

unbroken and identified with the generators of the U(1)g,,. This phenomena —
Electroweak Symmetry Breaking (EWSB) — is an explicit example of a more general
phenomena called Spontaneous Symmetry Breaking (SSB), often referred to as The
Higgs Mechanism or simply Higgsing

SU@)e x SU2)p x U(1)y —22% SU(3)e x U(1) gy (2.1.15)

The more general form of Higgsing will return in Section 5.5.3. This Higgsing gives
masses to the B and W gauge bosons who mix to form the charged W boson W+

and photon vy

B W W
_ gz |7 =2V (2.1.16)
W, 7 W, W
where
A v L) (2.1.17)
Soy Coy, \/§ T —1

The Higgsing also generates masses for all fermions in the SM except for neutrinos.
There are however some limitations of the SM. Firstly, there are observed phenomena

that are not explained within the setup of the SM:

e Gravity: The SM describes three of the four fundamental forces incredibly
accurately within the realms of perturbation theory. As the couplings in the
SM are dimensionless or of positive mass dimension, the most divergent a loop
diagram can be is logarithmic. At each order in perturbation theory, there
are only a finite number of divergent diagrams meaning that the theory can
be renormalised using a finite set of counterterms. One needs to then do a

February 19, 2015
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finite set of measurements to fix the theory and make it predictive. Gravity is

problematic in this sense as the Newton constant

1 2
G ewton — 2.1.18
Rt (87TMPlanck) ( )

has a negative mass dimension. If we do a naive power counting, we see that
at each loop order in perturbation theory, the UV divergences become worse
as we need additional powers of loop momentum to compensate the powers
of Planck mass Mpiane ~ 1.2209 x 10'° GeV in the denominator of eq. 2.1.18.
Consequently one would expect a quantum field theory involving gravity to
require an infinite set of counterterms thus making it non-renormalisable and

unpredictive. This is a problem with QFT and gravity in general, not just

with the SM.

e Dark matter: There is ever growing gravitational evidence for the existence
of non-luminous matter in our universe. The radial velocity profile of objects
in the outer layers of galactic discs — referred to as galactic rotation curves
— do not match those expected from Newtonian gravity if only the matter
visible in the galaxy is taken into account [12]. On galactic cluster scales,
gravitational lensing has provided evidence that the mass and X-rays (that
trace the distribution of hot plasma) do not coincide [13]. Finally, the temper-
ature fluctuations in the Cosmic Microwave Background (CMB) have allowed
the Planck collaboration has inferred current cold dark matter and baryonic

fractions w, and wy, [14]:
w. = 0.1199 £+ 0.0027, wp, = 0.02205 £ 0.00028.

This is a problem as the SM has no dark matter candidate, though this is easily
solved by any one or combination of extensions to the SM. To the present day
there has been no confirmed particle dark matter observation at either direct

detection or collider experiments.

e Dark energy: The Plank Collaboration also identified the dark energy frac-
tion wy of our universe
wy = 0.68510 715
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This accounts for the majority of the mass-energy content of the universe
yet is completely absent from SM. Dark energy does not behave in the same
way as normal matter, so is unlikely to have a particle physics interpretation.
Incorporating dark energy and the SM into the same framework is however,

possible.

e Matter-antimatter asymmetry: It is not clear whether the SM has an
answer to ‘Why are we here rather than not?’ or put another way, ‘ Why are
there unequal amounts of matter and anti—-matter?’. The necessary conditions
for this are the Sakharov conditions [15]:

1. Baryon number violation,
2. C violation and Charge Parity (CP) violation,
3. Interactions out of thermal equilibrium.

Although U(1), and U(1), are symmetries at the level of the SM lagrangian,

they are broken anomalously

Ny
3272

Ouijp = Oulr, = (BW B~ Wi, WW> , (2.1.19)
where N is the number of flavours. Clearly the combination U(1)y ; is
not anomalous. This allows baryon number ng = n, — ny = [ d®zj% and
lepton number ny, = n;—n; = [ dz j} violation to occur non—perturbatively®
providing that the difference in baryon and lepton number is preserved. This
can happen if the theory jumps between vacua of different topological charges

between two times ¢; and t9

n(ts) — np(ty) = /t ® 0 / P20, i = N; [Nes(ts) — Nes(h)] (2.1.20)

3The nomenclature here is a bit unusual since one often thinks of the anomaly as being due to
triangle diagrams in perturbation theory. The point is that since the result is one loop exact then
the result isn’t a perturbative one, and depending on how the quantity is calculated (e.g. via the
Fujikawa method) one sees that the anomaly is proportional to

/ d'r et P A, Ay ~ 870k ke

which is a topological term [16].
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where

Nes(t) = / &z (BW B — Wi, W“) (2.1.21)

322
is the Chern—Simmons number and evaluates to an integer*. The approxima-
tions and uncertainty in this mechanism lie in estimating and calculating the

tunnelling rates between the different vacua with different Ncg.

Charge symmetry is clearly violated in the SM since e.g. charge reversal acting
on an interacting left handed neutrino would take it into a non-interacting left

handed anti-neutrino.

The SM has numerous sources of CP violation. The phase ¢ in the Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing matrix and the equivalent phase
in the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing (as well
as two additional phases if neutrinos are Majorana) can cause the rate of a
process involving these particles to differ from the rate of its CP conjugate.
Thanks to the measurement of a non-zero #;3 in the PMNS matrix, it should
be possible to experimentally determine how large the equivalent ¢§ is in the

neutrino sector.

These interactions will become out of thermal equilibrium when the rate of
reaction generating the baryon asymmetry becomes less than the rate of uni-

versal expansion [17].

Although some sources of CP violation are known, at present, the total CP
violating sources in the SM are unknown, and the sphaleron processes in the
early universe not yet well understood. It is currently unclear whether the
SM can give rise to the current observed matter-antimatter asymmetry. It
is likely that if it doesn’t then additional high energy degrees of freedom are
required to generate a larger U(1), or U(1), imbalance. This is quite normal
in Grand Unified Theory (GUT) theories where the same representation of
the GUT gauge group Ggyr may contain both quarks and leptons. The scalar
and gauge degrees of freedom may then mediate interactions amongst fermions

that have a different baryon number.

e Neutrino masses: The observation that neutrinos oscillate is almost ir-

“We have neglected [ d*z O j% because fields vanish at spatial infinity.
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| Spin  Generations | SU(3)c  SU(2), U(1)y

v=vh| 1 3 1 1 0

Table 2.3: Representations of right-handed neutrino.

refutable evidence that at least two of the three neutrino mass eigenstates
have non-zero masses [18,19]. Here we take (but is not always chosen in the
literature) the SM to not include a right handed neutrino — a singlet under
the SM gauge groups detailed in table 2.3. This choice is made because it is
not currently known how the neutrinos acquire a mass. If we don’t include a
right handed neutrino, the neutrino mass arises in the form of the Weinberg
operator, the unique gauge invariant, Lorentz invariant dimension five operator

one can form using the SM degrees of freedom

AV
L35 = (HA@ +hec.. (2.1.22)

In this case we need to introduce some new physics at the scale A that generates

this operator in the EF'T.

If they aquire a Dirac mass in the same way as the rest of the SM fermions
Lo — L4+ (y, H- €7 + hee), (2.1.23)

where again y, is a 3x 3 complex matrix in generation space, then the incredible
smallness of the Yukawa coupling is suspicious but not impossible to believe.
The commonly expected for a neutrino to acquire their small < eV masses
is through the see-saw mechanism. Here, in addition to the Dirac term in
eq. 2.1.23, one allows for a large Majorana mass M > i//—% for the right handed
neutrino

77+ hec. (2.1.24)

After EWSB, the two neutrino states mix to form two Majorana states with

1masses

(yo v)?

2M

my1 =~ — mu2%M7

and eV masses can be achieved with O(1) couplings if the Majorana mass M

is O(10") GeV. In each of these three cases, the SM needs extending. Tt will
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be very interesting to see which (if any!) of these is the correct solution.

Beyond the above experimental shortcomings of the SM, there are also theoretical

issues:

e The Strong CP problem: The upper bound on the fyy; coefficient in
eq. 2.1.4 has been experimentally determined from Neutrino Electric Dipole
measurements [20, 21]

|6YM| 5 3 X 10710.

In the SM, this does not obey the 't Hooft naturalness criterion [22] that
essentially states ‘A parameter in a lagrangian is allowed to be small providing
that when that parameter is set to zero, the symmetry of the lagrangian is
enhanced’®. If Oyy is set to zero, there is no enhancing of the symmetry
of the lagrangian — the term is gauge and Lorentz invariant, and the SM
lagrangian already violates CP®. There are explanations for the smallness of
this term, with the Peccei-Quinn (PQ) mechanism [23,24] the most popular.
Here, thereis a U(l)PQ symmetry that is broken spontaneously at high energies
and anomalously by strong interactions. The consequence is that the low
energy theory has a stationary point where the total coefficient of eq. 2.1.4 is
zero and is accompanied with the prediction of a new particle: the axion. The
simplest models of axions have been ruled out experimentally, but there are

many more general possibilities that are interesting to consider [25,26].

e The physical parameter problem: The SM has 18 physical parameters.

5The rationale is that we have in the back of our minds that the associated term in the lagrangian
has been generated by the breakdown of the symmetry we are restoring as some energy scale. In
the limit of the parameter vanishing, the enhanced symmetry of the system prevent radiative
corrections from inducing it, and so radiative corrections themselves must be proportional to the
parameter itself.

6This term violates CP as can be seen by rewriting it

o, G = Z4Eg B;, (2.1.25)
where 1
EE: Ga’ﬁo7 BZE —5 EHHBGG7ZB (2126)

are the gluon analogues of the electric and magnetic fields. Under charge conjugation, E; —
—E}, B, — —Bj, and under parity transformations E“ — E}, B), — — B, so the term in eq. 2.1.4
Vlolates CP maxunally o B
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A simple way of counting the physical parameters of a system is to start with
the system in the limit of its couplings taken to zero so that the system has
its full symmetry. One then includes a spurion of that symmetry which has
an associated numbers of parameters. By comparing how many generators of
the symmetries with and without the spurion tells you how many independent
rotations could be done to remove the unphysical degrees of freedom in the

spurion, i.e.
# physical parameters = # parameters — # broken generators.  (2.1.27)

For the SM one then finds

1. 3 x gauge couplings,
2. 2 x independent Higgs parameters, e.g. |u|* and A,

3. (2x9)—(2%x9—3) =3 x independent lepton sector parameters left over
from the breaking of the U(3), x U(3), — U(1)? by the presence of y,, a

convenient set are the three charged lepton masses,

4. (2x2x9)—(3x9—1) =10 x independent quark sector parameters
left over from the breaking of the U(3), x U(3), x U(3); — U(1)z by

the presence of y, and yq. A convenient set are the three quark lepton

q u

masses, three mixing angles and the CP violating phase.

Although it is remarkable that by fixing these 18 parameters one ends up with
a theory that is incredibly predictive. One expects that at a higher energy scale
that these parameters become related, for instance in a GUT, gauge couplings
become related g(Mgur) = ¢'(Mcur) = 93(Maur) = gaur(Mcur) in an
appropriate normalisation, the concept of quarks and leptons may become
unified, and the Higgs potential may become completely fixed as in the case of
SUSY. In addition, the mechanism for generating the structure of the Yukawa
couplings may be understood so that the parameters in the lepton and quark

sector are all understood in terms of much fewer numerical inputs.

e The gauge hierarchy problem: The final theoretical problem I will discuss
is the gauge hierarchy problem. Because of its importance in this thesis, it

will be discussed in detail in Subsection 2.1.2.
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In summary, the SM is an incredibly predictive theory that, for the last half
a century, has not really been put into doubt experimentally (at least as the low
energy EFT of something else). As discussed, there are plenty of reasons to expect

new physics in experiments to come.

2.1.2 The Gauge Hierarchy Problem

The gauge hierarchy problem with the SM is the one that is of most interest to us
for the remainder of this thesis. It can be phrased as ‘ Why is the weak scale at the
scale it is, rather than another, much larger one?’. In the lagrangian of the SM the

[ parameter:

Vem D —p® [HJ.

is the single dimensionful parameter, and controls the overall scale of SM physics”.

We know experimentally that v = 212 1~ 246 GeV and so we expect pu ~ 100 GeV.

)
In isolation, the SM is a perfectly natural QFT at any energy scale; the issue is
really whether you consider the SM to be in isolation or not. Before turning to the
SM, let us consider a much simpler theory with no gauge interactions, two complex
scalar fields ¢; and ¢, and a fermion 1) each with a single generation. Let the theory

have the lagrangian

*Csimple — Ekinetic +£yuk + mass ‘/;implea 2128

simple simple simple
kineti 2 )
Esilrrxllel;cllg = |au¢1| + |@M¢2| + wT O"u 8“#,
k
Egilrlnple =Y ¢1 w w + h.C.,

mass = M+ hee,

simple

A A
Vampte = 7 [61]” +m3 |6 + - |oa]* + 57 (02l + Anzln Ploaf*. (21.32)

2.1.29
2.1.30

o~ o~ o~ o~
~— N  ~—

2.1.31

"There are additional scales induced by dimensional transmutation.
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This theory has the one loop Renormalisation Group Equations (RGEs)

167 B =647, (2.1.33)
1672 8% =6 My, (2.1.34)
16%267(72:4m%)\1+2m§)\12—|—4m%y2—32M2 2, (2.1.35)
16 7° 5}% — 4m2 Xy + 2m> Ay, (2.1.36)
1672 8 = 1002 + 202, + 8y° A, — 324, (2.1.37)
1672 B = 1002 + 222, (2.1.38)
1672 B =4 M (A2 + Ay + Ao +17) . (2.1.39)

A lot can be gained just by looking at the lagrangian and the RGEs. Firstly notice
that a small fermion mass M is allowable; the RGE for M in eq. 2.1.34 is proportional
to the mass itself so if we set M to zero then it will stay zero along the whole RG flow
as was discussed in Section 2.1.1. This is essentially because in the limit of M — 0
an additional U(1) symmetry under which the fermions rotate by a phase 1) — 1)
appears — the left part of the chiral symmetry. The same is visibly not true for
the parameter m? however in eq. 2.1.35. The only way m; can be reasonably be
expected to stay at a particular scale is if the other masses in the theory ms and M
are of that scale. If however if My, = M (tnign) and ma, = ma(finign) are much larger
than my, = My (fnign) at some renormalisation scale fungn then when running to a
lower renormalisation scale fiy, one finds in the Leading Log (LL) approximation
R
16 72

2 9
mi, R myy, +

x (32 MZy? — 2miy Aiay) x log (‘; hlgh). (2.1.40)
low

Unless there is some cancellation along the RG flow, it is inevitable that one should
find my ) to be many orders of magnitude larger than m; . The degree of cancellation
that one might acquire to achieve a particularly small value at a point in the RG
flow is called tuning. mso on the other hand can only be pushed positive in the same
way by my, at least at one loop. This is simply because at this order in perturbation
theory ¢9 and M, don’t talk to each other. In order for them to interact at this level
of perturbation theory, a term in the lagrangian 3’ ¢ 1 1 would need to be generated,
but we can immediately see that this will never happen because the lagrangian has

a symmetry under which ¢, — €' ¢, and all other fields held constant. Such a
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symmetry would be broken by the ' ¢5 11 term and so will never be generated.
On top of the corrections from RG flow, there are also finite corrections to each of
the particles self energies. For this we need to decompose the complex scalars into

real degrees of freedom,

¢1 — % (hi+io1),  ¢o— % (hy +i09). (2.1.41)

Then one finds

(%) = — £ {0 [3 A0(md,) + Ao(m2)] + Nuo [ Aot ) + Ao(2,)] }

+ 2y2 [Go(p?,m3,, m3) — 2m3, Bo(p®, m, m3,)] (2.1.42)

17 07) = — £ {0 [Ao(md ) + 3 40(m2,)] + Aus [Ao(m? ) + Ao(m, )]}
+2y° [Go(p?, mi,, m3) + 2m3, Bo(p?, mi,, m3)] (2.1.43)
5{ [340(m3,) + Ao(m2,)| + Mz [Ao(m3,) + Ao(m2,) |}, (21.44)
172 (p*) = %{ [AO my ) + 3 Ag(m )] + A1 [Ao(mﬁl)Jer(mil)”, (2.1.45)
HW) ——y* | Bt m i )+ Bu,md, w2 (2.1.46)

where the A’s, B’s and G’s are scalar integrals that are defined in Appendix A. This
ensures that even if the logarithm is small in 2.1.40, then at some point in the RG
flow, there will be a threshold correction where the hierarchy in scales is transferred
to the smallest scalar mass.

Taking this on board, if we return to the SM, since there all observed in the SM
are roughly the same mass as the p term or might lighter, then its conceivable that
the p term is acceptable at any scale. On the other hand, we currently know very
little of the particles that exist above say 1 TeV. As was discussed in Section 2.1.1,
there are many reasons to expect new particles to come in at scales different (and
much higher) than the weak scale. If the SM is to be extended to include any or all
of:

e Heavy right handed neutrinos,
e Flavour physics responsible for generating Yukawa couplings,

e GUT phenomena [27],
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(ﬁ_l Gi (o
;7 R ’/‘\\
I = Z ( ‘\\ ,/‘ +h, ‘"'\\ /""h1> +Z h, ‘"Q"h1
2} hl —_——_ e — - hl (;j/ k1l wl

Figure 2.3: The one loop self energy for a scalar field h; in a theory with scalar fields
oi, ®; and fermion fields 1, ;. The sums are to be performed so that each independent
diagram is only included once in the usual manner. The first diagram is quadratically
sensitive to the mass of ¢; and the third diagram is quadratically sensitive to the mass of
Y, and ;. The second diagram is only logarithmically divergent.

e Gravitational physics,
e ...your favourite high energy idea here ...,

then at some order in perturbation theory, the Higgs sector will be coupled heavy
particles associated with the above phenomena and consequently, unless engineered

otherwise, the p term will receive radiative corrections of the form

1 n
Sp’ ~ (16 2) x ~ O(1) couplings x high scales x logarithms. (2.1.47)
T

Also note that if any of the phenomena involves a heavy scalar field ®, then there is
no symmetry one can impose at the lagrangian level to remove the Higgs portal term
A|H|?|®|?, and so the corrections in eq. 2.1.47 will happen at one loop. Understood

solutions to this problem are:

e Accept an unnatural theory by tuning the UV values of parameters in the

theory to match the observed value in the Infrared (IR),

e Not include any of the above phenomena and take the SM as the correct theory

all the way to the Planck scale,

e Treat the scalar fields of the SM as composites of fermions (e.g. technicolour

[28-30] or fat Higgs models [31]),
e Impose a symmetry that protects scalar masses,

amongst a plethora of other possibilities. We will see in the next chapter that SUSY

is one way of implementing this last option.
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0a
v \A@%V + W '\/WX/WNV =4 (p2 gul/ _pupl/) H<p2)

Figure 2.4: One loop contribution to an abelian gauge boson vacuum polarisation from a
charged fermion with mass m.

2.2 Effective field theories, schemes and the de-
coupling theorem

If one tries to go beyond LO with a theoretical prediction in a QFT, it is necessary
to chose a renormalisation scheme within which to perform the calculation. If we
are just calculating within the realms of the SM at the EW scale, it makes sense
to choose a scheme where the parameters in the theory are connected to what has
been measured experimentally. This scheme is called the On Shell (OS) scheme and
is a mass dependent scheme, i.e. each of the counterterms are evaluated with the
external particles on shell. This scheme is sometimes referred to as the physical
scheme since the renormalised masses coincide with those measured in experiment.

An important concept for Chapter 4 is the distinction between mass independent
renormalisation schemes. When doing calculations with a theory that contains a
large separation of scales, one usually chooses a mass independent scheme such
as Dimensional Regularisation (DREG) with modified minimal subtraction (MS)
or Dimensional Reduction (DRED) [32] with modified minimal subtraction (DR)
mainly because it is much simpler to do so! There is one caveat however. The OS
scheme and other physical schemes automatically take into account the Applequist—
Carazzone decoupling theorem [33,34] that states ‘A heavy degree of freedom (d.o.f.)
e.g. a particle with mass M decouples at energy scales i much lower than its mass
p < M up to logarithmic contributions suppressed by powers of +7’, whereas an
unphysical, mass independent scheme does not. To demonstrate this and its solution
in a mass—independent scheme, consider the fermion of unit charge and mass m
contribution to the one loop gauge boson self energy in a U(1) gauge theory with a

single fermion v shown in fig. 2.4. In DREG we can evaluate the diagram in fig.
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2.4 using standard methods [35]

S (770 AR I'(e)
I(p%) = (47r)“/0 doSa (=)o oo T o) (2248)
- —ﬁ %F(a) + 5.4(p) + finite + O(e). (2.2.49)

In MS the counterterm is fixed to only absorb the UV divergence plus a prescribed

finite piece

oS (1) = g 2L0)

- . 2.2.
(4 7T)2—5 3 /~L2€ ( 50)

This does not depend on the mass of any particle and hence is a mass independent
renormalisation scheme. In the OS scheme, we instead fix the counterterm such that

I(p?) vanishes for p? = —pu?

[(e)

T (2.2.51)

950 = (L [ drsai—o)

which does depend on m demonstrating the mass dependence of the OS scheme.

Combining eqs. 2.2.48 and 2.2.51 we find

m? +x (1 —z) p?
2

2 1
TS (p2, ) = ﬁ/o dr8x (1 —z)log (2.2.52)

m2—z(1—2z)p

By applying the Callan-Symanzik (CS) equation it can be shown that to lowest

order, the § functions are just combinations of the counterterms. d4 contributes to

the gauge beta function in the different renormalisation schemes as®

g d oS N1 gdleTS
B =a B T (2.2.53)
We find , ) ,
08 g x(l—z)p
= — dr 8z (1— 2.2.54
by (4@2/0 w8 (L= ) e = a2 (22.54)

8There is no contribution from &y or §, due to the Ward-Takahashi (WT) identity.
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which interpolates between two limits

3

os _ 9
o8 — L 1> m, (2.2.55)
B =0 < m. (2.2.56)

This is an explicit example of the decoupling theorem in action in a mass dependent
scheme — when we are at energy scales much higher than the mass of the fermion
m, its effects are included into the Greens functions and hence the RG flow of the
theory. Once we past its mass in energy scale, the particle decouples on its own,
both from the RGEs and other calculations in the theory. If now we turn to the MS

scheme we find

3
MS_ 9
By = TP O(e). (2.2.57)

What happens here is that the fermion is included for the entire RG flow and will
similarly contribute to all theoretical calculations in the IR far below its mass. There
1s no automatic decoupling when working in a mass independent scheme. This can
be viewed as a sickness of the calculation since IR physics is not screened from
what is happening in the UV. In other words, by measuring something like the slope
of the strong gauge coupling at the LHC, we would be able to infer the existence
of strongly interacting particles near the Planck scale, should they exist. This is
clearly not the case. What needs to be done is a by hand implementation of the
decoupling theorem. The simplest way (that we will choose in this thesis) is to flow
down to the mass of a particle and integrate it out, resulting in a matching of field
theories, the first including the particle, and the second an EFT with the particle
removed. At their boundary there will be a set of matching conditions or threshold
corrections to ensure that the two theories agree in the region where they are both

valid descriptions [36]. This setup is shown in figure 2.5.
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Ultraviolet physics

Heavy particle ® and light particle ¢

MS or DR RGEs with ® and ¢ L(D,¢)+ L(9)
w=M Matching conditions
MS or DR RGEs with ¢ L(¢) +0L(¢)

Y
Infrared physics
Light particle ¢
Figure 2.5: Schematic for matching and running between EFTs. At the interface between
the two field theories, the terms involving ® are removed, and then at a given order in
perturbation theory, calculations are matched up between the two theories leading to an

infinite tower of effective operators 0L(¢) in the LEEFT rendering the low energy theory
non-renormalisable.

2.3 Supersymmetry

2.3.1 Basics

SUSY is a symmetry relating particles of different spin
! |fermion) ~ |boson), ! |boson) ~ |fermion), (2.3.58)

where @, is the generator of a SUSY. Particles related in this way will be referred to
as superpartners. Immediately one sees striking consequences if SUSY is a symmetry

realised in a theory:

e If a one particle fermionic state |fermion) exists, there is another one particle
state |boson) in the theory; each one-particle state has at least one superpartner

i.e. in a SUSY theory, one deals with supermultiplets of particle states rather
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than the single particle states themselves,

e The generator Q°, changes the spin of a particle by % and hence its space-time
properties. @, therefore also transforms in a spin % representation of the
Lorentz group and is a generator of a space-time symmetry rather than an

internal symmetry.

The Haag—Lopuszanski-Sohnius (HLS) [37] extension of the famous no-go theorem

of Coleman-Mandula (CM) [38] to include symmetry generators of spin 5 greatly

restricts the form that the Q' are allowed to take. The N-extended SUSY algebra

where t =1,..., N is
i 1 8 i ~i N
[‘]MV7 Qa] - _5 (Uuu)a Qﬂa [Juya Qd] = 5 (UMV)d 8 (2359)
[P Qu) =0, [P, Q%] =0, (2.3.60)
{QL, QLY = €ap 27, {QainQs,;} = eag Zij, (2.3.61)
and finally
{QL, Qas}t =20 (6")aa P, (2.3.62)

where J,,, and P, are the Poincaré generators of translations and Lorentz rotations

0 Lo Iy L N L N (2.3.63)

i [P, JP] = 1 P° — o PP, (2.3.64)

[P, P] =0, (2.3.65)

70 = —7Z7" and Z;; = (Z9)1 are central charges that commute with all the genera-

tors of the SUSY algebra, and Qg4; = (Q!)" are the N-extended SUSY generators.
In this thesis we will only deal with the cases N = 0,1 and 2 which are referred to
as N =0 SUSY (or just a non-SUSY theory), N'=1 SUSY (or just SUSY theory),
and N/ = 2 SUSY (occasionally known as hypersymmetry) respectively.

There are some immediate consequences for SUSY theories from the algebra

above:

o All superpartners have the same mass because P? commutes with all Q¢
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e The energy E of a state is always zero or positive since

0< S 1QM AP + Qa1 1P = 3 (6HQL Qar}le) = 4E (d]6), (2.3.66)

a,& a,&

o Supermultiplets contain equal numbers of fermionic and bosonic degrees of
freedom. The operator (=) = (—1)* where s is the spin operator acts on

fermions and bosons
(—)¥ |fermion) = — |fermion), (—)F|boson) = + |boson) (2.3.67)

and anti-commutes with all fermionic operators — mnotably the @, — but

commutes with all bosonic operators — notable the P*. One then finds

np —np ocpte [(<)F] =D (il(=)" PHi) =0, (2.3.68)
where the |i) are subspace of states with common momentum P*|i) = p*|i).

The quantity tr [(—)"] is the Witten index [39).

These consequences make it clear that our world is not a SUSY one. As discussed
in Section 2.1.1, the SM provides an excellent description of nature, yet no particles
in the SM can possibly be superpartners of each other since they cannot be arranged
into supermultiplets?. A solution to this is to complete the multiplets with particles
that are yet to be discovered — their names are given in table 2.4. The problem
with this is that the resulting theory is in direct conflict with what is observed
experimentally. No fermionic photon, the photino, or fermionic gluon, the gluino
has ever been observed experimentally. If they had been observed (which in this

setup is inevitable) they would already be part of the SM.

9 Actually this is not strictly true as very early on in the development of SUSY models it was
noticed that the Higgs SU(2), doublet does share quantum numbers with the neutrino and differs
in spin by % [40-44]. In any case, it is certainly true that not all particles in the SM can be
arranged into supermultiplets and there is a mass difference between the neutrino and the Higgs,
so SUSY will have to be broken even if they are superpartners.

February 19, 2015



2.3. Supersymmetry 27

Standard Model eigenstates Superpartner eigenstates
Gauge Mass Gauge Mass
Neutral Higgs Neutral Higgsino
Gluon Gluon Gluino Gluino
W /B boson Z boson, photon Wino/Bino Zino/Photino
Quarks Quarks Squarks Squarks
Charged leptons Charged leptons | Charged sleptons Charged sleptons
Neutrinos Neutrinos Sneutrinos Sneutrinos

Table 2.4: Naming conventions for SUSY partners of SM particles in the absence of SUSY
breaking.

2.3.2 Motivation

Now that we have a more concrete understanding of what SUSY s, since we've
already commented that a fully SUSY theory cannot possibly reproduce reality, why
go any further? The key is that we can recycle a technique that already exists in
the SM to help us; SUSY, like any other continuous symmetry, can be spontaneously
broken. The details of how this can happen are given in Section 2.3.7. Using SUSY
breaking it is possible to reproduce observed reality. In addition to this, it maintains

some properties of SUSY:

e The gauge hierarchy problem is, in principle, still solved. The p term in the SM
scalar potential is protected due to the non-renormalisation theorem as will be
discussed in 2.3.6, but also the large finite pieces in the radiative corrections so
scalar masses are (in the SUSY limit) are cancelled against corrections of equal
magnitude by corrections from particles of the opposite spin. Another way of
seeing this is that the superpartner 1 of the SU(2);, doublet ® containing the
Higgs has a mass that is protected by chiral symmetry. Since in the SUSY
limit, these masses are equal, the mass of ®, and hence the Higgs mass, is also
protected. In the case where SUSY is broken, this cancellation is approximate,

and one gets corrections to scalar masses of the form
2 . 2 me
dmg ~ (couplings) x my, log (—) (2.3.69)
My,
where the fields ¢ and ¢ are related by SUSY, and their masses are equal in

the SUSY limit. We now see an interesting problem. If we are to solve the

hierarchy problem in a satisfactory way, then the effects of SUSY breaking
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should not be too large as to not make the logarithm in eq. 2.3.69 too large.
The tension between the non-observation of superpartners and the size of
logarithms is the little hierarchy problem, with the non-observation of squarks
and gluinos being the main source of tension. Beyond the possible stability
of the Higgs sector to radiative corrections, the presence of an approximate
SUSY (that is presumably restored at some energy scale) allows us to include
other scalars in the theory without worrying about them — at least from a

naturalness point of view.

e A GUT theory is indicated by the apparent unification of the SM gauge cou-
plings with the MSSM field content [45,46] (see Section 2.3.9). This is demon-

strated at one loop in figure 2.6.

e The R parity conserving MSSM typically contains a viable dark matter can-
didate.

e SUSY is the only non-trivial extension of the Poincaré group allowed by the
HLS [37] extension of CM [38] no-go theorem. Examples of all other types of
symmetries allowed by the CM theorem are realised in nature somehow, even
if they are spontaneously broken. SUSY is so far the only allowed symmetry
that we haven’t seen, which makes it slightly unusual. Perhaps there is a
deeper reason as to why we shouldn’t expect SUSY to be realised in a QFT

but so far one hasn’t been put forwards.

2.3.3 Writing an A = 1 supersymmetric theory
From space—time to superspace

We will now demonstrate how to write a N' = 1 SUSY theory. The simplest way
of doing this is to use the superspace approach developed in [47] which we take,
following the conventions of [48]. Here we extend the bosonic coordinates space-
time to include additional two complex anti-commuting (Grassman) spinors 6, and

04. Recall that for a Grassman parameter 7

d
/ dn =0, / dnn = d_z =1, (2.3.70)
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2 4 6 8 10 12 14 16 18
Log,(1/GeV)

Figure 2.6: One loop RG evolution of the SM gauge couplings. The red, blue and black
dashed (solid) lines show the evolution of the U(1),,, SU(2)1, and SU(3)c gauge couplings
in the SM (MSSM). The one loop beta coefficients are ™M = (41/10,-19/6,—7) and
LMSSM — (33/5,1, —3). We decouple the SUSY particles at a common threshold varied
between 500 GeV and 10 TeV.

and that a Taylor expansion of a function of a Grassman parameter truncates in a

finite number of terms

fn)=fo+nh (2.3.71)

so that

/ dn f() = f, (23.72)

and so on. Now with the fermionic coordinates we have

{6,,0,} =0, (2.3.73)
and it is convenient to define
20 — 1 « 8
_ 1 - _ .
d?0 = —7 404.d0; %8, (2.3.75)
d*e = d%0 d20_, (2.3.76)

so that

/d2992=/d2992:/d499292:1. (2.3.77)
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SUSY transformations in superspace

The most general N = 1 superfield X (x,8,0) is
X(2,0,0) =a+06+0x +0°b+0%c+05"0v, +0%0n+620( +6*0%d (2.3.78)

and when we perform the Grassman integration we get

/ d*0 X (z,0,0) = b(z) + 0 (' () + 0% d(z), (2.3.79)
/ P8 X (2,6,8) = c(x) + 01! (x) + 0% d(x), (2.3.80)
/d49X(:c,9,9’) = d(z). (2.3.81)

We want to work out how to write down a SUSY action, so we need to form differ-
ential representations of the SUSY generators (), to act on the superfields. They
will be defined so that e Q generates translation in superspace § — 6 + ¢ and is

accompanied by some translation in space-time z — x + dx

(1+icQ)X(2,0,0) = X(x+6x,0 +¢,0), (2.3.82)
(1+ie' Q) X(x,0,0) = X(x + 2,0,0 + €"). (2.3.83)
One finds'®
Qn =10, — (0"0), 0y, Q% = —id" + (05")* 9, (2.3.84)
Q* =49 — (6"0)*9,, Qs = —i04+ (00")40,. (2.3.85)

It is worth noting that a consequence of these definitions is that integrating anything

with respect to the whole of the superspace gives a SUSY quantity

5€/d4:c/d46 (anything) ~ /d4x/d49 (Z total derivatives) =0. (2.3.86)

There is a sign difference in the 9% versus 9, terms since 9, (6%) = 26, whereas 9%(6%) = —260°
from the definition of the derivative 9,0° = 2.
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A SUSY transformation acts on X (z,6,60) as

6: X(2,0,0) =i(c Q+e' Q) X(x,0,0)
= X[z +ilco"0+c"6"0),0 +¢,0 4+ — X(x,0,0). (2.3.87)

Leading to the transformations of the component fields in eq. 2.3.78

Sca=c&+el, (2.3.88)
0.0 =2 — (0" eN)o(v, +1i0,a), (2.3.89)
6. X1 =2e"c+ (6"e)* (v, — 0, a), (2.3.90)
Seb=cel (T — %g* 7" 0,¢, (2.3.91)
S.c=¢clnl — %ST "0, X, (2.3.92)
Sevh =eot (T —efarn— % ea” "0, &+ %ET "0, x', (2.3.93)
5ot = 22 d —i(0" €M, 0, ¢ — % (6% 5 ) Oy 01, (2.3.94)
6ed = —%5 "0, — %50” 9, ¢l (2.3.96)

Before we proceed it is useful to define the chiral superspace or Grassman analytic
coordinate

Yyt =at —ifot 0 (2.3.97)

and a representation for the superspace derivatives'!

_—r a0
Dy =0y —i(0"0)0 8, = 0o — 2i(0" )4 - (2.3.98)
[e] le} ) =\ o C A —u\a 8
D = —0% +i(fa")* = —9° +2i (05") 3 (2.3.99)
DY = 9% —i(a"0)* 9, = 0%, (2.3.100)
Dy =—0s+i(00")50, = —04 (2.3.101)

1 The second expression for each derivative is valid only at the coordinate in eq. 2.3.97.
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that anti-commute with the Qs and Qs such that

0c [Do X(2,0,0)] = Dyld-X (2,6, 0)], (2.3.102)
0c [Da X (,0,0)] = Dal0.X (,0,0))]. (2.3.103)

Chiral superfields

We can now start defining our irreducible representations of SUSY. The first one we
will consider is the Chiral Superfield (xSF) (or left handed xSF) ®(y,0) = ®(x,0,0)
that satisfies

Dy ® = 0. (2.3.104)

The converse, an antixSF (or right handed xSF) ®!(y,0) = ®f(x,0,0) satisfies
D, ®" = 0. (2.3.105)

Note that since D, and Dy satisfy the product rule, then a product of (anti)ySFs

is also a(n) (anti)xSF. Also, since
D, D? (anything) = D, D? (anything) = 0 (2.3.106)
then a xSF and an anti ySF can be formed by writing
d=D*X, ot =D*X (2.3.107)

respectively, where X = X(z,0,0) is the general superfield given in eq. 2.3.78. Now
if we fix the space-time location to be at y, the component form solution to the
constraint in eq. 2.3.104 is solved by simply taking a function of only x and 6 but

not 92
O(y,0) =d(y) + V201(y) + 6> F(y) (2.3.108)
=¢(x)+i05" 00, d(z) + ;192 0% 0, 0" ¢(z)

+VE () — % 62 6+ 8, () + 0> F(x). (2.3.100)

12The /2 is just convention.
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Comparing the terms in 2.3.109 allow us to determine how the components of a ySF

behave under SUSY transformations

0: ¢ =€), (2.3.110)
oo = —i (0" €N 0,0 +eu F, (2.3.111)
6. F = —icl 6", (2.3.112)

with the key thing to note that the coefficient of the % term of a YSF — known as
the F' term — transformed by only a total derivative. An action S formed from just

F terms is therefore supersymmetric, i.e. is invariant under SUSY transformations

5.5 = 5€/d4x K/ d%0 @) +h.c.] =0. (2.3.113)

Now given a theory with a set of ySFs ®;, we can write a renormalisable SUSY
lagrangian

L= /d‘*&K((I)i) + { [/ d*0 W(@i)} +h.c.}, (2.3.114)

where K is the Kdhler potential with canonical form
K(®;) = o"d, (2.3.115)

and W (®;) is the superpotential — a xSF formed from the other ®; in the theory.
W is also referred to as a holomorphic as it is a function of xSFs only and not
antiySFs. The general renormalisable form of W (®;) was introduced in the Wess—

Zumino (WZ) model*?
% 1 i 1 ijk
W(®;) = L'®; + 5 MY &; & + Gy iy (2.3.116)

where L? is the linear superpotential term, MY = M7 is a supersymmetic mass, and

Y% = o7k = (other permutations of ijk) is a supersymmetic Yukawa coupling. The

13The WZ model has L; = 0.
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different terms in eq. 2.3.114 in component form evaluate to

Lk :/d40 K(®;) (2.3.117)
= — 0,810 p; + 115" 0,1 + |Fi|* + total derivatives, (2.3.118)
Ly = V d*0 W(@i)] + h.c. (2.3.119)

. 1
= L'Ei+ 5 MY (6 F + ¢ Fi = 4uy)

1 ..
+ 6 y7* [¢; ¢ Fr — ;¢ ¢, + (cyclic permutations)]

+hec.. (2.3.120)

One then solves the F' term equations

oL , < y 1 .

= FU+ L'+ M7 g+ Sy ¢ 6 =0 2.3.121
aF +L MY ¢+ 5y 9id; =0, ( )
oL 1 o

— M gt =
W_E+Li+Mij¢]+§yijk¢ oV =0 (2.3.122)

and substitutes their solutions to find the scalar potential V' (¢;)
V(é:) = I (2.3.123)

Vector superfields

The second irreducible representations of SUSY we will consider is the Vector Su-

perfield (VSF) (or real superfield). A VSF satisfies the constraint
V(x,0,0) =V(x,0,0). (2.3.124)

Upon comparing this to the general superfield X (x,#, ), this just causes the iden-
tification of some coefficients and forces some coefficients to be real. After making

the traditional redefinitions

: 1
Mo = Aa — % (0" 0,Nar d=5D+0,0"a (2.3.125)
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the component field expansion of V(x, 6, ) is

V(z,0,0) =a+05"0v, + 0° 6 (%D+%18M8“a)
+ {9§+92b+92§ (AT — %aﬂ o, 5) +h.c.] , (2.3.126)

which when comparing the terms in 2.3.109 allow us to determine how the compo-

nents of a VSF behave under SUSY transformations

Sca=cé&+el el (2.3.127
6 & =26ab— (0" €M)y (v, +1i0,a), (2.3.128
(
(

)

)

6.b=c" A\l —¢l5"0,¢, 2.3.129)
)

)

Scvh =P N —elgh A +icd"E—ict e, 2.3.130
0c g =€ D+ % (0" 7" €)a (Ouvy — Oy vy), (2.3.131
6.D = —ico" 9, N —icta" 9, \. (2.3.132)

Again, the key thing to note that the coefficient of the #2602 term of a VSF — known
as the D term — transformed by only a total derivative, and so any action S formed

from just D terms of VSFs is supersymmetric
5.8 = 5€/d4x /d49V = 0. (2.3.133)

Finally, (as we will see later) V is a VSF because it will be involved in gauge

transformations of the form
V=V +i(A—A) (2.3.134)

where A is a xySF. Because of this, one can make a suitable gauge transformation

of the form in eq. 2.3.134 to remove unphysical degrees of freedom, bringing V' into
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the WZ gauge'
_ _ 1 .-
Vivz = 00" 0v, + (70 X+ h.c.) + 3 60°0° D. (2.3.135)

Gauge theories

If we want to have any hope in making a connection with reality then we will need to
work out how to write a supersymmetric gauge theory. First we consider an abelian
gauge theory in detail before simply presenting the result for a non—abelian gauge

theory.

Abelian gauge theories: Consider a theory with some ySFs ®; each with charge
¢; under a U(1) gauge theory with associated VSF V. The xSFs and VSF transform

under the theory as
O; — 219UND, DT 5 ¢ 2EN BT Y 5V (AT — A), (2.3.136)

where A is a xSF. The Kéhler potential in eq. 2.3.115 is in general not gauge invari-

ant, so we need to upgrade to
K(®;,V) =l e294V @, (2.3.137)
This is a U(1) gauge invariant, and in the WZ gauge it becomes

Ly = / d*'0 K(®;,V) = — D,¢"" D¢y + i p"6" D, — V2 g ¢i(¢Th )\ + h.c.)

+ 9qi|¢:]>D + |F;]> + (total derivatives). (2.3.138)

Finally we want to include kinetic terms for the U(1) gauge bosons. To do this we

define the gauge field superstrength ySF

D*D, V. (2.3.139)

1 _ __
Wa = —Z D2 Da V, Wd

A

4 Note that the WZ gauge is broken by both SUSY and gauge transformations. If the action is
SUSY however, one can always do a combination of SUSY and gauge transformations to recast V'
in this form.
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This is a gauge invariant, and in the WZ gauge is written
Wiwvze = Ao + 0. D — % (046" 0)avm + 1 02(0" Oy A (2.3.140)

Because W is a xSF we can write another SUSY term in the lagrangian known as

the Super Yang-Mills (SYM) term

Lsym = <111/d2(9 W2> + h.c. (2.3.141)

that when evaluated contains kinetic terms for the gauge field and gauginos
1 20172 = 1 v 1o ot
1 d“0W* | +h.c. =i X' g 0, A\— 7 U vt +3 D*+(total derivatives) (2.3.142)

where v, = 0, v, — 0, v,. In the case of an abelian gauge theory, we can also write

the Fayet—Iliopoulos (FI) term [49]
Ly = -2k /d49 V = —k D + (total derivatives), (2.3.143)

and as we will see in Section 2.3.7 plays a role in spontaneous SUSY breaking. The

whole lagrangian is then constructed by combining the terms
Liotal = Lsym + Lx + Lw + Ly, (2.3.144)

where Ly is as determined in eq. 2.3.119 with the additional requirement that the
superpotential W (®;) is gauge invariant. After performing the relevant superspace
integrals, one then solves the F' term equations (unchanged from eqs. 2.3.121 and

2.3.122) and the D term equation

a‘Ctotal
oD

=D+gq|oi]* —k=0. (2.3.145)
Substituting the solutions then gives the scalar potential V' (¢;)

1
V(g:) = |Fi[* + 5D (2.3.146)

Non—abelian gauge theories: Consider a theory with ySFs ®; in some repre-
sentation r; of a gauge group G with associated VSF V*. For convenience we define
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the matrices

Vi =2g(T)7/ Ve, A =2g(T")7V" (2.3.147)

so that the gauge transformation acts as'®

d; — (M) 0, BV (IDU(e_iAT)ji, eV — M Vit (2.3.148)

and
K(®;,V) = 0" (") d; (2.3.149)

is gauge invariant. The gauge field strength xSF is now defined
1 _
Wa=—7 D* (e Dye") (2.3.150)
and transforms under gauge transformations as

Wy — AW, e (2.3.151)

where W,,, A and T are matrices. In the WZ gauge, WW¢ in the adjoint representa-

tion is written
a a a Z —UV a -
Wivza = Ae + 0, D — 5 (6" 5" 0)q v}, +1i6? (6" D, UM (2.3.152)
where v7;,, is the non abelian gauge strength

v, =0, v, — Oy v, + g e UZ e (2.3.153)

I5The matrix structure means that the transformation for V is now more complicated than in
the abelian case.
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Combining everything we get

Liotal = Lk + Lsym + Lw, (2.3.154)

Lx = / d0 K(®;,V), (2.3.155)
_ 1 292 HYM 2 aa a

ESYM = |:(4_1 — 32 712 ) /d ow Wa + h.C., (23156)

Ly = U d*0 W((I)i)} + h.c.. (2.3.157)

and in component form

Lk =— D" D'y + i 1G" Dyihy — V2 g[(¢F T 4)A + hec.]

+ g(¢' T* ¢)D* + |F;|> + (total derivatives), (2.3.158)
- at = a 1 apv ,.a g2 GYM auv ~a
Loy = 1A Ta“é?u)\ - ZU Mo, + 55 2 AT
1
+ 3 D® D* + (total derivatives) (2.3.159)

and Ly is still determined in eq. 2.3.119. We have included the imaginary part of
the gauge coupling in eq. 2.3.156 in order to allow the gauge invariant CP violating
theta term in eq. 2.3.159. There is no FI term here as V' is not gauge invariant. After
performing the relevant superspace integrals, one then solves the F term equations

(unchanged from eqgs. 2.3.121 and 2.3.122) and the D term equations

aﬁtotal

_ pa trra oy
Sha =D g (01T 6) =0 (2.3.160)

Substituting the solutions then gives the scalar potential V' (¢;)
1
V(gi) = |E]* + 5D D" (2.3.161)
2.3.4 Writing a theory with extended supersymmetry

Overview

In Chapter 5 a manifestly A = 2 SUSY framework will be required, and so we will

take some time to review the requirements here.
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The inadequacy of conventional extended superspace

We follow the notation of [50]. Generalising eq. 2.3.162 for the N' = 1 case, a
general N—extended SUSY transformation acts on a general superfield X (that has

a 0; and €' expansion rather than just a 6 and 6 one)

55 X(JI, QZ‘, 6’_1) =1 (€ZQZ + €TiQi) X(ZL’, ‘gi; 0_1)
= X[z + i('0"0; — 'ote)), 0; + &, 0" + 7] — X (x,6;,0"). (2.3.162)

and we can find the associated differential operator representation for the Q’s

QL =id, + (60" 0y, (2.3.163)
Qui = —i 04 — (0;0")4 0, (2.3.164)

and the SUSY covariant derivates

D=0 +i(0"0),0, =0, +2i(c"0), %, (2.3.165)

Dyi = —0ig — 1 (9i U“)a a,u = —0Oia, (2‘3‘166)

where the right hand side of eqs. 2.3.165 and 2.3.166 are only valid when acting on

functions evaluated in the basis
Y=ot 000" 0 (2.3.167)
The D’s and D’s satisfy the algebra

{D.,Ds;} = =208 0k 0, (2.3.168)
If we turn our attention to N' = 2 SUSY, the irreducible representation of N' = 2
needed to embed the quark superfields Q and Q is the Fayet—Sohnius (F'S) hyper-
multiplet Qps [51,52] (see figure 2.7). When put OS, the F'S hypermultiplet contains
four real scalar fields that form a complex SU(2), doublet Q'(z) and two SU(2),
singlet fermions ¥g () and @Z)%(x) The fields beyond this — including a spin % field
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Figure 2.7: Embedding of the quarks of A/ = 1 SQCD into the N' = 2 Fayet—Sohnius
hypermultiplet onto A/ = 1.

— are eliminated by the condition'® [52]
DI Q¥ = DI QPs =0, (2.3.170)
resulting in a Grassman expansion of the hypermultiplet
Qg (2,0:,0") = Q'(x) + 0" Yg(z) + 0}, wé(x) + (derivatives). (2.3.171)

Unfortunately, the constraint 2.3.170 together with the algebra for covariant deriva-

tives 2.3.168 imply that the component fields are OS
0,0" Q'(w) = [0" 9 o(2)]* = [0" ()] = 0 (2.3.172)

and so it is not possible to introduce interactions for the FS hypermultiplet. Our
N = 2 theory of interest will be Super Quantum Chromodynamics (SQCD) which
does contain interactions. It is possible to introduce interactions in the standard
N = 2 superspace for the FS hypermultiplet by relaxing the constraint 2.3.170,
however, this cannot be achieved with a finite number of auxiliary fields [53, 54].
Consequently, we will turn to the natural language of dealing with an infinite number
of auxiliary fields — Harmonic superspace — for the purposes of describing N' = 2

in Chapter 5.

16Qur conventions for symmetric indices are

o 1
alitin) = ot [a"'» + (permutations)] . (2.3.169)
n!
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Harmonic superspace

Harmonic Superspace (HSS) [50,55] bypasses the problem by introducing an infinite
set of auxiliary fields. These fields are essentially different harmonic modes on the
‘sphere’ defined by the SU(2), automorphism of the standard N' = 2 SUSY. By
applying the equations of motion, we will find that the auxiliary fields will just
vanish as usual, giving us the a standard physical theory with N’ =2 SUSY. In this
approach, we will see the SU(2) , automorphism become manifest as different modes
on the sphere take on different SU(2), representations.

The standard N = 2 superspace R*® is written as a coset space

Rl — Super poincaré g gaiy (2.3.173)

R A

Lorentz

i.e. a unique point in N' = 2 superspace can be reached from the origin with
a super—poincaré transformation with the transformation defined up to a Lorentz
transformation. Now really because of the SU(2), automorphism, we could imagine

eq. 2.3.173 to be written

Super—poincaré x SU(2) ,
Lorentz x SU(2)

RYE = = (2,65, 0%, (2.3.174)
that is, the automorphism is contained as part of the transformation group, but each
unique point in the A/ = 2 superspace is unique up to a SU(2) r transformation. The
trick is now to no longer identify points related by an SU(2), transformation, but

only the U(1) C SU(2), subgroup under which @}, and Q2 have opposite charges

Super—poincaré x SU(2)
Lorentz x U(1)

A28 — = (2,05, 0% uf), (2.3.175)

y Y

where the ;" are harmonic variables that parameterise transformations in the coset
17

Space
SUR)g o
~ S 2.3.176
and satisfy
utu; =1, (ut) = ;. (2.3.177)

1782 is the two dimensional sphere.
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The + and — correspond to charges under the U(1), and a general function on
SU(2) f@(u) with U(1) charge ¢ has the harmonic expansion

fPu) = Z frioinraltedn .u;;ﬂuj_ T (2.3.178)
n=0
This is the key to the success of harmonic superspace — any space time field ¢9 (z, u)

with a harmonic expansion
@ (x,u) = Z PUtnadtdn () u;g . .u;;ﬂu; Uy, (2.3.179)
n=0

is accompanied with an infinite tower of space time fields ¢t-r+ajt--Jin(z). Inte-
gration rules for harmonic functions are given in Section E.1. A review of HSS is
beyond the scope of this thesis, however, a very good introduction to the subject
can be found in [50]. Here we will just quote the necessary results for our analysis.

The coset SU(2),/U(1) has generators
T =T ' 44717 (2.3.180)

and the U(1) factor is generated by TV = 27T°. Together they form the SU(2),
algebra
[T+, 7] =1T°, [T° T*] = £ 2T+*. (2.3.181)

TP has a representation o on the Q’s

1 0 1 1
Qo _ [ @ (2.3.182)
o -1)\@2) \-@
and so we use the notation
Q=0 Q.=Q, (2.3.183)
with the new algebra
{QF, QY ={Q5.Q5} =0, (2.3.184)
{QF, Q5 =—{Q5, Q% =204 pu- (2.3.185)

February 19, 2015



2.3. Supersymmetry 44

One can define harmonic derivatives D** and the U(1) charge operator D°

D = * % =i (2.3.186)
=0 —2i6F aﬂéiaiyuwiaa@%;j%ﬂ%, (2.3.187)

DY =y % — ()= (2.3.188)
=3+ |67 % + ot % —(+ < ) (2.3.189)

that act upon the harmonic variables

Dluf =+uf, DTFuf =uf, D¥Fuf=0. (2.3.190)

K3 (3

The expressions 2.3.187 and 2.3.189 are valid only when evaluated at

Yt =t — 2000 ot 69 ot u; (2.3.191)
and
0 =ule, 0F=ub.. (2.3.192)

The expression 2.3.191 defines the harmonic analytic basis, analogous to 2.3.97.

Hypermultiplets in harmonic superspace

We are now ready to define the FS hypermultiplet in HSS. If we take the constraint
+ .+

2.3.170 and contract it with the harmonics u;" uj we get
D} Qs = D} Qs = 0, (2.:3.193)
where we have defined
Qs = Qps ui (2.3.194)
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and the derivatives are

0

DF =u D! = 2.3.1

o =W Po= 5070 (2.3.195)
_ _ 0

DI =uf D, = —, 2.3.196
f=uf D= (2.3.196)
I %) A

D, =u; D, = ~5p+a +2i (0”07 )00y, (2.3.197)

D, =u; D, = 0 _ 20 (070")5 0, (2.3.198)

a — M o'z__ae_+d

Again, the expressions on the far right side of 2.3.195 to 2.3.198 are only valid when
evaluated at 2.3.191. Noticing that any function f(@(u) satisfying

D D) =0 (2.3.199)
has the solutions

0 if g <0
FD () = (2.3.200)
TR u;; fir-taif g > 0.

11

lets us rewrite the definition 2.3.194 as
DTt Q;ES =0. (2.3.201)

Putting all of this together, the definition of the F'S hypermultiplet 2.3.170 is rewrit-
ten in HSS as
D Qfs = Df Qfs = DI Qs = 0. (2.3.202)

We can then find an expression for Q7 in the harmonic analytic basis. The deriva-

tives DI and D become short (see egs. 2.3.195 and 2.3.196) leaving Qjs with a 0
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expansion in only §* and 6+:

Qis = Qus(,0%,0%,u) (2.3.203)
= Q" (z,u) + 0" Yoz, u) +0F %(:c, u)
+ (0 F (z,u) + (07 G (z,u) + 107 0" 0 v, (2, u)
+ (020 X (2, u) + (07)2 0N (2, u)
+ (092 (65)2 PE3) (1, ). (2.3.204)

Applying the remaining constraint 2.3.201
D Qfg(z, 07,07, uf) = (077 — 2067661 9,) Qfs(x,07,67,uf) =0, (2.3.205)

the lowest theta components define the physical space time fields and eliminate some

of the infinite tower of auxiliary fields

QT (z,u) =0 = QF(z,u) = Q"(x)u, (2.3.206)
O hg(z,u) =0 = Ygo(z,u) = Yo(x), (2.3.207)
Yl (zu) =0 = %(m, u) = wg@:), (2.3.208)
O F (z,u) =0 = F (z,u) =0, (2.3.209)
G (r,u) =0 = G (z,u) =0. (2.3.210)
The equations

O, —20,Q"(x,u) =0 = v, (z,u) =20,Q"(x) u; (2.3.211)
Ot P (z,u) + 0" v, (z,u) =0 = P*(z,u) =0 (2.3.212)

put the Q*(x) OS
oMv, (x,u) =20,0" Q' (z)u; =0 = 9,0"Q'(x) =0, (2.3.213)
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and the equations

AT (@, u) +i0hg 8,05 =0 = ATV (2,u) =0, (2.3.214)

O X (wu) 40,08 0k, =0 = X5 () =0 (2.3.215)

Oc

and put g and wg OS

0", o (@))* = [0* 9, v (2)]a = 0 (2.3.216)

as we found before in standard superspace. It would seem like we haven’t achieved
anything yet but actually this is not true. The F'S hypermultiplet was only put OS
after applying the constraint 2.3.201. In in a ‘normal’ free field theory, a field is
put OS by solving its Euler—Lagrange equations. It is now clear how to take the
hypermultiplet off—shell. If we define the F'S hypermultiplet using 2.3.193 only, and

write down the action

Shiee — _ / dud¢Y Qi DM Qi (2.3.217)

—_—

where all definition of the measures used are given in Section E.2, and Qg is the
hermitian x antipodal conjugation of Qi (defined in Section E.3) and should not
be confused with the right handed quarks @ of SQCD. Requiring the variation of
the action 2.3.217 with respect to Q;fs to vanish then yields the constraint 2.3.201
and only then puts the FS hypermultiplet OS.

Gauge theories in harmonic superspace

To incorporate gauge interactions in HSS we introduce the vector hypermultipet V=
Vit =y (2.3.218)
that is written in the W7 gauge as

Vibd = — 2007 0" 0t v, (x) + 3 (0)2 (67)2 D () uf u;
+[1V2(0 2 X (@) + 4072 070w + e, (2.3.219)
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where c.c. is the hermitian x antipodal conjugation. The action for N' =2 SYM is

then written [56]

o0

SN=2 _ g —t d“X duy . ..du, , (2.3.220
SYM - 2n ' u1 B (uf ug) ... (ut uf) ( )

which, amazingly, in component fields evaluates to
1
SEt = {/d%[(DuX)T(D“X) it a" Dy, Yl — UWU’“’
1 )
- WX ] - o= ol X 61 D” D; } . (2.3.221)
V2 V2

It is also convenient to define the gauge field hyperstrength W [57, 58]

w

1 R VI (X, 1) ... V(X 0,)
_Z(D+) ;(_@) + /dvl...dvn (o) (0T u) (2.3.222)

that has a component field expansion'® that can be found by using the expansion

in eq. 2.3.219 and the harmonic superspace rules in Appendix E
—iV2X = 20" N w7 +60'0"0;v,, + 2(00)" DA + (2.3.223)
A low energy EFT for N'=2 SYM can be written

SN2 = ~1 / d*z (D)*F(W) + h.c., (2.3.224)

where F(W) is the prepotential [59], and is a gauge invariant function of only

W = W, and has the general form

. 1 le...m]\,{ mi m
_;M Z mtr(w ).t (W), (2.3.225)
mi...mpg

The coefficients ¢,,,..m,, arise from integrating out microscopic degrees of freedom,

and have been exactly determined in specific cases, for example in [60,61]. Deriva-

18The A index is an adjoint SU(2) g index, see Section E.6 for explicit definitions.
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tives of the prepotential are conveniently defined

FaroayW) = T OV)

= oW aWaN7 hab = Re ]:ablv Gab = Im-/—"ab|, (23226)

where O| = O(@ = 6 = 0). The resulting theory up to four derivatives of the
prepotential was derived in [58] and is presented for completeness in Appendix E.4.1.
To couple the FS hypermultiplet to the gauge theory, one simply extends the

D** derivative in the action 2.3.217 to be a gauge covariant derivative
ggreed — — / dud¢™ Qs 21 Qfs, (2.3.227)

where

gt =Dt iV (2.3.228)

This alters its equations of motion to be those of ones coupled to a gauge theory. To

describe N' = 2 SQCD, we just combine the actions 2.3.220 or 2.3.224 with 2.3.227.

2.3.5 R symmetry

In the absence of central charges the SUSY algebra in eqgs. 2.3.59 to 2.3.62 has the
automorphism group U(N)

Qo= U/ QL Qay— Qay U (2:3.229)

where U is a unitary matrix. This is the R symmetry. Irreducible representations
of SUSY will carry a representation of this automorphism group. In N' =1 SUSY
this is a U(1), global symmetry under which the SUSY generators and superspace

coordinates transform

ro — €_i¢ Qom Qd — €i¢ Qo'm (23230)
O — €90, o — e %0, (2.3.231)

The general ySF with charge Ry transforms as

X(2,0,0) — X9 X (2, €790, e7%0). (2.3.232)
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U v,
d 1 1
m| —2 0
g1 -3 -1

Table 2.5: Global charges for the holomorphic field $ and couplings m and 9.

For a xSF with U(1), charge Rs, the U(1), charges of its components are
Ry=Rs, Ry=Ro—1, Rp=Re—2 (2.3.233)

For a VSF that is necessarily U(1) chargeless, the U(1) charges of its components

are

R,=0, Ry=1, Rp=0. (2.3.234)

We will see in Section 2.3.7 that the U(1), symmetry has important consequences
for the Majorana versus Dirac gaugino masses that are central to this thesis, and

that it also has striking implications for SUSY breaking.

2.3.6 The holomorphic basis and non-renormalisation
Non-renormalisation of superpotential

The superpotential is a holomorphic function of xySFs. Using supergraph pertur-
bation theory [62] and later using holomorphy [63,64] it has been shown that the
superpotential is not renormalised at any order in perturbation theory. From now
on we will use hatted variables to denote holomorphic quantities and unhatted vari-
ables to denote canonical variables. Consider the WZ model that has the tree level
superpotential

P2 +

e () = 3. (2.3.235)

m
2

W<

We can think of the couplings 7 and g as spurions of the global symmetry U(1) x
U(1), and as xSFs in their own right. The field ® and the couplings m and ¢ are
assigned the global charges in table 2.5. Now if we consider integrating out some
modes to generate an effective superpotential down to a lower scale u, the theory
should still have the same (spuriously broken) global symmetries and should still

have a holomorphic superpotential. The effective superpotential is then restricted to
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be of the form .
eff ~ 52 ?j o
W =md® f(x), where x =

(2.3.236)

A

m
and f(x) is a function to be determined by sensible limits of the couplings. Taking
the limit § — 0 and m — 0 while holding /7 constant needs to reproduce Weft —
Wtee since in this limit quantum corrections are turned off. In this limit we find
f(x) = 14 x. This is independent of x however, as y/m can be anything, and so

f(x) =14z for all z. From this one concludes that
e (2.3.237)

i.e. the superpotential is not renormalised. This is the non-renormalisation theorem,

and is true for any superpotential W (®).

Superpotential renormalisation group equations

A consequence of the non-renormalisation theorem is that we don’t need to solve
the CS equations to obtain the RGEs of a SUSY theory. Consider a theory defined

at the renormalisation scale p

Liotar (1) = / 40 K(®, 1) + { [ / %0 W(@)] —i—h.c.} (2.3.238)

where

K(®,p) = Z(p) ot d (2.3.239)

and with a superpotential

W(D)=> g, o (2.3.240)
k

Now physical fields do renormalise and a physical couplings do run. We can make
contact between the physical or canonical basis and the holomorphic basis by ab-
sorbing the wave function renormalisations that appear in the Kahler potential into

the definition of the fields and dimensionless couplings

O(u) = Z(W)2d,  yelp) = Z(u) % g, (2.3.241)
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where d, = 3 — k is the canonical or engineering dimension of y. By non-
renormalisation we know
d A
= (5 <I>’“> ~0. 2.3.242
dt ( g ( )

for all k. Then the beta function for gy, is

Cdy, d o ki
By = =2 (27 ") = <§ Vo — dk) n (2.3.243)

where the anomalous dimension g of ® is defined

0log Z
Olog

Yo = — (2.3.244)

The RGE in eq. 2.3.243 has striking implications. The most important for us is
that it highlights how SUSY solves the gauge hierarchy problem of Section 2.1.2. In
eq. 2.3.243 we see that physical parameters in the superpotential only renormalise

proportional to themselves, i.e.

e If a SUSY parameter is becomes zero at any point along the RG flow then it

remains zero,

e If a parameter begins small, it will remain small for a reasonably long period

of running.

If the p parameter in the SM scalar potential shown in eq. 2.1.6 then it is at least
reasonable that it can be of EW size and screened from effects coming from other
high mass scales by SUSY providing one can explain why it starts off at the EW
scale. That, however, is a different problem entirely, and is the SUSY u problem.

One loop exact renormalisation of gauge theories

The SYM expressions in Section 2.3.3 are done in the physical or canonical basis.
We will now introduce the holomorphic basis for gauge fields where the VSF's are

related

~

V=gV« (08,7, D) = g (v, \*, D" (2.3.245)

February 19, 2015



2.3. Supersymmetry 53

where all hatted variables are holomorphic quantities and all unhatted variables

including the gauge coupling g are the canonical quantities. Then

~

Wa = Wi (V) = —= D? <e—V D. eV> — gWa(V) = g W, (2.3.246)

1
4
In this normalisation it is standard to collect the prefactors in eq. 2.3.156 together

to define the holomorphic gauge coupling®®

“ GYM 4dmq
= — : 2.3.247
4 27 + g2 ( )
Now the lagrangian is written in the holomorphic basis
Liotar = Lx + Lsym + L, (2.3.248)
Lx= / d'0 K(9;,V), (2.3.249)
Loym = : /d%%W“ We ) +he., (2.3.250)
1671
and in component form
Lx =— D" D'¢; +iyla" Dby — vV2[(¢7 T*¢)A* + h.c.]
+ (6" T% ¢) D + |F}|* + (total derivatives), (2.3.251)
2 _ i at = a 1 ~apuyaa QYM ~apv Fa
ESYM = ?)\ 0“8#)\ — 4—§]21) # U“V—va # U/W
+ D® D® + (total derivatives) (2.3.252)

24

with the superpotential contribution unchanged. Since 7 is a holomorphic quantity,
one might think that it does not renormalise for the same reasons as the holomorphic
couplings 7 in the superpotential. In fact, the running of 7 to one loop is consistent

with holomorphy [65]. Integrating out modes between p; and pso, let us write the

19 Again we are met some strange terminology since what is holomorphic about the gauge coupling
77 The point here is that the term 7 W**W{ is holomorphic in 7 with ¥ promoted to a xSF. This
is not true for the canonical gauge coupling, since it must be real sue to V' = gV with both V' and
V real.
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low energy 7(us) as

T(p2) = 7() + f [T (1), 2] where ¢ =log (Z;) (2.3.253)

with f holomorphic in 7 and continuous in ¢. The whole theory is unchanged under

QYM — QYM + 27 so
FIr) + 1,8 = F ()1 (2.3.254)

Consequently, the RGE for 7 is periodic

dr
at = B, Bit1 = Bs (2.3.255)

and admits the Fourier decomposition

B; = Z c, et (2.3.256)

n>0
The zeroth term in this expansion can be calculated to be the one loop beta function

2bi o b
Be =24 et s Bya = —— (2.3.257)
s 81

n>1
with the remaining n > 1 terms never arising in perturbation theory. Before leav-
ing this holomorphic versus canonical basis discussion, we comment that due to
the rescaling anomaly, the relation between the holomorphic and canonical gauge

couplings in the presence of matter is

1 1 QTG
A7 g e Z —1 (2.3.258)
Whilst we have shown that the holomorphic coupling ¢ runs only to one loop, from
this relation it follows that the canonical coupling g runs to orders in perturba-
tion theory according to the Novikov—Shifman—Vainshtein—Zakharov (NSVZ) beta
function [66]

BNSVZ _ _ g* 3Te =2 T;(1 - Vj).

= 2.3.259
Bg 167T2 1 . TG% ( )
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2.3.7 Supersymmetry breaking

Now its time to make a connection with reality. At low energies, SUSY must be
broken in some way, and critically, in a way that maintains all of its nice features.
For us, this means that SUSY breaking felt in the MSSM must give an effective
SUSY scale much more than a few TeV.

How to break supersymmetry

The order parameter for SUSY breaking is the ground state energy. If the vacuum

state is not invariant under SUSY

Qal0) #0,  Q4l0) #£0 (2.3.260)

then the ground state energy is positive from eq. 2.3.66. If there are no fermion

condensates then the vacuum energy can be written
(0[E]0) = (0]V'|0), (2.3.261)

where V' is the scalar potential of the theory. Since V' can be written as the sums of
F terms and D terms, if either an F term or D term aquires a VEV in the vacuum
state then SUSY will be broken spontaneously. Writing a theory that achieves this
is actually more difficult than one might imagine, as SUSY has a habit of restoring
itself.

Interestingly, we can see from eq. 2.3.260 that it is not possible to begin with
an N-extended SUSY theory, then, through spontaneous breaking, arrive at an
M-extended SUSY theory with N > M > 0. This is the two into one wont go
theorem [67,68]. Concretely, consider the N-extended SUSY algebra

{Q}.Qs5) =20",6"5 P,  AB=1...N (2.3.262)
The vacuum energy in these theories is

O[V10) = = (IQT0)* + |Q1.al0)* + 1|Q5 0)]* + [|Q2,410)[?) (2.3.263)

A~ =

and is true for every A. This vacuum energy is positive if any of the SUSY generators

February 19, 2015



2.3. Supersymmetry 56

Q% or Q; 4 do not annihilate the vacuum. It follows if any of the SUSY generators
are broken, then at least one of Q# or Q; 4 is broken for every A in order for eq.

2.3.263 to hold for all A. (The alternative is that none of them are broken.)

D term SUSY breaking: As already mentioned, in the case of an abelian gauge
theory, a term linear in D displayed in eq. 2.3.143 called the FI term can be added
to the lagrangian. This leads to the FI mechanism of SUSY breaking [49]. In its
presence the D term equations are modified as in eq. 2.3.144 and lead to a scalar

potential

V(p) = %DQ + (F terms) = = (9. ¢; |¢:]° — /<;)2 + (F terms). (2.3.264)

N | —

There are three distinct situations:
e If there are no F terms then there is a SUSY vacuum at g g; [{¢;)|* — k = 0.
e If there are no xSFs then (D) = —x and SUSY is broken.

e If we include a superpotential W (®;) = = ®? this induces the F term scalar
potential V(¢;) = m?|¢;|>. If m? > gq; r for each i then the vacuum is at

(¢;) = 0 for all 7, and again (D) = —k with SUSY broken.

F term SUSY breaking: The archetype of F term breaking models is the
O’Raifeartaigh (OR) model [69] with the superpotential

WOR(D,) = —k &y +m Dy Oy + % o, B2 (2.3.265)

It was initially quite difficult to find other models that broke SUSY with F terms
until it was realised that superpotentials of the form in eq. 2.3.265 belong to a certain
class of models: they have a U(1), symmetry that is broken spontaneously [70].
Consider a theory with n fields ®; ¢ = 1,...,n each with U(1), charge R;. If the
nth field ®,, acquires a VEV then we can write the superpotential with new variables
X

W =o¥h f(X};), X;=—2r j=1,...,n—1, (2.3.266)
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Table 2.6: U(1)p charge assignment in the OR model with superpotential in eq. 2.3.265.

where the X; have zero U(1) charge. For a SUSY vacuum to exist, we need all of
the F' terms to vanish

hf(X;)=0,  f(X;)=0. (2.3.267)

There are n constraints and n—1 unknowns which in general has no solution. We find
then that a generic superpotential which spontaneously breaks a U(1) , symmetry also
breaks SUSY. This is the Nelson—Seiberg (NS) theorem. We can now immediately
see why the OR model 2.3.265 broke SUSY. It has the U(1), charge assignment in
table 2.6. By looking at the F' terms one notices that ®; is undetermined, i.e. is a
flat direction. ®1 acquires a VEV along this direction, spontaneously breaking the

U(1) ; symmetry and causes SUSY to break via the NS theorem.

The supertrace and its implications

The supertrace of a theory is [71]

STr(m?) =Y (—1)*(2j + 1) tr(m?), (2.3.268)
J
where s; is the spin of particle j.I f one assumes that SUSY breaking is communicated

through renormalisable interactions at tree level then the supertrace satisfies
STr(m?) = tr(m3) — 2tr(mL} my) + 3tr(m3) = —2gtr(T*) D* =0 (2.3.269)

where mi, my and mi, are the scalar mass squared matrix, the fermion mass matrix
and the gauge boson mass squared matrix respectively, and the final equality holds
for a non-anomalous U(1) gauge theory. This tells us that after SUSY breaking,
for a given fermion mass, the sum of the scalar masses is a constant. This means
that if SUSY breaking is only communicated in this way to the MSSM, there should

be one selectron lighter than the electron and one selectron heavier, in conflict
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SUSY br‘eaking Mediation MSSM
origin aVaVe Ve We Wa

(hidden sector) mechanism (visible sector)

Figure 2.8: Model building setup for mediating SUSY breaking from the hidden sector to
the wvisible sector.

with observation. One concludes that if we do live in a world with broken SUSY,
then the interactions that mediate the breaking happen through non-renormalisable
interactions or through loop processes.

A simple phenomenologically viable model of SUSY breaking usually imagines
a hidden sector®® containing one of the discussed models of SUSY breaking to a
wisible sector containing the SM. Constraints from the supertrace then require that
the mechanism connecting the hidden sector is either non-renormalisable or is loop

level.

Working with SUSY breaking

There are two elements to creating a model of SUSY breaking:
e The hidden sector that is the source of SUSY breaking,
e The mediation mechanism between the hidden sector and the wvisible sector.

Once these are specified, the mediation mechanism is integrated out, creating an
EFT with a set of soft terms. They are called soft terms because they represent a
soft breaking of the symmetry, that is, they break SUSY in a way that does not
introduce quadratic divergences. For N/ = 1 SUSY, the complete set of soft terms

are the standard soft terms and non-standard soft terms [72]. They are

o 1 1 1
ciwded — (m?)7; ¢lig, + <6 a7 G by + 5 b G gy + 5 MAN+ h.c.) , (2.3.270)

20Some prefer to use dark sector instead of hidden sector. 1 find this slightly too foreboding.
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where m?, a, b and M are soft scalar mass squareds, a terms or soft trilinear terms,
b terms or soft bilinear terms and Majorana gaugino masses respectively, and

non-standard __
soft -

o 1 . .
A" 61" &y 9+ 5 M ity +mig v A+ hic, (2.3.271)

N —

where ¢, M and mp are the c terms or non-holomorphic soft trilinear terms, soft
fermion masses and Dirac gaugino masses. The set of soft terms in eq. 2.3.270 are
referred to as standard because they in general don’t lead to quadratic divergences
irrespective of field content and they are all present in the MSSM. The first two
terms in eq. 2.3.271 are referred to as non-standard because they lead to quadratic
divergences in the presence of a gauge singlet?'. Note that the MSSM does not have
a gauge singlet, so strictly these terms should be included in the analysis of the softly
broken MSSM in addition to those in eq. 2.3.270. The third term in eq. 2.3.271 is
non-standard because it requires the presence of a field that the MSSM does not
have: a xSF in the Ad representation of the SM gauge groups such that the term
V; Aq 1S gauge invariant.

Once the set of soft terms is established given a specified SUSY model, the
low energy physics can be calculated. This is typically done by using a spectrum
generator such as SoftSUSY [73], SPheno [8,74] or SuSpect [75]. These programs
solve the RGEs of the model given the set of boundary conditions from observation
and those specified in the UV by the model. Upon convergence, one can calculate
the physical masses of the unobserved particles as well as other low energy properties

of the model.

2.3.8 Dualities and mapping soft terms
Seiberg duality for SUSY QCD

This section will briefly cover one of the most interesting and well understood N' = 1
SUSY dualities: Seiberg duality [76-78]. The word duality has many meanings. In
this case we mean that two (or more) different theories with different field content

and different gauge groups produce indistinguishable long distance physics. To be

2IThere are exceptions to this — we will see later that actually in the presence of supersoft SUSY
breaking, a particular form of the cgk do not introduce quadratic divergences in the presence of a
gauge singlet.
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concrete, Seiberg duality for SQCD is a duality between two gauge theories:

e An NV = 1 SUSY gauge theory with gauge group SU(N,), a global chiral
symmetry SU(Ny), xSU(Ny), a Baryon symmetry U(1) 5 and an R symmetry
U(1) . There are Ny flavours of left handed quarks @) in the O representation
of SU(N,) and Ny flavours of right handed quarks @ in the O representation
of SU(N,). This is the electric theory.

e An N =1 SUSY gauge theory with gauge group SU(]/\\T/C = Ny — N,), a global
chiral symmetry SU(Ny), x SU(N¢)r, a Baryon symmetry U(1); and an R
symmetry U(1),. There are N flavours of left handed quarks ¢ in the O rep-
resentation of SU(N,.), N; flavours of right handed quarks ¢ in the [J represen-
tation of SU(N,), and a gauge invariant fundamental meson ¢ that transforms
in the [0 x O representation of the chiral symmetry. This is the magnetic

theory.

The above gauge theories have many different phases. The ones that interest us are

the Conformal Window and the Magnetic Free where

3
g Ne < Ny <3N, Conformal Window (2.3.272)
3
N.+1< Ny < 3 N, Magnetic Free. (2.3.273)

We will show that in the Conformal Window both theories flow to an interacting
Superconformal Field Theory (SCFT) and provide evidence that they are the same
theory. We will then comment on what is expected to happen in the Magnetic Free

phase.
Facts about conformal field theories: Before we begin our journey, we first

need two important results from conformal field theory [16]:

e A chiral operator O of a SCFT satisfies

1 3
dim(0) = 1+ 570 = 3 Ro, (2.3.274)

where 7o is the anomalous dimension of O and Ry is the U(1), charge of O.

22These are stated without proof or explanation as they are beyond the scope of this thesis.
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SU(N.) SU(Nf)L SU(Nf)R U(l)B 2(1])\73

T (=N

Cg [? - } Ncl Nf]\ifN
M| 1 O O o 28
f
N foNc

B| 1 (V) 1 1N
~ N N¢—N,.
B| 1 1 (V) 1 N

Table 2.7: Representations and charges in electric SQCD. The U(1)j charges are chosen
so that the SU(N.)? x U(1) , anomaly vanishes.

e Near conformal fixed points, a spin zero gauge invariant O satisfies
dim(O) > 1. (2.3.275)

Upon saturating the inequality in eq. 2.3.275, O becomes a free fields and
when it violates the bound, decouples from the theory. This is called hitting

the unitarity bound.

Electric theory: Super QCD Now that we have our superconformal tools to
hand we can begin to analyse SQCD. The fundamental and composite particle rep-

resentations are displayed in table 2.7 and we take an empty superpotential
we(Q,Q) = 0. (2.3.276)

The classical moduli space of a SUSY gauge theory is well described by the set
of holomorphic gauge invariant polynomials [79] and in SQCD with Ny > N, the
quantum moduli space is the same as classical moduli space [80]. For the range of

Ny and N, we are interested in, our quantum moduli space can be described by
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g=0 &——>——<——
90

Figure 2.9: Near the loss of asymptotic freedom in SQCD, an IRFP appears at g = g.
determined in eq. 2.3.282. Figure taken from [5].

mesons M, baryons B and anti-baryons B

B'L’M'z---’iNc — Ea1a2-“aNchlalQi2a2 e QiNcaNc (23278)
35152...;]\,5 — gaiazan, Qzlal Q€2a2 e QzNCaNC . (23279)

The all orders NSVZ beta function is

3
g 3NC—NJ£(1—’)/Q)
BNSVE — : (2.3.280)
g 1672 1— Ncgf%

It is easy to see that the theory is asymptotically free for b = 3 N, — Ny > 0. One
might expect that in the IR, we would reach a Landau pole. This turns out not to

always be the case. The perturbative expansion of the quark anomalous dimension
is?4
g*> N?2—-1

RTTIR TN,

+ O(g"h). (2.3.281)

If we look close to the point where asymptotic freedom is lost Ny = 3 N, —e N, then
a perturbative fixed point appears in the IR

, 81 N,
T T3 N2 -1

€ (2.3.282)

which has been caused by a cancellation between the O(g®) and O(g°) terms in
eq. 2.3.280 and is the Banks-Zaks (BZ) fixed point [81] shown in figure 2.9. Actually,

something stronger can be said about the existence of such a fixed point. To all

I]:],f ) representation of SU(Ny) as detailed in table 2.7. To see this, realise

that the Baryon flavour indices are antisymmetric and there are N, of them with each N, index
taking any possible value from 1 to Ny. The dimension of the representation is the number of
independent such objects one can form. Since indices cannot repeat (as the Baryon would be

23Baryons are in the (

identically zero), the number of independent Baryons that can be formed is then (%" )

Hayg = 6 by symmetry.
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orders, a non-trivial Infrared Fixed Point (IRFP) of the gauge coupling will exist
providing there is a zero of the numerator in eq. 2.3.280 somewhere along the RG

flow. If such a solution exists then

N,
BN = Ny(1=7") =0 = 137 = 1_3Ff' (2.3.283)

The determination of whether a fixed point exists is reduced to simple functions of

the anomalous dimensions. Using our superconformal tricks, at the fixed point

1 N;— N,
S S _ Ry, (2.3.284)

and so the non-anomalous assignment of the U(1), charges is consistent with flowing
to the IRFP. We want to hit an interacting field theory, so the dimension of the

spinless gauge invariants imply

dim(M) = dim(Q Q) = 2 (1 + %ﬁf) > 1 (2.3.285)

puts a constraint on the anomalous dimensions of the quarks

3
Yoo > -1 = Ny > 5 N (2.3.286)

Finally we find that with the range of flavours and colours

gNC < Ny < N,
electric SQCD will flow to an IRFP with g = g, that is an interacting SCF'T.

Magnetic theory: Super QCD plus a meson Now let us consider a similar

theory with the field content displayed in table 2.8 and an empty superpotential
W™ (q, 4, ) = 0. (2.3.287)

Note that because ¢ is a singlet under SU(]VC) then the SU(/]\TC)2 x U(1), anomaly

cannot be used to fix the U(1) , charge of ¢. Again the moduli space is parameterised
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SU(N.) | SU(Ny)L SU(Npr U(L), U,
q O O 1 N% Nf]\?gj
i| O 1 O -+
@ 1 O O 0 2 5
m| 1 O O 0 2RG
b1 ?) 1 1 N Nf;v‘fﬁc
b1 1 (%f ) 1 NN

Table 2.8: Representations and charges in magnetic SQCD. The U(1) charges are chosen

so that the SU(]A\T/C)2 x U(1)  anomaly vanishes. The U(1)p charge of ¢ isn’t fixed until
the non-zero superpotential in eq. 2.3.293 is added.

by gauge invariant polynomials of the fields

m;' = qq' (2.3.288)
biliQ'”im = 5(11@2...(1]7662?11 Q?j te Qz;f{; (23289)
P = e Qi iz - QT (2.3.290)

and the theory has an all orders beta function

(2.3.291)

Now because ¢ is a gauge singlet and there is no superpotential, we know that

v, = 0 always, and so will decouple in a SCFT. In the range of flavours and colours

—~ —~

N, < Ny < N,

NN GV

we know immediately that this theory flows to an IRFP with g = g, with the ¢
decoupled. However, notice that the term in the superpotential ¢ ¢ ¢ is relevant at

this fixed point

N,
dim (g §) =3+ (1 -3 F) < 3. (2.3.292)
f
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y

N g
O wms Decoupled Here

Figure 2.10: Nothing that the superpotential in eq. 2.3.293 is relevant at the IRFP with
y =0, § = §«, we see that the flow is only onto g = g, with y exactly zero and will be
away from the point y = 0, § = g, if y is non-zero. Figure taken from [5]. Note the M’s
in this diagram are our ¢’s.

If one then adds the superpotential

W™ (q,q,0) =yqpq (2.3.293)

this fixes the U(1) , charge of ¢ and we see the behaviour in fig. 2.10. By considering

the beta function for y

By = % (279 + ) (2.3.294)

we notice that there is also a non-trivial fixed point y = y, where 2+, +, = 0. At
some point in the RG flow, it is then anticipated that we would hit another IRFP
with § = ¢, and y = y, as shown in figure 2.11. At this IRFP,

—~

. Ne
BN, — Ny(1 =79 =0 — 70 =1-3=5, (2.3.295)
Ny
295 +75° =0 — 750 =—273F, (2.3.296)
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y

M’s Coupled Here

T g
gD M’ s Decoupled Here

Figure 2.11: The end point of the flow for magnetic SQCD with non-zero superpotential
in eq. 2.3.293 is an interacting SCFT with y = y, and g = g,. Figure taken from [5]. Note
the M’s in this diagram are our ¢’s.

giving the U(1), charges

2 1 N,
SC SC __ c _

which are precisely those determined the vanishing of the SU(]AV;)2 x U(1) , anomaly
and a U(1), invariant superpotential in eq. 2.3.293. Now to just check that we don’t

have any particles decoupling

1
dim(m) = dim(q q) = 2 <1 + §7q> >1 = 7,> —1, (2.3.299)

dim(p) = =27, = v, <0. (2.3.300)

This gives a bound on the number of colours and flavours

R —
5 Ve < Ny <3N.. (2.3.301)

and in this range, magnetic SQCD is an asymptotically free theory that will flow to
an IRFP with y = 5, and § = §. that is an interacting SCFT.
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Seiberg duality in the conformal window: If we take electric SQCD in the

conformal window, and relate the electric and magnetic gauge groups
N.= N; — N, (2.3.302)

then both theories are asymptotically free and flow to their respective IRFPs. There
is a large amount of evidence to suggest that at this fixed point, the two theories

are identical. A few (not exhaustive) examples are:

e There is a one-to—one correspondence with the operators that parameterise

their quantum moduli spaces?

Bivizine oy ghiaineiijz iy, bj1j2~--j]7 (2.3.304)
Bijiy iy, © Shiinein a5 0 (2.3.305)

ii2iNJ1J2 TR,

At the IRFP, the quantum numbers of the operators on each side match ex-

actly.

e In the SCFTs, the global anomalies should remain unbroken and so 't Hooft
anomaly matching [22,82] should apply to both descriptions of the IR degrees

of freedom. A selection of the matchings is given in table 2.9.
e The duality is preserved under deformations by quark masses:

Electric SQCD Magnetic SQCD-+p
SU(N.), N — SU(Ny — N.), N
J mass J Higgsing
SU(N.), Ny —1 <+— SU(Ny— N;—1), Ns

Integrating out a particle has a Higgsing effect in the Seiberg dual picture.

Using symmetries and holomorphy, the holomorphic scales of the electric and

magnetic theory are related by

AP AP = (=)Ns=Ne ) Ny (2.3.306)

25The m degrees of freedom are projected out by the F terms of the ¢’s and §’s.
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Global anomaly

Electric SQCD

SU(Ny)?
SU(Ny)? x U(1) g

Ny
N;—N.
%chx(fNif—l)

1
2

Magnetic SQCD

Ne

N.— Ny
N;—N,
(&

-1

X
+ 3 x Ny x (28 -1

2 —
NT 1 Ns—N.
2Ny N, x (NT) x ( =

c

2
23y (1) (52 1) )

Table 2.9: A selection of the global anomaly coefficients in Electric and Magnetic SQCD.
Identifying N. = Ny — N, matches all of the global anomalies.

UM x U(L)g

where p is an intrinsic scale introduced to account for the fact that ¢ from the point
of view of the electric theory is really a dimension 2 field in the free theory ® = .
The (—)Ns=Ne factor is determined by requiring the (dual)? theory to be the same

as the original theory.

Seiberg duality in the magnetic free phase: If we now take the range of
flavours and colours in the magnetic free phase, we find that the electric theory is
still asymptotically free, whereas the magnetic theory is IR free. In this case, the
magnetic theory doesn’t flow to its IRFP but instead will flow to its trivial fixed
point g = y = 0. This is a free theory of massless quarks, gauge bosons, baryons,
mesons and their superpartners. Because it is IR free, it is comes with a UV cut—off
— its Landau pole.

All of the tests of duality in the conformal window are valid in the magnetic
free phase. The critical point here is that whilst we can make the electric theory
flow to a strongly coupled SCFT at its IRFP, the magnetic theory in this phase
will always undergo a period of flow that is weakly coupled until approaching a free
SCF'T. Non—perturbative effects arising due to strong coupling in the electric theory
can be done in a perturbative manner in the weakly coupled magnetic theory.

The scale matching condition in eq. 2.3.306 is now significant. As the electric
theory becomes stronger, the magnetic theory becomes weaker. This is analogous of
the g — é of abelian electric-magnetic duality, and is the reason why the theories

in Seiberg duality acquire their names.

Mapping soft terms

Even within the context of SUSY dualities it is possible to make contact with re-
ality [83,84] by deforming the duality with SUSY breaking operators that can be
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mapped across the strong dynamics [85-87]. There are many ways of mapping soft
terms across dualities [85-96]. The approach we consider here is to construct the
dual theories in terms of couplings that are promoted to superfields and allow their
auxiliary components to aquire VEVs parameterising the SUSY breaking [95-99].
One then constructs a set of RG invariants for each theory and, since the theories
produce the same physics in the IR we can match the RG invariants there, and
indeed anywhere. The matching of these RG invariants then gives relationships be-
tween the soft terms of each theory. Consider electric SQCD at a renormalisation

scale

Liotar(p) = L () + Lsyn (), (2.3.307)
L) = [ @0]20Q'"Q+ Q¢ Q)] (2.3.308)
Loym(p) = B / 4?0 S () Wee Wg] +he (2.3.309)

where the Z and S have superfield expansions

Z(n) = Z(n) {1~ 6% Bo(u) +he] — 06 [md () — [Bo(wP]} . (23310)

1 . Oym o My(11) o Mi(p)
S = — — 4+ 0% — =s(u) +60° = ,
(W 292 1672 9% () () 9% ()

(2.3.311)

2,..
Q
terms, and M, is the Majorana gaugino mass. Here, s(u) is related to our holomor-

where sz and mz are the squark scalar mass squared, Bg and B are the squark B
phic gauge coupling 7(u) by 7(p) = 8 mi s(p), and S(p) is related to the holomorphic
RG invariant A

A= e 1675w/ (2.3.312)

which is now also a ySF. This theory has an axial symmetry under which

Q— Qe™, Q

X+XxT) z

Z el Ae2XNi/b A (2.3.313)

Y

where the rotation parameter X is a xSF. Physical quantities have to be U(1) , in-

variant and RG invariant. The only such object that can be formed from parameters
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in the theory is

= AP Z2Nib A (2.3.314)
which has the #? component
1 162 M
/d29 log (—) - === (2.3.315)
7 g

The quantities above are RG invariants by construction, and so can be evaluated at

any RG scale. In an asymptotically free theory, this is most conveniently the UV

2
/d29 log <£> _ 1o M (2.3.316)

I b 9%

where

M M
7 = Jim. g—;. (2.3.317)

In the dual theory there are the wave function renormalisations of the magnetic

quarks Z, a new holomorphic scale

A

A = pe 67 Sw/b (2.3.318)

satisfying the scale matching condition 2.3.306. Because physical quantities are

U(1) , invariant and RG invariant, the magnetic invariant
= A Z22Nilb (2.3.319)
must match the elecric one

[=] = 2'=2" (2.3.320)

The dual holomorphic coupling S (1) has the expansion

=3(p) + 6 ===, (2.3.321)

Consequently the 6 component of the RG and U(1) , invariant 2.3.319 is

I 16 w2 Mj
/d29 log (—) _ 10m My (2.3.322)
1

b g?
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Bosons  Fermions | Generations | SU(3)c SU(2);, U(1)y
H, | (HpH) (H H) |1 o
o0 =
H, | (H).H) (HyH) | 1 S
q | (ug,d;)  (ug.dp) 3 O n %
14 (v,e;) (v,e;) 3 1 O -1
0 ih, 1 = uh 3 0 1 —2
a | d,  d=dj 3 0 1 1
3 &l e =ech 3 1 1 1
Table 2.10: MSSM xSF field content.
and in an IR free theory is most conveniently evaluated in the IR
I\ 16x*M
/d29 log [ =) = 222 (2.3.323)
H b 9o
where —
M M
— = lim 2. (2.3.324)

Now because the RG invariants are matched, we find the mapping of the gaugino
masses across Seiberg duality in the holomorphic basis M /(bgd) = M/(bgZ) and

after shifting to the canonical basis we have

3N, —2N
M=-2"c"2 )y

2.3.32
SN, (2.3.325)

Similarly one can find a mapping for the soft scalar masses across the duality.

2.3.9 The Minimal Supersymmetric Standard Model

Now we turn to the MSSM. This is a SUSY QFT constructed by taking the field
content of the SM in table 2.2 and assigning them to the bosonic and fermionic com-
ponents of a ySF. Due to the holomorphy of the superpotential and the cancellation
of the Witten anomaly [100] the MSSM has two Higgs SU(2);, doublets — one for
the up-type sector and one for the down-type sector. Consequently, the Higgs sector
of the MSSM is a particular example of a Two Higgs-Doublet Model (2HDM). The
XSF content of the MSSM is given in table 2.10. The MSSM has a superpotential
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WMSSM — o H g —yaHy - qd —y.Hy - e+ pH, -Hy, (2.3.326)
where we have assumed that R parity
Pp = (—)B-DF2s (2.3.327)
is preserved. R parity has the actions on the field content 2.10

H,), (2.3.328)
Pr(q,¢,1,d,e) = —(q,0,1,d,q) (2.3.329)

and forbids the potentially dangerous holomorphic gauge invariants

1 .. . _ .
WARSY = S T 60,8 + N9 € gy + i (1, (2.3.330)

1 .. — —
PWASSM 5 XNkud,d, (2.3.331)

that lead to rapid proton decay through e.g. an S—channel strange anti squark. The
presence of R parity also means that the Lightest Supersymmetric Particle (LSP)
is a dark matter candidate. The superpotential 2.3.326 is supplemented by the
standard soft terms

1 ~a ~a o st =S

M = (M3g 5+ My W W' + M, BB +h.c.>
+ (auﬁq -H, — agdq- H,—acel- Hd+h.c.)
+myglal* + mg[t]* + mgld|* + mg|¢]* + mZ[e|*

+miy [H 2 +mf [Hy* + (b, H, - H, +hec) (2.3.332)

that are anticipated to be generated by the mechanisms discussed in Section 2.3.7.

After EWSB

H — L (vu + ¢u+ioy), H) — L (va + ¢a +i0a) (2.3.333)

V2 V2
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where for the vacuum solution to be a minimum of the scalar potential?®

2
my

|ul? +miy = by cot(B) + 5 C26: (2.3.334)
2 2 m%
and
=2 2 =02 402 & (246 GeV)? (2.3.336)

Vq
there is mixing amongst the gauge eigenstates to form the mass eigenstates of the

theory. There are the CP even neutral scalars in the basis (¢, ¢q)

) |l +m¥ + —g%;gg (302 —v?) —b, — —g%j;g% VyUq
Mg = ' 93 +95 2 2 9i+93 2 2 (2.3.337)
b By g, o2 (303 02)

where the gauge boson masses are

gi + 9307 my = g3t (2.3.338)

-

In the vacuum 2.3.335, the CP even neutral scalar mass matrix 2.3.337 becomes

¢ e . .
2 —2(m, +my)easg  mi, +my — (mh, —mp)cap

where m?% = % = 2|u[*+mf +mi is the CP odd scalar mass. The eigenvalues

of 2.3.339 are

1
m}%,H =3 (mio +mZ F \/mjo +m3 — 2m?40 m2 C4B> , (2.3.340)

and the smallest mass eigenvalue is maximised in the decoupling limit m%o — 00

yielding the famous tree level Higgs mass upper bound in the MSSM

my < myg cop = (91.2GeV) cap (2.3.341)

26We use cp = cos(f), sy = sin(f) and ty = tan(f) throughout.
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clearly in conflict with the mass of the Higgs boson my = 125.7 & 0.4 GeV observed
by ATLAS and CMS [11,101,102]. As discussed in 2.3.69, scalar mass squareds are
sensitive to the amount of SUSY breaking, and in the MSSM at one loop the Higgs

mass is most sensitive to the non-cancellation between the top quark and squarks

3 m¢ my my X2 X2
2 ~mit, 4+ —— |1 L2 ¢ 1]—-—t 2.3.342
M= Gt 5T log ( m? i mg Mg, 12m; my, ( )

where

X = (au)s — p cot(B) (2.3.343)

is the stop mixing parameter. It is therefore possible for a radiatively corrected
Higgs mass to agree with the experimental observation, however, in minimal SUSY
models this is typically accompanied with a degree of fine tuning known as the little
hierarchy problem. The neutral gauginos and Higgsinos mix to form neutralinos

~ ~0 ~0 ~0
with a mass matrix mgo in the basis (B,W ,H, H,)

M, 0 —Zv, Zug
0 My Loy, —Log
Mmyo = 2 2 (2.3.344)
@y, @y, 0 _
2 Vu 5l H
932 Va —‘%1 Vq — K 0

and the charged gauginos bosons Higgsinos mix to form charginos with a mass

matrix mg+ in the basis (W_, ﬁ;), (WJF, ﬁ:)

MQ 22 Uy

%Ud 1%

(2.3.345)

mgi =

If Minimal Flavour Violation (MFV) is satisfied, the squark and slepton mass
matrices are block diagonal within each generation. Top squarks mix to form a

lighter ?1 and heavier ?2 top squark with a mass squared matrix mtg in the basis

~t ~t ~ ~
(tL7 tR)? (tL7 tR)

m2)s +m? + (52 — 1) cysm? X
m2 = (mq)s +m U(u3 b~ 3) 20} , f ; , |- (2:3.346)
NG X, (m)s +mi + £59,,Ca My
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MSUGRA/CMSSM: tan(f) = 30, A0 =-2my, u>0 Status: ICHEP 2014
1000 L LI LS S B | T T T T L — LI LI
s L L I I I [ ]
8 Y VT 95% CL limits. ogosy not included. -
= 500 CLsP ATLAS \Preliminary = | -- Epected g epion, 26 jets .
= — Ldt=201 207 ™ f5=8Tev — arxiv: 1405.7875 —]
E L I | - - Expected g janton, 7-10 jets _l
L | — gbserve; arXiv: 1308.1841 ]
= \ -~ Expected g1 |epton, 3 b-jets ]
800 — S | — Obsenved . i07 ofon ) —
C =l -~ Expected 9 janton + jets + MET m
L \ | me=Observed AT AS.CONF-2013-062 ]
- \\ \ == Bxpected 3 5 taus + 0-1 lept. + jets + MET —|
700 — ‘.\ — Obse"’es arXiv: 1407.0603 —]
C Expected  555/3 leptons, 0 - = 3 b-jets ]
L E Observed  ryiv: 1404 gsoo ! -]
600 — —]
500 [— =]
400 —
300 —
1
0 1000 2000 3000 4000 5000 6000
m, [GeV]

Figure 2.12: 95% CL Exclusion limits for 8 TeV analyses in the (mq, M, /) plane in the
CMSSM with tg = 30, ag = —2my, sign(u) > 0. Taken from [6].

with analogous expressions for the remaining squarks and the sleptons.

2.3.10 Naturalness in trouble

Although the observation of a SM-like Higgs boson puts stringent constraints on
SUSY breaking [103,104], limiting the discussion to direct searches for superpartners

tells a similar story. Popular ways of interpreting limits on SUSY particles are

e Top—down: Construct a UV completion of the MSSM (or its extensions)
that give relations at a high scale for the parameters in the soft lagrangian in
terms of those of the UV model. Solving the RGEs for a given point in the
parameter space of the UV model fixes the low lying spectrum and parameters,
and consequently the number of events of a particular kind one expects to see.
On the UV parameter space, one can then draw up an exclusion for the model

at a certain Confidence Level (CL),

e Bottom—up: Decide that certain subset of the SUSY particles are responsible
for the majority of a particular signature of interest. Decouple the remaining

SUSY particles and taking the limits of relevant branching ratios to 100 %
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gives a simplified model [105]. The number of events can then be calculated

as a function of the light sparticle masses.

e Brute—force: Although the 105 dimensional parameter space of the MSSM

is too large to reasonably study, if we assume:

1. CP conservation,
2. MFV at the EW scale,
3. First and second generation sfermion masses are degenerate,

4. Negligible Yukawa couplings or a terms for the first and second genera-

tions,

then we end up with the 19/20 dimensional parameter space of the Phenomeno-
logical Mimimal Supersymmetric Standard Model (pMSSM) [106], where the
20 dimensional parameter space has an additional parameter for the gravitino
mass. One can then analyse this parameter space without any RG evolution

in the same way as the top—down approach.

During Run I of the LHC, SUSY particles were not observed directly. Using the
simplified model approach, limits have been put on the stop masses and gluino
masses (see figure 2.13) that, except for a few isolated strips in the plane, for a light
Lightest Ordinary Supersymmetric Particle (LOSP) mgo = 0 (mgo < 400 GeV)
imply mz 2 640 GeV [107,108] (mgz 2 1.34 TeV [109]). The situation is similar
if we consider a simple UV model like the Constrained Minimal Supersymmetric

Standard Model (CMSSM) in figure 2.12. We can use the fine tuning estimate [110]

m2

H
A>2—- 2.3.347
>2 (23.347)

to see that if these squark masses are generated at the GUT scale, this results in
A 2100 at the EW scale, i.e. fine-tuning at the 1% level (at least!).

It will be useful to also note the bounds from Large Electron Positron Collider
(LEP) (see table 2.11) on the masses neutralinos, sneutrinos, charginos and sleptons
for later in Chapter 4. Solutions accounting for the non-observation of SUSY are
also available: compressed spectra [116-118] softens jet activity, R Parity Viola-

tion (K) reduces the about of Missing Transverse Energy (E7) [119] and Flavoured
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Sparticle Lower Mass Limit at 95 % CL (GeV) | Reference
Neutralino (stable) 45.5 [11]
Neutralino (unstable) 96.8 [111,112]

Sneutrino 41 [11]
Chargino 103.5 [113,114]
Sleptons 100.2 [115]

Table 2.11: The strongest most model independent non-hadron collider limits on LOSP
and NLSP masses. The lightest neutralino X! is assumed to be bino-like, and allowed to
decay to the gravitino G in GMSB, emitting a photon.

Gauge Mediation (FGM) [120,121] can break the squark mass degeneracy, weaken-
ing the reduced limits at current experiments. Combining these mechanisms with
models that generate natural spectra can give a plausible explanation of SUSY non-
observation and the Higgs mass. We will see in Section 3.5 of the next chapter that

Dirac gauginos provide a different approach to this problem.
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Vs =7 TeV. Taken from [6].
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3
Dirac gauginos

It does not do to leave a live dragon out of your calculations, if you live

near him.

— J. R. R. Tolkien, The Hobbit

3.1 Introduction

So far we have only introduced the MSSM as a possible model of reality with the
caveat that superpartners are decoupled by some SUSY breaking mechanism in an
appropriate way. The MSSM is far from the only SUSY model that has a chance
of describing our world. For the remainder of this thesis, our eyes will turn to a
particular alternative: that all (or a subset) of the gauginos are (pseudo—)Dirac
particles [122]. Dirac gauginos have been studied in a wide range of scenarios [1,2,
7,40-44,72,122-136,136-184] and have numerous advantages over their Majorana

counterparts:*

e They can preserve the U(1), symmetry, allowing for the simpler SUSY break-

ing models using the NS theorem discussed in Section 2.3.7,

e Key diagrams involved in sparticle production at collider experiments vanish,
alleviating the bounds form direct searches at colliders [1,7,159,169,178]. This

is known as supersafeness and is discussed in Section 3.4,

Tt was initially thought that preserved U(1), symmetry could significantly relax flavour con-
straints [141], however, it has been shown that this is no longer valid beyond the mass mass
insertion approximation [176].
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e They have novel renormalisation properties known as supersoft behaviour,
making them more natural [1,72,127,129,155,167]. This is discussed in Sec-
tion 3.5. Due to this mechanism it is possible for the spectrum to lie on the
wrong side of the squark gluino plane, where squarks are lighter than gluinos.

This is not typical in UV completions of the MSSM [185],

e Additional F terms can raise the SM-like Higgs mass is at tree level to its

experimental value. This is investigated in in Section 3.6.4.
There are some problems with models of Dirac gauginos however:

e Tachyonic states easily arise in these theories and is discussed in Section 3.6.6,

e The VEVs of additional SU(2);, states contribute to custodial symmetry break-
ing, causing additional deviations of the p parameter from 1. This is discussed

in Section 3.6.5,

e Integrating out the additional matter content sets the SM D terms to zero in
the absence of a superpotential, and in the presence of a superpotential could

cause an unstable vacuum. This is discussed in Section 3.6.7.

In addition to investigating the pros and cons of Dirac gauginos, the crucial dif-
ferences between Majorana and Dirac particles are investigated in Section 3.2 and
the minimum requirements for a model Dirac gauginos are outlined in Section 3.3.

Other notable features of Dirac gauginos are:

e In order to evade limits from XENON100, Dirac neutralinos must be bino—like,
and we must have either heavy squarks mz 2 2 TeV or mgo < 20 to 380 GeV.
Dirac bino-like neutralinos with masses mgo ~ 10 to 380 GeV annihilate
through slepton exchange to generate the correct relic abundance without

requiring co—annihilation effects or near-resonant annihilation [174],

e In the case of a pseudo-Dirac bino LOSP, the process ]§2 — ff ]§1 has a
decay length L o< (Am)~® where Am is the mass splitting between the quasi—
degenerate Majorana binos ]§1 and ]§2. A collider signal for a pseudo—Dirac

bino would then be a displaced vertex f f vertex and K [153],

e The prediction of a GUT is naively lost, but can be recovered by accompa-

nying the Extended Superpartners (ESPs) with bachelor states left over from
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the embedding of ESPs into a complete GUT representation at the higher
scale. The two main possibilities here are SU(5) (considered in [148,180]) and
[SU(3)]? (considered in [129,180]). It was found in [180] that in the SU(5)
case, the gauge couplings actually diverge at two—loops before the unification

scale, but the [SU(3)]? is possible with mgur &~ (1.8 +0.4) x 1017 GeV,

e Sgluon production [186] can be a dominant process at the LHC. Their masses

need to be mg, 2 1 TeV to avoid exclusion [145].

3.2 Dirac versus Majorana particles

3.2.1 Continuous symmetries

A neutral anti-commuting spin % field 9, () that transforms under the (%, 0) rep-
resentation of the Lorentz group with mass M describes a Majorana fermion. The

associated Lagrangian is

M
EMajorana = Z¢T5u 8,u 1/} - (7 77b ¢ + hC) (321)
and on—shell, ¢ satisfies
i (61 0y 1h)Y = M, (3.2.2)
Now consider a set of fermions g@z i=1,...,N and a mass matrix M%¥
s . M9 ..

where M% is a complex symmetric matrix. In the limit M% — 0 there is a U(N)

flavour symmetry

i — U 4y (3.2.4)

where U is a unitary matrix. In the presence of M, the U(N) is still a symmetry
providing M transforms?

MY — U Uy MM (3.2.5)

2L.e. M is a spurion of the U(NN) symmetry.
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where

U= (U = U, UFUNS =6l (3.2.6)
We can now move to a new basis
b = U oy (3.2.7)
where we choose U to diagonalise M
MY UFU = M, 6™, (no summation over k). (3.2.8)

The resulting lagrangian is

_ M,
There are three cases to comment on:

o If a M; # 0 is not degenerate with another M; the corresponding field v

describes a neutral Majorana fermion as described above,
e If a M; = 0 the corresponding field 1); is a massless Weyl fermion,

e If two of the M;’s are degenerate, say M; = M, # 0 then the Lagrangian 3.2.9

has an O(2) flavour symmetry
i =07, > 0F0F =6y, ijk=12 (3.2.10)

Making a change of basis

sl

(¢1 + i),

5~

— (wl — i) (3.2.11)

the Lagrangian 3.2.9 involving only ¢ = 1,2 and setting M; = My, = M
becomes

L=ix'e"d,x+in'd"d,n— M (xn+hc). (3.2.12)

In this basis the O(2) symmetry manifests itself as a U(1) symmetry under
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which x and 7 have opposite charges ¢ and —q

x — €%y, n—e 1%y, (3.2.13)

On-shell the fields x and 7 satisfy
i ("0, x)* = Mn',  i(5"0,n)* =M ™ (3.2.14)

and together they constitute a singe Dirac fermion. Given a set of fermions

transforming in the (%, 0) representation of the Lorentz group, the question
about whether a particle is Majorana or Dirac is determined by the symmetries
of the Lagrangian. If there is no continuous symmetry of the Lagrangian, all
massive fermions are Majorana. If there is a continuous symmetry group G,
then massive fermions in real representations of G' are Majorana® and massive
fermions in complex representations of G are Dirac. Massless fermions are

simply Weyl fermions and aren’t classed as Majorana or Dirac.

3.2.2 Propagators

In the ie prescription, there are four propagators! for a Majorana particle v, ()

with mass M [187]°

O () ) HOher = 250 — g — i, (3210

OT (0 () ) HOhrr = 7 = o —— i, (3207
o

OT (ali) D) Oher = 5 = 07— e, (329
: M 5%,

(OIT{e () &} (1)} 0)er = ﬁ = Y ——— i (3.2.19)

3An example of this would be the gluinos of the MSSM with respect SU(3)c only.

4We do not write the +ie in the denominator of the propagators but it is there implicitly. We
take momentum p to flow from left to right in all propagators presented.

5The Fourier transform f(p) = f(x)pr for a function f(z) is defined

~ . 4 ~ .
f=[deimer @)= [ G fwet (3:2.15)
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whereas for a Dirac particle [y, (), n'%(x)] with mass M there are a different set of

four independant propegators

iohp
(OIT (@) X () HOer = 7240 =y ——— X, (3.2.20)
o (o ia-uadp o 3
OIT{x* (@) X" W)}O0)pr = 4 = X* —— ¢, (3.2.21)
p?—M
i M 6,°
(01T {xa(z) 7’ (y)}O)rr = o i 7’ ——— Xa , (3.2.22)
. i M 5%, |
(OIT{x™(2) n},(y) }0)rr = pz——Mi o R (3.2.23)

where the remaining four are found by performing the swap x <+ n under which the

propagators are invariant, i.e.

(OIT {11a(2) 0 () }0)er = (01T {xa(x) Xx5(4)}0)rr (3.2.24)

and so on. The main differences between Majorana and Dirac fermions can then be

summarised as follows:

e A massive fermion is necessarily Dirac if it transforms in a complex represen-
tation of a continuous symmetry group G. Examples of this are the U(1)gy,
charged fermions of the SM — the quarks and charged leptons. It is currently
unknown if neutrinos are Majorana or Dirac; if there is a non-anomalous U(1);
symmetry under which they are charged (which in the current version of the

SM is not the case) then they will be Dirac. Otherwise they will be Majorana.

e Dirac fermions require 2 X two-component spinors: a left handed component
and a right handed component, in the same representation of all continuous
symmetry groups G (or equivalently, two left handed degrees of freedom in
conjugate representations of the continuous symmetry groups GG). Majorana

fermions only require one two-component spinor.

e In the Dirac case, the chirality—flipping propagator exchanges its left and right
handed components whereas the Majorana case it exchanges it only exchanges
the left handed component. As will become important, this means that cer-
tain diagrams involving only couplings to the left component can become sup-

pressed or absent in the Dirac case but present in the Majorana case. A
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well-known example of this is neutrino-less double beta decay [188,189].

3.3 Can gauginos be Dirac?

3.3.1 Requirements

Considering the points made in Section 3.2, one can then ask if gauginos can be

Dirac particles. In the MSSM this is clearly not possible for two reasons:

e There is no right-handed component of the gaugino®; each gaugino of a SM
gauge group is the only fermion that is in the Ad representation of that gauge

group in the SM,

e The left-handed gaugino in the MSSM does not transform in the complex
representation of any continuous symmetry group G, so if it does acquire a

mass, it will be Majorana.

The above two points need addressing if a model with Dirac gauginos is to be
constructed, although the second point can be relaxed slightly if we only want Dirac-
like behaviour but are happy with pseudo-Dirac particles, i.e. two Majorana states

that are nearly degenerate in mass.

3.3.2 Right handed degree of freedom
For a given gaugino A;, = Ax, in the Ad representation of a gauge group Gy (in
the WZ gauge)
) 02 L om
Vi = 00" 0ux,+ [0°0Ax +he] + 5 0°0°Dy. (3.3.25)
Given the irreducible representations of SUSY discussed in Section 2.3.3, there are
three possibilities at first glance:

e We can increase the gauge group Gx — Gx X Gy introducing a second VSF
Vy into the theory. Unfortunately, the vector fields Vx and Vjy transform

differently under Gx x Gy, even if Gx and Gy are governed by the same

5We conventionally identify the gauginos of the MSSM with the left-handed component of a
Dirac gaugino.
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group. This means in the high energy theory we cannot write down a Dirac
mass is it would not be gauge invariant. One could then ask if by Higgsing
the product gauge group to its diagonal subgroup G'x X Gy — Ggiagonal With

e.g. the superpotential
Wiiggsing = A (& D — v?) (3.3.26)

where the field ¢ is a singlet and behaves as a Lagrange multiplier, and (®, ®)
are link fields that transform in the bi-fundamental and anti—bi—fundamental
of Gx x Gy. (®,d) cause the desired Higgsing. The type of setups with Gy
identified with the visible sector, (also the case with us as we identify the
MSSM gaugino with the gaugino of Gx) are already studied under the name
gaugino mediation [190-192]. One combination of the gauginos will remain
massless (before SUSY breaking effects are included) and the orthogonal com-
bination gets a mass of order v via the super Higgs mechanism, causing it to
decouple from the spectrum. In the end we are left with effectively one left-
handed degree of freedom which will either be massless or Majorana, ruling
out this approach as a (at least simple) possibility. In addition, supposing we
are able to keep both Ax and Ay in the spectrum, and if the term Ax Ay is

gauge invariant, then all the terms
Ax Ax, Ax Ay, Ay Ay

would be allowed as there is no symmetry that A\x and Ay can be charged
under that prevents or even suppresses the Majorana masses but allows Dirac
masses. Consequently, if it were possible to construct a model with the above
field content, the resulting gauginos would be pseudo-Dirac at best, with two

Majorana states and a mass splitting due to the Dirac mass.

e Keep the gauge group Gy and introduce a spinor xYSF W, in the Ad repre-

sentation of Gx whose § = 0 component is a spin % particle [193-195]
W (y,0) = s + [6.° 0" + (0" 6")o" Fl] 05+ 0% chy 0,0 (3.3.27)

Identifying 1% with the right-handed gaugino would be particularly appealing
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as it is very easy to write down a theory that would lead to the Dirac mass
Lpirac = (mD / d*0 6> voe WS) + h.c. = mp Y A% + h.c.. (3.3.28)

Unfortunately we see this isn’t going to work. The SUSY lagrangian for a
spinor xSF is

1 2
§/d49 (DU, +h.c.)” + K% /d29 \D“\I/a) + h.c} (3.3.29)

is invariant under the transformation
U, = U, +D*D, A, A=Al (3.3.30)

The form of the transformation D?D, A is the same as the gauge field su-
perstrength W, which in its # = 0 component contains a fermion — the left
handed gaugino A. In the unbroken SUSY limit, the would be right handed
gaugino can just be gauged away; ¢ in eq. 3.3.27 is an unphysical degree of

freedom.

e Keep the gauge group Gx and introduce a scalar xSE & in the Ad represen-

tation of Gx with the expansion
(y,0) = ¢ + V200" + 0% F°. (3.3.31)
Identifying ¢¢ with the right-handed gaugino can work, with a Dirac mass
LDirac = (\/imD / a0 0* o° wg> +he =mpy™ A 4+ he +.... (3.3.32)

Thankfully this does work and will be the choice we pursue in the remainder

of the thesis. This operator can be generated by D term SUSY breaking

/o (I)a a
LH.. = (\/§/d28 W) +h.c., W) =(D")0,,  (3.3.33)

where W/, is just the gauge field superstrength of a hidden U(1)" gauge theory
and we see mp = (D')/M. The operator 3.3.32 can also be generated with F
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term SUSY breaking

Liirae = (\/_/d4 (XY qﬂW&) The, (X)) =(Fx)6®> (3.3.34)

where X is a xSF in the hidden sector. We see that mp = (F%)/M?®. In both

cases, M is the mediation scale for SUSY breaking to the visible sector.

3.3.3 R symmetry

Having satisfied the first criteria: the existence of a right-handed gaugino, we need
to engineer the theory so that the left and right handed components transform in
conjugate complex representations of a continuous symmetry group G. At first
glance this would seem impossible because the left-handed gaugino A sits inside a
VSF V that is by definition real 2.3.124. Because the reality definition is only at
the level of superfields, we can get around this problem by having the continuous
symmetry group GG be one that doesn’t commute with SUSY — the R symmetry,
for which in /" = 1 as discussed in Section 2.3.5 is a U(1), symmetry under which
the gaugino has charge Ry = 1.

To satisfy this requirement, the conjugate right-handed gaugino we add must
transform with a charge R, = —1 under the U(1), symmetry, and therefore the
XSF containing the conjugate right-handed gaugino must have a charge Rg = 0.

The Dirac mass in eq. 3.3.32 is then clearly invariant
mph A = mp (e ) (P \) =mp A (3.3.35)
whereas a Majorana gaugino mass M is forbidden

M M . _ M
TN (e N) (e \) # T AN (3.3.36)

3.3.4 Origins from extended supersymmetry

We have now decided that the only reasonable way of introducing additional right—
handed gaugino in order to construct a Dirac gaugino is to introduce a ySF with
U(1), charge Ry = 0. A reasonable question to then ask is ‘ Where does it come

from?’. One of the most natural realisations of Dirac gauginos occurs in N' = 2
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N

W i ~--SU@2), -

AN

Figure 3.1: Diamond representation of an N' = 2 vector multiplet. Together, V# and A
form an N' =1 VSF, and 1 and ¢ form an NV = 1 xySF. The basis is chosen such that
the SUSY generators Qf are the N/ = 1 generators that relate the different components
of the N' = 1 superfields and N' = 2 is the orthogonal combination.

A

¢

theories [134,135,159] and hybrid /' = 2/N = 1 models [129,151]. In both of these
cases, the gauge sector is extended from enjoying N' = 1 SUSY to N = 2 SUSY.
The N = 2 vector multiplet has a decomposition in terms of an N =1 VSF and an
N =1 xSF in the Ad representation. This is most easily seen diagrammatically in
component superfield ‘diamonds’ [196] and is displayed in figure 3.1. Using a naive
N = 2 superspace [52,197,198] parameterised in terms of 6, 6 and their conjugates,
we can write the N' = 2 vector multiplet ¥ as [199-201]

Ty, 0,0) = %y, 0) + 6°W2(y,0) + (auxiliary fields) (3.3.37)

where

Y=yt +ifo" 0 =a2"+i00" 0+ (0 < 0) (3.3.38)

and ®(y,0), and W, (y,0) are N' =1 xSFs. The N' = 2 SYM lagrangian is then

schematically

1
LA52 = (/d29d29 27 e fo) +h.c. (3.3.39)

and a spurious definition of the gauge coupling [86]

1 1 ~
= 5 (142V200mp) 3.3.40
292 2¢? ( +2V200mp ( )
introduces the Dirac mass mp for the gauginos in eq. 3.3.32. Majorana masses as
well as other soft terms can also be introduced with a spurious redefinition of the

gauge coupling.
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3.4 Supersoftness

Theories with Dirac gaugino masses are often referred to as supersoft theories. These
theories are much less UV sensitive than theories with Majorana gauginos as we will

now show. Consider the Dirac mass operator written in the holomorphic basis

\/§m

2 206 W, & (3.4.41)
g

If this term is holomorphic, and therefore protected from renormalisation, then we

must have
mp

Binp = ?Bg- (3.4.42)

If we now switch to the canonical basis for gauge fields and chiral fields
ﬂ%/d% 0 gW,® Z5* = \/émD/d29 0* W, ® (3.4.43)
and so the physical Dirac mass is
mp = Zy* (3.4.44)

and along the RG flow [127,129,167]

de N aZ71/2 ~1/2
o = =gy =0 =+ Za
. Z;l/QmD B 1 aZ@ +Z_1/2 mp 6
B 2 Zy Ot ¢ g
Yo ﬂg
— R 3.4.45
mp (24 2), (3.4.49

where v is the anomalous dimension of ¢ [202]

810g Zq, 1 an>
== —— — 4.4
e ot Zo Of (3.4.46)

Note that this result differs by the one found in [127,167]

5mD =Mmp (’Vi’_l_@) )
9
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because our definitions of the anomalous dimension differ by a factor % such that

our quantum dimensions of chiral operators satisfy

dlog Zp

, 1
dim(O) =1+ =90, Yo = 5

: (3.4.47)

The result 3.4.45 was checked explicitly to two loops using RGEs derived in [72,127]
strongly indicating that the Dirac mass operator 3.4.41 is indeed holomorphic since
it is only receives wave function renormalisations. This is not a proof however, and
an argument using either supergraph techniques [62] or holomorphic arguments as
in [63] would be needed in order to verify this at all orders in perturbation theory.

In any case, for phenomenological purposes, the observation in [72,127] that
eq. 3.4.45 is obeyed up to two loops is strong enough to have striking implications.
Consider a theory with fields ¢; and ®* charged under a gauge group G supplemented

with the supersoft operator for ®¢, which in full is
<\/§ mp / 20 0° 3° W;) +he. =mp (w AS + /20 DO+ h.c.) (3.4.48)

Upon solving the D term equations we find that a further non—standard soft term

is generated beyond the Dirac gaugino mass

@ = Y = Vagmp [RY(9)), (3.4.49)

where R%(¢) is the a' generator of the gauge group G in the representation of the
field ¢. In a U(1) theory this is just the charge of the xSF under the U(1). Here
the ¢’s are the scalar components of other ySFs charged under G and are coupled

to the D term through the standard Kahler potential.
—Logstendard — ¢ 61 D% ¢ 4+ mp ¢ AL + hc.. (3.4.50)

In an anomaly free U(1) gauge theory, the sum of the ¢ term coefficients is propor-

tional to the charges of all xSF's in the theory
ST =V2gmp Y Qer) = 0. (3.4.51)

The quadratic divergences due to the presence of a singlet and the ¢ terms are
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proportional to this at one loop and therefore vanish [203]. The supersoft operator
also creates a shift in the scalar mass squared for ® and its b term There is an RG
invariant relationship between soft terms with and without non-standard soft term

of the form in eq. 3.4.50

my = my + 2mj, by = by s +2m5p, (3.4.52)

(m?)i? = (m3), by = by, (3.4.53)

S

where mg , bas, (m?)¢ and b are the standard soft terms that solve the RGEs

of [204] in the limit £nop-standard _ ()
. . 1 .
_L:E&fttndard = m?hs |(I)|2 + (mf)”z ¢Tz ¢j + 5 (bq,,s (1)2 + béj qbz ¢j —+ hC) . (3454)

Again, it is important to note that the relationships 3.4.52 and 3.4.53 have only
been verified to two loops although it is anticipated that if the supersoft behaviour
is due to the holomorphy of the operator 3.4.41 then the relationships will hold to
all orders.

The RG invariant relationships 3.4.52 and 3.4.53 are precisely supersoftness.
Together they mean that the RGEs of a theory with Dirac gaugino masses induced
by the supersoft operator 3.4.41 can be evolved ignoring the Dirac mass’ and then
we can perform the shifts 3.4.52 and 3.4.53 at any renormalisation scale to get to the
theory with a Dirac gaugino mass. The Dirac gaugino mass must also be evolved
to the scale in question but as already shown, this only receives wave function
renormalisation 3.4.45. The scalar sector sensitivity to a Dirac gaugino mass is
therefore only through the shifts 3.4.52 and 3.4.53 and any finite corrections. This
is why theories with Dirac gauginos can have very large gaugino masses without
worrying (as much) about inducing a large amount of fine tuning.

To get a feeling for why this happens perturbatively, consider the MSSM with a
Dirac gluino (that will be the subject of our discussion in Chapter 4). For this, it is

convenient to decomposing the scalar adjoint ®z into a scalar ¢z and pseudo-scalar

7Of course we can’t ignore the presence of the additional field content which, to one loop affects
the running of gauge couplings and to two loops contributes in many places through its correction
to the gauge boson propagator.
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Jg

1
V2

then the supersoft operator induces the scalar and pseudo—scalar masses

g = — (¢g +iog) (3.4.55)

mig = 4dmiy, mZ_ = 0. (3.4.56)

and only ¢z couples to squarks through the ¢ term
7 ¢l D ) + he. = V2 ¢ 92 ¢ (3.4.57)

The ¢ term allows the scalar diagram

%

T N[ dk 1
_—>—':—~>-\——>- = (\/Ec?k>(\/écz.7)/ (

- 2m)1 K2 (k2 — m2,)

d4k’E
= 4ig2m? Cq/ /
37TDE k2+xm¢~)2
4ig2m3, [CI) 11 2 Ty
_ 29 g (C2] /d:c ——7—10g< d)i)—l—(’)(s)
0 € 47

16 2
2 mg
- =7 + 1+ log(4m) — log e + O(e)

41 g3 m2D§ [C3]]
16 72

where we have used the shorthand [Cd]7 = Cy(r;) 67 with Cy(r) the quadratic casimir

in the representation r under the gauge group G

(T (T2)) = Calr) 81 = [C3]] (3.4.58)

r
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and p is the renormalisation scale. The diagram involving the Dirac gaugino is

q

~ . 4 2

B0\ W [(J;’]Z/(d G
g

2m)t K2 (K2 — mly)

, - [ d*kp 1
:429:? [Cg]z/ (271')4 k:%—l—m%f
g

. i1 1e 1 2 e
digimipg [C3)]

- 16 72

2 Mg
— +v —1—log(4m) + log ( M2g> + O(e)

Summing the real scalar and the Dirac gluino contribution at a common renormal-

isation scale

g q

RN Z 27,’,])2~ Oq.j m2~
el --»-Q—-»— _ % pg [ log [ —52 (3.4.59)

7 § o os

in accord with the expression found in [129]. The supersoft effect can be seen here
where the terms in 1/e cancelled between the diagrams involving the real scalar
gluon (or sgluon) and the Dirac gluino — the 1/¢ terms in a theory regularised
using dimensional regularisation signify a UV divergence. Because they cancel here
at one loop, no terms that depend on the m pg will enter the RGEs of the squark mass
squared at one loop because there is no UV divergence that depends on mpg. This is
an explicit example of ther supersoft effect that we saw in the RG invariant relations
3.4.52 and 3.4.53 but now we understand physically what is happening. The usual
UV sensitivity induced by a gaugino mass is accompanied by a UV sensitivity of

opposite sign and magnitude through the corresponding scalar degrees of freedom.

3.5 Supersafeness

Theories with Dirac gaugino masses (and specifically Dirac gluino masses) have
been referred to as supersafe [7,169,178]. In a proton—proton collider such as the
LHC, strong interactions dominate hard processes including the production of SUSY

particles. In the limit of the gluino becoming Dirac, many of the dominant LO
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diagrams for squark squark production vanish, as we will now show.
In the basis (g, 1z) the most general gluino mass matrix Mz is
Ms  mpg
My=| 0 TR (3.5.60)
Mpg Miﬁg

where Mj is a Majorana gluino mass, mpg is a Dirac gluino mass, and My, is a

Majorana mass for ¢z. g and 1z mix to form mass eigenstates g, and g,

52 o CQg SQE g
gl _395 Ceg 1/J§
where
2 Ay —
4C9§:1+ AM:M3_M1/)§

VAL +4dmi

and the physical eigenstates g, and g, have masses

1 o . 5
Mg g, = 5 (Mg + ng + A%M + 4m%§) .

In the pure Dirac gluino case Mz = My, =0, mpg # 0

1
Coz = S0z — E7
mg g, = +Mpg,
~ ~ 1 ~
Bk =5 (Vg F8)

and in the pure Majorana gluino case My, = mpg =0, M3z # 0

ng = 1, Sgg = 0,
mgl = O, m§2 = Mg,
gl - %7 ng — g

(3.5.61)

(3.5.62)

(3.5.63)

(3.5.64)

(3.5.65)

(3.5.66)

(3.5.67)
(3.5.68)
(3.5.69)

The kinetic term in the MSSM only couples the gluino g but not ¢z to the strongly
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interacting ySFs through the Kahler term
/d“@ Ol (€))7 @; D —V2g5 (6" T $) 8" + hoc. (3.5.70)
= —V2g(R] T"u, +d, T,
—ﬁRTaﬁ—HTaa> &+ h.c., (3.5.71)

where there is an implicit sum over (s)quark generations. We can write the MSSM
gluino in terms of the mass eigenstates

g" = —s6, 81 + ¢, 89

(3.5.72)

then one finds the quark—squark—gluino interactions between the gluino mass eigen-
states with mixing
L3q8

~ a ~a ~ a ~a ~T e ~a ~T e ~a
T :s%uzT uLgl—CQEuET uy gy +sg, d,Td gy —co, dp Td g5
3

— 0, U TO UGS + co, U T UGG — 59, A TGS + g, dp T A &5
+ h.c.. (3.5.73)

If we consider then the possible diagrams for squark—squark production with an
intermediate gluino we have

uf i, uf u,
2 >
Cp2 1 Mg Sp2 1Mz A
> ~ _ 2 'i' g 1 g 2 o7
gl + } g2 =93 C2 uLd <p2 —mél +p2 _m§2> uL, (3574)
h B h B
ub Uy, uf U
uTL uy UTL up
v »
) ; ngiagdpu SGZiUZaPM ta
> i~ e g g &
g + gy =93Cup | — o T | (3.5.75)
\\\ \\ p El p EQ
ul, Up ul, UR

where at each vertex, (s)quark flavour is presered. The kernels of the transition
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amplitudes remain invariant under switching in—out pairs of up—type with down—

type, i.e.
quL u; dTL aL
» »
g, = g 1=1,2 (3.5.76)
\‘\ \\
uE Up u% Up

ignoring the external fermionic states. Now we can see how Dirac gauginos are
supersafe. In the pure Dirac limit, the kernel for u, u,, u, ﬁg and the remaining
combinations with any of the u — d vanishes

Cozimg,  S2img,  (1//2)%i(—mpg) N (1/v/2)? impg

2 2 2 2 2 __\2 2 _ o2
pT—mg  PT g, p* — (—mpg) b7 —Mmpg

=0;  (3.5.77)

the contributions from g, are cancelled by contributions from g,. On the other hand,
the kernel for u, ﬁTL, U, U, and the remaining combinations with any of the u — d
are essentially unaffected by the gluino’s Dirac or Majorana nature. Another way of
understanding this is to consider the theory with a genuinely Dirac particle (rather
than a Dirac particle that is in disguise as two Majorana particles). The chirality
flipping propagator in the case of a Dirac particle given in eq. 3.2.22 exchanges the
left hand degree of freedom for the conjugated right handed degree of freedom. With
a Dirac gluino, this would swap g and 1z. Since 1)z does interact with (s)quarks
then the diagram vanishes. This is the same effect as the absence of neutrino-less
double beta decay in the limit of a Dirac neutrino [188,189].

A final way of understanding this is to consider the MSSM superpotential in eq.
2.3.326. There is an unbroken U(1), symmetry (if we treat the p term as a spurion
of the U(1) 5 symmetry) under which the fields have U(1) charge assignments given
in table 3.1. In the limit of a pure Dirac mass, there is a full U(1) , symmetry which
forbids the effective operators corresponding to u, u,, u, ﬁk and the remaining
combinations with any of the u — d
uTL UTL upu,

A

uTL uTL u;up UE UTL (ewﬁL) (ewﬁL)

A A

” (3.5.78)
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| U()g
H,, H,, P, b5, D5 | 0
g, 0, 1d,d, e 1
Ry, Ry 2

Table 3.1: MRSSM U(1) charge assignments.

but allows the remaining effective operators

ub ul @, T, N uj, up (€01,) (e ,) _ uj, 1y T (3.5.79)

A A A ’

where A is the high scale corresponding to integrating out the gluino(s).
The remaining tree-level diagrams contributing to the production of squarks via

strong interactions are

g uy Uy, ur,
%/ 4/
~ a i hp o-p
* ur, ~ g?2> (T Tb)i] 2 - 22 ) ~ 9?2) Cy 5
p _mﬁL »
A099J\\ \\
g Tt ul i (3.5.80)
g ﬁL g ﬁL
/ 7
’4 2 rab P1P2 // 2 by j
o~ gy [T . 4 ~ g (T ")
% A
\ ~
& uj & i} (3.5.81)

Together with the contributions in eq. 3.5.75, they form the strong LO production
mechanisms for squarks at the LHC. For a reasonable squark mass mg 2 1.5 TeV in
the pure Majorana case these contributions are sub—dominant to those involving the
t channel gluino contribution to squark-squark production (see fig. 3.2). The extent
of the suppression of production cross—section is well characterised by the three

simplified modesl [105] of [7,169] detailed in table 3.2. Although a Dirac gluino
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total cross section, 14 TeV total cross section, 33 TeV
\ MSSMequal SO e MSSMequal
10- “‘\\ MSSM5 4 1001 . T M_SSMS |
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g 4l g | AN
5 5 o RN - j
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1 i) e
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Figure 3.2: LO production cross sections for the simplified models detailed in table 3.2 for
LHC at /s = 14 and 33 TeV. Squark production refers to the sum of allowed combinations
of the first two generations. Total cross section is the sum of the squark production, gluino
pair production and gluino—squark production. Taken from [7].

can reasonably be significantly heavier than its Majorana counterpart due to the
supersoftness discussed in Section 3.4, the focus of these studies was to demonstrate
how Majorana and Dirac gluinos of similar mass have sparticle different production
cross—sections. The results of their study for the LHC at 14 and 33 TeV are shown

in figure 3.2. There are two things to note:

e The squark—squark production is suppressed much more than squark—anti—
squark production in the Dirach simplified model as we expected. At both
14 and 33 TeV this suppression is roughly two orders of magnitude. The

squark—squark production is not exactly zero however. The reason for this is
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Dirach MSSMb MSSMequal
Mg 5 5 == M,j
M; varies varies = M;
Light squarks First two gens. First two gens. First two gens.
BR(§ — q + LSP) 100% 100% 100%
LSP mass 0 0 0

Table 3.2: The simplified models considered in [7]. All masses are in TeV. All other
sparticles are decoupled.

only notational — the papers [7,169] are including processes pp — U, Uy in
the squark—squark production processes, whereas we are considering it to be
a part of squark-anti-squark production (since 1 is the scalar component of

an anti xSF).

e The cross sections for Dirach at the LHC are too small to be seen at the
planned integrated luminosity, but at 33 TeV it is reasonable that squarks and

gluinos in Dirach can be studied.

Interestingly, if one considers pseudo-Dirac particles, the production cross sec-
tion for coloured sparticles at the LHC is even lower than in the Dirac case [178].
Although reintroducing a Majorana gluino mass has been introduced to allow the
chirality flipping squark—squark production that was forbidden in the pure Dirac
case, the strong squark—anti—squark production drops at a faster rate than squark—
squark production increases. The squark—anti—squark production drops because the
gluino that couples the most to the squarks is the one that is mostly the gluino from
the MSSM. Upon diagonalising, this has a mass that is increased by the Majorana

mass, whereas the eigenstate that couples less to the squarks is the lighter one.

3.6 The MSSM with Dirac gauginos

3.6.1 General superpotential and soft terms

We have now discussed what the minimal model building requirements for introduc-
ing Dirac gauginos in a SUSY setup are, and some of their immediate consequences:
supersoftness and supersafeness. Now let us consider extending the MSSM of Sec-

tion 2.3.9 with a Dirac gaugino for each gauge group. We need to add a xSF in
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Bosons Fermions SUB)c SU2), U(1)y
T, T, Vs Ad 1 0
0 + 0 +
Do l( oW \/%W> l< U ﬂwﬁ) 1 Ad 0
w | 2 - &0 2 - 0
vaeg 9 Vaug g
O s s 1 1 0

Table 3.3: Additional xSF field content required for introducing a Dirac gaugino for each
SM gauge group. The generation number for each of the ®’s is 1.

the Ad representation of each of the gauge groups SU(3)c, SU(2)1, and U(1),® that
is also a singlet under the other two gauge groups. This field content is detailed
in table 3.3, and supplements the MSSM field content in table 2.10. & is defined
such that
0 +
oL V20L

S 1 . .
b =T DL = — W ;D =2t (T b ), (3.6.82)
W Y2 \vaen —o W W

so that o1 52

= F P
+_ W W O — 3
(DW = 7 , o5 = - (3.6.83)
The gauge invariant superpotential that we can write for this theory is conveniently
divided into a part that preserves the U(1), symmetry in table 3.1 — the Yukawa

terms Wy, and a part which breaks the U(1), symmetry Wy
W = Wy + Wy (3.6.84)
where

Wyuk:yuHu'qﬁ_ded -qa—yeHd-ﬁé, (3685)
WR:MHu'Hd+)‘]§q)]§Hu'Hd+2/\WHd(DW -H

u

ME K3

2 B z3 2 2
/ﬁ‘/~

+Asw 05 P + Mgz 05 P +

3 P2 (3.6.86)

8The adjoint of a U(1) gauge group just means that the field is a singlet of that gauge group.
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In addition to the superpotential 3.6.84 there are a staggering number of soft terms

[148]

__ pstandard non—standard tadpoles
‘Csoft — Esoft + Esoft + ‘Csoft (3687)
where
standard __ pMSSM adjoint quadtratic adjoint a terms
‘asoft - ‘Csoft + ‘Csoft + ‘Csoft s (3688)
non-standard __ ,Dirac gaugino c terms

‘Csoft - ‘Csoft + ‘Csoft (3689)

and finally

1 o P -~

_ﬁi\ngtSM = B (MSgan‘FMQW W +M; BB +h.c.>
+ (awug-H, —aqgdq-H; —a.el-H,+h.c.)
+m?q* +mg [u]? +m3 | + mg |[¢]* + m? [e]?

+mi [H, [+ mi [Hyl* + (b, H, - Hy + h.c), (3.6.90)

adjoint quadratic
—Logemt At — 2 1P | + 5 bg (9% + h.c.) + 2m2 | DX |

+ by (% +hec) +2m2 [Bz]° 4 by (P2 + h.c.), (3.6.91)

L B HH, 20 Hy O H, L ag @
+ agy Pg P + ag; Pg PF + %a ®? +h.c., (3.6.92)
D gwgino _ 08 4 o WO 4+ mys By + e, (3.6.93)

g = 0 [gf () g+ T () T+ ()]
+ (I)%V [qT (c%vq) q+ 0 (c%w) (+H (ciVVHu) H + H (C%Hd) H,
+ @ [, lal® + g, [T + g [d12 + 5, 617
+ e [0 + ey, [, 2 + ey, [0, ?), (3.6.94)

adpoles
— LIPS = = P (3.6.95)

soft

where we have only included the ¢ terms that would be induced by the supersoft
operator 3.4.41. Where indices haven not been made explicit, there is an implicit
trace

1 . .
2 2 _ 7 7
P2 = tr (%) = 5 Ol 0. (3.6.96)
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3.6.2 Electroweakino masses

Neutralinos

~ —~ ~0 ~0
In the basis (B, vy, W,¢g, H,,Hy) the neutralino mass matrix is

~ g1 Vu __91%Yg
M Mg 0 0 @ ownm o
As Vg As Uy
B B
mpa ME + \/§I€1§ Uy 0 0 7 o
0 0 M, mpw _ 922vu 922vd
mso = A~ v - (3697)
X w Vd w Vu
0 0 mpw Myt
g1 Uy _ Ag vd g2 Vu )\VWV vd 0 _,eff
2 5 2 /2 K
_91v4 _ Ap Vu g2vd _ AW Vu _,eff 0
2 72 2 V2 H

Charginos

In the basis (W+, ¢%, ﬁj)/(W_, Ve H,) the chargino mass matrix is

92 Uy 2 vy
My mpy ——5— Nl
mgs = | 2 M A U (3.6.98)
EH Agu bt 5050 — Ay o)

3.6.3 Higgs sector Electroweak symmetry breaking

In this model after EWSB, there are four CP even scalar fields that can acquire

VEVs
HO o L (v + ¢u +i0y), HY — 1 (va + da +ica), (3.6.99)
tV2 V2

1 1
@%ﬁ(vg-i-qﬁfg-i-ia]g), @%%E@W%—(bw—i—ia;ﬁ), (3.6.100)

e

where ¢g and gb%v are the sbino and swino, and oy and a(\% as the pseudo—sbino
and pseudo—swino. The particles ¢, ¢q, ¢z and ¢ then mix to form the CP even
neutral Higgs bosons of the theory. The SUSY scalar potential is written as in eq.
2.3.161

1
V= Z | Fp,)? + 3 Z D2, (3.6.101)
i J
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where the sum over j sums over the gauge groups U(1), and SU(2);, and

o, — (Hj, H), HY, Hy, &1, &, 2%, @g), (3.6.102)

1

For this purpose it is useful to explicitly write the SU(2);, decompositions

H,-H, =HH; — H’HY, (3.6.103)
T v, (3.6.104)
2 \V2o, Hf — ®% H)

1
H, - O H, = 5 (V2 o of — 1 0% H)

~ H 0% HY — V2H; 0 HY), (3.6.105)
0 )2 + H— 0 + _ H-
oo L[ @rr2egeg V2L (<1>W @W) 56,100
wooq | 0 + _ - 0 )2 + H— ’ e
V2L (‘bw cbw> (®%)% + 2 0% &=
1
tr(P%) = 3 (P%)* + 2L 0. (3.6.107)
For looking at the soft terms, the decompositions
0 |2 + |2 0 -\t _ T 0 \T
o] 802+ 2|9 V2 [0 (@) - a% (@%)
w 4 0 \tdH— _ (H+ \t 0} 0 |2 -2 ’
V2 [ (9% )10 — (L)TY | 0% % + 2|0 |
1
t(|2% ) = 5 <|‘1’%v|2 +@L? + |<1>%|2) (3.6.108)

are useful. The Higgs part of the superpotential is then decomposed as

WS = — (4 g B+ A 0% ) HOHG + (1 + g &5 — Ay 0% ) HY H;
_ _ Mg KE
+ V2 (HI @ HY — Hy OF HY) + Ly 0 + —= 0% + - @}
1 .
+ (MW +gw @ﬁ) [5 (B%)? + B ‘I’w] . (3.6.109)
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with the corresponding F terms

= (5 A 0 = Ay 8% ) Hy + VIAG HY 05
Ry = =1+ A5 @5 + A 0 ) H - V2Ag Hy @,
—Fly = =11+ 25 @5 + A 0% ) H + V2 0 HY,
T 0 0
B = (i A @ = Ay 8% ) HY — VEAG oF HY,

T — 170 -
—Fl = Vg Hy ) + (Mg + Ay @5 ) O

T - 0 170 0
~Fly =Ny (H§ H; +Hqu> + (Mw + g cbg) P,

—Fl = V2AGHY Y + (Mg + A 05 ) O

—Fl, = Ag (M Hy = HOHY) + Ly + My @ + i @3

1 _
+ )‘EW [§ (@%)2 + @% CDW] .

(3.6.110)
(3.6.111)
(3.6.112)
(3.6.113)
(3.6.114)
(3.6.115)

(3.6.116)

(3.6.117)

Assuming the Dirac gaugino masses are generated by the supersoft operator, the D

term for U(1)y appears in the lagrangian

1 1

LhEm = 5 D} + 500 Dy (JHEP? + [HOJ? — [HY 2 — |H ?)

2 2
-+ \/§ng Dy <(I)]§ —+ hC) ,

(3.6.118)

where the first line is the same as in the MSSM and the second line is from the

supersoft operator. Similarly for SU(2);,

1

erm ) ) 1 7 % I 7
LRI = 5 DL DL+ 592 D} (HLT H, +H T'H, + &L T @W)

2
+ V2 Dy, (@ +hee.).

The D terms for U(1),, and SU(2);, are then

(3.6.119)

1
—Dy = S g (P + [HO2 = [HOP — [H; [2) + V2mps (95 +he), (36.120)

2

=D = 5o (HTH, + HYTH, + 0L T0 ) + VImg (0 +he) . (36.121)
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Now we finally have enough to write down the Higgs potential. The F term part of
the scalar potential is easily found by summing the modulus squared of the terms

3.6.110 to 3.6.117. The U(1)y, D term contribution to the scalar potential is

1 171 _
Vow, =5 D¥ = 5[5 90 (7P + IHOJ2 - H3 — |17 ?)
2
+V2mps (05 +he) | (3.6.122)

and the SU(2)r, D term contribution to the scalar potential can be calculated by
SU(2)r, decomposing the D term

1 . )
tr(D%):§DZLD"L: (DY)* + D} Dy (3.6.123)

DN | —

where
1 DY V2Df

D,=D.T == (3.6.124)
©oo2\vap; -y

as was done for @ and ;. The solutions for the D terms are then

D = g0 {(HO) H + () H + V3 [(05)7 0% + (@f) 0% ]}
+2m [(I)% + %)*} , (3.6.125)

Dy = L g [P 0P 4 O P 42 (05 - o5 )]
+V2mpw [@"W + h.c.} , (3.6.126)

Dy = go ()T + (1) Hy + V2 [(@%) 05 + (@%) 0]}
+2m [(I)VLV + (@%)T} . (3.6.127)
The SU(2);, D term contribution to the scalar potential then follows from substi-

tuting eqs. 3.6.125, 3.6.126 and 3.6.127 into eq. 3.6.123. The decomposed Higgs
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soft terms are

Ve = mi (I + [HO2) + mdy, (JHGP + [H; ) + m3 |05

_ by g
+mZ (|<1>%6|2 + 0L+ |<I>W|2> + {tﬁ g + 7@% + ?cbg

— (bt a @ + agy % ) HOHG + (b, + ag 5 — ay ®% ) HY Hy
05— - 0
+V2ag (H o5 HY — Hy 0f HY)

+ (b + 45w @) [% (0%)* + o o | + h.c}. (3.6.128)

Summing all of these terms gives the total Higgs scalar potential

V=> |Fe,|” + Vuq, + Veven + V. (3.6.129)

We can check the existence of a vacuum that preserves U(1) As is done in the

em”

MSSM, we can use the SU(2);, symmetry to set (H) = 0. In this vacuum we should

have

ov. v oV AV
= = = =0 (3.6.130)
+ T
OH; ~ OH; 0%L 0%

which has a solution

(Hy) = (@) = (b ) = 0. (3.6.131)

For analysing EWSB it is therefore at least consistent to set the VEVs of the charged
scalar fields to zero. Now we can move to the vacuum with broken electroweak
symmetry by applying the shifts 3.6.99 and 3.6.100, and sitting in the electroweak

preserving vacuum we have (setting Lz = 0 for brevity and taking all couplings real
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for simplicity)

i, o, .
V= i [(vu+¢u) +ou}+ 5 [(vd+¢d) +ad]
A+ )\% . .
=7 [(vu + ¢u)” + 02 [(va + ¢a)” + 03]
mg_ , ms_ , méw , m?,w ,
+— (vg + )" + 5 5t (v + o%) + =0y
2
1 2 2 >‘]§
+§[(Uu+¢u) +Ug+(vd+¢d) +U§] {M2+E [(U]§+¢]§)2+0]2§]

A2
+ TV; [(UW + ¢w )’ + JQW] + A5 AW [(UE + ¢5) (v + o) + o5 UW]

+V2pu [)\g (vg + ¢5) + Ay (v +¢W)]} - [(Uu+¢u) (va + Pa) _Uuad}

Ag Mg + ag Awa-i-aW
x {bu+—\/§ (U§+¢§)+—\/§ (v57 + o)

+%>\1§ K [(vg +05)* —0%} } — [(vu+¢u) 04+ (Vg + ¢a) (;u]

/\EMB—aﬁ Awa—aW

2
"{]“3' 2 H]?;ME
g (s 405+ o]+ = [l + 05)" +03] 05 + 65)
Q g~

+ ﬁ [(Ufé +¢5)" — 30%} (vg + d3)

+ [(vu + ¢u)* + 02 — (va + ¢a)* — 03] [gf mpg (vg + 05) — 9 Mpw (v + dw)

9%‘1'9% 2

+32

where we have defined the mass squareds of the sbino and swino

(v + 6u)? + 0% — (va+ ¢a)? — 03], (3.6.132)

mg_ = mg + Mg +4miz + by, (3.6.133)

mg = mig + Mg +dmig + by (3.6.134)
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and the mass squareds of the pseudo—sbino and pseudo—swino

my_ = m¥ + M2 — b, (3.6.135)

m2w = mi + M% — b (3.6.136)

It’s worth keeping an eye on the terms in the second line of 3.6.132 as they are
going to life the SM-like Higgs mass at tree level like in the Next to Minimal Su-
persymmetric Standard Model (NMSSM). The equations for minimising the scalar

potential are

Lov

0= o v my, + (1) + grmpg vy — g2 vy
m2 A2+ )\2
— 5T cot() — TZ Cop + % v e, (3.6.137)
1 oV .
0= N my |+ (p M2 — gimpg vg + g2 M pw Ui
m2 A2 4+ )\2
N TZ Cop + % v 82, (3.6.138)
1 oV G K
0= o Do = mg,ﬁ + 71}2 (AE —i—/isw) + 7 (3 Mg + ag) vg + k5 V3
2 [ puds A Mz +an M AG UG g1M 50
v B 7BB B325+ BwW'w DB“28 . (3.6.139)
vg | V2 2v/2 2 2
2
Oziﬁ—v:m2 +)\—Wv2—|—v—2 P — M My * 0w S2
UW avw oW 2 UW \/§ 2 \/§
A AT Vs G M
B ;’V E oy 2DW 025], (3.6.140)

where we have defined the effective Higgsino mass 1°" and the effective Higgs b term

eff
bu

1
W=+ (A8 5 + Ay v ) - (3.6.141)
o 1
buﬂ = bﬂ + ﬁ [()‘E Mg + aﬁ) vg + ()‘W MW + aw) Uw] . (3.6.142)

Solving the vacuum minimisation equations is typically done for m¥ , m%{d, m?_ and
u B

mi~ as the equations are linear in these. Unfortunately doing this moves away from
w

UV models that can generate soft terms at some high scale, although numerically
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solving the vacuum equations in terms of the non-linear variables such as the VEVs

is possible (though currently less stable).

3.6.4 The (T)NMSSM effect

From the scalar potential 3.6.132 we find that the Higgs mass matrix in the basis
(¢u7 ¢d7 ¢E7 ng) is

2 2 2 2
muu mdu mf_:;u Wu
2 2 2 2
m m m= ==
du dd
my=| | , 2Bd 2"“ (3.6.143)
Be MBa M3 "B
mgv m2 m2~~ mgv

where
3 A
m?, = m%u +(ueh? ¢ 3 my, 55 + Bl %+ g1 MpE V5 — 92 M Vsis (3.6.144)
Mg, = 55 5 (A — mijo), (3.6.145)
[ Mg My + ag
mg, = |ss (ﬁkgueﬁ +a ng> — 5 (% +Ag kg Ug)] . (3.6.146)
- e »
m, = v |55 (V2AG HT = gy ) % (Ao My + awﬂ , (3.6.147)
_ 3 A
m2, = m%d + (2 ¢ 3 m3 C% + 5 s% — g1 Mpg Vg + G2 M Vs (3.6.148)
[ Ag Mg + ag
mzéd =v |79 <T + )\EHB'Ug) +cs (\/5)\]5#65 - glmD]§>] , (3.6.149)
- 58 g eff
My =Y BV (AW Mg + aw) 3 (ﬁAW 1+ g2 mDW>] : (3.6.150)
VA5
m%]g = mig +2 (3/<LEM]§ + a%) vg + 3&%@% — A\gkgsacs + 5 (3.6.151)
2 v?
MyE = A8 AW 5 (3.6.152)
vi\s
2 2 B
MEw = Moy T 5 (3.6.153)
and
2 2 y,2 2 2 205
A= ()\E + Aw) v — My, Mo = 528 . (36154)
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Substituting the solutions for the vacuum equations 3.6.137 to 3.6.140 into the mass
matrix 3.6.143 we find the 2 x 2 upper left sub—matrix becomes

2 2 2 2 2
myz 55 +mj, cs (A—m3 ) sscs

(A —mj)sges mych+mi, sj

mj = . . o (3.6.155)

with the eigenvalues

1
My = 5 [m% +mi, F \/(A —m3,)? 835+ (my —m? )2 ¢34 (3.6.156)

and in the decoupling limit m?% — oo

A2+ AL
% v? 52, (3.6.157)

mi =m3, 035 +
In the presence of a U(1), singlet ®5z and a triplet of SU(2) ®5 we see that the
MSSM tree level upper bound on the Higgs boson mass is lifted [205]

2 2
A2 4 N2

5 v? 534 (3.6.158)

2 2 2
mh,tree S my, 025 +

by new F terms contributions coming from

WD)\E @E Hu'Hd+2>‘W qu)w-H , (3.6.159)

u

with the inequality in eq. 3.6.158 saturated in the decoupling limit mio — 0o and
zeroing the terms that mix the MSSM Higgs fields with the ESPs

This effect with A = 0 is well-known in the NMSSM [206,207]. Unfortunately,
the new contributions are suppressed at large ¢g, where the D-term contributions
to the tree level Higgs mass are maximised. Typically m; ~ 1 TeV is required if
perturbativity holds all the way to the GUT scale, leaving the NMSSM with a little
hierarchy problem. Now allowing for A # 0, we have a Triplet Extended NMSSM.
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In this case, the additional Higgs interactions induced that allow the correct Higgs

mass to be achieved at tree level within the realms of perturbativity [162,173].

3.6.5 The rho parameter and custodial symmetry breaking

In the limit g; — 0, the MSSM has the custodial symmetry SU(2), x SU(2)g [208].

Consider writing the Higgs sector as a bi—doublet

Py = (H H ) it (3.6.161)
¢ H; H°
such that?
tr (D, @n)' (D" ®y)] = (D, H,)" (D" H,) + (D, H,)" (D" H,). (3.6.162)

The lagrangian has the standard SU(2);, x U(1)y symmetry that acts on ®y and
O as

SU(2)y : Oy — L Oy, Oy — L Oy L (3.6.163)

1

U(1)y : Py — e 2930 By, by — O, (3.6.164)

where L is a matrix that acts on the standard SU(2);, indices to rotate the compo-
nents within each Higgs doublet into each other. If we turn off the SU(2);, x U(1)y
interaction by setting g; — 0 then there is an additional global SU(2)r symmetry

that can mix components between different Higgs doublets
SU(2)g : by — Py R (3.6.165)

This is violated by the hypercharge interaction because H  and H, have different
charges under SU(2);, x U(1)y. In the absence of hypercharge, the lagrangian then
has the custodial symmetry SU(2), x SU(2)gr

by — L Oy R (3.6.166)

9Note that only in the limit ¢35 — 1 can the SUSY lagrangian be written in terms of the
bi—-doublet @y, but this isn’t important for the present discussion.
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VEVs for Hg, Hg and ®@; break this symmetry

@ agy = = (Y C (@ o) w (3.6.167)
H e s — X7 = — 3 L.
" 2 0 o2 wow 0

which in the limit 5 — 1 and v — 0 has the symmetry under which L = R
L{®y) LT = (). (3.6.168)

The number of generators of the custodial symmetry broken by the Higgs VEVSs is
2 x 32 — 3 = 3, corresponding to three Goldstone modes that get eaten by the W+

and Z bosons

Ve (G195 0 o
D)) (0 ) = 5 (DGR gWW ) (s6109)
w2 (% + g2 B
(D, 1))} (0 1) = 2 (D722 4 g w) (36.170)
95 Vg
(Dy (&))" (D" (O)) = —— W W, (3.6.171)
who then acquire the masses
2 2 2 2 V2
g1 +g g W
ms = 172 v, omi = ZQU? (1 +—3 ) (3.6.172)
and in the custodial limit
2, 2 2
my = % v?, may = %2 v?. (3.6.173)

The tree level relations hold for all values of t53. We can then define the electroweak
precision rho parameter p [209]
miy

p=—o—=1+Ap (3.6.174)

2
7 Coy

where Ap is essentially a measure of custodial symmetry breaking. In general Ap
gets radiative corrections from parameters that break the custodial symmetry such

as deviations of {5 from one and Yukawa couplings. At tree level, any VEV for &g

February 19, 2015



3.6. The MSSM with Dirac gauginos 114

breaks the custodial symmetry as
L{(®w) LT # (D), (3.6.175)

and we find a tree level contribution to Ap

v2

Ap=2;%. (3.6.176)
The experimental limit on Ap is [210-212]
Ap=(42427) x107* (3.6.177)
which puts the stringent upper bound on v
v S 3.7GeV (3.6.178)

which is considerably a few orders of magnitude smaller than the electroweak scale,
indicating a potential source of fine tuning since the other massive parameters in-
volved with the triplet are typically of order the SUSY scale; multi-TeV SUSY
particles would give an estimated tuning A~! of
A ~ o TISUSY (3.6.179)
2

VA
W

i.e. tuning at the sub—percent level.

3.6.6 Tachyons
Pseudoscalars

As was first noticed in [122], Dirac gauginos are often companied with tachyonic
states. The first place these arise can arise is in the pseudo—scalar sector. For strong

interactions this is transparent as the pseudo—sgluon has a mass given by

m_ =mz + MZ — b. (3.6.180)

9g
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Clearly one needs to arrange m2 + M2 — bz > 0 in order to not break CP and give

gluons mass. From a phenomenological point of view this is just a simple algebraic

constraint, but from a UV perspective this is surprisingly difficult to achieve:

e Taking Mg large introduces U(1), symmetry breaking into the picture and

generically generates Majorana gaugino masses, introducing phenomenological

consequences that we are trying to avoided by making the gluino Dirac in the

first place,

e Taking bz negative just makes the sgluon tachyonic

2 2 2 2

(3.6.181)

From a model building perspective it is also difficult to argue why bz could

be small whilst keeping mQDng large because although mpg and bz are typically

generated at the same loop order, mpg has mass dimension one, by has mass

dimension two and one therefore finds bz ~ (16 )? m%E. This is known as the

mp — by problem [175] and is discussed further in Chapter 4.

Slightly more obscured is the situation with electroweak pseudo—scalars. The corre-

sponding mass matrix is

2 2 2 2
Moy mdu Bu Wau
m2u m2 ’rn2~ mgv
e I (3.6.182)
Bu Ba BB "wWB
2 2 2 2
5w Mwa Mws Mww
where
2
my A
m2, = m%u + (uM)? + o 3% + b Cé + 91 Mpg Vg — 92 Mpw Vs (3.6.183)
m;, =m3, ss Ca, (3.6.184)
Mz Ay — as
2 B 7'B B
miz = —vcg | ———=—— + Kz A\ U5 (3.6.185)
Bu B ( V2 BB B) )
2 vep
"W T TS (AW M — aw> ) (3.6.186)
2
o mz A
Mg = miy, + (W) + - G+ S 55— 91mps U + M Vs (3.6.187)
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Mg \g — ag

My, = —vsp <% + A5 A U1§> ; (3.6.188)
U Sp

M = N ()‘W Mg - avv) ) (3.6.189)

s

Mig = Moy + A5V’ (HBSM + —) V20 (kMg — awgy ) + K503, (36.190)
A5 A

Mg =gV (3.6.191)

2
=l b (3.6.192)
WW — o 2 : .0.

From a UV perspective, the problems with the pseudo—sbino and pseudo—swino
are as in the pseudos—gluon case. In addition to this, if we substitute the vacuum
solutions 3.6.137 to 3.6.140 into the mass matrix 3.6.182 we find

ma, =m3, 5, (3.6.193)

uu

ma, = Mk, 55, (3.6.194)

AB 1
m%E = —4m2D§ —2bg +222{)\1§ (7]3 + kg 325> + — 575

B
s Vg
+ %mDE Cop — \/—Biueﬁ] } _ 735 (Hﬁ My +3a]§> , (3.6.195)
2 ___y 20 M Ao Mo
Mgw = —4my, w + v —+— 2\/_< = +aw>

)\~
g2 W off
— =My i 3.6.196
9 'DW C2B \/5 K ] }7 ( )

where elements that haven’t been indicated are unchanged from their out—of-vacuum

solutions. The difficulty even from a phenomenological point of view is now high-

lighted by the on—diagonal elements 3.6.195 and 3.6.196. In models with large Dirac
: 2 2 2 2 :

gaugino masses, the terms —2 bg, -2 bW’ —4 ms and —4 m dominate the ex-

pressions with the other dimensionful quantities tied to the electroweak scale. Also

noting the limit on vg; from Ap (see eq. 3.6.178) the term

92 v?

2 B 1" pw U
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can also be large and negative, depending on the size of £5 and sign(m ;). Although
it can be arranged for the eigenvalues of the matrix 3.6.182 to be positive!?, it
is certainly not automatic and can easily lead to tachyons without even worrying
about the problems of building a UV model that realistically achieves such a set of

parameters.

Squarks and sleptons

The potential tachyonic effects aren’t confined to the pseudo-scalar sector. If we
consider the effect of the supersoft operator on the D terms after VEVs have been

acquired for @z and P then we find

1/ ~ 2 1~
—Dy =g {6 (|UL‘2 + |dL‘2) 3 gl” + 3 [dpl*+ - | + 205 mpg, (3.6.197)
1
D} =Zg (T TPq+ 0 T2 0+ ) 4 205 myw. (3.6.198)

2

The cross terms in the potential then give positive and negative contributions to the

squark and slepton mass matrices.

Up squarks: In the basis (U;,Uy) the mass matrix matrix m2 receives a shift in

block—diagonal form

g1 ,,_ - — —
3 Ug Mpp T 92 Uy Mpw 0353

mg — mg + (3.6.199)

491 ,,_ ~
0353 — 3 UMpp

Down squarks: In the basis (8 Ly d ) the mass matrix matrix m% recieves a shift

in block—diagonal form

g1 . - o —
5 U Mpp — 920y Mpw 033

291, -
O3x3 3 U Mpp

m3 — m3 + (3.6.200)

10Fxcept of course for the massless Goldstone mode that gets eaten by the Z boson.
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Sleptons: In the basis (¢;,¢5) the mass matrix matrix mZ recieves a shift in

block-diagonal form

2 2 —g1Vg Mpy — 92V Mpw 0353
mz — ms +

(3.6.201)

O3x3 20 Ug Mpp

Sneutrinos: The mass matrix matrix m2 recieves a shift in block-diagonal form
mg — mz — g1V Mpg + g2 Vsg M- (3.6.202)

Consequently, when building models where the ESPs can acquire VEVs, one must
be wary in these models then if the combination of the Dirac bino and wino masses

with their corresponding VEVs is sufficiently large
U Mpp or Uw Mpw 2 m%USY (3.6.203)

where mgusy is the characteristic scale of superpartner masses, then certain particles

can be driven tachyonic.

3.6.7 Higgs quartic coupling suppression
Tree level thresholds via equations of motion

There is another interesting (and potentially dangerous) effect induced by the super-
soft operator. If we just consider an empty superpotential and adding the supersoft
operator for a general non-abelian gauge theory with the ESP & = (¢ +i0)/v/2.
At low energies, the only term in the lagrangian involving ¢ before integrating out
the D term is

Ly =2mp ¢" D" (3.6.204)

The field ¢ then acts as a Lagrange multiplier for D® such that when we integrate

out ¢ due to its large mass mp

oL
8752’ = 2mp D = 0. (3.6.205)

Below mp of ¢* we should then switch to an EFT where the corresponding D¢

vanish. Of course, D® has its own solution that is determined before ¢® because D*
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is an auxiliary field and therefore infinitely massive. Whatever solution is found for
for D* will then be set to zero upon integrating out ¢°.

This is a problem because if we add in Dirac masses for the wino and bino (but no
further interactions for them) then below their corresponding masses, the D terms
for SU(2);, and U(1), will vanish. In particular, this causes the quartic terms that
are responsible for giving the SM—like Higgs boson its mass to vanish

1 2 1 . _
Ve o gt (IO = [H9)" =0, Ve > 5 g3 (HIT'H, + HYT'H, ) = 0. (3.6.206)

Let’s consider what happens if we allow a mass squared for ¢

a Ma ¥ 7 1 a ja
Ls=2mp¢" D" —V(p), V(p)= §m?¢¢ o°. (3.6.207)
The equations of motion set
a£¢ a 2 1a
ot =2mp D" —my¢* =0, (3.6.208)
and so for the D terms we find
1 m2 4+ 4m?2
Lo=3 ———2 D" D"+ g D" T, o, (3.6.209)

Mg

where ¢; are the light fields with mass mil < mi +4m?%. The scalar potential after

solving for the D terms is

yolppel ™o (42 ¢>2 (3.6.210)
-2 Z_Zmi—i-élm%g L org Y e
and we see the rescaling behaviour
m
Dt —-— (Dt 3.6.211
(D terms) 2+ 4 (D terms) ( )

with the correct limiting behaviour:

e Taking mp — 0 removes the supersoft operator causing the problem in the

first place and the suppression vanishes,

e Taking my — 0 removes the additional interactions for ¢ and so the quartic
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Hd Hu Hd Hu Hd Hu
“~ T / \\ ’(
~-= + | ¢1 = A
/ (b’ \ /l\ /( \\
H! Hi H! Hi H! Hi

Figure 3.3: Tree level matching conditions for A3 upon integrating out ¢ = ¢ and

2

P2 = ¢y at p?=m - and p? = miw respectively.

B
couplings vanish as before.

Tree level threshold matching

An alternative way to see what happens (that is also easier to do for a more general
choice of V(¢)) is to switch to the EFT by matching coefficients order by order in
perturbation theory as was discussed in Section 2.2. Our main interest is the effect

on the Higgs potential. The most general gauge invariant potential that we can

write is that of the 2HDM

Verr = (miy_ -+ p®)|[H, [ + (miy, + p®)Hy|* = (miy Hy - Ho + hec.)
A A
+ o (Hal* + 57 [H* + X [Hal? [HL 4+ N | Hy - HoJ?
As

+ 7(Hd-Hu)M(A6|Hd|2+A7|Hu|2)(Hd-Hu)+h.c. : (3.6.212)

At the point where we integrate out the real ESPs, the \; have boundary conditions

at the ESP masses given

A = )\EMSSM) + )\EDG) + )\gl,tree) + )\Z(Q,tree) T (36213)
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MSSM)

where the )\E are the standard quartic D terms, the )\EDG) are contributions

from the new Lagrangian couplings in the superpotential from the ESPs

AN — @ AP =0 (3.6.214)
AMSSM) @ AP — (3.6.215)
AMSSM) # AP =222 (3.6.216)
AMSSM) —%% AP =22 - (3.6.217)
and
)\éMSSM) _ )\éMSSM) _ )\gMSSM) _ )\éDG) _ )\éDG) _ )\(7DG) _0. (3.6.218)

The )\El’tree) and A?’tree) arise due to matching conditions from integrating out ¢g
and ¢g; respectively. A diagrammatic representation of the matching conditions for

)\éi,tree) is shown in fig. 3.3. Using FeynArts and FormCalc [213], we find that the
A(l,tree)

i are:
m2 A = = |gimis +2V2g0 0 mpp o+ 2 (g (3.6.219)
m2 A = = |gimds = 2V2g0 g mpp o+ 2 (g (3.6.220)
m3_ A = gim? s =2 (\gp)’, (3.6.221)
mi_ A = —(\g Mg +a)”, (3.6.222)
mi. A5 = (g My +ag)’, (3.6.223)
mZ_ A = (Ag Mg + ag)(2 g + V2 g1 mpg), (3.6.224)
mZ_ MY = (A Mg + a5)(2 A5 — V291 mpg), (3.6.225)
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and the A% are:

mg A = = |ggm2e +2 O] (3.6.226)
mi N =~ :93 Mg + 2 (Awu)z] ) (3.6.227)
m2_ A = — [ My + ag)? + g2 m? g —2 (O 0] (3.6.228)
mi MY = O Mg + aw)® + 4 (g3 m2g — N 117), (3.6.229)
mi A = O My + ag ), (3.6.230)
my A =0, (3.6.231)

mi A =2 (ay + Ay Myg) A - (3.6.232)

2

The remaining “...” in eq. 3.6.213 are for higher order matchings that we aren’t
important to consider here. Now we can see more generally that each quartic cou-
pling can be saved from being set to zero by taking a non-zero superpotential. If
we just take A; as an example (ignoring higher order corrections for the remainder

of this discussion)

)\1 _ )\gMSSM) + )\gDG) + /\gl,tree) + >\§2,tree) (36233)

2 2

o (1 "Tpp o (1 Mpw

— 9 A_L_mi + 9 é_l_méw
B W

[\/591 A Mpg i+ (Agp)? . (/\WM)2]

(3.6.234)

méé miw
The first line of eq. 3.6.234 vanishes if we only have the supersoft operator and
in the absence of a superpotential we would then see \; — 0 as before. Now we
see that either giving the ESPs sources of mass not from the supersoft operator or
having a non-trivial superpotential for the ESPs will result in non-zero A; upon
integrating out ¢z and ¢;. The same behaviour can be observed in the remaining
A;. One needs to be careful though to make sure that the additional contributions

to the superpotential don’t destabilise the vacuum upon integrating out, i.e. we

should have

, (1 mQng) \ o2 (1 mi@) ., [\/591 X mpp it (Mpn)® | ()

B 2 2 2
4 ma m¢1§ md)w

w

>0
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and similarly for the other \;.

A curious use of this zeroing quartic terms could be to explain the existence of
a zero in the SM quartic coupling A at a very high scale [214-220]. If the ESPs
are given an extremely large mass, then at this scale, what would become the SM
quartic coupling is set to zero and can then start running according to its RGEs.
This possibility was explored in the split Dirac gaugino scenario [182], where Dirac
gauginos are given masses mp ~ 10® to 101 GeV, the corresponding scalars have
their usual loop—suppressed masses, and the Higgsino is much lighter with a mass

dictated by pu.
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Constrained Dirac gluino

mediation

The Guide is definitive. Reality is frequently inaccurate.
— Douglas Adams, The Restaurant At End Of The Universe

This chapter is based on my single-authored work [1]. The text here follows it

closely.

4.1 Overview

As was discussed in Section 2.3.10, UV completions of the MSSM are in the middle
of a naturalness crisis, with the two driving factors being a rather heavy for the
MSSM SM-like Higgs boson mass and direct limits on sparticle masses. We saw in
Chapter 3 how adding Dirac gaugino masses can aleviate many of the problems the

MSSM has. This can be summarised as follows:

e Supersoftness (see Section 3.4) reduces the logarithmic dependence of EWSB

upon the UV parameters,

o Supersafeness (see Section 3.5) decreases the direct search constrains on spar-

ticle masses,

e Additional Higgs F terms (see Section 3.6.4) can give the correct Higgs mass

at tree level, removing the need to rely on heavy sparticles.
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We also saw in Chapter 3 that introducing electroweak Dirac gauginos came with a

set of problems, including:
e Contributions to Ap at tree level,
e A huge number of free parameters,
e Very complicated EWSB breaking,
e Tachyons.

Our aim in this chapter is to construct a simple UV model along the lines of the
CMSSM or Constrained General Gauge Mediation (CGGM), such that a reasonable
phenomenological study can be done of a theory that exhibits the signature prop-
erties of Dirac gauginos. The choice we make is to give a Dirac mass to the gluino
only (by providing the appropriate ySF content), whilst not introducing the field
content for electroweak Dirac gauginos. Although this drops the extra tree level
contributions the Higgs mass, this sidesteps most of the issues we saw in Chapter 3.
At the same time, we maintain the supersoftness and supersafness where they really

count — the SU(3)¢ sector.

4.2 Generating a gluino mass

The simplest known way of generating a Dirac gluino mass mpg is to generate it at
the messenger scale M by integrating out the messenger sector coupled to a source

of D term breaking (see Section 2.3.7)

D/
/X\\
/// \\ Y 3gs D'
SMirs — = —, 4.2.1
MDE = QR 1672 M (42.1)
g g

where D’ is the SUSY breaking D-term VEV of a U(1)" gauge group in the hidden
sector: (W') = 0, D" and M is the messenger scale and y is couples vector-like
messengers (®, ®) to the chiral field ®; containing the right handed component of
the Dirac gluino g, = (¢z)"

Witess = V2y® 05 & + M & . (4.2.2)
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This theory is RG evolved to the physical Dirac gluino mass where we must switch
to an effective theory with the gluino and the sgluons integrated out. This generates
one loop threshold corrections for the squarks given in eq. 3.4.59. The theory is
then RG evolved to the SUSY scale mgysy which we take to be the geometric stop

mass

msusy = /Mg My, (4.2.3)
where the renormalisation scale dependence for the calculation of the spectrum is
minimised [221-223].

If the majority of the squark mass is generated through integrating out the gluino
and its corresponding scalar degrees of freedom, the sensitivity of electroweak pa-
rameters to the parameters defined at M is reduced as the most sensitive period
of running is now effectively from mpg rather than M to mgusy. It is straightfor-
ward to give Dirac masses to all of the gauginos in the MSSM in this way, each
accompanied by analogous threshold corrections to the scalar spectrum, though this
can introduces further complications such as tachyons and electroweak precision
measurements.

We will first construct two simple models that that have the following properties:

e Natural from the point of view of EWSB — electroweak sparticles all at elec-

troweak scale.
e A minimal set of free parameters in the UV.
e Supersoftess to reduce fine tuning.

e Supersafeness to alleviate collider bounds.

We will then implement these models and the supersoft mechanism into a spectrum
generator and perform a study, discussing the consequences for hadron collider phe-

nomenology and fine tuning.

4.3 Constrained Dirac gluino mediation

4.3.1 Overview

As the LHC is a proton-proton collider, the non-observation of SUSY, and partic-

ularly of gluinos, indicates that the strongly interacting SUSY particles should be
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SU(Q)L X U(l)y

Messengers

SU(3)c

Messengers

Figure 4.1: The different sectors used in our setup.

moderately heavy to evade exclusion. To achieve this, we supplement the CMSSM
and CGGM with a Dirac gluino. We will refer to these scenarios as Constrained
Dirac gluino mediation. Due to the one loop supersoft nature of the Dirac gauginos,
the higher scale of the strong sector is not transferred to the electroweak sector
through RG running, and so electroweak sparticles can remain light (depending on
the region of parameter space). Specifically, we couple SU(3)c x SU(2), x U(1)y to
either the CMSSM or the CGGM, and couple only SU(3)¢ to a sector of D term
breaking to the mechanism of [129] (see fig. 4.1 for the CGGM setup). The field
content is the same as the MSSM plus the ESP xSF ®3 detailed in table 4.1.

We will now recap the effects of integrating out a messenger sector in terms of
the presence of D term SUSY breaking before moving on to discuss the full UV

boundary conditions of the model.

4.3.2 Boundary conditions at the Messenger scale
D-term breaking effective operators

Fox, Nelson and Weiner (FNW) [129] identified two operators generated by D-term
breaking in the presence of ESPs. The first is our supersoft operator 3.4.41 that we
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rewrite for convenience, and the other generates the sgluon b term,

W/ . Wa Aa D/ -
1 ~a a a na
Efpen = V2 [ 0 2 = (@ A VR D)+
—mpg (8- A5+ V2ZAGD) 4o, (434)
2
o [ WW A (DY
ﬁSupersoft - -0 M2 o M q)g (I)g
= b’g CID»g ®§7 (435)

where M is the scale of physics integrated out to generate the operators in eqs. 4.3.4,
and 4.3.4, and D’ is the VEV of a hidden sector U(1)": (W/) =6, D’. The “--.”
in eq. 4.3.4 correspond to operators that vanish upon including their hermitian
conjugates. In a messenger setup, both of these operators are generated at one
loop, leading to a tachyon in the spectrum. Indeed, this is the original reason for
abandoning these models [122]. There is one further operator generated at two loops

by D-term breaking identified by Cséaki et al. [175]

SteVS + Ste V'S D'\ 2
1
‘CI(\T())t supersoft = /d49 WE (I)»;v @’g = <M) @%(I)fgv
= mj,_ bLo; (4.3.6)

where S and S are singlets under the SM but charged under the U(1)". These give
rise to the non-vanishing D’ o |S|> — |S|?> and break the U(1)" gauge symmetry.
Note that the operator in eq. 4.3.6 is still picks out a coefficient ~ (D’/M)?. Upon
introducing messenger mixing, 4.3.6 is generated at one loop instead of two, and then
the mixing freedom can be used to tune! 4.3.5 to be two loop size [137,148,175].
We then find the phenomenologically acceptable boundary conditions

1 D ) 1 [(D'\? e (DY
. ~ 2 by ~ i 437
TPE T Y62 M T 16n2 (M) © BT T <M> o (437)

where e ~ 1/(1672) is a parameter that arises due to a cancellation between different

contributions to bz? . Note that the operator 4.3.6 is not supersoft at two loops,

!The tuning is typically O (ﬁ)
2Strictly this is a cancellation between terms linear and quadratic in D’, though this is not so
important for our discussion.
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| SUB)c_ SU@)L U(l)y
;| Ad 1 0

Table 4.1: Additional field content required to give a Dirac mass to the gluino.

however, and will generate

SteV s + SteV S
KSferrnion - /d40 M2 qTq (438)

as can be observed from the squark two loop beta function
(167%)28) = 3293 m3_+ -+ . (4.3.9)

Supersoftness is then broken at two loops, rendering a UV sensitivity to the scale

at which the Dirac gluino mass is generated [171].

Combined D and F term

Upon integrating out the messenger sector, we still have the MSSM superpotential

2.3.326 and a soft lagrangian conveniently decomposed into
Lsots = Léon + Lo (4.3.10)
LL ;. is the standard soft lagrangian of the MSSM 2.3.332 supplemented with @z

Lk = % (Mg’g“-’g“JrMQW-WJerE B +h.c.>
+ (auﬁq -H, — agdq- H,—acel- Hd—i—h.c.)
+malgl* + mg[a® +mgld|* +mf|(* +mZ[e* +m’r |0
+ (bg @z Pz + h.c.)

+my [H,[? +mf H, " + (b, H, - H, +he.). (4.3.11)
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The boundary conditions for these terms at mgyr in the CMSSM are [48]

mf; =mp, f=qud,le, H, ,H, AL, (4.3.12)
Mz = M1/27 1= 17 27 37 (4313)
a;y; b = Ay, i =u,d,e, (4.3.14)

m2 — m2
ms = i T my — mf{d —2|ul?, (4.3.15)
1 s%ﬂ ’
20
525 = — i (4.3.16)

and bz = 0 for simplicity. The boundary conditions at myess for General Gauge

Mediation (GGM) are [224]

g .
7 1671'2 Gi» 1 ) 737 ( 3 7)
a; =0, 1=u,d,e, (4.3.18)
4
i 9i 7 -3
mf;IQZ Cg(I'J;,’L) klmAéﬂ f:q,u,d,ﬁ,e,Hu,Hd,Ag, (4319)

with b, and p again determined from EWSB at the low scale as in eqs. 4.3.15 and
4.3.16. CQ(I'}, i) is the quadratic Casimir of the representation I‘} under the 7" gauge
group and k; = (3/5,1,1) is the standard GUT normalisation. To compare like with

like, we will take the CGGM parameter space
AGZ' = Ag, ASZ- = As, 1= 1, 2, 3, (4320)

and looking along the line Ag = Ag gives the boundary conditions of the Minimal
Gauge Mediated Supersymmetry Breaking (mGMSB) [225-227] subspace of models
originally developed in [228-233]. We concede that we have not solved the b,, problem
of Gauge Mediated Supersymmetry Breaking (GMSB). With a future study one
could take supplement GMSB with a Dirac gluino. Then as was studied in [103,
234-236] ts would be taken as an output rather than input, and a small value of

b, would be specified at the high scale. £ contains the operators, including the
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non-standard soft terms [72] generated by the D-term SUSY breaking discussed in
4.3.2

2
Mq3 2
9 g

+ 2.3 mpg O (qT Tog+atTou+d T"'H), (4.3.21)

2
, —a Mg
Ly = (impg 8" - g +hc.) + T¢ 0z +

where the T are the generators of SU(3)¢ in the fundamental representation. The
second line in 4.3.21 is the origin of the supersoftness of these models, and provides
the additional interaction required for the diagram on the second line of 3.4.59,
cutting off the sensitivity to the UV scale where mpg is generated. Finally, for both
the CMSSM and CGGM we take

1 2
2 1 2
mpg = ——A Mgp =
bs = g2t ®F T g2 D

by = 0, (4.3.22)

where ¢; represents O(1) mixings in the messenger sector that have been tuned to

make by phenomenologically negligible as already discussed.

4.3.3 One loop thresholds at the Dirac gluino mass
Significance

The Dirac gluinos and the sgluons play the role of messengers of D-term SUSY
breaking for the strongly interacting sparticles. As discussed in Section 2.2, as we
are calculating in the mass-independent scheme DR, in order to treat the large
hierarchy between the gluino mass and the rest of the SUSY spectrum correctly, we
need to integrate out the gluino and the sgluons at their mass and switch to an EFT.
This leads to a different behaviour of the RG compared to the MSSM. The most
important contributions to take into account are the corrections to squark masses
and to the strong gauge coupling g3. We will see that this alters where EWSB occurs

and can increase the naturalness of these models.

Threshold corrections

Squark masses: The gluino in these models is not pure Dirac, although in some
regions of parameter space this may be approximately true. Consequently, instead
of using the analytic formulae in eq. 3.4.59, we will numerically compute the full
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one loop threshold correction to squark masses®

bz

mz — mz — [T (mg) — 11.° (mg) (4.3.23)
where
g 95 2 b5 9
I3 (p) = 6.2 (Zg)ial” Go(p,mg,,0), 115" (p) = ﬁm?yg’ Bo(p, mg, mgy) (4.3.24)

and Z, is the matrix that diagonalises the gluino mass matrix mgz

Ms mpg
mg = s be Z,mg Z; = diag(mg ,mg,) (4.3.25)
Mmpg 0

where mg is in the (g,1z) basis. By and G are scalar integrals given in appendix
A.

Strong gauge coupling: The 1-loop threshold corrections to g3 at mpg are [36]

m2 1 mi_
D log | =+ |+ 2log | - (4.3.26)
i Mpg 4 Mg

where the positive (negative) contribution occurs when running from the UV (IR) to

93
— 1+
93 — 93 16 22

the IR (UV) and all parameters are evaluated at the renormalisation scale y(mpg) =

mpg-

Quark masses: We do not implement the quark mass threshold corrections from
the gluinos and sgluons. To correctly do this would be quite technical and we
anticipate that the overall impact on the areas we are interested in (such as the SUSY
spectrum, EWSB and tuning) should be minimal; corrections of this kind must
be proportional to chiral symmetry breaking and since the quarks are essentially

massless at mpg the remaining correction is proportional to the Majorana gluino

3There is no contribution from Hgg (mg) as the oy coupling to squarks is zero.
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mass. For the top quark [237]

2

g .
Imy = —12;2 sin(6;) Ms | Bo(0, Ms, mz ) — Bo(0, M3, mg )| (4.3.27)

where 6 is the stop mixing angle. This will alter the Yukawa couplings in the UV
and hence only affect the running of UV parameters that depend on the Yukawa
couplings. We expect the low energy physics to be largely unaffected however, and
instead we include the loop contributions to the quark masses from gluinos and
sgluons at my and mgyusy. By doing this we make a systematic error proportional

to (167’(’2)_2 X IOg(TTLD’g/mSUsy) X log(mGUT/mSUsy) SJ 0.1%.

4.4 Numerical setup

We use the standard top-down approach where we fix a set of UV boundary condi-
tions at either mgyr in the CMSSM or myess in CGGM. The low energy spectrum
is found through RG evolution, and then the corresponding flavour observables and
fine tuning are calculated.

To achieve this, we have used the Mathematica package SARAH 4.3.0 [238-243] to
generate source code for the spectrum generator SPheno 3.3.2 [8,74]. SPheno solves
the RG equations taking into account the presence of the Dirac gluino at one and
two loops. This program then calculates the one loop masses for all particles in the
model, the branching ratios for all kinematically allowed two body decays and the
branching ratios for three body decays involving intermediate W and Z bosons.

The UV boundary conditions discussed in Section 4.3.2 are implemented we can
then solve the EWSB minimisation conditions for p and b,. We only study the
i > 0 case in order to maximise the effect from stop mixing upon the Higgs sector.
The SPheno code has been modified to include an intermediate step in RG running
where the gluino and its corresponding scalar degrees of freedom are integrated out
at the gluino mass. This implements the EWSB mechanism of supersoft models
outlined in [129]. The masses for the gluino and the real sgluon are calculated at
the this intermediate scale instead of mgysy. A schematic of this algorithm is shown

in fig. 4.2.
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4.5 Spectra

On each of the parameter space plots we include the relevant limits on SUSY particle
masses. As the production cross section is suppressed for all SUSY particles in
models with Dirac gluinos (shown in Section 4.6), we take only the strongest most
model independent limits available set by lepton colliders, outlined in table 2.11. For
the CMSSM, the stable neutralino limit is applied, whereas for CGGM the unstable
limit is used instead. The red, purple and green solid lines indicate the limit on
the slepton, neutralino and sneutrino masses, and the blue dashed line indicates the

limit on the chargino masses.
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Calculate and save g;(my), y;(mz) at tree level.

}
Run to mqgur at 1-loop with gluinos. Apply UV boundary conditions. Find mpg at 1-loop.
}
Get saved g;(mz), yi(mz) at tree level.
}
Run to and save mpg at 1-loop without gluinos. Run to mgyr at 1-loop with gluinos.
}
Apply UV boundary conditions. Run to saved mpz at 1-loop with gluinos.
}
Run to mgusy without gluinos. Calculate |ul, b, and sparticle masses at tree level.
}
SM and SUSY radiative corrections to g;(mz), y;(mz).| =
}
Run to mpg without gluinos. Apply one loop threshold corrections to gs.
}
Run to mgur with gluinos. Apply UV boundary conditions.
}
Run to mpg with gluinos. Apply one loop threshold corrections to g3 and squark masses.
}
Apply one loop threshold corrections to g3 and squark masses.
}
Run to mpg. Calculate gluino and real sgluon pole masses at loop level.
}
’Run to mgysy without gluinos.
}
Calculate |p, b, and remaining sparticle pole masses at loop level.
}
’Check if required precision is achieved. ‘ 10
yesy

’Output spectrum for further processing. ‘

Figure 4.2: Algorithm used to calculate the spectrum. Adapted from fig. 1 in [8]. Note
that apart from where it explicitly states running to a saved value of mpg, the scale
is found by requiring a solution to u(mpg) = mpg. This typically updates with each
iteration since it depends on the behaviour of g3 whose running is determined by the
location of mpg.
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Points below and to the left of these lines are excluded at the 95% CL. We will
present three types of graphs in the (mg, M;/2) and (Ag, Ag) planes to illustrate the

similarities and differences between spectra:

e Gradients of Higgs boson masses with contours of the parameters entering into

the one loop Higgs mass approximation in eq. 2.3.342.
e LOSP species with mass contours of the typical candidates.
e Next to Lightest Ordinary Supersymmetric Particle (NLOSP) species.

In the MSSM the two loop contribution from gluinos gives quite a significant
contribution. Because the two loop Higgs mass has not yet been computed in the
presence of a Dirac gluino, we will not impose achieving the correct value as a strict
requirement, as we would be incorrectly ruling out viable regions of parameter space.
Although the full calculation will be completed in the future [244], the effective field
theory framework used here requires a different approach. At the gluino scale, one
would need to match the theory onto a theory with broken SUSY with RGEs. This
requires removing the approximation that e.g. the stop-Higgs quartic coupling and

the Higgs-top Yukawa terms remain equal along the RG flow
wtg-H, s [y?[t]*H, [

Instead, the coefficients of the operators t ¢ - H, and [t|?|H,|? should have differ-
ent RGEs below the Dirac gluino mass. After applying threshold corrections to
each coupling, flowing down from the gluino mass to the SUSY scale would then
correctly include the two loop contributions to the Higgs mass with gluino inte-
grated out. With the new non-SUSY RGE calculators becoming available [242,245],
the possibility to correctly incorporate these kinds of particle threshold effects into
spectrum generators in the future is a very interesting possibility

Only a subset of the scans are presented in the body of the text. The remaining
parameter configurations can be found in appendix B. The generic dependence of
the spectrum and low energy parameters on the UV boundary conditions can be
inferred by analysing the cases we present.

We first present the comparison of the CMSSM with and without a Dirac gluino.
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We scan
0TeV <mg<6TeV 0TeV < My, <4TeV (4.5.28)

and take a moderate and large 5 = 10, 25. In the presence of a Dirac gluino, we set
mpg(magur) = 5, 7.5,10 TeV which, due to RG running, lead to a significant spread

of physical Dirac gluino masses that can be estimated using

N T
39§(A>} L BAW

TDE approx = {ng(A)A 2 T (4.5.29)

where A can be any scale, but is most conveniently taken as the UV scale.

The first thing to note is that there is a new region of parameter space in the
(mg, M) plane opening up for very low M/, but non-zero my in the presence of a
Dirac gluino. This region isn’t populated in the MSSM due to an absence of EWSB
when mzHu isn’t pushed negative enough for a positive |u|? solution; at this point in
parameter space in the CMSSM one needs extra logs from M3 to push the squark
mass up along the RG trajectory. In the case of a Dirac gluino, one can essentially
ignore the need for a Majorana gluino mass, as the threshold correction on its own
is enough to lift the squark mass in the IR, triggering EWSB for even zero Mj ;.

Here however, the LEP bound on the chargino mass becomes important, putting an

experimental lower limit on M, of O(100) GeV.

Higgs: In figures 4.3 and B.1 we show the Higgs mass and the parameters enter-
ing the one loop Higgs mass formula in eq. 2.3.342. Even though we are taking
Ap(mgur) = 0, a non-zero value is generated by running. In the large y; limit (see

eq. C.28 for the complete expression)

16 32
1672@(11) > ap |18 |yl + 5 (6z —2) g3| + < U g5 M3 0z, (4.5.30)

where
0z =1 if p>mpg, 0 =0 if pu<mpg. (4.5.31)

with the precise definitions given in appendix C.2. In the CMSSM without a gluino,

0z = 1 always in eq. 4.5.30. Note that we do not observe the more negative values
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Majorana gluino mp; =5 TeV
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Figure 4.3: Higgs sector parameters in the CMSSM with t5 = 10 and mpg fixed as indi-
cated. The gradient indicates the Higgs mass. The black dashed, green dashed and green

solid lines are contours of a¢(msusy), #(msusy), and mguysy respectively. All contours
unless otherwise specified are in TeV.

of a; in the presence of the gluino that were found in [246]. This can be understood

by considering the running of the Majorana gluino mass in the presence of a Dirac

gluino

16728} = —6 g3 Mj MSSM (4.5.32)
167265 =0 MSSM with Dirac Gluino. (4.5.33)

Because we are taking ai(mgur) = 0 then the gluino term dominates for most of
the flow, and in the CMSSM, this term becomes larger that in the CMSSM with a
Dirac gluino as demonstrated in fig. 4.4. The contours of mgysy in the presence
of a Dirac gluino are increased to the minimum squark mass possible in the model

(i.e. determined by eq. 3.4.59). For large values of mg and M/, contours of mgysy
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1672 g4 (TeV)
a, (TeV)

-4.0

R SRR [ 3o 30
4 6 8 10 12 14 16 4 6 8 10 12 14 16
log,, 1 (GeV) log,, 1 (GeV)

0.0

Figure 4.4: RG evolution of dominant parameters contributing to the running of a; in
the CMSSM with mo = 4.5 TeV, M;,5 = 4 TeV, mpg =5 TeV and ¢3 = 25. Solid lines
correspond to the CMSSM and dashed lines correspond to the CMSSM supplemented
with a Dirac gluino. Left: The blue, red and black lines show the evolution of ¥, g3 and
M3 respectively. Right: The blue, red and black lines show the evolution of %2 ys 93 M3,
ar (18 |y | — L8 ¢g2) and ay respectively.

across the different models approach each other.
The p parameter is seen to increase with increasing Dirac gluino mass. This can

be understood by considering the EWSB conditions in the large ¢z limit

2
myz _
> = —m%u - + (9(%2). (4.5.34)

m#¥ is driven negative by the squark soft scalar masses

16781 D 6]yl (m} +m7) (4.5.35)

which are in turn determined by the Dirac gluino mass through eq. 3.4.59. The
values of ;1 in the MSSM for moderate (mg, M /2) are actually lower with a Dirac
gluino than without. Considering the RG equation for

8
167°80 > 50z = 3) g2, (4.5.36)

This term causes 1, to decrease in the flow from the IR to the UV. In the MSSM, the
strong interactions retain asymptotic freedom, whereas with a Dirac gluino present,

g3 remains roughly constant along the entire flow. In the Dirac gluino case, this
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Majorana gluino
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Figure 4.5: LOSP species in the CMSSM with t3 = 10 and mpg fixed as indicated. The

black dashed and black solid lines are contours of lightest neutralino mass mso and stau
mass mz in TeV.

causes y; to decrease much more rapidly, and so the the integrated term of eq.
4.5.35 with a Dirac gluino than without.

The lower limit on squark masses translates into a lower limit on the Higgs
mass. Apart from at low (mg, M;/2) where we get a separation between the strong
and electroweak sectors it is difficult to distinguish the CMSSM with and without a
gluino. The presence of a Dirac gluino allows us, for a given Higgs mass, to realise

a lighter electroweak scalar spectrum for low (mg, M /2).

LOSP: The LOSP candidate in the presence of a Dirac gluino is essentially un-
changed in the CMSSM. The blue regions in figs. 4.5 and B.2 have a charged stau 7,
as the LOSP and so are excluded. The remainder of the parameter space is entirely

bino-like neutralino Y9 LOSP, a good dark matter candidate.
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Majorana gluino

My, (TeV)
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N
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Figure 4.6: NLOSP species in the CMSSM with 5 = 10 and mpg fixed as indicated.

NLOSP: The NLOSP candidate in the presence of a Dirac gluino is similarly
relatively unchanged essentially when compared to the Majorana case. The light
blue regions in figs. 4.6 and B.3 have the second lightest stau 7, as the NLOSP but
are excluded as the corresponding region has a lightest stau 7, LOSP. The dark blue
region has lightest stau 7, LOSP and leads to one lepton and K or jets and Ep
in the final state, as does the red region with wino-like chargino Y= NLOSP. This
chargino Y7 is also coincident with the wino-like neutralino 5{2 which instead leads
to either entirely K in the final state or £ with either two leptons of opposite sign
or a jet.

It is clear that nature of the light spectrum is largely unaffected by the presence of
a Dirac gluino, except that it is now possible to raise the strongly interacting sector

almost? independently of the electroweak sector, giving some freedom to aleviate

4There will always arise terms proportional to (16 7%)~! log(m pgz /msusy), and there two loop
sensitivity to the sgluon soft mass in eq. 4.3.9 present.
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Figure 4.7: Higgs sector parameters in CGGM with g = 10, myess = 107 GeV and m Dg
fixed as indicated. The gradient indicates the Higgs mass. The black dashed, green dashed
and green solid lines are contours of ay(mgysy), p(msusy), and mgusy respectively. All

contours unless otherwise specified are in TeV.

the tension with results at hadron collider experiments to date.

4.5.1 Constrained General Gauge Mediation

We now present the comparison of CGGM with and without Dirac gluino. A recent

comprehensive study of the parameter space of CGGM was done in [247]. We scan

10° GeV < Ag < 107 GeV

10° GeV < Ag < 107 GeV

(4.5,

37)

whilst taking t3 = 10,25 and again we again take mpg(mgur) = 5,7.5,10 TeV in

the presence of a Dirac gluino. We take two messenger scales maess = 107 GeV and

102 GeV to represent short and long periods of running.

The theoretically allowed parameter space is reduced by the presence of a Dirac
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Figure 4.8: LOSP species in CGGM with tg = 10, muess = 107 GeV and mpg fixed as
indicated. The black dashed and black solid lines are contours of lightest neutralino mass
mso and stau mass ms in TeV.

gluino as is seen in fig. 4.8. Although viable EWSB is occurring, the the lightest
stau 7, is being driven tachyonic for a larger portion of the parameter space. This
is induced by the Dirac gluino much for much higher UV stau mass set by eq.
4.3.19. This is caused by larger values of |u|? for a given (Ag, Ag) by the threshold

corrections at the Dirac gluino scale, driving the smallest eigenvalue of the stau mass
matrix

2 * oo
mz,mat = m€3,3 D tenms ‘ (aT T Sﬁ) (4538)
v(arcg — P yr $p) mgs,g + D terms

negative.

Higgs: In figures 4.7, B.5, B.6 and B.7 we show the Higgs mass and the param-
eters entering the one loop Higgs mass formula in eq. 2.3.342. The characteristic

properties here are essentially unchanged from the CMSSM counterpart as we have
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Figure 4.9: NLOSP species in CGGM with g = 10, muess = 107 GeV and mpg fixed as
indicated. The black dashed and black solid lines are contours of lightest neutralino mass

mso and stau mass mz in TeV.

only considered the CMSSM case Ay = 0.

LOSP: The LOSP candidates in CGGM with and without a Dirac gluino are
similar to those of the CMSSM as can be seen in figs. 4.8, B.8, B.9 and B.10. The
difference here is that the blue regions that correspond to stau 7, LOSP are now
viable as the LSP in these models is the gravitino G. The stau can either be long
lives produce a missing energy signature or it can undergo the decay 7 — G 7 inside
the detector depending on its mass. If it does decay it will lead to one lepton and
FEr or jets and Ep. The remainder of the parameter space is has entirely bino-

like neutralino Y LOSP, whose decay rate can be calculated from the standard

formula [48]

~ ~ m5~ m2 !
IX 5 XG)=—2"[1-— (4.5.39)

167 (F)? m%
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and typically undergos the decay Y{ — G ~ well inside the detector. This decay is

responsible for the stronger lower bounds on the neutralino mass mgo in CGGM.

NLOSP: In CGGM we have a sneutrino NLOSP candiate in addition to those
found in the CMSSM. These are shown in figs. 4.9, B.11, B.12 and B.13. This
only happens without a Dirac gluino however, as in the region where a sneutrino v
NLOSP would be achieved, the lightest stau 7, has already been pushed tachyonic.
The region with sneutrino ¥ NLOSP is ruled out by collider searches. The remaining
NLOSP candidates have the same decays as seen in the CMSSM except that they

may be accompanied by an additional photon in the final state.

4.5.2 Overview

Overall, one sees that when each the CMSSM and CGGM are supplemented with
a Dirac gluino, very little changes in the electroweak spectrum. This is of course
by construction since the effective theory is essentially the MSSM without a gluino.
The Higgs mass however, is raised across the whole parameter space and can be
made largely independent of (mg, Mi/2) or (Ag,Ag) at sufficiently low values of
these parameters. Note that this is different to having non-universal scalar masses
and gaugino masses, since giving a large mass to squarks and or gluinos in the UV
will lead to a very large value for u, giving very heavy Higgsinos and non-SM-like
Higgses as well as being accompanied by considerable fine tuning. The Wino mass

will also be lifted along the RG flow since
(16 7°)Bar, D 48 (g2 g3)° M3 (4.5.40)

causes M to increase by ~ 500 GeV for a 10 TeV Majorana gluino. A characteristic
plot of the spectra in the CMSSM with and without a Dirac gluino is shown in fig.
4.10. Since the overall result is a light set of electroweak particles with the neutralino
as the LOSP, the detailed phenomenology is expected to be very similar to that of
the well-tempered neutralino [248,249]. One could also take all of the orderings of

our electroweak states and map them on to the analysis in [250].
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Figure 4.10: Sparticle spectra the CMSSM (top) and the CMSSM with
(bottom) for the benchmark points in table 4.7. The y-axis is in TeV.

4.6 Cross sections

T

h

=T

b3

g2
91 €6

a

Dirac gluino

Here we present the LO cross sections at 8 and 13 TeV LHC with and without a
Dirac gluino in the CMSSM. We fixed t3 = 10, mo = 200 GeV and scanned over

My /5 € [200,1600] GeV

My 5 = 400, mpg € [500, 5000] GeV

CMSSM
CMSSM with Dirac gluino

leading to the spread of squark masses shown in fig. 4.11. For di-squark production,

we can see that there is suppression in the Dirac gluino case of approximately two
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Figure 4.11: LO cross sections for various processes at 8 TeV (left) and 13 TeV (right)
LHC. The solid and dashed lines indicate cross sections in the CMSSM with and without
a Dirac gluino respectively. The blue, black and purple lines indicate total di—squark
(4;4;), di-gluino (g; g;) di-pseudo-sgluon production (og oz). The red lines indicate cross
section x branching ratio for processes beginning with di-squark production yielding two
jets, two same sign leptons and £7 in the final state. The cross-sections were calculated
using Madgraph5_aMC@NLO with the MSTW2008lo68cl PDF set. All two and three body
branching ratios were calculated using SPheno. Although the x-axis shows squark mass,
we are indeed scanning over the Dirac gluino mass. The Dirac gluino mass essentially
determines the squark mass through eq. 3.4.59.

orders of magnitude due to the supersafe mechanism discussed in Section 3.5. Note
that this is only true for di-squark production, but is not true for squark—anti—
squark production as the dominant diagrams required for these processes do not
involve the Majorana nature of gluinos as was discussed in [7,169].

Di—gluino production is only displayed for the CMSSM without a Dirac gluino,
since for the parameter space displayed, di—gluino production is kinematically for-
bidden in the Dirac gluino case. Similarly, di-sgluon production is kinematically
forbidden. The di-pseudo-sgluon production rate, however, is relatively high due
to its light mass and its large SU(3)¢ charge.

Finally we display the product of branching ratios approximation for the cross
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Decaying particle | Decay products | Branching fraction
Z invisible 0.2000 £ 0.0006
W+ ety 0.1075 £ 0.0013
uru, 0.1057 £ 0.0015
T, 0.1125 = 0.0020
Tt vrety, 0.1783 £ 0.0004
Ur iy, 0.1741 £ 0.0004
t~ W+hb 0.91 +0.04

Table 4.2: SM branching ratios used in calculation of branching ratios X cross sections.
All are the world averages taken from [11].

section for two jets, two same sign leptons and missing energy

2 X [Za(pp — U, ;) x Br(x, —jet + 0T + 1) x Br(ui; — jet + (7 + B)+

1<j
> “o(pp —d;d;) x Br(d, — jet + (7 + ¥) x Br(d; — jet + £~ + E)|,
1<j
where the squark branching ratios are given by all possible combinations of kine-

matically allowed decays leading to one jet, one lepton and missing energy

Br(d, — jet + (" + E) ~ Br(§, —» d X7) x Br(X] = £ vX)) + - (4.6.41)

Although this approximation misses effects coming from off-shell intermediate spar-
ticles in the decay chain that increase the cross section x branching ratio, it can
still serve as an indicator of what to expect if one simulated the high multiplicity
final states fully. All branching ratios are calculated as a function of the parameter
space scanned by SPheno. All other branching ratios are SM branching ratios which
can are given in table 4.2. All decay products in the chain considered are displayed
in table 4.3. Whilst the Majorana case still allows a number of events visible at the
LHC given an integrated luminosity of 23.26fb™! such that the same sign lepton
analyses [251] are sensitive in the direct squark (via sleptons) models, the case with
a Dirac gluino is far beyond producing any same sign di-leptons plus two jet events
at the LHC with the current integrated luminosity. In addition, the Majorana di-
gluino production is the dominant process leading to two same-sign di-leptons with
g — 2jets + [* + . This decay is simply absent with a heavy Dirac gluino.

One feature to note is that in the MSSM, there is a rise in the branching ratio
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Particle Relevant Decay Products

El,...,ﬁ diqs %Tg

dl,“.,ﬁ Uy 9 %IQ
2; ef...,:ﬂ 51,2,35 V1,2,3Ei...,6; W+ %(1),25 Z %T
%T ei...,:& ’71,2,3? V1,2,3€1+,...,6; W+ 55(1],2
Xo A%

El_,...,G €1,.3 >~<(1),25 Vi3 %IL

;1,2,3 %iz €123} >~<1,2 Vios

Table 4.3: Decays considered for the squark to one jet, one lepton and K.

x cross section for 1 TeV squarks in both the 8 and 13 TeV cases. This doesn’t
occur in with a Dirac gluino in the parameter space studied. In the MSSM, we are
raising M/, in order to raise the squark masses. As this happens, a gap between
the lightest chargino and the sneutrino masses opens up. The chains that involving
X7 — UL account for 10 % of the overall branching ratio of a squark into one
lepton, one jet and K7 and only turn on once M, /2 becomes large enough. In the
Dirac gluino case this channel never opens up as we raise mpg to raise the squark

masses instead of My ;.

4.7 Decays of the pseudosgluon

Since the pseudosgluon is the lightest strongly interacting sparticle in our spectrum
and is CP-odd, at first glance it would seem that it may be a dark matter candidate
as there is no relevant tree-level decay present in the UV lagrangian®. In fact, this
turns out not to be the case as the pseudo—sgluon undergoes a loop level decay to
quarks via gluinos and squarks shown in figure 4.12. Upon integrating out the gluino

at p? = m%, this generates a new three—point interaction in the effective Lagrangian

—Ler D —Cq 105 g0 + hec. (4.7.42)

SStability for this particle would be somewhat disastrous as its large SU(3)¢ charge would
imply that some non-perturbative interaction with the nucleus would have showed up in dark
matter direct detection experiments.
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g Py

g Yy

Figure 4.12: The generation of the oz 1,1, interaction in the effective theory upon inte-
2

grating out g at pu? = mg.
where the coefficient ¢ is determined by the matching in figure 4.12 to be [145,183,

186]
3 g3
Cq = EW mD’g' mq [(IJ (4743)
where

I,=VECEt VI — (L R), (4.7.44)

qi

the X{]];’RT = Uqu’R Zf;’R is the product of the appropriate squark and quark mixing
matrices, and

Col® = Co(my, , my, mpg, mpg, M, ) (4.7.45)

where () is a standard scalar integral given in appendix A. In the limit of negligible

flavour mixing (which our model has by construction), I, is approximated by [183]

I, = Mg ~ Mg, (1~ 108 mpg/mg,,) (L & R) (4.7.46)
(m%g - m?jR)Z
. (;”%2 (1+ x)[(z __11)_3 @] o(sm fm) (4.7.47)
where mg, . # mg, T = mpg/m; and we have taken
om? = m%R - m%L = m%R —m2. (4.7.48)

Now we are in a position to calculate the decay rate of oz. The general decay rate

formula for a particle of mass mx decaying into n particles with a set of momenta
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{ps} and corresponding matrix element M is

1 dgpf 1
dl' =
2mx [1;[ (2m)3 2Ey

Ml = {prh)P (2700 (px = py) - (47.49)

For a two—particle decay, the corresponding total width is then given by integrating
over the phase space. Since the two final states we are interested in have equal

masses m = my = Mms, their momenta will be definite and hence
M(p;) = M. (4.7.50)

Since we are working with manifestly Lorentz invariant expressions, we can choose

the center—of~momentum frame

E1 = EQ =F = — g , P —+ P2 = 0, pO’g =0 (4751)

for the calculation. The total decay rate is then

1 Epr 1 dPpy 1
b= 2 2m)6@ [py — | s
2ma~’ | / (27)3 2F; (27)3 2E2( ) Poz — (1 +D2) ( )
g
1 1
= 332 M / & prd*pa50 |po, — (o1 +p2)| (4.7.53)
We can decompose the delta function as
o [pﬂg — (o + pz)] =9 [mag - QE] 0 [p1 + pe] (4.7.54)
where
E=m*+p°  p'=p/=p; (4.7.55)

Performing the ps integral yields some of the constraints in eq. 4.7.51 and we then

have
r—_ 1 |M|2/d3 15[ —2E] (4.7.56)
n 3212 m,, Prgdlmx o
_ ! |M|2/d 2 dQ 15[ — 2F] (4.7.57)
n 3212 m,, PP g0 X ’ o
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where d) = sin(0) df d¢ is the usual differential solid angle, and p* = p? = |p?|. We

can express eq. 4.7.57 as

1
:§ﬁ%Z*MF/@WQdMﬂﬂM] (4.7.58)
where
p? P’
== F(p) = Moy —24/m? +p2. (4.7.59)

Using the property of delta functions

-1

S[f(x)] = 5(z — ¥) (4.7.60)

’ df ()
dz

It follows that

df (p) |
[ vt = o) |2 (4761
p*
where
* mo’g 4 m2
= 1-— 4.7.62
Pr= ) ( )
satisfies the original delta function. We know
df (p) 2p p
=— =-2= 4.7.63
dp Vm? + p? K ( )
and so we find the phase space part of the total decay rate
1 (p*)? E 1 4m?
= 2 dQ = 21— : 4.7.64
32712 m,y, M E? 2p* / 167m, M| mg_g (4.7.64)

We now need to compute |M]|? in our effective theory. The pseudosgluon can decay

to either the combination ¢ 1); or w; w} and so the matrix element is given by

iM = —icgy(p1, 51) y(P2, 52) +icgx'(p1,51) 2T (P2, 52). (4.7.65)
The squared amplitude is then

IM|? = |c,|? (yl Y2 ?J; yi + iUI w£ T2 1 — 371 xE y; ?/I —Y1Y2 T2 $1> : (4.7.66)
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u ‘ d ‘ c ‘ s ‘ t ‘ b
2.3 MeV | 4.8 MeV | 1.275 GeV | 95 MeV | 171.21 GeV | 4.18 GeV

Table 4.4: Central value world average quark masses taken from [11].

mo (TeV) | mg (TeV) T (s) L (m)
0.25 5 1.45 x 1071 | 4.33 x 1073
0.25 15 1.05 x 1078 3.16
0.5 5 6.45 x 1071° | 1.94 x 10~
0.5 15 471 x 10712 | 1.41 x 1073

1 5 2.50 x 107 | 7.51 x 1077
1 15 1.83 x 1072 | 5.47 x 1074

Table 4.5: Pseudosgluon decays in the CMSSM.

We need to sum over the final state helicities using standard spin projection tech-

niques. Performing the sum over final state antifermions
Z M = |c,|? (yl ooyl +alpy-ox +almyl + mx1> : (4.7.67)
A2

and then summing over fermion spins

STIMP = dleg? (o1 pa+m?) = 2P m2,. (4.7.68)
A2

Finally, we find the decay rate of the pseduosgluon into a quark—antiquark pair is

[cql? Mo 4m?
r,=—=,/1—- —2. 4.7.
p o mgg (4.7.69)

The total decay rate rate for the pseduosgluon is then given by

given by

Tiotal = Y Ty (4.7.70)
q

Note that due to the nature of the coefficient ¢, this is heavily dependent on the
spectrum. One can immediately see that the pseudosgluon will decay more rapidly

in CGGM than in the CMSSM, though in both cases it is unstable.
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CMSSM: To a good approximation, the splitting between the mass of the left
and right handed squarks can be taken to be the order of the Z boson mass®. For

simplicity, in the CMSSM we therefore take”
om? = mj, (4.7.73)

The sign is irrelevant due to the modulus squared in eq. 4.7.69. The remaining
masses are taken to be either the measured physical quark masses given in table 4.4

or determined by the choice of my and mpg through the approximations

2,2
93 Mpg
me_ = mg, mz = =3 ¢ log(4). (4.7.74)

The lifetime 7 is then calculated by®

1
T = .
FTotal

(4.7.76)
Taking g3 = 1.22, we find the lifetimes and decay lengths in table 4.5.

CGGM: The dominant splitting between the mass of the left and right handed
squarks is generated by an additional gauge mediated contribution from the SU(2)y,

messengers A
Sm? = (169%)2/\%. (4.7.77)

6In the presence of large stop mixing, the difference in the stop masses will be larger, but we
do not consider this case here as we are more interested in an upper limit on the lifetime.

"Note that from section 3.6.6 we know that the additional supersoft operator causes a splitting
between the left and right squark masses at tree level, giving contributions to the relevant dm? of
the form

51

om? — om?2 — ~3 VB ™MpB ~ 92V Mpw (4.7.71)
Sm3 — om3 + % vy Mpg + 92 U Mpy - (4.7.72)

Decays of the a pseduosgluon in a more general CMSSM with Dirac Binos and Winos would be
more prompt.
8Recall that
1GeV™!H =658 x 107 % s, (4.7.75)
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As (GeV) | mg (TeV) 7 (s) L (m)
10° 5 3.63 x 10~* | 1.09 x 10°
103 15 2.64 x 107t | 7.93 x 107
104 5 3.09 x 1079 | 9.28 x 107!
104 15 2.26 x 1076 | 6.76 x 10?
10° 5 2.06 x 1077 | 6.19 x 107?
10° 15 1.51 x 107 | 4.51 x 1076

Table 4.6: Pseudosgluon decays in CGGM.

The remaining elements of the integral are approximated

4 2002
g 93 Mpg
(16;2)2 2 mz = 3.2 £ log(4). (4.7.78)

2

9g

_8
3

Taking go = 0.652 and g3 = 1.22, we find the lifetimes and decay lengths in table
4.6.

Consequences for LHC searches: For a relatively light pseudosgluon m,_ <
2my, then it will decay via the loop interaction into light quarks that hadronise and
are hidden in the low energy QCD background. As soon as the pseudosgluon can
undergo decay to two top quarks, i.e. m,. > 2my, then there is the possibility to
constrain the pseudosgluon via the one or two lepton decay topology as was done
in [9,138,145,186,252]. The most useful for our purposes is the study in [9] where
a simplified model approach is taken, and a limit on the pseudosgluon mass was

derived as a function of its effective a; coupling to two top quarks (see figure 4.13).
—iV2 Lo D ay oz 1y . (4.7.79)
For us, a is simply determined through
a = V2¢, (4.7.80)

where ¢ is just a function of the gluino and squark mass spectrum. If the gluinos
and squarks are sufficiently heavy then we can see there is no limit LHC searches

on the multitop decay of the pseudosgluon. In the CMSSM if we take again the
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Figure 4.13: The excluded regions in the (mg,a;) space derived from the single lepton
analysis (red solid line), and lepton analysis (blue solid line). In both cases, the dashed
lines correspond to the exclusion regions obtained when a4 is varied by +10%. Taken
from [9]. a4 parameterises the coupling strength of a single sgluon to two gluons. aq/A is
taken to be the reference value 1.5 x 1076 (GeV)~L.

approximations in eqs. 4.7.72 and 4.7.73 then we find

mpg 2, 980 GeV. (4.7.81)

In CGGM if we take again the approximations in eqs. 4.7.77 and 4.7.78 then we

find
3

ng

A2

>0.82 GeV. (4.7.82)

The limits in eqgs. 4.7.81 and 4.7.82 are easy to achieve in a UV complete model as
has been demonstrated in this chapter, and are indeed typical in order to achieve
a correct Higgs mass. It may be possible to exploit the considerable decay lengths
of the pseudosgluon observed in tables 4.5 and 4.6 to identify misplaced vertices for
heavy gluinos. This would still be a challenge however, due to the low production

cross sections show in fig. 4.11 and requires a separate, detailed investigation.
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Figure 4.14: RGE of m% (blue), m%{d (green) and mgg?) (red) from the GUT scale to

the SUSY scale in the CMSSM (left) and the CMSSM with a Dirac gluino (right) for the
benchmark points given in table 4.7

Model ‘ mo (TeV) M, (TeV) mpg (TeV) mél) (GeV) mf) (GeV)
CMSSM 2.750 3.000 N/A 118.1 127.4
CMSSM + DG 1.875 1.000 10.00 117.3 unknown

Table 4.7: Benchmark points for the RG evolution of parameters in the CMSSM with and
without a Dirac gluino shown in figure 4.14.

4.8 EWSB and fine tuning

As has already been indicated, EWSB in a model with a Dirac gluino is triggered
much closer to the electroweak scale. As is well understood in most SUSY models,
it is the stop mass (and at two loops a Majorana gluino mass) that causes this
to happen. The same is true with a Dirac gluino. The difference here is that the
stop mass can be negligible along the whole RG flow until the Dirac gluino mass is
reached. The supersoft contribution from integrating out the gluino is applied to the
squark masses, and they drive m2Hu negative for the remainder of the flow through
its RG equation given in eq. 4.5.35. This effect is demonstrated in fig. 4.14. The
upshot is that for a particularly large final squark mass, there is some control over

how large m% (and consequently |u|?) is. In the LL approximation at one loop we
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find

maGut
m%{u(mSUSY) = m%u<mGUT) - 5,(,1%1 X log (—>

msusy
o2 1= 3ET o (vt (4.8.83)
in the CMSSM and
m% (msusy) & m2 — (m2 +m?2) x S g (—T0E (4.8.84)
u q 47T2 mO + mq

in the CMSSM with a Dirac gluino where m? is given by eq. 3.4.59. Since m%{d

is so linked to the electroweak UV sensitivity, it is reasonable to expect that Dirac
gluinos have the ability to reduce the amount of fine tuning in the presence of larger
squark masses.

To quantify the impact this difference in triggering EWSB has on fine tuning,

we take the measure A from [253]

_ 0 log v?

A = max [Abs(Ap)], Ro = 8 log O

(4.8.85)

such that A~! gives a measure of how tuned the parameters O need to be tuned
to achieve the observed EWSB scale v. This measure was compared to the naive
one we used in eq. 2.3.347 by [254], and found although they were comparable,
the one in eq. 2.3.347 tends to overestimate the tuning since it cannot account for
correlantions between the parameters. The A for the analysis at hand was calculated
at the SUSY scale using the routines generated by SARAH modified to include the
thresholds discussed in Section 4.3.3 where appropriate. Since we are interested in
UV sensitivity, we take the Os as the set of parameters that would be fixed by the
UV model at either the GUT scale in CMSSM or the messenger scale in CGGM.

These are

Olcmssm € {mo, Mij2, 1,0, mpg},  Olcaam € {Aa, As, Messs 1 by, Mpg }-
(4.8.86)
The tuning in the CMSSM for the parameter space investigated in Section 4.5 is
shown in figs. 4.15 and B.4, and the tuning in CGGM is shown in figs. 4.16, B.14,
B.15 and B.16.
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Figure 4.15: Fine tuning in the CMSSM with tg = 10 and mpg fixed as indicated. The
red, purple, blue, and green regions correspond to u, mo, My, and mpg as the dominant
source of tuning.

In the CMSSM and in CGGM it is observed that, for a given Higgs mass, new
points exist with a reduction in fine tuning of typically up to a factor of two or three.
In the CMSSM also a line of points opening up with moderately large Higgs mass
mass but low (A ~ 200) fine tuning. These points occur where the two terms in eq.
4.8.84 approximately cancel, giving low — O(0.5 — 1 TeV) — values of my_ and p.
The strip is very thin, since an increase in either mg or M;/, makes the right hand
side become more positive in eq. 4.8.84, leaving no EWSB and decreasing mg or
M; /3 leads to a reduction in the Higgs mass. Unfortunately since these points are
at very low values of M/, that give rise to neutralino and chargino masses that are
excluded by LEP.

The reduction in tuning in CGGM is less drastic than that seen in the CMSSM.

This is because the mechanism reduces tuning through making logarithms smaller.
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Figure 4.16: Fine tuning in the CGGM with tg = 10, myess = 107 GeV and mpg fixed as

indicated. The dominant source of tuning is entirely from the y parameter.

In the CMSSM we have the log reduced log(mgur/msusy) — log(mpz/msusy),

whereas in CGGM this is only the factor log(muess/msusy) — log(mpg/msusy)-

Similarly, the reduction in fine tuning in CGGM is less drastic in the case of the

lower messenger scale than the higher messenger scale. In the CMSSM one can see

the full range of UV parameters becoming the dominant source of tuning whereas

in CGGM it is mainly the pu parameter across the entire space. However, in both

the CMSSM and CGGM, all the underlying UV parameters considered do have

associated tunings across the respective parameter spaces.
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4.9 Chapter summary

In this chapter we constructed a set of simple UV models with the supersoft mecha-
nism outlined in Section 3.4 by extending the MSSM field content by only what was
required to give the gluino a Dirac mass. We then performed the first implemen-
tation of the supersoft mechanism into a state of the art spectrum generator and
carried out an analysis of the spectra, the production rates at LHC8 and LHC13,
and fine tuning.

In the presence of a Dirac gluino, we find that it is possible to essentially decouple
the strong sparticles without affecting the electroweak spectrum except that one
finds that the pseudo—sgluon usually remains light and may even be a novel dark
matter candidate by forming neutral bound states with other strongly interacting
particles.

The decoupling of the strongly interacting sparticles from the electroweak spar-
ticles has been shown to give a handle on the production cross sections at the LHC.
Using a product of branching ratios approximation, we have shown that the Dirac
gluino completely removes the same sign di-lepton as a visible signature in current
LHC data. A full simulation of the decay chain needs to be done to confirm this
and it should also include the usually sub—dominant purely electroweak contribu-
tions to these events as these may now be important. It would also be interesting
to investigate how many charginos and neutralinos are still produced in these cases
with t-channel squarks.

Taking account the spectra and cross section suppression, we find that the final

states of these models at the LHC are therefore altered in the following way:

e The number of events involving the Majorana gluino propagator are suppressed
by roughly two orders of magnitude. This includes the same sign di-lepton

events.

e Events involving the pair production of gluinos are absent due to kinematic

inaccessibility.

e The mass hierarchy between the strong and electroweak sectors causes hard

jets in a SUSY cascade to be harder than usual.

e LOSP candidates are typical, yielding a number of leptons and missing energy
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in the final stages of a cascade. In the case of CGGM this may also include

the emission of a photon.

e The number of events with jets and missing energy will increase in the case of

a stable pseudo—sgluon.

Unfortunately there are no smoking gun signatures for these models. Their main
distinguishing characteristic is that there are different numbers of each type of visible
event compared to models without a Dirac gluino — generally fewer. Note that for
models of this type, a new lepton collider such as the International Linear Collider
(ILC) or Compact Linear Collider (CLIC) would be able to simply bypass the strong
sparticle sector and directly probe the much lighter accessible electroweak states.

Finally, the allowed tuning in these models is found to be reduced. In allowed
regions of parameter space, the reduction for a given Higgs mass is generally by a
factor of two or three, although one has to keep in consideration that a reduction in
fine tuning is being achieved whilst the gluino mass is being taken up to ten times
greater that which is usually considered for precisely reasons of tuning.

There are two obvious extensions of this study:

e The accuracy of the Higgs mass calculation needs improving in order to say
something more concrete and more tightly constrain the model. In order to
achieve this, the full set of general broken SUSY two loop RGEs should be
used below the Dirac gluino mass, allowing a two loop accurate Higgs mass
prediction. This should be possible with the general two loop RGE calculators
on the market [242,245]. Since these calculations are in MS scheme, one would
need to take care to convert to the DR scheme before implementing them into

a SUSY spectrum generator [255].

e In the case of the CMSSM, we kept the A terms zero for simplicity. As was
noted in [246], the presence of additional scalar octets allows g3 to remain
much larger over the RG flow, and can consequently generate large negative
A terms in the IR providing one starts with a negative A term. This model
has the potential to reduce tuning much further by allowing a reduction in the
squark masses and at the same time the length of flowing between the Dirac

gluino mass and the SUSY scale.
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Mapping Dirac gaugino masses

But please remember: this is only a work of fiction. The truth, as always,

will be far stranger.

— Arthur C. Clarke, 2001: A Space Odyssey

This chapter is based on my work done in collaboration with Steven Abel [2].

The text has been partially rewritten.

5.1 Background and purpose

There have been attempts in the literature to create a phenomenological model of
the MSSM as an (at least partial) Seiberg dual of some UV complete theory [83,84].
In these models, the mapping of the soft terms discussed in Section 2.3.8 generates
a set of boundary conditions for the IR theory, determining its spectrum in terms

of the spectrum of the UV theory

- 3N,—2N; -
M=-""""T 5.1.1
3N, — N; (5:1.1)

3N, —2N 3N, —2N
mizQTfmUV, mgz—TfmUv, (5.1.2)

The relation 5.1.1 was derived in Section 2.3.8 from the RG invariance of the dimen-
sional transmutation scale, and the relations in eq. 5.1.2 just follow from a more
general RG invariant function of the dimensional transmutation scale and powers of
the superfield wavefunction renormalisation. These results are interesting because
it allows us to make sense of theories that become strongly coupled due to their
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matter content on a microscopic level.

Theories with a Dirac gluino and a simple GUT structure! lose their asymptotic
freedom before the GUT scale [180], so it is worth investigating if at least the
SU(3)c sector of the MSSM with a Dirac gluino could be a Seiberg-like dual of
a UV free theory. That is the purpose of this chapter. The additional SU(3)¢
superfield content requires the generalisation of Seiberg duality to Kutasov duality
[10,256,257]. The aim is to arrive at a relation similar to egs. 5.1.1 and 5.1.2,
except for a Dirac gaugino mass. The difficulty to overcome lies in identifying the
RG invariant relationship that can be compared across the duality, since there is no
obvious superfield spurion in the A = 1 language that can be used to derive such a
result as was done for the Majorana case. What is identified is an N' = 2 spurion
that could achieve this, and independently, an RG invariant relationship originating

from the supersoftness of theories with Dirac gauginos

— = RG invariant. (5.1.3)

In the remaining part of the chapter it is demonstrated how an N' = 1 Kutasov
theory could be written as an N/ = 2 theory in the presence of a special kind of
SUSY breaking, and demonstrate how the same kind of breaking can induce the
Dirac gaugino mass. It is shown that the Dirac mass maps on to a dual Dirac mass,
and a sequence of RG flows and higgsings exists that connects the dual Kutasov
theories together (shown in fig. 5.1). Combining all of this means that we can
follow the RG invariant relationship along the flow, via the N' = 2 pair, and to the
other side of the Kutasov theory, yielding the result

"o (5.1.4)

S

. mp .
lim — = lim
H—00 g KFFL n—0

Qv

5.2 Introduction

In the previous chapter, we saw that the introduction of a ySF in the Ad of SU(3)¢
brought the theory close to losing asymptotic freedom (see fig. 4.4). Indeed, in [180],

Note: (SU(3))? is fine in this respect, but serious issues are encountered when one considers
an SU(5) GUT.
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gauge unification in the SU(5) case was seen to be impossible because the theory hit
a Landau pole before the GUT scale. It was noticed in [258,259] that achieving a
GUT beyond the Landau pole is possible in dualification if the low energy theory is
actually the dual magnetic description of an asymptotically free electric theory (as
discussed in Section 2.3.8). In this scenario, Seiberg duality acts upon the strongly
coupled gauge group then unification happens in the dual picture at physical values
of all the gauge couplings. There have also been attempts to construct a Seiberg dual
for the MSSM [83,84], involving the mapping of soft terms discussed in Section 2.3.8,
though in these cases, the SM gauge groups is a spectator gauge group to the Seiberg
duality.

Almost all of the literature dealing with Dirac gaugino masses considers them
in a perturbative setting. An exception is [154], where the adjoint fermions that
become the right-handed gauginos are the mesinos of a strongly coupled N' = 1
gauge theory. In this case, as with [83,84], the gauge symmetry of interest is just a
spectator flavour symmetry of the duality. Dirac gaugino mass terms can originate

from operators in the UV

el Dirac 1 A e
WeflfD = Wtr (Q Q) W, WFou (525)
where Wr,, is the gauge field superstrength of the flavour symmetry and W'® is the
gauge field superstrength of a hidden U(1)" gauge symmetry that aquires a D term
VEV (W) = 0, (D’). In this case, however, then the whole operator is blind to
the duality and is therefore trivial to map to the IR

Wis P = % P W' W, (5.2.6)
where the mesino ¢ ~ A~ tr(Q ) aquires a Dirac mass mp ~ A D/M? with the
flavour gaugino Ap.

A more interesting question is ‘what happens to Dirac mass terms involving the
gauginos of the colour gauge symmetry that becomes strongly coupled?’. To make
the question precise, we will focus on the N/ = 1 generalisation of Seiberg duality
to include a xSF X in the Ad of the colour symmetry SU(N,) known as Kutasov
duality [10,256,257,260,261]. In the free magnetic phase, an asymptotically free
electric SU(N,) theory with Ny flavours of left-handed quarks @) and right-handed
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quarks @, and an adjoint X with a superpotential

K
= tr( Xkt 2.
1 r( ), (5.2.7)

el

flows to an IR free SU(N.) theory with Ny flavours of magnetic left-handed quarks
q and right-handed quarks ¢, and a chiral adjoint =, and a set of mesons ¢; with a

superpotential
- k

mas — - —’T_ 1tr(xk+1) + Z ©; q’xk*j q. (528)
j=1

In this chapter we provide evidence that the Dirac gaugino mass terms

el Pirac — /5, /d20 0% X* W3 + h.c, (5.2.9)

W mas Dirac _ \/§mD /d29 0% x® Wg +h.c. (5210)

map from the UV to the IR as?

3
S

4 (5.2.14)

k+1

=
1
8
o
=N
EY
1
=
1
=}
Qv
=

across the Kutasov duality, analogous to eq. 2.3.324. Here the coupling  is a canon-
ically normalised electric superpotential coupling x X*! appearing in eq. 5.2.7, §

is the holomorphic electric gauge coupling, and (&, ﬁ) are the corresponding dual

2 Actually, as we will see later, the relationship we discover is much more like

. mp . mp
c1 lim — =g lim ————, (5.2.11)
p—>00 g KEFT n—0 g REFL

i.e. we are able to determine the form of the mapping up to a prefactor. This is not the same
scenario as with e.g. the Majorana gaugino mass where we are able to determine precisely

3Ne — 2Ny o

M=— 5.2.12
3N.— Ny ( )
The reason for this difference is that eq. 5.2.12 steps from the relationship between two RG

invariants A and A that are known to be equal

A=A (5.2.13)

since the physics matches across the duality. In the case if the Dirac gluino mass, we only have the
relation 5.1.3, as well (as we will show in this Chapter) an RG flow that connects this RG invariant
combination to its dual combination. Unfortunately we are not in a position to say which RG
invariants need to be equal, but are in a position to say that there is good evidence one exists,
leaving the mapping of the Dirac gaugino mass ambiguous up to a prefactor.
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magnetic variables.

5.3 A key observation

We have already encountered an all-orders RG invariant relationship involving mp
in eq. 3.4.45 due to the (potentially) holomorphic nature of the supersoft operator.
For convenience, we rewrite the expression here (where to match the notation of

Kutasov, our xSF is X rather than &)

By = mp (%X + %) . (5.3.15)

By the non—renormalisation theorem, we can rewrite vx as

kE+1
By = ; KX (5.3.16)
and so the expression 5.3.17 becomes
/BH 6{]
oy = —+ = 3.1
B mDL(kH)w (5.3.17)

One then sees that the combination mp/(g KZ%“) is an all-orders RG invariant

d m m x g m
L i = —- i |: 6 + &:| + Aﬁ i =0. (5318)
dt g KR g KF+H /f(k_l_l) g g Rkt

Our task would be to then identify which holomorphic RG invariant A contains the

combination mp/(§ H%“)

A= +ooti 24 (5.3.19)
g,.;;le
for some 7, j, and in the dual picture
A=...t+ogd "0 (5.3.20)
G RFHT

Arguing A = A as was done in Section 2.3.8 would then give the map 5.2.14. Es-
tablishing the map 5.2.14 is not as straightforward as it was for Majorana gauginos

however, as there is no coupling in a renormalisable N’ = 1 theory that can be
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promoted to a spurious superfield that contains the Dirac mass. Consequently, no
all-orders RG invariant A can be immediately constructed and matched. It was how-
ever shown in Section 3.3.4 that a spurious redefinition of the NV = 2 gauge coupling

can introduce a Dirac gaugino mass (see eq. 3.3.40) suggesting a way forward.

5.4 Overview of method

As mentioned, in Kutasov theory (or indeed any N' =1 SUSY gauge theory) there
is no RG invariant that can be built from the couplings of the N/ = 1 theory
which can incorporate a Dirac mass from promoting the coupling constants of the
theory to superfields. It is possible to achieve this in an N/ = 2 theory where the
X becomes part of the N = 2 gauge supermultiplet (see figure 3.1). One way of
achieving this is to write the Kutasov theory as the spurion of an N = 2 theory
and then introduce a spurion for the gauge coupling to generate a Dirac gaugino
mass. The 2 into 1 won’t go theorem [67,68] (see Section 2.3.7) greatly restricts
how N = 2 — N = 1 breaking can occur. We will therefore break SUSY in a
way that evades the assumptions of the theorem by using a combination of electric
and magnetic FI terms [262-264] inspired by [60,61] and will be referred to as the
Antoniadis—Taylor—Partouche (ATP) mechanism.

The remainder of this Chapter proceeds as follows:

e We consider the Ny = 2 N, version of the N' = 1, SU(N.) Kutasov theory
with a superpotential deformation h Q X Q — where h < g is parametrically
small. We show perturbatively that for & = 2 this theory can flow to the
N = 2 fixed line in the IR, where h — g and x — 0, i.e. N'= 2 SQCD with a

superpotential deformation x X**! where now xk < g is parametrically small,

e We show that the A coupling in the magnetic description of the deformed
Kutasov theory induces the correct Higgsing for any k, causing the magnetic

description to also flow to an N/ = 2 SQCD theory,

e We establish that the above deformations can be generated by electric and

magnetic FI terms in an N’ = 2 theory with an appropriate prepotential.

This completes a route that goes from an electric N' = 1, SU(N,..) Kutasov theory

to its magnetic dual via an intermediate pair of N” = 2 duals. The Dirac masses can
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Figure 5.1: The flow between N/ = 2 S—duality and N/ = 1 Kutasov duality. A: The
duality of [10] is deformed with a parametrically small AV = 2 gauge interactions for the
quarks. The resulting perturbative flow to A/ = 2 SQCD is analysed in Section 5.5.2. B:
The the magnetic dual of the N/ = 2 quark gauge interactions are observed to Higgs the
magnetic theory down to a gauge group of the same rank as the electric theory. This
theory then flows to N'= 2 SQCD’, as discussed in Section 5.5.3. C: The electric theory
of [10] is now written as an N’ = 2 theory broken to N’ =1 at low energies by electric and
magnetic FI terms, as discussed in Section 5.6.3. D: The existence of a small dual 2*+!
deformation is shown to be required in the presence of a small electric X**! deformation.

then be added by additional FI terms and tracked down the dual RG trajectories
to the dual Kutasov theories using eq. 5.3.15. A schematic of the overall picture

(before adding the soft terms) is shown in figure 5.1.

5.5 From Kutasov duality to A/ = 2 duality

In this section we will try and understand the RG flow from a pair of dual Kutasov
theories to a pair of dual A/ = 2 theories. Ideally we would like to be able to
study the flow from the electric Kutasov theory at a fixed point to the fixed line of
N =2 SQCD since then we would know the anomalous dimensions precisely (see
Section 2.3.8). In particular one might imagine that there would be a BZ-like fixed

point for the Kutasov theory with a parametrically small superpotential deformation
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|SU(N,) | SUWV,), SUWND, U(), U@,

Q| O O 1 N 1—Rxye
N - - Nr
Q| O 1 O v 1-Rxge
X | Ad 1 1 0 Ry

Table 5.1: The matter content of the electric Kutasov theory with the superpotential
deformation @Q X Q). All the flavour charges are anomaly-free with respect to the gauge
symmetry. Rx is fixed by the superpotential.

hQ X Q and with Ny = 2N,. Such a theory could flow to the N = 2 fixed line.
Unfortunately this turns out to be impossible due to the a theorem [265-267] as we
shall show; either the N' =1 theory or the A’ = 2 theory cannot be at a fixed point
(line) if a RG flow is to connect them.

The next best thing — the RG flow from one theory not at a fixed point (line) to
the other at a fixed line (point) — does occur perturbatively in the k = 2, Ny = 2N,
case, as we show in subSection 5.5.2. We then identify the Higgsing mechanism
whereby the strongly coupled dual NV = 1 theory flows to the dual N' = 2 theory
for any k.

Finally, we propose a way to extend the study to regions of parameter space

where neither dual is perturbative.

5.5.1 No flowing between fixed points and fixed lines

The theory of interest

Consider N' = 1 Kutasov theory with a superpotential deformation hQ X Q cou-
pling. The full electric superpotential is

We=hQXQ+ ﬁ fr(XFH). (5.5.21)

The field content and representations are detailed in table 5.1. The h = g and Kk = 0
limit corresponds to N' = 2 SQCD and the h = 0 limit corresponds to the electric
Kutasov theory. Providing %—’: <3++V7and k < 15, the X**! term is relevant at
the IR fixed point in the limit A — 0 if [268]

N; 1 [(5k — 4)2
s =4 — | —¥+1]. 0.
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It is important that the X**1 term is relevant as it was shown in [256] that if it is
marginal or irrelevant in the IR, the theory has no stable vacuum. The Kutasov

theory has a conformal window for

1
k:—NC < Ny < 2N, (5.5.23)

_1
2
and is in the free magnetic phase for

1 1
2

In this chapter we are intending to flow from this theory to the N' = 2 theory
with small x induced by a FI term. We mainly interested in the influence of the
operator Q X @, and anticipate that the RG flow will be dominated by either h or
 in different regions. Therefore these bounds cannot be immediately used to draw

conclusions for our investigation.
RG flow constraints from the ¢ theorem

Defining the dimensionless coupling 7,, = & ;/*~2, the SUSY RGEs are to all orders

dg? an?

dn?

= e[k + D +2) - 6],

B ¢® 3Cona —2N;To(l —vg) — Taa(l — 7x)
1672 1—TAd8%

Bg:

)

1 N2 -1
Th == Copg = —=
O 27 20 QNC 3

Coaa = Tha = N,

where the first line is by definition, and where f3, is the all orders NSVZ beta function
for the canonical gauge coupling (see eq. 2.3.259). If we assume that both theories

can reach a fixed point with the same values of N, and N then the vanishing of the

NSVZ p-function set

0= Yx + 2’)/Q, (5525)
0= (k + 1)(")/)( + 2) — 06, (5.5.26)
0= 3NC—Nf (1 —’yQ) — N, (1 —’yX), (5.5.27)
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or equivalently, using eq. 2.3.274

0=Rx + 2RQ — 2, (5528)
0= (k’ + 1) Rx — 2, (5529)
0= NyRg+ N.Rx — Ny. (5.5.30)

The equations 5.5.29 and 5.5.30 set the U(1) 5 charges to be the ones of the standard

anomaly free electric Kutasov theory

2 N,
= =1— Ry —=. 5.31
Ry 1 Ro RXNf (5.5.31)
We see however that eq. 5.5.28 then becomes
N, N,
- 2(1—Ry==)—-2= 1-2—= 5.32
0=Rx+ ( RXNf) RX( Nf)’ (5.5.32)

and so in the anomaly free theory, to maintain a U(1), symmetry we can have:
e Ny =2N, with Rx =2/(k+ 1) and both the X*™ and Q X Q operator,
e N;+# 2N, with Ry =2/(k+ 1) and only the X*™! operator,
e Ny # 2N, with Rx =0 and only the Q X Q operator,

o Ny # 2N, with Rx # 2/(k+ 1) or 0 and an empty superpotential. This is of

course not possible as already mentioned the theory has an unstable vacuum.

If Ny # 2N, there can be no fixed point behaviour unless either h or 7, are zero. If
and only if Ny = 2 N,, can one find fixed point solutions of the RGEs with non-zero
h and 7,. The corresponding U(1), charges are

2 Rx 1
Rx Rg 5 P (5.5.33)

W=20 = (5.5.34)

We now see the problem: h and k preserve the same U(1), symmetry and the

corresponding charges are completely constrained. The a theorem [265-267] says
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that ayy > agr where at a fixed point a can be determined in terms of the R

charges [269, 270]
3

&:3—2[

3tr(R*) —tr(R)] = 3% a, (5.5.35)

where the trace is over the fermions in the theory. In the electric Kutasov theory

a=2(N?-1)
— 2NNy (Rg—1)+ 6N, Ny (Rg —1)°
— (N2 = 1)(Rx — 1)+ 3(N?—1) (Rx — 1)%, (5.5.36)

where the first, second and third lines are the gaugino, quark and adjoint fermion
contributions respectively. If some RG flow were to occur in a theory that allowed
non-trivial fixed points for A # 0 and x # 0, we see that a flow from a non—trivial
BZ-like fixed point in the Kutasov picture and the N/ = 2 fixed like cannot occur

because they have the same value of a.

5.5.2 Perturbative flow to /' =2 SQCD via Kutasov theory

Instead we will look at the perturbative flow from a different fixed point in the
theory — one without a superpotential (but including the superpotential terms as
deformations with h,n, < g) — to the N' = 2 SQCD fixed line via the N' = 1
Kutasov theory that is not at a fixed point. To be concrete, we will set k£ = 2 and
will take Ny = 2 N, in order to allow the presence of both the Kutasov and N = 2
gauge interactions

W =hQXQ+ gtr(XS). (5.5.37)
The R charges in the theory are

2
Ry =Ro =3 (5.5.38)

and the perturbative anomalous dimensions are

1

e =3 G (I —g7), (5.5.39)
1 3

X = {Nf Ty h® + Ok 2 (4 Cop — 5 TAd) n? — Caad 92} : (5.5.40)
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0 X t O

Figure 5.2: RG flow of g? (blue), h? (red) and n?/g* (black) from the UV (right) to the
(IR) left. The horizontal axis is ¢ = log u, and we take N, = 4, Ny = 8. 8/3 is the n2/g>
quasi-fixed point value for this N. and Ny given by eq. 5.5.41. We see the couplings
h? and n? grow form the UV to the IR. Initially 7, dominates and we are in the electric
Kutasov theory at a quasi—fixed point, then h takes over, pushing n, — 0 and h — g.

Eventually 8, = 84 = 0 and we arrive at the fixed line of N’ =2 SQCD in the IR.

t

Note that since the theory will be weakly coupled in this analysis, the anomalous
dimensions will be small and so the problem of particles hitting the unitarity bound
can be ignored.

Starting from the theory without a superpotential, one might think that imagine
that the x operator would be marginally irrelevant. However the theory exhibits

quasi—fixed point behaviour and 7, /g runs to a fixed value

(%)

A numerically solved example is shown in figure 5.2 with further examples with

_ 2C5aa

quasi—fixed

(5.5.41)

different N. shown in appendix D. In all of these examples, the UV boundary
conditions are g = 1 and h = 7, = 107! and the period of running for ¢ is [-103, 0],

where t = 0 corresponds to the UV.

5.5.3 Higgsing in the dual theory and flow to N =2 SQCD’

In Section 5.5.2 we showed that electric Kutasov theory with & = 2, Ny = 2 N, and
(almost) empty superpotential flows first to a quasi-fixed electric Kutasov theory
with h < 7, ~ g and then onwards to the N' = 2 SQCD fixed line. Let us now

consider the dual theory.
We know that the dual of the N' = 2 theory is also an SU(V,) gauge theory,
the dual of Kutasov theory is an SU(]VC) = SU(k Ny — N.). For k = 2, this is a
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SU(ONe) | SU(ONg)r | SUONp)r | U(L)p UD)g
q O O 1 % 1— Rx%
q O 1 O —N% 1— ijg—;
T Ad 1 1 0 R,
W) 1 O O 0 2—2335%—;—&(]'—1)

Table 5.2: The matter content of the magnetic Kutasov theory where ]f\\f/C =k Ny — N..

SU(3 N,) theory. Clearly N. # 3 N, and so something has to happen in the dual
theory to make the ranks of the gauge groups match up. Interestingly, the growing
h coupling that becomes the N = 2 SQCD quark gauge interaction induces the

necessary Higgsing for any value of k:

SU(N,) Electric Kutasov —<«— SU(k Ny — N.) Magnetic Kutasov

1hQXQ | Higgsing
N =2 SU(N,) SQCD SU(N.) “Electric” Kutasov + hq 2z’ ¢
17

The dual theory in our region of interest Higgses down to a theory with the same
field content and superpotential (up to relabelling) as the original electric Kutasov
theory, hence “electric” theory. In this region the theory is strongly coupled however,
and so we cannot claim for certain that it will end up hitting the N = 2 SU(N,)
SQCD fixed line in the IR as the true electric theory does. The anomaly free R
charges do allow this to happen however, and in any case, if the theory becomes
weakly coupled at any point then it will be in a perturbative regime that inevitably
flows to the N’ = 2 fixed line. Since our method uses RG invariants, if this occurs
at any point in the RG flow (not just in the IR) then this is sufficient to establish
the map.

Let us now show this Higgsing. The field content in the magnetic SU(E) =
SU(kNy — N.) Kutasov this theory is N; flavours of left-handed magnetic quarks ¢
and right-handed quarks ¢, an ajoint x, and k mesons ¢\ that are identified in the

electric theory as

m¥ - QX Q, j=1,...,k, (5.5.42)

with canonically normalized fields W) ~ A=7m). The field representations are

detailed in table 5.2. In the magnetic superpotential is
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k
——tr(2") + Z & o) Gt g, (5.5.43)

Wwmas — p (2) 5nm
O b+ T

where n, m are flavour indices.

Higgsing for k = 2

If we set k = 2, the superpotential becomes (dropping the indices)

R ~ ~ ~ ~
Waig = ho® + 2o +erpV qag + &% g (5.5.44)

The ¢® F term sets

?Gq=—h. (5.5.45)

These equations have rank Ny = 2N, and thus, once it turns on, the coupling
h induces the Higgsing SU(3 N.) — SU(N.) as required. Using a combination of

flavour and colour rotations, we can arrange the VEVs for ¢ and ¢ to be

]INCXNC
(¢) = (@) ~ o Inwn, |- (5.5.46)
Writing the SU(3N.) adjoints as
e (5.5.47)
y

where z is 2 N, x 2 N, and 7 is N. x N, the ¢; coupling then becomes an effective

mass term for the adjoint z and the traceless mesons

1
) — ) _ (oM 5.5.48
@ @ oN, r(et), ( )
where the mass is of the form
e
e rs (5.5.49)
&)

The flavour is also broken to the diagonal SU(Ny), x SU(Ny), — SU(Ny),. In
addition ¢® gets a mass together with the Higgsing 2 N, block of ¢. Explicitly, we
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can parameterise the VEVs of ¢ and ¢ by

v+ v+n
g = an i— ay (5.5.50)

p p

and se a a mass term term & (n -+ 1) ¢® v is generated in the superpotential with
the 8 N? massless combinations 1 — 7 corresponding to the Goldstone modes that
are eaten by the 8N? heavy gauge bosons of the broken SU(3 N.). The left handed
quarks p and right handed quarks p are left massless and are the light quarks of the
unbroken SU(N,). The superpotential after the Higgsing for the effective theory is
then SU(N.) theory is )

pymes — §x3+ﬁ,5xp (5.5.51)

We see that this theory has the same light field content, superpotential and anomalies

as the original electric theory. We therefore anticipate that this theory now flows to
the N’ =2 SQCD fixed line.
Higgsing for general k&

We will now show that that the h coupling induces the required Higgsing from
SU[(2k — 1)N.] — SU(V,). From eq. 5.5.44 the = and ¢ equations of motion are

O 0 0= hdumdaj + & Gm ™ g, (5.5.52)
k k—j—1
r: 0=fa"+ Zéj oY) Z AN Al € (5.5.53)
j=1 r=0

From the first condition we see for k > 3 and non-zero ¢;

<gm o C]n> - <(jm =’ C]n) == <gm$gn> = <(jm Qn> =0 (5.5.54)
(Gm 2"72 ) # 0. (5.5.55)

v+ P1
2y N ~
T = I I q= P1 ) qT =lv+n], (5556)
y x B
P2 P2
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where z is an (k — 1) Ny x (k — 1) Ny matrix, v, n and 7 are Ny x N; matrices, p;
and py are (k — 2) Ny x Ny matrices, and py and py are N, x Ny matrices. We can
solve equations 5.5.54 and 5.5.55 by taking z as

ONfXNf H]Vf)(]\ff
@~ o (5.5.57)
: : ]INfXNf

ONfXNf

such that

<Zk—2> N HNfXNf

(5.5.58)

and then separating the VEVs of ¢ and ¢ by £ — 2 permutations,

I Ok—2)Ny x N,
. NyxN
@~ " @~ Invew, | (5.5.59)
so that clearly
_ [Ny <N -
(" %q) R ~ ), (5.5.60)

as required. Then (z) which is rank (k — 2) Ny, together with (g), leave the bottom
p2, p2 block and hence SU(N,) unbroken.

5.5.4 Flow away from N; = 2N,

Now one can see a possible way to extend the analysis away from the constrained
Ny = 2 N, regime — although we leave this for future study. From our Ny = 2 N,
clectric theory we can add n additional heavy quarks Q" and @’ with a superpotential
mass term m Q' Q" and m chosen such that it is in the period where 7, > h. In
the UV, these quarks give a new contribution to the beta function that pushes the
theory to a Landau pole rather than being asymptotically free. In the dual picture,
the mass term is a linear term for a new meson ¢ ~ A1 Q' Q' which causes a
Higgsing for the new magnetic quarks ¢’ and ¢’. This theory is asymptotically free.

It will be useful in our setup to note that mass deformations can be introduced in a
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manifestly N' = 2 SUSY way [52,271].

5.6 N =2 — N =1 with a superpotential for X

5.6.1 Overview

We will now show that the Kutasov theory can be written in a manifestly N = 2
SUSY way and induced by the ATP mechanism in HSS. The ATP mechanism was
formulated in HSS in [272], and has been coupled to a number of interesting theories
[58,273-278], of which the most relevant for this study is [58] where the the theory
in question is N = 2 SQCD. We will proceed as follows:

e We write A/ = 2 SQCD in the HSS formalism described in Section 2.3.4. For
comparison, we also write this theory in the standard N’ = 1 superspace in

Section E.4.2,

e Noting the restriction from the 2 into 1 won’t go theorem [67,68], we collect
the necessary ingredients to achieve N' = 2 — A = 1 breaking, and check

that it successfully reproduces the ATP mechanism,

e We show that a specific choice of the prepotential F (W) generates the required
scalar potential and fermion interactions, matching the known result from

N = 1 superspace which is presented in Appendix E.5.1.

5.6.2 A =2 SU(N,) SQCD

The low energy EFT for N' =2 SU(N,) SQCD is [279]

Sacn = S¥AT + Sy 72 (5.6.61)
1

Sé\ﬁf = 1671 /d4$ (D)* FOW) + h.c., (5.6.62)

SH=? = —/ dud(*Q+ 2T QT (5.6.63)

where Q7 is a FS hypermultiplet with gauge and global representations given in
table 5.3, V' is a N/ = 2 vector multiplet, and W is gauge field hyperstrength with
component field expansions 2.3.204, 2.3.219 and 2.3.223 respectively. The notation

and derivatives are all detailed in Section 2.3.4 with the measures and normalisations
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| SUN,) | SUY)
o o0 | oD

Table 5.3: N' = 2 superfield representations in A/ = 2 SQCD

given in Section E.2. The difference in the prefactor of the SQ@ZMQ piece is purely

conventional.

5.6.3 N =2— N =1SU(N,) SQCD
Evading the 2 into 1 won’t go theorem

Before embarking into HSS for a second time, it is worth briefly commenting on how
the mechanism we are about to use — the ATP mechanism — circumvents the 2
into 1 won’t go theorem discussed in Section 2.3.7. this argument requires noting
that eq. 2.3.262 isn’t always valid in the case of spontaneously broken SUSY. The
SUSY algebra in eq. 2.3.262 follows from the supercurrent algebra

/dgy {J)(2), Iposy)} = 2055 645 T (). (5.6.64)

This is not the most general current algebra consistent with SUSY [280], as the
Jacobi identities of SUSY [37] allow an additional field-independent constant piece

A=0,0:C" (5.6.65)

to be added. A commutes with all quantities in the theory so the SUSY algebra on
the fields is not modified [281]. If Cp = 0, then we can integrate eq. 5.6.64 over the
x 3-space to reproduce eq. 2.3.262 as is usually understood and the no-go theorem
holds. When C# 5 # 0 there is an infinite contribution to the right hand side of eq.
2.3.262 from A [ d*z making the SUSY algebra derived in this manner ill-defined,
and allowing evasion of the no—go theorem. The ATP mechanism is precisely a
realization of a physical model inducing a non-zero C*p [282], where the vacuum

energy in the partially broken SUSY vacuum is now related to the FI terms [273].
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Table 5.4: N = 2 superfield representations in N’ =2 SQCD coupled to U(1)_

Formulation in harmonic superspace: the ATP mechanism

To achieve spontaneous breaking of ' =2 — N = 1 via the ATP mechanism, we
first extend the gauge theory SU(N.) — SU(N,) x U(1)_, where Q% is charged under
the U(1)_ factor as shown in table 5.4. The resulting action is the same as in 5.6.61
and 5.6.63 with prepotential F (W, W*) written as a general expansion in W'’s, and

the covariant derivative
DTt =D+ (V*Jr + Vj*). (5.6.66)

The --index on VI or We is equivalent to the trace U(1) element of the U(N,)
gauge group in [58], in the sense that we can define a Kéhler metric for the whole
gauge theory through the prepotential Fy, ., (W, We). From now on we use the
following notation to distinguish SU(N,) and U(1)_ indices

a=1,...,N*—1, a=o,1,...,N>—1,

and we normalize the U(1)_ generator as ¢, = ﬁﬂmxm- N = 2 SUSY can be
broken spontaneously by giving the electric or dual magnetic® D terms of the U(1)_
gauge a constant shift. The dual magnetic D term D?),o is shifted by the electric FI

term
Am SN = /dudg<—4> V)t 4 he. = 2/d4x ¢4D>4 +he  (5.6.67)

o — gij ot 9 AL o)A ol "
where {7 = £V i uj = 2&(uTut)?. This shift can be seen by writing the whole
action as an integral over the analytic subspace and varying it with respect to V"

yielding the equation of motion [56,272]

(D) F, —h.c. =4t (5.6.68)

3see Section 5.8.
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Because F, = Wp,_, D 2(00)" D4, the equation of motion 5.6.68 shifts the magnetic

dual D term Dﬁo by an imaginary part on-shell [58]:

Dj  =Dp_ +4i¢h, Dy =Dp —4iéh (5.6.60)

Similarly, the electric D term is shifted by a FI term for the dual magnetic gauge
field of the form

A7 Sﬁ;;m =2 / d*z &5 {(D) (00)" [F, + F.. 4i¢5(00)%] —2 02} +hee.

(5.6.70)
where
szj = 47TQ(i t, Qj) - _sz' (5.6.71)
The Q’s have an explicit SU(2) , decomposition that will be useful later
Ql 9 1 aYl 2
7 = ~(@1Q"+ QM. Q% (5.6.72)
Q3 ol AT, 2
== QQ - Q. (5.6.73)
% _ A5, 2 AT ol
P, Q- O, Q. (5.6.74)
2me

It has been shown that the presence of SMag ¥1,, Shifts the electric D term DA by

an imaginary constant off-shell, allowing us to write Sé\é:CQD + S{\\/Ifa;m . as

1 1 —
, / d*z (D)*FOV,W°) — = / dud(*Q+ 27 Q* +h.c., (5.6.75)
1677 2 DA_DA
where
DA =D4 +4i¢),  DA=D?—4ig;. (5.6.76)
Taking the full off-shell action as
Soff-shell = SSQCD + S F% + SMag FL o (5.6.77)

and solving the D terms up to third derivatives in the prepotential, we finally arrive

at the desired on-shell action for AV = 2 SQCD coupled to the ATP mechanism:

SOH-ShGH = /d4l’ (Ekin + ﬁyuk + EPauli + ‘Cil Fermi + Ei) Fermi ~— V/) ) (5678)
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where Lyin, Lyuk, and Lpayi are unchanged from their respective forms in Appendix

E.4.1, and

27i 1 _ A
_471-‘6?4 Fermi — (T Fab0d| Aa}‘b - g gab<fa6f’ )\e>\f - fafe‘ AeAf)-Fbcd|>
x (AA)4 +hee., (5.6.79)
471—‘6;) Fermi — %Dm A| fabc| ()\b)\c)A + h.C.; (5680)

1 . — o :
AnV' =2 gu DY DG + 47 QH{X, X} Q'

1 a V C e . - -
— 5 Gab fig fop XEXTXXT + 4 (A +ENEA-EL),  (5.6.81)
where the solutions of the D terms have the convenient decomposition

D*4 =D%"* + DG + Dy 4, 5.6.82
DZ,A _ D;z(,A —l—DZjA,

& = (€M 0; + (6 + &) Fual,
DA = —2¢¢;),

DZQ’A = —2ig"Qj,

5.6.83
5.6.84
2.6.85
5.6.86

o~ o~ o~ o~ o~ o~
~— N N~ N~ N~

DK,A _ _%gab Foed| A ANA + hee.. 5.6.87

We shall refer back to these equations frequently below.

N =1 conditions: scalar potential

We will now ensure that the properties of N' =2 SQCD coupled to the ATP mech-
anism as described in Section 5.6.3 are those of the NV = 1 theory presented in
appendix E.5.1. There are three conditions that one could consider for the vacuum

to respect N = 1:
e Vacuum stability,
e Zero vacuum energy.
e A scalar potential corresponding to the N' = 1 superpotential in eq. E.32.

As we shall see the first two of these provide a constraint on the FI terms while the

third is observed to be generally true, and relates the prepotential to the desired
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N =1 deformations. In addition, although it is possible to set the vacuum energy to
zero, it is not obligatory for preserving ' = 1 SUSY [264], but it is natural to apply
it. Results for the first two are available in the literature but somewhat scattered,

so it is worth collating all three elements here.

Vacuum stability: Stable SUSY breaking vacua exist on the Coulomb branch
(i.e. with (@) = 0) which can be achieved by assuming X° # 0 [58,273-276,278] or
on the Higgs branch when X° = 0. In order to study the latter without breaking
SU(N,) one could introduce hypermultiplets charged only under U(1) , but this case
is more complicated to analyse as the Goldstino comes from a linear combination of
the new quarks and the \’s, so we will restrict the discussion to the former case*.

Noting that the scalar potential 5.6.81 contains®
1 a b e yvd yve vf
—4nV D 5 Yab Jed o XXX XY,

it follows that (X®) = 0 where t; are non—Cartan generators. Therefore only (X2)

0 is possible, where ¢, are Cartan generators. The vacuum condition is [275]

oV i
4 = — (Fap D4 D) = 0. 5.6.88
= (oowep ) =5 / 05
The only non-vanishing (F,;) are the diagonal elements (F; ;) and (F,,), whilst the
only non-vanishing (Fop) are (Fuqqe) and (F,;;). It follows that (D*) = 0 and so
condition 5.6.88 becomes

(Faaa D D%4) = 0. (5.6.89)

The choice (F,44) = 0 corresponds to unstable saddle points, and so a stable vacuum

must satisfy

(D=4 DoAY = 0 (5.6.90)

4By Coulomb branch we are referring to X° # 0. In this vacuum the hypermultiplets acquire
mass from X° but the X% are unconstrained by the equations of motion because of the extra degree
of freedom provided by X°. In the presence of the superpotental term W O X3 (assuming that
we can eventually make it), setting X = 0 would force some X? # 0, with the theory sitting at
an Argyres—Douglas point [283]. This would break the gauge symmetry, and may be interesting
for phenomenology; we leave this possibility for future study.

5We will refer to the scalar potential after D term shifts and substitution as V instead of V' as
was used in 5.6.81 in order to avoid confusion with derivatives and to reduce clutter.
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for every a. By fixing the SU(2)g direction appropriately, this condition is solved
by

1 _ _
<‘F00> = _E (6 + ZS) ’ §A + 514 = (07 €, §)A7 gé + gé = (07 m, O)Av (5691)
where e, m and £ are real constants. Without loss of generality, taking % < 0 fixes

the sign of the solution as we demand a positive metric, (g,,) = —% > 0.

Zero vacuum energy: The vacuum energy is given by
(V) =—4&m—4i(e" +E(&5 — &), (5.6.92)

so that the choice
&b —&h = (0,0,im)? (5.6.93)

makes it vanish [262,278]. The form of £5 is then completely fixed, whereas the

imaginary part of €4 is still undetermined,

Re¢d = % (0,e,6)4, &4 =—1(0,1,9)" (5.6.94)

m
2

A scalar potential corresponding to Wyer in E.32: Our final requirement is

that we can describe Wyes correctly in this setup. The first term in 5.6.81 is
ATV D 2% (€, —iQu)" [& — i1 Q)" (5.6.95)
From the above, 5.6.74 and 5.6.81, the U(1)_ part of the potential takes the form
e O o At e 9 2
vex PP L @ - + Lo Dle -0 v ier] L (690

confirming that it is stable if X° > g¢&. Note for later reference that along the
Coulomb branch the quarks all gain masses and decouple.

Now consider the SU(N,) part. The kinetic terms already identify g, = 70 Kap,
so in order to reproduce the scalar potential E.32, the above together with eq. 5.6.71
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suggest the identification
47

V2

Defining a rescaled superpotential Weﬁ” = 471 Weg (noting that W*| =i V2 X ), this

aI/Veff

(2)
£0] ¢ S| S

(5.6.97)

implies

Wet D (eW° +mF)| +.... (5.6.98)

Hence a reasonable guess is that in order to preserve an N'= 1 SUSY gauge theory
with an effective rescaled superpotential Wdef for the traceless SU(N.) matter in the

Ad rep (which we will henceforth denote X), one should take

T We -
FW) = 5 WEW? + Az Waet, (5.6.99)
where A? = m is the scale of new physics integrated out to form the effective
prepotential, and the conditions above give Im(7) = —%. For example deformations

of the Kutasov type can be embedded by choosing

K

— tr(XF). (5.6.100)

Wdef: 47Tk

Note that in order to reduce clutter, until further notice the s we refer to will be
the holomorphic coupling, not the running coupling of the canonically normalised
theory. Let us check that the N' = 1 scalar lagrangian is recovered in the decoupling

limit with this prepotential. We have

oo = Ta, (5.6.101)
1 .
Jao = — Oa Waet, (5.6.102)
m
We R
Yab = T2 0g; + T 0a Op Waet, (5.6.103)

where 7 = Im(7). This metric is, in matrix form

g=—| ™™ b (Vo 2 (5.6.104)
m Im(Wdef,E) m T 0g; + We Im(Wdef,aB) 7

February 19, 2015



5.6. N =2 — N =1 with a superpotential for X 187
where we have introduced the notation
Waet,a = 0z Waet (5.6.105)

and similarly for the other subscripts of Waer. The inverse metric g~ ! in the decou-

pling limit (m, £) — oo, 7 = constant is

where

3.9 4o 13 3 2 2 -1
Ty m” g°° = Waet,a Wy 5 +m° 15 +O(m™),

7'23 m? g% = Wdef’[j <W° Wdeﬁ a5 — m7’2> + O(m_l),

Ty m? 9°B = Wdef,é (Wo Wdef,aé - m7'2> +0(m™),

(5.6.106)

(5.6.107

)
(5.6.108)
(5.6.109)

)

75 m? gd?’ = Wdef,aWdefJ; + VAVdeﬂ W (W —mm) +m?ry +O0m™), (5.6.110

where we are currently taking Wdef to mean Im(Wdef) for brevity until stated oth-

erwise. The F term part of the scalar potential is contained in

ATV D29 €, — i Qu]? & — i Q)T
— 29ab ‘/aln

where

Vi = VAV

~ A
‘/aA = (07 67&) 62 + (07 Wdcf,au O) —1 Q(z

and decomposed in indices

VA= (-iQle—iQ%E—i Q)"
VA= (i, Wdef,& —i Q5 —i Q)"

(5.6.111)

(5.6.112)

(5.6.113)

(5.6.114)
(5.6.115)
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Terms arising in the scalar potential are then

Voo = =|Qf + e =i Q0P + 1€ =i QP (5.6.116)
Vie = — Q4 QM + (Waer,a — i Q2) (e —i Q)1 —i Q3 (¢ —i Q%) (5.6.117)
Vig = —QL QT + (Waer.a — 1 Q%) (W —1 Q2T — Q2 Q1. (5.6.118)

If we now focus on just the SU(N,.) sector of interest, keeping only the highest powers

of £ and m, we see that, reintroducing the Im (W) notation

T2 gdo V(zo D iIHI(Wdef’gJ Q%, (56119)

T2 Q&B Viz O —Qé QI%T + (Wdef,a — 1 QZ) (Wdef,l} —1 Qg)T o Qg QST' (5.6.120)
We then see that

27V D> —Qloll — 022 — 03 Qff
+ ilm(Wdef,a) Q2 +i Im(Wdef,a) Q3

+ (Wdef,& — i Q2) (Wdef,& — i QNI (5.6.121)
eventually yielding
20 1 oW, ’
4nV o S| — L 30 . 5.6.122
T |iy/2 0X¢ 2 < ( )

Comparing with egs. 5.6.74 we see that we must have
Q) —iQl=2mi(Q" — Q) (Q + Q). (5.6.123)
Therefore the quarks of the N' = 1 theory are identified as can be identified as

Q (Ql - Q2)7 Q =

Sl

Q'+ Q2), (5.6.124)

and we find

4 2
Vo T—ﬂ 0 Waet +V2Q1, 0. (5.6.125)
2

This matches the N' = 1 expression in eq. E.32. The U(1), symmetry of the N’ = 1
theory is then identified with the o' generator of SU(2)p, under which @ and Q
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have equal charges. As discussed above, on the Coulomb branch we have X° > g¢
for stability, so the quarks will decouple as well, although one can arrange to keep

them in the spectrum by choosing g, < gsu(w.)-

Gaugino—fermion lagrangian

Finally we show that the correct A/ = 1 fermion lagrangian is also induced by eq.
5.6.99, and check the existence of a massless gaugino that will be the goldstino
corresponding to the broken SUSY generators. The term providing the fermion
contributions coming from the partial SUSY breaking 5.6.80 is

1

5 D" A Fapel AA)* + hec.. (5.6.126)

47 ['D Fermi —

This, together with the Yukawa interaction

47T£yuk D L Jab de D' )\;i + h.c.

V2

gives rise to the adjoint fermion masses. Since we are only interested in the phase
where (X@) = 0, we can ignore the Yukawa term for a spectrum analysis for the
SU(N.) part. For the U(1)_theory this coupling does not exist because there are
no abelian self interactions. Noting that (F;..) = 0, we can decompose 5.6.126 into

the U(1)_ and SU(N,) parts as
L o fiiye ye o L agiiyasa

where the fermion mass matrices are

. g>° [e+mF,, —1
Mii =19 | S (5.6.128)
A —1& e+m&F,,
7 Y
. L ge° [ e+ms,, —1
M =9 s Foaal- (5.6.129)
A —i & e+mkF,,
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In the vacuum determined above 5.6.3 these become

ij

) 1 -1
Mi =" (Fooo)s (5.6.130)
dm \ -1 1
A
M= T (Faa) (5.6.131)
4m \ -1 1

Note that the latter term can be rewritten as

ij
I -1 O Wt

MY =~ et
2\ .1 1 0XaoXa

(5.6.132)

This correctly matches eq. E.33 as required. Since for m, (F,.,), and (F.z5) all

ooo

non-zero we have
det M, = det M = 0, tr M, # 0, tr M # 0, (5.6.133)

the U(1)_ fermions and the SU(NN,) fermions each have one linear combination that
corresponds to a massless eigenstate, and one linear combination that corresponds

to an eigenstate of mass

m <.Fooo> and m <.Foaa>

2 o = aX‘ia)(EVVdef

respectively. The massless U(1)_ combination is the Nambu-Goldstone fermion of
partial SUSY breaking, and the massless SU(/NV.) combination is the gaugino of
the unbroken gauge symmetry as required®. In the A' = 1 preserving vacuum,
note that the massless SU(V,.) gaugino does not enter the superpotential, only the

(potentially) massive SU(N..) combination will.

6This can be seen by calculating the SUSY transformations where one finds [273]

<6Q )‘:nassless> ~ <D:Ilassless> 7& 07 <5Q A?nassless) ~ <D?nassless> =0. (56134)
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5.7 N =2 — N =0 with gaugino masses

5.7.1 Overview

We have shown that one can write an NV = 1 theory as a spontaneously broken
N = 2 theory using the ATP mechanism. Now this can be extended by enhancing
the gauge symmetry to SU(N,) x U(1)’; we can then assign a combination of FI
terms to pick out an N' = 1 preserving direction, and as a perturbation, assign
a different combination of FI terms to fully break SUSY. This provides us with a
description of an SU(N,) N' = 2 theory augmented by both A/ = 1 deformations

and soft terms that can all be mapped under electric-magnetic duality.

5.7.2 How to add a Dirac gaugino mass

We will be thinking of the additional U(1)’s as a perturbation on the N' =1 theory
(in the sense that mp < A) and will take the FI terms for U(1)_ to be as described
above. Although Dirac mass-terms can famously preserve an R-symmetry, in the
context of Kutasov duality they will break it (since the N' = 1 gauginos have R-
charge 1 and therefore the Dirac mass requires X to have R-charge zero, in conflict
with Waes D £ X*1). Therefore the FI terms for the new U(1)’s must have some
component along the ¢! direction of SU(2), which as we saw in Section 5.6.3 is the
U(1)p direction of the N' =1 theory. Furthermore the contribution from FI terms
to the fermion mass matrix M are M ~ £4(c%2)" where ¢ is the SU(2) , metric.
But the stability condition essentially fixes &£ to be null. We can parameterise a

general null €4 by
¢t = (a,iv/a2 + (2, 8) (5.7.135)

irrespective of the origin of o and . The stability conditions for & then simply fix
the VEVs of the Fg. to satisfy this condition (the specific case above has a = 0,
S = &). Shifting to the basis in which the N' =1 created by U(1)_ is diagonal, we

find that additional terms from a single extra U(1) are of the form

—B+ /a2 + 52 —«
— B+ /a2 + 2

SM" ~ (5.7.136)
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| SUWNV,) U(1)
Qt| O 1 0 0 | O

Table 5.5: N = 2 representations for "= 2 SQCD coupled to U(1)_ x U(1); x U(1),.

Clearly for any choice of o and 3 one can never set the M and §M?? components
to zero unless « is zero as well, and it is therefore impossible to introduce a pure
Dirac mass with a single extra U(1). On the other hand it is always possible (by
tuning parameters) to do this with two additional U(1)’s.

In order to add a Dirac mass, the theory we need to consider is therefore an
SU(N,) x U(1)_ x U(1); x U(1), theory, where the Q* is charged under only the
U(1), as displayed in table 5.5. This theory is in the same form as in 5.6.61 and
5.6.63 with the prepotential F(W, W",W‘J, WJ) again being a generic function of
N = 2 gauge hyperstrengths, and the gauge covariant derivative acting on the
hypermultiplets remaining unchanged. The corresponding additional FI pieces in
the action take the same form as in equations 5.6.67 and 5.6.70 with the obvious
replacement of gauge group. The vacuum stability conditions in the N/ = 0 theory
still set

(D=AD%4) = 0 (5.7.137)

for a’s corresponding to each of the U(1) factors, where as before there is summation
over A but not over a.

There are many combinations that one could consider for the prepotential and
the new Fl-terms. A simple solution is to allow only F | and F | mixing, and just
electric FI terms for the U(1)| and U(1); factors in the o' and o* directions (i.e. we
are going to add two 8 = 0 type solutions and make the Majorana masses cancel).

The three vacuum stability equations then translate into the conditions

Goo Re(€1)) = Re(€), (5.7.138)
9,4 Re(€5),) = Re("), (5.7.139)
9,1 Re(),) = —Re(¢]). (5.7.140)

The first of these is essentially the same condition as in eq. 5.6.91. The imaginary

parts can be set to satisfy the zero vacuum energy conditions if desired. In order to
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get non—zero gaugino masses the prepotential is of the form

o

a We . 1 -
FOW) = % WW? =5 W + ﬂ(wJ — WHWE WA, (5.7.141)
where 7., = Ful|, and we neglect higher order terms in the leading part. Note
that the mass-inducing third term only involves the two additional U(1)’s. The
contribution to the gaugino masses is of the form

(04 e)¥

MY = — (g7 — o) + (07 &1 — g eN)] (5.7.142)

In order to forbid additional A' = 1 mass terms for the adjoints X2, we must choose
g°°J = g°J to make the first term vanish. By eq. 5.7.138 we then have fjl) = —fﬁl).
Choosing for simplicity g_j = g_| < .., 9J] = gJ) together with g, = 0, we then
have g | = g | = —a/m. Hence | = (a,i,0) and &) = (—a,i,0), giving a

gaugino mass matrix of the form

) 0 1
SMi = % (5.7.143)
27A \1 0

as required. Along with these terms we see the supersoft operator of eq. 3.4.41 is

also induced in the scalar potential 5.6.95, arising in the cross terms of

g0 Q€. + g Qe +hc.

It is much easier to generate pure Majorana mass as this only requires a single
additional U(1) J,» and a prepotential of the form
Tab yxoavarp . YV 2 1 dYAE Y
= — —_— — 7.144
FW) 2WW+A2Wdef+2AWWW, (5.7 )
choosing FI terms such that @ = 0 in eq. 5.7.136. Furthermore, to avoid this
becoming just another N' = 1 mass-term for the adjoint fields, the sign of 3 is chosen
so that the non—zero eigenvalue falls in the block that has just been identified by
the U(1)_ FI terms as belonging to the A" = 1 gauginos. That is with €4 = (0,i ¢, €)
we choose Ef = (0,78, —0), with both £ and 5 > 0.
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5.8 Duality relations for the broken theory

5.8.1 N =1 couplings and gaugino masses

Let finally return to our objective, which (recall) is to determine how couplings as
well as Dirac gaugino masses map under AN’ = 2 duality, and that the prepotential
maps consistently under N' = 2 duality. We should at this point be clear that we
are not about to solve the N’ = 2 system for arbitrary N, and N;. Nevertheless it
is possible to make general statements about the constraints such a duality should
give on the prepotential. This is enough to establish that it contains all the same
operators as the weakly coupled electric superpotential. After this use the spurion
technique of [86] determines the precise coefficients.

The theory can be written in either electric variables

W(X,\, D,v), F (5.8.145)
or dual magnetic ones,
Wp(Xp, Ap, Dp,vp), Fb, (5.8.146)
with the relations [272]
oOF 0Fp
Wh = —— “=— . 5.8.147
P=awy Y MWp., ( )
From eq. 5.8.147, we can infer
FpWp) = FIWWp)| — Wp W(Wh). (5.8.148)

This means the magnetic prepotential is given by taking the electric one and replac-
ing W with W(W)p) determined as a function of Wp. In general this is extremely
complicated, however we can demonstrate the perturbative behaviour with our de-
formation of interest. Suppose one knows the dual prepotential F. g] ) (Wp) of an un-
deformed N = 2 theory, with prepotential F( (W). If the theory is then deformed
to F(W) = FO + k F,, where & is parametrically small, then in a & expansion, a

dual prepotential of the form

Fo(Wp) = FOWOWp)] + & F. WO Wp)], (5.8.149)
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where WO (Wp) is the function determined from Wp = 0F© /W, is seen to
correctly solve equations 5.8.147 and 5.8.148 to O(x?). Let us show this explicitly.

The electric prepotential of interest is

T vaaa . WV 2

FW) = 3 WEW? + v Waet, (5.8.150)

Vot = 4 XA = oyt 8.
Wdef m 1 tr L T 1 tl"(W ) (5 8 151)

where
1 k+1

c=A4nx : 5.8.152
(i \/5) ( )
tr (W") = W . Wan tp(T% .. T, (5.8.153)

The equations we need to solve to find the dual prepotential are

OF, (—=1)F ¢k 0Fp \*
0 D D
= — t = 8.

W =—1 R e L P B (5.8.154)

- 0Fp
WD = T aWD7d

(—1)k+1 0Fp OFp 0Fp by By
O e T Y (o™ ). (5.8.155)

We see that a dual prepotential of the form

W, CK
A% (k+1)7k+2

1 ~
Fp=—g-WhWh+ tr(W5™) + O(x?) (5.8.156)

solves this up to order x2. To see this, the relevant derivatives are

dFp 1.0 1 CK -

Wpa ~ r Vot R Gy OV, (5.8.157)
OF 1. W i i - i

awj = ——Wh+ %—Ti’; wh W tr (T“Tbl . -Tbk) . (5.8.158)
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This implies that egs. (5.8.154) and (5.8.155) become

_1Y)k+1 k+1
W,% =—-7 07p + ( 1>2 cr tr (anD)
Wb, o A2 k+1 \owp
_ WO T K t (Wk+1) + (_1>k+1 K t WD o + O( )2
TP TR e Akl g "
=W + O(k)? (5.8.159)
and
) OFp (- 0Fp 0Fp OFp i b
WH = —1 +ck tr (7T .- T
D b, A2 OWpoOWp; = OWp < )
i Wp ek by (b
=Wh -7 =2 ZE Wi Wit (T T
\k+L 0 by b e ~
S ) () ()l at oo
= W5 + O(k)? (5.8.160)

respectively. This implies that under the change to dual magnetic variables (5.8.146),

a prepotential

0 K

T WP - -
F=—WiWe 4 W, Wiet = 4 tr( X+ 5.8.161
S W+ =5 W, dof = 47 tr(XT) ( )
implies a dual
1 wy o . K
Fp=——WeWe + D i, Wpdet = ———— tr(zF ! 5.8.162
D 27WDWD+A27k+2 D,def; D,def (kf‘l—l) I'(ZL' )’ ( )

We can now use the spurion technique of [86] to fix the coefficients of the terms in
the k deformation of the magnetic prepotential even in the presence of Majorana

and gaugino masses. In particular, the electric prepotential

o

We 1 o
FW) = %W“ WP 5 Waer + ﬂ(vvcJ —WHWE W, (5.8.163)
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where recall the electric scale is A2 = m, needs a dual prepotential of the form

1 We, +
Fp(Wp) =~ s WEWS + —L2 Wh aet

5,
1 _
+ W(Wé} — W) WEWE 1 O(x2), (5.8.164)
D
for the mapping to be correct, where the magnetic scale A% = —(e +i¢), and the
scales A and Ap satisfy
A% =TA. (5.8.165)

To see how the Dirac gaugino mass is treated by the mapping of the prepotential and
the swapping of electric and magnetic FI terms we just need to follow the prefactor

in Leermion Of €q. 5.6.126. In the electric theory this is
9°° &2 Fuaa = —m (0,i,1) Foaa. (5.8.166)

and in the magnetic theory the stability conditions for €4 = (0, —m, 0)+(0, ¢, £)Fp...,
give Fp.., = m/(e+i§) = —1/F,, and so the prefactor is

§°° € Fpaa = (e +1€) (0,4,1) Fpaa. (5.8.167)

We see that the Dirac gaugino mass given by the prepotential deformation is mapped
into another Dirac gaugino mass with the dual prepotential deformation. The same

behaviour is observed for Majorana masses.

5.8.2 A note on quarks under electric-magnetic duality

Let us briefly comment on the mapping of the quark hypermultiplet Q' under
the N/ = 2 S—duality. By considering finiteness, the mapping of gauge invariants,
and requiring that known non-—self dual points are not mapped onto each other,
refs. [284,285] argue that a natural map for SU(N.) N = 2 SQCD deformed by a
mass for the chiral adjoint in the unbroken phase is into a similar theory SU(N,)
N =2 SQCD’ with the charge conjugation acting on the flavour structure. The
new hypermultiplets ¢ are interpreted as the general Ny case of the semi-classical
monopoles of [60,61], and the mass for the chiral adjoint is mapped to itself. For

our purposes, we have already shown that a mass for the chiral adjoint is mapped
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to itself in Section 5.8.1, and so we expect the conclusions of [284,285] to apply here

as well.

5.9 Chapter summary

We have presented evidence that a Dirac gaugino maps across Kutasov duality as

lim 2 — fim 2 (5.9.168)

p=00 G ket o0 §,~im

The reasoning is as follows. We have shown that both the left hand side and the right
hand side of this expression are all orders RG invariants, thus it doesn’t matter when
they are made equal, providing they are found to be equal at any point along the
RG flow. The standard way of determining them to be equal (since they are SUSY
breaking operators) is to embed them into the superfield expansion of a physical
SUSY RG invariant of the theory that can be matched between both theories. This
was not possible to achieve in the N' = 1 language but it is possible in the language
of NV = 2 HSS, since there, a spurious redefinition of the gauge coupling can induce a
Dirac gaugino mass. We showed that the electric Kutasov theory was connected by
RG flow to an N/ = 2 SQCD theory in the IR, and, after showing that the magnetic
Kutasov theory undergoes the correct Higgsing, argued that it can flow to the dual
N =2 SQCD at some point. Finally we showed that it was possible via the ATP
mechanism to embed the N/ = 1 Kutasov theory into N/ = 2 HSS, and that one
can, as a perturbation, add Dirac gaugino masses by breaking the orthogonal SUSY
direction. Under the mapping the prepotential, the Kutasov deformation becomes
the dual Kutasov deformation, and a Dirac gaugino mass becomes a dual Dirac
gaugino mass. This is suggestive that there exists an orders RG invariant in the
N = 2 theory that encodes the N’ = 1 Kutasov deformation and the Dirac gaugino
mass, that is mapped to itself under the N' = 2 S—duality, leading to 5.9.168 as one
of the terms in its Grassman expansion. Focusing on the Dirac mass, we see that
mp/g? is an RG invariant but of course only in the N' = 2 theory (as in [86]); away
from N/ = 2, the h and g couplings go their separate ways and mp/g* will begin to
pick up corrections of order k2, but as we know the combination mp/ gmk%l remains

an RG invariant even as we flow back to N = 1.
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A

One loop scalar integrals

Here we present the scalar integrals used in this thesis. They are calculated the in
the DR scheme and regularised in d = 4 — 2 ¢ dimensions with renormalisation scale
w [237,286]. We denote

— v+ log(4n), (A.1)

My =
m | =

where

v~ 0.5772 (A.2)

is the Euler—-Mascheroni gamma constant. The scalar integrals Ay and By are

1 1
Aom) = 5 [ '

im? q? + m?
= m? [%4— 1 —log (7;—22)} ; (A.3)
Balpmans) = oz [ 0
= é— log (i—i) fe(xy) — fB(r-),, (A.4)

where

s+4/s2 —4p*(m? —ice)

T+ = 2p2 , (A5)
fs(z) =log(l —x) —z log(1 —a™1) — 1, (A.6)
s=p*+mi—m3. (A.7)
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A useful limit of By is its zero momentum limit

1 2

1 2 m2 m2

2 m;

The remaining scalar integral used in this theses is just a combination of eqs. A.3

and A4

Go(?% my, m2) = (p2 - mf - mg) Bo(p, m17m2) - Ao(m1) - Ao(m2)7 (A-9)

1
Bi(p,mi,ms) = 37 [(p* + mi —m3) Bo(p, m1, ma) + Aog(ma) — Ag(mi)] . (A.10)

The triangle integral Cj is

Co| ] 1/ T
y P2, My, Mo, M3| = ——
O P2 T T TS0 =53 | (g ) (q + p0)? + m3][(q + po)? + ]

(A.11)

and has the zero momentum limit

1 m2 m2 m2 m2
C mg) = 2 Jog(T2) — ™ e (B (A2
O(mlamQ m3) 2 2 |:m% 0g ( 2) m2 — m2 0g m% ( )

2
—m; mi

1 3
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Additional plots for CDGM

B.1 The Constrained MSSM
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Figure B.1: Higgs sector parameters in the CMSSM with t3 = 25 and mp3 fixed as indi-
cated. The gradient indicates the Higgs mass. The black dashed, green dashed and green

solid lines are contours of a¢(msusy), p(msusy), and mguysy respectively. All contours
unless otherwise specified are in TeV.
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Figure B.2: LOSP species in the CMSSM with tg = 25 and mp3 fixed as indicated. The

black dashed and black solid lines are contours of lightest neutralino mass mso and stau
mass ms in TeV.
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Figure B.3: NLOSP species in the CMSSM with ¢z = 25 and mp3 fixed as indicated
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Figure B.4: Fine tuning in the CMSSM with tg = 25 and mp3 fixed as indicated. The
red, purple, blue, and green regions correspond to u, mo, My and mp3 as the dominant
source of tuning.
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B.2 Constrained General Gauge Mediation
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Figure B.5: Higgs sector parameters in CGGM with tg = 25, myjess = 107 GeV and mps
fixed as indicated. The gradient indicates the Higgs mass. The black dashed, green dashed

and green solid lines are contours of a¢(mgusy), pu(msvusy), and mgysy respectively. All
contours unless otherwise specified are in TeV.
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Figure B.6: Higgs sector parameters in CGGM with g = 10, muess = 10'2 GeV and mps
fixed as indicated. The gradient indicates the Higgs mass. The black dashed, green dashed

and green solid lines are contours of a¢(msusy), p(msusy), and mgysy respectively. All
contours unless otherwise specified are in TeV.

February 19, 2015



B.2. Constrained General Gauge Mediation 208
IIV‘I?Joran‘a gluino 120
1 5.5
_ e . 5.0 119
3 3
Q e o 4.5
< | AN 118
—_ | —_ 3.5
{117
L9 T 3.0
40 45 50 55 6.0 40 45 5.0 . {1165
log,, Ag (GeV) log,, Ag (GeV) &
My =T7.5 TeV mp; =10 TeV {115 &
E—— .’_ I_. — —J- |_, - —f1—
5.5 T | 5.5 -t _
— T | - 2.0 G—— 114
5.0 S | S 5.0l | g
4.5 4.5 l
o Qg . 113
" " |
=< 4.0 = 4.0} :
5 5 !
= 35 = 3.5 | 112
|
|
30 ! ! . 2o ! ! ! 2:. 111
40 45 50 55 6.0 40 45 50 55 6.0

log,, Ag (GeV)

log,, Ag (GeV)

Figure B.7: Higgs sector parameters in CGGM with tg = 25, muess = 10'2 GeV and mps
fixed as indicated. The gradient indicates the Higgs mass. The black dashed, green dashed

and green solid lines are contours of a¢(msusy), p(msusy), and mgysy respectively. All
contours unless otherwise specified are in TeV.
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Figure B.8: LOSP species in CGGM with tg = 25, mpess = 107 GeV and mps fixed as

indicated. The black dashed and black solid lines are contours of lightest neutralino mass
mso and stau mass ms in TeV.
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Figure B.9: LOSP species in CGGM with tg = 10, mess = 10'? GeV and mps fixed as

indicated. The black dashed and black solid lines are contours of lightest neutralino mass
mso and stau mass ms in TeV.
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Figure B.10: LOSP species in CGGM with tg = 25, muess = 10'2 GeV and mps fixed as

indicated. The black dashed and black solid lines are contours of lightest neutralino mass
mso and stau mass ms in TeV.
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Figure B.11: NLOSP species in CGGM with tg = 25, mess = 107 GeV and mps fixed as
indicated. The black dashed and black solid lines are contours of lightest neutralino mass

mso and stau mass mz in TeV.
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Figure B.12: NLOSP species in CGGM with tg = 10, myess = 10'? GeV and mps fixed
as indicated. The black dashed and black solid lines are contours of lightest neutralino

mass m%

0 and stau mass mz in TeV.
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Figure B.13: NLOSP species in CGGM with tg = 25, mess = 10'? GeV and mps fixed
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Figure B.14: Fine tuning in CGGM with tg = 25, mpMess = 107 GeV and mps fixed as
indicated. The red and blue regions correspond to p and Ag as the dominant source of
tuning.
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Figure B.15: Fine tuning in CGGM with tg = 10, myess = 10'2 GeV and mps fixed as
indicated. The dominant source of tuning is entirely from the p parameter.
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Figure B.16: Fine tuning in CGGM with tg = 25, mess = 10'2 GeV and mps fixed as
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RGEs with Dirac gluino

decoupling

C.1 Method and notation

These RGEs were calculated using a combination of SARAH, PyROTE [245] and results
from [287,288]. We decouple the gluino and the sgluons at renormalisation scales

below pu(mpg) = mpg = Mpg. We therefore define
0z =1 if p>mpg, 0 =0 if p<mp;g. (C.1)

Decoupling is achieved at two loop accuracy for the gauge coupling for all particles,
whereas the decoupling for the remaining terms is correct to one loop for all particles

and correct to two loop for the sgluons and right handed gluino.
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C.2 Renormalisation group equations

C.2.1 SUSY parameters

Gauge couplings

33
@_ L3 ;
By = 2591 [ — 130 tr <yuyu> + 135g5 + 199g7 + 220(3 — 05)g5 — 70 tr <ydyd)
—90tr <yeyl>} : (C.3)
B8 = g, (C.4)
1
B = -4 [ —10tr (yeyl) +60(3 — 05)g2 + 12562 — 30 tr (ydyi) —30tr <yuy§>
+ 99?} : (C.5)
9
By = —5 (1~ 62)g3, (C.6)

1
B2 = =93 [1193 —20tr <ydyj1> —20tr (yuyD +5(39 + 2965) g2 + 4595} . (@)

Yukawa couplings

BY = Byayhya + va [ —3¢2 +3tr (ydy§> + g(ﬂg —~ 3) 17591 +tr (yyﬂ

+ ydylyu, (C.8)
B glydyuyu — dyayiyaviya — 2vayivyiva — 2vayivayiv.

+ yaylva [693 —3tr (yeyl> —9tr (ydyfi) + %gﬂ — 3yayiyu tr (yuyD

9287 15, 8 128 , 2
+ yd[ g4+ 1%+ =95 + 9195 + 89595 + —g5 — —(gf — 409§> tr(ydy$>

90 2 9 9 5
6
+ g tr (yeyl) —~ 9tr<ydy$ydy§) — 3tr(ydylyuy$> — 3tr(yeylyeyi)], (C.9)
9
BY = 3yeylye + ve [ — 395+ 3tr (ydy§> — gt tr (yeylﬂ , (C.10)

BP = —Ayeylyeylye + veylye [ — 3tr (yeyl> +6g5 — 9tr (ydyfi)]
+ 2 d3450" 64792 + 258 + 46 tr () — 30 62 (yaylyay)
10ye 91 9192 92 g1 YeYe YaYqlYal¥q
—10tr (ydylyuy,E) —10tr <yey2yeyg>} — 4( — 4095 + gf) tr <ydyf1> }, (C.11)

1
Bl = 3puivn — Tt [1391 + 4595 — 45 tr (yuyl) +40 <3 - 9@)93] + Yyl a,
(C.12)
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2
B = ggfyuylyu + 692Yayi v — 2uayivayiya — 2vylyayiva
2
— 4yt yayl v + vuylva [ — 3tr (ydyfi) + ggf — tr (yeyl>] — Yyuyly, tr (yuyi)
92743 s, 15, 136 5, 128
[ 150 g1+ G195 + 792 + 15 919 + 89593 + 793
4
+z (2093 + gl) tr (yuyu> —3tr (ydylyuyD —9tr (yuylyuyl)} : (C.13)
SUSY masses
3
B =3ptr (ydyD - 3#(593 — 5tr<yuyl) + g?) + ptr (yeyl), (C.14)
1
B = ==11| 2076} + 90933 + 37595 — 20( — 4093 + 97 ) r (yayl ) + 6097 tx (ve!)
+ 80093 tr (yuyi) — 450 tr<ydy§ydy§> — 300 tr (ydylyuyZl) — 150 tr (yeylyeyl>
+ 40g7 tr (yuyl> — 450 tr (yuylyuyl)] - (C.15)

C.2.2 SUSY breaking parameters

Majorana gaugino masses

66

ﬁMl = _91M17 (C.16)
B = 22—591 [39893M1 + 13592 M, + 44092 M, + 44093 M; 05 + 13593 M,

— 70M, tr (ydy;>

— 90M; tr (yeyl) — 130M; tr <yuy$> + 70tr (yjiad> + 90 tr (ylae>

+130tr (ygau)], (C.17)
Biny = 29 My, (C.18)

B = —92 [991 M, + 12002 Ms 05 + 92 My + 25092 My + 12062 My — 30Ms tr <ydyd)

— 10M5 tr (yeyl) — 30M, tr (yuyi) + 30 tr <y:£ad> + 10 tr (ylae>

+30tr (yiau)} : (C.19)
ﬁ&i: (C.20)
82 [119 M, + 1162 My + 4562 M; + 680g2 M + 4562 My — 20M; tr(ydyd>
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— 20M3 tr (yuleE) + 20 tr (y:gad> + 20 tr <y3au>} 0. (C.21)

Dirac gluino mass

BY = 6 g2mpy b, (C.22)

ng

1
B, = ¢ gimog | 11g} + 4503 + 52047 — 20tr (ydy(Jri) — 20t (yuy:rl)} b (C.23)

Trilinear Soft-Breaking Parameters

7 16
ﬁé}j) = dyqyhaq + 2yaylay + 5aaylya + aaylye — 1—5gfad — 3g3aq + 0 <9§ — 2) g3aq
+ 3aq tr (ydyg) + aq tr <yeyl> + Yq [2 tr (ylae> + 693]\/[2 +6tr <y:gad>
14 32
+ 1—59%]\/[1 + §9§M3 9@], (C.24)
5 =82t 6a2uatan — S Myt + S gtuant
ad — 591ydydad + 095Yay4aa 591 1YdYuYu + 591?deuau
6 4
+ ggfadyflyd + 1293%3/(3% + gg%@dyiyu — Gydyilydyilad

— Syayhaayiva — 2yayiyaviaa — dvaviveylaw — 4yaytanylya
— dyaytanylye — 6aayiyaylve — daayiyeyliyva — 2aayvayliv.
287 15 8 128
+ %gi‘ad + 919304 + 793% + §gfg§ad + 8g5g5aq + 795‘:%
i i i ) _ 22 i
— 12y4y4aa tr<ydyd> — 15aqy3Y4 tr(?/dyd) ~ £t tf(?ded)
+ 16g3aq tr (ydyﬁ) — dyqylaq tr (yeyl) — Sagyya tr (yeyl>
6
+ ggfad tr (yeyl) — 6yaylay tr (yuyD — 3aay!y. tr (yuyl)
2 ; 2 i orr ] ot -
7 YaYala 15tr(ylae | +30g5Ms + 45 tr(ygaq ) + 497 My | — 6yay yu tr| yiay
—9a4t 1 Ty 3aat t Ty 3a4t t T
aq U\ Ya¥YqYdyq adq W'\ YaY,Yulq ad T\ YeYeYele
9
- < [287g;*M1 + 4562g2 My + 40262 M, + 4092 g2 Ms 05 + 3609292 M 05
+ 128095 M3 05 + 4597 g5 My + 67595 My + 36095 g3 Mo
+ 18(4Og§M3 Hg — ng1> tr <ydy£> + 54g%M1 tr <yeyl> + 189% tr (yzlad>

— 720g§ tr (yjiad) — 54g% tr (ylae> + 810 tr <ydygady£>

February 19, 2015



C.2. Renormalisation group equations 222

+ 135 tr <ydylauy:g> + 270 tr (yeylaeyg + 135 tr (yuygadylﬂ, (C.25)

9
BY = dy.ylae + Sacylye — ggfae — 3¢2a, + 3a, tr (ydyIl) + ae tr (yeyl)

18
+ Ye [2 tr (ygae> + 693 My + 6 tr <yj1ad> - ngMl} , (C.26)

6 6
B = +291Yeulae + 6g5yeulae — Zgiacylye + 120500 ye

927 9 15
— 6Yellyeylae — 8yeylacylye — 6acylyeylye + 791‘% - ggfgiae + 393%

| i i ) _ 2,2 i
— 12yeyeae tr(ydyd) — 15acy i ye tr<ydyd> ~ ik tr<ydyd>
+ 16g2a tr(y T>—4 Taet ( T>—5 T t ( T)
3 e 4Yq YelYple ' Yo elYolYe WX\ Yo

6
+ ggfac tr <y0yl> — 6y0yly0 [2g§M2 + 3tr (yzlad> + tr (ylacﬂ

Qe UT ydydydyd Ae T ydyuyuyd Qe T YeYoYele

2
~ ue 13591 My + 9923 My + 99393 Ma — (263My — 80g3My 0 ) tr (vay)
+ 7595 My + 697 M, tr (yeyl) + 2g7 tr (ylad) — 803 tr (?A%) — 6gj tr (ylae>

+ 90 tr <ydy£adyg> + 15¢tr (ydylauyD + 30 tr (yey;raeyg

+ 15tr (yuygadyw] , (C.27)
BY = 2yuyhaa + dyaylan + awylya + Sauyliye — %}g%au — 3g2ay + ? (eg - 2) Pan

+ 3ay tr (yuyl> + Yu [695M2 +6tr (ylau) + %ngl + %g?,Mg 9§]> (C.28)
B = %gfyuyﬁad —~ gnglyuylyu — 1262 Myl + ggfyuylau

+ 6g5yulian + %gfauyflyd +12g3auylya — 4yuylyayiaa

— 2y yayian — dyayiaayiya — dyayiaayiye — vyl vayian

— Syuhauyiyn — 20uyiyayiya — dawyiyayiy. — 6auylyayiy. + %gi‘au

+ gigdon + 2 gbay + - gghan + Sahdia, + o gan — Gyuhaa te (s}

— 3auylya tr (ydy§> — 2yuybaqtr (yeyl> — auyiyatr (yeyl>

— 12y ylay tr (yuyl> — 15auyly, tr (yuyl> + %gfau tr (yuyl>

+ 16g§au tr (yuyfl> — %yuyjiyd [15 tr (y:riad) + ngMl + 5tr (yiae)}

— 18y, yly, tr (?A%) — 3ay tr (ydylyuyll) — 9ay tr (yuylyuyi)

P
— Q—%yu{2743gi‘M1 + 22597 95 My + 6809793 My + 6809793 Ms 0
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+ 180093 95 M3 05 + 640093 M3 05 + 22597 g5 My + 337595 My + 18009595 Mo
— 180 (2093 + gl> tr (yuau> +675tr (ydyuauyd> + 675tr (yuydadyu>

+ 4050 tr [yuylauyl +180 (20g§M3 0y + ng1> tr (yuym } (C.29)

Bilinear Soft-Breaking Parameters

6 3
Béi) = —g%Mlu + 6g§M2,u + b, [3 tr (ydy(E) — 3g§ + 3tr (yuny) — ggf + tr(yeyl)}

5
+ 6ptr (y:riad> + 2ptr <ylae> + 6ptr (yflau>, (C.30)
) 207 , 9 15 2 6
B2 =1b [591 +eglGn TSty (9% - 409§> tr (ydy§> +ogite (yeyi>
24 ) + 1692 ¢ f)—9t Lyayl) — 61t TR
+ 591 I YuYy ) + 1693 tr( yuyy I YayiYayq I YaYuYula

—3tr (yeylyeyi> —Otr (yuylyuyi)} 225u[207gi‘M1
+ 459795 My + 4597 g5 Ma + 37595 My — 20g7 tr (ylau)
+ 3Og%M1 tr (yeyi> + 1O<ng1 — 40g§M3 9§> tr (ydy(Jg) + QOg%Ml tr (yuyu>
+ 400935 M3 05 tr <yuy$> + 10g7 tr <ygad> — 40093 tr (ygad> — 3007 tr <y ae>

+ 450 tr (ydygadyji) + 150 tr (ydy:rlauyji) + 150 tr (yeygaey;r) + 150 tr <yuyj1ady:rl>

+ 450 tr (yuylauyj;) — 40093 tr (?/l%)] , (C.31)
By = —12g3bg, (C.32)
B2 = 72g3bg. (C.33)

Soft-Breaking Scalar Masses

32
B = 15 g M|~ —gg\M3!2 O — 63| Ms|* + 2miy yiya + 2mi; ylya + 2akaq

my

+ 2afay +m2ylya + m2yly. + 2yimiva + yiyam? + 2yimiy,
1

\/1_59101,17
2 1 «
5(2) = —9192|M2’2 + 3395 | Ma|* + 329595 | Ma|* + 9192M1M

(C.34)

+ ylyumfl +
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48 1
5glyu uyu 5

— dylaqalya — 8miy ylyuylya — Wiywalaw — dylaualy,
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— dalyaytaa — dalaqyiya — 4alyaylaw — dal ayly. + s
— 2mZylyayiva — 2miylyayiyve — dyimivayiva — dyfyam2ylya
— dylyayimiya — 2vbyavlyam? — dyim2yayiye — dylyem2yly,

4
93023+ — 0211

2
3 15
— 12m} ylya tr <ydy$) — 6a}jaq tr (ydyfi) — 3m2ylya tr (ydyd>

32
— dylyaytmiy, — 2yl yuylyam? + 693000 + =

— Gy mya tr (ydy§> — 3ylyamy tr (ydyIl) — 4m}y yhya tr (yeyl>
— 2a}iaq tr (yeyl> — m2ylyatr (yeyi,> — 2ylmiya tr (yeyl>
— yhyamy tr (yeyl> — 12miy ylyatr (yuyl) — 6afay, tr (yuyl>
— 3m3ylyu tr (yuyl) — Gylmiyy tr (yuyl> — 3ylyam tr (yuyl>
(3/ ad) — 2alya tr (?Jlae) — Galy, tr (?At%)
— 6ydad tr(a Ya ) — Gydyd tr( a ) — 2y(§ad tr(aZyZ)
- 2ydyd tr(a a ) - 6yuau tr( ayyy ) 6yuyu tr( * T)
(

— 6ylya tr mdydyd> — 2ylyatr(m yeye> — 2ylya tr<m?ylye>

— Gydyd tr (mqydyd> — 6yly, tr (m Yy, ) — 6yly, tr (miyuyD, (C.35)
2

6
Bt = —2GIMI = 65 Mol + 2y ylye + 20fac + miylye + 2ylmiye

3
+ ylyem% - \/%9101,1, (C.36)

3 12 12
67(3% = ggg [39% <2M2 + Ml) -+ 5595 M2] M + EglmH yeye — 391M1aeye
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+ —g%Ml*{ — 20yia. + 3 [595 <2M1 + MQ) " 6gg§M1] + 40M1y1ye}

25
12 6 12 6
+ ggfalae + ggfm?yiye + ggfylmﬁye + ggfylyemﬁ

— 8miy ylyeylye — dylyealac — dylacaly. — daly.yla.

— dalacylye — 2miylyeylye — dyimlyeylye — dylyemiylye
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— 2ylye tr (m?ylye> — Gylye tr (mﬁyﬁyd), (C.37)

6 3
2 = —59%|M1|2 — 65| My|* — \/;9101,1 + 6m12{d tr (ydyD T Qm%d tr (yey;r>

+ 2tr (aﬁaf) + 6 tr (miydyCTl) + 2tr (mZyeyI> + 2tr (m?yiye>

+6tr (aﬁai) +6tr (mgygyd> : (C.38)
- 2—15{15g§ [393 (zM2 + M1> + 55g§M2} M+ g M [621ng1 +90¢2M,

4 4562 My — 40M, tr <ydy§> +120M, tr (yeyg) +20tr (;,jlad) —60tr (ylae)}
+10{ 1503025 + 3930011 + (160631 Ms[? 05 — 2g3mpy, + 80g3md, ) tr (awl )
+ 6gfm%{d tr (yeyi> — 80g32,]\/[§,k tr (yjlad> 0z + 2g%]\/[1 tr (azy:‘f)
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— 2g% tr (mgygyd> + 80g§ tr <m§y$yd> — 90m%d tr (ydyjlydyD

—90tr (ydyjiada” — 30tr (yeyiaeal> —30tr (yealaeyg

— 15mj tr (ydylyuy(ﬁ) — 15mj tr (ydyiyuyfl) —15tr (ydyiauaZl)
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= ggg [39% <2M2 + Ml) + 559§M2] M3 + 69302,2 + 29%02,11 + 4\/?9103,1

8
+ = gimy, tr (yuyl) +32g3m tr (yuyl> + 64g3| Ms|* tr (yuyi) O

1
+ e 9iM; | — 40t (ylaw ) + 45630y + 621630, + 80My tr (uyl ) + 9063,

8

— 3295 Mj tr (ylau) O — zo1 M tr (aiiyf ) — 3293 M3 tr (aiyff ) Oz
8 8

+ 3295 tr (aia@ +ooitr (m?,ylyu> + 3295 tr (Tnﬁylyu) +zoitr (mﬁyuyl)

+ 32g3 tr (mﬁyuyi) — Gmiy, tr (ydylyuyf1> — 6mpy tr (ydylyuych)
—6tr <ydylaua:g> —6tr <ydaflauy:§) —6tr (yuyiladai) — 36m12{ tr <yuy$yuyl>

8
— 36 tr (yuylauaw —6tr (yua:riadyw — 36 tr <yuaiauyl> + —gitr <a:‘1a:‘f>

5
—Gtr (mﬁydylyu@ —Gtr (mﬁyﬁydyl@ —Gtr (mﬁylyuyﬁyd>
— 36 tr (miylyuylyu) — Gtr (mﬁyuyﬁydyl) —36tr (mﬁyuylyuyfl), (C.41)
8 32
= —1—59f\M1|2 - §9§|M3|2 Oz + 4m%dydy:§ + dagal + 2miyayl + dyamiy)
1
+ 2yayim] + 2 70101 (C.42)
32 2 2 2 * 4 2 2 1 2. 2 T
= 5% [291 (2M3 + M1> + 75g3M3} M 05 + =91 YaYa + 12g5mi Yayq

4
+ 2492 | My [Pyay! — gnglydaL — 1292 Myyaal,

4
n ﬁngf{2 [303ng1 + 4042 (le + M, egﬂ — 45aqy} + 90M1ydyg}

1 9 .
+ ggfadail +12¢2aqa + gg?mﬁydyi + 6g3miyayl — 1293 M3 aqy)
4 2
+ £ 0tvamGyd + 12035amayd + S giuayimg + 6g3yayimg

— 8miy, yaydyayh — 4yayaaad — 4mi yaylyuyl
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—Am} yaylyuyl — Wavlawal — dyaalaayl — dyaalauy]

— daaylyaal — daqylynal — daaalyay] — 4aaalyuy!

— 2m3yaylyayh — 2miyaylyayl — amlylvayl — dyamiylyyl
— dyayimiyayl — Waylyam2yl — 2yayiyayimi — ayimliy.y}

32
— dyaylyam2yl — 2yaylynyimd + S 93005 + —gioann + 8

1
o2
3 \/1—591 3,1

— 24m%{dydy:5 tr (ydyZl) — 12adaj1 tr (ydyjl) — 6m?1ydyj1 tr (ydy(Ti)

8
15

= 12gqm2yl tr(avd) — Gyaylm? tr (vavd) — i yayd tr (el
— daqa) tr (yeyl> — 2miyay, tr (yyf> — dyamZy) tr(?/eyi)

— 2ydyzlm3 tr (yeyl> = 12yda£ tr (ygad> - 4ydaji tr (ylae)

— 12ady21 tr (agy({) 12ydyd tr <adad> 4adyd tr (aZyz)

— dyqyltr (aZaeT> — 12yqy} tr <m3ydy£) — 4yqyl tr <m§yeyl>

— dyqyl tr (miylye) — 12yay) tr (miyflyd), (C.43)
Bﬁ% = —?—ggf\Ml\Q — %gg\Mgﬁ bz + 4771%{uyuyfl + dayal + 2m2yyl + dyamZyl

+ Q?Juylmi - 4\/%—59101,1, (C.44)
B2 = 45 9 [75931\43 0z + 847 (2M3 + Ml)} M; 05 — %gfm%uyuyl +12g5mf vyl

+ 2403 MsPyuyl + %g?Mlyuai — 1295 Mayyal, — 1295 M5 any]

+ 2;15 fM*{45[ OMiyay! + auyu] v 8[3219 M, + 4042 <2M1 + M 9~)] }

+ 12g3a,af, — égﬁmﬁyuyl + 6gsmiyay — %gfyumﬁyl — gg?auai

+ 12g5yamiyl — ;g?yuyimﬁ + 6g3yuybmy — 4mp yuyiyayl

— dmiy yayyayl — dyuyhaaal, — 8mi yuylyayl — 4yaylaual

— dyualaqyl — dyualawyl — daylyaal — danyiyual

— dagayayl — dawalyyl — 2miyaylyayl — 2miyaylvayl

— dyam2yiyayl — dyam2ylvayl — dyayimivay!

— dyaylyamZyl — 2uaybyayim?i — yayimlyal — dyalyemzyl

32 4 2 1
- 2yuyuyuyum + o950 23t 9102 11— 16 \/E9103,1 - 24m%{uyuyi tr (yuyjl)

3 15
- 12auai tr (yuyl]:> - 6m121yuy1]: tr (yuy:S) - 12yum yT tr (yuleS)
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— GyinTn?1 tr <yuyl> — 12yuafl tr (ylau> — 12auyl tr <azyg>
— 12y, tr <aflaf> — 12y,y! tr (mgy:rlyu> — 12y, tr <miyuyl>, (C.45)

24
B =~ GIMJ + 2(2m?{dyeyl + 2acal + 2yemiy! + miyeyl + yeylﬂﬁ)

3
+ 2\/;9101,17 (C.46)

57(53 = 2—25 {6;(]%]\/[{%{2349%]\41 + 5[ — 2Myyey! + aeyl—:| } + 209, (3910'2,11 + \/1_503,1>
- 5{309§M2* acy! + 6g7acal — 30g5acal + 3gtmiyey!
— 15g5meyeyl + 6gyemiyl — 30g5yemiyl + 3giyeylm?
— 15g3yeyim? + 20mi; veylyeyl + 10yeylacal + 10ycalacy
+ 10acylyeal + 10acalyey! + 5miyeylyeyl + 10yemylyey!
+ 10yeyimeyeyl + 10yeylyemiyl + Syeylyeyim? + 30acal tr (ydych)
+ 15m2yeyl tr (ydy§> + 30yemiy] tr (ydyf1> + 15yeyim? tr (ydyl)
+ 10a.a] tr (y?ﬂ> + 5 meyeyl tr (yeyl> + 10yemyy! tr (yeyl>
+ 5yeyim? tr (yeyl) + yeal [10 tr (ylae> +30g5 My + 30 tr (ylad) - 69?%}
+ 80acy tr (aiu ) + 10ac] o (aiul) + 2uenl [3gtmiy, — 1563m3,
+ 30m12{d tr (ydy(D + 10m%{d tr <yeyi> + 15tr (aéadT> +5tr <aZaeT>

— 30g§|M2]2 + 15tr (mgydyw 4+ 5tr (mgyeyl> 4+ 5tr (m?ylye>

+15tr (mﬁyiyd)] H , (C.47)
BY) = —24g3| Ms[* 0, (C.48)
8% = 24g§(15|M3|2 0y + ag,3>. (C.49)
where
3
011 = \/ggl [m?{u — 2tr(mﬁ> - tr(m?) — m%d + tr(mﬁ)
+ tr(mﬁ) + tr(mi)], (C.50)
1
0211 = 1—0gf [2 tr(mﬁ) + 3tr (m?) + 3m%{d + 3m2Hu +6tr (mg)
+ 8tr<mﬁ> + tr(mﬁ)], (C.51)

9gfm12{u - 9gfm%{d - 45g§m12{d + 45g§m%{u + 4(209§ + g%) tr (mﬁ)

1
0’ =
o 20\/591[
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—9g% tr (m?) — 4592 tr (m?) +gitr <m2> + 4542 tr <m2> + 8092 tr <m2>

— 160g§ tr <m2> + 90mf{d tr (ydyji) + 30m2Hd tr (yeyg> — QOm%Iu tr (yuyl)

—30tr (ydmg*y£> — 60tr <yeylmz*> + 30 tr (yem?*yg + 120 tr <yuylm121*>

—32¢7tr (mi) —30tr (yumg*yD + 3647 tr (mﬁ) — 60 tr (ydygmfl*)] , (C.52)
O29 = %[3 tr(mi) + m%{d + m%u + tr(m?)}, (C.53)

O23 = %[2 tr(mi) +3(1+ bz)m3 + tr(mﬁ) + tr(mﬁ)] (C.54)
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D

Numerically solved perturbative

flows to N =2 SQCD

0

AN

50
21

t O

t

Figure D.1: RG flow of g? (blue), h? (red) and 52/g? (black) from the UV (right) to the
(IR) left. The horizontal axis is ¢ = log i, and we take N, = 5, Ny = 10. 50/21 is the

n2/g? quasi-fixed point value for this N. and N ¢ given by eq. 5.5.41.

0

t O

t

Figure D.2: RG flow of g? (blue), h? (red) and 52/g? (black) from the UV (right) to the
(IR) left. The horizontal axis is ¢t = log u, and we take N, = 6, Ny = 12. 9/4 is the n2/g*

quasi-fixed point value for this N, and Ny given by eq. 5.5.41.
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E

Harmonic superspace and N =2

SQCD

E.1 Integration rules for harmonic functions

Here we collect the rules for integrating harmonic functions over the sphere [50].

/du fPu) =0 ifg#0, (E.1)

/du 1=1, (E.2)

/duua...u;uh...um =0 ifn>1, (E.3)
\n _ —)"m!n! i1 Lmtm

Equation E.4 can be inverted to find the coefficients of a harmonic function f(@ (u)

Flrinsaidn) — (_)n(:f;)_!iﬁ D! /du (wh) " (™)) f 9 (w). (E.5)
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E.2. Measures for harmonic superspace 232

E.2 Measures for harmonic superspace

Here we collect the relevant measures and normalisations for integration over HSS

[50]. The measures are

/dudlzX = /dud4xd89 = /dud4xA d*otato-
B 1
256

/ dud¢™ = / dudir,d0t = 1—16 / dudiz, (D7)*(D™)?, (E.7)

dud*z 4 (D7)(D™)2(DH)2(D*)?, (E.6)

with normalisations

/ d*00° = / d*ot (0%)* = / d*0 (0)* = / d*0 (6)* = 1. (E.8)

where

E.3 Conjugation rules for harmonic superspace

E.3.1 Conjugation rules

Complex conjugation O is defined as

9011' = éé, % = —eo‘ﬂ'; (Ell)
uti =, uf = —u (E.12)
T = foan T = (-1 e, (6:13)
Antipodal conjugation O*
(™) =u", (u ) = u;, (E.14)
(u™)" = —u™, (u; )" = —uf (E.15)
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Il
©

Combined complex and antipodal conjugation (O)* = (O

—_— e~

(uj) = u™, (ut?) = —ut. (E.16)

It is convenient to note that

@:Q1:512Q2:_Q2:@, @:Q2:521 QIZQIZ—@. (E17)

E.4 N =2SQCD

E.4.1 Formulation in harmonic superspace

The lagrangian Lo for N = 2 SQCD arising from eqgs. 5.6.61, 5.6.63, and 2.3.225
up to four derivatives in the prepotential F(W) is

£total = Ekin + ﬁyuk + ‘CPauli + £D Fermi 1 £4 Fermi — V (E18)
where

a . - o 1 hay . =
_ﬁkin = i_; <1)'u)(a’Du)(b—|—Z')\l’a(TMIDlu )\i) e Fbvf“/) + _bFEV Fb,uu

4 167
+Q'D"D, Q; + % (0" Dutbq + Y50 Dyibs) (E.19)
—Lyuk = ﬁ—“ji oA XN 40 (Q Mg — Y N Qi)
— % Yo X g +hec, (E.20)
L0 b = Farel AN D e, (E.21)
—Lpaui = % Fabe| X' X} F, + h.c., (E.22)
—L} Formi = % Fapeal N X)AANDA +hee., (E.23)

o w (1 _ _ 1
szZ{X,X}Qi—Z—;G ca é’fXCXdX@ngD“’AID"’Al), (E.24)

and the traced SU(2), tensor products are written as three vector dot products

a'; = iat (UA)ij, a’ by = —a';b; = a BB trg (0 - oP) =202 b?,  (E.25)
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Q| O O |[1-Rxy
N _ _ Ny
Q| O O |1-Rxgye
X| Ad 1 Ry

Table E.1: N = 1 superfield representations in A/ = 2 SQCD.

where trp is a trace over the SU(2), indices and we use the conventions of Appendix
E.6. The standard renormalisable N' = 2 SQCD lagrangian can be obtained by

integrating out the D%4 and taking the canonical prepotential

wWe)? 0 4ri
‘F(W):T< 2)7 TZ%‘l‘g—zzETl‘FiTg, Tl,TQGR. (EQG)

One then finds the kinetic terms in the holomorphic basis

1 a i,a 1 a v GYM v
—,Ckin:g (DMX DX —FZ)\ oD )\za+4FuyFu) 3972 MVFM (E27)

as well as the familiar yukawa interactions and scalar potential.

E.4.2 Formulation in N = 1 superspace

Because we are ultimately interested in the AN/ = 1 electric and magnetic Kutasov
theories, in this appendix we recast N' =2 SQCD in N' = 1 superspace [47]. The
appropriate AN/ = 1 superfield content [60,289] is given in table E.1, and the N' = 2
SQCD action composed of two parts as in 5.6.61. From the full N/ = 2 superspace
point of view, after fixing an SU(2) ,, direction so that a particular Q; is the canonical
N =1 SUSY

The SYM part is written in terms of an analytic prepotential F(iv/2X) = F(A)
59,

1 ' _
S¥a = ﬁ/d%dge («FabWaWb — [ &*0— \/_ Fale V)abXb> +hec.  (E.28)

whereas the QCD part is

SN=? = /d4xd2 <\/_QXQ+ / 0 [Kq+ Kg ]) +h.c. (E.29)
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and K, is the Kéhler potentials for the superfield ¢. The Kahler potential for X
and effective gauge coupling for the standard renormalisable N/ = 2 theory can be
recovered by taking E.26,

(A)

_ = _ T 4. 12 1 2 1 275
FlA) =71 i - SSYM—4m,/d xd°0 (41/\/ +2/d HKX>+h.c. (E.30)

E.5 N =2 SQCD in the presence of W (X)

E.5.1 Formulation in N = 1 superspace

An N = 2 breaking X deformation Wye(X) causes the shift in in the action
SSQCD — SSQCD + Sdef 9 Sdef — /d4$ d20 Wdef(X) + h.C. (ES].)

and yields the additional terms in the lagrangian

OWae ~ OWae - f
Vaer = T—K“” ade—l—\/ﬁQtaQ} [a;bf+\/§cgtb@ (E.32)
ermion 1 a We a
‘C(fief = _5 aXa(r;be wX wg( + h-C'7 (E33)

where K¢ is the inverse of the Kihler metric for the physically normalised X

P Kx

x)e = pxeaxe

(E.34)

and 7, = ‘;—7; is the imaginary part of the holomorphic gauge coupling defined in

eq. E.26.

E.6 SU(2), and index conventions

The index conventions used can be found in table E.2. Our SU(2), conventions
are £'2 = 41, and that if a’; = ia?(6?)’; then clearly a* = £tr(c%a), and in

components

ia ial + a? g ia' + a? —ia®
a

ial — a? —ia® —ia® —ia' 4+ a®
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E.6. SU(2), and index conventions 236

Label Type Range
WV, p, 0 space-time 0to3
a,q, 8,8 spinor 1,2

1,7, k1 SU(2) 1,2

a,b,c,d SU(N,) adjoint 1to (N? —1)
a,b,c,d all adjoints oy dyd; 110 (N2 —1)

Table E.2: Conventions used throughout Chapter 5.

.1 2 .3
—1a +a 10
’ ia® ial + a®
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