
Durham E-Theses

Semantic Service Description Framework for E�cient

Service Discovery and Composition

DU, XIAOFENG

How to cite:

DU, XIAOFENG (2009) Semantic Service Description Framework for E�cient Service Discovery and

Composition, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/111/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/111/
 http://etheses.dur.ac.uk/111/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Semantic Service Description

Framework for Efficient Service

Discovery and Composition

Xiaofeng Du

Supervisors: Dr. William Wei Song and

Prof. Malcolm Munro

A thesis presented for the degree of

Doctor of Philosophy

Department of Computer Sciences

University of Durham

United Kingdom

July 2009

I

Dedicated to

My Mother and Father,

Wife and Daughter

II

Semantic Service Description Framework

for Efficient Service Discovery and

Composition

Xiaofeng Du

Submitted for the degree of Doctor of Philosophy

July 2009

Abstract

Web services have been widely adopted as a new distributed system technology by

industries in the areas of, enterprise application integration, business process

management, and virtual organisation. However, lack of semantics in current Web

services standards has been a major barrier in the further improvement of service

discovery and composition. For the last decade, Semantic Web Services have become

an important research topic to enrich the semantics of Web services. The key

objective of Semantic Web Services is to achieve automatic/semi-automatic Web

service discovery, invocation, and composition. There are several existing semantic

Web service description frameworks, such as, OWL-S, WSDL-S, and WSMF.

However, existing frameworks have several issues, such as insufficient service usage

context information, precisely specified requirements needed to locate services,

lacking information about inter-service relationships, and insufficient/incomplete

information handling, make the process of service discovery and composition not as

efficient as it should be.

To address these problems, a context-based semantic service description framework is

proposed in this thesis. This framework focuses on not only capabilities of Web

services, but also the usage context information of Web services, which we consider

as an important factor in efficient service discovery and composition. Based on this

framework, an enhanced service discovery mechanism is proposed. It gives service

users more flexibility to search for services in more natural ways rather than only by

technical specifications of required services. The service discovery mechanism also

III

demonstrates how the features provided by the framework can facilitate the service

discovery and composition processes. Together with the framework, a transformation

method is provided to transform exiting service descriptions into the new framework

based descriptions.

The framework is evaluated through a scenario based analysis in comparison with

OWL-S and a prototype based performance evaluation in terms of query response

time, the precision and recall ratio, and system scalability.

Keywords: Web Services, Semantic Web Services, Service Discovery, Service

Composition, Service Composition Patterns, SOA, Service Context, Conceptual

Graphs.

IV

Declaration

The work in this thesis is based on the research work carried out at the Department of

Computer Sciences, Durham University, U.K. No part of this thesis has been

submitted elsewhere for any other degree or qualification and it is entirely the author’s

work unless referenced to the contrary in the text.

This research has been documented, in part, within the following publications:

Du, X., Song, W., and Munro, M. (2006) Using Common Process Patterns for

Semantic Web Services Composition, in Proc. of 15th International Conference on

Information System Development (ISD2006), Budapest, Hungary, Aug. 31 - Sept.

2, 2006.

Du, X., Song, W., and Munro, M. (2006) Service Composition in the Context of Grid,

in Proc. of UK e-Science Program All Hand Meeting (AHM2006), Nottingham,

UK, Sept. 18-21, 2006.

Du, X., Song, W., and Munro, M. (2006) Semantics Recognition in Service

Composition Using Conceptual Graph, in the Proc. of International workshop on

Semantics in Virtual Organisations and Web services (SVO&WS), held in

conjunction with the 2006 IEEE/WIC/ACM International Conference on Web

Intelligence (WI-06) , Hong Kong, China, Dec. 18-22, 2006.

Song, W. and Du, X. (2006) A Case Study for Semantic Description and Discovery of

Grid Services, Invited paper at Inaugural Workshop on Dependability in Service-

Oriented Grids (WODSOG'06) , held in conjunction with the IEEE Symposium on

Reliable Distributed Systems (SRDS 2006) , University of Leeds, UK, Oct. 1,

2006.

Du, X., Song, W., and Munro, M. (2007) Semantic Service Description Framework

for Addressing Imprecise Service Requirements, in proceedings of the 16
th

International Conference on Information Systems Development, Galway, Ireland,

Sept. 2007.

V

Du, X., Song, W., and Zhang, M. (2007) A Context-based Framework and Method for

Learning Object Description and Search, in Proc. of 6th International Conference

on Web-based Learning (ICWL 2007), LNCS Vol. 4823, Springer, Edinburgh,

United Kingdom, Aug. 15-17, 2007.

Du, X., Song, W., and Munro, M. (2008) An Innovative Approach for Service

Description and Discovery in the Context of Software as a Service, accepted by

the 1st IEEE International Workshop on Barriers towards Internet-Driven

Information Services (BINDIS2008), held in conjunction with IEEE COMPSAC

2008, Turku, Finland.

Du, X., Song, W., and Munro, M. (2008) A Method for Transforming Existing Web

service Descriptions into an Enhanced Semantic Web service Framework, in Proc.

of 17th International Conference on Information System Development (ISD2008),

Paphos, Cyprus August 25-27, 2008.

Song, W., Du, X., and Munro, M. (2009) A Concept Graph Approach to Semantic

Similarity Computation Method for e-Service Discovery, to appear in

International Journal of Knowledge Engineering and Data Mining, Inderscience

publishers.

Du, X., Song, W., and Munro, M. (2009) CbSSDF and OWL-S, A Scenario based

Solution Analysis and Comparison, to appear in Proc. of 18th International

Conference on Information System Development (ISD2009), Nanchang, China,

September 16-19, 2009.

VI

Acknowledgements

First and foremost, I would like to thank my primary supervisor Dr. William Wei

Song and my secondary supervisor Prof. Malcolm Munro for their full support during

my studies. I am very fortunate to have had the opportunity to work under their

supervision. They instilled a thirst for excellence in me, taught me how to do

scholarly research, and helped me think creatively and independently. Their guidance

and patience during my Ph.D. research are greatly appreciated.

I would like to thank Prof. David Budgen and Dr. Shengchao Qin for their helpful

suggestions during the first year thesis proposal viva, which have greatly benefited my

later studies.

I would like to thank all the friends I have met during my Ph.D. study in Durham for

their continuous support and encouragement. I would like to give the special thanks to

Dr. Yonghong Xiang, Mrs Yunli Liu, Mrs. Barbara Froner, and Dr. Niko Galiatsatos

for their support during the time of my student placement work in British Telecom.

I would like to thank all the colleagues I have worked with in British Telecom during

my student placement work, especially Mr. Nader Azarmi, Dr. Ben Azvine, Dr. Detlef

Nauck, Dr. Zhan Cui, Dr. Basim Majeed, and Dr. Yang Li, for their supervision and

the great inspiration on my Ph.D. research.

Finally, I would like to thank my family and loved ones. Thank my parents for their

endless love and support along the path of my studies. I have been a long way from

home for a long time and could not make step forward without their understanding

and encouragement. I would like to express my deepest gratitude to my lovely wife

Motoko Kino. Without her sincere encouragement, great patience and mostly

unconditional love, I would not have been able to get through this long journey.

VII

Contents

ABSTRACT.. II

DECLARATION ...IV

ACKNOWLEDGEMENTS...VI

LIST OF FIGURES ... XII

LIST OF TABLES..XIV

LIST OF DEFINITIONS ... XV

CHAPTER 1: INTRODUCTION ..1

1.1 NEW SOA PARADIGM ...2

1.2 PROBLEM AREAS...5

1.2.1 Service Description Problem ..5

1.2.2 Service Discovery Problem...6

1.2.3 Service Composition Problem...8

1.3 CURRENT SOLUTIONS..9

1.3.1 Semantic Web Services ...10

1.3.2 Web Service Discovery ...10

1.3.3 Web Service Composition ...11

1.3.4 Remaining Issues ..12

1.4 PROPOSED METHOD...14

1.4.1 Integrating Context into Service Description ...14

1.4.2 Integrating Adequate Semantics into Service Description15

1.4.3 Addressing Incomplete Information..16

1.4.4 A Flexible Service Discovery Mechanism...16

1.5 CONTRIBUTIONS..17

1.6 CRITERIA FOR SUCCESS...18

VIII

1.7 THESIS OUTLINE ...18

CHAPTER 2: CONTEXT OF PROBLEM AREA ANALYSIS AND RESEARCH .20

2.1 OVERVIEW ..21

2.2 WEB SERVICES..21

2.2.1 Technology overview ..22

2.2.2 Core Standards ...23

2.2.3 Drawback of Current Web services Standards...29

2.3 KNOWLEDGE REPRESENTATION ..30

2.3.1 Ontology..30

2.3.2 Description Logics ..32

2.3.3 Conceptual Graphs ...35

2.3.4 Non-monotonic Reasoning – Defeasible Logic...39

2.4 SEMANTIC WEB...41

2.4.1 RDF and OWL ..42

2.5 SEMANTIC WEB SERVICES ..45

2.5.1 OWL-S...46

2.5.2 WSMF and WSMO..48

2.5.3 WSDL-S...51

2.6 SERVICE CONTEXT ..52

2.6.1 What is Context? ...53

2.6.2 Service Context ...54

2.6.3 Significance and Deficits ..56

2.7 SERVICE COMPOSITION ...57

2.7.1 Manual Service Composition – BPEL4WS ...57

2.7.2 Automatic or Semi-Automatic Planning based Service Composition.........59

2.8 SEMANTIC SIMILARITY CALCULATION..61

IX

2.8.1 Ontology based Methods...61

2.8.2 Vector based Methods...63

2.9 SUMMARY ...64

CHAPTER 3: SERVICE USAGE CONTEXT..66

3.1 OVERVIEW ..67

3.2. GLOSSARY ...68

3.3 CONTEXT AND SCHEMATA ..69

3.4 SERVICE USAGE CONTEXT ..72

3.4.1 Conceptual Level Service Usage Context – T-Context72

3.4.2 Instance Level Service Usage Context – A-Context....................................75

3.5 SUMMARY ...79

CHAPTER 4: CONTEXT-BASED SEMANTIC SERVICE DESCRIPTION

FRAMEWORK..80

4.1 OVERVIEW ..81

4.2 ATOMIC SERVICE AND COMPOSITE SERVICE ...83

4.3 CONTEXT-BASED SEMANTIC SERVICE DESCRIPTION FRAMEWORK86

4.3.1 Service Conceptual Graphs ..87

4.3.2 Semantic Service Description Model ..91

4.3.3 Non-Monotonic Rules ...94

4.4 TRANSFORMATION METHOD ...97

4.4.1 Step One: Ontology based service classification..98

4.4.2 Step Two: CUPs generation..99

4.4.3 Step Three: S-CGs generation ..100

4.4.4 An Example ...101

4.4.5 A Note on Information Loss During Transformation103

4.5 SUMMARY ...104

X

CHAPTER 5: TWO-STEP SERVICE DISCOVERY MECHANISM106

5.1 OVERVIEW ..107

5.2 TWO-STEP SERVICE DISCOVERY MECHANISM ..107

5.2.1 Step One: S-CG based Service Retrieval ..108

5.2.2 Step Two: SSDM based Service Composition and Ranking113

5.3 SUMMARY ...118

CHAPTER 6: IMPLEMENTATION ..119

6.1 OVERVIEW ..120

6.2 IMPLEMENTED FEATURES OF CBSSDF..120

6.3 SYSTEM DESIGN AND ARCHITECTURE...122

6.3.1 User Interface ...122

6.3.2 System Architecture ..126

6.3.3 Implementation Design ...127

6.4 IMPLEMENTATION TECHNOLOGIES..129

6.5 SUMMARY ...130

CHAPTER 7: EVALUATION ..132

7.1 OVERVIEW ..133

7.2 EVALUATION STRATEGY ...134

7.3 SCENARIO BASED COMPARISON WITH OWL-S ...135

7.3.1 Task 1: Locating an Existing Atomic Service ...138

7.3.1.1 Solution Comparison ...138

7.3.1.2 Summary ..139

7.3.2 Task 2: Locating an Existing Composite Service139

7.3.2.1 Solution Comparison ...139

7.3.2.2 Summary ..140

7.3.3 Task 3: Dynamically Constructing Composite Service141

XI

7.3.3.1 Solution Comparison ...141

7.3.3.2 Summary ..142

7.3.4 Discussion of the Scenario based Comparison...143

7.4 PROTOTYPE BASED PERFORMANCE STUDY ...144

7.4.1 Experiment Environment ..145

7.4.2 Design of the Experiment..145

7.4.2.1 Analytical Model ...145

7.4.2.2 The Independent and Dependent Variables and the Treatment147

7.4.3 Experiment Results..147

7.4.4 Limitations of the Experiments and Threats to Validity151

7.5 TRANSFORMATION METHOD APPLICABILITY EVALUATION153

7.6 SUMMARY ...154

CHAPTER 8: CONCLUSION AND FUTURE WORK158

8.1 OVERVIEW ..159

8.2 SUMMARY AND CONTRIBUTIONS ..159

8.3 REMAINING PROBLEMS ...163

8.4 FUTURE RESEARCH AND DEVELOPMENT DIRECTIONS164

8.4.1 Service Level Agreement Enhanced Service Registry...............................164

8.4.2 Business Patterns in SOA..165

8.4.3 Web service Monitoring..166

REFERENCES...167

XII

List of Figures

Figure 2.1. Web services Architecture..23

Figure 2.2. The technology stack of Web services ...24

Figure 2.3. SOAP message structure ..25

Figure 2.4. Registry interaction enabled by UDDI 3.0 ...29

Figure 2.5. An example of inheritance network..33

Figure 2.6. A simple conceptual graph ...35

Figure 2.7. A layered approach to the semantic web ..42

Figure 2.8. A RDF graph example..42

Figure 2.9. Top level of the service ontology ...46

Figure 2.10. A SOAP message with context information...54

Figure 2.11. Context-aware personalised Web services ...55

Figure 2.12. The concept similarity measure ..61

Figure 3.1. A service ontology example. ..68

Figure 3.2. A domain ontology example...69

Figure 3.3. A conceptual usage scenario of a service concept – “Money Transfer”. .74

Figure 3.4. An instance usage scenario of a service – service1...................................78

Figure. 4.1. An example of an S-CG...89

Figure. 4.2. A graphical illustration of SSDM..94

Figure 4.3. The generated instance services graph. ..102

Figure 4.4. The generated service concepts graph. ...103

Figure 4.5. The generated S-CG. ..103

Figure 5.1. A graphical representation of part of the vector space V........................115

Figure 6.1. The user interface of ServiceComp. ...124

Figure 6.2. The first step query interface of ServiceComp.......................................124

XIII

Figure 6.3. The second step searching interface of ServiceComp125

Figure 6.4. The system architecture of ServiceComp. ..126

Figure 6.5. Service repository ER diagram...127

Figure 6.6. ServiceComp class diagram..128

Figure 7.1. Precision-Recall curves. ...149

Figure 7.2. Query response time for performing on a centralised service repository.

..150

Figure 7.3. Query response time for performing on both the centralised and

decentralised service repositories after increasing the number of services.151

Figure 7.4. Percentage of acquired information from different service descriptions.

..154

XIV

List of Tables

Table 2.1. Mapping between OWL and DL..45

Table 3.1. Service instances and their basic attributes. ...77

Table 4.1. Acquired information from WSDL and ontology based classification....102

Table 6.1. The description of tool bar buttons. ...122

Table 7.1. Two examples of the CbSSDF based service description........................137

Table 7.2. The comparison of CbSSDF and OWL-S based solutions for task 1.138

Table 7.3. The comparison of CbSSDF and OWL-S based solutions for task 2.140

Table 7.4. The comparison of CbSSDF and OWL-S based solutions for task 3.141

Table 7.5. Precision-recall table for CbSSDF and OWL-S solutions.148

Table 7.6. System performance evaluation result – data samples.............................149

Table 7.7. System scalability evaluation result – data samples.150

Table 7.8. Percentages of the required information in CbSSDF obtained from

different service description frameworks...153

XV

List of Definitions

Definition 2.1 ..35

Definition 2.2 ..36

Definition 2.3 ..38

Definition 2.4 ..38

Definition 2.5 ..40

Definition 3.1 ..73

Definition 3.2 ..74

Definition 3.3 ..76

Definition 3.4 ..78

Definition 3.5 ..78

Definition 4.1 ..85

Definition 4.2 ..85

Definition 4.3 ..89

Definition 4.4 ..91

Definition 4.5 ..92

Definition 4.6 ..93

Definition 4.7 ..99

Definition 5.1 ..115

Chapter 1: Introduction

Chapter

1

In this chapter, we will give an overview of the research
background, existing problems, and current solutions of
Web services and Semantic Web Services. Based on the
remaining problems, we give a compressed view of our
solution on service description, discovery, and
composition. At the end of this chapter, we will
summarise major contributions committed in this thesis.

1.1 New SOA Paradigm

2

1.1 New SOA Paradigm

From the time the first networked computer system ARPANET [Abbate, 1999]

appeared until now, computer network technologies have developed rapidly and have

been adopted widely in all disciplines. Modern network based computing started with

the emergence of the distributed computing paradigm [Coulouris et al., 2001].

Distributed computing is all about communications and resource sharing. The success

of distributed systems created a new era of network computing, i.e. the emergence of

Internet and World Wide Web [Berners-Lee, 1991]. New technologies always bring

new challenges. The biggest challenge of distributed computing is how to solve the

heterogeneity problem. The Internet enables users to access services and resources

through a heterogeneous collection of computing equipments and networks. The

heterogeneity over the Internet includes [Coulouris et al., 2001]:

• Networks

• Computer hardware

• Operating systems

• Programming languages

A distributed system has to overcome the heterogeneity issue in order to establish

effective communications. Traditional distributed systems have proposed a collection

of technologies, such as CORBA, DCOM, and Java RMI, to tackle the issue. These

technologies try to provide components that can hide the local heterogeneity with

common interfaces for communications. However, these technologies themselves

have heterogeneous problems because some of them are platform dependent and some

of them are programming languages dependent. For example, if two applications

communicate through DCOM technology, they must be both hosted on the Windows

operating system and programmed in C, C++, or C# programming languages. If two

applications communicate through the Java RMI technology, they must be both

programmed in Java. Moreover, these distributed system technologies cannot easily

talk to each other without extra system engineering effort. Another issue on traditional

distributed system technologies is that binary message based communication and

particular communication protocols require specific ports to be opened on the firewall,

which brings security risks. Due to these disadvantages, enterprise applications based

on traditional distributed system technologies are tightly coupled and federated. If a

1.1 New SOA Paradigm

3

company wants to change their suppliers or business partners, more often than not,

their applications have to be reengineered. This heavily reduces the flexibility of

business to business (B2B) communication and enterprise applications integration

(EAI) and consequently, reduces the corresponding speed of an enterprise to new

marketing demands. The fundamental problem of traditional distributed systems as

discussed above is lack of standards for B2B integration and B2B automation. In

order to solve the issues, Web services technology was born.

“Web services are a new breed of web applications. They are self-contained, self-

describing, modular applications that can be published, located, and invoked across

the Web. Web services perform functions that can be anything from simple requests to

complicated business processes” [IBM, 2006]. Web services technology is an

evolutionary technology based on existing technologies, such as CORBA, DCOM,

and Java RMI, rather than a new invention [Sheth & Miller, 2003]. The key point for

the success of Web services is the employment of existing standards as fundamental

building blocks. A set of XML based standards, i.e. SOAP (Simple Object Access

Protocol) [SOAP, 2007], WSDL (Web services Description Language) [WSDL,

2007], and UDDI (Universal Description, Discovery and Integration) [UDDI, 2004],

are used to encapsulate data, describe the Web services interfaces, and publish Web

services on the web. Web service communication is established upon existing TCP/IP

standards, such as HTTP, HTTPS, SMTP, and FTP [SOAP, 2007]. Another key

characteristic of Web services is their self-contained and loosely-coupled nature,

which makes each Web service autonomic. This means that each Web service is

responsible for its own application domain and the business logic encapsulated in a

Web service does not need to comply with any other operating systems or

technologies. These new features enable Web services to be highly reusable

components that can not only solve the application communication and integration

issues, but also act as building blocks to rapidly construct new applications, i.e.

service composition. The highly reusable, self-contained, and loosely-coupled features

of Web services have started a new enterprise application design and development

paradigm, the Service Oriented Architecture (SOA). “A service-oriented architecture

is a framework for integrating business processes and supporting IT infrastructure as

secure, standardized components – services, that can be reused and combined to

address changing business priorities” [Bieberstein et al., 2005]. In SOA, a service has

1.1 New SOA Paradigm

4

been abstracted to “the application of specialised competences (knowledge and skills),

through deeds, processes, and performances for the benefit of another entity or the

entity itself” [Lusch & Vargo, 2006]. A service in SOA does not necessarily mean a

Web service. However, the Web services technology is a well-known implementation

of services in SOA.

The reason for SOA being so sanctified and widely adopted by many large enterprises,

such as IBM, Oracle, and British Telecom, is that it tackles the main challenges that

an IT executive is currently facing. The first challenge is the heterogeneity of the

legacy systems, i.e. the systems from multiple vendors and different partners and

suppliers. An IT executive cannot avoid integrating these heterogeneous systems. The

second challenge is the pace of change. The speed of change in Global e-commerce is

accelerating. How IT executives steer their enterprise applications to promptly satisfy

fast changing market trends is a crucial issue for an enterprise’s survival. However, by

adopting SOA, the problems behind these two challenges can be solved. Each

component of an enterprise application can be wrapped as a service and therefore a

repository of services can be formed. They can be moved around from one application

to another, replaced, and modified without affecting other parts of the application. In

fact, SOA has turned traditional application developers into “Lego Brick” builders. A

service can be used whenever and wherever it is needed by either an enterprise or the

enterprise’s partners and customers. The benefits of SOA [Bieberstein et al., 2005]

that an enterprise can gain are summarised as follows:

• It saves money, time, and effort over the long term through reuse of

“components” because of the flexibility of SOA.

• It eliminates frustrations with IT through flexible solutions and shorter lead

time to deployment.

• It justifies IT investments more clearly through the closer association of IT to

business services.

• It provides to business executives with a clear understanding of what IT does

and its value.

1.2 Problem Areas

5

• It allows the creation of and changes to services incrementally rather than

leaving a guesstimate of the development costs, thereby eliminating the classic

IT 6-6 answer: “The project will take 6 months and cost 6 figures.”

• It provides to a business and competitive differentiator with direct

rationalisation and relation to how that competitive advantage is implemented

in IT.

However, new opportunities always bring new problems and drive new solutions.

SOA has painted a big picture of the future of enterprise applications. Although the

Web services technology is a realisation of SOA, it cannot fully achieve what SOA

requires due to limitations of the technology. In the next section, we will give a brief

discussion on key problem areas that the Web services technology currently

encounters, such as service description, composition, and discovery.

1.2 Problem Areas

The concept and technology of Web services significantly improve the enterprise

application communication and integration. However, to fully satisfy business

requirements and achieve SOA, the current technology needs to be enhanced. In this

section, we focus on three major problems of Web services technology that limit the

realisation of SOA.

1.2.1 Service Description Problem

Currently, Web service description is based on WSDL, which is an XML based, low

level syntactical, and developer oriented service description language. A WSDL

document outlines input and output data types of a service, the structure of messages

and protocols for communicating with the service, and the URI to locate the service.

WSDL supports parsing a message from a web service, verifying whether it is in the

expected format, and extracting the information contained in the message. However,

WSDL’s support is limited to understanding the structure of the message, not the

content/semantics of the message and the capability of the service. The consequence

of the limitation is that each time when invoking a service, human intervention is

required for interpretation of the semantics of the message content and the capability

of the service in order to make a correct and appropriate use of the service. Lack of

1.2 Problem Areas

6

semantics in describing service capability is a major drawback of current Web service

descriptions [Paolucci et al., 2003]. From this perspective, Web services are not

actually self-contained because how to use them is relying on human interpretation.

Ideally, a Web service should be completely autonomous so that it can be discovered

automatically by software agents or other services. To be completely autonomous, a

better service description solution is required.

Apart from lack of semantics, another limitation of WSDL is that it does not address

abstraction and granularity. The service detail addressed in WSDL is technical

information. However, this kind of information never appears in an enterprise service

users’ service query, as they have little knowledge of the technical detail of the Web

services technology. Very likely the service query proposed from an enterprise service

user is a general business requirement or a business task description. Here we can see

an obvious mismatch between the abstract business requirement and the technical

level service description provided in WSDL.

1.2.2 Service Discovery Problem

The current industrial standard for Web service discovery is the Universal,

Description, Discovery and Integration (UDDI) [UDDI, 2004]. UDDI provides a set

of facilities for service advertising, browsing, and search. The information provided in

a UDDI description includes the service provider information, a natural language

based service description, and the service binding information etc. Additionally,

UDDI description can refer to a description component called T-Model, which is a set

of open-bounded service attributes that can represent any type of information that

service providers think is relevant to their published services. The T-Model can also

classify Web services within a given taxonomy, for example, the North American

Industry Classification System
1
 (NAICS) and the United Nations Standard Products &

Services Code
2
 (UNSPSC). Although UDDI provides many kinds of information for

service discovery, its service discovery and advertising mechanism have crucial

limitations. The first limitation is the keyword based search. The keyword based

service search generates imprecise results with large amount of irrelevant information,

even though UDDI has many features to advertise services and the T-Model does

1
 http://www.census.gov/epcd/www/naics.html

2
 http://www.unspsc.org/Defaults.asp

1.2 Problem Areas

7

allow integration of standard taxonomies. The second limitation is lack of machine

understandable semantics. UDDI is designed for developers to search for services

manually and therefore, the information provided on UDDI is human readable only.

However, as the number of services is getting large, manually searching services

become more and more time consuming and inefficient. The demand for automation

is increasing, which requires a service registry supporting automatic service discovery.

The current UDDI registry does not support automatic service discovery, hence

restricts the full realisation of SOA.

If we assume that the semantics have been integrated into both the service description

and service registry, matching a service query with service descriptions is still not a

trivial task. The problems come from two aspects. The first aspect is about choosing

or creating a suitable semantic similarity calculation method. The semantic similarity

calculation between a service query and a service description is not as simple as

calculating the semantic distance between two concepts in an ontology because the

semantics of a service are very complex. When we compute the semantic similarity of

services, we have to consider the functional semantics, the non-functional semantics,

the data semantics, and the execution semantics of a service [Cardoso & Sheth, 2006].

The complexity of the service semantics requires a dedicated method to precisely and

effectively compute the semantic similarity. The second aspect is about building up a

mapping between service queries and service descriptions. In real business scenarios,

service users usually propose general service queries to describe what they need

because they are not aware of the technical detail of services [Du et al., 2007].

However, it is difficult to find a direct mapping from this kind of query to the service

capability attributes addressed in a service description based on the current Web

service description standards. Therefore, the semantic similarity calculation cannot be

carried out straightforwardly using the existing methods [Berry et al., 1999] [Wu &

Palmer, 1994] [Tous & Delgado, 2006]. Consequently, an extra step may be needed to

gather sufficient information from the service requester in order to perform semantic

matching.

1.2 Problem Areas

8

1.2.3 Service Composition Problem

No matter how many functionalities the currently published Web services provide,

there are always some requirements that cannot be fully satisfied. If a new service is

created for each new requirement, it is too costly and a waste of existing resources. It

also breaches the principle of Web services development. A sound solution is to

provide new services by composing existing services. The self-contained and loosely-

coupled features give Web services the ability to be composed to form a new service

with new capabilities. Web service composition is important in business process

management. A complex business interaction always involves a series of high level

business functionalities that contain basic business activities. If we consider each of

the basic business activities as a service, the process of creating a composite service is

actually a process of creating a business process for fulfilling certain business requests.

Through service composition, an enterprise can create new value-added business

services from their existing resources with less delivery time at a lower cost. There are

many industrial standards that are used to describe how services can be composed to

form a composite service, such as WS-BPEL (Web Services Business Process

Execution Language) [WS-BPEL, 2007], WSCI (Web Service Choreography

Interface) [WSCI, 2002], and WSCL (Web Services Conversation Language) [WSCL,

2002]. These languages (or standards) propose the solutions for manually constructing

composite services. There are also some semantic approaches to automatically

generate composite services based on the semantic annotation in service description.

Most of the semantic based automatic service composition approaches are using AI

planning techniques [Sirin et al., 2004] [Zhang et al., 2004]. A goal of a business

interaction can be decomposed into sub-tasks and each sub-task can be further

decomposed until each sub-task can be achieved by an existing service. After all the

sub-tasks are located related services, a service flow (a plan or a composite service)

can be formed. However, the AI planning based approach has exposed some problems

of service composition that need to be addressed in future research.

• The situation a planning algorithm faces in a service composition scenario is

far more complicated than a traditional AI planning scenario. The reason is

that in a traditional AI planning scenario, the action repository is closed and

static, whereas, in a service composition scenario, the action repository is open

1.3 Current Solutions

9

and dynamic. The size of the action repository and the availability of each

action are uncertain.

• A Web service is different from an action in AI planning. It has

interrelationships with other services. Therefore, considering each service as

an individual action may lower the efficiency of the planning algorithm.

• From the industrial perspective, an explicit goal of a composite service is

difficult to identify [Srivastava & Koe, 2003].

Another issue of Web service composition is handling incomplete information [Lu et

al., 2006]. The web is a highly dynamic environment. Under one situation, two

services may be composable; whereas under the other situation the same two services

may not be composable. Most of the information of service execution conditions on

the web is incomplete, i.e. when more information becomes available, the situation

may change. The incompleteness is especially prominent in business domain. The

incompleteness in business domain is not only from the web, but also from the

business itself. For example, in designing business applications or services, it is

almost impossible to get complete information from customers or business partners

and therefore some assumptions have to be made. Business rules and policies can also

bring incompleteness. If a service composition approach cannot handle incomplete

information, the result is more likely impracticable, especially in a business domain.

However, the current Web service composition approaches assume that the available

information during service composition is static and complete [Peer, 2005].

1.3 Current Solutions

In the previous section, we present an overview of the problem area of Web services.

In this section, we outline the current solutions to the problems discussed above.

These solutions are mainly focusing on providing a comprehensive service description

framework in order to support automatic or semi-automatic service discovery,

invocation, and composition. In Chapter 2, we will give a detailed survey of the

literature.

1.3 Current Solutions

10

1.3.1 Semantic Web Services

The idea of the semantic web is to extend the current web, in which the information

on the web is given a well-defined meaning through semantic annotation so that both

human and computer can interpret it and make use of it [Berners-Lee et al., 2001].

One of the important components of the semantic web is ontology. An ontology

[Uschold & Grüninger, 1996] is a shared conceptualisation or a common model to

formally define the meaning of concepts and their relationships. Through the ontology,

concepts can be interpreted by computer programs. An important application of

semantic web is Semantic Web Services. As discussed previously, a drawback of the

current Web services standards is lack of semantics so that there is no way for a

computer program to identify a required service without human intervention.

Semantic Web Services technology extracts the data and capability semantics of a

Web service, which are essential for making use of the service. This is done through

annotating Web services with concepts from a common ontology.

There are two ways of creating semantic annotated Web services. One way is to create

an independent semantic Web service description framework and link it to the current

Web services standards. The leading research efforts are OWL-S [Martin et al., 2004]

and WSMO [Fensel et al., 2007]. The other way is to add semantic annotations into

the current Web services standards. The major research work in this way is WSDL-S

[Akkiraju et al., 2005]. All of these Semantic Web Services research efforts try to

overcome the drawback of lack of semantics of the current Web services standards

and support automatic Web service discovery, invocation, and composition. However,

semantically annotating functional components, i.e. Web services, is much more

complicated than annotating static web information. Therefore, further research

efforts are still required in this area.

1.3.2 Web service Discovery

The traditional way of discovering Web services is through the use of a UDDI service

registry. The discovery is performed by the keyword based searching and manual

selection. As discussed previously, the keyword based searching and manual selection

is not suitable anymore for dealing with large amount of Web services and the

increasing demand for Web service automation [Paolucci et al., 2003]. The current

1.3 Current Solutions

11

solution is to integrate semantics into Web service descriptions and the UDDI registry

in order to improve the efficiency of service discovery and support automatic service

discovery. Paolucci et al. [Paolucci et al, 2002] propose an algorithm that can match a

service request with an OWL-S based service advertisement and rank the matching

result according to the semantic similarity between a service request and semantic

service descriptions. Their algorithm is based on calculating minimal distance

between two concepts in an ontology. In order to improve the keyword based service

discovery on UDDI, they also augment the UDDI registry with an extra semantic

layer in order to perform semantic based service capability matching. Web services

described using OWL-S are also published on the enhanced UDDI registry so that

they also can be retrieved by keyword search.

1.3.3 Web service Composition

There are two main streams of Web service composition approaches. One stream is

manual service composition based on the current Web services standards. A

representational example is WS-BPEL. It is an industrial standard and has been

adopted by many large software companies, such as Oracle, Progress Software, and

Microsoft. WS-BPEL is based on WSDL and provides a rich syntax for constructing

abstract business processes. A WS-BPEL process can be created by either directly

writing WS-BPEL code or through business process design and management tools.

The other stream is semantic Web service composition. A representational example is

OWL-S. OWL-S provides a machine readable semantic description of Web service

capabilities and therefore, Web services can be discovered and composed with much

less human intervention. An OWL-S description consists of three components called

service profile, service model, and service grounding. The service profile provides a

semantic description of a service, service model defines atomic and composite process

of the service, and the service grounding provides the linking between the semantic

description of a service and WSDL. There are also other Web service composition

approaches, such as service composition as planning [Wu et al., 2003].

1.3 Current Solutions

12

1.3.4 Remaining Issues

In the previous sections, we have given an overview of the problem area of Web

services and the current solutions. In order to further investigate what the remaining

issues are, we conduct a simple experiment to help us to analyse the underlying

problems and the possible reasons. The experiment is described as follows:

• The aim of the experiment: is to explore the problems of service discovery.

• The participant of the experiment: We invite two groups of postgraduate

students, one group from the computer science department with professional

computer knowledge and the other group from other departments with general

computer operating skills. There are 15 students in each group.

• The tools used in the experiment: We provide two types of service discovery

interface. One has a text field with a search button and the other one has multiple

text fields for gathering the technical detail of the required service, such as the

inputs and outputs data types, and a search button.

• The process of the experiment: We ask both groups of students to search for a

list of required services using the two interfaces. Then we interview the

participants how they feel about these two search interfaces. For the usability of

the interfaces, we ask them to rate as “Easy to use”, “Normal”, and “Difficult to

use”. For how difficult it is to provide the technical information for searching

services, we ask them to rate as “No way to provide”, “Difficult to provide”,

“Normal”, and “Easy to provide”.

• The experiment result: The result for the interface usability shows that 73.3% of

the students in the group without the professional computer background rate the

single text box interface as “Easy to use” and 100% of them rate the multiple text

boxes interface as “Difficult to use”, and 66.7% of the students in the computer

science group rate the single text box interface as “Easy to use” and 86.7% of

them rate the multiple text boxes interface as “Difficult to use”. The result for how

difficult it is to provide the technical information of required service shows that

93.3% of the students in the group without the professional computer background

rate it as “No way to provide” and the rest of them rate it as “Difficult to provide”,

1.3 Current Solutions

13

and 60% of the students in the computer science group rate it as “Difficult to

provide”, 13.3% of them rate it as “No way to provide”, and 26.7% of them rate it

as “Normal”.

From the result of the simple experiment, we can see the gap between what kind of

information a user can provide to search for services and what kind of information is

expected to be matched with the technical description of services, especially for the

users who have little domain knowledge. It is even difficult for the computer science

students to provide some of the technical information of the required service.

By analysing the result of the experiment and studying the current research in the

literature, we identify the following key issues that need to be further investigated in

order to improve service discovery and composition. In this thesis, we will discuss in

details how we address these issues and provide a research solution.

• Insufficient usage context information: Current semantic Web service

description frameworks are mostly focusing on ontology based data and

capability semantics of Web services. They do not sufficiently address the

usage context information of a service. Although there are some research work

[Maamar et al., 2005] [Maamar et al., 2007] [Medjahed et al., 2007] on Web

services context, they mainly study the runtime environmental context, which

does not help to locate required services during the service discovery process.

The usage context of a service includes the information about how a service is

used and its relationships with other services. This kind of context information

can be helpful for service users to locate their required services.

• Precise service specifications: In order to locate a required service, the current

service discovery requires precisely defined technical specifications for the

required service, such as service input and output data types and service

capabilities. This kind of information is difficult for a service user to provide

at the preliminary stage of service discovery, especially when the service user

is not a domain expert in the required service area.

• Insufficient information about inter-relationship among service: The current

work inadequately addresses the inter-service relationships. A Web service

always needs to interact with other Web services to achieve its functionalities.

1.4 Proposed method

14

If we consider each service as an isolated individual and ignore the possible

relationships with other Web services, the efficiency of service discovery and

composition about this service will be decreased.

• Lack of incomplete information handling: Although some of the existing work

support rules in service description and composition [Martin et al., 2004]

[Orriens et al., 2003] [Charfi & Mezini, 2004], these rules are based on

monotonic logic and reasoning which are not suitable for handling incomplete

information.

In the following sections, we will discuss what our solutions are for tackling the issues

discussed above.

1.4 Proposed method

In this section, we will give an overview of our solutions to the problems discussed

previously. We propose a context based semantic service description framework that

provides sufficient usage context information of services, adequate semantics, and

non-monotonic rules for handling incomplete information. We also propose an

enhanced service discovery mechanism based on our service description framework to

illustrate how the proposed framework improves the efficiency and effectiveness of

service discovery and composition.

1.4.1 Integrating Context into Service Description

Context as a term has been addressed in many pieces of Web services related research.

In most of the literature, context is interpreted as the runtime environment of Web

services [Keidl and Kemper, 2004] [Maamar et al., 2005a] or as constraints and the

changeability of quality of service (QoS) [Zhou et al., 2008]. However, we interpret

the context of Web service from the conceptual and usage perspectives. To achieve a

Web service’s functionalities, the service needs to interact with other services and

entities. Although the self-contained and loosely-coupled features are important

characteristics, Web services are not isolated individuals. Given a Web service, there

are always some typical usage scenarios in which this service can participate. In other

words, given a usage scenario, certain types of Web service are always involved. We

consider typical usage scenarios as a kind of service context. This kind of context can

1.4 Proposed method

15

help a service user to identify a service. It is useful because more often than not, when

a service user searches for a service, the service user has a usage scenario in mind

rather than the technical detail of the required service. We embedded this kind of

usage context into Web service description to enhance the service discovery method

to locate services not only based on service technical specification, but also based on

service users’ usage scenarios. The detail of the service usage context and how it is

applied in the service description, discovery and composition, is discussed in detail in

chapters 3, 4, and 5.

1.4.2 Integrating Adequate Semantics into Service

Description

The semantic web proposes the annotation of static information on the web with

machine understandable semantics. The annotation is constructed mainly using XML

based semantic web languages and common domain ontologies. However, the

semantics of a Web service are far more complicated than the semantics of static

information because a Web service is a functional unit and its semantics contain many

aspects. Nagarajan summarise four types of semantics that should be addressed in

Web service descriptions [Nagarajan, 2006].

• Data Semantics: Data semantics is the formal definition of the data in the

input and output messages of a Web service. It is normally used in service

discovery process for matching with service requirements. It is also essential

in indicating the interoperability between services.

• Functional Semantics: Functional semantics is the formal definition of the

capabilities of a Web service. It is normally used in the service discovery and

composition process.

• Non-Functional Semantics: Non-functional semantics is the formal definition

of quantitative or non-quantitative constraints and requirements, such as QoS

(Quality of Service), minimum cost and policy requirements, message

encryption. It is normally used in the service discovery and composition

process. It is also essential in indicating the interoperability between Web

services.

1.4 Proposed method

16

• Execution Semantics: Execution semantics is the formal definition of the

execution or flow of services in a process or of operations within a service. It

is normally used in process verification and exception handling.

In our proposed context based semantic service description framework, we extend the

four types of semantics in order to better describe Web services and assist service

discovery and composition. We extend the functional semantic with usage context so

that the capabilities of a Web service can be identified through not only its functional

semantics, but also the typical usage scenarios of the service. We also extend the

execution semantics so that it can be also used for identifying services in a service

discovery process. The detail of the framework is discussed in Chapter 4.

1.4.3 Addressing Incomplete Information

In traditional Artificial Intelligence systems, problem solvers are designed based on

complete information. A problem solver assumes a complete knowledge base and its

main task is to draw correct conclusions from the knowledge base using a classical

reasoning mechanism [Genesereth & Nislsson, 1987]. In this case, a classical

monotonic logic is sufficient, such as predicate logic. However, in the Web services

case, the situations are more complicated and the ability to handle incomplete

information is crucial for the rule system used for service description and composition.

In our work, we adopt a non-monotonic reasoning mechanism and use Defeasible

Logic [Nute, 1994] as a formalism to describe pre-conditions and the effects of

services and rules for service composition and invocation. Defeasible Logic supports

different types of rule and has a built-in rule priority handling mechanism. It allows us

to draw conflict conclusions and the priority handling mechanism will decide the

conclusion with a higher priority in different situations. In Chapter 4, we will discuss

the Defeasible Logic based rules in our service description in detail.

1.4.4 A Flexible Service Discovery Mechanism

In order to improve the accuracy and efficiency of service discovery and composition,

we propose a two-step service discovery mechanism using the context based semantic

service description framework. As discussed previously, in order to locate a service,

the service search methods based on current service description frameworks require a

service requester to provide a detailed and exhaustive specification of the required

1.5 Contributions

17

service, including input and output data types, pre- and post-conditions, and service

capabilities etc. From our experiment it is observed that providing a detailed service

specification at the beginning of the service discovery process is infeasible for most of

the service users. Except for domain experts in the required service areas, most of the

users would not be able to provide such detailed technical information. To solve this

problem, we develop a two-step service discovery mechanism that can guide service

users step by step to locate suitable services. The first step is to capture a service

user’s mind to see what service the user wants and what scenario the required service

will be applied in. This is done through matching the service user’s requests or usage

scenarios with the service usage context in our service description framework. This

step ensures that the services that are relevant to the user’s request are located. From

the preliminary results, the user can get some hints for proposing further detailed

requirements. In the second step, based on the user’s more detailed requirements, the

result from the first step is refined and composite services are generated if existing

services cannot fulfil the requirement. Before returning to the service user located

services are ranked according to their similarity degree to the user’s requirement.

However, if the user is familiar with the technical details, the first step can be skipped.

1.5 Contributions

The main contributions of this thesis are outlined as follows:

• Define usage context of Web services: We define the service context in an

angle that is different from other research work. We consider context as the

information that can help a service user to locate required services, i.e. the

usage context, rather than the environmental information to regulate a

service’s behaviour at runtime.

• A context-based service description framework: We propose a context-

based service description framework that considers not only the semantics of

Web services, but also the usage context. Using the components provided in

this framework, the service discovery result is more accurate and the process

of service composition is more efficient.

• Handling incomplete information: Non-monotonic rules are used to

represent pre-conditions and effects of services and rules for service

1.6 Criteria for Success

18

composition. The non-monotonic rules can handle the dynamic and incomplete

information.

• A two-step service discovery mechanism: We propose a two-step service

discovery mechanism based on the proposed framework to demonstrate how

the framework can facilitate the service discovery and composition process,

especially when service users do not have the sufficient knowledge about their

required services.

• Implementation and evaluation: We provide a proof-of-concept prototype

that implements our approach and conduct a set of experiments to evaluate the

result accuracy, the performance, and the scalability of our approach. We also

compare our solution with the existing solution, i.e. OWL-S, through a series

of tasks in a given scenario to analyse the pros and cons of our solution.

1.6 Criteria for Success

In order to fully evaluate our work, we list a set of criteria for success below:

• Technological novelty: Our work must be novel in comparison with the

existing work.

• A Context-based Semantic Service Description Framework: one of the

outcomes of our work is a framework that can better describe Web services in

order to improve the efficiency of service discovery and composition.

• A suitable prototype: A proof-of-concept prototype needs to be realised in

order to show that our service description framework can be actually

implemented and the result from the prototype shows that it is beneficial.

• Acceptable system performance: The performance of the system has to be at

an acceptable level.

1.7 Thesis Outline

 The structure of the thesis is as follows:

1.7 Thesis Outline

19

• Chapter 2: Context of Problem Area Analysis and Research. In this chapter,

we will give a comprehensive survey of existing work and the relevant

background knowledge for the problem areas that have been discussed previously.

• Chapter 3: Service Usage Context. In this chapter, we start a detailed discussion

of our work. The definition of service usage context and its relevant concepts are

discussed in this chapter.

• Chapter 4: Context based Semantic Service Description Framework. In this

chapter, we discuss the context based semantic service description framework and

its main components

• Chapter 5: Two-Step Service Discovery Mechanism. Chapter 5 proposes the

two-step service discovery mechanism and how it benefits service discovery and

composition.

• Chapter 6: Implementation. In this chapter, we discuss the implementation

detail of the prototype

• Chapter 7: Evaluation. In this chapter, we evaluate our work based on the

prototype and scenario based analysis.

• Chapter 8: Conclusion and Future Work. Finally, we summarise our work and

point out future research directions for Semantic Web Services.

20

Chapter 2: Context of Problem Area
Analysis and Research

Chapter

2

In this chapter, we will give a detailed survey of the
related work in relevant research areas, including Web
services, semantic web, Semantic Web Services, service
context, service composition, and semantic information
processing.

2.1 Overview

21

2.1 Overview

Our research focuses on how to improve the current service description technologies

and standards in order to achieve more efficient service discovery and composition.

There are many research areas that are related to our work. In the following sections

we will review the literature from two aspects: the work related to our research and

the methods that are used in our work for solving problems.

For the work related to our research, we will first give a detailed discussion on the

Web services technology and point out what problems it has. Then, we will discuss

what the semantic web is and how current research work combines semantic web

technology with Web services technology to enhance the service discovery and

composition, so called Semantic Web Services. Context is one of the key areas in our

work for describing services. Therefore, we review the literature to see how context is

defined and used in the service description, discovery and composition. Finally, we

will look at the current technologies for service composition and semantic information

processing.

For the methods that are used in our work, we will first look at some of the knowledge

representation methods, such as ontology, conceptual graphs (CG), and Defeasible

Logic. We then discuss semantic similarity calculation methods, such as ontology

based methods and vector based methods.

2.2 Web services

The Internet has become a very important tool in daily business. As the Internet

becomes faster and more reliable, people are not satisfied with using the Internet only

as an information publishing and consuming tool, they want to use it to directly

connect their business with partners and customers. Thus, enterprise application

integration issues emerge in the research and development of e-commerce. Many

solutions have been proposed for solving the application integration problem, such as

CORBA, DCOM, and Java RMI [Coulouris et al., 2001]. However, all these solutions

have a common weakness, i.e. lack of effective interoperability. The reason is that to

achieve these solutions, specific platforms, programming languages, and protocols are

2.2 Web services

22

required [Gray 2004]. Only enterprise applications using the same communication

technology can be directly integrated. Otherwise, extra development work has to be

done to achieve the integration. This problem has drastically reduced flexibility and

increased complexity hence the cost of the enterprise application integration.

Furthermore, all of these solutions use binary messages and specific network ports for

their communication, which are normally not allowed by the firewall. To solve these

problems, the Web services technology emerges. In this section, we first give a brief

overview of the basic architecture of the Web services technology. We then discuss in

detail the core standards of the Web services technology, such as WSDL [WSDL,

2007], SOAP [SOAP, 2007], and UDDI [UDDI, 2004], and the problems exposed by

the basic architecture and the core standards that need to be tackled in the future

research and development work.

2.2.1 Technology overview

The success of the Web services technology relies on the standard data formatting

language XML, which is used to format Web service communication data [SOAP,

2007], describe the Web service interfaces [WSDL, 2007], and advertise on the web

[UDDI, 2004]. Communication with Web services is also established via a set of

standard TCP/IP protocols such as HTTP, HTTPS, SMTP, and FTP [SOAP, 2007].

The XML based language and the standard TCP/IP based communication protocols

make Web services programming language independent, operating platforms

independent, and firewall friendly. The loosely coupled and self-contained features

give Web services the ability to be invoked at runtime and composed with other

services to achieve complex tasks.

The W3C organisation defines the fundamental architecture of the Web services

technology. The goal of the Web services architecture is to provide a way for a

service provider to publish their services, for a service requestor to find required

services, and for the service requestor to invoke the services. To achieve this goal,

three components are defined to build up the Web services architecture [Kreger, 2001],

see Figure 2.1.

• Service provider: Companies, organisations, or individuals that have

developed and published Web services.

2.2 Web services

23

• Service requester: Companies, organisations, or individuals who require the

functionalities of the Web services. Once the required services are located, the

requesters can directly invoke the services according the information provided

by the service description documents.

• Global service registry/Service broker: A global registry acts as a central

service catalogue for the service providers to publish services and the service

requesters to locate services.

Figure 2.1. Web services Architecture [Kreger, 2001].

2.2.2 Core Standards

A series of XML based standards, such as SOAP, WSDL, and UDDI, have been used

to implement the fundamental architecture of Web services. The communication

messages between a service requester and a service provider are encoded into SOAP

messages which are plain text XML messages rather than binary messages, so that the

runtime environment details are not required before establishing the communication

as long as the communicators on both sides can interpret SOAP encoded messages.

WSDL is used to describe the Web service’s invocation details including the service

name, the provided operations, and the input and output data types etc. UDDI defines

the standards and APIs for publishing and discovering Web services. The Web

services technology stack [Gunzer, 2003] is shown in Figure 2.2.

2.2 Web services

24

Figure 2.2. The technology stack of Web services [Gunzer, 2003].

SOAP:

Since the main purpose of Web services is to solve the heterogeneous environment

integration problem, a runtime environment independent protocol is needed for

transferring the communication data between the enterprise applications. SOAP is a

protocol that is suitable for this purpose. SOAP is an XML based message formatting

protocol. It is a stateless and one way message exchange paradigm [SOAP, 2007].

The root element of a SOAP message is “<Envelope>” and contains two sub-elements:

an optional “<Header>” element and a “<Body>” element. The “<Header>” element

can contain the authentication or data encoding information. If a “<Envelope>”

contains a “<Header>” element, then the “<Body>” element must not be the first

element within the “<Envelope>”. A “<Body>” element contains the request/response

message and the error message if there is any. The error message only appears once

within a “<Body>” element. The structure of a SOAP message [SOAP, 2007] is

shown in Figure 2.3.

2.2 Web services

25

Figure 2.3. SOAP message structure [SOAP, 2007].

WSDL:

WSDL is an XML based standard for describing Web services. Based on WSDL a

service requester can know where and how to invoke services. The role of WSDL is

similar to the IDL file in CORBA [Sheth and Miller, 2003] or the Remote Interface in

Java RMI. The root element of a WSDL document is “<definitions>”. In a typical

WSDL document the sub-elements under the “<definition>” element could be:

<types>, <message>, <portType>, <binding>, and <service>.

The “<types>” element contains all the data type definitions of the described service

for sending and receiving messages. The XML schema namespace

(http://www.w3.org/2001/XMLSchema) is recommended for the data type definitions.

An example of the “<types>” element is given below.

The “<message>” element defines how the data types defined in the “<types>”

element are bound with the request and respond messages. The “<message>” element

can appear many times depending on how many functions the Web service provides.

An example of the “<message>” element is given below.

2.2 Web services

26

The information within the “<portType>” element is a set of operations.

“<operation>” sub-elements are used to identify the functions provided by the service

and their operation types. Four kinds of operation have been defined in the WSDL

specification [WSDL, 2007].

1. One-way operation: The endpoint receives a message.

2. Request-response Operation: The endpoint receives a message and sends a

replay.

3. Solicit-response Operation: The endpoint sends a message and receives a

reply.

4. Notification Operation: The endpoint sends a message.

These four operations are represented by three sub-elements within the “<operation>”

element, i.e. the “<input>” element, the “<output>” element, and the “<fault>”

element.

• A one-way operation only specifies the “<input>” element.

• A request/response operation specifies the “<input>” element first, followed

by the “<output>” element and some optional “<fault>” elements.

• A solicit response operation specifies the “<output>” element first, and then

the “<input>” element followed by some optional “<fault>” elements.

• A notification operation only specifies the “<output>” element.

An example of the “<portType>” element is given below.

2.2 Web services

27

The “<binding>” element defines the message format and the transformation protocol

details for each operation defined in the “<portType>” element. A binding must

specify exactly one protocol and must not specify any address information. An

example for binding an operation to the SOAP protocol is given below.

The “<service>” element contains a set of ports and each port specifies a single

address for binding, so that the service requester can know where the service can be

found. An example of the “<service>” element for SOAP binding is given below.

UDDI:

UDDI is a standard designed to provide a searchable directory of businesses and their

Web services [Gunzer, 2003]. In the Web services architecture, it acts in the service

broker role. There are three sets of information provided in an UDDI directory.

2.2 Web services

28

• UDDI white pages: the basic information about the service providers, such as

a company name, address, and phone numbers, as well as other standard

business identifiers like Dun & Bradstreet and tax numbers.

• UDDI yellow pages: the detailed business data, organised by relevant

business classifications.

• UDDI green pages: the technical information about Web services that are

exposed by the business, e.g., how to communicate with a Web service.

To provide the UDDI services at runtime, UDDI also supplies a set of APIs including

the APIs for publishing Web services and the APIs for searching Web services. The

main component of the UDDI service is the UDDI business registration which is an

XML based document. The business details and the provided Web services are

described in this document. There are four key data structures within the UDDI

registration to provide information [UDDI, 2004].

• Business entities: Describe the basic information about the organisation that

publishes the services.

• Business services: Describe the provided services in business terms.

• Binding templates: Describe the provided services in technical terms.

• tModels: Describe the technical specifications of published Web services e.g.

wire protocols, interchange formats, or sequencing rules.

In the latest version of UDDI, a main architectural change is the concept of “registry

interaction.”[UDDI.org, 2006]. Figure 2.4 illustrates how the private domain service

registry can interact with the public domain service registry.

2.2 Web services

29

Figure 2.4. Registry interaction enabled by UDDI 3.0 [UDDI.org, 2006].

2.2.3 Drawback of Current Web services Standards

For the last decade, Web services have become an important research topic in the

fields of Service-Oriented Architecture (SOA) [Huhns and Singh, 2005] and Grid

computing [Foster et al., 2001]. Web services as a new distributed system technology

has been widely adopted by industries in areas, such as enterprise application

integration, business process management, and virtual organisations. With an

exponential increase of services available on the web, it becomes an extremely

difficult task to find a service that fits well to a user’s requirements without

automating the process of service discovery and composition. The problems of

automation are twofold: a formal representation for services is required such that

service comparison and matching could be done more precisely and efficiently, and a

powerful and expressive service description framework is also required such that the

richer semantic description for services is introduced with less semantic loss during

service construction, organisation, and publishing. Currently, WSDL only

syntactically addresses the data structure and message type, the interaction protocols,

and the endpoint address of a web service and UDDI only provides a keyword based

service discovery mechanism. Lack of semantics in current web service standards has

become a barrier in achieving automatic or semi-automatic service discovery,

invocation and composition. To overcome this drawback, an emerging research area,

2.3 Knowledge Representation

30

so called Semantic Web Services, has gained considerable attention and seems to be

the most promising way towards achieving the automatic service discovery and

composition. We will give a detailed survey on the semantic web and Semantic Web

Services technologies later.

2.3 Knowledge Representation

Knowledge representation is a subject in cognitive science, artificial intelligence, and

knowledge modelling. However, in this section, we only focus on the knowledge

representation methods that are relevant to our research work. The knowledge

representation methods we are interested in are ontology, description logics,

conceptual graphs, and non-monotonic reasoning – a method that is used to deal with

incomplete knowledge base.

2.3.1 Ontology

The term ontology is first adopted by the artificial intelligence community from

philosophy where it was originally used to describe the nature of existence. The

original meaning of ontology in philosophy is “the branch of philosophy that deals

with the nature of existence” [Collins, 1995]. So what is Ontology? Guarina [Guarino,

1998] has stated ontology as:

“An ontology is a logical theory accounting for the intended meaning of a formal

vocabulary, i.e. its ontological commitment to a particular conceptualization of the

world. The intended models of a logical language using such a vocabulary are

constrained by its ontological commitment. An ontology indirectly reflects this

commitment (and the underlying conceptualization) by approximating these intended

models.”

Now, the concept of ontology is widely used in many areas of computer science to

describe a certain reality and the intended meaning of the vocabulary words [Guarino,

1998]. What is ontology in computer science? Here we list some definitions from the

literature:

“An ontology is an explicit and formal specification of a conceptualization” [Gruber,

1995]

2.3 Knowledge Representation

31

“An ontology is a logical theory accounting for the intended meaning of a formal

vocabulary” [Guarino, 1998]

“Ontology is the term used to refer to the shared understanding of some domain

interest” [Uschold and Grüninger, 1996]

From the above definitions, we can see that the goal of an ontology is to build a

unifying framework through specifying conceptualisation to achieve shared

understanding between people or applications. It consists of a taxonomy for concepts

and the relationships among concepts [Antoniou, 2004]. The taxonomy is built up by

classes and subclasses, and the properties of classes build up the class relationships.

Ontology is important concept in computer science field because it clarifies the

structure of knowledge, enables knowledge sharing, and let us build specific

knowledge bases to describe specific situations [Chandrasekaran et al. 1999]. By

applying ontologies, some existing problems, such as poor communication between

people within their organisations, lack of a shared understanding, and limited inter-

operability of software tools, can be addressed [Uschold and Grüninger, 1996].

Fensel [Fensel, 2001] categorises ontologies into five types each fulfilling a different

role in the process of building knowledge based systems.

• Domain ontologies: capture valid knowledge for a specific domain.

• Metadata ontologies: provide vocabulary for describing online content, e.g.

Dublin Core [DCMI, 2005].

• Generic or common sense ontologies: capture general knowledge about the

world, such as time, space, state, and event. Therefore, these ontologies are

valid for many domains.

• Representational ontologies: do not commit themselves to any particular

domain.

• Method and task ontologies: provide a reasoning point of view on domain

knowledge.

Ontologies can be used in many areas. Uschold and Gruninger [Uschold and

Grüninger, 1996] divide ontologies into three spaces of use: communication, inter-

operability, and software engineering (including specification, reliability, and

reusability). More specifically, Guarino [Guarino, 1998] specifies how ontologies can

2.3 Knowledge Representation

32

be used in development of information systems from the temporal dimension, such as

development time and runtime, and the structural dimension, such as databases, user

interfaces, and application programmes. Based on the different purpose and scope of

an ontology, the targets for building ontologies are diverse. However, the important

aspects in building ontologies are the same as those which should be considered in

order to build reasonable ontologies. Uschold and Gruninger [Uschold and Grüninger,

1996] summarise three aspects which are related to building ontologies.

• Capture: this aspect is about identifying the key concepts and their

relationships in a domain of interest, producing text definitions for these

concepts and relationships, and identifying terms to refer to these concepts and

relationships.

• Coding: this aspect is about defining the concepts and relationships in a

formal ontology language.

• Integrating Existing Ontologies: integrating existing ontologies can save

ontology development time. However, it is a hard task to be achieved and

there are some issues need to be further studied [Pinto et al., 1999].

To summarise, ontologies are very important in providing shared understanding and a

unified framework for people and applications to easily communicate. Based on the

shared domain ontology, automatic information processing and retrieval can be

achieved. However, there are still many issues that need to be studied further, such as

ontology mapping [Ehrig and Sure, 2004] [Hage et al, 2005] and integration [Pinto

and Martins, 2001].

2.3.2 Description Logics

Concept

Description logics (DLs) are a family of knowledge representation languages that can

be used to represent the knowledge of an application domain in a structured and

formally well-understood way [Baader et al., 2002]. The basic elements of DLs are

concept and role. The concept denotes the classes of objects and the role denotes the

binary relationships between classes [Calvanese et al., 2001]. As DLs are a set of

languages for knowledge representation, they have sets of symbols and syntax to

describe the world and suitable knowledge representation expressions for reasoning.

The DLs are derived from a knowledge representation called inheritance networks

2.3 Knowledge Representation

33

[Brachman, 1979], see Figure 2.5. Inheritance networks simply build up “is-a”

relationships between concepts and properties. DLs are very similar to the model of

inheritance networks, but with much richer expressiveness.

Figure 2.5. An example of inheritance network [Brachman, 1979].

In a typical DL knowledge base, there are two components: T-Box and A-Box, which

are used to represent intensional knowledge and extensional knowledge [Nardi and

Brachman, 2003].

The T-Box contains terminologies which are intensional knowledge. The basic form

of declaration in the T-Box is concept definition. A definition of a new concept is

made in terms of previously defined concepts. For example, a definition of woman

could be represented as follows:

Woman ≡ Person ∩ Female

This expression means that a woman is a female person. We can also write the

expression like:

Woman ⊑ Person

which means that a woman is a person. The later expression is called inclusive axiom.

There are some important assumptions of concept definition in the T-Box: 1) Only

one definition for a concept name is allowed; 2) Definitions are acyclic which means

that defining a concept in terms of itself or in terms of other concepts that indirectly

refer to it is not allowed [Nardi and Brachman, 2003]. The main task of the T-Box is

classification.

2.3 Knowledge Representation

34

The A-Box contains assertions about individuals, usually called membership

assertions, which are the extensional knowledge. There two kinds of assertions,

concept assertions and role assertions [Nardi and Brachman, 2003]. A concept

assertion defines to which concept an instance belongs. A role assertion defines the

relationships between instances. For example, Male∩Person(Tom) is a concept

assertion of Tom and hasChild(Tom, Mike) is a role assertion to describe the

relationship between Tom and Mike. The basic reasoning task of an A-Box is instance

checking to ensure knowledge consistency, realisation, and instance retrieval [Nardi

and Brachman, 2003].

Family of DL

Description logics are a big language family and have many variants. However, all the

variants are based on the syntax of very simple DL AL, and add extra expressive

features on it. The syntax rules of basic DLs AL are listed below [Baader and Nutt,

2003]:

C,D → A (Atomic Concept)

 ┬ (Universal Concept)

 ⊥ (Bottom Concept)

 ¬A (Atomic negation)

 C∩D (Intersection)

Other variants of AL add extra expressive rules based on the rules above. For

example, U adds union of the concept written as C∪D; E adds full existential

quantification written as ∃R.C; N adds number restriction written as ≥n R and ≤n R;

and C adds negation of arbitrary concepts written as ¬C. Therefore, a full featured AL

language could be written as ALEUNC. There is another family of DL called

expressive DLs. In this family of DLs, the languages used for building concepts and

roles comprise all classical concept forming constructs, plus several role forming

constructs such as inverse roles, and reflexive-transitive closure, and no restriction is

posed on the axioms in the T-Box [Calvanese and Giacomo, 2003]. Additional letters

indicating more extensions are listed below [Horrocks, 2005]:

2.3 Knowledge Representation

35

S for AL with transitive roles (R+)

H for role hierarchy (e.g., hasDaughter ⊑ hasChild)

O for nominals/singleton classes (e.g., {Italy})

I for inverse roles (e.g., isChildOf ≡ hasChild–)

Q for qualified number restrictions (e.g., ≥2 hasChild.Doctor)

F for functional number restrictions (e.g., ≤1 hasMother)

ALC + R+ + role hierarchy (H) + inverse(I) + QNR(Q) = SHIQ

2.3.3 Conceptual Graphs

Conceptual graphs (CGs) are a system of logic based on Charles Sanders Peirce’s

existential graphs [Peirce, 1936-58] and the semantic networks [Sowa, 1987] of

artificial intelligence. CGs represent knowledge in a way that is logically precise,

human readable, and machine computable. As CGs are directly mapped to natural

language, they are widely used for transform natural language to and from

computational formalism.

A CG is a finite, connected, bipartite graph with nodes of one type called concepts

and nodes of the other type called conceptual relations [Sowa, 1976]. Bipartite graph

means that there are no arcs between a concept and another concept, and no arcs

between a relation and another relation. All arcs either go from a concept to a relation

or from a relation to a concept. A simple conceptual graph is shown in Figure 2.6,

where the square boxes are concepts and oval boxes are relations.

Figure 2.6. A simple conceptual graph [Sowa, 1984].

CGs are defined over a set of vocabularies, which we call a support [Chein and

Mugnier, 1992]. A support is formally defined as follows:

Definition 2.1. A support is a 4-tuple ¶ = (TC, TR, ф, τ), where,

CAT: Elsie STAT SIT LOC MAT

2.3 Knowledge Representation

36

– TC and TR: Two partially ordered finite sets, respectively of concept types and

relation types.

– ф: A set of individual markers.

– TC, TR, and ф are pairwise disjoint.

– τ: A mapping from ф to TC.

– The generic marker is denoted as *, where * ∉ ф. The set ф ∪{*} is partially ordered

in the way that * is the greatest element.

A CG is defined over a support ¶ , which has two kinds of nodes, the conceptual nodes

and the relation nodes. Formally a CG is defined as follow:

Definition 2.2. A CG g, defined over a support ¶ , is a 4-tuple (Cg, Rg, Eg, lg), where,

– (Cg∪Rg, Eg) is a bipartite graph, where, Cg and Rg are the node sets, respectively of

concept nodes and of relation nodes, and Eg is a set of edges.

– lg is a labelling function of nodes and edges. A concept node c is labelled by an

ordered pair (type(c), marker(c)), where type(c)∈ Tc, marker(c) ∈ ф ∪{*}. A

relation node r is labelled by type(r), where type(r) ∈ TR. Edges around each relation

node are labelled with number from 1 to the number of edges that are connected to

that relation node. No edge is labelled in the CG representation.

A verbal explanation of CG and some examples are given as follows. The concept

nodes in a CG represent entities, actions, and attributes in a given application domain.

The label of a concept node consists of two fields: type and referent, separated by a

colon, [type: referent]. The type represents the class of a concept. The referent

represents an instance of the class. The functions type() and referent() can be used to

get a concept node’s type and referent. If the value of referent(c) is an individual

marker (an identification of an instance, such as name or id), e.g. [Cat: Tom], then the

concept c is an individual concept. If the value of referent(c) is “*”, e.g. [Cat: *], then

the concept c is a generic concept. A concept having only a type label is equivalent to

a generic concept, e.g. [Cat] = [Cat:*]. The relation nodes in a CG represent the

relationships between concept nodes. type(r) is the type of a relation node r.

2.3 Knowledge Representation

37

There are two ways to represent a CG: the display form and the linear form [Sowa,

1999]. In the display form representation, a CG is displayed as a graph, see Figure 2.6.

The concept nodes are represented by rectangles and the relation nodes are

represented by ovals or circles. In the linear form representation, a CG is represented

using linear text. Square brackets represent the concept nodes and round brackets

represent the relation nodes. Therefore, the graph shown in Figure 2.6 can also be

represented as:

[CAT: Elsie]→(STAT) → [SIT] → (LOC) → [MAT]

Before we discuss some of the important definitions and rules of CG, we first

introduce the concept of canonical graph and canonical formation rules. Theoretically,

to construct a CG, we can combine any concept nodes and relation nodes as long as

they satisfy the CG definition. However, some of the CGs may not make any sense.

Meaningful graphs that represent the real world are called canonical graphs [Sowa,

1984]. A set of formation rules are used to derive new canonical graphs from existing

canonical graphs. If u and v are canonical CGs, then a canonical CG w can be derived

from u and v by applying the following rules [Sowa, 1984]:

• Copy: w is an exact copy of u.

• Restrict: for any concept c in u, type(c) can be replaced by a subtype; if c is

generic, its reference may be changed from “*” to an individual marker. These

changes are only permitted if referent(c) conforms to type(c) before and after

the changes.

• Join: if a concept c in u is identical to a concept d in v, then w can be obtained

by deleting d from v and linking to c in u all the arcs of the conceptual

relations that had been linked to d.

• Simplify: if conceptual relations r and s in the graph u are duplicates, then one

of them may be deleted from u together with all its arcs. If two conceptual

relations are duplicated, it means that the direction of their edges and the types

of concepts that they can link to are identical.

By having the canonical derivation rules, we can introduce some important definitions

and properties of CG, such as specialisation, generalisation, and projection, which will

be applied in our research work.

2.3 Knowledge Representation

38

Definition 2.3. For any CGs u and v, u is called a specialisation of v (or v is called a

generalisation of u), denoted as u ≤ v, if u is canonically derivable from v.

Definition 2.4. Let u1, u2, v, and w be CGs. If u1 ≤ v and u2 ≤ v, then v is called a

common generalisation of u1 and u2. If w≤ u1 and w≤ u2, then w is called a common

specialisation of u1 and u2.

From the definitions above and the canonical derivation rules, Sowa [Sowa, 1984] has

proved that any CG is a generalisation of itself and any sub-graph is a generalisation

of its original. The graph consisting of the single concept [⊤] is a generalisation of

every other CG. Therefore, Sowa derives the generalisation hierarchy properties,

which are for any CG u, v, and w, the following properties hold:

• Reflexive: u ≤ u.

• Transitive: if u ≤ v and v ≤ w, then u ≤ w.

• Antisymmetric: if u ≤ v and v ≤ u, then u = v.

• Sub-graph: if v is a sub-graph of u, then u ≤ v.

• Sub-type: if u is identical to v except that one or more type labels of v are

restricted to subtypes in u, then u ≤ v.

• Individuals: if u is identical to v except that one or more generic concepts of v

are restricted to individual concepts of the same type, then u ≤ v.

• Top: the graph [⊤] is the generalisation of all other conceptual graphs.

For a CG u, if there is a CG v that is a specialisation of u, i.e. u ≤ v, then there must be

a sub-graph v’ embedded in v that represents u. However, the form of v’ may differ

from u because some of the concepts are restricted to their sub-types or some of the

generic concepts are restricted to individual concepts or some of the concepts or

relations are removed due to duplication. The sub-graph v’ is called a projection of u

in v, which is formally defined in the following theorem.

Theorem 2.1. For any CGs u and v, where u ≤ v, there must exist a mapping π: v → u,

where πuv is a sub-graph of u called a projection of v in u. The projection operator π

has the following properties:

• For each concept c in v, πuc is a concept in πuv such that type(πuc) ≤ type(c),

“≤” here represents the sub-type relationship between concepts. If c is an

individual concept, then referent(πuc) = referent(c).

2.3 Knowledge Representation

39

• For each relation r in v, πur is a conceptual relation in πuv such that type(πur) =

type(r). If the i-th arc of r is linked to a concept c in v then the i-th arc of πur

must be linked to πuc in πuv.

Proof. See [Sowa, 1984] (p. 99) for detail.

If two CGs have generalisation and specialisation relationships between them, the

next theorem provides the properties of their logical formulas. The operator “φ ” can

translate a CG into its equivalent logical formula.

Theorem 2.2. For any CG u and v, if u ≤ v, then φ u ⇒φ v.

Proof. See [Sowa, 1984] (p. 98) for detail.

2.3.4 Non-monotonic Reasoning – Defeasible Logic

In traditional knowledge representation approaches, such as first order logic and the

methods introduced in the previous sections, a complete knowledge world is assumed.

Under this assumption, once a logic statement is concluded to be true, then it will

remain true even more information is added unless the conclusions that it was based

on are rejected. This sort of logic and reasoning is termed as monotonic [Brachman

and Levesque, 2004]. However, in a real world situation, it is seldom the case. In

many situations, there is only incomplete information available, it maybe because the

required information is unavailable at the time or because the necessary response time

means there is no time to find all the information. In this case, some conclusions

drawn true may become false in the future when new information becomes available

to the system. Sometimes the available information conflicts and leads to completely

different conclusions. To deal with these situations, a more flexible knowledge

representation and reasoning system is introduced, i.e. non-monotonic logic and

reasoning [Brewka, 1991]. In this section we review a non-monotonic formalism

introduced by Nute [Nute, 1994], called Defeasible Logic, which will be applied in

our work later.

Defeasible Logic belongs to a class of non-monotonic approaches and was first

developed by Nute (Nute, 1987).

2.3 Knowledge Representation

40

Definition 2.5. A defeasible theory DT is a triple, DT = (F, R, >), where:

– F: a set of facts;

– R: a finite set of rules;

– >: a superiority relation on R.

There are three kinds of rules in Defeasible Logic:

Strict rules: rules that are always true, denoted by A → q, which reads as “if A, then

definitely q.”

Defeasible rules: rules that can be defeated by contrary evidence, denoted by A ⇒ q,

which reads as “if A, then typically q.”

Defeaters: rules that are used to defeat some defeasible rules, but not for drawing

conclusions, denoted by A ⇝ q, which reads as “if A, then perhaps not q.”

The superiority relation “>” defines which rule has a higher priority in the case where

several rules have contrary conclusions. For example, a strict rule can be “Hens are

birds”, formally written as:

hen(X) → bird(X)

An example of the defeasible rule is “a bird normally can fly”, formally written as:

bird(X) ⇒ flies(X)

An example of the defeater is “a heavy bird may not be able to fly”, formally written

as:

heavy(X)∧bird(X) ⇝ ¬flies(X)

If we have a set of rules with superiority relations, for example:

 r1: bird(X) ⇒ flies(X)

 r2: brokenWing(X) ⇒¬flies(X)

 r2 >r1

then, we can conclude that although a bird normally can fly, but if it has a broken

wing, normally it cannot fly, because the superiority relation between r1 and r2 , i.e. r2

>r1,decides that if r1 and r2’s conditions both are true, then r2’s conclusion is

considered.

2.4 Semantic Web

41

Defeasible Logic is historically the first of a family of approaches based on the idea of

logic programming without negation as failure [Antoniou et al., 2001]. The built in

superiority handling mechanism and the computational efficiency make Defeasible

Logic distinct from other non-monotonic approaches [Brewka, 2001]. In our work,

Defeasible Logic based rules are used to describe service pre-conditions, effects and

the conditions for service composition.

2.4 Semantic Web

The semantic web is first described by Tim Berners-Lee [Berners-Lee et al., 2001]

(who is the person invented World Wide Web in late 1980s). The semantic web is not

a separate web but an extension of the current one, in which information is given

well-defined meaning, better enabling computers and people to work in cooperation

[Berners-Lee et al., 2001]. Traditional web documents are written in HTML which is

designed to present information in a human readable way [HTML, 1999]. However,

today’s web contains an incredibly large amount of data. It is time-consuming if not

impossible for a human to read through this large amount of information and locate

required data. Therefore, the computational power of computers is needed to help

people to retrieve information from the web. Unfortunately, the information

representation on the web currently is only machine-processable, not machine-

understandable. The consequence of this is that when searching for certain

information, a large amount of irrelevant information is also returned. Therefore, an

alternative way to represent the information is required, this is where the semantic

web comes in. In the semantic web, information and knowledge are represented in

both human and machine understandable ways so that the information can be

processed automatically by machine in order to enhance the efficiency and accuracy

of information retrieval. The technologies used in the semantic web to help to

represent and retrieve knowledge are metadata, ontology, logic, and agents [Antoniou,

2004]. The semantic web is not a new invention. It is built upon existing technologies.

Figure 2.7 illustrates the layered approaches used to make the semantic web happen

[Antoniou, 2004].

2.4 Semantic Web

42

Figure 2.7. A layered approach to the semantic web [Antoniou, 2004].

In order to represent machine-understandable data on the web, the semantic web uses

XML based languages rather than HTML to describe information and knowledge.

RDF is an XML based semantic web language to describe resources on the web, and

RDFS and OWL are ontology languages to describe complex ontologies.

2.4.1 RDF and OWL

RDF and RDFS

The Resource Description Framework (RDF) is a language for representing

information about resources on the web [Manola and Miller, 2004]. It is an XML

based language and each expression in RDF is a collection of triples. Each triple

consists of a subject, an object and a predicate, this is also called a RDF graph [Klyne

and Carroll, 2004], see the diagram below.

Figure 2.8. A RDF graph example [Klyne and Carroll, 2004].

Subject is the resource that the RDF wants to describe, predicate is a property used to

describe a relationship between resources, and object is a value or another resource.

For example, if we want to describe “a web site http://www.example.org/index.html

as being created on 16 Aug, 1999”, then the RDF statement could be:

Subject Object Predicate

2.4 Semantic Web

43

The vocabulary for the RDF statement, such as creation-date, is defined in a simple

ontology language called RDF Schema (RDFS) [Brickley and Guha, 2004]. As RDF

is a universal language to describe any resource in any domain by any user defined

vocabularies [Antoniou and Harmelen, 2004], RDFS is needed to define the semantic

meaning in a specific domain of the vocabulary used in a RDF. RDFS can build up a

class and property hierarchy to define the meaning of concepts and their relationships.

Furthermore, RDFS supports class and property inheritance. An example of an RDFS

class and property is shown below to illustrate how to build up the class and property

hierarchy.

OWL

From the above example we can see that RDFS can build up an ontology of concepts,

but its semantic grammar is insufficient to describe complex relationships between

concepts, such as disjointness or cardinality restriction. Therefore, a richer ontology

language - web ontology language (OWL) [McGuinness and van Harmelen, 2004] is

recommended by W3C for building up fully described ontologies. An OWL ontology

includes the descriptions of classes, properties and their instances. It describes an

ontology with a much richer syntax than RDFS. OWL has three sublanguages: OWL

Lite, OWL DL, and OWL Full [Smith et al., 2004].

• OWL Lite supports users primarily needing a classification hierarchy and

simple constraint features

• OWL DL supports users who want the maximum expressiveness without

losing computational completeness (all entailments are guaranteed to be

<rdfs:Class rdf:ID="vehicle"/>

<rdfs:Class rdf:ID="car">

 <rdfs:subClassOf

rdf:resource="#vehicle">

</rdf:Class>

<rdf:Property rdf:ID="hasWheels">

 <rdfs:domain rdf:resource="vehicle"/>

 <rdfs:range

rdf:resource="&rdf;Literal"/>

</rdf:Property>

<rdf:Description rdf:about="http://www.example.org/index.html">

 <exterms:creation-date>August 16, 1999</exterms:creation-date>

</rdf:Description>

2.4 Semantic Web

44

computed) and decidability (all computations will finish in finite time) of

reasoning systems.

• OWL Full is meant for the users who want maximum expressiveness and the

syntactic freedom of RDF with no computational guarantees.

The relationships among these three sublanguages [McGuinness and van Harmelen,

2004] are:

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

OWL provides a richer set of language features than RDFS for describing ontologies.

The extra features includes equivalentClass, equivalentProperty, allValuesFrom,

maxCardinality, disjointWith, unionOf, etc. [McGuinness and van Harmelen, 2004].

With these new features, OWL can describe an ontology with complicated

relationships among the concepts defined in the ontology. An example of an OWL

code fragment is shown below:

Relationship between OWL and DL

The design of OWL is based on the expressive DL SHIQ. The sub languages OWL-

Lit and OWL-DL can be viewed as expressive DLs, with an ontology being

equivalent to a DL knowledge base [Horrocks et al., 2003]. Most of the properties in

OWL can be translated into a DL expression and the reasoning of OWL uses DL

reasoner, which means that OWL and DL are logically equivalent. The table below

shows the corresponding DL expressions for some OWL properties [Horrocks, 2005].

<owl:Class rdf:ID="Vintage">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#vintageOf"/>

 <owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

</owl:Class>

2.5 Semantic Web Services

45

Table 2.1. Mapping between OWL and DL

OWL Syntax DL Syntax

subClassOf C1⊑C2

equivalentClass C1≡C2

subPropertyOf P1⊑P2

equivalentProperty P1≡P2

transitiveProperty P
+
⊑P

2.5 Semantic Web Services

As the number of available Web services increases exponentially, automatic service

discovery and composition tools become essential for efficiently using Web services.

Furthermore, the loosely coupled and self-contained features give Web services the

ability to be dynamically invoked at runtime by other applications or other Web

services. Achieving dynamic service invocation at runtime is also an issue of

automation. To achieve automatic Web service processing, service capabilities and

service requirements need to be described in such a way that the description can be

processed by computer without or with minimum human intervention. Due to the lack

of formally defined semantics in WSDL based service descriptions, enormous

research efforts are being put into the development of a semantic rich semantic

framework on describing Web services. An emerging research area, i.e. Semantic

Web Services, has gained considerable attention and has become the most promising

way of achieving automatic service discovery, invocation, and composition. Semantic

Web Services combine the semantic web and Web services technology to make a

service description understandable not only by the humans, but also by computer

software [McIlraith et al. 2001]. Lara et al. [Lara et al., 2003] have stated a set of

criteria that should be addressed in a Semantic Web Services description in order to

fully describe a service’s capabilities, such as its pre-condition, post-condition, textual

description, and identifier. Several major Semantic Web Services frameworks have

been proposed, such as OWL-S [Martin et al., 2004], WSMF [Fensel & Bussler,

2002], WSMO [Fensel et al., 2007], and WSDL-S [Akkiraju et al., 2005]. The main

idea of the existing frameworks is to build a semantic layer either on the top of WSDL

or to be integrated into WSDL to semantically describe the capabilities of Web

services so that a software agent or other services can find out about a Web service’s

capabilities and how it can be used.

2.5 Semantic Web Services

46

2.5.1 OWL-S

In order to overcome the lack of semantics in WSDL, Martin et al. [Martin et al.,

2004a] have developed an OWL based semantic language called OWL-S to add a

semantic layer on the top of the WSDL to describe a Web service. The aim of OWL-S

is to enable automatic Web service discovery, invocation, and composition and

interoperation [Martin et al., 2004b]. The upper ontology of OWL-S consists of four

classes for describing Web services. One class called Service provides an

organisational point of reference for a declared Web service. It has three properties,

known as presents, describedBy, and supports. The other three classes ServiceProfile,

ServiceModel, and ServiceGrounding are the ranges of the Service class’s three

properties, see Figure 2.9 for the relationship among these classes [Martin et al.,

2004b].

Figure 2.9. Top level of the service ontology [Martin et al., 2004b].

These classes provide three essential types of knowledge for a Web service, these are:

1. What does the service provide for the service requester? The answer is given

in the ServiceProfile class.

2. How is it used? The answer is given in the ServiceModel class.

3. How does the service requester interact with the service? The answer is given

in the ServiceGrounding class.

2.5 Semantic Web Services

47

All the vocabularies used in the classes Service, ServiceProfile, ServiceModel, and

ServiceGrounding are defined in another set of ontologies, Service, Profile, Process,

and Grounding [OWL-S Upper Ontology, 2006].

ServiceProfile provides three types of information about a service [Martin et al.,

2004b]. The first type of information consists of service name, service description,

and service provider’s contact details. The second type of information is the service’s

functional description which has been expressed in terms of the transformation

produced by the service. Also the pre-conditions for invoking the service and the

results after the service is executed are provided. The third type of information is the

description of the properties that are used to describe features of the service which

includes the category of the service, the quality rating of the service, and the

parameters for response time or geographic availability of the service etc.

In OWL-S, how a service requester can interact with a web service is represented by a

process. This process information is captured in the ServiceModel class. A process is

the building block of a web service. It is not the actual implementation of the web

service, but a specification of the way a service requester can interact with the service.

The effects of a process are twofold: on one hand, it provides some new information

based on its own information, i.e. the inputs and outputs of a process; on the other

hand, it changes the state of the world, e.g. the credit card has been debited. This state

change can be described by the pre-conditions and effects of a process. Three types of

process have been modelled to represent the interaction between a service requester

and a web service. Atomic processes represent the processes where service requesters

can invoke the service and get the result in a single interaction. Composite processes

are collections of atomic processes and composite processes. The sub-processes of a

composite process are composed together according to business logic. How

information is passed between the sub-processes is based on the control structures and

conditions proposed in a composite process. Ten control structures are introduced in

the service process model [Martin et al., 2004a], including Sequence, Split, Split +

Join, Choice, Any – Order, Condition, If-Then-Else, Iterate, Repeat -While, and

Repeat – Until.

Simple processes are abstract processes with no instances and no associated

grounding and therefore cannot be invoked. A simple process is conceived as an

2.5 Semantic Web Services

48

atomic process and the purpose of the simple process is to give an abstract view of an

atomic process or a simplified view of a composite process. It can be realised by (the

realizedBy property) an atomic process or expanded to (the expandsTo property) a

composite process.

ServiceGrounding provides the information about how a service requester can

actually invoke a Web service. The provided information includes communication

protocol, message format, serialisation, transport, and addressing [Martin et al.,

2004a]. In the Web services infrastructure, the communication information unit is the

SOAP message. OWL-S uses the input and output properties to represent the

communication, rather than directly giving the specifications for SOAP messages.

Therefore, the role of service grounding is to give the mapping information from the

process inputs and outputs to the concrete messages. By having this mapping

information, a service requester can invoke the service. The service grounding only

provides the grounding details for atomic processes. For a composite process the

service grounding gives a list of referencing links to the atomic processes that have

been composed into the composite process.

2.5.2 WSMF and WSMO

The goal of the Web service Modelling Framework (WSMF) is to provide a full-

fledged description framework for Web services to enable the required automation

[Bruijn et al., 2005]. The key principles of WSMF are strong decoupling and strong

mediation [Fensel and Bussler, 2002]. Strong decoupling is to decouple the various

components used to build an e-commerce application [Fensel and Bussler, 2002].

Strong mediation is to build up mediation services to the heterogeneity so that

anybody can talk to anybody [Fensel and Bussler, 2002]. Based on these two

principles the components of the framework are built. There are four main

components in this framework, which are Ontologies, Goal Repositories, Web service,

and Mediator.

Ontologies

In the WSMF, ontologies are used to define terminology so that other components of

the WSMF can communicate based on shared or linked terminology [Fensel and

Bussler, 2002].

2.5 Semantic Web Services

49

Goal Repositories

Goal repositories in the WSMF give the descriptions of the goals that clients may

have when they consult Web services. This framework separates goal descriptions

from Web service is in order to achieve the many to many relationships between Web

services and goals; one goal can be achieved by many services and vice versa [Fensel

and Bussler, 2002]. There are two elements in a goal description: the pre-condition

and the post-condition. The pre-condition states what a Web service requires to

provide its service. The post-condition states what the response to a Web service’s

inputs will be.

Web service

The WSMF developers state that many Web service description languages have

distinguished between elementary and complex Web services in an incorrect way

[Fensel and Bussler, 2002]. In their opinion, the thing that complicates Web services

is not the Web services themselves, but their external visible descriptions or interfaces.

Therefore, in this framework a web service is described by a black box description

which contains thirteen aspects as follows.

• Name is assigned to a Web service as a unique identifier.

• Goal reference is a reference linked to the goal in the goal repositories

component.

• A Web service also has pre-condition and post-condition and they could

be a stronger pre-condition or a weaker post-condition of a goal.

• Input data and output data define the data structure and types required

by a Web service. The input data and output data are passed through the

components called input ports and output ports.

• Error data can be returned through the error ports to indicate the

problems or the error states of a service invocation.

• In order to hide the details of how a service can achieve its result by

invoking other services, the WSMF defines the invoked Web service

proxy. A proxy can be a goal definition or a specification of the required

service so that the service can be located at runtime.

• Data flow describes how a service’s input and output ports are connected

to the invoked Web service proxy’s input and output ports.

2.5 Semantic Web Services

50

• Control flow describes the connection sequence of the invoked Web

service proxies.

• Invoked Web services can fail and return an error or exception code. In

this case, depending on the error code, exception handling must take

place in order to deal with the error situation.

• An acknowledgement of message understanding is sometimes required

in a business integration process to indicate that a message has been

understood or not.

• A Web service description needs to relate to the message exchange

protocol. The message exchange protocol indicates how the messages are

exchanged over reliable and unreliable networks.

• Finally the Web service description also needs to provide appropriate non-

functional properties, such as geographical location, price, or

average/maximum performance time.

Mediator

In order to overcome the heterogeneity of data structures, business logic, and message

exchange protocols, and achieve dynamic service invocation, WSMF introduces a

mediator component. There are three kinds of mediators: data structure mediator,

business logic mediator, and the exchange protocols mediator. The idea of the

mediation is to resolve the standard heterogeneous problems described earlier, but it is

difficult to fully implement. This framework has not provided details on how to create

or design these mediators.

Web service Modelling Ontology (WSMO) [Roman et al., 2005] is based on the

WSMF and refines and extends WSMF to provide a formal ontology and a set of

languages to semantically describe Web services. The aim of WSMO is to provide the

conceptual and technical means to realise Semantic Web Services and improve the

cost-effectiveness, scalability and robustness of the current solutions [Roman et al.,

2005]. It defines the ontological specifications for the core components of the WSMF.

The top-level elements in WSMO are similar to the core components in WSMF which

are Ontologies, Web services, Goals, and Mediators. WSMO uses class and

properties to describe an element, for example, the Web service class is described by

2.5 Semantic Web Services

51

five properties, and the range of the properties is stated by type. See the code listed

below:

In WSMO four kinds of mediators are concretely specified:

• OO (ontology to ontology) Mediators are used to resolve mismatches

between ontologies.

• GG (goal to goal) Mediators are used to resolve terminology mismatches

between goals.

• WG (Web service to goal) Mediators are used to resolve terminology

mismatches between Web services and goals.

• WW (Web service to Web service) Mediators are used to establish

interoperability between Web services.

In each element’s description, which kind of mediators is required is clearly specified.

For example, in the Web service element description, the required mediators are the

OO Mediator and the WW Mediator. However, similarly to WSMF, the concepts of

mediators are still underspecified and it is not clear whether the mediators should be a

set of rules or a service [Paolucci et al., 2004]. It is also unclear whether the mediators

should be implemented on the client side or the server side.

2.5.3 WSDL-S

WSDL-S is proposed by the LSDIS (Large Scale Distributed Information Systems)

Lab, University of Georgia, USA. The way it integrates semantics into Web service

descriptions is different from the frameworks discussed previously. The design

principles of the WSDL-S are listed below:

• Build on the existing Web services standards.

• The mechanism for annotating Web services with semantics should be

independent of the semantic representation language.

2.6 Service Context

52

• The mechanism for annotating Web services with semantics should allow the

association of multiple annotations written in different semantic representation

languages.

• Support semantic annotation of Web services whose data types are described

in an XML schema.

• Provide support for rich mapping mechanisms between Web service schema

types and ontologies.

The first design principle of WSDL-S is “Build on existing Web services standards”.

The designers of WSDL-S consider a very important requirement for Semantic Web

Services is alignment with the existing Web services standards. Therefore, their

solution is to design the semantic model separately, which can be used to annotate the

information provided in WSDL using the WSDL’s extendible elements. The semantic

model can be defined in any languages, for example RDF, OWL, XSLT, or UML.

The elements provided by WSDL-S, which can be plugged into the standard WSDL

documents, are:

• modelReference: an extension element that is used to handle one to one

mapping between the schema elements and the concepts in a semantic model.

• precondition and effect: two new elements specified as the sub-elements of

the operation element in WSDL. These two elements are used to describe pre-

conditions and effects of an operation.

• category: an extension attribute of the interface element in WSDL. It contains

the category information for publishing services to a UDDI registry.

WSDL-S also supports directly publishing to UDDI and enables dynamic discovery of

services. However, as WSDL-S is tightly bound with WSDL, its expressiveness is

limited. For example, it cannot be used to describe a composite service with logical

control structures.

2.6 Service Context

A service is not an independent function unit. To realise its functionality, a service

must interact with its outside environment. A service could behave differently in

different situations and environments. Therefore, context awareness is a very

2.6 Service Context

53

important issue that needs to be considered in service-oriented computing. In this

section, we will discuss the context concept in general and how it is applied in the

service-oriented paradigm.

2.6.1 What is Context?

The term “context” is often used in relevant computer science literature. However, its

meaning is mostly dependent upon the understanding of the author and its usage is

often implicit. Many research works use the term “context” or “contextual situation”.

Here we give a summary of the typical definitions that have been proposed in the

literature for “context”:

Dey and Abowd [Dey & Abowd, 2000] define context as “any information that can

be used to characterize the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a user and an application,

including the user and applications themselves”;

Brown et al. [Brown et al., 1997] from the user’s perspective define context as the

users’ location, who the users are with, and what the time of day is etc.

Ryan et al. [Ryan et al., 1997] consider the information about the environment of the

computers as context, such as location, time, temperature, or user identity etc.

The various definitions demonstrate that “context” is a very complex term and may be

interpreted in many different ways. From the above definitions we can summarise that

context is mainly understood as the environment of either computer software or a

computational device, for example:

• Computing environment: available processors, devices accessible for user

input and display, network capacity, connectivity, and costs of computing.

• User environment location: collection of nearby people, and social situation

• Physical environment: time, temperature, etc.

However, context could mean not only the environment, but also the conceptual

relationships between one object and the other objects in a certain situation. Mineau

and Gerbe [Mineau and Gerbe1997] from the semantics and natural language angle

define context as a set of assertions whose existence depends upon some other

2.6 Service Context

54

assertions which describe the premises of its existence. For example, the statement

“Peter loves Mary” may not be universally true. However, if the context is added to

this statement “Mary thinks that Peter loves Mary”, then it becomes universally true.

2.6.2 Service Context

Current research efforts to add context to the SOA paradigm are mainly concentrating

on the following three aspects: context aware service execution, context aware service

discovery/provision, and context aware service composition. In the following, we

discuss each aspect in detail.

Keidl and Kemper [Keidl and Kemper, 2004] propose a framework for development

and deployment of context-aware adaptable Web services. They add contextual

information into SOAP messages so that Web services can behave differently based

on different contextual information without modifying the actual infrastructure or

implementation of the Web services. An illustration of the modified SOAP message is

shown in Figure 2.10. The contextual information they consider in their solution is the

service clients’ information that can be utilised by Web services to adjust their

executions to perform personalised behaviours.

Figure 2.10. A SOAP message with context information [Keidl and Kemper, 2004].

The proposed framework also has a set of context components to process the

contextual information. The contextual information is processed by either context

services, a context plug-in, or the actual invoked Web service. They also define the

precedence rules used to determine which component should be used for processing.

The context processing can be done either locally or remotely.

2.6 Service Context

55

Figure 2.11. Context-aware personalised Web services [Maamar et al., 2005a].

Maamar et al. [Maamar et al., 2005a] categorise service context into U-context (User

context), W-context (Web Service context), and R-context (Resource context). Based

on these three types of context, Web services can be deployed and supplied to satisfy

the user’s personalised requirements, see Figure 2.11. The U-context keeps tracking

the user’s preferences in terms of execution time or location. The W-context looks

into the execution constraints of Web services based on the service user’s preferences.

The R-context tracks current resource information. They also define a set of policies

to ensure that a Web service still does what it is supposed to do after personalisation.

The Consistency policy checks the status of the Web service after personalisation. The

Feasibility policy checks if a personalised Web service can find a resource on which it

will be executed according to the constraints of time and location. Finally, the

Inspection policy ensures that a personalised Web service is being deployed according

to the adjusted specification. In their earlier work [Maamar et al., 2005], they apply

agent technology on context-aware service composition, in which they introduce two

new types of context, the I-context (Web service instance context) and the C-context

(composite service context). When a composite service request comes in, the different

kinds of agent that manage different contextual information work cooperatively

together to ensure that a composite service is created correctly.

Zhou et al. [Zhou et al., 2008] view context as the constraints and changeability of

QoS (Quality of Service) values. In the real business world, the QoS values of Web

services are heavily affected by service providers and the combination of the sub-

2.6 Service Context

56

services in a composite service. For example, one service provider may announce that

their Web services are only compatible with some specified vendor’s Web services, in

order to exclude other candidates; another service provider may claim that if you buy

service A from them, you will get service B cheaper. To tackle this problem, they

proposed a context-sensitive QoS model that considers the effect of the QoS values

from the service providers. In the context-sensitive model, QoS objective functions

are proposed with a context effect indicator function g(). For example, the objective

function for the cost of a service is proposed as follows:

1
((,))

n

i i ki
c g c ρ

=
+∑

where ci is the cost of each sub-service of a composite service and (,)
i k

g c ρ represents

how ci is affected under a certain combination of services
k

ρ . Therefore, under the

different user QoS requirements and service providers’ constraints, different

composite services can be generated.

2.6.3 Significance and Deficits

As a functional unit, a Web service cannot achieve its functionality without

interacting with the external environment and this interaction can be greatly affected

by the Web service’s surrounding context, either the physical context or the

conceptual context. By reviewing the literature in the previous sections, we can see

that the context has already been considered as an important issue in Web service

provision, composition, and execution. Current research work in the Web services

domain mainly addresses context as environmental factors, such as physical

environment, user profile, and computational environment. Although as mentioned by

Mineau and Gerbe [Mineau and Gerbe1997] context can also be conceptual

relationships between concepts or assertions, only few researchers have applied this

notion of context in the Web services domain. As mentioned by Du et al. [Du et al.,

2007a], this notion of context is important in fully describing a Web service because

to comprehensively understand a Web service we cannot ignore its relationships with

other services or entities. In our work, we consider context as the relationships

between a service and other services or entities at either the conceptual level or the

instance level. We will discuss this in detail in Chapter 3.

2.7 Service Composition

57

2.7 Service Composition

Web service composition has become a major research area [Dustdar and Schreiner,

2005] whose outcome can support efficient and effective business integration so that

enterprises can rapidly deliver better business services to their customers with low

cost. Service composition is also crucial in achieving SOA because it enables new

business values to be created from the existing resources [Huhns and Singh, 2005].

From the business angle, the enterprises need to work cooperatively with their

business partners and customers [Sayah and Zhang, 2005]. The on-demand model

proposed by SOA provides more freedom for an enterprise to dynamically interact

with their business partners to provide their own services. Therefore, a service

provided by an enterprise can be achieved by many services from different service

providers therefore the enterprise can concentrate on their core businesses. This is the

way that service composition technology can help enterprises deliver their business

services efficiently and achieve their business objectives.

In this section, we review some common techniques for Web service composition,

such as manual service composition, automatic or semi-automatic service compositing,

and workflow based service composition.

2.7.1 Manual Service Composition – BPEL4WS

Manual service composition is the way that the composite service or workflow

designers manually analyse the task of a composite service and decide what sub-

services need to be involved in the composite service to achieve its desired goals and

how those sub-services should be linked. BPEL4WS [Andrews et al., 2003] is a

manual service composition model and language that can be used to build composite

services.

Web service technology is a platform for enterprise application integration. However,

it is too simplistic to achieve complex business interaction because it is essentially a

stateless model of synchronous or uncorrelated asynchronous interactions [Andrews et

al., 2003]. A business interaction model typically needs peer-to-peer message

exchanges, both synchronously and asynchronously, within stateful, long-running

interactions involving two or more parties [Andrews et al., 2003]. Transaction

management needs to be supported because errors may happen during the interaction.

2.7 Service Composition

58

Therefore, Microsoft, IBM, and other IT companies cooperatively developed a

language – BPEL4WS [Andrews et al., 2003] to support constructing stateful

composite business processes. This language is based on two existing process

modelling language WSFL [Leymann, 2001] and XLANG [Thatte, 2001] and

includes all the features from these two languages. BPEL4WS is an XML based

language and is used to describe the following aspects of a business process.

• Partners: a set of Web services used to achieve the business process.

• Containers (called Variables in V1.1): providing the means for holding

messages that constitute the state of a business process.

• faultHandlers: routine for exception handling.

• CompensationHandler: compensations to be performed when a transaction

rollback happened.

• EventHandlers: routines to handle external asynchronous events.

• CorrelationSets precedence and correlations that cannot be expressed in the

main interaction logic.

• Main process logic: a set control flow structures to form primitive activities

into a complex algorithm. It includes the following control structures:

o Sequence

o While

o Switch

o Pick

o Flow

• Control structures related to atomic actions: invoke, receive, reply, wait,

assign, throw, terminate, and empty.

A simple example shown below illustrates the structure of a BPEL4WS document

2.7 Service Composition

59

However, BPEL4WS is heavily based on WSDL and models static service

composition only. If a business process needs to dynamically invoke required services

at runtime, BPEL4WS is not a suitable solution. BPEL4WS is a communication

oriented language and the communication between activities is established through

sending and receiving messages [Wohed et al., 2003]. BPEL4WS is a low level

business process model or service composition language because the messages used to

communicate are technical information and no semantics involved.

2.7.2 Automatic or Semi-Automatic Planning based Service

Composition

Agarwal et al. [Agarwal, 2004] propose a semi-automatic service composition

framework, called OntoMat-Service. In the framework, a service browser is provided

<!ENTITY BPEL http://schemas.xmlsoap.org/ws/2002/07/business-process

<process name=”simple” targetNamespace=”urn:simple:stockQuoteService”

 xmlns:tns=”urn:simple:stockQuoteService”

 xmlns:sqp=http://tempuri.org/services/stockquote

 xmlns=&BPEL; />

<containers>

 <container name=”request” messageType=”tns:request”/>

 <container name=”response” messageType=”tns:response”/>

 <container name=”invocationRequest” messageType=”sqp:GetQInput”/>

 <container name=”invocationResponse” messageType=”sqp:GetQOutput”/>

<containers/>

<partners>

 <partner name=”caller” serviceLinkType:”tns:StockQuoteSLT”/>

 <partner name=”provider” serviceLinkType:”tns:StockQuoteSLT”/>

<partners/>

<sequence name=”sequence”>

 <receive name=”receive” partner=”caller” portType=”tns:StockQuotePT”

 operation=”wantQuote” container=”request” createInstance=”yes”/>

 <assign>

 <copy>

 <from container=”request” part=”symbol”/>

 <to container=”invocationRequest” part=”symbol”/>

 <copy/>

 </assign>

 <invoke name=”invoke” partner=”provider” portType=”sqp:StockQuotePT”

 operation=”getQuote” inputContainer=”invocationRequest”

 outputContainer=”invocatonResponse”/>

<assign>

 <copy>

 <from container=”invocationResponse” part=”quote”/>

 <to container=”response” part=”quote”/>

 <copy/>

 </assign>

 <reply name=”reply” partner=”caller” porttype=”tns:StockQuotePT”

 operation=”wantQuote” container=”response”/>

 </sequence>

</process>

2.7 Service Composition

60

with a function that can convert a service’s WSDL document and its relevant

advertisement into a human readable HTML web page. The users can then use their

own ontology to annotate the relevant information in the WSDL. An annotator

provides the functionality to translate the terminologies used to describe the service

into the client side ontology. If inconsistency exists between the client side

terminologies defined by the user ontology and the service terminologies defined by

the service provider ontology, some mapping rules will be automatically generated by

the annotator to map the equivalent terminologies. This is called deep annotation and

the mapping rules are defined using F-Logic. The mapping rules enable third parties

to invoke the Web service on the basis of the client side ontology. After the semantic

annotation of the Web services, the users can drag and drop services or operations into

the composition panel. The Web service planner will automatically generate possible

service flows based on the Web service’s pre and post conditions, input and output

data types, and the goal of each participated Web service and the composite service.

The OntoMat-Service framework has achieved some automation such as terminology

mapping and service flow planning, but is still a semi-automatic service composition

framework because the selection of the services and annotation of the services have to

be done manually.

In order to achieve automatic service composition, first the services have to be

described semantically so that the description can be processed by the machine.

Secondly, automatic planning techniques have to be used to generate service flows

based on goals [Rao and Su, 2004]. Wu et al. [Wu et al., 2003] propose an automatic

Web service composition solution. Their solution combines the semantic Web service

description model DAML-S (the previous version of OWL-S) and SHOP2 [Nau et al.,

2003], an HTN (Hierarchical Task Network) [Sirin et al., 2004] planning system.

DAML-S is the only Web service language that claims a direct connection with AI

planning [Rao and Su, 2004]. HTN is an AI planning methodology that creates plans

by task decomposition [Sirin et al., 2004]. SHOP2 is a domain independent planning

system, so before starting planning, a domain has to be specified to the system. In

their work, the domain for the SHOP2 system can be automatically translated from

the DAML-S model. Therefore, a DAML-S Web service composition problem can be

encoded as a SHOP2 planning problem. There are four components used to achieve

the automatic service composition. A DAML-S to SHOP2 translator takes the

2.8 Semantic Similarity Calculation

61

DAML-S process definition file as an input and generates a SHOP2 domain file as

output. A monitor is used to handle SHOP2’s calls for external information on

provided services during planning. A SHOP2 to DAML-S converter converts the

plans produced by the SHOP2 system into a DAML-S composite process model that

can be directly executed by the DAML-S executor. However, a limitation of this

system is that all the Web services have to be well described in DAML-S. Otherwise

automation is not possible, in addition a shared ontology is required between service

providers and consumers.

2.8 Semantic Similarity Calculation

Semantic similarity calculation is an important technique in automatic Web service

discovery and composition. It helps a search engine locate the most suitable services

for a service request. In this section, we will review some of the common methods and

algorithms that are used for calculating semantic similarity and ranking.

2.8.1 Ontology based Methods

Wu and Palmer [Wu and Palmer, 1994] address how to calculate the semantic

distance between two concepts within a domain ontology. The similarity of two

concepts is defined by how closely they are related in the hierarchy, i.e., their

structural relations.

Figure 2.12. The concept similarity measure [Wu and Palmer, 1994].

Suppose we have the ontology illustrated in Figure 2.12, then the similarity between

the concepts C1 and C2 is calculated as follows:

2.8 Semantic Similarity Calculation

62

3
1 2

1 2 3

2*
(,)

2*

N
sim C C

N N N
=

+ +

where, C3 is the least common super-concept of C1 and C2; N1 is the number of nodes

on the path from C1 to C3; N2 is the number of nodes on the path from C2 to C3; and

N3 is the number of nodes on the path from C3 to root.

Paolucci et al. [Paolucci et al., 2002] propose some semantic matching and ranking

algorithms for Web service capabilities. Their solution is based on the OWL-S

framework. The main rational behind their algorithms is a service advertisement

matches with a service request if the provided service can be of some use to the

requester. It means that in their solution a service is not necessarily exactly matched

with a request, a partial match, e.g. where one of the outputs is matched or outputs

partially satisfy a requirement, is also acceptable, however, the degree of the

similarity will be lower than for a full match. They provide a ranking algorithm to

rank services according to their semantic similarity to the service request. The ranking

algorithm is illustrated as below:

The degree of similarity is determined by the minimal distance between concepts in

an ontology. There are four degree assignments:

• Exact: if a request and a service advertisement are matched or if a request is a

subclass of the service advertisement, the service is assigned with “exact”

matching degree.

• Plug in: if a service advertisement subsumes a request, then the service

advertisements is a set includes the request. However, this relationship

between the service advertisement and the request is not as strong as

subClassOf. The service may not provide exactly what the request wants. In

this case the service is assigned with the “Plug in” matching degree.

degreeOfMatch(request, advertisement)

 if request equal advertisement return exact

 if request subClassOf advertisement return exact

 if advertisement subsumes request return plugin

 if request subsumes advertisement return subsumes

 otherwise return fail

2.8 Semantic Similarity Calculation

63

• Subsumes: if a request subsumes a service advertisement, then the service

does not completely fulfil the request. The request uses this service to achieve

its goal, but it certainly needs other complement services or resources.

• Fail: if there is no subsumption relationship between a service advertisement

and a request, then the service fails to fulfil the request.

The solution proposed by Paolucci et al. has made a good attempt at applying

semantic web technology into Web services and matchmaking. However, the

algorithm they proposed is too simplistic because it only considers the input and

output semantics of a service. In a realistic case, a service selection decision should be

made based on many factors, such as pre- and post-conditions, quality of service

(QoS), business rules, and service providers.

2.8.2 Vector based Methods

When comparing two objects, each of which has more than one property that needs to

be compared in order to measure the similarity between these two objects, e.g. a

service requirement and a Web service or between two documents, vector based

similarity measurement methods are more appropriate. The idea of the vector based

similarity measurement is to convert the properties of the objects into vectors and

apply well known mathematical operations on vectors to compute the similarity

between the vectors and accordingly measure the similarity between the objects.

Suppose we have two objects O1 and O2 and their property vectors V1=(t1, t2, …, tj)

and V2=(t1, t2, …, tj) then we can apply the following methods proposed in [Frakes

and Baeza-Yates, 1992] [Berry et al., 1999] [Agosti and Smeaton, 1996] to measure

the similarity between O1 and O2.

Dice’s Coefficient:

1 2
1 2

1 2

2 | |
(,)

| | | |

V V
Dice O O

V V
=

+

∩

Jaccard Coefficient:

1 2
1 2

1 2

| |
(,)

| |

V V
Jaccard O O

V V
=

∩

∪

2.9 Summary

64

Overlap Coefficient:

1 2
1 2

1 2

| |
(,)

(| |,| |)

V V
Overlap O O

min V V
=

∩

Cosine Similarity:

1 2

1 2
,

1 2

V V
T T

V V
Cos

V V
θ =

i

Term Weighted Cosine Coefficient:

1 2

1 21
,

2 2

1 21 1

j

k kk
V V

j j

k kk k

w w
Cos

w w

θ =

= =

=
∑

∑ ∑

i

i

where, the variable wik represents the vector Vi’s k-th term’s weighted value. It is

normally calculated based on the importance of the properties of an object during

matchmaking, e.g. a word that appears many times in a document may have higher

weight than the words that seldom appear in a document.

These methods have been widely adopted in the areas, such as information retrieval.

In our work, we will use some of these methods in Web service discovery.

2.9 Summary

In this chapter, we have reviewed the research areas that are most relevant to our work,

such as Web services, Semantic Web Services, service context, and service

composition. We have also reviewed the technologies that can help us to develop our

solutions, such as CG, Defeasible Logic, and semantic similarity measurement

methods.

From the literature survey we observed that there are many problems in the Web

services domain, especially in the area of service description, that still need to be

solved, especially in service description. We have summarised two major gaps

between the existing work and what is needed:

2.9 Summary

65

• Inter-service relationships are ignored. According to the literature we have

reviewed, all the existing works view Web services as isolated individuals without

considering their relationships in business domains or business scenarios. In our

opinion, the relationship between services is an important characteristic of the

services involved in them. It enhances the semantic description of the service

capabilities.

• Service context regarding the use of services is not addressed. The context of

services discussed in the literature mostly considers the runtime environment of

services. None of the context in the existing works takes into account how

services are used, i.e. the usage context. In our option, the usage context of a

service is a crucial part of the service description. On one hand, it can help a

service search engine to better match services with user requirements. On the

other hand, it bridges the gap between the user requirements and the service

descriptions based on technical specifications.

In this thesis, we analyse and bridge these gaps through a Context based Semantic

Service Description Framework (CbSSDF). CbSSDF integrates service usage context

into service descriptions and takes into account inter-service relationships, in order to

improve the efficiency and effectiveness of service discovery and composition. In the

following three chapters, we will discuss the framework and its related concepts in

detail.

66

Chapter 3: Service Usage Context

Chapter

3

In this chapter, we introduce the concept “Service Usage

Context”, which is the foundation of the service

description framework that will be discussed in chapter 4.

3.1 Overview

67

3.1 Overview

In this chapter, we discuss the important concept of “Service Usage Context”, which

is the fundamental concept of the service description framework that we will discuss

in the next chapter. Web services can be considered as remote function units that

provide certain capabilities. The loose coupling feature of Web services gives them

the ability to be invoked independently without taking into account the heterogeneity

of deployment platforms and programming languages. However, this does not mean

that a Web service can be invoked in any situation where its capabilities are required.

For example, a motor vehicle repair service is not suitable for a broken toy car and a

customer data provision service can only be used within an enterprise, otherwise the

data may not be relevant or the data protection policy of that enterprise may be

breached. When a Web service is created, based on its functionality there are some

situations or scenarios in which the service can best participate, i.e. under which

context the service should be used. The other elements in these scenarios for the

service can be other services, service users, and software agents. Such 'best-fit'

scenarios for a service form the Service Usage Context (SUC) of the service. We

model the SUC at two levels: the conceptual level and the instance level. In our

opinion, to fully describe a service, we need to address not only the capabilities of the

service, but also how the service is related to its SUC. The SUC is mainly about how a

service is connected to other services and entities. This is not in conflict with the

loosely coupled feature of Web services because the loosely coupled feature only

deals with technology independency, not the conceptual relationship or usage

dependency. In the rest of this chapter, we will discuss the SUC and its relevant

concepts in detail.

The content of this chapter is organised as follows: we first introduce some basic

terms to be used in this and following chapters in order to make the later discussion

clearer, and then discuss how the idea of the SUC is developed; finally we give the

definitions of SUC and its relevant concepts.

3.2. Glossary

68

3.2. Glossary

Several terms are frequently used in the later discussion in the thesis. Many of them

have been widely discussed in the literature and have been given slightly different

meanings. It may cause confusion without a clear clarification. In this section, we list

them here and explain what these terms mean in this thesis.

Service: Service is a more general term than Web services. A service can be any

business component that provides functionalities over the network through

standardised interfaces. A service’s functionalities can be provided by the service

itself or by a combination of other services through the service’s interfaces. Although

this thesis mainly uses Web services as examples, the applicability of the work

proposed in the thesis is not limited to Web services. Therefore, sometimes the term

“service” is used instead of Web services.

Service Ontology: Based on the capabilities of a service in a given business domain,

a data model that represents a set of concepts about the classification of the service's

capabilities and the relationships among those concepts can be created, that data

model is called the service ontology. An example is shown in Figure 3.1.

Figure 3.1. A service ontology example.

Thing

Vehicle Service

Vehicle

MOT Repair

Car
Bus

Service1
Car1 Car2 Bus2 Bus1

Service

Service2 Service3
Service4

Vehicle Service

MOT Repair

Service1 Service2 Service3 Service4

Service

3.3 Context and Schemata

69

Figure 3.2. A domain ontology example.

Domain Ontology: Domain ontology is a comprehensive ontology that includes the

service ontology of a given business domain and other concepts that are relevant to

the business domain. An example is shown in Figure 3.2.

Service Concept and Instance Service: A service concept is a concept in the service

ontology. If a service concept has corresponding services, these services are called the

instance services of the service concept. A service concept can have direct instance

services, indirect instance services, or both. The indirect instance services are the

instance services of the service concept’s sub-concepts in the service ontology. The

reason for introducing service concept is that by having a service concept, we can

discuss the usage of a service at a conceptual level without worrying about the

technical details.

Domain Concept: a domain concept is a concept in the domain ontology, but not in

the service ontology.

User/Service User: the term user or service user represents the actual end users, i.e.

the human users, who require the functionality provided by a service to achieve their

goals.

Service Requester: Service requester is a broader term than the service user. It can be

a service user, a software agent, or a service, which requires the functionality

provided by a service.

3.3 Context and Schemata

The term “context” is often used in the computer science literature. Its meaning is

mainly based on each individual researcher’s understanding (and its usage is implicit).

As we discussed in the previous chapter, there are many research efforts using or

focusing on the term “context” or “contextual situation” and providing various

definitions, which we discuss as follows:

Dey and Abowd [Dey & Abowd, 2000] define context as “any information that can

be used to characterize the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a user and an application,

3.3 Context and Schemata

70

including the user and applications themselves”; Brown et al. [Brown et al., 1997]

define context from the user’s perspective as users’ location, who the users are with,

what the time of day is, etc.; Ryan et al. [Ryan et al., 1997] consider the information

about the computers environment as context, such as location, time, temperature, or

user identity etc.

These definitions demonstrate that the “context” is a very complex term and can be

interpreted from many different perspectives. However, in our work, context does not

focus on the physical environment as most of the researchers do. The context that we

take into account is the usage context of Web services and it is the information that

can help service users to understand and use Web services, i.e. the Service Usage

Context (SUC).

The SUC is proposed in the belief that the identification of meaning of a concept

mainly stems from its contexts, i.e. its relationships to other concepts [Guha et al.,

2004]. Before discussing the SUC in detail, we first look at how the meaning of a

concept is defined. There are two ways to define a concept: type definition and

schemata [Sowa, 1984]. The type definition defines a concept through genus and

differentiae. It states all the obligatory or essential properties that must be hold for that

type [Sowa, 1984]. For example, if we define a hammer using the type definition, it

would be “a hand tool with a heavy rigid head and a handle”. The definition

demonstrates that a new concept “Hammer” is introduced by an existing generic

concept “Tool” with some essential features or properties, i.e. “a heavy rigid head and

a handle”. Through the type definition, concepts are organised into a hierarchical

structure, e.g. an ontology. In the above example, the concept “Tool” is a super type

of the concept “Hammer”. A schema presents a perspective on one way that a concept

may be used [Sowa, 1984]. For example, if we define the hammer using schemata, it

would be “a hammer can strike nails into wood” and “a hammer can smash stones”.

The schemata definition of a concept defines the meaning of the concept collectively

using several typical schemata of the concept. Through schemata, concepts are

organised into a network. From the difference between the type definition and the

schemata we can see that to fully express the meaning of a concept, especially when

the concept is not an abstract concept, it is insufficient to only label it with what it is,

i.e. the type definition. In some cases, it is difficult to learn the genus of a concept and

3.3 Context and Schemata

71

it is even more difficult to find properties to differentiate this concept from other

concepts with the same genus. In this situation, we need to describe how the concept

can be applied in instance usage scenarios, i.e. the schemata, in order to make its type

definition understandable. In the “hammer” example, if a person is told that “a

hammer is a type of tool with heavy rigid head and a handle”, he may or may not be

able to infer what the tool is for. However, if we say “a hammer can strike nails into

wood”, at least now he knows one way to use a hammer despite not knowing clearly

exactly what a hammer is. Sometimes the type definition of a concept is not important

when only the concept’s functionalities are of interest. For a hammer’s user, as long

as the hammer can achieve the user’s targets/requirements, e.g. knocking nails into

wood, it is the right thing for the user.

Web services encapsulate discrete functionalities to achieve certain desired goals. The

following reasons suggest that only using type definition, i.e. an ontology, to describe

Web services is insufficient. The descriptions need to comprise type definitions and

schemata, i.e. the combination of service ontology and SUC.

• On the one hand, it is difficult for a type definition to clearly describe the

capabilities of a service and its usage. For example, if a service is categorised as a

“Credit Card Payment” service, this does not indicate any information about how

and under which circumstances the service can be used because the type definition

for “Credit Card Payment” does not provide that information. On the other hand,

some service’s genus and differentiae are not clear and therefore it is difficult to

select suitable type definitions for those services.

• It is very difficult to tell what the differences are between services that belong to

the same service concept, even though these services have been given suitable

type definitions.

• How to use a service is often considered as knowing how to interact with the

service or how the service interacts with other services. This cannot be clearly

represented in a type definition hierarchy.

Therefore, to describe a Web service, we need to address not only the type definition

of the service, but also how the service is used in various usage contexts, i.e. SUC.

SUC can help service users to better understand services and better match services

3.4 Service Usage Context

72

with their own requirements. SUC emphasises that parts can only make sense in the

context of a greater whole [Fensel et al., 2007].

3.4 Service Usage Context

We define SUC at two levels: the conceptual level SUC and the instance level SUC.

In this section, we will discuss the two levels of SUC in detail and give the definitions

of the related concepts.

3.4.1 Conceptual Level Service Usage Context – TTTT-Context

As a function unit, a Web service needs to interact with other services and entities in

order to perform its function. Entities that interact with the Web service are service

users, service requesters, or other business components. In a given business domain,

we can categorise a Web service’s interactions into different scenarios in which

certain business tasks are achieved. Each scenario of the service demonstrates a way

of using the service.

If we abstract a scenario into the concepts and relations that represent the service,

other services, entities, and their interactions, then we can construct a conceptual

usage scenario of the Web service’s service concept in the business domain. Each

conceptual usage scenario describes the conceptual relationships between the Web

service, other services and entities required to achieve a business task or

collaboratively provide a business service. If we have a collection of conceptual usage

scenarios in which a Web service can participate, i.e. the schemata of its service

concept, then we can tell conceptually how the service should be used in the business

domain, i.e. the usage context, and how it is related to other services and entities. We

use conceptual level SUC (T-Context) to represent the usage context of a service and

the conceptual relationships between the service and other services and entities.

Concepts in a T-Context are service concepts and type definitions that are defined in a

domain ontology. Conceptual relations between concepts in the T-Context can be

either hierarchical relations, such as Bus ⊑ Travel_Service
3
, or horizontal relations,

3
 Here we borrow the symbol from Description Logic [Baader et al., 2002] to represent sub-type

relations.

3.4 Service Usage Context

73

such as requires(Payment_Service, Card_No.). They represent the relationships

between the service, other services and entities that are collaboratively providing

business services.

If a service is applicable in an open domain rather than a specific business domain, it

may be able to participate in a large or even infinite number of scenarios, i.e. its

service concept may theoretically have a large or infinite number of relations with

other concepts. In this case, the T-Context of the service could be infinitely large.

However, in reality the T-Context does not necessarily to be infinite to describe the

service. As we mentioned in Section 3.3, to define the meaning of a concept it is not

necessary to enumerate all the schemata of the concept, the typical schemata are

sufficient to define the meaning. For example, although people can use a hammer as a

paperweight, that is not a hammer’s major function and without enumerating that

usage the meaning of the hammer concept is still clear. In the Web services case, as

long as a service concept’s T-Context covers the most popular usages of the service, it

is sufficient. In an enterprise, services are normally sitting in a closed business domain

and their capabilities are manageable by the enterprise [Strang, 2005]. In this case, a

service’s T-Context will not have the infinite size problem. However, T-Context is

extendable, therefore when a service can participate in a new business service or

scenario, its T-Context can be extended to enclose it.

As the T-Context of a service consists of a collection of conceptual usage scenarios,

before formally defining T-Context, we first give the definition of a conceptual usage

scenario. Given a business domain, let O be a domain ontology, Oc ⊆ O be the whole

collection of concepts from O, R be a set of labels representing the conceptual

relationships among services and entities in the business domain, a conceptual usage

scenario is defined as following:

Definition 3.1. Given a service concept cs∈Oc, a conceptual usage scenario ϕ(cs) of cs

is a pair (G, l) where:

– G = (V, E) is a directed labelled graph.

3.4 Service Usage Context

74

– l :V∪E →Oc∪R: is a labelling function that labels each vertex in V with concept

name, so that V= {vi | vi ∈Oc, 0<i}, and each edge in E with predefined relations to

indicate the relationship between concepts.

An example of a conceptual usage scenario is given in Figure 3.3. From the diagram

we can see how the service concept “Money Transfer” is related to other concepts in

the domain, such as “Financial Service”, “Currency”, “Currency Conversion”, and

“Bank”. This conceptual usage scenario example tells the story about how the

“Money Transfer” service is performed in the given business domain.

Figure 3.3. A conceptual usage scenario of a service concept – “Money Transfer”.

The T-Context of a service is a collection of conceptual usage scenarios for the

service’s service concept. Formally, it is defined as follows:

Definition 3.2. Given a service concept cs∈Oc, its T-Context is a set of conceptual

usage scenarios T(cs)={ϕ(cs)1, ϕ(cs)2, ϕ(cs)3, …, ϕ(cs)n}, whose element satisfies the

following conditions:

– cs∈(ϕ(cs)1.V1∩ ϕ(cs)2.V2∩ ϕ(cs)3.V3∩ … ∩ϕ(cs)n.Vn)

– For any two elements ϕ(cs)i, ϕ(cs)j ∈ T (cs), ϕ(cs)i⊄ϕ(cs)j ∧ ϕ(cs)j⊄ϕ(cs)i.

We call cs the owner service concept of T (cs) and the instance services of cs the owner

services of T (cs).

In a service repository, if we consider each Web service’s service concept and the

relationships between the service concepts as a knowledge base, the T-Context can be

seen as a mechanism for partitioning the knowledge base and assigning partitions to

their relevant services. In an enterprise, the knowledge base partitioning is the process

Money Transfer Currency

Bank

Financial Service

Currency Conversion

is_a
is_a

transfer convert

provide provide

3.4 Service Usage Context

75

of creating business services based on the enterprise’s existing capabilities. In other

words, once a new business service is created, certain Web service’s T-Context will be

extended (or created if the services have not been used in the past).

However, T-Context only provides a conceptual view of the relationships between

services and other business entities. It does not consider any technical details, such as

service interfaces and pre- and post-conditions of each service, which means that

although two services are conceptually related in certain business tasks or scenarios,

they may not be able to interact at runtime. These constraints come from data

semantic differences, data type incompatibility, and pre- and post-conditions

dissatisfaction. Therefore, we introduce another level of service usage context, the

instance level service usage context (A -Context), to model the usage context of

services at the instance level.

3.4.2 Instance Level Service Usage Context – A-Context

The T-Context defines conceptually how each service in a business domain

participates in different business services and tasks through the conceptual relations

between its service concepts and other concepts. When tasks and business services are

executed, the actual instance services of each service concept in a T-Context need to

be allocated and composed in order to achieve the desired goals of the tasks and

business services. However, T-Context does not determine whether each service

concept’s corresponding instance services are compatible with the required

composition. To execute and compose services at runtime, a service execution or

composition system needs to know the composability between services. Although this

can be achieved through analysing the service interfaces, it could be much more

efficient if the information was provided in the service description. To address

instance level service interactions, we introduce instance level service usage context

(A -Context). A -Context can be considered as the instantiation of the T-Context. It

models interactions between instance services at runtime. In A -Context we only

consider interactions between instance services. Interactions between services and

service requesters are considered during the query processing stage.

Similar to T-Context, an instance service in an open service repository, e.g. the

Internet, could theoretically interact with infinite number of instance services, which

3.4 Service Usage Context

76

means the size of its A -Context can be infinitely large. However, for the same reason

as T-Context, we do not need to enumerate all the possible interactions between an

instance service and other instance services. Additionally, the interactions in the A -

Context of a service are limited by its service concept’s T-Context. If the semantics of

an interaction is not defined in the service’s T-Context, then that interaction is not

included in the service’s A -Context. The A -Context can also be extended to enclose

new interactions of an instance service.

The minimum requirements for an interaction happening between two instance

services according to Paolucci et al. [Paolucci et al, 2002] are compatible inputs and

outputs and satisfiable pre-conditions and post-conditions/effects. Input and output

compatibility means that if a service s1’s input data is provided by another service s2’s

output, the data generated by s2 must be both data type compatible and semantically

compatible with s1’s input data requirements. For example, if s1 requires a “telephone

number” in “String” data type as input, then neither a “telephone number” in

“Integer” data type nor an “Address” in “String” data type is compatible with s1’s

input. Having satisfiable pre-conditions and post-conditions/effects means that after

the execution of s2, the effects of s2 are not violating the pre-conditions for s1’s

execution. For example, if s1 requires a “telephone number” that must exist in a local

telephone number registry, then s2 will not be the right service for s1 if its output

telephone number does not exist in that registry.

In A -Context, the composability between two instance services is represented as a

service link. A service link is a directed relation. Let in represent input parameters of a

service, out represent output parameters a service, p represent pre-conditions of a

service, and e represent effects of a service, a service link is defined as follows:

Definition 3.3. Let si, sj be two services. A service link between si to sj is a directed

relation that links the m-th output of si, i.e. si.outm, to the k-th input of sj, i.e. sj.ink,

denoted as l (si, sj) | si.outm ≫ sj.ink, and it satisfies the following conditions:

–Sim(si.outm, sj.ink)>0, where Sim() is a semantic similarity function to compute the

semantic distance between si.outm and sj.ink. The returned value is within range [0, 1]

to indicate the similarity degree of from no similarity to full match.

3.4 Service Usage Context

77

–Comp(si.outm, sj.ink)>0, where Comp() is a compatibility function to determine

whether si.outm, and sj.ink are data type compatible. The returned value is within range

[0, 1] to indicate the compatibility degree from not compatible to fully compatible.

–Satisfy(si.e, sj.p)=true, where Satisfy() is a Boolean function that determines whether

sj.p can be satisfied or not be violated by si.e.

Considering the four services listed in Table 3.1, according to their inputs, outputs,

pre-conditions, and effects, we can create three service links among these four

services:

– l (service3, service1)| service3. out1 ≫ service1. in1: the meaning of this service link is that

after an amount of money is converted from Dollar to Pound by service3, it is transferred from

one account to another by service1.

– l (service4, service2)| service4. out1 ≫ service2. in1: the meaning of this service link is that

after an amount of money is converted from Euro to Dollar by service4, it is transferred from

one account to another by service2.

– l (service4, service3)| service4. out1 ≫ service3. in1: the meaning of this service link is that

it converts an amount of money from Euro to Pound (via the conversions Euro to Dollar and

Dollar to Pound).

Table 3.1. Service instances and their basic attributes.

Service Service

Concept
Input Output Pre-condition Effect

service1
Money

Transfer

in1:

Pound

in2:

account

in3:

account

out1:

transfer

status

p: valid account

detail

e: money transfer succeeded

or failed

service2
Money

Transfer

in1:

Dollar

in2:

account

in3:

account

out1:

transfer

status

p: valid account

detail

e: money transfer succeeded

or failed

service3
Currency

Conversion

in1:

Dollar

out1:

Pound

p: correct currency

type

e: Dollar converted into

Pound

service4
Currency

Conversion

in1:

Euro

out1:

Dollar

p: correct currency

type
e: Euro converted into Dollar

3.4 Service Usage Context

78

Similar to the conceptual usage scenarios in T-Context, the composable instance

services can be grouped into scenarios. We name these scenarios instance usage

scenarios.

An instance usage scenario describes how a group of instance services can interact

with each other to provide a composite service in order to achieve desired goals. Let S

be a set of instance services, L={(l (si, sj) | si.outm ≫ sj.ink) | si, sj∈S}be a set of service

links, an instance usage scenario is defined as following:

Definition 3.4. Given an instance service s∈S, an instance usage scenario ρ(s) of s is a

pair (G, l) where:

– G = (V, E) is a directed labelled graph.

– l :V∪E →S∪L is a mapping that maps each vertex in V to an instance service in S

and each edge in E to a service link in L .

In Figure 3.4 the example of an instance usage scenario is illustrated using the

services from Table 3.1. This scenario describes how two instance services are linked

to achieve a money transfer service that transfers money in Dollars from one account

to another account that only accepts Pounds.

Figure 3.4. An instance usage scenario of a service – service1.

The A -Context of a service is a collection of instance usage scenarios for the service.

A -Context describes how an instance service (the context owner service) can interact

with other instance services (the surrounding services) by means of consuming or

providing data from or to other services to complete tasks or provide services.

Formally, it is defined as follows:

Definition 3.5. Given an instance service s, its A -Context is a set of instance usage

scenarios A (s)={ρ(s)1, ρ(s)2, ρ(s)3, …, ρ(s)n}, whose elements satisfy the following

conditions:

Service3 Service1
l (service3, service1)| service3. out1 ≫ service1. in1

3.5 Summary

79

– s∈(ρ(s)1.V1∩ ρ(s)2.V2∩ ρ(s)3.V3∩ … ∩ρ(s)n.Vn)

– For any two elements ρ(s)i, ρ(s)j ∈ A (s), ρ(s)i⊄ρ(s)j ∧ ρ(s)j⊄ρ(s)i.

– Let T(cs) be the T-Context of s, where cs is the service concept of s, then

∀ρ(s)∈A (s)(∃ϕ(cs)∈T(s)|(ϕ(cs)֏ρ(s))). The expression “ϕ(cs)֏ρ(s)” is read as

“ρ(s) complies with ϕ(cs)”, which means that for all the instance services in ρ(s),

their service concepts or service concepts’ super concepts must appear in ϕ(cs).

3.5 Summary

In this chapter, we introduced an important concept, the Service Usage Context (SUC).

SUC is defined at two levels: the T-Context and the A -Context. The T-Context of a

service defines its conceptual relationship with other services and entities in potential

business scenarios. The A -Context of a service defines how an instance service can

interact with other instance services at runtime. In other words, A -Context defines the

composability between instance services.

SUC provides information that can help the understanding and use Web services, thus

assist service discovery and composition processes. Both the T-Context and the A -

Context emphasise that services are not isolated individual components. They always

work together in certain patterns to achieve business tasks. Therefore, to fully

understand and describe a service’s functionality, we should know its usage context.

However, according to the literature that we have reviewed, there is little existing

research that formally addresses service usage context in service description.

The concept of SUC is the foundation of the service description framework that we

will define in the next chapter. This framework integrates SUC into service

description, which aims to make service discovery and composition more effective

and efficient.

80

Chapter 4: Context-based Semantic
Service Description Framework

Chapter

4

In this chapter, we will first give an overview of the
Context-based Semantic Service Description Framework.
Then, we will discuss each component of the framework
in detail. Finally, we will propose a method that can
transform existing Web service descriptions efficiently
into Context-based Semantic Service Description
Framework based descriptions.

4.1 Overview

81

4.1 Overview

As we reviewed in Chapter 2, an enormous number of research efforts on Semantic

Web Services have been focusing on semantic Web service description, discovery

[Ludwig & Reyhani, 2005] [Paolucci et al., 2003] [Song & Li, 2005], and

composition [Agarwal et al., 2005] [Du et al., 2006a]. In order to effectively and

efficiently perform Web service discovery and composition, a comprehensive service

description framework is essential. There are several semantic service description

frameworks that are proposed to provide richer service descriptions to address the

semantic issue of Web services, such as OWL-S [Martin et al., 2004], WSDL-S

[Akkiraju et al., 2005], and WSMF [Fensel & Bussler, 2002]. The main idea of the

existing work is to build a semantic layer either on the top of WSDL or integrated into

WSDL to semantically describe capabilities of Web services so that a software agent

or other services can reason about a Web service’s capabilities and how to interact

with it. However, the following problems still exist in the current semantic service

description and discovery:

• Insufficient usage context information: The current work is focusing on

ontology based data type semantics. They do not sufficiently address how a

service fits its usage context, i.e. a service’s

applicability/usability/composability, which we believe is a more effective and

more natural way of describing Web services.

• Precisely specified requirements to locate services: In order to locate a service,

the current work requires a precise specification of the required service. For a

service user who is not familiar with the technical side of the required service,

providing precise specification can be a difficult task. Furthermore, the service

matching mechanisms only consider the limited set of attributes that are

defined in the service description. They merely compare text based service

description, operation signature (inputs and outputs), and constraints on inputs

and outputs. Inter-service relationships, service internal structure, and service

composition patterns have not historically been used to discover services, we

believe these should be considered very important factors when identifying

services.

4.1 Overview

82

• Insufficient information about inter-service relationships: although Web

services are functional units, more often than not their own functionality is not

sufficient to achieve some complex task without interaction with other services.

Therefore the best way to understand a service is to know how it should

interact with other services, at both the conceptual level and the

instance/technical level. Once the inter-service relationships are addressed in

the service description, for a given task, we could locate the relevant services

all together, rather than individually. The current work considers services as

isolated components, which makes service discovery and composition less

effective and less efficient.

• Insufficient incomplete information handling: The incomplete information

caused by the dynamic nature of the Internet and Web services has not been

addressed adequately in current service description frameworks and the

service composition process. The monotonic logic based rules in the current

service description frameworks are not suitable for handling incomplete

information and conflicting conditions.

To address the above problems, we propose a Context-based Semantic Service

Description Framework (CbSSDF), which is a comprehensive framework for Web

services. Apart from service capabilities, CbSSDF also takes into consideration the

SUC. The aim of the framework is to improve the semantic capability of service

discovery and simplify the service composition process. It contains three main

components: a set of Service Conceptual Graphs (S-CGs), a Semantic Service

Description Model (SSDM), and a set of non-monotonic rules that are represented in

Defeasible Logic [Nute, 1994]. The set of S-CGs gives an abstract description of the

relationships between the services and concepts. The S-CGs are the implementation of

the T-Context. The formalism behind S-CG is conceptual graphs [Sowa, 1984]. The

SSDM gives a comprehensive semantic description of a service through different

semantic aspects. It also addresses the A -Context of services. A set of non-monotonic

rules are used to represent the pre-conditions and effects of services and the

conditions and constraints for service composition. These non-monotonic rules can

also handle conflict conditions caused by incomplete information.

4.2 Atomic Service and Composite Service

83

The content of this chapter is organised as follows: before giving the details of

CbSSDF, we firstly define what the atomic service and the composite service are;

then we walk through each main component in CbSSDF; finally, we propose a

transformation method that can convert existing service descriptions into CbSSDF

based descriptions efficiently.

4.2 Atomic Service and Composite Service

The term “service” in SOA is an important concept and has multiple definitions.

Different researchers or organisations understand services differently. In this section,

we first examine some of the service definitions in the literature to see what other

people think what services are. From these definitions, we summarise some common

characteristics of services and give our own definitions. The followings are a list of

service definitions that have been mentioned in the literature:

“From a business perspective, services are IT assets that correspond to real-world

business activities or recognizable business functions and that can be accessed

according to the service policies that have been established for the services.

From a technical perspective, services are coarse-grained, reusable IT assets that

have well-defined interfaces (a.k.a. service contracts) that clearly separate the

services' externally accessible interface from the services' technical implementation.”

[Newcomer and Lomow, 2004]

“Contemporary SOA represents an open, extensible, federated, composable

architecture that promotes service-orientation and is comprised of autonomous, QoS-

capable, vendor diverse, interoperable, discoverable, and potentially reusable

services, implemented as Web services.” [Erl, 2005]

 “A service is a mechanism to enable access to a set of one or more capabilities,

where the access is provided using a prescribed interface and is exercised consistent

with constraints and policies as specified by the service description.” [MacKenzie et

al., 2006]

“A service in the context of SOA is the IT realization of some self-contained business

functionality.” [Josuttis, 2007]

4.2 Atomic Service and Composite Service

84

“Services are exposed functionalities which are clearly defined, self contained, and

which will not depend on the state and context of peer services.” [Binildas, 2008]

From above definitions we can see that a service in the context of SOA should have

the following characteristics:

• Interface: a service is for exchanging messages or changing the state of a

backend entity that is associated with the service. It must have a well defined

interface for doing this.

• Self-contained: a service should be independent and autonomous.

• Searchable: a service should be formally described and published, so that it

can be discovered by service requesters.

• Pre- and post-conditions/effects: pre- and post-conditions/effects are part of

a service’s capability specification. Pre-conditions are the conditions that must

be met before a service requester invokes a service. Post-conditions/effects

define the effect caused by the execution of the service.

• Composable: a service’s functionalities can be accomplished by combining

other services. This does not contradict the self-contained characteristic

because from the service requester perspective, the service is till functioning

as a whole.

• Implemented as Web services: currently, Web services is the most popular

technology to implement services in context of SOA.

In the following, we give our own definition of services. We distinguish two types of

services, the atomic service and the composite service. Although for a service

requester, there is no difference between an atomic service and a composite service, it

is necessary to distinguish these two kinds of services from the service discovery and

composition perspectives. The reasons are discussed as follows:

• Atomic services are the basic building blocks of composite services. They are the

most basic services that are able to accomplish one of the simplest business

functions that a service provider can provide to service users. A service is an

atomic service when its internal structure is not (necessarily) visible to the service

provider, e.g. provided by another service provider, or it has no internal structure,

i.e. its functionalities do not rely on any other services, or its internal structure can

be ignored, e.g. the service’s functionalities rely on other services that cannot be

4.2 Atomic Service and Composite Service

85

used as independent services. The most important characteristic of atomic services

is that they cannot be decomposed further, so any decomposition process

operating of them can end here, which is very important during the service

planning and composition process; they also enable users to see which are the

building blocks of the more complex services.

• Composite services are normally created by service providers and they have total

control over the internal structures of these services. Service providers can alter

the structure of composite services or reuse their sub-components if it is necessary

to fulfil service requirements. Distinguishing composite services from atomic

services gives us richer semantic capabilities because if we recognise the internal

structure of a composite service, then the semantics of its sub-services and their

relationships can be taken into account when identifying the service during a

service discovery and composition process.

An atomic service is an independent non-decomposable service that provides its

functions without relying on other services. Formally it is defined as following:

Definition 4.1. An atomic service sA is a 7-tuple, sA=(id, In, Out, P, E, T, B) where,

– id: A service ID.

– In = {in1, in2, …, inn}: A set of inputs of sA.

– Out = {out1, out2, …, outn}: A set of outputs of sA.

– P = {p1, p2, …, pn}: A set of pre-conditions to trigger a service execution of sA.

– E = {e1, e2, …, en}: A set of effects received after the execution of sA.

– T: The type of the service, i.e. sA’s service concept in a service ontology.

– B: The grounding information for interacting with sA.

A composite service is a service that provides its capabilities by coordinating and

assembling other service’s capabilities. It has a clearly defined internal data flow and

control structure.

Definition 4.2. A composite service sC is a 10-tuple, sC=(id, In, Out, P, E, T, S, DS,

CtrlS, B) where:

– id: A service ID.

– In = {in1, in2, …, inn}: The set of inputs of sC.

– Out = {out1, out2, …, outn}: The set of outputs of sC.

4.3 Context-based Semantic Service Description Framework

86

– P = {p1, p2, …, pn}: The set of pre-conditions to trigger a service execution of sC.

– E = {e1, e2, …, en}: The set of effects received after the execution of sC.

– T: The type of the service, i.e. sC’s service concept in a service ontology.

– S = {s1, s2, …, sn}: The set of services that are used to compose sC.

–Df={l (si, sj)| si.outp ≫ sj.inq, si, sj ∈S}: The set of service links that represents the

data flow of the service.

– ,CtrlS Stmt Cdt=< > : A 2-tuple that represents the control structure of the service,

where Stmt={stmt1, stmt2, …, stmtm} is a set of control statements and Cdt={cdt1,

cdt2, …, cdtk} is a set of conditions.

– B: The grounding information for interacting with sC.

The above service definitions are general and therefore applicable to an entity or a

software component that possesses the characteristics of a service. However, the

grounding information of a service may vary depending on the service’s

implementation technology. For example, in the Web services case, the grounding

information provides the location of the WSDL and what protocols can be used to

transfer SOAP messages, whereas, in the software service case, the grounding

information may provide the RPC URL and how the objects transferred through RPC

are to be serialised.

4.3 Context-based Semantic Service Description
Framework

The Context-based Semantic Service Description Framework (CbSSDF) aims to give

a comprehensive description of the aspects that are related to identifying services,

such as technical specifications, semantics, and context, especially in identifying

services by their usage context. It provides a richer semantic model for services and

brings them to their full potential. The CbSSDF’s design follows the notion of SUC,

and complies with design principles listed below:

• A service description that addresses services in an inter-relational fashion in order

to ease the process of service composition. Describing services together with their

usage context, i.e. relationships with other services, provides a richer semantic

way to identify services.

4.3 Context-based Semantic Service Description Framework

87

• A tolerant service description intended to deal with imprecise service

requirements from end users by linking syntactical service description, such as

WSDL, to a higher level conceptual description, such as service semantics and the

SUC.

• A precise service description intended to ensure the executability of discovered

services. Conditions relevant to a service, such as pre-conditions, effects, and

domain constraints, need to be precisely specified by a formalism that can deal

with incomplete information and ensure that a discovered service is actually

executable at runtime.

The CbSSDF consists of three main components: a set of service conceptual graphs

(S-CGs) that gives an abstract conceptual description of the relationships between

services and business entities, a semantic service description model (SSDM) that

gives a concrete semantic description of the services, and a set of non-monotonic rules

that represent the pre-conditions and effects of services and constraints for service

composition. Among these components, the set of S-CGs is a realisation of the T-

Context and the SSDM implements the A -Context. In the following sections, we will

discuss each component of CbSSDF in detail.

4.3.1 Service Conceptual Graphs

As discussed previously in Chapter 3, to comprehensively describe a service, only

using the technical description is insufficient, the SUC information is crucial. If

services are technically compatible, this does not necessarily mean that these services

can work together because the combination may be logically incorrect. The SUC

information, especially the T-Context, of a service tells how the service is related to

other services and entities in a business domain and under which context the service

should be used. In CbSSDF, the T-Context is implemented using Service Conceptual

Graphs (S-CG). Each S-CG can be considered as a conceptual usage scenario. It

describes a way in which the service can be used. The whole collection of S-CGs

represents the T-Context of the service.

The key point of having S-CGs in the service description is to bridge the gap between

the technical detail of services and the conceptual explanation of the service user's

needs. By having S-CGs, when the service users search for services, they can first

4.3 Context-based Semantic Service Description Framework

88

express their needs in a conceptual way, such as a natural language query, without

worrying about any technical detail. These requirements then will be converted into

conceptual graphs and matched with S-CGs in the service repository to check which

services are the most relevant. Then, based on the relevant services, service users can

input technical specifications to refine the result. We call this two-step service

discovery, which will be discussed in detail in the next chapter.

The S-CG representation is based on the conceptual graph (CG) formalism and it is

the implementation of the T-Context. As discussed in [Sowa, 1984], the perception

process in a person’s mind is the process of associating percepts with concepts and

assembling concepts with conceptual relations. The result of the perception process is

a map or graph of concepts linked by conceptual relations that can be formally

represented as CGs [Sowa, 1984]. In other words, CGs can closely represent people’s

mind and perceptions. This is the main reason why we chose the CG based formalism

to represent the T-Context. Other reasons that we chose CG as the representation

formalism are: a) a clear separation is made in CG between ontological knowledge

(the type definition) and factual knowledge (the schemata) [Mugnier, 2000]; b) CG is

proven equivalent to first order logic (FOL), which means that it has the full

expressiveness of FOL [Kerdiles & Salvat, 1997]; c) CG supports more direct

mapping from and to natural language and has a direct translation to both natural

language and symbolic logic [Sowa, 1984], which is important when dealing with

natural language based service queries. Furthermore, graph based modelling is easily

understandable by either end users or reasoning systems, and from the computational

view point, a graph homomorphism problem has less complexity than logic deduction

[Mugnier, 2000].

For the details of the CG formalism, refer to Section 2.2.3 in Chapter 2. Here we

directly give the definition of S-CG and its basic properties, which are based on the

CG formalism. An S-CG is a simple CG, which means that it does not contain co-

reference links and nested context [Sowa, 1984]. Similar to CG, an S-CG is also

defined over a support ¶ = (TC, TR, ф, τ). For how ¶ is defined, refer to definition 2.1

in Chapter 2. In the S-CG case, TC includes domain concepts and service concepts; ф

includes the individuals of domain concepts and the instance services of service

concepts.

4.3 Context-based Semantic Service Description Framework

89

Formally, an S-CG is defined as below:

Definition 4.3. An S-CG gs, defined over a support ¶ , is a binary ((Cgs∪Rgs, Egs), lgs),

where,

– (Cgs∪Rgs, Egs) is a bipartite graph, where, Cgs and Rgs are node sets, respectively of

concept nodes and of relation nodes, and Egs is a set of edges.

– lgs is a labelling function of nodes and edges. A concept node cgs∈ Cgs is labelled by

an ordered pair (type(cgs), marker(cgs)), where type(cgs)∈ Tc, marker(cgs) ∈ ф ∪{*}.

A relation node rgs∈ Rgs is labelled by type(rgs), where type(rgs) ∈ TR. The edge

labelling is omitted in S-CG.

Figure. 4.1. An example of an S-CG.

Figure 4.1 demonstrates an example of an S-CG. The example illustrates the usage

scenario for a money transfer service. In this S-CG, two service concepts have been

addressed: the Money_Transfer Service and the Currency_Conversion Service. the

other concepts, such as “Currency”, “Bank”, and “Country”, in the S-CG are related

to these two service concepts in this scenario. The relation nodes, such as “AGNT”,

“REQ”, “GEN”, and “LOC”, describe relationships between these concepts. The

example S-CG illustrates a simple scenario. A larger S-CG that describes a

complicated scenario can be either created based on a complex business service or

generated dynamically by joining simple S-CGs.

In Chapter 3 we mentioned that each T-Context has an owner service concept and the

owner service concept’s corresponding instance services are owner services. However,

in its actual implementation, i.e. S-CGs, all the service concepts addressed in an S-CG

are the owner of the S-CG depending on which instance service the S-CG has been

REQ

AGNT Bank: HSBC

Currency_Conversion ServiceREQ Currency: Dollar

GEN Currency: Pound LOC

Country: UK

Money_Transfer Service

AGNT

4.3 Context-based Semantic Service Description Framework

90

assigned to. This is to avoid the situation where duplicate S-CGs are created for each

service and to also reduce the redundancy and complexity of the T-Context

implementation.

As S-CGs are based on the CG formalism, all the properties, rules, and operations that

are applicable to CGs are also applicable to S-CGs. In the following, we will

summarise some of the important operations on CGs and basic properties of S-CGs.

Specialisation and generalisation are two important CG operations that are essential

to CG matching and reasoning [Mugnier, 2000], see Section 2.3.3 for relevant

definitions. Rules for specialisation and generalisation operations are defined below:

Specialisation operation: Let u be a CG, then a specialisation CG v of u can be

obtained from u by:

– Copy: v is an exact copy of u;

– Relation simplify: Remove the duplicated relation nodes from u;

– Restrict: Decrease the label of a concept node (its type and/or its marker) or the

label of a relation node (its type);

– Join: Let w be a CG disjoint from u, if a concept c in u is identical to a concept d in

w, then v can be obtained by deleting d and linking to c all arcs of conceptual relations

that has been linked to d, then perform the above relation simplify operation.

Generalisation operation: Let u be a CG, then a generalisation CG v of u can be

obtained from u by:

– Copy: v is an exact copy of u;

– Relation duplicate: Duplicate a relation node of u;

– Un-restrict: Increase the label of a concept node (its type and/or its marker) or the

label of a relation node (its type);

– Sub-graph: If v is a sub-graph of u, then v is a generalisation of u.

As S-CGs are used to match with CGs generated from a service user’s query to locate

relevant services, we now make a simple analysis of the relationship between an S-

CG and a CG generated from a query through the following theorems and definitions.

4.3 Context-based Semantic Service Description Framework

91

Theorem 4.1. Let u be an S-CG, v a generated CG from a service query, and φ an

operator that can convert a CG into its equivalent logic formulas. If u ≤ v,

then u vφ φ⇒ .

Proof. As S-CGs are simple CGs, the proof proposed by Sowa is applicable here, see

[Sowa, 1984] (p. 98).

Definition 4.4. Let u be an S-CG and v a generated CG from a service query. If u ≤ v

or u vφ φ⇒ , then the service query is called conceptually satisfiable by u.

Theorem 4.2. Let u be an S-CG and v a generated CG from a service query. If v has a

projection in u, i.e. π: v → u, then the service query must be conceptually satisfiable

by u.

Proof. According to theorem 2.1 (Chapter 2, Section 2.3.3), if π: v → u, u must be

identical to or a specialisation of v, i.e. u ≤ v. By definition 4.4, if u ≤ v, the service

query is conceptually satisfiable by u.

□

Theorems 4.1 and 4.2, and Definition 4.4 together describe how to check whether a

service query is conceptually satisfiable. Conceptual satisfiability is a very important

concept that indicates whether a service request is within or beyond a service

provider’s business domain. If a service request is not conceptually satisfiable, there is

no need to search for instance services. The S-CG u in the above theorems and

definitions does not necessarily exist in a service repository. It can however be

dynamically generated by joining existing S-CGs. If a service request is conceptually

satisfiable this does not necessarily mean that the instance services associated with the

S-CG can actually achieve the service request. It only suggests that these instance

services are relevant to the request and may possibly propose a full or partial solution.

In other words, conceptual satisfiability is important evidence for judging whether an

instance service is relevant to a service query/requirement.

4.3.2 Semantic Service Description Model

More often than not, a service query cannot be satisfied by a single service, but can be

through the composition of several services. How to correctly and efficiently

4.3 Context-based Semantic Service Description Framework

92

construct these composite services is the major task in service discovery and

composition. Service discovery and composition techniques based on current

semantic service description frameworks [Paolucci et al., 2002; Wu et al., 2003]

search for and compose services in an isolated manner. The current techniques locate

services individually, without considering the inter-service relationships, thus for each

participating service in a composite service, the same searching and planning

procedure has to be carried out repetitively. In order to improve the efficiency of

service composition and provide service discovery with more accurate results, we

propose Semantic Service Description Model (SSDM) as a component of the

CbSSDF. First, SSDM is a semantic description model and it addresses four types of

semantics [Cardoso & Sheth, 2006] associated with a service, i.e. the data semantics,

the functional semantics, the non-functional semantics, and the execution semantics.

In SSDM, the data semantics deal with semantically annotated input and output of a

service. The functional semantics are captured by a service ontology and pre-

conditions and effects. The non-functional semantics are represented through the

service metadata. The execution semantics are addressed through the internal structure

of a service. Second, SSDM implements the A -Context to improve the efficiency of

service composition.

In the SSDM, the A -Context of a service is implemented through a set of Common

Usage Patterns (CUPs). A CUP describes how an instance service (the owner service

of an A -Context) can be composed with other instance services in a scenario or a part

of a scenario. It complies with the owner service’s T-Context, which means that for

the owner service and the other services in a CUP, their service concepts must appear

together in at least one of the owner service’s S-CGs. The whole collection of CUPs

of a service collectively represents how this service can interact/be composed with

other services at the instance level. A CUP is formally defined as below:

Definition 4.5. Given a service sk, a CUP of sk (the owner service of the CUP) is

defined as a binary p=(S, L), where:

–S={s1, s2, …, sn}: a set of services that directly interact with sk. Let x be the number

of inputs of sk and y be the number of outputs of sk, we have n≤ (x + y). If sk ∈ S, it

means that sk can be composed with its duplicated copy or it is in a loop control

structure.

4.3 Context-based Semantic Service Description Framework

93

–L : a set of service links that link the services in S with sk.

– Let Gsk be the set of S-CGs of sk, then ∃gsk∈ Gsk | p ֏ gsk.

The expression “p ֏ gsk” is read as “p complies with gsk”, which means that for all the

instance services in p, their service concepts or service concepts’ super concepts must appear

in gsk.

According to the definition, a CUP describes only the relationships between the owner

service and services that directly interact with the owner service. The indirect

relationships are not described in a CUP because they can be inferred from the other

service’s CUPs.

A CUP can be considered as a segment of a workflow. Service composition is about

constructing suitable workflows and therefore we can say that CUPs can make the

service composition process more efficient. The reason is that assembling segments of

workflows in the service composition process is quicker than assembling individual

services. In the next chapter, we will discuss this in detail.

SSDM is proposed based on definitions of atomic service and composite service and

the definition of CUP. In SSDM, we assume that all the services are composite

services and an atomic service is a special case of the composite service. Formally,

the SSDM is defined as follows:

Definition 4.6. Given a service sk, its SSDM is a 7-tuple (IO, PE, M, O, Str, C, B),

where,

– IO: Inputs and outputs of sk, including their data types and semantics.

– PE: A set of rules that describe pre-conditions and effects of sk.

– M: A set of metadata that describe non-functional attributers of sk, such as the

quality of service (QoS), the service provider information, and the natural language

based service description, etc.

– O: A service ontology that defines the service concept of sk.

–Str: The internal structure of sk, which contains a set of services, control structures,

and the data flow. An empty internal structure means that sk is an atomic service.

– C: A set of CUPs associated with sk.

– B: The service grounding information of sk.

4.3 Context-based Semantic Service Description Framework

94

A graphical illustration of the SSDM is shown in Figure 4.2. The notations used in

Figure 4.2 are listed below:

1. Servicek is the described service.

2. Concepts can be either the direct or ancestor service concept of Servicek in a

service ontology.

3. Si- Si+1…-Sn are the sub-services of Servicek.

4. Servicek-1 and Servicek+1 represent the services that are linked to Servicek

through service links in a CUP.

5. I and P are the inputs and pre-conditions, and O and E are the outputs and

effects.

6. Services within the dashed border rectangle represent a CUP of Servicek.

Figure. 4.2. A graphical illustration of SSDM

The SSDM has provided comprehensive information about a service so that the

service users can have increased flexibility when searching for their required services

with richer information to assist their search.

4.3.3 Non-Monotonic Rules

In order to correctly construct composite services and successfully execute them at

runtime, the service pre-conditions and effects and the service composition rules must

be represented by a suitable formalism. The web is a highly dynamic environment. In

one situation, two services may be composable, whereas, in another situation the same

two services may not be composable. Most of the information about service execution

conditions on the web is incomplete information, i.e. when more information becomes

available, the conditions may change. To deal with the dynamic nature of the web,

Concepts

Servicek

Si- Si+1…-Sn

Servicek-1 Servicek+1

Metadata

has_parent

has_components

I, P O, E

4.3 Context-based Semantic Service Description Framework

95

classical logic, i.e. monotonic logic, is insufficient because it cannot deal with

conflicts and incomplete information of service execution conditions. The conflicts

and incompleteness originate from the following aspects:

• Business rules: In real business scenarios, there are always cases where exceptions

must be considered. These exceptions may be caused by applying rules or policies

to different types of customer, different security constraints, different business

partners, and so on. In those cases, a rule system with a priority mechanism is

needed. Otherwise, conflicting conclusions may be drawn.

• Incomplete information: When designing real business applications or services, it

is almost impossible to get complete information from customers or business

partners. Therefore, some assumptions have to be made. These assumptions may

lead to conclusions that are not supported by classical logic, for example drawing

conclusions based on the priority order of conditions.

• Runtime exceptions: Due to the dynamic nature of the web, some information that

is unavailable at design time may become available at runtime and vice versa.

This can cause system failure if the system does not have a flexible way to cope at

runtime.

In order to deal with conflicts and incompleteness, and still be able to correctly

construct composite services, and enable service users to successfully execute their

requirements, we adopt the non-monotonic reasoning approach and use Defeasible

Logic [Nute, 1994], a non-monotonic formalism, to describe service pre-conditions

and effects and the service composition rules. The basic detail of Defeasible Logic is

discussed in Chapter 2, referring to [Nute, 1987] for further detail.

The advantages of Defeasible Logic among other non-monotonic approaches are its

computational efficiency and its built in superiority handling mechanism [Brewka,

2001], these are crucial features needed to handle a situations where a large number of

services are involved or processed. The recent implementation of Defeasible Logic –

Deimos [Rock, 2000], a query answering system, demonstrates that the Defeasible

Logic reasoning system is capable of efficiently dealing with 100,000s of defeasible

rules.

4.3 Context-based Semantic Service Description Framework

96

The rules in the CbSSDF are divided into two categories: general rules and domain

specific rules.

• General rules

General rules are used to govern and validate the service composition process. To

achieve the desired level of flexibility and adaptability in the process of service

composition, this type of rule is separated from the service description and stored

in a rule repository as a part of the service composition engine. These rules govern

the life cycle of the service composition process, from composite service planning,

execution, to alternative service scheduling. They are applicable to all services.

Some general rule examples are listed below:

r1: if a service’s pre-condition is satisfied, then typically it can be executed.

satisfy(s.preCon) ⇒ executable(s)

r2: if a service is not available, then definitely it cannot be executed.

¬ available(s) → ¬ executable(s)

r3: if two services’ input and output data types are compatible, i.e. the output data

type of one service is the same type or a sub-type of the other service’s input

data type, typically these two services are composable.

type(s1.Opt) ≤ type(s2.Ipt) ⇒ composable(s1, s2)

The rule r2 has higher priority than the rule r1.

r2 > r1

• Domain specific rules

Domain specific rules are used to describe pre-conditions and effects of services

and business rules and policies in a specific business domain. They are integrated

into the service descriptions. Here we use the money transfer service discussed in

Section 4.3.1 to illustrate some domain specific rules.

r4: if the service is supplied with valid account details, then typically the money

will be transferred correctly.

valid(account details) ⇒ result(s)

r5: if accounts are in UK, then this service is definitely applicable.

location(UK) → applicable(s)

4.4 Transformation Method

97

r6: if a user chooses the money transfer service and the currency conversion

service from the same bank, then typically a 20% discount on the total

commission fees is applicable.

s1.provider=s2.provider ⇒ totalFees=(s1.fees+s2. fees) ⋅ (1-20%)

By performing reasoning and deduction on these rules, the system can derive

conclusions that help to correctly construct composite services and validate the

generated composite services. Defeasible Logic’s built in priority handling

mechanism enables the system to automatically arrange alternative services in case an

error occurs during the service composition process or service execution. When the

required services are located or generated, they will be validated by the appropriate

rules. Two types of validation are performed on services:

• Composable validation: Two or more services may be syntactically composable

according to their input and output data types and semantics. However, the

generated composite services may be logically incorrect. In this type of validation,

business rules and policies are used to ensure that the generated composite

services satisfy the business logic and constraints in its domain.

• Triggerable validation: A service that satisfies a service requirement can still be an

invalid service if the service’s pre-conditions cannot be satisfied. Business rules

and policies can affect the service execution and must be considered during the

triggerable validation process. Furthermore, some services require authentication

and authorisation and some services come with different security policies. If the

security requirements cannot be satisfied, then the services cannot be executed.

4.4 Transformation Method

Web services as a distributed computing technology have been around for a long time.

Many enterprises and organisations have adopted Web services as a crucial

technology in areas such as enterprise application integration, business intelligence,

and data integration [Linthicum, 2003]. Existing services have been described using a

variety of service description frameworks. The most popular ones are WSDL and

OWL-S. To enable an enterprise or an organisation to use the newly proposed service

description framework without affecting their existing service operations, a sound

transformation method is needed. In this section, we propose an agile method that

4.4 Transformation Method

98

transforms the existing Web service descriptions into CbSSDF based service

descriptions. This method uses a bottom up approach that will gradually collect the

information required by CbSSDF from a service’s existing description. The method

has three steps: 1) the ontology based service classification step 2) the CUPs

generation step, and 3) the S-CGs generation step.

4.4.1 Step One: Ontology based service classification

Suppose we have a service ontology O that contains all the service concepts that are

relevant to the services in a specific business domain, the classification process can

be performed based on O. Each service concept in O has a set of data properties

corresponding to the information described in SSDM, such as inputs, outputs, and

metadata. Through semantic and keyword matching the information contained in the

data properties and in the existing service descriptions, services can be linked to

service concepts in O. In order to obtain the best match, each data property has a set of

semantically identical literals as its value rather than a single literal value. For

example, a weather forecast service concept’s name property may contain a set of

literals, such as “weather”, “weather forecast”, and “weather report”. If one or many

of these words appear in a service’s exiting description, then this service may be

relevant to the weather forecast service concept. The more data property values of a

service concept that are matched in a service’s description, the more relevant the

service is to the service concept.

As the link between a service concept and a service is determined by a series of

factors, (i.e. the data properties of the service concept), vector based similarity

measurement methods [Berry et al. 1999; Joachims 1998; Xu et al. 2005] can be

applied here to measure the relevance between a service and a service concept. Once a

service is associated with a service concept, the best matched literal value in each data

property of the service concept will remain as a part of the SSDM description of the

service. The service classification process obeys the constraint that if a service is

associated with a service concept and the service concept’s super-concept, then the

super-concept association will be ignored, i.e. the service will be the super-concept’s

indirect instance service.

4.4 Transformation Method

99

How much information can be acquired from an existing service description depends

on the type of the service description. A WSDL based service description can provide

some basic information, such as service name, input and output data types, and some

data semantics only when meaningful tags are used, for example, “<wsdl:operation

name="GetLatestWeather">”. If a service’s WSDL document is accompanied with a

natural language description, more information can be gained. Nowadays, as Semantic

Web Services technologies are becoming mature, some organisations provide

semantically annotated Web service descriptions, such as MINDSWAP
4
, which

provides a list of Web services described using OWL-S. The semantically annotated

service descriptions can make the classification process more accurate.

4.4.2 Step Two: CUPs generation

Let S= {s1, s2, …, sn} be a set of services that have been classified using the ontology

O. By applying the service link definition, we determine service links between

services by evaluating their input and output compatibility and pre- and post

conditions satisfaction. Using service links the services in S are linked into a set of

graphs. These graphs represent the composability between services in S. We call them

instance services graphs, which are defined as follows:

Definition 4.7. An instance services graph is a directed graph, denoted as G=<V, E>,

where:

–V = {s1, s2, …, sm}: a set of instance services, V⊆ S.

–E = {l (si, sj)| si.outp ≫ sj.inq}, si, sj∈V: a set of service links.

–Loops in E are allowed, e.g. l (si, si)| si outp ≫ si inq, which means that si is

repeatedly invoked until the desired condition is met.

The smallest instance services graph can be just one vertex, i.e. a single service. It

means that the service is not able to be composed with other services in S and only

works individually.

After services in S are connected into a group of instance services graphs, the CUPs of

each service in these graphs can be generated based on the service links in the graphs.

4
 http://www.mindswap.org/2004/owl-s/services.shtml

4.4 Transformation Method

100

Let si be a service in an instance services graph, its CUP candidate services are the

services that have service links with si. How many CUPs a service can have is

dependent on how many inputs and outputs the service has and how many services are

linked to its inputs and outputs through service links. Let Nin be the number of the

inputs of si, Nout the number of the outputs of si, the number of CUPs of si at this stage

is:

1 1

in outN N

CUP k h

k h

N I O
= =

= ∏ ∏i

where, Ik is the number of services connected to the k-th input of si and Oh is the

number of services connected to the h-th output of si. However, not all CUPs

generated at this stage are meaningful in a given business domain. They have to be re-

evaluated once the appropriate S-CGs are generated.

4.4.3 Step Three: S-CGs generation

To generate S-CGs, we first replace instance services in the instance services graphs

generated from the previous step with their associated service concepts allocated in

step one. If two services si and sj in an instance services graph have been replaced

with the same service concept, these two services are considered as semantically

equivalent services, written as si≐sj. Let sk be another service in the same instance

services graph, if si≐sj, then l (si, sk) and l (sj, sk) are two semantically equivalent

service links. Here we ignore how the inputs and outputs of sk, si, and sj are connected

as it does not influence the conceptual relationship between services, only the order of

services in service links matters. Now, if we merge the same service concepts and the

semantically equivalent service links and replace service links with conceptual

relations, the instance services graphs can be converted into service concepts graphs
5
.

The conceptual relationships between services are business domain specific. Suppose

we have a set of predefined service conceptual relations R for a business domain and a

labelling function R(), then we can label the edges in each service concepts graph

with

conceptual relations by giving a pair of service concepts, i.e. R (csi, csj)∈R. During the

5
 The service concepts graph is an intermediate stage towards S-CG. The difference between a service

concepts graph and an S-CG is that a service concepts graph has conceptual relations labelled edges

instead of relation nodes.

4.4 Transformation Method

101

labelling process, if two service concepts cannot be labelled by a concept relation in R,

it means that their corresponding instance services’ service links are irrelevant to the

business domain and therefore need to be removed. CUPs generated from the previous

step that contain irrelevant service links also need to be removed. Finally, to obtain S-

CGs, we need to replace the conceptual relations, such as R(csi, csj), with relation

nodes that can be generated based on R(sci, scj). According to the corresponding

instance services’ input and output data types and semantics, extra concept nodes may

be introduced into the graphs.

Through the process of converting instance services graphs into S-CGs we can see

that relations between instance services, i.e. the composability of those services, have

significant impact on conceptual relations between service concepts. In other words,

low level instance services determine what kind of high level business services that an

enterprise can provide. If there are mismatches between instance service links and

their corresponding service conceptual relations, it means that either the enterprise has

proposed business services that cannot be achieved by their instance services, or the

enterprise has the potential ability to provide more business services.

4.4.4 An Example

Suppose we have two “Money_Transfer” services and two “Currency_Conversion”

services that are described using WSDL plus text description. The WSDL plus text

description is a common approach to describe Web services [Hull et al., 2003].

To convert the example services’ descriptions into the CbSSDF based description, the

first step is the ontology based classification. By analysing the tags such as “<wsdl:

types>”, “<wsdl: message>”, “<wsdl: operation>”, and “<wsdl: service>” in the

example services’ WSDL documents and applying the vector based text similarity

matching methods [Berry et al. 1999; Joachims 1998; Xu et al. 2005], we can get the

results shown in Table 4.1.

As the WSDL based service description does not provide pre- and post-condition

information, we need to analyse the text description of each service to find relevant

information. For example, a part of the “Money_Transfer” service’s description is

“only operate on current accounts in Pound”. Based on this information, one of the

4.4 Transformation Method

102

pre-conditions for the “Money_Transfer” service is: Currency.type = Pound. All of

these four services have no internal structure, i.e. they are atomic services.

Table 4.1. Acquired information from the WSDL and ontology based classification.

Web services Service Concept Inputs Outputs

Money_Transfer

 (s1)
Banking_Service

Input1:

Data Type: Double

Concept: Currency: Pound

Input2:

Data Type: Account

Concept: Bank_Account

Input3:

Data Type: Account

Concept: Bank_Account

Output1:

Data Type: Boolean

Concept: Transfer_Status

Money_Transfer

 (s2)
Banking_Service

Input1:

Data Type: Double

Concept: Currency: Dollar

Input2:

Data Type: Account

Concept: Bank_Account

Input3:

Data Type: Account

Concept: Bank_Account

Output1:

Data Type: Boolean

Concept: Transfer_Status

Currency_Conversion

 (s3)
Financial_Tool

Input1:

Data Type: Double

Concept: Currency: Dollar

Output1:

Data Type: Double

Concept: Currency: Pound

Currency_Conversion

 (s4)
Financial_Tool

Input1:

Data Type: Double

Concept: Currency: Euro

Output1:

Data Type: Double

Concept: Currency: Dollar

The second step is to generate CUPs. First, we need to determine service links

between services based on the services’ inputs, outputs, pre-conditions, and post-

conditions. In this example, three service links are established: l (s3, s1) | s3.out1 ≫

s1.in1, l (s4, s2) | s4.out1 ≫ s2.in1, and l (s4, s3) | s4.out1 ≫s3.in1. The services are then

connected and form an instance services graph, which is shown in Figure 4.3:

Figure 4.3. The generated instance services graph.

s3

s4

l (s4, s3) | s4.out1 ≫s3.in1

s1

s2

l (s3, s1) | s3.out1 ≫ s1.in1
l (s4, s2) | s4.out1 ≫ s2.in1

4.4 Transformation Method

103

From the instance services graph, we obtain the CUPs of each service through their

service links. For example, s4’s CUPs are <{s2}, { l (s4, s2) | s4.out1 ≫ s2.in1}> and

<{s3}, { l (s4, s3) | s4.out1 ≫s3.in1}>.

Figure 4.4. The generated service concepts graph.

The last step is to convert the instance services graph into an S-CG. We first replace

services with their service concepts in the graph and merge the same service concepts

and semantically equivalent service links, then we label the edges with the domain

specific conceptual relations to form a service concepts graph, see Figure 4.4. In this

example, s1 and s2, s3 and s4 are semantically equivalent services and l (s3, s1) | s3.out1

≫ s1.in1 and l (s4, s2) | s4.out1 ≫ s2.in1 are semantically equivalent service links. There

is no service link that cannot be labelled by the conceptual relation and therefore no

irrelevant service links and CUPs need to be removed.

Finally, we can get an S-CG by replacing the conceptual relation labels in the service

concepts graph with the relation nodes, see Figure 4.5. The “Currency” concept is

added according to the semantics of the instance services’ inputs and outputs.

Figure 4.5. The generated S-CG.

4.4.5 A Note on Information Loss During Transformation

In this section, we discuss the information loss which may happen during the

transformation process. After the transformation process, if all the information about

service attributes, semantics, and service capabilities can be kept in the generated

CbSSDF description, then there is no information loss, otherwise, information loss

occurs. To discuss whether information loss happens when transforming from the

original service description to the CbSSDF description, we need to categorise service

Financial_Tool Banking_Service Currency

REQ

GEN

REQ

Financial_Tool Banking_Service

Provide right Currency to

Provide right Currency to

4.5 Summary

104

descriptions into two categories, i.e. the WSDL based service descriptions and the

semantic service descriptions.

For a WSDL based service description, our transformation method can ensure that no

information is lost. The reason is that the CbSSDF is a richer service description

framework and all aspects of information described in a WSDL description will be

fully described in the CbSSDF based description. The transformation methods will

relocate the information in WSDL to relevant components in CbSSDF, such as inputs,

outputs, and service banding. The transformation method will also extract semantic

information from the content of a WSDL description. However, this step does not

involve information loss since service semantics are not formally described (and

hence not used by a WSDL parser) as a part of a WSDL description.

For a semantic service description, whether the information loss occurs or not depends

on the type of semantic service description framework being used. As CbSSDF is

generally a richer semantic service description framework, it subsumes all the

machine-processable constructs of the other semantic service description frameworks,

such as OWL-S and WSDL-S. Similar to the WSDL case, the transformation on these

frameworks causes no information loss. However, some of the semantic service

description frameworks cannot be transformed into CbSSDF without information loss.

This is due to mismatched aspects. For example, the concept of a mediator [Fensel &

Bussler, 2002] in WSMF is not addressed in CbSSDF. In this case, the mediator

information will be lost during the transformation process.

4.5 Summary

In this chapter, we have proposed a comprehensive Web service description

framework – CbSSDF. This framework takes into consideration not only the

capability semantics (technical details) of Web services, but also the Service Usage

Context (SUC). As discussed in Chapter 3, at the conceptual level, the SUC of a

service provides the information that helps to identify whether a service is suitable for

a service user’s scenario. At the instance level, the SUC of a service can help to

improve the efficiency and effectiveness of service discovery and composition. A

transformation method is provided so that the existing service descriptions, such as in

WSDL and OWL-S, can be transformed into the CbSSDF based descriptions.

4.5 Summary

105

The features of CbSSDF that make it distinct from the other service description

frameworks are listed as follows:

• Integrating SUC into the service description. The conceptual level SUC, i.e. the

T –Context, is represented by a set of S-CGs; the instance level SUC, i.e. the A -

Context is represented by a set of CUPs in SSDM.

• Richer semantics for service description. SSDM gives a comprehensive

description of a service’s capabilities through four types of service semantics, i.e.

data semantics, functional semantics, non-functional semantics, and execution

semantics. It also addresses the inter-service relationships, which enhance the

semantic description of the service’s capabilities and improves the efficiency of

service discovery and composition process. In existing service description

frameworks, the inter-service relationships between services are not addressed.

• Adopting the non-monotonic rules in describing service conditions. Non-

monotonic rules are used to represent the pre- and post-conditions of services as

well as the general service composition rules. They are used to validate the

correctness of the generated composite services and to ensure that the located or

generated services can be executed in the given situation. In existing service

description frameworks, monotonic rules are used to represent service conditions.

However, due to the complexity of service conditions, monotonic rules are not

sufficient to handle conflicts and incomplete information.

Although this framework is proposed for Web services, it can be applied to any

component or object that has characteristics similar to a Web service, such as well

defined interfaces, platform independence, programming language independence,

composability, and self-containment. So far, we have applied the framework to Web

services, software services in SaaS (Software as a Service [Choudhary, 2007]) [Du et

al., 2008a], and learning objects in web-based learning systems [Du et al., 2007b].

The new features provided by CbSSDF enable us to develop a new and effective way

to search services. In the next chapter, we will discuss a two-step service discovery

mechanism that provides service users with a more flexible way to search services.

106

Chapter 5: Two-Step Service
Discovery Mechanism

Chapter

5

In this chapter, we will discuss a two-step service
discovery mechanism, which is based on CbSSDF. It
provides service users with a more flexible way to search
services.

5.1 Overview

107

5.1 Overview

In this chapter, we introduce a two-step service discovery mechanism. The aim of the

service discovery mechanism is to help service users to locate required services easily

with more flexibility. By using this mechanism, service users are not required to

provide detailed technical specifications about the required services at the beginning

of the service discovery stage when they have little or no knowledge about the

services. The two-step process will guide service users to gradually refine their

requirements to determine the required services. The initial service query for the can

be a natural language description or a list of keywords. This mechanism also improves

the efficiency of the service composition process by using the features provided by the

CbSSDF based service description. In the following sections, we discuss each step of

the service discovery mechanism in detail.

5.2 Two-Step Service Discovery Mechanism

When service users search for services, usually they already have a picture in their

mind about the goal they want to achieve. They also know what they already have that

will aid them in achieving the goal and which additional functionalities are needed

from the required services in order to achieve the goal. In other words, a usage

scenario is already formed in a service user’s mind regarding how the required

services are going to be used. If the service discovery can be performed not only on

the technical details of required services, but also on the service user's usage scenarios,

i.e. how the services are going to be used, then it can be easier and more flexible.

Currently, semantic service search engines and the ordinary UDDI service search

engine all require technical details of the required services. To use these service

search engines, service users need sufficient domain knowledge about the request

services in order to provide technical specifications. For example, the OWL-S based

semantic service discovery solution proposed by Paolucci et al. [Paolucci et al, 2002]

requires service users to clearly state the semantics of a required service’s inputs and

outputs, data types of the service’s inputs and outputs, and the service functionality

etc. Further more, this information is usually required at the very beginning of each

service discovery process. However, more often than not, service users are not domain

experts in the required service's area and therefore, it is very hard for them to provide

5.2 Two-Step Service Discovery Mechanism

108

the technical specifications at the very beginning of the service discovery process.

Consequently, these service search engines have to carry out searching with

inadequate requirement information and therefore return inaccurate results.

To solve this problem, we propose an enhanced (two-step) service discovery

mechanism based on the CbSSDF based service description. S-CGs in the CbSSDF,

i.e. the T-Context, help the service search engine to locate services by using their

concepts and conceptual relations, so in the first step a service user only needs to

describe their requirements or scenarios in natural language without worrying about

any technical detail. The search engine will then convert the natural language query

into a CG and match with the S-CGs in the service repository to locate the relevant

services. The located services may or may not be an exact match for the required

services. However, the match suggests that these services are relevant to the user’s

query and therefore may provide a solution to the query. After the first step, the

service user gets a list of relevant services with their technical descriptions attached.

These service descriptions can act as hints to assist the user in providing detailed

technical specifications according to their own situation. The second step is to refine

the result from the first step using the provided technical specification, generate

composite services, and rank the results according to their degree of similarity to the

specification. The SSDM and the non-monotonic rules are indispensable in this step.

The significant difference between the two-step service discovery mechanism and the

traditional service discovery methods are that after the first step, the users can more

easily propose detailed technical service specifications based on the initial results.

Using this additional information the service composition process can be much more

efficient due to the implementation of A -Context in the SSDM. The two-step service

discovery mechanism demonstrates how the features provided by CbSSDF can

facilitate the service discovery and composition.

5.2.1 Step One: S-CG based Service Retrieval

In this step, the aim of the service search engine is to find the relevant services from

the service repository. This can be achieved by using the CG matching mechanism

[Montes-y-Gómez et al., 2001]. A service query is first converted into a CG and then

matched with the S-CGs in the service repository. As discussed previously in Section

5.2 Two-Step Service Discovery Mechanism

109

4.3.1, if a service query is conceptually satisfiable, its CG must have a projection
6
 on

at least one S-CG. Therefore, in this step, we aim to finding an S-CG that contains the

projection of the query CG. This S-CG can be either an existing S-CG in the service

repository or a join of existing S-CGs. There are many well developed algorithms

[Croitoru & Compatangelo, 2006] [Mugnier & Chein, 1992] that can be used to check

for CG projections. In the first step we look for relevance rather than exactitude, this

means that our CG matching method can be much more flexible than the formal CG

projection checking methods proposed in the literature. There are six situations in

which an S-CG’s corresponding services can be considered as relevant to a service

query:

• Exact match: A query CG is exactly matched with one or more S-CGs.

• Projection: A query CG has a projection in one or many S-CGs.

• Composite projection: A query CG has a projection in an S-CG that is generated

by joining existing S-CGs.

• Overlap: A query CG has overlap concepts or relations with one or many S-CGs.

• Concept match: A query CG has only concept nodes matched with one or more

S-CGs’ concept nodes.

• Relation match: A query CG has only relation nodes matched with one or more

S-CGs’ relation nodes.

In the six situations, the relevance level of services is gradually decreases from “Exact

match” to “Relation match”. We use an algorithm to categorise services in the

repository into the different relevance situations and then we perform the CG

similarity calculation to calculate the actual relevance degree of the services in each

situation. The algorithm is shown in listing 5.1. The relevance levels are from 1 to 6, 1

represents “Exact match” and 6 represents “Relation match”. In order to improve

performance, “Composite projection” is checked last and only on the services that are

confirmed as relevant this is because if a set of S-CGs have no common concepts with

a query CG, the derived graphs from them will not contain a projection of the query

CG.

6
 For the definition of projection, see Section 2.3.3.

5.2 Two-Step Service Discovery Mechanism

110

Listing 5.1. CG similarity based service relevance classification algorithm.

After the relevance level categorisation process is completed, the actual

relevance/similarity degree to the service query of each relevant service under each

relevance level needs to be computed, except services with relevance level “1”. The

relevance/similarity degree is calculated using the CG similarity measurement method.

The method we use to compute the CG similarity is proposed by Montes et al.

[Montes-y-Gómez et al., 2001]. According to Montes et al., the similarity between

two CGs, u and v, consists of a concept similarity Sc and a relation similarity Sr. The

List relevantServices = null;

CG q = query.CG;

S = {s1, s2, …, sn}; //the service repository

for each s∈S do

{ if projectionCheck(q, s.S-CG) = = true then

{ if exactMatch(q, s.S-CG) = = true then

 { s.setRelevanceLevel(1);

relevantService.add(s);

 continue;

 }

 else
{ s.setRelevanceLevel(2);

relevantService.add(s);

 continue;
 }

}

if overlapCheck(q, s.S-CG) = = true then

 { s.setRelevanceLevel(4);

relevantService.add(s);

 continue;
 }

 if commonConceptCheck(q, s.S-CG) = = true then

 { s.setRelevanceLevel(5);

relevantService.add(s);

 continue;

 }

 if commonConceptCheck(q, s.S-CG) = = true then

 { s.setRelevanceLevel(6);

relevantService.add(s);

 continue;

 }

}

if compositeProjectionCheck(q, relevantServices.S-CGList) = = true then

{ List participatedSerivces = compositeProject.getServices()

for each s∈participatedSerivces do

{ if s.getRelevanceLevel() != 1 or s.getRelevanceLevel() != 2 then

 s.updateRelevanceLevel(3);

}

}

5.2 Two-Step Service Discovery Mechanism

111

concept similarity Sc is calculated using the Dice coefficient [Frakes & Baeza-Yates,

1992] expression:

2 (() (,)) () ()
c u v

c u c vc O

S weight c c c weight c weight cβ π π
∈ ∈∈

 = × +
∑ ∑ ∑
∪

where, O is a set of common overlap graphs of u and v; O∪ is the union of all of the

common overlap graphs of u and v; ucπ and vcπ represent the concepts coming from

graphs u and v; weight(c) is the importance factor of the concept type c. Its value can

be various in different applications. Currently, we distinguish two types of concepts:

If is a domain concept
()

If is a service concept

D

S

w c
weight c

w c

=

The set of common overlaps O represents all common elements between u and v. The

overlaps include not only the direct overlaps of the two graphs, but also the common

generalisation of the two graphs.

The (,)u vc cβ π π function in the above expression calculates the semantic similarity

between the two concepts ucπ and vcπ , defined as follows:

1 () () () ()

(,) (1) () () () ()

2 () () ()
u v

u v u v

u v u v u v

c c c u v

if type c type c and referent c referent c

c c depth depth if type c type c and referent c referent c

d d d if type c type cπ π

π π π π

β π π π π π π

π π

 = =

= + = ≠
 + ≠

The first condition indicates that the two concepts are exactly the same. The second

condition indicates that the two concepts have the same type but refer to different

instances, where depth represents the number of levels in the ontology that contain

both concepts. The third condition indicates that the two concepts have different types,

where, dc represents the distance from the least common super-type of ucπ and vcπ

to the root of the ontology;
uc

dπ and
vc

dπ represent the distances from
u
cπ and

v
cπ to

the root of the ontology.

The relation similarity Sr is calculated using the following expression:

5.2 Two-Step Service Discovery Mechanism

112

2 ()

() ()
r

c c

m o
S

m u m v
=

+

where, ()m o is the number of the relation nodes in the common overlap graphs of u

and v; ()
c

m u and ()
c

m v are the numbers of the relation nodes of the common overlap

graphs of u and v and the overlap graphs’ adjacent relation nodes. To examine the

similarity between two relations, we need to compare not only the two relations

themselves, but also the neighbour relations that linked to these two relations.

The actual relevance/similarity degree expressions under different situation are shown

below:

2 (() (,)) () () 0 0

2 ()
0 0

() ()

0 0

c u v r c

c u c vc O

r c r

c c

c r c r

S weight c c c weight c weight c if S and S

m oSim S if S and S
m u m v

S S if S and S

β π π
∈ ∈∈

 = × + = ≠

= = = ≠
+

 ⋅ ≠ ≠

∑ ∑ ∑
∪

The first condition applies when two CGs only have common concept nodes, i.e. the

“Concept match” situation. The second condition applies when two CGs only have

common relation nodes, i.e. the “Relation match” situation. The last condition applies

when two CGs have overlap, i.e. the “Overlap” situation. However, the “Projection”,

and the “Composite Projection” situations are special cases of overlap, thus the last

condition is also applicable on these situations.

After this step, the services in the service repository have been categorised as either

relevant services or irrelevant services. The relevant services will be passed to the

second step of the two-step service discovery mechanism for further refinement.

These services have the potential to satisfy the service requirements. However, the

irrelevant services will also be considered during the service composition process

when relevant services cannot fully fulfil service requirements.

5.2 Two-Step Service Discovery Mechanism

113

5.2.2 Step Two: SSDM based Service Composition and

Ranking

The second step aims to refine the result from the first step. After the first step,

services have been coarsely ranked according to the conceptual distance between

them and the service requirement. However, being conceptually close to a service

requirement does not necessarily mean that the service actually satisfies the

requirement because some technical details of the service many not be compatible

with the requirement’s technical specification. In the second step, based on the user’s

further detailed technical specification, the services from the first step will be checked

and services that satisfy or partially satisfy the technical specification will be selected

and ranked. If the requirement cannot be satisfied by a single service, composite

services may be generated. Another advantage that the first step provides is that it

reduces the number of candidate services for the second step to process because only

the conceptually relevant services are passed to the second step.

The refinement is based on semantic distance and technical detail matching between a

user’s specification and service attributes in each service’s SSDM description. The

major difference between the two-step service discovery method and the traditional

service discovery methods is that by having the result from the first step, service users

are edified and therefore able to provide further technical detail to describe their

particular needs. Even if the service users still cannot provide the full technical

specification, partial detail is acceptable and the step two can be repeated until an

appropriate result is found.

As discussed previously in Section 4.3.2, the attributes provided in SSDM for service

description are inputs, outputs, pre-conditions, effects, the service internal structure,

CUPs, and the service metadata. If we use a vector v to represent the attributes of a

service, then we can build up a t × m vector space V, where t is the number of terms in

v and m is the number of services in a service repository (or the candidate services

from step one). The vector space V is represented as below:

5.2 Two-Step Service Discovery Mechanism

114

11 12 1

21 22 2

1 2

. .

. .

.

.

. .

m

m

t t tm

a a a

a a a

V

a a a

 =

where, the columns of V are service attribute vectors, the rows of V are term vectors,

aij is the i-th attribute term of service j, and t represents the number of service

attributes addressed in SSDM. A user requirement can also be represented as a vector

r=(q1, q2, …, qt). Then, we apply the cosine similarity method to measure the distance

between the service user’s specification and the service attributes in SSDM. The

cosine similarity method [Berry et al., 1999] uses the cosine value of the angle

between two vectors to measure the similarity between these two vectors. The cosine

value of the angle is computed using the following formula:

1

2 2
2 2 1

1 1 1

cos
|| || || ||

m
m t

ij ij i
vr

t t
j j ij ii i j

a qv r

v r a q

θ =

=
= = =

 = = ∗ ∗

∑

∑ ∑

i

where, m is the number of services in the service repository (or the candidate services

from step one), t is the number of attributes addressed in SSDM, aij is the i-th attribute

term of service j, and qi is the i-th term addressed in a query. A smaller angle

represents a higher similarity between two vectors.

However, many attributes addressed in SSDM contain sub-attributes, such as inputs,

outputs, the service internal structure, CUPs, and the service metadata. For example

the service metadata attribute has many sub-attributes, such as the service provider’s

information, the service subject area, the region of the service, and versioning

information. These sub-attributes themselves can also be considered as vector spaces.

Therefore, V is actually a vector space with sub-spaces. A vector vj in V is graphically

illustrated in Figure 5.1.

5.2 Two-Step Service Discovery Mechanism

115

Figure 5.1. A graphical representation of part of the vector space V.

Each line or arrow in Figure 5.1 represents an attribute or a sub-attribute of a service.

In reality, there should be many service vectors like vj in the cube, i.e. V. We treat V

and its sub-spaces as a tree structure and use a recursive algorithm to compute the

cosine similarity between a service specification and each service attribute vector and

its sub-vectors. Finally, an overall similarity degree for each service is calculated and

the result services are ranked according to the similarity degree.

The cosine similarity calculation and the vector space model try to find the most

suitable services for a service requirement. However, there are many cases where a

service requirement cannot be satisfied by a single service, i.e. the required service

does not exist in the service repository. In these cases, we need to employ the service

composition approach [Dustdar & Schreiner, 2005] to dynamically construct

composite services to fulfil the service requirement. In the following, we discuss how

CbSSDF can facilitate the service composition process and improve its efficiency.

One of the most common approaches for service composition is to use AI planning

techniques [Sirin et al., 2004] [Zhang et al., 2004]. Planning is about producing state

changes through actions in order to achieve a desired goal [Yang, 1997]. A planning

problem can be defined as below.

Definition 5.1. A planning problem is a 5-tuple (X, U, f, xI, XG), where,

vj

V

5.2 Two-Step Service Discovery Mechanism

116

– X: is a set of states that represents all the distinct situations in a planning domain. X

is finite or countably infinite and X ≠ ∅

– U: is a set of actions. Each action ui ∈ U produces a new state x’ after applied on the

current state x, x, x’ ∈ X.

– f: is a state transition function. x’ =f(x, u)

– xI: is an initial state, xI ∈ X.

– XG: is a set of goal states, XG ⊂ X.

A planning algorithm’s task is to find a sequence of actions in U that can transform an

initial state xI to a desired goal state xg, xg ⊂ XG, formally represented as below:

1 1(((... (,)...),),)
I n n

f f f f x u u u− ⊨ XG, ui∈ U, 1 ≤ i ≤ n

From the expression we can see that the time complexity of a planning algorithm is

dependent on the number of steps required to achieve the goal and the number of

candidate actions for each step. Using the Forward-Chaining Total-Order (FCTO)

planning algorithm as an example, the worst case time complexity of FCTO [Yang,

1997] is:

() (*)NT FCTO O B t=

where, B is the number of candidate actions for each step, N is the number of steps in

a plan for achieving the goal, and t is the average time spent by a planner on each step.

However, irrespective of which planning algorithm is used, the time complexity is

always related to N and B. If either of these two numbers can be decreased, especially

N, the time complexity of the planning algorithm would be decreased.

In the Web service composition situation, a candidate service can be considered as an

action, its pre-conditions are the states before its execution and effects are the states

after its execution. A composite service can be considered as a plan to achieve a goal.

The complexity of the service composition process can be higher than that of a normal

planning task because in the existing service description frameworks, a composite

service planner cannot determine which services are the potential candidates for the

next step, therefore it has to check the whole service repository for each step it makes

towards the composite service. This situation is improved using CbSSDF. The service

composition process can become much more efficient by using the information

provided in each service’s SSDM. The key component for facilitating service

5.2 Two-Step Service Discovery Mechanism

117

composition is the CUP. Each service has a set of CUPs associated with it. These

CUPs improve service composition efficiency by reducing the number of potential

candidate services to be considered for each step in a composite service and most

importantly reducing the number of steps that the composite service planner takes to

achieve the goal, see the analysis below:

• Reducing the number of potential candidates: In the set of CUPs for a service,

all services that can potentially interact with the service based on the input, output

data type compatibility and the pre-condition and effect constraint, have been

listed. Let N be the number of services in a service repository S, Sc a set of

services in the set of CUPs of a service s, and NC = | Sc |, we always have NC ≤N, if

s∈S and Sc⊆S. It is very unlikely that NC =N, unless a service can interact with all

other services in a service repository. Therefore, in most cases, NC <N.

• Reducing the number of steps: Under existing service description frameworks, a

sub-optimal will typically be produced because the planner cannot consider the

inter-relationships between services. However, under CbSSDF, a composite

service planner can construct a plan much faster than before because of the

additional information provided in the CUPs. Each CUP can be considered as a

fragment of a plan (or a workflow). When a service is located, its CUPs can tell

the service planner what the possible services are for the next step. Therefore, the

number of steps to reach a goal can be cut in half compared with the planning

process under the existing service descriptions. Let BC be the number of step that a

planner need to go through to construct a composite service under CbSSDF, and B

the number of steps under the existing service descriptions, we have BC = B/2, if

B≥2.

According to the above analysis, the time complexity expression for the FCTO

algorithm under CbSSDF, can be rewritten as below:

() ((/ 2) *)CN
T FCTO O B t=

However, the FCTO algorithm is only an example to illustrate the advantages of the

CbSSDF in service composition. In fact, for any planning algorithm, if the time

complexity is based on N and B, they can be more efficient when creating composite

services using CbSSDF based service description.

5.3 Summary

118

5.3 Summary

In this chapter, we have introduced a two-step service discovery mechanism. Its aim is

to demonstrate how CbSSDF can facilitate service discovery and composition. One

issue of the current service discovery methods based on the exiting service description

frameworks is that they all require a large amount of technical detail in order to search

for required services. However, sometimes it is very difficult to provide such domain

specific technical information for a service user who is not a domain expert in the

required area. Consequently, the service search engine has to carry out service

discovery with insufficient information. By using the features provided by CbSSDF,

the proposed two-step service discovery mechanism can assist service users in

locating their required services in a more flexible and natural way.

The major differences between the two-step service discovery mechanism and current

service discovery methods are 1) the two-step service discovery provides a more

flexible way to search services. It allows service users to provide general and natural

information instead of technical specifications for the required services at the

beginning of the search; 2) the CbSSDF based service description can support service

composition during the service discovery phase. The reason for this is that most of the

solutions for service composition are based on planning algorithms which can be

greatly improved using the CbSSDF based service description. The CUPs embedded

in CbSSDF can reduce not only the number of candidate services in each step of a

plan, but more importantly the number of steps for planner to reach a the desired goal.

We have implemented a prototype of the two-step discovery mechanism –

ServiceComp, to demonstrate the advantages of CbSSDF, which will be discussed in

Chapter 6. The performance evaluation result shown in Chapter 7 is also based on the

implementation of the two-step service discovery mechanism.

Chapter 6: Implementation

Chapter

6

In this chapter, we discuss the implementation details of
the prototype that implements the major features of
CbSSDF to facilitate service discovery and composition.

6.1 Overview

120

6.1 Overview

A prototype, called ServiceComp, is implemented as a part of our work to verify the

applicability and performance of the proposed service description framework –

CbSSDF. The main purpose of this prototype is to demonstrate that the CbSSDF

based approach is feasible and applicable. The prototype is also used as a test-bed in

the evaluation process to evaluate the performance and scalability of the proposed

solution.

The prototype is a web based application built with Java and Java Applet technologies.

It takes the advantages of the features provided by CbSSDF to facilitate service

discovery and composition. One of its key features is that it implements the two-step

service discovery mechanism for easy service discovery and efficient service

composition. Another key feature is that it provides a graphical user interface for

creating composite services manually without knowing the technical detail of service

composition. Users can create composite services using drag and drop. All the

services provided in ServiceComp including the composite services created by users

can be directly executed. The type compatibility and SOAP message generation issues

are automatically managed by ServiceComp.

The content of this chapter is organised as follow, as ServiceComp is a research

prototype not a full implementation of the CbSSDF, we first discuss which features of

the CbSSDF have been implemented in ServiceComp, we then introduce the interface

and the system design of ServiceComp including the system architecture, the database

design and the Java class diagram, finally we discuss the technologies that are used in

ServiceComp implementation.

6.2 Implemented Features of CbSSDF

As ServiceComp is a research prototype for demonstration purposes, the features of

CbSSDF have not been fully implemented. In this section, we summarise what

features are implemented in the prototype, limitations of the implemented features,

and what features have not been implemented. However, the implemented features are

sufficient to examine and demonstrate the feasibility of the CbSSDF based solution.

6.2 Implemented Features of CbSSDF

121

The implemented features of the CbSSDF are as follows:

• S-CGs: S-CGs for each service are created and stored in the service repository.

However, the example concepts in S-CGs contain only mathematical concepts for

testing purposes.

• SSDM described instance services: All services in the service repository are

described using the SSDM. The information in each service’s description includes

the input and output description, the service metadata, the internal structure, and

CUPs. However, all services are mathematical services and the data types of each

service’s inputs and outputs are limited to numerical values, i.e. mathematical

operands and results. There are no objects passing through services and therefore,

the semantics of services and their inputs and outputs are simple.

• Non-monotonic rules: the non-monotonic rules are implemented in ServiceComp.

However, they are only used to express the priority of mathematical operators.

• Two-step service discovery mechanism: The natural language query in the first

step is simulated using mathematical expressions, which means that users can only

use mathematical expressions to search services. However, the process used

behind the scenes is the same as that discussed previously in Chapter 5, such as

query interpretation, CG conversion, CG matching, and identifying related

services. The second step provides an interface that collects information for

matching the instance services described using SSDM and performs the vector

based (cosine) similarity measurement.

The features that are not implemented are as follows:

• S-CG join: In the current implementation, S-CG join is not supported, which is a

useful feature for dealing with complex business scenarios.

• Alternative service allocation using non-monotonic rules: If the non-monotonic

rules feature was fully implemented, alternative services could be allocated when

a service fails to deliver the expected result at runtime.

6.3 System Design and Architecture

122

6.3 System Design and Architecture

In this section, we will introduce the interfaces of ServiceComp and its system design

and architecture. The interfaces of ServiceComp include a service composition

interface and a two-step service discovery interface. We will discuss their features

with a series of screenshots. In the system design and architecture section, we will

discuss the ServiceComp’s system architecture, the implementation design, and the

database (service repository) design in detail.

6.3.1 User Interface

ServiceComp provides a web based graphical user interface (GUI) to help users to

search services, create composite services, and execute services. The service

composition interface is shown in Figure 6.1. The main components of this interface

are explained as followings:

• The panel to the left is the service repository panel. It contains a service ontology

tab and an instance service tab. The service ontology gives an overall view of the

type hierarchy of the services in the repository. When a class node is double

clicked, its relevant instance services will be displayed in the instance service tab.

• The panel to the right is the service composition panel. Users can create composite

services here by drag and drop.

• There are nine tool bar buttons on the top panel, see Table 6.1 for their functions.

Table 6.1. The description of tool bar buttons.

Tool bar

Buttons

Description

Creates new composite services.

Saves newly created composite services into the service repository or

saves the modifications of existing composition services back to the

service repository.

Switches between browsing mode and editing mode.

Deletes the whole composite service. (only enabled in editing mode)

Deletes a link between sub-services in a composite service. (only enabled

in editing mode)

6.3 System Design and Architecture

123

Deletes a sub-service from a composite service. (only enabled in editing

mode)

Opens the natural language query dialog. (step-one)

Opens the service specification based service discovery dialog. (step-

two)

Executes a service.

The GUI hides the technical details from users so that they can create composite

services and then execute those services just by clicking the mouse. Those operations

that require expert knowledge of Web services, such as type compatibility checking

and SOAP message generation, are managed by the application automatically.

However, if users do want to know the technical details, the interface also provides

the option to see them.

Figures 6.2 and 6.3 show the interfaces for the two-step service discovery mechanism.

In the first step, users can use a query analogous to natural language to directly query

services by pressing the button. As the current version of the prototype only

supports mathematical Web services, natural language queries are simulated using

mathematical expressions. After a query is proposed, ServiceComp will automatically

locate relevant services, add them to the service composition pane, and provide the

result if the required service had been successfully executed.

6.3 System Design and Architecture

124

Figure 6.1. The user interface of ServiceComp.

Figure 6.2. The first step query interface of ServiceComp

6.3 System Design and Architecture

125

Figure 6.3. The second step query interface of ServiceComp

If the search results from the first step do not satisfy a requirement, the user can use

the button to start the second step interface to refine the search result with

detailed technical specification.

All the services managed by ServiceComp can be directly executed. ServiceComp can

dynamically generate and send the SOAP request messages at runtime based on the

WSDL document of each service, process the SOAP response message contents, and

return the result back to the user. To achieve this, dynamic Web service invocation

technologies are used, which will be discussed in Section 6.3.

6.3 System Design and Architecture

126

Figure 6.4. The system architecture of ServiceComp.

6.3.2 System Architecture

The system architecture of ServiceComp is shown in Figure 6.4. It illustrates the main

components of the prototype and how they are related.

• Query CG Generator generates CGs from a natural language query.

• CG Matchmaker matches the generated CGs with the S-CGs in the service

repository to locate relevant services.

• SSDM based Matchmaker matches the technical detail provided by the user in

the second step with the SSDM in the service repository to refine the result from

the first step and help the user to locate services precisely.

• Composite Service Planner generates composite services based on the

information provided by SSDM.

6.3 System Design and Architecture

127

• Execution Engine executes atomic or composite services and returns the result

back to the user.

• Repository Management Unit provides the functionalities needed to manage the

service repository, such as storing and retrieving CbSSDF based service

descriptions, updating service descriptions, and creating or removing services. It

also provides functions to convert other formats of service description into a

CbSSDF based service description.

• Rule Repository stores the rules that are used for service composition and

execution.

6.3.3 Implementation Design

The service repository database consists of seven tables: Service, Service_Input,

Service_Output, Composite_Service, Composite_Service_Input,

Composite_Service_Output, and Graph. The relationships among them are shown

in Figure 6.5. These tables are used to store the service description information

appropriate for CbSSDF.

Figure 6.5. Service repository ER diagram.

The rule repository database consists of two tables: General_Rules and

Domain_Rules. They are used to store the general and domain specific rules that

govern the service composition and execution processes. For example, some of the

general rules in ServiceComp are “r1: priority (‘*’) = priority (‘/’); r2: priority (‘-’) =

priority (‘+’); r3: r1>r2”. These tell the service composition engine and the service

execution engine the priority of the arithmetic operators. The rules are described using

Service_Input

Service Composite_Service

Service_Output

1

*

1

*

1

*

1

1

Composite_Service_Input

Composite_Service_Output

Graph
1

*

1

1

6.3 System Design and Architecture

128

Defeasible Logic. However, only very basic features of Defeasible Logic are used

here as there is no incomplete information in the arithmetic calculation supported by

the prototype.

Figure 6.6. ServiceComp class diagram.

Nine Java classes have been created to implement ServiceComp. An abstract class

diagram in Figure 6.6 shows the relationships among these classes. The use of each

class is listed below:

• UserInterface: is the main class of ServiceComp that provides the user interfaces

for service display and composition.

• SearchInterface: is the interface for the second step of the service discovery

process. The interface for the first step, i.e. the natural language query dialog, is

provided in the UserInterface class. Both the UserInterface class and the

SearchInterface class are subclasses of JFrame.

• Ontology: is the class that provides service ontology for categorising services. It

also helps the user interface to display services in a hierarchical way.

6.4 Implementation Technologies

129

• ServiceSearchEngine: the class that performs the second step of the service

discovery process.

• Service: is the class that keeps the attribute values of a service.

• CGCoverter: is the class for converting a natural language query into CGs.

• CGMatcher: is the class that matches query CGs with the S-CGs in the service

repository to locate relevant services.

• ServiceComposer: is the class that generates composite services based on the

user’s requirements and the general and domain specific rules.

• ExecutionEngine: the class that executes services, either atomic or composite

services, and returns the result back to the user.

6.4 Implementation Technologies

The technologies used for implementing the prototype are chosen for their ability to

create a friendly user interface, provide good accessibility and availability, carry out

CG matching, and perform dynamic Web service invocation at runtime. The key

technologies are listed as follows and their use is explained.

• Java Swing provides the drag and drop and the flow chart style user

interface for service composition: all user interfaces in the ServiceComp are

created using the Java Swing library. The version distributed with JDK 1.6

provides more reliable and better looking user interfaces. In ServiceComp, one of

the key issues is how to help a user to perform service discovery and composition

without professional knowledge of Web services. We use drag and drop and a

flow chart style to help users to create composite services just by clicking the

mouse without knowing any technical detail. The technical details are only

provided on demand.

• Java Applet provides the prototype with comprehensive functionality, high

accessibility, and high availability: in order to create a prototype with

comprehensive functionalities with both high accessibility and availability, but

lower implementation complexity, a Java Applet application is a good solution. It

has most of the features that a desktop application has, but additionally is

6.5 Summary

130

accessible from anywhere with a Java enabled web browser. However, some

features required by ServiceComp are limited by the Java security model. To

overcome these constraints, we use a signed Java Applet [Sun, 2009] to make a

Java Applet almost identical to a desktop application. To create a signed Java

Applet, the normal applet application needs to be bound with a security certificate

that is created by a trusted authority.

• Notio provides the simple CG matching function: Notio [Southey and Linders,

1999] is a Java API for creating and manipulating CGs. It addresses the widely

varying needs of the CG community. In the prototype, the simple CG matching

function is used.

• WSDL4J and SAAJ provide the dynamic Web service invocation ability: to

statically invoke a Web service, usually client side programming language specific

tools are used, such as the WSDL2JAVA [Axis, 2005] tool, which generates local

proxy classes so that the client application can invoke Web services as if it is

invoking methods on a local class. However, in ServiceComp users can select any

services they want to execute at runtime or dynamically create composite services.

It is impossible to generate proxy classes at runtime in this case. Therefore,

dynamic Web service invocation techniques, such as WSDL4J and the SAAJ APIs,

are used to solve this issue. WSDL4J [JWSDL, 2006] is an API that parses a

WSDL document extracts information out of it. SAAJ [SAAJ, 2008] is an API

that generates SOAP messages at runtime based on the information provided by a

WSDL document to invoke target services. By combining these two technologies,

Web services can be invoked dynamically at runtime.

6.5 Summary

In this chapter, we have presented a prototype – ServiceComp, which implements

some of the features of CbSSDF and provides facilities for service discovery and

composition. The purpose of ServiceComp is to firstly demonstrate that the solution

proposed by CbSSDF is feasible and also show how CbSSDF can facilitate service

discovery and composition, and secondly to, use it as a test bed to evaluate the

CbSSDF approach.

6.5 Summary

131

ServiceComp implements the two-step service discovery mechanism with which

service users can search services using either natural language queries (note that in

ServiceComp the form of the natural language query is limited to arithmetic

expressions) and/or technical service specifications. By using ServiceComp, service

users can search services, create composite services, and execute services without

requiring the domain specific knowledge of services.

In the next chapter, we will use the prototype to evaluate the performance of the

CbSSDF based solution.

132

Chapter 7: Evaluation

Chapter

7

In this chapter, we evaluate our solution by comparing it
with an existing service description framework – OWL-S.
We also evaluate our solution in terms of performance,
scalability, and applicability based on the prototype
ServiceComp.

7.1 Overview

133

7.1 Overview

In this chapter, we evaluate the proposed methods and solution. The evaluation

mainly focuses on the criteria for success that are proposed in Section 1.6. For ease of

reading, we list them here again and explain how we are going to evaluate the

research work in this thesis against each of them.

• Technological novelty: Our work must be novel in comparison with existing

work.

The novelty of our work has been discussed in many chapters, such as chapters

3, 4, and 5. Therefore it will not be addressed again here however, we will

summarise our contributions in Chapter 8.

• A Context-based Semantic Service Description Framework: one of the

outcomes of our work is a framework that can better describe Web services in

order to improve the efficiency of service discovery and composition.

CbSSDF is proposed in Chapter 4. In this chapter, we will compare it with

OWL-S to examine what the advantages and disadvantages of CbSSDF are.

• A suitable prototype: A proof-of-concept prototype needs to be implemented in

order to show that our service description framework can be actually realised

and the result from the prototype should show that it is beneficial.

The prototype ServiceComp proposed in Chapter 6 shows that the CbSSDF

based solution is feasible and practicable. In this chapter, we use it as a test-

bed to evaluate the proposed solution.

• Acceptable system performance: The performance of the system has to be at

an acceptable level.

The performance of the CbSSDF based solution is evaluated in this chapter

against three aspects: the accuracy of the search results, the response speed,

and scalability both in terms of the number of services and the distribution of

services.

The aim of the evaluation is to examine whether or not the CbSSDF based solution

can improve the efficiency and effectiveness of service discovery and composition

and investigate whether this solution is realistic and practicable.

7.2 Evaluation Strategy

134

The content of this chapter is organised as follows: we first discuss how our work will

be evaluated through a rational process; then we compare our solution with OWL-S

using a scenario with three tasks. After the comparison, we evaluate the performance

of our solution and the applicability of the transformation method by carrying out a

series of experiments on ServiceComp. Finally, we summarise the evaluation results

by reflecting on the criteria for success.

7.2 Evaluation Strategy

Semantic Web Services description, discovery, and composition are brand new

research topics. To our knowledge, they are still at a premature stage and there is still

a long way to go before a full-fledged methodology and/or suitable applications come

into use. There is no commercially released software or tools that comprehensively

tackle these areas. There are only a few research prototypes and APIs, such as [OWL-

S API, 2008] and [OWL-S Editor, 2008]. In other words, there is no existing system

that our solution can be compared with. Hence, we need to design a rational

evaluation process to evaluate our work.

The evaluation process is carried out in three stages. First, we make a scenario based

comparison and analysis on how the CbSSDF based solution tackles problems, such

as query interpretation, service discovery, and service planning and composition. We

also consider whether the situation has been improved and by how much in

comparison with existing service description frameworks. We set up the scenario with

three tasks for the comparison and analysis to be based on. The three tasks include

atomic service discovery, composite service discovery, and dynamic composite

service generation. We choose OWL-S as representative of the existing semantic Web

service description frameworks for comparison purposes. In the comparison and

analysis, we assume that both frameworks’ features are fully implemented. Secondly,

by carrying out a series of experiments on the proposed prototype ServiceComp, we

analyse the performance of the CbSSDF based solution in against the OWL-S based

solution, for metrics including response time for queries and system scalability.

Finally, we evaluate the applicability of the transformation method proposed in

Chapter 4, which transforms the existing Web service descriptions into CbSSDF

based service descriptions.

7.3 Scenario Based Comparison with OWL-S

135

The reasons for choosing OWL-S as the comparison framework are discussed as

follows:

1. The first and the most important reason is that OWL-S is a semantic Web service

description framework and is comparable to CbSSDF. OWL-S aims to enable

automatic service discovery, invocation, and composition though the integration

of service semantics [Martin et al., 2004a], as does CbSSDF. Except for SUC,

which is one component of CbSSDF, all of the aspects described in CbSSDF are

also part of OWL-S, however, the specific details may be different. As the SUC

can be considered as an extension of the service capability semantics, CbSSDF

and OWL-S are two different solutions but tackle the same problem area and

therefore, we can consider these two solutions as comparable;

2. The second reason is that OWL-S is a relatively mature research proposal in the

Semantic Web Services subject area and is a more widely adopted semantic

service description framework in comparison with other existing frameworks. It

has been submitted to the World Wide Web Consortium (W3C) for consideration

as a web standard;

3. The third reason is that OWL-S is an extension to OWL, which is already a

standard for the semantic web. Therefore, the features provided by OWL are

directly inherited by OWL-S for describing the semantics of services;

4. The final reason is that OWL-S provides rich service capability semantics, such as

the service ontology, the service IOPE, the service profile, atomic and composite

processes, and service grounding. It is the first framework that considers IOPE as

key factors in addressing the semantics of a service’s capabilities.

7.3 Scenario Based Comparison with OWL-S

The scenario for comparing the CbSSDF based solution and the OWL-S based

solution is to perform a compound arithmetic calculation using mathematical Web

services. Normally, an arithmetic calculation is described by a combination of

symbols, mathematical operators, and rules. We use one Web service to represent

each mathematical operator, where the service’s inputs are the operator’s operands

and the output of the service is the result of the calculation. A compound arithmetic

7.3 Scenario Based Comparison with OWL-S

136

expression can be represented as a composite service, where each operator in the

expression is considered as a participant Web service in the composite service. The

calculation result is produced by executing the participant services in the composite

service in a certain order according to standard mathematical rules. Although this is

not a complex scenario, it tackles all aspects of service discovery, composition, and

invocation. It involves service query (either in natural language or formal

mathematical expression) processing, service discovery based on semantic and

technical information, data type compatibility checking during service composition,

service planning, and rule regulated service invocation. Therefore, it requires a service

description framework which provides sufficient information in order to achieve the

above tasks with the minimum of human intervention. By going through the tasks

from the scenario, we will assess which solution makes the tasks easier to achieve

autonomously.

Suppose we have a student who wants to find a Web service to calculate the volume

of a cone. He knows how this can be done, but he wants a Web service do it for him.

He proposes a query as follows:

“Cone volume calculation service: multiply a cone’s base circle area by its height and

divide by 3”

This query states which kind of service he is looking for and how the service should

work. Now let us analyse what the possible situations of the returned result are:

• One or many existing atomic services from the service repository are located for

the student’s requirement.

• One or many existing composite services from the service repository are located

for the student’s requirement.

• There are no existing services that can satisfy the requirement, but a composite

service is constructed dynamically for the requirement.

• No (satisfiable) result returned, i.e. neither an existing service nor a dynamically

constructed composite services can satisfy the requirement. (This outcome will not

be considered in this section).

7.3 Scenario Based Comparison with OWL-S

137

Suppose we have the query interfaces for both the CbSSDF based solution and the

OWL-S based solution and a repository service containing the aforementioned

mathematical Web services. Some of them are atomic services, such as the addition

service, the multiplication service, and the square root service. Some of them are

composite services, such as the circle area service and cylinder the volume service.

Both the atomic services and the composite services can be composed to construct

more complicated composite services. Two examples of CbSSDF based service

descriptions are shown in Table 7.1.

Table 7.1. Two examples of the CbSSDF based service description.

Atomic Service Composite Service

Name: Addition Service Name: Circle Area Service

Type: Arithmetic Type: Area

Input Data

Type:

In1: double

In2: double
Input Data

Type:

In1: double

In2: double

Input

Semantics:

In1: Addend

In2: Summand
Input

Semantics:

In1: Radius

In2: Pi

Output

Data Type:

Out1: double Output

Data Type:

Output1: double

Output

Semantics:

Out1: Summation Output

Semantics:

Out1: Circle Area

Pre-

condition:
isDouble(in1)∧isDouble(in2) Pre-

condition:
isDouble(in1)∧isDouble(in2)

Effect: isDouble(out1) Effect: isDouble(out1)

CUP Input

Services:

In1: Subtraction,

Multiplication, …

In2: Subtraction,

Multiplication, ...

CUP Input

Services:

In1: Subtraction,

Multiplication, …

In2: Subtraction,

Multiplication, …

CUP

Output

Services:

Subtraction Service,

Multiplication Service, …
CUP

Output

Services:

Subtraction Service,

Multiplication Service, ….

Internal

Structure:

null Internal

Structure:

Multiplication, Square, and PI

Metadata:

QoS, Natural language

description, Service provider

information, …
Metadata:

QoS, Natural language

description, Service provider

information, …

Resource: Not provided Resource: Not provided

S-CGs:

[Arithmetic: Addition Service]

← (REQ) ← [Area: Trapezium

Area Service] → (REQ) →

[Arithmetic: Multiplication

Service]

S-CGs:

[Area: Circle Area Service]

← (REQ) ← [Volume:

Cylinder Volume Service]

Most of the information in Table 7.1 is obvious. “CUP Input Services” means that

these services can provide input data for the listed services. “CUP Output Services”

means that these services can consume the output data from the listed services. The

7.3 Scenario Based Comparison with OWL-S

138

mathematical services do not have strong data semantic restrictions, thus in the above

case any services in the service repository that can provide or consume the double

data type are in the “CUP Input Services” list and/or the “CUP Output Services” list.

An atomic service does not have an internal structure and therefore, the Addition

Service’s “Internal Structure” information is null. OWL-S based service description

examples can be found on the MindSwap website
7
.

In the following sections, each of the tasks will be discussed and the results of the two

solutions are compared.

7.3.1 Task 1: Locating an Existing Atomic Service

In the first task, we assume that there is at least one atomic service in the service

repository that can satisfy the requirement, i.e. performing the calculation of the

volume of a cone. This task requires a service description framework that has the

capability to support query interpretation and specification matchmaking.

7.3.1.1 Solution Comparison

The comparison result for these two different solutions for solving task 1 is shown in

Table 7.2.

Table 7.2. The comparison of CbSSDF and OWL-S based solutions for task 1.

CbSSDF based Solution OWL-S based Solution

1. Query Interpretation: 1. Query Interpretation:

A given query Q is converted into a CG:

Q ⇛ CG

A given query Q is converted into

a set of concepts:

Q ⇛ C={c1, c2, …, cn}

2. Match Making: 2. Match Making:

Step one:

By CG matching, a set of relevant services Sr={s1, s2, …, sn}

is obtained. Then the services in Sr are ranked according to

their S-CGs’ similarity to the query CG.

Not Applicable.

7
MindSwap OWL-S example: http://www.mindswap.org/2004/owl-s/services.shtml

REQ

REQ Circle Area

Multiplication REQ Height

GEN Product

Divide

REQ Number: 3

Cone Volume CONT

7.3 Scenario Based Comparison with OWL-S

139

Step two:

Based on the further technical specification provided by the

service user, Sr is refined, ranked according to similarity,

and returned to the service user.

The specification matching is performed based on the

attributes addressed in the SSDM, such as the IOPE, the

service concept, the service metadata, the service internal

structure, and CUPs.

Matchmaking cannot be

performed based on natural

language query. Therefore, the

technical specification is required

at the same time when the query is

proposed.

The matchmaking is performed

based on the IOPE and the service

metadata. A set of result services

is returned to the service user and

they are ranked according to the

similarity to the specification.

7.3.1.2 Summary

From the result shown in table 7.2, we can see that for locating a single atomic service,

there is no significant difference between these two solutions. They both require the

service user to propose a query followed by a detailed technical specification of the

required service. However, in the CbSSDF based solution, the matchmaking can be

performed based on imprecise information, such as a natural language query. The

service user can provide technical specification later based on the initial result. The

OWL-S based solution requires the service user to give the technical specification of

the required service at the very beginning of the search. It could be a difficult task for

the service user to give the detailed technical specification at that time, especially

when the service user is not a domain expert in the required service area.

7.3.2 Task 2: Locating an Existing Composite Service

In the second task, we assume that in the service repository there is at least one

composite service that can perform the calculation of the volume of a cone. This task

requires a service description framework that has the capabilities to support query

interpretation, specification matchmaking, and internal structure and sub-services

matching with composite services if applicable.

7.3.2.1 Solution Comparison

The comparison result for these two different solutions for solving task 2 is listed in

Table 7.3.

7.3 Scenario Based Comparison with OWL-S

140

Table 7.3. The comparison of CbSSDF and OWL-S based solutions for task 2.

CbSSDF based Solution OWL-S based Solution

1. Query Interpretation: 1. Query Interpretation:

A given query Q is converted into a CG:

Q ⇛ CG

A given query Q is

converted into a set of

concepts:

Q ⇛ C={c1, c2, …, cn}

2. Matchmaking: 2. Matchmaking:

Step one – CG Matching:

By CG matching, a set of relevant services Sr={s1, s2, …, sn}

is obtained. Then the services in Sr are ranked according to

their S-CGs’ similarity to the query CG.

Not Applicable.

Step two – Specification Matching:

Based on the further technical specification provided by the

service user, Sr is refined, ranked, and returned to the service

user.

However, in this step, if the service user is familiar with the

required service and able to provide detail about the internal

sub-services’ detail, the result can be more accurate.

For example, if service s is a composite service and consists

of si and sj, then si and sj’s detail can also be used to locate s.

The internal detail of

services are hidden from

service users in the OWL-S

based solution, thus for a

service user, the atomic

service and the composite

service are not

distinguished. For this

reason, the matchmaking

process in this task is

exactly the same as the one

described in task 1.

7.3.2.2 Summary

The comparison result in Table 7.3 shows the difference between these two solutions

when dealing with the composite service discovery. In the CbSSDF based solution,

the rich service description enables the service user to use extra information, such as

the internal structure of composite services, to more precisely locate required services.

In reality, it is not necessary for a user to know whether the required service is an

atomic service or a composite service. However, if the user does know the extra

information, it can be used to obtain a better search result. In the OWL-S based

solution, the composite service and the atomic service are not distinguishable from the

service user’s perspective. The advantage of this is that it can simplify service

discovery and service description. CbSSDF tries to use all of the information available

to assist the service discovery. The disadvantage of this is that it increases the

REQ

REQ Circle Area

Multiplication REQ Height

GEN Product

Divide

REQ Number: 3

Cone Volume CONT

7.3 Scenario Based Comparison with OWL-S

141

complexity of the service description and discovery processes. However, the complex

service description is compensated for by the more accurate service discovery result.

7.3.3 Task 3: Dynamically Constructing Composite Service

In the third task, we assume that there is no existing service that can perform the

calculation of the volume of a cone. Therefore, a composite service needs to be

dynamically constructed from the existing services in the service repository.

This task requires a service description framework that has the capabilities to support

not only query interpretation, and specification matchmaking, but also service

planning.

7.3.3.1 Solution Comparison

The comparative results for the two different solutions are listed in Table 7.4.

Table 7.4. The comparison of CbSSDF and OWL-S based solutions for task 3.

CbSSDF based Solution OWL-S based Solution

1. Query Interpretation: 1. Query Interpretation:

A given query Q is converted into a CG:

Q ⇛ CG

A given query Q is converted into

a set of concepts:

Q ⇛ C={c1, c2, …, cn}

2. Matchmaking: 2. Matchmaking:

Step one – CG Matching:

By CG matching, a set of relevant services Sr={s1,

s2, …, sn} is obtained. The services are ranked

according to their S-CGs’ similarity to the query CG.

The CG matcher will join single S-CGs together into

larger S-CGs in order to achieve the best possible

match.

Not Applicable.

Step two – Specification Matching:

Based on the further technical specification provided by

the service user, Sr is refined and ranked.

If there is no matched service or only matches with

very low similarity rate, the system will start the

service planning process to generate composite

Based on the technical

specification provided by the

service user, the OWL-S based

solution will try to find a set of

best matched services.

If there is no matched service or

matched with very low similarity

REQ

REQ Circle Area

Multiplication REQ Height

GEN Product

Divide

REQ Number: 3

Cone Volume CONT

7.3 Scenario Based Comparison with OWL-S

142

services. rate, service composition will be

attempted.

3. Planning and composition: 3. Planning and composition:

– The planning is based on reduced service range Sr,

i.e. the relevant services from the step one are

considered first in the planning process.

– When a service is located, its CUPs can tell the

planner where to go next, only the services in its

CUPs are compatible, so there is no need to go

through all the services in the repository.

– The planning is based on the

whole service repository.

– The planner in the OWL-S

based solution needs to go

through the whole service

repository every time it tries to

locate a service for a task.

4. Rule evaluation 4. Rule evaluation

–Pre-conditions and effects of each service are

evaluated during the service planning process.

– The general and domain specific rules are evaluated

to filter out invalid composite services.

–Pre-conditions and effects of

each service are evaluated

during the service planning

process.

7.3.3.2 Summary

In dynamic composite service construction, the CbSSDF based solution clearly

demonstrates its advantages. In comparison with the OWL-S based solution, the

information provided by CbSSDF can greatly improve the performance of service

composition and the accuracy of the result. The inter-relationships between services

addressed by the CUPs can decrease the number of candidate services in each step of

planning. As each CUP can be considered as a segment of a plan, the actual number

of planning steps is reduced. The general and domain specific rules can be used to

both describe the pre-conditions and effects of services, and also to verify the

correctness of the generated composite service(s).

In the OWL-S based solution, each service is treated completely separately. The inter-

relationships between services in the real world will not be considered. As there is no

information to indicate the relationships between services, we have to search the

whole set of services in the service repository for one candidate service that possibly

matches each sub-task in a composite service. Obviously, this search and match

process greatly increases the performance overhead of an OWL-S based system.

7.3 Scenario Based Comparison with OWL-S

143

7.3.4 Discussion of the Scenario based Comparison

In the previous sections, we used an arithmetic calculation scenario to compare the

CbSSDF based solution with an OWL-S based solution. Three tasks are proposed to

examine how each solution deals with the following situations:

• Locating an atomic service: in this situation, the service description framework

needs to assist the service search engine in locating existing atomic services that

can fulfil the service user’s requirement.

• Locating a composite service: in this situation, the service description framework

needs to assist the service search engine in locating existing composite services

that can fulfil the service user’s requirement.

• Dynamically constructing a composite service: in this situation, there is no

existing service that can fulfil the service user’s requirement. Therefore, the

service description framework needs to assist the service search engine in

dynamically constructing one or more composite services which can fulfil the

service user’s requirement.

By analysing the two different approaches through the three tasks, we have several

pros and cons of these two solutions, which are summarised as follows:

1) With regards to atomic service discovery, the two solutions have no discernible

differences. However, in general the CbSSDF solution and its two-step service

discovery mechanism gives service users more natural ways to search for services

in more natural ways (using natural language) and only give precisely specified

technical information later if they can. In the OWL-S solution, service users must

provide precisely specified technical information at the very beginning of each

search, which can be hard for users who are not familiar with the technical detail

of their required services.

2) The composite service and the atomic service are not distinguished from the

service user’s perspective in the OWL-S solution. Therefore, for a service user,

there is no difference between searching for an atomic service or a composite

service. The advantage of this is that it makes the searching process simpler and

the user does not need to be aware of the differences.

7.4 Prototype based Performance Study

144

One of the principles of the CbSSDF is to use all possible information to assist in

service discovery. Therefore, if service users know the internal detail of the

services they are looking for, they can provide relevant information which may

make the discovery result more accurate. However, the disadvantage of this is that

it increases the complexity of the service description and discovery process.

3) When the situation is more complicated, i.e. when dynamic composite service

construction is required, the advantages of the CbSSDF based solution become

obvious. First of all, the two-step service discovery mechanism can filter out

irrelevant services by CG matching so that the number of the candidate services

for service composition is reduced. Secondly, CUPs can further reduce the number

of candidate services in each step of service planning. They also reduce the

number of steps that a planner needs to take to reach the goal. Thirdly, the non-

monotonic rules in CbSSDF can help to identify invalid composite services, which

make the resulting service more accurate and more reliable.

A significant defect of the OWL-S solution is that it does not consider the inter-

relationships between services. A consequence of this is that for all stages of the

planning process the planner has to search through the whole service repository

for candidate services.

7.4 Prototype based Performance Study

In the previous sections, we have analysed the differences between the CbSSDF

solution and the OWL-S solution in solving service discovery and composition

problems. In this section, we evaluate the CbSSDF solution from a performance point

of view in comparison with the OWL-S solution. We carry out a series of experiments

on the ServiceComp prototype. The purpose of the experiments is to evaluate the

CbSSDF solution from the following three aspects:

• The accuracy of the service discovery result.

• The performance efficiency.

• The system scalability.

7.4 Prototype based Performance Study

145

7.4.1 Experiment Environment

We set up a lab based test-bed. The test bed consists of five server machines and a

client machine. All the machines used in the test-bed have the same configuration: HP

Compaq DC7600S, Intel Pentium4 HT 3.00GHz processor, 3G RAM. One server

machine is the main server and the rest four servers are assistant servers that are used

for simulating the distributed service repository environment. The service repository

is deployed on the main server and duplicated on each assistant server. The

ServiceComp prototype is deployed on the client machine. In order to compare with

the OWL-S solution, we use the WSDL2OWL-S [Srinivasan et al., 2006] tool to

generate OWL-S based service descriptions and implement a very simple service

searching interface using the OWL-S/UDDI Matchmaker and Client API [Srinivasan

et al., 2006].

7.4.2 Design of the Experiment

7.4.2.1 Analytical Model

To evaluate the accuracy of the service discovery result, the precision and recall

model is used. Precision is used to measure how relevant a retrieved service is to a

user’s need, i.e. exactness or fidelity. Recall is used to measure how many services

relevant to the query are successfully retrieved, i.e. completeness.

Let A be a set of relevant services to a user’s need in the service repository, B a set of

retrieved services from the service repository. According to [Van Rijsbergen, 1979]

the precision and recall is calculated as below:

| |

| |

A B
Precision

B

∩
=

,

| |

| |

A B
Recall

A

∩
=

The accuracy of a search result is measured by the combination of the values of

precision and recall. Under the same recall, the higher precision value indicates a

more accurate search result [Van Rijsbergen, 1979].

The precision and recall model is widely used as a measurement model for the

accuracy of result in areas such as information retrieval and statistical classification.

As Web services are considered a dynamic format of information, the model is

7.4 Prototype based Performance Study

146

applicable to Web service discovery. The values of precision and recall are explained

as follows: a maximum precision score of 1.0 means that all of the results retrieved by

a search are relevant (but it does not mean that all the relevant documents have been

retrieved), whereas a maximum recall score of 1.0 means that all of the relevant

documents are retrieved by a search (but it does not mean that no irrelevant

documents have been retrieved). A common use of precision and recall is to form a

precision and recall space (PR Space), where we can draw PR curves to compare the

accuracy of different searching methods.

The performance efficiency and system scalability are examined through average

query response time. The average query response time for evaluating the performance

efficiency is calculated based on a centralised service repository. The average query

response time in the centralised service repository situation (suppose involving

service composition) will be the sum of the average time for performing the CG

matching (TCG), the average time for performing the specification matchmaking and

semantic similarity ranking based on SSDF (Tm_rank), the average time for constructing

composite services (TComposite), and the average time for the non-monotonic rule

reasoning (Treason). Let TCentral be the average query response time in the centralised

service repository situation, it can be expressed as following:

TCentral = AVG (TCG) + AVG (Tm_rank) + AVG (TComposite) + AVG (Treason)

where, AVG() is the average function.

The evaluation for system scalability is twofold. First, we increase the number of

services in the centralised service repository to see how fast the query response time is.

The calculation expression is the same as TCentral. Second, we distribute the services to

five servers to simulate a decentralised service repository environment, such as the

Internet. Then, we examine how fast the query response time is. The average query

response time in the decentralised service repository situation (suppose involving

service composition) will be the sum of TCentral on each server, the network latency for

connections to each server (TLatency), and the time for combining the result from

different service repositories (TCombine). Let TDecentral be the average query response

time in the decentralised service repository situation, it can be expressed as follows:

1 1

n m
i i

Decentral Central Latency Combine

i i

T T T T
= =

= + +∑ ∑

7.4 Prototype based Performance Study

147

where, n is the number of service repositories and m is the number of connections to

the repositories.

We will discuss the experimental results in the next section using the analytical model.

7.4.2.2 The Independent and Dependent Variables and the Treatment

In evaluation of the search result accuracy:

• Independent variables: are the number of the services that have been retrieved

and the number of the relevant services in the service repository. We change the

values of these two variables to observe the different outcomes from the

experiment.

• Dependent variables: are the recall and precision. These are the values that we

are observing during the experiment in order to examine the accuracy of the

search result.

• Treatments: are the CbSSDF based solution and the OWL-S based solution.

These are the two solutions that we compare in the experiment.

In evaluation of the performance and scalability:

• Independent variable: is the number of the services in the service repository

(100-1000 services for the performance evaluation and 1100-2000 services for the

scalability evaluation). We change the number of services to observe the different

outcomes from the performance and scalability experiments.

• Dependent variable: is the query response time. We observe the response time of

each service query to examine the system performance and scalability.

• Treatments: are the CbSSDF based solution and the OWL-S based solution.

These are the two solutions that we compare in the experiment.

7.4.3 Experiment Results

Experiments are performed in a controlled laboratory environment, so we can clearly

know how many relevant services for each service query are in the service repository

and how many of them have been retrieved. Therefore, the precision-recall curve

7.4 Prototype based Performance Study

148

diagrams of the results based on different approaches can be precisely drawn, see

Figure 7.1. The data shown on the diagram are also shown in Table 7.5.

Table 7.5. Precision-recall table for CbSSDF and OWL-S solutions.

 The values of the recall and precision

Recall 0.08 0.19 0.32 0.44 0.51 0.6 0.69 0.8 0.92
CbSSDF

Precision 0.9 0.7 0.55 0.48 0.38 0.35 0.32 0.2 0.16

Recall 0.08 0.15 0.24 0.42 0.49 0.59 0.71 0.81 0.91
OWL-S

Precision 0.78 0.55 0.37 0.28 0.2 0.17 0.14 0.08 0.02

From the diagram shown in Figure 7.4, we can see that the CbSSDF based solution

can significantly improve the accuracy of the service discovery result in comparison

with the OWL-S based solution. During the experiment we observed that a large

number of the attribute fields provided in the OWL-S based search interface for the

technical specification of the required service are left empty by the users. As

discussed previously, if service users are not familiar with the required services, it is

difficult for them to provide technical information without any hints. The

consequence of leaving some of the required search criteria empty is that the search

engine lacks sufficient information to accurately locate services, which is one of the

reasons for the lower accuracy of the OWL-S approach. By using the two-step service

discovery mechanism, users can be guided step by step from the conceptual

description of their needs to the technical specification and therefore more detailed

information can ultimately be provided. The other reason for the better accuracy of

the CbSSDF solution is that CbSSDF provides a richer service description, especially

considering that the search engine will have information on inter-related services.

7.4 Prototype based Performance Study

149

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re

c
is

io
n

CbSSDF based result

OWL-S based result

Figure 7.1. Precision-Recall curves.

The performance of the system is evaluated by comparing the query response time

with the OWL-S solution using a centralised service repository. The CbSSDF based

solution’s query response time is examined in three stages: first, recording the

response time for the first step search; then, recording the response time for the

second step search; and finally, calculating the overall response time of the CbSSDF

solution. The results from all the three stages are compared with the OWL-S solution.

Figure 7.2 shows the comparative result and some of the sample data used to draw the

diagram is shown in Table 7.6, where n is the number of services and t is the response

time in milliseconds.

Table 7.6. System performance evaluation result – data samples.

 n 100 200 300 400 500 600 700 800 900 1000

Step one t (ms) 180 196 202 220 217 234 240 246 258 264

Step two t (ms) 135 141 177 144 145 166 171 139 163 166

Overall t (ms) 315 337 379 364 362 400 411 385 421 430

OWL-S t (ms) 181 193 199 215 220 228 231 235 244 256

From Figure 7.2, we can observe that the first step in particular and the overall search

time in general of the CbSSDF solution takes more time than the OWL-S based

approach. This is due to the extra complexity of the CG matching algorithm and the

algorithm required for converting natural language to a CG. The second step, however,

is much faster than the OWL-S based approach because after the first step, only

relevant services are passed to the second step, thus the search space is relatively

7.4 Prototype based Performance Study

150

small. However, sometimes composite services are generated in the second step and

therefore the time curve for the second step is fluctuant.

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 900 1000 1100

Number of Services

Q
u
e
ry

 R
e
s
p
o
n
s
e
 T

im
e
 (
m

s
)

Step one

Step two

Overall

OWL-S

Figure 7.2. Query response time for performing on a centralised service repository.

The scalability of the system is evaluated in two ways: first, we increase the number

of services in the service repository on the main server and get the overall system time

curve for searching with both CbSSDF and OWL-S; then, we distribute the services to

the assistant servers to simulate a decentralised service repository and get the

alternative time curves for both CbSSDF and OWL-S (see Figure 7.3). Some of the

data used to draw the diagrams is listed in Table 7.7.

Table 7.7. System scalability evaluation result – data samples.

 n 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
CbSSDF t (ms) 353 376 421 654 843 976 1123 1525 2343 3108

Centralised
OWL-S t (ms) 154 200 380 610 890 1420 2160 4341 6540 8550

CbSSDF t (ms) 424 531 576 693 938 1023 1347 1696 2941 3801
Distributed

OWL-S t (ms) 261 330 450 725 1032 1610 2930 4620 7250 9530

The diagram shows that the response time of the CbSSDF solution increases rapidly

when the number of services is grows large (>1700). The reason is that when the

service repository gets larger, the S-CGs in the repository are also get larger and more

complex. Therefore the CG matching algorithm’s complexity increases due to the

larger CGs. The decentralised service repository also affects performance. The

overhead comes from the network latency and time required to assemble results from

each of the distributed servers. However, for the OWL-S based solution, the

performance declination is due to the inefficient service discovery and composition

7.4 Prototype based Performance Study

151

process. From the diagram we can observe that it brings more overhead onto to the

overall query response time than the CG matching algorithm. When the number of

services is larger, the response time increases almost exponentially.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

Number of Services

Q
u

e
ry

 R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Centralised_CbSSDF

Distributed_CbSSDF

Centralised_OWL-S

Distributed_OWL-S

Figure 7.3. Query response time for performing on both the centralised and

decentralised service repositories after increasing the number of services.

The results from the evaluation are very promising. However, the evaluation

techniques and methods have some limitations, which may reduce the accuracy of the

results. In the next section, we will highlight the limitations we have considered in our

evaluation process.

7.4.4 Limitations of the Experiments and Threats to Validity

The limitations of the experiments mainly come from three aspects. These aspects are

summarised as following:

• Hardware limitation: The computers used in the experiments are normal desktop

computers. No specific high standard server machines have been used.

For a desktop computer hardware configuration, we need to choose algorithms

that do not require such a high amount of computational power that it may exceed

the capacity of the machines. We also need to carefully consider the number of

services to be hosted on each server in the experiments because a large number of

services, e.g. 100,000 services, may exceed the server’s capability.

7.4 Prototype based Performance Study

152

• Software limitation: ServiceComp is only a research prototype and has not

implemented all the features that are supported by CbSSDF.

The simple interface and search engine for OWL-S are implemented using very

basic libraries and these libraries may not be up to date. This could cause lower

performance than a properly implemented OWL-S based search engine.

• Evaluation method limitation: There are about 200 Web services originally

added to the service repository. However, in the system scalability experiment,

there are more than 2000 services involved. As a large amount of development

work would have been required, we did not actually create all these services, most

of them are generated from the original 200 Web services through duplication and

minor modification.

As the experiments have taken place in controlled conditions, there are threats to the

validity of the evaluation results that we need to consider and control. The threats to

the internal validity are summarised as follows:

• Selection of scenario: The simplified mathematical calculation scenario for the

comparison and analysis between CbSSDF and OWL-S may hide issues that can

only be explored in the real world complex scenarios.

• Selection of services: The services used in the evaluation are simple mathematical

calculation services and hosted in the same environment without interference from

other applications or systems, this could increase the performance of the system.

• Instrumentation: The evaluation result may contain deviations caused by the

implementation of the prototype and the measurement methods.

• Experimenter Bias: The expectations of the outcomes may influence the

experimenter to view result data in a subjective way.

The threats to the external validity are summarised as follows:

• Generalisation: the conclusion drawn from the comparison between CbSSDF and

OWL-S may not be applicable for newly proposed research works on Semantic

Web Services description.

7.5 Transformation Method Applicability Evaluation

153

7.5 Transformation Method Applicability Evaluation

In Chapter 4, we introduced a transformation method that can transform existing Web

service descriptions into CbSSDF based descriptions. In this section, we evaluate the

applicability of this transformation method on different types of service description.

We divide the services that are used in the experiment into three groups. The services

in the first group are described using WSDL, the second group using WSDL with

additional natural language description, and the third group using OWL-S. Each group

has 500 sample services. The metric for the experiment is the average percentage of

the required information in CbSSDF that can be found by extracting information from

the different types of service description using the transformation method. The

required information in CbSSDF includes the information needed for generating S-

CGs and the information needed for completing the SSDM, such as service semantics,

service interface data types and semantics, the service metadata, and service

relationships. The result is shown in Table 7.8. If the required information is fully

obtained from the service description frameworks, a “Yes” will be given to that field;

if the required information is partially obtained, a “Partial” will be given; if the

required information is not available, then a “No” will be entered. At the end of the

table, we calculate the percentage of the required information that can be obtained. In

order to calculate the percentage, we assign ‘1’ to “Yes”, ‘0’ to “No”, and ‘0.5’ to

“Partial”. The result is then graphically illustrated in Figure 7.4.

Table 7.8. Percentages of the required information in CbSSDF obtained from

different service description frameworks.

Input Output

Data

Type
Semantics

Data

Type
Semantics

Service

Metadata

Service

Concepts

Service

Relation
CUP (%)

WSDL
Yes

(1)

No

(0)

Yes

(1)

No

(0)

No

(0)

No

(0)

No

(0)

No

(0)
25

WSDL

+NL

Yes

(1)

Partial

(0.5)

Yes

(1)

Partial

(0.5)

Partial

(0.5)

Yes

(1)

No

(0)

No

(0)
56.3

OWL-S
Yes

(1)

Yes

(1)

Yes

(1)

Yes

(1)

Yes

(1)

Yes

(1)

Partial

(0.5)

No

(0)
81.3

The experimental results show that the WSDL based description only provides (on

average) a quarter of the required information through the transformation method; the

WSDL with additional natural language provides 56.3% of the required information,

whereas the OWL-S based description doubles that of the WSDL based descriptions

by providing 81.3% of the required information. However, just because a high

7.6 Summary

154

percentage of the required information can be obtained from a service description

framework does not mean that the framework is identical to CbSSDF. Some of the

obtained information in the original framework has been used in a different way. For

example, some of the information in WSDL is only used for keyword matching,

whereas in the CBSSDF, it may be used to build up the conceptual relationships

between services.

The CbSSDF is a semantically rich service description framework and there is no

other existing service description framework that provides 100% of the required

information. The experimental result indicates that the transformation method is

applicable to a majority of the existing service description models, although some of

the service description models may need more manual manipulation after applying the

transformation method than others.

25%

56.30%

81.30%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

WSDL WSDL+NL OWL-S

Figure 7.4. Percentage of acquired information from different service descriptions.

7.6 Summary

In this chapter, we have evaluated CbSSDF through a scenario with a set of tasks and

a series of experiments. As previously discussed, the evaluation has been conducted

using the following three stages.

First, we use an arithmetic calculation scenario and three tasks to analyse the

differences between the CbSSDF solution and the OWL-S solution. The three tasks

7.6 Summary

155

cover atomic service discovery, composite service discovery, and dynamic composite

service construction situations. The analysis result is summarised as follows:

1) In atomic service discovery, these two solutions have no major differences.

However, the two-step service discovery mechanism provided by the CbSSDF

solution gives service users a greater flexibility in service discovery in contrast to

the OWL-S based solution.

2) Using the OWL-S based solution, composite services and atomic services are not

distinguished from the service user’s perspective, so there is no difference

between atomic service discovery and composite service discovery in the OWL-S

based solution. The advantage of this is that it makes the search simpler and users

do not need to know the difference between a composite and an atomic service.

In the CbSSDF solution, users can use details of the internal structure to assist

service discovery. One of the design principles of CbSSDF is to use all the

available information to support service discovery, including the internal structure

of the service. However, the disadvantage of this is that it increases the complexity

of the service description.

3) The advantages of using CbSSDF to dynamically construct composite services

include: i) a significant reduction of the size of search space due to the two-step

service discovery mechanism; ii) an improvement in the efficiency of the service

planning and composition processes; and iii) effective identification of invalid

composite services with the help of the non-monotonic rules.

Second, the service search accuracy, the system performance, and the system

scalability were studied through a series of experiments and the results compared with

the OWL-S based solution. The findings from the experiments include 1) the CbSSDF

solution can considerably improve the accuracy of the service discovery results; 2)

due to the complexity of the CG matching algorithm and the NL-to-CG converting

algorithm, the performance of the CbSSDF solution is lower than the OWL-S solution;

3) the CbSSDF solution can handle a relatively large amount of services (a service

space with more than 1500 services) in a decentralised service repository. However,

some extra performance overhead is observed due to network latency and the time

spent on assembling results from the decentralised service repository.

7.6 Summary

156

Third, the applicability of the transformation method has been examined. The result

shows that the transformation method works best on existing semantic service

description frameworks, such as OWL-S. The efficiency of the transformation method

is lower if the service description framework does not contain semantic information,

(e.g. WSDL). One of the key concepts for CbSSDF is the use of inter-service

relationships to provide the SUC information about the services. However, without

the semantics from the existing service description, it is very difficult to capture

meaningful inter-service relationships with an automatic procedure. Therefore, more

human intervention is required to complete the description after the transformation

method has completed.

In conclusion, it has been demonstrated through evaluation that CbSSDF can

significantly improve the efficiency and effectiveness of service discovery and

composition. The two-step service discovery mechanism gives service users increased

flexibility to search services. The comprehensive service description emphasises not

only the semantics of services, but also the SUC of services, i.e. the inter-service

relationships including conceptual relationships and technical relationships. However,

we have identified some problems with CbSSDF that need further investigation. First,

the service description in CbSSDF is complex, which results in a larger storage space

and increased processing time. Second, highly complex algorithms, such as the CG

matching algorithm and the NL-to-CG conversion algorithm, are required to process

the service description. This leads to a performance overhead. However, the

performance is compensated for by the more accurate search results.

Now let us look back to examine whether we have satisfied the criteria for success

proposed at the beginning of the thesis.

• Technological novelty: many features addressed in CbSSDF are unique and

innovative, such as the SUC, the S-CG and the CUP.

• A Context-based Semantic Service Description Framework: CbSSDF is

proposed to improve the efficiency and effectiveness of service discovery and

composition. The evaluation results demonstrate that CbSSDF does improve

the situation.

7.6 Summary

157

• A suitable prototype: the prototype ServiceComp is proposed to demonstrate

that the CbSSDF based solution is feasible and the performance is acceptable.

• Acceptable system performance: The performance of the CbSSDF based

solution is examined in the evaluation (and contrasted to other solutions such

as OWL-S). It is observed through comparison with the existing work that a

more accurate search result can compensate for the increased performance.

As per the above, we believe that all of the criteria for success have been satisfied.

In the next chapter, we will summarise our work and indicate possible future research

directions for Semantic Web Services.

158

Chapter 8: Conclusion and Future
Work

Chapter

8

In this chapter, we summarise our proposals and discuss
the remaining problems, and point out some future
research directions.

References

159

8.1 Overview

In this chapter, we first summarise the ideas, methods and solutions proposed in this

thesis, stressing our main contributions. Then, we briefly analyse the remaining

problems that need to be solved in future work and also look at what needs to be

further developed in terms of research and development. Finally, we will discuss

future research directions for Web services and Semantic Web Services description,

discovery, and composition.

8.2 Summary and Contributions

One goal of this thesis is to present a comprehensive semantic Web service

description framework in order to increase the efficiency and effectiveness of the Web

service discovery and composition.

Web services are simple, self-contained applications that perform functions, from

simple service requests to complicated business processes. They can be considered as

the dynamic side of the web, this is in comparison with the static side of the web in

forms such as information on web pages. XML encoded communication, i.e. SOAP

messages enables Web services to be programming language, operating system, and

hardware independent. As Web services enable computer-to-computer

communication in a heterogeneous environment, it is ideally suited to provide

dynamic information and functionalities over the web. The main advantages of Web

services mean this technology is the natural choice for the implementation of a new

application design and development paradigm – Service Oriented Architecture (SOA).

With SOA, an enterprise can modularise their core business into services and reuse

them in different business processes and applications. However, to fully achieve the

features of SOA, the modules in the SOA, i.e. the services, must be well described to

support service discovery and composition. Currently, the most promising research

efforts in the area of service description are semantic service description frameworks,

such as OWL-S, WSMF, and WSDL-S. These integrate machine understandable

semantics into service description to enhance the expressiveness of WSDL, which

makes automatic service discovery and composition become possible.

References

160

We carried out a comprehensive literature review on the existing Semantic Web

Services frameworks and found a list of problems that they are not adequately

addressed.

• Insufficient context information: The current semantic Web service

descriptions focus on ontology based data and capability semantics. They do

not sufficiently address the service context information, such as how a service

should be used, where the service should be used, and what are the common

usage scenarios that the service participates in, i.e. the service

applicability/usability/composability.

• Precise requirements required to locate services: In order to locate a required

service, the current service discovery methods require precisely defined

technical information, such as service input and output data types and service

capabilities. This kind of information may be difficult for a service user to

provide, especially when the service user is not a domain expert in the required

service’s area.

• Insufficient information about inter-relationships among services: The current

work has inadequately addressed inter-relationships among services. As Web

services are functional units, they must interact with the external environment,

such as other Web services. For a given service, there is always a certain group

of services that the service can interact with in order to achieve certain tasks. If

each Web service is considered as an isolated individual and the potential

relationships with other services ignored, the efficiency of the service

discovery and composition process will be reduced.

• Insufficient incomplete information handling: The rules provided in the

current service description frameworks are based on monotonic logic. They

are not suitable for handling incomplete information and conflict conditions.

To address the above issues, we proposed a Context based Semantic Service

Description Framework (CbSSDF) that provides service usage context (SUC)

information about services, adequate semantics of services, and a non-monotonic rule

system for handling incomplete information. We also proposed a two-step service

discovery mechanism based on CbSSDF to demonstrate how the proposed framework

can improve service discovery and composition. A prototype – ServiceComp, is

References

161

implemented to demonstrate the practicability of CbSSDF and evaluate its

performance. In the following, we describe the main contributions of the work

proposed in this thesis.

As discussed previously, Web services, as functional units, must interact with the

external environment. Each service has its live context, i.e. which kind of problems

this service intends to solve and what relationships with other services are involved in

solving the problems. It is very rare that a service can function in all scenarios and

interact with any possible service. Therefore, a service’s context information,

especially how the service can be used, is very important for identifying an

appropriate service. The problem of representing the service context leads to our first

contribution [Song et al., 2009] [Du et al., 2006c].

Contribution 1 – A new concept of service context, i.e. the Service Usage

Context (SUC), is proposed. It addresses two levels of service context from

the usage perspective. The conceptual level service usage context, i.e. T-

Context, defines the conceptual relationships between a service concept and

other service concepts and entities, such as users, service providers, and other

business application related concepts. The instance level service usage context,

i.e. A -Context, defines the interactions between an instance service and other

instance services at runtime, i.e. the composability between instance services.

By identifying the shortcomings of the existing service description frameworks, we

propose a comprehensive service description framework, which leads to our second

and most important contribution [Du et al., 2006b] [Du et al., 2007a] [Du et al., 2007b]

[Du et al., 2008a].

Contribution 2 – A Context based Semantic Service Description Framework

(CbSSDF) is proposed to address not only the semantics of Web services, but

also the SUC. The key features that distinguish CbSSDF from other semantic

service description frameworks are: 1) it addresses the inter-relationships

between services at both the conceptual level and the instance level through

the SUC; 2) it uses non-monotonic rules to describe service pre- and post-

conditions and service composition conditions, which makes the handling of

conflict conditions caused by incomplete information possible. We have also

References

162

applied CbSSDF to describe other software components which have the same

basic characteristics as services, such as SaaS and learning objects.

The primary goal of CbSSDF is to integrate the SUC into service descriptions so that

services and their usage can be easily mapped into business scenarios. The first

benefit of integrating service usage context is that at the conceptual level, it brings the

service description closer to real business scenarios. In other words, it brings the

service description closer to what a service user wants. This leads to our third

contribution [Song et al., 2009] [Du et al., 2007a] [Du et al., 2008a].

 Contribution 3 – The conceptual graph (CG) formalism has been applied to

represent the T-Context of services, i.e. the Service Conceptual Graphs (S-

CGs). S-CGs create a conceptual layer on the top of the technical service

description to bridge the gap between the technical service description and the

high level service requirements and business scenarios. S-CGs also represent

the conceptual relationships between services.

The second benefit of integrating the SUC is to improve the efficiency of the service

discovery and composition. This leads to our forth contribution [Du et al., 2006a] [Du

et al., 2008b].

Contribution 4 – Common Usage Patterns (CUPs) are proposed as a part of

CbSSDF to represent the A -Context of services. A CUP defines an instance

service’s A -Context by describing the way it directly interacts with a given set

of other instance services. The information provided in the CUPs can

significantly improve the efficiency of the service discovery and composition

process.

Another goal of CbSSDF is to handle incomplete information. This leads to our fifth

contribution [Du et al., 2007a].

Contribution 5 – Non-monotonic rules are used to represent the pre-

conditions and effects of services and the service composition conditions. By

using non-monotonic rules, the conclusions drawn from the rules can be

automatically adjusted when new information becomes available or the

environment changes.

References

163

To take the advantages of CbSSDF and give the service users more flexibility in

service discovery, an enhanced service discovery mechanism is proposed. This leads

to our sixth contribution [Du et al., 2007a].

Contribution 6 – A two-step service discovery mechanism is proposed to give

service users much more flexibility to search for their required services. Under

the two-step service discovery mechanism, if a service user is a domain expert

in the required services area, he can directly provide a detailed technical

specification with which to query services, otherwise, natural language based

queries can be used to locate services at the preliminarily stage of the service

discovery process.

On top of our research, development work has also been done to demonstrate the

practicability of CbSSDF. First, we proposed a transformation method to convert

existing service descriptions into CbSSDF based service descriptions [Du et al.,

2008b]; then a prototype – ServiceComp was implemented to demonstrate the features

of CbSSDF and the two-step service discovery mechanism.

8.3 Remaining Problems

Although the project proposed in this thesis has been researched and developed for

three years, some issues still remain that could be solved if more time and

development work were allocated. We summarise the main remaining issues as

follows:

• A descriptive language needs to be created to represent the CbSSDF. At

the moment, the CbSSDF descriptions in the prototype are stored in a database

for demonstration purposes only. However, if CbSSDF is applied in real SOA

applications, a standard descriptive language needs to be created to represent it.

The language must have the ability to represent CGs, ontologies, and non-

monotonic rules. It should also be able to link to WSDL in order to make the

described services invoke-able. An ideal language could be based on XML.

According to current research work, there are XML based languages for

representing CGs, such as CGXML [CGXML, 2008]; there are XML based

languages for representing rules, such as SRML [SRML. 2001] and RuleML

References

164

[RuleML, 2008]; and there are XML based languages for representing

ontologies, such RDFS and OWL. Therefore, we cannot see any difficulties in

creating a compound language to represent CbSSDF.

• Performance needs to be improved by applying faster algorithms. In this

research project all CG matching and query processing algorithms are from

existing resources. The performance of CbSSDF depends heavily on how well

these algorithms are designed and implemented. To improve the performance,

we need to develop new algorithms that best suit CbSSDF based service

discovery and composition. The complexity of CbSSDF also brings an

overhead in terms of performance. In the future, the CbSSDF needs to be

made more concise in order to be more efficient.

• Quality of Service (QoS) needs to be considered in the service description.

In our current work, QoS has not been considered. However, in reality, QoS is

a very important criterion in the service selection process. A service matched

with a user’s requirement does not necessarily mean that the service is the

right service for the user. It is a right service only if it provides the user with

the desired QoS in terms such as the cost, performance, and stability.

8.4 Future Research and Development Directions

Since SOA is described as the new enterprise application development paradigm,

Web services technology is gaining more and more attention by both industry and the

academia. Following our research, we have identified a number of future research

directions in the Semantic Web Services, and service discovery and composition areas.

8.4.1 Service Level Agreement Enhanced Service Registry

A proper service registry is crucial for effective and efficient service discovery and

composition. Currently, service registries are implemented using UDDI, which

provides information such as the service provider’s information, a brief description of

services, and the URLs of each registered service’s WSDL. The idea behind UDDI is

to provide a place that service providers can register their services and service users

can search for their required services. However, UDDI has several problems meeting

its pre-set goals. In addition to its lack of semantic description support for services as

References

165

discussed previously, it has another two major problems. First, it does not have proper

management facilities. Anyone can register their services with UDDI. One can even

register their services with “localhost” as WSDL’s URL. Second, the services

registered in UDDI have no guarantees as to their quality. One of the reasons that

users do not use UDDI to search for services is that they do not trust the service

providers on UDDI. Most of the Web services applications in real life are based on

Service Level Agreement (SLA), which acts as a contract between a service provider

and a service user to guarantee the quality of the provided services.

Ideally, a service registry should be open and supported with a sufficient management

mechanism so that there are facilities for the service providers and the service users to

create their SLA and other relevant agreements.

8.4.2 Business Patterns in SOA

When we talk about the business in an enterprise, we are talking about routines and

processes. Although business is about innovation, the outcomes of the innovation are

generally newer, or re-designed, more efficient routines and processes. Therefore, we

could say that the business is a set of routine based operations and the innovation is a

jump from one set of routines to a better set of routines. Business patterns encapsulate

the best practice solutions for certain business tasks. They are the best practices within

an enterprise or across enterprises. Business patterns help an enterprise to run their

business smoothly and quicken the restructuring process to meet new demands.

Business patterns in SOA are enterprise-focused best practice SOA based solutions.

These patterns include the solutions for business under the SOA infrastructure and the

technologies for these solutions that have accumulated over the years. These patterns

help an enterprise to understand and analyse the complex business problems and

break them down into smaller functions and then modularise them into services for

future reuse. SOA is about agility, i.e. how an enterprise can quickly reconstruct their

business to meet the new demands. If an enterprise can encapsulate their SOA

solutions into patterns, it can make the business even more agile.

Different levels of SOA business patterns should be constructed. At a high level, the

patterns should describe what are the best practices are under the SOA approach. At a

low level, the patterns should give a guideline for how to solve particular technical

References

166

problems, such as application integration, Enterprise Service Bus setup, and resource

sharing. Ideally, the business patterns in SOA should be described in a suitable,

machine understandable language so that they can be processed by computer

programmes if required.

8.4.3 Web service Monitoring

Under the SOA paradigm, most applications are distributed applications. The services

of each business process are most likely remote services and not under the control of

the business process’s owner. If any service within the process fails or performs badly,

the holistic business process will be affected. Therefore, a business process should

have the ability to identify failures and give an appropriate response as quickly as

possible, or even predict failures before they happen. To achieve this, monitoring each

service in the process is necessary.

In an ideal SOA application, a service monitoring system should be able to collect

real-time information about each service and store it in a database. The collected

information would include average failure rate, average response time, throughput,

and cost etc. When required, such information can then be retrieved to provide

suggestions about the current status of the monitored services.

The benefits of the monitoring system are: 1) to identify faulty services quickly -

using the monitoring information, a faulty service in a business process can be quickly

identified and the process owner can modify the process before it delivers the wrong

result to their customers; 2) to prevent failures - because the monitoring system

provides the information for all services in a process, a faulty service can be identified

even before it is executed; 3) to prevent the design of low performance and/or

unreliable business processes - the monitoring system has information about each

service’s status, this means it can produce warning messages for potential failures

during the design phase of a business process. For example, if a service has been

offline or not working properly for a week, and a new business process uses it as a

component, a warning message should be issued regarding potential unreliability of

that service in the future. This allows business process designers to arrange alternative

solutions early in the design phase. This could significantly reduce the failure

recovery cost.

References

167

References

Abbate J. (1999) Inventing the Internet, MIT Press, Cambridge, 1999.

Agarwal, S., Handschuh, S., and Staab, S. (2004) Annotation, composition and

invocation of Semantic Web Services, Journal of Web Semantics 2004 2(1): pp.

31-48

Agosti, M. and Smeaton A. F. (1996) (Edt.) Information Retrieval and Hypertext,

Kluwer Academic Publishers, 1996.

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., & Verma,

K. (2005) Web service Semantics – WSDL-S, A joint UGA-IBM Tchnical Note,

version 1.2, Appril 18, 2005.

Antoniou, G., Billington, D., Governatori, G., and Maher, M. J. (2001)

Representation Results for Defeasible Logic, ACM Transactions on

Computational Logic, Vol. 2, No. 2, April 2001, Pages 255–287

Antoniou, G. and Harmelen, F. (2004) A Semantic Web Primer, the MIT Press, 2004.

Axis (2005), Apache, http://ws.apache.org/axis/java/reference.html

Baader, F., Horrocks, I., and Sattler, U. (2002) Description logics for the semantic

web, KI - Künstliche Intelligenz, 16(4):57-59, 2002.

Baader, F. and Nutt W. (2003) Basic Description Logics, In Baader, F., Calvanese, D.,

McGuinness, D., Nardi, D., and Patel-Schneider, P., editors 2003, The Description

Logic Handbook, Cambridge University Press

Berners-Lee, T. (1991) World Wide Web Seminar,

http://www.w3.org/Talks/General.html

Berners-Lee, T., Hendler, J., and Lassila, O. (2001) The Semantic Web, Scientific

American, May 2001, pp. 34–43.

Berry, M. W., Drmac, Z., and Jessup, E. R. (1999) Matrices, Vector Spaces, and

Information Retrieval, SIAM Review, Vol. 41, No. 2 (Jun., 1999), pp. 335-362.

Bieberstein, N., Bose, S., Fiammante, M., Jones, K., and Shah, R. (2005) Service-

Oriented Architecture Compass: Business Value, Planning, and Enterprise

Roadmap, IBM Press, October 19, 2005.

Binildas C. A. (2008) Service Oriented Java Business Integration: Enterprise Service

Bus integration solutions for Java developers, Packt Publishing, March 2008.

Brachman, R. J. (1979) Structured inheritance network, In Woods, W. A. and

Brachman, R. J. editors, Research in Natural Language Understanding, Annual

Report. Technical Report 4274, Bolt Beranek and Newman, Cambridge, 1979

References

168

Brachman, R. J. and Levesque, H. J. (2004) Knowledge Representation and

Reasoning, Morgan Kaufmann; 1 edition (May 19, 2004).

Brewka, G. (1991). Nonmonotonic Reasoning: Logical Foundations of Commonsense.

Cambridge University Press, 1991.

Brewka, G. (2001) On the Relationship between Defeasible Logic and Well-Founded

Semantics, Proceedings of the 6th International Conference on Logic

Programming and Nonmonotonic Reasoning, Vienna Austria, Sep 2001, LNCS

2173, pp. 121-132.

Brickley, D. and Guha, R.V. (2004) RDF Vocabulary Description Language 1.0: RDF

Schema, W3C 2004, http://www.w3.org/TR/rdf-schema/

Brown, P.J., Bovey, J.D., and Chen, X. (1997) Context-Aware Applications: From the

Laboratory to the Marketplace. IEEE Personal Communications, 4(5) (1997) 58-

64

Bruijn, J., Lara, R., Arroyo, S., Gomez, J. M., Han, S. K. and Fensel D. (2005) A

Unified Semantic Web Services Architecture based on WSMF and UPML,

International Journal of Web Engineering and Technology 2005 - Vol. 2,

No.2/3 pp. 148 – 180.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Nardi, D. (2001) Reasoning in

expressive description logics, In Robinson, Alan and Voronkov, Andrei, editors

2001, Handbook of Automated Reasoning, The MIT Press.

Calvanese, D. and Giacomo, G. (2003) Expressive Description Logics, In Baader, F.,

Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P., editors 2003,

The Description Logic Handbook, Cambridge University Press.

Cardoso, J. and Sheth, A. (2003) Semantic e-Workflow Composition. J. Intelligent

Information Systems 21, pp.191-225, 2003

Cardoso, J. and Sheth, A. (Eds.) (2006) Semantic Web Services, Processes and

Applications, Semantic Web and Beyond Computing for Human Experience Vol.

3 Springer 2006.

CGXML (2008),http://tockit.sourceforge.net/cgxml/index.html

Chandrasekaran, B., Josephson, J. R., and Benjamins, V. R. (1999) What are

Ontologies, and Why do We Need Them? IEEE Intelligent System, 1999, pp.20-

26.

Charfi, A. and Mezini, M., Mezini, (2004) Hybrid Web service Composition Business

Process Meet Business Rules, Proceedings of the 2nd International conference on

Service oriented computing, 2004.

Chein, M. and Mugnier, M. L. (1992) Conceptual Graphs: Fundamental Notions,

Revue d’Intelligence Artificielle, Vol. 6, Issue 4, 1992, pp 365--406.

References

169

Choudhary, V. (2007) Software as a Service: Implications for Investment in Software

Development, in Proc. of the 40th Havaii International Conference on System

Sciences, 2007.

Collins COBUILD English Dictionary (1995), HarperCollins Publishers Ltd 1995.

Coulouris, G., Dollimore, and Kindberg, T. (2001) Distributed Systems Concepts and

Design, 3
rd

 edition, Addison-Wesley published, 2001.

Croitoru, M. and Compatangelo, E. (2006) A tree-decomposition algorithm for

Conceptual Graph projection, In Proc. of the 10th International Conference on

Principles of Knowledge Representation and Reasoning (KR'2006), Lake District

of the United Kingdom, June 2-5, 2006.

DCMI Metadata Terms (2005), Dublin Core Metadata Initiative 2005,

http://dublincore.org/documents/dcmi-terms/

Dey, A. and Abowd, G. (2000) Towards a better understanding of context and

context-awareness, Proceedings of Workshop on the What, Who, Where, When

and How of Context-Awareness, The Hague, Netherlands. April, 2000.

Du, X., Song, W., and Munro, M. (2006a) Using Common Process Patterns for

Semantic Web Services Composition, in Proc. of 15th International Conference on

Information System Development (ISD2006), Budapest, Hungary, Aug. 31 - Sept.

2, 2006.

Du, X., Song, W., and Munro, M. (2006b) Service Composition in the Context of

Grid, in Proc. of UK e-Science Program All Hand Meeting (AHM2006),

Nottingham, UK, Sept. 18-21, 2006.

Du, X., Song, W., and Munro, M. (2006c) Semantics Recognition in Service

Composition Using Conceptual Graph, in the Proc. of International workshop on

Semantics in Virtual Organizations and Web services (SVO&WS), held in

conjunction with the 2006 IEEE/WIC/ACM International Conference on Web

Intelligence (WI-06) , Hong Kong, China, Dec. 18-22, 2006.

Du, X., Song, W., and Munro, M. (2007a) Semantic Service Description Framework

for Addressing Imprecise Service Requirements, in proceedings of the 16
th

International Conference on Information Systems Development, Galway, Ireland,

Sept. 2007.

Du, X., Song, W., and Zhang, M. (2007b) A Context-based Framework and Method

for Learning Object Description and Search, in Proc. of 6th International

Conference on Web-based Learning (ICWL 2007), LNCS Vol. 4823, Springer,

Edinburgh, United Kingdom, Aug. 15-17, 2007.

Du, X., Song, W., and Munro, M. (2008a) An Innovative Approach for Service

Description and Discovery in Context of Software as a Service, accepted by the

1st IEEE International Workshop on Barriers towards Internet-Driven Information

Services (BINDIS2008), held in conjunction with IEEE COMPSAC 2008, Turku,

Finland.

References

170

Du, X., Song, W., and Munro, M. (2008b) A Method for Transforming Existing Web

service Descriptions into an Enhanced Semantic Web service Framework, in Proc.

of 17th International Conference on Information System Development (ISD2008),

Paphos, Cyprus August 25-27, 2008.

Dustdar, S. and Schreiner, W. (2005) A Survey on Web services Composition, Int. J.

Web and Grid Services, Inderscience , Vol. 1, No. 1, pp.1–30.

Ehrig, M. and Sure, Y. (2004) Ontology mapping - an integrated approach, First

European Semantic Web Symposium, pages 76–91, 2004

Erl T. (2005) Service-Oriented Architecture: Concepts, Technology, and Design,

Prentice Hall PTR, August 04, 2005.

Fensel, D. (2001) Ontologies: A Silver Bullet for Knowledge Management and

Electronic Commerce, Springer-Verlag Berlin Heidelberg 2001.

Fensel, D., Lausen H., Polleres A., Bruijn J., Stollberg M. Roman D., and Domingue

J. (2007) Enabling Semantic Web Services: the Web service Modeling Ontology,

Springer.

Fensel, D. and Bussler, C. (2002) The Web service Modeling Framework WSMF,

Electronic Commerce Research and Applications Volume 1, Issue 2, Summer 2002,

Pages 113-137.

Foster I, Kesselman C, and Tuecke S (2001) The Anatomy of the Grid: Enabling

Scalable Virtual Organizations, International J. Supercomputer Applications, 15(3),

2001.

Frakes, W. B. & Baeza-Yates, R. (1992) Information Retrieval: Data Structures &

Algorithms, Prentice Hall, 1992.

Genesereth, M. R. and Nislsson N. J. (1987) Logical Foundations of Artificial

Intelligence, Morgan Kaufmann Publishers, Aug 1987.

Gray, N.A.B. (2004) Comparison of Web services, Java-RMI, and CORBA service,

Fifth Australasian Workshop on Software and System Architectures. In

conjunction with ASWEC 2004, Melbourne, Australia, 2004.

Gruber, T. R. (1995) Toward Principles for the Design of Ontologies Used for

Knowledge Sharing, International Journal of Human and Computer Studies,

43(5/6): 907-928.

Guarino, N. (1998) Formal Ontology and Information Systems, Proceedings of

FOIS’98, Trento, Italy, 1998, Amsterdam, IOS Press, pp. 3-15.

Guha, R., McCool, R., & Fikes, R. (2004) Contexts for the Semantic Web. In

Proceedings of the ISWC’04, Hiroshima, Japan, Nov 2004, Lecture Notes in

Computer Science Vol. 3298, pp. 32 – 46, Springer.

Gunzer H. (2003) Introduction to Web services, Borland Web service White Paper,

March 2003.

References

171

Hage, W. R., Katrenko, S., and Schreiber, G. (2005) A Method to Combine Linguistic

Ontology-Mapping Techniques, ISWC 2005, LNCS 3729, pp. 732–744

Horrocks, I., Patel-Schneider, P. F., and Harmelen, F. (2003) From SHIQ and RDF to

OWL: The making of a web ontology language, J. of Web Semantics, 1(1):7-26,

2003.

Horrocks, I. (2005) Description Logics in Ontology Applications, Presentation at

KI/Tableaux 2005, Koblenz, Germany, September 2005

HTML 4.01 Specification (1999), W3C 1999, http://www.w3.org/TR/html4/

Huhns, M. N. and Singh, M. P. (2005) Service Oriented Computing: key concepts and

principles, IEEE Intelligent System, January-February 2005, pp. 75-81.

Hull, R., Benedikt M., Christophides V., and Su, J. (2003) E-Services: A look behind

the curtain, , in proceedings of the 22
nd

 ACM SIGMOD International Conference

on Management of Data / Principles of Database Systems, June 9-12, 2003, San

Diego, CA.

IBM (2006) IBM Web services Tutorial, IBM, http://www-

128.ibm.com/developerworks/

Joachims., T. (1998) Text categorization with support vector machines: learning with

many relevant features. European Conf. Mach. Learning, ECML98, Apr. 1998.

Josuttis N. M. (2007) SOA in Practice: the Art of Distributed System Design,

O’Reilly, August 2007.

JWSDL (2006), Java Community Process, http://www.jcp.org/en/jsr/detail?id=110

Keidl, M. and Kemper, A. (2004) Towards Context-Aware Adaptable Web services,

WWW2004, May 17–22, 2004, New York, New York, USA.

Klyne, G. and Carroll, J. J. (2004) Resource Description Framework (RDF): Concepts

and Abstract Syntax, W3C 2004, http://www.w3.org/TR/rdf-concepts/

Kreger H. (2001) Web services Conceptual Architecture, IBM software group.

Lara, R., Lausen, H., and Arroy, S., Semantic Web Services: description requirements

and current technologies, In International Workshop on Electronic Commerce,

Agents, and Semantic Web Services, September 2003

Leymann, F. (2001) Web services Flow Language (WSFL 1.0), IBM Software Group

2001.

Linthicum, D. S. (2003) Next Generation Application Integration: From Simple

Information to Web services, Addison Wesley, September 2003

Lu, Z., Ghose, A., Hyland, P., and Guan, Y. (2006) Using Assumptions in Service

Composition Context, in Proc. of the IEEE International Conference on Services

Computing (SCC’06), Sep. 2006, Chicago, USA.

References

172

Lusch, R. F. and Vargo, S. L. (2006) The Service-dominant Logic of Marketing:

Dialog, Debate, And Directions, M.E. Sharpe published, February 28, 2006.

Maamar, Z., AlKhatib, G., and Mostefaoui, S.K. (2005a) Context-based

Personalization of Web services Composition and Provisioning, IEEE 30th

EUROMICRO Conference, Rennes, France, August/September, 2004.

Maamar, Z., Mostefaoui, S. K. and Yahyaoui, H. (2005) Toward an agent-based and

context-oriented approach for Web services composition, IEEE Transactions on

Knowledge and Data Engineering (TKDE), vol. 17, no. 5, pp. 686–697, 2005.

Maamar, Z., Benslimane, D., Thiran, P., Ghedira, C., Dustdar, S., and Sattanathan S.,

(2007) Towards a Context-based Multi-type Policy Approach for Web services

Composition, Data & Knowledge Engineering, 62(2): 327-351 (2007).

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., and Metz R. (2006)

Reference Model for Service Oriented Architecture 1.0, OASIS Committee

Specification 1, 2 August 2006

Manola, F. and Miller, E. (2004) RDF Primer, W3C 2004, http://www.w3.org/TR/rdf-

primer/

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., &

Sycara, K. (2004a) OWL-S: Semantic Mark-up for Web services,

http://www.daml.org/services/owl-s/1.0/owl-s.html

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D.,

Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K. (2004b)

Bringing Semantics to Web services: The OWL-S Approach, Proceedings of the

First International Workshop on Semantic Web Services and Web Process

Composition (SWSWPC 2004), July 6-9, 2004, USA.

McGuinness D. L. and van Harmelen, F. (2004) OWL Web Ontology Language

Overview, W3C 2004, http://www.w3.org/TR/owl-features/

McIlraith S, Son TC, and Zeng H (2001) Semantic Web Services, IEEE Intelligent

System Special Issue Semantic Web 16(2):46–53.

Medjahed, B. and Atif, Y. (2007) Context-based matching for Web service

composition, Distributed and Parallel Databases, Volume 21, Number 1, February

2007, pp. 5-37(33).

Mike Uschold, Michael Grüninger (1996) Ontologies: Principles, Methods, and

Applications, Knowledge Engineering Review, Vol. 11, No. 2. (1996), pp. 93-155.

Mineau, G. and Gerbe, O. (1997) Contexts: A formal definition of worlds of assertion.

In D. Lukose et.al., editor, Conceptual Structures: Fulfilling Peirce’s Dream,

number 1257 in Lecture Notes in Artificial Intelligence, pages 80–94. Springer-

Verlag, 1997.

References

173

Montes-y-Gómez, M., Gelbukh, A., López-López, A., & Baeza-Yates, R. (2001)

Flexible Comparison of Conceptual Graphs, Proceeding of 12th International

Conference and Workshop on Database and Expert Systems Applications. LNCS

2113, Springer, 2001, pp. 102-111.

Mugnier M. (2000) Knowledge Representation and Reasonings Based on Graph

Homomorphisms, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS'2000, G.

Mineau and B. Ganter, Eds., Lecture Notes in Arti cial Intelligence, 1867, 2000,

pp. 172-192.

Mugnier, M. and Chein, M. (1992) Polynomial Algorithms for Projection and

Matching, Proceedings of the 7th Annual Workshop on Conceptual Graphs

(AWCG'92), New Mexico State University, Las Cruces, New Mexico, USA ,

juillet 1992,pp. 49-58.

Nagarajan, M. (2006) Semantic Annotations in Web services, Cardoso, J. and Sheth,

A. (Eds.) Semantic Web Services, Processes and Applications, Semantic Web and

Beyond Computing for Human Experience Vol. 3, Chapter 2, Springer 2006.

Nardi, D. and Brachman, R. J. (2003) An Introduction to Description Logics, In

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P.,

editors 2003, The Description Logic Handbook, Cambridge University Press

Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F.

(2003) SHOP2: An HTN Planning System, Journal of Artificial Intelligence

Research 20 (2003) pp. 379-404

Newcomer E. and Lomow G. (2004) Understanding SOA with Web services, Addison

Wesley Professional, December 14, 20.

Nute, D. (1994) Defeasible Logic, in Handbook of logic in artificial intelligence and

logic programming (vol. 3): Non-monotonic Reasoning and Uncertain Reasoning,

Oxford University Press.

Orriens, B., Yang, Orriens, J., Yang, and Papazoglou, M.P. Papazoglou. (2003) A

Framework for Business Rule Driven Web service Composition, Proceedings of

the 4th International Workshop on Conceptual Modeling Approaches for e-

Business Dealing with Business Volatility, 2003.

OWL-S API (2008) Mindswap Project, http://www.mindswap.org/2004/owl-s/api/

OWL-S Editor (2008) http://owlseditor.semwebcentral.org/related.shtml

OWL-S Upper-ontology (2006), http://www.daml.org/services/owl-s/1.0/Service.owl,

http://www.daml.org/services/owl-s/1.0/Profile.owl,

http://www.daml.org/services/owl-s/1.0/Process.owl,

http://www.daml.org/services/owl-s/1.0/Grounding.owl

References

174

Paolucci, M., Kawamura, T., Payne, T., & Sycara, K. (2002) Semantic Matching of

Web services Capabilities, in proceeding of 1st International Semantic Web

Conference (ISWC2002), LNCS 2342, pp. 333-347, Springer, 2002.

Paolucci, M., Srinivasan, N., and Sycara K. (2004) Expressing WSMO mediators in

OWL-S, In Semantic Web Services Workshop at ISWC 2004, 2004

Paolucci, M., Sycara, K., and Kawamura, T. (2003) Delivering Semantic Web

Services, in Proc. of WWW 2003, May 20-24, 2003, Budapest, Hungary.

Peer, J. (2005) Web service Composition as AI Planning - a Survey, University of

St.Gallen, Switzerland, 2005.

Peirce, C. S. (1936-58) 1936-58 Collected Papers of C. S. Peirce, v. 1-6 ed. Charles

Hart-shorne and Paul Weiss, v. 7-8 ed. Arthur Burks, Cam-bridge: Harvard.

Pinto, H. S., Gomez-Perez, A., and Martins, J. P. (1999) Some issues on ontology

integration, Proceedings of the Workshop on Ontologies and Problem Solving

Methods during IJCAI, 1999, Stockholm, Sweden.

Pinto, H. S. and Martins, J. P (2001) A methodology for ontology integration,

Proceedings of the international conference on Knowledge capture, K-CAP, ACM

Press, 2001.

Rao, J. and Su, X. (2004) A survey of automated Web service composition methods,

In Proceedings of the First International Workshop on Semantic Web Services and

Web Process Composition, SWSWPC 2004 Springer-Verlag, USA

Rock, A. (2000) Deimos: Query answering defeasible logic system.

http://www.cit.gu.edu.au/~arock/defeasible/Defeasible.cgi

Roman, D., Keller, U., Lausen, H., Bruijn, J., and Lara, R. (2005) Web service

Modeling Ontology, J. Applied Ontology, vol. 1, no. 1, 2005, pp. 77–106.

RuleML (2008), http://www.ruleml.org/

Ryan, N., Pascoe, J., and Morse, D. (1997) Enhanced Reality Fieldwork: the Context-

Aware Archaeological Assistant. Gaffney,V., van Leusen, M., Exxon, S. (eds.)

Computer Applications in Archaeology, 1997.

SAAJ 1.3 (2008), https://saaj.dev.java.net/

Sayah, J. Y. and Zhang, L. (2005) On-demand business collaboration enablement with

Web services, Decision Support Systems 40 (2005) pp.107– 127, Elsevier B.V.

2005

Sheth A. and Miller J. A. (2003) Web services: Technical Evolution yet Practical

Revolution? IEEE Intelligent Systems, January/February 2003, p78-p79

Sirin, E., Parsia, B., Wu, D., Hendler, J., and Nau, D. (2004) HTN Planning for Web

service Composition Using SHOP2, Web Semantics Journal, Volume 1, Issue 4,

pp. 377-396 October 2004.

References

175

Smith, M. K., Welty, C., and McGuinness, D. L., (2004) OWL Web Ontology

Language Guide, W3C 2004, http://www.w3.org/TR/owl-guide/

SOAP (2007), SOAP 1.2 Specification, http://www.w3.org/TR/soap12-part1/

Song, W. and Li, X. (2005) A Conceptual Model for Virtual Organizations in the Grid,

in the proceedings of the fourth international conference on Grid and Cooperative

Computing (GCC05), Beijing, China, Nov. 2005. Zhuge, H., Fox, G.C. (Eds.),

Lecture Notes in Computer Science Vol. 3795, Springer-Verlag.

Song, W., Du, X., and Munro, M. (2009) A Concept Graph Approach to Semantic

Similarity Computation Method for e-Service Discovery, to appear in

International Journal of Knowledge Engineering and Data Mining, Inderscience

publishers.

Southey F. and Linders J. G. (1999) NOTIO - a Java API for developing CG tools,

Lecture Notes in Computer Science, Volume 1640/1999, pp. 262-271.

Sowa, J. F. (1984) Conceptual Structures: Information Processing in Mind and

Machine, Addison-Wesley, Canada.

Sowa, J. F. (1987) Semantic Networks, Encyclopedia of Artificial Intelligence. Ed.

Stuart C Shapiro.

Srinivasan, N., Paolucci, M., and Sycara, K. (2006) Semantic Web service Discovery

in the OWL-S IDE, Proceedings of the 39th Annual Hawaii International

Conference on System Sciences, Hawaii, 2006.

Srivastava, B., and Koe J. (2003) Web service Composition – Current Solutions and

Open Problems, in proc. of 13th International Conference on Automated Planning

& Scheduling, June 9-13, 2003, Trento, Italy.

SRML (2001), May 17, 2001, http://xml.coverpages.org/srml.html

Strang, C. J. (2005) Next generation systems architecture — the Matrix, BT

Technology Journal, Vol 23 No 1, January 2005.

Sun Microsystems Inc. (2009) Signed Java Applet, Sun Developer Network,

http://java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html

Thatte, S. (2001) Web services for Business Process Design (XLANG), Microsoft

Corporation 2001

Tous, R. and Delgado, J. (2006) A Vector Space Model for Semantic Similarity

Calculation and OWL Ontology, DEXA 2006, LNCS 4080, pp. 307–316, 2006.

Tidwell, D. (2006) IBM Web services Tutorial, IBM, http://www-

128.ibm.com/developerworks/

UDDI (2004), UDDI Version 3.0.2 Specification,

http://www.uddi.org/pubs/uddi_v3.htm

References

176

UDDI.org (2006) The Evolution of UDDI, The Stencil Group, Inc.

Uschold, M., and Grüninger, M. (1996) Ontologies: principles, methods and

applications, Knowledge Engineering Review, 1996, Volume 11, No. 2, pp. 93-

155.

Van Rijsbergen, C. J. (1979) Information Retrieval, 2nd ed. London: Butterworths,

1979.

Wohed, P., Aalst, W.M.P. van der, Dumas, M., and Hofstede, A. H. M. (2003)

Analysis of Web service Composition Languages: The Case of BPEL4WS, LNCS

2813, pp. 200-215, 2003

WS-BPEL (2007) Web services Business Process Execution Language Version 2.0,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

WSCI (2002) Web service Choreography Interface (WSCI) 1.0,

http://www.w3.org/TR/wsci/

WSCL (2002) Web services Conversation Language (WSCL) 1.0,

http://www.w3.org/TR/wscl10/

WSDL (2007), Web services Description Language Version 2.0 Specification,

http://www.w3.org/TR/wsdl20/

Webservice.org, (2006) Web service Definition, http://www.webservices.org/

W3C, Web services Architecture, 2004, http://www.w3.org/TR/ws-arch/

Wu, D., Parsia, B., Sirin, E., Hendler, J., and Nau, D. (2003) Automating daml-s Web

services composition using shop2. In 2
nd

 International Semantic Web Conference

(ISWC2003), 2003

Wu, Z. and Palmer, M. (1994) Verb Semantics and Lexical Selection, Proc. of the

32nd Annual Meeting of the Associations for Computational Linguistics, 1994.

Xu, B., Wang, Y., Zhang, P., and Li, J. (2005) Web services Searching Based on

Domain Ontology, in proceedings of the 2005 IEEE International Workshop on

Service-Oriented System Engineering (SOSE’05).

Yang, Q. (1997) Intelligent Planning: A Decomposition and Abstraction Based

Approach, Springer Verlag, Berlin, Germany, 1997.

Zhang, J., Zhang, S., Cao, J., and Mou Y. (2004) Improved HTN planning approach

for service composition, in Proceeding of IEEE International Conference on

Services Computing, 15-18 Sept, 2004

Zhou, T., Zheng, X., Song, W., Du, X., and Chen, D. (2008) Policy-based Web

service Selection in Context Sensitive Environment, accepted by IEEE

International Conference on Services Computing (SCC 2008) July 8-11, 2008,

Honolulu, Hawaii, USA.

References

177

