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Abstract

This thesis outlines methods for generating new integrable defects in affine

Toda field theory. These methods are grounded in the hypothesis that defects

have a particle-like classification with as many species of fundamental defect

existing in a particular affine Toda theory as there are species of soliton. The

methods employed are:

1. Defect fusing rules, linking different species of defect in the same theory.

Defect fusing rules are used in this thesis to find transmission matrices

for a new, species 2, defect in a
(1)
3 .

2. Folding, linking defects in simply laced theories to defects in non-simply

laced theories. Folding is used in this thesis to find defects in the c
(1)
n ,

d
(2)
n and a

(2)
2n affine Toda field theories.
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1

Overview

This chapter gives an overview of the aims and content of the thesis.

The main aim of this thesis is to further the understanding of defects in affine

Toda field theory (ATFT), expanding on the ideas presented in [Rob14a] and

[Rob14b]. Previous consideration of defects in ATFT has been ad hoc in na-

ture and what this thesis attempts to do is make steps towards systematising

the study of defects in ATFT by means of defect fusing rules and the folding

of defect ATFTs. This necessitates the identification of already known defects

[BCZ04b] as fundamental defects of definite species.

The original research is concentrated in chapters 5, 6 and 7. Chapters 2, 3

and 4 are based on the work of others and are intended to provide the neces-

sary background for chapters 5, 6 and 7. The material in chapters 2, 3 and

4 should therefore not be considered original, although some results such a

the folded multisolitons of section 3.1.2.1 and the species r defect transmission

matrices (4.41) and (4.42) (for r > 2) do not appear in the literature of other

authors. Chapter 4 builds on chapter 3, which in turn builds on chapter 2.

Chapter 2 introduces affine Toda field theory (ATFT) at the Lagrangian level

and explains how the Lagrangians relate to the Lie algebra root spaces. The

folding of the a
(1)
r series of ATFTs is then outlined.

Chapter 3 explains solitons in ATFT, particularly in the a
(1)
r theories. The

chapter begins by introducing solitons in classical ATFT using the Hirota tau

function approach originally used by Hollowood [Hol92]. The multisolitons

1



2 1 Overview

and fusing rules of the a
(1)
r solitons are then considered, before the folding of

a
(1)
r solitons is addressed. Quantum a

(1)
r solitons and their scattering is then

explained along with the the soliton fusing rules at the quantum level.

Chapter 4 extends the analysis to ATFT with defects. Defects are introduced

at the Lagrangian level before the classical transmission of solitons is explained;

multiple defect systems are then outlined. Defects are then considered in the

quantum theory in terms of the T -matrix, which describes the transmission of

solitons through defects.

Chapter 5 explains the fusing rules of defects at the classical level. The

a
(1)
2 ATFT is considered first in some detail followed by more general consid-

erations. The main quantity of interest in this chapter is the classical delay

factor a soliton receives when transmitted through a defect.

Chapter 6 is concerned with the construction of defects that do not spoil clas-

sical integrability when the theory is folded. Again a
(1)
2 is used as a motivating

case before defects in general a
(1)
r , that can be folded, are considered. The soli-

ton delay factors are used in tandem with momentum conservation to support

the belief that the defects remain classically integrable after folding.

Chapter 7 considers the idea of defect fusing at the quantum level. How

defect fusing fits into the Faddeev–Zamolodchikov algebra is explained and

a
(1)
2 is again considered explicitly. The fusing rules are then applied in finding

transmission matrices for the species 2 defect of a
(1)
3 before an attempt is made

to apply the defect fusing rules to a
(1)
5 .

Chapter 8 summarises the findings of the thesis and considers various pos-

sible extensions of this work.

Appendix A considers a many-defect system in a1, and is not an integral part

of this work.

The ordering of the research chapters 5, 6 and 7 separates the presentation

of the classical (chapter 5) and quantum (chapter 7) defect fusing rules, with

the folding of defect ATFTs in between. This has been done because the anal-

ysis of chapter 5 provides an approach to chapter 6 and because chapters 5 and



3

6 are both classical and use similar methodology. These chapters are roughly

in order of increasing sophistication.





2

Affine Toda field theory

Affine Toda field theory (hereafter often abbreviated to ATFT) is a class of rel-

ativistic integrable field theory living in 1+1 dimensions. The study of ATFT

has a long history [AFZ79, MOP81, Wil81, OT83a, OT83b, DS84] and has gone

through many stages of development such as the construction of S-matrices

[BCDS89, BCDS90] and fusing rules [Dor92] in the real coupling theory; the

discovery of solitons [Hol92] and soliton S-matrices [Hol93a]; the construction

of integrable boundary conditions [GZ94, BCDR95]; and the discovery of in-

tegrable defects [KL99, BCZ04a, BCZ04b]. This thesis aims only to cover the

background relevant to the research contained within, so little is said about

many of these developments. Detailed reviews of many of the pre-defect de-

velopments can be found in previous theses such as [Dor90, McG94b, Hal94,

Isk95, Har96, Per99].

2.1 Definition

A 1+1 dimensional affine Toda field theory can be associated to each affine

Dynkin diagram [OT83b]. ATFT may be thought of as a generalisation of sine-

Gordon theory, with sine-Gordon theory associated to the a
(1)
1 (often referred to

as a1) root data. The Lagrange density (usually referred to as the ‘Lagrangian’)

describing the theory is given by [BCDS89]

L = 1
2
u̇ · u̇− 1

2
u′ · u′ − U(u) (2.1)

5



6 2 ATFT

with potential

U(u) =
m2

β2

r∑
j=0

nj
(
eβαj ·u − 1

)
. (2.2)

Equations (2.1) with (2.2) describe an affine Toda field u living in the root

space of the underlying Lie algebra (for an introduction to root and weight

spaces see [Cah06]), where the root space is of rank r. The positive simple

roots are {αi} for i = 1, . . . , r and the marks {ni} are a characteristic of the

underlying algebra. The additional root α0 is the lowest root in the root space

and is given by α0 = −
∑r

j=1 njαj, with the convention that n0 = 1. The

parameter m in (2.2) sets a mass scale; while β is the coupling constant.

The equation of motion comes from applying the Euler–Lagrange equation

to the Lagrangian giving

ü− u′′ = −Uu = −m
2

β

r∑
j=0

njαje
βαj ·u . (2.3)

In (2.3), Uu denotes the gradient of the potential U with respect to the argu-

ment u - similar notation is used later when considering defects. The equation

of motion (2.3) will, in the context of defects, be referred to as the ‘bulk’ equa-

tion of motion.

The energy and momentum associated to the field u is found using the stress

tensor T µν = δL
δ(∂µu)

∂νu − ηµνL, where η00 = 1, η01 = η10 = 0 and η11 = −1.

The energy is given by the integral of T 00, so

E =

∫ ∞
−∞

T 00 dx =

∫ ∞
−∞

1
2
u̇ · u̇+ 1

2
u′ · u′ + U(u) dx (2.4)

while the momentum is given by the integral of T 01, so

P =

∫ ∞
−∞

T 01 dx =

∫ ∞
−∞

u̇ · u′ dx . (2.5)

When the coupling β is real it can be seen in the potential (2.2) that there
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is only one vacuum, where u is the zero vector in root space, when u is re-

stricted to be real. Real coupling ATFT thus leads to particles which are

excitations from the vacuum, referred to here as the fundamental excitations.

The masses of the fundamental excitations can be read off from the quadratic

part of the expansion of the potential (2.2), and form the components the

right Perron–Frobenius eigenvector of the (non-affine) Cartan matrix in ques-

tion [BCDS90, Fre91]. Since the Lorentz group in 1+1 dimensions consists only

of boosts, the particle energy depends only upon the mass and the rapidity of

the particle. The real coupling ATFT is well understood, with exact scattering

matrices known for all instances of root data [BCDS90, Kha97], but is not the

case of relevance to this thesis.

When the coupling is imaginary the potential (2.2) no longer possesses just

one vacuum, but has many real vacua when u = 2π
|β|λ where λ is any weight

of the algebra, satisfying λ · αi ∈ Z for all i = 0, 1, . . . , r. There exists in this

case the possibility of the field u taking a different vacuum value at x = −∞
to the one at x = ∞, suggesting the existence of soliton solutions. There are

indeed soliton solutions [Hol92]. Solitons in ATFT are the topic of chapter 3.

2.1.1 a
(1)
r affine Toda theory

All of the work in this thesis centres around the a
(1)
r series of affine Toda field

theories. These form the simplest and best understood series of ATFTs, partic-

ularly as they possess the simplest integrable defects, as discussed in chapter 4.

The a
(1)
r affine Toda field theory has all of its marks equal to unity, ni = 1

for i = 0, 1, . . . , n, and all roots of the same length (i.e., it is ‘simply laced’),

conventionally taken to be |αi| =
√

2 (conventions often differ for a1, i.e., sine-

Gordon theory). The inner products of the roots are given by the (affine)

Cartan matrix, which for a
(1)
r is given by

Cij =
2αi · αj
αj · αj

= αi · αj =


2 if i = j

−1 if i = j ± 1

0 otherwise

where the roots are labelled modulo h = r+1, where h is the Coxeter number of

the ar Lie algebra. It is clear that the Cartan matrix for a
(1)
r may be re-written

as αi ·αj = 2δij−δi(j+1)−δi(j−1) with the indices identified modulo the Coxeter
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e e e e e e ee e e e e
�
�

Z
Z�

�

Z
Z

a
(1)
r

Figure 2.1: The Dynkin diagram of a
(1)
11 .

number. The information contained in the Cartan matrix is equivalent to the

(Kac–)Dynkin diagram of the theory. Figure 2.1 shows the Dynkin diagram

for a
(1)
11 . The white nodes denote the roots of length

√
2 while the single lines

between nodes denote an inner product of −1 between the corresponding roots.

Every a
(1)
r , apart from a1, has as its Dynkin diagram a similar picture to figure

2.1 consisting of a loop of r + 1 nodes.

The fundamental highest weights, {λi}, are defined by

λi · αj = δij , i, j = 1, . . . , r

with λ0 = 0. The fundamental highest weights therefore form a dual basis to

{α1, . . . , αr}. Note then the relation

αi = 2λi − λi−1 − λi+1 .

The field u in a
(1)
r has r components and a convenient basis is needed in later

calculations. A convenient non-orthogonal, but useful, basis is given by using

the positive simple roots as basis vectors - this basis naturally appears in

considering the Hirota tau functions of a
(1)
r solitons [Hol92]. So u is given by

u = u1α1 + u2α2 + . . .+ urαr

with u0 = 0. Note then that ui = λi · u.

2.2 Folding a
(1)
r affine Toda field theory

Many of the semi-simple Lie algebras have discrete reflection symmetries in

their root space. The projection of the the roots onto the invariant subspace

under such a symmetry is called folding or reduction. This can be seen at the

level of the Dynkin diagrams, e.g., figure 2.2.
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For an ATFT, folding means ensuring that the field u lies in the invariant

subspace of the discrete folding symmetry. Folding is a tool that allows the

properties of non-simply laced theories (i.e., where not all of the roots have the

same length) to be deduced using the properties of a larger ranked (usually

simply laced) theory which may be easier to work with. All of the simply laced

ATFTs, with the exception of a1 and e8, can be folded to get a non-simply

laced ATFT [OT83a, BCDS90, KS96b] and some of the non-simply laced the-

ories can be folded still further. The only ATFTs dealt with in this thesis are

the a
(1)
r theories and their descendants through folding. All of the foldings of

a
(1)
r used here are similar in that they all come from making pairwise identifica-

tions on the roots of a
(1)
r , hence may be referred to as ‘bivalent’ foldings. There

exist further foldings in a
(1)
r [Sas92, KS96b], but these all have redundancies for

the purpose of constructing defects.

2.2.1 Canonical folding

The canonical folding of a
(1)
r refers to the folding process outlined in [OT83a].

When r is odd (or equivalently, h is even) a
(1)
r may be folded to a member of

the c series of ATFTs. Folding at the level of the algebra is illustrated by figure

2.2. In figure 2.2 the black nodes represent roots of unit length while the white

nodes of c
(1)
n represent α′0 and α′n which have length

√
2. The information in

the c
(1)
n Dynkin diagram is equivalent to the c

(1)
n Cartan matrix. The roots of

c
(1)
n , {α′i}, are given by the identification on the roots of a

(1)
2n−1, {αi} via

α′i =
αi + αh−i

2
(2.6)

where h = 2n is the Coxeter number of a2n−1. Note then that there are two

self-identified roots, α′0 = α0 and α′n = αn. The marks of c
(1)
n are n0 = nn = 1,

ni = 2 for i = 1, . . . , n−1.

The aim is to fold the a
(1)
2n−1 ATFT such that the Lagrangian (2.1) and po-

tential (2.2) describing an a
(1)
2n−1 field u =

∑2n−1
j=1 ujαj reduces to a Lagrangian

describing a c
(1)
n field φ =

∑n
j=1 φjα

′
j. For the folding to make sense and (2.6)

to hold it follows that the component of u proportional to αi is the same as
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e e e e e e ee e e e e
�
�

Z
Z�

�

Z
Z

a
(1)
2n−1

-

6

? e u u u u u ec
(1)
n

Figure 2.2: a
(1)
2n−1 → c

(1)
n .

the component of u proportional to αh−i, so

ui = uh−i =
φi
2

for i = 1, . . . , n−1

un = φn .

With the above identifications one can easily show that the Lagrangian (2.1)

and potential (2.2) describe a c
(1)
n field.

2.2.2 Non-canonical folding

The non-canonical folding of a
(1)
r and the other affine Dynkin diagrams was

described by Khastgir and Sasaki [Sas92, KS96b] but they did not develop it

further, even where it might have been appropriate [Kha97]. Two series of non-

simply laced folded theory arise from these considerations: d
(2)
n and a

(2)
2n. These

series can be obtained by the canonical foldings d
(1)
n+1 → d

(2)
n and d

(1)
2n+2 → a

(2)
2n,

but this is not useful in finding new defects as no d
(1)
s defects are known. The

non-canonical folding processes of use are

• a
(1)
2n−1 → d

(2)
n : This folding is non-canonical in the sense of [KS96b]. It is

illustrated by figure 2.3 where the black-in-white nodes represent roots

of length 1√
2

1. The root space identification required is

α′i =
αi + αh+1−i

2

where h = 2n and α0 is chosen to be the lower-left root in figure 2.3.

1 The conventional normalisation for d
(2)
n can be achieved by rescaling the roots α′i →

√
2α′i.

The affine Toda potential obtained from this folding is also non-standard, being twice the
conventional potential - this factor of two can be removed in the action by an isotropic
space-time rescaling: x→ x√

2
, t→ t√

2
.
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e e e e e e
e e e e e ea

(1)
2n−1

-

6

? er u u u u red
(2)
n

Figure 2.3: a
(1)
2n−1 → d

(2)
n .

e e e e e e e
e e e e e e

�
�

Z
Z

a
(1)
2n

-

6

? e u u u u u rea
(2)
2n

Figure 2.4: a
(1)
2n → a

(2)
2n.

The a
(1)
2n−1 affine Toda field is folded to the d

(2)
n affine Toda field by setting

ui+1 = uh−i =
φi
2

for i = 1, . . . , n− 1

u1 = 0 .

• a
(1)
2n → a

(2)
2n: This case is illustrated by figure 2.4, with the root space

identification

α′i =
αi + αh−i

2

where the Coxeter number is now h = 2n+ 1.

The a
(1)
2n → a

(2)
2n folding is now achieved by setting

ui = uh−i =
φi
2

for i = 1, . . . , n .

Examples of each class of folding are given in chapter 6 where defects are

constructed for the folded theories.

2.2.3 Folding a priori and a posteriori

There is an issue in folding ATFT which has seen little attention, possibly

because it presents no problems in the regular ATFT without defects. There

are two ways in which the folding can be achieved. The identifications of sec-

tions 2.2.1 and 2.2.2 can be applied at the Lagrangian level before taking the
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equation of motion - what may be referred to as a priori (i.e., prior to taking

equations of motion) folding. The other way to fold is to take the equation of

motion (2.3) before making the identifications - what may be referred to as a

posteriori (i.e., after taking equation of motion) folding.

The major difference between the two kinds of folding is the number of equa-

tions obtained when the equation of motion (2.3) is considered in component

form. Consider for concreteness the folding a
(1)
3 → c

(1)
2 . A priori folding gives

two equations for the components of φ, the c
(1)
2 field; while a posteriori folding

gives three equations for u components, which become three equations for φ

components. It turns out that the extra equation is a duplicate of one of the

other equations, so both methods of folding are equivalent. This extends to

every ATFT. However, in the presence of defects the equivalence of a priori

and a posteriori folding is much less clear cut - this issue is addressed briefly

in chapter 4.

2.3 Integrability

The first sentence of this chapter states that affine Toda field theory is a class

of integrable field theory. Integrable field theories are exactly solvable (in prin-

ciple, at least). At the classical level the integrability of the theory manifests

itself in the existence of infinitely many conserved charges in involution. For

any given root data these charges can be generated using a Lax pair approach.

The Lax pair approach can be extended to include ATFT with boundaries

[BCDR95] and ATFT defects [BCZ04b]. The existence of solitons which pre-

serve their form after collisions is another indication of classical integrability.

At the quantum level the exact solvability of the theory is articulated by the

existence of exact scattering matrices (S-matrices) and transmission matrices

(T -matrices). These matrices describe the evolution of the system from time

t = −∞ through to time t =∞.
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Solitons

in affine Toda field theory

This chapter introduces solitons in ATFT. More general introductions to soli-

tons can be found in the books [DJ89] and [MS04]. As is noted in chapter 2,

the potential (2.2) for ATFT has multiple real vacua when the coupling con-

stant β is imaginary2. One can assume that β is imaginary in what follows.

This chapter splits broadly into two parts: the classical picture of ATFT soli-

tons; and the quantum picture. The analysis of the classical picture is used in

chapters 5 and 6 while the quantum approach is necessary for chapter 7.

3.1 Classical picture

There exist a number of ways to construct the solitons of affine Toda the-

ory. Hollowood was first to construct explicit solutions in a
(1)
r and d

(1)
4 [Hol92],

where he used a Hirota tau function [Hir80] approach. This work was extended

by MacKay and McGhee to obtain tau functions for the single solitons in all

of the other ATFTs [MM93, McG94b]. Further developments with the tau

function method are found in [McG94a, ZC95, HIM95]. General construction

of solitons can also be made using the algebraic methods of Olive, Turok and

Underwood [OTU93a, OTU93b]; while for a
(1)
r one can construct solitons via

Bäcklund transformation [LOT93] or inverse scattering [BJ97, BJ98] methods.

2 All of the soliton charges are real [Fre95] but the value of the soliton field u is not every-
where real.

13
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The approach taken in this thesis, classically, is the tau function approach.

For a general ATFT the soliton solutions may be written in the form [MM93]

u = − 1

β

r∑
j=0

ηjαj ln τj (3.1)

where ηj = 2
αj ·αj with no sum implied and the ATFT corresponds to an affine

Dynkin diagram with r + 1 nodes. The existence of r + 1 tau functions for an

r component field u can be explained using the conformal affine Toda models

[CFGZ93]. The components of u in the basis discussed in section 2.1.1 are

then

ui = − 1

β
ln

(
τ ηii
τ η0 ni0

)
. (3.2)

Substituting the ansatz (3.1) into the affine Toda Lagrangian (2.1) and po-

tential (2.2) one can see that the tau functions {τi} have no dependence on

the coupling β. The tau functions depend upon which soliton or multisoliton

solution is being considered which of course depends on the theory under con-

sideration. In order to find the tau functions (3.1) is used in the equation of

motion (2.3) along with a decoupling [Hol92]. In general the equation to be

solved is

ηi
(
τ̈iτi − τ̇ 2

i − τ ′′i τi + τ ′2i
)
−m2ni

(
r∏
j=0

τ
−ηjαj ·αi
j − 1

)
τ 2
i = 0 .

Note that the kinetic terms are always in Hirota bilinear form τ̈iτi− τ̇ 2
i −τ ′′i τi+

τ ′2i = 1
2

(D2
t −D2

x) τi · τi, where the Hirota derivatives are defined by [MM93]

Dm
x D

n
t f · g =

(
∂
∂x
− ∂

∂x′

)m ( ∂
∂t
− ∂

∂t′

)n
f(x, t)g(x′, t′)|x=x′,t=t′ ; but the potential

is only in true bilinear form for a
(1)
r . This sets a

(1)
r apart as it is therefore much

easier to write down the multisoliton solutions in that case.

The approach to solving for the tau functions is to take an ansatz such as

τj = 1 + δ
(1)
j E + δ

(2)
j E2 + . . .+ δ

(N)
j ENj
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where each δ
(k)
j is taken to be an arbitrary constant while E for a single soliton

solution is given by E = eax−bt+c, where a, b and c are arbitrary constants

with b
a

= tanh θ, where θ is the soliton rapidity. The tau functions can then

be solved order by order in E. The smallest value of Nj for which the series

terminates describes the single solitons, and it is only for a
(1)
r that solitons can

be found that are linear in E for all values of j.

3.1.1 Solitons in a
(1)
r

For the case of a
(1)
r the marks are all equal to unity, ni = 1 for all i, while the

theory is simply laced, so ηi = 1 for all i. Thus, (3.1) reduces to

u = − 1

β

r∑
j=0

αj ln τj

while the equation the tau functions must obey simplifies greatly to

τ̈iτi − τ̇ 2
i − τ ′′i τi + τ ′2i = m2

(
τi−1τi+1 − τ 2

i

)
. (3.3)

There are r species of single soliton (fundamental soliton) in a
(1)
r , and as such

the solitons can be associated to the nodes on the a
(1)
r Dynkin diagram, with

the zero solution (which may be thought of as a species 0 soliton) associated

to the α0 node3. The tau functions of the one-soliton solution, of species p, in

a
(1)
r are of the form

τj = 1 + ωpjEp . (3.4)

In (3.4), ω = e
2πi
h and p ∈ {1, . . . , r} (note that p = 0 denotes the trivial

solution), so ωp encompasses the (r+1)-th roots of unity (h = r + 1). The

spacetime dependence of the soliton is found in

Ep = eapx−bpt+cp . (3.5)

In (3.5), cp is constant. The imaginary part of cp determines the topological

3 Note that there is just one species of sine-Gordon soliton, the antisoliton is another soliton
(of the same species) having opposite topological charge.
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charge of the soliton under consideration - there are up to h sectors of differing

topological charge [McG94a], as is discussed in section 3.1.1.2. The real part

of cp fixes the position of centre of mass of the soliton at time t = 0 and may be

chosen arbitrarily. The other quantities in (3.5) are given by ap = mp cosh θ and

bp = mp sinh θ where θ is the soliton rapidity - it is clear then that Re(θ) > 0

for a right-moving soliton. The quantity mp is given by

mp = 2m sin
(πp
h

)
. (3.6)

The quantity mp is proportional to the mass of the soliton. It can be seen that

m2
p is m2 times the p-th eigenvalue of the a

(1)
r Cartan matrix. Most values of

mp appear twice, with only m0 = 0 and, when r = 2n − 1, mn = 2m being

non-degenerate4. Note that the species n soliton of a
(1)
2n−1 is an embedded

sine-Gordon soliton classically as can be seen by reducing the system to a1,

but in the quantum theory the species n soliton has many possibilities for its

topological charge so does not correspond to the quantum sine-Gordon soliton.

3.1.1.1 Energy and momentum of single solitons

The energy and momentum of the solitons can be found using a construction

originating in [OTU93a] and applied in a similar way to here in [HIM95],

involving the observation that for solitons, in any ATFT, the stress tensor

may be written in the form

T µν =
(
ηµν∂2 − ∂µ∂ν

)
C

such that

T 00 = −C ′′ T 11 = −C̈ T 01 = T 10 = +Ċ ′ .

In particular this means that

∂2C = T 00 − T 11 = 2U =
2m2

β2

r∑
j=0

nj
(
eβαj ·u − 1

)

4 It should be noted that there is no zero-mass soliton in the theory: p = 0 refers to the
trivial solution (hence m0 = 0) and m0 is included with the soliton masses as the trivial
solution is connected to soliton solutions via the soliton fusing rules.
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which gives, up to a constant, the solution

C =
2

β2

r∑
j=0

ηj ln τj .

Having C is useful as it allows the energy and momentum to be calculated

easily. That is

E =

∫ ∞
−∞

T 00dx = − [C ′]
∞
x=−∞

P =

∫ ∞
−∞

T 01dx =
[
Ċ
]∞
x=−∞

.

For the species p soliton of a
(1)
r the energy and momentum are therefore given

by

E = −2h

β2
mp cosh θ P = −2h

β2
mp sinh θ

where it should be borne in mind that the coupling is imaginary, and as such

the energy and momentum are positive for a right-moving soliton. The mass

of the species p soliton then follows from the on-shell condition and is given by

Mp =
2h

|β|2
mp . (3.7)

Using the semi-classical methods of Dashen, Hasslacher and Neveu [DHN75],

Hollowood [Hol93b] showed that the classical mass ratios of the a
(1)
r solitons are

preserved under first-order (O(β2)) corrections.

3.1.1.2 Topological charges of single solitons

The topological charge associated to the field u is

Q =
β

2πi

∫ ∞
−∞

u′ dx =
β

2πi

(
lim
x→∞
− lim

x→−∞

)
u(x, t) .
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Using the form of the soliton solution (3.1), (3.2), the topological charge be-

comes

Q = − 1

2πi

r∑
j=1

(
lim
x→∞
− lim

x→−∞

)
ln

(
τ
ηj
j

τ
η0 nj
0

)
αj

which, specialising to the species p soliton of a
(1)
r reduces to

Q = − 1

2πi

r∑
j=1

(
lim
x→∞
− lim

x→−∞

)
ln

(
1 + ωpjEp

1 + Ep

)
αj .

For the soliton solution to make sense the situation of τj = 0 must be avoided

for all j = 0, 1, . . . , r. This has the effect of splitting the topological charge

of the soliton into h sectors, with Im(cp) forbidden to take the values 2πk
h

for

integer k. The topological charge does not change within a sector and only

changes between sectors [McG94a]. The ‘highest’ charge found for the species

p soliton, in the first sector, is given by [McG94a]

Q(1)
p =

r∑
j=0

p(h− j) mod h

h
αj (3.8)

while the other classical charges arise from letting cp go to cp − 2πi
h

, which has

the same effect as mapping αi → αi+1 [McG94a], with labels taken modulo h.

As an example, consider the fundamental solitons of a
(1)
3 . For the species 1

soliton the highest charge from (3.8) is

Q
(1)
1 = 3

4
α1 + 1

2
α2 + 1

4
α3

which is the highest weight of the 4 representation of a3, which will be denoted

here as l1. The other charges arise in applying αi → αi+1, resulting in

Q
(2)
1 = 3

4
α2 + 1

2
α3 + 1

4
α0 = −1

4
α1 + 1

2
α2 + 1

4
α3 = l2

Q
(3)
1 = −1

4
α1 − 1

2
α2 + 1

4
α3 = l3

Q
(4)
1 = −1

4
α1 − 1

2
α2 − 3

4
α3 = l4
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l1l4

l3 l2

Figure 3.1: Argument of ecp and soliton charge for species 1 soliton of a
(1)
3 .

l1 + l3l2 + l4

l1 + l3 l2 + l4

Figure 3.2: Soliton charge sectors for species 2 soliton of a
(1)
3 .

where they have been labelled l2, l3 and l4 as they match the other weights of

the 4 representation of a3. The topological charges of the species 1 soliton thus

fill the corresponding representation of a3. The charge sectors are illustrated

by figure 3.1.

For the species 3 soliton similar analysis gives Q
(1)
3 = −l4, Q

(2)
3 = −l3, Q

(3)
3 =

−l2 and Q
(4)
3 = −l1, where li is defined as above. The species 3 soliton charges

fill the weight space of the 4̄ representation of a3.

The species 2 soliton displays a long-standing problem with the classical ATFT

solitons. The charges found by these methods are Q
(1)
2 = 1

2
α1 + 1

2
α3 = l1 + l3 =

Q
(3)
2 and Q

(2)
2 = −1

2
α1 − 1

2
α3 = l2 + l4 = Q

(4)
2 , as illustrated in figure 3.2.

Thus only two of the six weights of the 6 representation appear as topological

charges (and the highest charge is not the highest weight). This is symptomatic

of a more general trend, that most solitons classically have ‘missing charges’

[McG94a, McG94b], although the species 1 and species r solitons of a
(1)
r do

have charges that fill their corresponding representations.
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3.1.1.3 Multisolitons of a
(1)
r

Constructing the tau functions of the single solitons of the other affine Toda

theories is laborious, so few multisoliton solutions have even been constructed

[MM93, McG94b, Hal94]. In a
(1)
r , owing to (3.3) being bilinear in form, the

general soliton solution can be written as [Hol92]

τj =
1∑

µ1=0

. . .

1∑
µN=0

exp

[
N∑
i=1

µi ln
(
ωpijEpi

)
+

∑
1≤i<j≤N

µiµj ln
(
A(pipj)

)]
. (3.9)

In (3.9), there are thus pairwise interaction terms, which are given by

A(p1p2) = −
(ap1 − ap2)2 − (bp1 − bp2)2 −m2

p1−p2
(ap1 + ap2)

2 − (bp1 + bp2)
2 −m2

p1+p2

(3.10)

where ap1 = mp1 cosh θ1, ap2 = mp2 cosh θ2, etc., and mp1+p2 is given by substi-

tuting p1 + p2 for p in (3.6). Notice that the interaction parameter vanishes if

both p1 and p2 are the same and both solitons possess the same rapidity.

Consider, in particular, a two-soliton solution consisting of a soliton of species

p1 with rapidity θ1 and a soliton of species p2 with rapidity θ2. The tau func-

tions are

τj = 1 + ωp1jEp1 + ωp2jEp2 + A(p1p2)ω(p1+p2)jEp1Ep2 . (3.11)

In equation (3.11), there is a single interaction parameter A(p1p2), defined as

in (3.10). The tau functions (3.11) can be analysed to reveal how the soli-

tons interact. If θ1 6= θ2 the solitons will be far apart as t → ±∞. Consider

the case of θ1 > θ2 in the frame of the species p1 soliton (so θ1 = 0). As

t→ −∞, the tau function resembles the one soliton solution τj ∼ 1 +ωp1jEp1 .

As t→∞, such that the solitons have interacted, τj ∼ 1+A(p1p2)ωp1jEp1 . The

interaction parameter, A(p1p2), can thus be incorporated into Ep1 as the time

delay/advance caused by the soliton interaction.

Note than in a
(1)
3 , a species 2 soliton gives the same interaction parameter

(and hence delay) to a species 1 soliton as it does to a species 3 soliton of the

same rapidity. Something similar is seen with defects in chapter 5.
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3.1.1.4 Fusing rules

An interesting property of the solitons of ATFT is that they possess fusing

rules akin to the fusing rules of the fundamental excitations [Dor92]. These

fusing rules were examined algebraically in [OTU93b] and explicitly in the tau

function approach in [Hal94]. The fusing rules allow the properties of all of

the fundamental solitons to be determined in terms of a minimal set of ‘basic’

solitons and in the case of a
(1)
r only one basic soliton is needed, the species 1

soliton (one could equally take the species r soliton as the basic soliton). At the

level of the tau functions, the fusing process reduces a two-soliton solution (in

the form of (3.11) for a
(1)
r ) to a one-soliton solution (in the form of (3.4) for a

(1)
r ).

The fusing process is now demonstrated in a
(1)
r . By redefining

Ep1 →
(
A(p1p2)

)− 1
2 Ep1 and Ep2 →

(
A(p1p2)

)− 1
2 Ep2 the tau functions (3.11)

become

τj = 1 + ωp1j
(
A(p1p2)

)− 1
2 Ep1 + ωp2j

(
A(p1p2)

)− 1
2 Ep2 + ω(p1+p2)jEp1Ep2 . (3.12)

The aim is to reduce this to a one-soliton solution and the first step is to re-

move the linear terms, which occurs when A(p1p2) has a pole. By examining

(3.10) and making use of (3.6) this is seen to happen when θ1−θ2 = ± iπ(p1+p2)
h

,

i.e., the fusing angle is π(p1+p2)
h

, as it is for fusing species p1 and species p2 fun-

damental excitations.

When the rapidities of the solitons are judiciously chosen to equal

θ1 = θ +
iπp2

h
θ2 = θ − iπp1

h

the tau functions (3.12) reduce to

τj = 1 + ω(p1+p2)jEp1+p2(θ)

where Ep1+p2(θ) = Ep1(θ + iπp2
h

)Ep2(θ − iπp1
h

) = eap1+p2x−bp1+p2 t+cp1+cp2 . This is

clearly in the form of a one-soliton solution, (3.4), of species p = p1 + p2. Note

that if p1+p2 = 0 mod h, then what happens is soliton-antisoliton annihilation.

One thing to note about the fusing process is that it does not generally conserve

topological charge. For example, in a
(1)
3 one can take two species 1 solitons with
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topological charges l1 and l2, and the resulting species 2 soliton has a topolog-

ical charge of either l1 + l3 or l2 + l4, see section 3.1.1.2.

3.1.2 Folding a
(1)
r solitons

Folding is the tool that was used to get explicit solutions for the tau functions of

the non-simply laced theories [MM93, McG94b]. One merely has to construct

a solution in the appropriate simply laced theory which has the symmetry of

the reduced theory.

In a
(1)
2n−1 the requirement that the field has the folded symmetry, as explained

in section 2.2, is that ui = uh−i (for folding to c
(1)
n ) or ui = uh+1−i (folding to

d
(2)
n ). In folding a

(1)
2n to a

(2)
2n the requirement is5 ui = uh−i. In light of (3.2), the

condition ui = uh−i is equivalent to τi = τh−i. This cannot be realised by any

one-soliton solution of a
(1)
r (except for when p = n in a

(1)
2n−1), (3.4), but can be

done with a two soliton solution.

To find the tau functions for single solitons of species p in the folded theo-

ries take a two soliton a
(1)
r solution with p1 = p and p2 = h − p in (3.11). In

order for the two solitons to be thought of as a single soliton after folding it

is a physical requirement that they must already constitute one entity. The

requirement is that the solitons are ‘combined’. What is meant by ‘combined’

is that the two a
(1)
r solitons are given the same centre of mass at time t = 0,

meaning that Re(cp1) = Re(cp2); and that the solitons retain the same centre of

mass as each other at other times (the single folded soliton does not dissociate

into two separate solitons), so must possess the same rapidity, θ1 = θ2. This

means that Ep1 and Ep2 may differ only in Im(c).

When θ1 = θ2, the interaction parameter (3.10) becomes

A(p(h−p)) = cos2
(πp
h

)
≡ A

5 In what follows there is an assumption that the folding is to c
(1)
n or a

(2)
2n. If folding to d

(2)
n

replace h with h+ 1 in the powers of ω and let A→ Aωp.
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c
(1)
n d

(2)
n a

(2)
2n

τ ′0 τ0 (τ1)
1
2 τ0

τ ′i i 6= 0, n− 1, n τi τ1+i τi
τ ′n−1 τn−1 (τn)

1
2 τn−1

τ ′n τn − (τn)
1
2

Table 3.1: Tau function identifications in the folded theories.

and so the tau functions compatible with folding (to a one soliton folded solu-

tion) possess the form6

τj = 1 +
(
ωpj + ωp(h−j)

)
Ep + AE2

p . (3.13)

It can be shown that these folded solitons are the same as those found in

[McG94b] with the identifications in table 3.1. To match the tau functions

for d
(2)
n and a

(2)
2n to those in [McG94b] one must first shift Ep such that the

quadratic term in the tau functions becomes just E2
p .

3.1.2.1 Folded multisolitons

It is only for a
(1)
r that a formula like (3.9) is known. Once the basic tau functions

for one soliton solutions in the folded theories are known, multisoliton solutions

in these models may be constructed directly; however, this requires knowledge

of the generally complicated interaction parameters of the folded model. This

problem may be obviated by instead constructing these multisolitons in the

a
(1)
r model. This was noted in [ZC95], but was only applied to c

(1)
n . This means

that the analysis here is original for d
(2)
n and a

(2)
2n. In particular, the two soliton

6 For the case of d
(2)
n this becomes τj = 1 +

(
ωpj + ωp(h+1−j))Ep +AωpE2

p .
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solution in the folded theory takes the form

τj = 1 +
(
ωp1j + ωp1(h−j))Ep1 +

(
ωp2j + ωp2(h−j))Ep2 + A(12)E2

p1
+ A(34)E2

p2

+ A(13)
(
ωp1j+p2j + ωp1(h−j)+p2(h−j))Ep1Ep2

+ A(14)
(
ωp1j+p2(h−j) + ωp1(h−j)+p2j

)
Ep1Ep2

+ A(12)A(13)A(14)
(
ωp2j + ωp2(h−j))E2

p1
Ep2

+ A(34)A(13)A(14)
(
ωp1j + ωp1(h−j))Ep1E2

p2

+ A(12)A(34)
(
A(13)

)2 (
A(14)

)2
E2
p1
E2
p2
. (3.14)

Note that (3.14) contains four interaction parameters - a fact that is not obvi-

ous, should one wish to construct folded solitons using the folded theory as a

starting point.

Using that ap1 = mp1 cosh θ1, ap2 = mp2 cosh θ2, bp1 = mp1 sinh θ1, bp2 = mp2 sinh θ2

and denoting the two rapidities by θ1 = θ+ψ and θ2 = θ−ψ gives, in particular,

the interaction parameter

A(13) =
m2
p1−p2 + (mp1 +mp2)

2 sinh2 ψ − (mp1 −mp2)
2 cosh2 ψ

(mp1 +mp2)
2 cosh2 ψ − (mp1 −mp2)

2 sinh2 ψ −m2
p1+p2

. (3.15)

Among the two soliton solutions there are two interesting cases that can occur

when the the relative rapidity θ1 − θ2 = 2ψ between the solitons is imaginary:

• The solitons possess fusing rules, which are just a
(1)
r fusing rules. Fusion

of the solitons occurs when the denominator of A(13) in equation (3.15)

vanishes (one should first make the redefinitions Ep1 →
(
A(13)

)− 1
2 Ep1

and Ep2 →
(
A(13)

)− 1
2 Ep2 in equation (3.14)). This occurs when ψ =

±iπ(p1+p2)
2(r+1)

≡ ±iψ̃. The resulting tau functions describe a species p =

p1 + p2 single folded soliton with rapidity θ̃ = θ + iπ(p1−p2)
2(r+1)

.

• The existence of breather solutions in ATFT has been known for some

time [OTU93b] and solutions have been considered in Hirota form for

a
(1)
r [HIM95] and d

(1)
4 [Isk95]. For equation (3.14) to describe a folded

breather the constituent solitons must be of the same species, p1 = p2,

with the same centre of mass Re(cp1) = Re(cp2) and with an imaginary

rapidity difference which must be less than the fusing angle. Note that
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in the cases of d
(2)
n and a

(2)
2n these breather tau functions are also the tau

functions of particular breathers in d
(1)
s .

3.2 Quantum picture

There are a number of differences between the solitons in the classical and

the quantum picture. One difference is that the quantum solitons do not have

missing charges. A consistency requirement of the proposed soliton scattering

matrices is that the species p soliton of a
(1)
r can take any of the weights of the

p-th fundamental representation as its topological charge [Hol93a], which is

not usually the case in the classical theory [McG94a]. The focus here is on

the scattering of a
(1)
r fundamental solitons, for a more broad review of quantum

affine Toda solitons, see [Mac].

3.2.1 Faddeev–Zamolodchikov algebra

Quantum integrable field theories are specified by their exact scattering matri-

ces (S-matrices). In two dimensions these theories have the special property

of factorised scattering [ZZ79], meaning that all scattering processes can be

broken down into two-particle processes.

The quantum scattering of a
(1)
r affine Toda solitons is well described by the

Faddeev–Zamolodchikov (FZ) algebra [ZZ79, Fad80]. The FZ algebra is an as-

sociative algebra which describes S-matrices through the use of non-commuting

creation operators. Let the species p soliton of a
(1)
r , carrying a topological

charge labelled by i, moving at rapidity θ be denoted by

pAi(θ) . (3.16)

The quantity i in (3.16) ranges through the number of weights in the p-th

fundamental representation of ar, as it is a label for one of those weights.

For the species 1 soliton the label i corresponds to a topological charge equal

to the weight li = − 1
h

∑i+r
j=i jαj, where the roots are labelled modulo h. For

the species r soliton the label i is taken to mean a charge of −li [CZ07, CZ09a].

In the limit t → −∞ in a two-soliton solution, the overlap of the soliton

wavefunctions will become negligible provided that the solitons are moving
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with different rapidities. If θ1 > θ2 (or at least Re(θ1) > Re(θ2)) then the soli-

ton possessing the rapidity θ1 will be far to the left of the soliton with rapidity

θ2 as t → −∞. The two-soliton state in the far past can thus be represented

by

p1Aj(θ1) p2Ak(θ2) . (3.17)

Equation (3.17) represents a species p1 soliton with charge label j and a species

p2 soliton with charge label k, with θ1 > θ2. In the limit t→∞, with θ1 > θ2,

the solitons will be in the opposite order with negligible overlap, so the two-

soliton state will be represented by

p2Am(θ2) p1An(θ1)

where the soliton topological charges may have changed from what they were

at t = −∞.

The S-matrix is the quantity that relates the states in the far past to the

states in the far future. Some of the properties of the S-matrix are detailed

in section 3.2.2. The S-matrix in a two-particle scattering process in an rela-

tivistic integrable field theory depends upon the difference in the rapidities of

the particles, so the scattering process is given in the FZ algebra by

p1Aj(θ1) p2Ak(θ2) = p1p2Smnjk (θ1 − θ2) p2Am(θ2) p1An(θ1) . (3.18)

The S-matrix in (3.18), p1p2Smnjk (θ1 − θ2) depends on the species of solitons

involved (p1 and p2) and the soliton topological charges. Overall topological

charge is conserved, so if both solitons were of species 1 that would mean

lj + lk = lm + ln. The fact that two particles always scatter to two particles is

a consequence of the integrability of the theory [Dor].

3.2.2 The S-matrix

The scattering of affine Toda solitons, by factorisation, depends only upon the

two-particle S-matrices. These S-matrices can be written down exactly due

to their integrability. Introductions to exact S-matrices can be found in [Dor]

and [Mus10].
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The S-matrices for a
(1)
r solitons were originally postulated by Hollowood [Hol93a].

One of the key properties of the S-matrices is that they satisfy the Yang–Baxter

equation. The Yang–Baxter equation is a condition of factorisability and for

the case of three solitons, as illustrated in figure 3.3 with θ1 > θ2 > θ3, the

equation is

Smnij (θ1 − θ2)Sltnk(θ1 − θ3)Srsml(θ2 − θ3) = Slmjk (θ2 − θ3)Srnil (θ1 − θ3)Sstnm(θ1 − θ2) (3.19)

where l, m and n are summed over the appropriate possibilities. The species

labels on the S-matrices in (3.19) have been suppressed, as the Yang–Baxter

equation must hold for any set of soliton species. Overall topological charge is

conserved though care should be taken over the meaning of the indices when

different soliton species are involved: when all solitons are of species 1 the

topological charge conservation means that li + lj + lk = lr + ls + lt.

While the Yang–Baxter equation puts constraints on the S-matrix (or the

R-matrix), it does not have any power to constraint the scalar prefactor, ρ(θ)

of the S-matrix, as the same prefactors appear on both sides of the equation

(3.19). Two constraints that do constrain the prefactor are:

• Unitarity, giving

Smnjk (θ1 − θ2)Stsmn(θ2 − θ1) = δtjδ
s
k . (3.20)

• Crossing symmetry, as illustrated in figure 3.4, where viewing the process

with time running upwards and viewing it with time running left-to-right

are equivalent.

p1p2Sstjk(θ1 − θ2) = p1(h−p2)S k̄tjs̄(iπ − θ1 + θ2) . (3.21)

In (3.21) it is important to note the species of the solitons, as the alter-

native viewpoint sees one of them as an antisoliton. The label k̄ indicates

the opposite topological charge to the label k.

Further conditions may be found by requiring the S-matrix to be consistent

with the bootstrap principle. This alludes to the soliton fusing rules of section
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Figure 3.3: Illustration of Yang–Baxter relations for three solitons, given by
equation (3.19).
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Figure 3.4: Crossing relation for solitons, given in equation (3.21).

3.2.3.

Applying the Yang–Baxter relation, crossing and unitarity to the species 1

soliton S-matrix gives [CZ07]

11Sjjjj (θ1 − θ2) = ρ(θ1 − θ2)
(
Q−1X −QX−1

)
11Skjjk (θ1 − θ2) = ρ(θ1 − θ2)

(
X −X−1

)
j 6= k

11Sjkjk (θ1 − θ2) = ρ(θ1 − θ2)
(
Q−1 −Q

)X(1− 2|l|
h

)|l=j−k<0

X−(1− 2|l|
h

)|l=j−k>0

(3.22)

where X = e
hγ(θ1−θ2)

2 and Q = −eiπγ, where the coupling dependence comes

through γ = 4π
β2 − 1, with β the (bulk) coupling of the theory. The prefactor ρ
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is given by [Hol93a]

ρ(Θ) =
Γ(1 + hγiΘ

2π
)Γ(1− hγiΘ

2π
− γ)

2πi

sinh(Θ
2

+ iπ
h

)

sinh(Θ
2
− iπ

h
)

×
∞∏
k=1

Fk(Θ)Fk(
2πi
h
−Θ)

Fk(
2πi
h

+ Θ)Fk(2πi−Θ)

where

Fk(Θ) =
Γ(1 + hγiΘ

2π
+ hkγ)

Γ(hγiΘ
2π

+ (hk + 1)γ)
.

One can use the same conditions; the Yang–Baxter relations (3.19), unitarity

(3.20) and crossing (3.21); to obtain the S-matrices for any species of soli-

tons, but the full expression is generally much more unwieldy than (3.22). An

exception to this is the S-matrix for scattering two species r solitons. If the

labels on 11S are that k denotes the charge lk, and the labels on rrS are that k

denotes the charge −lk, then it is the case that rrSmnjk (θ1−θ2) = 11Skjnm(θ1−θ2).

The other S-matrices are best obtained using the fusing rules.

3.2.3 S-matrices and fusing rules

The fusing rules of an ATFT allow all of the soliton S-matrices of the theory

to be written in terms of a few basic S-matrices. For the case of a
(1)
r there is

just one basic S-matrix needed with the usual choice being that of scattering

two species 1 solitons, which is given by (3.22).

There is an important caveat though when considering the fusing rules of

a
(1)
r . It was shown by Saleur and Wehefritz-Kaufmann [SW00] that when

bound states of solitons (breathers) are taken into account the bootstrap does

not close in a
(1)
2 with the proposed S-matrices (3.22). This should not invali-

date the use of the fusing rules in this thesis, where little mention is made of

breathers.

The soliton fusing rules in the quantum picture are broadly similar to the

fusing rules of the classical picture. The fused soliton is again formed by

combining two solitons which have a rapidity difference of i times the fusing

angle. There is however one major difference between fusing in the classical
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and quantum theories and that is that the topological charge is conserved in

the quantum fusing process. This means that if a species p1 and a species p2

soliton fuse to form a species p soliton, the topological charges of the species

p1 and p2 solitons must sum up to one of the weights of the p-th fundamen-

tal representation. In particular, the charges of the species p1 and p2 solitons

cannot be the same if fusing is to occur.

The fusing rules can thus be seen at the level of the FZ algebra. for a species

2 soliton of a
(1)
r the operator may be written in terms of species 1 operators as

2A(jk)(θ) = c(jk) 1Aj(θ − iπ
h

) 1Ak(θ + iπ
h

) + c(kj) 1Ak(θ − iπ
h

) 1Aj(θ + iπ
h

) . (3.23)

The r(r+1)
2

weights, {(jk)}, of the second fundamental representation of ar

are constructed by taking pairs of weights {j, k}, such that j 6= k, from the

r-dimensional first fundamental representation. The charge of the species 2

soliton is then uniquely labelled by (jk) = (kj) and represents a charge of

lj + lk. The equation (3.23) demonstrates that there are only two ways in

which the charge (jk) can be obtained by fusing: one species 1 constituent

soliton has charge j and the other has charge k. The quantities {c(jk)}, with

j, k = 1, . . . , h, in (3.23) are the soliton fusing couplings for this process, which

possess the following properties:

• The couplings only depend on the differences between the arguments, so

c(i(i+k)) = c(j(j+k)) (3.24)

where i does not have to equal j and k = 1, . . . , r. The labels i, i+k, j, j+

k are all to be taken modulo h = r+ 1 but with any label equalling zero

written instead as h = r + 1.

• The coupling ratios are determined by

c(i(j+l))

c(ij)
= (−Q)−

l
h (3.25)

for j + l = 1, 2, . . . , i− 1, i + 1, . . . , h and assuming that j 6= i. One can

define c(ii) = 0 but the relations (3.25) assume that such a quantity is

avoided. The coupling ratios for a
(1)
3 and a

(1)
5 are given in chapter 7.
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By using the S-matrix for scattering two species 1 solitons, (3.22), and the

properties of the soliton fusing couplings, (3.24) and (3.25), the operator (3.23)

can be used in the FZ algebra (3.18) to find, with some effort, the S-matrix

between a species 1 and a species 2 soliton, given by

12S
(jk)i
i(jk)(θ1 − θ2) = ρ(θ1 − θ2 + iπ

h
)ρ(θ1 − θ2 − iπ

h
)
(
X2 +X−2 +Q−1 +Q

)
12S

(ik)i
i(ik)(θ1 − θ2) = ρ(θ1 − θ2 + iπ

h
)ρ(θ1 − θ2 − iπ

h
)
(
Q−1X2 +QX−2 +Q−2 +Q2

)
12S

(ij)k
i(jk)(θ1 − θ2) = ρ(θ1 − θ2 + iπ

h
)ρ(θ1 − θ2 − iπ

h
) (Q−1 −Q)

X−
2|l|
h (X2 +Q−1) |l=i−k<0

X
2|l|
h (−X−2 −Q) |l=i−k>0

where i, j and k all have different values. Only the last process 12S
(ij)k
i(jk) will in-

volve the solitons exchanging topological charge. Compare to 12S for a
(1)
2 found

in [CZ07].

The fusing process should generalise to involve any soliton species p1, p2 and

p = p1 + p2, with p taken modulo h. Similar to (3.23), the species p operator

will be

pAi(θ) =
∑
j,k

c(jk)
p1p2

p1Aj(θ − iπp2
h

) p2Ak(θ + iπp1
h

)

where the sum is over all possibilities where the topological charges labelled

by j and k sum up to the charge labelled by i. The fusing couplings c
(jk)
p1p2 may

generally have a complicated form.
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Defects

in affine Toda field theory

Over twenty years ago the framework for integrable defects was laid down by

Delfino, Mussardo and Simonetti [DMS94a, DMS94b]. They showed that a

non-trivial local integrable quantum field theory in two dimensions can only

encompass an impurity and remain integrable if the impurity is either purely

reflecting or purely transmitting. This was confirmed in [CFG], but other pos-

sibilities exist in a different framework [MRS02].

The case of the purely reflecting impurity - in other words, the integrable

boundary - had already been considered in ATFT [GZ94, FK94]. Further

developments in affine Toda field theory on the half-line are found in e.g.,

[FK95, BCDR95, Kim96, DG99, Per99, Doi08].

The case of the purely transmitting impurity, the integrable defect, can be

thought of as having an internal boundary, or interface, between two ‘bulk’ re-

gions. The quantum sine-Gordon defect was first considered by Konik and

LeClair [KL99] before the Lagrangian framework was discovered by Bow-

cock, Corrigan and Zambon [BCZ04a], who extended the framework to in-

clude a
(1)
r defects [BCZ04b]. Most of the literature on affine Toda defects

has focussed on the sine-Gordon case [KL99, BCZ04a, BCZ05, HK08, BS08,

Nem10, CZ10, AAGZ11, AD12] but it is the a
(1)
r defects for r ≥ 2 that are

of most interest here. See [Cor] for a review of integrable defects in ATFT.

Integrable defects have also been studied in other theories such as nonlin-

ear Schrödinger [CMR04, CZ06, AD11], supersymmetric sinh-Gordon theories

33
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[GYZ06, GYZ08] and sigma models [DK13].

This chapter, like chapter 3, is split into two parts - the classical and quantum

viewpoints of defects in ATFT. The classical analysis is used mainly in chap-

ters 5 and 6. The quantum properties of the defect are required for chapter

7.

4.1 Classical picture

4.1.1 The type I defects of a
(1)
r

Bowcock, Corrigan and Zambon attempted to generalise their result for the

sine-Gordon defect with the type I ansatz. Placing a defect at x = 0, with

fields u to the left and v to the right gives

L = θ(−x)Lu + θ(x)Lv + δ(x)

(
1

2
uAu̇+ uBv̇ + vCv̇ −D(u, v)

)
(4.1)

where θ(x) is the Heaviside step function; A, B and C are constant matrices

which are r × r if the algebra is of rank r, assuming that the fields u and v

are of the same theory7; the defect potential is given by D. It is clear that any

symmetric parts of A and C can be integrated out of the action, so A and C

are antisymmetric. The Lagrangians Lu and Lv are both bulk Lagrangians of

the form (2.1).

By considering a Lax pair approach taking into account the defect, it was

shown that the ansatz (4.1) could only work in the a
(1)
r theories, with

A = C = 1−B

and

D(u, v) =
m

β2
e−η

r∑
j=0

e
β
2
αj ·(BTu+Bv) +

m

β2
eη

r∑
j=0

e
β
2
αj ·B(u−v) . (4.2)

The parameter η in the defect potential (4.2) is the defect ‘rapidity’. Under the

action of Lorentz boosts η transforms as a rapidity does [BCZ05] but it should

7 It is very unlikely that integrability, conserving infinitely many higher-spin charges, could
be maintained if u and v belong to different root data.
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be noted that a defect may have a non-zero rapidity and still be stationary.

The quantity m is the same mass parameter as appears in the bulk affine Toda

potential (2.2), while β is the coupling.

In addition to the bulk equations of motion, the Euler–Lagrange equations

for (4.1) give conditions at x = 0. The Euler–Lagrange equations are

ü− u′′ = −Uu |x<0

v̈ − v′′ = −Vv |x>0

u′ = Au̇+Bv̇ −Du |x=0 (4.3)

v′ = −Av̇ +BT u̇+Dv |x=0 (4.4)

where U and V are bulk potentials of the form (2.2) for the fields u and v. A

subscript u (or v) denotes the gradient of the potential with respect to u (or

v) - for the defect potential Du is the gradient with respect to u whilst keeping

v fixed. Something to note about the defect conditions (4.3) and (4.4) is that

together they give a Bäcklund transformation (with appropriate identification

of B), though fixed at x = 0 [BCZ04b].

It was later shown [CZ09a] that demanding that the defect conserves a modi-

fied momentum gives the same conditions as the Lax pair approach. The type

I defect is then specified by the matrix B, and there are two solutions for B,

when r ≥ 2, which have been developed and are of use here. They are

B1 = 2
r∑
j=1

(λj − λj+1)λTj (4.5)

and

Br = BT
1 = 2

r∑
j=1

(λj − λj−1)λTj (4.6)

where {λi} are the fundamental highest weights of a
(1)
r which satisfy λi ·αj = δij

for i, j = 1, . . . , r and λ0 = 0. These matrices obey

αiB1αj =


2 if i = j

−2 if i = j + 1

0 otherwise

αiBrαj =


2 if i = j

−2 if i = j − 1

0 otherwise

(4.7)
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where the roots are labelled modulo h = r + 1. Note that for either choice

B+BT = 2. The labels B1 and Br are deliberate, alluding to the existence of a

defect ‘hierarchy’ where the type I defect specified by B1 is a species 1 defect;

the defect specified by Br is a species r defect. The opposite identification

is also possible, as long as the type I defects specified by (4.5) and by (4.6)

are associated to the end nodes of the ar Dynkin diagram. The identification

of the type I defects as species 1 and species r is based on two things. One

is the fact that they possess the simplest form of Lagrangian known for an

affine Toda defect (type I form), somewhat analogous to how the first and

final fundamental representations of ar have the simplest weight spaces. The

other reason for this identification is that the species 1 and species r defects

are conjugate to each other with Br being the transpose of B1; additionally the

soliton delay factors of the defects (4.19) and (4.20) are complex conjugates of

one another. The existence of different species of defects demands that defect

fusing rules be considered - that is the topic of chapters 5 and 7.

4.1.1.1 Topological charge and energy

An important property of defects is that they possess topological charge. Con-

sider the static solution where u = 2πi
β
λ and v = 2πi

β
λ̃ with λ and λ̃ both

weights of ar, hence minimising the bulk potentials U(u) and V (v) of the form

(2.2). The topological charge possessed by the defect is then proportional to

the difference of the two vacua, with the charge being λ̃− λ, which lies in the

weight space of the theory. With these solutions for u and v, and using the

property that B = 2−BT , the defect potential becomes

D(2πi
β
λ, 2πi

β
λ̃) =

m

β2
e−η

r∑
j=0

e2πi( 1
2
αjB

T (λ−λ̃)+αj ·λ̃) +
m

β2
eη

r∑
j=0

e2πi( 1
2
αj ·B(λ−λ̃)) .

The properties of the weights are such that αj ·λ̃ ∈ Z for all j; while (4.7) shows,

for either choice of B, that if λ− λ̃ is in the root space then 1
2
αjB

T (λ− λ̃) ∈ Z
and 1

2
αjB(λ− λ̃) ∈ Z for all j. The situation of λ− λ̃ lying in the root space

occurs if and only if λ and λ̃ are weights of the same representation, so

D(2πi
β
λ, 2πi

β
λ̃) =

2mh

β2
cosh η if λ and λ̃ are weights of the same representation.

When u and v are proportional to weights in different representations the result
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is different. Say λ = λp1 and λ̃ = λp2 , where λp1 and λp2 are the highest weights

of the p1 and p2 fundamental representations, in that case the defect potential

becomes [CZ07]

D(2πi
β
λp1 ,

2πi
β
λp2) =

2mh

β2
cosh

(
η +

2πi(p1 − p2)

h

)
. (4.8)

The energy associated to the defect Lagrangian (4.1) is a modification of (2.4),

to account for the defect. The contribution from the bulk is

E =

∫ 0

−∞

1
2
u̇ · u̇+ 1

2
u′ · u′ + U(u) dx+

∫ ∞
0

1
2
v̇ · v̇ + 1

2
v′ · v′ + V (v) dx .

Under the assumption that the fields approach vacuum values at spatial infin-

ity, the time derivative of the bulk energy is

Ė = u′ · u̇− v′ · v̇ |x=0

= −Ḋ

where the defect Euler–Lagrange equations (4.3) and (4.4) have been used.

This shows then that the presence of a defect contributes D(u, v) to the con-

served energy, since d
dt

(E +D) = 0. The energy is then complex, from (4.8),

when u and v lie in different representations suggesting that a defect having u

and v in different representations is an unstable excited defect [BCZ05]. The

defects of interest in this thesis are the stable ground state defects, which have

u and v in the same representation8. In the case of a soliton being transmitted

through the defect this means that the species of the soliton will not change.

4.1.1.2 Momentum conservation and mass

In a similar vein to how the presence of the defect modifies the energy of the

system, there exists a modified conserved momentum. This is perhaps some-

what surprising at first as the defect, situated at x = 0, breaks the translation

symmetry of the system. Nonetheless, the defect can actually be shown to be

classically integrable if there is a conserved momentum [CZ09a].

The defect potential can be split into terms of negative helicity and terms

8 Note that the defect energy is negative when the coupling is imaginary.
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of positive helicity. The negative helicity terms are those proportional to e−η:

D−(u, v) =
m

β2
e−η

r∑
j=0

e
β
2
αj ·(BTu+Bv) (4.9)

while the positive helicity terms are those proportional to eη:

D+(u, , v) =
m

β2
eη

r∑
j=0

e
β
2
αj ·B(u−v) . (4.10)

The bulk momentum, which can be written as a difference between positive

and negative helicity terms, in the presence of a defect at x = 0 is given by

(see equation (2.5))

P =

∫ 0

−∞
u̇ · u′ dx+

∫ ∞
0

v̇ · v′ dx .

Assuming that the fields approach vacuum at spatial infinity, using the bulk

equations of motion one finds that the time derivative of the bulk momentum

is

Ṗ = 1
2
u̇ · u̇+ 1

2
u′ · u′ − U(u)− 1

2
v̇ · v̇ − 1

2
v′ · v′ + V (v) |x=0

= −
(
Ḋ− − Ḋ+

)
where in going from the first to second lines the defect conditions (4.3) and

(4.4) have been used, D− and D+ are given by (4.9) and (4.10) respectively.

This implies a conserved momentum of P + D− −D+. In vacuum the defect

thus contributes a momentum of

D− −D+ = −2mh

β2
sinh η . (4.11)

It is clear then that the on-shell condition, with energy (4.8) and momentum

(4.11), gives a defect mass of

M =
2mh

|β2|
. (4.12)

The expression (4.12) holds in both the case of the species 1 defect (4.5) and
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the species r defect (4.6), so they are mass degenerate. Compare this to how

the species 1 and species r solitons are mass degenerate (see equations (3.6)

and (3.7)). Indeed, many of the properties of defects identified in this thesis

have solitonic analogies.

4.1.1.3 Soliton transmission through type I defects

As noted in section 4.1.1.1, the defects of interest in this thesis are ground state

defects. The vacua on either side of the defect are in the same representation.

Consider then a one-soliton solution of species p having positive rapidity θ > 0.

In the far past the soliton is far to the left of the defect and as it evolves it

will reach the defect and be transmitted as a soliton of the same species but

possibly with a change in topological charge and a time delay or advance.

The effect of the defect on a one-soliton solution, of species p and rapidity

θ, can be found by using the defect conditions (4.3) and (4.4) and the tau

function ansätze

u = − 1

β

r∑
j=0

αj ln τuj v = − 1

β

r∑
j=0

αj ln τ vj (4.13)

where

τuj = 1 + ωpjEp τ vj = 1 + p
qz(θ, η)ωpjEp . (4.14)

The quantity p
qz, the delay factor, encompasses the time delay and change of

topological charge that the soliton experiences when transmitted through a

species q defect (for the purposes of this chapter q is either 1 or r). The delay

factor can be absorbed into Ep in the tau functions of v as a change to cp.

Recall from section 3.1.1 that cp determines the centre of mass and topological

charge of the soliton.

Take the defect to be a species 1 defect, which is specified by

B1 = 2
∑r

j=1 (λj − λj+1)λTj . The first of the defect conditions (4.3) becomes

u′ = (1−B1)u̇+B1v̇ −D(1)
u (4.15)
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evaluated at x = 0. The potential D(1) is given by (4.2) with B1 in place of B.

Taking αk · (4.15) with the ansätze (4.13) gives

2
τuk
′

τuk
−

(τuk+1
′ − τ̇uk+1)

τuk+1

−
(τuk−1

′ + τ̇uk−1)

τuk−1

− 2
τ̇ vk
τ vk

+ 2
τ̇ vk−1

τ vk−1

+me−η
(
τuk τ

v
k−2

τuk+1τ
v
k+1

−
τuk+1τ

v
k−1

τuk τ
v
k

)
+meη

(
τuk τ

v
k+1

τuk+1τ
v
k

−
τuk−1τ

v
k

τuk τ
v
k−1

)
= 0 . (4.16)

For the species 1 defect the second defect condition (4.4) becomes

v′ = −(1−B1)v̇ +BT
1 u̇+D(1)

v . (4.17)

Taking αk · (4.17) gives

2
τ vk
′

τ vk
−

(τ vk+1
′ + τ̇ vk+1)

τ vk+1

−
(τ vk−1

′ − τ̇ vk−1)

τ vk−1

− 2
τ̇uk
τuk

+ 2
τ̇uk+1

τuk+1

+me−η
(
τuk+1τ

v
k−1

τuk τ
v
k

−
τuk+2τ

v
k

τuk+1τ
v
k+1

)
−meη

(
τuk τ

v
k+1

τuk+1τ
v
k

−
τuk−1τ

v
k

τuk τ
v
k−1

)
= 0 . (4.18)

By summing (4.16) and (4.18), and using the tau function forms (4.14), one

can then show, order by order in Ep, that the delay factor is given by

p
1z(θ − η) =

ieη−θ + ω
p
2

ieη−θ + ω−
p
2

. (4.19)

Note that the delay factors given by (4.19) are independent of the mass pa-

rameter m, which becomes a common factor in (4.16) and (4.18), and of the

bulk coupling β. Classically one can scale out m and β from the Lagrangian

(4.1) and the same delay factors are obtained.

The effects of the transmission on the topological charge can be seen through

tan(arg(p1z(θ − η))) =
sin(2πp

h
)

e2η−2θ + cos(2πp
h

)
.

It is then clear that arg(p1z(θ − η)) ∈ [0, 2πp
h

]. For the species 1 soliton this

means that either the topological charge is unchanged or ‘raised’ to the next



4.1 Classical picture 41

sector: li → li−1 (with l1 → lr+1).

The same analysis can be carried out for the species r defect, specified by

(4.6). The delay factor in that case is given by

p
rz(θ − η) =

ieη−θ − ω− p2
ieη−θ − ω p

2

. (4.20)

The argument of prz(θ−η) is the negative of the argument of p1z(θ−η); so clas-

sically a species 1 soliton either retains its topological charge or has it ‘lowered’

by one sector, so li → li+1 (with lr+1 → l1).

If u is a two-soliton solution the solitons interact with the defect indepen-

dently, so if, for example, u consisted of a species p1 soliton with rapidity θ1

and a species p2 soliton with rapidity θ2, such that

τuj = 1 + ωp1jEp1 + ωp2jEp2 + A(p1p2)ω(p1+p2)jEp1Ep2

then after being transmitted through a species 1 defect, the tau functions are

τ vj = 1 + p1
1 z(θ1 − η)ωp1jEp1 + p2

1 z(θ2 − η)ωp2jEp2

+ p1
1 z(θ1 − η) p21 z(θ2 − η)A(p1p2)ω(p1+p2)jEp1Ep2 .

This continues to hold even when the solitons have been ‘combined’ - see section

3.1.2.

4.1.1.4 Combining defects

There is nothing to forbid the situation of having multiple defects in a system.

Consider the system with two defects - each can independently be of any

species, but for this argument will be taken to be of the same species. The

Lagrangian describing two defects of the same species, one at x = 0 and one

at x = a < 0, is

L = θ(a− x)Lu + θ(x− a)θ(−x)Lχ + θ(x)Lv
+ δ(a− x)

(
1
2
uAu̇+ uBχ̇+ 1

2
χAχ̇−D(u, χ)

)
+ δ(x)

(
1
2
χAχ̇+ χBv̇ + 1

2
vAv̇ − D̃(χ, v)

)
. (4.21)
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The bulk is split into three regions by the two defects, with χ denoting the

field in the middle region. The defect conditions from (4.21) are:

u′ = Au̇+Bχ̇−Du |x=a

χ′ = −Aχ̇+BT u̇+Dχ |x=a (4.22)

χ′ = Aχ̇+Bv̇ − D̃χ |x=0 (4.23)

v′ = −Av̇ +BT χ̇+ D̃v |x=0 .

In section 3.1.2 it is explained how to ‘combine’ solitons - they must be placed

at the same location and be given the same (real part of) rapidity. Defects

can also be combined in a similar manner, though it is not clear that any

identification needs to be done on the defect rapidities, given that defects can

be stationary at non-zero rapidity. To combine the defects in (4.21) then it is

simply a case of taking a→ 0, giving

L = θ(−x)Lu + θ(x)Lv

+δ(x)
(

1
2
uAu̇+ uBχ̇+ χAχ̇+ χBv̇ + 1

2
vAv̇ −D(u, χ)− D̃(χ, v)

)
. (4.24)

The defect conditions then become

u′ = Au̇+Bχ̇−Du |x=0

BT χ̇−BT u̇−Dχ = Bχ̇−Bv̇ + D̃χ |x=0 (4.25)

v′ = −Av̇ +BT χ̇+ D̃v |x=0 .

There are thus clear differences when the defects are combined. The field χ

no longer has any existence in the bulk and is trapped at the defect, so is an

auxiliary field. In this sense then the combined defect Lagrangian (4.24) can

be said to describe a type II defect9. The other major difference in combining

9 In this thesis all of the type II defects arise from the combination of two type I defects.
This observation gives a nomenclature used here whereby a type N defect arises from the
combination of N type I defects. Type N defects have N − 1 sets of auxiliary fields, each
with the same number of components as a bulk field. The definition of a type II defect in
the literature [CZ09b], where a type II defect has an auxiliary field in its Lagrangian, is
more general than the ‘type II’ defined here as the dimension of the auxiliary field is not
necessarily limited.
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the defect is that the four defects conditions reduce to just three. However,

since (4.25) is what comes from (4.22) and (4.23) when a = 0, it is clear that

the delay factors are not affected by the combination process. The overall

delay factor picked up by a soliton is the product of the individual defect delay

factors.

4.1.2 Type II defects

Type II defects are defects which possess an auxiliary field. The idea of the

type II defect was introduced by Corrigan and Zambon, who showed that type

II defects exist in a
(2)
2 [CZ09b], and also in all of the a

(1)
r theories [CZ09b, CZ11].

Although the combined defects are type II in that they possess an auxiliary

field, the aim of this thesis is to identify species of defect, regardless of their

Lagrangian form, so type II defects are given no particular significance.

4.1.3 Folding defects a priori and a posteriori

This section works on the basis that the type I defects can be folded. Folding

a type I defect will in fact spoil the integrability of the theory; it is shown in

chapter 6 how to construct a defect that will remain integrable after folding.

Consider the simple case of taking a species 1 defect in a
(1)
2 and folding it in

two different ways. Before any folding is done the defect condition (4.3), in

components, becomes

α1 · (4.3)→ 2u′1 − u′2 = −u̇2 + 2v̇1 −
m

β
e−η

(
eβ(u1−u2+v1) − eβ(−u1−v2)

)
− m

β
eη
(
eβ(u1−v1) − eβ(−u1+u2+v1−v2)

)
(4.26)

α2 · (4.3)→ 2u′2 − u′1 = u̇1 − 2v̇1 + 2v̇2

− m

β
e−η

(
−eβ(u1−u2+v1) + eβ(−u1+u2+v1−v2)

)
− m

β
eη
(
−eβ(−u2+v2) + eβ(−u1+u2+v1−v2)

)
(4.27)

where e.g., u1 is the component of u proportional to α1 in the basis chosen in

chapter 2.

Folding the system to a
(2)
2 a posteriori involves taking the equations (4.26)

and (4.27) and identifying u1 = u2 = φ
2

and v1 = v2 = ψ
2
. This means that
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(4.3) results in the two equations

φ′

2
= − φ̇

2
+ ψ̇ − m

β
e−η

(
e
β
2
ψ − e

β
2

(−φ−ψ)
)
− m

β
eη
(
e
β
2

(φ−ψ) − 1
)

(4.28)

φ′

2
=
φ̇

2
− m

β
e−η

(
e
β
2
φ − e

β
2
ψ
)
− m

β
eη
(
−e

β
2

(−φ+ψ) + 1
)
. (4.29)

Unlike when bulk affine Toda equations are folded, section 2.2.3, the right-

hand sides of (4.28) and (4.29) do not match.

The other way to fold is to a priori set u1 = u2 = φ
2

and v1 = v2 = ψ
2

in

the Lagrangian (4.1). There will only be one defect condition associated to the

φ Euler–Lagrange equation, which for the species 1 defect is

φ′ = ψ̇ − m

β

(
e
β
2
φ − e

β
2

(−φ−ψ)
)
− m

β

(
e
β
2

(φ−ψ) − e
β
2

(−φ+ψ)
)
. (4.30)

It is clear that any solution to the a posteriori folded defect conditions (4.28)

and (4.29) is also a solution of the a priori folded defect condition (4.30)

from the simple relation (4.30) = (4.28) + (4.29). The converse is not true:

(4.30) ; (4.28) and (4.30) ; (4.29). This has implications for the delay factor

arguments used in chapter 6: if a soliton solution in a
(1)
r has the symmetry of

the folded soliton for u and for v it will satisfy the a posteriori folded defect

conditions. It will thus also satisfy the a priori folded defect conditions, so if

the symmetry is correct the soliton delay factors are unaltered by either folding

process.

4.2 Quantum picture

The classical Lagrangian approach in section 4.1 treats type I defects and

solitons very differently, as the defects are represented by the defect con-

ditions (4.3) and (4.4), which are Bäcklund transformations. The quantum

approach treats solitons and defects on a more equal footing, as the Faddeev–

Zamolodchikov (FZ) algebra of section 3.2.1 can be extended to include defects.
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4.2.1 Defect Faddeev–Zamolodchikov algebra

In the quantum theory the interaction between a soliton and a defect is speci-

fied by an exact transmission matrix (T -matrix). There is no reflection matrix

as the defect is purely transmitting [DMS94a, DMS94b].

Defects can be included in the FZ algebra as non-commuting operators anal-

ogous to the soliton operators [CZ07]. Let a defect of species q, carrying a

topological charge α and a rapidity η be denoted by

qDα(η) .

The defects of interest here are the ground state defects which have topological

charges in the root space of ar, as the analysis of section 4.1.1.1 shows - this

is true of all species of defect. the label α can be considered as the topological

charge itself, and not a surrogate for the charge like with the soliton charge

labels.

The aim now is to examine the transmission process with a soliton of species

p being transmitted from left to right across the (possibly stationary) defect.

If the soliton has rapidity θ > 0 and charge label i then this situation in the

far past, t→ −∞, is represented in the defect FZ algebra as

pAi(θ) qDα(η) . (4.31)

In the far future, t → ∞, the soliton will then be infinitely far to the right

of the defect and will possibly have undergone a change in topological charge,

but no change in species. The future state is represented by

qDλ(η) pAn(θ) . (4.32)

The quantity that relates the states in the far past (4.31) and the states in the

far future (4.32) is the T -matrix. Some properties of the T -matrix are detailed

in section 4.2.2. Guided by the classical equivalent of the T -matrix, the delay

factor e.g., (4.19), the T -matrix is expected to depend on the difference of the
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soliton and defect rapidities. The defect FZ algebra is thus

pAi(θ) qDα(η) = p
qT

nλ
iα (θ − η)qDλ(η) pAn(θ) .

Note that topological charge is conserved in the transmission process, and the

equation of topological charge conservation is dependent on the species of the

soliton. If the soliton is a species 1 soliton then it would be li + α = ln + λ.

The T -matrix then possesses delta functions to account for the topological

charge conservation. Since α may be freely chosen within the root space, the

T -matrices are infinite-dimensional.

4.2.2 The T -matrix

The transmission matrix can be constrained in an entirely analogous way to

how the soliton S-matrix is constrained, see section 3.2.2. Defect T -matrices

were found in the sine-Gordon model by Konik and LeClair [KL99] and matched

to a Lagrangian description by Bowcock, Corrigan and Zambon [BCZ05]. T -

matrices were later found for type I defects in a
(1)
2 [CZ07] and for a

(1)
r [CZ09a,

CZ11] using these methods, though quantum group methods can be used

[CZ11].

The Yang–Baxter equation for two solitons and a defect, known as the tri-

angle relations, is illustrated in figure 4.1, where the solid lines denote solitons

and the dashed line denotes a defect and with θ1 > θ2 > 0. The triangle

relations are given by

Smnjk (θ1 − θ2)T tβnα(θ1 − η)T sλmβ(θ2 − η) = Tmβkα (θ2 − η)T nλjβ (θ1 − η)Sstnm(θ1 − θ2) (4.33)

where m,n and β are summed over. The species labels have been suppressed as

the triangle relations hold for every species of soliton and defect. The T -matrix

will have a prefactor which is not constrained by the triangle relations as the

same prefactors appear on both sides of (4.33).

Though the triangle relations do not constrain the T -matrix prefactor, there

are unitarity and crossing constraints analogous to those of S-matrices, (3.20)

and (3.21). They are
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Figure 4.1: Illustration of the triangle relations, given by equation (4.33).

@
@

@
@

@
@
@

@
@I

�

�

�

�

��

α i

n λ

η θ

Figure 4.2: Crossing relation for a soliton and a defect, given in equation (4.35).

• Unitarity:

p
qT

jβ
iα (θ − η) pqT̃

nλ
jβ (η − θ) = δni δ

λ
α . (4.34)

The defect breaks the parity invariance of the theory, so it is expected

that the T -matrix for right-to-left transmission of a soliton, denoted T̃

in (4.34), is different from T , the left-to-right transmission matrix.

• Crossing symmetry, as illustrated in figure 4.2. In figure 4.2 the direction

of the arrow on the solid line denotes whether the line should be viewed

as representing a soliton or antisoliton, with the arrow on the dashed line

serving the same purpose for defects. The equation of crossing is

h−p
qT

īλ
n̄α(θ − η) = p

qT̃
nλ
iα (iπ + η − θ) (4.35)

where ī denotes the opposite topological charge to i. The bar may be

dropped provided the species of soliton is clear.
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The crossing relation (4.35) and the unitarity relation (4.34) combine to give

the crossing-unitarity relation

p
qT

jβ
iα (θ − η) h−pqT

jλ
nβ(θ − η + iπ) = δni δ

λ
α . (4.36)

The crossing-unitarity relation thus relates the transmission matrix of a soliton

through a defect to that of an antisoliton through the same defect. Combin-

ing a soliton and antisoliton should give a trivial result, so it should not be a

surprise that (4.36) holds.

Taking the soliton and defect to be, initially, of species 1, the triangle rela-

tions (4.33) and crossing-unitarity relation (4.36) can be used to obtain the

T -matrix, the result is [CZ09a]

1
1T

iλ
iα (θ − η) = g1(θ − η)Qλ·liδλα

1
1T

(i−1)λ
iα (θ − η) = g1(θ − η) x̂ δ

λ−li+li−1
α (4.37)

with all other entries in the matrix equal to zero. The soliton charge label10

takes the values i = 1, . . . , h where the case of (i − 1) = 0 should be taken

as (i − 1) = h. As with the soliton S-matrix (3.22), Q = −eiπγ, with the

coupling entering through γ = 4π
β2 − 1, with β the bulk coupling found in the

bulk (2.2) and defect (4.2) potentials. The likelihood of a soliton changing

topological charge on transmission through the defect is determined by the

value of x̂ = eγ(θ−η− iπ
2

). The prefactor in 1
1T , g1(θ − η), is constrained by the

soliton fusion bootstrap and by (4.36). The solution is [CZ09a]

g1(θ − η) = x̂−
1
2

2π
Γ(1

2
+ r

2
γ − z)

∏∞
k=1

Γ( 1
2

+(hk+ r
2

)γ−z)Γ( 1
2

+(hk−1− 5r
2

)γ+z)

Γ( 1
2

+(hk− r
2

)γ−z)Γ( 1
2

+(hk− r
2

)γ+z)
(4.38)

where z =
hiγ(θ−η− iπ2 )

2π
.

One can similarly consider the transmission of a species r soliton through

a species 1 defect11. The transmission matrix is given by [CZ09a]

r
1T

(i+j)λ
iα = gr(θ − η) x̂jQ−λ·K(i+j)δλ+li−li+j

α (4.39)

10 Recall that for the species 1 soliton the label i denotes a topological charge of li.
11 Recall that for a species r soliton the label i denotes a charge of −li
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where Ki+j = li+li+1+. . .+li+j, with (i+j) evaluated modulo h. The prefactor

gr(θ − η) can be found from using the crossing-unitarity relation (4.36) along

with (4.38), giving

g1(θ − η)gr(θ − η + iπ) =
1

1 + (−Q)rx̂h
. (4.40)

The prefactor gr(θ− η) can also be determined through soliton fusing. Soliton

fusing and transmission matrices is the topic of section 4.2.3.

Comparing the T -matrices (4.37) and (4.39) with the classical delay factors

(4.19), it is clear that the topological charge shifts possible in the quantum

transmission match those classically for the species 1 soliton, while the species

r soliton can undergo classically forbidden changes in topological charge (ex-

cept in the sine-Gordon case). In fact, for the ‘soliton’ representations, solitons

of species p = 1, 2, . . . ,
⌊
h−1

2

⌋
, there is agreement between the classical and

quantum situation, but not for the other ‘antisoliton’ representations [CZ09a].

One can similarly analyse the species r defect. The transmission matrix for a

species 1 soliton is

1
rT

(i−j)λ
iα (θ − η) = gr(θ − η) x̂jQλ·Li−jδλ−li+li−jα (4.41)

where Li−j = li−j + li−j+1 + . . .+ li. The transmission matrix for the species r

soliton is

r
rT

iλ
iα (θ − η) = g1(θ − η)Q−λ·liδλα

r
rT

(i+1)λ
iα (θ − η) = g1(θ − η) x̂ δ

λ+li−li+1
α (4.42)

with the other entries in the matrix vanishing. The prefactors for these species

r defect T -matrices are the same as those for the species 1 defect T -matrices,

but in the opposite order.

The transmission matrices for the other solitons are best found using the soli-

ton fusing rules.
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4.2.3 Soliton fusing and T -matrices

The transmission matrices for species of soliton other than species 1 or r can

be found using soliton fusing in the Faddeev–Zamolodchikov algebra. Recall

that the species 2 soliton operator can be written in terms of the species 1

operators as (3.23)

2A(jk)(θ) = c(jk) 1Aj(θ − iπ
h

) 1Ak(θ + iπ
h

) + c(kj) 1Ak(θ − iπ
h

) 1Aj(θ + iπ
h

)

where the soliton fusing couplings have ratios given by (3.24) and (3.25). Using

this in the defect FZ algebra

2A(jk)(θ)Dα(η) = 2T
(mn)λ
(jk)α (θ − η)Dλ(η) 2A(mn)(θ)

gives an expression for the species 2 T -matrix in terms of species 1 T -matrices:

2T
(ab)λ
(jk)α(θ − η)c(ab) = c(jk)1T aλjβ (θ − η − iπ

h
)1T bβkα(θ − η + iπ

h
) + (j ↔ k) . (4.43)

The defect species is not labelled in (4.43) as the equation should hold for any

species of defect. For the species 1 defect, examining the prefactors, 2
1T will

have a prefactor of g2, given by

g2(θ − η) = g1(θ − η − iπ
h

)g1(θ − η + iπ
h

) .

The T -matrices for all of the other solitons can be treated in a similar way, so

there is a bootstrap principle to apply. All of the prefactors for the species 1

(or species r) defect can then be written in terms of g1, ultimately resulting in

r∏
k=0

g1(θ − η − iπr
h

+ 2πik
h

) =
1

1 + x̂h
.

The approach of this chapter has been to treat a
(1)
r generally. some of these

results are used for specific r in chapters 5, 6 and 7.
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Classical defect fusing rules

This chapter expands on some of the arguments found in Defect fusing rules

in affine Toda field theory [Rob14b].

The first step in establishing the existence of a ‘hierarchy’ of defects is to

link the defects that exist within the same ATFT, which is realised through

the fusing structure of the theory. For a
(1)
r , which is the only series of ATFTs

for which defects exist in the literature [CZ07, CZ09a] there exist r species of

fundamental soliton, so it is expected that there will be r species of fundamen-

tal defect - although this is not something that is clear from the Lagrangian

approach. It is supposed that the type I defects, in having the simplest La-

grangian, must describe fundamental defects and that they are of species 1

and species r. The key quantity in this analysis is the classical delay factors

picked up by solitons travelling through defects.

5.1 Observations in a
(1)
2

5.1.1 Delay factors

Consider the delay factors (4.19) and (4.20) for the case of a
(1)
2 . For the species

1 defect they are

1
1z(θ − η) =

ieη−θ + ω
1
2

ieη−θ + ω−
1
2

2
1z(θ − η) =

ieη−θ + ω

ieη−θ + ω−1
(5.1)

51
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where in this case ω = e
2iπ
3 . All of the fundamental soliton fusing rules are

seen in the delay factors as:

Soliton fusing process Delay factor

11→ 2 2
1z(θ − η) = 1

1z
(
(θ − iπ

3
)− η

)
1
1z
(
(θ + iπ

3
)− η

)
22→ 1 1

1z(θ − η) = 2
1z
(
(θ − iπ

3
)− η

)
2
1z
(
(θ + iπ

3
)− η

)
12→ 0 1 = 1

1z(θ − η)2
1z ((θ ± iπ)− η) . (5.2)

The right-hand side of each of the equations in (5.2) can be viewed in terms

of having a two soliton solution, e.g., two species 2 solitons with rapidities

θ1 = θ − iπ
3

and θ2 = θ + iπ
3

, where the solitons are spatially separated. The

quadratic term in the tau functions picks up the relevant right-hand side of

(5.2) as its overall delay factor (see section 4.1.1.3). Now, combining the soli-

tons so that they are now at the same location, thought of as a limiting process,

gives the same right-hand side but the two soliton solution has reduced to a

one (or zero) soliton solution so the delay factor must equate to what is on the

left-hand side.

Similarly the species 2 defect gives the delay factors

1
2z(θ − η) =

ieη−θ + ω

ieη−θ + ω−1
2
2z(θ − η) =

ieη−θ + ω
1
2

ieη−θ + ω−
1
2

. (5.3)

Again there is no issue with soliton fusing and equations analogous to (5.2)

hold. Note the remarkable similarity between the delay factors of the species 1

(5.1) and species 2 (5.3) defects, which suggests that these defects are indeed

in some way conjugate to each other. Making analogy to the soliton fusing

rules in (5.2) it is seen that:

Defect fusing process Delay factor

11→ 2 1
2z(θ − η) = 1

1z
(
θ − (η + iπ

3
)
)

1
1z
(
θ − (η − iπ

3
)
)

22→ 1 1
1z(θ − η) = 1

2z
(
θ − (η + iπ

3
)
)

1
2z
(
θ − (η − iπ

3
)
)

12→ 0 1 = 1
1z(θ − η)1

2z (θ − (η ± iπ)) . (5.4)

So, the delay factors are clearly consistent with a bootstrap involving different
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species of defect where defect fusing rules require that the defects have rapidity

parameters differing by i times the fusing angle and that they are combined

at the same spatial location. The fusing angles are exactly the same as those

found in the soliton fusing rules, i.e., 2π
3

with a rapidity difference of iπ for

the annihilation of defect and anti-defect. Similarly to (5.2), the right-hand

side of each equation in (5.4) can be viewed in terms of initially having two

separated defects, e.g., two species 1 defects with rapidities η1 = η + iπ
3

and

η2 = η − iπ
3

, such that the soliton passing through gets the right-hand side as

its overall delay factor. As noted in section 4.1.1.4, combining the defects does

not change the delay factor but the two defect solution has reduced to the one

(or zero) defect solution specified by the left-hand side. The findings of (5.4)

are no different when the species 2 soliton is considered instead of the species 1

soliton. Note that deciding which defect should be called species 1 and which

should be called species 2 (or r) is arbitrary, the choice here reflects the fact

that the species 1 defect is the primary focus of [BCZ04b, CZ09a].

5.1.2 Lagrangian level fusing rules

Whilst the delay factor analysis offers no trouble to the consistency of the

defect bootstrap, the Lagrangian description of the fusing rules does not fall

into place trivially. It is known that the species 2 defect has a type I Lagrangian

description given by (4.1) with B given by (4.6)

L = θ(−x)Lu + θ(x)Lv + δ(x)
(
−1

2
uAu̇+ uBT

1 v̇ − 1
2
vAv̇ −D(2)(u, v)

)
(5.5)

where A = 1−B1.

For the case of a
(1)
2 with a species 2 defect of rapidity η the defect potential is

D(2)(u, v) = e−η
(
e−u2−v1 + eu1+v1−v2 + e−u1+u2+v2

)
+ eη

(
e−u1+v1 + eu1−u2−v1+v2 + eu2−v2

)
(5.6)

where for simplicity the mass parameter m and the coupling β have both been

set to unity. As noted in chapter 4 this has no effect on the delay factors.

The fusing rules also give the species 2 defect in terms of species 1 defects.

The species 2 defect with rapidity η is obtained by combining two species 1

defects with rapidities η1 = η+ iπ
3

and η2 = η− iπ
3

so the Lagrangian describing
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this process is

L = θ(−x)Lu + θ(x)Lv
+ δ(x)

(
1
2
uAu̇+ uB1χ̇+ χAχ̇+ χB1v̇ + 1

2
vAv̇ −D

)
(5.7)

where the potential D ≡ D(u, χ, v), again with m = β = 1, is

D = 1
2
e−η (e−u1−χ2 + eu1−u2+χ1 + eu2−χ1+χ2 + e−χ1−v2 + eχ1−χ2+v1 + eχ2−v1+v2)

+
√

3
2
ie−η (e−χ1−v2 + eχ1−χ2+v1 + eχ2−v1+v2 − e−u1−χ2 − eu1−u2+χ1 − eu2−χ1+χ2)

+1
2
eη (e−u2+χ2 + eu1−χ1 + e−u1+u2+χ1−χ2 + e−χ2+v2 + eχ1−v1 + e−χ1+χ2+v1−v2)

+
√

3
2
ieη (e−u2+χ2 + eu1−χ1 + e−u1+u2+χ1−χ2 − e−χ2+v2 − eχ1−v1 − e−χ1+χ2+v1−v2) . (5.8)

The fusing process clearly gives a type II Lagrangian, in that the Lagrangian

contains an auxiliary field χ. Both Lagrangians for the species 2 defect (5.5)

and (5.7) with associated potentials give the same delay factors and so affect

every soliton in exactly the same way. Rather than having two Lagrangian

descriptions for the same defect it would be preferable to have (5.7) reduce to

(5.5), which requires that the potential (5.8) reduces to (5.6). In order for the

potentials to match the imaginary parts of (5.8) must vanish (assuming that

η is real), this can be achieved by the identification

χ1 = u2 + v1 − v2 χ2 = −u1 + u2 + v1 .

This identification of the auxiliary field actually reduces (5.8) to (5.6). Fur-

thermore, the kinetic terms of the defect in (5.7) also reduce to the same as

those of (5.5) under this identification of the auxiliary field. There is thus a

case to be made for defect fusing rules in the Lagrangian in a
(1)
2 provided the

auxiliary field is identified a certain way a priori, i.e., at the Lagrangian level

- eliminating the existence of an equation of motion for χ. A deeper analysis

shows that the same identification does not work a posteriori, i.e., at the level

of the equations of motion - it is not clear if there is an alternative solution in

that case.

More generally, in higher rank a
(1)
r theories the species 2 defect will necessarily

require a type II description as it was shown in [BCZ04b, CZ09a] that only
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the species 1 and species r defects will have a type I description. It is thus not

instructive at this stage to consider the Lagrangian forms of such defects and

it is better to consider the soliton delay factors.

5.2 Observations in a
(1)
3

Of the a
(1)
r affine Toda theories a

(1)
3 is of particular interest when it comes to

defect fusing rules, this is because a
(1)
3 is the lowest ranked (simply laced) the-

ory for which the fusing rules imply the existence of a previously unknown

fundamental defect - the species 2 defect. The species 2 defect can be obtained

by fusing two species 1 defects or by fusing two species 3 defects where for

a
(1)
3 the fusing angle is now 2π

h
= π

2
. Thus, for any fixed soliton of species p:

Defect fusing Delay factor

11→ 2 p
2z(θ − η) = p

1z
(
θ − (η + iπ

4
)
)
p
1z
(
θ − (η − iπ

4
)
)

33→ 2 p
2z(θ − η) = p

3z
(
θ − (η + iπ

4
)
)
p
3z
(
θ − (η − iπ

4
)
)
. (5.9)

The resulting delay factors, from (4.19) or (4.20), and the fusing (5.9), are

rather interesting

1
2z(θ − η) = 3

2z(θ − η) =
eη−θ + 1

eη−θ − 1
2
2z(θ − η) =

e2(η−θ) +
√

2eη−θ + 1

e2(η−θ) −
√

2eη−θ + 1
.

Note how the species 1 and species 3 solitons receive the same delay factor

in analogy to how these solitons interact with the species 2 soliton. The fact

that the species 1 and 3 solitons are delayed by the same amount also means

that solitons possessing c
(1)
2 symmetry in the field u to the left of the defect

will retain c
(1)
2 symmetry in the field v to the right of the defect - in other

words, this defect should be compatible with folding. The folding of defect

configurations is the subject of chapter 6.

In (5.9) it is clear that the delay factor that each soliton receives is real if

the rapidities θ and η are real. For the species 2 soliton the denominator is

always positive for real rapidities so arg (2
2z(θ − η)) = 0 for any real value of

θ−η, implying that the species 2 soliton merely picks up a time delay classically

with no change in topological charge. For the species 1 and species 3 solitons
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connection can be made to the quantum transmission matrix by considering

the high rapidity limits θ − η → ±∞: for either soliton limθ−η→∞ arg(z) = iπ

and limθ−η→−∞ arg(z) = 0 so the possibilities are that there is no change in

topological charge, or that the topological charge is shifted by two sectors so

e.g., l1 → l3, l4 → l2. This should be compared to the high rapidity limits of

the transmission matrices (7.30) and (7.31).

5.3 More general observations

5.3.1 Defect mass ratios

Another way in which defects are particle-like is the fact that they have as-

sociated to them their own energy and momentum. The on-shell condition

M2 = E2 − P 2 thus associates a mass to a defect. As shown in section 4.1.1,

in a vacuum configuration, with u and v in the same representation, the species

1 defect (and the species r defect) possesses an energy and a momentum given

by (E,P ) = (2hm
β2 cosh η,−2hm

β2 sinh η) suggesting a mass of

M1 =
2hm

|β2|
.

Thus, taking η1 = η− iπ
h

and η2 = η + iπ
h

the species 2 defect will have a mass

of

M2 =
2hm

|β2|
cos
(π
h

)
= 2 cos

(π
h

)
M1

so it is notable that the mass ratios of the defects are the same as those of

the solitons: M1

M2
= M1

M2
[OTU93a]. Examination of the appropriate defect

Lagrangian shows that in all cases the mass ratios for defects match those of

solitons. Note that in a
(1)
2 the alternative species 2 defect Lagrangian (5.7) is

seen to give the correct mass.

5.3.2 General fusing rules

In general, the species 2 defect of a
(1)
r is obtained by the fusing of two species

1 defects. The general fusing angle is 2π
h

, so the delay factor for a species 1
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soliton through a species 2 defect will be:

1
2z(θ − η) = 1

1z
(
θ − (η − iπ

h
)
)

1
1z
(
θ − (η + iπ

h
)
)
. (5.10)

In general then, (5.10) illustrates that the species 1 soliton through a species

2 defect receives the same delay factor that a species 2 soliton receives from a

species 1 defect. While clear differences emerge in the quantum T -matrix for

both of these situations, the same prefactor is found.

Defect fusing rules should give all of the fundamental defects of the theory,

not merely species 2 defects. The fusing angles are the same as soliton fusing

angles so in general a species q1 and a species q2 defect can fuse to form a

species q (mod h) defect with delay factor

p
qz(θ − η) = p

q1
z
(
θ − η + iπq2

h

)
p
q2
z
(
θ − η − iπq1

h

)
. (5.11)

When q = 0 the delay factor is 1, representing the absence of defects (or defect-

defect annihilation), it is evident then that the anti-defect of a species q1 defect

with rapidity η is a species h− q1 defect with rapidity θ ± iπ.

Note that taking p = 1 or p = r in (5.11), the set of delay factors obtained

is the same as (4.19) or (4.20) respectively. The closure of the soliton boot-

strap ensures then that the delay factors form a closed set under the fusing

(5.11), certainly when the soliton is of species 1 or r. This is strong evidence,

classically, for closure of the defect bootstrap, even though the Lagrangian de-

scription appears only to get more complicated, not less, by fusing.

This chapter does not consider any specific a
(1)
r for r > 3, however, chapter

7 considers defect fusing in the quantum a
(1)
5 theory.

5.4 Summary

This chapter begins with an illustration on how the defect fusing rules work

in a
(1)
2 . With the identification of the two type I defects of a

(1)
2 as species 1 and

species 2 fundamental defects, defect fusing explains the observed pattern of

soliton delay factors, where the fusing angles for defects are the same as the



58 5 Classical defect fusing

fusing angles for the corresponding species of solitons. The possibility of seeing

the fusing at the Lagrangian level in a
(1)
2 is also explored.

The fusing rules are then applied to a
(1)
3 to obtain the delay factors for the

species 2 defect. The species 2 defect of a
(1)
3 is notable for a number of reasons:

• It is the first new fundamental defect encountered as a result of the defect

fusing process.

• The defect is self-conjugate, in that the anti-defect is another species

2 defect with its rapidity shifted by iπ and opposite topological charge

(though the defect topological charge does not show in the delay fac-

tors). Note the analogy with the species 2 soliton of a
(1)
3 , which is self-

conjugate12.

• The defect gives the same delay factors to the species 1 soliton as it does

to the species 3 soliton. This suggests that the defect should remain

integrable after folding to c
(1)
2 . Note that the species 2 soliton analogously

interacts with the species 1 soliton in the same way as it interacts with

the species 3 soliton.

More general results of the fusing rules are then noted, which are the defect

mass ratios and how fusing affects delay factors generally in a
(1)
r .

12 Classically, the species 2 soliton of a
(1)
3 can be thought of as a sine-Gordon soliton embedded

in a
(1)
3 . In general this is true of the species n soliton of a

(1)
2n−1.
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Folding defect

affine Toda field theories

This chapter is based upon the paper Folding defect affine Toda field theories

[Rob14a]. More emphasis is given here to a
(1)
2 as the simplest example and

some calculations are given in more detail.

Chapter 5 explains how the different fundamental defects of a
(1)
r may be gener-

ated by the fusing rule idea. This chapter explains how to obtain (fundamental)

defects of other ATFTs, namely those that are obtained by folding a
(1)
r . The

identification of defect species postdates the source material for this chapter,

[Rob14a], but is used here.

For simplicity of expressions, the mass parameter m and the coupling strength

β have both been set to unity in this chapter, which considers only classical

arguments.

6.1 a
(1)
2 defects and folding

The simplest, i.e., the lowest ranked, case of folding is the (non-canonical

[KS96b]) folding a
(1)
2 → a

(2)
2 explained in section 2.2.2. As this is the simplest

folding process it suggests that a
(1)
2 is the most likely theory in which foldable

defect configurations might be found. The fact that a type II defect for a
(2)
2

is already known [CZ09b] also gives a check on the validity of possible folded

defect configurations.

59
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6.1.1 The ‘normal’ a
(2)
2 defect

This section involves constructing a defect for a
(2)
2 formed by combining two

type I defects. That an a
(2)
2 defect arises this way is hinted at in terms in

Bäcklund transformations in [CZ09b]. The way this defect is constructed gen-

eralises to all of the other theories that can be obtained from folding a
(1)
r . The

generalisation is the topic of section 6.2.

6.1.1.1 Delay factor considerations

As in chapter 5 the quantities that are most useful in this analysis are the

soliton delay factors (4.19) and (4.20) for a
(1)
2 . For the species 1 defect they are

1
1z(θ − η) =

ieη−θ + ω
1
2

ieη−θ + ω−
1
2

2
1z(θ − η) =

ieη−θ + ω

ieη−θ + ω−1
(6.1)

where ω = e
2iπ
3 . For the species 2 defect the delay factors are

1
2z(θ − η) =

ieη−θ + ω

ieη−θ + ω−1
2
2z(θ − η) =

ieη−θ + ω
1
2

ieη−θ + ω−
1
2

.

As is also noted in section 5.1.1, the two kinds of fundamental defect have

remarkably similar looking delay factors, with 1
1z(θ−η) = 2

2z(θ−η) and 2
1z(θ−

η) = 1
2z(θ − η). It follows that

1
1z(θ − η) 1

2z(θ − η) = 2
1z(θ − η) 2

2z(θ − η) (6.2)

which implies that a combined defect consisting of a species 1 defect of rapidity

η and a species 2 defect of the same rapidity η will give the same delay factors

to the species 1 and the species 2 solitons.

The significance of (6.2) lies in how the soliton of a
(2)
2 is constructed from

solitons of a
(1)
2 . As explained in section 3.1.2, the soliton of a

(2)
2 is constructed

by taking a species 1 and a species 2 soliton in a
(1)
2 , both with the same rapidity

θ, and combining them, i.e., placing them at the same spatial location (clas-

sically, where solitons have a spatial extent, this can be thought of as placing

their centres of mass at the same point) - since the solitons have the same

rapidity they remain combined and move as one entity. Folding, by identifying

the roots of a2, results in the a
(2)
2 soliton. Equation (6.2) means that the defect
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configuration described above does not spoil the symmetry of this two-soliton

a
(1)
2 solution; the solitons remain combined after passing through the defect as

the constituent solitons receive identical delay factors. This property suggests

that the defect should be foldable.

6.1.1.2 Lagrangian for the foldable defect

The previous section describes, in terms of delay factors, a defect in a
(1)
2 which

preserves the a
(2)
2 symmetry of any solitons passing through it. This defect is

formed by combining a species 1 defect and a species 2 defect, both possessing

the same rapidity η, giving the Lagrangian

L = θ(−x)Lu + θ(x)Lv

+ δ(x)

(
1

2
uAu̇+ (u− v)B1χ̇−

1

2
vAv̇ −D(u, χ, v)

)
(6.3)

where B1 is given by (4.5) and A = 1−B1. The defect potential is D(u, χ, v) =

D(1)(u, χ) +D(2)(χ, v) with

D(1)(u, χ) = e−η (e−u1−χ2 + eu1−u2+χ1 + eu2−χ1+χ2) + eη (e−u2+χ2 + eu1−χ1 + e−u1+u2+χ1−χ2)

D(2)(χ, v) = e−η (e−v1−χ2 + ev1−v2+χ1 + ev2−χ1+χ2) + eη (e−v2+χ2 + ev1−χ1 + e−v1+v2+χ1−χ2) .

It is clear that D(1) and D(2) are related simply by switching u and v. The field

χ is an auxiliary field, only existing at the defect, so in this sense the defect

under consideration is a type II defect. Consideration of delay factor arguments

suggest that χ cannot be folded (as it cannot possess the a
(2)
2 symmetry when

u and v do).

6.1.1.3 Folding to an a
(2)
2 defect

The Lagrangian (6.3) can be folded by applying the folding process of section

2.2.2 to the bulk fields u and v, but the auxiliary field should not be folded.

In components this is

u = α1u1 + α2u2 → φ =
α1 + α2

2
φ

v = α1v1 + α2v2 → ψ =
α1 + α2

2
ψ

χ = α1χ1 + α2χ2 .
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The ambiguity over the meaning of φ and ψ is handled here by henceforth

expressing everything in terms of components in this section. In components,

folding the Lagrangian (6.3) gives

L = θ(−x)Lφ + θ(x)Lψ + δ(x) ((φ− ψ)χ̇2 −D) (6.4)

where

Lφ =
1

4
φ̇φ̇− 1

4
φ′φ′ − Φ Lψ =

1

4
ψ̇ψ̇ − 1

4
ψ′ψ′ −Ψ

Φ = e−φ + 2e
φ
2 − 3 Ψ = e−ψ + 2e

ψ
2 − 3

and the defect potential is given by

D = e−η
(
e−

φ
2
−χ2 + e

φ
2
−χ1+χ2 + e−

ψ
2
−χ2 + e

ψ
2
−χ1+χ2 + 2eχ1

)
+ eη

(
e−

φ
2

+χ2 + e
φ
2
−χ1 + e−

ψ
2

+χ2 + e
ψ
2
−χ1 + 2eχ1−χ2

)
. (6.5)

Besides the bulk equations of motion for the folded a
(2)
2 theory, the Lagrangian

(6.4) also gives the defect equations

φ′ = 2χ̇2 − 2Dφ (6.6)

Dχ1 = 0 (6.7)

φ̇− ψ̇ = −Dχ2 (6.8)

ψ′ = 2χ̇2 + 2Dψ . (6.9)

The first thing to note about these equations is that (6.7) gives an algebraic

constraint, meaning that one of the components of χ can be written in terms

of the other fields. In components the algebraic constraint is

Dχ1 =
(
e−η + eηe−χ2

) (
2eχ1 − e

φ
2
−χ1+χ2 − e

ψ
2
−χ1+χ2

)
= 0

implying that

e2χ1 =
1

2
eχ2

(
e
φ
2 + e

ψ
2

)
(6.10)
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so the χ1 degree of freedom can be removed leaving the auxiliary field with just

one degree of freedom, χ2. With the auxiliary field having just one component

it is tempting to view it as an a
(2)
2 field, though there is no ‘bulk’ equation of

motion for χ to satisfy. Using (6.10) in the Lagrangian results in terms cou-

pling φ and ψ directly, which is undesirable at this stage but necessary later on

when comparing this defect to the one found by Corrigan and Zambon [CZ09b].

The defect potential (6.5) splits into positive and negative helicity parts: the

negative helicity parts all have a factor of e−η and collectively will be denoted

D−; the positive helicity parts all have a factor of eη and collectively will be

denoted D+. With this identification it is seen that

D−χ2
= 2D−φ + 2D−ψ (6.11)

D+
χ2

= −2D+
φ − 2D+

ψ (6.12)

and so using (6.11) and (6.12) the defect equation (6.8) becomes

φ̇+ 2D−φ − 2D+
φ = ψ̇ − 2D−ψ + 2D+

ψ . (6.13)

6.1.1.4 Energy conservation

It is expected that the energy of the system will be modified in the presence

of a defect, as explained in section 4.1.1. For the case of a
(2)
2 (in components)

the bulk energy E is must satisfy

Ė =
1

2
φ̇φ′ − 1

2
ψ̇ψ′ .

Using (6.6), (6.9) and then (6.8) gives

Ė =
1

2
φ̇φ′ − 1

2
ψ̇ψ′

= −φ̇Dφ − ψ̇Dψ − χ̇1Dχ1 − χ̇2Dχ2

= −Ḋ

with zero being added in the form of −χ̇1Dχ1 . Thus E + D is conserved,

meaning that the defect has contributed D to the energy of the system. It’s

no surprise that a modified energy is conserved, given the nature of the kinetic
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terms of the defect part of the Lagrangian - performing a Legendre transforma-

tion it is clear that these terms are absent from the Hamiltonian of the system

and that the only contribution from the defect is the potential D.

6.1.1.5 Momentum conservation

When considered in components, the a
(2)
2 defect modifies the bulk momentum

P by

Ṗ =
1

4

(
φ̇φ̇− ψ̇ψ̇ + φ′φ′ − ψ′ψ′

)
− Φ + Ψ . (6.14)

Squaring (6.6) and (6.9) give

1

4
(φ′φ′ − ψ′ψ′) = −2χ̇2 (Dφ +Dψ) +D2

φ −D2
ψ

= −χ̇2

(
D−χ2
−D+

χ2

)
− χ̇1

(
D−χ1
−D+

χ1

)
+D2

φ −D2
ψ

by (6.11), (6.12) and the fact that D+
χ1
− D−χ1

= 0. Similarly, squaring and

equating both sides of (6.13) results in

1

4

(
φ̇φ̇− ψ̇ψ̇

)
= −φ̇

(
D−φ −D

+
φ

)
− ψ̇

(
D−ψ −D

+
ψ

)
+
(
D−ψ −D

+
ψ

)2 −
(
D−φ −D

+
φ

)2

and thus the momentum conservation equation reduces to

Ṗ = −
(
Ḋ− − Ḋ+

)
+ 4D−φD

+
φ − 4D−ψD

+
ψ − Φ + Ψ

Since

4D−φD
+
φ − 4D−ψD

+
ψ = e−φ − e−ψ +

(
eφ − eψ

)
e−2χ1+χ2

= e−φ − e−ψ +
(
eφ − eψ

) 2

e
φ
2 + e

ψ
2

= e−φ + 2e
φ
2 − e−ψ − 2e

ψ
2

= Φ−Ψ

it is clear that there is a conserved momentum of P +D− −D+, as expected.

It has been shown that the defect described by the Lagrangian (6.4) is an in-

tegrable defect in a
(2)
2 . The delay factors picked up by solitons passing through
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the defect preserve the a
(2)
2 solitons, while energy (fairly trivially) and momen-

tum are modified by the defect but ultimately conserved. The more general

approach in section 6.2 encompasses this defect, but this is a useful illustration

as the algebra is of a low enough rank to consider things explicitly.

6.1.2 Further a
(2)
2 analysis

Because a
(2)
2 is of low rank it is more amenable to further analysis than the

higher rank folded theories.

6.1.2.1 Comparison to the known a
(2)
2 defect

If the a
(2)
2 defect Lagrangian (6.4) is equivalent to the a

(2)
2 type II defect of

Corrigan and Zambon [CZ09b, CZ11], then integrability follows. Both the

papers [CZ09b] and [CZ11] offer differing Lagrangian descriptions of the a
(2)
2

defect, but both are taken to be equivalent. Here (6.4) is shown to be equivalent

to the Lagrangian in [CZ09b], viz.

L = θ(−x)Lu + θ(x)Lv + δ(x)
(
uv̇ − 2(u− v)λ̇−D(u, v, λ)

)
(6.15)

where

D(u, v, λ) =
1

σ

(
eu+v−2λ + 2eλ(e−u + e−v)

)
+ σ

(
4e−λ + e2λ +

1

2
e2λ(eu−v + ev−u)

)
(6.16)

and the bulk Lagrangians are given by

Lu =
1

2
u̇u̇− 1

2
u′u′ −

(
e2u + 2e−u − 3

)
Lv =

1

2
v̇v̇ − 1

2
v′v′ −

(
e2v + 2e−v − 3

)
.

In order for (6.4) to match (6.15), the bulk Lagrangians must first match up,

requiring:

φ = −2u ψ = −2v .

After making this identification the kinetic terms in the bulk Lagrangian are
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a factor of 2 larger than what is sought, but this is remedied later by scaling

the action. The next identification is the auxiliary field,

χ2 = 2λ− u+v
2

+ f

where f = f(u−v) comes from the gauge symmetry evident in the Lagrangians

(6.4) and (6.15). The identification for f that is required is

ef =
1

2

(
e
u−v
2 + e

v−u
2

)
.

This identification requires a very careful analysis of the respective defect po-

tentials in the Lagrangian, bearing in mind the algebraic constraint (6.10).

The last identification in comparing (6.5) to (6.16) is the identification

eη =
σ√
2
.

At this stage no terms in the Lagrangian apart from the bulk potentials have

the correct scaling and what these identifications have given is

(6.4)→ L = θ(−x)L̃u + θ(x)L̃v + δ(x)
(

2uv̇ − 4(u− v)λ̇−
√

2D(u, v, λ)
)

(6.17)

where

L̃u = u̇u̇− u′u′ −
(
e2u + 2e−u − 3

)
L̃u = v̇v̇ − v′v′ −

(
e2v + 2e−v − 3

)
.

The kinetic terms of (6.17) in the bulk and at the defect are a factor of 2 too

large, which can be remedied by scaling the action S → 1
2
S, which does not

affect the dynamics. Upon this rescaling the bulk potential terms are a factor

of 2 too small and the defect potential is a factor of
√

2 too small - both of

these issues are corrected by taking an isotropic spacetime rescaling

x→
√

2x t→
√

2t .

The result of this process is (6.4) → (6.15). The type II defect a
(2)
2 does
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indeed arise from this process of combining defects and folding, but this fact

is obscured by the approach in the original paper [CZ09b].

6.1.2.2 Further a
(2)
2 defects

One may wonder whether it is possible to construct further new integrable

defects in a
(2)
2 by combining more than two a

(1)
2 defects and folding. Since the

basic defect of a
(2)
2 has a type II Lagrangian, it might be expected that any

further a
(2)
2 defects arise from the combination of N of these - so have type

2N Lagrangians for N ∈ N (‘type 2N ’ here means in the sense of the footnote

of section 4.1.1.4, as these defects ultimately stem from combining 2N type I

defects in a
(1)
2 ). Viewing the species 1 defect as associated to the fundamental

3 representation of a2 and the species 2 defect as being associated to the con-

jugate fundamental 3̄ representation of a2 (or vice-versa), the basic a
(2)
2 defect

arises from folding a ‘mesonic’ defect of a
(1)
2 .

This section examines the possibility of taking a ‘baryonic’ type III defect

in a
(1)
2 consisting of three species 1 defects combined and folding to get an a

(2)
2

defect. This defect is constructed by combining three species 1 defects, with

differing rapidities η1, η2 and η3. The combination of these defects gives the

Lagrangian

L = θ(−x)Lu + θ(x)Lv

+ δ(x)

(
1

2
uAu̇+ uBχ̇+ χAχ̇+ χBρ̇+ ρAρ̇+ ρBv̇ +

1

2
vAv̇ −D

)
so χ and ρ are thus auxiliary fields. The potential D is formed from the sum

of three individual species 1 potentials of the form (4.2) with B given by (4.5),

so D = D(1)(u, χ)|η1 + D(1)(χ, ρ)|η2 + D(1)(ρ, v)|η3 , where the superscript (1)

denotes that the potential is that of a species 1 defect with given arguments.

The expectation may be that this defect is not compatible with folding - if

the basic a
(2)
2 defect has a Lagrangian of type II then there should not be any

type III defects in a
(2)
2 . Nonetheless, the choice is made to fold the bulk fields

u → φ and v → ψ. It is clear that folded fields will have no self-coupling

terms at the defect, as uAu̇ folds to some multiple of φφ̇, which is a total time

derivative and hence can be scaled out of the action under the reasonable as-

sumption that φ does not vary at temporal infinity. The situation is analogous
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with vAv̇. The folded Lagrangian then takes the form

L = θ(−x)Lφ + θ(x)Lψ

+ δ(x)
(
φBχ̇+ χAχ̇+ χBρ̇+ ρAρ̇+ ρBψ̇ −D

)
. (6.18)

The folded Lagrangian (6.18) can be used to get defect equations in vector

form, the Euler–Lagrange equations at x = 0 being

φ′ = pBχ̇−Dφ (6.19)

BT φ̇ = 2Aχ̇+Bρ̇−Dχ (6.20)

BT χ̇ = 2Aρ̇+Bψ̇ −Dρ (6.21)

ψ′ = pB
T ρ̇+Dψ . (6.22)

The subscript p in (6.19) and (6.22) means that the expression only makes sense

in component form when projected onto the folded root space (this is because

the folding has been done at the Lagrangian level, in an a priori manner,

see section 4.1.3). The aim is to use (6.19)-(6.22) to examine the momentum

conservation of the defect, but this results in an expression in the momentum

conservation argument of pχ̇B
T
pBχ̇− pρ̇BpB

T ρ̇ which is non-zero (unlike the

case in sections 6.1.1.5 or 6.2.5) and in general is not clear in meaning. The only

approach then is to take the defect conditions in component form, resulting in

(α1 + α2) · (6.19) −→ φ′ = 2χ̇2 − 2Dφ (6.23)

α1 · (6.20) −→ 0 = −2χ̇2 + 2ρ̇1 −Dχ1 (6.24)

α2 · (6.20) −→ φ̇ = 2χ̇1 − 2ρ̇1 + 2ρ̇2 −Dχ2 (6.25)

α1 · (6.21) −→ ψ̇ = 2χ̇1 − 2χ̇2 + 2ρ̇2 +Dρ1 (6.26)

α2 · (6.21) −→ 0 = 2χ̇2 − 2ρ̇1 +Dρ2 (6.27)

(α1 + α2) · (6.22) −→ ψ′ = 2ρ̇1 + 2Dψ (6.28)

so it becomes immediate from (6.24) and (6.27) that there is an algebraic

constraint

2ρ̇1 − 2χ̇2 = Dχ1 = Dρ2 (6.29)
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which is something that is obscure when the equations are left in vector form.

Note also that (6.25) and (6.26) give

2 (χ̇1 + ρ̇2) = φ̇+ 2ρ̇1 +Dχ2 = ψ̇ + 2χ̇2 −Dρ1 . (6.30)

The momentum conservation argument relies upon the specific form of the

defect potential D, which is

D = e−η1
(
e−

φ
2
−χ2 + eχ1 + e

φ
2
−χ1+χ2

)
+ e−η2

(
e−χ1−ρ2 + eχ1−χ2+ρ1 + eχ2−ρ1+ρ2

)
+ e−η3

(
e−ρ1−

ψ
2 + eρ1−ρ2+ψ

2 + eρ2
)

+ eη1
(
e−

φ
2

+χ2 + e
φ
2
−χ1 + eχ1−χ2

)
+ eη2

(
e−χ2+ρ2 + eχ1−ρ1 + e−χ1+χ2+ρ1−ρ2

)
+ eη3

(
e−ρ2+ψ

2 + eρ1−
ψ
2 + e−ρ1+ρ2

)
=

9∑
j=1

mj +
9∑
j=1

nj (6.31)

where the first nine terms are of negative helicity and labelled by {mi}; the last

nine terms are of positive helicity and are labelled by {ni}. Close examination

of (6.31) reveals two useful identities

0 = 2D−φ + 2D−ψ −D
−
χ2
−D−ρ1 (6.32)

0 = 2D+
φ + 2D+

ψ +D+
χ1

+D+
χ2

+D+
ρ1

+D+
ρ2
. (6.33)

Momentum conservation

It is expected that the defect (6.18) is energy conserving, as it does not break

the time translation symmetry of the system. It is easily shown that there is a

conserved energy in this case. It is not really expected that momentum should

be conserved but the argument is developed here anyway. If momentum is

conserved then two things that should hold are:

• The expectation is that if momentum is conserved then, as is the case in

section 6.1.1.5, the conserved quantity will be P +D− −D+, so the aim

is to show that Ṗ = −
(
Ḋ− − Ḋ+

)
.

• The momentum is a difference between positive helicity terms and nega-

tive helicity terms so it will not be well defined if the algebraic constraints
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mix helicities, thus (6.29) gives

D−χ1
= D−ρ2 (6.34)

D+
χ1

= D+
ρ2
. (6.35)

It is not obvious that there should be any choice of rapidities {η1, η2, η3}
that allows this to happen.

The equation of momentum conservation in component form is the same as

(6.14),

Ṗ =
1

4

(
φ̇φ̇− ψ̇ψ̇ + φ′φ′ − ψ′ψ′

)
− Φ + Ψ |x=0 .

From squaring (6.23), (6.25), (6.26) and (6.28) in turn, it is seen that

1

4

(
φ′φ′ − ψ′ψ′ + φ̇φ̇− ψ̇ψ̇

)
=

1

4

(
4D2

φ − 4D2
ψ +D2

χ2
−D2

ρ1

)
+ 2χ̇1 (χ̇2 − ρ̇1)

+ 2ρ̇2 (χ̇2 − ρ̇1)− (χ̇1 + ρ̇2) (Dχ2 +Dρ1)

− χ̇2 (2Dφ −Dρ1)− ρ̇1 (2Dψ −Dχ2)

=
1

4

(
4D2

φ − 4D2
ψ +D2

χ2
−D2

ρ1

)
− χ̇1Dχ1 − ρ̇2Dρ2

− (χ̇1 + ρ̇2) (Dχ2 +Dρ1)

− χ̇2 (2Dφ −Dρ1)− ρ̇1 (2Dψ −Dχ2) .

The terms that have a helicity of −1 can be rearranged using (6.30) and (6.32)

and the terms with positive helicity may be rearranged using (6.29), (6.30) and

(6.33); the result is

1

4

(
φ′φ′ − ψ′ψ′ + φ̇φ̇− ψ̇ψ̇

)
= −

(
Ḋ− − Ḋ+

)
+

1

4

(
4D2

φ − 4D2
ψ +D2

χ2
−D2

ρ1

)
+D+

φ (Dχ1 +Dχ2)−D+
ψ (Dρ1 +Dρ2)

−D−φDχ2 +D−ψDρ1

+
1

2
D+
χ2
Dχ1 −

1

2
D+
ρ1
Dρ2 . (6.36)

Clearly then there are many terms quadratic in the gradients of D which are
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required to give the expected Φ−Ψ. There are no rapidity factors in either Φ

or Ψ so the terms of spin −2 and spin +2 in (6.36) must vanish.

The spin −2 terms are

D−φD
−
φ −D

−
ψD

−
ψ −D

−
φD

−
χ2

+D−ψD
−
ρ1

+
1

4
D−χ2

D−χ2
− 1

4
D−ρ1D

−
ρ1

which can be shown to vanish with repeated use of (6.32). Similarly the spin

+2 terms are

D+
φD

+
φ −D

+
ψD

+
ψ +D+

φD
+
χ1

+D+
φD

+
χ2
−D+

ψD
+
ρ1
−D+

ψD
+
ρ2

+
1

2
D+
χ1
D+
χ2
− 1

2
D+
ρ1
D+
ρ2

+
1

4
D+
χ2
D+
χ2
− 1

4
D+
ρ1
D+
ρ1

which can be shown to vanish by repeated use of (6.33) but only if (6.35) holds.

The remaining terms, which are spinless, are

D−φ
(
2D+

φ −D
+
χ2

)
+
(
D−χ1

+D−χ2

)(
D+
φ +

1

2
D+
χ2

)
−D−ψ

(
2D+

ψ −D
+
ρ1

)
−
(
D−ρ1 +D−ρ2

)(
D+
ψ +

1

2
D+
ρ1

)
=

1

2
(−m1 +m3) (−2n1 + n2 + n3 + n4 − n6)

+
1

2
(−m1 +m2 −m4 +m6) (n2 − n3 − n4 + n6)

+
1

2
(m7 −m8) (n5 − n6 + n7 − 2n8 + n9)

+
1

2
(m4 −m5 +m7 −m9) (−n5 + n6 + n7 − n9) (6.37)

where {mi} and {ni} are defined as in (6.31).

A long-winded way of writing the differences of the bulk potential is

Φ−Ψ = m1n1 +m2n2 +m3n3 −m1n2 −m2n3 −m3n1

+m4n4 +m5n5 +m6n6 −m4n5 −m5n6 −m6n4

+m7n7 +m8n8 +m9n9 −m7n8 −m8n9 −m9n7 . (6.38)
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Finally, the algebraic constraints (6.34) and (6.35) become

D−χ1
= D−ρ2 =⇒ m2 −m3 +m5 −m6 +m8 −m9 = 0 (6.39)

D+
χ1

= D+
ρ2

=⇒ n2 − n3 + n4 − n5 + n7 − n9 = 0 . (6.40)

By repeatedly applying (6.39) and (6.40), it can be shown that (6.37) does

indeed reduce to (6.38). The key to this calculation is the fact that m1, m4,

m7, n1, n6 and n8 are all absent from the algebraic constraints (6.39) and (6.40).

The result, which is unexpected, is that indeed P + D− − D+ is conserved

after folding to a
(2)
2 provided that the algebraic constraints (6.29) do not mix

helicities. It is unclear looking at the components whether or not there exist

a choice of rapidities {η1, η2, η3} for which this is true. The fixing of rapidities

is something which requires examination of the soliton delay factors.

Delay factors

As explained in section 4.1.1.4, the combining of defects does not affect the

delay factor that a soliton picks up when passed through the defect system, so

the combined defect here gives a delay factor which is the product of the delay

factors of the individual species 1 defect.

The single soliton of a
(2)
2 can be represented by the tau functions

τφj = 1 + ωjE + ω2jE + AE2

with ω = e
2πi
3 and interaction parameter A = cos2

(
π
3

)
= 1

4
.

In passing through three defects, with rapidities η1, η2 and η3 the field ψ

must have the tau functions

τψj = 1 + 1
1z(θ − η1) 1

1z(θ − η2) 1
1z(θ − η3)ωjE + 2

1z(θ − η1) 2
1z(θ − η2) 2

1z(θ − η3)ω2jE

+A 1
1z(θ − η1) 1

1z(θ − η2) 1
1z(θ − η3) 2

1z(θ − η1) 2
1z(θ − η2) 2

1z(θ − η3)E2 .

The symmetry requirement for ψ to be an a
(2)
2 soliton is τψ1 = τψ2 so the
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requirement for integrability after folding is

1
1z(θ − η1) 1

1z(θ − η2) 1
1z(θ − η3) = 2

1z(θ − η1) 2
1z(θ − η2) 2

1z(θ − η3) . (6.41)

Using the expressions for the delay factors given in (6.1) the two conditions

required for (6.41) to hold are

e2η1 + e2η2 + e2η3 = 0

e2η1+2η2 + e2η1+2η3 + e2η2+2η3 = 0 .

By fixing one of the rapidities, say η3 = η and omitting solutions which can be

obtained by switching η1 ↔ η2 the possibilities are

η1 = η +
2πi

3
η2 = η − 2πi

3
(6.42)

η1 = η +
πi

3
η2 = η − πi

3
(6.43)

η1 = η +
πi

3
η2 = η − 2πi

3
(6.44)

η1 = η − πi

3
η2 = η +

2πi

3
. (6.45)

These results clarify why there can be a type III defect in a
(2)
2 , the reason

is that defect fusing is occurring, with either the type II defect or the triv-

ial defect recovered. The combined defect is formed from three defects which

will be referred to as defect 1 (with rapidity η1), defect 2 (η2) and defect 3 (η3).

The first situation, (6.42), is one where the overall delay factor is trivial, i.e.,
1
1z(θ − η1) 1

1z(θ − η2) 1
1z(θ − η3) = 2

1z(θ − η1) 2
1z(θ − η2) 2

1z(θ − η3) = 1. In that

case two of the species 1 defects fuse to give a species 2 defect which has a

rapidity difference of iπ from the third species 1 defect - hence there is annihi-

lation of a defect and an anti-defect. In the second case, (6.43), defects 1 and

2 fuse to form a species 2 defect with rapidity η, which combined with defect

3 forms the same defect as that in section 6.1.1, only with a more complicated

looking Lagrangian. The third and fourth possibilities, (6.44) and (6.45), are

similar and have defects 2 and 3 fusing initially. One of the conclusions of this

analysis is that the number of auxiliary fields, and hence ‘type’ of the defect,
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is not necessarily a useful way the classify the defect because there may be

some redundancy in the Lagrangian description - a better way of classifying

the defects comes from identifying the basic defects and applying the defect

fusing bootstrap.

6.2 a
(1)
r defects and folding

The idea that there are various species of defect, which has close analogy to the

solitons, strongly suggests the possibility of constructing defect systems that

can be folded just as solitons for the reduced theories c
(1)
n [MM93, McG94b],

d
(2)
n and a

(2)
2n (see section 2.2) can be constructed by folding certain a

(1)
r soliton

configurations. In each of c
(1)
n , d

(2)
n and a

(2)
2n the basic soliton (which may be

called a species 1 soliton of the folded theory) is constructed by taking a species

1 and a species r soliton of a
(1)
r with the same rapidity θ and combining them,

i.e., placing their centres of mass at the same location. In analogy it should

follow that combining a species 1 and a species r defect, both with the same

rapidity parameter η, should result in a foldable defect configuration (indeed

the species 1 defect of the folded theory) - this is most fortunate since the

species 1 and species r defects are already known [BCZ04b]. Compelling as

this idea may be, it had not been considered when [Rob14a] was originally

written, so the construction of folded defects actually informed the identifica-

tion of different species of defects and of defect fusing rules; rather than the

other way around.

In this section defects are constructed by folding a
(1)
r defect configurations for

general r ≥ 2. This approach includes the a
(2)
2 defect of section 6.1.1. There

are two type I defects (the species 1 and species r defects) first described in

[BCZ04b] and neither of them possess the symmetry required for folding, how-

ever, the species 1 and species r defects are seen to be conjugate to each other

in how they affect solitons transmitted through them - this is explained in

section 6.2.3.

6.2.1 Combined defect of a
(1)
r

Consider a system with a species 1 defect at x = a < 0 and a species r defect

at x = 0. The defect at x = a is given the rapidity parameter η1, though

the defect is stationary, and the defect at x = 0 is given the rapidity η2. The
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Lagrange density describing this system may be written as

L = θ(a− x)Lu + θ(x− a)θ(−x)Lχ + θ(x)Lv
+ δ(a− x)

(
1
2
uAu̇+ uB1χ̇+ 1

2
χAχ̇−D(1)(u, χ)

)
+ δ(x)

(
−1

2
χAχ̇+ χBT

1 v̇ − 1
2
vAv̇ −D(r)(χ, v)

)
. (6.46)

where A = 1 − B1 and B1 + BT
1 = 2, B1 is given by (4.5); in what follows B

will be used instead on B1, as it is clear that it refers to the quantity of (4.5).

The Lagrange density Lu is in the form of (2.1), Lv and Lχ similarly. The

defect potentials are then given by

D(1) = D(1)− +D(1)+ =
r∑
j=0

fj +
r∑
j=0

gj

D(r) = D(r)− +D(r)+ =
r∑
j=0

f̃j +
r∑
j=0

g̃j

where the terms with fi and those with f̃i possess negative helicity and those

with gi or g̃i are of positive helicity:

fi = e−η1e
1
2αi(BT1 u+B1χ)

gi = eη1e
1
2αiB1(u−χ)

f̃i = e−η2e
1
2αi(BT1 v+B1χ)

g̃i = eη2e
1
2αiB1(v−χ)

. (6.47)

The defects may be brought together, or ‘combined’, at the Lagrangian level by

taking a→ 0 in (6.46) (c.f., the sine-Gordon case in [CZ09b, CZ10]) resulting

in

L = θ(−x)Lu + θ(x)Lv

+ δ(x)

(
1

2
uAu̇+ uBχ̇− vBχ̇− 1

2
vAv̇ −D(1) −D(r)

)
. (6.48)

There no longer exists any bulk for the field χ; it is effectively trapped in the

defect and hence may be referred to as an ‘auxiliary field’. Note that in order

for (6.48) to match the type II ansatz of [CZ11] the auxiliary field must be

redefined to account for the presence of self-coupling defect terms for the bulk

fields u and v.
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The Euler–Lagrange equations of (6.48) give now the bulk equations for u

and v as well as the defect conditions at x = 0

u′ = Au̇+Bχ̇−Du (6.49)

v′ = Av̇ +Bχ̇+Dv (6.50)

BT u̇+D(1)
χ = BT v̇ −D(r)

χ (6.51)

where D without a superscript refers to the combined defect potential D =

D(1) +D(r). The combined defect thus gives three vector equations as the de-

fect conditions while the uncombined system of (6.46) has four; however, the

delay factors received by solitons passing through the defect are unchanged by

the combining process.

A modified (relative to the case of having no defects) conserved energy is as-

sociated the combined defect given by (6.48). The conserved energy is merely

the Hamiltonian of the combined defect system and is given by E +D where

E =

∫ 0

−∞

1

2
u̇ · u̇+

1

2
u′ · u′ + U dx+

∫ ∞
0

1

2
v̇ · v̇ +

1

2
v′ · v′ + V dx

is the bulk contribution to the energy and D is the defect contribution.

It is less obvious that if two defects individually conserve momentum, the

species 1 and species r defects [CZ09a], then combining them will conserve

momentum overall, but it is easily shown. The bulk contribution to the mo-

mentum is given by the integral of T 01 of the stress tensor derived from (6.48),

so

P =

∫ 0

−∞
u̇ · u′ dx+

∫ ∞
0

v̇ · v′ dx .

Taking the time derivative and using the bulk equations of motion gives

Ṗ =
1

2
u̇ · u̇+

1

2
u′ · u′ − U − 1

2
v̇ · v̇ − 1

2
v′ · v′ + V |x=0
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so long as the fields and potentials are constant (in vacuum) at spatial infinity.

Using the defect conditions (6.49), (6.50) and (6.51) one can then show that

Ṗ = −
(
Ḋ− − Ḋ+

)
(6.52)

and thus that P +D− −D+ is a conserved quantity.

Note that an analogous analysis holds if in the first instance in (6.46) the

species 1 defect is taken to be to the right of the species r defect. This perhaps

should come as no surprise as one may appeal to commutativity given that the

defect conditions describe Bäcklund transformations [BCZ04b].

6.2.2 Folded defects

As is noted in chapter 3, the basic solitons of the theories that come from fold-

ing a
(1)
r are formed from combining a species 1 and a species r soliton which

possess the same momentum θ. This thesis is an attempt to establish the exis-

tence of various species of defect, at least in a
(1)
r and its reduced theories, which

is analogous to the case of the solitons. As such, it should not be surprising

that combining a species 1 and a species r defect, as in (6.48), gives a defect

which is compatible with folding, at least if the defect rapidities are identified

correctly.

In this section defects are constructed for folded a
(1)
r systems. Two methods are

used to support the hypothesis that these are integrable defects in the folded

theories: soliton delay factor matching and momentum conservation. In the

first case, the soliton delay matching, it is shown how solitons preserve their

forms when passed through the folded defect - this suggests that there should

be an infinite number of conserved charges in the system. In the second case,

showing that the one particular charge, the momentum, is conserved is also a

very strong indication of integrability: this belief is supported by the results of

[CZ09a] which show that for type I a
(1)
r defects, the conservation of momentum

implies all of the conditions for classical integrability found by the Lax pair

approach in [BCZ04b].

The defect in the folded theory is obtained by folding the bulk fields u→ φ and

v → ψ in (6.48). As was the case in a
(2)
2 in section 6.1.1 (which is an example

of this general process), the auxiliary field χ cannot be folded, as analysis of
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the soliton delay factors will reveal.

One simplification that occurs in folding the Lagrangian (6.48) is that the self-

coupling kinetic terms at the defect vanish because α′iBα
′
j = α′i · α′j. Hence,

since A = 1−B,

φAφ̇ = ψAψ̇ = 0

where the folding is denoted by u → φ and v → ψ. This means that the

Lagrangian (6.48) folds to

L = θ(−x)Lφ + θ(x)Lψ
+ δ(x)

(
φBχ̇− ψBχ̇−D(1)(φ, χ)−D(2)(χ, ψ)

)
(6.53)

which, unlike (6.48), fits the type II framework of [CZ11] without requiring

redefinition of χ.

In vector form the Euler–Lagrange equations are thus

φ′ = pBχ̇−Dφ (6.54)

ψ′ = pBχ̇+Dψ (6.55)

BT φ̇+D(1)
χ = BT ψ̇ −D(2)

χ . (6.56)

As in section 6.1.2.2, the subscript p found in (6.54) and (6.55) in front of Bχ̇

denotes ‘projected’ and indicates that equations (6.54) and (6.55) only make

sense when projected onto the folded root space. Unlike in the case of the three

combined species 1 defects in section 6.1.2.2, this turns out not to require any

careful component form consideration in the momentum conservation argu-

ment.

Examination of the components of (6.56) gives the algebraic constraints

Dχi +Dχh−1−i = 0 for c(1)
n and a

(2)
2n

Or

Dχi +Dχh−i = 0 for d(2)
n
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which, using D−χ =
∑

j
1
2
BTαj

(
fj + f̃j

)
and D+

χ = −
∑

j
1
2
BTαj (gj + g̃j) may

be put in the form

fi − fh−i + f̃i − f̃h−i − gi + gh−i − g̃i + g̃h−i = 0 for c(1)
n and a

(2)
2n (6.57)

fi − fh+1−i + f̃i − f̃h+1−i − gi + gh+1−i − g̃i + g̃h+1−i = 0 for d(2)
n

where {fi}, etc., have the same definition as in (6.47) but with u and v replaced

by their folded equivalents φ and ψ.

6.2.3 Delay factors

Consider passing a soliton through the a
(1)
r defect specified by (6.48). The

soliton of interest is any of the fundamental solitons of the folded theory, given

by (3.13), because the aim here is to show that this soliton retains its form

after passing through the defect. Thus the soliton solution on the left of the

defect, corresponding to a species p soliton of the folded theory, is given by

τuj = 1 +
(
ωpj + ωp(h−j)

)
Ep + AE2

p for folding to c(1)
n or a

(2)
2n (6.58)

τuj = 1 +
(
ωpj + ωp(h+1−j))Ep + AωpE2

p for folding to d(2)
n

where the a
(1)
2n theories may fold to the corresponding a

(2)
2n [KS96b] and the a

(1)
2n−1

theories may fold to either c
(1)
n or d

(2)
n [KS96b]. Further reduction may be pos-

sible but does not give any new theories [Sas92] and only gives folded defects

with redundancies in their Lagrangian description. In every case A = cos2
(
πp
h

)
.

It will be henceforth assumed that the folding in question is to c
(1)
n or a

(2)
2n - the

d
(2)
n solitons, as well as quantities involved in the momentum conservation such

as the algebraic constraints (6.57), can be recovered by taking h→ h+1 (when

h = 2n) and A→ Aωp.

Evolving the soliton given by (6.58) through the defect given by (6.48) us-

ing the defect equations (6.49), (6.50) and (6.51) gives the soliton delay factors

resulting in

τχj = 1 +
(
ωpjzp + ωp(h−j)zh−p

)
Ep + Azpzh−pE

2
p

τ vj = 1 +
(
ωpjzpz̃p + ωp(h−j)zh−pz̃h−p

)
Ep + Azpzh−pz̃pz̃h−pE

2
p (6.59)
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where the delay factors are

zp = p
1z(θ − η1) = ieη1−θ+ω

p
2

ieη1−θ+ω
− p2

zh−p = h−p
1z(θ − η1) = ieη1−θ−ω

− p2

ieη1−θ−ω
p
2

z̃p = p
rz(θ − η2) = ieη2−θ−ω

− p2

ieη2−θ−ω
p
2

z̃h−p = h−p
rz(θ − η2) = ieη2−θ+ω

p
2

ieη2−θ+ω
− p2

. (6.60)

It is clear that u may be folded as (6.58) represents a folded soliton, this is

the choice made initially. Equally clear is that in general τχj 6= τχh−j, since

zp 6= zh−p except in the single case that p = n in a
(1)
2n−1, so it is not possible to

fold the auxiliary field χ.

The aim of this soliton transmission argument is to find the circumstances un-

der which the transmitted soliton, v, has the folding symmetry, so τ vj = τ vh−j.

This is enough to show that the folded defect is able to preserve the forms of

folded solitons - giving a very strong condition which may imply integrability.

The reason for this claim is that any configuration that satisfies (6.49), (6.50)

and (6.51), with the bulk fields u and v possessing the folding symmetry, also

satisfies the folded defect conditions (6.54), (6.55) and (6.56) - see section 4.1.3.

This is a key point: the delay factors are unaffected by the folding process, un-

der the assumption that soliton solutions preserve their form. The requirement

then is that τ vj = τ vh−j and so it must be the case that

zpz̃p = zh−pz̃h−p

in which case every z may be absorbed into the definition of Ep as a time delay

and phase shift. Note that this condition is the same condition as having the

a
(1)
r single soliton species p and species h− p solutions receiving the same delay

factor through the combined defect, as is the approach in section 6.1.1.1 for

a
(2)
2 . Thus, the condition for the soliton on the right of the defect to be in the

folded theory is

0 = zpz̃p − zh−pz̃h−p =
1

denom.

[
e−2θ

(
ωp − ω−p

) (
e2η2 − e2η1

)]
where ‘denom.’ is the common denominator obtained by multiplying all of the

denominators of (6.60) together.

Thus, the folded defect represented by the Lagrangian (6.53) is only likely
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to be integrable if η2 = η1 or η2 = η1 ± iπ, as this is what is required for

the soliton solution (6.59) to be compatible with folding. The two different

possibilities mean:

• When η2 = η1 ± iπ it is the case that zpz̃p = zh−pz̃h−p = 1. i.e., all of

the solitons receive a trivial time delay. Indeed in this case if ψ = φ is

imposed then the defect part of the Lagrangian (6.53) vanishes - so there

is no defect there. The interpretation of this is that the second defect is

the anti-defect of the first - combining them causes annihilation. Indeed

this is what is expected from the fusing rules.

• When η2 = η1 there is a delay factor (different for each p) so this should

represent a bona fide defect which does not destroy the form of the soli-

tons (a strong constraint, suggesting that the defect is integrable). Note

that if θ and η1 = η2 are real then the delay factor is real too - there

is a non-trivial time delay or advance and no change of topological charge.

6.2.4 Energy conservation

The fact that energy is still conserved in the presence of a defect would appear

to be a necessary condition for integrability, but does not appear to be a

very strong condition. This is because it is quite easy to construct an energy

conserving defect which is not integrable (for example, by removing the kinetic

terms of the integrable defect). In a sense it is quite trivial to show that

energy is conserved for the defect described by (6.53). Performing a Legendre

transformation on (6.53) shows that E + D is a conserved quantity, where E

is the bulk energy given by

E =

∫ 0

−∞

1
2
φ̇ · φ̇+ 1

2
φ′ · φ′ + Φ dx+

∫ ∞
0

1
2
ψ̇ · ψ̇ + 1

2
ψ′ · ψ′ + Ψ dx .

For completeness, energy conservation is shown here using the approach from

chapter 4. By making use of the bulk equations of motion and assuming that

the field configurations approach vacua at spatial infinity, it is seen that

Ė = φ̇ · φ′ − ψ̇ · ψ′ |x=0

= φ̇Bχ̇− φ̇ ·Dφ − ψ̇Bχ̇− ψ̇ ·Dψ

= −φ̇ ·Dφ − χ̇ ·Dχ − ψ̇ ·Dψ = −Ḋ
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where in going from the first to the second line (6.54) and (6.55) have been

applied, then in going to the third line (6.56) has been rearranged and applied.

The result is that d
dt

(E +D) = 0, so indeed E +D is conserved.

6.2.5 Momentum conservation

The possibility of having a conserved momentum for the folded defect (6.53)

is called into question by the fact that the algebraic constraints (6.57) may

mix helicities. Since the momentum is difference between terms of definite

helicity, any helicity mixing constraint would appear to make the momentum

ill-defined. The algebraic constraints therefore warrant further investigation.

Explicitly (for c
(1)
n and for a

(2)
2n) the negative helicity terms appearing in (6.57)

are

fi − fh−i + f̃i − f̃h−i = e−η1
(
eui−ui+1+χi−χi−1 − eui−ui−1+χh−i−χh−1−i

)
+ e−η2

(
evi−vi+1+χi−χi−1 − evi−vi−1+χh−i−χh−1−i

)
where usually ui = φi

2
and vi = φi

2
, the exception being in folding a

(1)
2n−1 to c

(1)
n

where un = φn and vn = ψn. Labels are taken to hold modulo h. The positive

helicity terms are

gi − gh−i + g̃i − g̃h−i = eη1
(
eui−ui−1−χi+χi−1 − eui−ui+1−χh−i+χh−1−i

)
+ eη2

(
evi−vi−1−χi+χi−1 − evi−vi+1−χh−i+χh−1−i

)
where the same interpretation is to be taken for what ui and vi represent.

What is desired is a choice of defect rapidities η1 and η2 that will allow for

the positive and negative helicity parts of the algebraic constraints (6.57) to

vanish separately. There are two solutions, namely

η2 = η1 (6.61)

and

η2 = η1 ± iπ . (6.62)
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In either case, (6.61) or (6.62), the identification means that

gi − gh−i + g̃i − g̃h−i = −e2η1e−χi+χi−1−χh−i+χh−1−i
(
fi − fh−i + f̃i − f̃h−i

)
in which case the algebraic constraints (6.57) give

D−χi +D−χh−1−i
= 0

D+
χi

+D+
χh−1−i

= 0

or

fi − fh−i + f̃i − f̃h−i = 0 (6.63)

gi − gh−i + g̃i − g̃h−i = 0 . (6.64)

Note that in the above reasoning h should be replaced with h+ 1 if the theory

under consideration is d
(2)
n . The identification of the folded field components

{φi} from {ui} is slightly different, as explained in section 2.2.2 and illustrated

for the d
(2)
3 defect in section 6.2.6.

It is noteworthy that a condition which is necessary for momentum conser-

vation, that (6.61) or (6.62) hold, is precisely the same condition found in the

delay factor argument of section 6.2.3. This links together the two approaches

used here to support the hypothesis that the folded defects are integrable.

The bulk contribution to the momentum is given by the integral of T 01, so

P =

∫ 0

−∞
φ̇ · φ′ dx+

∫ ∞
0

ψ̇ · ψ′ dx .

Taking the time derivative and using the bulk equations of motion gives

Ṗ =
1

2

(
φ′ · φ′ + φ̇ · φ̇− ψ′ · ψ′ − ψ̇ · ψ̇

)
− Φ + Ψ |x=0 (6.65)

provided the fields are constant (in vacuum) at spatial infinity. A modified

momentum P + C is conserved if the right-hand side of (6.65) can be written

as −dC
dt

, so the aim is to show that this is the case. The form of conserved
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momentum in all previous cases suggest that C = D− − D+. The first and

third terms on the right-hand side of (6.65) can be re-expressed, by taking the

difference of the squares of (6.54) and (6.55), as

φ′ · φ′ − ψ′ · ψ′ = −2χ̇
(
BTDφ +BTDψ

)
+D2

φ −D2
ψ . (6.66)

It is fortunate that the issue of interpreting pBχ̇ is not raised by (6.66). Both

φ̇ · φ̇ and ψ̇ · ψ̇ contain the term (pBχ̇)T pBχ̇, the meaning of which is unclear,

but this term is cancelled out in (6.66). Because Dφ and Dψ are both projected

onto the folded root space it makes sense to drop the p subscript from (6.66).

At this stage progress can be made by anticipating the form of the final an-

swer to be Ṗ = −
(
Ḋ− − Ḋ+

)
, which requires the term −χ̇

(
D−χ −D+

χ

)
. The

only place that χ̇ may appear in (6.65) stems from φ′ · φ′ − ψ′ · ψ′ and so the

conclusion is that

BTD−φ +BTD−ψ = D−χ (6.67)

BTD+
φ +BTD+

ψ = −D+
χ . (6.68)

By using the relations

D−φ =
h−1∑
j=0

1

4

(
Bαj +BTαh−j

)
fj D+

φ =
h−1∑
j=0

1

4

(
BTαj +Bαh−j

)
gj (6.69)

D−ψ =
h−1∑
j=0

1

4

(
Bαj +BTαh−j

)
f̃j D+

ψ =
h−1∑
j=0

1

4

(
BTαj +Bαh−j

)
g̃j (6.70)

and the constraints (6.63), (6.64) along with the fact that B +BT = 2, it can

be shown that (6.67) and (6.68) are in fact true. Since (6.67) and (6.68) are

both true, (6.56) may be rewritten, noting that BT is invertible, as

φ̇+D−φ −D
+
φ = ψ̇ −D−ψ +D+

ψ . (6.71)

The equation (6.71) may then be squared on both sides to give φ̇ · φ̇ − ψ̇ · ψ̇
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thus reducing (6.65) to

Ṗ = −Ḋ− + Ḋ+ + 2D−φD
+
φ − 2D−ψD

+
ψ − Φ + Ψ .

This is almost what is sought, only requiring that

2D−φD
+
φ − 2D−ψD

+
ψ = Φ−Ψ .

In terms of {fi}, {gi}, {f̃i} and {g̃i} the bulk potentials are given by

Φ =
r∑
j=0

(fjgj − fjgj+1) =
1

2

r∑
j=0

(
αiB

Tαj
)
fjgj

Ψ =
r∑
j=0

(
f̃j g̃j − f̃j g̃j+1

)
=

1

2

r∑
j=0

(
αiB

Tαj
)
f̃j g̃j

where gr+1 ≡ g0 and g̃r+1 ≡ g̃0. Using (6.69) and (6.70) along with B+BT = 2

it is thus seen that

2D−φD
+
φ − 2D−ψD

+
ψ =

1

2

∑
i,j

(
figj − f̃ig̃j

) (
αiB

Tαj
)

+
∑
i,j

Mij

(
figj − f̃ig̃j

)
= Φ−Ψ +

∑
i,j

Mij

(
figj − f̃ig̃j

)
where

Mij =
1

8
(αi − αh−i)BBT (αh−j − αj) .

It can be shown using the algebraic constraints (6.63) and (6.64) that this

extra term vanishes and so the conserved momentum has the expected form,

i.e., P +D−−D+, provided at least that the two defect parameters are related

by (6.61) or (6.62). As is noted in section 6.2.3, in the latter case putting φ = ψ

in the Lagrangian removes the defect altogether - this is a defect annihilating

with an anti-defect, as is expected from the fusing rules. Only then in the first

case η2 = η1 is there actually a defect of the folded theory.
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6.2.6 Specific cases

The Lagrangian (6.53) represents defects for the folded theories c
(1)
n , d

(2)
n and

a
(2)
2n in general terms (thereby making it possible to consider momentum con-

servation in general terms), however, what (6.53) becomes in specific cases of

interest may be obscure. For this reason it is helpful to consider representatives

from each family of folded theory.

The most obvious case to examine is the a
(2)
2 case, as it is the simplest of

the folded theories. The a
(2)
2 case is what is examined in section 6.1.1, and

was the case which initially motivated this work as it was hinted at in [CZ09b]

(in terms of Bäcklund transformations). The work of Corrigan and Zambon

[CZ09b, CZ11] also means that there is particularly strong evidence of integra-

bility of the defect given by (6.4). Because this case has been done in detail

the a
(2)
4 case is briefly outlined below. In each case the choice is made that

η2 = η1 = η, such that the defects give non-trivial delay factors.

6.2.6.1 c
(1)
2 defect

The case of a
(1)
3 → c

(1)
2 is of interest as it is the simplest canonical folding of the

a
(1)
r theories (the simplest folding considered in [OT83a]). The starting point

here is to take the unfolded Lagrangian (6.48) with u and v as a
(1)
3 fields and

χ similarly chosen to have three components13. The folding is achieved, as in

chapter 2, by setting

u1 = u3 =
φ1

2
, u2 = φ2 , v1 = v3 =

ψ1

2
, v2 = ψ2

resulting in

L = θ(−x)Lφ + θ(x)Lψ
+ δ(x) [(φ1 − ψ1)(χ̇1 − χ̇2 + χ̇3) + (φ2 − ψ2)(−2χ̇1 + 2χ̇2)−D(φ, ψ, χ)] (6.72)

where

D(φ, ψ, χ) = e−η
(
e−

φ1
2
−χ3 + e

φ1
2
−φ2+χ1 + e−

φ1
2

+φ2−χ1+χ2 + e
φ1
2
−χ2+χ3 + (φ→ ψ)

)
+ eη

(
e
φ1
2

+χ3 + e
φ1
2
−χ1 + e−

φ1
2

+φ2+χ1−χ2 + e
φ1
2
−φ2+χ2−χ3 + (φ→ ψ)

)
.

13 Generally in a
(1)
r it will be assumed that χ =

∑r
j=1 χjαj .
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The single algebraic constraint, Dχ1 + Dχ2 = 0, which can be seen to arise in

the kinetic terms at the defect in (6.72), allows one of the degrees of freedom

of the auxiliary field χ to be removed, leaving two degrees of freedom - the

same number as have the c
(1)
2 fields φ and ψ.

6.2.6.2 d
(2)
3 defect

Note that d
(2)
2 , possessing a single field, is just the sinh-Gordon case, so the

first new case to consider here is a
(1)
5 → d

(2)
3 . The Lagrangian (6.48) should

then be considered with a
(1)
5 fields and folding achieved by setting

u1 = v1 = 0 , u2 = u5 =
φ1

2
, u3 = u4 =

φ2

2
, v2 = v5 =

ψ1

2
, v3 = v4 =

ψ2

2

resulting in

L = θ(−x)Lφ + θ(x)Lψ
+ δ(x) [(φ1 − ψ1)(−χ̇1 + χ̇2 − χ̇4 + χ̇5) + (φ2 − ψ2)(−χ̇2 + χ̇4)−D(φ, ψ, χ)]

where

D(φ, ψ, χ) = e−η
(
2e−χ5 + 2e−χ2+χ3

)
+ eη

(
2e−χ1 + 2eχ3−χ4

)
+ e−η

(
e−

φ1
2

+χ1 + e
φ1−φ2

2
−χ1+χ2 + e

−φ1+φ2
2

−χ3+χ4 + e
φ1
2
−χ4+χ5 + (φ→ ψ)

)
+ eη

(
e−

φ1
2

+χ5 + e
φ1
2

+χ1−χ2 + e
−φ1+φ2

2
+χ2−χ3 + e

φ1−φ2
2

+χ4−χ5 + (φ→ ψ)
)
.

The algebraic constraints in this case are Dχ1 + Dχ5 = 0, Dχ2 + Dχ4 = 0 and

Dχ3 = 0, which may be used to reduce the number of degrees of freedom in χ

from five down to two.

6.2.6.3 a
(2)
4 defect

Since a defect for a
(2)
2 is already known [CZ09b, CZ11], the first new case arising

from this analysis is a
(1)
4 → a

(2)
4 . The folding is done by setting

u1 = u4 =
φ1

2
, u2 = u3 =

φ2

2
, v1 = v4 =

ψ1

2
, v2 = v3 =

ψ2

2
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resulting in

L = θ(−x)Lφ + θ(x)Lψ
+ δ(x) [(φ1 − ψ1)(χ̇1 − χ̇3 + χ̇4) + (φ2 − ψ2)(−χ̇1 + χ̇3)−D(φ, ψ, χ)]

where

D(φ, ψ, χ) = e−η
(
2e−χ1+χ2

)
+ eη

(
2eχ2−χ3

)
+ e−η

(
e−

φ1
2
−χ4 + e

φ1−φ2
2

+χ1 + e
−φ1+φ2

2
−χ2+χ3 + e

φ1
2
−χ3+χ3 + (φ→ ψ)

)
+ eη

(
e−

φ1
2

+χ4 + e
φ1
2
−χ1 + e

−φ1+φ2
2

+χ1−χ2 + e
φ1−φ2

2
+χ3−χ4 + (φ→ ψ)

)
.

The algebraic constraints, Dχ1 +Dχ3 = 0 and Dχ2 = 0, may be used to reduce

the number of degrees of freedom of χ from four down to two.

6.3 Summary

This chapter begins with the construction of a combined defect in a
(1)
2 which is

then folded to give a candidate integrable defect for a
(2)
2 . The defect preserves

soliton solutions and conserves energy and momentum even after folding, giv-

ing strong indications of integrability. The a
(2)
2 case is amenable to further

analysis and it is shown here that this a
(2)
2 defect corresponds to the type II

defect found by Corrigan and Zambon [CZ09b, CZ11], meaning that their anal-

yses may be taken into account. An attempt to construct further a
(2)
2 defects

is made with a ‘type III’ Lagrangian but does not give anything new and just

gives a more complicated description of the basic a
(2)
2 defect.

The latter part of the chapter is devoted to the construction of a candidate

integrable defect for each of the folded theories arising from the a
(1)
r family of

ATFTs. The defect is constructed by taking a species 1 and a species r de-

fect of a
(1)
r and combining them. The bulk fields are folded either side of the

defect and integrability is tested using soliton delay matching and momentum

conservation. Both approaches give the same conditions on the constituent

defect rapidities, that (6.61) holds or (6.62) holds. The chapter ends with one

representative taken from each family of folded theory: c
(1)
2 , d

(2)
3 and a

(2)
4 . Their

Lagrangians and defect potentials are given explicitly in component form.
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Quantum defect fusing rules

This chapter takes a quantum mechanical approach to the topic of defect fus-

ing rules. Much of this can be found in the paper Defect fusing rules in affine

Toda field theory [Rob14b].

The consistency of the idea of defect fusing rules at the classical level is shown

in chapter 5 where the main quantity of interest is the soliton delay factor.

To firmly establish the idea of defect fusing rules it is necessary to find results

to support the idea at the quantum level and for comparison to the classi-

cal results the quantum analogue of the soliton delay factor is necessary - this

is the transmission matrix, the T -matrix, for a soliton passing through a defect.

In this chapter it is assumed that all of the weights of the p-th fundamen-

tal representation correspond to topological charges of the species p soliton.

As noted previously (section 3.1.1.2) this is not the case in the classical theory

[McG94a, McG94b]. This disparity is not resolved in this thesis, although it

remains possible still to make some comparison of the classical and quantum

results.

7.1 Defect fusing rule algebra

As is shown in chapter 3 the scattering of solitons at the quantum level can

be conveniently framed in terms of the Faddeev–Zamolodchikov (FZ) algebra.

The FZ algebra was extended by Corrigan and Zambon to include defects

[CZ07] and this ‘defect FZ algebra’ explained in detail in section 4.2.

89
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In the quantum picture one can represent a species p soliton possessing rapid-

ity θ and topological charge label i as an operator pAi(θ). What the topological

charge label means is dependent on the species p of the soliton in question.

For a species 1 soliton in a
(1)
r the label i refers to the soliton possessing the

topological charge li = − 1
h

∑i+r
j=i jαj where αk+h ≡ αk with h = r + 1 being

the Coxeter number of the algebra. For a species r soliton the convention is

that the label i denotes a topological charge of −li, where li is defined as above

[CZ07, CZ09a]. For other species of soliton the charges can be labelled as in

[CZ09a] - a similar convention is used here which uses fewer indices.

The defect can be similarly defined in the quantum theory as an operator.

A species q defect possessing the rapidity parameter η and carrying topolog-

ical charge α is denoted by the operator qDα(η). The defects in this chapter

are taken to be ‘ground state’ defects (see section 4.1.1) so do not change the

species of a soliton passing through them: a consequence of this is that the

possible defect topological charges lie on the root lattice. Unlike with soliton

labels, the label α means that the actual defect topological charge is α.

With both solitons and defects defined the process of a species p soliton being

transmitted left-to-right through a defect (hence Re(θ) > 0) is described by

the defect FZ algebra by

pAi(θ) qDα(η) = p
qT

nλ
iα (θ − η)qDλ(η) pAn(θ) . (7.1)

In (7.1) the in-state, pAi(θ) qDα(η) which is where the soliton is to the left of

the defect, is related to the out state, Dλ(η) pAn(θ), by means of the T -matrix.

The process conserves overall topological charge, so if the soliton is a species

1 soliton (p = 1) then li + α = ln + λ. Only for species 1 and species r defects

have any of these T -matrices appeared in the literature [CZ07, CZ09a].

One can find the transmission matrix for a species 2 soliton from that of a

species 1 soliton in a simple manner

2T
(ab)λ
(jk)α(θ − η)c(ab) = c(jk)1T aλjβ (θ − η − iπ

h
)1T bβkα(θ − η + iπ

h
) + (j ↔ k) (7.2)

with no sum implied. This is a consequence of the soliton fusing rules and is

discussed in section 4.2.3.
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7.1.1 Quantum defect fusing rules

It is proposed now that the operator for a species 2 defect can be written in

terms of operators for species 1 defects in a manner analogous to how soliton

fusing occurs, i.e.,

2Dα(η) =
∑

β,γ,β+γ=α

dβ,γ11 1Dβ(η + iπ
h

) 1Dγ(η − iπ
h

) (7.3)

where {dβ,γ} are the defect fusing couplings. As is motivated in chapter 5, the

fusing angles for defects have been taken to be the same as the fusing angles in

the analogous soliton fusing process. By using the defect fusing equation (7.3)

with (7.1) the transmission matrix for a soliton through a species 2 defect can

be written in terms of the transmission matrices through species 1 defects as

2T
nλ
iα (θ − η)dδ,ε11 =

∑
β,γ,j

dβ,γ11 1T
jδ
iβ (θ − η − iπ

h
)1T

nε
jγ (θ − η + iπ

h
) (7.4)

where β + γ = α and δ + ε = λ.

If the ratios of defect fusing couplings in (7.4) were known then it would be

possible to write the transmission matrix for the general species 2 defect14,

since the species 1 transmission matrices are already known [CZ09a]. Unfortu-

nately the defect fusing couplings are not known, but in a
(1)
2 they are the only

unknown quantity so warrant further investigation, as is done in section 7.2.

Even without knowing about the defect fusing couplings, (7.4) is still useful

as it can provide an ansatz for the form of the transmission matrix for the

species 2 defect - this is used along with consistency conditions to find the

transmission matrix for the species 2 defect of a
(1)
3 in section 7.3.

In general it is expected that a species q1 and a species q2 defect should be

able to fuse to form a species q = q1 + q2 (mod h) defect15, so

qT
nλ
iα (θ − η)dδ,εq1q2 =

∑
β,γ,j

dβ,γq1q2 q1T
jδ
iβ (θ − η − iπq2

h
) q2T

nε
jγ (θ − η + iπq1

h
) (7.5)

14 The species of soliton is not specified here but the usual thing to do would be to consider
a species 1 soliton and generate other solutions using soliton fusing rules.

15 If q = 0 then this is where a defect and anti-defect have annihilated so there is no defect
there, although this is not obvious from the Lagrangian.
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Figure 7.1: Illustration of a crossing relation involving defects and anti-defects.

where again β + γ = α and δ + ε = λ. If the ratios of the defect fusing

couplings were known in general it would be possible to write all fundamental

defect transmission matrices in terms of species 1 transmission matrices.

7.1.2 New crossing relation

Another factor in establishing the existence of a defect bootstrap comes from

crossing symmetry. The crossing symmetry established in the literature [CZ07,

CZ09a], given in section 4.2.2, links the transmission of solitons and antisoli-

tons through the same defect. A slightly different set-up, illustrated in figure

7.1, links the transmission of a soliton through a defect to the transmission of

the same soliton through an anti-defect.

Consider figure 7.1 with time running upwards as is standard. The solid line

represents the soliton of species p, say, and the dashed line represents the de-

fect of species q, say. The picture represents the transmission process with the

transmission matrix

p
qT

nλ
iα (θ − η) . (7.6)

Crossing gives an alternative viewpoint of figure 7.1. With time running left-to-

right and with appropriate rapidity shifts, the picture shows a soliton moving

right-to-left (in a spatial sense) through an anti-defect. It is clear that it is an

anti-defect (so of species h − q) as the arrow points backwards in time; as it

is an anti-defect the topological charge it carries is the opposite of that of the

defect. This means that the T -matrix describing the process is

p
h−q T̃

n(−α)
i(−λ) (iπ + η − θ) (7.7)
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where the tilde above T denotes that this is right-to-left transmission.

What crossing symmetry does is equate the two viewpoints of figure 7.1, so

(7.6) and (7.7) are equal

p
qT

nλ
iα (θ − η) = p

h−q T̃
n(−α)
i(−λ) (iπ + η − θ) .

This crossing relation combines with the unitarity relation p
qT

jβ
iα (θ−η)pqT̃

nλ
jβ (η−

θ) = δni δ
λ
α (unchanged from section 4.2.2), to give the new crossing-unitarity

condition

p
qT

jβ
iα (θ − η) p

h−qT
n(−β)
j(−λ) (θ − η + iπ) = δni δ

λ
α . (7.8)

Note that (7.8) can be interpreted as a description of the transmission of a soli-

ton through a (species q) defect immediately followed by transmission through

an anti-defect, the combined effect being trivial. If the idea of the defect boot-

strap is to be believed then it is clear that any transmission matrices found

must obey (7.8).

7.2 Defect fusing in a
(1)
2

The case of a
(1)
2 is a unique one, in that transmission matrices are already known

for all (both) of the fundamental defects and, unlike in sine-Gordon theory, the

theory possesses fusing rules.

The fundamental transmission matrices16 for the species 1 defect of a
(1)
2 are

[CZ09a]

1
1T

λ
α (θ − η) = g1(θ − η)

 Qλ·l1δλα 0 x̂δλ+α0
α

x̂δλ+α1
α Qλ·l2δλα 0

0 x̂δλ+α2
α Qλ·l3δλα

 (7.9)

16 I.e., the T -matrices for the fundamental solitons.
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and

2
1T

λ
α (θ − η) = g2(θ − η)

 Q−λ·l1δλα x̂Qλ·l3δλ+α1
α x̂2δλ−α0

α

x̂2δλ−α1
α Q−λ·l2δλα x̂Qλ·l1δλ+α2

α

x̂Qλ·l2δλ+α0
α x̂2δλ−α2

α Q−λ·l3δλα

 . (7.10)

In (7.9) and (7.10), Q = −eiπγ with γ = 4π
β2 − 1 where β is the bulk coupling

appearing in the Lagrangian description of the defect. The quantity x̂ =

eγ(θ−η− iπ
2

) relates to the likelihood of the soliton exchanging topological charge

with the defect. The transmission matrix (7.9) has a prefactor given by [CZ09a]

g1(θ − η) =
x̂−

1
2

2π
Γ(1

2
+ γ − z)

∞∏
k=1

Γ(1
2

+ (3k + 1)γ − z)Γ(1
2

+ (3k − 2)γ + z)

Γ(1
2

+ (3k − 1)γ − z)Γ(1
2

+ (3k − 1)γ + z)

where z =
3iγ(θ−η− iπ2 )

2π
. This prefactor, along with the prefactor in (7.10) satisfy

the relations

g2(θ − η) = g1(θ − η − iπ
3

)g1(θ − η + iπ
3

)

g1(θ − η) = g2(θ − η − iπ
3

)g2(θ − η + iπ
3

)
(
1 + x̂3

)
implying that

g1(θ − η)g2(θ − η + iπ) =
1

1 +Q2x̂3
. (7.11)

The transmission matrices for the species 2 defect of a
(1)
2 are [CZ07]

1
2T

λ
α (θ − η) = g2(θ − η)

 Qλ·l1δλα x̂2δλ−α1
α x̂Q−λ·l2δλ+α0

α

x̂Q−λ·l3δλ+α1
α Qλ·l2δλα x̂2δλ−α2

α

x̂2δλ−α0
α x̂Q−λ·l1δλ+α2

α Qλ·l3δλα

 (7.12)

and

2
2T

λ
α (θ − η) = g1(θ − η)

 Q−λ·l1δλα x̂δλ+α1
α 0

0 Q−λ·l2δλα x̂δλ+α2
α

x̂δλ+α0
α 0 Q−λ·l3δλα

 . (7.13)

In (7.12) and (7.13), the prefactors g1 and g2 are the same as those in (7.9)

and (7.10).
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The expression (7.11) appears in the standard crossing-unitarity relation (4.36)

and notably the same combination of prefactors, g1(θ − η)g2(θ − η + iπ), can

appear by considering how a single soliton is transmitted through one defect

of each species - this belies a different crossing-unitarity relation, i.e., (7.8).

Indeed it can be demonstrated without too much labour that (7.8) holds for

the known a
(1)
2 transmission matrices and hence provides strong support for the

identification of the species of the defects.

7.2.1 Defect fusing rule algebra in a
(1)
2

The case of a
(1)
2 is special in that it is the only ATFT for which the species 2

defect is known, and so provides the best chance of finding the defect fusing

coupling ratios via (7.4). Solving for the defect fusing couplings may hint at a

generalisation to the other a
(1)
r theories.

Applying the transmission matrices (7.9) and (7.12) to the a
(1)
2 (h = 3) version

of (7.4), noting that g2(θ − η) = g1(θ − η − iπ
3

)g1(θ − η + iπ
3

) gives essentially

two kinds of equation

dδ,ε11 = d
δ+αi,ε+αi−1

11 (7.14)

dδ,ε11 = (−Q)−
1
3Qδ·li−1−ε·li+1dδ+αi,ε11 + (−Q)

1
3Q−δ·l1+ε·li−1dδ,ε+αi11 (7.15)

where the label on αk should be taken modulo h = 3 and similarly the label

on lk should be taken modulo 3, with the identification l0 ≡ l3. Recall that

Q = −eiπγ.

There is an ‘obvious’ solution to (7.15) which is to put both terms on the

right-hand side equal to 1
2
dδ,ε11 , implying that

dδ+αi,ε11

dδ,ε11

= Q
1
3
−δ·li−1+ε·li+1

dδ,ε+αi11

dδ,ε11

= Q−
1
3

+δ·li−ε·li−1 . (7.16)

This solution appears to be promising at first because it is automatically con-

sistent with (7.14), but it is actually inconsistent. An example of the incon-

sistency is the calculation of the ratio
d
δ+α1,ε+α2
11

dδ,ε11

. One route to this ratio is to
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start by taking ε→ ε+ α2 when i = 1 in the first equation in (7.16), so

dδ+α1,ε+α2

11

dδ,ε11

=
dδ+α1,ε+α2

11

dδ,ε+α2

11

∗ d
δ,ε+α2

11

dδ,ε11

= Q
1
3
−δ·l3+(ε+α2)·l2 ∗Q−

1
3

+δ·l2−ε·l1

= Q1+δ·(l2−l3)−ε·(l1−l2) .

Another way to calculate
d
δ+α1,ε+α2
11

dδ,ε11

is to start by taking δ → δ+α1 when i = 2

in the second equation in (7.16), giving

dδ+α1,ε+α2

11

dδ,ε11

=
dδ+α1,ε+α2

11

dδ+α1,ε
11

∗ d
δ+α1,ε
11

dδ,ε11

= Q−
1
3

+(δ+α1)·l2−ε·l1 ∗Q
1
3
−δ·l3+ε·l2

= Q−1+δ·(l2−l3)−ε·(l1−l2) .

It is clear then that the solution (7.16) is incorrect, unless the bulk coupling β is

somehow quantised. One possibility is that the choices in (7.16) give the ‘par-

ticular solution’ to (7.15) and that there should be additionally ‘homogeneous

parts’ to the solution that make the solution consistent. Analysis of the defect

fusing rules for the species 2 soliton gives additional conditions which reinforce

this view. The solution, assuming that one exists, has not been found. The

lack of knowledge of a solution to the defect fusing coupling ratios in a
(1)
2 means

that a different approach will be necessary to find the species 2 transmission

matrices of a
(1)
3 .

7.3 A new defect in a
(1)
3

In this section the defect fusing idea is applied to the case of a
(1)
3 , which is

the ATFT with the lowest rank for which the fusing rules give a previously

unconsidered defect. A transmission matrix is found for the species 2 defect.

7.3.1 Transmission matrix ansatz

As noted in section 7.1.1, the defect fusing equation (7.4), which gives the

species 2 defect transmission matrix in terms of species 1 defect transmission

matrices, appears to have limited use while the couplings {dβ,γ} remain un-

known. However, with the assumption that the couplings depend only on

topological charge and not on rapidity, (7.4) can be used to get an ansatz for
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the species 2 defect T -matrix.

The species 1 defect transmission matrices in a
(1)
3 (and a

(1)
r generally) are known

[CZ09a]. For the species 1 soliton in particular the transmission matrix is a

simple extension of the a
(1)
2 T -matrix (7.9).

1
1T

λ
α (θ − η) = g1(θ − η)


Qλ·l1δλα 0 0 x̂δλ+α0

α

x̂δλ+α1
α Qλ·l2δλα 0 0

0 x̂δλ+α2
α Qλ·l3δλα 0

0 0 x̂δλ+α3
α Qλ·l4δλα

 . (7.17)

In the a
(1)
3 case the weights of the first representation are given by

li = −1
4

∑i+3
j=i jαj, or li = 3

4
αi+

1
2
αi+1 + 1

4
αi+2, where the labels on the roots are

modulo h = 4. As in (7.9) the quantity x̂ = eγ(θ−η− iπ
2

) relates to the likelihood

of the soliton exchanging topological charge with the defect. The transmission

matrix has a prefactor given by [CZ09a]

g1(θ − η) = x̂−
1
2

2π
Γ(1

2
+ 3

2
γ − z)

∏∞
k=1

Γ( 1
2

+(4k+ 3
2

)γ−z)Γ( 1
2

+(4k− 5
2

)γ+z)

Γ( 1
2

+(4k− 3
2

)γ−z)Γ( 1
2

+(4k− 3
2

)γ+z)
(7.18)

where z =
2iγ(θ−η− iπ2 )

π
.

Using the expression (7.17) for 1
1T in (7.4), the ansatz for the transmission of

a species 1 soliton through a species 2 defect, 1
2T , obtained is that 1

2T
λ
α (θ − η)

is equal to

g2(θ − η)


Qλ·l1δλα 0 x̂2b13(λ)δλ−α1−α2

α x̂a14(λ)δλ+α0
α

x̂a21(λ)δλ+α1
α Qλ·l2δλα 0 x̂2b24(λ)δλ−α2−α3

α

x̂2b31(λ)δλ+α1+α2
α x̂a32(λ)δλ+α2

α Qλ·l3δλα 0

0 x̂2b42(λ)δλ+α2+α3
α x̂a43(λ)δλ+α3

α Qλ·l4δλα

 (7.19)

where the prefactor is g2(θ− η) = g1(θ− η− iπ
4

)g1(θ− η+ iπ
4

), while the func-

tions {aij(λ)} and {bij(λ)} are unknown but depend only on the topological

charges of the defect and soliton and not on the rapidities.

Note that (7.19) need only be given in terms of the species 1 soliton as, once

a consistent solution has been found for 1
2T , the transmission matrices for the

other solitons must follow from the soliton fusing rules. In fact, soliton fusing

can be used to constrain the form of aij(λ) and bij(λ) since the topological
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charge of the species 2 soliton can be formed in two ways, this is shown in

section 7.3.2.2, but the constraints obtained turn out to be just a subset of

those arising from the triangle relations (7.20).

7.3.2 Constraining the T -matrix

To establish the species 2 transmission matrix it is necessary to test for consis-

tency by finding the appropriate solution to the triangle equations which fits

in with the crossing-unitarity condition (7.8). If there exists a species 2 defect

then the transmission matrix must fit the ansatz (7.19), so it becomes a case

of finding conditions for {aij(λ)} and {bij(λ)}. If a consistent solution can be

found then giving it interpretation other than it describing a species 2 defect

would require strong justification.

Three types of consistency condition are considered here: the triangle rela-

tions, soliton fusing constraints and crossing-unitarity conditions.

7.3.2.1 Triangle relations

The triangle relations are explained in section 4.2.2. They are the form of

the Yang–Baxter equation appropriate to the situation of having two solitons

and one defect. Both sides of the triangle relations equation (4.33) involve the

same prefactors so the triangle relations do not constrain the prefactor of the

transmission matrix. Fortunately, the prefactor in (7.19) is already specified

exactly (as a minimal solution [CZ09a]) by the fusing rules so it may be pos-

sible for the triangle relations alone to give the solution for the a
(1)
3 species 2

defect.

The triangle relations for two species 1 solitons transmitting through a species

2 defect are

11Smnjk (θ1 − θ2)1
2T

tβ
nα(θ1 − η)1

2T
sλ
mβ(θ2 − η) = 1

2T
mβ
kα (θ2 − η)1

2T
nλ
jβ (θ1 − η)11Sstnm(θ1 − θ2) (7.20)

where m, n and β are summed over. the triangle relations were previously used

by Corrigan and Zambon to find T -matrices for other defects [CZ07, CZ09a,

CZ11] though quantum group methods can also be used [CZ11].

Calculations using the triangle relations (7.20) involve the S-matrix for two

species 1 solitons in a
(1)
3 . The general a

(1)
r S-matrix is given by (3.22), with the
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a
(1)
3 form being

11Sjjjj (θ1 − θ2) = ρ(θ1 − θ2)

(
Q−1 x̂

2
1

x̂2
2

−Qx̂
2
2

x̂2
1

)
11Skjjk (θ1 − θ2) = ρ(θ1 − θ2)

(
x̂2

1

x̂2
2

− x̂2
2

x̂2
1

)
j 6= k

11Sjkjk (θ1 − θ2) = ρ(θ1 − θ2)
(
Q−1 −Q

)

(
x̂1

x̂2

)(2−|l|)

|l=j−k<0(
x̂2

x̂1

)(2−|l|)

|l=j−k>0

where x̂1
x̂2

= eγ(θ1−θ2) (it is clear then that the defect parameter η does not

appear in the soliton S-matrix) and again Q = −eiπγ with γ = 4π
β2 − 1. The

prefactor ρ(θ1− θ2) is immaterial to this discussion as it appears as a common

factor on both sides of (7.20) - an expression for ρ(θ) can be found in section

3.2.2 or [CZ07]. Also immaterial to the discussion of the triangle relations are

the prefactors in the transmission matrices, as the same terms appear on both

sides of (7.20).

The triangle relations in this case are a set of 44 = 256 conditions, as there are

four choices for each of the ‘in’ (j and k) and ‘out’ (s and t) soliton charge la-

bels. Most of these are trivially satisfied, but using the soliton S-matrix above

and the ansatz for the species 2 defect T -matrix (7.19) there are 28 different

conditions found that constrain {aij(λ)} and {bij(λ)}. As an example, consider

the triangle relations when j = 1, k = 2, s = 1 and t = 4. The left-hand side

of (7.20) for this case, dropping the species labels, is:

S21
12(θ1 − θ2)T 4β

1α (θ1 − η)T 1λ
2β (θ2 − η) + S12

12(θ1 − θ2)T 4β
2α (θ1 − η)T 1λ

1β (θ2 − η)

→
(
x̂21
x̂22
− x̂22

x̂21

)
x̂1x̂2a14(β) a21(λ)δβ+α0

α δλ+α1
β + x̂1

x̂2
(Q−1 −Q) x̂2

1 b24(β)Qλ·l1δβ−α2−α3
α δλβ

=
[
x̂31
x̂2

(
a14(λ+ α1)a21(λ) + (Q−1 −Q) b24(λ)Qλ·l1

)
− x̂32

x̂1
a14(λ+ α1)a21(λ)

]
δλ−α2−α3
α (7.21)

where the second line is the first line divided by the prefactors. The right-hand

side is

T 1β
2α (θ2 − η)T 4λ

1β (θ1 − η)S14
41(θ1 − θ2) + T 4β

2α (θ2 − η)T 1λ
1β (θ1 − η)S14

14(θ1 − θ2)

→
(
x̂21
x̂22
− x̂22

x̂21

)
x̂1x̂2 a14(λ)a21(β)δβ+α1

α δλ+α0
β + x̂2

x̂1
(Q−1 −Q) x̂2

2 b24(β)Qλ·l1δβ−α2−α3
α δλβ

=
[
x̂31
x̂2
a14(λ)a21(λ+ α0)− x̂32

x̂1

(
a14(λ)a21(λ+ α0)− (Q−1 −Q) b24(λ)Qλ·l1

)]
δλ−α2−α3
α (7.22)
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again with the second line being the first line divided by the prefactors, which

are the same prefactors as on the left-hand side.

Assuming that the unknown quantities of the transmission matrix, {aij(λ)}
and {bij(λ)}, do not depend on rapidity and only on topological charge, match-

ing (7.21) to (7.22) must imply

a14(λ)a21(λ+ α0)− a14(λ+ α1)a21(λ) =
(
Q−1 −Q

)
b24(λ)Qλ·l1 .

This is just one of the 28 conditions given by the triangle relations, similar

calculations give the others. The complete list, grouped by similar processes,

is:

a14(λ)a21(λ+ α0)− a14(λ+ α1)a21(λ) =
(
Q−1 −Q

)
b24(λ)Qλ·l1

a21(λ)a32(λ+ α1)− a21(λ+ α2)a32(λ) =
(
Q−1 −Q

)
b31(λ)Qλ·l2

a32(λ)a43(λ+ α2)− a32(λ+ α3)a43(λ) =
(
Q−1 −Q

)
b42(λ)Qλ·l3

a43(λ)a14(λ+ α3)− a43(λ+ α0)a14(λ) =
(
Q−1 −Q

)
b13(λ)Qλ·l4 (A)

a14(λ)b31(λ+ α0) = a14(λ+ α1 + α2)b31(λ)

a14(λ)b42(λ+ α0) = a14(λ+ α2 + α3)b42(λ)

a21(λ)b13(λ+ α1) = a21(λ− α1 − α2)b13(λ)

a21(λ)b42(λ+ α1) = a21(λ+ α2 + α3)b42(λ)

a32(λ)b13(λ+ α2) = a32(λ− α1 − α2)b13(λ)

a32(λ)b24(λ+ α2) = a32(λ− α2 − α3)b24(λ)

a43(λ)b24(λ+ α3) = a43(λ− α2 − α3)b24(λ)

a43(λ)b31(λ+ α3) = a43(λ+ α1 + α2)b31(λ) (B)

a14(λ)a32(λ+ α0) = a14(λ+ α2)a32(λ)

a21(λ)a43(λ+ α1) = a21(λ+ α3)a43(λ) (C)
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b13(λ)b24(λ− α1 − α2) = b13(λ− α2 − α3)b24(λ)

b13(λ)b42(λ− α1 − α2) = b13(λ+ α2 + α3)b42(λ)

b31(λ)b24(λ+ α1 + α2) = b31(λ− α2 − α3)b24(λ)

b31(λ)b42(λ+ α1 + α2) = b31(λ+ α2 + α3)b42(λ) . (D)

b13(λ)b31(λ− α1 − α2) = b13(λ+ α1 + α2)b31(λ)

b24(λ)b42(λ− α2 − α3) = b24(λ+ α2 + α3)b42(λ) (E)

a14(λ)b13(λ+ α0) = Qa14(λ− α1 − α2)b13(λ)

a21(λ)b24(λ+ α1) = Qa21(λ− α2 − α3)b24(λ)

a32(λ)b31(λ+ α2) = Qa32(λ+ α1 + α2)b31(λ)

a43(λ)b42(λ+ α3) = Qa43(λ+ α2 + α3)b42(λ) (F )

a14(λ)b24(λ+ α0) = Q−1a14(λ− α2 − α3)b24(λ)

a21(λ)b31(λ+ α1) = Q−1a21(λ+ α1 + α2)b31(λ)

a32(λ)b42(λ+ α2) = Q−1a32(λ+ α2 + α3)b42(λ)

a43(λ)b13(λ+ α3) = Q−1a43(λ− α1 − α2)b13(λ) . (G)

Despite the large number of constraints it is not clear whether or not a solution

can be found by the triangle relations alone. In fact, the rescaling symmetry

must satisfy a constraint which is not implied by the triangle relations (see

section 7.3.3.3). Thus, it is reasonable to look for more conditions rather than

try to solve from (A) to (G) alone.

7.3.2.2 Soliton fusing as a constraint

The well established soliton fusing rules give a novel way to test for constraints

on the species 2 defect T -matrix for the species 1 soliton. The basis of this

idea lies in how the topological charge is constructed for the species 2 soliton

in the fusing process: if a species 2 soliton has topological charge li + lj then it

could have received the li from either one of the two species 1 solitons involved

in the fusing; lj coming from the other soliton. Equation (7.2) then allows

the transmission matrix for the species 2 soliton to be found by two different
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expressions, which in a
(1)
3 are:

2T
(ab)λ
(jk)α(θ − η)c(ab) = c(jk)1T aλjβ (θ − η − iπ

4
)1T bβkα(θ − η + iπ

4
) + (j ↔ k) (7.23)

2T
(ba)λ
(jk)α(θ − η)c(ba) = c(jk)1T bλjβ (θ − η − iπ

4
)1T aβkα (θ − η + iπ

4
) + (j ↔ k) . (7.24)

The topological charge (ab) represents la + lb, with li = 3
4
αi + 1

2
αi+1 + 1

4
αi+2

(root labels are modulo h = 4) being a weight in the 4 representation of the

a3 algebra (hence one of the topological charges of a species 1 soliton). The

topological charge (ba) thus is the same as (ab), so the transmission matrix

on the left-hand side of both of (7.23) and (7.24) is the same. The soliton

fusing couplings {c(ij)} do however depend on the ordering of the labels, and

in a
(1)
3 the couplings satisfy:

c(12) = c(23) = c(34) = c(41)

c(13) = c(24) = c(31) = c(42) = (−Q)−
1
4 c(12)

c(14) = c(21) = c(32) = c(43) = (−Q)−
1
2 c(12) .

There are six possible topological charges for the species 2 soliton in a
(1)
3 , arising

from the choice of a = 1, . . . , 4 and b = 1, . . . , 4 with b 6= a. As an example,

consider the case where j = 1, k = 2, a = 1 and b = 4 for the species 2 defect.

In this case using (7.19) in (7.23) gives

2
2T

(14)λ
(12)α (θ − η) =

c(21)

c(14)

(
1
2T

1λ
2β (θ − η − iπ

4
) 1

2T
4β
1α (θ − η + iπ

4
)

+ (−Q)
1
2

1
2T

1λ
1β (θ − η − iπ

4
) 1

2T
4β
2α (θ − η + iπ

4
)
)

= g2(θ − η − iπ
4

)g2(θ − η + iπ
4

)

×
(
x̂2a14(β)a21(λ)δβ+α0

α δλ+α1
β + (−Q)

1
2 x̂2(−Q)

1
2 b24(β)Qλ·l1δβ−α2−α3

α δλβ

)
= g4(θ − η)x̂2

(
a14(λ+ α1)a21(λ)− b24(λ)Q1+λ·l1

)
δλ−α2−α3
α

(7.25)
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where g4(θ − η) = g2(θ − η − iπ
4

)g2(θ − η + iπ
4

) by definition. Similarly, using

(7.19) in (7.24) gives

2
2T

(14)λ
(12)α (θ − η) =

c(12)

c(41)

(
1
2T

4λ
1β (θ − η − iπ

4
) 1

2T
1β
2α (θ − η + iπ

4
)

+ (−Q)−
1
2

1
2T

4λ
2β (θ − η − iπ

4
) 1

2T
1β
1α (θ − η + iπ

4
)
)

= g2(θ − η − iπ
4

)g2(θ − η + iπ
4

)

×
(
x̂2a14(λ)a21(β)δβ+α1

α δλ+α0
β + (−Q)−

1
2 x̂2(−Q)−

1
2 b24(λ)Qβ·l1δβαδ

λ−α2−α3
β

)
= g4(θ − η)x̂2

(
a14(λ)a21(λ+ α0)− b24(λ)Q−1+λ·l1

)
δλ−α2−α3
α .

(7.26)

Two expressions for 2
2T

(14)λ
(12)α (θ−η) have been found, given by (7.25) and (7.26).

Equating these expressions thus gives the condition

a14(λ)a21(λ+ α0)− a14(λ+ α1)a21(λ) =
(
Q−1 −Q

)
b24(λ)Qλ·l1

which is exactly the same as that found in the example application of the tri-

angle relations in section 7.3.2.1. In fact, there are 20 conditions that arise

from soliton fusing, comparing (7.23) and (7.24), and these are in fact a subset

of the triangle relations: the soliton fusing constraints here are given by (A),

(B), (C), (D) and (E).

Soliton fusing as a constraint therefore does not give anything new in rela-

tion to the triangle relations, but does give most of the conditions in a much

quicker manner with less redundancy (with 20 out of 36 conditions being non-

trivial, while with the triangle relations it is 28 out of 256) making it labour

saving in higher rank algebras. One may question whether it is possible to

find a solution to the soliton fusing constraints that does not automatically

satisfy (F ) and (G), i.e., are the extra conditions from the triangle relations

independent of those found by soliton fusing?

7.3.2.3 Crossing-unitarity relations

Further conditions can be found by relating the transmission matrices of the

species 2 defect to those of its anti-defect. In the case of a
(1)
3 this is particularly

useful, for the species 2 defect is self-conjugate, in that the anti-defect of a

species 2 defect is another species 2 defect. In analogy to the properties of an-

tisolitons, it is expected that the anti-defect of the species 2 defect is a species
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2 defect with its rapidity shifted by iπ and possessing the opposite topological

charge.

Consider the case of interest in finding the solution to (7.19). For a species 1

soliton passing through a species 2 defect in a
(1)
3 the crossing-unitarity condi-

tions (7.8) become

1
2T

jβ
iα (θ − η) 1

2T
n(−β)
j(−λ) (θ − η + iπ) = δni δ

λ
α . (7.27)

Using the ansatz (7.19) in (7.27) gives constraints which appear quite differ-

ent to those of the triangle relations. For a start, the prefactor g2(θ − η) is

constrained (though only by the diagonal terms). Since the prefactor g2 is al-

ready known in terms of g1 and g1(θ− η) is given by (7.18), then the prefactor

contribution to the left-hand side of (7.27) can be shown to be

g2(θ − η) g2(θ − η + iπ) =
1

1 +Q2x̂4
.

As an example, consider (7.27) for the case of i = 1 and n = 4:

0 = 1
2T

jβ
1α (θ − η) 1

2T
4(−β)
j(−λ) (θ − η + iπ)

= g2(θ − η) g2(θ − η + iπ)
[
Qβ·l1 (−Qx̂) a14(−β)δβαδ

−β+α0

−λ + x̂a14(β)Q−β·l4δβ+α0
α δ−β−λ

]
=

1

1 +Q2x̂4
x̂
[
a14(λ)Q−λ·l4 − a14(−λ− α0)Qλ·l1

]
δ−λ−α0
α

=⇒ a14(λ)Q−λ·l1 = a14(−λ− α0)Qλ·l4 .

The prefactor condition is involved with the diagonal terms, so it’s worth

examining another example condition, when i = n = 1:

δλα = 1
2T

jβ
1α (θ − η) 1

2T
1(−β)
j(−λ) (θ − η + iπ)

= g2(θ − η) g2(θ − η + iπ)
[
Qβ·l1Q−β·l1δβαδ

−β
−λ + x̂2b13(β) (Q2x̂2) b31(−β)δβ−α1−α2

α δ−β+α2+α3

−λ

]
=

1

1 +Q2x̂4

[
1 +Q2x̂4 b13(λ+ α1 + α2)b31(−λ− α1 − α2)

]
δλα

=⇒ b13(λ)b31(−λ) = 1 .
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In all there are 14 independent conditions found by crossing-unitarity, which

are

b13(λ)b31(−λ) = 1

b24(λ)b42(−λ) = 1 (A′)

a14(λ)Q−λ·l1 = a14(−λ− α0)Qλ·l4

a21(λ)Q−λ·l2 = a21(−λ− α1)Qλ·l1

a32(λ)Q−λ·l3 = a32(−λ− α2)Qλ·l2

a43(λ)Q−λ·l4 = a43(−λ− α3)Qλ·l3 (B′)

a14(λ)b31(−λ+ α3) = Q−1a32(−λ+ α3)b24(λ)

a21(λ)b42(−λ+ α0) = Q−1a43(−λ+ α0)b31(λ)

a32(λ)b13(−λ+ α1) = Q−1a14(−λ+ α1)b42(λ)

a43(λ)b24(−λ+ α2) = Q−1a21(−λ+ α2)b13(λ) (C ′)

a14(λ)a21(−λ+ α2 + α3) = b24(λ)Q−λ·l2 +Qb24(−λ+ α2 + α3)Qλ·l4

a21(λ)a32(−λ− α1 − α2) = b31(λ)Q−λ·l3 +Qb31(−λ− α1 − α2)Qλ·l1

a32(λ)a43(−λ− α2 − α3) = b42(λ)Q−λ·l4 +Qb24(−λ− α2 − α3)Qλ·l2

a43(λ)a14(−λ+ α1 + α2) = b13(λ)Q−λ·l1 +Qb13(−λ+ α2 + α3)Qλ·l3 . (D′)

Combining these conditions with the triangle relations (A) - (G) there are now

enough conditions to solve for {aij(λ)} and {bij(λ)}. The set of conditions

(B′) are of particular interest as they are the only ones that linearly relate

unknowns, while (A′) also appear to be strong conditions.

7.3.3 Solving for the T -matrix

With the conditions arising from the triangle relations, (A) - (G), and the con-

ditions arising from the crossing-unitarity equation, (A′) - (D′), it is possible to

find a consistent solution for {aij(λ)} and {bij(λ)} in the species 2 transmission

matrix ansatz (7.19). Since the ansatz (7.19) is motivated by the defect fusing



106 7 Quantum defect fusing

rules (7.4) it is taken that the solution really does describe a species 2 defect,

as there is no alternative explanation as to why there should be a solution in

this form. A solution method is given below.

7.3.3.1 Solution method

Examination of (B′) reveals that

aij(λ) = Q
1
2
λ·(li+lj)ãij(λ)

where ãij(λ) = ãij(−λ − αi−1), so if ãij contains a term proportional to Qλ·Y

then it must also contain a term proportional to Q−λ·Y .

Now consider (A′). It would appear to be difficult to realise the likes of

b31(λ) = 1
b13(−λ)

if bij contains more than one term, so a reasonable ansatz

is bij(λ) = BijQ
λ·Xij where Bij is constant. Then

b13(λ)b31(−λ) = B13B31Q
λ·(X13−X31) = 1

b24(λ)b42(−λ) = B24B42Q
λ·(X24−X42) = 1 .

It is clear then that X13 = X31 while B13B31 = 1, etc. A choice is made here

to make the solution simple, which is that each prefactor is set to unity. The

scaling of the bijs (and aijs) is investigated in section 7.3.3.3. This choice then

means that b13(λ) = b31(λ) and b24(λ) = b42(λ).

At this juncture (E) and (D), with the above identifications gives bij(λ +

2αk + 2αk+1) = bij(λ) for any k modulo 4. Given the assumptions made about

the form of bij, the λ dependence is entirely in the exponent of Q so there is

no mechanism that will give minus signs and so

bij(λ+ α1 + α2) = bij(λ+ α2 + α3) = bij(λ) .

A consequence of the above is then that

b13(λ) = b31(λ) = Qaλ·(l1+l3) b24(λ) = b42(λ) = Qbλ·(l2+l4)
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with a and b constants.

The knowledge that b13(λ) = b31(λ) and b24(λ) = b42(λ) can now be used

to begin to find the form of ãij. The first equation in (B) and the first equa-

tion in (F ) combine to give ã14(λ+ α1 + α2) = ã14(λ− α1− α2); similarly, the

second equation in (B) and the first in (G) combine to give ã14(λ+α2 +α3) =

ã14(λ − α2 − α3). Assuming that all of the λ dependence in ãij(λ) is in the

exponent of powers of Q the conditions of (B), (F ) and (G) give

ãij(λ+ α1 + α2) = ãij(λ+ α2 + α3) = ãij(λ) .

The combination of the above conditions with (B′) implies that

ã14(λ) = ã14(−λ− α0) = ã14(−λ+ α1) = ã14(−λ− α2) = ã14(−λ+ α3)

ã21(λ) = ã21(−λ+ α0) = ã21(−λ− α1) = ã21(−λ+ α2) = ã21(−λ− α3)

ã32(λ) = ã32(−λ− α0) = ã32(−λ+ α1) = ã32(−λ− α2) = ã32(−λ+ α3)

ã43(λ) = ã43(−λ+ α0) = ã43(−λ− α1) = ã43(−λ+ α2) = ã43(−λ− α3) .

Since ã32 obeys the same conditions as ã14 while ã43 obeys the same conditions

as ã21. It is reasonable then to make the assumption that, up to a multiplicative

factor,

ã14(λ) = ã32(λ) ã21(λ) = ã43(λ)

something which is consistent with the conditions (C). With this identification

bij(λ) can now be fully determined using (C ′). The first equation of (C ′)

reduces to Q−aλ·(l1+l3)Qa = Q−bλ·(l1+l3)Q−
1
2 and so the conclusion is that a =

b = −1
2
. The other terms in (C ′) all agree with this identification, so

b13(λ) = b31(λ) = Q−
1
2
λ·(l1+l3) b24(λ) = b42(λ) = Q−

1
2
λ·(l2+l4) .

The remaining conditions (A) and (D′) can be shown to be equivalent via use

of (B′). These inhomogeneous equations and the constraints previously found
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on ãij(λ) suggest ansätze of the form

ã14(λ) = ã32(λ) = A
(
Q

1
2
λ·(l1+l3) +Q

1
2
− 1

2
λ·(l1+l3)

)
+B

ã21(λ) = ã43(λ) = C
(
Q

1
2
λ·(l2+l4) +Q

1
2
− 1

2
λ·(l2+l4)

)
+D .

The first condition in (D′) becomes ã14(λ)ã21(−λ) = Q−
1
2
−λ·(l2+l4)+Q

1
2

+λ·(l2+l4)

so the above ansätze give

AC = Q−
1
2 AD +BC = 0 BD = −2

and all of the other equations in (D′) and (A) give the same relations. The

most symmetrical solution is then to take A = C = Q−
1
4 , so that B = −D

giving two solutions

ã14(λ) = ã32(λ) = Q−
1
4

+ 1
2
λ·(l1+l3) +Q

1
4
− 1

2
λ·(l1+l3) ±

√
2

ã21(λ) = ã43(λ) = Q−
1
4

+ 1
2
λ·(l2+l4) +Q

1
4
− 1

2
λ·(l2+l4) ∓

√
2

where either the upper sign is taken for every ãij or the lower sign is taken for

every ãij.

7.3.3.2 Solutions

Two solutions have thus been found in which satisfy (7.20) and (7.27). These

are the most symmetric solutions found. They are

bij(λ) = Q−
1
2
λ·(li+lj)

aij(λ) = Q
1
2
λ·(li+lj)

(
Q−

1
4

+ 1
2
λ·(li+li+2) +Q

1
4
− 1

2
λ·(li+li+2) + (−1)i+1

√
2
)

(7.28)

and

bij(λ) = Q−
1
2
λ·(li+lj)

aij(λ) = Q
1
2
λ·(li+lj)

(
Q−

1
4

+ 1
2
λ·(li+li+2) +Q

1
4
− 1

2
λ·(li+li+2) + (−1)i

√
2
)
. (7.29)

It is somewhat surprising that there are (at least) two solutions. There is no

indication here that one of (7.28) and (7.29) should be favoured as the solution,

further analysis will be required to determine whether or not both solutions
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should be considered as valid. Sections 7.3.3.3 and 7.3.3.4 consider the gener-

ation of other valid solutions through rescaling and unitarity transformations,

but no inequivalent solutions are found.

For the sake of completeness, with the notation that aij(λ) = Q
1
2
λ·(li+lj)ãij(λ),

whether solution (7.28) or (7.29) is used, an expression for the transmission

matrix 1
2T

λ
α (θ − η) is

1
2T

λ
α (θ − η) = g2(θ − η)


Qλ·l1δλα 0 x̂2Q−

1
2
λ·(l1+l3)δλ−α1−α2

α x̂Q
1
2
λ·(l1+l4)ã14(λ)δλ+α0

α

x̂Q
1
2
λ·(l1+l2)ã21(λ)δλ+α1

α Qλ·l2δλα 0 x̂2Q−
1
2
λ·(l2+l4)δλ−α2−α3

α

x̂2Q−
1
2
λ·(l1+l3)δλ+α1+α2

α x̂Q
1
2
λ·(l2+l3)ã14(λ)δλ+α2

α Qλ·l3δλα 0

0 x̂2Q−
1
2
λ·(l2+l4)δλ+α2+α3

α x̂Q
1
2
λ·(l3+l4)ã21(λ)δλ+α3

α Qλ·l4δλα

 . (7.30)

With expression (7.30) one can use the standard crossing-unitarity symmetry

(4.36) to get the expression for 3
2T

λ
α (θ − η), which is:

g2(θ − η)


Q−λ·l1δλα x̂Q−

1
2
λ·(l1+l2)ã21(λ)δλ+α1

α x̂2Q
1
2
λ·(l1+l3)δλ+α1+α2

α 0

0 Q−λ·l2δλα x̂Q−
1
2
λ·(l2+l3)ã14(λ)δλ+α2

α x̂2Q
1
2
λ·(l2+l4)δλ+α2+α3

α

x̂2Q
1
2
λ·(l1+l3)δλ−α1−α2

α 0 Q−λ·l3δλα x̂Q−
1
2
λ·(l3+l4)ã21(λ)δλ+α3

α

x̂Q−
1
2
λ·(l1+l4)ã14(λ)δλ+α0

α x̂2Q
1
2
λ·(l2+l4)δλ−α2−α3

α 0 Q−λ·l4δλα

 (7.31)

and is the same as the transpose of (7.30) with Q ↔ Q−1. Soliton fusing can

be applied to either of (7.30) or (7.31) to get 2
2T , which is a six by six matrix.

If fusing species 1 solitons (7.2) is used with (7.30), then 2
2T

λ
α (θ − η) is found,

with prefactor omitted, to be



Qλ·(l1+l2) x̂3Q
1
2
λ·(l2−l2)− 1

2 ã21(λ) x̂2Q
1
2
λ·(l2+l4−2l3) x̂2Q

1
2
λ·(2l2−l1−l3) x̂Q

1
2
λ·(l2−l3)ã14(λ) x̂4

x̂Q
1
2
λ·(l1−l4)ã14(λ) Qλ·(l1+l3) + x̂4Q−λ·(l1+l3) x̂3Q−

1
2
λ·(l3−l4)+ 1

2 ã14(λ) x̂3Q−
1
2
λ·(l1−l2)+ 1

2 ã14(λ) x̂2ã14(λ)ã14(λ+ α2) x̂Q−
1
2
λ·(l2−l3)ã21(λ)

x̂2Q
1
2
λ·(2l1−l2−l4) x̂Q

1
2
λ·(l1−l2)ã21(λ) Qλ·(l1+l4) x̂4 x̂3Q

1
2
λ·(l3−l4)− 1

2 ã14(λ) x̂2Q
1
2
λ·(l1+l3−2l2)

x̂2Q
1
2
λ·(l1+l3−2l4) x̂2Q

1
2
λ·(l1−l2)ã21(λ) x̂4 Qλ·(l2+l3) x̂3Q

1
2
λ·(l3−l4)ã14(λ) x̂2Q

1
2
λ·(2l3−l2−l4)

x̂3Q
1
2
λ·(l1−l4)+ 1

2 ã21(λ) x̂2a21(λ)ã21(λ+ α1) x̂Q
1
2
λ·(l3−l4)ã21(λ) x̂Q−

1
2
λ·(l1−l2)ã21(λ) Qλ·(l2+l4) + x̂4Q−λ·(l2+l4) x̂3Q−

1
2
λ·(l2−l3)+ 1

2 ã21(λ)

x̂4 x̂3Q−
1
2
λ·(l1−l4)− 1

2 ã21(λ) x̂2Q
1
2
λ·(2l4−l1−l3) x̂2Q

1
2
λ·(l2+l4−2l1) x̂Q−

1
2
λ·(l1−l4)ã14(λ) Qλ·(l1+l3)


. (7.32)

In (7.32) the omitted prefactor is given by g4(θ−η) = g2(θ−η− iπ
4

)g2(θ−η+ iπ
4

)

and the topological charge states of the soliton for both the rows and columns

is written in the order (12), (13), (14), (23), (24), (34), where (ij) denotes the

topological charge li+ lj. The observant reader will notice that the topological

charge delta functions have been suppressed in (7.32). The delta functions to
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match the matrix entries in (7.32) are

δλα δλ−α2
α δλ−α2−α3

α δλ−α1−α2
α δλ+α0

α δλ+α0−α2
α

δλ+α2
α δλα δλ−α3

α δλ−α1
α δλ−α1−α3

α δλ+α0
α

δλ+α2+α3
α δλ+α3

α δλα δλ−α1+α3
α δλ−α1

α δλ−α1−α2
α

δλ+α1+α2
α δλ+α1

α δλ+α1−α3
α δλα δλ−α3

α δλ−α2−α3
α

δλ−α0
α δλ+α1+α3

α δλ+α1
α δλ+α3

α δλα δλ−α2
α

δλ−α0+α2
α δλ−α0

α δλ+α1+α2
α δλ+α2+α3

α δλ+α2
α δλα


.

The delta functions can be found by topological charge conservation alone.

For example, in the row 2 column 5 entry of (7.32) the topological charge con-

servation is l1 +l3 +α = l2 +l4 +λ =⇒ α = λ−(l1−l2)−(l3−l4) = λ−α1−α3.

The expressions (7.30), (7.31) and (7.32) all have the assumption that ã32(λ) =

ã14(λ) and that ã43(λ) = ã21(λ). This need not be true after rescaling. Note

then that the rescaling and unitary transformation analysis that follows only

relates to 1
2T .

7.3.3.3 Rescaling symmetry

Freedom to rescale the quantities {aij(λ)} and {bij(λ)} can be seen in the in

the triangle relation conditions (A) - (G) and the crossing-unitarity relations

(A′) - (D′). Labelling the scaling by aij(λ)→ Aijaij(λ) and bij(λ)→ Bijbij(λ)

with {Aij} and {Bij} sets of constants, the solutions (7.28) and (7.29) corre-

spond to having Aij = Bij = 1 in all cases.

Most of the conditions in section 7.3.2 do not restrict the scaling as they

are homogeneous, in that both sides of the equality are scaled by the same

quantities. The conditions which do restrict the scaling are (A), (A′), (C ′) and

(D′) with both (A) and (D′) giving

A14A21 = B24 A21A32 = B31 A32A43 = B42 A43A14 = B13

which is consistent with (C ′). There is just one more constraint which comes

from (A′) which is that

A14A21A32A43 = 1 .
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Notable is that the triangle relations do not enforce the above constraint. It

is clear that there are just three independent parameters that allow solutions

to be rescaled consistently with both the triangle relations (7.20) and the

crossing-unitarity relations (7.27).

7.3.3.4 Unitary transformations

A further freedom in the solution comes from taking a diagonal unitary trans-

formation T → UTU †. In order for the triangle relations to still hold the

unitary transformations considered should depend only on the defect topolog-

ical charge and not on the soliton topological charge. In order to change the

actual charge dependence of the T -matrix the unitary transformation should

depend quadratically on the the defect topological charge, so such a transfor-

mation matrix has the form

Uβ
α = Q

1
2
cα·αδβα

with c a real parameter. The effect of this unitary transformation is that the

diagonal terms in the T -matrix are unchanged while

aij(λ)→ QcQcλ·(lj−li)aij(λ)

bij(λ)→ QcQcλ·(lj−li)bij(λ) .

The solution (7.28) or (7.29) is thus altered correspondingly. Note that the

unitary transformation U jβ
iα = Q

li·α
4 δji δ

β
α considered in [CZ07] and seemingly

dependent on soliton labels has the same effect as the above transformation

when c = −1
4
.

A linear unitary transformation such as Uβ
α = Qα·Xδβα, where X is a fixed

vector in the root space, gives something entirely equivalent to the rescaling

symmetry already considered. Note that the general quadratic unitary trans-

formation here does not affect the crossing-unitarity relations.

7.3.3.5 High-rapidity limits

The identification of (7.19) with either identification (7.28) or (7.29) as the

transmission matrix for the species 1 soliton through the species 2 defect should
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not contradict the classical identifications made in chapter 5. While an anal-

ysis of the classical limit of (7.19) has not been carried out, a quick check can

be made involving the high rapidity limits.

In the limit θ − η → −∞ the rapidity dependent quantities within the T -

matrix (as opposed to the prefactor) will tend to zero, x̂→ 0. The terms which

dominate in (7.19) therefore are the diagonal terms, so the limit θ− η → −∞
results in no change of topological charge occurring to a transmitted soliton.

This is in agreement to the same limit in the classical case, as shown in section

5.2.

In the limit θ − η → ∞ it must be that |x̂| → ∞ and so the terms which

dominate in the transmission matrix (7.19) are those containing x̂2. In this

limit then the species 1 soliton being transmitted through the defect has its

topological charge shifted by two sectors, so l1 ↔ l3 and l2 ↔ l4. This again

agrees with the same limit in the classical case in section 5.2.

The same two high-rapidity limits, θ − η → ±∞, can be applied to the trans-

mission matrices for the other solitons through the species 2 defect, given by

(7.31) and (7.32). For both the species 2 and species 3 solitons the high-

rapidity limits in the transmission matrices (7.32) and (7.31), respectively, are

seen to agree with the classical limits in section 5.2. The species 2 soliton case

is of particularly interest as only two of the six quantum topological charges,

l1 + l3 and l2 + l4, survive in the classical limit. The transmission matrix (7.32)

clearly allows soliton charges to jump from a classical charge (l1 + l3 or l2 + l4)

to non-classical charges (l1 + l2, l1 + l4, l2 + l3 or l3 + l4), but such transmissions

are suppressed in the high rapidity limits.

7.4 A new defect in a
(1)
5

Section 7.3 is concerned with finding the transmission matrix for a species 1

soliton through species 2 defect in a
(1)
3 . One might think then that the next case

to consider is the species 2 defect of a
(1)
4 , but the anti-defect of that defect is a

species 3 defect, which is also unknown - the crossing-unitarity equation (7.8)

thus links together two unknown T -matrices, greatly complicating attempts

at a solution. Instead, the easiest case to consider next is that of the species
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3 defect of a
(1)
5 . The species 3 defect in a

(1)
5 is self-conjugate so the crossing-

unitarity conditions only involve this defect. As such, the same methods used

in section (7.3.2) can be applied to finding the transmission matrix of a species

1 soliton through a species 3 defect in a
(1)
5 , which is the focus of this section.

7.4.1 Transmission matrix ansatz

The general defect fusing rules are given by (7.5) so in a
(1)
5 the transmission

matrix for a species 3 defect can be found from those of a species 1 and a

species 2 defect. The species 1 defect is known and its transmission matrix is

found in [CZ09a], but the species 2 defect is unknown. Nonetheless, applying

the defect fusing (7.4) gives the species 2 defect transmission matrix in terms

of the species 1 defect transmission matrix and the defect fusing couplings.

Putting these together an ansatz for the T -matrix for the species 1 soliton

through the species 3 defect can be found and is given by

1
3T

nλ
iα (θ − η) = g3(θ − η)

×



Qλ·l1 0 0 x̂3c14(λ) x̂2b15(λ) x̂a16(λ)

x̂a21(λ) Qλ·l2 0 0 x̂3c25(λ) x̂2b26(λ)

x̂2b31(λ) x̂a32(λ) Qλ·l3 0 0 x̂3c36(λ)

x̂3c41(λ) x̂2b42(λ) x̂a43(λ) Qλ·l4 0 0

0 x̂3c52(λ) x̂2b53(λ) x̂a54(λ) Qλ·l5 0

0 0 x̂3c63(λ) x̂2b64(λ) x̂a65(λ Qλ·l6


. (7.33)

In (7.33) the topological charge delta functions have been suppressed to fit the

expression onto the page without affecting legibility, as a matrix these delta

functions are

δλα − − δλ−α1−α2−α3
α δλ+α5+α0

α δλ+α0
α

δλ+α1
α δλα − − δλ−α2−α3−α4

α δλ+α0+α1
α

δλ+α1+α2
α δλ+α2

α δλα − − δλ−α3−α4−α5
α

δλ+α1+α2+α3
α δλ+α2+α3

α δλ+α3
α δλα − −

− δλ+α2+α3+α4
α δλ+α3+α4

α δλ+α4
α δλα −

− − δλ+α3+α4+α5
α δλ+α4+α5

α δλ+α5
α δλα


where the dashes indicate a pairing to a term which is zero. The prefactor

in the transmission matrix (7.33) is determined by the fusing rules and stems

from the a
(1)
5 version of the prefactor g1(θ− η) given in [CZ09a]. The prefactor
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can be shown to have the property

g3(θ − η)g3(θ − η + iπ) =
1

1−Q3x̂6
. (7.34)

7.4.2 Constraining the T -matrix

The same conditions can be used as are used in the a
(1)
3 case in section 7.3.2, i.e.,

the triangle relations, the soliton fusing constraints and the crossing-unitarity

relations.

7.4.2.1 Crossing-unitarity relations

The appropriate version of the crossing-unitarity relations (7.8) for the species

3 defect of a
(1)
5 with the species 1 soliton is

1
3T

jβ
iα (θ − η)1

3T
n(−β)
j(−λ) (θ − η + iπ) = δni δ

λ
α .

Applying these conditions to the ansatz (7.33), and making use of the property

of the prefactors (7.34) gives the following conditions

c14(λ)c41(−λ) = 1

c25(λ)c52(−λ) = 1

c36(λ)c63(−λ) = 1 (Ã′)

a16(λ)Q−λ·l6 = a16(−λ− α0)Qλ·l1

a21(λ)Q−λ·l1 = a21(−λ− α1)Qλ·l2

a32(λ)Q−λ·l2 = a32(−λ− α2)Qλ·l3

a43(λ)Q−λ·l3 = a43(−λ− α3)Qλ·l4

a54(λ)Q−λ·l4 = a54(−λ− α4)Qλ·l5

a65(λ)Q−λ·l5 = a65(−λ− α5)Qλ·l6 (B̃′)
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a16(λ)a65(−λ) = b15(λ− α5)Q−λ·l5 + b15(−λ− α0)Qλ·l1

a21(λ)a16(−λ) = b26(λ− α0)Q−λ·l6 + b26(−λ− α1)Qλ·l2

a32(λ)a21(−λ) = b31(λ− α1)Q−λ·l1 + b31(−λ− α2)Qλ·l3

a43(λ)a32(−λ) = b42(λ− α2)Q−λ·l2 + b42(−λ− α3)Qλ·l4

a54(λ)a43(−λ) = b53(λ− α3)Q−λ·l3 + b53(−λ− α4)Qλ·l5

a65(λ)a54(−λ) = b64(λ− α4)Q−λ·l4 + b64(−λ− α5)Qλ·l6

b15(λ)b53(−λ) = Qa16(λ+ α5)c63(−λ− α5) +Q−1c14(λ− α4)a43(−λ+ α4)

b26(λ)b64(−λ) = Qa21(λ+ α0)c14(−λ− α0) +Q−1c25(λ− α5)a54(−λ+ α5)

b31(λ)b15(−λ) = Qa32(λ+ α1)c25(−λ− α1) +Q−1c36(λ− α0)a65(−λ+ α0)

b42(λ)b26(−λ) = Qa43(λ+ α2)c36(−λ− α2) +Q−1c41(λ− α1)a16(−λ+ α1)

b53(λ)b31(−λ) = Qa54(λ+ α3)c41(−λ− α3) +Q−1c52(λ− α2)a21(−λ+ α2)

b64(λ)b42(−λ) = Qa65(λ+ α4)c52(−λ− α4) +Q−1c63(λ− α3)a32(−λ+ α3)

c14(λ)b42(−λ) = Qb15(λ+ α4)c52(−λ− α4)

c25(λ)b53(−λ) = Qb26(λ+ α5)c63(−λ− α5)

c36(λ)b64(−λ) = Qb31(λ+ α0)c14(−λ− α0)

c41(λ)b15(−λ) = Qb42(λ+ α1)c25(−λ− α1)

c52(λ)b26(−λ) = Qb53(λ+ α2)c36(−λ− α2)

c63(λ)b31(−λ) = Qb64(λ+ α3)c41(−λ− α3)

Qa16(λ)b64(−λ) + c14(λ− α4 − α5)Q−λ·l4 = Qc14(−λ− α0)Qλ·l1 + b15(λ− α5)a54(−λ+ α5)

Qa21(λ)b15(−λ) + c25(λ− α5 − α0)Q−λ·l5 = Qc25(−λ− α1)Qλ·l2 + b26(λ− α0)a65(−λ+ α0)

Qa32(λ)b26(−λ) + c36(λ− α0 − α1)Q−λ·l6 = Qc36(−λ− α2)Qλ·l3 + b31(λ− α1)a16(−λ+ α1)

Qa43(λ)b31(−λ) + c41(λ− α1 − α2)Q−λ·l1 = Qc41(−λ− α3)Qλ·l4 + b42(λ− α2)a21(−λ+ α2)

Qa54(λ)b42(−λ) + c52(λ− α2 − α3)Q−λ·l2 = Qc52(−λ− α4)Qλ·l5 + b53(λ− α3)a32(−λ+ α3)

Qa65(λ)b53(−λ) + c63(λ− α3 − α4)Q−λ·l3 = Qc63(−λ− α5)Qλ·l6 + b64(λ− α4)a43(−λ+ α4)
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7.4.2.2 Triangle relations / Soliton fusing conditions

For a
(1)
5 , as in a

(1)
3 , soliton fusing can be used to constrain the transmission

matrix (7.33). The transmission matrix for a species 2 soliton through a species

3 defect is given by

2
3T

(ab)λ
(jk)α(θ − η)c(ab) = c(jk)1

3T
aλ
jβ (θ − η − iπ

6
)1
3T

bβ
kα(θ − η + iπ

6
) + (j ↔ k) (7.35)

or

2
3T

(ba)λ
(jk)α(θ − η)c(ba) = c(jk)1

3T
bλ
jβ (θ − η − iπ

6
)1
3T

aβ
kα (θ − η + iπ

6
) + (j ↔ k) . (7.36)

Since T
(ab)
(jk) = T

(ba)
(jk) as the charge (ab) is the same as the charge (ba) (both

represent la + lb), comparing (7.35) and (7.36) gives 152 = 225 conditions,

which are a subset of the triangle relations. Most of them are trivial but there

are still many that are not. In the expressions (7.35) and (7.36) there are the

couplings {c(ij)} which have the following ratios:

c(16)

c(15)
=
c(15)

c(14)
=
c(14)

c(13)
=
c(13)

c(12)
= (−Q)−

1
6 .

In general c(i(i+k)) = c(j(j+k)) for any fixed k and modulo h = 6 (the label i = 0

is equivalent to i = 6) so e.g. c(16) = c(21) = c(32), etc.

The triangle relations, with two species 1 solitons passing through the species

3 defect are given by

11Smnjk (θ1 − θ2) 1
3T

t
n(θ1 − η) 1

3T
s
m(θ2 − η) = 1

3T
m
k (θ2 − η) 1

3T
n
j (θ1 − η) 11Sstnm(θ1 − θ2) . (7.37)

In all there are 64 = 1296 conditions arising from (7.37), making a systematic

check very time consuming. It is likely that most of the non-trivial relations

will arise from the soliton fusing constraints, which can be supplemented by

specific instances of the triangle relations.
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Altogether, a representative sample of the triangle relations is:

a16(λ)a32(λ+ α0) = a32(λ)a16(λ+ α2)

a16(λ)a43(λ+ α0) = a43(λ)a16(λ+ α3)

a16(λ)a54(λ+ α0) = a54(λ)a16(λ+ α4)

a21(λ)a16(λ+ α1)− a16(λ)a21(λ+ α0) =
(
Q−Q−1

)
b26(λ)Qλ·l1

a16(λ)a65(λ+ α0)− a65(λ)a16(λ+ α5) =
(
Q−Q−1

)
b15(λ)Qλ·l6

a16(λ)b15(λ+ α0) = Qb15(λ)a16(λ+ α5 + α0)

a16(λ)b26(λ+ α0) = Q−1b26(λ)a16(λ+ α0 + α1)

a16(λ)b42(λ+ α0) = b42(λ)a16(λ+ α2 + α3)

a16(λ)b53(λ+ α0) = b53(λ)a16(λ+ α3 + α4)

b31(λ)a16(λ+ α1 + α2)− a16(λ)b32(λ+ α0) =
(
Q−Q−1

)
c36(λ)Qλ·l1

a16(λ)b64(λ+ α0)− b64(λ)a16(λ+ α4 + α5) =
(
Q−Q−1

)
c14(λ)Qλ·l6

a16(λ)c14(λ+ α0) = Qc14(λ)a16(λ− α1 − α2 − α3)

a16(λ)c36(λ+ α0) = Q−1c36(λ)a16(λ− α3 − α4 − α5)

a16(λ)c41(λ+ α0) = c41(λ)a16(λ+ α1 + α2 + α3)

a16(λ)c52(λ+ α0) = c52(λ)a16(λ+ α2 + α3 + α4)

a16(λ)c63(λ+ α0) = c63(λ)a16(λ+ α3 + α4 + α5)

b26(λ)b15(λ+ α0 + α1)− b15(λ)b26(λ+ α5 + α0)

= Qa16(λ)c25(λ+ α0)−Q−1c25(λ)a16(λ− α2 − α3 − α4)

b15(λ)b64(λ+ α5 + α0)− b64(λ)b15(λ+ α4 + α5)

= Qa65(λ)c14(λ+ α5)−Q−1c14(λ)a65(λ− α1 − α2 − α3)
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b15(λ)b31(λ+ α5 + α0) = b31(λ)b15(λ+ α1 + α2)

b15(λ)b42(λ+ α5 + α0) = b42(λ)b15(λ+ α2 + α3)

b15(λ)b53(λ+ α5 + α0) = b53(λ)b15(λ+ α3 + α4)

b15(λ)c14(λ+ α5 + α0) = Qc14(λ)b15(λ− α1 − α2 − α3)

b15(λ)c25(λ+ α5 + α0) = Q−1c25(λ)b15(λ− α2 − α3 − α4)

b15(λ)c36(λ+ α5 + α0) = c36(λ)b15(λ− α3 − α4 − α5)

b15(λ)c41(λ+ α5 + α0) = c41(λ)b15(λ+ α1 + α2 + α3)

b15(λ)c52(λ+ α5 + α0) = c52(λ)b15(λ+ α2 + α3 + α4)

b15(λ)c63(λ+ α5 + α0) = c63(λ)b15(λ+ α3 + α4 + α5)

And also

c14(λ)c25(λ− α1 − α2 − α3) = c25(λ)c14(λ− α2 − α3 − α4)

etc.

It appears that all other such conditions can be found from cycling through

the indices.

7.4.3 Solution

In attempting to find a solution the conditions (Ã′) and especially (B̃′) appear

to be a good starting point with the other crossing-unitarity conditions and

the triangle relations subsequently used. Unfortunately, making assumptions

similar to those used in solving for the the T -matrix of the species 2 defect of

a
(1)
3 eventually leads to contradictions, and as such no solution has been found.

Were a solution to be found it would provide particularly strong evidence for

the existence of the defect hierarchy; but should such a solution not exist then

defect fusing rules in the proposed form, (7.5), cannot hold.
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7.5 Summary

This chapter begins with the formulation of defect fusing rules in the quantum

theory by means of a modified Faddeev–Zamolodchikov algebra. This idea al-

lows the T -matrix for any species of fundamental defect to be written in terms

of the T -matrices of other species of defect and the defect fusing couplings

{dβ,γ}. The general formula is given by (7.5). Unfortunately the defect fus-

ing couplings are unknown so they must be found, or an indirect approach is

needed, if (7.5) to have predictive power.

The case of defect fusing in a
(1)
2 is examined in section 7.2 for the purpose

of studying the defect fusing couplings. The process for finding the defect fus-

ing couplings is illustrated but no solution is given.

The main work of the chapter is the finding of a transmission matrix for the

species 2 defect of a
(1)
3 in section 7.3. The defect fusing process (7.4) is used

there to find an ansatz (7.19) for the T -matrix. The triangle relations, soli-

ton fusing constraints and crossing-unitarity conditions are then used to find

the solutions (7.28) and (7.29). Connection is made to the classical results of

chapter 5 by means of the high-rapidity limits.

The chapter ends with section (7.4), analysing the species 3 defect of a
(1)
5 .

The same methods are used as are used in section 7.3 but due to the greater

complexity of a
(1)
5 no solution is found.
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Discussion

8.1 Conclusions

The central idea of this thesis is that integrable defects in affine Toda field the-

ory possess a number of particle-like characteristics (such as: defects possessing

energy and momentum; the existence of anti-defects; intriguing links between

defects and solitons) and so should be classified in a way analogous to the

classification of the solitons of the theory. The structure of this classification

has two parts:

1. It links together the different defects of the same a
(1)
r ATFT through the

presence of defect fusing rules.

2. It links together defects of different ATFTs via folding.

This work has tried to show that both fusing rules and folding makes sense

when applied to defects, as such the framework has been extended and should

allow for more systematic study of integrable defects in ATFT in the future.

Chapter 5 considers a classical approach to defect fusing rules. In that chapter

the main quantities of interest are the delay factors picked up by solitons pass-

ing through the defects. Some observations are made in particular of a
(1)
2 and

a
(1)
3 which illustrate the striking similarities between the soliton and defect fus-

ing rules. The conclusion is that defect fusing rules have a sound footing classi-

cally, although a purely Lagrangian approach would obfuscate this observation.

Chapter 6 is concerned with the construction of defect configurations in a
(1)
r which

may be folded. This work preceded the identification of the different species

121
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of defect but fits in well with this idea, the foldable defect configurations are

formed by combining a species 1 and a species r defect which possess the same

rapidity - analogous to how the first fundamental soliton of the folded theory

is constructed. While it has long been known that the a
(1)
2n−1 Dynkin diagram

folds to c
(1)
n [OT83a], the full power of the approach requires the use of certain

‘non-canonical’ foldings [KS96b], and as such a consequence of this work is the

construction d
(2)
n and a

(2)
2n solitons using a

(1)
r solitons in chapter 3. The folded

defect configurations are shown to preserve the forms of the solitons of the

folded theory and to conserve momentum, giving very strong indications of

integrability.

Finally, chapter 7 considers a quantum approach to the question of defect fusing

rules. The defect fusing rules are formulated in the Faddeev–Zamolodchikov

algebra and used along with consistency conditions, the triangle relations and

the crossing-unitarity conditions, to find the transmission matrices for funda-

mental solitons through the species 2 defect of a
(1)
3 .

Overall the evidence for defect fusing rules and folding is strong. There is

nothing in this thesis which contradicts the hypothesis that such a structure

exists, although there are a few inconclusive calculations - particularly in chap-

ter 7.

8.2 Outlook

The nature of this thesis, in that it broadens the framework in which to study

defect ATFTs instead of focussing on extant questions, means that there re-

main many outstanding issues regarding defects in affine Toda field theory.

Examples include:

• One issue in particular is how precisely defects relate to solitons. Even

at the classical level it is notable how the defect conditions are given by

Bäcklund transformations [BCZ04a, BCZ04b], which links strongly to the

construction of solitons (see [DJ89] for an introduction). Another thing

of note classically is that in the sine-Gordon case the energy associated

to a type I defect is precisely one half of the energy of a soliton [CZ10].

In the quantum theory the solitons and defects are further intertwined

as soliton S-matrices have been found embedded in T -matrices of type

II defects [CZ10, CZ11]. The paper [CZ11] gives particular emphasis to
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the embeddings in a
(1)
3 where the following S matrices have been found:

11S 33S 13S 21S 23S .

Notable is that the second ‘soliton’, which is the type II defect, is not of

species 2. It seems then that the type II defect, set up in a particular way,

may mimic a species 1 or a species 3 soliton but not a species 2 soliton.

It is not clear why this is the case, although the species 1 and 3 solitons

both have a smaller mass than the species 2 soliton. It is plausible that

under these conditions the defect fusing rules may link to the soliton

fusing rules to allow all of the S-matrices found as embeddings.

• Another analysis missing from this thesis is the construction of the T -

matrices associated to the defects of the folded theories of chapter 6,

although there is a T -matrix for the a
(2)
2 defect in the literature [CZ11].

Soliton S-matrices are known for all of the simply laced ATFTs [Hol93a,

Joh97], but unlike with the fundamental excitations [Kha97], the S-

matrices for the non-simply laced theories have not been found by a

folding process [GM95, GMW96]. Given the difficulty of constructing

the non-simply laced S-matrices, one may expect that there is no simple

way of constructing the T -matrices for the folded defects.

• One aspect of defect ATFT that has received little attention beyond an

initial investigation [BCZ05, Wes] is the possibility of scattering defects

off other defects. At the classical level defect-defect scattering may be

trivial given that the defect conditions are given by Bäcklund transfor-

mations which possess the property of commutativity. At the quantum

level, however, one might expect there to be a non-trivial defect scat-

tering matrix: for a defect with rapidity η1 and topological charge α

scattering off a defect with rapidity η2 and topological charge β, the de-

fect scattering matrix is denoted Xµλ
αβ(η1− η2), where the first defect has

outgoing topological charge λ and the second has charge µ; topological

charge conservation is α + β = λ + µ. The supposition that X depends

on the rapidity difference of the defects is somewhat problematic as a

non-zero rapidity does not necessarily imply that the defect is moving.

One would also normally expect that for the dependence to be on η1−η2

that η1 > η2, but, unlike with solitons, such a condition does not nec-

essarily imply that the first defect is moving any faster than the second
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Figure 8.1: Illustration of Yang–Baxter relations for a soliton and two scatter-
ing defects, given by equation (8.1).
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Figure 8.2: Illustration of the defect-defect crossing relation, given by equation
(8.2).

defect. If such a defect scattering matrix does exist then one could go

about finding what it is by considering the Yang–Baxter equation for

one soliton and two defects, as illustrated in figure 8.1. The factorised

scattering condition is then

T jγiα (θ − η1)T nδjβ (θ − η2)Xλµ
γδ (η1 − η2) = Xδγ

αβ(η1 − η2)T jµiδ (θ − η2)T nλjγ (θ − η1) (8.1)

where the intermediate states j, γ and δ are summed over. One also

expects the crossing symmetry of figure 8.2 to hold, so

q1q2X
µλ
αβ(η1 − η2) = q1(h−q2)X

(−β)λ
α(−µ)(iπ + η2 − η1) . (8.2)

• The results of chapter 6 suggest that by finding the appropriate defects

in the ADE simply laced ATFTs defects in all of the other theories

can be found by folding. Unfortunately the only simply laced theories

for which defects have been found is the a
(1)
r series, which is the only
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series allowing type I defects [BCZ04b]. The natural theory to search

for next for defects is the d
(1)
4 ATFT. It was noted early that the d

(1)
4

soliton tau functions are quadratic while those of a
(1)
r are linear [Hol92],

so perhaps this unusual analogy hints that d
(1)
4 may have defects of type

II Lagrangian description. The biggest hint that the d
(1)
s series, including

d
(1)
4 , may possess type II defects comes from the non-canonical folding

[KS96b] done in chapter 6 to obtain d
(2)
n and a

(2)
2n defects, folding from

a
(1)
r . The canonical [OT83a] ways to get these theories is to fold from the

d
(1)
s series and is illustrated in figures 8.3 and 8.4. The single solitons of

d
(2)
n come from two-soliton solutions of a

(1)
2n−1 but one-soliton solutions of

d
(1)
n+1 [McG94b]. The d

(2)
n defect already found comes from a two-defect

solution of a
(1)
2n−1, so does it also come from a one-defect solution of d

(1)
n+1?

If so this would strongly suggest that the d
(1)
s series of ATFTs possess

type II defects.

• In the sine-Gordon theory the possibility of combining a defect with an

integrable boundary (the Ghoshal–Zamolodchikov boundary [GZ94]) has

been realised [CZ12] and boundaries dressed with defects have also been

studied in complex sine-Gordon theory [BU09, BU08] and the nonlinear

Schrödinger model [Zam14]. ATFT with defects and boundaries has also

been studied algebraically [Doi15a, Doi15b]. At the Lagrangian level,
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there are known integrable boundary conditions for all of the other affine

Toda theories [BCDR95] which, despite generalisations [BCR96, Del98],

possess no free parameters. The possibility of combining defects with

boundaries may introduce free parameters to the boundary conditions,

but it is not clear whether charges conserved separately by the defect

and the boundary are still conserved after combination and if so is inte-

grability affected.

• Imaginary coupling affine Toda field theory, i.e., ATFT with solitons, is

- with the exception of sine-Gordon theory, non-unitary and so has prob-

lems with quantisation [KS96a, TW99]. However, despite having a non-

Hermitian Hamiltonian the soliton energies are real [Hol92] and further-

more all of the other conserved charges are real [Fre95]. Non-Hermitian

Hamiltonians with real spectra are the objects of interest in the study of

PT -symmetric quantum theories [BB98]. Indeed, ATFT frequently crops

up in the discussion of PT symmetry (e.g., [OM09, Fri09, BHMS14]) and

as such PT symmetry, or some generalisation of it, should provide an al-

ternative approach to quantising the imaginary coupling ATFT. Whether

this can be applied in the presence of defects is another matter.

It is likely the reader knows of other, more interesting, aspects of affine Toda

field theory which deserve to be researched. The author wishes them every

success and hopes that this work proves in some way useful to them.



Appendix A

Infinite combination

of sinh-Gordon defects

It is argued in chapter 4 that in combining two defects, i.e., placing two de-

fects at the same location, the associated energy and associated momentum of

the combined defect is just the sum of the individual energies and momenta

respectively. The thesis argues that the existence of a conserved momentum

is likely strong enough to imply classical integrability. It is the case for the

type I a
(1)
r defects that existence of a conserved momentum gives constraints

[CZ09a] which match those found by taking a Lax pair approach [BCZ04b].

The condition that momentum is conserved in the folded defects of chapter 6

also matches the condition that solitons preserve their form when transmitted

through the defect, which strongly suggests at there being an infinite number

of higher-spin conserved charges. Since the momentum conservation argument

is so powerful, consideration of the higher-spin charges is considered unnec-

essary. This appendix considers a higher-spin charge in a1, the sinh-Gordon

model, a model which is given no special attention in the main body of the

thesis given that fusing rules and folding is absent from it.

127
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A.1 The spin-3 conserved charge of a1 with

a defect

Consider classical sinh-Gordon theory with a type I defect. The Lagrangian

with m and β scaled out is given by [BCZ04a]

L = θ(x)Lu + θ(−x)Lv + δ(x) (uv̇ −D(u, v)) (A.1)

with

D(u, v) = 2e−η cosh

(
u+ v

2

)
+ 2eη cosh

(
u− v

2

)
. (A.2)

The conventions here differ from equations (2.1), (4.1) and (4.2), with the

single positive simple root of a1 chosen to be given by α1 = 1 (with α0 = −1),

rather than α1 =
√

2. The Euler–Lagrange equations for this system are

u′′ = ü+ Uu |x<0

v′′ = v̈ + Vv |x>0

u′ = v̇ −Du |x=0 (A.3)

v′ = u̇+Dv |x=0 (A.4)

where U and V the bulk potentials for u and v respectively, with17 U = U(u) =

coshu.

There is in a1 a bulk conserved charge of Lorentz spin +3 and one of Lorentz

spin -3. These can be combined in two ways to form an energy-like combina-

tion (sum) and a momentum-like combination (difference). As boundaries are

of some interest here only the energy-like combination is considered, which is

given by

Q = Q3 +Q−3 =

∫ 0

−∞
T4(u)−Θ2(u) dx+

∫ 0

−∞
T−4(u)−Θ−2(u) dx

+

∫ ∞
0

S4(v)− Σ2(v) dx+

∫ ∞
0

S−4(v)− Σ−2(v) dx . (A.5)

17 The conventions of chapter 2 would have U = 2(coshu − 1), but the expression used in
this appendix is more convenient here, since Uuu = U .
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S and Σ are just the same as T and Θ but exist to the right of the defect

(hence taking v as their argument) instead of the left.

The quantities in (A.5) have the properties ∂−T4 = ∂+Θ2 and ∂+T−4 = ∂−Θ−2,

where the lightcone derivatives are ∂± = ∂t ± ∂x, from the lightcone coordi-

nates x± = 1
2
(t ± x). The same holds for S and Σ. Using these properties,

assuming that field fluctuations die out at spatial infinity, the time derivative

of the charge is

Q̇ = T4 − T−4 + Θ2 −Θ−2 − S4 + S−4 − Σ2 + Σ−2 |x=0 (A.6)

The aim of this argument is to show that the right-hand side of (A.6) is a

total time derivative, which implies that there is a modified conserved ‘spin 3’

energy-like charge in the system with a defect. The expression for the right-

hand side of (A.6) comes from considering the possible terms of spin +4 density

which are not related by a total ∂+ derivative. The only choice that works is

proportional to T4 = u4
+ + 4u2

++ while similarly T−4 = u4
− + 4u2

−−, with S

the same as T but with the argument v instead of u. With this choice (A.6)

becomes

Q̇ = 8u̇3u′ + 8u̇u′
3

+ 64üu̇′ + 32u̇′Uu − 16u̇u′U

− 8v̇3v′ − 8v̇v′
3 − 64v̈v̇′ − 32v̇′Vv + 16v̇v′V |x=0 . (A.7)

Making use of the defect conditions (A.3) and (A.4), with some partial inte-

gration, and noting that D2
u −D2

v = Uu − Vv, (A.7) becomes

Q̇ = d
dt

[−32u̇2Duu − 32v̇2Dvv − 64u̇v̇Duv − 32DuUu − 32DvVv − 32utVv + 32vtUu]

− 8u̇
(
D3
u − 6DuU

)
− 8v̇

(
D3
v − 6DvV

)
|x=0 . (A.8)

The right-hand side of (A.8) is indeed a total time derivative, so there is a

modified spin 3 energy like charge associated to the defect. Note that im-

posing Dirichlet boundary conditions (v = constant) here gives the Ghoshal–

Zamolodchikov boundary [GZ94]. The conserved charge for this boundary is
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the same as that specified by (A.8), but with all reference to the field v re-

moved.

A.2 The N-defect

Consider now an inductive argument to show that in combining defects the

spin 3 energy-like charge is additive. Suppose that there exists an integrable

N -defect, formed by the combination of N type I defects. The N -defect at

x = 0 has the Lagrangian

L = θ(−x)Lλ1 + θ(x)LλN+1
+ δ(x)

(
N∑
i=1

λi(λi+1)t −
N∑
i=1

D(i)(λi, λi+1)

)
(A.9)

where each D(i) is of the form D(i) = 2e−ηi cosh
(
λi+λi+1

2

)
+2eηi cosh

(
λi−λi+1

2

)
.

Although the only fields which have an existence in the bulk are λ1 and λN+1,

one can associate to each λi a potential Λi = cosh(λi). Then a relationship

that holds for all i is

(D
(i)
1 )2 − (D

(i)
2 )2 = 2Λi − 2Λi+1

where D1 denotes the derivative of D with respect to its first argument (for

D(i)(λi, λi+1) this means the derivative with respect to λi); similarly D2 de-

notes the derivative of D with respect to its second argument. The notation Λ′i

means the derivative of Λi with respect to its argument λi, not to be confused

with the spatial derivative.

The equations of motion from (A.9) are:

λ1
′′ = λ̈1 + Λ′1 |x<0

λN+1
′′ = λ̈N+1 + Λ′N+1 |x>0

λ1
′ = λ̇2 −D(1)

1 |x=0 (A.10)

λN+1
′ = λ̇N +D

(N)
2 |x=0 (A.11)

λ̇i−1 = λ̇i+1 −D(i−1)
2 −D(i)

1 |x=0 for i = 2, . . . , N (A.12)
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It is supposed that the defect is integrable and, further, that the spin 3 energy-

like charge conservation is specified by

Q̇ =
N∑
i=1

d

dt

[
−32λ̇2

iD
(i)
11 − 32λ̇2

i+1D
(i)
22 − 64λ̇iλ̇i+1D

(i)
12

−32D
(i)
1 Λ′i − 32D

(i)
2 Λ′i+1 − 32λ̇iΛ

′
i+1 + 32(λi+1)tΛ

′
i

]
− 8

N+1∑
i=1

λ̇i

((
D

(i−1)
2

)3

+
(
D

(i)
1

)3

− 6
(
D

(i−1)
2 +D

(i)
1

)
Λi

)
(A.13)

where D(0) = D(N+1) ≡ 0. Note that this holds for N = 1, with (A.8) the

N = 1 version of (A.13).

Associated to the Lagrangian (A.9) is the time derivative of the conserved

charge

Q̇ = T4 − T−4 + Θ2 −Θ−2 − (R)

= 8λ̇3
1λ1
′ + 8λ̇1λ

3
1
′
+ 64λ̈1λ̇

′
1 + 32λ̇′1Λ′1 − 16λ̇1λ1

′Λ1 − (R)

(A.10)

= 8λ̇3
1λ̇2 − 8λ̇3

1D
(1)
1 + 8λ̇1λ̇

3
2 − 24λ̇1λ̇

2
2D

(1)
1 + 24λ̇1λ̇2

(
D

(1)
1

)2

− 8λ̇1

(
D

(1)
1

)3

+ 64λ̈1λ̈2 − 64λ̈1Ḋ
(1)
1

+ 32λ̈2Λ′1 − 32Ḋ
(1)
1 Λ′1 − 16λ̇1λ̇2Λ1 + 16λ̇1D

(1)
1 Λ1 − (R) (A.14)

where (R) denotes the equivalent contribution from λN+1, which is not needed

for the inductive argument. It is supposed then that (A.14) matches (A.13),

which is certainly the case for N = 1.

For the inductive step suppose that another single type I defect at some x < 0

is now combined with the N -defect given by (A.9). The Lagrangian for this

(N+1)-defect is then

L = θ(−x)Lλ0 + θ(x)LλN+1
+ δ(x)

(∑N
i=0 λi(λi+1)t −

∑N
i=0 D

(i)(λi, λi+1)
)

(A.15)

where now, crucially, D(0) = 2e−η0 cosh
(
λ0+λ1

2

)
+ 2eη0 cosh

(
λ0−λ1

2

)
whereas it

was previously zero.

For this (N+1)-defect, (A.11) still holds, as does (A.12), but with (A.12)

extended to include i = 1, giving λ̇0 = λ̇2 −D(0)
2 −D

(1)
1 . Equation (A.10) no
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longer holds, but instead λ0
′ = λ̇1 −D(0)

1 .

Associated to (A.15) is the time derivative of the conserved charge:

Q̇ = 8λ̇3
0λ̇1 − 8λ̇3

0D
(0)
1 + 8λ̇0λ̇

3
1 − 24λ̇0λ̇

2
1D

(0)
1 + 24λ̇0λ̇1

(
D

(0)
1

)2

− 8λ̇0

(
D

(0)
1

)3

+ 64λ̈0λ̈1 − 64λ̈0Ḋ
(0)
1

+ 32λ̈1Λ′0 − 32Ḋ
(0)
1 Λ′0 − 16λ̇0λ̇1Λ0 + 16λ̇0D

(0)
1 Λ0 − (R) . (A.16)

As long as (A.14) matches up with (A.13), the difference between the con-

served charge of the (N+1)-defect and the N -defect is then (A.16) - (A.13).

Using λ̇0 = λ̇2 − D(0)
2 − D

(1)
1 and (D

(0)
1 )2 − (D

(0)
2 )2 = 2Λ0 − 2Λ1, this can be

shown to equal

Q̇(N+1)− Q̇(N) =
d

dt

[
−32λ̇2

0D
(0)
11 − 32λ̇2

1D
(0)
22 − 64λ̇0λ̇1D

(0)
12

−32D
(0)
1 Λ′0 − 32D

(0)
2 Λ′1 − 32λ̇0Λ′1 + 32λ̇1Λ′0

]
− 8λ̇0

((
D

(0)
1

)3

− 6
(
D

(0)
1

)
Λ0

)
− 8λ̇1

((
D

(0)
2

)3

− 6
(
D

(0)
2

)
Λ1

)
. (A.17)

The expression (A.17) is precisely what would be expected from taking the

sum from i = 0 in (A.13) with D(0) 6= 0. This proves the inductive step, that

(A.13) specifies a spin 3 energy-like conserved charge for all N .

By applying Dirichlet boundary conditions on λN+1, an analogous analysis

holds. The terms specified by (R) then vanish, and the conserved charge is

(A.13) but with all reference to λN+1 removed. This prescription thus provides

a class of integrable boundary conditions for a1, potentially with an infinite

number of free parameters at the boundary.
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