
Durham E-Theses

Algorithmic Compositional Methods and their Role in

Genesis: A Multi-Functional Real-Time Computer

Music System

LYWOOD-MULCOCK, JULIAN,WILLIAM

How to cite:

LYWOOD-MULCOCK, JULIAN,WILLIAM (2015) Algorithmic Compositional Methods and their Role

in Genesis: A Multi-Functional Real-Time Computer Music System, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11033/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/11033/
 http://etheses.dur.ac.uk/11033/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Julian Lywood Mulcock

Algorithmic Compositional Methods and their Role in Genesis: A Multi-
Functional Real-Time Computer Music System

Algorithmic procedures have been applied in computer music systems to generate
compositional products using conventional musical formalism, extensions of such
musical formalism and extra-musical disciplines such as mathematical models. This
research investigates the applicability of such algorithmic methodologies for real-time
musical composition, culminating in Genesis, a multi-functional real-time computer
music system written for Mac OS X in the SuperCollider object-oriented
programming language, and contained in the accompanying DVD. Through an
extensive graphical user interface, Genesis offers musicians the opportunity to explore
the application of the sonic features of real-time sound-objects to designated
generative processes via different models of interaction such as unsupervised musical
composition by Genesis and networked control of external Genesis instances. As a
result of the applied interactive, generative and analytical methods, Genesis forms a
unique compositional process, with a compositional product that reflects the character
of its interactions between the sonic features of real-time sound-objects and its
selected algorithmic procedures.

Within this thesis, the technologies involved in algorithmic methodologies used for
compositional processes, and the concepts that define their constructs are described,
with consequent detailing of their selection and application in Genesis, with audio
examples of algorithmic compositional methods demonstrated on the accompanying
DVD. To demonstrate the real-time compositional abilities of Genesis, free
explorations with instrumentalists, along with studio recordings of the compositional
processes available in Genesis are presented in audiovisual examples contained in the
accompanying DVD. The evaluation of the Genesis system’s capability to form a
real-time compositional process, thereby maintaining real-time interaction between
the sonic features of real-time sound objects and its selected algorithmic
compositional methods, focuses on existing evaluation techniques founded in HCI
and the qualitative issues such evaluation methods present. In terms of the
compositional products generated by Genesis, the challenges in quantifying and
qualifying its compositional outputs are identified, demonstrating the intricacies of
assessing generative methods of compositional processes, and their impact on a
resulting compositional product. The thesis concludes by considering further
advances and applications of Genesis, and inviting further dissemination of the
Genesis system and promotion of research into evaluative methods of generative
techniques, with the hope that this may provide additional insight into the relative
success of products generated by real-time algorithmic compositional processes.
	

	

	

	

	

	

	
 2	

Algorithmic Compositional Methods and their Role in Genesis: A

Multi-Functional Real-Time Computer Music System

Julian William Lywood Mulcock

PhD Thesis

Department of Music

Durham University

2014

	
 3	

Table of Contents

List of Illustrations and Tables...6

DVD Table of Contents..8

Statement of Copyright………………………………………………………………..9

Chapter 1: Introduction

1.1 An Overview of the Research Topic……………………………………………..10

1.2 Personal Motivation……………………………………………………………...14

1.3 Aims of the Research………………………………………………………….....16

1.4 Implementation…………………………………………………………………..18

1.5 Evaluation Criteria……………………………………………………………….18

Chapter 2: An Introduction to Algorithmic Composition

2.1 Algorithms in the Compositional Process………………………………………..20

2.2 Generative and Analytical Algorithms…………………………………………...24

2.3 Computer and Algorithms………………………………………………………..32

2.4 Unpredictability and Randomness in the Creative Process………………………42

2.5 Further Considerations of Applying Computational Algorithms within a

Compositional Process……………………………………………………………….48

Chapter 3: Real-time Computational Algorithmic Systems in Musical Practice

3.1 An Introduction to Real-time Generative Algorithmic Systems…………………54

3.2 A Brief Summary of Machine Listening………………………………………..74

3.2.1 Pitch Perception………………………………………………………...80

3.2.2 Loudness Perception…………………………………………………...83

3.2.3 Timbre Perception……………………………………………………...86

3.2.4 Musical Time and Melody Perception…………………………………91

3.2.5 Gesture Perception……………………………………………………..97

	
 4	

Chapter 4: Interactivity in Digital Music Systems

4.1 Interaction with Creative Systems………………………………………………100

4.2 Composition with Real-time Interactive Music Systems……………………….124

Chapter 5: The Genesis System

5.1 An Overview of the Genesis System……………………………………………131

5.2 A Quick Start Guide to Genesis………………………………………………...137

5.3 Interactive Processes in Genesis………………………………………………..157

5.4 Generative Processes in Genesis………………………………………………..175

5.5 Analytical Processes in Genesis………………………………………………...194

5.6 Genesis Methodology with Audiovisual Demonstrations………………………201

5.6.1 Granular Synthesis Control…………………………………………………...201

5.6.1.1 Static Onsets of Control Sources Triggering Onsets of Granular

Synthesizers…………………………………………………………………201

5.6.1.2 Dynamic Onsets of Control Sources Triggering Onsets of Granular

Synthesizers…………………………………………………………………202

5.6.1.3 Genetic Algorithm Modification of Granular Synthesizers’

Parameters………………………………………………………………….203

5.6.1.4 Fractal Noise Modification of Granular Synthesizers’ Playback

Rate………………………………………………………………………….205

5.6.1.5 Spectral Following of Control Source for Application to Each

Granular Synthesizer’s Filter Frequencies…………………………………206

5.6.1.6 Markov Chain manipulation of Granular Synthesiser Parameters...207

5.6.2 Real-time Digital Audio Effects’ Control…………………………………….209

5.6.2.1 Onsets of Control Sources Triggering Grain Freeze Process……...209

5.6.2.2 Onsets of Control Sources Dictating Envelope Trigger and Time for

Slave Sound-Object Prior to Buffering for Granular Synthesizers…………210

5.6.2.3 Pitch Following of Control Source One by Slave Sound-Object…...211

5.6.2.4 Tempo Following of Control Source One by Control Source Two…213

5.6.2.5 Pitch Fixing of Slave Sound-Object………………………………...213

5.6.2.6 Random Search Process for Control of Reverb, Filter, Panning and the

	
 5	

Buffer Position and Time Stretching of the Slave Sound-Object’s Warp1.ar

UGen………………………………………………………………………..215

5.6.2.7 Call and Response…………………………………………………..216

5.6.3 Network Control………………………………………………………………220

5.6.3.1 Set-Up of Networked Instances of Genesis…………………………220

5.6.3.2 Networking of Control Sources Triggering Onsets of a local Slave

Sound-Object’s Warp1.ar UGen on a Networked System…………………..221

5.6.3.3 Networking of Control Sources Triggering Onsets of Granular

Synthesizers and the pitch following of the Slave Sound-Object’s Warp1.ar

UGen………………………………………………………………………..223

5.6.4 Interaction Control and Display………………………………………………225

5.6.4.1 Live Routine and Live Sample Generation………………………….225

5.6.4.2 Dynamic Scoring System……………………………………………228

Chapter 6: Evaluation of the Genesis System

6.1 Evaluation Methodology………………………………………………………..230

6.2 Evaluation Results………………………………………………………………241

6.3 Comparative Analysis of the Evaluative Feedback……………………………..275

6.4 Evaluation of the Genesis System’s Methodology……………………………..279

6.4.1 Efficiency in Genesis…………………………………………………279

6.4.2 Mappings in Genesis………………………………………………….284

6.4.2.1 Fractal Mappings……………………………………………284

6.4.2.2 GA Mappings……………………………………………….289

6.4.2.3 Search Mappings……………………………………………291

6.4.3 SuperCollider, Genesis and the GUI………………………………….296

6.4.4 Quantification of Genesis……………………………………………..298

6.5 Evaluation of the Genesis System’s Compositional Process…………………...306

6.5.1 An Overview of Creativity with Genesis……………………………..306

6.5.2 Genesis and its role in a Compositional Process……………………...308

6.6 Evaluation of the Genesis System’s Product……………………………………313

6.6.1 Challenges in Evaluation of Genesis’ Compositional Outcomes……..313

6.6.2 A Proposed Evaluation of Genesis’ Product………………………….316

	
 6	

6.7 Concluding Remarks……………………………………………………………322

Bibliography…………………………………………………………………….......328

List of Illustrations and Tables

Figure 1. Chord Creator GUI...37

Figure 2. MIDI Output of Chord Creator...37

Figure 3. Categorization of sound-objects...78

Figure 4. Proposed structure of beat and tempo extraction..92

Figure 5. An Epistemic Dimension Space for Musical Devices…………………..118

Figure 6. Genesis Architecture...133

Figure 7. Control of GUI scaling and performance...138

Figure 8. Input source selectors..139

Figure 9. Add file, trigger and volume controls of Control source one...................139

Figure 10. Trigger buttons relative to onsets of control source one...........................140

Figure 11. Adjustment of Threshold and Amplitude of granular synthesizers triggered

by onsets of control source one..140

Figure 12. Slider for master volume of granular synthesizers triggered by onsets of

control source one..140

Figure 13. Input Source Display..141

Figure 14. Control Source One Display and GUI controls..142

Figure 15. Granular Synthesizer display and GUI controls.......................................143

Figure 16. Further Control Source one display and GUI controls.............................144

Figure 17. Example of Post Window output..145

Figure 18. Example of Live Coding in Post Window..145

Figure 19. Arbitrary GUI Controls of Genesis...146

Figure 20. Further Arbitrary GUI Controls of Genesis and Genetic Algorithm

controls...147

Figure 21. Network OUT window and GUI controls...148

Figure 22. Network IN window and GUI display..149

Figure 23. GUI Live Coded routines’ window and controls......................................150

Figure 24. Call and Response displays...151

	
 7	

Figure 25. CC numbers attributed to a Korg nanoKontrol Scene One......................152

Figure 26. CC numbers attributed to a Korg nanoKontrol Scene Two......................152

Figure 27. Notification of MIDI connection posted a Genesis Initiation...................152

Figure 28. Flow of interaction in Genesis..157

Figure 29. Table of Methods of Interaction in Genesis………………………..158-161

Figure 30. Interaction between Control source one and the Slave.............................161

Figure 31. Method of pitch control of slave via control source’s pitch.....................162

Figure 32. Genesis GUI..163

Figure 33. GUI modification of Thresholds for granular synthesizers’ onsets..........164

Figure 34. Screenshot of Dynamic Scoring System...165

Figure 35. Annotation of Dynamic Scoring System..166

Figure 36. Network Interaction in Genesis..168

Figure 37. Ensemble of meta-instruments controlled by a live instrumentalist…….169

Figure 38. An improvisation model with a live instrumentalist and Genesis………170

Figure 39. Human Supervised implementation of Genesis with a live

Instrumentalist………………………………………………………………………170

Figure 40. Unsupervised network of Genesis systems……………………………..171

Figure 41. Table of Modes of Interaction with Genesis.....................................172-174

Figure 42. Static and Dynamic control of onsets of granular synthesizers................177

Figure 43. Mapping of MFCCs to Filter Frequencies of Granular Synthesizers.......178

Figure 44. Collage of Buffer Positions..180

Figure 45. Flow of fractal noise modification of playback rate…………………….181

Figure 46. Freeze grain process…………………………………………………….182

Figure 47. Mappings and Bounds of selected granular synthesizer GUI objects......183

Figure 48. Gathering of data for the modified Genetic Algorithm............................184

Figure 49. Modified Genetic Algorithm GUI controls..185

Figure 50. Population selection for Genetic Algorithms through GUI......................185

Figure 51. GUI control of Playback and Recording rates of granular synthesizers...186

Figure 52. GUI Live Coding Method...193

Figure 53. GUI display of pitch fixing process..198

Figure 54. Performance Interaction with John Snijders…………………………….243

Figure 55. Performance Interaction with Shelly Knotts (unsupervised)…………....257

Figure 56. Performance Interaction with Shelly Knotts (supervised)……………....258

	
 8	

Figure 57. Performance Interaction with Shelly Knotts (networked)………………259

Figure 58. Performance Interaction with Shelly Knotts (non-networked)……….....260

Figure 59. Performance Interaction with Mark Carroll (Call and Response)………269

Figure 60. Performance Interaction with Mark Carroll (self-supervised)…………..270

Figure 61. Likert-scale results’ comparison…………………………………….…..277

Figure 62. Fractal Buffer Positions..285

Figure 63. Static and Dynamic onsets over time..286

Figure 64. Possible static and dynamic onsets with buffer positions.........................287

Figure 65. Method of Interaction for audio splicing in BBCut2................................316

Figure 66. Method of Interaction for audio splicing in Genesis................................317

Figure 67. Proposed Epistemic Space of Genesis………………………………..…326

DVD Table of Contents

Genesis Folder
Genesis.rtf

Genesis

Thesis Recordings Folder

1 – BBCut2.aif

2 – Genesis Quantized.aif

3 – BBCut2 Determined.aif

4 – Genesis Click.aif

Audiovisual Examples Folder
1. Quick Start Guide.mov

2. MIDI Implementation.mov

3. Local Static Onsets.mov

4. Local Dynamic Onsets.mov

5. Grain Freeze.mov

6. Slave Sound-Object Enveloping.mov

7. Network Set Up.mov

8. Network Onsets.mov

	
 9	

9. Local GAs.mov

10. Fractals Static.mov

11. Fractals Dynamic.mov

12. Local Spectral Following.mov

13. Pitch Track Both Inputs.mov

14. Pitch Track Slave Pitch Fixed.mov

15. Tempo Following.mov

16. Network Onsets and Pitch.mov

17. Pitch Fix with Original.mov

18. Pitch Fix without Original.mov

19. Dynamic Scoring System.mov

20. Call and Response.mov

21. Live Routine, Live Sample.mov

22. Random Search Processes.mov

23. Markov Chain.mov

Genesis Performances Folder
John Sniders Folder

John Snijders Free Exploration.mov

Mark Carroll Folder

Mark Carroll Free Exploration 1.mov

Mark Carroll Free Exploration 2.mov

Shelly Knotts Folder

Shelly Knotts Free Exploration 1.mov

Shelly Knotts Free Exploration 2.mov

Shelly Knotts Free Exploration 3.mov

Shelly Knotts Free Exploration 4.mov

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without the author's prior written consent and information derived from it

should be acknowledged.

	
 10	

Chapter 1

Introduction

1.1 An Overview of the Research Topic

Since the advent of modern computing, computational algorithmic techniques have

been applied to generate and analyse musical compositions. In addition, numerous

methods of interaction between a computer and a human user have been suggested for

the purpose of modifying, manipulating and arranging musical structures within a

composition, such as the pitch, rhythm and timbre of selected synthesized

instruments. The efficiency and digital accuracy with which modern computers can

calculate such musical structures has enabled composers to explore novel and extra-

musical approaches as part of a compositional process, or, to form an entire

compositional process itself resulting in a proposed autonomously generated musical

composition.

Generative processes offer composers the capability to create parametric values of a

compositional system relative to a selected algorithmic structure. The conditional

behaviours of such algorithmic processes can greatly influence the product of an

algorithmic compositional process. For example, the use of indeterminacy can

generate a significant variety of compositional outcomes, which can be bound (or not)

to chosen minimum/maximum values, thereby causing a level of unpredictability in a

compositional process and resulting in an output that has the potential to provide

numerous compositional products. Furthermore, with the onset of technological

advancements, real-time execution of generative processes permits composers to

generate algorithmic compositional products on-the-fly, as a generative process is

running, thereby allowing instantaneous modification, manipulation and arrangement

of a musical structure.

Analytical processes, which can be applied algorithmically, are currently based upon

either conventional musical analysis such as Schenkerian analysis or note-event

assessment through musical values (for example pitch, tempo and onset), or novel

	
 11	

methods of evaluation formed of perception models such as those proposed within the

field of psychoacoustics based on auditory phenomena such as loudness, timbre and

spatialisation. Despite numerous suggested analysis techniques, due to the

unavoidable limitations in the explanation of our own listening experience, no

conclusive method of analysis is currently available, with the computational analysis

of musical structures reflecting such constraints.

As a result, decisive analysis by computers of musical composition is distinctly

relative to the type of composition analysed and the type of analysis applied. For

example, many conventional musical analysis methods use strictly formalist and

orthodox principles of musical description such as scales, key and tempo, which can

be applied to conventional approaches to musical composition. However, for musical

compositions that do not pertain to such formalist explanations, such a musical

analysis method is void and necessitates perceptual models for interpretation of

musical gesture.

Moreover, real-time functionality of analytical techniques must also be extensively

reviewed, as instantaneous analytical results are crucial to the maintenance of

interaction between generative processes, which require such assessment values to

function; the more complex an analytical process, the more time it may take to

complete its assigned task, thereby introducing latency between interactive processes

and disrupting the unfolding dialog between them, potentially impacting on the

fluency of the compositional product.

As noted previously, there are numerous interactive methods that have been applied to

algorithmic compositional methods. The method of interaction dictates the relative

level of influence a composer may (or may not) wish to have on a resulting

compositional outcome. With communication protocols such as Open Sound Control

(OSC), interactions can be sent instantaneously from sources such as physical digital

hardware to the sonic features of an analog sound signal, extracted through analytical

algorithms and represented as symbolic or subsymbolic musical values. In addition,

protocols such as OSC allow such representations of sonic features to be broadcast

	
 12	

over computer networks, offering ensembles of computers to communicate and

interact through their respective musical values.

So, with the application of computational algorithmic processes, it is possible to

create extensive real-time digital music systems that generate musical compositions,

relative to their defined interactive, generative and analytical processes. With

computer programming languages such as SuperCollider and Pure Data, composers

can investigate computational algorithmic methods of compositional processes using

open-source classes to form the fundamental architecture of a digital music system,

within the prescribed language. Consequently, composers can dictate each algorithmic

process’s influence on a resulting compositional product through the hierarchy of

each algorithmic process’s status in a real-time digital music system’s fundamental

architecture, and therefore its role in the compositional process.

The result of such extensive real-time digital music systems is musical compositions

that can be generated instantaneously, applying selected conditional behaviours that

can be modified, manipulated and arranged by the interactions of sources, extracted

and represented through analytical algorithms. The implications of a composition

generated by such a real-time method present distinct challenges in concluding the

nature of the compositional process and the assessment of its compositional product.

Therefore, despite the promise of extensive real-time digital music systems for the

generation of musical compositions, a significant number of aesthetic issues must still

be considered when creating such systems, for the purpose of warranting their validity

as a method musical composition; with the acknowledgment of aesthetic

considerations such as the purpose of applying a chosen algorithm to a compositional

process or a deliberation by the composer of the influence an algorithm may have on a

resulting compositional product, it is possible to resolve concerns over the cogency of

extensive real-time digital music systems and their role in musical composition.

Considering composition within the context of the research presented within this

thesis, the primary focus is relative to the real-time algorithmic method applied in

Genesis. The Genesis system uses the sonic features of real-time sound-objects, such

	
 13	

as timbre, pitch and onset, to modify a number of generative processes mapped to

relatable values for a series of granular synthesisers and associated filters. Therefore,

the compositional approach is founded upon real-time interaction, thereby applying

‘virtual scores’, as proposed by Manoury (1990), through which composition with the

Genesis occurs in musical time, generating the musical score as part of the real-time

interaction process (this is discussed in detail in chapter 4.2 Composition with Real-

time Interactive Music Systems). As a result of such an approach, pre-compositional

devices, such as a predefined score are not necessary, but can still be applied should a

composer wish to dictate specific compositional material to interact with the system.

Furthermore, due to the granular synthesis method of realisation by the system for

generating sound-objects relative to the outputs of the generative processes controlled

by the sonic features of real-time sound-objects, an ‘acoustical model’ 1 is

implemented. Through an acoustical model, ‘the program that carries out the steps

required to produce a sound realizes a given acoustic description of musical sound’2.

Consequently, through the applied analytical models, the sonic features of the real-

time sound-objects are applied to relative parameters within the granular synthesisers

and filters, interpreting and then realising the sonic outputs of Genesis in real-time.

As a result of the implementation of granular synthesis techniques in Genesis, a

combination of microsound compositional methods and conventional musical

formalisms are applied, thereby merging timbral manipulation of sound-objects with

defined musical values such as pitch and duration.

In addition, through the application of a real-time compositional methodology, the

concept of improvisation is not considered mutually exclusive to the process of

composition; due to the input and realisation of compositional material when

interacting with Genesis, the user and machine generate responses as part of the

ongoing compositional procedure, thereby altering their response strategy in real-time

relative to creative methodologies of both parties (again, this is discussed further in

chapter 4.2 Composition with Real-time Interactive Music Systems).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 Truax,	
 B.	
 For	
 Otto	
 Laske:	
 A	
 Communicational	
 Approach	
 to	
 Computer	
 Sound	
 Programs.	
 Journal	
 of	
 Music	
 Theory.	
 20	
 (2):	

233	

2	
 Ibid	

	
 14	

The algorithmic implementations, response strategies, analytical processes and modes

of interaction with Genesis are discussed relative to existing research in chapter 2 An

Introduction to Algorithmic Composition, chapter 3 Real-time Computational

Algorithmic Systems in Musical Practice and chapter 4 Interactivity with Digital

Music Systems, with chapter 5 The Genesis System detailing how the research has

been applied in Genesis. Consequently, chapter 6 Evaluation of the Genesis System

discusses the success of Genesis, relative to the research presented in the chapters

listed above.

1.2 Personal Motivation

In consideration of the approach taken to this research, which predominantly assesses

the musicality of real-time computational algorithmic processes, it is necessary to

contextualize this in relation to my background. In my youth, I participated in all that

I could which had a musical focus. Through the flute and violin, I learned the

fundamental formalist approaches to musical composition in both solo and ensemble

scenarios. However, I would often seek to explore what lay beyond the formalisms of

the symphony orchestra, often challenging (with not much success) the reasons for

such methods of compositional process.

With technological advancements prominent in the media throughout the mid 1990s,

such as the showcasing of ‘virtual reality’ headsets, 3-D graphics formed of blocky

polygons and the ‘World Wide Web’, an article on the BBC children’s television

programme Blue Peter demonstrated a system very similar to Piano Tutor3 (indeed it

may have Piano Tutor itself, but I cannot confirm this through relevant searches). I

was fascinated by the process through which the system was able to assess and adapt

to a performer’s interaction with the computer, and, in my naivety considered the

computer to be as good, if not better than a human at the assessment and adaptation of

a real-time performance, indeed considering it to present an incredible level of

artificial intelligence.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	
 Dannenberg et al. 1990. An Expert System for Teaching Piano to Novices. proceedings of the ICMC’90: 20-23
	

	
 15	

Furthermore, prior to the mid 1990s, popular music videos were saturated with

images of recording artists stood behind racks of analog and digital synthesizers

creating unfamiliar sounds, often accompanied with CRT computer screens flickering

illogical numbers and graphs, which were somehow meant to represent the ongoing

compositional process in the audio recording. Therefore, at the time, I was convinced

that exploration of music with computers would address any questions I had regarding

the necessity for formalisms in musical composition.

Upon acquiring Opcode’s MusicShop with issue one of Computer Music Magazine

and having purchased a Yamaha CS2x digital synthesizer, I believed I could not only

replicate the sounds of the popular artists on the radio, but also have the computer

assess and adapt my compositional outputs for the purpose of improving my

compositions as well as exploring music that was not bound the formalisms of the

symphony orchestra. However, much to my disappointment, none of this happened;

MusicShop had no facilities to assess my compositions, and although the Yamaha

CS2x digital synthesizer could generate sounds similar to those used in professional

recordings, recording and editing of the interactions was distinctly limited by the

formalist representation of sound through a pitch/duration paradigm in the MusicShop

sequencer.

Throughout my undergraduate degree in Music Informatics and my Masters in

Electroacoustic Studies, it became evident that I had indeed been highly naïve in my

assumption of what computers, and the algorithmic processes they can execute, are

actually capable of. However, instead of becoming disgruntled and resentful of the

fact the apparent artificial intelligence computers present is in reality highly limited in

comparison to our own intellectual prowess, I became encouraged to investigate what

could indeed be generated with the limited ‘intelligence’ a computer has and what

impact this may have in a musical composition process. Consequently, I discovered

the myriad of computational algorithmic processes that have been applied to form

compositional processes from the mid-20th Century, which inherently challenges the

perception of artificial intelligence, the role of algorithmic processes and the

importance of computers in musical composition.

	
 16	

One such algorithmic process encountered during my undergraduate degree is

concatenative synthesis (Schwarz, 2006; Casey, 2004; Lazier and Cook, 2003;

Momeni and Mandel, 2005), a method of sound synthesis through which the sonic

features of a target sound-object are compared to a database of sound-objects, with

the best match to the target within the database used as the synthesizer’s audible

output. Such a synthesis method applies extensive analysis techniques in order to

compare adequately the sound-objects, which is used to assess their suitability to a

target, relative to the description of a best match algorithm.

Remembering the Piano Tutor (Dannenberg, 1990) I had seen years before, I

immediately began to make comparisons to the process; both systems assessed an

input, compared them to a suitable descriptor resulting in an output based on its

assessment. However, clear distinctions in the method of representation are present;

concatenative synthesis requires analytical algorithms that apply feature extraction to

represent sonic features of an acoustic signal where as Piano Tutor uses symbolic

MIDI messaging, thereby limiting its application significantly to the formalist

structures of MIDI and to the use of MIDI instruments.

Seeing the potential of applying sonic features of a sound-object for the control of

other sound-objects, and my introduction to SuperCollider, a music programming

language that permits extensive real-time functionality, upon completing my Master’s

dissertation in Psychoacoustics and its role within Machine Listening, I wished to

explore extensively the possibilities of real-time compositional processes using the

sonic features of sound-objects, extracted through methods such as psychoacoustic

models, to generate real-time compositions. This principle led to the beginnings of the

Genesis standalone program, which accompanies this thesis.

1.3 Aims of the Research

Through the use of sonic features extracted from an acoustic source, it is possible to

apply the extracted values to control or influence a chosen parameter within a digital

music system. This thesis, and the accompanying Genesis system, investigates and

demonstrates methods of interactive, generative and analytical processes which can be

used to apply such sonic features for the purpose of musical composition. Therefore,

	
 17	

the aim of this research is to present methodologies, aesthetic considerations and the

implementations available to form such a digital music system, in combination with a

detailed account of those applied in Genesis and why.

Below is a summary of the primary issues raised within the chapters of the thesis:

• The influence computational algorithmic procedures may have on a

compositional process

• The acknowledgement of the constraints in feature extraction from acoustic

sources, and indeed, the limitations in our understanding of the listening

experience

• The effect of interaction methodology on a compositional process and

associated models of interaction

• Implementation of creativity with machines

• The importance of efficiency in real-time compositional processes

• The challenges in forming formal evaluation of real-time interactive music

systems

• The difficulties in comparing the compositional products of digital music

systems considering the absence of conclusive analysis

• The advantages and disadvantages of using music programming languages for

the construction of digital music systems

• The necessity of a composer to acknowledge the possible outcomes of a

compositional process that applies extensive computational algorithmic

processes

In addition, the thesis aims to provide the following original contributions to the

research topic:

• A novel method of real-time interaction with a digital music system through

the use of real-time sound-objects as a predominant interface device

• A unique approach to the evaluation of the processes and products of real-time

interactive music systems based upon extensions in current HCI evaluative

techniques

	
 18	

• Critical review of interaction methodologies and their relevance to real-time

interactive music systems

• Detailed audiovisual examples of, and performances with, the Genesis system,

thereby providing researchers with documented evidence of its algorithmic

implementations

• Complete and thorough explanation of the generative, analytical and

interactive processes in Genesis, and their relationship to existing algorithmic

methods

• Discussion regarding the implications of real-time compositional techniques

for composers and performers

• Proposed consequences of applying random and unpredictable methodologies

to provide creative outputs in real-time interactive music systems

1.4 Implementation

For the dissemination of the research, a thesis is provided, detailing the topics

described above, along with a DVD which includes the Genesis standalone

application which will run on any Mac OS X system 10.6+ and three folders,

containing examples of its generative and interactive processes, and audiovisual

examples of the functionality of Genesis, all of which are referenced within their

relevant sections in the thesis.

1.5 Evaluation Criteria

A principle objective in evaluating Genesis is to identify a methodology that would

systematically evaluate Genesis relative to three key areas:

• interaction with Genesis via the GUI

• interaction with Genesis by instrumentalists and musicians

• the global products of composition with Genesis

	
 19	

As a result, in section 6.1 Evaluation Methodology, approaches to, and the challenges

in the evaluation of real-time interactive music systems are discussed. Consequently,

a performer-centred evaluation methodology is applied, accompanied by an approach

based upon the evaluation method proposed by Stowell et al (2009) extending

existing HCI techniques, which uses questionnaires and a Likert scale. This method

involves supervised and unsupervised exploration with the Genesis system, with

consequent discussion completed afterwards in the form of a questionnaire comprised

of critical questions and Likert scale responses in order to generate quantitative and

qualitative results relative to the three key areas listed above.

To obtain the evaluative results, three experienced musicians were invited to attend

solo sessions with author, through which a range of the interactive and generative

properties in Genesis are explored, relative to the evaluation method suggested by

Stowell et al (2009). Each participant engages with Genesis, and is asked to generate

a real-time composition/s with the system, which is documented audiovisually in the

folder Genesis Performances on the accompanying DVD. The questionnaire is

designed to provide valuable and balanced perspectives of the success of the Genesis

system, in relation to the three key areas above, with the audiovisual examples

documenting the interaction and products of each performer’s solo session.

With the feedback generated from the evaluation, combined with the audiovisual

performances, the research presented in chapter 2 An Introduction to Algorithmic

Composition, chapter 3 Real-time Computational Algorithmic Systems in Musical

Practice and chapter 4 Interactivity with Digital Music Systems is directly and

explicitly applied to the responses provided by the performers to form critical review

of the process and products of the Genesis system, thereby providing insight into the

aesthetic value and context of Genesis and its associated interactive, analytical and

generative implementations.

	

	

	

	

	

	

	
 20	

Chapter 2

An Introduction to Algorithmic Composition

2.1 Algorithms in the Compositional Process

It is proposed that the creative process involves four stages; stage one - preparation,

stage two - incubation, stage three - illumination and stage four - verification4. If we

are to apply these four stages of the creative process to musical composition then:

stage one - musical objectives are chosen and researched, stage two - those objectives

are considered by our subconscious, stage three - ‘eureka’, a possible solution is

created based on stage one and two, and stage four - it is put into practice, and the

result is scored or performed. However, the use of only four distinct stages

oversimplifies the creative process as the differences between the individual need to

be represented. Guildford (1950) considers such dissimilarities between an

individual’s creative process by suggesting that ‘a sensitivity to problems, a capacity

to produce ideas (fluency), an ability to change one’s mental set (flexibility), an

ability to reorganize, an ability to deal with complexity, and an ability to evaluate’5

each impact on the capability of one’s creative process.

There are many models that exemplify the abilities of the individual in the creative

process as well as Guildford’s (1950) such as Busse and Mansfield’s (1980) which

proposes the steps of ‘a) selecting a problem to solve among several other problems,

b) engaging in efforts to solve the problem, c) setting constraints on the problem

solution, d) changing the constraints and restructuring the problem (which if

successful leads to an illumination) and e) verifying the proposed solution’6. To take

into account the importance of the role of the individual and their influence on the

musical composition process, it is possible to conclude that their abilities to perform

the tasks outside of the four initial stages will have a significant impact on a

compositional product as well as the composition process itself.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4	
 Lubart,	
 T.	
 2000.	
 Models	
 of	
 the	
 Creative	
 Process:	
 Past,	
 Present	
 and	
 Future.	
 Creativity	
 Research	
 Journal	
 13(3/4):	
 295-­‐308	

5	
 Ibid:	
 295	

6	
 Ibid:	
 304	

	
 21	

The result or product of a creative process and the reflection and assessment of the

outcome can become part of the creative process itself, demonstrating a potentially

recursive nature, implying that the creative process is an infinite loop, in which, an

individual creates, assesses, creates, assesses and so on. If this is true, then the

decision to render a ‘final’ result can always be questioned; is there room for

improvement? This question highlights again the individual’s importance in shaping

the creative process, as it is ultimately their decision when the outcome becomes

definitive, if indeed it ever does. As a result, it could be considered that the creative

process and the products it generates are idiosyncratic, thereby reflecting the

behaviours, understanding and conditioning of the individual.

Algorithms, which are a set of formalised rules with the aim of producing a result

bound by the instructions used, can thus be applied at each of the four stages of the

creative process. As a basic example, if an algorithm is applied to all four stages of

the creative process, it could at stage one - create a series of musical phrases, at stage

two - employ random generators to model the subconscious, at stage three - generate a

result based on stage one and stage two and at stage four - notate the result ready for

performance.

As stated, models representing the abilities of the individual can also be applied to

each of the stages, and to extend the previous example may at stage one - use prior

knowledge based upon musical formalisms to create musical phrases, at stage two -

use attractors to collect specified values that are created by a prediction-driven

generator, constructing a disposition within the subconscious, at stage three - make

further use of musical formalisms to assess the results that are based on stage one and

stage two, and at stage four - use scoring rules for notation of the results.

It is evident that many aspects of the creative process can be modelled with a variety

of structures, rules and formalisms, and although it is possible to engage all manner of

discussion as regards to their appropriateness and significance, their presence cannot

be ignored in any consideration of the creative process. Algorithms are a suitable

method for writing rules and models of processes, as they are able to follow a series

of instructions forming a calculation that outputs a result based upon the instructions

	
 22	

they have followed. For example, algorithms can be used to complete the following

functions at different stages of the creative process:

1. Model the entire creative process including analysis of the input/output

2. Model stages of creative processes including analysis of the input/output

3. Generate results based on a creative process without analysing the

input/output

4. Randomly generate results relative to conceptual constraints

The use of algorithms, and therefore the use of rules and formalisms is prevalent in

the Western Art Tradition. Melodic rules can be found dating back as far as the 11th

Century, ‘when Guido d’Arezzo used a scheme that assigned a different pitch to each

vowel in a religious text'7 and, as the Western Art Tradition evolved, harmonic,

structural and rhythmic rules did so too. For example, ‘the 14th and 15th centuries saw

the development of the quasi-algorithmic isorhythmic technique, where rhythmic

cycles (talea) are repeated, often with melodic cycles (color) of the same or differing

lengths’8. This application of repetition is a divisive compositional procedure and a

foundation of the compositional process in the Western Art Tradition, and therefore

forms a basis from which its musical rules and formalisms developed ‘seen in various

guises: the Classical Rondo (with section structures such as ABACA); the Baroque

fugue; and the Classical sonata form with its return not just of themes but tonality

too’9.

Considering the progression of the Western Art Tradition in the 20th Century by the

Second Viennese School, predominantly led by Schoenberg, the inception of

serialism and its use of pitch classes ‘can be viewed as no more than a continuation of

the tradition of formalising musical composition’10; strict organisation rules dictate the

relationships and structures between each of a tone row’s pitches. As the Serialist

movement developed, so did its formalisms, giving rise to the concept of Total

serialism through which composers such as Boulez and Pousseur subjected further

musical values such as rhythm and dynamics to the organizational principles of

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

7	
 Järveläinen,	
 H.	
 2000.	
 Algorithmic	
 Musical	
 Composition.	
 University	
 of	
 Technology,	
 Helsinki:	
 1	
 	

8	
 Edwards,	
 M.	
 2007.	
 Algorithmic	
 Composition:	
 Computational	
 Thinking	
 in	
 Music.	
 University	
 of	
 Edinburgh:	
 2	

9	
 Ibid	

10	
 Ibid	

	
 23	

Schoenberg’s serialism. Therefore, algorithmic methodologies (the use of rules,

structures and formalisms) are undoubtedly synonymous with the compositional

processes of the Western Art Tradition.

Furthermore, rules can be found within compositions that seem apparently free of

much of the Western Art Tradition such as that of John Cage’s Music of Changes

(1951) for solo piano. This work makes use of chance and indeterminacy based upon

a modified I Ching, a Chinese text believed to be dating back as far as 1000BC which

features 64 hexagrams each denoting a possible ‘change’ or ‘wisdom’. The score was

‘decided’ by flipping coins and consequently choosing a ‘change’ based upon the

result of a series of coin flips and then referring to a modified I Ching, which featured

musical events instead of the original’s ‘wisdoms’. Interestingly, although a

meticulous process of selection for each musical event was employed, Cage described

the work as having ‘a freely moving continuity’11.

The use of chance and indeterminacy is by no means a contemporary convention; ‘the

invention of musical dice games by composers like Johann Philipp Kirnberger,

Maximilian Stadler and Joseph Haydn enabled amateur musicians to generate

numerous variants of dance pieces’12. Mozart also embraced such a composition

process in his Musikalisches Würfelspiel (1787) in which ‘eleven different versions of

each bar of the minuet have been composed beforehand’13 allowing the performer to

present many different versions of the same composition based on the outcome of

their dice rolls.

As demonstrated by Cage’s Music of Changes (1951), the rules that can be applied to

composition may also exist in other disciplines and subjects. For example, Joseph

Schillinger (1895-1943) explored the application of mathematical processes to

musical composition. His work then ‘penetrated modern compositional practice, from

Allen Forte’s work on pitch-class sets, to Karlheinz Stockhausen’s so-called

‘Formant-Rhythmik’ or Gottfried Michael Koenig’s concept of periodicity as it is

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

11	
 Cage,	
 J.	
 1961.	
 Silence:	
 Lectures	
 and	
 Writings.	
 Connecticut:	
 Wesleyan	
 University	
 Press:	
 1	

12	
 Essl,	
 K.	
 2007.	
 ‘Algorithmic	
 composition’	
 in	
 The	
 Cambridge	
 Companion	
 to	
 Electronic	
 Music,	
 eds	
 N	
 Collins	
 &	
 J	
 d’Escrivan,	

CUP,	
 Cambridge:	
 109	

13	
 Ibid	

	
 24	

implemented in his algorithmic composition software Projekt 1’14. However, the use

of methods from subjects outside of music may not always be successful; much in the

same way that not all rules found in the Western Art Tradition will not be applicable

for all genres of music. Notwithstanding this fallibility, many composers continue to

search for new ways to apply algorithmic methods to the composition of music.

Reflecting on the prominence of algorithms in the Western Art Tradition, it would

appear that for Western Art Tradition to progress, it must build on its algorithmic

foundations. However, there is a common misconception that algorithmic

composition is bound to the application of computers for musical composition. As

demonstrated, this is clearly not the case - algorithms have evidently been

implemented in musical procedures for hundreds of years. Rather, the use of

algorithms and computers facilitates the exploration of new, novel and complex rules,

formalisms and structures. Therefore, it could be considered that algorithmic

composition with computers is the modern development of the Western Art Tradition,

building upon its intrinsic algorithmic methodologies through computational

processes.

2.2 Generative and Analytical Algorithms

Algorithms, when applied to musical composition, may be generative, analytical or

both generative and analytical. Many conventional formal musical rules are relatively

simple to write as an algorithm but there are a number of issues that can affect the

quality of the result. For example, if a generative algorithm is used to dictate the

rhythm of a chosen phrase, it is possible to simply choose a set of rhythms from a pre-

selected rhythm table and use the result as the solution. However, a composer may

wish to give an algorithm a more developed context in relation to what comes before

and what comes after a chosen passage, adding another level of intricacy to the

generative process, requiring an analytical algorithm to assess the relationship

between what has occurred and the following output by a generative algorithm. The

composer may also wish to give the algorithm the ability to use unpredictability or

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

14	
 Essl,	
 K.	
 2007.	
 ‘Algorithmic	
 composition’	
 in	
 The	
 Cambridge	
 Companion	
 to	
 Electronic	
 Music,	
 eds	
 N	
 Collins	
 &	
 J	
 d’Escrivan,	

CUP,	
 Cambridge:	
 111	

	
 25	

randomness as part of the possible solution, requiring careful decision-making on how

unpredictable or random they would wish the outcome to be.

The Genesis system applies a number of generative processes controlled by the user

and/or by data gathered from analytical algorithms, which are mapped in real-time to

selected musical values, relative to the conceptual constraints of the composition

system (detailed fully in chapter 5 The Genesis System). It is therefore necessary to

define what generative processes are, and how chance and indeterminacy can affect

the outcomes of generative algorithms.

A generative process can be considered to be that which may ‘create a new entity or

bring about a novel circumstance’15. The application of such a process can also

provide ‘the flexibility to build processes which generate new sequences of events

every time it is executed, and processes which respond to environmental and human

interference whilst remaining within the boundaries imposed by the programmer’16

Due to its fundamentally creative properties, it is an attractive method for use with not

only musical composition but also among others, visual art and computer

programming.

Generative processes, which allow for the possibility of chance and instance, can be

seen as an exciting and interesting characteristic to their capabilities. A distinction

must be made, however, as the use of chance is not intrinsic to a generative process;

composers have the choice of how strictly and to what extent they wish to enforce the

use of chance, or whether to apply it intentionally at all. When making this decision, it

is important that the composer is aware that, much like the process of choosing

algorithms for a composition, the application of chance and its possible outcomes are

carefully considered in the context of the intended outcomes and conceptual

constraints of a composition. If not, the resulting composition may be far from what

the composer originally intended or may not be performable.

Considering the ability of generative algorithms to generate ‘novel circumstance’17, to

what extent do generative algorithms ‘create a new entity’? Surely, the concept of

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

15	
 Dorin, A. 2001. Generative Processes and the Electronic Arts. Organised Sound 6(1): 49
16	
 Ibid	

17	
 Ibid	

	
 26	

‘new’ is subjective to the composer and the creative process they have applied. For

example, if an algorithm is following a formalism such as cadential progression, the

result will perhaps be entirely predictable, meaning the product that is output by a

generative algorithm is simply an entity of which all of its properties are known and

therefore may not be considered ‘new’. As a result, such a creative process that does

not incorporate unpredictable or random behaviours, yet is still reliant on a generative

algorithm to generate its products are ‘new’ relative to the judgments of the observer.

However, in reference to the concept of ‘new’ and its association with chance, the use

of chance serves to alter the level of which a result appears ‘new’ to the composer; the

use of chance does not guarantee newness as it is the amount of change from a

known, recognisable and/or anticipated outcome that renders a result ‘new’.

Therefore, the incorporation of chance in a generative process could ‘bring about

novel circumstance’. So, generative algorithms may or may not ‘bring about a novel

circumstance’18 dependent on the composer’s specification.

As noted, the conceptual constraints of a composition must be considered in relation

to the application of generative processes for the generation of musical ideas. So, the

mapping between generative process and musical values is paramount to ensure

cogency between a generative process and a resulting musical composition.

Generative processes can be used for the creation of patterns, sequences or single

events but these are, at their most fundamental level, values, which ‘mean’ nothing

musically; a generative process does not create music in itself, it is the application of

the result by the composer that is ultimately the most important factor when using

generative processes for musical composition. Therefore, it is the composer’s use of a

generative process’s results relative to the conceptual constraints of the compositional

process that renders such a process’s products applicable to a musical composition.

The results of a generative process and their consequent use in a musical composition

are in no way limited; any musical value such as pitch, duration, spatialisation,

dynamic or timbre may be controlled by the results. This leaves the composer with the

exceptionally difficult and meticulous task of choosing which values represent what

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

18	
 Dorin, A. 2001. Generative Processes and the Electronic Arts. Organised Sound 6(1): 49	

	
 27	

purpose. A composer has the option of relying on an algorithm to allocate a set of

results to a creator-selected series of musical variables, which will make the process

considerably more efficient but increase an algorithm’s influence on a composition. It

is therefore important that the size of the results created by a generative process are

manageable by the composer themselves or that the composer has taken in to account

the possible requirement of an analytical algorithm to aid the application of the

results, and the influence this may have on a generative algorithm and its

compositional role.

With the necessity for time to analyse and assess a generative process’s output taken

in to consideration, the situation of the performance must impact on the decision to

allow time for analysis as, for example, in a live performance setting, direct analysis

by the composer may be unfeasible, thereby necessitating the application of a

computational real-time analytical process. Genesis is designed for real-time

functionality and must therefore use selected real-time analytical algorithms to obtain

sonic features from real-time sound-objects. The results of the applied analytical

algorithms are then mapped in real-time to their respective values in the selected

generative processes used in the Genesis system. It is therefore necessary to describe

analytical algorithms in the context of musical analysis and how the results can be

applied to generative processes.

Many qualities of music can be identified and analysed through the use of algorithmic

techniques. For example, analytical algorithms can be executed to define the pitch,

loudness and onset of individual note events, the tempo of specified phrases, the

timbre of instruments or sound-objects, the genre of a selected work, the key signature

of a phrase and any harmonic structures or melodic patterns that may be present in a

chosen section. There are three predominant stages required for an analytical

algorithm to perform a task successfully:

Stage One - Extract a data set suitable to the analytical process desired

Stage Two - Use a clearly defined rule base from which to make an analysis of the

supplied data set

Stage Three – Resynthesize the results created by the analysis

	
 28	

In summary, analytical algorithms can be applied to assess inputs and/or outputs at

various stages of the compositional process, for the primary purpose of the

automation of analytical tasks. So therefore, any computer system that requires the

use of analytical algorithms must:

1. Have the capability to adequately and accurately extract sonic features from a

desired source relative to the analytical task

2. Have the relevant rules and perceptual models with which to analyse the supplied

sonic features

3. Organise and represent the results of the analysis in relation to the required

analytical task

To elaborate, with regards to stage one, a relevant data set must be defined; in order to

ensure an analytical algorithm can complete a specific task, it must be supplied with

the sonic features relative to the process. For example, for a task such as melody

analysis, which can be applied to assess melodies and compare them with a bank of

preexisting melodies, thereby finding or ‘recognising’ melodic familiarities from a

specified phrase, the pitch, onset and duration data are necessary (and possibly

amplitude depending on the algorithm’s structure); if an incorrect or limited data set is

used in relation to the defined task, the resulting analysis may not be accurate or, in

the worse case, fail in the task it is required to complete.

For instance, if only duration data is supplied for the above melody analysis

algorithm, the task will be unable to allocate pitches and the onset of note events,

therefore failing to analyse the melodies of a chosen phrase, and rendering any

comparison with a bank of melodic phrases redundant.

Once the relevant sonic features have been identified for the analytical task, there are

four key methods of representing the sonic features from which an analytical

algorithm can extract them. These methods are defined in the following example:

1. A pre-defined data set such as a musical score

	
 29	

2. A live symbolic source such as MIDI IN

3. A recorded acoustic audio source/s

4. A live acoustic audio source/s

This example highlights the capability of computational analytical algorithms to

assess different sources and forms of data for both real-time and offline musical

applications. Furthermore, a combination of methods can be used together for

purposes such as live scoring of unspecified instrumentation; a pre-defined pitch set

can define the pitches played by a input live acoustic source (method 1), with a timbre

and onset analysis of the input live acoustic source for the consequent use of defining

instrumentation and rhythmic content (method 4).

Examples 1, 3 and 4 of the four methods of representing sonic features listed above

can be described in symbolic or subsymbolic terms, which in itself, raises challenges

in relation to the best method of representing sonic features for a chosen task. For

example, if a pre-defined data set is used for melodic pattern recognition, the data set

could contain MIDI note events, which are symbolic, or as vectors containing melodic

contours, which are subsymbolic.

If we are to assume an analytical algorithm’s rule base is the same for both types of

data (symbolic/subsymbolic), it would yield different results, and with differing

degrees of efficiency. Perhaps the vector-based data set would produce a more

efficient and higher quality result due to the nature of a melodic pattern recognition

task, which suits the searching of recurring contours; iterating over a collection of

single MIDI Note events to find such contours would be much less efficient and less

accurate in comparison. Therefore, the use of symbolic or subsymbolic data and its

impact on an analytical task must be carefully considered relative to the desired

process.

With regards to obtaining sonic features necessary for analytical algorithms, the

purpose of feature extraction is to obtain a defined sonic feature from the various

musical representations of pre-defined data, live symbolic sources, live audio streams

or recorded audio. The effectiveness of the feature extraction process itself is also

	
 30	

affected by the differences between symbolic and subsymbolic data. With symbolic

data sets, musical feature extraction is a relatively simple task; a feature can be

identified in relation to its corresponding symbol or collection of symbols, such as

pitch from a MIDI note number or melody from a series of MIDI note events, but its

application is limited to analytical tasks that function well with symbolic data

representations such as harmony classification or chord transcription.

In contrast, accurately obtaining sonic features from subsymbolic sources is a

considerably more complex process. When exclusively using acoustic sources, either

live or recorded, a feature extraction algorithm must use low-level spectral data (a

waveform), with no symbolic data from which to begin. From the outset, this implies

that the application of such sources only performs well with analysis rules that

function with low-level subsymbolic data such as gestural or timbral classification.

However, through the use of psychoacoustic and mathematical models, it is possible

to define symbolic features from low-level spectral data, which in turn, opens up a

considerable number of possibilities for their consequent application to symbolic and

subsymbolic analytical algorithms, with the ability to map the results to relative

generative processes (detailed further in chapter 3.2 A Brief Summary of Machine

Listening).

The various methods used in algorithms for musical composition are continually

restructured and adapted by composers. The following examples are indicative of the

variety of approaches composers have used to suit their particular compositional

objectives; stochastic models, Markov chains, cellular automata, flow control and

grammars, generate and test (GATs), expert systems, fractals, artificial neural

networks, genetic algorithms and creation by refinement (CBR). This list is not fully

inclusive of all algorithms used by composers, but it identifies the algorithms that are

more commonly used for musical algorithmic processes and demonstrates the broad

range of techniques a composer may wish to use.

As algorithms can grow in complexity depending on their context and application, so

too does the problem of assessing the quality of the solution; the opportunities for

producing solutions of a variable quality are that much greater, thus a more complex

	
 31	

algorithm does not necessarily produce a more satisfactory result. The quality of a

result and its usefulness may well be a subjective judgment left to the composers

concerned, but they must be realistic in their assessment of the success or quality of

an output from an algorithm in terms of achieving the task it has thus been set.

Directly related to the problem of the quality of an output is the composer’s

application of an algorithm in a context that can be justified musically. Algorithms,

much like the formalisms found in Western Art Music can be used for producing

melody, harmony, structure and rhythm. This is not to suggest that algorithms must

follow the rules found in Western Art Music, but that they can be applied to the same

key elements of a musical composition. The mapping of an algorithm to one of these

key features, much like the potential complexity of an algorithm requires careful

assessment and monitoring by the composer and also helps to ensure an algorithm is

fit for purpose.

Furthermore, in terms of Genesis, detailed fully in chapter 5 The Genesis System,

many compositional techniques are applied using methods beyond the conventions of

melody and harmony established in the Western Art Tradition. For example,

algorithmic compositional methods making use of microsound techniques are free of

the restrictions imposed by the concepts of the diatonic scale and its associated

harmony by the dissection of a digital waveform into sound events of around 50ms.

Each sound event is considered an element of the sum of its parts, permitting the

manipulation of sound-objects at their most fundamental level. This creates primary

structural modifications of a sound-object’s timbre, thereby offering the ability to

generate new sound-objects through acute adjustments of a sound-object at its micro

structure, outside of the pitch/duration paradigm associated with Western Art Music.

Therefore, algorithms are able to perform many tasks. The following list, although far

from exhaustive, exemplifies the scope and nature of the tasks algorithms can perform

within a compositional process; automated mappings to any modifiable parameter of a

chosen live synthesis technique, selection of melodic phrases, creation of rhythmic

phrases, editing of macro structures, psychoacoustic analysis of data for use (or not)

with associated mappings, random allocation of silences, comparison of chosen works

	
 32	

for the selection of similar external compositions to those chosen, suggestions of

antecedents or consequents, automation of a generative performance, rearrangement

of a set of selected melodic phrases, audible granulated responses to a live

performer’s input, complex mathematical equations mapped to the parameters of

additive synthesisers and live graphical scoring. From this summary list alone it

becomes clear that there are many possible applications for algorithms in a

compositional context, but as already noted, their success or otherwise ultimately

depends on the skills and judgment of the composer.

2.3 Computers and Algorithms

The purpose of using a computer in algorithmic composition can be divided into three

general categories19:

1. Modeling traditional, non-algorithmic compositional procedures

2. Modeling new, original compositional procedures, different from those

known before

3. Selecting algorithms from extra-musical disciplines

The reason for an algorithm’s application can be considered highly contentious. For

example, one may question the reasoning behind ‘modeling traditional, non

algorithmic procedures’20. A warranted question, as superficially, the need for a

computer to complete a task we are able to do ourselves does not appear necessary but

the context of this form of algorithmic procedure must be taken in to account. For

example, later in this chapter, I demonstrate with Chord Creator such a case where it

would be entirely possible for a composer to achieve the desirable outcome without

computational assistance. However, the efficiency and accuracy with which the

algorithm is able to complete the task certainly merits its application.

Using algorithms for ‘Modeling new, original compositional procedures, different

from those known before’ and ‘Selecting algorithms from extra-musical disciplines’21

is perhaps less contentious in comparison to modeling traditional compositional

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

19	
 Supper,	
 M.	
 2001.	
 A	
 Few	
 Remarks	
 on	
 Algorithmic	
 Composition.	
 Computer	
 Music	
 Journal	
 25(1):	
 48	

20	
 Ibid	

21	
 Ibid	

	
 33	

procedures. The question of the algorithm’s suitability however must always be asked

in any critique. As discussed earlier, a composer must ensure that an algorithm is fit

for purpose. An example of the importance of this notion is provided by Iannis

Xenakis, a composer strongly involved in the use of strict formalist rules in

composition and author of Formalized Music: Thought and Mathematics in

Composition (1971). His works focused on testing an algorithm’s suitability to a task

as well as experimenting with algorithms based upon mathematical concepts such as

game theory and stochastic processes.

The use of a computer is not essential to execute an algorithm. As stated before, it

could be argued that all compositions use algorithmic functions, including those

predating the digital age. The role of the computer is to increase efficiency; it is a tool

that can calculate complex problems much faster than a human. It can also control

many different variables simultaneously while we only have one pair of hands. It is

the complexity of tasks, which necessitates the use of a computer to complete them.

This is not to say that the computer’s output is better than a human’s, it is simply

faster; the ‘quality’ of the result is the same (assuming both a human and computer

have not made errors), in turn depending on the appropriateness of the criteria used to

determine its actions.

Due to the efficiency and power of modern computers, real-time compositional

systems can be conceived and applied to form real-time compositional processes such

as those found in Genesis. Prior to modern computing, ‘compositional algorithms

were used ‘out of time’ (Xenakis 1971) for creating musical scores… a symbolic

output in the form of a score list had to be translated into musical notation in order to

be performed by musicians’22. Such a process would interrupt the direct flow of

interaction between compositional outcomes and their realisation. In contrast, through

the real-time compositional methods that modern computing affords, it is possible to

generate and realise instantaneously, providing composers with immediately relatable

outcomes to the compositional approaches they have applied. Therefore, real-time

interaction between a compositional process and its realisation is achievable, enabling

composers to create compositions in real-time.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

22	
 Essl,	
 K.	
 2007.	
 ‘Algorithmic	
 composition’	
 in	
 The	
 Cambridge	
 Companion	
 to	
 Electronic	
 Music,	
 eds	
 N	
 Collins	
 &	
 J	
 d’Escrivan,	

CUP,	
 Cambridge:	
 122	

	
 34	

The deliberate and extensive application of algorithms and their contribution to a

compositional process must thus be carefully deliberated over by a composer right

from the outset. An algorithm is a tool with which is it possible to obtain a result as

described by Supper (2000), but this is not to imply that by using an algorithm, a

successful composition will always be written. Music, unlike the objective behaviour

of algorithms that can respond yes or no, 1 or 0 or true or false, is everything in

between a yes and no, 1 and 0 or true and false demonstrating Music’s intrinsic

subjectivity and stark contrast to objective algorithms. This sentiment must be

addressed when composers are making decisions regarding the use of algorithms in

their works, otherwise there is a risk that their composition may no longer be

considered a musical work, but instead, as an objective process or series of processes

that take on an identity of their own.

In addition, despite a composer’s application of an algorithm or algorithms to a

musical composition, much like the notion that an algorithm does not ensure a

successful composition, neither does an algorithm necessarily make a great composer;

it is how the composer has contextualised the result of an algorithm or algorithms in a

musical composition that will ultimately determine a composer’s ‘success’. It is also

key to note that the complexity of an algorithm does not affect the validity of a work;

the composer’s application of it, regardless of its complexity, is the most important

factor when assessing the effectiveness of an algorithm or algorithms in a

composition.

To elaborate, and in relation to Cage’s extensive application of chance, which has a

strong connection with algorithmic processes, Burt (1996), when discussing

‘successful’ use of chance in composition, states ‘a popular misconception of the use

of chance in art is that it should be judged by criteria of winning and losing. For

many, winning means ‘sounds like something I’m already familiar with’, or, ‘makes

me happy in ways I know’’23. However, the true value of applying algorithmic

approaches to composition would appear to be its generative possibilities, allowing

composers to search and explore for unique, unknown musical outcomes. For

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

23	
 Burt,	
 W.	
 1996.	
 Some	
 parentheses	
 around	
 algorithmic	
 composition.	
 Organised	
 Sound	
 1(3):	
 167	

	
 35	

example, Burt(1996) muses ‘I, at any rate, find it much more valuable to use

algorithmic methods as a means of finding out what I don’t know, rather than making

what I do know’24.

Furthermore, through an algorithmic process, which can present the ‘unknown’, it is

the composer’s control over an ‘unknown’ event that impacts on its perceived success

‘since the composer’s control over events ceases after he has shaped his prescription,

and since the prescription is necessarily very partial in the case of chance music, his

suggestions need to be firm and striking if they are to produces distinctive results’25.

Therefore, the perceived ‘success’ of a compositional product is accountable to the

composer through the environment they have created and the prerequisites, conditions

and boundaries contained within.

A composer must consider, along with the suitability of an algorithm for a

composition, the need for a computer in a compositional method. As an example, the

number of physical mappings would be a consideration if electroacoustic techniques

were to be used. If the number of mappings were few, for instance, a linear curve

assigned to the filter frequency on one channel, it would appear unlikely that any

automation (and therefore a computational algorithm) would be needed as the

performer has only one variable to control at that one time.

However, if the composer wished to set specific frequencies in 0.015s intervals, a

computational algorithm could do this with digital precision, whereas a human

performer would struggle to perform accurately the task within such a stringent time

scale. It is therefore imperative that the composer understands the capabilities of both

performers and computational algorithms; if these considerations are ignored, the

artistic quality of the resulting realisation will be seriously degraded. It is also

important to mention here that despite digital systems having an implicit reliability

and accuracy, errors can sometimes occur and indeed can be deliberately precipitated

allowing composers to explore the aesthetics of failure (Cascone, 2000; Vanhanen,

2003).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

24	
 Burt,	
 W.	
 1996.	
 Some	
 parentheses	
 around	
 algorithmic	
 composition.	
 Organised	
 Sound	
 1(3):	
 168	

25	
 Reynolds,	
 R.	
 1965.	
 Indeterminacy:	
 Some	
 Considerations.	
 Perspectives	
 of	
 New	
 Music.	
 4(1):	
 137	

	
 36	

With the advent of modern computing, not only has the application of algorithms

within the compositional process become more prevalent, but also, and perhaps more

importantly, due to the procedural nature of all algorithmic processes, their use with

computers allows for a symbiotic relationship to be established between computer and

algorithm. This symbiosis between computer and algorithm gives the composer

considerable power to capatalise on the possibilities thus opened up in establishing a

compositional process. Algorithms can be applied at many different levels of the

compositional method. For example, an algorithm such as the following written by

the author in SuperCollider, called Chord Creator, may be used for the selection of

the number of possibilities of n note chords, without octaves:

nNoteChord = { arg array, n;

var max = array.size - n + 1;

var index = Array.fill(n, 0);

var end = Array.fill(n, max);

var auxIndexValue;

var auxRes, res = [];

while({index != end}, {

 // subset

 auxRes = [];

 index.reverse.do({ arg i, j;

 auxRes = auxRes.add(array[j + i]);

});

res = res.add(auxRes);

// index change

index[0] = index[0] + 1;

(index.size - 1).do({ arg i;

if(index[i] == max, {

 auxIndexValue = index[i + 1] + 1;

 (i + 2).reverseDo({ arg j;

 index[j] = auxIndexValue;

 });

 });

 });

 });

res;

};

	
 37	

bench { shoAll = nnoteChord.value((shoArray), voices); };

shoOut = shoAll.select{ |x| (x%12).asSet.size == voices};

shoSelector = shoOut[start.asInt..finish.asInt]

Figure 1. Chord Creator GUI

Figure 1 illustrates the graphical user interface applied to implement the Chord

Creator algorithm. The composer can thus set the number of voices, the root note of

the chord and the notes above the root that they wish to use. From this data, the

algorithm calculates every possible chord of six notes without octaves, which, for in

this case, there are 6321. The algorithm will then audibly play back the output in

sequence. There is also the option of saving the data to a MIDI file available for use

in any compatible program such as Sibelius or Logic. Figure 2 below shows an

excerpt of this final output opened in Sibelius ready for editing and playback.

Figure 2. MIDI Output of Chord Creator

	
 38	

The composer determines the level of application to a compositional process by the

results generated by Chord Creator. For example, the composer may wish to use the

raw data thus generated to determine both the harmonic and rhythmic content of the

entire work. This gives the algorithm a high-level of control over a composition’s

harmony and rhythm. On the other hand, the composer may selectively choose chords

and associated rhythmic characteristics from the resulting data and also choose to

dictate their rhythms (perhaps using another algorithm such as Cage’s coin flip),

hence fulfilling the reverse of the previous example, thus giving the algorithm a lower

level of control over a composition’s harmony and rhythm. These examples represent

different approaches to the application of such an algorithm to these two key aspects

of a musical work, but by no means embrace the range of possibilities that are thus

available.

The following table identifies the five key attributes that influence, and in many

instances determine, the use of algorithms within a composition:

1. Human Control – Free of all algorithmic methods (composer’s perception)

2. Low Level – Algorithms used but composer decides upon result

3. Mid Level – Composer explicitly uses algorithms but uses own intuition

4. High Level – Algorithms decide upon result. Composer oversees

5. Algorithmic Control – Algorithms control result. (composer’s perception)

In relation to the breadth of influence an algorithm may have, it is ultimately

determined by the composer’s application of it, so its relative influence to the macro

or micro level of the composition itself is a matter of choice on the part of the

composer. So, for example, if an algorithm was chosen to select pitches for one

phrase of a 128-phrase composition, on the macro-level is has a low-level of

influence, but on the micro-scale, for that chosen phrase it has a high-level of

influence. Of course, the importance of events in both the macro and micro-scale are

subjective, so the phrase controlled by the algorithm could be considered influential

on the macro-level, but this is merely an arbitrary example of how the influence of

algorithms must be considered in context of their place in a composition. The

	
 39	

‘composer’s perception’ marks the subjectivity involved in the use of algorithms,

formalisms, rules and structures. As stated earlier, algorithms, formalisms, rules and

structures are argued to be intrinsic to the composition of all musical works, but a

composer may wish to dispute their use or not; perhaps the ego can be held

accountable for such contrary beliefs.

Considering again the Chord Creator, the composer may wish to use another

algorithm in combination with outputs generated by Chord Creator, replacing the

composer’s role in the selection process of the chords and therefore giving this

algorithm a high-level of influence on the creative process. As suggested, this could

be a coin flip or other indeterminate process, but there are more linear and predictable

approaches to data selection. For example, the use of feature extraction and search-

based algorithms are an effective way of finding solutions with little or no input from

the composer other than stating the rules by which the algorithm will make its

choices. Such an algorithm could use if and while statements stating the feature the

composer wishes to search for. So, if a particular feature is found, a relative result will

be output. If not, the algorithm may do nothing, or propose a new, creative output.

The pseudo code example below shows how this could be put into practice:

// If the note equals the composer's specification, output the note

if (note == note,

{

output = note

});

// If the note does not equal the composer’s specification, randomly generate a note

value of 3, 4 or 5

if (note != note,

{

output = rrand(3,5);

});

There are many options available to a composer for algorithmically generating values

such as mathematical models, Markov chains, grammars, genetic algorithms and

	
 40	

neural networks. Such methods are considered artificial intelligence, which is the

‘science of making intelligent machines, especially intelligent computer programs. It

is related to the similar task of using computers to understand human intelligence, but

does not have to confine itself to methods that are biologically observable’26. Through

the use of the algorithms proposed, it is possible for a computer to propose creative

ideas based upon the rules of the system.

The level of intelligence demonstrated by a system that applies artificial intelligence

techniques however, cannot be easily defined as ‘we cannot yet characterise in

general what kinds of computational procedures we want to call intelligent. We

understand some of the mechanisms of intelligence and not others’27. It is therefore

difficult to categorise definitively which algorithmic processes within computational

algorithmic musical composition demonstrate intelligence and at what level. Despite

this, it is possible to apply various branches of artificial intelligence research to

musical composition for creative proposition tasks with methods such as search,

which examine large numbers of possibilities, or learning from experience, which

continually adapt and learn behaviours from their numerous states.

Reflecting on the proposed artificial intelligence an algorithmic process may be

considered to demonstrate, the composer must be aware that the authorship of a

composition may come into question. For example, ‘much of the resistance to

algorithmic composition that persists to this day stems from a basic misunderstanding

that the computers compose the music, not the composer’28. This belief centres on the

presumption that the composer has no input in the design and construction of the

algorithmic procedures that define the resulting composition, but instead, applies

responsibility to the computer system, which generates the music. Moreover, such an

idea would conclude that both the process and product are consequences of a

computer’s own making: that the entire authorship and accountability of a

computational algorithmic composition is solely attributed to its digital source.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

26	
 McCarthy,	
 J.	
 2007.	
 What	
 is	
 Artificial	
 Intelligence?	
 Stanford	
 University:	
 2	

27	
 Ibid:	
 3	

28	
 Edwards,	
 M.	
 2007.	
 Algorithmic	
 Composition:	
 Computational	
 Thinking	
 in	
 Music.	
 University	
 of	
 Edinburgh:	
 9	

	
 41	

In contrast, ‘Curtis Roads points out, it takes a good composer to design algorithms

that will result in music that captures the imagination’29. Therefore, resolving this

notion, authorship of such music implicitly requires a human composer who has

programmed an algorithmic methodology with a process and product attributed to

them. However, there must be a consideration of the divide between the authorship of

the process and product in relation to the roles between the composer and the

machine. For example, is the product accountable only to the machine that made a

realisation possible, disregarding the composer’s programmed process? Or is it

accountable to the composer who designed a process through which a product could

be realised by the machine?

There are a number of methods that attempt to discover the accountability of an

algorithmic product such as the Turing Test30 and the Lovelace Test31. Both tests

endeavor to determine the extent of a machine’s intelligence, with the Lovelace Test

focusing on a machine’s ability to create autonomously. In particular reference to the

Lovelace Test, its fundamental principle is to ascertain whether a programmer can

account for all actions of an algorithmic process that led to a product, with those that

cannot be accounted for considered creative and accountable to the machine,

rendering it a truly autonomous agent. However, as yet, no such system has

conclusively passed the Lovelace Test, which would negate any such notion that any

product of a computational algorithmic methodology is the full responsibility of a

machine.

So, it must be proposed that accountability and authorship of products generated by

algorithmic processes must be attributed to a human composer. However, the degree

to which this responsibility is recognised must be relative to the composer’s chosen

level of influence of any implemented algorithmic procedures. As a result, the

authorship and accountability is variable from composition to composition with the

necessity to always acknowledge the use of a human composer as the instigator for a

resulting algorithmic product. This is discussed further in chapter 4.1 Interaction with

Creative Systems.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

29	
 Edwards,	
 M.	
 2007.	
 Algorithmic	
 Composition:	
 Computational	
 Thinking	
 in	
 Music.	
 University	
 of	
 Edinburgh:	
 9	

30	
 Turing,	
 A.M.	
 1950.	
 Computing	
 Machinery	
 and	
 Intelligence.	
 Mind	
 59:	
 433-­‐460	

31	
 Bringsjord	
 et	
 al.	
 2001.	
 Creativity,	
 the	
 Turing	
 test	
 and	
 the	
 (Better)	
 Lovelace	
 Test.	
 Mind	
 and	
 Machines	
 11:	
 3-­‐27	

	
 42	

2.4 Unpredictability and Randomness in the Creative Process

Primarily, it is necessary to highlight the distinction between unpredictability and

randomness as the two concepts have differing implications on the creative process.

An absolute unpredictable outcome is one that cannot be foreseen. However, it is

possible to consider a relative unpredictability in which a number of events may be

predictable, with an outcome comparative to its probability of occurring. Therefore,

specific conditions can be set through which events may or may not transpire, relative

to the probabilities of each event’s outcome. As a result, it would appear that the

implementation of relative unpredictability in a compositional process, and thereby

constructing a scenario in which a number of predictable known outcomes can occur,

is applicable to the proposed models of creative processes based on structures and

order, which enable relative predictions to be made.

On the other hand, absolute randomness is the absence of order, and consequently

cannot be predicted due to the privation of rules that enable the prediction of its

outcomes through probability. However, a relative randomness can be proposed, one

that is ‘the lack of order or structure relevant to some specific consideration…

identified by reference to something people might have regarded as relevant… the

potentially relevant ‘something’ is usually the creator’s own knowledge, the structure

of conceptual constraints into which the novel idea may be integrated’32. Therefore,

the result of such randomness, although unpredictable, can still form an acceptably

creative idea, relative to a composer’s compositional aims.

Consequently, both unpredictable and random methods of idea generation are

proposed to form part of the creative process. However, as Boden (2005) states ‘our

ignorance of our own creativity is very great. We are not aware of all the structural

constraints involved in particular domains, still less of the ways in which they can be

creatively transformed’ 33 . Thus, it is possible to include unpredictability and

randomness in a creative process but their specific roles in its structure are uncertain.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

32	
 Boden,	
 M.	
 The	
 Creative	
 Mind:	
 Myths	
 and	
 Mechanisms.	
 New	
 York:	
 Routledge:	
 239	

33	
 Ibid:	
 246	

	
 43	

Boden (2005) proposes psychological (P-creative) and historical (H-creative)

components in the creative process. P-creative are ‘ideas (whether in science,

needlework, music, painting, literature…) that are surprising, or perhaps even

fundamentally novel, with respect to the individual mind which had the idea’34 with

H-creative being ideas ‘that are novel with respect to the whole of human history’35.

However, ‘whichever type of creativity is involved, it’s historically creative if no one

has had thought before’36. Therefore, a P-creative idea is one in which the individual

has not thought of before, unique to them, whereas an H-creative idea is one that has

not occurred throughout human history.

With regard to the role of unpredictability and randomness for such creative ideas,

‘many P-creative ideas can actually be predicted. For instance, people typically ask

certain exploratory questions, and notice certain structural facts… All H-creative

ideas are (so far as is known) unpredicted, since an H-creative idea is one which

(again, so far as is known) no one had ever thought of before’37. So, in relation to a P-

creative idea, although as Boden (2005) states that such an idea can often be

predicted, the presence of relative randomness, and therefore the acceptance of a

random event considered by a composer to fit the conceptual constraints of a

composition, resolves that P-creative ideas can indeed be just as unpredictable as H-

creative ideas. As a result, the previously proposed notion that relative random events

can be used to propose creative ideas within a creative process can be validated for

both the P-creative and the H-creative.

Considering the function of randomness in a truly unpredictable, H-creative idea, it

could be argued that absolute randomness is intrinsic to such a creative process: if an

absolute randomness were implemented ‘there is the total absence of any order or

structure whatever within the domain concerned’38, rendering an H-creative idea

absolute random due to its inexplicable and unpredictable occurrence. However, as

the creative process is believed to be formed of a variable structure, relative to the

individual, then it may be thought implausible that the result of such absolute

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

34	
 Boden,	
 M.	
 The	
 Creative	
 Mind:	
 Myths	
 and	
 Mechanisms.	
 New	
 York:	
 Routledge:	
 43	

35	
 Ibid	

36	
 Ibid	

37	
 Ibid:	
 233	

38	
 Ibid:	
 239	

	
 44	

randomness can be considered creative, or attributed to any subject other than

absolute random.

Furthermore, the notion that an H-creative idea is an absolute unpredictable would

appear questionable itself; how would one go about testing the series of events that

led to an apparent absolute unpredictable? Conceivably a method similar to the

evaluation approach of the Lovelace Test could be appropriate, requiring every

individual event to be accounted for, necessitating every event to be unpredictable and

random to then qualify the outcome as an H-creative. Therefore, the concept of an H-

creative idea is perhaps flawed, that no idea is truly unpredictable, that creativity is

founded in determinism, that all ideas exist, have existed or will exist. Yet,

determinism cannot predict all creative ideas (if that were true, surely all creative

ideas would have occurred or have been predicted), implicating that indeterminism,

with its acceptance of random, unpredictability and stochastic processes, can offer

insight into the methods behind our creative process and resulting creative ideas, both

P-creative and H-creative.

Since both deterministic and indeterministic ideologies can be applied to the creative

process, this validates the assertion that the use of both unpredictability and

randomness are suitable methods for the generation of creative ideas. However, when

deliberately attributing such methods to a creative process, that is forming

compositional approaches that embrace unpredictability and/or randomness, the

consequences of their outcomes can differ substantially.

Considering the key difference, unpredictable methods such as Markov chains have a

relative unpredictability whereby the output values are predetermined with each

individual output constrained by an implemented probabilistic model. On the

contrary, random methods such as white noise generators cannot be predicted, and are

instead the result of uncorrelated random variables, reflecting their absence of order.

Therefore, it is suggested that the methodical application of unpredictability and/or

randomness in a compositional process is the choice of the composer, with the need

for a full understanding of the implications of the outcomes on the creative process.

	
 45	

The use of random functions is perhaps the simplest method to generate a creative

idea. However, due to the lack of order and structure in randomness, such an approach

may not be considered the most efficient: if a composer is searching for a specific

idea, then application of relative unpredictability would be more suitable as possible

outcomes are known, and are therefore known to occur relative to their probability of

happening.

Random affords a significantly more serendipitous method of acquiring creative

ideas, in which an outcome can be applied that is not being sought, thereby generating

results that are not known prior to the instigation of a compositional process. Yet, the

composer must be willing to accept that the outcomes of a random function must be

concluded by the composer themselves: each result is related to a composition

through the composer, thereby indicating the importance of understanding that

randomness is able create a relatable idea just as it is unable to create a relatable idea.

Therefore, the efficiency of using randomness in a compositional process is

comparative to a composer’s conceptual constraints of a composition, and to what

extent this allows the results of such a random compositional process to influence the

resulting work.

Random leads to unpredictable and non-linear outcomes, which may be a composer’s

intentions. However, as highlighted previously, if an entire composition is made up of

random functions, therefore implementing absolute randomness, the attributed subject

of a compositional process must be considered, and therefore the question of ‘who is

the composer?’ must inevitably be asked. The significance of such a question will

largely depend on the level at which the composer has control over the random

functionality of an algorithm and what bounds have been imposed on its application,

thus the relative randomness within the compositional process. For example if a

composer stated ‘any value from infinity’, the level of randomness is maximal with

absolutely no constraints. In contrast, if the statement was ‘any value between 0 and

10’, such an operational restriction facilitates much more control over the output.

Furthermore, it is possible to add further constraints such as only odd or even

numbers, only prime numbers, only powers and so on.

	
 46	

A composer must not only carefully choose the bounds of any random function, but

also the mapping to which is related. For example, if a composer were to choose ‘any

value from infinity’ to map to a pitch, the resulting data stream might overwhelm a

loudspeaker and/or greatly confuse an associated instrumentalist. The importance of

mapping effectively between the constraints of a random function (or any type of

function for the matter) is paramount. With random however, it is even more

important that the composer is aware of all possible outputs, otherwise the result may

be unplayable.

Therefore, as highlighted previously, the outcomes of absolute randomness are

certainly not creative ideas: considering alone the issue of mapping such outputs to

instrumentation, this negates the plausibility of absolute randomness as a

compositional tool. However, the following code demonstrates a method through

which relative randomness can be applied to a compositional process:

//Array of all notes

arrayOfNotes = [note0, note1, note2, note4, note5];

// If the note does not equal the composer’s specification, make a 'suggestion'

if(note != arrayOfNotes[i],

{

//What is the prior note?

priorNote = arrayOfNotes[i-1];

//Check for 8ves

if((priorNote != arrayOfNotes[i])

&& (priorNote+12 != arrayOfNotes[i])

&& (priorNote+24 != arrayOfNotes[i])

&& (priorNote-12 != arrayOfNotes[i])

&& (priorNote-24 != arrayOfNotes[i]) ,

{

	
 47	

//If priorNote is not the same as note

if(priorNote != arrayOfNotes[i],

{

noteOutput = rrand(priorNote, arrayOfNotes[i])

});

//If priorNote is the same as note

if(priorNote == arrayOfNotes[i],

{

noteOutput = rrand(priorNote+1, arrayOfNotes[i])

});

});

});

This example constricts the random search process algorithm considerably, using the

prior notes to ensure no repeats, as well basing the random function’s bounds between

the prior note and the current note, prioritizing the removal of octaves above all other

rules, resulting in a serendipitous response to a finite set of results. So, although the

selection of the chosen note’s output is unpredictable, the choice is relative to the

compositional process and the conceptual constraints of the composition.

When considering random data generation techniques and their efficacy and

efficiency, an interesting question arises with regards to autonomy. If a system were

to use only random functions, does it become truly autonomous? As highlighted

previously, the implementation of absolute randomness may result in a composition

that cannot be attributed to a subject other than absolute random. The complex tasks,

calculations and routines required by algorithms making use of neural networks,

expert systems, and various grammars are often implied to have the objective of being

	
 48	

or becoming autonomous. If random is taken in to account, is it not itself acting

autonomously, governing itself by its randomness? So, should this mean that all

autonomous systems require random functionality to call themselves truly

autonomous? It is not within the remit of this thesis to offer a possible solution to

consider the philosophical issues thus arising in a wholly definitive manner, but a

considered awareness of the resulting implications must be taken into account

appropriately.

2.5 Further Considerations of Applying Computational Algorithms within a

Compositional Process

The nature of a task an algorithm is required to execute will have a great impact on

the number of calculations required from the computer. For example, selecting a

random integer from a set of chosen bounds to decide the pitch of a single instrument

in an offline method demands very little processing power. On the other hand, if an

algorithm is written that relies on a continuous loop of feature extraction of a live

instrument with the comparison of this feature to selected variables in order to choose

the frequencies of a filter bank, the number of processes will significantly increase. In

this case, the algorithm must be especially efficient in terms of extracting data and

using the information thus produced to select the variables of the filter bank.

This highlights a fundamental issue that warrants further consideration: at what level

can algorithms be used to control and influence composition? In demonstrating the

capabilities of the Chord Creator, it was shown that algorithms could be applied at

different levels of the compositional method. An algorithm can be employed to

construct and control a significant proportion of a composition’s material, for

example, by using cellular automata to determine the pitch, duration and onset of sine

waves over a specified period. Cellular automata are ‘discrete, abstract computational

systems… composed of a finite or denumerable set of homogenous, simple units, the

atoms or cells’39. The system’s cells evolve over time, with their evolution dictated by

a set of transition rules and update functions, such as the Game of Life40. Therefore,

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

39	
 Berto,	
 F.	
 and	
 Tagliabue,	
 J.	
 (2012).	
 Cellular	
 Automata.	
 [online]	
 Plato.stanford.edu.	
 Available	
 at:	

http://plato.stanford.edu/entries/cellular-­‐automata/#Bib	
 [Accessed	
 Feb.	
 2015]	

40	
 Gardner,	
 M.	
 1970.	
 The	
 Fantastic	
 Combinations	
 of	
 John	
 Conway’s	
 new	
 solitaire	
 game	
 “life”.	
 Scientific	
 American	
 223:	
 120-­‐
123	

	
 49	

once the cellular automata have been initiated, the pitch, duration and onset is

determined entirely by the rules of the model, with no external manipulation of the

audible outcome other than the choice of sine waves or other waveforms for the

instrumentation.

The example of the use of cellular automata displays how an application of a chosen

method can have a major impact on a composition, and therefore a high level of

influence. It is important to make a distinction however that, by using a specific

model as in that example, does not necessarily mean that the model’s application is

restricted exclusively to the specific task chosen in that instance. In terms of the level

of influence and control algorithms may have on a compositional method, a composer

must use discretion not only in the methods they wish to use, but also the manner of

their application.

To use the cellular automata example again, the composer has many options of how

the model may be applied such as selecting only pitches, or the composer may wish to

review the output, editing the result to their own requirement, or, to extend the use of

algorithms within a compositional method, execute an algorithm that decides an

output by reviewing the result of the model’s calculation, in effect acting as a fitness-

for-purpose function.

There are many methods of obtaining data for review in association with an algorithm

and a major part of considering which methods to use is the type of data a composer

wishes to submit for analysis. As an example, Chord Creator writes a MIDI file,

which contains a detailed amount of symbolic data including note duration, pitch, and

onset. Depending on the requirement of a chosen algorithm’s task, for example, to

find notes of a specified duration, pitch and onset, the resulting MIDI file from Chord

Creator, or any MIDI file for that matter, is a suitable format for a ‘note/event’

algorithm to analyse.

For the same task of obtaining pitch, duration and onset information, the MIDI format

is nevertheless totally unsuitable in a non-symbolic situation such as a live analysis of

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	
 50	

the acoustic data generated by an acoustic instrument; although there may be a

requirement by the composer to score the live analysis to a MIDI format, this process

cannot be completed until the pitch, note duration and onset characteristics have been

extracted by an algorithm from the low-level spectral data of a live acoustic

instrument’s waveform.

To elaborate on the difference between using a MIDI file or any other saved data and

live streams for use by an algorithm for analysis, it must be noted that MIDI files or

saved data, as far as a computer is concerned ‘exist’ as data prior to an algorithm

being executed, allowing for offline processing operations to be completed at the

composer’s convenience, prior to the use of the results. On the contrary, the real-time

processing of live streams requires either loops that run at specified time intervals or

external triggers such as amplitude peaks found by amplitude followers (which

themselves require looped routines), gathering data at the time of their respective

execution. In such circumstances it may not be possible to generate the results with

the required immediacy, giving rise to undesirable latency. A composer must address

these differences appropriately distributing tasks between saved data and live streams

prior to algorithm selection for a composition, otherwise the outcomes may suffer

from data corruption, or at worst, a non-recoverable termination of the program.

To expand on the issue of latency and time in live performance, the requirement to

eliminate any audible timing errors in music can be a limiting factor in the methods of

both analysis and generative algorithms. Although the ear in most circumstances will

not recognise small timing errors of the order of 20 milliseconds or less, this leaves a

very small window in computing terms for accommodating variations in processing

requirements from sample to sample. Added to this essentially practical problem, and

with particular reference to analytical algorithms, there are substantive issues to be

considered in terms of the nature of these processing algorithms, and the ways in

which we react subjectively to the varying complexities of the results. Thus if we

consider our own listening experience, it is the relationship of events over time that

allows us to analyse, contextualise and assess the connection between events and as a

result, give them musical value.

	
 51	

In an offline situation, it is possible for a computational analysis algorithm to ‘listen’

to saved data such as a WAV, AIFF or MIDI file and thus extract all the information

necessary for the intended computational process. Although the difference between

using non symbolic musical data as of that found in WAV or AIFF files and the

symbolic musical events within MIDI files and the possible issues this may cause in

terms of creative intention has been highlighted previously, the use of algorithms with

saved data does not necessitate real-time, or ‘on the fly’ processing; an entire file can

be ‘assessed’ with the efficiency of its result limited only by the time the algorithm

requires to complete the calculation. Therefore, in offline scenarios, it is possible to

process the stored source data in advance of a performance, which, in some

circumstances will prove an expedient and effective solution. However in a real-time

analysis situation, such stored data is unavailable as data and must be constantly

streamed, only representing what has happened as opposed to both what has and will

happen, as represented in a saved and compiled finite data set.

As a result, algorithmic iterations can occur within musical time (in a live scenario) or

outside of musical time (in an offline scenario). For example, the duration of

algorithmic iterations may be set to the chosen musical time intervals of a live

performance, perhaps following a strict a rhythmic metre of 110bpm. In contrast, the

algorithmic iterations may be run out of musical time in an offline scenario where the

constraints of such a metre and time are unnecessary, such as a Schenkerian analysis

of Mozart’s Haydn Quartets.

However, it is important to note that live algorithmic iterations can be set to specific

durations outside of the rhythmic metre as well as to a stated metre of a live musical

time scale. For instance, an algorithmic iteration can follow a time scale of 1/30s to

obtain relatively accurate loudness data while another algorithmic iteration can

generate filter resonance values relative to a selected rhythmic metre of 90bpm. The

loudness could then be means averaged over the interval between each beat (0.67s)

with the averaged value from around 22 loudness values used to modify the filter

resonance parameter. Therefore, one algorithmic iteration follows the rhythmic metre,

with the other occurring outside of this. Thus, algorithmic iterations can follow

musical time relative (or not) to a selected metre, offering the composer a wealth of

	
 52	

options to apply strict musical intervals alongside the onset of time outside of such

musical intervals and durations.

In reference to the listening experience, although deeply personal and subjective, it is

apparent that a reactionary and predictive process could take place; we have a reaction

to events, defining their value and their possible progression based only on the events

heard, or we may attempt to predict a consequent event based upon events previously

heard and our prior knowledge. When considering algorithmic composition, the two

approaches of reactionary and predictive processes can be used independently of one

another or in combination. The choices made in this context, however, can have a

considerable effect on the time required by an algorithm or combination of algorithms

to output a result. For example, depending on the window size given for the time to

gather event data, the length of time an algorithm is required to perform a task can be

divided by the window size, and at the end of each time division, a result can be

produced.

So, if for instance, pitch events are chosen and assuming the feature extraction

algorithm can accurately identify separate pitch events over a chosen phrase of thirty-

two pitch events, the algorithm could use a window of every four events to produce

an output, therefore considerably reducing the amount of time needed to calculate a

response by a factor of eight, from every 32 events to every 4. This choice of using

groupings of four events at a time and/or consolidating the contents of each window

to create a larger table for analysis are just some examples of how such an algorithm

can be adapted by a composer for use in musical composition. 	

It is therefore clear that there are many considerations a composer must take into

account when making extensive use of algorithms in their composition. Perhaps the

most important is the level at which they wish an algorithm to influence the resulting

composition and the suitability of an algorithm for a chosen task. Along with these

notions, a composer must be pragmatic in considering what they wish an algorithm to

do, and this highlights the need for awareness by composers of the capabilities of

algorithms prior to their use in a composition; there must be a sense of realism when

passing a significant amount of compositional tasks to an algorithm, because

	
 53	

currently, an algorithm can only act within the bounds it has been set and nothing

more.	

In many respects the above account raises more questions than it answers, not least in

terms of the possible relationships that can be established between a composer and the

possibilities of computational processing in the production of works that meet the

creative expectations of the originator. A fundamental objective of this thesis is to

develop a deeper understanding of the ways in which such processes can be enhanced

both in terms of their operational characteristics and also the means by which they

may be interactively controlled via a suitable interface. It is through this advancement

of knowledge and understanding that it is hoped that these fundamental issues of

musical creativity can usefully be progressed.

	

	
 54	

Chapter 3

Real-time Computational Algorithmic Systems in Musical Practice

3.1 An Introduction to Real-time Generative Algorithmic Systems

As highlighted in chapter 2 An Introduction to Algorithmic Composition, composers

have explored the application of computers to implement a variety of algorithmic

compositional methods to generate musical compositions within the three categories

proposed by Supper (2000). The real-time functionality of such algorithmic methods

allows algorithmic procedures and outputs to occur in musical time thereby offering

composers and performers instantaneous results to an unfolding musical dialog,

relative to a defined creative process.

The Genesis system uses an assortment of real-time generative algorithmic processes

to generate its outputs based upon its inputs and interactions with the user for

consequent control of a series of granular synthesisers. It is therefore necessary to

contextualize the real-time algorithmic procedures used within Genesis and the

methods through which other systems applying similar algorithmic approaches have

offered users interactivity (or not) with the musical composition process.

The use of real-time computational algorithms that apply significant levels of

unpredictability and randomness are applied extensively within Genesis. As proposed

in chapter 2.4 Unpredictability and Randomness in the Creative Process, the

application of algorithms applying such procedures is a valid method of musical

composition and creativity. To elaborate on the use unpredictability and randomness

in music, indeterminate processes have defined musical genres by composers such as

John Cage (‘chance music’); Karlheinz Stockhausen, Pierre Boulez and Luciano

Berio (‘aleatoric music’); and Iannis Xenakis (‘stochastic music’)41.

Stochastic models are one such method for the application of indeterminate processes

to music. Considering its exclusive role in indeterminate methodology, it ‘is based on

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

41	
 Bokesoy,	
 S	
 and	
 Pape,	
 G.	
 2003.	
 Stochos:	
 Software	
 for	
 Real-­‐Time	
 Synthesis	
 of	
 Stochastic	
 Music.	
 Computer	
 Music	
 Journal	

27(3):	
 33	

	
 55	

a process in which the probabilities of proceeding from one state, or set of states, is…

defined. The temporal evolution of the process is therefore governed by a kind of

weighted randomness, which can be chosen to give anything from an entirely

determined outcome, to an entirely unpredictable one’42; the composer is able to have

substantial control of the level of indeterminacy governing a chosen process, and

therefore the amount of relative unpredictability within an algorithmic procedure.

If we now consider in more detail the impact of probability on the application of

algorithmic processes, it is important from the outset to recognise that the bounds

controlling a relative unpredictability have a significant effect on the scope and nature

of the resulting output (as discussed in Chapter 2.4 Unpredictability and Randomness

in the Creative Process). The definition of each individual stochastic process, set by

the composer, gives the option of applying a composer’s requirements of predictable,

linear results or unpredictable, chaotic results, and many of the variations in between.

Perhaps the most prominent use of stochastic processes in 20th Century musical

composition has been ‘stochastically distributing sonic sound events in sound space as

first realised by Iannis Xenakis, beginning with his work Achorripsis (1957)’43. As

Xenakis continued researching and studying stochastic models and their uses for

musical composition, he constructed the ‘Dynamic Stochastic Synthesis’44 concept.

This is ‘an approach to microsound synthesis that uses probability distributions to

manipulate individual digital samples, as if they were indivisible elementary

particles’45.

Dynamic stochastic synthesis is an example of nonstandard synthesis, which can be

described as the ‘manipulation of individual digital samples. Amplitude and duration

values are obtained through musical procedures, they are not based on an acoustical

model’46. Therefore, it allows for the application of real-time stochastic processes for

microsound composition, instead of more conventional harmonic approaches such as

those found in the melody generation systems Probabilistic Model to Melodic

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

42	
 Wishart,	
 T.	
 1994.	
 Audible	
 Design.	
 York:	
 Orpheus	
 the	
 Pantomime	
 Ltd	

43	
 Bokesoy,	
 S	
 and	
 Pape,	
 G.	
 2003.	
 Stochos:	
 Software	
 for	
 Real-­‐Time	
 Synthesis	
 of	
 Stochastic	
 Music.	
 Computer	
 Music	
 Journal	

27(3):	
 33	

44	
 Ibid	

45	
 Luque,	
 S.	
 2011.	
 Stochastic	
 Synthesis:	
 An	
 Overview.	
 proceedings	
 of	
 the	
 Xenakis	
 International	
 Symposium:	
 1	

46	
 Luque,	
 S.	
 2006.	
 Stochastic	
 Synthesis:	
 Origins	
 and	
 Extensions.	
 Royal	
 Conservatory,	
 The	
 Hague:	
 7	

	
 56	

Segments Generation (PMMSG) by Carbonera and Silva (2005) and Musical

Weighted Synchronous Calculus of Communicating Systems (MWSCCS) by Ross

(1995).

The aim of the dynamic stochastic synthesis method is to ‘unify the macrostructure

and the microstructures of compositions, to use synthesis techniques idiomatic to

computers and to open an experimental field in sound synthesis’47. Xenakis describes

the ways in which this is to be implemented through the use of48:

 - Mixing ‘pure’ electronic sounds with ‘concrete’ sounds

 - Stochastic processes to efficiently produce sonorities with ‘numerous and

complicated’ transients

 - An approach in which sound synthesis is performed only in the time domain

These descriptions are each important in relation to the aesthetics of microsound

composition. Microsound composition is the use of grains or ‘sound quanta’49

comprising of very short sound events (under 50ms) from either synthetic or digital

waveforms. The relationship between the ‘sound quanta’ and the control of them are

the focus of this compositional technique.

Iannis Xenakis’ computer program GENDYN (1992) reflects the aesthetics he defined

for microsound composition. GENDYN (1992) is a stochastic algorithm that uses the

‘mathematical concept of random walks to produce both duration structure and

timbral fluctuations in computer-generated sound. This means that the probabilistic

movement of random walks is used for wave-shaping sound synthesis as well as for

controlling aspect of musical form (i.e. composing a ‘score’)’50, therefore applying a

stochastic model for the description of wave shapes and their durations (Random

walks are most commonly applied through the use of Markov chains, which are

‘discrete systems, in which the present outcome depends on a number of previous

outcomes. In other words, the present outcome is not independent, but the process has

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

47	
 Luque,	
 S.	
 2011.	
 Stochastic	
 Synthesis:	
 An	
 Overview.	
 proceedings	
 of	
 the	
 Xenakis	
 International	
 Symposium:	
 1	

48	
 Ibid	

49	
 Xenakis,	
 I.	
 1960.	
 Grundlagen	
 einer	
 stochastischen	
 Musik.	
 Berlin:	
 Ars-­‐Viva-­‐Verlag	

50	
 Hoffmann,	
 P.	
 2000.	
 The	
 New	
 GENDYN	
 Program.	
 Computer	
 Music	
 Journal	
 24(2):	
 31	

	
 57	

‘memory’ of the past events that affect the future’51 allowing a user to weight a

probability distribution for particular events to occur).

In terms of the compositional results produced by Xenakis’ GENDYN (1992), it is

proposed by Ikeshiro (2011) that its outputs are considered noise music, a genre

which itself is not immediately quantifiable; it ‘appears to be contradictory by

satisfying the conditions of both noise and music’52. Such a notion raises many

aesthetic questions surrounding the issues of ‘what is noise?’ and ‘what is music?’(see

Cascone, 2000; Hegarty, 2007; Kelly, 2009). However, for the purposes of this thesis,

it is proposed that noise, that is sound which features no fixed periodicity such as

those created by GENDYN (1992), can constitute valid sound-objects for use in

musical composition.

It is key to point out that the resulting noise music generated by GENDYN (1992) is

not a circumstance of using stochastic models, rather that it is due to the dynamic

stochastic synthesis method. Therefore, it is the realisation approach that results in the

proposed noise music that is formed as opposed to the application of probability

distributions to dictate the unfolding dialog of the composition’s structures; as stated,

microsound techniques are inherent to the formation of sound-objects in GENDYN

(1992) and the assimilation with stochastic models is the causal factor in generating

such noise music.

With regards to the method of controlling the random walks in the synthesis method

in GENDYN (1992), once the system is executed, the values of the probability

distributions cannot be changed, resulting in no real-time interactivity between the

composer and the system. The consequence is that that ‘the spectrum of probabilistic

functions allows for one only global property to emerge, an ineluctable rush toward

the average, final point or ‘mean state value’ (i.e., stochos, destination, destiny)’53. So,

the compositional outputs of GENDYN (1992), although unpredictable in terms of

their microstructures, are entirely predictable in their macrostructures, always

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

51	
 Järveläinen,	
 H.	
 2000.	
 Algorithmic	
 Musical	
 Composition.	
 University	
 of	
 Technology,	
 Helsinki:	
 3	

52	
 Ikeshiro,	
 R.	
 2011.	
 GENDYN	
 and	
 Merzbow:	
 A	
 Noise	
 Theory	
 Critique	
 of	
 Xenakis’	
 Dynamic	
 Stochastic	
 Synthesis	
 and	
 its	

Relevance	
 Today.	
 Goldsmiths	
 College,	
 University	
 of	
 London	

53	
 Di	
 Scipio,	
 A.	
 Systems	
 of	
 Embers,	
 Dust,	
 and	
 Clouds:	
 Observations	
 after	
 Xenakis	
 and	
 Brün.	
 Computer	
 Music	
 Journal	
 26(1):	

25	

	
 58	

concluding to a relative knowable outcome.

Composers of stochastic methods in musical composition have gone on to adapt

Xenakis’ GENDYN (1992) algorithm, adding their own techniques and influences in

stochastic process. Stochos54 and the ‘new GENDYN program’55 are two examples,

which build upon the original GENDYN (Xenakis, 1992) algorithm. Stochos provides

‘multiple control sources working in parallel to manipulate the sonic parameters on

any event time level…’56, a ‘flexible algorithm, which distributes the events by

assigning probability distributions for onset and time event duration…’57 and a

density parameter which is controlled by the probability distributions found in

Xenakis’ Achorripsis (1957).

The ‘new GENDYN program’ is a ‘reimplementation of dynamic stochastic synthesis

in a graphical, interactive, real-time environment’ 58 . Both systems introduce

interactivity between the user and the ongoing stochastic processes, thereby

presenting an increased variety of unpredictability in terms of the resulting

macrostructures of each system’s outputs relative to modifications of the probability

distributions made by the user. Furthermore, emulations of GENDYN (1992)

algorithm have been written, such as the SuperCollider class GENDY159 which

manipulates a grain’s amplitude and duration based on the processes within GENDYN

(1992), reflecting the impact and importance of Xenakis’ compositional work.

In contrast to the application of stochastic models to algorithmically generate creative

processes that feature extensive unpredictability, self-organising systems offer

composers the ability to obtain both determinate and indeterminate outcomes of a

desired creative process. A self-organising system is a mathematical model that uses a

rule base to define local interactions between its values, with the culmination of these

values resulting in global structures. Therefore, the development of the interactions at

the local level influences the outcome on a global level. Considering such a system’s

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

54	
 Bokesoy,	
 S	
 and	
 Pape,	
 G.	
 2003.	
 Stochos:	
 Software	
 for	
 Real-­‐Time	
 Synthesis	
 of	
 Stochastic	
 Music.	
 Computer	
 Music	
 Journal	

27(3):	
 33-­‐43	

55	
 Hoffman,	
 P.	
 2000.	
 The	
 New	
 GENDYN	
 Program.	
 Computer	
 Music	
 Journal	
 24(2):	
 31-­‐38	

56	
 Bokesoy,	
 S	
 and	
 Pape,	
 G.	
 2003.	
 Stochos:	
 Software	
 for	
 Real-­‐Time	
 Synthesis	
 of	
 Stochastic	
 Music.	
 Computer	
 Music	
 Journal	

27(3):	
 34	

57	
 Ibid:	
 36	

58	
 Hoffmann,	
 P.	
 2000.	
 The	
 New	
 GENDYN	
 Program.	
 Computer	
 Music	
 Journal	
 24(2):	
 31	

59	
 Collins,	
 N.	
 2012.	
 Gendy3	
 Class	
 Help	
 File.	
 SuperCollider	
 3.5.3	

	
 59	

use for musical composition ‘the development of higher-level musical structure arises

from interactions at lower levels’60 and as a result, self-organising systems are suitable

candidates for the development of compositional structures and ideas.

Swarm Music (Blackwell and Young, 2004) is a self-organising system intended to

mimic the local behaviours of insect swarms to develop an unfolding global musical

structure over time, thereby creating artificial improvisations in real-time. In Swarm

Music, through using real-time MIDI data input by external performers, the MIDI

event data defines attractors, which draw in particles from an autonomously generated

swarm, with the resulting local organisations of the particles around the attractors

creating the global structures in the form of improvised melody streams. So, the

values of the MIDI input influence the swarm on a local-level causing the system’s

global output to be relative to the swarm’s particles’ individual local interactions. As

a result, the attractors determine the points to which the particles are more likely to

travel towards with the consequent outcomes generated by their local interactions,

thereby introducing a relative unpredictability within the artificial improvisation.

With regard to the compositional outputs of Swarm Music (Blackwell and Young,

2004), Young noted ‘you were definitely aware of a response, and a performance loop

emerging. Extremes of material seemed to work best – soft chords played slowly

would soon change the kind of material coming from the swarm, after fast loud single

lines for instance’61. Therefore, the system convincingly reacted, and subsequently

improvised, relative to the real-time inputs of a human performer. Furthermore,

although the system’s generated swarms and consequent improvisations are

autonomous, an operator also has the ability to modify the current state of the

attractors through its user interface, thereby manipulating the local structures to

increase the influence of the performer at the global level and the system’s resulting

improvisation.

Considering the structural level at which Swarm Music (Blackwell and Young, 2004)

dictates, ‘parameters are extracted at the mini- and meso-levels. There is a tantalizing

possibility that interpretation could take place at the smallest perceivable level, the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

60	
 Blackwell,	
 T	
 and	
 Young,	
 M.	
 2004.	
 Self-­‐Organised	
 Music.	
 Organised	
 Sound.	
 9(2):	
 123	

61	
 Ibid:	
 133	

	
 60	

micro-level, and the musical structure at every level upwards could arise through self-

organisation’62. This limitation is fundamentally due to the MIDI implementation of

Swarm Music (Blackwell and Young, 2004), which does not offer parameterization of

micro-level structures such as wave shape.

A granular synthesis version of Swarm Music (Blackwell and Young, 2004) was

developed titled Swarm Granulator (Blackwell and Young, 2004), which enabled

micro-level manipulation of the granular synthesiser’s pitch, amplitude, duration and

duration between events. The Swarm Granulator (Blackwell and Young, 2004),

therefore enabled the artificial improvisations to produce extensive timbral

modifications over time, much in the same vein as the microsound approach to

composition implemented by Xenakis in GENDYN (1992).

Both Swarm Music (Blackwell and Young, 2004) and Swarm Granulator (Blackwell

and Young, 2004) are unified in the treatment of each structural level of the musical

hierarchy, resulting in changes at a constant frequency throughout an improvisation.

Considering that ‘since organisation at higher and higher levels would be expected to

take place with diminishing frequency, it could be that a hybrid multi-level approach

is preferable’63. Such an implementation would result in different rates of change

between each structural level of the self-organising system, causing its artificial

improvisations to better reflect the musical hierarchy of micro-, mini- and meso-

levels.

So, despite the capability of self-organising systems to generate global musical

structures based upon the lower-level interactions, the hierarchy through which these

lower-level interactions form the global structure is currently inconclusive. However,

this is not to denigrate the authenticity of the outputs of such systems, and perhaps

such developments may indeed degrade the quality of the results through convolution

of the desired creative process.

Cellular automata implement self-organisation methods to dictate their resulting

global structures. As previously described in Chapter 2.5 Further Considerations of

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

62	
 Blackwell,	
 T	
 and	
 Young,	
 M.	
 2004.	
 Self-­‐Organised	
 Music.	
 Organised	
 Sound.	
 9(2):	
 136	

63	
 Ibid	

	
 61	

Applying Computational Algorithms within a Compositional Process, cellular

automata are ‘dynamic systems in which space and time are discrete and they may

have a number of dimensions, single linear arrays or two-dimensional arrays of cells

being the most common forms. The cellular automata algorithm is a parallel process

operating on this array of cells. Each cell can have one of a number of possible states.

The simultaneous change of state of each cell is specified by a local transition rule.

The local transition rule is applied to a specified neighbourhood around each cell’64.

Their self-organization methods may then be qualitatively divided in to four different

classes65:

1. Evolution leads to a homogeneous state

2. Evolution leads to a set of separated simple stable or periodic structures

3. Evolution leads to a chaotic pattern

4. Evolution leads to complex localized structures, sometimes long lived

These classes act to define the extent of change from one state to the next, and

therefore the relative unpredictability and randomness present at local level and

consequently at the global level. The amount of change between each state of cellular

automata is dependent on a cell’s current state, the size of the array and the algorithm

that is processing the cells. The classes described above are not conclusive however,

as other methods of defining the behaviours of cellular automata also attempt to

explain the level of difference between states such as those proposed in the following

six categories66:

1. Spatially homogenous fixed points

2. Spatially inhomogenous fixed points

3. Periodic behaviour

4. Locally chaotic behaviour

5. Chaotic behaviour

6. Complex behaviour

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

64	
 Burraston, D and Edmonds, E. 2005. Cellular Automata in Generative Electronic Music and Art: Historical and Technical
Review. University of Technology. Sydney: 5	

65	
 Wolfram, S. 1984. Universality and Complexity in Cellular Automata. Physica 10D: 1-35
66	
 Li, W, Packard, N, and Langton, C. 1990. Transition Phenomena in Cellular Automata Rule Space. Physica 45D: 77-94
	

	
 62	

Despite these and many other differing explanations of the behaviour of cellular

automata, they all represent the ability of cellular automata to offer a variety of

behaviours that give a user a wide range of possible applications such as the modeling

of natural phenomena and creation of artificial life.

One of the main attractions of cellular automata for generative tasks is that ‘Cellular

automata are sufficiently simple to allow detailed mathematical analysis, yet

sufficiently complex to exhibit a wide variety of complicated phenomena’67. Their

ability to ‘exhibit a wide variety of complicated phenomena’68 can clearly be seen in

the classes that their behaviour can be defined as, as described previously. So, it is

therefore possible to generate an extensive and varied set of results from a relatively

efficient process, making them a strong candidate for use in real-time generative

techniques.

There are many examples of compositions using cellular automata such as work of

Beyls (1980, 1989, 1990), Millen (1990), Miranda (1993, 2001) and Kirk and Orton

(1991) who applied real-time applications of cellular automata with MIDI using a

variety of self-organising models. Furthermore, and in relation to the use of granular

synthesis within Genesis, Miranda demonstrated extensively the use of cellular

automata with granular synthesis and microsound composition methods with

Chaosynth (Miranda, 1993). The self-organising model applied in Chaosynth

(Miranda, 1993) is based on ‘the behaviour of a type of catalytic chemical reaction

know as Belousov-Zhabotinskii reactions… the cellular automaton models the way in

which most natural sounds produced by an acoustic instrument evolve: they tend to

converge from a wide distribution of their partials to form oscillatory patterns’69.

So, in terms of Wolfram’s (1984) classes, perhaps the outputs of Chaosynth (Miranda,

1993) could be proposed to reflect ‘complex localized structures, sometimes long

lived’70 if we are to consider the complexities of sound-object formation outside of the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

67	
 Wolfram, S. 1983. Statistical Mechanics of Cellular Automata. Review of Modern Physics 55(3): 601
68	
 Ibid	

69	
 Miranda,	
 E.	
 2002.	
 Evolving	
 Cellular	
 Automata	
 Music:	
 From	
 Sound	
 Synthesis	
 to	
 Composition.	
 Sony	
 Computer	
 Science	

Laboratory,	
 Paris:	
 2	

70	
 Wolfram, S. 1984. Universality and Complexity in Cellular Automata. Physica 10D: 1-35	

	
 63	

digital domain. The results of the local interactions in Chaosynth (Miranda, 1993) are

mapped to the frequency, amplitude and duration of each grain with Miranda

commenting that its output ‘resembles the morphological evolution of sounds

produced by most acoustic instruments’71, mirroring the supposition that the applied

model forms ‘complex localized structures, sometimes long lived’72 that are present in

real-world sound-objects.

Another method of applying cellular automata to real-time granular synthesis

techniques is demonstrated in ‘ca’ (Vaidhyanathan, Minai and Helmuth, 1999). The

ca system ‘investigates the effects of change in the timbre of sound using a cellular

automaton in real-time… the cellular automaton generated by the chosen rule controls

parameters of a bank of filters. The system uses standard infinite impulse response

filters and a general model of three neighbourhood cellular automata. The composer

can configure the filter banks by adjusting the bandwidths and center frequencies

though the graphical user interface’73. As a result, the ca system (Vaidhyanathan,

Minai and Helmuth, 1999) allows the user to select a model which can fall into one of

the four defined by Wolfram (1984). Consequently, the composer can generate a

number of harmonic structures through the manipulation of the filter banks relative to

the selected model and therefore transform the timbre, ‘creating a new palette of

sounds’74.

Fractals are also examples of self-organising systems but demonstrate self-similarity;

when considering the approaches to formalising rules for musical composition, Benoit

Mandelbrot (1975), a mathematician who focused his research on fractal geometry,

suggested that self-similarity, the concept that low scale and high scale structures bear

similarities, could be found within music. He asserted that ‘music exhibits fractal

behaviour for the reason that much of it is hierarchic and even self-similar in

structure. Pieces are broken down into movements, sections, phrases and notes’75.

Therefore, in a similar principle to the explicit application of self-organising systems

as seen with Swarm Music (Blackwell and Young, 2004), the correlation between
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

71	
 Miranda,	
 E.	
 2002.	
 Evolving	
 Cellular	
 Automata	
 Music:	
 From	
 Sound	
 Synthesis	
 to	
 Composition.	
 Sony	
 Computer	
 Science	

Laboratory,	
 Paris:	
 3	

72	
 Wolfram, S. 1984. Universality and Complexity in Cellular Automata. Physica 10D: 1-35	

73	
 Vaidhyanathan,	
 S,	
 Minai,	
 A,	
 and	
 Helmuth,	
 M.	
 1999.	
 ca:	
 A	
 System	
 for	
 Granular	
 Processing	
 of	
 sound	
 using	
 Cellular	

Automata.	
 proceedings	
 of	
 the	
 2nd	
 COST	
 g-­‐6	
 Workshop	
 on	
 Digital	
 Audio,	
 Trondheim,	
 1999:	
 1	

74	
 Ibid	

75	
 Järveläinen,	
 H.	
 2000.	
 Algorithmic	
 Musical	
 Composition.	
 University	
 of	
 Technology,	
 Helsinki:	
 8	

	
 64	

interactions at the local level are accountable for those on higher levels,

demonstrating a commonality between the use of fractals and other forms of self-

organising systems.

The correlation between local and global interactions in self-organising systems such

as fractals, and their proposed role in music, has been demonstrated in the work of

Voss and Clark (1975). Their research showed ‘statistically that most widely

acclaimed music has a very similar distribution to fractals that have what is called a

1/f or inverse frequency distribution’76. Their work also applied the 1/f principle to

music composition: ‘they used a 1/f noise generator as a pitch selection unit. The

random numbers from the noise process were rounded and scaled to produce pitch

values in a range of two octaves’77. The use of noise processes such as Brownian,

White and Pink motions serve to affect the type of movement between increments,

and their correlation, giving a definitive characteristic to each method used.

Fractals may also be applied to rhythmic functions as recent research analysing 558

compositions of Western classical music showed that ‘the ubiquity of 1/f rhythm

spectra in compositions spanning nearly four centuries demonstrates that, as with

musical pitch, musical rhythms also exhibit a balance of predictability and surprise’78.

It must be noted however, that the function of fractals does not have be limited to

pitch and rhythm; their outputs may be attributed to any mapping a composer desires,

making them an exciting tool for the algorithmic control of many discrete parameters.

There have been many implementations of fractals through the use of MIDI that are

founded on mapping between the results of the fractal processes to pitch and duration

(Diaz-Jerez, 2000. Dunn, 2003. McDowell, 1994. Greenhouse, 1995), thereby each

offering similar musical outputs relative to the applied fractal. In addition, attempts

have been made to introduce fractals for the manipulation of a granular synthesiser’s

parameter settings such as the self-similar grain distribution granular synthesiser

proposed by Chapman et al (1996). The system attempted to map the values of local

interactions of fractals to individual grains, applying the ‘audification’ methods

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

76	
 Leach,	
 J	
 and	
 Fitch,	
 J.	
 1995.	
 Nature,	
 Music	
 and	
 Algorithmic	
 Composition.	
 Computer	
 Music	
 Journal	
 19(2):	
 24	

77	
 Järveläinen,	
 H.	
 2000.	
 Algorithmic	
 Musical	
 Composition.	
 University	
 of	
 Technology,	
 Helsinki:	
 8	

78	
 Levitin,	
 D.	
 2012.	
 Musical	
 rhythm	
 spectra	
 from	
 Bach	
 to	
 Joplin	
 obey	
 a	
 1/f	
 power	
 law.	
 proceedings	
 of	
 the	
 National	
 Academy	

of	
 Sciences	
 109(10):	
 3716	

	
 65	

suggested by Kramer (1996), which advise on audio parameter mappings relative to

musical perception. Despite this, Chapman et al’s (1996) system ‘is restricted in terms

of the amount of data described by a single point, making mapping to complex grains

overly trivial’79. As a result, it would appear that fractal processes applied to extensive

microsound control are limited by the level of data in the output, whereas in contrast,

for higher-level macro structures such as pitch and duration which require

considerably less data over time, their suitability is established.

Considering the role of self-organising systems in the compositional process and the

resulting compositions they generate, Supper (2001) remarks that ‘simulating natural

phenomena raises the question whether composers secretly see algorithmic

composition as a way of generating natural forms naturally – forms which are taken to

justify themselves by their naturalness alone’80. However, such a notion directly

implies that composers applying self-organising systems are intentionally exploring

the use of natural phenomena within their creative process. In certain

implementations, this is certainly true, such as in the applied chemical reaction model

for acoustic modelling found within Chaosynth (Miranda, 1993) and the insect swarm

mimicry of Swarm Music (Blackwell and Young, 2004).

In contrast, in a system such as ca (Vaidhyanathan, Minai and Helmuth, 1999), the

user is given the option to apply a model of their choosing, which therefore suggests

that an understanding of the selected model is required. However, what if the

composer were to choose a model that they felt sounded ‘good’, thereby achieving

their desired outcome without specific knowledge of the process behind the result?

Should this render such a product of a self-organising system inferior?

Burraston (2005) states ‘the sonic artist and musician must be prepared to investigate

the theoretical background in order to successfully employ this vast behaviour space

within their compositional strategy’81. Such a proposition would certainly conclude

that any implementation of self-organising systems in which the composer does not

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

79	
 Chapman	
 et	
 al.	
 1996.	
 Self-­‐Similar	
 Grain	
 Distribution:	
 A	
 Fractal	
 Approach	
 to	
 Granular	
 Synthesis.	
 Proceedings	
 of	
 the	

ICMC'96:	
 213	

80	
 Supper,	
 M.	
 2001.	
 A	
 Few	
 Remarks	
 on	
 Algorithmic	
 Composition.	
 Computer	
 Music	
 Journal	
 25(1):	
 53	

81	
 Burraston, D and Edmonds, E. 2005. Cellular Automata in Generative Electronic Music and Art: Historical and Technical
Review. University of Technology. Sydney: 24	

	
 66	

understand the underlying local interactions and their consequences to the global

output is not valid, thus judging the product of a self-organising system by the

composer’s awareness of the process that generated its outcome.

So, perhaps it is therefore reasonable to apply both Supper’s (2001) and Burraston’s

(2005) proposals in circumstances where the explicit execution of models are used.

However, in circumstances where the composer has chosen to implement a model

without expressed knowledge of the applied model whilst still achieving the required

compositional structure or idea, then surely this must justify such an application. The

above discussion highlights a considerable issue in the evaluation of algorithmic

music that uses complex processes and procedures; a complex process is often used to

validate a product, but to what extent should this validation be recognised? This is

detailed further in chapter 6 Evaluation of the Genesis System in which the role of a

process in the evaluation of a product is deliberated over in the context of real-time

systems such as Genesis.

As well as processes demonstrating self-organising properties, Genesis uses search-

based algorithmic procedures to generate results relative to the outputs of its

implemented machine listening processes and to preset variables. When considering

the application of musical formalisms in algorithmic processes (either conventional or

novel), it is possible to find and search for solutions from chosen variables using

conditional statements made up of rules and structures defined by a composer.

The use of conditional statements for search functions requires a significantly high

amount of symbolic data; rules must be defined by symbolic values, and therefore, so

must the input. Therefore, low-level structures such as timbre and gesture are not as

suited for use in such a symbolic representation required for conditional statements.

These factors should be considered by a composer in relation to their effect on a

required task; ideally, conditional statements should be used when definitive and

concise rules can be formulated.

Expert systems employ heuristics that allow the algorithm to make approximations

and use those estimates as its output. The use of heuristics creates an optimal system,

which, although may not necessarily find the best result, is notably more efficient than

	
 67	

a complex series of conditional statements that may potentially never find a solution.

Expert systems are ‘most suitable for generating music whose style can be codified by

faces, rules and heuristics, such as the musical style of Bach’s keyboard pieces’82.

Therefore, again, it is important that a composer considers the implicit limitation of

using highly structured rules and their required symbolic representations as it could be

argued the ‘biggest constraint of expert systems is that new musical styles are not that

well-defined or have not developed enough to be codified extensively’83.

In musical practice, search-based systems have demonstrated considerable strength in

musical applications for music formed of well-established rules and structures

(Ebcioglu, 1998. Tsang and Aitken, 1991, Pachet, 1992). Indeed, Hiller’s Illiac Suite

(1957), the very first piece of music written exclusively using computational

algorithms used search-based methods to identify desirable outputs. However, if a

search-space is too large or a rule set too extensive, the intricacies of organising a rule

set hierarchy or obtaining a manageable and applicable output can seriously affect the

relative cost of the outcome; the implementation required to reflect the complexity of

the rule set or dataspace may not equate to the perceived value of the result.

Methods such as genetic algorithms attempt to obtain desired outcomes through

searching a data-space comparative to a fitness function, resulting in potentially

efficient results in terms of the prospective complexity of a fitness function and/or a

search space. Fitness functions can be applied within methods such as the previously

discussed cellular automata, but they are not compulsory, as they only serve to refine

a processes’ outputs towards a set goal; cellular automata can still create complex

structures without the use of fitness functions. Genetic algorithms however, model

natural selection and therefore they must intrinsically apply fitness functions.

Therefore, they implement the principle of search-based methods to identify a result

based on specified criteria, instead described within a fitness function which is a

definition of a preferred result that can have a threshold dictating the relatedness of

data found within a search-space to an ideal outcome.

There are two main methods for measuring fitness in a genetic algorithm; a human

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

82	
 Järveläinen,	
 H.	
 2000.	
 Algorithmic	
 Musical	
 Composition.	
 University	
 of	
 Technology,	
 Helsinki:	
 7	

83	
 Ibid	

	
 68	

critic or an automatic fitness assessment84. The use of a human critic requires an

interactive system in which the user assesses each generation’s population, with the

user then measuring each member’s fitness. In contrast, an automatic fitness

assessment uses prior knowledge defined by the user for the genetic algorithm to

assess a candidate’s fitness. Both approaches have advantages and disadvantages but

the key issue dividing the methods is the relationship between the efficiency and the

quality of the results. To demonstrate, a human critic can lead to higher quality results

in relation to the fitness they have determined, but it requires time to measure a

candidate’s fitness, making the process inefficient. On the other hand, automatic

fitness assessment can be executed almost instantaneously, but the quality of the

results is limited to the criteria applied within the fitness function. With these factors

in mind, a composer must consider carefully the context and the requirements of the

process they wish the genetic algorithm to complete.

In relation to the creative process, introduced in Chapter 2 An Introduction to

Algorithmic Composition, there are four stages; stage one - preparation, stage two -

incubation, stage three - illumination and stage four – verification. It is possible to use

a series of genetic algorithms to model different parts of the creative process. For

example, David E. Goldberg, a leading researcher in the application of genetic

algorithms has stated that the use of such algorithms could be used to model ‘different

facets of human innovation’85. He proposed that the ability of genetic algorithms to

use selection, crossover and mutation processes allow for the possibility of

‘improvement and crossfertilizing types of innovation’86, defined more precisely as:

 ‘Selection + Mutation = Continual Improvement

 Selection + Recombination (crossover) = Innovation’87

The concept of ‘continual improvement’ can be represented as a ‘hillclimbing

mechanism, where mutation creates variants in the neighbourhood or the current

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

84	
 Gartland-­‐Jones,	
 A	
 and	
 Copley	
 P.	
 2003.	
 The	
 Suitability	
 of	
 Genetic	
 Algorithms	
 for	
 Musical	
 Composition.	
 Contemporary	

Music	
 Review	
 22(3):	
 43-­‐56	

85	
 Goldberg,	
 D	
 E.	
 1998.	
 The	
 Design	
 of	
 Innovation:	
 Lessons	
 from	
 Genetic	
 Algorithms,	
 Lessons	
 for	
 the	
 Real	
 World.	
 University	
 of	

Illinois:	
 3	

86	
 Ibid:	
 4	

87	
 Ibid:	
 3	

	
 69	

solution and selection accepts those changes with high probability, thus climbing

toward better and better solutions’88. The idea of ‘innovation’ in the context of using

selection and crossovers can be explained as ‘grasping at a notion of a set of good

solution features in one context, and notion in another context and juxtaposing them,

thereby speculating that the combination will be better than either notion taken

individually’89. It is certainly clear that genetic algorithms offer the possibility of

creating better solutions to an initial problem; however, this is highly reliant on the

fitness function and its method of implementation be it a human critic or an

automated fitness assessment. So, despite their apparent capability of modelling

creative processes, it must not be assumed that genetic algorithms can as a matter of

course completely replace the need for human input.

There are many examples of computational algorithmic methods that make extensive

use of genetic algorithms for real-time interaction between users and an ongoing

search process. GenJam (Biles, 1994) applies a genetic algorithm to model a novice

jazz musician learning to improvise. As the system ‘plays its solos over the

accompaniment of a standard rhythm section, a human mentor gives real-time

feedback, which is used to derive fitness values for the individual measures and

phrases. GenJam (Biles, 1994) then applies various genetic operators to the

populations to breed improved generations of ideas’90. GenJam (Biles, 1994) therefore

uses a human critic to evaluate the fitness of its outputs and bases its future

generations on those selected to satisfy the composer’s requirements.

The GenJam system was then adapted further and was developed into AutoGenJam

(Biles, 2001) removing the necessity for a human critic, being replaced by a

predefined population of ‘licks’, in addition to applying an intelligent crossover

operator and mutating repeated events. Furthermore, the system has the option to

‘trade fours’ with a live instrumentalist via MIDI, allowing for the program to provide

responses based upon a performer’s most recent phrases.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

88	
 Goldberg,	
 D	
 E.	
 1998.	
 The	
 Design	
 of	
 Innovation:	
 Lessons	
 from	
 Genetic	
 Algorithms,	
 Lessons	
 for	
 the	
 Real	
 World.	
 University	
 of	

Illinois:	
 4	

89	
 Ibid:	
 3	

90	
 Biles,	
 J.	
 (1994).	
 GenJam	
 -­‐	
 Original	
 Paper.	
 [online]	
 Igm.rit.edu.	
 Available	
 at:	

http://igm.rit.edu/~jabics/GenJam94/Paper.html	
 [Accessed	
 Mar.	
 2013]	

	
 70	

The intelligent crossover produces crossover points that will produce children most

like their parents, thereby increasing the likelihood of desirable results by retaining

similarity between evolution points. So, if a parent, founded on the predefined ‘licks’

database is deemed fit, then so will its children, allowing the removal of a standard

fitness function, to be replaced by the intelligent crossover.

The outputs of the two systems GenJam (Biles, 1994) and AutoGenJam (Biles, 2001)

have been considered by listeners to be superior in the case of AutoGenJam (Biles,

2001). Despite this, the limited database used for AutoGenJam (Biles, 2001) restricts

the creative space in comparison to the random populations created at the start an

improvisation by GenJam (Biles, 1994). Therefore, if AutoGenJam (Biles, 2001) is

repeatedly used in performance, repetition and familiarity will become apparent in its

responses to the user. Indeed, this may be highly desirable, as it will demonstrate the

characteristics of its predefined ‘licks’ and thus the resulting characteristics of the

system when used with such data. Nevertheless, if an extensive search space is

required to explore many different possibilities, then this will be a significant

limitation.

Another aspect to consider is the assessment of the human performer by AutoGenJam

(Biles, 2001). As the system currently stands, the system always responds to the

phrases provided by the performer, regardless of the quality of the input. In contrast,

with GenJam (Biles, 1994), due to the use of a human critic, a ‘bad’ performance can

be erased from the search space, essentially forcing the system to respond only to

desirable inputs.

Biles (2001) concluded when discussing AutoGenJam (Biles, 2001) that a fitness

function may be required ‘to determine if a human’s four in a solo is worth keeping

and breeding. This is not an issue when trading fours because the occasional bad four

is gone as soon as it is played, but a bad lick breeding in a fitness-free environment

could ruin a soloist’91. Such a proposition highlights the possible consequences in an

automated fitness environment, yet AutoGenJam (Biles, 2001) was considered a

‘better’ system in terms of its product.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

91	
 Biles,	
 J.	
 2001.	
 Autonomous	
 GenJam:	
 Eliminating	
 the	
 Fitness	
 Bottleneck	
 by	
 Eliminating	
 Fitness.	
 Rochester	
 Institute	
 of	

Technology.	
 New	
 York:	
 6	

	
 71	

When considering the real-time functionality of the systems, and the ability to provide

AutoGenJam (Biles, 2001) with real-time inputs via MIDI, the use of an automated

fitness function is perhaps the most efficient and effective method of breeding the

input data; with a human critic fitness function, a musician is required to break away

from performance to assess possible future outputs, the ongoing dialog between the

performer and the system may be interrupted, disrupting the performance. Therefore,

perhaps a combination of both an automated fitness function and a human critic may

resolve such an issue; the use of a ‘remove’ button, which allows previously input

data to be removed by the user while continued use of the current automated fitness

function could offer a suitable solution.

The AudioServe (Yee-King, 2003) system is an ‘implementation of a collaborative,

interactive genetic algorithm that allows multiple users to evolve and share audio

synthesis circuits using a web-based java interface’92. The program allows local

exploration of synthesis parameters that can be sent via network to a central system

that holds a global population. As a result, the users on local machines may evolve

their populations, with data sent from the central population consequently bred into

the local population. Therefore, the preferences in synthesis parameter settings of

those around the user directly influence their outputs forming the proposed

collaborative functionality.

Approaches to applying genetic algorithms are not in anyway restricted to

‘conventional’ methods of interfacing such as user interfaces displaying numerical

parameters and wave shapes; Feeping Creatures (Berry, 1999) and Gakki-mon Planet

(Berry et al, 2003) attempt to free a composer from the constraints of search spaces

bound to numerical display by creating a ‘worlds’ in which the user is able to roam

freely creating music from the environment that surrounds them. For example, ‘the

world of Feeping Creatures is a flat green grid across which the inhabitants – “feeps”

– and the observer move… Each feep has a sequence of musical pitches that form its

chromosome. When two feeps mate, portions of each parent’s note list are passed on

to their offspring to form a new chromosome or pitch series. Some will seek out

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

92	
 Woolf,	
 S	
 and	
 Yee-­‐King,	
 M.	
 2003.	
 Virtual	
 and	
 Physical	
 Interfaces	
 for	
 Collaborative	
 Evolution	
 of	
 Sound.	
 Contemporary	

Music	
 Review.	
 22(3):	
 37	

	
 72	

partners that are, on average, musically constant to themselves, while others prefer

dissonance’ 93 . The aim of such programs is to not restrict the search space

whatsoever, potentially allowing complete freedom within a hypothetically infinite

exploratory search space.

Other examples of systems using genetic algorithms for musical composition include

MutaSynth (Dahlstedt, 2000) and IndagoSonus (Gartland-Jones, 2003) each with their

own adaption of the process of natural selection and mappings to musical values.

However, from a preliminary investigation of their characteristics using examples

such as those described above, the effect a fitness function can have on the process

and the consequent success of the results of a genetic algorithm can be readily

confirmed. It is also soon becomes clear from more detailed investigations the extent

researchers have gone to in order to improve a fitness function or remove the

requirement for a fitness function altogether. The capability of genetic algorithms to

perform different tasks at different structural levels in real-time is evident as well as

their application to innovative forms of user interfacing. Their proficiency to explore

predefined musical phrases, for example in AutoGenJam (Biles, 2001), and with

collaborative functionality as seen in AudioServe (Yee-King, 2003), is certainly

impressive and reflects well on their suitability for real-time musical composition.

On the basis of the evidence presented above it is reasonable to assert that genetic

algorithms are an exceedingly powerful tool for algorithmic composition. As

demonstrated, they can be used for a variety of problem-solving applications as well

as for exploratory tasks. Also, the possibility that they can model creative processes

rather than simply be used to execute specified tasks make them a highly attractive

algorithmic method for composers. The capability of the evolutionary process itself to

form a musical structure, from one stage of evolution to the next, and possibly a

composition as a result is an exciting prospect. In contrast, a genetic algorithm’s

ability to instantaneously ‘evolve’ a specified starting point containing a musical

phrase or structure many times over, offers a composer a unique method of generating

material by an algorithmically-based means.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

93	
 Berry,	
 R	
 and	
 Dahlstedt,	
 P.	
 2003	
 Artificial	
 Life:	
 Why	
 should	
 Musicians	
 Bother?.	
 Contemporary	
 Music	
 Review	
 22(3):	
 59	

	
 73	

The reliance of genetic algorithms on concise fitness functions and the effect this can

have on the quality and efficiency of results has implications that must be considered

further; the choice between a human critic or an automated fitness assessment and the

consequent type of methods that may be used are difficult decisions, with major

implications in creative terms, and without full knowledge of the context it is

impossible to provide clear guidance. In addition, the effect that the initial

population’s representation and values can have on the result must be considered very

carefully by the composer, as it is the starting point from which an evolution begins;

poor quality starting data is more than likely to lead to a poor quality result. Despite

these issues, genetic algorithms are a highly useful algorithmic method for

composition if applied and constructed in a suitable manner.

As demonstrated, the generative methodologies used in Genesis are founded upon a

great deal of research into the application of their respective approaches. In addition

to the generative methods applied in Genesis, implementations of other generative

techniques have been applied to musical composition such as artificial neural

networks, through which a learning agent adapts to its environment with little or no

prior knowledge (Correra et al, 2007. Mozer, 1994. Fiebrink, 2009. Le Groux, 2002.

Lee and Wessel, 1991. Todd, 1989), and grammars, which create musical structures

that fit within a set of imposed rules (Roads, 1979. Ruwet, 1972. Nattiez, 1975.

Winograd, 1968. Lerdahl and Jackendoff (1977). Cope, 1992. Rohrmeier, 2007.

Johnson-Laird, 2002).

Considering a fundamental purpose of Genesis was to offer real-time interaction

between the user and the system consequently generating compositions in real-time,

offering instantaneous results to the ongoing dialog between user and computer, the

generative processes selected form the desired result. In chapter 6 Evaluation of the

Genesis System, possible modifications of the current generative methodologies are

discussed, alongside the prospect of introducing other methodologies such as artificial

neural networks for the construction of reasoned responses to the user’s inputs.

	
 74	

3.2 A Brief Summary of Machine Listening

Machine listening, the process of using computers to identify and analyse sonic

features from audio sources, is used in Genesis to obtain data from which to modify

and adapt the outputs of its selected generative processes; data extracted from audio

signal inputs provided by the user is mapped to fixed and relatable parameters of the

generative algorithms such as pitch, onset and timbre. Therefore, machine listening

must apply a variety of disciplines such as digital signal processing, psychoacoustics

and musical analysis to extract, identify and represent a desired sonic feature.

Psychoacoustics is the study of sound perception, often including psychological and

physiological responses to sound events, both musical (such as the identification of a

musical instrument or a sound’s pitch) and non-musical (such as the awareness of

loud ‘bang’ being a potential danger or classification of a sound’s source). However,

musical analysis is founded on discussion into the identification of exclusively

musical features such as key, genre, tonality, rhythm, mood and metre.

The human ear performs a physiological process that can be quantified, and to a large

extent, qualified. However, an individual’s perception and arrangement of a sound-

object’s components is believed to include psychological processes and, as a result,

can neither be conclusively quantified or qualified, leading to extensive discussion

over the methods with which humans perceive sound and consequently reason it as

music (or not), which in itself drives fierce aesthetic and philosophical debate. It is

not within the remit of this thesis to definitively state what is music, however, it is

responsible for highlighting the methods of how the perception of music and its

qualities may be defined through proposed models of music perception, and

consequently placed in computational analytical algorithms; as stated, models of

sound perception can not be decisively quantified or qualified, and therefore must not

be accepted as definitive explanations of musical perception, but rather as suggestions

of how to form a musical analysis from the information provided, be it as symbolic or

subsymbolic data.

	
 75	

The theoretical nature of sound perception models is reflected in the difficulties in

choosing suitable perception models and applying them to analytical processes; there

are many methods to approach the perception of each musical quality, with the

consequent hierarchical arrangement of these perceptions for the purpose of

performing a chosen analytical task complicating the selection process further. One

major consideration in selecting a model’s fitness and suitability for a task is the

method with which a sound perception model applies the information it is provided

with. This can be divided into two distinct categories: predictive and reactive.

Predictive models use a variety of different techniques such as neural networks and

search to forecast possible events and their components thereby aiming to achieve an

increase in analytical quality and, in some cases, efficiency. In contrast, reactive

models respond to data at the relative time, without using external data from that time

with which to assess events and as a result provide analysis of the ‘here and now’.

To improve further the accuracy of waveform data and its components, auditory scene

analysis (Bregman, 1990) is proposed to take place, which is ‘the perceptual

organization of sounds according to the sound sources that are producing them’94. So,

the use of auditory scene analysis allows for the deconstruction of waveforms into

their individual sources, which potentially offers the opportunity for increased

accuracy in the analysis of each source.

Through the principles of the organization of sensory stimuli proposed by Koffka

(1935), it is possible to offer a guideline of the minimum from which users can

identify the individual sources of an auditory scene, and thereby form a basis to create

an optimal method of obtaining data. The principles of the organization for sound are

as follows95:

Similarity – Sound components that come from the same source are likely to

be similar

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

94	
 Plack,	
 C.	
 2005.	
 The	
 Sense	
 of	
 Hearing.	
 New	
 Jersey:	
 LEA:	
 193	

95	
 Ibid:	
 195-­‐196	

	
 76	

Good Continuation – Sound components that come from the same source are

likely to flow naturally over time from one to the other (without abrupt

discontinuities)

Common Fate – Sound components that come from the same source are likely

to vary together (for example, will be turned on and off at the same times)

Belongingness – A single sound component is usually associated with a single

source: It is unlikely that a single sound component originates from two (or

more) different sources simultaneously

Closure – A continuous sound obscured briefly by a second sound (e.g.,

speech interrupted by a door slam) is likely to be continuous during the

interruption unless these is evidence to the contrary

From the above example based on Koffka (1935), it is clear that if we are to obtain

accurate data from a source, its features must be clearly distinguishable from other

sources in an auditory scene. That is to say, an individual sound source must feature

similarity, good continuation, common fate, belongingness and closure in order to be

identified as such. With these features in mind, the deconstruction of the sound-

objects within a scene into their individual sources by analytical algorithms is

possible, and consequently, the resulting analysis of each source significantly

increases its chance of a successful outcome. However, if the above list of features is

not available from a scenario, the resulting analysis will be limited from the outset in

its capability to isolate individual sources, regardless of the complexity of the

analytical process itself; a substantial amount of data will contain information from

extraneous sources relative to the analytical process, negatively influencing the result.

It is certainly not possible to definitively divide complex waveforms in to their

individual sources; considering the mathematical complexities of such waveforms,

even with high performance computers, it is still not achievable to deconstruct

waveforms into their individual sources. However, it is possible, through pragmatic

approaches of obtaining data, to limit the complexity of a waveform to the sources the

	
 77	

user requires. For example, a contact microphone can be placed on a source, which

will minimize any masking by other sources.

In terms of Genesis, the isolation of sonic events can greatly impact on the

predictability of the response provided by the system; the more the system is able to

deconstruct the auditory scene, the more predictable results. The ability to identify

effectively the sonic features of the sound source increases the congruency between

the nature of the sound source and the consequent mapping of the relatable parameters

heard in the resulting product, and therefore also increases the expectedness of the

outcome. As a result, the user must ensure that the selected sound sources that control

and modify the outputs of the generative algorithms in Genesis are suitably obtained

causing the feature extraction process to represent better the auditory scene, thereby

improving its consequent analysis and resultant outcome relative to the ongoing

dialog of the composition.

In relation to the consequent definition of sound-objects and their musical qualities

once its source has been successfully identified, no definitive description of their

properties can be given. For example, consider a performer in a concert hall with a

woodblock. The woodblock is hit once with a beater; how do we describe this event

in terms of pitch, loudness, spatialisation and timbre? This raises many subsequent

questions such as: What is the primary feature of the sound-object? Do we define it

primarily by its pitch? Its timbre? Its loudness? If we are to define it by its timbre,

how do we specify the timbre? Do we state its timbre by the material of the source

i.e., wooden? Or by the envelope of the sound e.g., fast? How important is this sound-

object in relation to other sound-objects generated by this source or other sources?

Essentially, how can we conclusively define a sound-object in relation to its musical

qualities and value?

The phenomenology of sound-objects (the study of the subjective features of a sound-

object) has been researched extensively by Pierre Schaeffer who proposed a listening

experience referred to as acousmatic or reduced listening which can be defined as ‘a

situation of pure listening, without attention being distracted or supported by visible

	
 78	

or foreseeable instrumental causes’96; acousmatic listening results in a requirement of

the listener to remove extra-musical and historical contexts from sound-objects,

thereby reducing the description of a sound-object to its sonic features only. In

Schaeffer’s text Traité des objets musicaux (1966), a topology of sound-objects was

proposed, in which sound-objects could be categorised by their sonic features. Figure

3 illustrates these groupings, and the relationships between the sonic features that

influence the categorization process97:

Figure 3. Categorization of sound-objects

From the an electroacoustic composer’s viewpoint, Trevor Wishart (1996) states ‘the

idea of acousmatic listening is easily appreciated by anyone who has worked with

sound-materials in the electro-acoustic studio. When working with large numbers of

sounds from different sources and particularly when this material is transformed, if

only slightly, it becomes difficult to remember from where the various sounds

originated and from a compositional point of view such origins need have no special

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

96	
 Bayle,	
 F.	
 1993.	
 Musique	
 acousmatique:	
 propositions	
 –	
 positions.	
 Paris:	
 INA:	
 179	

97	
 Chion,	
 M.	
 1983.	
 Guide	
 Des	
 Objets	
 Sonores.	
 Paris.	
 Translation	
 by	
 John	
 Dack	
 and	
 Christine	
 North,	
 2000	

	
 79	

significance’ 98 . Therefore, representations of sound-objects through acousmatic

descriptions have a strong relationship with techniques used in electroacoustic

composition and subsymbolic representations.

In contrast to the view demonstrated by Wishart (1996), the categorization of sound-

objects with an acousmatic method ‘perpetuates an ahistorical view about the nature

of musical material. Theodor Adorno argued in the late 1920s, ‘the cognitive

character of art is defined through its historical actuality’ (Adorno and Krenek, 1974;

quoted in Paddison, 1993). In other words, it cannot be defined outside of the context

of its own historical becoming; rather, the compositional act is engaged, from the very

beginning, in a dialectic with history, in the form of sonic material’99. Therefore, it is

argued that the description a sound-object cannot be removed from its historical

context, and that it is the attribution of a sound-object to an existing source that

defines its properties as a musical device.

Considering the two opposing opinions presented regarding reduced listening, they

epitomize the difficulties that musical analysis models face in terms of adequate

representation of sound-objects; once a source has been identified, there is no

unequivocal method for representing its sound-objects. This has implications not only

for analytical processes but also for the transcription of sound-objects for musical

performance; a performer requires an accurate description of a sound-object in order

to be able to adequately represent and perform its prescribed sonic features. If we

reflect on the conventional musical score and its transcription technique, the highly

symbolic representation of pre-defined, existing sound sources and their musical

qualities allows for analysis methods such as Schenkerian analysis, which in itself is

not free from criticism of its musical analysis technique (Rosen, 1971; Meyer 1956;

Narmour 1977; Kerman 1980).

The ultimate purpose of Schenkerian analysis is to reduce musical works into Ursatz,

an archetypal progression of a proposed elaboration of a triad. Therefore, implicitly,

Schenkerian analysis is only applicable to the Western Tradition, and further still, is

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

98	
 Wishart,	
 T.	
 1996.	
 On	
 Sonic	
 Art.	
 London:	
 Routledge:	
 67	

99	
 Kane,	
 B,	
 2007.	
 L’Objet	
 Sonore	
 Maintenant:	
 Pierre	
 Schaeffer,	
 sound-­‐objects	
 and	
 the	
 phenomenological	
 reduction.	

Organised	
 Sound	
 12(1):	
 22	

	
 80	

exclusive of works that do not use harmonic rules thus imposed, ruling out an

extensive repertoire of work for both the orchestra and/or electroacoustics. As a result

of such limitations, even if it were possible to describe a sound-object definitively, the

consequent analysis of its relevance and importance in a musical work is still

contentious, which strengthens the resolution that analytical models must only be

used as suggestions of musical perception and not as absolute representations.

So, in relation to the compositional process and the role of computational analytical

algorithms, the application of sound perception models must be carefully considered;

as a primary concern, the sound perception model must be selected in relation to the

chosen problem. That is to say, the sound perception model should offer

representations of sound-objects that correlate to the generative and analytical

techniques required by the composer. For example, juxtaposed to the limitation of

Schenkerian analysis, which requires highly symbolic methods of representation and

tonal Western Music to successfully complete assessments, Schaeffer’s topology of

sound-objects into their sonic features, allows for subsymbolic methods of

representation and composition which do not exclusively feature Western harmony or

orchestration. Therefore, the compositional techniques applied by a composer not

only dictate the success of the analytical technique used, but also the models that

propose the perception of the sound-objects themselves.

3.2.1 Pitch Perception

Within Genesis, extensive electroacoustic compositional techniques are implemented,

alongside a variety of tonal precepts, necessitating that the machine listening

algorithms reflect these compositional methodologies in their approaches to

identifying their respective features and consequently representing them in a relatable

format for the desired parameter mapping. Thus, sonic features such as loudness,

pitch and timbre are identified through psychoacoustic models with representation

methods that provide musical values, thereby assimilating psychoacoustic modelling

into both conventional musical features and electroacoustic principles.

	
 81	

Pitch can be considered to be ‘that attribute of auditory sensation in terms of which

sounds may be ordered on a scale extending from low to high. Pitch depends mainly

on the frequency content of the sound stimulus, but it also depends on the sound

pressure and the waveform of the stimulus’100. Plack (2005) narrows this description

of the pitch of stimuli to those ‘whose variation is associated with musical melodies…

this definition is consistent with what some researchers regard as an empirical test of

the presence of pitch: If you can show that a sound can produce melodies, then you

can be sure it has a pitch (e.g., Burns and Viemeister, 1976) ’101.

So, the presence of pitch allows the consequent creation of melodies, however, the

term melody implies a tonal structure of music; melodies are not always present in

atonal and electroacoustic composition, yet pitch is still perceivable by the listener.

Therefore, for the purposes of this thesis, which addresses compositional techniques

outside of the Western Tradition such as microsound and granulation, the definition

provided by the ANSI is more suitable.

Pitch can be identified through the use of two distinct types of psychoacoustic model:

place coding and temporal coding. Through place coding, pitch is defined ‘in terms of

the place that it is active (for example, on the basilar membrane, or in a neural

array’102 and with temporal coding, pitch is identified ‘in terms of the pattern of

activity over time, in particular, the phase-locked responses of auditory neurons’103.

Therefore, both pitch models attempt to emulate the physical response of the human

ear to sound-objects through their relative representations of the component

frequencies of waveforms.

Both place coding (Licklider, 1958; Moore, Glasberg and Peters, 1985; Dai, 2000;

Goldstein, 1973; Terhardt, 1974) and temporal coding (Schouten, 1940, 1970) have

demonstrated the applicability of both methods to identify the pitch of sound-objects,

with many computational models using the two approaches to successfully detect

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

100	
 American	
 National	
 Standards	
 Institute	
 (ANSI).	
 1994.	
 American	
 national	
 standard	
 acoustical	
 terminology.	
 New	
 York:	

Acoustical	
 Society	
 of	
 America:	
 34	

101	
 Plack,	
 C.	
 2005.	
 The	
 Sense	
 of	
 Hearing.	
 New	
 Jersey:	
 LEA:	
 133	

102	
 Ibid:	
 247	

103	
 Ibid:	
 248	

	
 82	

pitch (Goldstein, 1973; Therrien, 1989; Wightman, 1973; Terhardt, 1974; Hermes,

1988).

Perhaps the most widely applied pitch perception model is through the use

autocorrelation, which is founded in the temporal coding process to pitch

classification; an autocorrelation function is a method of describing periodicity,

‘computed by correlating a signal with a delayed representation of itself. At times

equal to integer multiples of the repetition rate of a waveform, the correlation will be

strong. Similarly, if there are common time intervals between waveform features, then

this delay will show up strongly in the autocorrelation function’104.

Autocorrelation has proven to be an effective and efficient method of pitch

classification, reflected in its widespread use as a pitch classification tool. However,

‘first, autocorrelation models do not provide a satisfactory explanation of why we are

so much better at fundamental frequency discrimination, and why pitch is so much

stronger for resolved harmonic than for unresolved harmonics... Second, recent

experiments with groups of unresolved harmonics suggest that regularity of temporal

information may be less important for these stimuli than the gross rate of temporal

fluctuations’105. As a result, although a computational model used for pitch perception

cannot be conclusively defined, autocorrelation methods are suitable for many

applications within music.

Considering the perception of the pitch of acoustic sources by computational models

and its application within computational algorithmic compositional processes, it is

certainly possible to obtain the pitch of sound-objects in many circumstances

(assuming a sound-object has been identified clearly in the auditory scene), and

therefore describe it in both tonal and microtonal terms, and apply this data for

analytical and generative processes. However, the accuracy of the value of a

perceived pitch by computational models in relation to our own pitch classification

method is distinctly limited, which as a result, will influence a consequent

compositional process involving computational algorithms; pitch is defined in terms

of our capability to perceive it. Therefore, the results of any analytical or generative

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

104	
 Plack,	
 C.	
 2005.	
 The	
 Sense	
 of	
 Hearing.	
 New	
 Jersey:	
 LEA:	
 146-­‐147	

105	
 Ibid:	
 245	

	
 83	

processes are implicitly reliant on the perceived pitch, and thus require an accurate

representation of pitch for predictable outcomes.

So, the use of computational models of pitch perception can inadvertently affect the

compositional process. For example, if a generative process requires a specific series

of pitches in order to trigger and these pitches are not accurately identified the

subsequent process will fail. Therefore, the limitations of computational pitch

perception models, and the affect this may have on the compositional process, must

be carefully considered in relation to the desired task. If this is overlooked, the

resulting output of the compositional process may be significantly unexpected and

perhaps undesirable (when considering a composer’s intentions).

3.2.2 Loudness Perception

Loudness is the ‘subjective magnitude of a sound; the perceptual correlate of

intensity’ 106 . Through experiments involving loudness matching, which require

listeners to state their perceived intensity of a sound, it appears that frequency,

bandwidth and duration are all factors that influence loudness. In order to obtain a

relative value for the loudness of a sound, ‘the loudness level (in units called phons)

of a tone at any frequency is taken as the level (in dB SPL) of the 1000-Hz tone to

which it is equal in loudness’107. Therefore with this method of loudness evaluation, it

has been demonstrated that: with frequency ‘the growth of loudness with level is

greater at low frequencies than at high frequencies’108, with bandwidth ‘if the power

of a sound is distributed over a wider region of the cochlea, then the loudness may

increase’109 and with durations ‘up to a few hundred milliseconds, the longer the

sound, the louder it appears’110.

It is important to note that despite it being possible to describe how frequency,

bandwidth and duration influence loudness perception, ‘it cannot tell us directly how

loudness changes with sound level’111. So, it is not possible to quantify loudness in

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

106	
 Plack,	
 C.	
 2005.	
 The	
 Sense	
 of	
 Hearing.	
 New	
 Jersey:	
 LEA:	
 116	

107	
 Ibid	

108	
 Ibid	

109	
 Ibid	

110	
 Ibid:	
 145	

111	
 Ibid:	
 117	

	
 84	

terms of physical values such as dB SPL, which defines the air pressure caused by a

waveform. Researchers such as Stevens (1957, 1972) and Schlauch, DiGiovanni and

Reis (1998) have attempted to quantify a loudness value by applying loudness scales,

which explain ‘subjective magnitude with physical magnitude’112.

Loudness scales are limited in their application due to the very nature of loudness

itself; a subjective process cannot be definitively quantified, and as a result, such a

task which attempts to do so cannot be regarded as accurate, thereby negating its very

purpose. However, the results of using such scales have produced results that appear

to fit a logarithmic scale, which may reflect our subjective loudness perception i.e., a

sound’s intensity climbs more sharply with increases at lower magnitudes, than at

higher magnitudes, rendering them applicable to compositional processes.

Considering our listening experience, we are able to describe the loudness of

individual sources within an auditory scene, as well as the overall intensity of the

sources combined. Our capability to detect the loudness of an individual source is

referred to as intensity discrimination113. It would appear, through experimentation,

that our ability to discriminate between the intensity of sources is exceptional at a

considerable amount of our dynamic range. It is therefore proposed that, much like

pitch perception, place coding and temporal coding are required.

Spread excitation uses place coding to explain the perception of loudness; ‘at low

levels, only a small region of the basilar membrane is stimulated (the region

surrounding the place tuned to the pure tone’s frequency), but as the level is

increased, a wider area is stimulated’114. In addition, it is possible that information is

combined from across the excitation pattern to improve performance (Florentine and

Buus, 1981). Therefore, the pattern of the firing rates and their respective frequencies

strongly present a sound’s intensity.

In terms of temporal coding, phase locking may also be necessary for intensity

discrimination (phase locking is the ‘tendency of an auditory neuron to fire at a

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

112	
 Plack,	
 C.	
 2005.	
 The	
 Sense	
 of	
 Hearing.	
 New	
 Jersey:	
 LEA:	
 120	

113	
 Ibid	

114	
 Ibid	

	
 85	

particular time (or phase) during each cycle of vibration on the basilar membrane’115).

In the case of masking, and in particular masking by noise, phase locking becomes

limited, as it is not possible to phase lock to sounds of no fixed periodicity. So, waves

within a signal that do contain periodicity can be identified through phase locking,

and therefore their intensity can be defined (Sachs and Young, 1980).

Further to the subject of our listening experience, we our able to define the relative

intensities116 of frequency components of sound-objects. These are contained in the

relative spectrum of a sound-object and enable us to identify a sound’s timbre. So, we

are able to obtain a spectral envelope, from which the relative intensities can be

described. Experiments conducted by Green (1988) concluded that changes in the

relative intensities in the spectrum of only a few dB were noticeable and that the time

between changes in these relative intensities impacted on the performance of listeners

to be able to distinguish variations in loudness, which serves to support the influence

of duration on loudness perception.

Zwicker and Scharf (1965) and Moore, Glasberg and Baer (1997) have proposed

models of loudness perception that can be applied to computational models. Zwicker

and Scharf’s model (1965) applies spread excitation of the characteristic frequencies,

allowing for intensity discrimination as well as the intensity overall level of a signal

to be obtained by calculating the sum of the loudness values for each characteristic

frequency. The Moore, Glasberg and Baer (1997) model proposes changes to the

Zwicker (1965) model, particularly in relation to the masking of sound sources.

When applying computational models of loudness perception within the

compositional process, the three assessments possible of overall intensity, intensity

discrimination and relative intensity must be considered; each has a considerably

different role in terms of auditory scene analysis, and consequently, on the

compositional process. Therefore, the application of loudness models can be to

identify the intensity of an overall signal, the intensity of a single source and the

intensity of a source’s frequency components over time. The use of these evaluations

must then be chosen suitably to the compositional process required; for example, the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

115	
 Plack,	
 C.	
 2005.	
 The	
 Sense	
 of	
 Hearing.	
 New	
 Jersey:	
 LEA:	
 127	

116	
 Ibid	

	
 86	

intensity of the overall signal comprised of ten sound-objects would be a suitable

candidate to signify the dynamic macrostructure of a composition, but not to represent

the spectral envelope of a single source. In particular, the classification of timbre is

proposed to involve loudness perception, explicitly the relative intensity.

In addition to the suitability of a loudness perception model’s assessment of overall

intensity, intensity discrimination and relative intensity, the subjective nature of a

loudness ‘value’ must also be taken into account; for tasks involving precise and

accurate data such as the triggering of events at specific sound levels, perhaps the dB

level provided by an acoustic signal would be more suitable and reliable as it

represents a physical, quantifiable value. However, for analytical and generative tasks

involving a representation of emotion, such as genre classification or automatic music

reviews, the use of loudness perception, and therefore the perceived intensity of a live

audio stream and/or audio recording is proposed to be necessary.

3.2.3 Timbre Perception

Considering timbre, a conclusive definition is difficult to qualify, reflected in Plack

(2005) who defines timbre as ‘that aspect of sensation by which two sounds with the

same loudness, pitch, duration and ear of presentation can be distinguished. Timbre is

often used to refer to the sensations associated with the overall spectral shape of

sounds, but timbre is also dependent upon temporal factors such as the envelope.

Generally, (and rather vaguely) timbre refers to the “quality” of a sound’117.

So, timbre can be considered to be that sonic feature which allows us to classify a

sound’s ‘type’. The complexities of expressing a sound-object’s ‘type’ is

demonstrated by Dannenberg (1993) who states that ‘with many aspects of music, we

know what to represent, and the issue is how to represent it. With timbre, we are still

learning what to represent’118; the difficulties in quantifiably defining the topology of

sound-objects, and therefore their timbral representation, is raised in relation to the

reduced listening method and its requirement of the listener to disassociate sonic

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

117	
 Plack,	
 C.	
 2005.	
 The	
 Sense	
 of	
 Hearing.	
 New	
 Jersey:	
 LEA:	
 249	

118	
 Dannenberg,	
 R.	
 1993.	
 Music	
 Representation	
 Issues,	
 Techniques	
 and	
 Systems.	
 Computer	
 Music	
 Journal	
 17(3):	
 26	

	
 87	

features from their source to produce a sonically pure representation of a sound-

object.

Further to the topology of sound-objects and reduced listening proposed by Schaeffer

(1966), ‘topology studies the properties of objects (or spaces) which are not changed

by continuous deformations. Roughly speaking, what properties of a rubber object are

retained if it is stretched in any conceivable way but not broken torn or pierced?’119,

so the model proposed by Schaeffer (1966), by definition, does not address dynamic

changes of a source’s state, and therefore modifications in its timbral space.

As a result, Wishart (1996) questions the suitability of such a sound-object

classification method ‘Does timbral space have a topology? When working with

existing musical instruments we may construct a map of the timbral possibilities of

the instrument. To do this, rather than merely listing all the possible sound-types

which an instrument such as a violin might produce, we would attempt to place these

on a map (which might be multidimensional) on which similar sound-objects would

be placed close to each other and sound-objects which are quite different from one

another would be placed at a greater distance’120. Therefore, indeed it may be possible

to classify sound-objects within a topological map bound by the timbral space offered

by a sound source.

The physical limitations of a performer or the instrument itself impacts on the

structure of a topological map however, so despite the possibility of classifying a

source’s timbre by its sonic features, a definitive and static organization of the

topology of a sound-object is not possible. Continuing Wishart’s (1996) example of

the timbre a violin may produce, ‘At least it is relatively easy to get from normal arco

sounds to multiphonics played arco sul ponticello by infinitesimal motion in the

timbre space (adjacency) but relatively difficult to get from normal arco to percussive

effects on the wooden body of the instrument. In fact, to make a ‘modulation’ in the

timbre space from arco sounds to percussion on the wooden body sounds, it is

essential to through col legno production or through pizzicato. This means that

timbral space viewed as space in which timbral progressions (modulations) will be

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

119	
 Wishart,	
 T.	
 1996.	
 On	
 Sonic	
 Art.	
 London:	
 Routledge:	
 82	

120	
 Ibid	

	
 88	

made has a distinct structure which, although neither closed nor having a metric,

imposes specific limitations on our musical options’121. As a result, the structure of a

topological map is not only unique to each sound-object, but must also continually

change in relation to the physical limitations imposed on the modulation of its timbre.

As with the difficulties of the organization of a topological map and classification of a

sound-object, the information required to describe timbral features is also not

definitive or reliable. In terms of the component timbral information available in the

frequency domains, ‘the timbre of a complex tone depends in part on the relative

magnitude of the various harmonics of which it is composed… Instruments that

produce intense high harmonics (e.g., a trumpet) will tend to sound “bright”.

Instruments that produce intense low harmonics (e.g., a French horn) will tend to

sound “warm” or “dark”’122. It is important note to here that the previous example

itself demonstrates the very issue of relevant timbral representation of sound-objects:

what is “bright”, what is “warm” and what is “dark”? These are by no means

conclusive descriptions, reflected in the quoted author’s use of speech marks to

identify each term’s ambiguity.

With regards to this verbalization of timbre, verbal scales may be applied, such as a

sound-object’s perceived ‘brightness, richness, sweetness, pleasantness, fullness and

roughness’123. However, ‘one of the major disadvantages in using verbal scales to

investigate the properties of stimuli, of course is that words may not exist to describe

certain perceived differences’124. This therefore leads to considerable uncertainty in a

verbal description’s relevance as a representation of a sound-object’s timbre.

The representation of objective values such as frequency and amplitude to describe

timbre with subjective scales creates substantial difficulties; subjective processes

‘cannot justifiably be treated with the algebra of dimensional analysis that underlies

measurement in the physical sciences’125. For the perception of timbre, a number of

perceptual judgments appear to be combined together such as pitch, loudness and

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

121	
 Wishart,	
 T.	
 1996.	
 On	
 Sonic	
 Art.	
 London:	
 Routledge:	
 82	

122	
 Plack,	
 C.	
 2005.	
 The	
 Sense	
 of	
 Hearing.	
 New	
 Jersey:	
 LEA:	
 25-­‐26	

123	
 Grey,	
 J.	
 1975.	
 An	
 Explanation	
 of	
 Musical	
 Timbre.	
 Stanford	
 University	

124	
 Ibid	

125	
 Wessel,	
 D.	
 1979.	
 Timbre	
 Space	
 as	
 a	
 Musical	
 Control	
 Structure.	
 Computer	
 Music	
 Journal	
 3(2):	
 47	

	
 89	

spatialisation, forming a multidimensional measurement of sound-objects to form

timbral judgments. Therefore, the direct transcription of frequencies and amplitudes

to the timbral classification process is not sufficient for concise timbral analysis.

Primarily, it is proposed that the spectral envelope formed of the relative intensities of

the frequency components (as discussed previously in relation to models of loudness

perception) over time are most important for the description of a sound’s timbre

(Risset, 1966). In particular, three sonic features are important for the classification of

a sound-object’s timbre; ‘1) the relationships of the attack times of the harmonics,

whereby successively higher harmonics take longer to appear and grow more slowly;

2) the fluctuation of the frequency, which is of small amplitude, fast, and quasi-

random; and 3) the harmonic content of the tone, which becomes richer in high-

frequencies when the over intensity increases’126.

The spectral envelope is mutually agreed to be part of the timbral perception process

(Risset, 1966; Chowning, 1973; Grey, 1975; Wessel, 1974), however, the role of

processes outside of this such as spatialisation are disputed, as reflected in

Dannenberg’s (1993) sentiment; ‘as aspects of timbre are isolated and understood,

such as spatial location and reverberation, these components come to be regarded

separately, leaving timbre as impenetrable as ever’127.

Representative of the strength of the spectral envelope in the classification of timbre,

statistical models have been proposed; Mel-frequency cepstral coefficients (MFCCs)

and linear frequency coefficients (LFCs) are suggested to model timbral space

(Terasawa, Slaney and Berger, 2005). Both methods are capable of statistically

modelling spectral shapes over time, thereby representing a spectral envelope. In

addition, the root-mean-square (RMS) of the spectral envelope in combination with

the Karhunen-Loève Transform also demonstrates another method for timbral

classification for single tones (Kaminsky and Materka, 1995). Another study showed

that the constant-Q coefficient could also be applied for the modelling of the spectral

envelope of a sound, and therefore the representation of timbre (Brown and Puckette,

1992). Despite the apparent success of statistical models, the statistical data produced

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

126	
 Grey,	
 J.	
 1975.	
 An	
 Explanation	
 of	
 Musical	
 Timbre.	
 Stanford	
 University	

127	
 Dannenberg,	
 R.	
 1993.	
 Music	
 Representation	
 Issues,	
 Techniques	
 and	
 Systems.	
 Computer	
 Music	
 Journal	
 17(3):	
 25	

	
 90	

using processes such as MFCCs or LFCs is not perceptual, and is therefore an

objective value, contradicting the notion that timbre is formed of multidimensional

perceptions.

Considering the representation of the perceptual process of timbral classification ‘we

have not begun to understand the contextual and individual differences involved in

timbre perception’128, so the absence of perceptual process in calculations such as

MFCCs is an issue, which as yet, remains unsolved. That is not to say however that

the data supplied by such statistical processes cannot be applied for timbral

classification roles, albeit perpetually limited ones. As a result, through the use of

statistical methods, the topology of sound-objects is strictly limited to the statistical

method used. However, the data generated by each method is relative to itself, thereby

allowing for an infinite map of a sound-object’s spectral shapes in terms of the

statistical method. This map of spectral shapes may then be applied to define a unique

topology of timbral features relative to the outputs of the statistical approach.

So, with regards to the compositional process, through statistical methods of timbre

representation, it is possible to obtain the spectral envelope of a sound-object in terms

of the statistical method used (such as MFCCs) and apply this data as a pseudo-

timbre. That is to say, a statistical method’s representation of a sound-object is not

what has been previously denoted as timbre, but as a dimension of it, from which

comparisons and analysis of a sound-object’s spectral shape can be made, therefore

representing an aspect of proposed timbral features. As highlighted previously, the

very definition of timbre and its temporal features is not unequivocal. Thus, timbre

representation cannot be quantified or qualified to a determined value, hence the

requirement for such a concept as a pseudo-timbre, involving relative dimensions,

which can be adequately represented.

In relation to the organization of the topology of sound-objects, statistical methods

can only form static topological structures as the qualitative distinctions required to

form dynamic topological structures necessitate perceptual processes outside of

defining spectral shapes, which, as discussed, are not present in such models.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

128	
 Terasawa,	
 H,	
 Slaney,	
 M	
 and	
 Berger,	
 J.	
 2005.	
 Perceptual	
 Distance	
 in	
 Timbre	
 Space.	
 draft	
 for	
 ICAD’05:	
 8	

	
 91	

However, the organization of these static topological structures can use artificial

neural networks and in particular, self-organising maps (Cosi et al, 1994) to generate

neural nets that automatically define timbral spaces relative to the statistical method

use, offering an efficient process of topological organization of static state sound-

objects. Timbre perception is therefore limited in its applicability to a computational

compositional process, and as demonstrated, the subject itself requires significant

progression in terms of definition and resolution over the multidimensional

characteristics it may involve before any conclusive use of its proposed features can

be applied to composition itself.

3.2.4 Musical Time and Melody Perception

Through the use of a variety of combinations of the perceptual models of pitch,

loudness, and timbre described in this section, it is possible to construct models of

perception for tasks that require a number of perceptual judgments such as melody,

gesture, genre and rhythm classification. In addition, physical values that can be

obtained from a waveform, such as its amplitude and frequency, may also contribute

to such processes. As a result, analysis may be made of macro and micro structures of

live streams from subsymbolic data represented in the frequency domain through

transform techniques such as the Fast Fourier Transform. It is once again important to

note the many complexities of representing subsymbolic data for symbolic tasks, such

as those previously listed of melody, gesture, genre and rhythm classification.

Therefore, the examples presented in the following are not fully representative of the

respective research area, but serve to show the various tasks and analytical processes

that are possible (or not).

The identification of the onset of sound-objects is a primary sonic feature that many

analytical tasks require for temporal structuring. The use of onsets as a temporal cue

allows the listener to identify the beginning of a sound event, which can either be the

initial onset of sound-object or a morphological change in a sustained sound-object’s

sonic features. If these onsets, when placed in sequence, feature repetition or periodic

cues, the sequence forms a structure which may then be used to define a sound-

object’s rhythm. In terms of the definition of rhythm itself ‘in its most generic sense,

	
 92	

the word rhythm is used to refer to all the temporal aspects of a musical work,

whether represented in a score, measured from a performance, or existing only in the

perception of the listener’ 129. Therefore, rhythm may be used for applications such as

‘tempo induction, beat tracking, quantization of performed rhythms, meter induction,

and characterization of intentional timing variations’130 and can be applied to other

perceptual processes such as gesture and melody recognition.

Before a temporal structure can be formed, the onsets defining the sequence of the

structure’s temporal features need to be identified. Various features of a sound-object

may be used to identify onset information and are listed as follows: onset time,

duration, relative amplitude, pitch, harmony, spectral energy, and low-level metrical

values (Gouyon and Dixon, 2005). The gathering of onset data from symbolic sources

can be obtained simply by using the relevant symbolic data containing the desired

onset feature information. However, obtaining onset data from an acoustic signal is a

complex task, particularly if more than one sound source is present which causes

undesirable interference masking. Assuming that a sound-object can be isolated

sufficiently enough to identify an individual sound-object’s onset by one of the

features listed above, Figure 4 illustrates how this may then be applied for specific

temporal and rhythmic processes131:

Figure 4. Proposed structure of beat and tempo extraction

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

129	
 Gouyon,	
 F	
 and	
 Dixon,	
 S.	
 2005.	
 A	
 Review	
 of	
 Automatic	
 Rhythm	
 Description	
 Systems.	
 Computer	
 Music	
 Journal	
 29(1):	
 34	

130	
 Ibid:	
 34	

131	
 Ibid:	
 39	

	
 93	

It is therefore possible to see in the Figure 4 the number of rhythmic and temporal

features that may be analysed, which are all obtained from the onset of sound-objects.

In summary, the following list describes each of the main tasks and outputs

available132:

Pulse Selection – The definition of periodic events, which may indicate pulse

Pulse Induction – The definition of a metrical level or pulse with short-term

timings

Pulse Tracking - The definition of a metrical level or pulse with long-term

timings

Event Shift Handling – The ability to define short-term timing differences that

do not affect the long-term timing

Rhythmic parsing – Placing onsets on a metrical grid, thereby quantizing their

values

Systematic Deviation Estimation – The assessment of short-term timings in

relation to defined grids featuring non-metrical timings

Time Signature Determination – assessing a complete temporal description to

define a time signature

Given the number of tasks possible, Povel and Essens (1985) proposed a reactive

model that could ‘given a sequence of inter-onset intervals as input, identify the clock

a listener would associate with it’133. In contrast, Desain’s predictive model (1992)

suggests that rhythm can be ‘decomposed into basic expectancy components

projected by each time interval implicit to the sequence… The resulting expectancy of

complex temporal patterns can be used to model such diverse topics as categorical

rhythm perception, clock and meter inducement, rhythmicity, and the similarity of

temporal sequences’134. However, both models provide adequate representations of

temporal cues despite utilising different model structures, indicating there is no

default choice between reactive and predictive models.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

132	
 Dannenberg,	
 R.	
 1993.	
 Music	
 Representation	
 Issues,	
 Techniques	
 and	
 Systems.	
 Computer	
 Music	
 Journal	
 17(3):	
 20-­‐30	

133	
 Scheirer,	
 E.	
 2000.	
 Music-­‐Listening	
 Systems.	
 MIT:	
 43	

134	
 Desain,	
 P.	
 1992,	
 A	
 (De)Composable	
 Theory	
 of	
 Rhythm	
 Perception.	
 Music	
 Perception	
 9(4):	
 439	

	
 94	

Combined with the contrasting methods of model organization of reactive or

predictive, as with the perceptual models of pitch, loudness, spatialisation and timbre,

there is little agreement over how best to represent rhythm; Honing (2001) suggested

that absolute onset, metrical structure, tempo and timing are required for a conclusive

definition of a musical composition’s rhythm, but there is no agreement as to how

these features should be represented. Further to this, Gouyon and Dixon (2005) state

‘different rhythmic features are relevant at each step in the music communication

chain, at each step where rhythmic content is produced, transmitted, or received… A

second reason for lack of consensus is that the diverse media used for rhythm

transmission suffer a trade-off between the level of abstraction and the

comprehensiveness of the representation’135. This reflects again the complexities of

transcribing perceptual, subjective processes into objective values required by

symbolic structures.

In addition, adequate pitch, loudness and timbre perception models are required to

identify the various features that may be used to more accurately identify onset,

thereby forming a more accurate representation of temporal structures. To

demonstrate, at its most fundamental level, the perception of a sound-object’s onset is

attributed to sound level, which may be described in amplitude. So that is to say, if the

amplitude of a sound-object is above a certain amplitude level, it is recognised to be

the onset of a sound-object. However, as demonstrated by the research into loudness

perception, experiments have shown that bandwidth and frequency affect our

perception of a sound’s intensity but do not affect the overall amplitude. Therefore,

onsets will be misrepresented unless adequate weightings are applied to the

amplitudes and the onsets that occur at their value, relative to a loudness perception

model.

This highlights a significant issue of this area of musical research; ‘there is no

definitions or evaluation criteria, because rhythm description systems have been built

for diverse applications with diverse data sets’ 136. For example, rhythm perception

models that attempt to identify definite and periodic measures of metre or tempo have

limited applicability in compositional structures that do not pertain to such

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

135	
 Gouyon,	
 F	
 and	
 Dixon,	
 S.	
 2005.	
 A	
 Review	
 of	
 Automatic	
 Rhythm	
 Description	
 Systems.	
 Computer	
 Music	
 Journal	
 29(1):	
 34	

136	
 Ibid:	
 49	

	
 95	

conventional formalism as those rhythmic organisations are null and void. As a result,

the temporal or rhythmic model applied to a compositional process must be directly

related to the systems and data required by that specific model, rendering the

evaluations of many temporal and rhythmic models insufficient to each exclusive

musical composition unless extensive steps are made by the composer to

accommodate for the requirements of such a model, which may lead to significant

changes in a resulting composition.

As mentioned, the use of pitch can be used to indicate the onset of a sound event.

More importantly however, the pitch of a sound-object can be applied to processes

that specifically require pitch information such as pitch contour recognition. As

described previously, pitch is defined to be ‘that attribute of auditory sensation in

terms of which sounds may be ordered on a scale extending from low to high’137,

hence the necessity to define pitch in terms of pitch contours and not melody, which is

a strictly tonal formalism. So, pitch contours can of course represent pitch in terms of

their respective tones or semitones, but also in microtones, allowing them to be

inclusive of contemporary and electroacoustic compositional techniques such as those

found in Genesis.

Pitch contour recognition requires adequate pitch perception models from which a

pitch can be ascertained, which may then be placed sequentially in relation to its

position on the scale of low to high, relative to the sound-objects preceding it. In

terms of the mapping of this structure, the scale used dictates this, which as a result

allows for both tonal and microtonal organization; the mapping can be set to specific

frequencies corresponding to chosen pitches, which can include those of a major or

minor scale. Much of the research into this area has been completed with a disposition

towards tonal structures, which limits its application to many of the compositional

approaches such as microsound composition. Despite this, it is still possible to use the

frameworks of pitch classification models to represent the progression of pitch over

time by modifying the mappings the models apply to organise pitch information.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

137	
 American	
 National	
 Standards	
 Institute	
 (ANSI).	
 1994.	
 American	
 national	
 standard	
 acoustical	
 terminology.	
 New	
 York:	

Acoustical	
 Society	
 of	
 America:	
 34	

	
 96	

In terms of structuring the mappings of pitch contour recognition process, a frequency

centre is required, that is to say a tonal centre of key if applying tonal formalisms, in

order to define a scale with which to place pitches on. This can be defined prior to the

execution of a pitch contour model, resulting in a static frequency centre for the

duration of its implementation. However, from the pitches themselves, it is possible to

dynamically change the frequency centre by applying an array of potential scales.

Krumhansl and Kessler (1982) proposed a successful model that can identify dynamic

key changes by correlating pitches to a tonal hierarchy of the 24 major and minor

keys. Therefore, the pitches can be used not only to denote the shape of pitch

contours, but also the frequency centres with which they are perceptually associated.

Once a frequency centre has been obtained, it is then possible to use a further

hierarchy to classify the relatedness of a pitch within a pitch contour. The notion of

relatedness between pitches can be defined through Narmour’s model (1990) which

‘proposed several rules that describe what listeners prefer to hear in melodies, based

on the principles of good continuation, closure and return-to-origin’138. This is based

on the principles of the organization of sensory stimuli proposed by Koffka (1935),

presented previously. As a result, the model views melody on a note-to-note basis,

thereby negating the necessity to consider the influence of macrostructures on the

perception of a melody. Such a model therefore allows the analysis of music, which

does not consist of tonal formalisms and could be considered the antithesis to

Schenkerian analysis.

In contrast to Narmour’s model (1990), and perhaps more commonly applied for the

purpose of defining the relatedness of pitch values, are formal grammars using the

fundamental rules of harmony. For example, the model proposed by Longuet-Higgens

(1994) ‘developed several models of musical melody and rhythm around phrase-

structure grammars’139 which are based on tonal structures. In addition, Martin (1996)

proposed a model for the purpose of transcribing polyphonic music presented as an

acoustic signal, which in itself requires a substantial level of pre-processing through

auditory scene analysis for the deconstruction of the waveform into its individual

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

138	
 Scheirer,	
 E.	
 2000.	
 Music-­‐Listening	
 Systems.	
 MIT:	
 29	

139	
 Ibid	

	
 97	

sound sources. The model uses extensive pitch perception models and auditory scene

analysis based upon auto-correlation for the isolation of each source’s pitch.

With regards to the organization of the pitch values by Martin’s model (1996), a

blackboard system is used which ‘consists of a central dataspace (the blackboard), a

set of so-called knowledge sources (KSs), and a scheduler’140. In summary, the pitches

obtained through the extensive pitch perception models are placed on the blackboard,

which are then assessed by the knowledge sources that ‘fall under three broad areas of

knowledge: garbage collection, knowledge from physics, and knowledge from

musical practices’141. In relation to the organization by the system of the pitches in to

tonal structures, the musical practices centre on features such as intervals, octaves and

chords; distinctly tonal concepts. As stated, this significantly restricts the application

of such models to music, which applies such formalisms, but the frameworks can be

modified to incorporate alternative principles such as microtones. So, Martin’s model

(1996) may apply such techniques by the revision of the musical practices

implemented to include contemporary structures of pitch classification, while still

using adequate pitch perception models.

3.2.5 Gesture Perception

The expressiveness of a sound-object is described by De Poli (2004) as ‘the means

used by the performer to convey the composer’s message and his/her own

contribution to enrich the musical message’142 with the types of expression and

gesture categorised in to: performative, communicative and ancillary (Cadoz and

Wanderley, 2000). In summary, ‘performative gestures produce sound, and

communicative gestures (nods, eye contact, and similar cues) direct other performers.

Ancillary gestures – intuitive body movements of the performer while playing – are

expressive or emotive gestures that communicate musical meaning to the observer’143.

Therefore, both auditory and visual cues may be used to identify gestures.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

140	
 Martin,	
 K.	
 1996b.	
 Automatic	
 Transcription	
 of	
 Simple	
 Polyphonic	
 Music:	
 Robust	
 Front	
 End	
 Processing.	
 MIT:	
 4	

141	
 Martin,	
 K.	
 1996a.	
 A	
 Blackboard	
 System	
 for	
 Automatic	
 Transcription	
 of	
 Simple	
 Polyphonic	
 Music.	
 MIT:	
 5	

142	
 De	
 Poli,	
 G.	
 2004.	
 Methodologies	
 for	
 Expressiveness	
 Modelling	
 of	
 and	
 for	
 Music	
 Performance.	
 Journal	
 of	
 New	
 Music	

Research	
 33(3):	
 191	

143	
 Overholt	
 et	
 al.	
 2009.	
 A	
 Multimodal	
 System	
 for	
 Gesture	
 Recognition	
 in	
 Interactive	
 Music	
 Performance.	
 Computer	
 Music	

Journal	
 33(4):	
 72	

	
 98	

The auditory cues available are ‘related to timing of musical events and tempo,

dynamics (loudness variation), and articulation (the way the successive notes are

connected)’144. So, there is a requirement of suitable loudness, pitch and timbre

perception models in order to adequately represent the sonic features required for

gestural identification. However, as demonstrated with perceptual processes that

necessitate a combination of musical perceptions, the interrelation between them, and

their consequent influence on a complex perceptual task is not comprehensive; De

Poli states ‘the understanding of the expressive information is still vague. While its

importance is generally acknowledged, the basic constituents are less clear’145 .

Similarly, for the gathering of visual cues, there is no conclusive hierarchy of

communicative or ancillary gestures, and their consequent influence on the perceived

overall gesture.

It is important to note that the inclusion of visual cues significantly increases the

complexity of an analysis, yet holds the potential to yield better results. For example,

the model proposed by Overholt et al. (2009) makes use of computer-vision

techniques that require digital cameras to visually stream the performer, in

synchronization with the audio signal. Therefore, sufficient algorithms are required to

identify the components of the visual scene, in a similar vein to auditory scene

analysis, which brings with it many complications of adequate deconstruction of the

visual environment. In addition, the inclusion of visual cues requires sufficient

definition of their perceived visual gestures in combination with description of their

relativity to the auditory cues; the interplay between visual and auditory gestures

cannot be ignored, but it must be succinctly addressed before such models may

conclusively represent musical gesture better than using auditory cues only.

Gestural models often use a method of deviation, from which comparisons can be

made between the performance and the score. Deviation is used to identify ‘where,

how and why a performer modifies, sometimes unconsciously, what is indicated in

the notation in the score’146. The use of a reference point from which a deviation can

be made does not exclusively need to be a score and can indeed use approaches

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

144	
 De	
 Poli,	
 G.	
 2004.	
 Methodologies	
 for	
 Expressiveness	
 Modelling	
 of	
 and	
 for	
 Music	
 Performance.	
 Journal	
 of	
 New	
 Music	

Research	
 33(3):	
 192	

145	
 Ibid	

146	
 Ibid:	
 194	

	
 99	

similar to a note-by-note method, such as that suggested by Narmour (1990) for pitch

relatedness; ‘the idea is that from structural description of a music piece, we can

individuate units which can act as a reference at that level. Its sub-units will act as

atomic parts whose internal details will be ignored. The expression is defined as the

deviation from the norm as given by a higher level unit. For example, the expressive

variations of the durations of beats are expressed with reference to the bar duration (as

a ratio)’147. As a result, such a model has substantial suitability to temporal and pitch

structures of contemporary techniques which do not follow Western Art tradition, and

indeed the convention of a highly symbolic musical score.

Considering the application to the compositional process of the perceptual models

presented in this chapter, it is clear that their use must be carefully considered. In

particular, the model’s structure in terms of the musical formalisms it is based upon

will have a significant, if not a detrimental impact on any compositional process that

relies on such models to analyse sound-objects. In addition, and equally as

noteworthy, is the absence of qualifiable and quantifiable methods for approaching

perceptual modelling; it is indeed useful to attempt to explain the listening experience,

but it must be recognised that the explanations thus far are bound by the limited

understanding of their respective processes. Therefore, the use of perceptual models

must be regarded as presenting a particular perspective, which may or may not be

representative of our listening experience.

The usefulness of perceptual models must lie in their ability to represent a particular

perspective, which must be acknowledged by a composer, in order for a

compositional process that applies perceptual models to successfully implement the

composer’s intentions. With the prospect of systems that offer mood-classification

(Meyers, 2004) and automatic record reviews (Ellis and Whitman, 2004) which

combine a substantial number of perceptual processes, this acknowledgement of a

perceptual model’s perspective becomes ever more important; the interrelation

between the perspectives must not be overlooked, otherwise, the ultimate perspective

of the source may become so abstract that it cannot be understood, and therefore,

inapplicable within a compositional process.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

147	
 Scheirer,	
 E.	
 2000.	
 Music-­‐Listening	
 Systems.	
 MIT:	
 29	

	
 100	

Chapter 4

Interactivity in Digital Music Systems

4.1 Interaction with Creative Systems

Interactivity, in the context of computer music systems, can be achieved through a

broad range of approaches including ‘installations, networked music ensembles, new

instrument designs and collaborations with robotic performers (Eigenfeldt and Kapur,

2008)’148. The Genesis system offers many potential interactive methods such as

networked instances, audience participation and performer-driven control of its

generative outputs. However, in terms of a conclusive definition of interactivity, there

is much discourse surrounding the issues of what makes a computer music system

interactive, and how interactivity can be realised relative to the approach taken.

Therefore, in designing and implementing Genesis, the research required considerable

investigation into proposed methods of interactivity and how these can be applied to

the fundamental principle of Genesis to allow composers and performers to interact

with real-time sound-objects. Furthermore, the models and proposed implementations

of interactivity discussed in this chapter are applied directly to the evaluation of the

system in chapter 6 Evaluation of the Genesis System.

Primarily, it is necessary to propose what interactivity is. At its most fundamental

level, ‘interactivity comes from a feeling of participation, where the range of possible

actions is known or intuited, and have significant and obvious effects, yet there is

enough mystery to spark a curiosity and exploration’149. Therefore, an interactive

system, such as Genesis, must be able to form a reasoned response to an action

provided by a user, which provides interest and ‘novel circumstance’150. Thus, music

software that offers an interaction method proposed by Winkler (2001) would result

in a resolutely interactive music system. But, what constitutes a reasoned response? If

a computer music system is to be defined as interactive, the responses provided must

bear relevance to the inputs of the user, allowing their actions to form an unfolding

dialog that can be understood by both parties.
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

148	
 Drummond,	
 J.	
 2009.	
 Understanding	
 Interactive	
 Systems.	
 Organised	
 Sound.	
 14:	
 125	

149	
 Winkler,	
 T.	
 2001.	
 Composing	
 Interactive	
 Music:	
 Techniques	
 and	
 Ideas	
 Using	
 Max.	
 Massachusetts:	
 MIT	
 Press:	
 3	

150	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 101	

A reasoned response implies that cognition is present, and therefore a cognitive

response is necessary in both the human user and the computer music system in order

to interact, resulting in differences of opinion in how interactivity can be

implemented. Paine (2002) considers that the use of the term interactivity has been

‘abused’ by the new media arts due to the perception that most systems ‘are not

interactive, but simply reactive or responsive because they lack a level of

cognition’151. Such a supposition is based on a semantic definition of interaction; there

is a reciprocal process between the actions of a human and a computer, and for this to

occur, both parties must ‘think’ to achieve interactivity.

In contrast, Rowe (1993) defines three response types: transformative, generative or

sequenced - ‘the transformative and generative classifications imply an underlying

model of algorithmic processing and generation. Transformations can include

techniques such as inversion, retrograde, filtering, transposing, delay, re-synthesis,

distortion and granulating. Generative implies the system’s self-creation of

responses… sequenced response is the playback of pre-constructed and stored

materials’ 152 . Consequently, although Rowe (1993) does not exclude cognitive

processes in his categorization of an interactive music system’s responses, he does

make acknowledgment of those approaches that do not demonstrate observable

cognition.

So, with regard to the cognitive abilities of computer systems, as highlighted in

chapter 2.3 Computers and Algorithms, regarding McCarthy’s (2007) comments on

the limitations and confines of artificial intelligence, the idea that a computer must

demonstrate a level of cognition in order to form an interactive process, as supposed

by Paine (2002), is perhaps flawed from the outset; in the absence of clearly

observable cognition, how are we to conclude that a computer music system such as

Genesis can create reasoned responses, thereby forming an interactive computer

music system?

Considering the many methods of generative algorithms presented in chapter 3.1 An

Introduction to Real-time Generative Algorithmic Systems, it is generally accepted

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

151	
 Paine, G. 2002. Interactivity: Where to from Here?. Organised Sound 7(3): 295	

152	
 Drummond,	
 J.	
 2009.	
 Understanding	
 Interactive	
 Systems.	
 Organised	
 Sound.	
 14:	
 128	

	
 102	

that generative processes can form part of a creative process without explicit cognitive

ability. Therefore, if a reasoned response can be generated by such an algorithm

without the need for perceptible cognitive processes to be present, it is proposed that

it is possible to form reasoned responses from Genesis through the use of generative

algorithms such as Markov chains, genetic algorithms and fractals.

Indeed, generative algorithmic implementations reflect the absence of unequivocal

machine cognition, and the realisation by composers that ‘a mechanical thinking brain

is very far from realisation’153. For instance, Blackwell et al (2012) constructed the

Live Algorithm with the aim to ‘emulate human performance convincingly enough

that companion improvisers, and listeners, would accept the Live Algorithm as a

contributing and creative group member with the same musical status as any other

performer’ 154 . Similarly, with Genesis, a significant challenge is to ensure

communication between a human and the machine is through a language that allows

both parties to create positively and effectively, with the prospect that the system’s

creativity may be considered with the same regard as a human performer, thereby

increasing the perceived level of interaction.

Yet, how are we to define the outputs of a machine as creative, be it from Genesis or

otherwise, if cognition is unobservable and therefore unreasoned? Considering that

many models of creativity and those presented in chapter 2 An Introduction to

Algorithmic Composition are founded upon psychological phenomena and implied

cognition, perhaps as Bown (2012) suggests ‘we require a broader view of creativity

as the process of creating novel things, not limited to a suite of psychological

capacities’155.

Indeed, Bown (2012) proposes two forms of creativity: generative (‘an instance of a

system creating new patterns or behaviours regardless of the benefit to that system.

There is an explanation for the creative outcome, but not a reason’156) and adaptive

(‘an instance of a system creating new patterns or behaviours to the benefit of that

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

153	
 Blackwell	
 et	
 al.	
 2012.	
 ‘Live	
 Algorithms:	
 Towards	
 Autonomous	
 Computer	
 Improvisers’	
 in	
 Computers	
 and	
 Creativity,	
 eds	

J	
 McCormack	
 &	
 M	
 d’Inverno,	
 Springer,	
 Berlin:	
 148	

154	
 Ibid	

155	
 Bown,	
 O.	
 2012.	
 ‘Generative	
 and	
 Adaptive	
 Creativity:	
 A	
 Unified	
 Approach	
 to	
 Creativity	
 in	
 Nature,	
 Humans	
 and	

Machines’	
 in	
 Computers	
 and	
 Creativity,	
 eds	
 J	
 McCormack	
 &	
 M	
 d’Inverno,	
 Springer,	
 Berlin:	
 362	

156	
 Ibid:	
 364	

	
 103	

system. The creative outcome can be explained in terms of its ability to satisfy a

function’157). So, it could be argued that generative creativity is machine-based and

adaptive creativity is human.

Considering machine-based generative creativity, due to its absence of reason, it is

value-free, creating for an unknown purpose, following its algorithmic iterations with

no intention or goal. In contrast, adaptive creativity is only observable in humans, as

reason and cognition dominate the process giving value and purpose to the human

creative process; as Bown states ‘adaptive creativity is… intended to describe the

familiar understanding of human creativity as a cognitive capacity’158.

However, generative and adaptive creativity is not a duality. Due to sociological

factors such as style and genre, along with chance (as detailed in chapter 2.4

Unpredictability and Randomness in the Creative Process), generative creativity may

be observed in humans, whereas conversely, adaptive creativity cannot be achieved in

machines due to the absence of cognition and reason. As a result, it is proposed that a

hybridisation of generative and adaptive creativity methods is implemented to

successfully interact with machines.

So, if creativity is approached without reason and observable cognition in machines,

this does not render any product of the machine to be void of creativity; machines

create generatively, through which a creative outcome can be explained, with its

reason accountable to the adaptive/generative creativity of the human user. Recalling

the Lovelace Test159, introduced in chapter 2.3 Computers and Algorithms, such a

creative method confirms the results of the test thus far, in which a system’s actions

can be explained without their reason responsible to the machine, and instead to their

human designer.

The implementation of adaptive creativity ‘is the more traditional goal of arts-based

computationally creative systems, but faces the challenge that the embodiment and

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

157	
 Bown,	
 O.	
 2012.	
 ‘Generative	
 and	
 Adaptive	
 Creativity:	
 A	
 Unified	
 Approach	
 to	
 Creativity	
 in	
 Nature,	
 Humans	
 and	

Machines’	
 in	
 Computers	
 and	
 Creativity,	
 eds	
 J	
 McCormack	
 &	
 M	
 d’Inverno,	
 Springer,	
 Berlin:	
 364	

158	
 Ibid	

159	
 Bringsjord	
 et	
 al.	
 2001.	
 Creativity,	
 the	
 Turing	
 test	
 and	
 the	
 (Better)	
 Lovelace	
 Test.	
 Mind	
 and	
 Machines	
 11:	
 3-­‐27	

	
 104	

situatedness of the artificial system is a poor reproduction of that of the human’160.

Therefore, if the objective is to represent solely human creativity through a machine,

the absence of reason and cognition make such a goal unattainable. Conversely, a

‘generative creativity approach seems equally problematic since generative systems

are not adapted to goals and so cannot perform functions similar to human adaptive

creativity’161.

However, collaborative systems, in which the human and machine interact with each

other through a chosen paradigm such as AARON (McCorduck, 1990) and Voyager

(Lewis, 2000) have demonstrated successful examples of combining the principles of

generative creativity and adaptive creativity to form interactive, creative machines.

For example, the interactive music system Voyager (Lewis, 2000) is designed to

analyse a real-time human improvisation and ‘generates both complex responses to

the musician’s playing and independent behaviour that arises from its own internal

processes’162, thereby generatively creating outputs relative to its received adaptive

inputs from the human performer and Voyager’s inherent generative behaviours.

As a result, a combination of generative and adaptive methods of creativity must be

considered when constructing creative machines, allowing the computer to create

generatively and the human to create adaptively, with the interaction of the two

parties forming a unified creative method. So, with machine creativity, due to its

inability to qualify a generatively creative process in the real world, ‘such systems can

only be involved in adaptively creative processes with an adaptively creative

individual masterminding this process’163. Therefore, if we are to generate creative

machines, interactivity between a human and a system is necessary. Indeed, the

interaction methods of the Genesis system (described in detail in chapter 5 The

Genesis System) is designed to encourage collaboration between the human and the

machine, with the aim of allowing the human performer to ultimately oversee and

validate the ongoing creative process.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

160	
 Bown,	
 O.	
 2012.	
 ‘Generative	
 and	
 Adaptive	
 Creativity:	
 A	
 Unified	
 Approach	
 to	
 Creativity	
 in	
 Nature,	
 Humans	
 and	

Machines’	
 in	
 Computers	
 and	
 Creativity,	
 eds	
 J	
 McCormack	
 &	
 M	
 d’Inverno,	
 Springer,	
 Berlin:	
 374	

161	
 Ibid	

162	
 Lewis,	
 G.	
 2000.	
 Too	
 Many	
 Notes:	
 Complexity	
 and	
 Culture	
 in	
 Voyager.	
 Leonardo	
 Music	
 Journal.	
 10:	
 33	

163	
 Bown,	
 O.	
 2012.	
 ‘Generative	
 and	
 Adaptive	
 Creativity:	
 A	
 Unified	
 Approach	
 to	
 Creativity	
 in	
 Nature,	
 Humans	
 and	

Machines’	
 in	
 Computers	
 and	
 Creativity,	
 eds	
 J	
 McCormack	
 &	
 M	
 d’Inverno,	
 Springer,	
 Berlin:	
 374	

	
 105	

So, in contrast to Paine’s (2002) supposition regarding the abuse of the term

interactivity in the new media arts, and considering the need for human supervision of

creative machines, it is proposed that the use of the term interactivity must be flexible.

Wanderley (2001) suggests five interpretations of interaction in musical context

which are as follows164: instrument manipulation, device manipulation in the context

of score-level control, other interaction contexts related to traditional HCI interaction

styles, device manipulation in the context of post-production activities and interaction

in the context of multimedia installations. Through application of such interactive

methods, generative and adaptive creativity is achievable in Genesis.

In selecting the interactive methods proposed by Wanderley (2001) for Genesis, it

was necessary to consider the relationships formed with a collaborative approach

between a human user and the system primarily communicating through real-time

sound-objects, and how this may impact on the creative process. Chadabe (1997)

noted, with reference to early examples of interactive musical instruments such as his

own CEMS System developed in the early 1970s, ‘…these instruments were

interactive in the same sense that performer and instrument were mutually influential.

The performer was influenced by the music produced by the instrument, and the

instrument was influenced by the performer’s controls’165. Thus, ‘in interactive music

systems the performer can influence, affect and alter the underlying compositional

structures, the instruments can take on performer-like qualities, and the evolution of

the instrument itself may form the basis of a composition’166.

So, in relation to the application of generative algorithms in Genesis, it is possible for

the user to influence an ongoing compositional process, such as the real-time

modification of a stochastic model’s probability distribution, the fundamental

frequency from which a fractal process is to begin or the triggering of granular

synthesisers by the onsets of real-time sound-objects, with the outcomes of the

algorithmic processes influencing the user’s following actions. As a result, the user

influences the system and the system influences the user, forming a shared

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

164	
 Wanderley,	
 M.	
 2001.	
 Gestural	
 Control	
 of	
 Music.	
 IRCAM,	
 Paris:	
 2	

165	
 Chadabe,	
 J.	
 1997.	
 Electric	
 Sound:	
 The	
 Past	
 and	
 Promise	
 of	
 Electric	
 Music.	
 New	
 Jersey.	
 Prentice	
 Hall:	
 291	

166	
 Drummond,	
 J.	
 2009.	
 Understanding	
 Interactive	
 Systems.	
 Organised	
 Sound.	
 14:	
 125	

	
 106	

interaction, with outputs creating ‘novel circumstance’167 relative to the applied

algorithmic process and the adjustments of the user.

It must be noted however, that the influence of the actions provided between the user

and system are variable; Chadabe’s (1997) observations indicate that influence in an

interactive process remains constant, that each action from both parties is accepted

with the same degree of acknowledgment. Therefore, following Chadabe’s (1997)

interactivity method, resulting interactions in an interactive computer music system

will always have the same influence on the actions of the user and the system.

In contrast, a variety of interaction models (Rowe, 1993; Winkler, 2001; Paine, 2002)

have been proposed which attempt to describe the relative levels of influence between

users and interactive computer music systems. For example, Rowe (1993) states

‘interactive computer music systems are those whose behaviour changes in response

to musical input’168. Thus, the behavioural changes will cause variations in influence

between the interactions of the user and the system. However, ‘the emphasis in

Rowe’s definition is on the response of the system; the effect the system has on the

performer is secondary’ 169, thereby suggesting that a system’s actions are less

influential than the users, while still having a variable influence relative to the

hierarchy of user followed by system.

Winkler (2001) extends the fundamental principle that Rowe (1993) established by

acknowledging variations in hierarchy between user and system - the Conductor

Model, the Chamber Music Model, The Improvisational Model and Free

Improvisation170. So, Winkler (2001) makes full acknowledgement of the different

levels of influence achievable between user and system. Despite this, both Rowe’s

(1993) and Winkler’s (2001) models have limited applicability to methods of

interaction that are not driven by instrumental performance; ‘in discussing the types

of input that can be interpreted, the focus is restricted to event-based parameters such

as notes, dynamics, tempo, rhythm and orchestration’171. Therefore, both models are

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

167	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

168	
 Rowe, R. 1993. Interactive Music Systems: Machine Listening and Composing, Cambridge, MA: MIT Press: 1	

169	
 Drummond,	
 J.	
 2009.	
 Understanding	
 Interactive	
 Systems.	
 Organised	
 Sound.	
 14:	
 125	

170	
 Winkler,	
 T.	
 2001.	
 Composing	
 Interactive	
 Music:	
 Techniques	
 and	
 Ideas	
 Using	
 Max.	
 Massachusetts:	
 MIT	
 Press:	
 23-­‐27	

171	
 Drummond,	
 J.	
 2009.	
 Understanding	
 Interactive	
 Systems.	
 Organised	
 Sound.	
 14:	
 125	

	
 107	

founded on established musical theory, whereas ‘interactivity may offer an entirely

new approach to music-making, and so in order to avoid getting stuck in the current

musical paradigms, we should question not only the nature of the system input…, but

we should pay equal attention to the output of the system, and the qualitative

relationship between the two’172.

Paine (2002) addresses the suggested limitations of Rowe’s (1993) and Winkler’s

(2001) models by proposing an interaction model based upon the process of human

conversation, described in the following173:

1. Unique and personal to those individuals

2. Unique to that moment of interaction, varying in accordance with the

unfolding dialog, but is

3. Maintained within a common understood paradigm (both parties speak the

same language, and address the same topic)

As a result, Paine’s model (2002) forms a dynamic method of interaction, ‘with each

of the parties constantly monitoring the responses of the other and using their

interpretation of the parties’ input to make alterations to their own response

strategy’174. With such a model, the responses are therefore proposed to be more

appropriate to interactions that are not based on conventional musical formalisms. For

example, ‘when the input to the interactive system is a human gesture, it is

questionable whether a musical construct, constrained by the precedents of historical

musical practice (chromatic music for instance), is an appropriate response’175.

Indeed, there is no perquisite for the Genesis system to use musical instrument-based

sound-objects, therefore implicating that an approach which offers gestural

communication from any sound source and indeed gestures that are not defined in

musical formalisms is necessary.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

172	
 Paine,	
 G.	
 2002.	
 Interactivity:	
 Where	
 to	
 from	
 Here?.	
 Organised	
 Sound	
 7(3):	
 297	

173	
 Ibid	

174	
 Ibid	

175	
 Ibid:	
 298	

	
 108	

Therefore, Genesis must be able to create ‘novel circumstance’176, unique and relative

to its generative and analytical processes. Of most importance however is a dialog

between human and computer that must allow the two parties to communicate

gestures through a common language, resulting in an understanding of each other’s

responses; if a common understanding is absent, the generative and analytical

processes that define either party’s interaction will be irrelevant to the musical context

defined by the received responses. This understanding of each other’s responses is

dependent on the representation of sonic features and the perceptual models that

define their musical values. Through these commonly understood representations of a

sound-object it is then possible to construct the desired mappings for the required

model of interaction between the human and the computer, as described by the four

models proposed by Winkler (2001).

When considering interaction with interactive music systems that conforms to a

musical instrument paradigm such as a live instrumentalist, which Genesis allows,

interaction of gestures can be categorised into performative, communicative and

ancillary. In summary, ‘performative gestures produce sound, and communicative

gestures (nods, eye contact, and similar cues) direct other performers. Ancillary

gestures – intuitive body movements of the performer while playing – are expressive

or emotive gestures that communicate musical meaning to the observer’177. Therefore,

auditory, physical and visual actions may be used to communicate gestures and

interact with digital music systems. Through such gestural classifications, relative

mappings can be defined to their respective characteristics, increasing the potential

understanding of communication between a human user and a system, thereby

improving the interactive method.

Within the proposed gestural categories associated with sound generation and control,

a variety of methods have been applied to transfer analogous signals into the digital

domain. However, there is a clear division between controllers that are founded on

existing musical instruments and innovative ones (Sapir, 2002). For example

VideoHarp (Rubine and McAvinney, 1990), Radio Drum (Matthews and Schloss,

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

176	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

177	
 Overholt	
 et	
 al.	
 2009.	
 A	
 Multimodal	
 System	
 for	
 Gesture	
 Recognition	
 in	
 Interactive	
 Music	
 Performance.	
 Computer	
 Music	

Journal	
 33(4):	
 72	

	
 109	

1989) and Hyperinstruments (Machover and Chung, 1989) are extensions of

conventional musical instruments, adapted to offer increased gestural control of

existing instruments. In contrast, Bodycoder (Wilson-Bokowiec and Bokowiec,

1995), GloveTalk (Fels and Hinton, 1993) and GAMS (Bauer and Foss, 1992) make

use of physical body movements to dictate interactions. Furthermore, bioelectronics

has been applied in systems such as Biomuse (Knapp and Lusted, 1990), which uses

the electric signals in the brain to interact with digital music software.

Indeed, many generic methods of physical interaction are commercially available,

such as the Korg NanoKontrol or the AKAI MPD series, alongside many piano

keyboard-based controllers, which offer a series of knobs, sliders, keys and pads that

can be assigned to MIDI CC numbers for limited control of sonic features within an

interactive system such as note onset, amplitude and pitch. Moreover, the computer

keyboard and mouse can also be assigned to trigger events or manipulate values

through the X/Y axis of the mouse input. However, such interactions are often bound

to a limited instrumental paradigm due to the restricted level of gestural control

available; in comparison to Bodycoder (Wilson-Bokowiec and Bokowiec, 1995) in

which a glove is worn in combination with sensors placed on the user’s body to form

a multidimensional control system, the click of a mouse, press of a MIDI piano key or

turn of a knob would appear rather arbitrary.

However, it is necessary to consider the relative nature of the interactive system to the

interface method. Commercially available software such as Ableton, Logic, ProTools

and Cubase incorporate sequencing principles, through which ‘audio signals or MIDI

messages from an external instrument are captured in real-time, after a record button

is pressed’178. Therefore a tape recorder metaphor can be applied in which the actions

of the user are recorded, ready for playback and manipulation. Furthermore, in order

to perform edits and alterations to the sequenced material, many window-based

metaphors of physical instruments and equipment are employed, which can be

controlled by keyboard, mouse and MIDI CC controllers, resulting in the user being

able to interact with the sequenced data by moving virtual sliders, knobs and keys

through their MIDI devices and/or computer keyboard and mouse.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

178	
 Nash,	
 C	
 and	
 Blackwell,	
 A.	
 2011.	
 Tracking	
 Virtuosity	
 and	
 Flow	
 in	
 Computer	
 Music.	
 Proceedings	
 of	
 the	
 ICMC’11:	
 578	

	
 110	

Nevertheless, when applying such metaphors for the physical manifestations of

musical instruments and equipment ‘a gulf opens up between the user’s concept of

music and what is easily encapsulated in the notation… The overly metaphorical

correspondence to physical music equipment also means that interacting through

generic devices, like the mouse, become cumbersome’179. However, using such

metaphors of existing physical manifestations of musical equipment offers a

significant degree of accessibility, allowing the user to engage with known

conventional and generic parameters, validating the application of such devices for

consumer use.

With Genesis, the primary method of control is through the sonic features of real-time

sound-objects, through which its generative processes create outputs relative to its

auditory inputs. Considering that human instrumental performers can provide such

inputs, it is absolutely necessary to use a familiar musical paradigm, combined with

an interface that captures and generates gestures satisfactorily; the implementation of

musical paradigms will enable instrumentalists to better understand the generative

processes of Genesis thereby ensuring a commonly understood paradigm between

human performer and machine. Moreover, the design of the Genesis system must

exceed the limitations of MIDI and associated software in order to form an

extensively interactive music system while still maintaining accessibility to associated

human performers.

Wessel and Wright (2002) consider that interactive systems should have a ‘low entry

fee’, thereby acknowledging the need for accessibility to be a key focus in the design

of interactive music systems. Yet, standardised and generic MIDI controllers and

physical interfaces ‘seem – after even a brief period of use – to have a toy-like

character… one quickly “out-grows” the interface by discovering the limits of how it

can be used’180. Therefore, not only do such devices often not reflect the true nature of

the physical parameter they are controlling, as proposed by Nash and Blackwell

(2011), they are also limited in their ability to convincingly offer intimate, interesting

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

179	
 Nash,	
 C	
 and	
 Blackwell,	
 A.	
 2011.	
 Tracking	
 Virtuosity	
 and	
 Flow	
 in	
 Computer	
 Music.	
 Proceedings	
 of	
 the	
 ICMC’11:	
 578	

180	
 Wessel,	
 D	
 and	
 Wright,	
 M.	
 2002.	
 Problems	
 and	
 Prospects	
 for	
 Intimate	
 Music	
 Control	
 of	
 Computers.	
 Computer	
 Music	

Journal.	
 26(3):	
 12	

	
 111	

and expert-level control of musical parameters and unsuitable for systems such as

Genesis.

In contrast, considering extensive interaction methods, which offer significantly more

gestural and intimate control of interactive systems than standardised and generic

controllers, ‘most traditional acoustical musical instruments are not easy to play at

first but afford the development of a high degree of musicality’181. So, such a notion

would affirm that extensive interaction methods should also offer such degrees of

musicality. However, in contrast to the supposed steep learning curve of existing

musical instruments, it is proposed that for such interaction methods ‘a high degree of

control intimacy can be attained with compelling control metaphors, reactive low

latency variance systems, and proper treatment of gestures that are continuous

functions of time’182. Therefore, such an approach is vital to ensure the success of

interaction between a human user’s real-time sound-objects and the responses of the

Genesis system.

Despite the proposition of a ‘low entry fee’ for interaction with Genesis, considering

the complex learning process associated with existing acoustic musical instruments,

such a pedagogical process is necessary for a user to master new, extensive interactive

methods; although the learning curve may not be as steep for novel gestural control of

interactive music systems, the ability to obtain an expert-level of control and

interaction still requires a significant amount of learning from the user to develop

their musicality and understanding of the system’s interactive properties, leading to a

perceived virtuosity.

Though, when considering interactive music systems ‘the primary virtuosity is not at

the level of the instrument itself, but rather below the instrument at the strata of

hardware and code… Virtuosity in contemporary musical composition can therefore

be defined as the skill of designing and understanding constraints’183. So, it has been

suggested that for truly virtuosic performance with interactive music systems, there is

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

181	
 Wessel,	
 D	
 and	
 Wright,	
 M.	
 2002.	
 Problems	
 and	
 Prospects	
 for	
 Intimate	
 Music	
 Control	
 of	
 Computers.	
 Computer	
 Music	

Journal.	
 26(3):	
 12	

182	
 Ibid:	
 12	

183	
 Magnusson,	
 T.	
 2010a.	
 Designing	
 Constraints:	
 Composing	
 and	
 Performing	
 with	
 Digital	
 Music	
 Systems.	
 Computer	
 Music	

Journal.	
 34(4):	
 70	

	
 112	

a necessity for the user to also be the designer, thereby constructing and coding the

methods through which interaction and sound generation can be achieved, relative to

their desired conceptual constraints.

Furthermore, Magnusson (2010a) proposes that ‘virtuosity in new digital instruments

thus relates to the understanding of the system’s core, an understanding typically

achieved from the process of being its designer’184. Therefore, much commercially

available software in which the user is not the designer limits the degree of virtuosity;

in order to achieve such virtuosic performance, the user must follow the provided

musical paradigms and metaphors that must be fully understood and be relevant to

their desired compositional approach. So, considering that ‘sadly but understandably,

the electronic music instrument industry, with its insistence on standard keyboard

controllers, maintains the traditional paradigm’185, this inherently limits virtuosic

potential of such systems and indeed, the musical style to those bound by

conventional music theory.

Therefore, the implications of using a ‘conventional’ approach to interaction design

through the use of a musical instrument paradigm, present in much commercial

software, are that ‘musicians are already familiar with them and can easily exploit

their performance skills learnt over years of practice’186; recognisable musical values

and conventions are required such as pitch, duration and onset through which the user

can readily associate their interactions with the musical formalism applied within such

an interactive system. Consequently, a familiar musical relationship can be formed

between the user and the system, with the possibility that such an approach may yield

better understanding by the user of the techniques applied in the system’s responses.

So, a more successful outcome is possible as the user and system are interacting

through a method that is commonly understood.

In contrast, such instrumental approaches may lead to confusion; ‘new themes of

reflection arise when gesture is no more linked to sound production and when

traditional expressions of virtuosity hardly find place in the music which is

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

184	
 Magnusson,	
 T.	
 2010a.	
 Designing	
 Constraints:	
 Composing	
 and	
 Performing	
 with	
 Digital	
 Music	
 Systems.	
 Computer	
 Music	

Journal.	
 34(4):	
 70	

185	
 Drummond,	
 J.	
 2009.	
 Understanding	
 Interactive	
 Systems.	
 Organised	
 Sound.	
 14:	
 124-­‐133	

186	
 Sapir,	
 S.	
 2002.	
 Gestural	
 Control	
 of	
 Digital	
 Audio	
 Environments.	
 Journal	
 of	
 New	
 Music	
 Research.	
 31(2):	
 120	

	
 113	

performed’187. As a result, it is also possible that through the use of instrumental

approaches, gestures and actions may be lost in translation due to the inherent nature

of an instrument’s inability to demonstrate successfully the user-perceived action,

which may fall outside of musical formalisms such as pitch, duration and onset.

Therefore, a primary focus in designing and implementing Genesis was to limit the

degree of confusion between a gesture and the system’s response while still

presenting a significantly complex system that may have virtuosic potential.

It is necessary to consider the relatedness of a gesture to a resulting response from an

interactive music system. Overholt (2009) poses three key questions regarding the

relationship of gesture and the outputs of interactive music systems188; How intuitive

are the gestures?, How perceptible are the gestures? and How physical/powerful are

the gestures? As a result, the challenge with Genesis is to obtain relevant gestural

information from real-time sound-objects and apply it successfully to relatable

mappings which are intuitive, perceivable, and relative to the effort at source.

Primarily, in order to achieve congruency between the perceivable gestures of a real-

time sound-object and Genesis, a method of interfacing such communication is

necessary. MIDI, as noted, is not suitable for such a process; ‘MIDI as a musical

representation afforded interactive music systems access to very high-level, symbolic

description of the music being played into the system and manipulated within.

Because ‘notes’ were already clearly defined in terms of pitch, amplitude, onset and

offset times, high level analyses including beat tracking (Desain and Honing, 1999),

key induction (Toiviainen and Krumhansl, 2003), segmentation (Cambouropoulos et

al., 2001), style identification (Dannenberg et al., 1997) and more could be performed

from a relatively secure foundation’189.

As a result, a number of communication protocols have been developed that allow

considerably more intimate control of interactive music systems and are therefore

implemented in the Genesis system; ‘the Open Sound Control standard (OSC) is one

of the most direct approaches to resolving the networking and representational

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

187	
 Sapir,	
 S.	
 2002.	
 Gestural	
 Control	
 of	
 Digital	
 Audio	
 Environments.	
 Journal	
 of	
 New	
 Music	
 Research.	
 31(2):	
 120	

188	
 Overholt,	
 D.	
 2009.	
 The	
 Musical	
 Interface	
 Technology	
 Design	
 Space.	
 Organised	
 Sound.	
 14(2):	
 218	

189	
 Rowe,	
 R.	
 2009.	
 Split	
 Levels:	
 Symbolic	
 to	
 Sub-­‐Symbolic	
 Interactive	
 Music	
 Systems.	
 Contemporary	
 Music	
 Review	
 28(1):	

32	

	
 114	

limitations of MIDI (Wright and Freed, 1997). Other platforms have been shaped by

international standards organizations, or by their connection to existing languages.

Two of these are the Structured Audio Orchestra Language (SAOL) (Vercoe et al.,

1999) and JSyn (Burk, 1998)’190. OSC is perhaps the most commonly applied

alternative to MIDI, offering the application of extensive subsymbolic representation

of sonic features, and indeed, also highly symbolic methods of representation if

required.

Through the OSC communication protocol, it is possible to communicate significant

levels of subsymbolic data such as the timbral changes over time of an acoustic

instrument through subsymbolic representations of timbre (for example MFCCs)

obtained from machine listening algorithms or the finger movement of a glove such as

SoniMime (Fox and Carlile, 2005) for the intimate manipulation of timbral mappings

within a synthesiser. With this level of gestural control data, considerable

expressiveness unattainable through MIDI is achievable, thereby increasing the

perceptible physical interaction with an interactive music system, consequently

making performances more spectacular, as proposed by Sapir (2002), and

significantly increasing the degree of virtuosity.

Open source software environments such as SuperCollider, CSound, Pure Data and

Chuck and a limited selection of commercial software such as Max/MSP offer users

the opportunity to build their own interactive systems using the OSC communication

protocol, through which innovative and complex interaction controllers can be

applied, thereby offering the potential to create virtuosic interactive music systems. In

such software, the user is often presented with a modular method of interactive

system design, in which individual modules such as sound generators, envelopes,

generative algorithms and filters can be patched together.

Consequently, through the programming languages exclusive to the software

environments, the user can create unique interactive systems for use with interaction

methods of their choice and design. For example, Phalanger (Kiefer, Collins and

Fitzpatrick, 2009), ixi lang (Magnusson, 2010a), iXiQuarks (Magnusson, 2007) and

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

190	
 Rowe,	
 R.	
 2009.	
 Split	
 Levels:	
 Symbolic	
 to	
 Sub-­‐Symbolic	
 Interactive	
 Music	
 Systems.	
 Contemporary	
 Music	
 Review	
 28(1):	

33	

	
 115	

Squeezables (Weinberg and Gan, 2001) use such software to create novel interaction

systems, extending interaction far beyond that found in most commercial software.

Therefore, Genesis required also a suitable programming language to implement and

design the desired interactive, generative and analytical processes of real-time

manipulation of sound-objects through an OSC interface. The SuperCollider 191

programming language offers the required interfacing methods of OSC combined

with extensive GUI objects and generative/analytical unit generators making it an

appropriate choice to realise the Genesis system.

In terms of designing the Genesis system relative to the fundamental principle of

using the sonic features of real-time sound-objects for control of its generative

processes, it was necessary to consider how its design should be approached. For

successful design in interactive music systems, a variety of considerations were made

with Genesis relative to the field of Human-Computer Interaction (HCI), which uses

the concepts of affordances, constraints and mappings (Magnusson, 2010a). Both the

concepts of affordances and constraints are based on ecological psychology, and thus

have no conclusive definition, owing to many varied interpretations. Therefore, for

the purposes of this thesis, affordances are considered to be the properties that an

interactive music system offers, with constraints being the constructed limitations of

the system.

Affordances of complex interactive music systems are often imperceptible, or at the

very least, unpredictable, limiting the applicability of affordances in the design

process in such instances. Instead, the design process of such systems should

prioritise constraints as a method of forming an instrument’s design strategy

(Magnusson, 2010a). Such an approach indeed counters the method of design to

conventional acoustic instrumentation, and simple interactive systems; ‘instrument

makers actively design affordances according to their understanding of musical

performance and composition’192.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

191	
 McCartney,	
 J.	
 2002.	
 Rethinking	
 the	
 Computer	
 Music	
 Language:	
 SuperCollider.	
 Computer	
 Music	
 Journal	
 26(4):	
 61-­‐68	

192	
 Magnusson,	
 T.	
 2010a.	
 Designing	
 Constraints:	
 Composing	
 and	
 Performing	
 with	
 Digital	
 Music	
 Systems.	
 Computer	
 Music	

Journal.	
 34(4):	
 64	

	
 116	

But, considering the relative complexity of intimate sound generation and control, and

the data bandwidths required for complex interactive music systems such as the

extensive full-body gestural controller GAMS (Bauer and Foss, 1992), the bow

vibrating a string on a violin or beater hitting a skin on a drum represents the

significantly limited application of constraints in acoustic instruments, and therefore

the use of high-level affordances in their design process.

So, with regards to interactive music systems, a mapping ‘is the location where

constraints are defined and the instrument’s functionality constructed’193. In terms of

acoustic instruments, mappings are the physical gesture that connects the performer

and instrument, which, as demonstrated, feature few constraints and therefore few

mappings. With complex interactive music systems, the constraints are increased

considerably, thereby necessitating many mappings to subsymbolic features such as

timbre. As noted, most commercial software features an instrumental paradigm, often

implemented through MIDI, which offers a relatively unified approach to mapping

design such as key note number to pitch or key Note On to onset.

Indeed, Paine (2009) proposes a specific unified approach to the mappings of new

interactive music systems, which provides guidelines for the design of novel gestural

controllers and their consequent constraints and subsequent mappings. Paine’s (2009)

research demonstrates that through representing gesture in models outside of the

instrumental/MIDI paradigm with the Nintendo WiiMote and the Intuos3 Wacom

Tablet, including the physical mappings of pressure, speed, angle and position for the

control of selected systems, it is indeed possible to move toward a unified approach to

interface and interactive music system design. Yet, when considering the complexities

of mapping with extensive interactive music systems, such a unified approach is

currently unachievable.

If we are to consider the perceptual spaces of defining sound parameters through

mappings, a determined level of ambiguity arises; which gesture should be applied to

which parameter mapping? For example, through the use of novel gestural controllers

such as the WiiMote, which gesture available in the three-dimensional gesture space

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

193	
 Magnusson,	
 T.	
 2010a.	
 Designing	
 Constraints:	
 Composing	
 and	
 Performing	
 with	
 Digital	
 Music	
 Systems.	
 Computer	
 Music	

Journal.	
 34(4):	
 65	

	
 117	

of an X/Y/Z axis, accelerometers and trigger buttons should be mapped to timbre?

Indeed, perhaps all three-dimensions, with the X/Y/Z axis allowing for acute

adjustment of timbral qualities, the accelerometers providing intense timbral shifts

and the trigger buttons ‘freezing’ the current timbral space.

But this is one such possibility, and therefore other methods may provide a more

successful gestural control space. And what of other constraints that may need to be

controlled at the same time? How are they also to be manipulated by this three-

dimensional gesture space in tandem with timbre? Such suppositions reiterate the

relative complexity in designing constraints and their associated mappings within

extensive interactive music systems.

Arfib et al (2003) propose criteria for the catergorisation of mappings, defined as

‘explicit/implicit, simple/complex, and dynamic/static’ 194 . In summary, explicit

mappings provide definitive links between the input and the output, with implicit

mappings being ‘considered a black box for which we define behaviour rules but not

precise values’195. Complex mappings are defined as many gestural parameters to

many mappings, while simple mappings are one gestural parameter to one mapping.

Finally, a dynamic mapping evolves and adapts over time, modifying its mapping

hierarchy and parameters, while a static mapping remains constant, continually

applying the same mappings throughout its application.

Therefore, if we consider Paine’s (2002) model of interaction, in which a dynamic

response strategy is proposed to be necessary to form reasoned responses to the

actions of the user, a combination of all criteria outlined by Arfib et al (2003) may be

required; such an implementation, particularly through the use of dynamic mappings,

could enable the system to make alterations to its response strategy, relative to the

data supplied though the explicit/implicit and simple/complex mappings, which could

offer an intimate gestural control stream.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

194	
 Arfib	
 et	
 al.	
 2003.	
 Strategies	
 of	
 mapping	
 between	
 gesture	
 data	
 and	
 synthesis	
 model	
 parameters	
 using	
 perceptual	

spaces.	
 Organised	
 Sound	
 7:	
 130	

195	
 Ibid	

	
 118	

However, with regard to the requirement of a low entry fee (Moreover, Wessel and

Wright, 2002) for interactive music systems, a system that has the ability to change

dynamically accompanied with extensive implicit and complex mappings may hinder

the pedagogical process; responses may differ substantially from one interaction to

the next, confusing a new user and limiting their understanding of a system’s

generative processes. Therefore, in order to achieve accessibility, and maintain

continuity and predictability in Genesis’s outputs, a combination of static, explicit and

simple mappings are applied to aid a user to engage and learn the response types to

the user’s inputs.

In addition to Arfib et al’s (2003) criteria regarding mapping categorisation,

Magnusson (2010b) considers an epistemic dimension space in which mappings can

be applied relative to the constraints of autonomy, music theory, explorability,

required knowledge, improvisation, generality, creative simulation and expressive

constraints, shown in Figure 5 below196:

Figure 5: An Epistemic Dimension Space for Musical Devices

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

196	
 Magnusson,	
 T.	
 2010b.	
 An	
 Epistemic	
 Space	
 for	
 Musical	
 Devices.	
 Proceedings	
 of	
 NIME’	
 2010:	
 44	

	
 119	

Magnusson (2010b) describes the constraints illustrated in Figure 5 as ‘parameters

that are unique to heavily abstract, conceptualized and symbolically designed musical

tools’197. Such a supposition again reflects the relative complexity of interactive music

systems in comparison to standardised musical instruments, and the necessity to

implement high-level constraints in the design process for Genesis.

Yet, with the implementation of high-level constraints, the greater the variety between

each interactive system’s interactive method. Consequently, this results in difficulties

in the pedagogical approach to performing with such systems and increases the limit

on the number of users, outside of the designer, to successfully perform with the

system. Indeed, significant attempts have been made to offer a ‘low entry fee’

(Moreover, Wessel and Wright, 2002) in systems that are formed of high-level

constraints. For example, ixi lang (Magnusson, 2010a), which centres on creating

expressive constraints through a ‘musical live coding programming language that

frees performers from having to think at the level of computer science’198, still

requires substantial commitment from the user to understand an overview of the

system’s constraints, severely limiting its accessibility and applicability to interactive

methods outside of itself.

The fundamental method of interfacing with an interactive music system such as ixi

lang (Magnusson, 2010a), the process of musical live coding, is an increasingly

popular approach to interacting with interactive music systems; software

environments such as SuperCollider, implemented in Genesis, allow the user to define

through computer code, executed in real-time, a wide range of musical phenomena,

such as sound-objects that are generated in real-time through a selected synthesis

method, visual projections of such sonifications, and unique GUI interfaces for

control of an ongoing musical process.

Therefore, musical live coding practices allow the user to create interfaces in real-

time for musical performance through the abstraction of computer programming code.

Such an interaction process is perhaps the absolute antithesis to an instrumental

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

197	
 Magnusson,	
 T.	
 2010b.	
 An	
 Epistemic	
 Space	
 for	
 Musical	
 Devices.	
 Proceedings	
 of	
 NIME’	
 2010:	
 43	
 -­‐	
 46	

198	
 Magnusson,	
 T.	
 2010a.	
 Designing	
 Constraints:	
 Composing	
 and	
 Performing	
 with	
 Digital	
 Music	
 Systems.	
 Computer	
 Music	

Journal.	
 34(4):	
 69	

	
 120	

paradigm for interaction with interactive music systems; ‘yet we do not wish to be

restricted by existing instrumental practice, but to make a true computer music that

exalts the position of the programming language, that exults in the act of

programming as an expressive force for music closer to the potential of the

machine’199. So, it is considered that musical live coding affords a form of expression

that is fundamentally relative to the mechanisms of the machine, without the necessity

for musical descriptors, and instead, within the syntax of the programming language.

Indeed, with the implementation of musical live coding as an interaction method,

constraints and mapping categorizations can be explored in real-time, during the

performance process, permitting the user to generate interactive music systems of

their design as part of the compositional process. Such a process therefore

encapsulates the essence of Magnusson’s (2010a) supposition regarding the necessity

for truly virtuosic performance with interactive music systems to require the

performer to also be the designer.

Yet, the accessibility of systems constructed through musical live coding for others

outside of the designer requires an understanding of the significant abstraction from

commonly applied musical terminology, and the constraints through which the

abstraction is implemented, posing a serious detraction for users without such

computer programming knowledge, or those requiring musical metaphor and analogy

for the descriptions of affordances, constraints and mappings in an interactive music

system.

Moreover, live coders such as slub (Alex McLean and Adrian Ward), a duo who write

their own software languages for live coding ‘control music using user interfaces

created by and for themselves’200, resulting in systems which are absolutely not

designed for use with or by others. Of course, it is the prerogative of the designer who

is to use (or not) their system but it is necessary to demonstrate that interactive music

systems have been constructed without the acceptance of other users, other than

designers themselves. Such an approach may indeed prove advantageous, as the

system can be formed representing explicitly the designer’s own perceptions and

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

199	
 Collins	
 et	
 al.	
 2003.	
 Live	
 coding	
 in	
 laptop	
 performance.	
 Organised	
 Sound	
 8(3):	
 322	

200	
 Ibid:	
 323	

	
 121	

characterisations of sonic features, thereby furthering the degree of possible virtuosity

shown through a performer and their interactive music system.

However, in an instance whereby users other than the designer are to perform with an

interactive music system, ‘newcomers are very cautious when exploring a new

instrument: the first gestures allow them to ‘get an idea’, to make a mental map’201.

So, if a gesture cannot be communicated by the user through such an abstraction as

computer code, then such an interaction method as live coding is not only absent of a

low entry fee (Moreover, Wessel and Wright, 2002) but also a commonly understood

paradigm through which to exchange interactions.

Considering Overholt’s (2009) key questions regarding the relationship of gesture to

the outputs of interactive music systems, through a live coding methodology, it is

proposed that in reference to the intuitiveness of a gesture, this is directly relatable to

the knowledge and understanding of the user of computer programming for musical

composition and the software applied. For the perceptibility of a gesture by an

audience, unless significant attempts are made to project the interfaces of a live

coder’s system, it is not possible to make links between the user’s inputs and the

outputs of the system as the audience are simply witnessing a performer typing on a

laptop.

Moreover, if a projection of the coding is used, understanding by the audience of the

computer programming code is a necessity, as the musical abstraction into code bears

few musical descriptors from which to make such links. Indeed, the physicality of the

gesture in live coding methods remains constant, and minimal; the user can only

communicate gesture through the computer keyboard and mouse. Therefore, the

physical effort does not match the generation of a complex, evolving and dynamic

sound-objects made possible through live coding.

Due to live coding’s limited accessibility to instrumentalists, combined with its

restricted gestural capabilities that further hinder its approachability to

instrumentalists, Genesis extends the instrumental paradigm with the option of using

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

201	
 Arfib	
 et	
 al.	
 2003.	
 Strategies	
 of	
 mapping	
 between	
 gesture	
 data	
 and	
 synthesis	
 model	
 parameters	
 using	
 perceptual	

spaces.	
 Organised	
 Sound	
 7:	
 141	

	
 122	

live coding techniques for those users who wish to generate novel sound-objects to

pass through the Genesis system. As a result, the fundamental interactive method of

Genesis is approached through conventional musical values in combination with

perceptual spaces such as psychoacoustic data with acute modification and toggling of

its various generative and analytical processes through a familiar and manageable

graphical user interface space. Through such an approach, it is proposed Genesis can

implement high-level constraints, alongside an accessible method of musical narrative

that offers reasoned responses to the interactions between the user and the system,

which increases the user’s understanding of the interactive methods, thereby enabling

potential virtuosity.

Other systems which apply similar fundamental principles of sound-object control for

selected generative processes, as found in Genesis, follow similar interactive

approaches. The imitative synthesis method (Grey, 1975; Wessel, 1979; Beauchamp,

1982) establishes such an extension of an instrumental paradigm through the

reinterpretation of the perceptual spaces of harmonic instruments via musical and

psychoacoustic descriptors; a ‘musical excerpt is first analysed and then represented

according to perceptual and signal features, keeping a description of links between the

kinds of features. Then, we can move into the perceptual spaces representing the

sound and use gestures to synthesise the sound from perceptual features’202. With such

an implementation explicit and implicit mappings can be applied, through direct,

linear links between the perceptual spaces and their associated synthesis values, in

combination with generative algorithms such as artificial neural networks for adaption

of these mappings, which allows the user to ‘warp, change, invent an instruments

from another one’203. Therefore, such a system affords considerable creativity and

exploration of timbral parameters through an extended instrumental paradigm.

Adaptive digital audio effects (Verfaille and Arfib, 2001) present a variation in the

principle of the imitative synthesis method; features are extracted from sound-objects

for consequent mapping to selected parameters of chosen audio effects such as pitch

shifters, phase vocoders, filters and time stretchers. Therefore, many low-level sonic

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

202	
 Arfib	
 et	
 al.	
 2003.	
 Strategies	
 of	
 mapping	
 between	
 gesture	
 data	
 and	
 synthesis	
 model	
 parameters	
 using	
 perceptual	

spaces.	
 Organised	
 Sound	
 7:	
 133	

203	
 Ibid	

	
 123	

features such as ‘the RMS energy, the spectrum centroid, the fundamental frequency,

and the voiced/unvoiced status’204 can be isolated, relative to the applied machine

listening algorithms.

The outputs of the machine listeners, and the musical gestures they identify, can then

be explicitly mapped to their audio effect counterpart for macro-level manipulation,

such as the fundamental frequency to a pitch shifter’s fundamental pitch parameter

assigned to the overall pitch of the response, or to the micro-level, such as a timbral

modification achieved through adjustment of a granulation process’s density relative

to the perceived spectral density of a signal. Indeed, such mappings may also be

implicitly linked through generative processes such as an artificial neural network,

enabling considerable adaptivity when engaging with such a system.

Furthermore, methods such as concatenative synthesis (Schwarz, 2006; Casey, 2004;

Lazier and Cook, 2003; Momeni and Mandel, 2005) use feature extraction from

auditory sources (a target) to identify sonic features that match the sonic features of

sound-objects represented within a database, with ‘the best match’ used as the output.

Such an approach aims to remove the need to manipulate a resulting sound-object

through external digital signal processing such as filters, pitch shifters and time

stretchers. However, the concatenative synthesis approach still requires extensive

mapping of identified sonic features in the target relative to prescribed descriptors of

the sonic features within the database. As a result, congruency between the sonic

characteristics and gestures within both the target and database is paramount,

necessitating extensive consideration of the perceptual and musical spaces through

which to control the ‘best match’ algorithms.

Therefore, when auditory sources are used as sound-objects to control algorithmic

processes, as in the case of Genesis, such as a live instrumentalist, in conjunction with

an interactive music system, the intuitiveness of the system is thereby relative to the

applied perceptual spaces of the auditory source and their consequent mappings and

constraints. Furthermore, a well-founded mapping will increase the perceptibility for

the audience of the relationship between the gestures and the system’s responses, with

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

204	
 Arfib	
 et	
 al.	
 2003.	
 Strategies	
 of	
 mapping	
 between	
 gesture	
 data	
 and	
 synthesis	
 model	
 parameters	
 using	
 perceptual	

spaces.	
 Organised	
 Sound	
 7:	
 139	

	
 124	

such a logical mapping also being relative to the physicality of the gesture, resulting

in an increase in the perceived virtuosity in the performance by the audience and is

thus implemented in Genesis. In chapter 6 Evaluation of the Genesis System, the

methodology is tested relative to its ability to achieve successful interaction with real-

time sound-objects and its capability to form a unified real-time creative process

between human and machine.

4.2 Composition with Real-time Interactive Music Systems

The Genesis system is designed to be applied in real-time. Therefore is it is necessary

to consider the compositional methods that can used in real-time, which can be

categorised into score-driven and performance-driven (Rowe, 1993). A score-driven

system has ‘embedded knowledge of the overall predefined compositional structure.

A performer’s progress through the composition can be tracked by the system in real-

time, accommodating subtle performance variations such as a variation in tempo’205

applied by composers such as Manoury, Boulez, Lippe and Settle (Cont, 2011). In

contrast, a performance-driven system has ‘no preconstructed knowledge of the

compositional structure or score and can only respond based on the analysis of what

the system hears’206 as demonstrated in Lewis’ Voyager (Lewis, 2000).

So, in the case of an interactive system that is score-driven, a compositional structure

is provided before musical performance, through which the system is able to monitor

the user’s interactions relative to the score. Consequently, the system’s outputs can be

generated relative to the predefined compositional structures present in the score and

the generative processes applied to create its responses. Conversely, a performance-

driven system is unaware of a predefined compositional structure, only using the data

provided in real-time from the interaction device to form its responses, which are

generated by the applied generative algorithms in the system.

In terms of the products of such interactive methods, score-driven systems, due to

their reliance on predefined compositional structures that are known prior to

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

205	
 Drummond,	
 J.	
 2009.	
 Understanding	
 Interactive	
 Systems.	
 Organised	
 Sound.	
 14:	
 127	

206	
 Ibid:	
 128	

	
 125	

performance, are often highly predictable in their development over time.

Furthermore, score-driven systems are ‘typically programmed to follow the performer

faithfully’207, as the interactions of the user must be formed of symbolic data, which is

directly relatable to the musical representations in the score. Thus, the outputs

generated by the system are often similar to the interactions of the user.

On the other hand, performance-driven systems are proposed to be improvisatory by

default in their interactions, as their outcomes are not relative to a predefined

compositional structure, thereby forming a significantly more unpredictable response

to the user relative to the data it is provided with and the level of unpredictability

applied in its generative algorithms. In addition, due to the absence of a score, the use

of symbolic data to communicate interactions is not a necessity. Therefore,

subsymbolic methods of representation are more applicable in such a method,

offering users an increased level of gestural interaction with the system.

However, it has been proposed that indeed both score-driven and performance driven

compositional methods can be combined to form virtual scores (Manoury, 1990); ‘a

virtual score is a musical organisation in which we know the nature of the parameters

that will be processed but not their exact outcome at runtime since they’re expressed

as a function of live performance’208. Therefore, a virtual score (Manoury, 1990)

‘consists of electronic programs with fixed or relative values/outcomes to an outside

environment’209. Consequently, the real-time interactions of a system, and the real-

time generative processes that define the responses of the real-time interactions, exist

within musical time and must form the musical score, thus generating the resulting

composition. Indeed, Genesis is implemented to accommodate such a compositional

method through its use of generative and analytical algorithms, which respond in real-

time to the musical and psychoacoustic values provided in real-time sound-objects.

Though, a distinction must be made regarding the perceived differences between

composition and improvisation, as the real-time generation of musical material during

performance is often considered improvisation. Francois (2006) states ‘to give a

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

207	
 Drummond,	
 J.	
 2009.	
 Understanding	
 Interactive	
 Systems.	
 Organised	
 Sound.	
 14:	
 127	

208	
 Cont,	
 A.	
 2011.	
 On	
 the	
 Creative	
 Use	
 of	
 Score	
 Following	
 and	
 its	
 Impact	
 on	
 Research.	
 published	
 in	
 SMC	
 2011:	
 8th	
 Sound	

and	
 Music	
 Computing	
 Conference	
 2011:	
 2	

209	
 Ibid	

	
 126	

definition of the term ‘improvisation’ is a perilous matter. The three definitions most

often mentioned are not able to catch the complexity of the question: a) a musical

practice without notation; b) an oral practice of direct communication, in an

immediate manner, without any intermediary; c) a spontaneous expression of

liberated musicians’210. So, this would imply that composition is the contrary, a

process in which music is practiced with notation, with intermediaries and without

spontaneity.

However, considering the compositional process, as defined in chapter 2.1 Algorithms

in the Compositional Process, the compositional process itself includes the

requirement of spontaneity for the incubation of ideas. It is also not intrinsically

reliant on determinant intermediaries as illustrated by the application of stochastic and

non-linear processes described in chapter 3.1 An Introduction to Real-time Generative

Algorithmic Systems. In addition, should it really be considered that if a musical

phrase is not notated, then it is by definition not a composition, and by default, it is an

improvisation? Surely if this statement were true, as demonstrated by the absence of

definitively representing and consequently notating a sound-object’s sonic features

and defining their musical values in chapter 3.2 A Brief Summary of Machine

Listening, all compositions have improvisational components by their very nature,

and as a result could be described as an improvisation.

Therefore, it is still necessary to define what improvisation is. Francois (2006)

suggests that ‘the art of improvisation seems to be centered on a) the ability to free

oneself of the strictness of the framework or gestural technique, in order to

concentrate on the globality of what is occurring in the moment; b) the ability to

invent along the way of the performance new sound combinations; and c) the ability

to concentrate on the present instant without having to plan ahead the musical form in

a self-conscious way’211. This is to say that improvisation is music, which is not

formed in relation to the temporal macrostructure of a composition, but of the present,

of the now, of a ‘novel circumstance’212, relative and accepting of the macrostructure

from which it is contextualized by, but not prescriptive of it.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

210	
 Francois,	
 JC.	
 2006.	
 Improvisation	
 Today,	
 Between	
 Orality	
 and	
 Writing.	
 Contemporary	
 Music	
 Review	
 25(5/6):	
 624	

211	
 Ibid	

212	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 127	

So, it must be concluded that for the purposes of this thesis, composition and

improvisation are not mutually exclusive. That composition is inherent in

improvisation, and that improvisation is inherent in composition. Within digital music

systems, the number of improvisational techniques available to the compositional

process and the number of compositional techniques available to the improvisational

process is relative to the compositional and improvisational abilities of the human and

the computer respectively. Therefore, these abilities are reliant on the generative and

analytical processes of the two parties. The model of interaction dictates the method

with which these processes can be communicated, and as a result, the level of

influence of either party on the improvisational and compositional techniques.

Considering the proposed compositional and improvisational processes, and the

models of interaction with digital music systems, the realization of composition in

real-time is a possibility. Risset (1999) concludes however ‘Composition is not – or

should not be – a real-time process. Musical notation applies time over space. It refers

the reality of the music to a representation – the score – which is out of time. This

representation suggested transformations that could not be conceived or performed in

real-time – such as symmetries with respect to the pitch or the time axis used in

counterpoint. Non real-time operation is necessary to free oneself of the arrow of time

and its tyranny, of the dictates of haste, instance, habits, reflexes. Writing music

implies prediction and elaboration. The construction of the piece may take a lot of

patience: but one should also be able to conceive it in a synoptic way, at a glance

much faster than the flow of musical time’213.

In contention of Risset’s (1999) deductions, there is an absence of a conclusive

representation of sound-objects and their sonic features for composition that are not

constructed as part of a real-time process. Therefore, compositions that are notated,

that can exist ‘out of time’214, do not truly represent the temporal changes of a sound

object’s sonic features. As a result, in the realization of compositions that exist ‘out of

time’215, the performer is required to interpret and represent the sonic features absent

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

213	
 Risset,	
 JC.	
 1999.	
 Composing	
 in	
 Real-­‐time?,	
 Contemporary	
 Music	
 Review	
 19(3):	
 37	

214	
 Ibid	

215	
 Ibid	

	
 128	

from the musical score, resolving the compositional process in real-time, thereby

incorporating the ‘arrow of time’ 216 in the performance process of a notated

composition. Thus, it is possible to conclude that the realization and completion of a

notated compositional process itself is reliant on real-time processes through its

performance.

Further to the notion of real-time processes being part of the realization of

compositional processes, indeterminate compositional techniques influence the flow

of musical time and the sound-objects that occur within a composition’s duration; the

events within an indeterminate composition do not occur ‘out of time’217. That is to

say, the events of such a compositional method are exclusive of the composition’s

notated musical time, but are still accepted as circumstantial events that are resultant

of the compositional process, thereby forming the compositional material in real-time.

In addition, the capability of digital music systems to modify, in real-time, the time-

scales with which sound-objects can be played back through time-stretching and

rearrangement, negates the requirement for ‘haste, instance, habits, reflexes’218;

musical time becomes elastic within digital music systems, allowing composers to

sustain or hasten musical events at their control. As a result, the idea that ‘writing

music implies prediction and elaboration’219 is perhaps unfounded; the capability to

modify the temporal morphology of sound-objects through real-time interaction still

allows inevitable and predictable events to be defined without notation whilst the

‘novel circumstances’ that occur from applied indeterminate techniques permits the

elaboration of such inevitable and predicable events.

The placement of music ‘out of time’220 also assumes a finite compositional process;

the resultant composition is expected to exist as a fixed entity. The use of generative

techniques in interactive digital music systems ‘is best appreciated when studied

closely, when run many times, and that true appreciation can place you in the role of

understanding everything the composer created’221. So, the ‘novel circumstance’222

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

216	
 Risset,	
 JC.	
 1999.	
 Composing	
 in	
 Real-­‐time?,	
 Contemporary	
 Music	
 Review	
 19(3):	
 37	

217	
 Ibid	

218	
 Ibid	

219	
 Ibid	

220	
 Ibid	

221	
 Collins.	
 N.	
 2003.	
 Generative	
 Music	
 and	
 Laptop	
 Performance.	
 Contemporary	
 Music	
 Review	
 22(4):	
 71	

	
 129	

inherent in many of the generative techniques indicates that such a finite description

of such compositional methods is not satisfactory and that indeed, real-time

composition represents the compositional processes of the now. Therefore the

understanding of a composer’s use of real-time compositional processes is bound to

the comparison of many performances, relative to the overall compositional goal/s of

the composer.

It is possible to conclude then, that composition can be a real-time process,

challenging Risset’s (1999) suppositions. The utility of interactive digital music

systems demonstrates the dynamic nature of the relationship between composition

and performance; through interactive music systems and the real-time processes they

can generate and analyse, the composer becomes the performer. So, a real-time

composition is indeed a real-time performance, the result of which is a composition of

the now; ‘the composer becomes at the same time the performer, while the

performance, or realization, takes on a primary importance. The musician becomes a

sort of painter: he acts directly on the quality of the realization’223.

The acceptance of a real-time compositional technique is founded in a Constructivist

approach to the analysis of music; this is to say that ‘when analysing audio art and

electronic music, technology, technique and musical style are to be taken in

account’224. This approach is not accepted universally however as reflected in Risset’s

statement that ‘our epoch is too keen on immediate satisfaction. Impatience favors

hasty, blind, reflex reaction rather than documented and thoughtful action’225. Such a

deduction implies that there is an imminent satisfaction through real-time

compositional methods, and indeed composition itself.

It is perhaps fair to state that through interactive digital music systems that offer real-

time interactive techniques, it is possible to explore musical ideas in real-time through

methods such as genetic algorithms with the possibility of satisfaction achievable by

such a process, but this does not guarantee the imminence of that satisfaction.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

222	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

223	
 Schaeffer,	
 P.	
 1952.	
 A	
 la	
 recherche	
 d’une	
 musique	
 concrete.	
 Paris:	
 Seuil	

224	
 Battier,	
 M.	
 2003.	
 A	
 Constructivist	
 Approach	
 to	
 the	
 Analysis	
 of	
 Electronic	
 Music	
 and	
 Audio	
 Art	
 –	
 between	
 instruments	

and	
 faktura.	
 Organised	
 Sound	
 8(3):	
 249	

225	
 Risset,	
 JC.	
 1999.	
 Composing	
 in	
 Real-­‐time?,	
 Contemporary	
 Music	
 Review	
 19(3):	
 37	

	
 130	

Therefore, a real-time environment must proffer predominantly satisfying sonic

outcomes, warranting the application of a real-time compositional process and the

acceptance of process by a composer as inclusive to the success of a compositional

product.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 131	

Chapter 5

The Genesis System

5.1 An Overview of the Genesis System

The Genesis system is a standalone application for Mac OS X 10.6 or higher, written

in the object-oriented programming language of SuperCollider version 3.5.3 included

on the accompanying DVD in the Genesis folder (along with the source code) and is

demonstrated in live performance scenarios in the folder Genesis Performances.

Genesis is comprised of a series of SynthDefs, stored on the SuperCollider Server,

which perform specific interactive, generative and analytical algorithmic functions.

The SynthDefs are themselves formed of UGens, which dictate the parametric values

that may be modified by the interactive, generative and analytical algorithmic

processes. The UGens define either auditory signals or control signals, which can be

sent and received internally within the respective SynthDef or routed via Busses to the

SuperCollider Client.

Within the SuperCollider Client, the auditory signals are routed between the

SynthDefs, while the control signals are wrapped as OSC messages, which are

collected and modified by real-time tasks, routines and human-defined interactions

executed on a local or networked SuperCollider Client. The modified control signals

are then sent back and received by the respective SynthDef to alter its designated

UGen parameters in real-time. In addition, much of the bussed control signal data is

abstracted and represented within the extensive graphical user interface, thereby

visually representing many of the interactive, generative and analytical processes

taking place in real-time within the Genesis system.

The fundamental principle of the Genesis system is to apply the sonic features of real-

time audio signals for modification, manipulation and arrangement of real-time

sound-objects. The real-time audio signals can be live acoustic signals generated by

instrumentalists or any other source, a pre-defined ‘Sample’ reader comprised of

	
 132	

UGens reading buffered audio or live-coded SynthDefs defining specific synthesized

sound-objects with their respective modulatable parameters. These real-time audio

signals can be placed into one of three auditory input sources within Genesis, each of

which features controls within the GUI such as amplitude and pitch adjustment,

relative to the formatting of the input source.

The three inputs each have specific sonic features extracted such as onset, pitch,

loudness and pseudo-timbral data, which are used to represent the sonic

characteristics of their respective sound-object. The purpose of each of the three

inputs is to form three control sources of which one is also a slave source; the sonic

features of the control sources dictate or influence selected interactive, generative and

analytical processes with the slave input source forming the sound-object that is to be

modified, manipulated and arranged by the interactive, generative and analytical

processes.

In addition to the sonic features of the real-time audio signal input sources dictating or

influencing selected interactive, generative and analytical processes, the Genesis

system features an extensive graphical user interface for the control of many of the

parameter settings and inclusion of particular interactive, generative and analytical

processes through the computer keyboard, mouse and optional MIDI functionality.

The parameter modifications that have been made for any interaction within the

graphical user interface are scored in real-time as live code, and stored as their

respective computer code, permitting the consequent recalling and repetition of a

particular interaction during the composition process or for use in other compositional

tasks.

In terms of the application of the real-time input audio signals, the GUI offers control

for live sampling of these inputs for consequent placement within the Sample UGens

of each control source, permitting the modification through the GUI of the newly

created recordings by the parameters of the Sample UGens. Genesis also features a

post window that offers a composer the opportunity to use live coding to generate

SynthDefs, modify the parameters of an instance of Genesis and display the current

values of the parameters controlled by many of the GUI objects.

	
 133	

Furthermore, MIDI has been implemented for basic interface control of selected

arbitrary parameter changes such as the overall amplitudes of the sound-objects. In

combination with the capability to control many of the interactive, generative and

analytical processes, the graphical user interface also provides a visualisation of the

various processes taking place within the Genesis system in real-time. Moreover, a

dynamic scoring method has been implemented to abstract and represent the results

for many of the interactive, generative and analytical processes modifying the slave

source. The dynamic scoring method is intended to visually represent the current state

of the stereo sound space generated by the instance of Genesis.

Figure 6 illustrates the architecture of the Genesis system’s interactive, generative

and analytical processes. It is important to note that all of the interaction is colour-

coded within the graphical user interface of Genesis, with yellow being control source

1, red being control source 2, and blue being both control source 3 and the slave

source. This aids the user to promptly identify which real-time input source they are

adjusting and is reflected through all diagrams of Genesis in this thesis.

Figure 6. Genesis Architecture

	
 134	

In terms of the representation of sound-objects’ sonic features in Genesis, the real-

time audio signal’s sonic features for each input are represented equally; each of the

inputs, irrespective of their input source type and source purpose, have the same

analytical processes applied at the point of input. The onsets, MFCCs, pitch, loudness

and tempo are extracted from each input source for consequent application to the

analytical and generative processes of Genesis, in addition to their visual

representation within the GUI and the dynamic scoring system.

In order for many of the generative processes to be applied to the slave source, the

slave is recorded to a series of buffers in real-time and consequently played back

through a series of granular synthesisers. The granular synthesisers applied to the

buffered slave source feature trigger, buffer position, playback rate, pan, amplitude

envelope and grain length parameters, which are controlled by the generative

processes, dictated by the real-time audio signal input sources and the graphical user

interface.

Therefore, the slave source’s resulting output is defined by the auditory input sources’

and graphical user interface modifications, with many of the generative processes that

are applied to the slave input abstracted and visually represented in the dynamic

scoring system. In addition, the slave sound-object is also recorded to a single audio

buffer prior to its recording for the granular synthesiser buffers permitting the

modification of the slave sound-object’s pitch, tempo, envelope and playback position

relative (or not) to sonic features extracted from the control sources and values

defined within the GUI.

In summary, the interactive processes are divided between real-time audio signal

interactions and graphical user interface interactions; the real-time audio signals of the

real-time audio signal input sources can modify the pitch, onset, spectral shape,

amplitude envelope and tempo of the slave input source, with the graphical user

interface controlling many of the Genesis system’s parameters such as the envelope

times of the slave input’s granular synthesisers, the amplitudes of all of the real-time

input sources within the auditory output mix and the execution of many of the

	
 135	

generative processes. All interactive processes are detailed fully in section 5.3

Interactive Processes in Genesis.

The generative processes that can be applied to the slave input feature a modified

genetic algorithm, fractal noise, Markov chains and random search, as detailed in

chapter 3.1 An Introduction to Real-time Generative Algorithmic Systems. The

modified genetic algorithm is used to explore novel settings of particular parameters

of the slave input’s granular synthesizers, fractal noise defines the buffer position,

playback rate and duration of the slave input’s granular synthesizers’ parameters, 0th-

order Markov chains control selection of random arrays created relative to the current

state of selected variables for the generation of instant parameter settings for control

sources one and two, and random search dictates the pitch, tempo, duration, onset and

arrangement of particular interactions such as the buffer position of the slave sound-

object prior to its recording for the granular synthesizers. In addition, live coding

practices can be applied to generate parameter modifications and SynthDefs for use

through the Genesis system. All generative processes are detailed fully in section 5.4

Generative Processes in Genesis.

The analytical processes within Genesis are applied through the Fast Fourier

Transform to represent each real-time input source in the frequency domain

permitting the extraction of their pitch, onsets, loudness, and tempos. In addition,

Mel-frequency cepstral coefficients (MFCCs) are applied for the representation of

pseudo-timbral features for each of the real-time input sources. It is important to note

that due to the challenges of representing perceptual processes within computational

analytical algorithms, as described in chapter 3.2 A Brief Summary of Machine

Listening, the system’s representation of such perceptual features is highly reflective

of the applied analytical UGens. All analytical processes and their influence on the

resulting compositional process are detailed fully in section 5.5 Analytical Processes

in Genesis.

Considering the application of real-time auditory sources within Genesis, it is possible

to apply both determinate and indeterminate processes within their auditory signals

for the control of the slave sound-object; the conditional structure of the real-time

	
 136	

input sources are reflected in the system by its method of reaction to the sonic

features that are present. That is to say that at the point of analysis, the Genesis

system represents the selected sonic features without explicit prejudice towards a

particular conditional structure, with the ultimate control of whether a particular sonic

feature is to be applied to a interactive, generative or analytical process dictated

through the graphical user interface.

Through the combination of the real-time interactive, generative and analytical

processes within the SynthDefs and the consequent modification of their parameters

by the real-time tasks, routines and human-defined interactions, an instance of

Genesis is capable of operating within the four different models of interaction as

proposed by Winkler (2001), as described in chapter 4.1 Interaction with Creative

Systems. For example, a Conductor Model (Winkler, 2001) may be applied through

the use of an instrumentalist’s sonic features as a control source, defining all resulting

amplitude, pitch, onset, temporal and pseudo-timbral features of a slave source

relative to the sonic features of the control sources. In contrast, a Free Improvisation

Model (Winkler, 2001) may be applied through the use of the Genesis’s ‘Call and

Response’ function, which records a control source’s audio to an audio buffer, and

generates a response by analysing prescribed sonic features of the control source to

define a formalist response, which is constructed through modification of the audio

recording’s pitch and temporal features. All methods of interaction are detailed fully

in section 5.3 Interactive Processes in Genesis.

As a result, Genesis forms a real-time composition system, offering the composer the

option of implementing different methods of local interaction on-the-fly, as well as

various interactive, generative and analytical processes to define the compositional

processes in real-time. Furthermore, the interactive, generative and analytical

processes can be communicated via a computer network using the Internet Protocol

address (IP) of the desired computer running an instance of Genesis to form a

networked global model of interaction, primarily based on the Chamber Music Model

(Winkler, 2001) through which one instance of Genesis acts as the “leader” of a

compositional process, sending selected local control data to external instances of

Genesis. The control data from the “leader” may then be then applied to dictate

	
 137	

selected local interactive, generative and analytical processes on the external

instances, which allows the external instances to control particular sonic features of its

auditory output, reflecting the nature of the Chamber Music Model’s (Winkler, 2001)

interplay between performers.

5.2 A Quick Start Guide to Genesis

Important notes BEFORE starting Genesis

1. Create a folder within your computer user’s Music folder named ‘SuperCollider
Recordings’ for live sampling functionality. The folder directory listing is as follows:

 /Users/your computer’s username/Music/SuperCollider Recordings

2. Ensure any audio file applied to the Sample UGens is STEREO, formed of two
interleaved audio channels of either .wav or .aiff format. Mono files will result in
buffer errors, and cause the system to crash.

3. Check that the sample rate of any analog inputs is the same as the sample rate of
any analog outputs. The default audio analog in and out of computers running Mac
OS X are both 44.1kHz, and are known to function correctly with Genesis

4. Ensure your computer is running Mac OS 10.6+. Systems below this are not
compatible with Genesis

5. For optimum network functionality, it is recommended to use local networks to
broadcast data between systems over ad hoc Ethernet cabling or ad hoc wireless
networks. The method offered within Mac OS X in the ‘Create Network…’ option in
the Airport Menu tab has been tested and offers suitable connection speeds for
wireless broadcasting between systems.

6. Due to the requirement of around 350kps for Genesis to send its network data, this
may inadvertently disrupt the network connection of any computers connected to the
same network. Therefore, it is advised to DISCONNECT the computer from any
network during use of Genesis unless network functionally is required.

7. Copy Genesis.dmg to your hard disk. It is not recommended to run the program
from the DVD.

8. All MIDI devices must be connected and switched on prior to Genesis intialisation.

9. Audiovisual examples of each function within Genesis, along with their respective

implementation method are detailed in section ‘5.6 Genesis Methodology with

Audiovisual Demonstrations’

	
 138	

Audiovisual example 1. Quick Start Guide in the ‘Audiovisual Examples’ Folder
on the accompanying DVD demonstrates each step in the following quick start

guide.

Step One: Setting GUI resolution and Performance options

After the loading screen has disappeared, you can select the scaling of the GUI
objects to fit your computer’s video resolution by typing in your computer’s native
resolution in the relative boxes.

In addition, if the system is showing a high peak CPU value (above 50%), click the
“Performance Hi” button. Consequently, the button will show “Performance Lo”.
(This removes the Grain Freeze process, but significantly reduces CPU demand)
shown in Figure 7:

Figure 7. Control of GUI scaling and performance

	
 139	

Step Two: Selection of input for sources and optional placement of audio files in
Sample UGens

1. Select desired input sources between an audio file (“Sample”), analog input
(“Mic”) and synthDef (“Synth”) through the input PopUpMenu objects shown in
Figure 8.

* NOTE * Yellow object is control source one, red object is control source two and
blue object is control source three/slave.

Figure 8. Input source selectors

2. If “Sample” is selected, use the “Add file…” button of the relative input source to
open a path dialog for selection of a STEREO audio file from disk shown in Figure 9.

3. Use ‘Click to Trigger…’ to output the sound-object through auditory mix, if
desired. When triggered on, button changes to grey with text “Click to Trigger On”
shown in Figure 9.

4. Adjust volume with Slider. Ensure trigger is on fi you wish to place the sound-
object into auditory mix shown in Figure 9.

Figure 9. Add file, trigger and volume controls of Control source one

	
 140	

Step Three: Placing slave granular synthesizers into the auditory mix

1. Load desired control and slave sources as demonstrated in Step Two.

2. Ensure a slave sound-object is passed into the granular synthesizers by manually
clicking the “Click to Trigger…” toggle button for the slave sound-object. The button
will turn grey, containing the text “Click Trigger On”. Leave on.

3. Ensure a control source is triggering the granular synthesizers, represented in the
GUI buttons below each control source’s MFCC display shown in Figure 10.

Figure 10. Trigger buttons relative to onsets of control source one

4. Adjust ‘Threshold’ parameters of granular synthesizers to modify each trigger’s
threshold shown in Figure 11.

5. Adjust ‘Amplitude’ parameters of granular synthesizers controlled by chosen
control source shown in Figure 11.

Figure 11. Adjustment of Threshold and Amplitude of granular synthesizers triggered
by onsets of control source one

6. Adjust master volume of granular synthesizers, to place them in auditory mix
shown in Figure 12.

Figure 12. Slider for master volume of granular synthesizers triggered by onsets of
control source one

	
 141	

An Overview of the GUI Objects within Genesis

The following figures detail the functionality of each GUI element within the Genesis

user interface:

Figure 13. Input Source Display

• Display of current pseudo-timbral data, the current input source and visual

representation of control source triggers

	
 142	

Figure 14. Control Source One Display and GUI controls

• Arbitrary controls for input source parameters (sample file loaded in Figure 14)

• Same for each control source

	
 143	

Figure 15. Granular Synthesizer display and GUI controls

• Parametric controls of the granular synthesisers

• Further modification sliders for the input sources

	
 144	

Figure 16. Further Control Source one display and GUI controls

• Parametric controls for the pan, filter, threshold, amplitude, duration, attack,

release and rate of the granular synthesiser

• Toggle buttons for initiating fractal noise process on the playback and recording

rates of the granular synthesisers

• Buttons representing current onsets triggered by the control source

• Display of spectral following current filter frequencies

• Visual display of perceived pitch and tempo

• Toggling and probability distribution control of Markov chain for generation of

random arrays relative to current state of granular synthesiser parameter

settings

• Parametric control of input sources pitch, time stretch and grain length (relative

to input type)

• Modification of spectral following filters’ bit rate, update speed and base

frequency

	
 145	

Figure 17. Example of Post Window output

• Optionally displays current numerical values of GUI objects. Toggle on/off for

this functionality shown in Figure 19

Figure 18. Example of Live Coding in Post Window

• Post window can be used to type live code

	
 146	

Figure 19. Arbitrary GUI Controls of Genesis

• Main controls for overall amplitudes of the full auditory mix, each bank of

granular synthesisers and their associated freeze processes, and the input level

of the ‘mic’ input

• Clock controls which can be synced over network

• Controls for the GUI live coding method which records GUI changes and wraps

them as live code

• Input source selection

• Live sampling controls

• Filter toggles for each bank of granular synthesisers

• Editing of GUI scale

• Performance modifier option (Performance Lo recommended for machines

running about 50% peak CPU)

• Current IP address display for network set-up

	
 147	

Figure 20. Further Arbitrary GUI Controls of Genesis and Genetic Algorithm

controls

• Network send/receive set-up controls

• Pitch fixing controls and display

• Call and Response toggle and controls

• Beat tracking toggles

• Random search functions’ toggles

• Static/Dynamic onset toggles

• Dynamic Scoring visualiser on/off toggle with option to make full screen or

mini

• Pitch following of control source one controls

• Modified GAs controls for the spectrum, envelope, duration, threshold, pan and

pitch of control source three/slave

• PopUp menu for selection of trigger for playback of control source three prior

to allocation to granular synthesiser buffers

• Envelope time modifier for control source three prior to allocation to granular

synthesiser buffers

	
 148	

Figure 21. Network OUT window and GUI controls

• Network controls for a sender instance of Genesis; controls the options

presented on all connected receiver instances of Genesis

• Toggle network control on/off on receiver

• Toggle clock sync on/off on receiver

• Change sample on receiver (bank of samples must be created prior to execution)

• Change control source on receiver

• Live sampling controls for receiver

	
 149	

Figure 22. Network IN window and GUI display

• Network controls for a receiver instance of Genesis; shows the selections set by

the sender

• Window is not interactive

• Displays network control on/off set by sender

• Displays clock sync on/off set by sender

• Displays changed samples set by sender (bank of samples must be created prior

to execution)

• Displays changed control source set by sender

• Displays live sampling controls set by sender

	
 150	

Figure 23. GUI Live Coded routines’ window and controls

• Window for when GUI live coding is initiated

• Current file name is displayed. When clicked on, routine will play. When

clicked off, routine will stop and reset

• Option to save and load files

	
 151	

Figure 24. Call and Response displays

• Window for when Call and Response is initiated

• Three key states: waiting for call, receiving call and playing response

• When waiting for call, user must present the system with sound-object

• When sound-object begins and is above a set loudness threshold, receiving call

is executed

• When sound-object’s loudness falls below a set threshold, the system will

generate a response

	
 152	

An Overview of the MIDI Implementation for the Control of Arbitrary Parameters

within Genesis

Audiovisual example on the DVD 2. MIDI Implementation.mov demonstrates the

application of MIDI for controlling arbitrary parameters within Genesis. The real-time

audio input from the Sample UGens forms control source one, with all modifications

to its parameters controlled through the Korg nanoKontrol.

Figure 25. CC numbers attributed to a Korg nanoKontrol Scene One

Figure 26. CC numbers attributed to a Korg nanoKontrol Scene Two

Figure 27. Notification of MIDI connection found posted at Genesis Initiation

	
 153	

The following code represents the parameter within Genesis and the attributed MIDI

CC Number that can optionally control its value. Listed here are the MIDI CC

numbers along with their attributed mapping to a Korg nanoKontrol, although any

MIDI compatible device with CC functionality can be assigned to the described

mappings.

 // Korg Knob 1 Scene 1

 (num == 14 && chan == 0, {{~osc0StretchSlider0.valueAction =

~rate0Spec0.map(value/127);}.defer});

 // Korg Knob 2 Scene 1

 if (num == 15 && chan == 0, {{~osc0PitchSlider0.valueAction =

~pitch0spec0.map(value/127);}.defer});

 // Korg Knob 3 Scene 1

 if (num == 16 && chan == 0, {{~grainLengthSlider0.valueAction =

~grainLengthSpec0.map(value/127);}.defer});

 // Korg Knob 4 Scene 1

 if (num == 17 && chan == 0, {{~osc1StretchSlider0.valueAction =

~rate0Spec0.map(value/127);}.defer});

 // Korg Knob 5 Scene 1

 if (num == 18 && chan == 0, {{~osc1PitchSlider0.valueAction =

~pitch0spec0.map(value/127);}.defer});

 // Korg Knob 6 Scene 1

 if (num == 19 && chan == 0, {{~grainLengthSlider1.valueAction =

~grainLengthSpec0.map(value/127);}.defer});

 // Korg Knob 7 Scene 1

 if (num == 20 && chan == 0, {{~osc2StretchSlider0.valueAction =

~rate0Spec0.map(value/127);}.defer});

 // Korg Knob 8 Scene 1

 if (num == 21 && chan == 0, {{~osc2PitchSlider0.valueAction =

~pitch0spec0.map(value/127);}.defer});

 // Korg Knob 9 Scene 1

 if (num == 22 && chan == 0, {{~grainLengthSlider2.valueAction =

~grainLengthSpec0.map(value/127);}.defer});

 // Korg Knob 1 Scene 2

 if (num == 57 && chan == 0, {{~trackingUpdateSlider1.valueAction =

~meanSpec1.map(value/127);}.defer});

 // Korg Knob 2 Scene 2

 if (num == 58 && chan == 0, {{~filterAdjuster0.valueAction =

~adjusterSpec0.map(value/127);}.defer});

 // Korg Knob 3 Scene 2

 if (num == 59 && chan == 0, {{~samplerateSlider0.valueAction =

~sampleRateSpec0.map(value/127);}.defer});

 // Korg Knob 4 Scene 2

 if (num == 60 && chan == 0, {{~trackingUpdateSlider2.valueAction =

~meanSpec1.map(value/127);}.defer});

 // Korg Knob 5 Scene 2

 if (num == 61 && chan == 0, {{~filterAdjuster1.valueAction =

~adjusterSpec0.map(value/127);}.defer});

 // Korg Knob 6 Scene 2

 if (num == 62 && chan == 0, {{~samplerateSlider1.valueAction =

~sampleRateSpec0.map(value/127);}.defer});

 // Korg Knob 7 Scene 2

	
 154	

 if (num == 63 && chan == 0, {{~trackingUpdateSlider3.valueAction =

~meanSpec1.map(value/127);}.defer});

 // Korg Knob 8 Scene 2

 if (num == 65 && chan == 0, {{~filterAdjuster2.valueAction =

~adjusterSpec1.map(value/127);}.defer});

 // Korg Knob 9 Scene 2

 if (num == 66 && chan == 0, {{~samplerateSlider2.valueAction =

~sampleRateSpec0.map(value/127);}.defer});

 // Korg Fader 1 Scene 1

 if (num == 2 && chan == 0, {{~osc0LevelSlider0.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 2 Scene 1

 if (num == 3 && chan == 0, {{~grainLevel0Slider.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 3 Scene 1

 if (num == 4 && chan == 0, {{~filterSlider0.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 4 Scene 1

 if (num == 5 && chan == 0, {{~osc1LevelSlider0.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 5 Scene 1

 if (num == 6 && chan == 0, {{~grainLevel1Slider.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 6 Scene 1

 if (num == 8 && chan == 0, {{~filterSlider1.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 7 Scene 1

 if (num == 9 && chan == 0, {{~osc2LevelSlider0.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 8 Scene 1

 if (num == 12 && chan == 0, {{~grainLevel2Slider.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 9 Scene 1

 if (num == 13 && chan == 0, {{~filterSlider2.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 1 Scene 2

 if (num == 42 && chan == 0, {{~mainOutSlider0.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 2 Scene 2

 if (num == 43 && chan == 0, {{~micLevelSlider0.valueAction =

~micLevelSpec0.map(value/127);}.defer});

 // Korg Fader 3 Scene 2

 if (num == 50 && chan == 0, {{~dryLevelSlider0.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Fader 3 Scene 2

 if (num == 51 && chan == 0, {{~fxLevelSlider0.valueAction =

~volumeSpec0.map(value/127);}.defer});

 // Korg Top Button 1 Scene 1

 if (num == 23 && chan == 0, {{~filterOn0.valueAction =

(value/127);}.defer});

 // Korg Bottom Button 1 Scene 1

	
 155	

 if (num == 33 && chan == 0, {{~onsetChooser0.valueAction =

(value/127);}.defer});

 // Korg Top Button 4 Scene 1

 if (num == 26 && chan == 0, {{~filterOn1.valueAction =

(value/127);}.defer});

 // Korg Bottom Button 4 Scene 1

 if (num == 36 && chan == 0, {{~onsetChooser1.valueAction =

(value/127);}.defer});

 // Korg Top Button 7 Scene 1

 if (num == 29 && chan == 0, {{~filterOn2.valueAction =

(value/127);}.defer});

 // Korg Bottom Button 7 Scene 1

 if (num == 39 && chan == 0, {{~onsetChooser2.valueAction =

(value/127);}.defer});

 // Korg Top Button 2 Scene 1

 if (num == 24 && chan == 0 && value == 0, {{~pitchFixedButton0.valueAction

= (value/127);}.defer});

 // Korg Top Button 2 Scene 1

 if (num == 24 && chan == 0 && value == 127,

{{~pitchFixedButton0.valueAction = (value/127);}.defer});

 // Korg Bottom Button 2 Scene 1

 if (num == 34 && chan == 0 && value == 0, {{~pitchTrackButton0.valueAction

= (value/127);}.defer});

 // Korg Bottom Button 2 Scene 1

 if (num == 34 && chan == 0 && value == 127,

{{~pitchTrackButton0.valueAction = (value/127);}.defer});

 // Korg Bottom Button 7 Scene 1

 if (num == 31 && chan == 0, {{~recordSwitch0.valueAction =

(value/127);}.defer});

 if (num == 75 && chan == 0, {{~recordSwitch0.valueAction =

(value/127);}.defer});

 if (num == 115 && chan == 0, {{~recordSwitch0.valueAction =

(value/127);}.defer});

 //Korg 'rewind' button

 if (num == 47 && chan == 0 && value == 127, {{~triggerButton0.valueAction =

(value/127);}.defer});

 if (num == 47 && chan == 0 && value == 0, {{~triggerButton0.valueAction =

(value/127);}.defer});

 //Korg 'play' button

 if (num == 45 && chan == 0 && value == 127, {{~triggerButton1.valueAction =

(value/127);}.defer});

 if (num == 45 && chan == 0 && value == 0, {{~triggerButton1.valueAction =

(value/127);}.defer});

 //Korg 'forward' button

 if (num == 48 && chan == 0 && value == 127, {{~triggerButton2.valueAction =

(value/127);}.defer});

 if (num == 48 && chan == 0 && value == 0, {{~triggerButton2.valueAction =

(value/127);}.defer});

 //Korg 'loop' button

 if (num == 49 && chan == 0 && value == 127, {{~triggerButton0.valueAction =

(value/127);}.defer});

 if (num == 49 && chan == 0 && value == 0, {{~triggerButton0.valueAction =

(value/127);}.defer});

	
 156	

//Korg 'stop' button

 if (num == 46 && chan == 0 && value == 127, {{~triggerButton1.valueAction =

(value/127);}.defer});

 if (num == 46 && chan == 0 && value == 0, {{~triggerButton1.valueAction =

(value/127);}.defer});

 //Korg 'record' button

 if (num == 44 && chan == 0 && value == 127, {{~triggerButton2.valueAction =

(value/127);}.defer});

 if (num == 44 && chan == 0 && value == 0, {{~triggerButton2.valueAction =

(value/127);}.defer});

 });

	
 157	

5.3 Interactive Processes in Genesis

The interaction of the generative and analytical processes within Genesis are defined

through OSC Messages that are divided between the sonic features of the real-time

input sources’ audio signals and the graphical user interface which is controlled

through the computer keyboard, mouse and MIDI, as highlighted in the previous

section 5.1 An Overview of the Genesis System. Figure 28 illustrates the flow of

interaction between the real-time audio input sources and the graphical user interface:

Figure 28. Flow of interaction in Genesis

Figure 28 demonstrates the capability of the graphical user interface to adjust specific

sonic features of the real-time input sources’ audio signals (relative to their

formatting) prior to analysis and also after the analysis process for acute adjustment

of the results for their consequent application to the selected generative processes. In

addition, the GUI allows for the selection of which generative and analytical

processes to use and, if applicable, the adjustment of their GUI modifiable

parameters. Figure 29 lists all major generative and analytical interactions defined by

	
 158	

the graphical user interface and the real-time input sources’ audio signals, and how

they are combined:

Graphical User Interface Interaction

Real-time Input Source Interaction

Generative Process Analytical Process

Adjustment

Generative Process Analytical Process

Buttons triggering the

modified Genetic

Algorithms (GAs) for

the modification of the

Granular synthesizers

of the control 3/slave

sound-object controlled

by the slave input

source

MultiSliderViews for

the modification of the

Granular synthesizers

of the slave sound-

object controlled by the

control 1 and 2 input

sources

Buttons triggering the

fractal noise processes

of the Granular

synthesizers for all

slave sound-objects

Onsets of slave source

define the onset and

envelope of its

Granular synthesizers,

relative to the settings

of the GAs

Onsets of slave source

define the onset and

envelope of its

Granular synthesizers,

relative to the settings

of the

MultiSliderViews

Onsets of selected

source define the onset

of the grain freeze

function

Onsets of the control

3/slave source are

monitored

Onsets of the control 1

and control 2 sources

are monitored

Onsets of the selected

sources are monitored

 159	

Buttons triggering the

pitch following of a

control source by the

slave source

Buttons triggering the

tempo following of a

control source by the

slave source

Buttons triggering the

spectral shape

following of a control

source by the slave

source

Buttons triggering the

pitch fixing of the slave

sound-object’s pitch to

a chosen pitch structure

such as a major scale

Buttons triggering the

use of random buffer

positions, filter

frequencies, reverb

times, time stretching

and panning

Buttons triggering the

Call and Response

function

Buttons triggering the

saving of interactions

within the GUI

Adjustment of the

relative pitch of the

slave source and

playback rates of the

granular synthesisers

Adjustment of which

control source’s tempo

to follow by the slave

source

Adjustment of the base

frequencies of the

spectrum of the control

source

Adjustment of which

pitch structure to apply

Adjustment of the time

signature, input source,

pitch structure and wait

time of the response

A control source

defines the pitch for the

slave source to follow

A control source

defines the tempo for

the slave source to

follow

A control source

defines the spectral

shape for the slave

source to follow

Pitch of a control

source and the slave

source are monitored

Tempo of a control

source and the slave

source are monitored

MFCCs of a control

source and the slave

source are monitored

Pitch of the slave

sound-object output is

monitored

Pitch, duration and

onset of a selected

input source are

monitored

 160	

Live coding for the

addition of new

SynthDefs

MIDI control for the

triggering of selected

generative processes

Pitch, MFCCs, tempo,

spectral shape, onsets

displayed in main

Genesis GUI

Parameters of slave’s

granular synthesizers’

buffer positions,

playback rate,

durations, amplitudes,

spatialisation and grain

freezes displayed in

dynamic scoring

window

Triggering of live-

sampling and

placement in to chosen

control source

Button triggering the

0th-order Markov

chains for selected

parameter changes to

Adjustment of

envelope time

Live coding for the

modification of all

defined parameters

MIDI control for the

adjustment of selected

analytical processes

Loudness and onsets of

selected input source

defines the envelope

time of slave sound-

object and its triggering

Auditory signals of

real-time input sources

form content of

sampled audio

Loudness of selected

input source is

monitored through sum

of MFCCs along with

its number of onsets

Analysis of signals,

relative to any

additions defined by

the live coded

SynthDefs

Pitch, MFCCs, tempo,

spectral shape, onsets

of sources are

monitored

 161	

control source one, two

and slave

Figure 29. Table of Methods of Interaction in Genesis

In terms of interaction through the real-time input sources’ audio signals, as shown in

the Figure 29, these are controlled through the sonic features of loudness, pitch,

spectral shape, tempo and onset, which are extracted through the analytical processes

described in section 5.5 Analytical Processes in Genesis and represented as OSC

Messages. These sonic features are then applied to dictate relative mappings within

the generative processes, which are described in 5.4 Generative Processes in Genesis.

So, through the real-time input sources’ audio signals’ sonic features, it is possible to

interact with the pitch, onsets, duration, pseudo-timbre and amplitude of the slave

sound-object. This is illustrated in the Figure 30 for the interaction between control

source one and the slave source:

Figure 30. Interaction between Control source one and the Slave

	
 162	

For certain generative processes such as pitch following, the sonic features of the

slave are compared to the control source. Therefore, the interactions of the control

source are placed relative to the sonic features of the slave source and as a result, the

pitch of the slave source follows the pitch of the control source. This is illustrated in

Figure 31 for the comparison of a control source’s pitch to the slave source’s pitch:

Figure 31. Method of pitch control of slave via control source’s pitch

With regards to the interaction communicated through the graphical user interface of

the Genesis system, these are defined through many different SuperCollider GUI

classes listed in the following: Button, PopUpMenu, EZSlider, Slider, TextField,

NumberBox, MultiSliderView, StaticText, UserView, Window and SoundFileView.

The culmination of these GUI classes is then arranged as shown on the following

page in Figure 32:

	
 163	

Figure 32. Genesis GUI

	
 164	

So, relative to the generative or analytical process, the graphical user interface permits

the acute modification of many parameters within the Genesis system. For example,

Figure 33 demonstrates the method through which the threshold of the onsets of

control source one can be modified within a MultiSliderView to dictate the triggers of

the slave source’s granular synthesizers:

Figure 33. GUI modification of Thresholds for granular synthesizers’ onsets

In addition to the modification of many parameters within the Genesis system, the

graphical user interface is also used to abstract and represent the modifications and

particular sonic features of the generative and analytical processes. Figure 34 shows a

screen shot of a single frame of the dynamic scoring system, which represents the

buffer position, filter frequency, playback rate, duration, amplitude, spatialisation and

grain freeze processes for each of the granular synthesisers of the slave sound-object,

relative to system’s perceived status of the real-time input audio signals:

	
 165	

Figure 34. Screenshot of Dynamic Scoring System

Due to the nature of the fractal noise processes, which are explained in further detail

in section 5.4 Generative Processes in Genesis, many of the modifications that are

represented in the dynamic scoring system reflect the ‘novel circumstance’226 of each

composition and the interactions that dictate their compositional processes. As a

result, even if the same control and slave sound-objects are analysed in two

consequent compositions, with the same compositional techniques, the resulting

composition and its dynamic score will feature nuances that indicate the presence of

the indeterminate fractal noise processes, which define various parameters of the

granular synthesisers of the slave sound-object.

Therefore, the purpose of the dynamic score system is to represent to the composer

which generative process is affecting which granular synthesizer of the slave sound-

object in real-time and of that particular composition of the now, simplifying

consequent adjustment of the slave sound-object’s granular synthesizers within the

graphical user interface and real-time input sources’ audio signals to the relative

scoring representations as illustrated in Figure 35:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

226	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 166	

Figure 35. Annotation of Dynamic Scoring System

The dynamic scoring system’s abstraction of the interaction between the real-time

input sources’ audio signals, the graphical user interfaces parameter settings and the

generative processes that control the slave sound-object’s granular synthesizers’ sonic

output in to the dynamic scoring system demonstrates the communication between the

human performer and the computer performer; the dynamic score displays the unique

interactions of the real-time input audio source, the graphical user interface and the

generative processes, in accordance with the unfolding dialog in real-time, through a

common paradigm, which in this case is the playback speed, buffer position,

amplitude, trigger, spatialisation, freeze process, relative input source, filter frequency

and duration.

The communication method in Genesis is achieved through the application of OSC

messages for the symbolic representation of the playback speed, buffer position,

amplitude, trigger, spatialisation, freeze process, relative input source, filter frequency

and duration of the slave sound-object. However, collectively, the symbolic features

create a holistic representation of the real-time processes within the Genesis system.

So, for example, through the combination of the filter frequency, relative control

source’s triggers, pitch, and amplitude of a slave’s granular synthesizers, it is possible

	
 167	

to determine a slave output’s pseudo-timbral features. Therefore, the ability to place

composer-prescribed variables within the OSC Message’s arguments, as afforded by

the SuperCollider programming language, enables Genesis to form a unique and

comprehensible paradigm for the communication of the interactions between the real-

time input audio source, the graphical user interface and the generative processes for

both symbolic and subsymbolic representations of sonic features.

The application of OSC messaging also permits the use of computer networks to

communicate data between computer systems. In Genesis, the pitch, MFCCs and

onsets of the control sources that are present on a local system can be sent, via the

computer network to other instances of Genesis. As a result, the real-time input audio

source’s present on one instance of Genesis can control a number of networked

instances of Genesis. In addition, arbitrary controls can be sent to networked instances

of Genesis such as the triggering of recording buffers and toggling of the network’s

functionality. The flow of network communication between the instances of Genesis

is one-way; one computer acts as a ‘leader’, sending the relevant data and controlling

the particular sonic features of pitch, MFCCs and onsets of the relevant control

sources on the networked instances of Genesis. Therefore, the control sources present

on the ‘leader’ modify and manipulate the chosen slave source on the networked

instances of Genesis, which in effect synchronizes the network’s pitch, MFCCs and

onsets for each slave source.

In order to set-up a network between Genesis instances, the user must connect the

relative computers together, either wirelessly or through cable. Once a network has

been established, and the relative Internet Protocol (IP) addresses have been allocated,

the Genesis instance that is to control the particular features of the computers on the

network (the sender) must input the relative IP addresses of the receiver. Then, on the

receiver, the IP address of the sender must be input (the IP address of the local

Genesis instance is displayed in the Genesis GUI along with a NumberBox for the

placement of the relative IP address of the networked instance/s). The flow of

communication is illustrated in Figure 36:

	
 168	

Figure 36. Network Interaction in Genesis

In terms of interaction between the control sources and the generative and analytical

processes within Genesis that modify, manipulate and arrange the slave source, this

can be approached through different methods, relative to the control source’s format.

So, for example, if using the live acoustic signals generated by an instrumentalist, it is

possible to use a fixed score for the instrumentalist, perhaps featuring various

monophonic melodies. The system can then follow the pitch, onset, MFCCs, loudness

and tempo of the instrumentalist, forming a meta-instrument, which is a ‘musician-

machine interface and a gesture transducer intended for electro-acoustic music,

multimedia work, and, more generally, for controlling algorithms in real-time’227. This

thereby forms a Conductor Model of interaction, as proposed by Winkler (2001),

through which the instrumentalist fulfills the role of a conductor ‘acting as the single

source for coordinating players’ actions by directing the time flow, shaping the

dynamics, and adjusting the acoustical balance’228. Therefore, the Genesis system

follows the actions of the instrumentalist, in combination with any networked

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

227	
 de	
 Laubier,	
 S.	
 1998.	
 The	
 Meta-­‐Instrument.	
 Computer	
 Music	
 Journal	
 22(1):	
 25	

228	
 Winkler,	
 T.	
 2001.	
 Composing	
 Interactive	
 Music:	
 Techniques	
 and	
 Ideas	
 Using	
 Max.	
 Massachusetts:	
 MIT	
 Press:	
 23-­‐27	

	
 169	

instances of Genesis, forming an ensemble of meta-instruments shown in Figure 37

below:

Figure 37. Ensemble of meta-instruments controlled by a live instrumentalist

Alternatively, if using the live acoustic signals generated by an instrumentalist, in the

absence of a notated score for the instrumentalist but the application of the predefined

sonic structures, the system can follow the pitch, onset, MFCCs, loudness and tempo

of the instrumentalist, with the instrumentalist explicitly applying the resulting

outputs of the Genesis system to influence their performance due to the lack of a

determined notated score prescribing the compositional material. Therefore, the

Improvisational Model as proposed by Winkler (2001) can be applied, through which

the interaction of the performers influences both performers resulting compositional

output as shown in Figure 38 overleaf:

	
 170	

Figure 38. An improvisation model with a live instrumentalist and Genesis

Moreover, a human supervisor of Genesis can also be implemented to adjust and

modify its outputs in the GUI relative to a live instrumentalist or any sound-object

placed within the control sources. In a circumstance that involves a live

instrumentalist, both performers have the option of both improvising, one improvising

while the other follows a set programme or both following a score. Figure 39 below

shows an example of a human performer improvising with the Genesis GUI while the

human instrumentalist follows a score, thereby dictating the onset, loudness, pitch and

timbral parameters of supervised Genesis system, relative to the parameter settings

entered by the Genesis supervisor:

Figure 39. Human Supervised implementation of Genesis with a live Instrumentalist

Genesis can also be used as an unsupervised music system in which it can generate

compositions relative to live streams such as train station ambience or to recorded

audio material allocated to its control or slave inputs. In addition, multiple instances

can be used using the network functionality thereby syncing the control of the

	
 171	

instances’ outputs to a central system as described in Figure 36. Network Interaction

in Genesis. Once input sources have seen selected, the system requires no supervision

unless prescribed by a composer. Figure 40 below demonstrates such a scenario

whereby recorded samples and train station ambience are used to control a series of

Genesis instances, each with their own slave sound source, generating four distinct

sonic outputs:

Figure 40. Unsupervised network of Genesis systems

Therefore, Genesis hybridizes the generative and adaptive methods of creativity

discussed in chapter 4.1 Interaction with Creative Systems by requiring (even in an

unsupervised circumstance) a human performer/composer to instigate a scenario

through which Genesis can interact with sound-objects. Consequently, the resulting

composition is predominantly attributable to the adaptive of a creativity human

composer, with the explicit generative creative outputs of Genesis credited to the

system.

As a result of the methods of interaction available within Genesis through the

combination of the GUI and the real-time input studio sources, an instance of a

	
 172	

Genesis system has six main modes of interaction, which can be adjusted on-the-fly,

through the relevant application of the generative, analytical and interactive

processes. These are described in Figure 41, along with the level of influence that the

Genesis system may have on the resulting compositional process:

Genesis Mode Description Level of

Influence
Unsupervised

Supervised Score-Following

Supervised Improvisation

• Control sources of any type

• Required generative processes are toggled

or routined within the GUI prior to

composition

• The result is output with no explicit

external modification by a human

performer of the GUI parameters in real-

time

• No implicit requirement for a human

supervisor (apart from the set-up)

• Human instrumentalist may improvise

relative to the system’s outputs

• Control sources of fixed structures such as

a live instrumentalist following a score

• The required generative processes are

toggled and adjusted within the GUI prior

and during composition relative to a score

• The result is output with explicit

modification via GUI in real-time

• Requirement of a human supervisor

modifying parameters of Genesis within

GUI, relative to a predefined

score/structure

• Control sources may include an

improvisatory human instrumentalist, who

may wish to improvise relative to the

outputs of Genesis

High

(if no human

present in

compositional

process)

Low, Mid, High

(if Human

improviser

applied)

Low, Mid, High

Low, Mid, High

	
 173	

Unsupervised Ensemble

Supervised Ensemble Score-

Following

• The required generative processes are

toggled and adjusted within the GUI prior

and during composition

• The result is output with explicit external

modification and improvisation in real-

time by a human supervisor

• Requirement of at least one human

improviser (one human supervisor

modifying the parameters of Genesis

within GUI)

• Control sources of any type sent to sender

instance of Genesis forwarded to

networked receiver instances

• Required generative processes are toggled

or routined on each instance within the

GUI prior to composition

• The result is output with no explicit

external modification by human

supervisors/s in real-time

• No requirement for a human supervisor

(apart from the set-up)

• Human instrumentalist may improvise

relative to the system’s outputs

• Control sources of fixed structures sent to

sender instance of Genesis forwarded to

networked receiver instances

• Required generative processes are toggled

and adjusted within the GUI on each

instance prior and during composition

relative to a score

• The result is output with explicit external

modification in real-time by human

supervisors for each instance

• Requirement of a human supervisor

modifying parameters of Genesis within

High

(if no human

present in

compositional

process)

Low, Mid, High

(if Human

improviser

applied)

Low, Mid, High

	
 174	

Supervised Improvisation

Ensemble Network

GUI

• Control sources may include an

improvisatory human instrumentalist sent

to sender instance of Genesis forwarded to

networked receiver instances

• The required generative processes are

toggled and adjusted within the GUI on

each instance prior and during

composition

• The result is output with explicit external

modification and improvisation in real-

time by human supervisors for each

instance

• Requirement of at least one human

improviser per Genesis instance (one

human supervisor modifying the

parameters of Genesis within GUI)

Low, Mid, High

Figure 41. Table of Modes of Interaction with Genesis

So, considering Figure 41, it is certainly evident that a number of models of

interaction are feasible. Indeed, these models can be combined together, thereby

integrating a variety of models of interaction within a performance such as an

Unsupervised instance of Genesis using the auditory outputs of a Supervised

Improvisation to contribute to the ongoing compositional process. In addition, the

models of interaction can be initiated in real-time, allowing a composer to switch

between interaction methods during a performance.

Therefore, interaction within the Genesis system combines sonic features obtained

from real-time input audio sources in combination with the modification of these

sonic features and the generative processes within Genesis through the graphical user

interface. As demonstrated, an instance of Genesis can perform unsupervised during

the real-time compositional process resulting in a highly influential algorithmic

compositional process. In contrast, an extensive amount of compositional values can

be input by a human composer through the GUI or explicit instrumentalists during the

	
 175	

compositional process dictating specific generative parameters resulting in a low or

mid or high level influence by Genesis on the algorithmic compositional process.

5.4 Generative Processes in Genesis

The primary generative processes within Genesis centre on the modification of a

series of granular synthesisers for each slave source, as introduced in section 5.1 An

Overview of the Genesis System. To elaborate, the slave sound-object is written to a

series of audio buffers in real-time, with the capability to modify the length of these

buffers through the GUI. There are thirty-nine granular synthesizers for each slave

sound-object, divided between the three control sources, resulting in three sets of

thirteen granular synthesizers; each granular synthesizer of each set represents one of

the thirteen Mel-frequency cepstral coefficients (MFCCs) obtained from the relative

control source. Therefore, this forms three modified slave sound-object’s applying the

buffered slave sound-object as an auditory source, with each slave sound-object’s

granular synthesizers’ relative to each of the control source’s MFCCs. Moreover, the

application of thirteen granular synthesisers for each control sources results in a

manageable GUI mapping for each of the granular synthesisers’ parameters, and

serves to increase CPU efficiency by limiting the total number of processes that can

occur at any one time while still generating the desired sonic output.

Each granular synthesizer uses the GrainBuf.ar UGen, which reads the respective

audio buffer of the buffered slave sound-object. The GrainBuf.ar UGen features a

number of parameters: number of channels, trigger, duration, sound buffer, playback

rate, buffer position, interpolation, pan, grain envelope and maximum number of

grains. The parameters that are modified by the generative processes within Genesis

are the trigger, duration, playback rate, buffer position, pan and grain envelope (the

grain envelope and pan are placed outside of the UGen as they are also applied to

processes outside of the granular synthesizers, but they still serve the same purpose as

the parameter within the UGen).

The triggering of the grains in the GrainBuf.ar UGen is set by the onsets of the

control sources. In order to obtain the onsets, each control source is filtered through a

	
 176	

series of thirteen band-pass filters, with two modes of functionality: static and

dynamic. These modes of functionality can be toggled in real-time within the GUI

using the respective ‘Static/Dynamic’ toggle button for the control source of the

granular synthesizers’ onsets. The static functionality fixes the filter frequency

relative to the position of the filter defined in the MultiSliderView of the GUI, while

the dynamic functionality applies the MFCC values of the control source to multiply

the filter frequencies (MFCCs are a subsymbolic representation of timbre as discussed

in chapter 3.2.3 Timbre Perception). So, with dynamic functionality, each of the

band-pass filters’ frequencies dynamically changes relative to the respective value of

the MFCC mapped to that particular band-pass filter.

The auditory signals that pass through the filters are individually assessed to measure

the onset of events, with the thresholds of the amplitudes that are to be considered an

onset modifiable within the GUI. The onsets that are above the threshold are used to

trigger a series of thirteen envelopes for their respective of granular synthesizer, as

well as triggering a grain within the GrainBuf.ar UGen’s ‘trigger’ parameter. As a

result, the application of the dynamic functionality represents the dynamically

changing spectral onsets of each control source. In contrast, the static functionality

can be used to create a composer-defined spectral shape within the GUI, reflecting the

onsets at the specified static frequencies. Figure 42 illustrates this process for control

source one and the thirteen granular synthesizers of slave 1:

	
 177	

Figure 42. Static and Dynamic control of onsets of granular synthesizers

The envelope of each grain is defined through the use of the EnvGen.kr UGen, which

features an envelope parameter and a gate. The gate is triggered by the respective

control source’s onsets, which initiates the beginning of a grain’s envelope. The

envelope parameter for each of the granular synthesizers uses the Env.perc UGen,

which dictates the attack time, release time, peak amplitude level and curve. The

curve is set at the time of Genesis startup to a sine in order to limit clipping, with the

attack, release and amplitude modifiable within the GUI. So, the onsets of the control

sources trigger a grain and its envelope, while the GUI sets the attack time, release

time and peak amplitude of the envelope itself. Furthermore, the durations of the

grains can be modified by the GUI, which can be adjusted relative to the attack time

and release time of a grain’s envelope.

As with the extraction of the onsets from the control source, a series of band-pass

filters can be multiplied by the values of the MFCCs of the slave’s chosen onset

controller to form a dynamic modification of the filter frequencies relative to the

MFCCs of the control source. However, instead of placing the filters on a control

source’s auditory signal for consequent analysis to extract the onsets relative to the

MFCCs of the control source, a band-pass filter is assigned to the auditory output for

	
 178	

each of the granular synthesizers. Therefore, a representation of a control source’s

spectral shape can be used to modify the spectral shape of a respective slave source

through the dynamic modification of the granular synthesizers’ outputs’ auditory

signals via their respective band-pass filters. Furthermore, the use of the GUI’s

MultiSliderView filter frequency filter frequency may also be applied to each of the

band-pass filters, forming a static spectral shape of the granular synthesizers’ band-

pass filters.

The shape of the spectrum of the control source is represented within the GUI, along

with the ability to modify the mapping of the fundamental frequencies of the filter

frequencies through a GUI Slider. This is illustrated in Figure 43 for the slave sound-

object controlled by the onsets of control source one.

Figure 43. Mapping of MFCCs to Filter Frequencies of Granular Synthesizers

Due to the nature of the spectral shape following process task, which may cause

excessive clipping within the auditory signal as a consequence of multiplying filter

frequencies by the values of MFCCs mappings, a task runs alongside the process to

	
 179	

monitor the maximum and minimum values of the filter frequencies; the task modifies

the amplitude of the granular synthesizers to 0 if the process’s filter frequency is

above 4000Hz or below 40Hz. This serves to limit the occurrence of clipping within

the signal when the filters and dynamic spectral shape following process are toggled

on within the GUI.

The onsets obtained from the control sources are also used to trigger other generative

processes. The fractal noise process, which defines the buffer position of each

granular synthesizer, uses the respective onset to trigger a new value. The fractal

process itself applies the PinkNoise.kr UGen, which outputs values that are mapped

relative to the size of the granular synthesizer’s audio buffer. So, if a buffer is chosen

in real-time through the GUI of one second in duration at a sample rate of 44100kHz,

the buffer position may be between -44100 and 44100, following the nature of a pink

noise fractal process as described in chapter 3.1 An Introduction to Real-time

Generative Algorithmic Systems. The value of the PinkNoise.kr UGen is consequently

output only when an onset triggers a new grain, thereby syncing the modification of

buffer position, with the triggering of a grain and its envelope. The following data

output represents the buffer position values generated over time, relative to its

triggering by its associated control source’s onset:
UGen(Gate): 29623
UGen(Gate): 37330.2
UGen(Gate): 40837.7
UGen(Gate): 21464
UGen(Gate): -5418.71
UGen(Gate): 7520.01
UGen(Gate): 19262.1
UGen(Gate): -6.47678
UGen(Gate): -32154.5
UGen(Gate): -14030.1
UGen(Gate): 4310.17
UGen(Gate): -4342.77
UGen(Gate): 24993.4
UGen(Gate): 38844
UGen(Gate): 10643.5
UGen(Gate): 30402.7
UGen(Gate): 11447.3
UGen(Gate): 19468.2
UGen(Gate): 5513.38
UGen(Gate): 34995.2
UGen(Gate): 14772.4
UGen(Gate): 27338.1
UGen(Gate): -23407.4

The resulting output of the fractal noise process causes the buffer position of each of

the granular synthesizers triggered by a particular control source to differ, forming a

collage of buffer positions, generating a collaged representation of the slave sound-

object’s auditory signal. This process is illustrated in Figure 44, supposing control

	
 180	

source one (yellow), control source two (red) and control source three/slave (blue)

have triggered the onsets for ten of their granular synthesizers:

Figure 44. Collage of Buffer Positions

Similar to the generative process defining buffer position, the playback rate can also

be dictated by the fractal noise process (this process can be toggled on or off for each

granular synthesiser through the graphical user interface). The PinkNoise.kr UGen is

applied, but instead is mapped to values between -4 and 4, thereby allowing playback

rates of between to -4x or 4x the recorded speed, with the duration of the grain

mapped relative to the playback rate (and the pitch output by the pitch tracking

process if pitch tracking is toggled on).

The pitch following process applies the pitch data extracted from control source one,

and compares it to either a composer-defined pitch value for the slave object or the

pitch data extracted from the slave sound-object prior to any pitch adjustments by the

pitch following process. (The pitch extraction method is detailed further in section 5.5

Analytical Processes in Genesis). The difference between the two pitches is then

calculated, with the output of the pitch following process placed in to the rate

parameter each GrainBuf.ar, altering the output pitch of each grain’s slave sound-

object relative to control source one, thereby reflecting the pitch contour of control

source one. This is illustrated in Figure 31 Method of pitch control of slave via

	
 181	

control source’s pitch in section 5.3 Interactive processes in Genesis. In addition, the

pitch contour that results from the modification of each granular synthesiser is

represented in the dynamic scoring system.

The fractal noise process can also modify the recording rate of the slave sound-object

to the audio buffers, which can be toggled on or off in the GUI. Furthermore, the

playback rates and recording rates can be multiplied via the rate MultiSliderView in

the GUI, offering real-time adjustment of each fractal process’s bounds. The process

is triggered relative to the onsets of the control sources for each grain of the granular

synthesizers, which, as with the buffer position, is consequently output only when an

onset triggers a new grain, thereby syncing the modification of playback rate and/or

recording rate, with the triggering of a grain and its envelope. This process is

illustrated for the playback rate of a single granular synthesiser triggered by control

source one in Figure 45 below (the process is also the same for selection of the

recording rate and selection of buffer position, although selection of the buffer

position is not modifiable by the output of the pitch tracking algorithm):

Figure 45. Flow of fractal noise modification of playback rate

In addition to the fractal noise processes, the onsets, and more specifically, the values

of the envelopes the onsets triggered by the control sources are applied to the grain

freezing process; the PV_Freeze UGen holds a grain of sound when triggered, with

any value above 0.5 causing a grain to be held. There are 39 PV_Freeze UGens, each

	
 182	

assigned to each granular synthesizer’s output, with the triggering of the process

relative to the envelope of the granular synthesizer it is assigned to. As a result, grains

of sound are ‘frozen’ when the granular synthesizer’s envelope is above a value of 0.5

and held until the falls below the threshold. The amplitude of the grains freeze process

for each control source’s granular synthesizers can be collectively adjusted via the

GUI and/or the arbitrary MIDI controls. The freeze grain process is illustrated in

Figure 46 for a single freeze grain controlled by control source one:

Figure 46. Freeze grain process

With regards to the interaction of the GUI processes that modify the parameters of the

granular synthesisers, these are approached relative to the control source; for control

sources one and two, all modification of the granular synthesizers’ parameters is

through MultiSliderViews and Knobs for each specific parameter of filter frequency,

threshold, duration, amplitude, attack, release and playback rate, while for control

source three/slave, modification of the granular synthesizers’ parameters is through a

modified genetic algorithm except for the filter frequencies (this is to limit sudden

changes in frequency which may generate clipping). In order to apply the modified

	
 183	

genetic algorithms to control source three, the values of the parameters from control

source one and two are placed within the RedGA UGens for the consequent

exploration of the defined values.

In terms of the MultiSliderViews and Knobs used for defining the parameters of each

slave sound-object’s granular synthesizers triggered by the onsets of control source

one and two, these are mapped to specified bounds listed in Figure 47:

Genesis Parameter Bounds and Mapping

Band-Pass Filter 	
 	
 Filter Frequency between 40 – 4000

Linear

Onset Threshold 	
 	
 Threshold between 0 - 1

Linear

Grain Duration 	
 	
 	
 Time in seconds between 0.05 - 4

Linear

Grain Amplitude 	

Amplitude between 0 - 1

Decibels

Grain Attack Time 	
 	
 Time in seconds between 0.05 - 2

Linear

Grain Release Time 	
 Time in seconds between 0.05 - 2

Linear

Grain Playback Rate 	

Values between -4 to 4

Linear

Grain Pan

Values between -1 to 1

Linear

Figure 47. Mappings and Bounds of selected granular synthesizer GUI objects

The values present within the MultiSliderViews and Knobs for the slave source’s

controlled by the onsets of control source one and two define the initial data for the

parameters of the modified GA for the granular synthesizers of the slave source

controlled by control source three. In addition, the MFCC values of control source

one and two are interpolated at the time of the relevant GA execution, thereby

	
 184	

creating a modified spectral shape for the application of the band-pass filters for the

slave 3 sound-object.

The modified GA interpolates the data provided by the MultiSliderViews, Knobs and

MFCC values using an editable random mutation function (set relative to the bounds

of the its respective parameter) with a changeable crossover determining the amount

of data to be swapped between the two data sets of control source one and two. As a

result, a single offspring is always generated based on the current status of the

parameters of control source one and two that is immediately attributable to the

granular synthesis parameters of the slave. Furthermore, should the latest offspring be

deemed unsuitable, the data of all previous generations is automatically cached and

can be saved at any time to a .txt file by clicking the ‘Save’ button for reloading via

the ‘Devolve’ or ‘Load’ buttons respectively.

Figure 48 demonstrates the interpolating of the data from the parameters of the

granular synthesizers triggered by control source one and two for consequent

application to the parameter settings of the granular synthesizers triggered by control

source three:

 Figure 48. Gathering of data for the modified Genetic Algorithm

	
 185	

The modified genetic algorithms are controlled through Buttons within the UI as

displayed in Figure 49:

Figure 49. Modified Genetic Algorithm GUI controls

Once an initial data set has been obtained, it is then possible to interpolate different

data sets by selecting which data set to breed through PopUpMenus within the GUI as

demonstrated in Figure 50:

Figure 50. Population selection for Genetic Algorithms through GUI

	
 186	

As a result of the selection via the GUI of which data set to interpolate, the parameter

to interpolate, the possibility to ‘devolve’ to previous states, modification of the

crossover and mutation and the loading of previous parameter settings, the ‘fitness

function’ of the modified genetic algorithm within Genesis is executed through the

use of a human critique that must decide, control and evaluate each set of parameter

data for the granular synthesizers whose triggers are controlled by control source

three/slave.

With regards to the modification of the playback rates and recording rates, as stated

previously, these can be controlled with the fractal noise process for each of the slave

sound-object granular synthesisers, which can be toggled on or off within the GUI.

This is illustrated in Figure 51 for the granular synthesisers whose triggers are

controlled by control source one: the MultiSliderView adjusts the playback/recording

rate for each grain, the toggle Buttons above switch on or off the fractal process for

each grain, and the toggle Buttons below switch on or off the adjustment of the

recording rates for the slave sound-object’s recording buffers of each grain relative to

the playback rates:

Figure 51. GUI control of Playback and Recording rates of granular synthesizers

In order to modify a number of granular synthesiser parameter settings

simultaneously, a 0th-order Markov chain can be toggled on via the ‘Rand’ button for

control sources one and two using three sets of random arrays created relative to the

current state of selected variables each set to different bounds of their respective

	
 187	

parameters of pan, attack, release, duration, rate, amplitude and threshold: set one

features relatively small bounds, set two is slightly larger and set three being the

largest with the larger the bounds, the greater the randomness of the results. The user

can select the probability distribution of the Markov chain to increase the likelihood

of assigning either set one, set two or set three to be the predominant random array

applied. Furthermore, the random arrays are applied relative to the tempo of the

respective control source, thereby generating new data sets at time specific intervals.

As a result, the granular synthesisers of control sources one and two continue to

change over time with minimal intervention from the user.

Considering the generative processes that modify the slave sound-object outside of

the granular synthesisers, this centres on the real-time modification of the parameters

of the Warp1.ar UGen, which reads an audio buffer and consequently permits time

stretching through granular processes along with arbitrary buffer adjustments such as

the buffer position and playback triggers. As described in section 5.1 An Overview of

Genesis, the real-time audio signals can be live acoustic signals generated by

instrumentalists, a pre-defined ‘Sample’ reader comprised of UGens reading buffered

audio and live-coded SynthDefs defining specific synthesized sound-objects with their

respective modulatable parameters. These real-time audio signals can be placed into

one of three auditory input sources within Genesis, each of which features simple

controls such as amplitude, relative to the formatting of the input source. In terms of

the slave sound-object, the selected input source, regardless of its formatting, is

placed in to a single audio buffer, which is then read by the Warp1.ar UGen enabling

real-time modification of live streams.

The playback of the slave object can therefore be modified, manipulated and

rearranged within Genesis prior to its recording for the granular synthesizer buffers.

As a result of the parameter changes possible within the Warp1.ar UGen, the

generative processes of tempo following, envelope following and random allocation

of the values for the arbitrary parameters of the Warp1.ar UGen can be applied in

real-time. In addition, the GUI also permits modification of the selected individual

parameters as well as the toggling on or off of the various generative processes.

	
 188	

The tempo following method uses a principle equivalent to the pitch following

process; the tempo of each control source is extracted and compared to the tempo of

the control source three/slave sound-object. (The tempo extraction method is detailed

further in section 5.5 Analytical Processes in Genesis). The difference is then

calculated with the result placed into the Warp1.ar UGen’s Phasor.ar control input,

which results in the slave sound-object’s tempo matching to a control source. With

regards to the selection of which control source’s tempo to apply, the GUI permits the

selection of either control source one or two for modification of the slave sound-

object’s tempo.

The envelope following process applies the sum of the onsets for the slave sound-

object every second; the fewer the number of onsets, the slower the envelope time, the

greater the number of onsets, the faster the envelope time. The envelope itself is an

Env.perc UGen, featuring an attack time, release time and peak amplitude parameter,

which is wrapped within an EnvGen.kr UGen, defining the gate, thereby dictating the

triggering of the envelope. This envelope is placed over the Warp1.ar UGen for the

slave sound-object to control its amplitude over time.

In order to trigger the envelope, a variety of trigger methods can be selected through

the GUI: manual, selected onsets of control source one, selected onsets of control

source two and selected onsets of control source three. For manual operation, the

composer must mouse click a toggle button within the GUI or the associated MIDI

mapping to trigger the envelope. In contrast, a selected onset, relative to one of the

thirteen MFCCs of each control source can be selected in the GUI, offering the

triggering of the envelope via the real-time input audio sources. Due to the nature of

the onset tracking process (as described in section 5.5 Analytical Processes in

Genesis), onsets appear instantaneously, so in order to sustain an onset, its value is

placed in addition to the perceived loudness of the control signal. Therefore, an onset

is held until the loudness of the control signal has dropped below the specified

threshold. As a result, the envelope’s gate remains open relative to the loudness of the

control signal and its selected onset, thereby sustaining the slave sound-object’s

auditory output for the duration.

	
 189	

In addition to triggering the envelope of the Warp1.ar UGen for the slave sound-

object, the triggers that can be selected through the GUI also trigger the playback of

the buffered audio. The playback position can be modified within the GUI for the pre-

recorded audio files placed within the ‘Sample’ UGens through selection of the buffer

frames in the GUI SoundFileView for the slave sound-object. However, for live

acoustic sources and any live coded SynthDef whose auditory signals are buffered in

real-time, it is not possible to present this data within a SoundFileView. So, the

playback position can be defined within the GUI post window or via the real-time

random generative process, which selects random values within the bounds of the

buffer length.

The real-time random search process, which can randomly create values of the

playback position relative to the slave sound-object’s buffer’s length, is a task that

also can be used to randomly generate time stretching values for the Warp1.ar UGen

of the slave sound-object (cannot be used in conjunction with tempo following), filter

frequency values for a RHPF.ar UGen (high-pass resonant filter) / RLPF.ar UGen

(low-pass resonant filter) for the overall auditory Genesis mix, reverb parameters for

the GVerb.ar UGen for the overall auditory Genesis mix and pan parameters for two

MonoGrain.ar UGens for the overall auditory Genesis mix. The time between new

outputs can be adjusted in real-time, and is set to a default of 0.5 seconds, resulting in

a new set of values every 0.5 seconds. Furthermore, each parameter adjustment can be

toggled on or off via the GUI, along with the inclusion of the real-time random

generative process itself.

Due to the nature of the real-time random value generative process and the possibility

to trigger the Warp1.ar UGen with the onsets of the control sources, the buffer

playback position can consistently change, relative to the time between outputs of the

process. That is to say, each time an onset triggers the Warp1.ar UGen to playback,

the corresponding value of the playback position defined by the real-time random

value search process is applied, causing the consequent playback to begin from the

stated value. As a result of the processes that modify the Warp1.ar UGen of the slave

sound-object, the pitch, tempo, retriggering, and envelope of the slave sound-object

	
 190	

can be modified relative to the sonic features of the real-time auditory sources with its

playback position generated randomly prior to its recording for the granular buffers.

Further to the real-time random value generative process, which can be applied to

process values of the UGens modifying the overall auditory Genesis mix, the ‘Call

and Response’ process is used to modify the overall auditory output mix of Genesis.

The ‘Call and Response’ function can be toggled on or off in the GUI and relies on

the real-time auditory signal from one of the control sources to dictate a ‘Call’; this

call must be an auditory signal with a loudness above a prescribed threshold, set at

default to 15 phons. Once the loudness has fallen below the threshold, a wait time is

added, which prevents the Genesis system from instantaneously creating a ‘Response’

whenever the loudness falls below the threshold.

While the ‘Call’s’ auditory signal’s perceived loudness is above the threshold, and

within the wait time, all auditory signals in the audible Genesis mix are recorded to an

audio buffer. If no further events occur above the threshold within the wait time, the

recording to the buffer is stopped. The buffered audio recording is played back

through a Warp1.ar UGen, forming a ‘Response’, with the values of the playback

position, rhythm and pitch of the audio recording chosen through random selection of

predefined rhythms, buffer frames and pitch structures relative to features identified

within the ‘Call’.

So, the number of onsets within the ‘Call’ signal defines the amount of playback

position edits to the recorded buffer, thereby structuring the rhythm of the ‘Response’:

the more edits, the shorter the rhythmic values, resulting in faster rhythms, the fewer

edits, the longer the rhythmic values, resulting in slower rhythms. The speeds at

which the rhythms are played back are also relative to the tempo of the ‘Call’,

adjusting the tempo of the defined rhythms. In terms of pitch, the ‘Call’s’ last note’s

pitch defines the fundamental pitch value of the recorded audio, through which all

consequent modification of the recordings pitch by the generative process will be

made relative to. The duration of the ‘Response’ itself is decided in relation to the

duration of the recorded audio buffer. Furthermore, within the GUI, a number of

alterations can be made to adjust the performance in real-time of the ‘Response’; the

	
 191	

wait time, control source, pitch structure and time signature can be modified relative

to the requirements of the composition.

With regards to the pitch fixer process which can be toggled on or off within the GUI,

the current pitch of the slave sound-object can be fixed to a particular pitch structure

such as C Major scale. As a result, if applying the C Major scale, a Bb will be

corrected to either a B or a C within its perceived octave. The process requires the

pitch tracking of the overall Genesis mix, for comparison with the defined pitch

structure. The difference between the two values is then assessed and any adjustment

required is generated in real-time and placed within a PitchShift.ar UGen’s ‘pitch

shift’ parameter that passes the slave sound-object’s auditory signal. In order to

modify the available pitch structures, PopUpMenus are placed within the GUI to

select predefined structures, which can be adjusted within the Genesis programming

code.

In terms of the application of live coding within Genesis, as stated, SynthDefs can be

coded within the post window and passed into a selected control source, forming the

live-coded SynthDef input source. In order to pass the live-coded SynthDef through

Genesis, the SynthDef’s Out.ar UGen’s Bus parameter, which designates the audio

bus to send the auditory signal/s of the SynthDef to, must match one of the three pre-

allocated audio busses assigned for the live-coded SynthDef input sources, titled

~synthBus0 for control source one, ~synthBus1 for control source two and

~synthBus2 for control source three/slave. As a result, any auditory output generated

by a live-coded SynthDef can be used as a control or slave source within Genesis.

Furthermore, as highlighted with the modification of the buffer position for a slave

sound-object formed of a live acoustic signal or live-coded SynthDef’s audio signal,

this can be adjusted through the post window with the relative live coding. This is

also true for all pre-defined parameters within Genesis, offering the composer the

capability to generate patterns and tasks for the control of Genesis within the post

window through live coding.

Many of the pre-defined parameters within Genesis are of course modifiable through

the various GUI objects present in the Genesis GUI, in addition to the ability of

	
 192	

altering the parameters through live coding. However, live coding is applied to the

output of each GUI object that modifies the GUI controlled the parameters within

Genesis. So, the parameters changes specified by the respective GUI object are

written as a string within a hidden post window (this functionality can be toggled on

or off within the GUI). These changes can then be wrapped as a task and consequently

executed through GUI. In order to allow dynamic modification of the parameters, a

clock can be applied, which can be controlled and synced via the network. The values

of the clock are placed alongside the string output from the GUI object, with the task

applying if statements to permit the modification of the respective Genesis parameter

if the current clock value is equal to the clock value defined in the task.

To exemplify the method of GUI live coding within Genesis, if the clock is running

and the GUI live coding functionality is toggled on, modifications within the GUI are

written as a string in the hidden post window, along with the current value of the

clock. Once the modifications have been made, the task can be allocated a name

through a GUI TextField and consequently loaded to a GUI Window offering the

capability to hold sixteen such tasks. If the loaded task is triggered within the GUI

‘Routine Controls’ window, the modifications will be made relative to the values of

the Genesis clock. These tasks can be saved to disk as a .txt file and loaded in future

compositions. The method of GUI live coding within Genesis is further illustrated in

Figure 52:

	
 193	

Figure 52. GUI Live Coding Method

With the method of GUI live coding within Genesis, as described above, it is possible

to generate tasks in real-time through the alterations made within the GUI, which can

consequently be applied in real-time via the GUI control of the newly created task;

the wrapping, naming and creation of a task are executed in real-time, thereby

allowing its immediate application to a compositional process through its execution in

the GUI Window.

The live-sampling process offers the composer the option of generating sound-objects

formed of the real-time inputs’ auditory signals, thereby permitting the consequent

control of a sound-object’s pitch and temporal structure through the Sample UGens.

As a result, the newly generated audio recording can be applied to form a control

and/or slave sound-object; the real-time input source’s auditory signal is saved to the

computer’s hard disk allowing it to be immediately placed in to a selected control

source’s Sample UGens. The duration of the recording, its control source destination

and its triggering are defined within the GUI for the local system, along with the

	
 194	

capability to control the process on any networked system via a network control

window.

Therefore, generative processes that control Genesis are applied through the symbolic

or subsymbolic representation of the sonic features of real-time auditory signals,

fractal noise processes, search processes, GUI object modification, live coding, and a

unique GUI live coding approach, written specifically for Genesis. The combination

of pre-defined generative processes and live coding results is a system that offers the

composer the capability to apply many conceivable real-time generative processes

(such as the three purposes proposed by Supper (2001) of generative processes for

modeling traditional, non-algorithmic procedures, modelling new original

compositional procedures and selecting algorithms from extra-musical disciplines),

for the control of the pre-defined parameters within Genesis relative to the UGens and

classes presented within the Genesis system itself as well as the many SuperCollider

classes that are contained within the Genesis application’s package. In addition, the

generative processes that dictate the auditory signals within Genesis can also be

applied in real-time through the use of live coded SynthDefs or live acoustic signals as

input sources, which can be live-sampled and placed within the system’s Sample

UGens. This permits the composer to generate or apply, in real-time, many feasible

sound-objects for the control or slave sound-objects within Genesis.

5.5 Analytical Processes in Genesis

All analytical processes within Genesis apply values obtained from the Fast Fourier

Transform (FFT) of the real-time input sources with the outputs of the FFT analyzed

relative to the defined analytical process. The results of the analytical processes are

then used within particular generative processes (as described in section 5.4

Generative Processes in Genesis) and/or represented within the GUI. As stated in

section 5.1 An Overview of the Genesis System, each real-time input source’s auditory

signals are represented equally, irrespective of their input source type, be it a live

acoustic signal, the pre-defined ‘Sample’ reader UGens or a live-coded SynthDef’s

auditory output. As a result, the sonic features of pitch, onset, amplitude, tempo and

	
 195	

MFCCs are extracted from each source, ready for application to the various analytical

processes, with the analytical processes themselves defining the importance and role

of an individual source’s sonic feature/s, relative to the analytical process’s required

output.

The role of Mel-frequency cepstral coefficients (MFCCs) is highly prevalent in the

control of the onsets for the granular synthesizers of the slave sound-object (as

detailed in 5.4 Generative Processes in Genesis) and the dynamic spectral following

process. In order to extract the MFCCs (as described in chapter 3.2.3 Timbre

Perception), each control input source is assigned an FFT chain with a buffer size of

1024 frames and a sine window, which is consequently read by the MFCC.kr UGen.

The MFCC.kr UGen offers a parameter to define the number of coefficients, which is

selected to thirteen. This results in thirty-nine MFCC coefficients in total for the three

input sources. In consideration of the processing limitations, GUI scale and feasibility

of interaction, thirty-nine MFCCs triggering the onsets of thirty-nine granular

synthesisers and associated band-pass filters creates a manageable environment

successfully demonstrates the functionality of the fundamental principle of Genesis to

use the sonic features of real-time audio signals for modification, manipulation and

arrangement of real-time sound-objects.

The values of the MFCCs are ‘somewhat’229 normalized by the MFCC.kr UGen

within a range of around 0.0 to 1.0, which helps to restrict anomalous values from

occurring. This serves to create a more stable set of values for the consequent

mapping of the MFCCs to the generative processes within Genesis, which, in terms of

the dynamic spectral following process, can prevent clipping in the auditory signal. In

addition, due to the increased stability of the MFCC values, their representation

within the GUI can be mapped relatively simply to the values between 0.0 and 1.0,

limiting the possibility that their values will be misrepresented within the allocated

GUI MultiSliderViews for each control source.

The onsets of the real-time input sources, which trigger the grain trigger parameter

and the envelope of the granular synthesisers, along with optional re-triggering of the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

229	
 MFCC.kr	
 UGen	
 Class	
 Help	
 File.	
 2012.	
 SuperCollider	
 Version	
 3.	

	
 196	

Warp1.ar UGen of the slave sound-object and the gates of the fractal processes’

outputs, are extracted by applying the Onsets.kr UGen after the band-pass filters of

the control sources whose filter frequencies are controlled by the static or dynamic

methods as described in section 5.4 Generative Processes in Genesis. The Onsets.kr

UGen detects the onset of sonic events defined by the power of the auditory outputs

of the band-pass filters using a control signal of 0 or 1 to indicate the onset state: 0

being no onset detected, 1 being an onset detected.

As with the MFCC FFT chain, a buffer size of 1024 frames and a sine window are

applied to ensure a high temporal resolution, necessary for an onset task which

represents the change in amplitude events over time; the more temporal data, the more

onsets can be detected. The Onsets.kr UGen itself features various parameters of

which all but the threshold and onset detection function are set to default; the

threshold is modifiable within the GUI, with the onset detection function set to \phase,

which is ‘generally good, especially for tonal input, medium efficiency’230. With

regards to the onset detection function, this is applied in consideration of the use of

tonal sound-objects with the Genesis system.

The onsets are represented within the GUI through the use of GUI Buttons which

toggle on or off relative to the value of its corresponding Onsets.kr UGen’s control

signal output: off is gray, on is coloured relative to the control source. This allows the

composer to view which processes are triggered by which onsets of the control

source, simplifying consequent modification of the generative process controlled by

the relevant onsets of the control sources. Furthermore, the capability to visualize the

detection of onsets aids the process of the threshold adjustment within the GUI. For

example, if the overall amplitude of a granular synthesizer is set to 0, the triggering of

the grain and its envelope will not be heard. However, as the onsets of the control

sources, which triggers these parameters, can be observed visually, it is possible to

adjust the threshold, relative to the state of the onset GUI buttons, in preparation for a

consequent increase in the granular synthesizer’s overall amplitude.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

230	
 Onsets.kr	
 UGen	
 Class	
 Help	
 File.	
 2012.	
 SuperCollider	
 Version	
 3.	

	
 197	

The pitch of the real-time input sources and the overall mix are extracted through the

Pitch.kr UGen. This applies an autocorrelation function to obtain periodicity within

the signal, adapted from the temporal coding model proposed by Licklider (1951).

The result is output as a frequency value, relative to the fundamental frequency

defined by the Pitch.kr UGen. For the purposes of Genesis, the default general

settings of the Pitch.kr UGen have been applied due to the variance of sound-object

types that can be applied to the Genesis system.

The pitch is represented within the GUI through a UserView and TextField, relative

to the analytical process. For the pitch of the real-time input sources, UserViews are

applied. The frequency output by the Pitch.kr UGen of the relative source is mapped

to the UserView’s drawFunc method, with the frequency dictating the Pen class’s

addWedge radius parameter; the higher the frequency, the longer the radius, the lower

the frequency, the shorter the radius. However, for the pitch of the slave sound-object

and its application to the pitch fixing process detailed in section 5.4 Generative

Processes in Genesis, the pitch is extracted prior to modification and after

modification in order to represent the occurrence of any modification by the process

within the GUI.

The UserView method is applied in combination with two TextFields each using the

cpsmidi.midname methods, stating Pitch.kr UGen’s frequency as MIDI Note Names.

The pitch prior to any modification of the pitch fixing process is displayed through

one UserView (in yellow) using the drawFunc method described previously, with the

this frequency also represented as a MIDI Note Name in a TextField. The relative

difference between the pitches prior to any modification and the defined pitch

structure is represented in a UserView (in red) placed atop of the overall mix’s prior

pitch UserView, with higher levels of difference increasing the radius of the red

UserView. The resulting pitch of the process is displayed in another TextField,

visually representing the modification made by the pitch fixing process. This process

is illustrated in Figure 53:

	
 198	

Figure 53. GUI display of pitch fixing process

The loudness of the real-time input sources, which is applied to measure the duration

of the ‘Call’ for the ‘Call and Response’ function and sustain of the enveloping

process for the Warp1.ar UGen of the slave sound-object uses the Loudness.kr UGen

to represent the perceived loudness of the real-time input signals in phons.

The output of the Loundess.kr UGen for each real-time input source is represented in

the GUI through the use of Buttons, which toggle on or off relative to the value of the

output, similar to the Buttons applied to represent the values output by the Onsets.kr

UGens. However, the loudness Buttons only toggle on if the value of the respective

Loundess.kr UGen is above a defined threshold, set to a default of 15 phons, matching

the threshold at which the envelope of the slave sound-object’s Warp1.ar is sustained.

The extraction of an input source’s tempo is measured through the BeatTrack.kr

UGen. As with the Pitch.kr UGen, an autocorrelation function is applied to identify

periodicity within the signal. The BeatTrack.kr UGen ‘determines the beat, biased to

the midtempo range by weighting functions. It does not determine the measure level,

	
 199	

only a tactus’231. So, the outputs of the BeatTrack.kr UGen are weighted towards

tempos of between 100-120bpm and are relative to the signal’s onsets divided

between the rhythmic values of crotchet, quaver and semiquaver. As a result, its

application is more suited for sound-objects that feature distinct and distinguishable

rhythmic onsets that can be classified in to crotchets, quavers and semiquavers as well

as being of midtempo range. The tempo output of the BeatTrack.kr UGen represents

the duration of the identified crotchet onsets and must be multiplied by 60 in order to

obtain a value of beats per minute. The tempo output by the BeatTrack.kr UGen is

applied within Genesis to the tempo following process and the 0-th order Markov

chain execution described in section 5.4 Generative Processes in Genesis and

displayed within the GUI as its beats-per-minute (bpm) value for each of the real-time

input sources.

As demonstrated in chapter 3.2 A Brief Summary of Machine Listening, models

describing the perceptual processes which form the values of perceived sonic features

cannot be unequivocally defined. Therefore, the application of such models within

computational processes reflects the idiosyncrasies and limitations of the models of

sound perception. With regards to the analytical processes that are applied in Genesis,

it is possible to observe the constraints of the UGen classes in the consequent

application of the outputs forming what may be perceived as glitches in the auditory

signals and their representation within the GUI.

Most notably, the pitch following and tempo following processes highlight the

limitations of the Pitch.kr and BeatTrack.kr UGens. For example, the functionality of

pitch tracking through the Pitch.kr UGen decreases significantly if the periodicity of

the input source’s wave becomes less discernable. This can be caused by two key

factors: high levels of noise in the input source and/or the occurrence of polyphony,

which both cause interference masking of the signal’s frequency components. The

consequent application of the Pitch.kr UGen’s output, if high levels of interference

masking are present, may cause the pitch following process to compare inaccurately

the pitches of the control source and the slave source, relative to the pitch perceived

by a human.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

231	
 BeatTrack.kr	
 UGen	
 Class	
 Help	
 Files.	
 2012.	
 SuperCollider	
 3.5.3	

	
 200	

In terms of the tempo following process, the BeatTrack.kr UGen struggles to identify

tempos outside of the mid tempo range due to its weighting bias towards 100 - 120

bpm. In addition, the BeatTrack.kr UGen requires loud, fast attacking onsets to define

the relative tactus of the real-time input signal. As a result, the tempos applied to the

tempo following process are not necessarily truly representative of the perceived

tempo of the input source, causing the output of the process to generate an audible

signal that noticeably disproportions the tempos of the relative control source and the

slave source; the resulting tempo of the slave source does not match the control

source.

Despite the limitations of the analytical UGens as described above, the constraints of

the analytical processes form a system which influences the compositional output of

Genesis; acknowledgment and awareness by the composer of these system’s

characteristics and their consequent behaviours relative to the real-time input source’s

sound-object’s frequency components may generate unique methods of sound-object

control, distinctive of Genesis and the UGens that form its analytical suppositions.

For example, the resulting output of a pitch following process with a control signal

that features a significant level of interference masking may produce a pitch output,

which generates a novel pitch contour, relative to the pitch frequencies identified by

the Pitch.kr UGen. As a result, the output of the process becomes an representation of

Genesis’s interpretation of a real-time input source’s pitch. Furthermore, this principle

can of course be applied to all other analytical processes and their consequent

application to generative processes; the compositional outputs of the Genesis system,

which apply the sonic features obtained from the real-time auditory signals to

generate modifications to its auditory outputs, reflect its UGens’ perception of the

sonic features applied relative to the generative process.

	
 201	

5.6 Genesis Methodology with Audiovisual Demonstrations

5.6.1 Granular Synthesis control

NOTE For clarity and ease-of-reading, the computer code’s associated mappings

and UGens for one of the thirty-nine granular synthesisers are represented in the

following (unless otherwise stated). In execution, thirty-nine instances are run in real-

time of each code example relating to the granular synthesisers.

5.6.1.1 Static Onsets of Control Sources Triggering Onsets of Granular

Synthesizers

Audiovisual example on the DVD 3. Local Static Onsets.mov in the Audiovisual

Examples folder demonstrates the control of the static onsets for the granular

synthesizers dictated by control source one. The real-time audio input from a piano

keyboard forms control source one and control source three/slave sound-object. Only

slave output audible.

The following code represents the process for triggering the onsets and envelopes of

the granular synthesizers controlled by control source one.

Control source one filtered by bank of band-pass filters with static filter frequencies,

relative to those defined in GUI:

osc0Filter0 = BBandPass.ar(osc0, Select.kr(feedback0[46], [osc0Freq0, Select.kr(feedback0[60],

[filterData0[0], networkFilters0[0]])]), feedback0[57]);

Onsets of control source one analysed by a bank Onsets.kr UGens, with thresholds

defined in GUI:

 osc0Onset0 = Onsets.kr(osc0OnsetChain0, threshold0Array0[0], \phase);

Position of buffer for each granular synthesizer defined by fractal noise process

triggered by output onsets:

	
 202	

position0 = Gate.kr(PinkNoise.kr(~warpBuffer0[0].numFrames)/(~warpBuffer0[0].numFrames),

Select.kr(networkChooser0,[onsets0[0], networkOnsets0[0]]));

Outputs of bank of Onsets.kr UGens trigger granular synthesizers reading buffered

audio recording of slave sound-object:

onset0GrainMacro0 = GrainBuf.ar(1, Select.kr(networkChooser0,[onsets0[0], networkOnsets0[0]]), duration0,

~warpBuffer0[0].bufnum, BufRateScale.kr(~warpBuffer0[0].bufnum) * pitchChooser0, position0,

interpolation) * envelopes0[0];

Outputs of bank of Onsets.kr UGens trigger envelopes of granular synthesizers with

envelope times adjusted by GUI:

 onset0Envelope0 = Env.perc(grain0Attack0, grain0Release0, grain0Amplitude0, 'sine');

 onset0Env0 = EnvGen.kr(onset0Envelope0, Select.kr(networkChooser0,[onsets0[0], networkOnsets0[0]]), 1);

5.6.1.2 Dynamic Onsets of Control Sources Triggering Onsets of Granular

Synthesizers

Audiovisual example on the DVD 4. Local Dynamic Onsets.mov in the Audiovisual

Examples folder demonstrates the control of the dynamic onsets for the granular

synthesizers dictated by control source one. The real-time audio input from a piano

keyboard forms control source one and control source three/slave sound-object. Only

slave output audible.

The following code represents the process for the onsets of the granular synthesizers

controlled by control source one.

Control source one’s MFCCs extracted:

 mfccAnalysis0 = FFT(~mfccBuffer0, osc0Array1);

 mfcc0 = MFCC.kr(mfccAnalysis0);

Control source one filtered by bank of band-pass filters with dynamic filter

frequencies, relative to those defined by MFCCs of control source one:

 osc0Filter0 = BBandPass.ar(osc0, Select.kr(feedback0[46], [osc0Freq0, Select.kr(feedback0[60],

	
 203	

 [filterData0[0], networkFilters0[0]])]), feedback0[57]);

Onsets of control source one analysed by a bank Onsets.kr UGens, with thresholds

defined in GUI:

osc0Onset0 = Onsets.kr(osc0OnsetChain0, threshold0Array0[0], \phase);

Position of buffer for each granular synthesizer defined by the fractal noise process

triggered by output onsets:

position0 = Gate.kr(PinkNoise.kr(~warpBuffer0[0].numFrames)/(~warpBuffer0[0].numFrames),

Select.kr(networkChooser0,[onsets0[0], networkOnsets0[0]]));

Outputs of bank of Onsets.kr UGens trigger granular synthesizers reading buffered

audio recording of slave sound-object:

onset0GrainMacro0 = GrainBuf.ar(1, Select.kr(networkChooser0,[onsets0[0], networkOnsets0[0]]), duration0,

~warpBuffer0[0].bufnum, BufRateScale.kr(~warpBuffer0[0].bufnum) * pitchChooser0, position0,

interpolation) * envelopes0[0];

Outputs of bank of Onsets.kr UGens trigger envelopes of granular synthesizers with

envelope times adjusted by GUI:

 onset0Envelope0 = Env.perc(grain0Attack0, grain0Release0, grain0Amplitude0, 'sine');

 onset0Env0 = EnvGen.kr(onset0Envelope0, Select.kr(networkChooser0,[onsets0[0], networkOnsets0[0]]), 1);

5.6.1.3 Genetic Algorithm Modification of Granular Synthesizers’ Parameters

Audiovisual example on the DVD 9. Local GAs.mov in the Audiovisual Examples

folder demonstrates the control of the parameters for the granular synthesizers’ whose

onsets are dictated by control source three through the genetic algorithms executed in

the GUI. The real-time audio input from the Sample UGens forms control source one,

control source two and control source three/slave. Initially, the audible outputs of the

control sources are played, followed by the granular synthesizers that are controlled

by their onsets.

	
 204	

The following code represents the process for controlling the parameter of the

granular synthesizers of control source three via genetic algorithms.

The parameters of the granular synthesizers whose onsets are dictated by control one

and two are collected from control busses, such as MFCCs:
 ~mfccBus0.getn(13, {arg value; {mfccData0 = value;}.defer});

Values collected from busses are placed in RedGA classes and executed via GUI

Buttons with the crossover and mutation modified by GUI EZSliders. The resulting

outputs are allocated to the relevant parameter. The following code represents the

process for MFCC data:

//MFCC

//Crossover EZSlider

~crossoverSlider0[0] = EZSlider(~w5, Rect(300, 25, 233, 12.5), "crossover", ~volumeSpec0, unitWidth:30,

initVal:0.1,numberWidth:30, layout:\horz);

 ~crossoverSlider0[0].font_(Font("Monaco", 10));

 ~crossoverSlider0[0].setColors(Color.clear,Color.white.alpha_(0.7));

 ~crossoverSlider0[0].action_({ |ez|

 crossover0 = ez.value;

});

//Mutation EZSlider

 ~mutationSlider0[0] = EZSlider(~w5, Rect(500, 25, 233, 12.5), "mutation", ~volumeSpec0,

unitWidth:30, numberWidth:30, initVal:0.1,layout:\horz);

 ~mutationSlider0[0].font_(Font("Monaco", 10));

 ~mutationSlider0[0].setColors(Color.clear,Color.white.alpha_(0.7));

 ~mutationSlider0[0].action_({|ez|

 mutation0 = ez.value;

 });

//Execute algorithm

 ~algorithmButton0[0] = Button(~w5, Rect(300, 0, 100, 25));

 ~algorithmButton0[0].states_([["Spectrum", Color.white, Color.blue.alpha_(0.4)]]);

 ~algorithmButton0[0].font_(Font("Monaco", 10));

 ~algorithmButton0[0].action_({|butt|

 if(butt.value == 0,

 {

 RedGA.mutationFunc = {rrand(0, 2000);};

 mfccGenomeA = RedGAGenome.new(~mfccDataSelector0);

 mfccGenomeB = RedGAGenome.new(~mfccDataSelector1);

 RedGA.crossOverRate = crossover0;

 mfccCrossover = RedGA.breedMultiPoint(mfccGenomeA, mfccGenomeB);

 mfccCrossover.do{|x| x.chromosome};

 RedGA.mutationRate = mutation0;

 mfccBreed = RedGA.mutate(mfccCrossover[0]).chromosome;

 ~trackerSynth2.set(\mfccFeedback, mfccBreed);

 ~mfccArrayOut.addFirst(mfccBreed.max(0.005));

 });

 });

	
 205	

5.6.1.4 Fractal Noise Modification of Granular Synthesizers’ Playback Rate
Audiovisual example on the DVD 10. Fractal Static.mov in the Audiovisual Examples

folder demonstrates the control of the playback rate for the granular synthesizers’

whose static onsets are dictated by control source one and control source two. The

real-time audio input from the Sample UGens forms control source one, control

source two and control source three/slave. Initially, the audible outputs of the control

sources are played, followed by the granular synthesizers that are controlled by their

onsets. The recording rate of the granular synthesizers whose onsets are controlled by

control source one are also modified by the process.

Audiovisual example on the DVD 11. Fractal Dynamic.mov demonstrates the control

of the playback rate for the granular synthesizers’ whose dynamic onsets are dictated

by control source one and control source two. The real-time audio input from the

Sample UGens forms control source one, control source two and control source

three/slave. Initially, the audible outputs of the control sources are played, followed

by the granular synthesizers that are controlled by their onsets. The recording rate of

the granular synthesizers whose onsets are controlled by control source one are also

modified by the process.

The following code represents the process of controlling the pitches for the granular

synthesizers dictated by the onsets of control source one via fractal noise values.

Control source one filtered by bank of band-pass filters with static or dynamic filter

frequencies:

 osc0Filter0 = BBandPass.ar(osc0, Select.kr(feedback0[46], [osc0Freq0, Select.kr(feedback0[60],

[filterData0[0], networkFilters0[0]])]), feedback0[57]);

Onsets of control source one analysed by a bank Onsets.kr UGens, with thresholds

defined in GUI:

 osc0Onset0 = Onsets.kr(osc0OnsetChain0, threshold0Array0[0], \phase);

	
 206	

Outputs of bank of Onsets.kr UGens trigger fractal noise outputs of playback rate

PinkNoise.kr UGens:

pitchChooser0 = Gate.kr(Select.kr(fractal0Grain0, [grain0Pitch0, grain0Pitch0 * PinkNoise.kr(4)]),

Select.kr(networkChooser0,[onsets0[0], networkOnsets0[0]]));

Outputs of fractal noise playback rate optionally routed to the recording rate of the

granular synthesizers’ audio buffers:

bufferFilterHi0 = BufWr.ar(osc2, ~warpBuffer0[0], Phasor.ar(0, BufRateScale.kr(~warpBuffer0[0].bufnum) *

Select.kr(naturalChooser0, [1, rates[0]]), 0, BufFrames.kr(~warpBuffer0[0])));

Outputs of bank of PinkNoise.kr UGens define rate of granular synthesizers:

onset0GrainMacro0 = GrainBuf.ar(1, Select.kr(networkChooser0,[onsets0[0], networkOnsets0[0]]), duration0,

~warpBuffer0[0].bufnum, BufRateScale.kr(~warpBuffer0[0].bufnum) * pitchChooser0, position0,

interpolation) * envelopes0[0];

5.6.1.5 Spectral Following of Control Source for Application to Each Granular

Synthesizer’s Filter Frequencies

Audiovisual example on the DVD 12. Local Spectral Follwing.mov in the Audiovisual

Examples folder demonstrates the control of the filter frequencies for the granular

synthesizers mapped to the MFCC values of control source one and control source

two. The real-time audio input from the Sample UGens forms control source one,

control source two and control source three/slave. Initially, the audible outputs of the

control sources are played, followed by the granular synthesizers that are controlled

by their onsets.

The following code represents the process for the spectral following of control source

one’s MFCC values for application to the granular synthesizers controlled by control

source one.

Control source one’s MFCCs extracted:

 mfccAnalysis0 = FFT(~mfccBuffer0, osc0Array1);

 mfcc0 = MFCC.kr(mfccAnalysis0);

	
 207	

Control source one filtered by bank of band-pass filters with dynamic filter

frequencies, relative to those defined by MFCCs of control source one:

osc0Filter0 = BBandPass.ar(osc0, Select.kr(feedback0[46], [osc0Freq0, Select.kr(feedback0[60],

[filterData0[0], networkFilters0[0]])]), feedback0[57]);

MFCCs of control source one mapped to filter frequency values:

 filterControlOut0 = Out.kr(~filterTracker0, [

 ((multiplier0*(mfccData0.sum**3)**1)+(feedback0[51])).min(20001).max(19),

 }).send(s);

Output values of mappings are checked for values above 4000Hz and below 20Hz,

with those values resulting in a granular synthesizer with an amplitude of 0:

~filterCutterRoutine = Routine.new({

 inf.do({ arg i;

 if ((~filterCutter0[0] >4000) || (~filterCutter0[0] <20),

{~granularMacroSynth0.set(\amplitude0, 0);

{~filterTrackerSlider0[0].setColors(Color.grey,Color.white.alpha_(0), Color.white.alpha_(0)

,Color.grey,Color.white.alpha_(0), Color.yellow,nil, Color.yellow.alpha_(0.8),

Color.white.alpha_(0));}.defer; ~filterCutterGUI0[0] = 0;},

{~granularMacroSynth0.set(\amplitude0, 0.5);

{~filterTrackerSlider0[0].setColors(Color.grey,Color.white.alpha_(0),

Color.yellow.alpha_(0.5),Color.grey,Color.white.alpha_(0), Color.yellow,nil,

Color.yellow.alpha_(0.8), Color.white.alpha_(0));}.defer; ~filterCutterGUI0[0] = 1;}

);

);

Resulting outputs define filter frequency of each granular synthesizer’s filter

frequency:

osc0Filter0 = BBandPass.ar(onset0GrainMacro0, Select.kr(feedback0[46], [osc0Freq0, Select.kr(feedback0[60],

[filterData0[0], networkFilters0[0]])]), feedback0[57]);

5.6.1.6 Markov Chain manipulation of Granular Synthesiser Parameters

Audiovisual example on the DVD 23. Markov Chain.mov in the Audiovisual

Examples folder demonstrates the Markov chain control of random arrays created

	
 208	

relative to current data for the progressive development of the granular synthesiser

parameter settings of amplitude, rate, pan, duration, threshold, attack and release for

control source one and two. The outputs of the granular synthesisers controlled by

control source one and two are audible.

Create an initial random array based on current state for the parameters of amplitude,

rate, pan, duration, threshold, attack and release with the option to set ‘small changes

more likely’, ‘medium changes more likely, and ‘large changes more likely’.

//Create difference Array and PopUp Menu Array Selector
 ~differenceArray0 = [0.7, 0.2, 0.1];

 ~differenceButton0 = PopUpMenu(~w7, Rect(1920/3.25, 15, (1920/3)/20, 15));

~differenceButton0.items = ["small change more likely", "med change more likely", "large change more
likely"];

 ~differenceButton0.value = 0;

 ~differenceButton0.action = {arg menu;

 if(menu.value == 0,
 {
 ~differenceArray0 = [0.7, 0.2, 0.1];
 }
);

 if(menu.value == 1,
 {
 ~differenceArray0 = [0.1, 0.7, 0.2];
 }
);

 if(menu.value == 2,
 {
 ~differenceArray0 = [0.1, 0.2, 0.7];
 }
);

 };

//Create data arrays for each feature (Pan shown here)

~randPanArray0 = [rrand(-0.50,0.50), rrand(-0.50,0.50), rrand(-0.50,0.50), rrand(-0.50,0.50), rrand(-
0.50,0.50), rrand(-0.50,0.50), rrand(-0.50,0.50), rrand(-0.50,0.50), rrand(-0.50,0.50), rrand(-
0.50,0.50), rrand(-0.50,0.50), rrand(-0.50,0.50), rrand(-0.50,0.50)];

 ~randPanDiff0 = pan0Data0 - ~randPanArray0;

Start a routine, with intervals set relative to the perceived tempo, ensuring changes are
applicable to modification. If not, generate a new random array. This limits
extraneous variables.

//random routine
 ~randRoutine0 = Routine.new({
 inf.do({ arg i;

//ensure valid values (Only Pan shown here)
 ~checkRandPanDiff0 = Array.fill(13, {arg i;
 if(~randPanDiff0[i] <= -1,
 {
 ~randPanDiff0[i] = rrand(-0.50, 0.50);
 }
);
 if(~randPanDiff0[i] >= 1,
 {
 ~randPanDiff0[i] = rrand(-0.50, 0.50);
 }
);
 });

	
 209	

 });

//send values to synths and GUI (Only Pan shown here)

 {
 ~panners0Array = Array.fill(13, {arg i;
 ~panKnob0[i].valueAction = \pan.asSpec.unmap(~randPanDiff0[i]);
 };
);

 }.defer;

//create a selected difference array (Small Change presented here)

~smallChange0 = [rrand(-0.1, 0.1), rrand(-0.1, 0.1), rrand(-0.1, 0.1), rrand(-0.1, 0.1), rrand(-0.1,
0.1), rrand(-0.1, 0.1), rrand(-0.1, 0.1), rrand(-0.1, 0.1), rrand(-0.1, 0.1), rrand(-0.1, 0.1), rrand(-
0.1, 0.1), rrand(-0.1, 0.1), rrand(-0.1, 0.1)];

Add the newly created arrays to the current data and then send it to the granular
synthesisers controlled by control source one and two, relative to the current
probability distribution setting.

//wchoose amount of change (Only Pan shown here)

~randPanDiff0 = [~randPanDiff0 + ~smallChange0, ~randPanDiff0 + ~medChange0, ~randPanDiff0 +
~largeChange0].wchoose(~differenceArray0);

//set duration between each change relative to control source one tempo
 ~randDurationChooser0 = [0.1, 0.2, 0.33, 0.5, 0.66, 1, 2].choose;

 (~tempo0Message0*~randDurationChooser0).wait;

 });
 });

 ~randRoutine0.reset;
 ~randRoutine0.play;

 }

);

5.6.2 Real-time Digital Audio Effects’ Control

5.6.2.1 Onsets of Control Sources Triggering Grain Freeze Process

Audiovisual example on the DVD 5. Grain Freeze.mov in the Audiovisual Examples

folder demonstrates the control of the dynamic onset triggering for the PV_Freeze

UGen, which freezes the audio to a grain triggered by control source one. The real-

time audio input from the Sample UGens forms control source one, control source

two and control source three/slave. Control source one audible, followed by control

source two and control source three/slave sound-object, then by the grain freeze

process.

The following code represents the process for the freezing of grains controlled by the

onsets of control source one.

	
 210	

Control source one filtered by bank of band-pass filters with static/dynamic filter

frequencies:

 osc0Filter0 = BBandPass.ar(osc0, Select.kr(feedback0[46], [osc0Freq0, Select.kr(feedback0[60],

[filterData0[0], networkFilters0[0]])]), feedback0[57]);

Onsets of control source one analysed by a bank Onsets.kr UGens, with thresholds

defined in GUI:

 osc0Onset0 = Onsets.kr(osc0OnsetChain0, threshold0Array0[0], \phase);

Outputs of bank of Onsets.kr UGens trigger PV_Freeze UGen relative to its allocated

granular synthesizer:

 grain0Shift0 = FFT(~pitchBuffer0[0], triggersIn0[0]);

 grain0Shift0 = PV_Freeze(grain0Shift0, freezeOn0);

 grain0Pan0 = Pan2.ar(IFFT(grain0Shift0), grain0PanArray0[0], 1) * envelopes0[0];

5.6.2.2 Onsets of Control Sources Dictating Envelope Trigger and Time for Slave

Sound-Object Prior to Buffering for Granular Synthesizers

Audiovisual example on the DVD 6. Slave Sound-Object Enveloping.mov in the

Audiovisual Examples folder demonstrates the control of the dynamic onset triggering

of the envelope for the Warp1.ar UGen prior to the slave sound-object’s placement in

the granular synthesizers’ audio buffers. The number of triggers per second dictate the

envelope time. The real-time audio input from the Sample UGens forms control

source one and control source three/slave. Slave output always audible with control

source one faded in and out.

The following code represents the process for controlling the envelope of the

Warp1.ar UGen of the slave sound-object by control source one, prior to its

placement within the granular synthesizer buffers.

Control source one filtered by bank of band-pass filters with static/dynamic filter

frequencies:

	
 211	

 osc0Filter0 = BBandPass.ar(osc0, Select.kr(feedback0[46], [osc0Freq0, Select.kr(feedback0[60],

[filterData0[0], networkFilters0[0]])]), feedback0[57]);

Onsets of control source one analysed by a bank Onsets.kr UGens, with thresholds

defined in GUI:

 osc0Onset0 = Onsets.kr(osc0OnsetChain0, threshold0Array0[0], \phase);

Number of onsets per second from the control source one are counted, with the result

dictating the attack and release time of the slave sound-object’s envelope. Attack and

Release values for number of onsets per second >= 750, >=687.5 and >=625 shown

here:

~envelopeRoutine1 = Routine.new({

 inf.do({ arg i;

 ~g00 = ~g00 - g0;

 ~g00 = g0;

 case

 {~g00 >= 750}

 {~bufferSynth.set(\attack2, 0.01); ~bufferSynth.set(\release2, 0.01);}

 {~g00 >= 687.5}

 {~bufferSynth.set(\attack2, 0.025); ~bufferSynth.set(\release2, 0.025);}

 {~g00 >= 625}

 {~bufferSynth.set(\attack2, 0.05); ~bufferSynth.set(\release2, 0.05);}

 g0 = 0;

 1.wait;

 });

 });

Onsets, attack time and release time placed within relevant Env.adsr and EnvGen.kr

parameters, with envelope time modifiable via the GUI:

osc2 = (Warp1.ar(1, b, (materialPosition2/BufFrames.kr(b)), feedback[25], grainLength2, -1, 8, 0.1, 2) *

EnvGen.kr(Env.adsr(attack2Mean, attack2Mean, Select.kr(resetChooser0, [1, spliceDuration.max(0.5)]),

release2 * attackMultiplier0, 1, 'sine'), mat3Trigger + Select.kr(amplitudeChooser0, [0, mfccReturn0,

mfccReturn1, mfccReturn2]), 0.1));

5.6.2.3 Pitch Following of Control Source One by Slave Sound-Object

Audiovisual example on the DVD 13. Pitch Track Both Inputs.mov in the Audiovisual

Examples folder demonstrates the pitch following of the slave sound-object to control

source one’s pitch by pitch-tracking and comparing both auditory signals’ pitch. The

real-time audio input from a sampled major scale is provided as control source one

	
 212	

with a sampled, monophonic synthesiser loop applied as control source three/slave.

Both input sources audible.

Audiovisual example on the DVD 14. Pitch Track Slave Pitch Fixed.mov

demonstrates the pitch following of the slave sound-object to control source one’s

pitch by pitch-tracking and comparing the analysed pitch of control source one to a

fixed value of the slave sound-object, defined in the GUI to a C. The real-time audio

input from a sampled major scale is provided as control source one with a sampled,

monophonic synthesiser loop applied as control source three/slave. Both input sources

audible.

The following code represents the process for pitch following.

Control source one’s pitch extracted:

inputPitcher0, hasinputPitcher0 = Pitch.kr(inputPitch0);

Slave source’s pitch extracted:

pitchOut0, hasPitchOut0 = Pitch.kr(osc2Array2);

Alternatively, the pitch of the slave source can be defined via a GUI TextField:

 ~pitchFixed0 = TextField(~w5, Rect(250, 150, 50, 25));

 ~pitchFixed0.string = "A2";

 ~pitchFixed0.action = {arg field;

 ~bufferSynth.set(\fixedPitch, field.value.namemidi.midicps);

 };

Control source one’s pitch divided by slave source’s pitch:

ratePitches = Select.kr(fixedChooser, [Select.kr(networkChooser0, [meanInputPitcher0/meanPitcher2,

networkPitch0[0]/meanPitcher2]), Select.kr(networkChooser0, [meanInputPitcher0/meanPitcher2,

networkPitch0[0]/meanPitcher2])]);

Control source one’s GrainBuf.ar rate parameter multiplied by result:

pitchChooser0 = Gate.kr(Select.kr(fractal1Grain0, [grain1Pitch0, grain1Pitch0 * PinkNoise.kr(4)]) *

Select.kr(pitchTrackOn, [1, pitchTracker]), Select.kr(networkChooser0,[onsets1[0], networkOnsets1[0]]));

	
 213	

5.6.2.4 Tempo Following of Control Source One by Control Source Two

Audiovisual example on the DVD 15. Tempo Following.mov in the Audiovisual

Examples folder demonstrates the tempo following of control source two to control

source one’s tempo by beat-tracking and comparing both auditory signals’ tempo. The

real-time audio input from the Sample UGens forms control source one and control

source two. Initially, the audible outputs of the control sources are played, followed

by result of the tempo following process.

The following code represents the process for tempo following.

Control source one’s tempo extracted:

#crotchetTick0, quaverTick0, semiquaverTick0, tempo0 = BeatTrack.kr(fftAnalysis0, 0);

Control source two’s tempo extracted:

#crotchetTick2, quaverTick2, semiquaverTick2, tempo2 = BeatTrack.kr(beatTrack2, 0);

Control source one’s tempo divided by control source two’s tempo, with control

source two’s Warp1.ar UGens Phasor.ar UGen multiplied by result:

 controlRate0 = tempo0/tempo1;

materialPosition1 = RedPhasor2.ar(midiIn1, BufRateScale.kr(d.bufnum) * controlRate0, start1, end1,

loopOn1, start1, end1);

osc1 = (Warp1.ar(1, d, (materialPosition1/BufFrames.kr(d)), grainPitcher1, grainLength1, -1, 8, 0.1, 2) *

EnvGen.kr(Env.adsr(attack1Mean, attack1Mean, 1, release0 * attackMultiplier0, 1, 'sine'), midiIn1, 0.1))

* osc1Level0;

5.6.2.5 Pitch Fixing of Slave Sound-Object

Audiovisual example on the DVD 17. Pitch Fix with Original.mov in the Audiovisual

Examples folder demonstrates the fixing of the slave sound-object’s output to a C

Major scale. The real-time audio input from a piano keyboard forms control source

three/slave sound-object. The simultaneous outputs pre and post modification by the

pitch fixing process are audible.

	
 214	

Audiovisual example on the DVD 18. Pitch Fix without Original.mov demonstrates

the fixing of the slave sound-object’s output to a C Major scale. The real-time audio

input from a piano keyboard forms control source three/slave sound-object. The

output post modification by the pitch fixing process is audible.

The following code represents the process for pitch fixing the slave sound-object.

Slave source’s pitch extracted:

pitchOut0, hasPitchOut0 = Pitch.kr(osc2Array2);

Pitch structure is defined in GUI and placed in a control buffer:
//Select scale root note
~scaleFunctions = [(0..10).collect({|n| (Scale.major.degrees+(12 * n))}).flatten, (0..10).collect({|n|

(Scale.minor.degrees+(12 * n))}).flatten, (0..10).collect({|n| (Scale.chromatic.degrees+(12 *

n))}).flatten];

 ~chosenScale = ~scaleFunctions.at(0);

 ~chosenScaleAdjust = ~chosenScale - 1;

 ~noteText = PopUpMenu(~w5, Rect(15, 200, 75, 25));

 ~noteText.font_(Font("Monaco", 10));

 ~noteText.items = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"];

 ~noteText.action = {arg menu;

 ~chosenScaleAdjust = (~chosenScale + menu.value);

 };

//Select scale type

 ~scaleSelect0 = PopUpMenu(~w5, Rect(15, 225, 75, 25));

 ~scaleSelect0.font_(Font("Monaco", 10));

 ~scaleSelect0.items = ["Major", "Minor", "Chromatic"];

 ~scaleSelect0.action = {arg menu;

 ~chosenScale = (~scaleFunctions.at(menu.value)) + ~noteText.value;

 ~chosenScaleAdjust = ~chosenScale - 1;

 };

//Toggle on Pitch Fixing

~scaleOnButton.action_({arg butt;

 if ((butt.value == 1),

 { ~bufferSynth.set(\scaleChooser, 1);

 ~scaleBuffer = Buffer(s, ~chosenScaleAdjust.size, 1, bufnum:900);

 s.listSendMsg(~scaleBuffer.allocMsg(~scaleBuffer.setnMsg(0, ~chosenScaleAdjust.midicps)));

 ~pitchTrackerSynth = Synth(\scaler);

 ~pitchTrackerSynth.set(\bufnum, ~scaleBuffer);

 ~scalerUpdateRoutine0.reset;

 ~scalerUpdateRoutine0.play;},

 {~bufferSynth.set(\scaleChooser, 0); ~scalerUpdateRoutine0.stop; ~pitchTrackerSynth.free;

}

	
 215	

);

 });

Slave source’s pitch compared to pitches defined within buffer:

 index = IndexInBetween.kr(bufnum, freqAdjust);

 frequencyDiff = index.frac * (Index.kr(bufnum, index + 1) - Index.kr(bufnum, index));

Result is placed in PitchShift.kr UGen, making adjustment audible:

 out = PitchShift.ar(in, grainSize, 1 - (frequencyDiff / freqAdjust), 0.00001, 0.01) * 2;

5.6.2.6 Random Search Process for Control of Reverb, Filter, Panning and the

Buffer Position and Time Stretching of the Slave Sound-Object’s Warp1.ar UGen

Audiovisual example on the DVD 22. Random Search Processes.mov in the

Audiovisual Examples folder demonstrates the control of the reverb, filter and

panning of the overall auditory mix in combination with the random selection of the

slave sound-object’s Warp1.ar UGen’s buffer position and time stretching. The real-

time audio input from the Sample UGens forms control source one and control source

three/slave. Both sources are audible.

The following code represents the process for random search control of the overall

auditory mix’s reverb, filter and panning in combination with the buffer position and

time stretching of the slave sound-object’s Warp1.ar UGen.

Execute random generative process via GUI Button:

~autoFXButton0 = Button(~w5, Rect(100, 25, 100, 25));

 ~autoFXButton0.action_({arg butt;

 if (butt.value == 1,

 {

 ~generativeRoutine = Routine.new({

 inf.do({ arg i;

var offset, duration, cutlength, barposition, stretch, roomSize, damper, volume, filterFreq0, filterRes0,

filterFreq1, filterRes1, grainsize0, grainsize1, grainpan0, grainpan1, grainvol0, grainvol1, reverbTime,

revSpread, earlyRef, tailLev;

//Randomly select values for features

 stretch = (-2..2).choose;

 roomSize = (10..300).choose;

 damper = (0..1).choose;

 filterFreq0 = (40..20000).choose;

 filterRes0 = (0.01..1).choose;

	
 216	

 filterFreq1 = (40..440).choose;

 filterRes1 = (0.01..1).choose;

 grainsize0 = (0.05..0.15).choose;

 grainsize1 = (0.05..0.15).choose;

 grainpan0 = (-1..1).choose;

 grainpan1 = (-1..1).choose;

 grainvol0 = (0.25..1).choose;

 grainvol1 = (0.25..1).choose;

 offset = ((~start)..(~length)).choose;

 cutlength = (0.01..1).choose;

 reverbTime = (0.1..5).choose;

 revSpread = (10..100).choose;

 earlyRef = (0.5..1).choose;

 tailLev = (0.5..1).choose;

//Send values to SynthDefs

 ~bufferSynth.set(\spliceDuration, cutlength);

 ~bufferSynth.set(\reset2, offset);

 ~bufferSynth.set(\stretcher, stretch);

 ~fxSynth.set(\roomSize0, roomSize);

 ~fxSynth.set(\damper, damper);

 ~fxSynth.set(\lpfFreq, filterFreq0);

 ~fxSynth.set(\lpfRes, filterRes0);

 ~fxSynth.set(\hpfFreq, filterFreq1);

 ~fxSynth.set(\hpfRes, filterRes1);

 ~fxSynth.set(\grainSize0, grainsize0);

 ~fxSynth.set(\grainSize1, grainsize1);

 ~fxSynth.set(\grainPan0, grainpan0);

 ~fxSynth.set(\grainPan1, grainpan1);

 ~fxSynth.set(\grainVol0, grainvol0);

 ~fxSynth.set(\grainVol1, grainvol1);

 ~fxSynth.set(\revTime1, reverbTime);

 ~fxSynth.set(\spread, revSpread);

 ~fxSynth.set(\earlyRf, earlyRef);

 ~fxSynth.set(\tailLev, tailLev);

 ~algoTime.wait;

 });

 });

 ~generativeRoutine.reset;

 ~generativeRoutine.play;

 });

5.6.2.7 Call and Response

Audiovisual example on the DVD 20. Call and Response.mov in the Audiovisual

Examples folder demonstrates the application of a Call followed by a Response. The

Call is provided by the real-time audio input from a subtractive synthesizer placed in

to control source one. Initially the Call is audible, followed by the Response.

	
 217	

The following code represents the process for Call and Response.

Loudness of Call signal measured:

 fft0 = FFT(~powerBuffer0, buffer0);

 power0 = Loudness.kr(fft0);

Output is recorded with Loudness values above 5 triggering the recording of the Call:

//Loudness trigger for recording toggle on/off

 ~waitCounter0 = Routine {

 inf.do({ arg i;

 if((~interactInput0[~interactInputChooser0] < 5),

 {

 ~waitCount0 = ~waitCount0 + 0.5;

 ~stopInteractGUI = ~waitCount0;

 });

 if((~interactInput0[~interactInputChooser0] >= 5),

 {

 ~waitCount0 = 0;

 ~stopInteractGUI = 0;

 });

 0.5.wait

 });

 };

// count time of Call
~interactCounter0 = Routine {

 inf.do({ arg i;

 if((~interactCounterOn == 1),
 {
 ~interactCount0 = ~interactCount0 + 1;
 ~interactEnvelope = ~interactCount0;
 ~interactTimeOut = ~interactTempo0;
 ~interactOnsetCalculator = (~interactOnsetCounterOut/~interactEnvelope);
 ~interactPitch0 = ~grainPitch0Message0.cpsmidi/50;
 ~interactPitch1 = ~grainPitch0Message0.cpsmidi/50;

 });

 if((~interactCounterOn == 0),
 {
 ~interactCount0 = 0;
 });

 1.wait

 });
 };

//When recording toggled on, record audio out, If toggled off, playback recorded audio

~interactRoutine1 = Routine {

 inf.do({ arg i;

 if((~waitCount0 < ~waitCountAdjuster0),

 {

 ~fxSynth.set(\interactBufferOn0, 1);

	
 218	

 ~interactSynth.set(\triggerOn0, 0, \volumeOut0, 0);

 ~interactCounterOn = 1;

 if((~waitCount0 >= ~waitCountAdjuster0),

 {

 ~fxSynth.set(\interactBufferOn0, 0);

 ~interactSynth.set(\triggerOn0, 1, \volumeOut0, 1);

 ~interactCounterOn = 0;

 ~interactOnsetCounter = 0;

 });

 0.01.wait

 });

 };

When the Call’s Loudness falls below 5, the Response is triggered. The Response’s

audio is formed of the recorded Call, which is played back through the Warp1.ar

UGen, with its parameters defined by the values of the interactRoutine0:

~interactRoutine0 = Routine {

 inf.do({ arg i, interactPos, interactPitch, interactVol, interactTime0, interactTime1,

interactTime2, interactTime3, interactTime4, interactSustain, interactEnd, interactDivision,

interactStretch;

//Specify buffer playback start/end position, volume, pitch and envelope sustain

interactPos = rrand(0, ((s.sampleRate * ~interactEnvelope) - (s.sampleRate +

(~waitCountAdjuster0 * s.sampleRate)))).round(s.sampleRate/~interactTimeOut);

interactEnd = rrand(interactPos, ((s.sampleRate * ~interactEnvelope) - (~waitCountAdjuster0 *

s.sampleRate))).round(s.sampleRate/~interactTimeOut);

 interactPitch = rrand(~interactPitchOut0, ~interactPitchOut1).round(~interactPitchRound0);

interactVol = rrand(0.8, 1);

 interactSustain = ~interactEnvelope.max(1);

//Create arrays of various playback durations

interactTime0 = [[1/~interactTimeOut, 1], [((1/~interactTimeOut) * 2), 0.5],

[((1/~interactTimeOut) * 0.5), 2], [((1/~interactTimeOut) * 1.5), 0.75]].choose;

interactTime1 = [[1/~interactTimeOut, 1], [1/~interactTimeOut, 1], [((1/~interactTimeOut) * 2),

0.5], [((1/~interactTimeOut) * 0.5), 2], [((1/~interactTimeOut) * 0.5), 2]].choose;

interactTime2 = [[((1/~interactTimeOut) * 0.5), 2], [((1/~interactTimeOut) * 0.3), 3],

[((1/~interactTimeOut) * 0.25), 4], [((1/~interactTimeOut) * 0.5), 2], [((1/~interactTimeOut) *

0.25), 4], [((1/~interactTimeOut) * 0.5), 2]].choose;

interactTime3 = [[((1/~interactTimeOut) * 0.125), 8], [((1/~interactTimeOut) * 0.125), 4],

[((1/~interactTimeOut) * 0.25), 4], [((1/~interactTimeOut) * 0.125), 8]].choose;

interactTime4 = [[((1/~interactTimeOut) * 4), 0.25], [((1/~interactTimeOut) * 2), 0.5],

[((1/~interactTimeOut) * 2), 0.5], [((1/~interactTimeOut) * 4), 0.25], [((1/~interactTimeOut) *

2), 0.5], [((1/~interactTimeOut) * 1.5), 0.75]].choose;

//if conditions are met (performer is ready for response), play back recorded audio applying relative duration

	
 219	

array and envelope. Example shown here is max. 25 onsets collated over 1 second:

if((~interactCounterOn == 0) && ((~stopInteractGUI) > (~waitCountAdjuster0/2)) &&

((~stopInteractGUI) < (interactSustain + (~interactEnvelope/100.max(0.1)))),

 {

 {

 ~candenceOn = 0;

 if(((~interactOnsetCalculator) >= 0) && ((~interactOnsetCalculator) < 25),

 {

 ~interactTimeSelector = interactTime4;

 ~interactSpeedText0.string = "Sparse";

 });

 ~interactStartPos = interactPos;

 ~interactFinishPos = interactEnd;

 });

 }.defer;

 },

//If the envelope time is nearing a close, tidy up with a time stretched buffer sample

 if((~interactCounterOn == 0) && (~candenceOn == 1)

 && ((~stopInteractGUI) >= (interactSustain + (~interactEnvelope/100.max(0.1))))

&& ((~stopInteractGUI) <= (interactSustain + (~interactEnvelope/100.max(0.1)) +

~waitCountAdjuster0)),

 {

 {

 ~interactSpeedText0.string = "Cadence";

 ~interactStartPos = 0;

 ~interactFinishPos = s.sampleRate/~interactTimeOut;

 ~interactTimeAdjust = [~waitCountAdjuster0, ~waitCountAdjuster0];

 }.defer;

 });

//Set parameters in Interact Synth relative to output of interact Routine0

~interactSynth.set(

 \triggerOn0, 1,

 \start0, ~interactStartPos,

 \end0, ~interactFinishPos,

 \pitch0, interactPitch,

 \timeStretcher0, ~interactTimeAdjust[1],

 \sustainTime0, interactSustain.max(1) + ~interactTimeAdjust,

 \attackTime0, ~interactEnvelope/100.max(0.1),

 \amplitude0, interactVol,

 \releaseTime0, 0.1,

);

 ~interactTimeAdjust[0].wait;

 });

	
 220	

 };

5.6.3 Network Control
5.6.3.1 Set-Up of Networked Instances of Genesis

Audiovisual example on the DVD 7. Network Set Up.mov in the Audiovisual

Examples folder demonstrates the set-up of two networked instances Genesis. No

sound.

The following code represents the process for setting up the two instances of Genesis.

Network sender IP address defined by IP of Receiver:

 ~ipOfSender0 = TextField(~w5, Rect(15, 15, 75, 15));

 ~ipOfSender0.font_(Font("Monaco", 10));

 ~ipOfSender0.string = "Send IP 1";

 ~ipOfSender0.action = {arg field;

 ~networkSender0 = NetAddr(field.value, 57120);

Data is sent via network senders using OSC (Only pitch of control source one shown

here):

 guiUpdateRoutine0 = Task {

 inf.do{

 ~gui0Bus0.getn(62, {arg value; {

 ~networkSender0.sendMsg(*(["pitch0"] ++ [value[4], value[18], ~networkOut0]));

 }.defer});

Network Receiver address defined by IP of Sender:

 ~ipOfReceiver = TextField(~w5, Rect(15, 150, 75, 15));

 ~ipOfReceiver.font_(Font("Monaco", 10));

 ~ipOfReceiver.string = "From IP";

 ~ipOfReceiver.action = {arg field;

 ~networkReceiver0 = NetAddr(field.value, 57120);

Data is collected by network responders to IP of Sender (Only pitch of control source

one shown here):
 ~pitchResponder0 = OSCresponder(~networkReceiver0, '/pitch0', {| t, r, msg|

{

 ~pitchReply0 = [msg[1], msg[2], msg[3]];

 }.defer;

 }).add;

	
 221	

Data is allocated to relevant SynthDefs via task:

 ~networkUpdate0 = Task({

 loop{

 (1/60).wait;

 ~bufferSynth.set(\networkPitch0, ~pitchReply0);

 };

 }).start;

5.6.3.2 Networking of Control Sources Triggering Onsets of a local Slave Sound-

Object’s Warp1.ar UGen on a Networked System

Audiovisual example on the DVD 8. Network Onsets.mov in the Audiovisual

Examples folder demonstrates the control of the dynamic onset triggering of the

envelope via a network for the Warp1.ar UGen prior to the slave sound-object’s

placement in the granular synthesizers’ audio buffers. The number of triggers per

second dictate the envelope time. The real-time audio input from a piano keyboard

forms the local control source one of the Sender, with Sample UGens forming the

control source three/slave on the Sender and the Receiver. Sender and Receiver slave

sound-objects audible.

The following code represents the process for triggering the onsets and envelopes of

the slave local sound-object controlled by a networked control source one.

Control source one on Sender filtered by bank of band-pass filters with static/dynamic

filter frequencies:

osc0Filter0 = BBandPass.ar(osc0, Select.kr(feedback0[46], [osc0Freq0, Select.kr(feedback0[60],

[filterData0[0], networkFilters0[0]])]), feedback0[57]);

Onsets of control source one on Sender analysed by a bank Onsets.kr UGens, with

thresholds defined in GUI:

 osc0Onset0 = Onsets.kr(osc0OnsetChain0, threshold0Array0[0], \phase);

Onsets of control source one on Sender sent via network to specified IP address using

a routine:

	
 222	

~trigger0Bus0.getn(13, {|vals| {

~networkSender0.sendMsg(*(["triggers0"] ++ triggers0Network));

 }.defer});

Receiver collects onsets by network responders to IP of Sender:

 ~triggerResponder0 = OSCresponder(~networkReceiver0, '/triggers0', {| t, r, msg|

 {

~trigger0Reply = [msg[1], msg[2], msg[3], msg[4], msg[5], msg[6], msg[7], msg[8], msg[9],

msg[10], msg[11], msg[12], msg[13]];

 }.defer;

 }).add;

Received onsets allocated to relevant SynthDefs via task:

 ~networkUpdate0 = Task({

 loop{

 (1/60).wait;

 ~granularMacroSynth0.set(\networkOnsets0, ~trigger0Reply);

 };

 }).start;

Number of onsets per second from the networked control source one are counted,

with the result dictating the attack and release time of the slave sound-object’s

envelope. Attack and Release times for number of onsets >= 750, >=687.5 and

>=625 shown below:

~envelopeRoutine1 = Routine.new({

 inf.do({ arg i;

 ~g00 = ~g00 - g0;

 ~g00 = g0;

 case

 {~g00 >= 750}

 {~bufferSynth.set(\attack2, 0.01); ~bufferSynth.set(\release2, 0.01);}

 {~g00 >= 687.5}

 {~bufferSynth.set(\attack2, 0.025); ~bufferSynth.set(\release2, 0.025);}

 {~g00 >= 625}

 {~bufferSynth.set(\attack2, 0.05); ~bufferSynth.set(\release2, 0.05);}

 g0 = 0;

 1.wait;

 });

 });

Onsets, attack time and release time placed within relevant Env.adsr and EnvGen.kr

parameters, with envelope time modifiable via the GUI:

	
 223	

osc2 = (Warp1.ar(1, b, (materialPosition2/BufFrames.kr(b)), feedback[25], grainLength2, -1, 8, 0.1, 2) *

EnvGen.kr(Env.adsr(attack2Mean, attack2Mean, Select.kr(resetChooser0, [1, spliceDuration.max(0.5)]),

release2 * attackMultiplier0, 1, 'sine'), mat3Trigger + Select.kr(amplitudeChooser0, [0, mfccReturn0,

mfccReturn1, mfccReturn2]), 0.1));

5.6.3.3 Networking of Control Sources Triggering Onsets of Granular Synthesizers

and the pitch following of the Slave Sound-Object’s Warp1.ar UGen

Audiovisual example on the DVD 16. Network Pitch and Onsets.mov in the

Audiovisual Examples folder demonstrates the control of the dynamic onset triggering

of the envelope via a network for the Warp1.ar UGen prior to the slave sound-

object’s placement in the granular synthesizers’ audio buffers in addition to the local

slave sound-object’s pitch. The number of triggers per second dictates the envelope

time. The real-time audio input from a piano keyboard forms local control source one

of the Sender with Sample UGens forming the control source three/slave on the

Sender and the Receiver. All sources audible.

The following code represents the process for controlling the onsets of the granular

synthesizers and pitch of the slave sound-object’s Warp1.ar UGen on a networked

receiver.

Networked Control source one filtered by bank of band-pass filters with

static/dynamic filter frequencies (static in Audiovisual example 14):

osc0Filter0 = BBandPass.ar(osc0, Select.kr(feedback0[46], [osc0Freq0, Select.kr(feedback0[60],

[filterData0[0], networkFilters0[0]])]), feedback0[57]);

Networked Control source one’s pitch extracted:

inputPitcher0, hasinputPitcher0 = Pitch.kr(inputPitch0);

Onsets of control source one analysed by a bank Onsets.kr UGens, with thresholds

defined in GUI:

 osc0Onset0 = Onsets.kr(osc0OnsetChain0, threshold0Array0[0], \phase);

	
 224	

Onsets and pitch of control source one sent via network to specified IP address using

a routine:

~trigger0Bus0.getn(13, {|vals| {

 ~networkSender0.sendMsg(*(["triggers0"] ++ triggers0Network));

 ~networkSender0.sendMsg(*(["pitch0"] ++ [value[4], value[18], ~networkOut0]));

 }.defer});

Receiver collects onsets by network responders to IP of Sender:

 ~triggerResponder0 = OSCresponder(~networkReceiver0, '/triggers0', {| t, r, msg|

 {

~trigger0Reply = [msg[1], msg[2], msg[3], msg[4], msg[5], msg[6], msg[7], msg[8], msg[9],

msg[10], msg[11], msg[12], msg[13]];

 }.defer;

 }).add;

Received onsets allocated to relevant SynthDefs via task:

 ~networkUpdate0 = Task({

 loop{

 (1/60).wait;

 ~granularMacroSynth0.set(\networkOnsets0, ~trigger0Reply);

 };

 }).start;

Local Slave source’s pitch extracted:

pitchOut0, hasPitchOut0 = Pitch.kr(osc2Array2);

Networked Control source one’s pitch divided by local slave source’s pitch:

ratePitches = Select.kr(fixedChooser, [Select.kr(networkChooser0, [meanInputPitcher0/meanPitcher2,

networkPitch0[0]/meanPitcher2]), Select.kr(networkChooser0, [meanInputPitcher0/meanPitcher2,

networkPitch0[0]/meanPitcher2])]);

Control source one’s GrainBuf.ar rate parameter multiplied by result:

pitchChooser0 = Gate.kr(Select.kr(fractal1Grain0, [grain1Pitch0, grain1Pitch0 * PinkNoise.kr(4)]) *

Select.kr(pitchTrackOn, [1, pitchTracker]), Select.kr(networkChooser0,[onsets1[0], networkOnsets1[0]]));

	
 225	

5.6.4 Interaction Control and Display

5.6.4.1 Live Routine and Live Sample Generation

Audiovisual example on the DVD 21. Live Routine, Live Sampling.mov in the

Audiovisual Examples folder demonstrates the live coding provided by the GUI

object, and consequent wrapping as a routine along with the live sampling process.

The real-time audio input from the Sample UGens forms control source one. Initially,

the audible outputs of the control sources are played, followed by its repetition

through a newly generated routine, then by this routine’s output live sampled and

played back.

The following code represents the process for live routine generation:

A hidden post window with a predefined task string is created at the initiation of

Genesis:

 ~saveName = "~routine";

 ~saveText = Document.new("Save Session", makeListener: false);

 ~saveText.bounds_(Rect((1920/3), 456, 1920/3, 230));

 ~saveText.background = Color.gray.alpha_(0);

 ~saveText.editable = true;

 ~saveText.string_(~saveName ++ " = Routine({

 inf.do ({ arg i; ",

 (~saveText.string.size), (~saveText.string.size));

 ~saveText.selectLine(~saveText.string.size);

 ~taskString = " \n\n " ++ "

0.01.wait;

});

});";

~saveText.editable = false;

Each GUI object writes a string with its valueAction and its current value to the

hidden post window. The following code shows this for the pitch modifier EZSlider

of the Sample UGens for control source one:

~osc0PitchSlider0.action = {|ez|

 ~bufferSynth.set(\grainPitcher0, ez.value);

	
 226	

textEditor.stringColor_(Color.yellow, (~textEditor.string.size), (~textEditor.string.size));

~textEditor.string_(" \n\n " ++ ~clockOut ++ " osc0Pitch0 = " ++ ez.value.asString ++ " ",

(~textEditor.string.size), (~textEditor.string.size));

~textEditor.selectLine(~textEditor.string.size);

~saveText.string_(" \n\n " " if(clockGUI == " ++ ~clockGUI ++ "," ++

"{{ ~osc0PitchSlider0.valueAction = " ++ ~osc0PitchSlider0.value.asString ++ " }.defer;}); ",

 (~saveText.string.size), (~saveText.string.size));

 ~saveText.selectLine(~saveText.string.size);

 }

The current content of the hidden post window can be wrapped as a task and titled

through the GUI (the following code demonstrates this process for one task button

within the ‘Routine Controls’ window):

 ~newRoutineButton0 = Button(~w6, Rect(225, 225, 100, 25));

 ~newRoutineButton0.states_([["Create...",Color.black,Color.gray],]);

 ~newRoutineButton0.action_({|butt|

 ~saveText.editable = true;

//Use saved text to create a prewrapped task

 if(~allocateTask0.value == 1,

 {

 ~saveText.string_(~taskString, (~saveText.string.size), (~saveText.string.size));

 ~saveText.selectLine(~saveText.string.size);

 ~saveText.syntaxColorize;

 ~taskPositionRoutine0.clear;

 ~taskPositionRoutine0 = ~saveText.string.interpret;

 ~taskPositionString0 = ~saveText.string;

 ~saveText.selectRange(~saveText.string.size - (~taskString.size - 1), ~saveText.string.size);

 ~saveText.selectedString = "";

~newTaskButton0.states_([[~saveName ++ "Stop",Color.black,Color.gray], [~saveName ++

"Stop",Color.black,Color.green],]);

~textEditor.stringColor_(Color.black, (~textEditor.string.size), (~textEditor.string.size));

~textEditor.string_(" \n\n " ++ ~clockOut ++ " " ++ ~saveName ++ " loaded to 1 ",

(~textEditor.string.size), (~textEditor.string.size));

~textEditor.selectLine(~textEditor.string.size);

~newTaskButton0.action_({|butt|

//Make button play/stop routine

 if(~newTaskButton0.value == 0,

 {

 ~taskPositionRoutine0.stop;

 },

 {

 ~taskPositionRoutine0.reset;

 ~taskPositionRoutine0.play;

 });

	
 227	

 });

 });

A task can also be loaded from and saved to the computer’s hard disk (the process is

very similar to that above. The key difference being the wrapped task comes from a

saved file, as opposed to the hidden post window).

The following code represents the process for live sample creation.

Buffer length can be set via the GUI:

 ~recordLengthInput0 = TextField(~w6, Rect(75, 25, 50, 25));

 ~recordLengthInput0.background = Color.red.alpha_(0.8);

 ~recordLengthInput0.action = {arg field;

 ~recordBuffer0.free;

 ~recordBuffer0 = Buffer.alloc(s, s.sampleRate * field.value.asInteger.max(1), 2, bufnum:226);

 };

The recording can be triggered locally or over a network within the GUI (locally

demonstrated here):

 ~recordSwitch0 = Button(~w6, Rect(125, 25, 100, 25));

 ~recordSwitch0.states_([

 ["Record Off",Color.white.alpha_(0.8),Color.red.alpha_(0.8)],

 ["Record On",Color.red.alpha_(0.8),Color.white.alpha_(0.8)],

]);

 ~recordSwitch0.action_({arg butt;

 if (butt.value == 1,

 {~recordBuffer0.free;

 ~recordBuffer0 = Buffer.alloc(s, s.sampleRate * ~recordLengthInput0.value.asInteger.max(1), 2,

bufnum:226);

 ~fxSynth.set(\recordOn, 1);

},

 {~fxSynth.set(\recordOn, 0);

~recordBuffer0.write(sampleFormat: 'int16');

~quickLoadPath0 = (thisProcess.platform.recordingsDir +/+ "SC_" ++ Date.localtime.stamp ++

".aiff")

;}

)

 });

The destination Sample UGens of the recording is set in the GUI (Shown here for

control source one):

	
 228	

 ~quickLoadReceiveSelector0 = PopUpMenu(~w0, Rect(225, 50, 125, 25));

 ~quickLoadReceiveSelector0.items = ["to Yellow", "to Red", "to Blue"];

 ~quickLoadReceiveSelector0.action = {arg menu;

 if (menu.value == 0,

 { ~bufferSelector0 = c;

 ~sampleSelector0 = ~sampleViewer0;

 ~sampleFileSelected = ~sampleFile0;

 ~numFramesSelector = ~cnumFrames;

 ~dnaSelector0 = ~dna0;

 ~loadSelector0 = "Yellow";

 };);

 };

5.6.4.2 Dynamic Scoring System

Audiovisual example on the DVD 19. Dynamic Scoring System.mov in the

Audiovisual Examples folder demonstrates the visualisation process of the parameters

of the granular synthesizers whose onsets are dictated by each control source. The

real-time audio input from the Sample UGens forms control source one, control

source two and control source three/slave. Initially, the audible outputs of the control

sources are played, followed by the granular synthesizers that are controlled by their

onsets, in combination with their visualisation.

The following code represents the process for dynamic scoring of the granular

synthesizers’ parameters.

Control sources’ busses defining each granular synthesizer’s parameters are collected.

(Only MFCC data shown here):

~mfccBus0.getn(13, {arg value; {mfccData0 = value;}.defer});

Values are mapped to Pen methods (Only control source one shown here):

//Create Window

~visualiserWindow = Window("Genesis Visualiser", Rect(0, 0, ~visualWidth * 2, ~visualHeight * 2), false,

~borderOn);

~visualiserWindow.view.background = Color.gray;

~visualiserWindow.alwaysOnTop = true;

~visualiserWindow.userCanClose = false;

~visualiserWindow.front;

	
 229	

~visualiserWindow.drawFunc = {

//Draw with pen, applying parameters obtained from busses

 Pen.use {

 Pen.translate(~visualWidth, ~visualHeight);

 Pen.width = (duration0Data0[0] * 15);

 1.do {

Color.yellow([1, [(filterFreqData0[0]/4000) + 0.5, (~filterCutter0[0]/4000) +

0.5].at(~visualSpectrum0)].at(~visualFilter0), (envelope0Data0[0] * grainsVolume0) *

([1, [1, ~filterCutterGUI0[0]].at(~visualSpectrum0)].at(~visualFilter0))).setStroke;

 Pen.moveTo(Point((~visualWidth) * pan0Data0[0], (pitch0Data0[0] * (~visualHeight/4)) * -1));

 Pen.lineTo(Point(0, 0));

 Pen.skew(position0Data0[0], position0Data0[0]);

 Pen.stroke;

 };

};

 };

	

	
 230	

Chapter 6

Evaluation of the Genesis System

6.1 Evaluation Methodology

Formal evaluative methodologies for real-time interactive music systems, such as

Genesis, are significantly limited. Indeed, research has shown that there are a

‘consistently low proportion of papers containing formal evaluations’232. However,

Human Computer Interaction (HCI) evaluation techniques are commonly applied to

assess the success of real-time interactive music systems. An HCI evaluation method

is ‘historically drawn from four complimentary domains - software engineering,

software human factors, computer graphics, and cognitive science – that could be

grouped into two main foci: methods and software (Carroll, 2002)’233 resulting in an

approach that is founded on objective, quantifiable, task-based interaction, focusing

on the process.

Considering that the success of musical interactions is creative and subjective, they

are not quantifiable to a reliable measure. Indeed, the product of musical creativity is

never unequivocal. As a result, the context of musical interaction poses an issue when

applying it to HCI evaluation methods; how do we evaluate a real-time interactive

music system’s ability to perform a creative task? Furthermore, who should complete

an evaluation of such a system? The performer, the composer or the audience? Collins

(2007) suggests that the evaluation of real-time interactive music systems requires ‘1)

technical criteria related to tracking success or cognitive modelling; 2) The reaction of

an audience; 3) The sense of interaction for the musicians who participate’234 thereby

drawing upon HCI techniques to obtain evaluative feedback of the process and

product from different sources.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

232	
 Stowell	
 et	
 al.	
 2009.	
 Evaluation	
 of	
 live	
 human-­‐computer	
 music-­‐making:	
 quantitative	
 and	
 qualitative	
 approaches.	

International	
 Journal	
 of	
 Human-­‐Computer	
 Studies.	
 67	
 (11):	
 960	

233	
 Wanderley,	
 M	
 and	
 Orio,	
 N.	
 2002.	
 Evaluation	
 of	
 Input	
 Devices	
 for	
 Musical	
 Expression:	
 Borrowing	
 Tools	
 from	
 HCI.	

Computer	
 Music	
 Journal.	
 26(3):	
 62	

234	
 Hsu,	
 W	
 and	
 Sosnick,	
 M.	
 Evaluating	
 Interactive	
 Music	
 Systems:	
 An	
 HCI	
 Approach.	
 NIME	
 2009:	
 26	

	
 231	

However, in terms of live musical interaction, a predominant feature of Genesis, ‘the

performer has privileged access to both the intention and the act, and their experience

of the interaction is a key part of what determines its expressivity’235. Moreover,

‘another challenging aspect of interface evaluation is that the participant populations

are often small (Wanderley and Orio, 2002)’236, further complicating the issue of

finding suitable candidates to assess and evaluate real-time computer music systems.

Therefore, although a variety of sources, including audience-feedback and composer-

feedback, may prove useful with regards to broader perspectives of a real-time

interactive music system, those who have engaged in the act of interaction with such a

system are argued to provide the most insight into their success and expressiveness.

Indeed, considering the remit of the thesis, a small sample group of performer-based

evaluation is applicable and attainable. As a result, evaluation of Genesis is primarily

performer–centered.

As stated, HCI evaluation techniques are task-oriented, centering on process,

requiring a specified goal to be set relative to a quantifiable target. Yet, regarding the

volume of interactive methods that can be objectified in real-time interactive music

systems, description of every possible task and attributed goal to be defined as criteria

for evaluation is unfeasible; in the context of interaction with musical control

interfaces, Wanderley and Orio (2002) state that ‘it is nearly impossible to cover all

the features of a controller unless an unbearable number of musical tasks is

considered’237. The solution Wanderley and Orio (2002) provide is to evaluate a

handful of low-level basic musical objectives. However, this creates artificial results

in the context of musical performance by oversimplifying the range of possibilities a

real-time interactive music system may have to an individual process, thereby not

reflecting the true nature of a system’s creative potential and its product.

Moreover, the more complex a system is, the more difficult it becomes to evaluate

successfully through simple task-based interactions. For example, Hsu and Sosnick

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

235	
 Stowell	
 et	
 al.	
 2009.	
 Evaluation	
 of	
 live	
 human-­‐computer	
 music-­‐making:	
 quantitative	
 and	
 qualitative	
 approaches.	

International	
 Journal	
 of	
 Human-­‐Computer	
 Studies.	
 67	
 (11):	
 960	

236	
 Ibid:	
 961	

237	
 Wanderley,	
 M	
 and	
 Orio,	
 N.	
 2002.	
 Evaluation	
 of	
 Input	
 Devices	
 for	
 Musical	
 Expression:	
 Borrowing	
 Tools	
 from	
 HCI.	

Computer	
 Music	
 Journal.	
 26(3):	
 71	

	
 232	

(2009) reflect on their experiences of evaluating interactive music systems by stating

‘as the number of system components increased and their interactions increased in

complexity, it became difficult to correlate design decisions to improvements in

musicality’238. As a result, due to the complexity and significant number of interactive

methods in Genesis, the evaluation of its high-level musical goals is prioritised, such

as its musicality, ability to engage with performers and accessibility to

instrumentalists.

In order to obtain evaluative feedback of such high-level goals from performers using

HCI evaluation techniques, methods range from “talk-aloud” protocols (Ericsson and

Simon, 1996), through which performers make statements during performance

regarding their experiences, to tests based on human cognition such as GOMS (Card

et al, 1983) which measure time taken by a user to achieve a specified goal, and

observation of a user’s reactions during performative interaction. However, in the

case of real-time interactive music systems, such approaches are not reliable: a “talk-

aloud” protocol breaks the flow of interaction, requiring a user to disrupt their

ongoing creative process; time-based tests are not suitable in the context of musical

performance as they bear no context to musical time; observations by a third party of

a user’s satisfaction in their interactions are highly subjective.

Questionnaires filled in by a user after a performance offer a useful method of

reflective evaluation without the limitations of those methods listed above. Through a

questionnaire, adequate quantitative and qualitative results can be obtained.

Psychometric scales, such as the Likert scale239, provide scalable results from the

experiences of the user, which can be applied to HCI-based objectives. As a result, a

Likert-scale approach will be used to evaluate high-level goals in Genesis to provide

quantitative data that will be measured and compared between performers, with

qualitative data obtained from the responses made by the participants to a number of

key questions.

In the context of this thesis, the principle aim of the evaluation is to examine how

successful the interactive methods implemented in Genesis are perceived to be by

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

238	
 Hsu,	
 W	
 and	
 Sosnick,	
 M.	
 Evaluating	
 Interactive	
 Music	
 Systems:	
 An	
 HCI	
 Approach.	
 NIME	
 2009:	
 25	

239	
 Munshi,	
 J.	
 2014.	
 A	
 Method	
 for	
 Constructing	
 Likert	
 Scales.	
 Sonama	
 State	
 University	

	
 233	

potential users of such a system. As a result, performers with an expressed interest in

live performance with computers/electronics are suitable candidates. Furthermore,

considering the remit of this thesis, which focuses on the algorithmic implementations

in Genesis, and the novel methods of interactivity the system allows, the evaluation

will be based upon the proposed trial of ‘a single interface with no explicit

comparison system’240.

The trial of the Genesis system by the selected performers is based upon the

qualitative approach suggested by Stowell et al (2009), through which a participant is

invited to try out an interface and engage in free exploration, guided exploration and a

semi-structured interview to evaluate a real-time interactive music system; in free

exploration ‘the participant is encouraged to try out the interface for a while and

explore it their own way’241, in guided exploration ‘the participant is presented with

audio examples of recordings created using the interface’242 and in the semi-structured

interview ‘the interview’s main aim is to encourage the participant to discuss their

experiences of using the interface in the free and guided exploration phases’243.

Furthermore, in order to obtain the most congruent, focused and personal evaluation

results, solo sessions with each participant are conducted in which the author

accompanies the performer, as proposed by Stowell et al (2009).

However, for the evaluation of Genesis, this qualitative evaluation method is adapted

with the objective to gather further insight into the perceived success of the interactive

methodologies in Genesis. Instead, free exploration includes an improvisatory

performance with the system, based upon selected high-level features within Genesis,

generating an extensive global product with which to discuss in the evaluation. Also,

the musical outcomes of the free explorations with each participant are presented as

audiovisual examples in the folder Evaluation Performances on the DVD to provide

documental evidence of the performances discussed further into this chapter.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

240	
 Stowell	
 et	
 al.	
 2009.	
 Evaluation	
 of	
 live	
 human-­‐computer	
 music-­‐making:	
 quantitative	
 and	
 qualitative	
 approaches.	

International	
 Journal	
 of	
 Human-­‐Computer	
 Studies.	
 67	
 (11):	
 962	

241	
 Ibid:	
 964	

242	
 Ibid	

243	
 Ibid	

	
 234	

In addition, the guided exploration is completed in real-time, with the author

demonstrating and using step-by-step instruction to show the participant an overview

of the principles of the Genesis system. The purpose of the guided exploration is to

increase a participant’s understanding by answering any questions they may have,

thereby encouraging them to explore Genesis how they see fit.

Furthermore, a fully-structured interview was conducted, in the form of the

questionnaire approach detailed previously that combines a Likert-scale and a

performer-centric commentary, to ensure fairness and balance between evaluation

results from each performer. The questionnaire presented to each participant was as

follows:

Genesis Evaluation Questionnaire

1) How would you describe your interaction with Genesis?

2) Which aspects of performing with the Genesis system did you enjoy?

3) In relation to your musical background, how familiar and accessible was your

interaction with Genesis?

4) How would you describe the performance capabilities of the Genesis system to

generate reasoned musical responses to your interactions?

5) To what extent do you feel the musical paradigms implemented in Genesis are

beneficial to your creative approach?

6) In terms of musicality, how successful do you consider the overall output of your

performance with Genesis?

7) To what extent did you feel Genesis introduces a novel method of live performance

and why?

	
 235	

8) To what extent did you feel in control of the performance process and why?

9) How would you describe the creativity of the responses generated by Genesis?

For the following questions, please state to what extent you agree with the following

statements and add a comment justifying your response.

10) I would like to perform again with Genesis system:

Strongly Agree Agree Neither Agree/Disagree Disagree Strongly Disagree

Comment:

11) The Genesis system provided creative outputs that were relatable to my inputs:

Strongly Agree Agree Neither Agree/Disagree Disagree Strongly Disagree

Comment:

12) The real-time methodology of Genesis contributed positively to my performance

process:

Strongly Agree Agree Neither Agree/Disagree Disagree Strongly Disagree

Comment:

13) Genesis features a significantly large musical exploratory space:

Strongly Agree Agree Neither Agree/Disagree Disagree Strongly Disagree

Comment:

14) The graphical user interface of Genesis is intuitive and easy-to-use:

Strongly Agree Agree Neither Agree/Disagree Disagree Strongly Disagree

Comment:

15) Genesis adapts its creative outputs over time:

Strongly Agree Agree Neither Agree/Disagree Disagree Strongly Disagree

Comment:

	
 236	

16) I felt engaged with Genesis during the performance process:

Strongly Agree Agree Neither Agree/Disagree Disagree Strongly Disagree

Comment:

17) I would liken the outputs of Genesis to those of a human being:

Strongly Agree Agree Neither Agree/Disagree Disagree Strongly Disagree

Comment:

18) Please add here any further comments you may have regarding your experience

with Genesis:

The questions within the evaluative questionnaire are designed to focus primarily on

the key issues raised in chapter 4 Interactivity with Digital Music Systems. In terms if

the underlying rationale, the following identifies the intended subject and the

relationship to research into interactivity with digital music systems for each question.

The first nine questions are as follows:

1) How would you describe your interaction with Genesis?

In order to categorise the methods of interaction with Genesis relative to Winkler’s

(2001), Paine’s (2002) and Rowe’s (1993) models of interaction, the responses of the

participants should highlight how they perceive Genesis’s approaches to interaction,

thereby enabling a performer-based perspective that can be applied to the proposed

models. The question should also highlight the perceived affordances and constraints

of the system (as suggested by Magnusson (2012b) by indicating how they considered

Genesis in the act of performance.

	
 237	

2) Which aspects of performing with the Genesis system did you enjoy?

Considering the variety of interactive and generative approaches available in Genesis,

identifying which aspects are most enjoyable to a performer should serve to highlight

the relative success of its numerous algorithmic implementations.

3) In relation to your musical background, how familiar and accessible was your
interaction with Genesis?

A principle feature of the Genesis system is to form an extension of an instrumental

paradigm, thereby making it relatable to instrumentalists and having a ‘low entry fee’

(Wessel and Wright, 2002). This question should ascertain to what extent the applied

method is successful.

4) How would you describe the performance capabilities of the Genesis system to
generate reasoned musical responses to your interactions?

Regarding the interpretation by the system of gesture, and the consequent generative

processes which are mapped to such gestures modelled on the methods suggested by

Arfib el al (2003), this question aims to discover to what extent a gestural input and

an interaction by Genesis are perceived to be related, as proposed by Overholt et al

(2009).

5) To what extent do you feel the musical paradigms implemented in Genesis are

beneficial to your creative approach?

This question is designed to investigate further the performer’s background and how

their creative process may impact on successful interaction with Genesis through an

instrumental paradigm. Moreover, the question is intended to identify if methods

through abstraction such as live coding may be considered more successful when

interacting with a machine.

	
 238	

6) In terms of musicality, how successful do you consider the overall output of

your performance with Genesis?

With regards to the global product of performance with Genesis, it is necessary to

consider how it is perceived musically, therefore indicating its aesthetic value and

potential virtuosity.

7) To what extent did you feel Genesis introduces a novel method of live

performance and why?

In terms of the approach to interaction within Genesis, it is important to identify how

this system bears relevance to any other systems the performer may have used,

hopefully contextualizing Genesis from a performer’s perspective.

8) To what extent did you feel in control of the performance process and why?

This question is designed to identify a more descript view of how interaction with

Genesis is influential, and how the dynamic of interaction over time with the system

may be perceived to change. This should provide further evidence for categorisation

of Genesis into the proposed models of interaction by Winkler (2001), Paine (2002

and Rowe (1993).

9) How would you describe the creativity of the responses generated by Genesis?

Relative to the discussion regarding generative and adaptive creativity (Bown, 2012),

and the proposition of a hybridisation of the two approaches, this question attempts to

discover how creativity with the Genesis system is considered, and whether its

outputs are in themselves relatable and ‘reasoned’ to the performers interactions.

The application of a Likert scale for the following questions is intended to obtain

quantifiable evidence to provide measurable comparison between the performers of

their experiences with Genesis. Each question is accompanied by an optional

	
 239	

comments section in order to obtain further insight into each participant’s feedback.

The questions are as follows:

10) I would like to perform again with Genesis system:

This question is designed to relate directly to the enjoyment the performers may have

experienced with the system, hopefully representing a desire by such performers to

implement Genesis in further study and performances and indicating its value as a

real-time interactive music system.

11) The Genesis system provided creative outputs that were relatable to my

inputs:

Extending question 4 regarding how well the system is perceived to generate reasoned

responses to the performer’s interactions, this question attempts to quantify that

response, demonstrating the success of the system’s algorithmic implementations for

the generation of musical gestures.

12) The real-time methodology of Genesis contributed positively to my

performance process:

Considering a principle feature of Genesis is to function in real-time, it is necessary to

consider to what extent this impacts on a performer’s ongoing performance process

and whether Genesis does indeed form a real-time interactive music system. This

question is designed to obtain a quantifiable response to such issues.

13) Genesis features a significantly large musical exploratory space:

Related to the implementation of a ‘low entry fee’ (Wessel and Wright, 2002),

significant discussion is presented that indicates a ‘low entry fee’ limits the

prospective musicality of interactive music systems. This question attempts to identify

if the algorithmic methods in Genesis reflect this supposition or if Genesis achieves a

	
 240	

‘low entry fee’ combined with a substantially interesting interactive musical sound

space.

14) The graphical user interface of Genesis is intuitive and easy-to-use:

Further to the implementation of a ‘low entry fee’ (Wessel and Wright, 2002), a

familiar and accessible interface is a factor within such a requirement. Therefore, this

question should indicate how the GUI supplements this prerequisite.

15) Genesis adapts its creative outputs over time:

With regard to the propositions by Arfib et al (2003) and Paine (2002) of

implementing dynamic and evolving parameter/interaction spaces, considering

Genesis does not include such constraints, this question is intended to signify whether

its methodology is perceived to feature them, and if so, to what extent. Therefore, this

question should indicate if dynamic algorithmic design is required to generate such an

effect.

16) I felt engaged with Genesis during the performance process:

This question is designed to identify how influential the Genesis system is in

performance, and consequently how involved the performer feels as part of the

creative process. As a result, this should suggest how successful the hybridisation of

generative and adaptive creativity with Genesis is perceived to be.

17) I would liken the outputs of Genesis to those of a human being:

This question extends question 16, and is designed to allow the performer to reflect on

how they considered a machine to represent a human performer. With regards to

Blackwell et al’s (2012) suggestion of creating live algorithms that can emulate

human performance convincingly, the response to this question should indicate to

what extent Genesis achieves such a notion.

	
 241	

18) Please add here any further comments you may have regarding your

experience with Genesis:

The performer must be encouraged to contribute any further comments on or concerns

they may have with the system to represent any issues that they themselves may

consider important as a performer using a real-time interactive music system. Indeed,

this may highlight subjects that are personal to those performers or moreover,

implications of Genesis that may have not been considered.

6.2 Evaluation Results

For each participant, an overview of the interaction method used in each evaluation is

presented, along with reference to the audiovisual examples of their free exploration

with Genesis and a figure illustrating the interaction approach. The questionnaire of

the respective participant is then directly transcribed, followed by discussion of their

feedback. Once each participant’s evaluation method and feedback has been shown,

comparison of the feedback and discussion regarding the success of the evaluation

method are presented. All audiovisual examples are contained in the Genesis

Performances folder on the accompanying DVD in each participant’s respective

named folder.

I approached three participants with a variety of musical backgrounds intended to

provide a balanced perspective in the evaluation of Genesis. As stated in section 6.1

Evaluation Methodology, participants were selected dependent on their having an

expressed interest in electroacoustic composition and performance techniques. The

three participants are John Snijders, Shelly Knotts and Mark Carroll who are all

members of the Durham University Music Department, contacted upon

recommendation and discussion through conversation with research staff in the

department.

In summary, John Snijders is Reader of Performance at Durham University, and an

accomplished pianist who has performed with a variety of contemporary composers

and performers around the globe. Shelly Knotts is a PhD student at Durham

	
 242	

University, greatly involved in the live coding scene, with a strong interest in

networked performance and interaction, having organised a number events such as the

Network Music Festival. Mark Carroll, composer-in-residence at the South Bank

centre, London, is now a first year PhD student at Durham University, who was

completing his MA in Composition at the time of evaluation. During his MA course,

Mark began composing with SoundLoom244, which introduced him to electroacoustic

techniques and interaction with computers for composition.

As stated in section 6.1 Evaluation Methodology, each participant is invited to

participate in guided exploration, followed by free exploration. After these have been

completed, participants are presented with the evaluation questionnaire shortly after

their interaction with Genesis.

John Snijders

Introduction to the accompanying video documentation

The John Snijders Free Exploration.mov video displays all instances of Genesis (two

of which display the Dynamic Scoring System throughout the performance), the live

piano performer and a stereo recording of the output.

The free exploration was recorded at Durham University Music Department Concert

Hall on the 6th June 2013 in front of a live audience. The performance applies one live

piano performer (John Snijders), one supervised instance of Genesis (Julian Lywood

Mulcock) and two unsupervised networked instances of Genesis.

For each instance of Genesis, the granular synthesisers dictated by control source one

are triggered by the live piano performer, with the granular synthesisers dictated by

control source two triggered by a microphone placed at the rear of the concert hall.

The supervised instance of Genesis uses a live stream of the piano obtained through a

contact microphone for control source three/slave with the networked instances of

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

244	
 Wishart,	
 T.	
 (n.d.).	
 Trevor	
 Wishart.	
 [online]	
 Trevorwishart.co.uk.	
 Available	
 at:	

http://www.trevorwishart.co.uk/slfull.html	
 [Accessed	
 Mar.	
 2013]	

	
 243	

Genesis applying a pre-selected series of sample banks, broadly categorised into

strings, woodwind and bells for their control source three/slave sound-objects. Figure

54 illustrates the interaction methodology of the performance:

Figure 54. Performance Interaction with John Snijders

Considering the outline of the modes of interaction provided in chapter 5 The Genesis

System in Figure 41, this performance scenario provides a hybrid of different

interaction modes between the human performers and Genesis; the supervised

instance of Genesis offers a supervised improvisation model of interaction, whereas

the unsupervised networked instances of Genesis offer an unsupervised ensemble

model of interaction, which results in an amalgam of interaction methodologies,

generating a composition of a Supervised/Unsupervised Improvisation Ensemble; the

human controlled instance of Genesis applies improvisational techniques for the

modification of parameter settings through the GUI relative to the outputs of the

improvisatory piano performer, while the unsupervised instances of Genesis use a

looped routine which selects pre-defined parameters and sound-objects at selected

durations, relative to durations decided prior to performance .

	
 244	

The following code defines the looped routine running on each unsupervised instance

of Genesis throughout the performance:

//add files

~networkPerformanceFiles = "/Users/*****/Documents/University/PhD Research/Performance Audio Files Set

One/*".pathMatch;

//routine to randomly select sample files

~networkSampleRoutine0 = Routine.new({

 inf.do({ arg i;

 var durations = rrand(0.5, 2.0);

 var filesChooser = [0, 1, 2].choose;

//set up default settings

 ~inputSwitch2.valueAction = 0;

 ~loopChoose2.valueAction = 0;

 b.free;

 ~samplePath2 = ~networkPerformanceFiles.choose;

 b.allocRead(~samplePath2.asString);

 ~sampleFile2.openRead(~samplePath2.asString);

 ~sampleViewer2.soundfile = ~sampleFile2;

 ~sampleViewer2.read(0, ~sampleFile2.numFrames);

 ~sampleViewer2.refresh;

 ~bnumFrames = ~sampleFile2.numFrames;

 ~samplePathButton2.states_([[~samplePath2.asString, Color.white, Color.blue.alpha_(0.8)]]);

 ~bufferSynth.set(\start2, 0, \end2, ~sampleFile2.numFrames, \mate3Trigger, 1, \clipAdjust,

0.05);

 ~start = 0;

 ~length = ~sampleFile2.numFrames;

 ~child.add(1);

//place name of file in DSS window

 if (~visualWindowCheck0 == 1,

 {~visualSlaveSource.string = ~samplePath2; ~visualSlaveSource.stringColor = Color.blue;

~visualSlaveSource.font = Font("Monaco", 25);}

);

//if random duration is less than 1.25, generate random pan settings for control source one

 if (durations < 1.25,

 {

 ~panners0Array = Array.fill(13, {arg i;

 ~panKnob0[i].valueAction = \pan.asSpec.unmap(rrand(-1.0, 1.0));

 });

 };

);

//if random duration is greater than 1.25, generate random pan settings for control source two

 if (durations > 1.25,

 {

 ~panners1Array = Array.fill(13, {arg i;

	
 245	

 ~panKnob1[i].valueAction = \pan.asSpec.unmap(rrand(-1.0, 1.0));

 });

 };

);

//if clock is less than or equal to 8.5 minutes, select files from set one

 if(~clockGUI <= 83300,

 {

 ~networkPerformanceFiles = "/Users/*****/Documents/University/PhD Research/Performance Audio Files

Set One/*".pathMatch;

 });

//if clock is between 8.5 minures and 16 minutes, select files from set two

 if((~clockGUI > 83300) && (~clockGUI <= 160000),

 {

 ~networkPerformanceFiles = "/Users/*****/Documents/University/PhD Research/Performance Audio Files

Set Two/*".pathMatch;

 });

//if clock is between 8.5 minures and 16 minutes, select files from set three

 if((~clockGUI > 160000) && (~clockGUI <= 250000),

 {

 ~networkPerformanceFiles = "/Users/*****/Documents/University/PhD Research/Performance Audio Files

Set Three/*".pathMatch;

 });

//if clock is greater than 25 minutes, select files from all three sets

 if((~clockGUI > 250000) && (~clockGUI <= 300000) && (filesChooser == 0),

 {

 ~networkPerformanceFiles = "/Users/*****/Documents/University/PhD Research/Performance Audio Files

Set One/*".pathMatch;

 });

 if((~clockGUI > 250000) && (~clockGUI <= 300000) && (filesChooser == 1),

 {

 ~networkPerformanceFiles = "/Users/*****/Documents/University/PhD Research/Performance Audio Files

Set Two/*".pathMatch;

 });

 if((~clockGUI > 250000) && (~clockGUI <= 300000) && (filesChooser == 2),

 {

 ~networkPerformanceFiles = "/Users/*****/Documents/University/PhD Research/Performance Audio Files

Set Three/*".pathMatch;

 });

//if the sample file matches the first file of the folder, set random amplitudes and durations for control

source one

	
 246	

 if (~samplePath2 == ~networkPerformanceFiles[0],

 {

 ~randomAmplitudes0 = [rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0,

1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0),

rrand(0.0, 1.0), rrand(0.0, 1.0)];

 ~grainAmplitude0Slider.valueAction = ~randomAmplitudes0;

 ~randomAmplitudes0Array = Array.fill(13, {arg i;

 ~envelopeSynth.set("grain0Amplitude" ++ i.asString, ~volumeSpec0.map(~randomAmplitudes0[i].value));

 });

 ~randomDuration0 = [rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0,

4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0),

rrand(0.0, 4.0), rrand(0.0, 4.0)];

 ~onsetDurationSlider0.valueAction = ~randomDuration0/4;

 ~randomDuration0Array = Array.fill(13, {arg i;

 ~granularMacroSynth0.set("onset0Duration" ++ i.asString,

~durationSpec0.map(~randomDuration0[i].value));

 });

 ~onsetChooser0.valueAction = 1;

 };

);

//if the sample file matches the second file of the folder, set random amplitudes and durations for control

source two

 if (~samplePath2 == ~networkPerformanceFiles[1],

 {

 ~randomAmplitudes1 = [rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0,

1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0),

rrand(0.0, 1.0), rrand(0.0, 1.0)];

 ~grainAmplitude1Slider.valueAction = ~randomAmplitudes1;

 ~randomAmplitudes1Array = Array.fill(13, {arg i;

 ~envelopeSynth.set("grain1Amplitude" ++ i.asString, ~volumeSpec0.map(~randomAmplitudes1[i].value));

 });

 ~randomDuration1 = [rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0,

4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0), rrand(0.0, 4.0),

rrand(0.0, 4.0), rrand(0.0, 4.0)];

 ~onsetDurationSlider1.valueAction = ~randomDuration1/4;

 ~randomDuration1Array = Array.fill(13, {arg i;

 ~granularMacroSynth1.set("onset1Duration" ++ i.asString,

~durationSpec0.map(~randomDuration1[i].value));

 });

 ~onsetChooser1.valueAction = 1;

 };

);

//if the sample file matches the third file of the folder, set random attack and pitch for control source one

 if (~samplePath2 == ~networkPerformanceFiles[2],

 {

 ~randomAttack0 = [rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0,

2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0),

rrand(0.0, 2.0), rrand(0.0, 2.0)];

	
 247	

 ~grainAttack0Slider.valueAction = ~randomAttack0/2;

 ~randomAttack0Array = Array.fill(13, {arg i;

 ~envelopeSynth.set("grain0Attack" ++ i.asString, ~attackSpec0.map(~randomAttack0[i].value));

 });

 ~randomPitch0 = [rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0,

4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0,

4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0)];

 ~pitch0Slider0.valueAction = (~randomPitch0 + 4)/8;

 ~randomPitch0Array = Array.fill(13, {arg i;

 ~granularMacroSynth0.set("grain0Pitch" ++ i.asString, ~randomPitch0[i].value);

 });

 ~onsetChooser0.valueAction = 0;

 };

);

//if the sample file matches the fourth file of the folder, set random attack and pitch for control source two

 if (~samplePath2 == ~networkPerformanceFiles[3],

 {

 ~randomAttack1 = [rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0,

2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0),

rrand(0.0, 2.0), rrand(0.0, 2.0)];

 ~grainAttack1Slider.valueAction = ~randomAttack1/2;

 ~randomAttack1Array = Array.fill(13, {arg i;

 ~envelopeSynth.set("grain1Attack" ++ i.asString, ~attackSpec0.map(~randomAttack1[i].value));

 });

 ~randomPitch1 = [rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0,

4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0), rrand(-4.0,

4.0), rrand(-4.0, 4.0), rrand(-4.0, 4.0)];

 ~pitch1Slider0.valueAction = (~randomPitch1 + 4)/8;

 ~randomPitch1Array = Array.fill(13, {arg i;

 ~granularMacroSynth1.set("grain0Pitch" ++ i.asString, ~randomPitch1[i].value);

 });

 ~onsetChooser1.valueAction = 0;

 };

);

//if the sample file matches the fifth file of the folder, set random release for control source one

 if (~samplePath2 == ~networkPerformanceFiles[4],

 {

 ~randomRelease0 = [rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0,

2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0),

rrand(0.0, 2.0), rrand(0.0, 2.0)];

 ~grainRelease0Slider.valueAction = ~randomRelease0/2;

 ~randomRelease0Array = Array.fill(13, {arg i;

 ~envelopeSynth.set("grain0Release" ++ i.asString, ~attackSpec0.map(~randomRelease0[i].value));

 });

 ~algorithmButton0[6].valueAction = 1;

 ~onsetChooser2.valueAction = 0;

	
 248	

 };

);

//if the sample file matches the sixth file of the folder, set random release for control source two and turn

pitch tracking on

 if (~samplePath2 == ~networkPerformanceFiles[5],

 {

 ~randomRelease1 = [rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0,

2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0), rrand(0.0, 2.0),

rrand(0.0, 2.0), rrand(0.0, 2.0)];

 ~grainRelease1Slider.valueAction = ~randomRelease1/2;

 ~randomRelease1Array = Array.fill(13, {arg i;

 ~envelopeSynth.set("grain1Release" ++ i.asString, ~attackSpec0.map(~randomRelease1[i].value));

 });

 ~algorithmButton0[5].valueAction = 1;

 ~pitchTrackButton0.valueAction = 1;

 };

);

//if the sample file matches the seventh file of the folder, set random threshold for control source one

 if (~samplePath2 == ~networkPerformanceFiles[6],

 {

 ~randomThreshold0 = [rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0,

1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0),

rrand(0.0, 1.0), rrand(0.0, 1.0)];

 ~onsetThresholdSlider0.valueAction = ~randomThreshold0;

 ~randomThreshold0Array = Array.fill(13, {arg i;

 ~analysisSynth.set("osc0OnsetThreshold" ++ i.asString,

~thresholdSpec0.map(~randomThreshold0[i].value));

 });

 };

 ~algorithmButton0[1].valueAction = 1;

);

//if the sample file matches the eighth file of the folder, set random thresholds for control source two,

reset pitches to 1 for control one and two, and turn of pitch tracking

 if (~samplePath2 == ~networkPerformanceFiles[7],

 {

 ~randomThreshold1 = [rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0,

1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0), rrand(0.0, 1.0),

rrand(0.0, 1.0), rrand(0.0, 1.0)];

 ~onsetThresholdSlider1.valueAction = ~randomThreshold1;

 ~randomThreshold1Array = Array.fill(13, {arg i;

 ~analysisSynth.set("osc1OnsetThreshold" ++ i.asString,

~thresholdSpec0.map(~randomThreshold1[i].value));

 });

 ~onsetChooser2.valueAction = 1;

 ~pitchTrackButton0.valueAction = 0;

 ~resetPitchArray0 = [1,1,1,1,1,1,1,1,1,1,1,1,1];

	
 249	

 ~pitch0Slider0.valueAction = (~resetPitchArray0 + 4)/8;

 ~resetPitch0Array = Array.fill(13, {arg i;

 ~granularMacroSynth0.set("grain0Pitch" ++ i.asString, ~resetPitchArray0[i].value);

 });

 ~resetPitchArray1 = [1,1,1,1,1,1,1,1,1,1,1,1,1];

 ~pitch1Slider0.valueAction = (~resetPitchArray1 + 4)/8;

 ~resetPitch1Array = Array.fill(13, {arg i;

 ~granularMacroSynth1.set("grain1Pitch" ++ i.asString, ~resetPitchArray1[i].value);

 });

 };

);

 durations.wait;

 });

 });

John Snijders’ Evaluation Feedback

Genesis Evaluation Questionnaire

1) How would you describe your interaction with Genesis?

The interaction was actually fairly limited and more or less one-directional. I

influenced what came out of the system, but the system only had a limited way of

influencing me. It could only influence me indirectly by making me react musically to

what I heard coming from the speakers, but could not do anything about the sounds I

made.

2) Which aspects of performing with the Genesis system did you enjoy?

It was enjoyable to try and see how different sounds would influence results from the

system, but this was more or less a passive thing. Otherwise it was just a pleasant way

to improvise with a real time sounds system.

3) In relation to your musical background, how familiar and accessible was your

interaction with Genesis?

Access was very easy in so far that I just had to play my instrument and was not really

involved in any of the technical aspects of the system. As the interaction was more or

less one-sided, I did not really experience any difficulties or issues.

4) How would you describe the performance capabilities of the Genesis system to

generate reasoned musical responses to your interactions?

It seemed to react directly to what I was doing, but in a fairly onedimensional way. It

	
 250	

would rarely, if at all, do something counterintuitive, and I think this shows its origin

as a machine. It might be interesting if there could be more AI involved, getting the

system to learn as it goes along, and react in different ways, to try things out, as it

were.

5) To what extent do you feel the musical paradigms implemented in Genesis are

beneficial to your creative approach?

In its current state the system is fun to play with, mainly to see what the computer

comes up with as a result of the live performer’s input. Other than that, the creative

approach the live performer needs to take is mostly one that searches for the musical

input that generates the most interesting musical output from the system.

6) In terms of musicality, how successful do you consider the overall output of your

performance with Genesis?

This is hard to say as I could not really hear the overall result very well, due to the

fact that the speakers were positioned in such a way that I could only hear a general

sound world and the total result was out of my auditory purview.

7) To what extent did you feel Genesis introduces a novel method of live performance

and why?

It builds on work that has been done at STEIM and other laboratories for sound

development, but due to a limited knowledge of that particular part of the music

world, I cannot say how novel the approach is.

8) To what extent did you feel in control of the performance process and why?

I controlled my own part, but not the computer’s part. It reacted to what I played but

beyond my control. I could just react to its reactions.

9) How would you describe the creativity of the responses generated by Genesis?

It is in the early stages of being creative. Perhaps by making it more aware, and more

experimental in its choices and decisions. Machines tend not to take risks, because

they are not aware of the concept. The introduction of AI might be a good step

forward in producing a system that can work together with the live performer as either

one meta-instrument or two improvisers working closely together.

For the following questions, please state to what extent you agree with the following

statements and add a comment justifying your response.

10) I would like to perform again with Genesis system:

	
 251	

Neither Agree/Disagree

Comment:

Perhaps if it is more developed it would be good to give it another go. As it stands the

result was all right, but not so musically interesting that I would go on tour with it.

11) The Genesis system provided creative outputs that were relatable to my inputs:

Disagree

Comment:

The system definitely made decisions that were clearly related to my inputs. Whether

or not they can be called creative is a whole other discussion. I would say this was not

the case.

12) The real-time methodology of Genesis contributed positively to my performance

process:

Disagree

Comment:

Basically, as I could not hear the output very well I was only marginally influenced

by it and mostly went my own way.

13) Genesis features a significantly large musical exploratory space:

Disagree

Comment:

Not yet. It needs a lot more difference in its algorithms, and as far as I am aware, the

system does not work well with monophone instruments, and needs more complex

sounds to work with to be able to produce good and interesting results.

14) The graphical user interface of Genesis is intuitive and easy-to-use:

Neither Agree/Disagree

Comment:

I was not involved with this part of Genesis.

15) Genesis adapts its creative outputs over time:

Neither Agree/Disagree

Comment:

Probably yes, but not in an intelligent way. It was more like it adapted its algorithms.

16) I felt engaged with Genesis during the performance process:

Disagree

	
 252	

Comment:

No, I played, and Genesis did what it did, but there was no real sense of engagement.

Perhaps over time this can grow, as one gets more used to and familiar with the

specifics of the system. Just from one single session this was not yet the case.

17) I would liken the outputs of Genesis to those of a human being:

Strongly Disagree

Comment:

Apart from the question if this is desired, it is very clear that the output is generated

by a machine that has no real intelligence, cannot make real artistic choices and is

governed by algorithms that are not sophisticated enough yet to be comparable to the

decisions made by a human being. One big difference is that the machine does not

have a concept of risk and adventure and cannot go beyond what it is taught to do. It

would rarely, if at all, do something counterintuitive, and I think this shows its origin

as a machine.

18) Please add here any further comments you may have regarding your experience

with Genesis:

Assessment

Following discussion directly after the free exploration, both performers (Julian

Lywood Mulcock and John Snijders) were satisfied with the resulting composition.

Indeed, audience feedback was also encouraging, with many questions raised

regarding the intelligence of the Genesis system; when I replied that no specific

neural network or explicit artificial intelligence methodologies had been

implemented, one questioner (Dr Sam Hayden) was very surprised. Considering this

was the first time that both performers had worked together, and the first time Genesis

had been applied outside of a studio setting, the composition demonstrated

convincingly the potential of Genesis to function, in real-time, with a number of

performers, control sources and networked instances.

Prior to the concert performance, a guided exploration was carried out, in which John

Snijders was introduced to the fundamental principles of Genesis, and Julian Lywood

	
 253	

Mulcock discussed the experience John Snijders had with electroacoustic

methodologies and his preference in piano performance approaches. During guided

exploration, John Snijders was very keen to explore Genesis; he was genuinely

interested in the technology and the algorithmic methodologies involved. The

resulting conversations enabled mutual understanding of each other’s objectives and

musical knowledge. Following the conversation and guided exploration, a free

exploration took place, which allowed both performers to experience Genesis in a

real-time situation with others for the first time.

It was decided that for the free exploration a loose structure would be applied, in

which John Snijders would alter the types of sounds he would generate with the piano

over a specified duration. In addition, the sound sets for the unsupervised instances of

Genesis were decided, along with the durations they would be enabled for. The

resulting composition appears to demonstrate a progression of musical discourse by

all of the performers (human and computer), creating a satisfying ebb and flow in

musical trajectory. Indeed, during the post-performance discussion with the audience,

one comment highlighted the appearance of this phenomenon. This would appear to

reflect the structure of the inputs by John Snijders, and highlighting the principle of

Genesis to follow the sonic features of a real-time input source.

This was the first time Genesis was used in a concert scenario and with a live

instrumentalist, and the feedback from both the performer and the audience was very

positive. Yet, time constraints (four hours including guided/free exploration and the

concert performance) were a limiting factor in how many Genesis features could be

discussed and implemented, and should I have the opportunity to work with John

Snijders again, I would attempt to arrange significantly more rehearsal time. Indeed,

many of the comments in John Snijders’ evaluation could have been resolved/tested

should time have been on our side. However, I feel this does not detract from the

relative success of the free exploration.

As noted, not all features in Genesis were discussed or implemented, nor would this

have been practical in the time available. In particular, due to the time constraints, the

Call and Response feature was not used as the amplitude level of the piano input from

	
 254	

the contact microphone was very dynamic. In hindsight, this could have been resolved

by having a slider in Genesis to acutely adjust the input levels, in order to find an

optimum amplitude from which to trigger the Call and Response feature, and such

feedback is invaluable for future research and development. However, a significant

number of features were implemented over the course of the performance including

Pitch Track, Spectral Following, network functionality, the modified genetic

algorithm, envelope following, and looped routines for the unsupervised instances of

Genesis, the results of which were generally as I expected.

Considering the key issues raised in chapter 4 Interactivity with Digital Music

Systems, the time constraints did highlight the value of the low-entry fee: John

Snijders stated in his evaluation feedback that access to the system was very easy, and

that he was not really involved with any of the technical aspects of the system.

Furthermore, he states the system was fun to play with, and allows the instrumentalist

to see what the computer generates as a result of their input. Moreover, in

conversation with John Snijders, we discussed his familiarity of working with

algorithmic systems, which he stated was fairly limited, and confirmed by his

response to question 7. Therefore, the musical paradigms applied in Genesis appear to

offer successfully considerable accessibility to performing with the system.

Disappointingly, and due to constraints on time and arrangement of the

piano/speakers in the Durham University Concert Hall, we were unable to reposition

the speaker/piano set-up, which would have enabled to John to hear the overall output

of the performance; an issue he raises when considering how successful the free

exploration was. However, as stated, in conversation after the performance, he was

generally satisfied with the result. I did provide John with a video link to watch the

performance, but based on his response to the question 6, it would appear he did not

have an opportunity too.

In terms of the real-time functionality, and again due to the limitations of the

speaker/piano set-up, John was unable to hear the outputs of Genesis so only

marginally modified his compositional process during the performance, as stated in

his response to question 12. As a result, Genesis had a low-level of influence on John

	
 255	

during in this performance. Should we work together again, the placement of speakers

would be paramount, thereby allowing John to be immersed in the soundscape, as

opposed to being disjointed from it. This difficulty raises a more general question that

is central to many live improvisational situations, that is how to achieve an optimum

balance between performance and feedback sound levels.

The interaction method that John describes in his responses to questions 1, 2, 4, 6, 8,

12, 16 fits the Conductor Model defined by Winkler (2001) in which John was the

master, with the other performers globally following his lead. In the concert

performance instance it was indeed the case that the limited scope of the responses

John was able to hear relative to his input would have significantly impacted on his

ability to improvise and interact with Genesis in a more dynamic and fluent manner.

Interestingly, John states in response to question 1, Genesis ‘could not do anything

about the sounds I made’, which considering the current architecture of the system

would be an impossibility but, extension of Genesis by implementation of hardware

that could physically alter an instrument is a very exciting thought (perhaps

Arduino245 could be a start).

With regard to the creativity demonstrated by the system, John states he feels the

system is in the ‘early stages of being creative’. On elaborating his statement, John

considers that ‘Machines tend not to take risks, because they are not aware of the

concept’ concluding that introducing more AI may be a way of introducing further

creativity. Furthermore, John also affirms that the system was making decisions that

were clearly related to his inputs, so this implies that a form of intelligence, although

primitive, is present in Genesis. Indeed, considering the current architecture of

Genesis and the algorithmic methodologies implemented, as discussed in chapter 5

The Genesis System, further AI can be applied to increase the perceived level of

creativity such as a neural network which learns a performer’s style and consequently

adapts its outputs. However, I am encouraged that John still perceives that Genesis

demonstrates a level of intelligence and creativity in its present state.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

245	
 Arduino.cc,	
 (2015).	
 Arduino	
 -­‐	
 Home.	
 [online]	
 Available	
 at:	
 http://www.arduino.cc	
 [Accessed	
 Jun.	
 2014]	

	
 256	

Overall, the time/speaker constraints certainly impacted on the experience John had

with the system (as he acknowledges), and in terms of engaging with the system John

states ‘perhaps over time this can grow, as one gets more used to and familiar with the

specifics of the system. Just from one single session, this was not yet the case’.

Indeed, although John states that Genesis does ‘not yet’ feature a large exploratory

musical space, one performance with a distinct set of extended piano techniques

cannot realistically demonstrate the extent of the musicality of the system.

Shelly Knotts

Introduction to the accompanying video documentation

Example 1

The Shelly Knotts Free Exploration 1.mov video displays one unsupervised instance

of Genesis and a live electronic violin performer (Shelly Knotts), along with a stereo

recording of the output.

The example, recorded in the Durham University Music Department studios on the 5th

of March 2014, explicitly implements the Call and Response, Markov Chain and

fractal process functionality of the Genesis system, with the electronic violin

performer providing the initial Call material followed by a Response generated by

Genesis in real-time.

The unsupervised instance of Genesis applies the sonic features of the violin

performer’s outputs to define the duration of each Markov chain modification to the

rate, duration, threshold, attack and release of the granular synthesisers controlled by

the control source one.

The electronic violin performer toggles the Call and Response functionality through

the space bar, and provides all output audio data, along with the onsets for the

granular synthesisers controlled by control source one, two and three.

	
 257	

Considering the modes of interaction provided in chapter 5 The Genesis System, this

example demonstrates an unsupervised method of interaction with Genesis, with

applied improvisation by a live instrumentalist. (*note* the requirement of using a

space bar for triggering of Call and Response by the human performer was required

due to a clicking in the signal from the electronic which was unintentionally

triggering the Call and Response function). Figure 55 below illustrates the interaction

methodology of the performance:

Figure 55. Performance interaction with Shelly Knotts (unsupervised)

Example 2

The Shelly Knotts Free Exploration 2.mov video displays one supervised instance of

Genesis (Julian Lywood Mulcock) and a live violin performer (Shelly Knotts), along

with a stereo recording of the output.

The example, recorded in the Durham University Music Department studios on the 5th

of March 2014. The supervised instance of Genesis applies the onsets of the

	
 258	

electronic performer’s outputs, with manipulation of the fundamental granular

synthesiser parameters (rate, duration, threshold, attack and release) applied by the

human supervisor.

Considering the modes of interaction provided in chapter 5 The Genesis System, this

example demonstrates a supervised improvisation method of interaction. Figure 56

below illustrates the interaction methodology of the performance:

Figure 56. Performance interaction with Shelly Knotts (supervised)

Example 3

The Shelly Knotts Free Exploration 3.mov video displays two networked supervised

instances of Genesis, and a stereo recording of the output.

The example, recorded in the Durham University Concert Hall on the 26th of February

2014, makes explicit use of the Network functionality. The Genesis system supervised

	
 259	

by Julian Lywood Mulcock provides the sender data, with the Genesis system

supervised by Shelly Knotts acting as the receiver.

The sender instance of Genesis provides onset control data for control source one/two

on the receiver instance, with each supervisor generating their own GUI

modifications to their respective systems and each instance holding their local output

audio sources for control source three/slave.

Considering the modes of interaction provided in chapter 5 The Genesis System, this

example demonstrates a supervised improvisation ensemble network. Figure 57 below

illustrates the interaction methodology of the performance:

Figure 57. Performance interaction with Shelly Knotts (networked)

Example 4

The Shelly Knotts Free Exploration 4.mov video displays two individual supervised

instances of Genesis, and a stereo recording of the output.

	
 260	

The example, recorded in the Durham University Concert Hall on the 26th of February

2014, makes explicit use of the Pitch Tracking functionality. Each system is

supervised individually, with no network functionality. The system supervised by

Julian Lywood Mulcock has the Pitch Follow function toggled on, while the system

supervised by Shelly Knotts has the Pitch Follow function toggled off.

Each system has their own local control sources, based upon pre-defined sample

material, with only the principle granular synthesiser parameters modified by the two

supervisors.

Considering the modes of interaction provided in chapter 5 The Genesis System, this

example demonstrates a supervised improvisation by each performer. Figure 58

below illustrates the interaction methodology of the performance:

Figure 58. Performance interaction with Shelly Knotts (non-networked)

	
 261	

Shelly Knotts’ Evaluation Feedback

Genesis Evaluation Questionnaire

	

1) How would you describe your interaction with Genesis?

Laptop: I found the interface itself a little difficult to use - although there were some

tech problems with the screen resolution - it felt quite cluttered and there were a lot of

controls which I felt was quite a lot to deal with. Maybe in the next version there

could be different pages for different types of controls so it’s not all squashed onto

one page and which controls do what could be a bit clearer.

Violin: In the call and response performance it would have been better to have a foot

pedal for controlling the interaction with the laptop.

	

2) Which aspects of performing with the Genesis system did you enjoy?

Laptop: I enjoyed playing around and experimenting with a new system. In the most

part I liked the sounds produced.

Violin: I felt like the system was reasonably responsive to my playing.

	

3) In relation to your musical background, how familiar and accessible was your

interaction with Genesis?

Laptop: My background is in laptop performance, so the types of processes the sound

world used where familiar to me. Despite this, the interface is very complex so I feel

that it is a system that would take some time and experimentation to learn and isn’t

necessarily immediately accessible to experienced laptop performers.

Violin: Although I am experienced in playing contemporary and improvised music at

an amateur level I have not performed as a violinist with generative/live electronic

systems on one previous occasion. However the setup was very straight forward and

easy to use/access.

	

4) How would you describe the performance capabilities of the Genesis system to

generate reasoned musical responses to your interactions?

	
 262	

Laptop: There seemed to be meaningful musical results from the interaction with the

instrument but I was not always aware of the causality of resulting sound.

Violin: Mixed. The responses were interesting and clearly showed some relation to

what I was playing. However I felt like the ‘types’ of response were somehow

limited, the laptop seemed to often play with slowly pitch shifting samples which I

felt was a little too directive in terms of influencing what I played in response. Also

the computer part was more often than not very dense and on some occasions I felt

that it did not respond very well to the type of input I was giving it e.g. playing a

simple pitched sound and getting a very dense textural response.

	

5) To what extent do you feel the musical paradigms implemented in Genesis are

beneficial to your creative approach?

	

6) In terms of musicality, how successful do you consider the overall output of your

performance with Genesis?

Laptop: Listening back to the recordings I wasn’t entirely happy with the musical

output, the music doesn’t have much variation in density and tends to be quite slow in

moving to new musical ideas. Having only played a few times with the system I

cannot say whether this is due to limitations of the system or my inexperience in

performing with it.

Violin: The violin improvisations were much more musically satisfying I felt like

they had a nice shape and that the system was quicker in moving to new musical

spaces than in the laptop improvisations.

	

7) To what extent did you feel Genesis introduces a novel method of live performance

and why?

As far as I am aware generative music improvisation systems have been around since

the 1980’s, but I do not have enough knowledge in this area to say how Genesis

differs from other systems- perhaps the networked aspect of the system with multiple

laptops in combination with the generative system is relatively novel.

	

	
 263	

8) To what extent did you feel in control of the performance process and why?

Laptop: I wasn’t entirely aware of how changing controls impacted the sound output

of the system and often could not tell which sounds were mine and which were those

of the other performer. In some cases I was able to manipulate the sounds in the way I

intended, but mostly I didn’t feel in control of the system. In the networked

improvisation I remember that I felt limited and not entirely happy with the type of

interaction.

Violin: I felt as though the system did respond to the way I played but perhaps not as

fully as I would have liked and in some cases I felt a little restricted by the system and

like I was following the system rather than the other way round.

	

9) How would you describe the creativity of the responses generated by Genesis?

	

For the following questions, please state to what extent you agree with the following

statements and add a comment justifying your response.

	

10) I would like to perform again with Genesis system:

Agree

Comment:

I’d be interested in looking further into the capabilities of the system as a laptop

performance tool as I didn’t feel like I got to grips with the system during our

performance session.

	

11) The Genesis system provided creative outputs that were relatable to my inputs:

Agree

Comment:

In both cases the output of the system had a clear relation to my actions.

	

12) The real-time methodology of Genesis contributed positively to my performance

process:

Strongly Agree Agree Neither Agree/Disagree Disagree Strongly Disagree

Comment:

	
 264	

	

13) Genesis features a significantly large musical exploratory space:

Neither Agree/Disagree

Comment:

I felt the musical space had a particular character and, although there were large

variations within this space/character, I’m not entirely convinced that significantly

different results - in terms of overall impression - would occur in repeat

performances.

	

14) The graphical user interface of Genesis is intuitive and easy-to-use:

Disagree

Comment:

I found the interface quite difficult to use, overly cluttered and perhaps could be

arranged in a more intuitive way with better work-flow.

	

15) Genesis adapts its creative outputs over time:

Neither Agree/Disagree

Comment:

I would have to explore the system further to be able to answer this question.

	

16) I felt engaged with Genesis during the performance process:

Agree

Comment:

I found the system very engaging to work with in both cases and enjoyed the process

of ‘working out’ how the system would respond to my inputs.

	

17) I would liken the outputs of Genesis to those of a human being:

Neither Agree/Disagree

Comment:

	
 265	

I felt the violin performances in particular had a musical shape, but that a human

being would have a more diverse set of responses.

	

18) Please add here any further comments you may have regarding your experience

with Genesis:

	

Assessment

In order to obtain evaluation feedback for specific functionalities of Genesis, I

approached Shelly Knotts, a live coder and electroacoustic musician. We arranged to

test two main interaction methods with Genesis, with Shelly as an instrumentalist, and

Shelly as a supervisor of a Genesis instance. With Shelly as an instrumentalist, we

decided to implement a supervised (Shelly Knotts Free Exploration 1.mov) and

unsupervised (Shelly Knotts Free Exploration 2.mov) studio session, and as a

supervisor, we decided to implement a networked (Shelly Knotts Free Exploration

3.mov) and non-networked (Shelly Knotts Free Exploration 4.mov) Genesis duo.

In the performances with Shelly as a supervisor during guided exploration of the

Genesis GUI and principles, it became evident that significant time would be needed

to detail the low-level algorithmic methodologies in Genesis and how they could be

controlled through the GUI. Considering the time constraints, only a brief

presentation of the GUI and its functionality was possible, which inevitably limited

Shelly’s level of understanding of the Genesis GUI. However, in terms of the

principles of Genesis, Shelly did show an assured grasp of what the system was doing

and how the real-time sound-objects generated the system’s outputs. When Shelly

performed as an instrumentalist, during the guided exploration there was a noticeable

difference in the ease at which she was able to interact and play with the system;

straightaway, Shelly was creating and generating music with the system.

The aim of the unsupervised session (Shelly Knotts Free Exploration 1.mov), with

Shelly as an instrumentalist, was to test, for the first time, Genesis running

	
 266	

unsupervised with a human instrumentalist providing all of its data, resulting in the

proposed unsupervised interaction methodology, detailed in chapter 5 The Genesis

System. The Call and Response and Markov Chain functionalities were turned on for

the duration of the free exploration. The results of this test were very encouraging,

demonstrating the ability of Genesis to be engaging and musical while unsupervised.

For comparison with the unsupervised session, a supervised session (Shelly Knotts

Free Exploration 2.mov), with Shelly as an instrumentalist, and Julian as a supervisor

was arranged. In the free exploration, the Call and Response and Markov Chain

functions are turned off, in order to demonstrate their role in the unsupervised

interaction method. Therefore, all algorithmic modifications are made through the

GUI by the human supervisor and the sonic inputs of the instrumentalist. In terms of

the resulting composition, I prefer the unsupervised example, as I feel the Call and

Response and Markov Chain functionality allow the system to successfully generate

convincing compositions unsupervised with a human instrumentalist (despite the issue

regarding unwanted triggering of the Call and Response functionality and

requirement to break the flow of interaction by using the space bar instead).

As noted, due to the limited time available for the networked (Shelly Knotts Free

Exploration 3.mov) and non-networked (Shelly Knotts Free Exploration 4.mov)

examples, these exploratory investigations could not achieve their full potential.

However, the networked example does demonstrate that using a supervised master

Genesis instance can function with a supervised sender Genesis instance in real-time

for generating composition, despite the limitations of Shelly’s understanding of the

GUI (which as noted, were primarily due to time constraints).

Although not specified by myself, Shelly conveniently separated her evaluation

feedback into her experiences as a supervisor (laptop) and as an instrumentalist

(violin). In general, the feedback was more positive when considering her

instrumental interaction with system. However, Shelly also acknowledges the time

constraints, noting that more time could have increased her understanding of the GUI.

Indeed, Shelly has stated she would welcome the opportunity to work with the system

again, as she felt that she had only just got to grips with Genesis in the allotted time.

	
 267	

As a result, the low-entry fee appears to be in favour of instrumental interaction with

the system, as opposed to access through the GUI. Furthermore, Shelly felt the

causality of responses to user interactions generated by Genesis were clearer when

using an instrument, and that they had an explicit link to her inputs. I primarily

approached Shelly in consideration that she has a strong familiarity with

SuperCollider and believed this would enable her to easily access the GUI. Therefore,

as a material action point for future research and development it would appear the

Genesis GUI needs to be adjusted and simplified, and with regard to instrumentalist

interaction, a foot pedal may be a stable solution of triggering the Call and Response

function.

The way in which Shelly describes interaction with computer music systems suggests

she has a personal preference to be a ‘leader’. When acting as an instrumentalist,

Shelly states ‘in some cases I felt restricted by the system and like I was following the

system rather than the other way round’. Furthermore, she describes that when

supervising the system, occasionally she did not feel in control. Her comments appear

to demonstrate that the level of influence Genesis has on a compositional process is

dynamic, and reflects the free improvisation model proposed by Winkler (2001) in

which ‘neither performer nor computer may be “in control” but each will have some

influence on how the other responds’246.

With regard to the creativity demonstrated by the system, Shelly similarly recognizes

that the time constraints did not necessarily allow for explicit investigation of the

types of responses Genesis may create, and notes that more time with the system

would potentially show the full creative ability of the system. However, Shelly agrees

that creative outputs of Genesis were relatable to her actions, but that in the allotted

time, the types of responses seemed limited.

Overall, I am pleased with the outcome of the instrumental performances and

acknowledge the potential requirement to amend the GUI to enable faster access for

future Genesis supervisors. Most of all, I am satisfied that Shelly stated “I found the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

246	
 Winkler,	
 T.	
 2001.	
 Composing	
 Interactive	
 Music:	
 Techniques	
 and	
 Ideas	
 Using	
 Max.	
 Massachusetts:	
 MIT	
 Press:	
 27	

	
 268	

system very engaging to work with in both cases and enjoyed the process of ‘working

out’ how the system would respond to my inputs”. Furthermore, as already noted,

Shelly would like to investigate further the capabilities of the system as a laptop

performance tool, and I would welcome this opportunity.

Mark Carroll

Introduction to the accompanying video documentation

Example 1

The Mark Carroll Free Exploration 1.mov video displays one unsupervised instance

of Genesis and a live electronic cello performer (Mark Carroll), along with a stereo

recording of the output.

The example, recorded in the Durham University Music Department studios on the

17th of March 2014, explicitly implements the Call and Response and Markov Chain

functionality of the Genesis system, with the electronic cello performer providing the

initial Call material followed by a Response generated by Genesis in real-time.

The unsupervised instance of Genesis applies the sonic features of the cello

performer’s outputs to define the duration of each Markov chain modification to the

rate, duration, threshold, attack and release of the granular synthesisers controlled by

the control source one.

The electronic cello performer toggles the Call and Response functionality through a

foot pedal, and provides all output audio data, along with the onsets for the granular

synthesisers controlled by control source one, two and three.

Considering the modes of interaction provided in chapter 5 The Genesis System, this

example demonstrates an unsupervised method of interaction with Genesis, with

applied improvisation by a live instrumentalist. Figure 59 below illustrates the

interaction methodology of the performance:

	
 269	

Figure 59. Performance interaction with Mark Carroll (Call and Response)

Example 2

The Mark Carroll Free Exploration 2.mov video displays one supervised instance of

Genesis and a live electronic cello performer (Mark Carroll), along with a stereo

recording of the output.

The example, recorded in the Durham University Music Department studios on the

17th of March 2014, presents an extended real-time improvisation with the system,

with Mark Carroll supervising the instance of Genesis, modifying its outputs through

the GUI as he sees fit.

The instance of Genesis applies the sonic features of the cello performer’s outputs to

define the onsets of the granular synthesisers controlled by control source one, two

and three, along with the audio output by the system.

	
 270	

All modifications of the GUI are implemented by the instrumentalist, including the

toggling of Pitch Follow and Spectral Follow functionalities, and overriding of the

parameter settings of the granular synthesisers implemented by the Markov Chain

manipulation of the granular synthesisers’ rate, threshold, duration, attack and release.

Although, Mark had the option to apply the foot pedal for the Call and Response

functionality, the feature was not used in this performance.

Considering the modes of interaction provided in chapter 5 The Genesis System, this

example demonstrates a supervised improvisation method of interaction with Genesis,

with applied improvisation by a live instrumentalist. Figure 60 below illustrates the

interaction methodology of the performance:

Figure 60. Performance interaction with Mark Carroll (self-supervised)

	
 271	

Mark Carroll’s Evaluation Feedback

Genesis Evaluation Questionnaire

1) How would you describe your interaction with Genesis?

Great learning experience. I was fairly unfamiliar with playing with an electronic

system, and had no idea that they could seem to respond in a creative way.

2) Which aspects of performing with the Genesis system did you enjoy?

Particularly the free improvisation – treating it like another performer (but one which

fortunately didn’t have an opinion on what I was playing), just seeing what it did, and

basing my own decisions partly on that.

3) In relation to your musical background, how familiar and accessible was your

interaction with Genesis?

It was explained well, and the visual display was easy to get to grips with, especially

for me as a newcomer to live electronics. It was easy to spot an immediate link

between performing an action on the console and the resulting sound.

4) How would you describe the performance capabilities of the Genesis system to

generate reasoned musical responses to your interactions?

Very imaginative. It genuinely seemed to be ‘thinking about’ what I played, and

offering interesting developments and/or complementary material.

5) To what extent do you feel the musical paradigms implemented in Genesis are

beneficial to your creative approach?

Like a good improviser, its responses to my material offered all sorts of possibilities

for my own development of that material, as such I constantly felt creatively

stimulated and ‘encouraged’ by it.

6) In terms of musicality, how successful do you consider the overall output of your

performance with Genesis?

Fairly successful. As an inexperienced improviser-with-live-electronics, it’s hard for

me to judge, but I felt very satisfied.

7) To what extent did you feel Genesis introduces a novel method of live performance

and why?

I am not terribly familiar with live electronics, but Genesis seems to approximate a

second human improving performer, and I have not come across this before. I would

	
 272	

hazard a guess that this in itself is novel. It was certainly new to me, and thus

exciting.

8) To what extent did you feel in control of the performance process and why?

The console allowed me to change parameters during performance, however I would

have preferred to do this with a foot pedal or similar, rather than having to stop

playing sometimes to operate the mouse. I felt that this impeded flow to an extent.

9) How would you describe the creativity of the responses generated by Genesis?

Refreshing and interesting.

For the following questions, please state to what extent you agree with the following

statements and add a comment justifying your response.

10) I would like to perform again with Genesis system:

Strongly Agree

Comment:

I thoroughly enjoyed the freedom offered by the combination of what seemed like a

‘thinking’ machine improvising with me, and the lack of concern on my part about

what this improvising machine thought about my own improvising.

11) The Genesis system provided creative outputs that were relatable to my inputs:

Agree

Comment:

There were odd times when Genesis seemed to offer something different, but I still

felt that this fitted within the confines of a ‘normal’ group improvisation, and

instinctively I still felt that there was a relation to my input.

12) The real-time methodology of Genesis contributed positively to my performance

process:

Strongly Agree

Comment:

As I said before, it nicely approximated a living, improvisation partner, which I found

encouraged my own creativity.

13) Genesis features a significantly large musical exploratory space:

Agree

Comment:

I certainly enjoyed exploring a large musical space, and felt that (e.g. in the real-time

	
 273	

composition) by the end, the piece had gone on a lengthy and varied journey.

14) The graphical user interface of Genesis is intuitive and easy-to-use:

Agree

Comment:

I have limited experience with such systems (my experience is limited to SoundLoom

and SONAR), but I found it easy to use, apart from having to stop playing with one

hand to operate the mouse. Having a foot pedal or similar would have really improved

this.

15) Genesis adapts its creative outputs over time:

Agree

Comment:

There were some similarities in delay-effect texture at times, but on the whole I found

a pleasing, gradual development of responses.

16) I felt engaged with Genesis during the performance process:

Agree

Comment:

Having to stop to use the mouse did feel somewhat like it disrupted the feeling of me

improvising with another performer.

17) I would liken the outputs of Genesis to those of a human being:

Strongly Agree

Comment:

Interesting, complementary and stimulating.

18) Please add here any further comments you may have regarding your experience

with Genesis:

Great fun!

	

Assessment

In order to obtain further evaluative feedback of specific functionalities in Genesis, I

approached Mark Carroll, a contemporary composer and cellist. We arranged to

perform with the Genesis system in an unsupervised scenario for around two hours, in

	
 274	

which Mark would generate two performances with the system, one explicitly

applying the Call and Response function (Mark Carroll Free Exploration 1.mov), and

one with the Mark supervising Genesis through modification of GUI during

performance (Mark Carroll Free Exploration 2.mov). In both instances, the Markov

chain feature is turned on.

During the guided exploration, Mark asked many questions about Genesis, and

algorithmic composition in general. It was clear his familiarity with electroacoustic

techniques was limited, however, his appreciation and acknowledgement of their

validity as musical phenomena was evident. Therefore, Mark was eager to explore

with the system and engage with it. While explaining the fundamental principles of

Genesis, and as Mark began to play with the system, it was apparent that he

understood the musical paradigms and immediately was able to access the system. As

a result, I decided that for the free exploration I would leave Mark unattended and

able to explore with the system in his own time and with out any external influence.

On returning, Mark was very happy with the performances and discussed further

algorithmic methodologies and his interest in them as compositional devices.

In terms of the low-entry fee design of Genesis, considering that Mark was able to

work with the system unattended and was satisfied with the output, this indicates that

instrumentalists who are not electroacousticians are able to grasp the basic principles

of the system with relative ease. Mark acknowledges this by stating that the visual

display (including the dynamic scoring system) was easy to get to grips with, despite

him being a newcomer to live electronics. Furthermore, his feedback indicates the

accessibility of the system’s sonic outputs to performers not familiar with live

electronics and the sound modifications they can create by declaring he was pleased

with them.

Additionally, Mark considered the system’s sonic outputs to be large, and he felt that

by the end of the piece, he had ‘gone on a lengthy and varied journey’. However,

Mark did have issues with modifying the UI whilst performing, and suggests

extending the functionality of the foot pedal for better connectivity to the system, as

the current set up, with interaction required through the GUI, somewhat broke the

	
 275	

flow of performance. This feedback adds further weight to the feedback obtained

from the other participants in terms of the desirable improvements to the user

interface.

With regard to the interaction methodology with Genesis, Mark primarily treated and

considered the system as another performer, to the extent that he felt its outputs were

like those of a human performer. Mark consistently refers to improvisation with the

system, implicating that the interaction methodology fits the free improvisation model

(Winkler, 2001). Indeed, he notes that the system would seem to offer something

different, and that he felt this fitted with the confines of a ‘normal’ group

improvisation.

When considering the responses of Genesis, he described the system’s outputs to be

creative, to the extent of human creativity, and that the system appeared to develop its

responses. This indicates that Mark felt the system was adaptive, modifying its

responses over the course of the performance. Furthermore, he states that he was

unaware that a live electronic music system could respond in such a creative way and

that the system encouraged his own creativity, a comment that I feel positively

reinforces the purpose of Genesis as a real-time interactive music system and the

associated research.

Overall, I am greatly encouraged by Mark’s feedback. Although Mark does not refer

directly to the Call and Response function in his evaluation, the audiovisual evidence

visibly shows his positive reaction to the responses generated in Mark Carroll Free

Exploration 1.mov. Interestingly, Mark did not consider the system to be judgmental,

which allowed his expressive flow to be completely free and his creative process to be

positively encouraged, an aspect that makes the work on Genesis very rewarding.

6.3 Comparative Analysis of the Evaluative Feedback

The feedback obtained from the three participants has provided honest and, in many

respects, congruent opinion of Genesis and its functionality as a real-time

compositional tool. Where there is a divergence of opinion, there are similarly cogent

	
 276	

reasons why this might be so, in turn highlighting that the questionnaire was integral

to obtaining this evaluative data. As stated in 6.1 Evaluation Methodology, sample

sizes for evaluation of real-time music systems are often small due to the selected

audience of such work (Wanderley and Orio, 2002) and I found this to be true when

approaching performers and composers to interact with Genesis. However, the sample

presented in this thesis reflects a diverse range of musicians, with differing

experiences of real-time music systems. As a result, a broad range of opinions

regarding Genesis was acquired.

Considering the intention of providing evidence of higher-level features of Genesis

(as stated in section 6.1 Evaluation Methodology), the audiovisual examples deliver

clear and fluent examples of the system in a variety of situations and interactive

methodologies, proposed in chapter 5 The Genesis System. As noted, the purpose of

focusing on higher-level functionalities and products was to act on the notions

proposed by Hsu and Sosnick (2009) in order to present interaction samples centering

on the creativity achievable with Genesis and its musicality. To that extent, the

evaluative feedback, and the associated audiovisual examples demonstrate the

capabilities of Genesis to function in real-time, with live performers, to generate

satisfying musical compositions.

With regard to the evaluative feedback provided by the participants, for direct and

quantitative comparison of the success of the higher-level interactive methods in

Genesis, Figure 61 below illustrates the variety of views expressed from each of the

participants, relative to the results of the Likert-scale applied in the questionnaire:

	
 277	

Figure 61. Likert-scale results’ comparison

The results of the Likert-scale questions, when compared between participants,

demonstrate the diversity of opinion expressed in the evaluation feedback of Genesis.

In particular, the response to question 17 ‘I would liken the outputs of Genesis to

those of a human being’ represents great disparity between the participants’

experiences with the system. However, each participant was directed through the

same evaluation process (guided exploration, free exploration and the fully-structured

interview), and each had a chance to interact with Genesis in a similar way (each

participant interacted with at least a supervised and unsupervised instance of Genesis

in the guided exploration).

Overall, I would consider the evaluation feedback to the qualitative questions of the

questionnaire to be positive, particularly in terms of accessibility to the system for

instrumentalists interacting through their respective instruments. The comments

regarding the interactive methods and creativity with Genesis describe contrasting

experiences. However, particularly in the case of John Snijders, there were practical

factors that limited the breadth of engagement. Time constraints were a factor with

	
 278	

every participant (for example, explanation of GUI functionalities with Mark and

Shelly had to be kept brief in the guided exploration). As a result, it is hoped that with

increased application of Genesis by performers, deeper understanding of features

within Genesis, such as the GUI and the system’s interactive models, can be achieved.

It is important to note the time taken in order to complete the questionnaires; in most

cases, feedback was not completed for around four to five months after each

participant’s interaction with the system, despite candidates receiving the

questionnaire soon after performance. These significant delays had not been

anticipated, and some allowance has to be made for the recall of experiences some

way in the past. Furthermore, although the audiovisual examples (provided in section

6.2 Evaluation Results) were available via www.dropbox.com (a free file sharing site)

for each participant to easily view their respective performance, it would appear that

this was not taken opportunity of in all cases.

Considering further development of the evaluation methodology applied for this

thesis, application of discourse analysis would obtain further useful insight into the

opinions of participants using Genesis. Discourse analysis is the process of dissecting

written text ‘using a structured method which can take apart the language used in

discourses (e.g. interviews, written works) and elucidate the connection and

implications within, while remaining faithful to the content of the original text

(Antaki et al. 2004)’247. In terms of the responses to the questionnaires provided by

the participants, discourse analysis would require the provision of much more depth

on their reflections than proved to be the case. Furthermore, discourse analysis would

be highly applicable as part of continuing study of the characteristics of Genesis in the

context of increasing the number of case studies using feedback on the initial trials to

shape and refine the scope of the practical experiments, and also the qualitative and

quantitative methods of eliciting more insightful feedback.

As noted in 6.1 Evaluation Methodology, there is no formalised method for

approaching evaluation of real-time interactive music systems, including

recommended time for participants to interact with systems, how best to obtain

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

247	
 Stowell	
 et	
 al.	
 2009.	
 Evaluation	
 of	
 live	
 human-­‐computer	
 music-­‐making:	
 quantitative	
 and	
 qualitative	
 approaches.	

International	
 Journal	
 of	
 Human-­‐Computer	
 Studies.	
 67	
 (11):	
 961	

	
 279	

feedback once performance has been completed and which levels of functionality

should be approached. Therefore, with the evidence provided in the audiovisual

examples and the feedback obtained from the participants in the questionnaires, a

valid and reasonable performer-centric evaluation is presented by applying the

methodologies suggested by Stowell at al (2009). Indeed, ‘this area is underexplored

and needs much more research, such as the further development of structured

approaches to analysing user talk (both within and outside the traditions of Discourse

Analysis)’248, and it is intended that the evaluation method presented in this thesis is

one such example of further development.

6.4 Evaluation of the Genesis System’s Methodology

With reference to the research aims, outlined in chapter 1.3 Aims of the Research, and

in particular, the original research contributions, considering the interactive,

generative and analytical process applied within Genesis and described in detail in

chapter 5 The Genesis System, Genesis forms a novel method of real-time musical

interaction; interactive processes apply the sonic features of real-time auditory signals

from any conceivable and attainable auditory source to define the values of the

parameters for many generative processes with the sonic features of onset, MFCCs,

pitch, tempo and loudness extracted through the analytical processes. Furthermore,

the interactive processes apply extensive graphical user interface control for

adjustment of the generative and analytical processes relative to a desired

compositional process, thereby offering different models of interaction, which are

adjustable on-the-fly and in real-time. This section evaluates the method applied in

Genesis in terms of its efficiency, mappings, real-time interaction and the GUI, and

how this relates to the algorithmic systems discussed in chapter 4 Interactivity in

Digital Music Systems.

6.4.1 Efficiency in Genesis

With regards to efficiency of the system, and the importance efficiency has in real-

time digital music systems (as highlighted in chapter 2.3 Computers and Algorithms),

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

248	
 Stowell	
 et	
 al.	
 2009.	
 Evaluation	
 of	
 live	
 human-­‐computer	
 music-­‐making:	
 quantitative	
 and	
 qualitative	
 approaches.	

International	
 Journal	
 of	
 Human-­‐Computer	
 Studies.	
 67	
 (11):	
 973	

	
 280	

this is relative to the processing power and random access memory (RAM) of the

computer running an instance of Genesis; when all predefined interactive, generative

and analytical processes are applied, the system runs at a peak average of 25% CPU

on a 2012 Apple iMac. Although this represents a viable environment for field-testing

the integrity of the system under various operating conditions, there are a number of

material constraints to be borne in mind when engaging with more demanding

situations. With the application of live coding for the generation of tasks and sound-

objects, which may incur a high number of CPU processes relative to the generative

task, the peak average CPU usage may rise to higher peak CPU percentages and may

cause highly undesirable distortion and clipping within the auditory output of the

system.

Furthermore, older computer systems run at higher peak averages with the predefined

interactive, generative and analytical processes before the application of any live

coded generative processes, thereby increasing the chance of errors occurring in the

auditory output. As a result, a performance modifier Button has been applied within

the GUI, which can be used optionally to considerably reduce the peak CPU usage, by

removing the PV_Freeze process for the outputs of all granular synthesizers. This

results in a reduction of the peak average CPU usage to 17% on a 2012 Apple iMac,

substantially increasing efficiency and reducing the possibility of distortion in the

auditory signal, while maintaining all other interactive, generative and analytical

processes.

In addition to the consideration of different computer systems having varying CPU

limitations, which may affect the quality of an auditory output, the video resolution

between computers can also differ, with different video resolutions possibly causing

GUI objects to be misrepresented, requiring scaling, in order to correct any issues. As

the GUI within Genesis is an extensive and integral interactive function, it is

necessary to ensure the GUI functionality is maintained on systems with different

video resolutions. The standard resolution of GUI objects in Genesis is 1920 x 1200,

which enables all text, modifiable GUI objects and UserViews to be displayed clearly,

while allowing manageable interaction between the computer keyboard and mouse.

	
 281	

However, as noted, video resolutions on computer systems vary, and, taking this in to

account, the resolution of the Genesis GUI objects can be adjusted through a scaler

function, executed by inputting the resolution of the current computer system within a

GUI NumberBox, which scales the standard resolution of Genesis GUI objects to the

resolution of the system running the Genesis program. Therefore, when scaling is

applied, all GUI objects are displayed within the computer system’s video resolution

relative to the scaling value. Nevertheless, despite the inclusion of the scaling

function, the optimum resolution of Genesis’s GUI objects is 1920 x 1200, ensuring

all GUI objects are displayed clearly and are easily modifiable by the computer

keyboard and mouse, with the possibility that the display and GUI control of Genesis

may be hindered by other video resolutions, as noted by Shelly Knotts in her

evaluation feedback.

As discussed in section 4.1 Interaction with Creative Systems, Open Sound Control

(OSC) permits the application of user-defined parameters to be broadcast locally and

over a network for the control of the generative processes. So, due to OSC messaging,

a system as comprehensive as Genesis can be constructed. The various methods of

controlling OSC messages, such as the sonic features of a real-time input source, live

coding and GUI objects afforded the inclusion of different models of real-time

interaction within Genesis. In particular, the symbolic and subsymbolic

representations of the sonic features of the real-time input sources, extracted through

the relative analytical UGens, are allocated to OSC Message value.

Nonetheless, although analytical data from the real-time input sources is extracted at

sample rate and in reference to the impact efficiency on digital music systems, the

speed at which this data can be represented on a local system and/or broadcast to

networked instances is limited. For example, values that are sent from the Server to

the Client require a task to collect and apply the data, in addition to any modifications

to the data needed for a generative or analytical process. To apply running tasks

within SuperCollider, a clock must be implemented, dictating the interval of time

between the function/s of each task.

	
 282	

Considering the GUI, a frame rate of 30 frames per second is an acceptable and

efficient update speed, which necessitates a task update speed of 1/30 of a second, far

slower than a typical sampling rate of 44.1kHz, which requires an update speed of

1/44100 of a second. Therefore, the representation of instantaneous events, such as

the onsets of the control sources displayed in the GUI Buttons in the main Genesis

window, is not fully accurate, and are only represented should the task receive the

onset at the time of execution. Despite this limitation, the Genesis system adequately

represents most values with optimal delay between the event and its representation in

the GUI.

The dynamic scoring system, constructed of GUI objects dictated by the values of the

slave sound-object’s granular synthesizers’ envelope, pan position, filter frequency,

freeze, duration, playback rate, control source, overall loudness of each bank of

granular synthesisers and buffer frame values, abstracts the current status of the

interactive, generative and analytical processes. When executed, there is a clear

correlation between the real-time auditory inputs’ onsets, the values defined within

the GUI of the generative and analytical processes and the auditory output of the slave

sound-object’s granular synthesizers, as demonstrated in the audiovisual 19. Dynamic

Scoring System on the accompanying DVD in the Audiovisual Example Folder.

Although the Loudness.kr UGen is applied to measure the overall loudness of each

bank of granular synthesisers in order to represent the status of each bank’s loudness,

further spectral analysis of each granular synthesiser’s output could be applied, such

as extracting their MFCCs. This would extend the capabilities of the system’s

representation of its sonic outputs, outside of the parameter values of each sound-

object’s granular synthesiser’s parameter settings and a general loudness value.

However, the addition of such dynamic spectral analysis would incur a significant

efficiency penalty, and therefore is currently unfeasible.

When applying networked instances of Genesis, the latency between the systems may

be noticeable in both the visual representation and auditory output of the system. This

is relative to the broadcast format and the bandwidth available, with the minimum

acceptable bandwidth for sending and receiving Genesis specific communication

	
 283	

being 350kps; for Wireless communication over WLAN, the signal can only travel as

fast as the radio waves between the computers running the instances of Genesis, with

optimal communication between systems relying on Ethernet cabling, increasing the

maximum potential speed at which the broadcast can be sent to the speed of light.

Currently, the minimizing of latency between networked systems has no conclusive

solution, as highlighted in section 4.1 Interaction with Creative Systems. For example,

the TablaNet system (Sarkar, 2007), which is ‘a real-time online musical

collaboration system for the tabla’249, attempts to minimize the effect of latency by

introducing predictive algorithms that anticipate incoming network traffic but this was

found to ‘result in a slightly different musical experience at both ends’250 which could

be considered just as undesirable the latency itself.

As a result, until methods minimizing the occurrence of latency between networked

systems can be improved, the implementation of the network functionality within

Genesis should be carefully considering prior to performance, relative to the

bandwidth and distance from the networked instances, with lower bandwidths and

further distances increasing latency, and higher bandwidths and shorter distances

decreasing latency. The consequence of shorter latency offers the potential for near

instantaneous functioning of the interactive, generative and analytical processes

between networked instances of Genesis, helping to maintain an instantaneous

feedback loop between the real-time input source and the resulting auditory output of

Genesis.

When engaging with a live instrumentalist, it is imperative to ensure clarity in the

unfolding dialog between the interactions of the performers (in this case, Genesis and

a live instrumentalist); considering Paine’s interaction model (2002), there must be a

direct link between the actions of the live performer and the actions of Genesis,

through the commonly understood paradigm of onset, MFCCs, pitch, tempo and

loudness. With the introduction of any unavoidable latency, this direct link may be

lost as the consequence of the actions, although commonly understood, is not relative

to the moment of interaction.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

249	
 Sarkar,	
 M.	
 2007.	
 TablaNet:	
 A	
 Real-­‐Time	
 Online	
 Musical	
 Collaboration	
 System	
 for	
 Indian	
 Percussion.	
 MIT:	
 3	

250	
 Ibid	

	
 284	

6.4.2 Mappings in Genesis

6.4.2.1 Fractal Mappings

Within the generative processes in Genesis, ‘novel circumstance’251 is certainly

prevalent in the auditory outputs of the slave sound-object; the fractal processes

triggered by the onsets of the control sources, which dictate the buffer position,

playback rate, recording rate, and duration of the granular synthesizers, as described

in detail in chapter 5.4 Generative Processes in Genesis, reflects the inclusion of

indeterminate processes that generate, in real-time, parameter values mapped to the

onsets of control sources.

Considering the fractal process of the buffer position for the granular synthesizers,

this is not optional; due to the nature of recording live streams, the sample rate

dictates the length of each buffers audio recording, so to maintain sample rate quality

sound of 44.1kHz, a minimum of a one second long buffer must be applied (any

shorter than one second at a sample rate of 44.1kHz, and frequency resolution is

diminished). Therefore, the temporal resolution of each recording must be a minimum

of one second, resulting in each granular synthesizer’s buffer updating a minimum of

once every second. So, the auditory outputs of the granular synthesizers are relative to

their assigned buffer positions over a minimum of 44100 frames. Thus, if a buffer

position of 0 is defined, the auditory output will be relative to the signal held in the

buffer at its 0 frame. Now, if a buffer position of 0 is selected, and an onset from the

control source triggers its playback, this does not ensure instantaneous playback of

the real-time recorded slave sound-object; this is dependent on the buffer recording

being at buffer position 0 at the time of the slave sound-object’s onset. As a result, if

the buffer position is any frame higher in value than 0, the resulting output will have a

delayed onset relative to the number frames difference from the actual onset of the

slave sound-object.

In order to minimize the amount of delayed onset between the control onsets and the

onsets of a slave sound-object, the fractal process of the buffer position for the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

251	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 285	

granular synthesizers selects a buffer position relative to the length of the buffer, with

the default value being 44100 frames. As a result, as demonstrated in chapter 5.4

Generative Processes in Genesis, the resulting buffer positions form a collage of the

current buffered slave sound-object, dynamically changing, in real-time, the buffer

positions from which the granular synthesizers playback to the bounds of brown

noise, as described in section 3.1 An Introduction to Real-time Generative

Algorithmic Systems. As a consequence, the buffer position of each granular

synthesizer is indeterminately selected between the values of the maximum number of

buffer frames, increasing the possibility of at least one grain (if triggered by a control

source) allocated a buffer position close to the onset of slave sound-object, thereby

minimizing the chance that a delayed onset may occur in comparison to the use of a

fixed buffer position value such as 0 frames. This is illustrated in Figure 62 for a

slave sound-object onset and its consequent playback buffer positions of thirty

granular synthesizers relative to their control source with yellow representing control

source one, red representing control source two and blue representing control source

three/slave:

Figure 62. Fractal Buffer Positions

So, the granular synthesizers with the buffer positions closest to the slave sound-

object onset will playback almost instantaneously the slave sound-object within the

audio buffer.

	
 286	

The static and dynamic onset approaches within Genesis, as described in chapter 5.4

Generative Processes in Genesis, create a unique method of triggering generative

processes. Through the static onsets, the overall loudness level of the control source is

obtained, triggering the fractal and granular processes relative to the thresholds

defined in the GUI. Moreover, the dynamic onsets offer a novel method of mapping

the spectral data of a control source and applying the extracted onsets, in combination

with modification of their thresholds within the GUI, to the respective fractal and

granular processes. Therefore, the application of the dynamic onsets generates an

auditory output for a control source’s granular synthesizers, which reflects the

spectral components of the control source, as opposed to its overall loudness level. As

a result, granular synthesizers dictated by the dynamic onset method are triggered

significantly more fluidly and actively than with the application of static onsets,

replicating the dynamic nature of the process. This is illustrated in the Figure 63 by

representing the possible onsets of a control source obtained with static and dynamic

onset methods over time applying the same real-time input source for each onset

extraction method:

Figure 63. Static and Dynamic onsets over time

In combination with the fractal process of assigning buffer positions of the granular

synthesizers, the application of dynamic onsets further alleviates the issue of incurring

delayed onsets between the onset of a slave sound-object and the consequent

instantaneous playback of that slave sound-object by the granular synthesizers

	
 287	

dictated by a control source; there is an increased possibility of coincidental onsets

between the control source to the slave sound-object when applying the dynamic

onset method. This is illustrated in Figure 69 by representing the possible onsets of a

control and slave source obtained with static and dynamic onset methods over time

applying the same real-time input sources for each onset extraction method, along

with the possible buffer positions of the granular synthesizers:

Figure 64. Possible static and dynamic onsets with buffer positions

The fractal process approach to selecting the buffer positions of the granular

synthesizers, in conjunction with the optional static or dynamic onset functionality, is

applied in consideration of the feasibility of controlling complex mappings, as

described in chapter 2.1 Algorithms in the Compositional Process and to minimize

delayed onsets between control sources and the slave sound-objects auditory outputs.

There are 39 granular synthesizers within Genesis, each with ten modulatable

parameters, resulting in 390 possible adjustable settings for the granular synthesizers

alone, which cannot be realistically controlled in real-time through GUI interaction of

each individual parameter. Furthermore, as demonstrated in Figure 64, the use of a

fixed value for the buffer position of the granular synthesizers can incur a significant

delayed onset between control source onsets and the onset of the slave sound-object.

Therefore, an algorithmic process is required to dynamically alter the buffer positions

of the 39 granular synthesizers. The use of a fractal process sufficiently and

algorithmically controls the buffer positions of the granular synthesisers without

requiring a significant level of CPU processing power in combination with offering

	
 288	

the capability to permit the real-time modification of the bounds of the process

relative to the size of the buffer, in addition to real-time modification of those bounds

should the buffer size be changed within a composition.

Similarly, the application of a fractal processes for the real-time generation of

playback rates, recording rates and durations also offers an optional efficient and

effective method of dynamically modifying selected parameters of the 39 granular

synthesizers. In relation to the interaction between the real-time input sources and the

triggering of the fractal processes of the granular synthesizers, this ensures the

parameter values change relative to the onsets of the real-time input source, thereby

helping to maintain a correlation between the interactions of the real-time input

source and the resulting output of the slave sound-object’s granular synthesizers. With

regards to values produced by the fractals, they are not mapped to a specific structure

other than the bounds of the respective parameters values such as -4 to 4 for playback

rate. Therefore, the values of the fractal processes are not restricted by formalist

structures (although it is possible to apply extensive mappings such as pitch structures

relative to the playback rate to form values only within, for example, a diatonic scale,

this restricts the composer to such formalist structures from the outset. If such pitch

structures are desired, they can be implemented in real-time through live coding or

within the computer code of the Genesis system).

Contrary to the use of fractal processes for the modification of selected parameters of

the granular synthesizers, other generative processes may be applied, such as cellular

automata or stochastic processes (described in chapter 3.1 An Introduction to Real-

time Generative Algorithmic Systems). However, considering the efficiency with

which fractal processes can be applied and their reciprocal nature, the values they

produce are manageable and can be mapped with relative ease. In contrast, for

example, processes such as cellular automata may generate a significant number of

anomalous values, outside of the bounds of the selected parameter such as the

playback rate, which may cause undesired clipping or distortion in a granular

synthesizer’s auditory signal, a consequence of applying computational algorithmic

techniques that should be avoided, relative to the compositional process, as

highlighted in chapter 2.1 Algorithms in the Compositional Process.

	
 289	

Considering the real-time functionality of Genesis, not only is efficiency highly

important in order to minimize latency in the auditory signal, as discussed previously,

but also the quality of the auditory output must remain high; the auditory output of a

real-time composition must maintain an acceptable level of audio fidelity in order to

ensure a clarity in the interaction between the audio signal and the processes defining

any parameters that may be modifying it, otherwise the errors in the auditory signal

(unless desired) cannot be removed once an occurrence of such an anomaly has taken

place due to the real-time nature of the compositional process, and as a result, may

affect the resulting listening experience. The application of the bounds within the

fractal processes help to limit the impact of such errors within the auditory signal,

while also remaining an effective method of generating novel values for the

parameters they control.

With further regard to the necessity to maintain a sufficient level of audio fidelity, the

fractal process dictating the buffer positions is triggered relative to the onsets

identified within the control sources. As the envelopes of the granular synthesizers are

also triggered by the relative onsets to those of the fractal process, the envelope limits

the occurrence of clipping in the fractal buffer position process; the real-time

modification of a buffer position can generate clicks within the audio signal, due to

the sudden pressure changes in the buffered audio’s waveform. The application of an

envelope smooths the transition by reducing the amplitude of each grain to 0 at the

time of any change in the buffer position, limiting the occurrence of instantaneous

clicks in the auditory signal.

6.4.2.2 GA Mappings

The implementation of genetic algorithms for the manipulation of the settings of one

set of granular synthesizers within Genesis offers the possibility to explore novel

parameter settings, relative to the parameter settings defined by the respective GUI

MultiSliderViews of the granular synthesizers controlled by the onsets of control

source one and control source two. As stated in chapter 5.4 Generative Processes in

Genesis, the fitness function of the genetic algorithms within Genesis is executed

through the use of a human critique. Therefore, the composer, as opposed to a fitness

	
 290	

function within the Genesis system, completes the assessment of the granular

synthesizers current parameter settings controlled by the genetic algorithms, with the

option to ‘Devolve’ parameter changes to a chosen point of evolution, should an

outcome or series of outcomes be rendered unsuitable to the ongoing compositional

process.

As a result, the use of a human critique offers a potentially more qualitative result but

less efficient fitness function than the use of an automatic fitness function, as

described in chapter 3.1 An Introduction to Real-time Generative Algorithmic

Systems. However, considering the number of parameters modified by the genetic

algorithms, the variables of the parameters possible and the real-time nature of the

task necessitating it is relative to the current auditory output, the construction of an

automated fitness function is highly complex; with a human critique, extensive

analysis of the output can be completed by the composer instantaneously as part of

their intrinsic compositional process, as opposed to the requirement to assess and

organise an analysis of the current auditory output by perceptual algorithm models if

an automatic fitness functions were applied, possibly denigrating the quality of the

result. The result of such an algorithmic analysis may also incur a significant

efficiency penalty relative to the functionality of any analytical models applied,

resulting in an output that may be less qualitative and less efficient than if a human

critique were to be used.

An alternative approach to exploring the parameter settings through a process that can

adapt its values relative to an environment is artificial neural networks. Through the

application of artificial neural networks, a system can learn features of an

environment and output results based on the knowledge it has acquired. When

considering the complexity of generating an adequate automatic fitness function for

Genesis, an artificial neural network offers the potential to remove the necessity to

require a pre-defined organizational structure of the parameters to modify and the

relative analytical outputs that define them, by forming a self-organizing map of the

data it has acquired, thereby automatically generating novel outputs without necessary

supervision by a human critique.

	
 291	

However, an artificial neural network system requires substantial training in order for

it to learn and organise its networks and, when considering the number of possibilities

of possible auditory outputs of the granular synthesizers controlled by the onsets of

control source one and control source two, it is currently not possible to form a map

suitable enough to incorporate such possibilities. Moreover, forming such a suitable

map would require an extensive amount of training, which cannot be successfully

completed and organised in real-time. Therefore. they are not acceptably adaptable

while a system is running, thereby limiting its real-time interactivity. As a result, the

implementation of artificial neural networks could be developed in future instances of

a Genesis system relative to improvement in artificial neural network methodology,

but currently, the application of genetic algorithms satisfactorily fulfills the role of

permitting real-time exploration of a series of granular synthesizers’ parameter

settings within Genesis.

6.4.2.3 Search Mappings

In a similar vein to the application of genetic algorithms to explore ‘novel

circumstance’252, the Call and Response function generates a novel auditory output,

relative to the inputs it is provided with. However, unlike the implementation of

genetic algorithms in Genesis which uses the many parameter settings of the granular

synthesizers dictated by the onsets of control source one and two to form an output,

the Call and Response function applies the sonic features of pitch, tempo and onset of

the Call to determine the values of a predefined selection of rhythmic patterns and

pitch structures. Therefore, the auditory outputs of the Call and Response function are

generated relative to the assigned sonic features of the Call and their application to the

predefined formalisms of the Response task. In order to organize the Response based

upon the sonic features of the Call, a manageable random search algorithm is applied

to match the extracted sonic features of the Call to an array of possibilities, which

holds an array of outputs that are randomly selected to form a Response.

In relation to the structure of a Response dictated by the applied sonic features of the

Call, the use of predefined arrays, in combination with the auditory signal of the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

252	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 292	

Response, results in a process in which the structures of a Response’s formalisms are

limited by the number of allocated predefined arrays; the sonic features of the

Response’s audio buffer are modified relative to the outputs of the predefined arrays,

causing the inherent structures of the recording in the Response’s audio buffer to

remain in the auditory output of the process, whilst being altered by the results of the

Response’s selection of the predefined arrays dictated by the sonic features of the

Call.

As a result, the structure of a Response’s formalisms is wholly reliant on the efficacy

of the analytical UGens, which extract the sonic features of pitch, tempo and onset

from a Call source. As discussed in chapter 5.5 Analytical Processes in Genesis, the

Pitch.kr and BeatTrack.kr UGens applied to obtain the pitch and tempo of the Call

respectively, feature constraints, causing their outputs to not necessarily match

perceived pitch and tempo of the composer. In addition, although the onsets obtained

with the Onsets.kr UGen can be adjusted via thresholds in real-time through the

relative MultiSliderView in the GUI, the perceived onsets may still not match those of

the composer. Therefore, the structure of a Response’s formalisms for the Call and

Response function is reflective of the interpretation by Genesis of the pitch, tempo

and onsets of the Call. However, considering the evaluative feedback, the relatedness

of the responses of Genesis to the inputs of the participants was strong, indicating that

such ‘anomalous’ results were generally accepted by the users as part of the ongoing

compositional process.

Considering the random search approach applied for the Call and Response function,

the sonic features obtained from the Call can be allocated promptly to select arrays

that hold values with transferable musical symbolism. For example, within the Call

and Response function, arrays holding duration values are applied, selected relative to

the number of onsets within the call. So, if many onsets occur within a Call, this

creates a ‘busy’ audio signal, which can be reflected by the consequent selection of an

array that would mirror the ‘busy’ Call by applying short durations between buffer

position changes in the Response. Such a random search function can be completed in

real-time, by modifying the interval between the Response task relative to the

duration between the buffer position changes. The use of an approach, such as

	
 293	

grammars, also offers the capability to apply arrays with transferable musical

symbolism. However, a grammar method requires a highly abstractive, hierarchical

syntax and offline method for the representation of such musical symbols, which may

unnecessarily complicate the Call and Response process, without improving the

efficiency or quality of the Response task.

A random search process is also applied to the selection of arbitrary values of the

slave sound-object’s Warp1.ar UGen, in conjunction with the values of filters, a

reverb and panning of the overall auditory output mix, as described in chapter 5.4

Generative Processes in Genesis. However, unlike the random search process used

within the Call and Response function, all values are selected with no explicit external

modification of their values by sonic features or otherwise, other than the bounds and

the intervals between the process, relative to the parameter and its

minimum/maximum value allocated in the GUI. As a result, the process acts

autonomously when selecting its values in real-time from the prescribed bounds of

each parameter, thereby requiring no outputs from any of the analytical processes of

the real-time input sources, rendering it highly efficient.

However, despite the absence of analytical processes directly influencing the outputs

of the process, due to the optional application of the onsets from a control source

triggering the envelope of the slave sound-object’s Warp1.ar UGen and the

simultaneous resetting of its buffer position relative to the value defined by the

random search process, the modification of the slave sound-object’s Warp1.ar UGen’s

buffer position parameter by the process appears to be timed in sync with the

triggering of the slave sound-object’s Warp1.ar UGen’s envelope by the relative onset

of a control source; the update of the buffer position occurs at the intervals between

the process dictated by in the interval value defined GUI, but is only applied if the

buffer position is reset by a control source onset, thereby syncing the modification

with the onset from a control source triggering the slave sound-object’s Warp1.ar

UGen’s envelope. The result of this process can be heard in audiovisual example 20.

Random Search Processes on the accompanying DVD in the Audiovisual Examples

folder.

	
 294	

The spectral following process, which maps the MFCC values of the control source to

the filter frequencies of the granular synthesizers’ band-pass filters effectively and

efficiently represents an overall spectral character of a control source on the slave

sound-object; the sum of the MFCC values reflects the spectral density of a sound-

object, with the respective mapping for each filter frequency to the MFCC sum

forming a representation of a control source based on spectral density. As a result of

the process, spectral modifications within the real-time input source can be applied to

the slave sound-object, in real-time. However, due to the requirement of efficiency to

minimize latency in the real-time interaction between the control source and the slave

sound-object, significant analysis of the MFCC data is limited, resulting in a restricted

ability by the process to represent subtle and discrete changes in the MFCC data.

Despite this, substantial changes in a control source’s spectral density are represented,

generating a process that successfully characterizes a control source’s overall spectral

density, in real-time.

Similar to the spectral following process, the envelope following process also applies

spectral density, but instead applies the FFTPower.kr UGen’s output to represent the

loudness of the control signal, with the resulting loudness representation used to

sustain the envelope of the slave sound-object’s Warp1.ar UGen. In addition to the

loudness of the control signal dictating values of the envelope, the number of onsets

over time from the control source defines the attack and release times. The principle

of using onsets to represent a sound-object’s envelope time’s results in an output that

is based upon the dynamic change in onsets over time at a described threshold.

Therefore, an envelope’s attack and decay times can be defined relative to the number

of onsets present in an auditory signal.

In order to generate consistent and applicable values, relative to the number of onsets,

a predefined selection of twelve attack and release times are applied to minimize

anomalous values within the envelope following process’s task with optional

multiplication by a GUI Slider. The use of predefined values does considerably limit

the number of possible envelope times, but anomalous values may generate

undesirable auditory outputs; instantaneous envelope times, negative envelope times

or unnecessarily long envelope times may be generated if no direct bounds are given,

	
 295	

resulting in errors in the auditory output that cannot be modified or removed in real-

time. Despite the limitations of the maximum number of possible envelope times by a

predefined series of values, selected relative to the number of onsets, the envelope

following process efficiently and effectively envelope’s the slave sound-object’s

Warp1.ar UGen relative to an control sources onsets, while ensuring errors within its

auditory output are minimized.

In relation to the mappings within Genesis, the interaction they provide between the

sonic features of onset, MFCCs, pitch, tempo and loudness, extracted through the

analytical processes, successfully and noticeably control the parameters of the

generative processes in real-time; the application of a symbolic representation of pitch

and tempo, combined with the subsymbolic representation of the timbre, onsets and

loudness define a system through which the sonic features of the real-time input

sources can be identified in the resulting output of the slave sound-object and is

reflected in the visualisation provided by the dynamic scoring system.

Considering the research aim of discussing the effect of interaction methodology, in

terms of the models of interaction available within Genesis and the level of overall

influence Genesis may have on a resulting composition, this can be modified on-the-

fly and in real-time, dependent on the desired compositional process and the relative

application of the available analytical and generative processes selected through the

GUI, as demonstrated in chapter 5.3 Interactive Processes in Genesis.

The ability of Genesis to apply multiple models of interaction in real-time results in a

system that is not bound to one specific model of interaction such as a Conductor

Model (Winkler, 2001) combined with the use of MIDI to communicate between

input and output sources, apparent in many commercial musical composition

applications such as Sibelius. The advantage of the approach applied in Genesis offers

a composer significant freedom to explore different models of interaction in real-time,

relative to a desired compositional technique. For example, if applying a real-time

auditory control source with an indeterminate conditional structure such as a live

audio stream of a train station platform, the system can generate responses relative to

the symbolic and subsymbolic representation of its sonic features extracted from its

	
 296	

auditory signal, which can be applied to a desired model of interaction such as an

Improvisation Model (Winkler, 2001), through which a human controller can modify

the parameters of the slave sound-object controlled by the indeterminate sonic

features of the incoming audio stream.

In terms of the interaction between the sources providing the Call and the Response

generated using the audio of the current overall auditory output mix, this is relative to

its application; the source of the Call dictates the model of interaction. For example, if

using a live instrumentalist to form a Call, it is possible to form an Improvisational

Model (Winkler, 2001), in which the live instrumentalist and Genesis interact with

each other, explicitly influencing each other’s performances through their pitch,

tempo and onsets. In addition, a live instrumentalist could apply a notated score to

form a Call, with a consequent Response by Genesis having no explicit influence on

the instrumentalist following a Call, thereby introducing a Conductor Model

(Winkler, 2001) of interaction. In contrast, if applying a Sample UGen’s auditory

output to form a Call, it is not possible currently to modify the output of a Sample

UGen without a human controller of Genesis. Therefore, only a Conductor Model

(Winkler, 2001) can be used if a Genesis system is to run autonomously, creating

Responses based upon a determined source, similar to the application of a notated

score by a live instrumentalist for generating a Call.

6.4.3 SuperCollider, Genesis and the GUI

Considering the advantages and disadvantages of using music programming

languages for the construction of digital music systems, and the application of

SuperCollider for Genesis, the implementation of live coding within Genesis executed

through the post window, or written as strings within the actions of all GUI objects

for consequent application of their values via routines for the GUI Live Coding

method, reflects the real-time method of interaction permitted by the SuperCollider

programming language; through live coding in Genesis, novel sound-objects scripted

for use as control/slave sources, GUI objects, SynthDefs and modifications of any

parameter settings can be generated in real-time. Therefore, as noted previously,

although an underlying primary architecture of Genesis is prevalent, through live

	
 297	

coding, it is possible to extend the fundamental architecture of Genesis, rendering it

highly advantageous for users familiar with programming code.

In terms of the GUI objects that control the generative and analytical processes in

Genesis, many default objects are applied such as Button, Slider and PopUpMenu.

The default objects are used purposefully to offer familiarity of the Genesis graphical

user interface to conventional GUI objects, as opposed to specifically designed

abstract GUI controllers through SwingOSC. Considering the application of live

coding within Genesis, as highlighted in section 4.1 Interaction with Creative

Systems, a substantial amount of learning and understanding of programming

languages is required to implement compositional methods that necessitate computer

code. Therefore, for users of Genesis not familiar with such approaches, the use of

recognizable and distinguishable GUI objects helps to ensure adequate control of the

predefined parameters within Genesis without deluging the user with unknown

methods of interaction.

Moreover, considering the scale of interactive, generative and analytical processes

within Genesis, simplification of the GUI also helps to guarantee processes are clearly

and consistently displayed, hopefully avoiding a misperception by the user of a GUI

object and its function. This is demonstrated clearly by the responses given by the

participants in the evaluation feedback. Therefore, choosing music programming

languages that offer libraries of familiar GUI objects would appear to be beneficial

when selecting which music programming language to use when designing an

environment when instrumentalists are to use a system.

The GUI live coding method within Genesis, through which the GUI interactions can

be live coded to a hidden post window, along with a relative clock value and wrapped

as a routine, offers the capability to automate a significant number GUI controls in

real-time; considering the importance of feasibility when modifying and mapping

many parameters, the GUI live coding method generates an efficient and effective

method of re-applying real-time GUI interactions in real-time. For example, the

values of a series of granular synthesizers’ playback rates, adjusted over time by GUI

interactions can be re-applied via their consequent real-time allocation to a routine,

	
 298	

with that routine’s playback executable in real-time, relative to the value of the

adjustable Genesis clock, allowing further adjustments to be made to other GUI

objects as the newly created routine is executed. As a result of the application of the

GUI live coding method, real-time interactions with the GUI that control the

predefined parameters of Genesis can be saved and applied in real-time, offering

greater real-time feasibility to control many parameters simultaneously, as opposed to

the requirement by systems such as Logic or Pro Tools to modify parameters offline,

for consequent automation in real-time.

Furthermore, the real-time functionality of Genesis and the SuperCollider

programming language permits the application of the live sampling method, allowing

real-time recordings of the overall auditory mix and allocation of the real-time

recordings to the Genesis Sample UGens for consequent playback and analysis

through the Genesis system. Therefore, sound-objects can be generated, in real-time,

through live coding and/or the overall auditory output mix of Genesis, strengthening

the notion that any conceivable and attainable auditory source can be applied to the

real-time input sources of Genesis, not only for the modification, manipulation and

arrangement of the slave sound-object, but also to form a control/slave sound-object

itself.

6.4.4 Quantification of Genesis

The fundamental application of a sound-object’s sonic features for the control of other

sound objects by Genesis is an important feature of sample-based concatenative

synthesis (as introduced in chapter 4.1 Interaction with Creative Systems), which is

‘an emerging approach to sound generation based on concatenating short audio

excerpts (samples) from a database to achieve a desired sonic result given a target

description (e.g., a score) or sound (Schwarz, 2000)’253. So, within a sample-based

concatenative synthesizer, an input source’s sonic features can be compared to an

existing database of sounds, with the best match to the input source resulting in the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

253	
 Maestre	
 et	
 al.	
 2009.	
 Expressive	
 Concatenative	
 Synthesis	
 by	
 Reusing	
 Samples	
 from	
 Real	
 	

Performance	
 Recordings.	
 Computer	
 Music	
 Journal	
 33(4):	
 24	

	
 299	

synthesizer’s auditory output. Schwarz (2006) proposed four applications of

concatenative synthesis as listed in the example below254:

High-Level instrument synthesis - this method applies the context of a database and a

target unit, thereby allowing it to create natural and seamless transitions by using its

matched contexts. The result is high-level control of a synthesiser with gaps in the

context filled by best-fit in the database.

Resynthesis of audio - when a sound-object is placed in the synthesiser, it is

resynthesized with a sequence of best match units, compared and selected by features

such as pitch, onset and amplitude.

Texture and ambience synthesis - aims to generate composition from sound libraries

or pre-existing ambience recordings through extension of a soundscape for a specified

duration. The process regenerates the character and flow of the ongoing composition

through high-level control of its sample library.

Free synthesis – offers a composer a variety of sound databases to control by

specified perceptual descriptors. As a result, the composer can explore the sound

databases, synthesizing relative to high-level features such as ‘bright’, ‘sharp’ or

‘wooden’.

Within each application of concatenative synthesis, the analysis of the input source

and representation of the samples within the sample database of a sample-based

concatenative synthesizer ‘can be of type categorical (a class membership), static (a

constant text or numerical value for a unit), or dynamic (varying over the duration of

a unit), and from one of the following classes: category (e.g. instrument), signal,

symbolic, score, perceptual, spectral, harmonic, or segment descriptors. Descriptors

are usually analysed by automatic methods, but can also be given as external

metadata, or supplied by the user, e.g. categorical descriptors or for subjective

perceptual descriptors (e.g. a “glassiness” value or “anxiousness” level could be

manually attributed units)’255.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

254	
 Schwarz,	
 D.	
 2006.	
 Concatenative	
 Synthesis:	
 The	
 Early	
 Years.	
 Journal	
 of	
 New	
 Music	
 Research	
 35(1):	
 4	

255	
 Ibid	

	
 300	

Considering the variety of descriptors suitable for a sample-based concatenative

synthesizer, there are a wealth of analytical processes that may be may be applied to

identify these sonic features (such as those discussed in chapter 3.2 A Brief Summary

Machine Listening) with the optional use of metadata provided by a user for the

adjustment of the analysis or inclusion of subjective descriptions.

So, when defining the Genesis system, it could be considered a form of sample-based

concatenative synthesis; Genesis applies the sonic features, extracted through

analytical processes of a real-time input sound source with consequent representation

as pre-defined descriptors of pitch, onset, MFCCs, loudness and tempo for the

modification, manipulation and arrangement of a real-time sound-object’s own sonic

features. However, reflecting on Schwarz’s proposed applications of concatenative

synthesis (2006), there are distinctive differences between the methodology of

Genesis (as detailed in chapter 5 The Genesis System) and the approaches described

by Schwarz (2006), highlighted in particular through the approach of high-level

instrument synthesis. Primarily, Schwarz (2006) describes two cost components:

direct matching between source and target, and a continuity factor in resynthesis.

With regard to direct matching between source and target, the pitch and tempo of the

control source and the slave sound-object can be compared optionally within Genesis

for the consequent application of the control source’s pitch or tempo to the slave

sound-object. Therefore, direct matching between source and target is applied for a

selected number of sonic features. In contrast, a significant number of sonic feature

descriptions are compared for high-level instrument synthesis (Schwarz, 2006) such as

timbre, loudness and onset with the aim of the result to accurately represent the

identified sonic features within the synthesizer’s auditory output; in Genesis the

MFCCs, onsets and loudness are not compared between the control source and the

slave sound-object, and instead the MFCCs, onsets and loudness of the control source

trigger generative processes of the slave sound-object, irrespective of the slave sound-

object’s MFCCs, onsets and loudness. Therefore, the resulting auditory output by

Genesis of a slave sound-object dictated by a control source’s described sonic

features represents the sonic features identified within the control source without

extensive comparison to the real-time slave sound-object.

	
 301	

In addition, for high-level instrument synthesis (Schwarz, 2006), the generation of a

sample-based concatenative synthesizer’s output sound-objects is resultant of the

outputs of the analysis of the input source over time and the representation of the

samples available within a database, with the similarity to the target (the input

source) of the database samples bound by the likeness of the samples contained within

the database to the input source. Within Genesis, there is an absence of a database of

samples from which to compare and select sound-object’s similar to a control source,

instead applying the currently selected real-time slave sound-object for its auditory

output regardless of its similarity to the control source, reflecting the role of the

control source for defining the various generative processes within Genesis, without

extensive comparison to the real-time slave sound-object.

Considering that a primary function of Genesis is to generate and control auditory

outputs in real-time, the analysis of sound-objects must also be completed in real-

time. Therefore, the extensive analysis and representation of a sound-object’s sonic

features prior to Genesis initiation is restricted as all analytical processes are executed

in real-time, with no application of pre-existing metadata to modify the subjectivity of

the results. A significant advantage of analysing sample data prior to initiation of a

program is that offline analysis is not limited to the constraints of real-time analytical

processes, which are significantly bound by their frequency resolution and temporal

resolution in combination with being potentially CPU intensive which may possibly

cause unacceptable latency in the auditory signal.

As a result, offline analysis can be completed multiple times with relative adjustments

to the analysis parameters potentially increasing the accuracy of the result, whereas

the results of real-time analysis, unless significant adaptability is applied, produce

instantaneous results that are substantially limited in their acute modification once an

outcome has been produced. However, the execution of multiple analyses of a

particular sonic feature in a system such as Genesis is a luxury that cannot be

afforded; all sources are presented in real-time and therefore cannot be analysed with

an offline method, resulting in a reliance of real-time analysis. Due to this, Genesis’

analytical process is instantaneous, without presenting and analysis over time.

	
 302	

Therefore, the continuity factor required for high-level concatenative synthesis,

proposed by Schwarz (2006), is not present in Genesis.

Furthermore, the modification of the slave sound-object within Genesis is completed

through a combination of UGen parameter settings such as the filter frequencies of the

band-pass filters for each granular synthesiser and the pitch of the PitchShift.ar UGen.

In contrast, the principle of concatenative synthesis is to minimise the application of

such modifications, instead applying the best-match sample within the database to the

target source as its auditory output. Therefore, the more expansive and eclectic the

sample database, the higher the potential for better matches to the target source,

thereby limiting the amount of temporal or frequency modification to the best match

sample. However, the greater a sample database’s size, the more complex the

organization of the database’s sample needs to be, as the relevance of accurate

descriptions of a sample’s sonic features increases; the more samples contained within

a database, the more similarities (and differences) will occur between their sonic

features, requiring a highly descriptive and consistent method of sample organization

in order to distinguish clearly between samples for possible application to a best-

match for a target source.

The complexities of organising a sample database by its sonic features relates directly

to the difficulties of conclusively defining perceptual processes, as detailed in chapter

3.2 A Brief Summary of Machine Listening, with particular reference to timbral

classification; the issues in the construction of a definitive topology of sound-objects,

which would allow for a quantitative method of sound-object description, permitting a

decisive organizational structure that can be applied to dynamically organize the

sample database of a concatenative synthesizer with the possible outcome of

producing an increased accuracy of best match results.

In relation to the methods that have been applied to organise the databases of

concatenative synthesizers such as Caterpillar (Schwarz, 2000) and SoundSpotter

(Casey, 2004), Structured Query Language (SQL) is used to manage the descriptors

of the samples within the database, with specific algorithms searching the database for

best matches. For example, SoundSpotter (Casey, 2004) ‘performs real-time

	
 303	

resynthesis of an audio target from an arbitrary-size database by matching of strings

of 8 “sound lexemes”, which are basic spectro-temporal constituents of sound’256.

However, despite the ability to apply database software, the method of description of

sound-objects is still not conclusive, resulting in databases that may appear to offer

efficient solutions to examine large search spaces, but in fact do little to resolve the

issue of sonic feature classification; in SoundSpotter (Casey, 2004), ‘by hashing and

standard database indexation techniques, highly efficient lookup is possible. Casey

(2005) claims that one petabyte or 3000 years of audio can be searched in half a

second’257. Indeed, such a system is evidently very efficient, yet the issue of selecting

which sonic features to apply, and at what time relative to an ongoing compositional

process, still remains.

The capability of Genesis to generate live samples, as described in chapter 5.4

Generative Processes in Genesis, offers the potential to create a database of samples

in real-time for consequent selection by a concatenative algorithm, which explicitly

compares the real-time input sources sonic features to the dynamically changing

sample database. However, as previously stated, sufficiently representing and

consequently categorizing the sound-objects of such a database is highly complex and

inconclusive. In addition, all analyses need to be completed in real-time, restricting

the accuracy and performance of the analytical processes.

The limitations of real-time analytical processes are reflected in the limited number of

real-time analysis in concatenative synthesizers that expressly apply real-time

analytical processes. CataRT (Schwarz, 2005), MoSievius (Lazier and Cook, 2003)

and Frelia (Momeni and Mandel, 2005), generate sound-objects based on pre-defined

sonic features that can be adjusted relative to pre-defined descriptors presented in

graphical user interfaces. Therefore, the descriptors of the target source are not

extracted from a real-time auditory source, and are instead defined using values

applied through the graphical user interface. Concat (Collins, 2006) is an example of a

concatenative synthesiser, which implements real-time analysis of both the source and

the target. It allows the control of a target by a source through the weighting of four

sonic features (zero crossing rate, log mean square, spectral centroid and spectral tilt),

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

256	
 Schwarz,	
 D.	
 2006.	
 Concatenative	
 Synthesis:	
 The	
 Early	
 Years.	
 Journal	
 of	
 New	
 Music	
 Research	
 35(1):	
 15	

257	
 Ibid:	
 15	

	
 304	

combined with various controls through the UI such as freezing of source material.

Although Concat (2006) unique and powerful as a synthesis tool, it is difficult to

apply perceptual musical features into the quantifiable sonic features applied. (Concat

(Collins, 2006) has a revised version Concat2 (Collins, 2006) which allows user-

control of its overall loudness detection258).

So, in order to incorporate methods of concatenative synthesis for the organization

and representation of samples generated by the live sampling process in Genesis, a

categorization method must be developed that can form accurate descriptions of the

sonic features of the control and the live samples that may be used to form a database

of slave sound-objects. As a suggestion, this could be comprised of neural networks

and genetic algorithms for qualitative assessment of the sonic features of the live

samples within a database. However, the issue of adequate sonic description still

remains, highlighting the requirement of further research in the topic of auditory

scene analysis and consequent representation of sound-objects.

As noted previously, Genesis applies extensive digital signal processes to modify the

auditory output of the slave sound-object, which are dictated by generative processes

controlled by interactions with the GUI and the sonic features of the real-time control

sources, contrary to a fundamental method of concatenative synthesis, which is to

apply such modifications through a database of samples matching the descriptors

defined by the GUI or the target source’s sonic features. However, the principle of

applying an auditory source’s sonic features to another auditory source remains in

both Genesis and sample-based concatenative synthesis.

Therefore, it must be concluded that despite the absence of a sample database within

Genesis, and the method of extensive comparison between auditory sources within

sample-based concatenative synthesis methods, the principle of applying an auditory

source’s sonic features for the modification, manipulation and arrangement of another

auditory source is certainly present in Genesis. As a result, it must be determined that

Genesis applies a fundamental principle of concatenative synthesis to use the sonic

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

258	
 Collins,	
 N.	
 (n.d.).	
 Concat2.	
 [online]	
 Doc.sccode.org.	
 Available	
 at:	
 http://doc.sccode.org/Classes/Concat2.html	
 [Accessed	

Mar.	
 2014]	

	
 305	

features of auditory sources to control other sound-objects, but that the methodology

of applying any modifications in Genesis differs considerably to the use of a sample

database and extensive comparison between auditory sources, as applied in sample-

based concatenative synthesis.

Considering Genesis does not fit directly into the category of ‘concatenative

synthesiser’, Genesis does however fall neatly into the category of imitative synthesis

(Grey, 1975; Wessel, 1979; Beauchamp, 1982). As noted in chapter 4.1 Interaction

with Creative Systems, imitative synthesisers extend the instrumental paradigm

through reinterpretation of the perceptual spaces of harmonic instruments via

psychoacoustic descriptors. In relation to the previous discussion regarding Genesis,

concatenative synthesis and its generative/analytical processes, it is evident that

Genesis matches the criteria of an imitative synthesiser; it reinterprets perceptual

sonic features such as pitch, timbre and onset, in real-time, through explicit and

implicit mappings to generative algorithmic methodologies.

The real-time application of Genesis as an imitative synthesiser that manipulates and

arranges the sonic features of other auditory sources creates a unique real-time

interactive environment for musical composition. As highlighted in chapter 4.2

Composition with Real-time Interactive Music Systems, it is demonstrated that real-

time composition can be a method of compositional technique. Considering the

interactions between the sonic features of real-time input sources and their influence

on generative and analytical processes in Genesis, it must be asserted that a real-time

compositional process is the predominant compositional technique; a compositional

output is generated in real-time, structured by the analysis of a real-time auditory

signal’s perceived sonic features of pitch, loudness, tempo, pseudo-timbre and onset

with consequent application of these sonic features to generative processes that share

a commonly understood paradigm.

Due to the application of the commonly understood paradigm within Genesis between

the sonic features of the real-time input sources and the generative processes, ‘the

flexibility to build processes which generate new sequences of events every time it is

executed, and processes which respond to environmental and human interference

	
 306	

whilst remaining within the boundaries imposed by the programmer’259 is prevalent.

For example, this method of generative compositional process is apparent in the use

of fractals, triggered by the onsets of the real-time sources and bound by modifiable

constraints relative to their respective parameter. Furthermore, the consideration to

minimize latency in Genesis helps to ensure the response by a generative process to

its assigned environmental sonic feature/s is near instantaneous, maintaining the

correlation between real-time sonic events and the results of their interaction to a

generative process, reflecting the real-time compositional process achievable through

the use of Genesis.

Therefore, Genesis should be considered a real-time compositional system, applying

in real-time the imitative synthesis principle of using sonic features of an auditory

source to modify, manipulate and arrange another auditory source, for the principal

control of generative processes, with optional adjustment through the GUI of the

generative and analytical processes, relative to the desired model of interaction

between the compositional output of Genesis and the real-time input source/s.

6.5 Evaluation of the Genesis System’s Compositional Process

6.5.1 An Overview of Creativity with Genesis

Considering the compositional process described in chapter 2 An Introduction to

Algorithmic Composition, due to the different models of interaction the Genesis

system allows, Genesis can model the entire creative process including analysis of the

input, model specific stages of the creative process including analysis of the input for

application to an external compositional process and generate results based on a

creative process without analysing its inputs or outputs. For example, in relation to the

description of the entire creative process, if the system is run unsupervised, the chosen

musical objective of modifying a slave sound-object through the chosen sonic features

of control sound-object is applied, with the indeterminate generative processes

dictated by the onsets of the sonic features of a control source modelling the

subconscious, consequently forming a solution based upon the interplay between the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

259	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 307	

selected sonic features and the indeterminate generative processes, which are then

mapped to their relative parameter for realisation to the dynamic score and auditory

output.

With reference to the research aim of discussing the implementation of creativity of

with machines, Genesis models specific stages of a creative process including

analysis of the input for application to an external compositional process such as a

predetermined score performed by a live instrumentalist. Perhaps the most

significantly modelled stage is the development of ideas by the subconscious; the use

of fractals triggered by the onsets of a control source’s output values relative to their

desired parameter through an indeterminate method in effect model the theorised

disposition of the subconscious to behave in a random manner, bound by a particular

characteristic, which, in the case of Genesis, is the buffer position, playback rate,

recording rate, and duration. The outputs of the fractals can then be applied to a

compositional process occurring externally to Genesis, influencing the relative

parameter’s values in an external compositional process.

The generation of results based on a creative process without analysis of inputs or

outputs is present in the random search process which defines the random search

process applied to the selection of arbitrary values of the slave sound-object’s

Warp1.ar UGen, in conjunction with the values of filters, a reverb and panning of the

overall auditory output mix. As a result, such a method models an entire

compositional process without external influence; the musical objective is identified

relative to the tasks chosen parameters, with the random processes modelling the

assumed role of the subconscious, as the solution is bound by selected minimum and

maximum values to be applied and mapped to the relative parameter for realisation of

the compositional process. Therefore, considering the above examples, it is certainly

apparent that a compositional process or stages of a compositional process can take

place within an instance of Genesis.

Therefore, in reference to the application of a hybridisation of adaptive and

generative models of creativity, as discussed in chapter 4.1 Interaction with Creative

Systems, Genesis would appear to successfully implement such a method; the level of

	
 308	

adaptive and generative creativity is relative to the interaction approach, with the

evaluation feedback demonstrating that this can range from highly generative to

highly adaptive. As a result, considering Blackwell et al’s (2012) aim to emulate

human performers convincingly, Genesis is perceived to be capable of such ability.

6.5.2 Genesis and its role in a compositional process

The purpose of the algorithmic compositional processes within Genesis falls in to the

two categories proposed by Supper (2000) of ‘Modeling new, original compositional

procedures, different from those known before’260 and ‘Selecting algorithms from

extra-musical disciplines’261. For example, the Call and Response process applies

original compositional procedures through applying predefined structures that are

selected relative to chosen sonic features of pitch, onset and tempo, with the fractal

processes applying algorithmic procedures from extra-musical disciplines by using

mathematical models to dictate the selected parameters of playback rate, recording

rate, buffer position and duration for the granular synthesizers that form the slave

sound-object’s generative auditory output.

The application of the algorithmic compositional processes permits compositional

outcomes that are otherwise unfeasible or impossible in a real-time compositional

process; the interactive, generative and analytical processes used within Genesis

control multiple complex mappings between the sonic features of the real-time input

sources and the real-time generative processes such as the fractal manipulation of a

slave sound-object’s granular synthesizer’s playback rate. Considering the possibility

of simultaneously controlling the ten parameters of thirty-nine granular synthesizers

though interaction in real-time without algorithmic processes, the concurrent

manipulation and adjustment in real-time would be highly challenging in the absence

of algorithmic compositional processes; the individual control of selected parameters

such as the buffer position, playback rate, recording rate and duration, in the dynamic

manner offered by Genesis would be substantially restricted without algorithmic

compositional processes, thereby warranting the use of extensive algorithmic control

of predefined parameters within the Genesis system.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

260	
 Supper,	
 M.	
 2001.	
 A	
 Few	
 Remarks	
 on	
 Algorithmic	
 Composition.	
 Computer	
 Music	
 Journal	
 25(1):	
 48	

261	
 Ibid:	
 48	

	
 309	

As noted also in chapter 2 An Introduction to Algorithmic Composition, the influence

algorithmic processes can have on a compositional process can be categorised in to

five categories relating to the level of influence an algorithmic output may have on a

compositional process. The overall level of influence by the algorithmic processes

within Genesis is relative to the applied model of interaction and inclusion of a

specified algorithmic process. The influence of a particular algorithmic process is also

relative to the application of an interaction between a sonic feature of a real-time

input source and the algorithmic function, or if the algorithmic process generates

results irrespective of any external influence.

So, for example, considering the fractal process defining the buffer positions,

although triggered by the onset of a control source, the selection of the buffer

positions are dictated by the fractal process, with no external modification other than

the description of the bounds to complete the process, resulting in a high level of

influence by the algorithmic process on the outcome. In contrast, the pitch following

process applies a predefined algorithmic process with an output adjusted by the pitch

of control source one, thereby resulting in a mid level of influence between the

algorithmic process and the real-time input source’s pitch; the outcome of the

algorithmic process is relative to the pitch of the real-time input source, modifying the

output of the algorithmic process in terms of a parameter provided externally to the

algorithmic process itself.

The use of ‘novel circumstance’262, is highly prevalent in the generative processes of

the Genesis system as described in section 6.4 An Evaluation of the Genesis System’s

Methodology. Primarily, the application of expressly indeterminate processes, or

processes which have an indeterminate disposition, are used to generate unique and

individual outcomes, restricted to the parameters and any deliberate bounds of the

parameter values. As a result, the Genesis system consistently produces ‘suggestions’

based upon the symbolic and subsymbolic representations of the sonic features of the

real-time input sources and their relative parameter mapping within a selected

generative process.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

262	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 310	

As noted in chapter 2.2 Unpredictability and Randomness in the Creative Process,

random functions are a highly efficient method of generating suggestions, relative to

chosen parameters, which must be carefully applied, otherwise the outputs of such a

process become arbitrary values, with limited application and validity to a

compositional process. Therefore, indeterminate functions such as fractals, which

exhibit self-similarity, proposed to form the structures of musical composition

(Mandelbrot, 1975) and discussed in chapter 3.1 An Introduction to Real-time

Generative Algorithmic Systems, are applied in order to efficiently incorporate

random functionality within suggested musical structures, thereby rendering the

results of the process applicable to a real-time compositional process.

Furthermore, the use of indeterminacy is also ubiquitous in the application of genetic

algorithms for the real-time exploration of ‘novel circumstance’ 263; the use of

mutation functions, which introduce randomly generated values, not correlated to a

current population, form indeterminate outcomes with future populations that cannot

be conclusively predicted. As a result, the use of genetic algorithms, and the relative

level of mutation applied to the evolution of the parameters it dictates forms a process

that generates ‘suggestions’ that are applied in real-time, relative to the symbolic

parameters of spectrum, envelope, grain duration, onset threshold, grain pan position

and grain playback rate through indeterminate processes that are modifiable through

the level of mutation applied.

The application of a ‘Devolve’ function is used to acknowledge the possible outcome

of the modified genetic algorithm may not be regarded as a valid ‘suggestion’ to the

ongoing compositional process; the use of a human critique allows a highly

qualitative method of assessment for the outputs of the genetic algorithms. With

regards to the breeding process of the Red GA class though which the genetic

algorithms are executed, this is highly efficient, generating results almost

instantaneously, ready for immediate application in real-time. Therefore, perceived

inconsistencies in the compositional process, generated by the genetic algorithms can

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

263	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 311	

be modified quickly and efficiently, minimizing any undesirable consequences to the

ongoing compositional process.

Considering the application of sonic features extracted in real-time from real-time

input sources, it is necessary to represent the sonic features of the real-time source

symbolically and/or subsymbolically with a high degree of efficiency. As noted in

chapter 2.5 Further Considerations of Applying Computational Algorithms within a

Compositional Process, the analysis of acoustic sound sources requires transference

from an acoustic signal in to the relevant symbolic or subsymbolic representations of

its sonic features. As a result, analytical processes can consequently generate

outcomes relative to the symbolic or subsymbolic sonic features it is provided with.

The use of live streams necessitates that the extraction of the sonic features must be

completed in real-time, with the minimization of latency integral to the correlation of

the interaction between a real-time input source’s sonic features and the auditory

output of any generative processes that apply such sonic features to modify or dictate

their outcomes.

With the acknowledgment of latency possibly affecting the compositional process

within Genesis of applying the real-time sonic features to the real-time generative

processes, offline analysis, which may provide complex methods based upon an

existing set of data for the assessment of an auditory source’s sonic features is not a

feasible method of assessment; with real-time functionality, an auditory signal’s

waveform and any modification of its sonic features occurs in real-time, resulting in a

data set that is constantly changing as opposed to a static data set, apparent in an

offline recording or analysis file. Therefore, real-time analytical processes for real-

time application are constrained to methods, which are highly efficient to minimize

latency and are able to apply to a dynamic data set through reactive and/or predictive

methodologies.

In relation to the different methods of real-time computational analysis available, the

use of the FFT offers a highly efficient method of extraction of an input acoustic

signal’s waveform in the time domain, in to the frequency domain, which can be

windowed and assessed as an acoustic signal’s frequency components over time. The

	
 312	

frequency components can consequently be represented symbolically and/or

subsymbolically, with the representations mapped relative to selected parameters

within Genesis. Considering the complexity of the analytical processes, which

identify particular sonic features within the frequency domain, the real-time analytical

UGens applied in Genesis, and provided with the SuperCollider programming

language, sufficiently represent the sonic features for the principle compositional

process of applying the sonic features of a real-time auditory source to real-time

generative processes by using their respective reactive and/or predictive processes,

without explicit modification of a UGen’s structure for the Genesis system, forming

its interpretation of sonic features.

The role of the GUI within the compositional process dictates the application of the

interaction between the real-time input source and the algorithmic generative

processes that define the auditory output of the Genesis system. In addition, the GUI

modifies any predefined parameter relative to a set value, relative to its position in the

modifiable GUI objects, as well as the toggling of algorithmic generative processes

that are not dictated by the sonic features of the real-time input sources. Therefore, the

model of interaction between the real-time auditory sources and their relative

generative processes, and as a result, the dictation of the level of influence between

computational algorithmic processes and the compositional processes of the human

composer/s are defined through GUI interaction.

So, it must be concluded, that due to the capability within Genesis to select, via the

GUI, various predefined compositional processes, and live code generative processes

that may be applied in real-time, Genesis forms a multi-functional real-time

compositional system, applying an imitative synthesis method to apply the sonic

features of an auditory source to dictate another in order to structure the principle

compositional process within Genesis of real-time time application of a real-time

source’s sonic features, based upon the interpretation of these sonic features by the

analytical processes within the Genesis system. Through the system’s interpretation of

sonic features, the symbolic and subsymbolic representations it generates modify,

manipulate and arrange other sound-objects, which can be used with or without

predefined external generative processes, and any live coded generative processes the

	
 313	

composer may wish to introduce through the post window, relative to the

SuperCollider classes provided in the Genesis package.

6.6 Evaluation of the Genesis System’s Product

6.6.1 Challenges in Evaluation of Genesis’ Compositional Outcomes

With regards to the different methods of interaction that can be applied to digital

music systems, as discussed in chapter 4 Interactivity in Digital Music Systems, and

the many compositional processes that can be algorithmically controlled within digital

systems, it is necessary to contextualize the compositional outputs of the Genesis

system relative to the compositional outputs of existing generative digital systems. As

highlighted previously, the methodology of the Genesis system forms an imitative

synthesiser, and its indeterminate compositional processes are discussed in the

relative generative techniques in chapter 3.1 An Introduction to Real-time Generative

Algorithmic Systems. However, a comparison of the Genesis methodology to other

digital systems does not sufficiently address the product of a compositional process;

although taxonomies have been compiled that attempt to categorise the compositional

process of generative algorithms (Boden and Edmonds, 2009), this approach

evaluates the process, as opposed to the product, reflecting a Constructivist analysis

of music, also highlighted in chapter 4 Interactivity in Digital Music Systems.

A considerable issue in assessing the product of a digital system, which applies real-

time indeterminate generative processes such as Genesis, are the inherent nuance,

‘novel circumstance’264 and individuality of each compositional output; although the

same generative processes can be applied to each iteration of a compositional process,

the indeterminacy that defines their outcomes generates an output that dynamically

changes from one composition to the next. So, due to the explicit variance between

compositional outputs, the assessment of a digital system’s product cannot be

conclusively be drawn from one example of a compositional output. In support of this

notion, Collins (2008) states ‘we could always run a generative music program once

only, harvest a single production of five minutes, and claim this to be representative

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

264	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 314	

of the work. Any conventional aural and musicological analysis can then be applied to

the fixed product so obtained. Unfortunately, this would be a gross abuse of the

reality of generative music systems, which are designed to create multiple

productions; we would have learnt nothing of the mechanisms by which such

programs operate, of the musical model underlying them, and of the scope of future

productions from that program’265.

Therefore, the analysis of the product of such digital systems appears to be bound by

their own construct; the process itself denigrates the application of conventional

musicological analysis, implicating that comparison and evaluation of the process is

the only valid method of analysing the result of compositional processes by digital

systems. However, Collins (2008) proposes a method of analysis for the

compositional product by viewing the process in relation to a spectrogram of the

product. Therefore, the process can be identified and categorised in to functions such

as determinate or indeterminate, and visualized within the spectrogram displaying the

product. As a result, the proposed character of a generative process is identified

within a product, supported by the descriptions of the process.

Considering the generative approach within Genesis, it is perhaps feasible to apply the

method proposed by Collins (2008) to sufficiently analyse the character of the

product generated by the Genesis system; if the system is run unsupervised, using

predetermined auditory sources, an analysis proposed by Collins (2008) would be

sufficient, as the conditional behaviours of the real-time inputs do not change between

performances, allowing the analysis to compare the product in relation to the relative

categories of the generative processes that may (or not) be applied. Furthermore, if

applying an indeterminate control source, such as a live stream of a running water

mill, the process can still be categorised and analysed relative to the product, with the

acknowledgment within the analysis that an indeterminate source was used to trigger

the events of the product.

However, although it may be possible to analyse the product of a generative

algorithm that applies indeterminacy, the analysis is still inevitably tied to its process.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

265	
 Collins,	
 N.	
 2008.	
 The	
 Analysis	
 of	
 Generative	
 Music	
 Programs.	
 Organise	
 Sound	
 13(3):	
 241	

	
 315	

Therefore, this would imply that in order to describe one’s listening experience of a

product of Genesis, or any digital system that applies indeterminate processes, there

must be an awareness of the process, and more importantly, an understanding of the

process, thereby allowing the listener to consider the process’s relevance to the

product; if a process is not understood or made acknowledgeable, then its

applicability to an analysis is limited as its role within the product may be

misrepresented, consequently distorting its relevance.

This establishes a predicament for composers who wish to apply such generative

processes; should an audience be made aware of the compositional processes prior to

a performance, during a performance, after a performance or never? The answer to

this issue centres on three key factors: the situation of the performance, the model of

interaction and the intentions of the composer. For example, with regards to the use of

Genesis in a concert environment applying a supervised improvisation model with a

live instrumentalist (described in chapter 5.3 Interactive Processes in Genesis) and a

visual projection of the dynamic score, the visual and auditory cues between a live

instrumentalist and the product of Genesis should present a significantly clear link

between the sonic features of generated by the live instrumentalist and the product of

Genesis. Due to the apparent link between the sonic features of the live

instrumentalist and the triggering of the generative processes, explicit explanation of

the principle compositional process within Genesis is perhaps not necessary, with

clarification of the consequent generative processes dictated by the real-time input

source’s sonic features relative to the intentions of the composer.

In contrast, if an unsupervised model of interaction is applied through Genesis in

which a series of live streams form each of the control sources and the slave sound-

object, with the composition played via a CD recording, the compositional processes

will not be clear; if the control sources are not present in the audible output mix, there

are no explicit visual or audible cues dictating the process, which as a result, would

render confusion over the compositional processes and the relevance of their role,

perhaps necessitating the requirement by the listener to observe a perspicuous

explanation prior to the recording, or indeed never, relative to the intentions of the

composer. As a result, consequent detailed analysis of the product in relation to its

	
 316	

process cannot be conclusively described in such a circumstance unless a significant

attempt is made by the composer to inform the listener of the compositional processes

applied.

6.6.2 A Proposed Evaluation of Genesis’ Product

The analysis of the product of Genesis is highly reliant on the three proposed factors

of the situation of the performance, the model of interaction and the intentions of the

composer. Indeed, considering Genesis is an interactive music system, that can

function supervised or unsupervised, with or without and instrumentalist, in

circumstances in which a human supervisor is present, more informed evaluation can

be made of the product and process; the evaluative method applied for this thesis,

detailed in chapter 6.1 Evaluation Methodology, exemplifies and discusses the

approaches available to evaluate the product and process using HCI. Yet, it is shown

that this is there no formalised method for such approaches, thereby relying on

judgment calls by evaluators on how best to test, assess and obtain feedback. This

consequently makes comparison of the products of Genesis (and its algorithmic

components) to other interactive music systems a very challenging prospect.

To exemplify the BBCut2 class (Collins, 2006), which can be applied in

SuperCollider for the automated real-time audio splicing of a buffered acoustic signal,

has a distinctive model of interaction as illustrated in Figure 65266:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

266	
 Collins,	
 N.	
 2006.	
 Towards	
 Autonomous	
 Agents	
 for	
 Live	
 Computer	
 Music:	
 Realtime	
 Machine	
 Listening	
 and	
 Interactive	

Music	
 Systems.	
 University	
 of	
 Cambridge:	
 157	

	
 317	

Figure 65. Method of Interaction for audio splicing in BBCut2 (Collins, 2006)

The BBCut2 (Collins, 2006) applies an external real-time clock, defined by the user,

which dictates the number of ‘ticks’ per second of a chosen input source. The

durations of the generated audio splices are set relative to the duration between the

‘ticks’ defined by the external clock. A chosen splicing method can then be applied to

generate modifications to the audio splice of a buffered acoustic signal, within the

duration set by the ‘ticks’ such as the division of the durations, the buffer position, the

playback rate and the amplitude. As a result, a process can be identified of applying a

set clock to dictate the duration of consequent modification to a buffered audio signal,

thereby syncing the adjustment of the buffered audio to the ticks of an external clock.

Now, considering for example the application of the real-time onsets from a control

source in Genesis to trigger the envelope and re-trigger the playback of the Warp1.ar

UGen’s buffer, relative to its selected buffer frames, an audio splice is generated

which syncs to the onset of events within the control source. As a result, the duration

of each audio splice is determined by the interval between onsets in the control

source. In addition, the buffer position from where the sound file re-triggers from can

be allocated through a random search process, modifying the buffer position to re-

trigger from the randomly allocated position, which can be quantized, each time the

Warp1.ar UGen is triggered by the onset of a control source. The audio splicing

process in Genesis is illustrated in Figure 66:

Figure 66. Method of Interaction for audio splicing in Genesis

	
 318	

As a result, there are significant similarities in the process of audio splice scheduling

in the BBCut2 class and in Genesis; the BBCut2 class applies onsets relative to a

clock value to define the duration of the audio splices and the Genesis system uses the

interval between onsets to define the duration of each audio splice and its optional

change in buffer position. However, in contrast, the BBCut2 class explicitly applies

the formalism of a clock, which attempts to accurately sync a chosen splicing method

to the set clock, while Genesis does not expressly sync to formalism such as a clock,

instead syncing its splicing modifications to the real-time onset of a control source.

In 1 - BBCut2 on the accompanying DVD in the Thesis Recordings folder, the

original sound file is played simultaneously to the generated output of the BBCut2

class, which applies CutBuf1 to assign a splicing method with durations of 0.5, 1 and

2, relative to the clock, set to the tempo of the original sound file.

In 2 - Genesis Quantized on the accompanying DVD in the Thesis Recordings folder,

a control source, formed of the Sample UGens in Genesis, is played simultaneously to

the resulting output of the quantized audio splicing process on the slave sound-object,

which uses the same audio file as the control source.

Considering the products of 1 - BBCut2 and 2 - Genesis Quantized, it could be

concluded that the fundamental process of applying an external clock or the real-time

onset of a control source does not intrinsically affect the outcome; it is the

indeterminate behaviour of the modifications to the audio buffer that discerns the

difference in the product, as opposed to the scheduling of the modification. So, if the

same clock or real-time onsets were applied to a generated output, the difference in

the output is attributed to the use of real-time indeterminate processes to dictate the

alterations to the buffered audio. Therefore, despite the inclusion of a digitally

accurate clock in BBCut2 to schedule the modifications to digital accuracy, it is

difficult to audibly discern between the application of such a process compared to the

use of real-time onsets to dictate the time of modification within the product of the

two methods.

	
 319	

However, both 1 - BBCut2 and 2 - Genesis Quantized apply an audio recording,

which is rigidly formulaic, featuring a deterministic 4/4 structure. Deterministic

structures are prevalent in BBCut2; the use of a clock implicitly applies deterministic

methodology to the scheduling of the audio splicing process by forming a scheduling

structure based on the determined constraints of time. In contrast, the audio splicing

scheduling method in Genesis could be considered both determinate and

indeterminate, reacting to onsets of a control source regardless of their conditional

behaviours, representing the conditional behaviours in the consequent audio splicing

output.

In 3 - BBCut 2 Determined on the accompanying DVD in the Thesis Recordings

folder, the result of the BBCut2 audio splicing process on a recording of a sustained

French horn note is played, which applies CutBuf1 to assign a splicing method with

durations of 0.5, 1 and 2, relative to the clock, with an arbitrary value of 95 as no

definable tempo can be extracted from the audio recording.

In 4 - Genesis Click on the accompanying DVD in the Thesis Recordings folder, a

control source, formed of a live stream of structurally determined and non-determined

finger clicks, is played simultaneously to the resulting output of the non-quantized

audio splicing process on the slave sound-object, using a recording of a sustained

French horn note.

The products of the two processes in 3 - BBCut 2 Determined and 4 - Genesis Click

can be clearly distinguished, relative to their fundamental method of applying an

external clock in BBCut2 and the real-time onset of a control source in Genesis; the

product of 3 - BBCut 2 Determined is discernibly structured by the determinist clock

value, with the product of 4 - Genesis Click reflective of the conditional structure of

the real-time input source. Therefore, is must be concluded that in fact the products of

BBCut2 and Genesis are intrinsically affected by their respective models of

interaction through a composer’s application of a particular conditional structure in

the scheduling method, which may be chosen in consideration to the situation of a

performance.

	
 320	

Furthermore, as noted previously, the behaviour of the modifications to the audio

buffer exhibits an influence on the resulting product. Considering the generative

approaches to audio splicing applied in both BBCut2 and Genesis, indeterminate

processes are applied, thereby creating an output with inherent ‘novel

circumstance’267. For example, in the BBCut2 class, the CutBuf1 method uses a

random function to select between predefined durations, defined by the user, with

Genesis making use of an optional random search process to dictate the duration and

buffer position of the output. As a result, the products of both the processes within

BBCut2 and Genesis are numerous, which makes conventional musicological

assessment inapplicable, as highlighted earlier, and why evaluation methods grounded

in HCI are more suitable.

Therefore, the product of the audio splicing method in BBCut2 and Genesis must be

compared in relation to its process, with the implications of the process fully

understood by the listener to adequately analyse the character of the product.

However, in order to obtain the most fluent and congruent explanation of the process

and product, in chapter 6.1 Evaluation Methodology, it is presented that with HCI

methodologies, the focus must be on performer-engagement with interactive systems,

such as Genesis. As a result, the listener must also be the performer, forcing the

evaluative feedback to be bound to a very small sample size. Furthermore, in what

situation should the interaction be evaluated? As noted by Wanderley and Orio

(2002), the volume of situations in which tests could be completed are vast, but it is

immensely challenging to define which results are the most valuable.

So, considering the similarities that can occur between the products, a comparison

between interactive systems is highly dependent on the clarity of the process of each

system to the listener/performer, the situation of the interaction and the interaction

method itself. Considering the remit of this thesis, and the objective of the evaluation

is to focus on high-level features in Genesis and a single interface trial with the

participants of the evaluation, a distinctly broad comparison of the processes in

BBCut2 and Genesis can be made, with the suitability to a desired product perhaps

relative to such a comparison, suggesting a proposed potential ‘success’ of a product.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

267	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 321	

Both methods function in real-time, making their application suitable in both live and

offline performance scenarios with the major dividing feature being the method of

scheduling. Therefore, for real-time audio splicing, the BBCut2 class is proposed to

be more ‘successful’ for formalised and formulaic structuring of a compositional

process’s schedule, due to its deterministic application of a clock, with Genesis

proposed to be more ‘successful’ for indeterminate structuring of compositional

process’s time scale, due to its impartiality to a specific conditional structure.

However, such proposals are not conclusive. Due to the indeterminate nature of the

processes that defines the behaviour of the modification to the audio buffer, it is not

possible to decisively state the ‘success’ of one process over another; a matter of

‘novel circumstance’268 within the process may cause a product to be perceived as

more ‘successful’, contrary to the proposed outlines. It is certainly not conceivable to

assess every possible product of the audio splicing methods within the BBCut2 class

and Genesis to form a conclusive analysis of the products relative to the process. As a

result, it must be concluded that detailed comparison and evaluation between the

products of digital systems cannot currently be resolved, with an existing reliance on

the process to explain the differences and similarities in the product. As

demonstrated, this is an undependable method of assessment of a product,

representing the challenges in quantifiable and qualifiable analysis of extensive

algorithmic digital music systems.

So, evaluation of the compositional process in Genesis cannot be decided based

exclusively on the product. As a result, comparison with existing digital systems

presents a significant challenge. When considering the process within Genesis, an

assessment of its ‘success’ must surely be linked to its product, but division between

the ‘success’ of the products and the processes that define them is substantially tied to

the situation of the performance, the model of interaction and intentions of a

composer, rendering conclusive musicological analysis of all possibilities an

unmanageable task.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

268	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 322	

Taking for example the audiovisual examples presented with this chapter, which

feature live performances with Genesis in various scenarios, the performances

demonstrates single instances of the possible outputs of Genesis. Due to the inherent

indeterminate behaviours of many of the processes in Genesis, it would seem ill-

conceived to generate a finite assessment of the ‘success’ of Genesis’s product based

upon the accompanying examples of the presented sample size.

Therefore, as Collins (2008) suggests, the product can be assessed relative to its

process to define a character of a algorithmic system, which considering the process

described in chapter 5 The Genesis System and section 6.4 An Evaluation of the

Genesis System’s Methodology and the product of the performances accompanying

this chapter, the character of Genesis is primarily founded on the conditional

structure of its real-time control sources, with the application of the generative

process dictated by the sonic features of each control source respective to their own

conditional structures. It must of course be noted that, considering the situation of the

performance, the models of interaction, and intentions of the composer, in

combination with the ‘novel circumstance’ generated by the Genesis system, such an

assessment of the character of Genesis is not finite, with the potential for numerous

products to be created by the compositional process within Genesis, representing

various characters within the possible compositional outcomes.

6.7 Concluding Remarks

The purpose of this thesis, submitted to accompany the Genesis real-time composition

system computer music system, is to demonstrate the algorithmic compositional

processes applied in Genesis, in conjunction with a detailed assessment of the

aesthetic considerations of using computational algorithms for a compositional

process, which are pertained within the Genesis system. With regard to the research

aims, described in chapter 1.3 Aims of the Research, these are referenced within this

section, demonstrating the contribution of this research.

As discussed in chapter 2.1 Algorithms in the Compositional Process, it can be argued

that indeed all compositional processes, whether including computational algorithms

	
 323	

or not, apply algorithmic processes. Therefore, the transcription of algorithms to

computational algorithmic practices offers composers the capability to explore

innovative procedures that are made feasible through the accuracy and efficiency of

digital computer systems; complex methods of algorithmic procedures from extra-

musical disciplines, along with unique musical approaches can be applied to generate

new forms of compositional processes.

In terms of existing algorithmic methods and their relationship with Genesis, the

application of algorithmic procedures in Genesis from extra-musical disciplines is

prevalent, as demonstrated in chapter 5 The Genesis System; the application of fractal

processes for the manipulation of selected parameters of the slave object’s granular

synthesizers is one such example. The use of extra-musical algorithms in Genesis not

only generates unique compositional processes, but also controls complex and

extensive mappings algorithmically, permitting impossible physical manipulation of

multiple parameter settings to be realized in real-time. As a result, the use of

algorithmic procedures from extra-musical disciplines are applied to serve three

distinct high-level affordances; introduce contemporary methods of compositional

techniques, free the composer from the limitations of the physical manipulation of

musical parameters and a low-entry fee.

The constructed limitations of the system, and therefore its constraints, are relative to

the implementation of the system’s musical metaphors of existing paradigms, which

are applied to aid in offering a low-entry fee. Therefore, the system is limited in its

ability to generate compositions outside of those that are applicable to its musical

paradigms. However, in terms of the gestural interpretation and responses created by

Genesis, the evaluative feedback shows that this is perceived to be successful,

implicating that such a method is highly valuable in the design and application of

real-time interactive compositional systems. Indeed, considering the suppositions of

Overholt (2009), the relatedness of the mappings in Genesis is intuitive, perceivable

and relative to the source.

With regard to the importance of efficiency in a real-time compositional process, the

use of efficient computational algorithmic methods which can be applied to many

	
 324	

mappings is of upmost importance; real-time application of physical interactions

between analog sources and the digital domain demands near instantaneous response

by the computer to ensure the ongoing dialog between the acoustic source and the

consequent actions by a digital system is maintained. So, the more efficient an

algorithmic process, the more likely a resulting action by a digital system is to be

completed near instantaneously, ensuring a resolve between the dialog of a real-time

auditory source and its control of another real-time source. With this significant

requirement acknowledged, the application of efficient algorithms, with complex

indeterminate behaviours are used in Genesis, in order to efficiently generate ‘novel

circumstance’269 within the outputs of the real-time compositional processes.

In addition, the maintenance of the unfolding dialog between the real-time auditory

sources is necessary to ensure a common language for the interaction of the acoustic

sources and the compositional processes within Genesis. Therefore, relatively

efficient analytical algorithms are required to extract and consequently represent the

sonic features of the real-time auditory sources in a method that allows not only real-

time application of the extracted sonic features, but also adequate representations of

the specified sonic features in order to guarantee the interactions of the real-time

auditory sources and the compositional algorithmic procedures in Genesis are

commonly understood. Considering the importance of a commonly understood

paradigm (Paine, 2002), the use of OSC messaging permits the application of an

efficient real-time method of communication, with the messages specified to a user-

defined language paradigm such as pitch, tempo, pseudo-timbre and onset between

the real-time input sources and the resulting generative processes of the Genesis

system.

In relation to the influence computational algorithmic procedures may have on a

compositional process, the application of indeterminate behaviours in compositional

processes offers a composer the ability to provide a digital music system a set of

bounds, from which an indeterminate process can select values, relative to the

structure of the indeterminate method. For example, the use of genetic algorithms to

search a data set provided by the composer to generate novel parameter settings of the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

269	
 Dorin,	
 A.	
 2001.	
 Generative	
 Processes	
 and	
 the	
 Electronic	
 Arts.	
 Organised	
 Sound	
 6(1):	
 49	

	
 325	

granular synthesizers triggered by control source three applies indeterminate

methodologies by using random functions for the ‘mutation’ of the current data space,

set to the bounds of desired minimum/maximum values of the particular parameter.

This results in behaviour by the system that can be predicted in as far as its minimum

or maximum settings, but not in regards to the search space in between those values,

thereby providing the composer with unique compositional outcomes constrained by

the bounds of the search space, generating potentially numerous compositional

outcomes from one single data set.

Furthermore, the perceived level of creativity demonstrated by the indeterminate

algorithmic processes has been shown to be relative to the user; from the evaluation

feedback, this varied from highly artificial to highly human. However, it would

appear that the hybridisation of generative and adaptive creativity applied in Genesis

has been successful in engaging performers and positively contributing to an ongoing

compositional process, an aspect that has made the work on Genesis and the

accompanying thesis immensely rewarding.

In terms of feature extraction, and the limitations of our understanding of the listening

experience, As detailed in chapter 3.2 A Brief Summary of Machine Listening, the

computational analysis of music and sonic features, and indeed the analysis of music

using conventional practices such as Schenkerian analysis, are limited not only by

their inherent subjectivity, but also by their predominant application of formalist

musical structures and notions, which have limited applicability to the use of

contemporary compositional techniques, outside of the pitch/duration paradigm and

the application of indeterminate behaviours that cannot conclude finite representations

of a compositional process. As a result, the analytical processes applied in Genesis

generate a representation of the sonic features of the real-time input sources, which

are used to form a compositional process, unique to the Genesis system.

Considering the concluding remarks, it is proposed that in terms of the epistemic

space for musical devices proposed by Magnusson (2010b), Genesis is categorised in

Figure 67 below. However, it important to note that this epistemic space should be

considered dynamic, relative to the user, the scenario and the interactive

	
 326	

methodologies discussed through this thesis. Therefore, Figure 67 should be

considered a general overview of the epistemic space that Genesis covers:

Figure 67. Proposed Epistemic Space of Genesis

In relation to the algorithmic processes applied in Genesis, and the representation of

the sonic features of the real-time input sources by the analytical algorithms, which

dictate selected parameters of the algorithmic processes, it is not possible currently to

sufficiently conclude the effect on the quality of the compositional outcomes of the

algorithmic processes within Genesis. It must be argued however, that the

acknowledgment to apply efficient algorithmic processes serves to render the

necessity of such algorithmic procedures for real-time time application, as any loss of

interaction in an unfolding dialog must surely denigrate the quality of the result;

latency between the interactions of one source to another causes a loss of momentary

circumstance, resulting in incomprehension between the current state of one source to

another, which will substantially affect the consequent actions of the sources,

dramatically degrading the intended purpose of real-time implementation, thereby

reducing the quality of the output, relative to the real-time principle of such a system.

	
 327	

Therefore, with regards to future research with Genesis, the key to its development is

further understanding of its compositional outcomes through innovative and novel

analysis techniques, extending the evaluation approach presented in chapter 6.1

Evaluation Methodology. Through a comprehensive analysis method, not only is it

foreseeable that adequate comparison to other generative systems may be a

possibility, but the results of such an analysis method may yield the relative

importance of particular algorithmic processes within the Genesis system, which may

signify areas for qualitative improvement of its compositional outputs.

The Genesis system certainly demonstrates the applicability of computational

algorithmic processes for the extensive real-time modification, manipulation and

arrangement of a sound-object controlled by the sonic features of another sound-

object. However, despite being formed of a fundamental architecture, through the use

of indeterminate processes and live coding practices, the relative success of its

compositional outcomes cannot be conclusively defined, such as the products

demonstrated in the audiovisual examples accompanying this thesis; notwithstanding

many of the compositional processes being quantifiable as individual methods of

composition, the relativity of the sum of the processes to other compositional

approaches cannot be definitively stated. As a result, it is hoped that with

technological advancements and further, ongoing research into the analysis of music,

future assessments of Genesis, and digital systems that apply extensive generative

techniques can be considered truly in terms of their product as well as their process,

thereby resolving the fundamental challenge in adequately evaluating and analysing

generative music techniques.

	

	
 328	

Bibliography
	

Adorno, T and Krenek, E. 1974. Briefwechsel. Berlin: Suhrkamp Verlag
Aldwell, E and Schacter, C. 1989 Harmony and Voice Leading. New York: Harcourt
Brace Jovanovich
American National Standards Institute (ANSI). 1994. American national standard
acoustical terminology. New York: Acoustical Society of America
Antaki et al. 2004. Discourse Analysis means doing Analysis: A Critique of Six
Analytic Shortcomings. Discourse Analysis Online. 1(1)
Arfib et al. 2003. Strategies of mapping between gesture data and synthesis model
parameters using perceptual spaces. Organised Sound 7: 127-144
Battier, M. 2003. A Constructivist Approach to the Analysis of Electronic Music and
Audio Art – between instruments and faktura. Organised Sound 8(3): 249-255
Bauer, W and Foss, B. 1992. GAMS: an Integrated Media Controller System.
Computer Music Journal. 16(1): 19-24
Bayle, F. 1993. Musique acousmatique: propositions – positions. Paris: INA
BeatTrack.kr UGen Class Help Files. 2012. SuperCollider 3.5.3
Beauchamp, J.W. 1982. Synthesis by Spectral Amplitude and Brightness Matching
of Analyzed Musical Instruments Tones. Journal of the Audio Engineering Society
30(6): 396-406
Berry et al. (2003). [online]. Available at: http://www.mis.atr.co.jp/~rodney
[Accessed Mar.2013]

Berry, R and Dahlstedt, P. 2003 Artificial Life: Why should Musicians Bother?.
Contemporary Music Review 22(3): 57-67
Berry, R. 1999. Feeping Creatures, proceeding of the ICMC’99: 94-96
Berto, F. and Tagliabue, J. (2012). Cellular Automata. [online] Plato.stanford.edu.
Available at: http://plato.stanford.edu/entries/cellular-automata/#Bib [Accessed 25
Feb. 2015]
Beyls, P. 1980. Action, Exhibition Catalogue. Belgium: Kindt Editions
Beyls, P. 1989. The Musical Universe of Cellular Automata. proceedings of the
ICMC’89: 34-41
Biles, J. 1994. GenJam –Orginal Paper. [online]. Igm.rit.edu. Available at:
http://igm.rit.edu/~jabics/GenJam94/Paper.html [Accessed Mar. 2013]
Biles, J. 2001. Autonomous GenJam: Eliminating the Fitness Bottleneck by
Eliminating Fitness. Rochester Institute of Technology. New York
Blackwell et al. 2012. ‘Live Algorithms: Towards Autonomous Computer
Improvisers’ in Computers and Creativity, eds J McCormack & M d’Inverno,
Springer, Berlin
Blackwell et al. Live Algorithms: Towards Autonomous Computer Improvisers
Blackwell, T and Young, M. 2004. Self-Organised Music. Organised Sound. 9(2):
123
Blackwell, T. 1994. Swarm Music: Improvised Music with Multi-Swarms.
proceedings of the AISB 03 Symposium on Artificial Intelligence and Creativity in
Art and Science: 41-49
Blauret, J. 1972. On the Lag of Lateralization caused by Interaural Time and
Intensity Differences. Audiology 11: 265-270
Blauret, J. 1997. Spatial Hearing: The Psychophysics of Human Sound Localization.
Massachusetts: MIT Press
Boden, M. The Creative Mind: Myths and Mechanisms. New York: Routledge

	
 329	

Bokesoy, S and Pape, G. 2003. Stochos: Software for Real-Time Synthesis of
Stochastic Music. Computer Music Journal 27(3): 33-43
Bongers, B. 1999. Exploring Novel Ways of Interaction in Musical Performance.
Proceedings of the 1999 Creativity and Cognition Conference: 76-81
Bown, O. 2012. ‘Generative and Adaptive Creativity: A Unified Approach to
Creativity in Nature, Humans and Machines’ in Computers and Creativity, eds J
McCormack & M d’Inverno, Springer, Berlin
Bown, O. Generative and Adaptive Creativity: A Unified Approach to Creativity in
Nature, Humans and Machines: 362
Bregman, A. 1990. Auditory Scene Analysis. Massachusetts: MIT Press
Bringsjord et al. 2001. Creativity, the Turing test and the (Better) Lovelace Test.
Mind and Machines 11: 3-27
Bronkhurst, A and Plomp, R. 1988. The Effect of Head-Induced Interaural Time and
Level Differences on Speech Intelligibility in Noise. Journal of the Acoustical
Society of America 83: 1508-1516
Brown, A and Sorensen, A, 2009. Interacting with Generative Music through Live
Coding. Contemporary Music Review 28(1): 17-29
Brown, J and Puckette M. 1992. An Efficient Algorithm for the Calculation of a
Constant Q Transform. Journal of the Acoustical Society of America 92: 2698-2701
Burk, P. 1998. Jsyn - a real-time Synthesis API for Java. proceedings of the
ICMC’98
Burns, E and Viemeister, N. 1976. Nonspectral Pitch, Journal of the Acoustical
Society of America 60: 863-869
Burraston, D and Edmonds, E. 2005. Cellular Automata in Generative Electronic
Music and Art: Historical and Technical Review. University of Technology. Sydney
Burraston, D, Edmonds, E, Livingstone, D and Miranda, E. 2003 . Cellular
Automata in MIDI based Computer Music. University of Technology, Sydney
Burt, W. 1996. Some parentheses around algorithmic composition. Organised Sound
1(3): 167-172
Busse, T and Mansfield, R. 1980. Theories of the Creative Porcess: A Review and a
Perspective. Journal of Creative Behaviour 26: 91-103
Cadoz, C and Wanderley, M. Gesture-Music. In M.Wanderley and M.Battier, Trends
in Gestural Control of Music, IRCAM: 1-55
Cage, J. 1961. Silence: Lectures and Writings. Connecticut: Wesleyan University
Press
Cambouropoulos, C, Dixon, S and Goebl, W. 2001. Beat Extraction from Expressive
Musical Performances. proceedings of the Meeting of the Society for Music
Perception and Cognition
Carbonera, J and Silva, J. 2005. An Emergent Markovian Model to Stochastic Music
Composition. University of Caxias do Sul
Card et al. 1983. The Psychology of Human-Computer Interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates
Carroll, J.M. 2002. "Introduction: Human Computer Interaction, the Past and
Present." In J.M Carroll, ed. Human Computer Interaction in the New Millenium.
New York: ACM Press and Addison Wesley: xxvii - xxxvii
Cascone, K. 2000. The Aesthetics of Failure: “Post-Digital Tendencies in
Contemporary Computer Music. Computer Music Journal 24(4): 12-18
Chadabe, J. 1997. Electric Sound: The Past and Promise of Electric Music. New
Jersey. Prentice Hall

	
 330	

Chapman et al. 1996. Self-Similar Grain Distribution: A Fractal Approach to
Granular Synthesis. Proceedings of the ICMC'96: 212-213
Chareyron, J. 1990. Digital Synthesis of self-modifying waveforms by means of
linear automata. Computer Music Journal 14(4): 25-41
Chion, M. 1983. Guide Des Objets Sonores. Paris. Translation by John Dack and
Christine North, 2000
Chowning, J. 1973. The Synthesis of Complex Audio Spectra by Means of
Frequency Modulation. Journal of the Audio Engineering Society. 21: 526-534
Collins et al. 2003. Live coding in laptop performance. Organised Sound 8(3): 322
Collins, N. 2006. Towards Autonomous Agents for Live Computer Music: Realtime
Machine Listening and Interactive Music Systems. University of Cambridge
Collins, N. 2008. The Analysis of Generative Music Programs. Organised Sound
13(3): 237-248
Collins, N. 2012. Gendy3 Class Help File. SuperCollider 3.5.3
Collins. N. 2003. Generative Music and Laptop Performance. Contemporary Music
Review 22(4): 67-79
Collins, N. (2015). Concat2. [online] Doc.sccode.org. Available at:
http://doc.sccode.org/Classes/Concat2.html [Accessed 25 Jun. 2014].
Cont, A. 2011. On the Creative Use of Score Following and its Impact on Research.
published in SMC 2011: 8th Sound and Music Computing Conference 2011
Cope, D. 1992. Computer Modeling of Musical Intelligence in EMI. Computer
Music Journal 16(2): 69-83
Correa, Debora et al. 2008. Neural Network Based System for Computer-Aided
Musical Composition: Supervised x Unsupervised Learning. proceedings of SAC’08:
1738-1742
Cosi, P, DePoli, G and Lauzzana, G. 1994.Timbre Classifaction by Neural Networks
and Auditory Modelling. proceedings of ICANN: 925-928
Croft, J. 2007. Theses on liveness. Organised Sound 12(1): 59-66
Dahlstedt, P. 2001. A MutaSynth in Parameter Space: Interactive composition
through evolution. proceedings of Music Without Walls, Music Without Instruments
Conference 2001
Dai, H. 2000. On the relative influence of Individual Harmonics on Pitch Judgement.
Journal of the Acoustical Society of America 107: 953-959
Dannenberg et al. 1990. An Expert System for Teaching Piano to Novices.
proceedings of the ICMC’90: 20-23
Dannenberg et al. 1997. "A Machine Learning Approach to Musical Style
Recognition". proceedings of the ICMC’97: 344-347
Dannenberg, R. 1993. Music Representation Issues, Techniques and Systems.
Computer Music Journal 17(3): 20-30
de Laubier, S. 1998. The Meta-Instrument. Computer Music Journal 22(1): 25-29
De Poli, G. 2004. Methodologies for Expressiveness Modelling of and for Music
Performance. Journal of New Music Research 33(3): 189-202
Desain, P and Honing, H. 1999. Computational Models of Beat Induction: The Rule-
Based Approach. Journal of New Music Research 28(1): 29-42
Desain, P. 1992, A (De)Composable Theory of Rhythm Perception. Music
Perception 9(4): 439-454
Di	
 Scipio,	
 A.	
 Systems	
 of	
 Embers,	
 Dust,	
 and	
 Clouds:	
 Observations	
 after	
 Xenakis	

and	
 Brün.	
 Computer	
 Music	
 Journal	
 26(1):	
 22-­‐32	

	
 331	

Diaz-Jerez, G. (2012). Overview | Gustavo Díaz-Jerez. [online]
Gustavodiazjerez.com. Available at: http://www.gustavodiazjerez.com/?cat=14
[Accessed Mar. 2013]
Dodge, C. 1988. “Profile”: A Musical Fractal. Computer Music Journal 12(3): 10-14
Dorin, A. 2001. Generative Processes and the Electronic Arts. Organised Sound
6(1): 47-53
Drummond, J. 2009. Understanding Interactive Systems. Organised Sound. 14: 124-
133
Dunn, J. (2003). Contents. [online] Algoart.com. Available at
http://www.algoart.com/help/softstep/ [Accessed Mar. 2013]

Ebcioglu, K. 1988. An Expert System for Harmonising Four-Part Chorales.
Computer Music Journal 12(3): 43-51
Edwards, M. 2007. Algorithmic Composition: Computational Thinking in Music.
University of Edinburgh
Eigenfeldt, A and Kapur, A. 2008. An Agent-based System for Robotic Musical
Performance. Proceedings of the 2008 International Conference on New Interfaces
for Musical Expression: 144-149
Ericsson, K.A. and Simon, H.A. 1996. Protocal Analysis: Verbal Reports as Data
(Revised Edition). Cambridge, MA: MIT
Essl, K. 2007. ‘Algorithmic composition’ in The Cambridge Companion to
Electronic Music, eds N Collins & J d’Escrivan, CUP, Cambridge
Fels, S and Hinton, G. 1993. Glove-talk: A Neural Network Interface between a
Dataglove and a Speech Synthesizer. IEEE Transactions on Neural Networkds. 4 (1)
: 2-8
Fiebrink et al. 2009. A Meta-Instrument for Interactive, On-the-fly Machine
Learning. Proceedings of New Interfaces for Musical Expression, 2009
Florentine, M and Buus, S. 1981. An Excitation-pattern model for Intensity
Discrimination. Journal of the Acoustical Society of America 70: 1646-1654
Forte, A. 1962. Tonal Harmony in Concept and Practice. New York: Holt, Rinehart
and Winston
Fox, J and Carlile, J. 2005. SoniMime: Movement Sonification for Real-Time
Timbre Shaping. Proceedings of NIME' 05
Francois, JC. 2006. Improvisation Today, Between Orality and Writing.
Contemporary Music Review 25(5/6): 623-624
Gabor, D. 1947. Acoustical Quanta and the Theory of Hearing. Nature, 159: 591-
594
Gardner, M and Gardner, R. 1973. Problem of Localization in the Median Plane:
Effect of Pinnae Cavity Occlusion. Journal of the Acoustical Society of America 53:
400-408
Gardner, M. 1970. The Fantastic Combinations of John Conway’s new solitaire
game “life”. Scientific American 223: 120-123
Gartland-Jones, A and Copley P. 2003. The Suitability of Genetic Algorithms for
Musical Composition. Contemporary Music Review 22(3): 43-56
Gartland-Jones, A, 2003. MusicBlox: A Real-time Algorithmic Composition System
incorporating a distributed Interactive Genetic Algorithm. proceedings of
EvoWorkshops/EuroGP2003: 490-501
Gauldin, R. 1997. Harmonic Practice in Tonal Music. New York: W.W Norton
Gerhenson, C. 2003. Artificial Networks for Beginners. University of Sussex
Goldberg, D E. 1998. The Design of Innovation: Lessons from Genetic Algorithms,
Lessons for the Real World. University of Illinois

	
 332	

Goldstein, J. 1973. An Optimum Processor Theory for the Central Formation of the
Pitch of Complex Tones. Journal of the Acoustical Society of America 54: 1496-
1516
Gomez, D. 2006. Dynamic Musical Thinking; Some analytical approaches to the use
of space in instrumental and electronic music composition. Institute of Sonology,
University of Ginebra
Gouyon, F and Dixon, S. 2005. A Review of Automatic Rhythm Description
Systems. Computer Music Journal 29(1): 34-54
Green, D. 1988. Profile Analysis. Oxford: Oxford University Press
Greenhouse, R. 1995. [online] Available at: http://www-ks.rus.uni-
stuggart.de/people/schulz/fmusic/wtf/docu.html [Accessed Mar. 2013]

Grey, J. 1975. An Explanation of Musical Timbre. Stanford University
Guazzo, M. 2007. A Cartesian Data Model for Decision Support Systems.Torino:
Codework
Guildford, J.P. 1950. Creativity. American Psychologist 5: 444-454
Gumowski, I and Mira, C. 1980. Recurrences and Discrete Dynamic Systems.
Berlin: Springer
Hegarty, Paul. 2007. Noise/Music: A History. London and New York: Continuum
Hermes, D. 1988. Measurement of Pitch by Subharmonic Summation. Journal of the
Acoustical Society of America 83: 257-264
Hoffmann, P. 2000. The New GENDYN Program. Computer Music Journal 24(2):
31-38
Honing, H. 2001. From Time to Time: The Representation of Timing and Tempo.
Computer Music Journal 25(3): 50-61
Hsu, W and Sosnick, M. Evaluating Interactive Music Systems: An HCI Approach.
NIME 2009: 26
Hunt, A, Kirk, R and Orton R. 1991. Graphical Control of Granular Synthesis using
a Cellular Automata and the Freehand Program. proceedings of the ICMC’91: 416-
418
Ikeshiro, R. 2011. GENDYN and Merzbow: A Noise Theory Critique of Xenakis’
Dynamic Stochastic Synthesis and its Relevance Today. Goldsmiths College,
University of London
Järveläinen, H. 2000. Algorithmic Musical Composition. University of Technology,
Helsinki
Jeffress, L. 1948. A Place Theory of Sound Localization. Journal of Comparative
and Physiological Psychology 41: 35-39
Jeffress, L. 1972. Binaural Signal Detection: Vector Theory. In J Tobias,
Foundations of Modern Auditory Theory. New York: Academic Press
Johnson-Laird, P. 2002. How Jazz Musicians Improvise. Music Perception 19(3):
415-442
Juslin, P. 1997. Emotional Communication in Music Performance: A Functionalist
Perspective and Some Data. Music Perception 14(4): 383-418
Kaminsky, I and Materka, A. 1995. Automatic Source Identification of Monophonic
Musical Instrument Sounds. proceedings at the IEEE International Conference,
1995: 189-194
Kane, B, 2007. L’Objet Sonore Maintenant: Pierre Schaeffer, sound-objects and the
phenomenological reduction. Organised Sound 12(1): 15-24

	
 333	

Karhunen, K. 1947. U ̈ber lineare methoden in der wahrscheinlich-keitsrechnung,
Ann. Acad. Sci. Fennicea, Ser. A137. Translated by Selin, I. 1960. in On Linear
Methods in Probability Theory. Doc. T-131.The RAND Corp., Santa Monica, CA,
1960
Karplus, K, and Strong, A. 1983. Digital Synthesis of Plucked-String and Drum
Timbres. Computer Music Journal 7(2): 43-55
Kelly, Caleb. 2009. Cracked Media: the Sound of Malfunction. Cambridge, MA:
MIT Press
Kerman, J. 1980. How we got into Analysis, and how we get out. Critical Inquiry
7(2): 311-331
Kiefer, C., Collins, N, and Fitzpatrick, G. 2009. Phalanger: Controlling Music
Software With Hand Movement Using a Computer Vision and Machine Learning
Approach. Proceedings of the 2009 International Conference on New Interfaces for
Musical Expression. New York: Association of Computing Machinery, 246-250
Klump, R and Eady, H. 1956. Some Measurements of Interaural Time Difference
Thresholds. Journal of the Acoustical Society of America 28: 859-860
Knapp, R and Lusted H. 1990. A Bioelectric Controller for Computer Music
Applications. Computer Music Journal. 14(1): 42-47
Koffka, K. 1935. Principles of Gestalt Psychology. New York: Harcourt and Brace
Kramer, G. 1996. Auditory Display: Sonification, Audification, and Auditory
Interaces. Music Perception. 13(4): 583-591
Krumhansl, C and Kessler, E. 1982. Tracing the Dynamic Changes in Perceived
Tonal Organization in a Spatial Representation of Musical Keys. Psychological
Review 89: 334-368
Kuuskankare, M and Laurson, M. 2006. Expressive Notation Package. Computer
Music Journal 30(4): 67-79
Laske, O. 1975. Introduction to a Generative Theory of Music. Institute of Sonology,
Utrecht
Le Groux, S. 2002. A Neural Network Principal Component Synthesizer for
Expressive Control of Musical Sounds. Paris: IRCAM
Leach, J and Fitch, J. 1995. Nature, Music and Algorithmic Composition. Computer
Music Journal 19(2): 23-33
Leben, J. 2012. Artifical Neural Networks in Musical Performance. Royal
Conservatory, The Hague
Lee, M, Freed, A and Wessel, D. 1991. Real-time Neural Network processing of
Gestural and Acoustic Signals. proceedings of the ICMC’91: 277
Lerdahl, F and Jackendoff, R, 1977. Toward a Formal Theory of Tonal Music.
Journal of Music Theory 21(1): 111-172
Levitin, D. 2012. Musical rhythm spectra from Bach to Joplin obey a 1/f power law.
proceedings of the National Academy of Sciences 109(10): 3716
Lewis, G. 2000. Too Many Notes: Complexity and Culture in Voyager. Leonardo
Music Journal. 10: 33-39
Li, W, Packard, N, and Langton, C. 1990. Transition Phenomena in Cellular
Automata Rule Space. Physica 45D: 77-94
Licklider, J. 1951. A Duplex Theory of Pitch Perception. Experientia 7: 128-133
Licklider, J.1956. Auditory Frequency Analysis. In Cherry,C. 1956. Information
Theory: 253-268
Lindenmayer, Aristd. 1968. Mathematical Models of Cellular Interaction in
Development. J. Theoret. Biology 18: 280-314

	
 334	

Longuet-Higgens, H. 1994. Artificial Intelligence and Music Cognition.
Philospohical Transactions of the Royal Society of London 349: 103-113
Lubart, T. 2000. Models of the Creative Process: Past, Present and Future. Creativity
Research Journal 13(3/4): 295-308
Luig, J and, Rahimzadeh, A. 2008. Sinusoidal Modelling and Synthesis. SE
Luque, S. 2006. Stochastic Synthesis: Origins and Extensions. Royal Conservatory,
The Hague
Luque, S. 2011. Stochastic Synthesis: An Overview. proceedings of the Xenakis
International Symposium: 1
Machover, T and Chung, J. Hyperinstruments: Musically Intelligent and Interactive
Performance for Creativity Systems. Proceedings of the ICMC'89
Maestre et al. 2009. Expressive Concatenative Synthesis by Reusing Samples from
Real
Magnusson, T. 2007. The iXiQuarks: Merging Code and GUI in One Creative
Space. Proceedings of the ICMC' 2007: 332-339
Magnusson, T. 2010a. Designing Constraints: Composing and Performing with
Digital Music Systems. Computer Music Journal. 34(4): 62-73
Magnusson, T. 2010b. An Epistemic Space for Musical Devices. Proceedings of
NIME’ 2010: 43 - 46
Mandelbrot, B. 1975. Fractals: Form, Chance and Dimension. W.H. Freeman and
Company
Manoury, P. 1990. La note et le son. L'Hamartan
Manousakis, S. 2006. Musical L-Systems. The Royal Conservatory, The Hague
Martin, K. 1996a. A Blackboard System for Automatic Transcription of Simple
Polyphonic Music. MIT
Martin, K. 1996b. Automatic Transcription of Simple Polyphonic Music: Robust
Front End Processing. MIT
Mathews, M and Schloss, A. 1989. The Radiodrum as a Synthesis Controller.
Proceedings of the ICMC'89
McCarthy, J. 2007. What is Artificial Intelligence? Stanford University
McCartney, J. 2002. Rethinking the Computer Music Language: SuperCollider.
Computer Music Journal 26(4): 61-68
McCorduck, P. 1990. AARON's code: meta-art, artificial intelligence, and the work
of Harold Cohen. New York: Freeman
McDowell, H. 1994. Fractal Music Composer II. Documentation accompanying
software
Meddis, R and Hewitt, M. 1991. Virtual Pitch and Phase Sensitivity of a Computer
Model of the Auditory Periphery. Journal of the Acoustical Society of America 89:
2866-2882
Meinhardt, H. 2003. The Algorithmic Beauty of Sea Shells. Berlin: Springer
Meyer, L. 1956. Emotion and Meaning in Music. Chicago: University of Chicago
Press
Meyers, O. 2004. A Mood-Based Classification and Exploration System. MIT
MFCC.kr UGen Class Help File. 2012. SuperCollider Version 3.5.3
Millen, D. 1990. Cellular Automata Music. proceedings of the ICMC’90: 314-316
Miranda et al. 2000. Categorising Complex Dynamic Sounds. Organised Sound 5(2):
95-102
Miranda, E. 2001. Composing Music With Computers. Massachusetts: Focal Press
Miranda, E. 2002. Evolving Cellular Automata Music: From Sound Synthesis to
Composition. Sony Computer Science Laboratory, Paris

	
 335	

Miranda, E. 2009 Artificial Intelliegence (AI) and Cellular Automata. Institute of
Communications Research, Electronic Music Studio, Berlin
Miranda, E.1993. Cellular Automata Music: An Interdisciplinary Project. Interface
22(1): 3-21
Møller, A. 2000. Hearing: Its Physiology and pathophysiology. New York:
Academic Press
Moore, B, Glasber, B, and Peters, R. 1985. Relative Dominance of Individual
Particles in Determining the Pitch of Complex Tones. Journal of the Acoustical
Society of America 77: 1853-1860
Moore, B, Glasberbg, B and Baer, T. 1997. A Model for the Prediction of
Thresholds, Loudness, and Partial Loudness. Journal of the Acoustical Society of
America 45: 224-240
Moorer, J.A. 1972. Music and Computer Composition. Communications of the
Association for Computing Machinery 15(2): 10-113
Mozer, M. 1994 . Neural Network Music Composition by Prediction: Exploring the
Benefits of Psychoacoustic Constraints and Multiscale Processing. University of
Colorado
Munshi, J. 2014. A Method for Constructing Likert Scales. Sonama State University
Narmour, E. 1977. Beyond Schenkerism: The need for alternatives in music analysis.
Chicago: University of Chicago Press
Narmour, E. 1990. The Analysis and Cognition of Basic Melodic Structures: The
Implication-realization Model. Chicago: University of Chicago Press
Nash, C and Blackwell, A. 2011. Tracking Virtuosity and Flow in Computer Music.
Proceedings of the ICMC’11: 575-582
Nattiez, JJ. 1975. Fondements d'une Semiologie de la Musique, Paris: Union General
d'Editons
Nelson, GL. 1999. Real Time Transformation of Musical Material with Fractal
Algorithms. Conservatory of Music, Oberlin
Olshausen, B. 2000. Aliasing. PSC 129 – Sensory Processes: 1-6
Onsets.kr UGen Class Help File. 2012. SuperCollider Version 3.5.3
Overholt et al. 2009. A Multimodal System for Gesture Recognition in Interactive
Music Performance. Computer Music Journal 33(4): 69-82
Overholt, D. 2009. The Musical Interface Technology Design Space. Organised
Sound. 14(2): 217-226
Pachet, F and Roy, P. 2000. Formulating Constraint Satisfaction Problems on Part-
Whole Relations: The Case of Automatic Music Harmonisation. Sony Computer
Science Laboratory, Paris
Pachet, F. 1992. Representing Knowledge Used by Jazz Musicians. University of
Paris
Paddison, M. 1993. Adorno's Aesthetics of Music. Cambridge: Cambridge University
Press
Paine, G. 2002. Interactivity: Where to from Here?. Organised Sound 7(3): 295-304
Paine, G. 2009. Towards Unified Design Guidelines for New Interfaces of Musical
Expression. Organised Sound 14(2): 142-155
Papadopoulos, G and Wiggins, G. 1999. AI Methods for Algorithmic Composition: A
Survey, A Critical View and Future Prospects. University of Edinburgh
Performance Recordings. Computer Music Journal 33(4): 23-42
Peters, M. 2010. From Strange to Impossible: Interactive Attractor Music.
Contemporary Music Review 29(4): 395-404
Piston, W. 1948. Harmony. New York: W.W. Norton

	
 336	

Plack, C. 2005. The Sense of Hearing. New Jersey: LEA
Povel, D and Essens, P. 1985. Perception of Temporal Patterns. Music Perception 2:
411-440
Pulkki, V. 2000. Musical Presentations of Fractals. unpublished manuscript for
ICMC, 2000
Reynolds, R. 1965. Indeterminacy: Some Considerations. Perspectives of New
Music. 4(1): 136-140
Risset, JC. 1966. Computer Study of Trumpet Tones (with sound examples on tape).
Bell Laboratories
Risset, JC. 1999. Composing in Real-time?, Contemporary Music Review 19(3): 31-
39
Roads, C. 1977. Composing Grammars. revised, presented at ICMC’97
Roads, C. 1979 . Grammars as Representations for Music. Computer Music Journal
3(1): 48-55
Roads, C. 2004. Microsound. Massachusetts: MIT Press
Rohrmeier, M. 2007. A Generative Grammar Approach to Diatonic Harmonic
Structure. proceedings of SMC’07
Rosen, C. 1971. The Classical Style: Haydn, Mozart, Beethoven. London: Faber and
Faber
Ross, B. 1995. A Process Algebra for Stochastic Music Composition. Brock
University, California
Rowe, R. 1993. Interactive Music Systems: Machine Listening and Composing,
Cambridge, MA: MIT Press
Rowe, R. 2009. Split Levels: Symbolic to Sub-Symbolic Interactive Music Systems.
Contemporary Music Review 28(1): 31-42
Rubine, D and McAvinney, P. 1990. Programmable Finger Tracking Instrument
Controllers. Computer Music Journal. 14(1): 26-41
Ruwet, N. 1972. Language, Musique, Poesie. Paris: Seuil
Sachs, M, and Young, E. 1980. Effects of nonlinearities on Speech Encoding in the
Auditory Nerve. Journal of the Acoustical Society of America 68: 858-875
Sapir, S. 2002. Gestural Control of Digital Audio Environments. Journal of New
Music Research. 31(2): 119-129
Sarkar, M. 2007. TablaNet: A Real-Time Online Musical Collaboration System for
Indian Percussion. MIT
Schaeffer, P. 1952. A la recherche d’une musique concrete. Paris: Seuil
Schaeffer, P. 1966. Traite des Objets Musicaux. Paris: Seuil
Scheirer, E. 2000. Music-Listening Systems. MIT
Schenker, H. 1979. Free Composition (Der freie Satz). London: Longman
Schlauch, R, DiGiovanni, J and Reis, D. 1998. Basilar Membrane nonlinearity and
Loudness. Journal of the Acoustical Society of America 103: 2010-2020
Schouten, J. 1940. The residue and the Mechanism of Hearing. Proc. Kon. Akad.
Wetenschap 43: 991-999
Schouten, J. 1970. "The residue revisited", in R.Plomp and G.Smoorenburg,
Frequency analysis and periodicity detection in hearing: 41-54
Schwarz, D. 2006. Concatenative Synthesis: The Early Years. Journal of New Music
Research 35(1): 3-22
Serra, M H. 1993. Stochastic Composition and Stochastic Timbre: GENDY3 by
Iannis Xenakis. Perspectives of New Music 31(1): 236-257

	
 337	

Slaney, M and Lyon, R. 1990. A Perceptual Pitch Detector. proceedings of the
International Conference on Acoustics, Speech, and Signal Processing, 1990: 357-
360
Smoliar, S. 1977. SCHENKER: A Computer Aid for Analysing Tonal Music.
SIGLASH Newsletter 10(1/2): 30-61
Steedman, M. 1984. A Generative Grammar for Jazz Chord Sequences. Music
Perception 2(1): 52-77
Stevens, S. 1957. On the Psychophysical Law. Psychology Review 64: 153-181
Stevens, S. 1972. Perceived Level of Noise by Mark VII and decibels. Journal of the
Acoustical Society of America 51: 575-601
Stowell et al. 2009. Evaluation of live human-computer music-making: quantitative
and qualitative approaches. International Journal of Human-Computer Studies.
67(11): 960-975
Supper, M. 2001. A Few Remarks on Algorithmic Composition. Computer Music
Journal 25(1): 48-53
Szumski, A. 2011. Finding the Interference. Karhunen-Loève Transform as an
Instrument to Detect Weak RF Signals. Inside GNSS. May/June
Terasawa, H, Slaney, M and Berger, J. 2005. Perceptual Distance in Timbre Space.
draft for ICAD’05,
Terhardt, E, 1974. Pitch, Consonance, and harmony. Journal of the Acoustical
Society of America 55: 1061-1069
Therrien, C. 1989. Decision, Estimation and Classification: An Introduction to
Pattern Recognition and Related Topics. New Jersey: Wiley
Thurlow, W, Mangels, J and Runge, P. 1967. Head Movements during Sound
Localization. Journal of the Acousitcal Society of America 42: 489-493
Todd, P. 1989. A Sequential Network Design for Musical Applications. proceedings
of the Connectionist Models Summer School, 1989: 76-84
Toivainen, P and Krumhansl, C. 2003. Measuring and Modelling Real-time
Responses to Music: the Dynamics of Tonality Induction. Perception 32(6): 741-766
Toiviainen, P. 2000. Symbolic AI Versus Connectionism in Music Research.
University of Jyvaskyla
Truax, B. 1987. Real-Time Granulation of Sampled Sound with DMX-1000. Simon
Fraser University
Truax, B. For Otto Laske: A Communicational Approach to Computer Sound
Programs. Journal of Music Theory. 20 (2): 227-300
Tsang, CP and Aitken, M. 1991. Harmonising Music As A Discipline of Constraint
Logic Programming. University of Western Australia
Turing, A.M. 1950. Computing Machinery and Intelligence. Mind 59: 433-460
Vaidhyanathan, S, Minai, A, and Helmuth, M. 1999. ca: A System for Granular
Processing of sound using Cellular Automata. proceedings of the 2nd COST g-6
Workshop on Digital Audio, Trondheim, 1999
van Noorden, L. 1983. Two-channel Pitch Perception. in M.Clynes Music, Mind and
Brain: The Neuropsychology of Music: 251-269
Vanhanen, J. 2003. Virtual Sound: Examining Glitch and Production. Contemporary
Music Review 22(4): 45-52
Vercoe, B, and Scheirer, E. 1999. SAOL: The MPEG-4 Structured Audio Orchestra
Language. Computer Music Journal 23(2): 31-51
Verfaille, V and Arfib D. 2001. A-DAFx: Adaptive Digital Audio Effects.
Proceedings of the DAFx01 Conference

	
 338	

Vickery, L. 2012. The Evolution of Notational Innovations from the Mobile Score to
the Screen Score. Organised Sound 17(2): 128-136
Voss, R, and Clarke, J. 1975. 1/fnoise in Music and Speech. Nature 258: 317-318
Wanderley, M and Orio, N. 2002. Evaluation of Input Devices for Musical
Expression: Borrowing Tools from HCI. Computer Music Journal. 26(3): 62-76
Wanderley, M. 2001. Gestural Control of Music. IRCAM, Paris: 2
Weinberg, G and Gan, S. 2001. The Squeezables: Toward an Expressive and
Interdepent Multiplayer Musical Instrument. Computer Music Journal. 25: 27-45
Wessel, D and Wright, M. 2002. Problems and Prospects for Intimate Music Control
of Computers. Computer Music Journal. 26(3): 11-22
Wessel, D. 1974. Report to C.M.E. University of California
Wessel, D. 1979. Timbre Space as a Musical Control Structure. Computer Music
Journal 3(2): 45-52
Whitman, B and Ellis, D. 2004. Automatic Record Reviews. MIT
Wight, M and Freed, A. 1997. Open Sound Control: A New Protocol for
Communicating with Sound Synthesizers. proceedings of the ICMC’97: 101-104
Wightman, F and Kistler, D. 1992. The Dominant Role of Low-frequency Interaural
Time Differences in Sound Localization. Journal of the Acoustical Society of
America 91: 1648-1661
Wightman, F. 1973. The Pattern-transformation Model of Pitch. Journal of the
Acoustical Society of America 54: 407-416
Wigner, E. 1932. On the Quantum Correction for Thermodynamic Equilibrium.
Physical Review 40: 749-759
Wilson-Bokowiec, J, and Bokowiec, M. 2006. Kinaesonics: The Intertwining
Relationship of Body and Sound. Contemporary Music Review 25(1/2): 47-57
Winkler, T. 2001. Composing Interactive Music: Techniques and Ideas Using Max.
Massachusetts: MIT Press
Winograd, T. 1968. Linguistics and Computer Analysis of Tonal Harmony. Journal
of Music Theory 12: 2-49
Winograd, T. 1983. Language as a Cognitive Process. Boston: Addison-Wesley
Wishart, T. 1994. Audible Design. York: Orpheus the Pantomime Ltd
Wishart, T. 1996. On Sonic Art. London: Routledge
Witten, I and Frank, E. 2005. Data Mining: Practical Machine Learning Tools and
Techniques. San Francisco: Morgan Kaufmann
Wolfram, S. 1983. Statistical Mechanics of Cellular Automata. Review of Modern
Physics 55(3): 601-644
Wolfram, S. 1984. Universality and Complexity in Cellular Automata. Physica 10D:
1-35
Woolf, S and Yee-King, M. 2003. Virtual and Physical Interfaces for Collaborative
Evolution of Sound. Contemporary Music Review. 22(3): 31-41
Wright, M. 1998. Implementation and Performance Issues with Open Sound Control.
proceedings of the ICMC’98: 224-227
Xenakis, I. 1960. Grundlagen einer stochastischen Musik. Berlin: Ars-Viva-Verlag
Xenakis, I. 1971. Formalized Music: Thought and Mathematics in Composition.
Bloomington and London: Indiana University Press
Xenakis, I. 1992. Formalized Music. revised, New York: Pendragon Press,
Xenakis, I. 1996. Determinacy and Indeterminacy. Organised Sound 1(3): 143-155
Zahorik, P. 2002. Assessing Auditory Distance Perception using Virtual Acoustics.
Journal of the Acoustical Society of America 111: 1832-1846

	
 339	

Zizek, S. 2000. The Art of the Ridiculous Sublime. Washington: University of
Washington Press
Zwicker, E and Scharf, B. 1965. A Model of Loudness. Psychology Review 72: 3-26
	

	

	

