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Abstract

Ranking a set of objects based on the relationships between them is fundamental
for use with search engines, e-commerce websites and in the field of bibliometrics.
Two of the most prominent search ranking algorithms are PageRank and SALSA
(Stochastic Approach to Link-Structure Analysis).
In this thesis, we further explore the connections between page ranking algorithms
and the theory of social choice, providing a basis for theoretical assessment of a
weighted version of PageRank and we create and assess a new page ranking al-
gorithm, combining ideas from both PageRank and SALSA which we call Query-
Independent SALSA.
We justify the use of weighted PageRank from a theoretical perspective by providing
a set of axioms which characterize the algorithm. We provide a tighter bound for
our derivation than that of Altman et al and show that each of our axioms are
independent.
We describe a query-independent version of SALSA, using ideas from the PageRank
algorithm and test this on a real-world subgraph of the web graph. We find that our
new algorithm, Query-Independent Stochastic Approach to Link-Structure Analysis
(QISALSA) slightly outperforms PageRank on two measures and under-performs
on one measure. We suggest that the approach of combining aspects of both algo-
rithms may be less e�ective than precomputational methods for query-dependent
algorithms.
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Abbreviations, Notations and
Definitions

We provide a short list of less commonly used language and notation to assist the
reader.

Symbol Meaning Source
GV The set of all graphs for vertex set V [2]

SG(v) The set of vertices in G which have an incoming edge
from v

Page 10

PG(v) The set of vertices in G which have an incoming edge
to v

Page 10

∞ An ordering Page 10
Ranking System A functional for every finite vertex set V maps G œ GV

to an ordering ∞F
Gœ L(V )

Page 11

W(vi, vj) Weight preference of vertex vi for vj Page 12
WG A preference matrix of weighted preferences for each

vertex in a graph G.
Page 20

r A rank vector for G derived from W Page 24
Inlinks A ranking method that counts the number of incoming

links to a page
Page 40

PageRank A popular query-independent ranking method Page 40
HITS Hyperlink-Induced Topic Search - a popular

query-dependent ranking method
Page 41

SALSA Stochastic Approach for Link-Structure Analysis - a
popular query-dependent ranking method

Page 41

MAP Mean Average Precision - an e�ectiveness measure for
ranking algorithms

Page 45

MRR Mean Reciprocal Rank- an e�ectiveness measure for
ranking algorithms

Page 45

NDCG Normalized Discounted Cumulative Gain - an
e�ectiveness measure for ranking algorithms

Page 46
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1 Introduction

1.1 Web Mining

The World Wide Web is a huge collection of hyperlinked documents. It represents

the largest, most democratic and most open publishing medium in the world. Web

mining is defined as the application of data mining techniques, methodologies and

models to the data, structure and usage of the World Wide Web. We can divide

this up into three categories: web structure mining, web content mining and web

usage mining [20]. Web structure mining involves mining the structure of the web

graph whereby pages are represented by vertices and edges by hyperlinks between

documents. Web content mining aims to discover useful information from web data,

content and services. Web usage mining deals with secondary data such as server

access logs generated by user interaction with the web [24].

1.2 Web Structure Mining

Web structure mining concerns the inter document structure of the World Wide Web

via examining the hyperlinks between documents. The structure of the web can be

viewed as a graph with pages represented by vertices and hyperlinks represented

by edges. Structure mining reveals additional information about the documents
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1.3 Search Ranking

in the relationships between them. For example we may view a hyperlink as a

recommendation, analogous to a bibliographical citation. In this setting a large

number of hyperlinks may indicate a popular document which in turn may indicate

high quality content within that document [24].

1.3 Search Ranking

Modern web search engines crawl documents on the web and then build an index

of meta data about these pages. A user enters a request to the search engine for

documents relevant to their query. The engine then lists documents it deems most

relevant to this term in descending order. Relevancy is commonly calculated using

a hybrid method of web structure mining and content analysis based on the meta

data in the engine’s index [15].

For a given keyword or set of keywords, we may find the set of relevant pages to be

extremely large [20]. However, a human user typically only looks at the first ten to

twenty results [17]. Due to this abundance of information the problem of deciding

which pages from the result set are most relevant is of key importance.

Ranking by popularity was first suggested in the late 1990s [14, 23]. Despite the

lack of editorial review process on the web, there is a rich structure which can be

utilized to estimate the relative popularity of pages. The initial algorithms proposed

which popularized use of link structure as a measure of page popularity and therefore

relevance were PageRank and HITS (Hypertext-Induced Topic Search).

These algorithms can generally be divided into those that depend on the query

(query-dependent) and those in which a ranking/relevancy score can be pre-computed

as it is independent of a user’s query (query-independent).

6



1.4 Theoretical Search Algorithm Analysis

1.4 Theoretical Search Algorithm Analysis

Whilst there is an extensive volume of research which focuses on creating, improving

and experimenting with ranking systems there is only a limited body of work on the

theoretical reasoning to support the use of one algorithm above another. We look

to extend this knowledge by providing an axiomatisation of a weighted version of

PageRank and justifying each of these axioms. This is one of the contributions of

this thesis.

1.5 Improving Ranking Algorithms

Previous research has found that query-dependent algorithms excel at producing

an e�ective ranking of documents when compared to query-independent methods

[18, 21]. The main concern for use in real-world environments is the unacceptable

delay in calculating such a score at query-time. Query-independent algorithms excel

in performance for users as they can be precomputed and thus cause little delay when

a user requests a ranking of documents. In our second contribution, we formulate

an algorithm that aims to combine ideas from common algorithms of both types,

PageRank and SALSA. This algorithm aims to combine the ability to precompute

scores with e�ective ranking.

1.6 Theory of Social Choice

The theory of social choice combines individual preferences to reach a collective de-

cision within a theoretical framework. Voting systems and therefore search ranking

systems fit into this framework and abide by the same rules.
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1.7 Thesis Structure

1.7 Thesis Structure

The remainder of this thesis is organised as follows: Chapter 2 contains an intro-

duction to PageRank, Edge Weighted PageRank and improvements to prior work;

Chapter 3 contains a Combinatorial Axiomatisation of Edge Weighted PageRank

with proof of the axiomatisation; Chapter 4 includes the creation of a new search

ranking algorithm Query-Independent Stochastic Approach to Link-Structure Anal-

ysis and a comparison of this to popular search ranking algorithms.
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2 Theoretical evaluation of Search

Ranking Algorithms

2.1 Introduction

Ranking a set of objects based on the relationships between them is fundamental for

use with search engines, e-commerce websites and in the field of bibliometrics (see

e.g. [10, 26]). Two famous and highly utilized examples are Google’s PageRank [23]

and eBay’s reputation system [26]. Page ranking is most commonly associated with

search engines, and in particular assists with the problem of information abundance.

Often there exists a very large number of documents related to a particular query

and the most relevant or important objects must be identified in a computationally

e�cient but e�ective manner [20].

An extensive volume of research has been created in the domain of page ranking

(see [15, 20, 10]). Many of these focus on creating, improving and experimenting

with ranking systems. Experimental surveys have been carried out using relevancy

scores based on human expertise applied to subgraphs of the web graph in order

to directly compare ranking systems [21]. However, we have only been able to find

and strongly beleive there exists only a limited body of work (see [25, 2]) on the

theoretical reasoning to support the use of one particular system above another.
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2.2 PageRank & Edge Weighted PageRank

The rest of this chapter is organized as follows: section 2.2 defines PageRank; Edge

Weighted PageRank and states the notation we make use of; section 2.3 details a

short amendment to the Altman et al paper and the final section summarises the

chapter.

2.2 PageRank & Edge Weighted PageRank

As per Altman et al [2], we rank pages based on the stationary probability distribu-

tion of performing a random walk on a graph, where each vertex represents a page

and each directed edge represents a hyperlink. This forms the basis for Google’s

PageRank. We restrict our attention to strongly connected graphs:

Definition 1. A directed graph is called strongly connected if for all vertices v1, v2 œ

V there exists a path from v1 to v2 in E [2].

Definition 2. Let G = (V, E) be a directed graph, and let v œ V . The successor set

of v is SG(v) = {u|(v, u) œ E}, and the predecessor set of v is PG(v) = {u|(u, v) œ E}

[2].

The output of a page ranking procedure can be viewed as an ordering of a set of

options:

Definition 3. Let A be some set. A relation R ™ A ◊ A is called an ordering on A

if it is reflexive, transitive, complete and anti-symmetric. Let L(A) denote the set

of all possible orderings on A[2].

Remark 4. Let ∞ be an ordering, then ƒ is the equality predicate of ∞. Formally,

a ƒ b if and only if a ∞ b and b ∞ a [2].

Given the above notation we can define what a ranking system is:

10



2.2 PageRank & Edge Weighted PageRank

Definition 5. Let GV be the set of all strongly connected graphs with vertex set

V . A ranking system F is a functional that for every finite vertex set V maps every

strongly connected graph G œ GV to an ordering ∞G
F œ L(V ) [2].

We define a hyperlink matrix/adjacency matrix. Search ranking algorithms com-

monly begin with such a structure as an input:

Definition 6. Let G = (V, E) be a directed graph. The hyperlink matrix is defined

as:

[HG]i,j =

Y
___]

___[

1 if a hyperlink exists from page vi to vj

0 otherwise

We now define the PageRank matrix which captures the random walk created by

the basic PageRank algorithm. Namely, in this process we start at a random page,

and iteratively move to one of the pages that are linked to by the current page,

assigning equal probabilities to each such page [2].

Definition 7. Let G = (V, E) be a directed graph and assume that V = {v1, v2, ..., vn}.

The PageRank Matrix AG (of dimension n ◊ n) is defined:

[AG]i,j =

Y
___]

___[

1/|SG(vj)| (vi, vj) œ E

0 otherwise

The PageRank procedure will rank pages according to the stationary probability

distribution obtained in the limit of the above random walk; this is formally defined

as:

Definition 8. Let G = (V, E) be some strongly connected graph and assume V =

(v1, v2, ..., vn). Let r be the unique solution of the system AG · r = r where r1 = 1.
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2.2 PageRank & Edge Weighted PageRank

The PageRank PRG(vi)of a vertex vi œ V is defined as PRG(vi) = ri. The PageRank

ranking system is a ranking system that for the vertex set V maps G to ∞P R
G , where

∞P R
G is defined as: for all vi, vj œ V : vi ∞P R

G vj if and only if PRG(vi) Æ PRG(vj)

[2].

The above defines a powerful heuristic for ranking internet pages, as adopted by

search engines [23]. We begin our contribution by modifying the above for strongly

connected weighted graphs where the weight on each edge is proportional to its

popularity.

We define a weight function for use in our Edge Weighted PageRank algorithm:

Definition 9. Let G = (V, E) and W(u, v) be a function where (u, v) are a pair of

vertices from V , then W : V ◊ V æ R.

Definition 10. Let G = (V, E) be a strongly connected graph. We define a weighted

graph as a strongly connected graph with a square matrix W = {wi,j}n◊n with non-

negative rational entries where each edge has a weight wi,j, a measure of preference

or vote of the page vi for page vj, as defined by W(u, v). Thus, a unit preference

of the i-th page splits into fractions wi,j/
qn

j=1 wi,j among all other pages (including

itself).

Our Edge Weighted PageRank still ranks pages according to the stationary probab-

ility distribution obtained in the random walk as per PageRank but the PageRank

matrix now denotes the weights on edges:

Definition 11. Let G = (V, E) be a directed graph and assume that V = {v1, v2, ..., vn}.

The Edge Weighted PageRank Matrix WG (of dimension n ◊ n) is defined:

[WG]i,j =

Y
___]

___[

1/x x = W(vi, vj)

0 if W(vi, vj) = 0

12



2.3 Altman Amendments

The Edge Weighted PageRank procedure will rank pages according to the stationary

probability distribution obtained in the limit of the above random walk, as per

Definition 19. We aim to treat Edge Weighted PageRank from an axiomatic social

choice perspective so in contrast to the numerical procedure we have just defined, we

will provide a graph-theoretic, ordinal representation of Edge Weighted PageRank

in chapter 3.

2.3 Altman Amendments

Before providing a graph-theoretic, ordinal representation of Edge Weighted PageR-

ank we make two small modifications to the the work provided by Altman et al [2]:

the removal of a redundant axiom and a more concise proof for one of the properties.

2.3.1 Self-edge and Isomorphism

We begin by restating the required self-edge and isomorphism axioms provided by

Altman et al [2]:

Definition 12. (Isomorphism axiom) A ranking system F satisfies isomorphism

if for every isomorphism function Ï : V1 ‘≠æ V2, and two isomorphic graphs G œ

GV1 , Ï(G) œ GV2 :∞F
Ï(G)= Ï(∞F

G) [2].

Notation: Let G = (V, E) œ Gv be a graph such that (v, v) /œ E. Let GÕ =

(V, E fi {(v, v)}). Let us denote SelfEdge(G, v) = GÕ.

Definition 13. (Self-edge axiom) Let F be a ranking system. F satisfies the self-

edge axiom if for every vertex set V and for every vertex v œ V and for every

graph G = (V, E) œ Gv such that (v, v) /œ E, and for every v1, v2 œ V \{v} : Let

GÕ = SelfEdge(G, v). If v1 ∞F
G v then v �F

GÕ v1; and v1 ∞F
G v2 i� v1 ∞F

GÕ v2 [2].

13



2.3 Altman Amendments

2.3.2 Vote by Committee Axiom

We show that the vote by committee axiom is redundant as it is equivelent to the

combined use of two of the other axioms. We first re-state the axioms defined by

Altman et al to be used in this section:

Definition 14. (Vote by committee) Let F be a ranking system. F satisfies

vote by committee if for every vertex set V , for every vertex v œ V , for every

graph G = (V, E) œ Gv, for every v1, v2 œ V , and for every m œ N: Let GÕ =

(V fi {u1, u2, ..., um}, E\{(v, x)| x œ SG(v)} fi {(v, ui)| i = 1, ..., m} fi {(ui, x)| x œ

SG(v), i = 1, ..., m}) where {u1, u2, ..., um} fl V = ÿ. Then v1 ∞F
G v2 i� v1 ∞F

GÕ v2 [2].

Figure 2.1: Vote by committee axiom

Definition 15. (Collapsing) Let F be a ranking system. F satisfies collapsing if

for every vertex set V , for every v, vÕ œ V , for every v1, v2 œ V \{v, vÕ} for every

graph G = (V, E) œ Gv for which SG(v) = SG(vÕ), PG(v) fl PG(vÕ) = ÿ, and

[PG(v) fi PG(vÕ)] fl {v, vÕ} = 0: Let GÕ = (V \{vÕ}, E\{(vÕ, x)|x œ SG(vÕ)}\{(x, vÕ)|x œ

PG(vÕ)} fi {(x, v)|x œ PG(vÕ)}). Then v1 ∞F
G v2 i� v1 ∞F

GÕ v2 [2].

Figure 2.2: Collapsing axiom
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2.3 Altman Amendments

Definition 16. (Proxy) Let F be a ranking system. F satisfies proxy if for every ver-

tex set V , for every vertex v œ V , for every v1, v2 œ V \{v}, and for every graph G =

(V, E) œ Gv for which |PG(v)| = |SG(v)|, for all p œ PG(v): SG(p) = {v}, and for all

p, pÕ œ PG(v): p ƒF
G pÕ: Assume PG(v) = {p1, p2, ..., pm} and SG(v) = {s1, s2, ..., sm}.

Let GÕ = (V \{v}, E\{(x, v), (v, x)|x œ V } fi {(pi, si)|i œ {1, 2, ..., m}}). Then v1 ∞F
G

v2 i� v1 ∞F
GÕ v2 [2].

Figure 2.3: Proxy axiom

Lemma 17. The Vote by committee axiom is equivalent to the combined use of the

Collapsing axiom and Proxy axiom.

Proof. We use the Proxy axiom in the reverse direction and then use Collapsing in

the reverse direction, as illustrated in Figure 2.4

15



2.3 Altman Amendments

Figure 2.4: Illustration of proof of Lemma 4

2.3.3 Del Property

We provide a more concise proof for the Del property provided by [2] and begin by

restating the required property definitions:

16



2.3 Altman Amendments

Definition 18. Let V be a vertex set and let v œ V be a vertex. Let G = (V, E) œ Gv

be a graph where S(v) = {s}, P (v) = {p}, and (s, p) /œ E. We will use Del(G, v)

to denote the graph GÕ = (V Õ, E Õ) defined by:

V Õ = V \{v}

E Õ = E\{(p, v), (v, s)} fi {(p, s)}

[2]

Definition 19. Let F be a ranking system. F has the weak deletion property if for

every vertex set V , for every vertex v œ V and for all vertices v1, v2 œ V \{v}, and

for every graph G = (V, E) œ Gv such that S(v) = {s}, P (v) = {p}, and (s, p) /œ E:

Let GÕ = Del(G, v). Then, v1 ∞F
G v2 i� v1 ∞F

GÕ v2 [2].

Lemma 20. Let F be a ranking system that satisfies Isomorphism, Vote by com-

mittee and Proxy. Then, F has the weak deletion property [2].

We can simplify the above lemma given by Altman et al to weaken the required

axiom satisfaction to the following:

Lemma 21. Let F be a ranking system that satisfies Isomorphism and Proxy. Then,

F has the weak deletion property.

Proof. Let V be a vertex set, let v‘V ; v1, v2 œ V \{v} be vertices and let G =

(V, E) œ Gv be a graph such that S(v) = {s}, P (v) = {p}, and (s, p) /œ E. Assume

that v1 ∞F
G v2. Let s0 = v and S(p) = {s0, s1, ..., sm}. Let G1 = (V1, E1), where

V1 = V \{v}, E1 = E\{(p, v), (v, s)} fi{(p, s)}. By the Proxy axiom where |S(v)| = 1

and |P (v)| = 1, v1 ∞F
G1 v2. Let GÕ = Del(G, v). By the proxy and Isomorphism

axioms v1 ∞F
GÕ v2 ≈∆ v1 ∞F

G1 v2. Thus, v1 ∞F
GÕ v2 as required.

17



2.4 Discussion

2.4 Discussion

In this chapter we have provided the required definitions for our axiomization and

have outlined the PageRank algorithm, the Edge Weighted PageRank algorithm

and have made some small ammendments to the work of Altman et al. We are now

ready to provide a combinatorial axiomatisation of Edge Weighted PageRank.
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3 Combinatorial Axiomatisation of

Edge Weighted PageRank

3.1 Introduction

We extend the work of Altman et al [2] and Palacios-Huerta et al [25] to provide

a combinatorial axiomatisation of a weighted version of PageRank. We provide a

theoretical basis for the use of Edge Weighted PageRank. Our contribution is to

provide a set of axioms for Edge Weighted PageRank whose derivation is polyno-

mially bound to the size of the input graph. This extends the work of Altman et

al to provide a tighter bound than in their derivation of PageRank, to devise a set

of axioms for a weighted environment and to show that the axioms are logically

independent. We have furthered their exploration of the connections between page

ranking algorithms and the mathematical theory of social choice. We extend the

work of Palacios-Huerta et al in that our axioms provide an ordinal, graph-theoretic

representation of the ranking system and examine these in the context of the World

Wide Web.

As per Altman et al we will treat the internet as a graph, where pages/vertices are

agents and the hyperlinks between pages act as votes of preference. In this case

the problem of page ranking becomes the problem of aggregating rankings into a

19



3.2 Axioms

global ranking. In the classical theory of social choice, as defined by Arrow [4], a

set of agents is called to rank a set of options. The unique aspect of ranking web

pages is that the set of agents and options coincide. The transitive e�ects of voting

then need to be considered as agents may directly influence their own ranking by

adjusting their votes to other pages.

The rest of this chapter is organized as follows: section 3.2 details our axioms and

provides some intuitive description of how they operate; section 3.3 details the proof

of soundness for our axioms; section 3.4 details the proof of completeness for our

axioms; section 3.5 provides justification for the independence of each axiom and

the final section contains a discussion of the results presented.

3.2 Axioms

From a social choice perspective, we can view each page in the web graph as an

agent, where this agent prefers the pages it links to above the pages it does not link

to. Page ranking is therefore the same problem as finding a social aggregation rule.

We identify a set of simple, graph-theoretic axioms which characterise and satisfy

Edge Weighted PageRank and do not refer to numeric computations.

While all the axioms are of the form “if and only if” we will sometimes refer to the

axiom in only one direction in the intuitive, descriptive explanation to ensure that

these illustrations are kept simple (in all cases the intuition holds in both directions).

Let V = {v1, . . . , vn} be a set of web-pages with a preference-matrix W = {wi,j}n◊n

, and let V Õ = {vÕ
1, . . . , vÕ

n} be a set of di�erent web-pages with a preference-matrix

WÕ =
Ó
wÕ

i,j

Ô

n◊n
.

Definition 22. (Scaling axiom) If for every ui œ SG(v) and uÕ
i œ SGÕ(vÕ), each edge

weight W(v, ui) = – and W(vÕ, uÕ
i) = c–, where c is a positive constant, then for
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3.2 Axioms

every vertex v œ V Õ, vÕ
i ∞ vÕ

j if and only if vi ∞ vj.

If we modify the weights of all outgoing edges of v proportionally, then the relative

ranking in G is retained. The scaling axiom tells us that the absolute values applied

to weights do not matter for our ranking, that they only indirectly represent the

probability of arriving at the page in a random walk. We are only interested in the

relative weights within the graph, so modifying local weights within the graph has

no e�ect on the rest of the weights, due to the implicit normalisation that takes

place in the Edge Weighted PageRank algorithm.

Definition 23. (Isomorphism axiom) Assume that vi œ V where G = (V, E) and

vÕ
i œ V Õ where GÕ = (V Õ, E Õ) where G and GÕ are isomorphic. If vi = vÕ

i for every

vi œ V and each edge W(v, ui) = W(vÕ, uÕ
i), then for every i, j vÕ

i ∞ vÕ
j if and only if

vi ∞ vj.

The isomorphism axiom tells us that the ranking procedure should be independent of

the names given to pages. No particular page is singled out to have a special ranking

and the other of input does not a�ect the ranking produced by Edge Weighted

PageRank.

Definition 24. (Self-Preference axiom)Assume that G = (V, E) and GÕ = (V Õ, E Õ).

If (vi, vj) = (vÕ
i, vÕ

j) for every e œ E with the only exception (vk, vk) for some k where

W(vk, vk) < W(vÕ
k, vÕ

k), then

1. for every i, j ”= k, vÕ
i ∞ vÕ

j if and only if vi ∞ vj , and

2. for every i ”= k such that vi ∞ vk, vÕ
i ª vÕ

k.

The self-preference axioms tell us that if vertex vi ranks at least as high as vj in

our graph G where vi has no self edges, then if we add a self edge to G, vi should

be ranked higher than vj and all the other vertices in the graph should retain their
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3.2 Axioms

ranking. Essentially if a page adds a link to itself then its ranking should be at least

as high as before this link was added.

For the next two axioms, we let V Õ =
Ó
vÕ

1, . . . , vÕ
n+1

Ô
be a set of n + 1 web-pages

with a preference-matrix WÕ =
Ó
wÕ

i,j

Ô

(n+1)◊(n+1)
.

Definition 25. (Equivalence axiom) If

1. SGÕ(vÕ
n) = SGÕ(vÕ

n+1) = SG(vn),

2. {(vÕ
n, vÕ

n+1), (vÕ
n+1, vÕ

n)} /œ E Õ and W(vÕ
n, vÕ

n) = W(vÕ
n+1, vÕ

n+1),

3. PGÕ(vÕ
n) = PG(vn) and PGÕ(vÕ

n+1) does not include {vÕ
n, vÕ

n+1},

4. W(vÕ
1, vÕ

n) + W(vÕ
1, vÕ

n+1) = W(v1, vn),

5. For all i and j, W(vi, vj) = W(vÕ
i, vÕ

j),

then for every i, j /œ {n, n + 1}, vÕ
i ∞ vÕ

j if and only if vi ∞ vj.

If we make a copy of vn and divide the weight from v1 to vn and vn+1 then the

relative ranking in the graph is unchanged. The equivalence axiom allows a vertex

to separate its vote between two vertices as long as they share the same successor

set and the weights are retained. An example sketch of the equivalence axiom is

shown in Figure 2.5.

Figure 3.1: Equivalence axiom example

Definition 26. (Proxy axiom) If
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3.3 Soundness

1. PGÕ(vÕ
n+1) = {vÕ

1}, SGÕ(vÕ
n+1) = SGÕ(vÕ

1),

2. W(vÕ
1, vÕ

n+1) + q
jœSGÕ (v1) W(vÕ

1, j) = q
jœSG(v1) W(v1, j) and

3. For all i and j, W(vi, vj) = W(vÕ
i, vÕ

j),

then for every i, j ”= n + 1, vÕ
i ∞ vÕ

j if and only if vi ∞ vj.

If there is an additional vertex vn+1 between v1 and a set of successors then we can

remove vn+1 from the graph and retain the relative ranking for all other vertices.

The proxy axiom essentially allows the creation or deletion of a ’dummy’ page that

redistributes a single vote to two other pages. An example sketch of the proxy axiom

is shown in Figure 2.6.

Figure 3.2: Proxy axiom example

We have provided some intuitive explanation of each axiom but one may argue that

particular axiom(s) are not reasonable. However, we find that this set of axioms

characterises Edge Weighted PageRank exactly and that all of these axioms are

logically independent as shown in section 3.5.

3.3 Soundness

Proposition 27. Edge Weighted PageRank satisfies the scaling, isomorphism, self

preference, equivalence and proxy axioms.
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Remark 28. For all G, the weighted matrix for G is defined as:

WG =

Q

cccccca

w1,1 · · · w1,n

... . . . ...

wn,1 · · · wn,n

R

ddddddb

and the rank vector for G is defined as:

r =

Q

cccccca

r1
...

rn

R

ddddddb

Proof. (Scaling) This axiom is satisfied directly by definition due to the normalisa-

tion in the algorithm.

(Isomorphism) This axiom is satisfied directly from the definition by the assumption

that V = {v1, v2, ..., vn}.

(Self preference) Let V = {v1, v2, . . . , vn}, and let G = (V, E). Let GÕ = (V Õ, E Õ)

where V Õ = V and E Õ = E fi {(v1, v1, –)} where – is an edge weight. Let r be the

solution of WG · r = r, where r1 = 1. Now let us show that the ranking remains the

same in G and GÕ. For all v œ V :

[WGr]i = qn
j=1 wi,jrj = ri

As the only element in W modified by the axiom is w1,1 the above will hold for all
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3.3 Soundness

cases in GÕ except [WGÕrÕ]1. So, we get WGÕrÕ = rÕ as required. For v1:

[WGr]1 = qn
j=1 w1,jrj

but in GÕ

[WGÕrÕ]1 =–rÕ
1w

Õ
1,1+

qn
j=1 wÕ

1,jr
Õ
j

where – = W Õ
1,1+

qn

j=2 Wi,j

W 1,1+
qn

j=2 Wi,j

The weighted matrix for GÕ is:

WGÕ =

Q

cccccca

–
n
w1,1 · · · w1,n

... . . . ...
–
n
wn,1 · · · wn,n

R

ddddddb

The rank vector for GÕ is:

rÕ =

Q

cccccccccca

–r1

r2
...

rn

R

ddddddddddb

So, we get [WGÕrÕ]1 = rÕ + – as required (as the axioms require v1 to rank greater

than or equal in GÕ to its rank in G).
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(Equivalence) Let V = {v1, v2, . . . , vn}, and let G = (V, E). Let GÕ = (V Õ, E Õ) where

V Õ = V fi {vn+1} and E Õ = E fi {(v1, vn+1), (vn+1, y)|y œ SG(vn)}. Let r be the

solution of WG · r = r, where r1 = 1. For all v œ V :

[WGr]i = qn
j=1 wi,jrj = ri

and for all vÕ œ V Õ\{vÕ
n, vÕ

n+1, y|y œ SG(vÕ
n)}:

[WGÕr]i = qn
j=1 wi,jrj = ri

For vÕ
n+1:

[WGÕr]n+1 = wn+1,1r1

For vÕ
n:

[WGÕr]n = [WGr]n ≠ [WGÕr]n+1

So ranking is retained between G and GÕ for all v œ V \{vn, SG(vÕ
n)}.

For all {y|y œ SG(vÕ
n)} the ranking of y is:

[WGÕr]y = wi,nrn + wi,n+1rn+1 + qn≠1
j=2 wi,jrj = [WGr]y + wi,n+1rn+1

The weighted matrix for GÕ is:
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3.3 Soundness

WGÕ =

Q

cccccccccccccccccca

w1,1 w1,2 · · · · · · · · · 1
2w1,n w1,n+1

w2,1 w2,2 · · · · · · · · · w2,n w2,n+1

w3,1 w3,2 · · · · · · · · · w3,n w3,n+1
... ... . . . . . . . . . ... ...

1
2wn,1

1
2wn,2

. . . . . . . . . 1
2wn,n

1
2wn,n+1

wn+1,1 wn+1,2 · · · · · · · · · wn+1,n wn+1,n+1

R

ddddddddddddddddddb

where wi,n+1 = 1
2wi,n. The rank vector for GÕ is:

rÕ =

Q

cccccccccccccca

r1

r2
...

rn ≠ rn+1

rn+1

R

ddddddddddddddb

In this case ranking is retained due to the scaling axiom. The addition of edges from

vn+1 to each successor is equivalent to scaling the edges from vn to each successor

SG(vn) by a constant factor given that SG(vn) = SGÕ(vn+1).

For vn the ranking is:

[WGÕr]n = wi,nrn ≠ wi,n+1rn+1 + qn≠1
j=2 wi,jrj = [WGr]n ≠ wi,n+1rn+1

and the weighted matrix for GÕ and rank vector remain as above. For vn ranking is

retained due to the scaling axiom. As PG(vn) = PGÕ(vn) and PGÕ(vn) = PGÕ(vn+1)

the addition of edges from PGÕ(vn) to vn+1 is equivalent to scaling the edges from

PGÕ(vn) to vn by a constant factor of 1
2 .

(Proxy) Let V = {v1, v2, . . . , vn}, and let G = (V, E). Let V Õ = V and GÕ = (V Õ, E Õ)

where V Õ = V \{v2} and E Õ = E\{(v1, v2), (v2, y)|y œ SG(v2)}. Let r be the solution
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3.3 Soundness

of WG · r = r, where r1 = 1. For all v œ V \{v3, v4}:

[WGr]i = qn
j=1 wi,jrj = ri

For all vÕ œ V Õ\{vÕ
3, vÕ

4}:

[WÕ
GÕrÕ]i = qn≠1

j=1 wÕ
i,jr

Õ
j = rÕ

i

For v3 and v4:

[WGr]i = q2
j=1 wi,jrj = wi,1r1

|SG(v1)flSG(v2)|

and for vÕ
3 and vÕ

4

[WÕ
GÕrÕ]i = wÕ

i,1r
Õ
1 = wÕ

i,1rÕ
1

|SGÕ (vÕ
1)|

The weighted matrix for GÕ is:

WGÕ =

Q

cccccccccca

w1,1 w2,3 + w1,3 w2,4 + w1,4 w1,5 · · · w1,n≠1

w3,1 w3,3 · · · · · · · · · w3,n≠1
... . . . · · · . . . . . . ...

wn≠1,1 wn≠1,3 · · · · · · · · · wn≠1,n≠1

R

ddddddddddb

and the rank vector for G is:
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r =

Q

cccccca

r1
...

rn≠1

R

ddddddb

Since |SG(v1)flSG(v2)| = |SGÕ(vÕ
1)| the rankings of v3 and v4 are retained as required.

3.4 Completeness

We now show that our axioms fully characterise the Edge Weighted PageRank sys-

tem. We can prove:

Theorem 29. A ranking system F satisfies scaling, isomorphism, self preference,

equivalence and proxy if and only if F is the Edge Weighted PageRank ranking

system.

Given Theorem 29, it is enough to prove the following:

Proposition 30. Let F1and F2 be ranking systems that satisfy scaling, isomorphism,

self preference, equivalence and proxy. Then, F1 and F2 are the same ranking system.

We shall now sketch the proof. Essentially we eliminate vertices, one after another

whilst preserving the ranking of the other vertices. When we are left with the two

vertices we would like to compare, we can compare the incoming weights of each

vertex and decide which vertex has the largest incoming weight. The vertex with

the larger incoming weight has the higher ranking. To do this e�ectively we must

first equalise the weight between the two vertices and then compare the weight of

the self preference edge.
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3.4 Completeness

The intuitive idea is to begin with our graph G = (V, E) and two arbitrary vertices

va and vb in V and manipulate G by applying our axioms to achieve a new graph

Gn for which F1 and F2 rank va and vb the same as in G (formally va ∞F
Gn

vb ≈∆

va ∞F
G vb for F1 and F2). One by one we remove vertices vi ”= {va, vb} by replacing

incident edges with direct edges from the predecessors of vi to successors of vi. Once

we have a graph Gm = (Vm, Em) where Vm = {va, vb} we use scaling to ensure

W(va, vb) = W(vb, va). The relative ranking of va and vb is retained throughout this

process. We then use the self-edge axiom to create an isomorphic graph, showing

that va ∞F
Gm

vb ≈∆ va ∞F
G vb. The steps required are:

1. We choose a vertex vx ”= {va, vb} in the graph G. We replace vx with an

edge from each successor and predecessor of vx while maintaining the relative

ranking of va and vb using the following steps:

a) For each predecessor PG(vx),

i. Duplicate v1 using the equivalence axiom where vx = vn and v1 œ

PG(vx).

b) In the resulting graph Gn+1, for each new vertex vxi
,

i. Use the proxy algorithm to remove vxi
from Gn+1.

2. We repeat 1. until Gm = (Vm, Em) where Vm = {va, vb}.

3. We use the scaling axiom to equalise W(va, vb) and W(vb, va) so that W(va, vb) =

W(vb, va).

4. We now add weight to the self edge of v œ {va, vb} using the self preference

axiom so that the incoming and outgoing weights of va and vb are equal. Let

vÕ = {va, vb}\{v}. By the self edge axiom, if vÕ ∞F v before adding the self

edges, then now v �F vÕ for F1or F2.
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5. By the isomorphism axiom, in this graph va ƒ vb, so before Step 4, vÕ ∞F v

for F1 or F2. However as the relative ranking of va and vb did not change until

Step 4, vÕ ∞F
G v for F œ {F1, F2} and thus va ∞F1

G vb ≈∆ va ∞F2
G vb.

Figure 3.3 shows an example of the completeness procedure where we rank va and

vb in G.
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Figure 3.3: Example Completeness Procedure
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3.5 Independence of Axioms

We now show that our axioms are all logically independent using the method demon-

strated by Palacios-Huerta et al [25]. We show that each axiom is independent to

justify that all of our axioms are reasonable and that they are required as together

a set to properly characterise Edge Weighted PageRank. Recall Definition 6 of a

hyperlink matrix for a graph G and our description of a ranking system as per Defin-

ition 5. We now define a number of ranking methods, some of which are reasonable

systems to order a set of pages while others are for demonstration purposes only.

All are well defined and can produce an ordering from a connected weighted graph

G = (V, E).

Ranking systems:

1. Egalitarian method. This ranks every page equally by assigning each page

the same rank. Formally, FE : R æ∞G
FE

œ L(V ) is defined as FE(G) =

(1/|V |, ..., 1/|V |)T [25].

2. Basic counting method. This ranks each page based on the number of incoming

links. Formally, FB : R æ∞G
FB

œ L(V ) is defined as FB(G) = (q
vœV hi,v)i œ V .

3. Counting method. This ranks each page based on the number of incoming

links to the page divided by the total number of links in the graph. Formally,

FC : R æ∞G
FC

œ L(V ) is defined as FC(G) = (
q

vœV
hi,vq

kœV

q
vœV

hkv
)i œ V [25].

4. Invariant method. This ranks each page according to the stationary distribu-

tion of the normalised adjacency matrix, similarly to a simplified PageRank

method. Formally, FI : R æ∞G
FI

œ L(V ) is defined as FI(G) where FI(G)

returns the stationary distribution of the normalised adjacency matrix for the

graph G as a vector [25].
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5. Out counting method. This ranks each page according to the number of outgo-

ing links from the page but does not allow self-references to a�ect the ranking.

Formally FO : R æ∞G
FO

œ L(V ) is defined as FO(G) = (q
vœV hv,i)i œ V and

v ”= i.

6. Normalised self reference method. This ranks each page by normalising the

weights across the graph so that the total outgoing weight of edges connected

each vertex vi sum to 1 and then counting the number of self-links. Formally

FS : R æ∞G
FS

œ L(V ) is defined as FS(G) = (q
vœV hv,v)v œ V .

We show that our axioms are logically independent.

To see that the scaling axiom is independent of our other axioms, we consider the

Out counting method, FO. We can see that FO satisfies isomorphism by definition.

Self preference is satisfied as we do not count self edges as outgoing edges in our

definition of FO. Equivalence and proxy are satisfied as the weights are divided so

that the sum of the new weight is equal to the sum of the original when duplicating

or removing edges. Out counting does not satisfy scaling as we can increase the

weight of outgoing edges for a particular vertex in GÕ using this axiom so the relative

ranking is di�erent in G and GÕ.

To see that the isomorphism axiom is independent of our other axioms, we consider a

ranking system equivalent to the Invariant method FI , except for some page vx œ V

as the vector hx we set hx = 1. We can see that this new ranking method FX satisfies

all of our other axioms as it is equivalent to our Edge Weighted PageRank. This

method FX does not satisfy isomorphism as the ranking depends upon the naming

of the pages. Therefore isomorphism is independent of the other axioms.

To see that self preference is independent of our other axioms, we consider the

Egalitarian method, FE. We can see that FE satisfies isomorphism by definition.

Equivalence and proxy are satisfied as FE will maintain the preference in G and GÕ
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despite the modifications to the graph. This method does not satisfy self preference

as with the addition of edges to a vertex vÕ
k, vÕ

i ∞ vÕ
k in GÕ if vi ∞ vk in G but it should

be vi ª vk. Therefore self preference is the only one of our axioms not satisfied by

FE and so is logically independent.

To see that the equivalence axiom is independent of our other axioms, we consider

the counting method FC . We can see that FC satisfies isomorphism by definition.

Scaling is satisfied because we normalise the weights before taking the ranking, so

local scaling cannot a�ect the relative ranking. Proxy is satisfied as the weights

are divided equally so the incoming weights will remain the same in G and GÕ.

Equivalence is not satisfied because we normalise then count; so the successor set of

the vertices involved in the transformation have greater incoming weight in GÕ than

in G.

To see that the proxy axiom is independent of our other axioms, we consider the

the Normalised self reference method FS. We can see that FS satisfies isomorphism

by definition and trivially satisfies self preference. Scaling is satisfied due to the

normalisation that takes place initially. Equivalence is satisfied as all self links

will be retained within the vertices involved in the transformation. Proxy is not

satisfied as can be shown in a simple case where G has vertices v1, v2 œ V and

edges (v1, v1, a), (v1, v2, b) œ E where a and b are the edge weights and in GÕ we have

vÕ
1, vÕ

2, vÕ
n+1 œ V and the edges (vÕ

1, vÕ
n+1, a+ b), (vÕ

n+1, vÕ
1, a), (vÕ

n+1, vÕ
2, b) as allowed by

the proxy axiom we find that we can introduce or remove a self edge and therefore

modify the ranking of vertex v1.

As all of our axioms are logically independent we are confident that no axiom can

be simulated using another and that we require all of them to properly characterise

the Edge Weighted PageRank ranking system.
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3.6 Discussion

Representation theorems are the formal mathematical tool for the justification of

decision and choice rules. By providing an ordinal, graph-theoretic representation of

Edge Weighted PageRank we feel that a greater justification exists for use of PageR-

ank in a weighted environment and that a basis has been created for further work

in which pages are viewed as agents attempting to maximise their own utility. We

have furthered the work by Altman et al to provide an axiomatisation of PageRank

in which the derivation is polynomially bound by the size of the input graph.

It would be interesting to provide an axiomatisation for another ranking procedure

such as Hubs and Authorities or the Stochastic Approach for Link-Structure Ana-

lysis. We feel that this axiomatisation may be simplified by examining each ranking

procedure in a weighted environment. This would allow for a rigorous comparison

and evaluation of ranking methods from a theoretical perspective.

Like Altman et al, we believe that the problem of ranking Internet pages is a fun-

damental problem that is intriguing and contains a varied array of open problems.
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4 Query-Independent Stochastic

Approach to Link-Structure

Analysis

4.1 Introduction

Our motivation is to provide a link-structure analysis ranking algorithm which com-

bines aspects of the Stochastic Approach to Link-Structure Analysis (SALSA)

such as the concept of the two-step Markov Chain with the computational e�ciency

of a query-independent algorithm like PageRank.

We create a new algorithm, Query-Independent SALSA and test its performance

according to various measures against PageRank and Inlinks.

The rest of this section is organised as follows: section 4.2 outlines the previous

related work and specifies the original SALSA algorithm, 4.3 describes the data sets

we have chosen for experimentation and how we evaluate algorithms, 4.4 defines the

e�ectiveness measures used to compare ranking algorithms, 4.5 specifies the new

QISALSA algorithm, 4.6 details our experiments and their results and 4.7 contains

a discussion of the research.
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4.2 Related Work

The idea of using link-structure analysis for ranking web pages in search results

arose around 1997 and resulted in the creation of the HITS [14] and PageRank [23]

algorithms. These algorithms have since become hugely popular and have spawned

a large amount of related research, especially due to the commercial success of the

Google search engine.

There have been numerous attempts at improving the e�ectiveness of HITS and

PageRank in both quality of results and their computational e�ciency. Query-

independent algorithms inspired by PageRank include Topic-Sensitive PageRank

[11], BlockRank [13], PowerRank [29], and PopRank [30]. Query-dependent al-

gorithms inspired by HITS include PHITS [9], Randomised HITS [3] and most

notably SALSA [16]. These attempts commonly aim to exploit an additional obser-

vation about the structure of the web graph in order to refine the given ranking but

rarely change the fundamental thesis underlying PageRank or HITS.

A key di�erence between the PageRank and HITS authority scores are that PageR-

ank is query-independent and thus can be computed o�-line for the entire web graph

whilst the HITS algorithm requires the construction of a neighbourhood graph based

on the web pages that are related to the query and thus requires more computation

at query-time [14, 23]. SALSA attempted to improve the e�ectiveness of both by

combining features from HITS and PageRank but remains query-dependent [16].

More recently there has been increased research related to improving the computa-

tional performance of HITS and SALSA in the setting of a large-scale, real world

implementation. It has been suggested that using Bloom Filters to precompute

neighbourhoods of web pages may speed up HITS-like ranking algorithms at query-

time [28]. Precomputing SALSA maps has been suggested to improve the algorithms
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e�ciency and e�ectiveness. This approach computes a “score-map” for each web

page in the web graph by performing a SALSA-like algorithm on its neighbourhood

and retaining the scores of the most promising vertices in the neighbourhood graph

[22]. Another approach to improve SALSA and similar algorithms is to use con-

sistent sampling of vertices when constructing the neighbourhood graph and to use

a reduced graph with fewer neighbours of relevant pages. This approach has been

shown to perform e�ciently and e�ectively in an experimental environment [19].

Relatively few evaluations of web page ranking algorithms have been produced in

comparison to the volume of research related to improving their e�ectiveness, es-

pecially in a large-scale setting. There exists a number of small-scale studies such

as that by Amento et al. [5] who employ quantitative measures but base their res-

ults on a set of just 5 queries and a graph induced by topical crawls related to the

query. Borodin et al. [1] base their results on 34 queries, result sets of 200 pages

per query and graphs derived from the first 50 in-links per result from the Google

search engine. The first large-scale evaluation of HITS in comparison to other link-

based ranking algorithms that we are aware of was performed by Najork et al. [18]

and uses a graph covering 2.9 billion URLs and 28,000 queries. They found that

HITS outperforms PageRank but is about as e�ective as measuring in-degree (the

number of in-links). The only large-scale evaluation of SALSA in comparison to

other link-based ranking algorithms that we are aware of was performed by Najork

[21]. It uses a web graph induced by 463 million crawled web pages and uses 28,000

queries which includes 485,656 results labelled by human judges. This study found

that SALSA substantially outperforms HITS.
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4.2.1 Ranking Algorithms

To provide a base of comparison we will compare our new algorithm query-independent

SALSA to PageRank and inlinks. Inlinks provides an established base measure and

PageRank is the seminal algorithm of comparable complexity and design. We choose

not to compare with the original SALSA as the query-dependent computation is not

realistic in a real world setting without the addition of some type of pre-computation

of node adjacency, something that is beyond the scope of our research. More gen-

erally we could formulate a query-independent version of most algorithms but with

the limited scope possible within our experimental set up we prioritise comparison

against similar query-independent algorithms. Here we outline inlinks, PageRank

and SALSA. A description of HITS is also included to provide the context upon

which SALSA is based.

4.2.1.1 Inlinks

To rank pages based on the number of inlinks to a vertex we simply count the

number of incoming links for a page:

1. G = (V, E) where G is the Web graph

2. Define L as the adjacency matrix for the graph G where

Li,j =

Y
___]

___[

1 if an edge exists from Li to Lj

0 otherwise

3. Compute ranking score of each vertex vi = qjn
j0 Li,j

4.2.1.2 PageRank

We use a relatively simple implementation of PageRank from [15] with a standard

– of 0.85:
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1. G = (V, E) where G is the Web graph

2. Define P as the adjacency matrix for the graph G where

Pi,j =

Y
___]

___[

1/|Pi| if an edge exists from Pi to Pj

0 otherwise

3. P̄ = P where all rows consisting of only 0 are replaced with eT /n where n is

the order of P and e is a column vector of all ones.

4. – = 0.85

5. Compute the ranking vector as follows:

a) fi(k+1)T = –fi(k)T P̄ + (1 ≠ –)vT

4.2.1.3 Hypertext-Induced Topic Search (HITS)

The thesis underlying HITS is that good authorities are pointed to by good hubs

and good hubs point to good authorities. We calculate HITS as per [15] as follows:

1. G = (V, E) where G is the Web graph

2. Define L as the adjacency matrix for the graph G where

Li,j =

Y
___]

___[

1 if an edge exists from Li to Lj

0 otherwise

3. Initialize y0 = e where e is a column vector of all ones.

4. Compute authority score as xk
i = LTy(k≠1)

5. Compute hub score as yk
i = Lx(k)

6. Compute k = k + 1 and normalize xk and yk

7. Repeat steps 4 to 6 until convergence. [14]
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4.2.1.4 Stochastic Approach for Link-Structure Analysis (SALSA)

The stochastic approach for link-structure analysis combines aspects of PageRank

and HITS. It calculates a hub and authority score for each page in a manner similar

to HITS but derives these from Markov Chains as per PageRank. The original

SALSA algorithm formulated as per [15] is as follows:

1. Given a query q we build a graph G = (V, E) induced from V where

V = {vi, . . . , vn, vj, . . . , vm}; {vi, . . . , vn} is the set of pages from the Web

graph which are directly relevant to q and {vj, . . . , vm} are the neighbours of

and the neighbours of {vi, . . . , vn}

2. Given the input graph G = (V, E) create two sets Vh and Va where Vh =

{vi|degout(vi) > 0} and Va = {vi|degin(vi) > 0}

3. Create a bipartite graph GÕ = (V Õ, E Õ) where V Õ = VhfiVa and E Õ = {(ki, li)|ki‘Vh, li‘Va}

4. Define L as the adjacency matrix for the graph GÕ where

Li,j =

Y
___]

___[

1 if an edge exists from i to j

0 otherwise

5. Define Lr as L with each nonzero row divided by its row sum and Lc be L

with each nonzero column divided by its column sum

6. The hub matrix H consists of the nonzero rows and columns of LrLT
c and the

authority matrix A consists of the nonzero rows and columns of LT
c Lr

7. Compute the hub and authority vectors as follows:

a) fi(k+1)T
a = LT

r Lcfi
(k)T
a

b) fi
(k+1)T
h = LcLT

r fi
(k)T
h

Remark 31. If GÕ is connected then these matrices are both irreducible Markov

Chains and fiT
h , the stationary vector of H, gives the hub scores for the query and

42



4.3 Design of Empirical Evaluation

fiT
a , the stationary vector of A, gives the authority scores for the query. If GÕ is not

connected then H and A contain multiple irreducible components which must be

calculated and then combined together to form the global ranking [16, 15].

Experimentally SALSA has shown to be more e�ective than PageRank or HITS [21].

Implementing SALSA for a large-scale search engine presents an issue common to

all query-dependent link-structure ranking algorithms in that computation at query-

time is too slow. The majority of this time is spent computing the neighbourhood

graph related to a query. It has been shown that delaying the response time from

a search engine by even a small measure leads to a significant drop in usage [17].

Research has been conducted, which aims to precompute aspects of the SALSA

computation, which has shown to provide e�ective results which are derived more

e�ciently than SALSA but none of these have proven nearly as time e�cient as a

query-independent algorithm such as PageRank [21, 22, 19].

4.3 Design of Empirical Evaluation

Our experiments are based on a subgraph of the web graph and a set of queries with

associated results, some of which are assessed for relevance using human expertise.

We make use of the TREC (Text REtrieval Conference) Category B subset of the

ClueWeb09 Dataset. This subgraph of the web graph contains the first 50 million

English pages from their web crawl with 428,136,613 unique URLs and a total of

454,075,638 outlinks. This dataset was crawled from the Web during January and

February of 2009 [6] and provides a large subgraph of the Web Graph which we may

be confident in using to assess our algorithm in an empirical manner.

The query set we use to measure relevance is the set of queries and graded results

provided for the TREC 2010 Web Track and the TREC 2011 Web Track. Together
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these consist of 98 queries and a set of documents from the ClueWeb09 dataset

which have been assessed for relevance using human expertise. They are graded as

follows: -2 for spam or otherwise seems useless for any information need, 0 for not

relevant, 1 for relevant, 2 for a page or site that is comprehensive and should be a

top search result, 3 for a navigational result for the query [8, 7].

To empirically evaluate our algorithm we run it alongside inlinks and PageRank

upon the TREC Category B set of web pages. We then construct a set of ranked

results for each of the 98 queries from the ClueWeb09 dataset using the ranking

scores provided by each algorithm. To properly compare the algorithms we use

three e�ectiveness measures: Mean Average Precision, Mean Reciprocal Rank and

Normalized Discounted Cumulative Gain. These e�ectiveness measures provide an

assessment of each algorithm for each of the 98 keywords and the ranked results

produced.

4.4 E�ectiveness Measures

As per Najork [21], we use three performance measures to compare the e�ectiveness

of each algorithm: mean average precision, mean reciprocal rank and normalised

discounted cumulative gain. Given a rank-ordered vector of n results, let rat(i) be

the rating of the results at rank i, with 0 being detrimental, 1 being not relevant,

2 being relevant, 3 being very relevant and 4 being essential (we map these to the

human graded results to compute e�ectiveness measures). Let rel(i) be 1 if the

result at rank i is relevant and 0 otherwise (we consider a result to be relevant if it

has a label of “good” or better and irrelevant if it has a label of “fair” or worse).

For all measures we will assume a document cut-o� value k of 10 as studies have

indicated that users commonly view only the top 10 results when performing a query
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with a search engine [27].

4.4.1 Mean Average Precision

Precision is a measure of how many of the retreived results were relevant to the

query. The precision P@k at document cut-o� value k is defined as the fraction of

relevant results among the k highest-ranking results:

1
k

qk
i=1 rel(i)

Average precision considers the order in which the retreived documents are presen-

ted, meaning that a higher ranking relevant result is more desireable than a lower

ranking relevant result. The average precision at cut-o� value k is defined as:

AP@k =
qk

i=1 rel(i)·P @iqn

i=1 rel(i)

where n is the total number of documents in the collection and thus the denominator

is the total number of relevant results in the collection. The mean average precision

MAP@k at document cut-o� value k of a query set is the mean of the average

precisions of all queries in a query set.

4.4.2 Mean Reciprocal Rank

Reciprocal rank is the multiplicative inverse of the rank of the first relevant result

in the top k. It provides a measure of quality of the order in which results are

presented. A list of results correctly ordered by relevancy would give a score of 1

and the opposite 0. The reciprocal rank at document cut-o� value k is defined as:

RR@k =

Y
___]

___[

1
i

if ÷i Æ k : rel(i) = 1 · ’j < i : rel(j) = 0

0 otherwise
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The mean reciprocal rank MRR@k is the mean of the reciprocal ranks of all queries

in a query set at document cut-o� value k.

4.4.3 Normalised Discounted Cumulative Gain

Discounted cumulative gain is based on the assumptions that highly relevant doc-

uments are more useful when they appear earlier in the search engine results and

that the more relevant a document, the more useful it is. It is based upon the more

primitive Cumulative Gain measure which measures the relevancy of documents

returned; the sum of the graded relevance of the results for a query:

CG@k = qk
i=1 rat(i)

Discounted cumulative gain adds position in the result list into account with the

assumption that earlier results should be those of higher relevance. We define the

discounted cumulative gain at cut-o� value k to be:

DCG@k = qk
i=1

(2rat(i)≠1)
log2(1+i)

Normalized Discounted Cumulative Gain takes this measure and applies it accross

a set of queries and result sets. We define the normalised discounted cumulative

gain of a scored result set to be the given discounted cumulative gain divided by the

’ideal’ discounted cumulative gain provided by an optimal scoring function:

NDCG@k = DCG@k
IDCG@k

In practice, the ideal discounted cumulative gain is created using the relevancy scores

assessed using human expertise and thus is limited by their correctness.
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4.4.4 Summary

MAP and MRR are simpler measures that provide less accuracy because they assume

a document is releveant or not relevant; a simplified perspective of search users.

NDCG provides a more detailed measure as it weights pages based on their relevance

but is more reliant upon the subjective human expertise used to produce these

weights.

We choose these measures to assess the e�ectiveness of QISALSA as they are the

most commonly used in evaluating search ranking algorithms in more recent liter-

ature [12, 18, 21, 19, 22]. They provide a broad assessment of results set relevance

and order.

4.5 Query-Independent SALSA

The modified, query-independent SALSA algorithm we create is defined as follows:

1. G = (V, E) where G is the Web graph

2. Given the input graph G = (V, E) create two sets Vh and Va where Vh =

{vi|degout(vi) > 0} and Va = {vi|degin(vi) > 0}

3. Create a bipartite graph GÕ = (V Õ, E Õ) where V Õ = VhfiVa and E Õ = {(ki, li)|ki‘Vh, li‘Va}

4. Define L as the adjacency matrix for the graph GÕ where

Li,j =

Y
___]

___[

1 if an edge exists from i to j

0 otherwise

5. Define Lr as L with each nonzero row divided by its row sum and Lc be L

with each nonzero column divided by its column sum

6. The hub matrix H consists of the nonzero rows and columns of LrLT
c and the

authority matrix A consists of the nonzero rows and columns of LT
c Lr
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7. Compute the hub and authority vectors as follows:

a) fi(k+1)T
a = (1 ≠ Á)LT

r Lcfi
(k)T
a + Á

n
1T

b) fi
(k+1)T
h = (1 ≠ Á)LcLT

r fi
(k)T
h + Á

n
1T

This algorithm pre-computes the scores and then simply performs a look-up at

query time for the pages relevant to the query in a similar manner to PageRank.

To assist with convergence and ensure that the vectors produced by QISALSA are

unique we begin by modifying the normalized adjacency matrices of SALSA to

ensure that they are irreducible. To achieve this we use the idea of the random

surfer getting bored of their current state in the authority or hub side Markov chain

and jumping to a random page with probability Á. This allows the computation to

be performed on the entire web graph and therefore be precomputed. We add the

identity matrix multiplied by the factor Á divided by the number of vertices in the

graph to ensure that the graph becomes connected, is therefore irreducible and our

computation will converge.

In some respect QISALSA is more akin to PageRank than SALSA but we believe

it to be a valid and novel approach to ranking pages based on link-structure and

merits experimentation to measure its e�ciency and e�ectiveness.

4.6 Experimental Setup & Results

Experiments were conducted on two machines. The rankings were primarily calcu-

lated using a dual-core Intel Pentium CPU running at 2.8GHz with 4GB of memory

and the calculations to grade e�ectiveness were primarily performed using a machine

with 47 AMD Opteron CPUs running at 2.3GHz with 64GB or memory. We chose

to calculate query-independent SALSA on a less powerful machine than available as
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a major motivation behind the creation of the algorithm was to ensure that perform-

ance could match other query-independent algorithms. All algorithms were written

in Java and were executed within a Java Virtual Machine.

We performed ranking calculations for query-independent SALSA, PageRank and

inlinks using the set of 98 queries on the document corpus. For each query we

generated 1000 relevant results using a text-based search engine and then ordered

these results using the chosen algorithm. A summary of the results with the mean

values for each performance measure is shown in figure 4.1.
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Figure 4.1: Summary of experimental results
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The normalized discounted cumulative gain scores for each query for each algorithm

are shown for each query in figure 4.2. The variance of these is shown in figure

4.3 which plots a linear trendline for each algorithm accross the resultset. As per

previous results [18], on average inlinks performs better than PageRank. We find

that QISALSA performs slightly worse than PageRank for this measure.

Figure 4.2: Normalized discounted cumulative gain @10 for each query

Figure 4.3: Trend of Normalized discounted cumulative gain @10 for each
query

The average precision scores for each query for each algorithm are shown for each

query in figure 4.4. The variance of these is shown in figure 4.5 which plots a linear

trendline for each algorithm accross the resultset. Once again, as per previous results
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[18], on average inlinks performs better than PageRank. We find that QISALSA

slightly outperforms PageRank for precision on average.

Figure 4.4: Average precision @10 for each query

Figure 4.5: Trend of Average precision @10 for each query

The reciprocal rank scores for each query for each algorithm are shown for each

query in figure 4.6. The variance of these is shown in figure 4.7 which plots a linear

trendline for each algorithm accross the resultset. Once again, as per previous results

[18], on average inlinks performs better than PageRank. We find that QISALSA

outperforms PageRank for reciprocal rank.
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Figure 4.6: Reciprocal rank @10 for each query

Figure 4.7: Trend of Reciprocal rank @10 for each query

4.7 Discussion

This paper has proposed an algorithm that attempts to combine ideas from PageR-

ank and SALSA. The results suggest that the proposed method of ranking pages

does not outperform PageRank by a significant margin and that without improve-

ment may not be appropriate for use in a large-scale search engine. The MRR@10

result with QISALSA outperforming PageRank suggests that QISALSA may pro-

vide a better ordering of results based on relevancy. However the NDCG@10 result
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suggested that despite this beter ordering QISALSA may not produce a results set

which is as relevant on average as PageRank. The MAP@10 results show little

variance between the two algorithms. We feel that QISALSA requires fundamental

improvements to be more e�ective against comparable ranking methods.

There are a number of future directions to be taken from these results. The first is

to combine our formulation of QISALSA with a text-based ranking algorithm such

as BM25F [12] to test performance in a more realistic scenario. This could assist

with improving the relevancy of the results set which combined with the improved

ordering could demonstrate a strong case for the algorithms use. Real world systems

commonly create a meta-algorithm in this manner to rank pages. The other possible

directions are based around the two more general issues we have addressed. How can

we improve the computational (time) e�ciency of SALSA-like algorithms and how

can we improve the ranking e�ectiveness of PageRank-like algorithms? As suggested

by our results, the best approach may not be to attempt a combination of features

from each of these and instead focus on each problem in isolation.
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We believe that the problem of ranking Internet pages is a fundamental problem that

is intriguing and contains a varied array of open problems. These ranking systems

are applied in the technology we use every day and are of increasing importance as

we create and catalogue more information. Assessing and improving their e�ective-

ness using theoretical and empirical approaches is an open and important area of

exploration.

In this thesis we provided a small set of amendments to the work of Altman et

al before producing an ordinal, graph-theoretic representation of Edge Weighted

PageRank in which the derivation is polynomially bound by the size of the input

graph. This contribution provides greater justification for use of PageRank in a

weighted environment and lays the groundwork for a rigorous theoretical compar-

ison and evalation of the major search ranking algorithms. It adds to a small but

important body of work in the domain of theoretical assessment of ranking algo-

rithms.

We created a new algorithm which combines ideas from the SALSA (Stochastic

Approach to Link-Structure Analysis) algorithm with the computational benefits of

precalculating a ranking of pages in a query-independent manner. We compared this

to other popular approaches: Inlinks, PageRank and HITS. When applied to a small

set of web pages this new algorithm didn’t outperform the traditional approaches
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by a significant margin. This result supports the hypothesis that improvements in

search ranking algorithms are more easily discovered by combining other methods

with link structure analysis. The near future is focused on improvements in textual

content analysis, more intelligent query analysis and the combination of other page,

domain and user data with results from traditional link structure analysis in meta-

algorithms.
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