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Abstract

My research has centred around establishing the nature of dark matter haloes

by investigating their abundance as a function of halo mass, the formation his-

tory of each halo, commonly called the merger tree, and the internal structure

of the halo, in terms of their radial density profiles and angular momentum.

In the first part of this thesis, I present a new algorithm which groups the

subhaloes found in cosmological N-body simulations by structure finders such

as subfind into dark matter haloes whose formation histories are strictly hier-

archical. One advantage of these ‘Dhaloes’ over the commonly used friends-of-

friends (FoF) haloes is that they retain their individual identity in cases when

FoF haloes are artificially merged by tenuous bridges of particles or by an over-

lap of their outer diffuse haloes. Dhaloes are thus well suited for modelling

galaxy formation and their merger trees form the basis of the Durham semi-

analytic galaxy formation model, galform. Applying the Dhalo construction to

the ΛCDM Millennium-2 simulation we find that approximately 90% of Dhaloes

have a one-to-one, bijective match with a corresponding FoF halo. The remain-

ing 10% are typically secondary components of large FoF haloes. Although the

mass functions of both types of haloes are similar, the mass of Dhaloes correlates

much more tightly with the virial mass, M200, than FoF masses. Approximately

80% of FoF and bijective and non-bijective Dhaloes are relaxed according to stan-

dard criteria. For these relaxed haloes all three types have similar concentration–

M200 relations and, at fixed mass, the concentration distributions are described

accurately by log-normal distributions.

In the second part of this thesis, I present distributions of orbital parameters

of infalling satellite haloes at the time of crossing the virial radius of their host

halo. Detailed investigation of the orbits is crucial as it represents the initial con-



iii

ditions which determine the later evolution of the substructure within the host.

I use merger trees in a high resolution cosmological N-body simulation to trace

the satellite haloes and measure their orbits when they first infall into the host

halo. I find that there is a trend of the orbital parameters with the ratio between

the satellite halo mass and the host halo mass at infall. I find that the more

massive satellites move along more eccentric orbits with lower specific angular

momentum than less massive satellites. I also search for possible correlations

between different orbital parameters and provide accurate fitting formulae for

the two independent orbital parameters (the total velocity and the radial-to-total

velocity ratio). Using combinations of these formulae, we successfully fit all the

other orbital parameters.
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1
INTRODUCTION

During my childhood, my dad lent part of our house to a school as the library. I

spent most of my childhood there and had a dream of being an astronomer after

reading the biography about the excellent astronomer, Zhang Heng (Chinese;

AD 78 to 139) during the Han dynasty. With the improvement of my knowledge

of fundamental physics and math, I have started to devote myself to astronomy

research under the supervision of excellent astronomers. During my PhD, my

research has centred around hierarchical structure and galaxy formation models.

In hierarchical dark matter dominated cosmologies, such as standard ΛCDM,

galaxy formation is believed to be intimately linked to the formation and evolu-

tion of dark matter haloes (a hypothetical component of a galaxy that envelops

the galactic disc and extends well beyond the edge of the visible galaxy). Bary-

onic gas falls into dark matter haloes, cools and settles into centrifugally sup-

ported star-forming discs. Thus the evolution of the galaxy population is driven

by the evolution of the population of dark matter haloes which grow hierarchi-

cally via mergers and accretion.

To model galaxy formation one must first have an accurate model of the

evolution of dark matter haloes. Hierarchical galaxy formation models require

three basic pieces of information about dark matter haloes: (i) The abundance

of haloes of different masses. (ii) The formation history of each halo, commonly

called the merger tree. (iii) The internal structure of the halo, in terms of the

radial density and their angular momentum profiles. With the improvement of

N-body simulations in recent decades, the formation and evolution of dark mat-

2
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ter haloes from cosmological initial conditions in large representative volumes

can now be routinely and reliably simulated. In order to have a comprehensive

understanding of galaxy formation, we can start by modelling galaxy formation

by providing an accurate model of the evolution of dark matter haloes. The key

starting point for this approach is halo merger trees which quantify the hierar-

chical growth of individual dark matter haloes. By generating N-body merger

trees, we can build a halo catalogue within which we can perform detailed study

of the internal structure of the haloes.

1.1 ΛCDM cosmology

Zwicky (1933) observed that galaxies in the Coma cluster seemed to be moving

too rapidly to be held together by the gravitational attraction of the visible mat-

ter. This was the first evidence of dark matter. Later, Rubin et al. (1980) proposed

that dark matter accounts for the missing mass suggested by the dynamics of the

luminous matter in individual spiral galaxies.

The scale factor of the Universe a(t) is very crucial in Cosmology, as it mea-

sures the universal expansion rate, the evolution of the a(t) is described by the

Friedmann equation: (
ȧ
a

)2

=
8πG

3
ρ− kc2

a2 , (1.1.1)

where k is the curvature and ρ is the density of the Universe (Friedmann, 1922).

The Hubble parameter is defined as H = ȧ/a, and so the Friedmann equation

can be written as,

H2 =
8πG

3
ρ− kc2

a2 . (1.1.2)

For a given value of H, there is a special value of the density which would be

required in order to make the Universe flat, k = 0, it is known as the critical

density ρc, which is given by

ρc(t) =
3H2

8πG
. (1.1.3)
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Big Bang Nucleosynthesis theory (Gamow, 1948) predicts that, in terms of the

present day critical density of matter, the required density of baryons is a few

percent (the exact value depends on the assumed value of the Hubble constant).

This relatively low value means that not all of the dark matter can be baryonic,

i.e. we are forced to consider more exotic particle candidates.

It is conventional to express the baryon density, ρb, the total mass density,

ρm, and even the dark energy density, ρDEc2, postulated to be responsible for

the accelerating expansion of the universe (Perkins, 2008) in units of the critical

density.

The respective dimensionless density parameters for the baryon density, Ωb,0,

the total mass density, Ωm,0 and dark energy density, ΩΛ,0 are given by

Ωi,t ≡
ρi,t

ρc
. (1.1.4)

Since the discovery of the cosmic expansion acceleration in 1998 (Riess et al.,

1998; Perlmutter et al., 1999), one of the most debated questions in physics and

cosmology has been the existence and nature of the dark energy. In this model

(Riess et al., 1998), it is the negative pressure of the elusive dark energy which

drives the accelerating expansion. In the simplest case this corresponds to a cos-

mological constant, perhaps associated to the zero point energy of the quantum

vacuum. On the assumption of homogeneity and isotropy on large scales, the

Friedmann-Robertson-Walker (FRW) metric is given by

ds2 = −c2dt2 + a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2θdφ2)

]
, (1.1.5)

In equation 1.1.1, k can have positive, zero, negative curvature with respect to

the spatial hypersurfaces (Kolb & Turner, 1990). The evolution of the scale factor,

a, the expansion of the universe, is determined by the Friedmann equation:

H2(a) = H2
0

[
ΩΛ + Ωma−3 + Ωra−4 − (Ωtot − 1)2a−2

]
, (1.1.6)

where a is conventionally taken to be equal to 1 at the day, the redshift, z, is

given by a = 1/(1 + z) and H0 is the present value of the Hubble parameter.

The ’Λ’ in ΛCDM represents Einstein’s cosmological constant, which also

refers to the dark energy. By splitting the right hand side of the acceleration

equation into parts for the vacuum and for all other material, we can have:
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(
ä
a

)2

= −4πG
3

(
ρ +

3P
c2

)
+

Λ
3

, (1.1.7)

where Λ ≡ 8πGρDE and ρDE is the effective density of the vacuum defined such

that the energy density is εDE = ρDEc2.

Using the same method, we can find that Λ enters the Friedmann equation

as (
ȧ
a

)2

=
8πG

3
ρ− kc2

a2 +
Λ
3

. (1.1.8)

The Λ dominates as a gets very large and results in exponential expansion a ∝

exp(Ht) where H =
√

Λ/3. As PDE = −ρDEc2, the negative pressure exerted

from the positive energy density can accelerate the expansion of the Universe, in

contrast to matter, which slows down the expansion. Although the acceleration

was detected through observations of supernovae (Riess et al., 1998; Schmidt

et al., 1998; Perlmutter et al., 1999), the existence of dark energy still needs more

evidence to be confirmed. CMB (Cosmic microwave background) radiation is

produced after trec = 400000 years when the Universe has cooled sufficiently

that there are no longer sufficiently high energy photons to ionize hydrogen.

The proton-electron plasma recombines into hydrogen atoms and makes the

universe transparent.

The CMB (Spergel et al., 2003, 2007; Komatsu et al., 2009, 2011) can constrain

the geometry of the Universe to be close to flat which strengthens the evidence

for dark energy as this requires Ωtot = 1. The baryon acoustic peaks are par-

ticularly important and they are produced because baryons are tightly coupled

to the photons before recombination. The pressure in the photon-baryon fluid

sets up oscillations in the fluid by providing a restoring force to the initial fluc-

tuations. Therefore, there are ripples of all wavelengths and any perturbation in

the baryon-photon plasma thus behaves as an acoustic wave. The sound horizon

at which baryons were released from the Compton drag of photons determines

the location of baryon acoustic oscillations. The epoch, called the drag epoch,

occurs at the redshift zd (Eisenstein & Hu, 1998) and then the sound horizon is

given by rs(zd) =
∫ ηd

0 d1990sηcs(η), where cs is the sound speed. By measuring

the angular scale of these fluctuations, astronomers (Eisenstein et al., 2005; Per-
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cival et al., 2007, 2010) have continued to confirm that about 70% of the energy

density of the present Universe consists of dark energy.

1.1.1 Galaxy clustering and galaxy clusters

The clustering of galaxies is still a hot topic in structure formation, two of the

most famous modern surveys are 2dF galaxy redshift survey (Colless et al., 2001)

and Sloan Digital Sky Survey (Strauss et al., 1999). The current understanding

of galaxy clustering is in terms of being driven by the dark matter in the Uni-

verse. As the dark matter is the dominant matter and it interacts gravitationally

with baryons, galaxies generally follow the dark matter distribution, and the

gravitational attraction of the dark matter causes the galaxies to clump together.

The two most widely used models of the galaxy-halo connection are the Halo

Occupation Distribution (HOD, e.g., Berlind & Weinberg, 2002; Zheng et al.,

2005) and the Conditional Luminosity Function (CLF, e.g., Yang et al., 2003;

van den Bosch et al., 2013). Both the HOD and the CLF assume that galaxy

occupation statistics are governed exclusively by the masses of the dark matter

halos hosting the galaxies of interest. Simple models of this form have been

sucessful in accurately reproducing the observed galaxy clustering including its

dependence on galaxy luminosity and colour (Norberg et al., 2002; Zehavi et al.,

2011).

The most massive dark matter halos can contain thousands of galaxies. These

galaxy clusters are the largest relaxed structures in the Universe. They have pro-

vided very strong and direct evidence for the nature of dark matter and played

a very important role as cosmological probes. Clusters of galaxies are believed

to form hierarchically, with small systems forming first which are then pulled

together by gravity to form larger clusters. When these mergers take place the

diffuse gas involved is processed through hydrodynamical shocks which con-

verts its infalling kinetic energy to thermal energy. This establishes a hot pres-

sure supported intra-cluster medium that emits at X-ray wavelengths and can

be detected via the Sunyaev-Zel’dovich (SZ) effect through its imprint on the

cosmic microwave background radiation (Grego et al., 2000). Cosmological pa-
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rameters can be constrained by measuring the number density of galaxy clusters

as a function of X-ray luminosity, temperature or SZ decrement (Molnar et al.,

2002; Planck Collaboration et al., 2014a).

Measurements of gravitational lensing (the bending of light paths from dis-

tant sources caused by the gravitational field of all the intervening mass), can

also provide an accurate way of measuring the dark matter distribution in galaxy

clusters in order to test the current theoretical predictions (e.g. Velander et al.,

2014a). The dynamical nature of mergers can also provide very direct tests of

basic gravitational physics and the location of dark matter can be probed with

weak gravitational lensing observations (Mandelbaum et al., 2013; Cacciato et al.,

2013; Velander et al., 2014b; von der Linden et al., 2014). The observational stud-

ies of galaxy clusters are increasingly multi-wavelength (IR, X-ray etc) (Pipino

& Pierpaoli, 2010; Israel et al., 2014), the astronomers are now focusing on us-

ing existing Herschel and Planck data to analyse lensing galaxy clusters, high

redshift clusters, and cluster mergers.

1.1.2 Dark Matter Candidates

All of the evidence for dark matter noted above is based on its gravitational

interactions, but it does little to point out what dark matter is. I will focus on

dark matter candidates that are motivated not only by cosmology but also by

particle physics in this section.

The standard model (SM) of particle physics is a successful theory of ele-

mentary particles (e.g. Herrero, 1998). The open questions raised by the SM

have helped to encourage the hypothesis of many of the leading dark matter

candidates. The neutrino is the only SM particle that could be DM and it is

known to have a mass of at least meV due to neutrino oscillations (Gonzalez-

Garcia & Nir, 2003). We also need to consider dark matter candidates beyond

the SM. Weakly-interacting massive particles (WIMPs) are the most studied none

SM dark matter candidates, as they are predicted to have the correct relic density

and the WIMPs, like neutralino and Kaluza-Klein dark matter, can be detected

in many ways. If WIMPs do not contribute a significant amount of the current
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dark matter density, it implies that they must have annihilated to other particles

because, if they exist, they initially have the observed relic density. Besides the

neutralinoes and KK dark matter, there have been many other WIMP candidates

like T-odd particles in little Higgs theories (Birkedal et al., 2006). All the WIMPs

are produced through thermal freeze out and are cold, collisionless. Alternative

new physics beyond the SM suggests a sterile neutrino is a intermediate mass,

keV, dark matter candidate (Dodelson & Widrow, 1994).

There are three scenarios depending on the mass of the DM particle which

determines the thermal velocities of the particles when they decouple. Neutrinos

if they had masses of eV could make up all the DM and would be a candidate for

hot dark matter (HDM). Here the large thermal velocities of the light particles

cause them to erase, vie free streaming, all the initial structure on scales less than

that of galaxy clusters. But the CMB data indicates that only a small amount of

HDM could exist at the CMB time (Gariazzo et al., 2013), as a dominant fraction

is not simultaneously compatible with the amplitude of fluctuations in the CMB

and high redshift structure formation as evidenced by the existence of high red-

shift quasars. This scenario has been ruled out. WIMPS are a leading cold dark

matter (CDM) candidate. They are cold and leave the primordial spectrum of

fluctuations intact down to Earth masses. In this scenario structure formation

begins at high redshift and is hierarchical with structure forming through re-

peated mergers to low redshift. Sterile neutrinos are candidates for warm dark

matter (WDM), which is intermediate between hot and cold dark matter. Here

modest thermal velocities only erase structure on scales comparable to those

of dwarf galaxies. Their effect could be significant on the internal structure of

galactic haloes and their dwarf satellites. Hence there is considerable literature

on the effect of WDM on the so called cusp vs. core, too-big-to-fail and missing

satellites problems (see Weinberg et al., 2013, for a review). These issues have

also prompted the discussion of other classes of dark matter. For instance, if

dark matter and active neutrinos interact with a new gauge boson with mass of

around an meV, this can be a solution to these issues (van den Aarssen et al.,

2012). All of the small cosmological scales problems can be resolved by this
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proposal. With a self-scattering cross section of around 1 cm2/g, dark matter

scattering off the neutrino background leads to its kinetic decoupling at a tem-

perature of about a few eV which is equates to the virial temperature of dwarf

galaxies with halo masses of around 109M�.

In this thesis, I concentrate on the ΛCDM model (although similar analysis

could be applied to WDM models if provided with suitable WDM simulations)

for the following reasons. All the evidence from the CMB and large scale struc-

ture is consistent with the simple ΛCDM model (Planck Collaboration et al.,

2014b) and the weak deviations that do exist on small scale could be caused by

baryonic effects (Sawala et al., 2014).

1.2 Semi-analytic modelling of galaxy formation

The picture of galaxy formation in ΛCDM involves gas collecting and cooling

in dark matter haloes which then lead to star formation. Over the past decade,

astronomers have developed a new approach to follow the formation of galaxies

in cosmologies in which structure grows hierarchically. The technique is called

semi-analytic modelling, allowing a wide range of properties to be predicted

for the galaxy populations at any redshift. Semi-analytic modelling is comple-

mentary to gas dynamics simulations. The recipes used in semi-analytic models

can be refined to mimic the simulations. Where simulations break down due

to a lack of resolution or understanding of the relevant physics, semi-analytical

models can be used to improve our knowledge and extend the modelling.

The first semi-analytic models were constructed in the early 1990s (Cole, 1991;

White & Frenk, 1991) and have become steadily more sophisticated (Kauffmann

& White, 1993; Somerville & Primack, 1999; Cole et al., 2000; Bower et al., 2006;

Somerville et al., 2008; Benson & Bower, 2010). Specifying the semi-analytic

model of galaxy formation typically consists of the following steps:

1. Choose the cosmological parameters that specify the geometry and mat-

ter content of the universe (Ωm,0, Ωb,0, ΩΛ,0, H0) and the amplitude at 8

h−1Mpc of the initial density fluctuation spectrum σ8.
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2. Use N-body simulations or Monte-Carlo methods to trace the merger his-

tories for a series of dark matter haloes.

3. Use the merger histories of dark matter haloes to follow the distinct bary-

onic components: hot gas, cold gas disc, and stars.

4. Provide compact prescriptions to specify these components: the cooling of

hot gas, star formation from the cold gas, feedback from massive stars and

active galactic nucleus (AGNs) reheating the cold gas to hot gas. Also, the

metallicity of each of is tracked using chemical evolution models.

1.3 Formation and structure of dark matter haloes

Density perturbations grow linearly until they reach an amplitude of order unity,

δc, then they turn around from the expansion of the Universe and collapse to

form virialized dark matter haloes. These haloes grow in mass by accreting

material from their neighbourhood or by merging with other haloes. Some of

these haloes survive as bound structures after merging with larger haloes and

become subhaloes within the larger halo. In summary, the picture of the halo

formation is that: small-scale perturbations grow and collapse to form small

haloes, and these small haloes merge together to form a single virialized dark

matter halo containing remnant subhaloes.

Dark matter haloes are the hosts of galaxies, the halo properties will have a

direct link to the mass function, progenitor mass function, merger rate, cluster-

ing properties and internal properties of galaxies. Thus, it is essential to under-

stand the structure and formation of dark matter haloes as their properties will

help us to understand the formation and evolution of galaxies. In this section, I

will discuss the following topics: The mass function of dark matter haloes, the

halo merger trees, and finally the internal structure of dark matter haloes.
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1.3.1 Halo mass function

Consider the overdensity field δ(x, t) = (ρ(x, t)− ρ̄(t))/ρ̄(t) , which evolves as

δ(x, t) = δ0(x)D(t) in the linear regime, where δ0 is the overdensity field lin-

early extrapolated to the present time and D(t) is the linear growth rate at time

t, normalized to unity at the present (Kolb & Turner, 1990). In the spherical col-

lapse model, the regions with δ0(x) > δc/D(t), will collapse to form virialized

objects. The initial work of predicting the mass function of collapsed objects can

be traced back as early as four decades ago, when Press & Schechter (1974) pre-

sented the famous Press & Schechter (PS) mass function to calculate the number

density of collapsed objects with masses in the range dM given by

n(M, t)dM =

√
2
π

ρ̄

M2
δc

σ
exp

(
− δ2

c
2σ2

) ∣∣∣∣ d ln σ

d ln M

∣∣∣∣ dM. (1.3.9)

The PS mass function can be written in the form:

n(M, t)dM =
ρ̄

M2 fPS(σ)

∣∣∣∣ d ln σ

d ln M

∣∣∣∣ dM, (1.3.10)

where

fPS(σ) =

√
2
π

δc

σ
exp

(
− σ2

c
2σ2

)
. (1.3.11)

In the PS formalism, all mass is contained in haloes:∫ ∞

−∞
fPS(σ)d ln σ−1 = 1. (1.3.12)

The S-T model is a modification to the PS model motivated by ellipsoidal halo

collapse models and fitted to the results of N-body simulations (Sheth et al.,

2001; Sheth & Tormen, 2002)

f (σ; S−T) = A

√
2a
π

[
1 +

( σ2

aδ2
c

)p
]

δc

σ
exp

[
− aδ2

c
2σ2

]
, (1.3.13)

merger tree where A=0.3222, a = 0.707 and p = 0.3.

Besides the analytic formulas, the topic of the mass function has been investi-

gated by groups working with N-body simulations. I list some famous formulas

starting with Jenkins et al. (2001) offer an empirical fit using high resolution

simulations of a range of cosmologies. Their fit is constructed in the f − ln(σ−1)

plane,

f (ln σ−1) = 0.315 exp
[
− | ln σ−1 + 0.61|3.8]. (1.3.14)
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Warren et al. (2006) provide a fitting formula using dark matter simulation,

f (σ) = A(σ−a + b)e−c/σ2
(1.3.15)

with parameters q = (A, a, b, c). Reed et al. (2007) modifies this to

f (σ) = A
√

2a
π

[
1 +

(
σ2

aδ2
c

)p
+ 0.2G1

]
δc
σ exp

[
− caδ2

c
2σ2

]
(1.3.16)

G1 = exp
[
− [ln(σ−1)−0.4]2

2(0.6)2

]
,

by steepening the high mass slope of the S-T function with the addition of a

new parameter, c = 1.08, in the exponential term, and simultaneously including

a Gaussian in ln σ−1 centred at ln σ−1 = 0.4 to fit their simulation data. Watson

et al. (2013) provide the fitting formula,

f (σ) = A
[(

β

σ

)α

+ 1
]

e−γ/σ2
, (1.3.17)

where A = 0.282, α = 2.163, β = 1.406, γ = 1.210 which is good to fit the simulation

data to within 10%.

1.3.2 Halo merger trees

Halo merger trees play a very important role in hierarchical models of galaxy

formation and they are the backbone of the semi-analytic models of galaxy for-

mation. There are main two methods of constructing merger trees: Monte-Carlo

methods based on the extended Press-Schechter (EPS; Bond et al. (1991)) for-

malism and N-body simulations. Different analytic algorithms for Monte-Carlo

methods have been developed since the early 90s by Bond et al. (1991); Kauff-

mann & White (1993); Lacey & Cole (1993); Somerville & Kolatt (1999); Cole et al.

(2000); Parkinson et al. (2008). Since the EPS formalism itself is not rigorous and

it does not specify many merger tree properties, they require detailed compar-

ison with simulations of structure formation. Trees directly extracted from the

N-body outputs can be an alternative to Monte-Carlo merger trees. The main

advantage over Monte-Carlo merger trees of N-body merger trees is that, they

do not depend on the EPS assumptions and the outputs can provide spatial
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and velocity information automatically. Although high-resolution simulations

are expensive and time-consuming and there is no unambiguous definition for

a halo, the approach is still very powerful due to the improvement of the simu-

lation resolution (Boylan-Kolchin et al., 2009) and halo definitions (Helly et al.,

2003; Springel et al., 2005; Harker et al., 2006). In Chapter 2 and Chapter 3,

we have provided the detailed prescription of a new advanced halo definition

and investigation of the Dhalo merger trees which is a more advanced N-body

merger tree than Friends-of-Friends (FoF) (Davis et al., 1985) halo merger trees.

1.3.3 Internal structure of dark matter haloes

In this section, I describe three models for the internal structure of dark matter

haloes, which are the singular isothermal sphere, Hernquist (Hernquist, 1990)

and the NFW (Navarro et al., 1995) models. Motivated by flat rotation curves,

the density profile for the singular isothermal sphere is,

ρ(r) ∝
1
r2 . (1.3.18)

Both Hernquist and NFW density profiles can be described with a double power

law density distribution given by

ρ(r) ∝
(

r
rs

)−γ [
1 + (

r
rs
)α

](γ−β)/α

. (1.3.19)

where γ = 1, β = 3, α = 1 for NFW profile, γ = 1, β = 4, α = 1 for Hernquist

profile, rs is a characteristic length scale. At small radii ρ(r) ∝ r−γ, while at large

radii ρ(r) ∝ r−β.

I adopt the NFW profile in the rest of this thesis. It is conventionally ex-

pressed as,

ρ(r) = ρcrit
δchar

r/rs(1 + r/rs)2 , (1.3.20)

where δchar is a characteristic overdensity and rs is a characteristic scale . The

enclosed mass of the NFW profile is

M(r) = 4πρ̄δcharr3
s

[
ln(1 + cx)− cx

1 + cx

]
, (1.3.21)
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where x ≡ r/rh, and the halo concentration is defined as c ≡ rh/rs. We can

obtain the relation between characteristic overdensity and concentration param-

eters,

δchar =
∆h
3

c3

ln(1 + c)− c/(1 + c)
, (1.3.22)

where ∆h is 200 if ρh = 200× ρc. The NFW profile is completely characterized

by its mass, M∆h , and its concentration parameter, c, or equivalently by rs and

δchar.

1.3.4 Structure of the thesis

The thesis is structured as follows. In Chapter 2 I present a detailed description

of the latest N-body merger tree algorithm that has been developed for use with

the semi-analytic code galform. In Chapter 3 I compare and contrast the prop-

erties of the haloes (Dhaloes) resulting from the N-body merger tree described

in Chapter 2 with the more commonly used FoF haloes (Davis et al., 1985). I

show specific rare examples where Dhaloes and their matched FoF counterparts

exhibit gross differences with either one FoF halo being decomposed into several

Dhaloes or vice versa. I also examine the distribution of mass ratios for match-

ing Dhalo and FoF pairs. Then in Chapter 4 we compare statistical properties

of halo populations including halo mass functions and their concentration–mass

relation. In Chapter 5, I briefly outline the methods including the identification

of halo mergers in N-body simulation and the measurement of orbital parame-

ters, then we present detailed analysis of the orbital parameters.



2
DHALO ALGORITHM

In this thesis, we present a detailed description of the latest N-body merger

tree algorithm that has been developed for use with the semi-analytic code gal-

form. The algorithm is an improvement over the earlier version, described in

Merson et al. (2013), which was run on the Millennium simulation (Springel,

2005a) and widely exploited in a range of applications (Bower et al., 2006; Font

et al., 2008; Kim et al., 2011; Merson et al., 2013). Our improvements mainly

include the following two aspects, we can identify a descendant more than one

snapshot later even if something else has merged with the subhalo between the

snapshots. The old algorithm would fail in this case because it required the

descendant to have no progenitors at all rather than just no main progenitor.

Second, we use a new definition of the main progenitor to find the ”same” ob-

ject between snapshots when deciding how to group halos into subhaloes. More

details are given in Section 2.2. The resulting differences between the two algo-

rithms are very small when applied to relatively low resolution simulations such

as the Millennium, but the improvements in the new algorithm do a better job

of tracking halo descendants in high resolution simulations such as the Millen-

nium II (Boylan-Kolchin et al., 2009) and Aquarius simulations (Springel et al.,

2008). The starting point for our merger trees are FoF haloes that are decom-

posed into subhaloes, distinct self-bound structures, by the substructure finder,

subfind (Springel et al., 2001). Subhaloes are tracked between output times and

agglomerated into a new set of haloes, dubbed Dhaloes, that have consistent

membership over time in the sense that once a subhalo is accreted by a Dhalo it

15
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never demerges. In this process we also split some FoF haloes into two or more

Dhaloes when subfind substructures are well separated and only linked into a

single FoF halo by bridges of low density material. most bound particles

Here we describe in detail the algorithm used to produce the Dhalo merger

trees developed by Dr John Helly in Section 2.2 and I summarize my post-

processing algorithm in Section 2.3. These merger trees are intended to be used

as input to the galform semi-analytic model of galaxy formation. The need for

consistency between the halo model used in the semi-analytic calculation and

the N-body simulation imposes some requirements on the construction of the

merger trees.

The galform galaxy formation model makes the approximation that mergers

between haloes are instantaneous events and assumes that haloes, once merged,

do not fragment. However, in N-body simulations halo mergers take a finite

amount of time and it is not uncommon for a halo falling into another, more

massive halo to escape to well beyond the virial radius after its initial infall (Gill

et al., 2005; Ludlow et al., 2009). We therefore need to choose when to consider

N-body haloes to have merged in the semi-analytic model and define our haloes

such that they remain merged at all later times. We also wish to define the

haloes used to construct the trees such that, as far as possible, they resemble

the spherically symmetric, virialised objects assumed in the galaxy formation

model. Quantifying the extent to which we have achieved this is one of the main

aims of this chapter.

2.1 Halo catalogues

Immediately below, we summarise the specification of the Millennium II sim-

ulation which we use to test and illustrate the application of our merger tree

algorithm. We then give the details of the construction of the merger trees and

their constituent haloes with the complete specification.



17

The Millennium-II Simulation

The Millennium-II (MSII) simulation1 (Boylan-Kolchin et al., 2009) was carried

out with the gadget3 N-body code, which uses a “TreePM” method to calcu-

late gravitational forces. The MSII is a cosmological simulation of the stan-

dard ΛCDM cosmology in a periodic box of side Lbox= 100h−1 Mpc containing

N = 21603 particles of mass 6.95× 106 h−1M�. The cosmological parameters

for the MSII are: Ωm = 0.25, Ωb = 0.045, h = 0.73, ΩΛ = 0.75, n = 1 and

σ8 = 0.9. Here Ωm denotes the total matter density in units of the critical den-

sity, ρcrit = 3H2
0/(8πG). Ωb and ΩΛ denote the densities of baryons and dark

energy at the present day in units of the critical density. The Hubble constant is

H0 = 100h km s−1 Mpc−1, n is the primordial spectral index and σ8 is the rms

density fluctuation within a sphere of radius 8h−1Mpc extrapolated to z = 0 us-

ing linear theory. These cosmological parameters are consistent with a combined

analysis of the 2dFGRS (Colless et al., 2001; Percival et al., 2001) and first year

WMAP data (Spergel et al., 2003; Sánchez et al., 2006).

2.2 Building the subhalo merger trees

Before we can construct the Dhalo merger trees, it is necessary to define subhalo

merger trees by identifying the descendant of each subhalo. The code we use

to do this was included in the merger trees comparison project carried out by

Srisawat et al. (2013) under the name D-Trees. The project concluded that it

was desirable feature for a merger tree code to use particle IDs to match haloes

between snapshots and have the ability to search multiple snapshots for descen-

dants. The latter requirement was due to the tendency of the AHF group finder

(Knollmann & Knebe, 2009) used in the project to temporarily fail to detect sub-

structures during mergers.

Since subfind suffers from a similar problem, we allow for the possibility that

1The Millennium-II simulation data will be available from an SQL relational database that

can be accessed at http://galaxy-catalogue.dur.ac.uk:8080/Millennium .
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the descendant of a subhalo may be found more than one snapshot later. Our

approach is to devise an algorithm which can identify the descendant of a halo at

any single, later snapshot, apply it to the next Nstep snapshots (where Nstep = 5),

and pick one of these Nstep possible descendants to use as the descendant of the

subhalo in the merger trees.

Alternative solutions to this problem include allowing the merger tree code

to modify the subhalo catalogue to ensure consistency of subhalo properties be-

tween snapshots (ConsistentTrees, Behroozi et al. 2013) and using information

from previous snapshots to define the subhalo cataloguemuch longer (HBT, Han

et al. 2012).

In common with all but one of the merger tree codes in the comparison

(Jmerge, which relies entirely on aggregate properties of the haloes), we identify

descendants by finding subhaloes at differentmuch longer snapshots which have

particles in common.

2.2.1 Identifying a descendant at a single, later snapshot

To find the descendant at snapshot j, of a halo which exists at an earlier snapshot,

i, the following method is used. For each halo containing Np particles the Nlink

most bound particles are identified, where Nlink is given by

Nlink = min(Nlinkmax, max( ftraceNp, Nlinkmin)) (2.2.1)

with Nlinkmin = 10, Nlinkmax = 100 and ftrace = 0.1.

For each of the haloes at snapshot i, descendant candidates are found by lo-

cating all haloes at snapshot j which received at least one particle from the earlier

halo. Then, a single descendant is chosen from these candidates as follows. If

any of the descendant candidates received a larger fraction of their Nlink most

bound particles from the progenitor halo than from any other halo at the earlier

snapshot, then the descendant is chosen from these candidates only and the halo

at snapshot i will be designated the main progenitor of the chosen descendant;

otherwise, all candidates are considered and the halo will not be the main pro-

genitor of its descendant. The descendant of the halo at snapshot i is taken to
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Snapshot i

Snapshot j

All particles in the group Nlink most bound particles

a) A single group which survives

at the next snapshot

A B

C

b) Two groups merge. Group A

 is considered to have survived

c) A satellite group which is

stripped of much of its mass

Host halo

A

B

A

B

C

Figure 2.1: Schematic examples illustrating the method used to link subfind

subhaloes between pairs of snapshots i and j, where i < j. The green circles

represent subfind subhaloes. The most bound particles Nlink particles in each

subhalo at the later time are shown in red. From left to right are a) a single,

isolated subhalo which still exists at the next snapshot, b) a merger between

subhaloes A and B where more of the most bound partciles of the merged halo

C come from halo A than from any other halo and therefore halo A is considered

to be the main progenitor of halo C, and c) a satellite subhalo orbiting within a

background halo which loses a large fraction of its particles to its host halo at the

next snapshot but is still identified by one or more snapshots subfind. Arrows

between green circles show the location of the majority of the particles in the

subhalo at the later snapshot. Arrows starting from red circles show the location

of the majority of the most bound particles at the earlier snapshot.
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be the remaining candidate which received the largest fraction of the Nlink most

bound of the progenitor halo. For each halo at snapshot j, this method identifies

zero or more progenitors of which at most one may be a main progenitor. Note

that it is not guaranteed that a main progenitor will be found for every halo.

By following the most bound part of the subhalo, we ensure that if the core

of a subhalo survives at the later snapshot it is identified as the descendant

irrespective of how much mass has been lost. It also means that in cases where

an object at the later snapshot has multiple progenitors we can determine which

one of the progenitors contributed the largest fraction of the most bound core

of the descendant object. We consider this main progenitor to have survived the

merger while the other progenitors have merged onto it and ceased to exist as

independent objects.

Fig. 2.1 shows three examples of this linking procedure. In the simplest case

(left) a single, isolated subhalo B at snapshot j is identified as the descendant of

subhalo A which exists at the earlier snapshot i. Since more of the most bound

particles of subhalo B come from subhalo A than from any other subhalo, we

conclude that A is the main progenitor of B. In the second case (centre) two

subhaloes A and B merge to form subhalo C at the later snapshot. Subhalo A is

determined to be the main progenitor because it contributed the largest fraction

of the most bound particles of the descendant, C. In the third example (right) a

satellite subhalo A exists within a more massive host halo. In this case, particles

from the subhalo A are split between subhalo B and the host halo C at the later

snapshot. While a large fraction (or even the vast majority) of the particles from

subhalo A may belong to the host halo at the later snapshot, we choose subhalo

B as the descendant because its most bound part came from subhalo A.

Searching multiple snapshots for descendants

If a subhalo is not found to be the main progenitor of its descendant, this may

indicate that the subhalo has merged with another subhalo and no longer exists

as an independent object. However, it is also possible that the substructure

finder has simply failed to identify the object at the later snapshot because it is
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All particles in the group

Nlink most bound particles

Host halo

Snapshot i

Snapshot i+1

Snapshot i+2

A

C

B

D

E

Figure 2.2: A schematic example of a case where the descendant of a subhalo

is found to be more than one snapshot later. The green circles represent a satel-

lite subfind subhalo within a larger host halo which is represented by the blue

circles. Three consecutive snapshots are shown.
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superimposed on the dense central parts of a larger subhalo. Typically this phase

lasts for a small fraction of the host halo dynamical time (Behroozi et al., 2013)

which in turn is much longer than the usual interval between the snapshots

of cosmological N-body simulations. Hence by looking one snapshot ahead

we will normally find the missed subhalo, but one can be unlucky and catch

it half an orbit later when again it is hidden by the dense core of the more

massive subhalo in which it is orbiting. Hence looking several snapshots ahead

exponentially suppreses this possibility. Thus in order to distinguish between

subhalo mergers and subhaloes which are just temporarily lost it is necessary to

search multiple snapshots for descendants.

In our algorithm for each snapshot i in the simulation descendants are iden-

tified at later snapshots in the range i+ 1 to i+ Nstep using the method described

in section 2.2.1. For each subhalo at snapshot i this gives up to Nstep possible

descendants. One of these descendants is picked for use in the merger trees as

follows: if the subhalo at snapshot i is the main progenitor of one or more of

the descendants, the earliest of these descendants which does not have a main

progenitor at a snapshot later than i is chosen. If no such descendant exists, the

earliest descendant found is chosen irrespective of main progenitor status.

Descendants more than one snapshot later are only chosen in cases where the

earlier subhalo is the main progenitor — i.e. where the group still survives as an

independent object. If the subhalo does not survive we have no way to determine

whether it merged immediately or if subfind failed to detect it for one or more

snapshots prior to the merger, so we simply assume that the merger happened

between snapshots i and i + 1.

Fig. 2.2 shows a case where a descendant more than one snapshot later is

chosen. Subhalo A exists at snapshot i. Its descendant at snapshot i + 1 is

found to be the subhalo D. However, the most bound particles of D were not

contributed by subhalo A, but by another progenitor, subhalo C. This means that

A is not the main progenitor of its descendant at snapshot i + 1 and so it is

necessary to consider possible descendants at later snapshots. Two subhaloes at

snapshot i + 2 (B and E) receive particles from subhalo A. Since the most bound
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particles of subhalo B came from subhalo A, A is the main progenitor of B and

subhalo B is taken to be the descendant of A.

2.2.2 Constructing a halo catalogue

At this point we have a descendant for each subhalo. This is sufficient to define

merger trees for the subhaloes. These subfind trees can be split into “branches”

as follows. A new branch begins whenever a new subhalo forms (i.e. the sub-

halo has no progenitors). The remaining subhaloes that make up the branch

are found by following the descendant pointers until either a subhalo is reached

that is not the main progenitor of its descendant, a subhalo is reached that has

no descendant, or the final snapshot of the simulation is reached. Each of these

branches represents the life-time of an independent halo or sub-halo in the sim-

ulation. We construct haloes and halo merger trees by grouping together these

branches of the subhalo merger trees using methods which will be described be-

low. We refer to the resulting collections of subhaloes as “Dhaloes”. Fig. 2.3 is an

example of a Dhalo merger tree with the subhalo merger tree branches marked.

In this case there are three branches. Branch A is a single, massive halo which

exists as an independent halo at all four snapshots. Branch B is a smaller halo

which becomes a satellite subhalo within halo A, but continues to exist. Branch

C is another small halo which briefly becomes a satellite before merging with A.

For each subhalo in a FoF halo we identify the hierarchy of subhaloes in

which it is embedded. To achieve this we identify for each subhalo the least

massive of all the more massive subhaloes that it is enclosed within. Subhalo A

is said to enclose subhalo B if B’s centre lies within twice the half mass radius of

A. A pointer to the enclosing subhalo is stored for each subhalo that is enclosed.

This produces a tree structure which is intended to represent the hierarchy of

haloes, sub-haloes, sub-sub-haloes etc. in the FoF halo. Any subhalo which is

not enclosed by any other becomes a new Dhalo. Any subhaloes enclosed by

this subhalo are assigned to the new Dhalo.

We then iterate through the snapshots from high redshift to low redshift. For

each subhalo we find the maximum number of particles it ever contained while
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it was the most massive subhalo in its parent FoF halo. If a satellite subhalo

in a Dhalo retains a fraction fsplit of its maximum isolated mass then it is split

from its parent Dhalo and becomes a new Dhalo. Any subhaloes enclosed by

this subhalo are assigned to the new Dhalo too. We usually set fsplit = 0.75, so

that when a halo falls into another, more massive halo the two haloes will only

be considered to have merged into one once the smaller halo has been stripped

of some of its mass. This is to ensure that haloes artificially linked by the FoF

algorithm are still treated as separate objects.

In some cases a subhalo may escape from its parent halo. This happens to

halo B in Fig. 2.3. For the purposes of semi-analytic galaxy formation modelling,

we would like to continue to treat such subhaloes as satellites in the parent

halo so that each in-falling halo contributes a single branch to the halo merger

tree. This is done by merging such objects back on to the Dhalo they escaped

from; the subhalo is recorded as a satellite within the original Dhalo at all later

times regardless of its spatial position. Any subhaloes it encloses will also be

considered to be part of this Dhalo.

In practice the re-merging is carried out in the following way. For each Dhalo

A we identify a descendant Dhalo B by determining which later Dhalo contains

the descendant of the most massive subhalo in A which survives at the next

snapshot. In every case where a subhalo in A survives, we assign the descendant

of the subhalo to Dhalo B. We repeat this process for all Dhaloes at each snapshot

in decreasing order of redshift. This ensures that if any two subhaloes are in the

same Dhalo at one snapshot, and both survive at the next snapshot, they will

both be in the same Dhalo at the next snapshot.

This process produces a Dhalo catalogue for each snapshot. Each Dhalo

contains one or more subhaloes and each subhalo may have a pointer to a de-

scendant at some later snapshot. Any subhaloes in a Dhalo which survive at the

next snapshot are guaranteed to belong to the same Dhalo at the next snapshot.

This provides a simple way to identify a descendant for each Dhalo and defines

the Dhalo merger trees. Fig. 2.3 shows an example of a Dhalo merger tree. The

two smaller haloes B and C merge with a larger halo A. Halo C survives as a
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satellite for one snapshot before merging with the descendant of A. Halo B also

becomes a satellite sub-halo and then temporarily escapes from the parent halo

before falling back in. At all times after the initial infall it is considered to be

part of the parent Dhalo.

2.3 The post-processing algorithm

In the FoF halo catalogue, we have the index Dhaloid for each subhalo in the FoF

halo. I start with this index and build a catalogue of Dhaloes by combining the

subhaloes with the same Dhaloid. At this stage, I have built a new Dhalo group

catalogue which contains quantities I have computed for each group including,

”Dhalo masses”, Mhalo, which are the sum of all the masses of all subhaloes

belonging to the same Dhalo, ”Length”, which refers to the number of particles

the halo, ”Dhalo centre”, which is the potential minimum of the most massive

subhalo contained in the halo and all the information from each subhalo, now re-

ordered according to their host Dhalo. Then, I run my codes using the centres

of Dhalo through all the snapshots in MSII to calculate virial mass and virial

radius for each Dhalo. This results in a complete Dhalo group catalogue.



26

Snapshot i

Snapshot i+1

Snapshot i+2

Snapshot i+3

Subgroup

Dhalo

Subgroup merger tree branch

AB C

Figure 2.3: An example of a Dhalo merger tree showing two less massive

haloes falling into another, more massive halo. Subhaloes are shown in green.

Red areas indicate subhaloes which belong to the same Dhalo. The black arrows

show branches of the subhalo merger tree.
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COMPARISON OF FOF AND DHALOES

3.1 Introduction

The properties of FoF haloes, especially those defined by the conventional link-

ing length parameter of b = 0.2 (the linking length is defined as b times the

mean inter-particle separation), are well documented in the literature (e.g. Frenk

et al., 1988; Lacey & Cole, 1994; Summers et al., 1995; Audit et al., 1998; Huchra

& Geller, 1982; Press & Davis, 1982; Einasto et al., 1984; Davis et al., 1985; Klypin

et al., 1999; Jenkins et al., 2001; Warren et al., 2006; Eke et al., 2004; Gottlöber &

Yepes, 2007) and such haloes are widely used as the starting point for relating

the dark matter and galaxy distributions (Peacock & Smith, 2000; Seljak, 2000;

Berlind & Weinberg, 2002). Thus as the semi-analytic model galform (Bower

et al., 2006; Font et al., 2008, 2011; Lagos et al., 2011) instead uses Dhaloes as

its starting point, it is interesting to contrast the properties of haloes defined by

these two algorithms.

As described in Section 2.1, FoF haloes are decomposed by subfind into

subhaloes and those are then regrouped into Dhaloes. Hence for every FoF

halo, we can find its matching Dhalo by finding which Dhalo contains the most

massive subhalo from the FoF group. We can perform this matching the other

way round by finding the FoF halo containing the most massive subhalo from the

Dhalo. In cases where the most massive subhalo of a FoF halo is also the most

massive subhalo of a Dhalo, these two matching procedures produce identical

associations. We refer to such cases as bijective matches.

27
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Figure 3.1: The upper two curves, with bootstrap error bars, show the fraction

of Dhalo (red) and FoF haloes (blue) in the MSII catalogues that have a bijective

(a unique one-to-one) match as a function of their respective Dhalo or FoF halo

mass. The lower two curves show the fraction of FoF haloes that do not con-

tain a self-bound substructure (cyan) and the fraction whose main subhaloes are

remerged by the Dhalo algorithm to form part of a more massive Dhalo (green).
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Figure 3.2: The left panel shows the median, 1, 5, 20, 80, 95, 99 percentiles of

the distribution of the mass ratios between FoF halo mass, MFoF and virial mass,

M200 as a function of FoF halo mass for haloes identified using the FoF group

finder. The right panel shows the same percentiles for the distribution of the mass

ratio between Dhalo mass, MDhalo and virial mass, M200, as a function of Dhalo

mass for haloes identified using the Dhalo group finder. The blue dashed line in

both panels shows where MHalo/M200 =2.0 and the black one MHalo/M200=3.0.
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3.2 Bijectively matched FoF and Dhaloes

Before comparing the properties of this subset of bijectively matched Dhaloes

and FoF haloes we first quantify how representative they are by looking at the

fraction of each set of haloes that have these bijective matches. The two upper

curves in Fig. 3.1 show the dependence of the bijective fraction of Dhaloes on

Dhalo mass and FoF haloes on FoF mass. The first thing to note is that the frac-

tion of bijectively matched Dhaloes is large, being 90% or greater over the full

range from 108 to 1014 h−1M� and so to a first approximation there is a good

correspondence between FoF and Dhaloes. Above 3× 1010 h−1M� about 10% of

the Dhaloes do not have a bijective match which means they instead represent

secondary fragments of more massive FoF haloes that the Dhalo algorithm has

split into two or more subhaloes. Below 3× 1010 h−1M� this non-bijective frac-

tion drops indicating that lower mass FoF haloes are less likely to be split into

two or more comparable mass Dhaloes. This behaviour is consistent with the

results of Lukić et al. (2009) who found that 15-20% of FoF haloes are irregular

structures that have two or more major components linked together by low den-

sity bridges and that this fraction is an increasing function of halo mass. This

is also to be expected in the hierarchical merging picture as the most massive

haloes formed most recently and so are the least dynamically relaxed.

For the FoF haloes with mass above 1012 h−1M� the bijectively matched frac-

tion is unity, indicating that the most massive subhalo of such FoF haloes to-

gether with the subhaloes embedded within it always gives rise to a Dhalo.

Below 1012 h−1M� the the bijective fraction begins to decrease steadily with

decreasing mass. This happens because as the FoF mass decreases there is an

increasing probability that the progenitor of this FoF halo has previously passed

through a more massive neigbouring halo and this results in the Dhalo algo-

rithm remerging the FoF halo with its more massive neighbour. This fraction of

FoF haloes that are remerged to form part of a more massive Dhalo is shown by

the green curve in Fig. 3.1. As one approaches 108 h−1M� (∼15 particles) the

bijective fraction plummets as at very low masses many of the FoF haloes are not
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self-bound and so do not contain any subhalo from which to build a Dhalo. The

fraction of FoF haloes which do not contain a self-bound substructure is shown

by the cyan curve in Fig. 3.1 and can be seen to reach 50% at a FoF mass of 20

particles.

3.2.1 Virial masses

It is conventional to define the virial mass, Mvir, and associated virial radius,

rvir, of a dark matter halo using a simple spherical overdensity criterion centred

on the potential minimum.

Mvir =
4
3

π∆ ρcrit r3
vir (3.2.1)

where ρcrit is the cosmological critical density and ∆ is the specified overdensity.

In applying this definition we adopt ∆ = 200 and include all the particles inside

this spherical volume, not only the particles grouped by the FoF or Dhalo algo-

rithm, to define the enclosed mass, M200 , and associated radius r200. This choice

is largely a matter of convention but has been shown to roughly correspond to

boundary at which the haloes are in approximate dynamical equilibrium (e.g.

Cole & Lacey, 1996).

If the halo finding algorithm has succeeded in partitioning the dark matter

distribution into virialized haloes we would expect to see a good correspondence

between the grouped mass of the halo and M200. For instance, as FoF haloes

are essentially bounded by an isodensity contour, whose value is set by the

linking parameter (Davis et al., 1985), then if they have relaxed quasi-spherical

configuration a tight relation between Mhalo and M200 is inevitable. The only

way Mhalo � M200 is if the halo has multiple components which have been

spuriously linked together as illustrated in the typical example shown in the

lower panels of Fig. 3.4.1 Mhalo � M200 could indicate cases where the group

1These grossly non-virialized multi-component systems are not always detected by more

often used relaxation criteria (Neto et al., 2007; Power et al., 2012, and see Section 4.3), as such

criteria focus on the mass within r200 which can be in equillibrium even if diffusely linked to

secondary mass concentrations.
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finder has split a virialized object into small fragments. Hence it is interesting to

look at the distribution of Mhalo/M200 for both the FoF and Dhalo algorithms to

simply see how Mhalo compares to the conventional M200 definition of halo mass

and to give an indication of the frequency of over linking and fragmentation.

The two panels of Fig. 3.2 quantify the distribution of Mhalo/M200 for both

the standard FoF haloes and for haloes defined by the Dhalo algorithm. We

immediately see that the distribution is much tighter for the Dhalo definition

than for FoF haloes. For FoF haloes 5% of the haloes have MFOF/M200 ∼> 2 and

1% MFOF/M200 ∼> 3. In contrast for Dhaloes only 5% have MDhalo/M200 ∼> 1.5

and less than 1% have MDhalo/M200 > 2. In the Dhalo panel only Dhaloes that

are bijectively matched with FoF haloes are included. Since such pairs of haloes

contain the same most massive subhalo, the centres used for calculating M200

are identical and result in the same M200. Furthermore, since Fig. 3.1 indicates

that all FoF haloes more massive than 1012 h−1 M� have a bijectively matching

Dhalo, then above 1012 h−1 M� we are comparing the same population of haloes

and using the same values of M200. Consequently the wider distribution of

Mhalo/M200 for FoF is directly caused by the wider spread in MFoF masses. For

the cases where MFoF � M200 there is one or more substantial components

of the FoF halo that lies outside r200. We will see in Fig. 3.4 that these are

generally secondary mass concentrations that are linked by tenuous bridges of

quite diffuse material. The Dhaloes have a tighter distribution of Mhalo/M200 as

in this algorithm these secondary concentrations are successfully split off and

result in separate distinct Dhaloes.

Our results for FoF haloes are consistent with earlier investigations. Harker

et al. (2006); Evrard et al. (2008); Lukić et al. (2009) found that approximately 80-

85% of FoF haloes are isolated haloes while 15-20% of FoF haloes have irregular

morphologies, most of which are described in Lukić et al. (2009) as “bridged

haloes”. The distribution of MFoF/M200 for “bridged haloes” given in figure 7

of Lukić et al. (2009) is very similar to the 20% tail of our distribution above

MFoF/M200 = 1.5, while the isolated haloes in Lukić et al. (2009) have a distri-

bution similar to the remaining 80% of our distribution.
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Figure 3.3: In the top panel, the 1, 5, 20, 50, 80, 95 and 99 percentiles of the

distribution of FoF halo mass, MFoF, is plotted against MDhalo for the bijectively

matched pairs of haloes. In the bottom panel, the same percentiles of the distri-

bution of the mass ratio MFoF/ MDhalo is plotted as a function of Dhalo mass.

The black dashed lines are where MFoF/MDhalo =0.8, 1, 1.5 and 2.5.
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Figure 3.4: Three examples of the relationship between FoF haloes and

Dhaloes. In each panel all the points plotted are from a single FoF halo. First

all the FoF particles were plotted in green and then subsets belonging to spe-

cific Dhaloes were over-plotted. The magenta points are those belonging to the

bijectively matched Dhaloes. Other colours are used to indicate particles belong-

ing to other non-bijective Dhaloes with a unique colour used for each separate

Dhalo. Two projections of each halo are shown. The left panels show the X-Y

and right the X-Z plane. The black circle marks r200 of the FoF halo and the

cyan circle marks twice the half mass radius of the main subhalo of the FoF

halo. The top row shows a typical case where MFoF ≈ MDhalo. Here MFoF =

2.6 × 1013h−1 M�, M200 = 1.9 × 1013h−1 M�, and r200 = 0.43h−1 Mpc. The

middle panel shows an example where the mass ratio MFoF/MDhalo = 1.5 with

MFoF = 1.7× 1013h−1 M�, M200 = 1.2× 1013h−1 M� and r200 = 0.375h−1 Mpc.

The bottom row shows an extreme example where MFoF � MDhalo and the

FoF halo is split into many Dhaloes. Here MFoF = 1.4× 1014h−1 M�, M200 =

7.1× 1013h−1 M� and r200 = 0.67h−1 Mpc
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Figure 3.5: Examples of three typical Dhaloes showing how a single Dhalo can

be composed of more than one FoF halo. In each panel all the points plotted are

from a single Dhalo. First all the Dhalo particles were plotted in green and then

subsets belonging to specific FoF haloes were over plotted. The magenta points

are those belonging to the bijectively matched FoF halo. Other colours are used

to indicate particles belonging to other FoF haloes with a unique colour used for

each separate FoF halo. Two projections of each halo are shown. The left panels

show the X-Y and right the X-Z plane. From top to bottom the Dhalo masses

of these examples are MDhalo = 4.2× 1014h−1 M�, MDhalo = 6.8× 1013h−1 M�

and MDhalo = 5.4 × 1012h−1 M�. In all cases the majority of the Dhalo mass

is contained in the single bijectively matched FoF halo and the secondary FoF

haloes are typically 100 times less massive.
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3.2.2 Mass scatter plots

We now turn to directly comparing the mass assigned to FoF haloes and their

corresponding Dhaloes. Fig. 3.3 compares the distributions of these two masses

and their ratio for bijectively matched FoF and Dhaloes, i.e. haloes which contain

the same most massive subhalo. First we see that the median of the distribution

is very close to the one-to-one line. Furthermore on one side the distribution cuts

off very sharply with far fewer than 1% of haloes having FoF masses significantly

lower than their corresponding Dhalo mass. In principal MDhalo > MFoF can oc-

cur as one aspect of the Dhalo algorithm as it includes satellite subhaloes that

previously passed through the main halo even if they are now sufficiently distant

so as not to be linked into the corresponding FoF halo. However, such subhaloes

are typically much less massive than the main subhalo and the mass gained in

this way is out weighed by other sources of mass loss. On the other side of the

distribution there is a significant tail of haloes for which MFoF > MDhalo. We see

that approximately 5% have MFoF > 1.5MDhalo and 1% have MFoF > 2MDhalo.

These fractions are largely independent of Dhalo mass. The main reason for this

tail is the presence of FoF haloes that have a significant secondary mass concen-

tration, often linked by a low density bridge, that the Dhalo algorithm succeeds

in splitting off. For these bijectively matched haloes MFoF is unlikely to signifi-

cantly exceed 2MDhalo as if a single secondary mass concentration had a subhalo

of mass greater than that of the most massive subhalo in the Dhalo we would

not have a bijective match. However, in rare instances MFoF > 2MDhalo can occur

when the FoF halo contains several massive secondary mass concentrations.

To illustrate the relationship between FoF and Dhaloes we show three exam-

ples in Fig. 3.4 that have been chosen to be representative of different points in

the MFoF–MDhalo distribution. The halo shown in the top row is representative

of the majority of cases, namely those with MFoF ≈ MDhalo. Here the only par-

ticles from the FoF halo that are not included in the Dhalo are a diffuse cloud

of unbound particles and the particles in a couple of subhaloes whose centres

lie outside twice the half mass radius of the main subhalo. We stress that these

small differences are what is typical for corresponding FoF and Dhaloes.



37

The middle row of Fig. 3.4 shows an example where MFoF/MDhalo = 1.5,

which corresponds to the 95th percentile of the distribution shown in Fig. 3.3.

Here the FoF halo is split into three well separated Dhaloes. The main Dhalo

is dominant, but there two secondary Dhaloes, one a lot more massive than the

other, lying outside the r200 of the main Dhalo. For the purposes of semi-analytic

galaxy formation models such as galform the three separate haloes given by the

Dhalo definition is clearly a better description than the single FoF halo as one

would not expect the gas reservoirs associated with these distinct haloes to have

merged at this stage and so each should be able to provide cooling gas to their

respective central galaxies.

The bottom row of Fig. 3.4 shows a rare example with MFoF/MDhalo ≈ 2, the

99th percentile of the distribution, in which a single FoF halo is split into several

substantial Dhaloes. In this and the previous example the FoF halo is clearly far

from spherical and a large proportion of the FoF halo mass lies outside the virial

radius that is defined by centring on the potential minimum of the most massive

substructure. Clearly characterising such haloes by a NFW profile fit just to the

mass within the virial radius would be an inadequate description of the halo. In

fact, in most studies of halo concentrations, including our analysis presented in

Section 4.3, these haloes would be deemed to be unrelaxed and excluded from

subsequent analysis. In contrast, the Dhaloes in each of the examples presented

are much closer to being spherical with only a small amount of mass outside

their respective virial radii. Each of the primary Dhaloes in Fig. 3.4, including the

one in the bottom panel, are sufficiently symmetrical and virialized to pass the

relaxation criteria that we employ in Section 4.3 even though the corresponding

FoF haloes in the bottom two panels are not.

In the example shown in the bottom row of Fig. 3.4 we also see a case of a

Dhalo that has two distinct components. Here the two clumps of black points are

a single Dhalo due to the fact that they passed directly through each other at a

redshift z = 0.89. This extreme example must have been a high speed encounter

and so any galaxies they contained would have been unlikely to merge, but their

extended hot gas distributions would have interacted and possibly merged. It is
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Figure 3.6: In the left hand panels, we plot the median, 1, 5, 20, 80, 95 and

99 percentiles of the distribution of Dhalo mass, MDhalo (upper), and mass ratio

MDhalo/MFoF (lower) against MFoF for all the Dhalo matches to each FoF halo.

The black dashed lines in each panel mark where MDhalo/MFoF =1. In the right

hand panel, we plot the same quantities but only for secondary Dhaloes in each

FoF halo.

for this reason that it is useful in the semi-analytic models to associate them as

a single halo.

The Dhalo algorithm quite frequently merges several FoF haloes together

into a single Dhalo as a consequence of the way it avoids splitting up subhaloes

which at an earlier timestep were in a single Dhalo. However unlike the extreme

example we have just seen the typical masses of subhaloes which pass through

a Dhalo and then emerge to once again become a distinct FoF halo are much

lower than the mass of the main FoF halo. This is illustrated in Fig. 3.5, where

we show the particles of three typical Dhaloes of a range of masses colour coded
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Figure 3.7: As Fig. 3.6 but with the role of FoF and Dhalo reversed. In the

left hand panels, we plot the median, 1, 5, 20, 80, 95 and 99 percentiles of the

distribution of FoF halo mass, MFoF (upper), and mass ratio MFoF/MDhalo (lower)

against MDhalo for all the FoF halo matches to each Dhalo. The black dashed lines

in each panel mark where MFoF/MDhalo =1. In the right hand panel, we plot the

same quantities but only for secondary FoF in each Dhalo.
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by their FoF halo membership. In each case we immediately see that the vast

majority of the Dhalo particles also belong to the (bijectively) matched FoF halo.

However in addition there are isolated clumps of particles in the outskirts of

each Dhalo which belong to much smaller distinct FoF haloes. There are also

similar nearby clumps of particles which due to surrounding diffuse material

are linked into the main FoF halo. In all cases each of these clumps are typically

less than one percent of the mass of the main halo. From the perspective of semi-

analytic galaxy formation models it makes sense to treat each of these clumps

equally. For instance, they have all been within twice the half mass radius of the

main Dhalo and could therefore have been ram pressure stripped of their diffuse

gaseous haloes. In galform satellite galaxies move with the subhalo within

which they formed (or if the descendant of the subhalo drops below the 20

particle threshold with the particle that was previously the potential minimum of

its subhalo) and so the satellite galaxy positions reflect the spatial distribution of

these subhaloes even if they move far from the halo to which they are associated.

3.3 Non-bijective FoF and Dhalo matches

So far we have just compared FoF–Dhalo pairs which form a bijective match,

that is their most massive subhaloes are identical. However there are other

cases such as the examples of secondary Dhaloes in Fig. 3.4 in which the main

subhalo of the Dhalo is not the most massive subhalo in the corresponding FoF

halo and conversely examples such as the secondary FoF haloes in Fig. 3.5 in

which the main subhalo of the FoF halo is not the most massive subhalo in the

corresponding Dhalo. We will refer to this former set of matches as Dhalo in

FoF halo and the latter as FoF in Dhalo matches. Note that the bijective matches

are a subset of both of these sets, i.e. they are the intersection of the two sets

of matches. To have a complete census of the correspondence between FoF and

Dhaloes it is important that we include non-bijectively matched haloes in our

comparison. We compare the Dhalo to FoF halo masses for these two sets of

pairings in Fig. 3.6 and 3.7.
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The left hand panels of Fig. 3.6 show for all the Dhalo in FoF matches the

dependence of the mass, MDhalo, and the mass ratio, MDhalo/MFoF on the FoF

halo mass. The right hand panel shows the same quantities but only for sec-

ondary Dhalo in FoF halo haloes, i.e. excluding the bijective matches. Focusing

first on the right hand panels, we see that the percentiles of the distribution of

secondary MDhalo values are all horizontal lines at high MFoF, indicating that

in this regime the distribution of MDhalo is independent of MFoF. This suggests

that the secondary Dhaloes that are linked into high mass FoF haloes by bridges

of diffuse material are essentially drawn at random from the Dhalo population.

We note that in this way the FoF halo can be hundreds or more times more

massive than many of the Dhaloes it contains. In these same panels, we see

that at lower masses the distribution of Dhalo masses is sharply truncated at

MDhalo = MFoF/2. This is essentially by construction as if a Dhalo with mass

greater than MFoF/2 were linked into the FoF halo then its most massive sub-

halo would very likely to be the most massive subhalo of the whole FoF halo and

hence there would be a bijective match and this pairing would be excluded from

this plot. The left hand panels of Fig. 3.6, which includes the bijective matches

show a more complex distribution. However it can be easily understood as re-

sulting from the superposition of the distribution from the right hand panel with

the distribution of bijective matches shown in Fig. 3.3. At very low masses most

FoF haloes contain only a single resolved subhalo and so the FoF halo cannot be

split into multiple Dhaloes and so the overall distribution is dominated by the

bijective matches resulting in a tight correlation between MDhalo and MFoF. With

increasing FoF mass there are more and more secondary Dhaloes per FoF halo.

They increasingly dominate over the bijective matches and so the contours tend

to their values in the right hand panel.

Fig. 3.7 shows the distribution of FoF halo mass for the FoF in Dhalo matches.

Again the right hand panes show the distribution for just the secondary matches

while the left hand panels also include the primary or bijective matches. Com-

paring the right hand panels of Fig. 3.7 and Fig. 3.6 we see that the correspond-

ing contours are shifted to lower masses. Thus it is rarer for a Dhalo to contain
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Figure 3.8: Like the right hand panel of Fig. 3.2, but for non-bijective Dhaloes.

The curves show the median, 5, 20, 80, 95, 99 percentiles of the ratio between

the Dhalo mass, MDhalo, and the virial mass, M200. The horizontal dashed lines

indicate MDhalo/M200 = 0.5, 1.0, 2.0.
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Figure 3.9: An example of one FoF halo split by the Dhalo algorithm into sev-

eral Dhaloes. All the points plotted are from a single FoF halo. First all the FoF

particles are plotted in green and then subsets belonging to specific Dhaloes are

over plotted. The magenta points are those belonging to the bijectively matched

Dhalo. Other colours are used to indicate particles belonging to other Dhaloes

with a unique colour used for each separate Dhalo. The black circle around the

magenta points marks r200 of the FoF halo and is also the r200 of the bijective

Dhalo. The concentric cyan circle marks twice the half mass radius of this main

subhalo. The other black circles show r200 locations for the non-bijective Dhaloes,

while the concentric blue circles indicate twice the half mass radius of the corre-

sponding subhalo.
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massive secondary FoF halo than it is for FoF halo to contain massive secondary

Dhalo. The secondary Dhaloes arise from the remerging step in the Dhalo algo-

rithm whereby two subhaloes that have passed through each other (the smaller

has come within twice the half mass radius of the larger) are deemed there-

after always to be part (or satellite components) of the same Dhalo even if they

subsequently separate sufficiently to become distinct FoF haloes. This occurs

reasonably frequently, but as in the examples shown in Fig 3.4 the secondary

FoF haloes are typically much less massive than the primary and contribute lit-

tle to the total mass of the halo. Interestingly the near horizontal contours in the

upper right hand panel Fig. 3.7 indicate that the mass distribution of this popu-

lation of secondary FoF haloes is approximately independent of MDhalo for high

Dhalo masses. As these FoF haloes are often heavily stripped by their passage

through the main Dhalo this is not a trivial result. The contours begin to dip

at lower masses reflecting the fact it is unlikely for a matched FoF halo to have

a mass greater than about one half of MDhalo without it being the primary or

bijective match. This expectation is violated for MDhalo < 109h−1 M�, but this is

a resolution effect because at such low masses secondaries with MFOF � MDhalo

fall below the 20 particle limit of the catalogue and so their absence biases the

distribution towards higher ratios.

The left hand panels of Fig. 3.7 are for all the matches of FoF in Dhalo,

including the bijective matches. These distributions can be understood as a

superposition of the distributions in the right hand panels with the distribution

for bijective matches shown in Fig. 3.3. At low masses the bijective halo matches

dominate whereas at large MDhalo there are many FoF haloes matched to each

Dhalo. Thus, for example, at MDhalo ≈ 1010.5h−1 M� we transition from 50% of

the matched FoF haloes being primary to 50% of them being much lower mass

(MFoF ≈ 108.7h−1 M�) secondary FoF haloes.

In section 3.1.1, we examined the distribution of the MDhalo/M200 ratio for

the bijectively matched haloes. We are also interested in this distribution for

the non-bijective Dhaloes shown in Fig. 3.8. We immediately notice the distri-

bution is shifted towards lower values than the corresponding distribution for
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the bijective haloes shown in Fig. 3.2. The origin of this shift can be understood

by reference to Fig. 3.9 which shows an example of a FoF halo which is split

into several Dhaloes. The Dhalo whose particles are plotted in magenta is the

bijective match of the FoF halo and the Dhaloes plotted in other colours are non-

bijective matches. The black circles in Fig. 3.9 show the location of r200 for each

of the Dhaloes, while the other circles show the location of twice the half-mass

radius of each Dhalo. For bijectively matched Dhaloes, the majority of which

are isolated, r200 is typically slightly smaller than twice the half-mass radius. In

contrast we see in Fig. 3.9 that for many of the non-bijectively matched Dhaloes

twice the half mass radius is much smaller than r200. This is a consequence of

the subfind algorithm which determines the extent of a subhalo by finding sad-

dle points in the density distribution (Springel et al., 2001). Hence as a subhalo

enters a dense environment the mass assigned to it by subfind is decreased.

This environmentally dependent effect both lowers MDhalo relative to M200 and

increases the scatter in this relation.

3.4 Conclusion

We have shown that unlike the FoF algorithm the Dhalo algorithm is successful

in avoiding distinct mass concentrations being prematurely linked together into

a single halo when their diffuse outer haloes touch. We have also illustrated

how some Dhaloes can be composed of more than one FoF halo. This occurs as

structure formation in CDM models is not strictly hierarchical and occasionally

a halo, after falling into a more massive halo, may escape to beyond the virial ra-

dius of the more massive halo. For the purposes of the galform it is convenient

to consider such haloes as remaining as satellites of the main halo. We find that

such remerged FoF haloes are not uncommon, but contribute very little mass to

the larger haloes to which they are (re)attached.

Approximately 90% of the Dhaloes have a unique one-to-one, bijective, match

with a corresponding FoF halo. For this subset of haloes the mass of the Dhalo,

MDhalo, correlates much more closely with the standard virial mass, M200, than
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does the FoF mass. The median MFoF/M200 = 1.2 and 90% of the distribution

of this mass ratio spans a factor 1.9, while for the same Dhaloes the median

MDhalo/M200 = 1.15 and corresponding width of the distribution spans only a

factor 1.3. The larger scatter in the FoF case is often caused by secondary mass

concentrations that lie outside the r200 radius of the main substructure and are

linked into the FoF halo by particle bridges in overlapping diffuse haloes. The

non-bijective Dhaloes have a wider distribution, with 90% of the distribution

spanning a factor 2.2 and with the median ratio reduced to MDhalo/M200 =

0.95. This is due to the subfind substructure finder, which is part of the Dhalo

algorithm, assigning less mass to subhaloes when they move into overdense

environments. When utilised in galform this systematic loss of mass is not an

issue as the merger trees are preprocessed and mass is added back in to ensure

the branches of the galform merger trees always have monotonically increasing

masses.



4
STATISTICAL PROPERTIES OF DHALOES

4.1 Introduction

It is now quite common for semi-analytic models to use halo merger trees ex-

tracted directly from N-body simulations (Springel et al., 2001; Helly et al., 2003;

Hatton et al., 2003; Bower et al., 2006; Muñoz et al., 2009; Koposov et al., 2009;

Busha et al., 2010; Macciò et al., 2010; Guo et al., 2011). There are many choices

to be made both in defining the halo catalogues and in constructing the links

between haloes at different times. Knebe et al. (2011) and Knebe et al. (2013)

have found significant differences in even the most basic properties (e.g the

halo mass function) of halo catalogues constructed with different group find-

ing codes. Additionally, these halo catalogues can often be modified by the

procedure of constructing the merger trees as some of the algorithms break up

or merge haloes together in order to achieve a more consistent membership over

time (Helly et al., 2003; Behroozi et al., 2013). So, for example, even if one starts

with standard Friends-of-Friends (FoF) groups (Davis et al., 1985) the process of

building the merger trees can alter the abundance and properties of the haloes.

Semi-analytic models such as galform have the option of using information

extracted directly from an N-body simulation or using Monte Carlo methods

(see Jiang & van den Bosch, 2014, for a comparison of different algorithms)

which make use of statistical descriptions of N-body results such as analytic

halo mass functions (e.g. Sheth & Tormen, 1999; Jenkins et al., 2001; Evrard

et al., 2002; White, 2002; Reed et al., 2003; Linder & Jenkins, 2003; Łokas et al.,

47
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2004; Warren et al., 2006; Heitmann et al., 2006; Reed et al., 2007; Lukić et al.,

2009; Tinker et al., 2008; Boylan-Kolchin et al., 2009; Crocce et al., 2010; Courtin

et al., 2010; Bhattacharya et al., 2011; Watson et al., 2013) and models for the

distribution of the concentrations of halo mass profiles (e.g. Navarro et al., 1995,

1996a; Bullock et al., 2001; Eke et al., 2001; Macciò et al., 2008). These statistical

descriptions are often based on the abundance and properties of FoF haloes and

so may not be directly applicable to the catalogues of haloes that result from

the application of a specific merger tree algorithm. The internal structure of the

dark matter haloes strongly influences galaxy formation models. Often the gas

density profiles within dark matter haloes are assumed to be related to the dark

matter profile, e.g. through hydrostatic equilibrium and these influence the rate

at which gas cools onto the central galaxy. In addition the central potential of the

dark matter halo effects the size and circular velocity of the central galaxy which

in turn can have a strong effect on the expulsion of gas from the galaxy via SN

feedback. Hence for semi-analytic galaxy formation modelling it is important to

adopt models of the individual haloes that are consistent with the haloes that

appear in the merger trees used by semi-analytic models.

Having thoroughly compared individual Dhaloes with their corresponding

FoF haloes, we now turn to the statistical properties of the Dhaloes. We first

look at the Dhalo mass function and then the statistics of their density profiles

as characterised by fitting NFW profiles (Navarro et al., 1995, 1996a, 1997).

4.2 The Dhalo mass function

For many applications it is extremely useful to have an analytic description of

the number density of haloes as a function of halo mass. A relevant example for

us is when semi-analytic galaxy formation models are constructed using Monte-

Carlo methods (Parkinson et al., 2008; Cole et al., 2000) for generating dark

matter merger trees. In this case, in order to construct predictions of galaxy

luminosity functions or any other volume averaged quantity (Cole et al., 2000;

Berlind et al., 2003; Baugh et al., 2005; Neistein & Dekel, 2008; Bundy et al.,
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2005; Giocoli et al., 2008; Moreno et al., 2008; van den Bosch et al., 2005), one

needs knowledge of the halo mass function in order to know how many of

each type of tree one has per unit volume. It has become common practice to

assume the halo mass function is given by analytic fitting functions which have

been fitted to the abundance of haloes found by the FoF or other group finding

algorithms (Davis et al., 1985; Lacey & Cole, 1994; Knollmann & Knebe, 2009) in

suites of cosmological N-body simulations. Murray et al. (2013) compare all the

currently proposed fitting functions. In our semi-analytic modelling we would

like to achieve consistent results when using Monte-Carlo merger trees or when

using merger trees extracted directly from N-body simulations using the Dhalo

algorithm. Hence it is important to directly determine the Dhalo mass function

and to compare it to such fitting formulae.

We do this in Fig. 4.1 which compares the Dhalo and FoF mass functions

that we measure in the MSII simulations with various analytic prescriptions

(Jenkins et al., 2001; Sheth & Tormen, 2002; Warren et al., 2006; Reed et al.,

2007; Tinker et al., 2008; Watson et al., 2013). The left hand panel shows the

number density of haloes per unit logarithmic interval of mass from the nominal

20 particle mass resolution of the simulation up to 1014h−1 M� which is the

mass of the most massive haloes in the simulation. In constructing these mass

functions the halo mass we use is simply the aggregated mass of all the particles

assigned to each halo. Thus in the FoF case this is all particles linked to the

halo by the FoF algorithm while in the Dhalo case it is the sum of the masses

of the subhaloes that compose an individual Dhalo. Also shown on this panel

are the predictions of various analytic prescriptions. To evaluate these we use

σ2(M), the variance of the density fluctuations as a function of mass (using a top

hat filter), corresponding to the input power spectrum of the MSII propagated

to the output time of the simulation using linear theory. They are all clearly

very similar and so in the left hand panel we expand the dynamic range of

the comparison by plotting each mass function divided by the prediction of the

Sheth & Tormen (2002) model.

The first thing that we note is that despite the sometimes quite large dif-
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Figure 4.1: The left hand panel shows the differential mass functions for both

FoF (linking length b = 0.2) haloes (blue line) and Dhaloes (red points) in the

MSII simulation. We plot this down to ∼ 108h−1 M�, the mass corresponding

to 20 particles in the MSII simulation and we also plot the Sheth and Tormen

(2002) mass function as a comparison. To expand the dynamic range, the right

hand panel shows the corresponding prediction of various analytic mass func-

tions(Jenkins et al 2001, Warren et al 2006, Reed et al 2007, Tinker et al 2008,

Watson et al 2013) as indicated in the legend but now relative to the Sheth and

Tormen(2002) prediction. The FoF Dhalo data are now shown as the heavy blue

and red lines.
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ferences (see §3) in the masses of individual FoF and Dhaloes their two mass

functions agree to within 5% for all masses greater than 1010h−1 M�. In the

range 1010 ∼< Mhalo ∼< 1012.5h−1 M� the Dhalo abundance is approximately 5%

higher than FoF haloes as roughly 5% of Dhaloes are secondary members of FoF

haloes. In other words, the FoF halo abundance has been suppressed relative

to the Dhalo abundance by a fraction of them being composed of two or more

Dhaloes that have been linked into one more massive FoF halo by diffuse ma-

terial or bridges. There is also a competing effect, FoF haloes being remerged

into single Dhaloes, which suppressed the Dhalo abundance, but this is a much

smaller effect.

Below 1010h−1 M� the abundance of FoF halo rises systematically above that

of Dhaloes. Between 1010h−1 M� and 8× 108h−1 M� this excess increases to

about 10% and is caused by FoF haloes that are remerged to become secondary

components of a larger Dhaloes (see Fig. 3.1). At lower masses (∼< 100 particles)

the sharp up turn in the FoF mass function relative to that of Dhaloes is due to

an increasing fraction of the FoF haloes not containing a self-bound subhalo and

so having no corresponding Dhalo (see Fig. 3.1). Thus this portion of the mass

function is strongly affected by the resolution of the simulation.

The Jenkins et al (2001) fitting formula is within 10% of both the FoF and

Dhalo mass functions for masses above 2× 1010h−1 M�. However below this

mass it strongly under predicts the number density of low mass haloes. Note

that we only plot this fit and that of Watson et al (2013) over the mass ranges

used to constrain them in the original papers. The Watson et al (2013) mass

function is only defined at very high masses where we have poor statistics. It

lies somewhat below but is still compatible with our noisy estimates. The Warren

(2006) model has the best agreement with our FoF mass function, fitting it well

all the way down to 40 particles, beyond which we expect our limited resolution

means that our FoF mass function is contaminated by spurious unbound chance

groupings of particles. However the Reed (2007) mass function does a better job

of matching the low mass end of our Dhalo mass function. The Sheth & Tormen

mass function is intermediate at low masses between that of Warren (2006) and
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Reed (2007), but systematically below the other models and our FoF and Dhalo

mass function at high masses, though still only at the 15% level. The Tinker

(2008) mass function predicts halo abundances that are about 5 to 10% higher

than Warren (2006) and our estimated FoF abundances.

In summary, the Dhalo and FoF mass functions are very similar and only

differ by more than 5% below 1010h−1 M�. As a result the established analytic

mass function models fit the Dhalo mass function almost as well as they do

the standard FoF mass function. The differences between the different analytic

fitting formulae are greater than the difference between the FoF and Dhalo mass

functions. The Reed (2007) model is a slightly better description of the Dhalo

mass function due to it predicting a slightly lower abundance at low masses.

4.3 Density profile fits

We now turn to the density profiles of the haloes as these are an important

ingredient in semi-analytic models such as galform where they influence the

rate at which gas cools and set the gravitational potential well in which galaxies

form. We choose to fit the halo density profiles using NFW (Navarro et al., 1996a,

1997) profiles
ρNFW(r)

ρcrit
=

δc

r/rs(1 + r/rs)2 (r ≤ r200), (4.3.1)

where δc is the characteristic density contrast, and rs is the scale radius. We

define the virial radius, r200, as the radius at which the mean interior density

equals 200 times the critical density, ρcrit = 3H2
0/(8πG). The concentration is

defined as c ≡ r200/rs. The definition of r200 implies that δc and c must satisfy

δc =
200
3

c3

ln(1 + c)− c/(c + 1)
. (4.3.2)

Our choice of NFW profiles is motivated by their accuracy as a model of

CDM haloes (Navarro et al., 1996a, 1997), their widespread use and so that our

results can be compared to those in Neto et al. (2007) who studied the statistics

of NFW concentrations for FoF haloes identified in the Millennium Simulation
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(Springel, 2005a). To allow us to compare directly with Neto et al. (2007) we

have followed their fitting procedure.

For each halo, we have computed a spherically-averaged density profile by

binning the halo mass into 32 equally spaced bins in log10(r) between the virial

radius and log10(r/r200) = −2.5, centred on the potential minimum. We fit the

two free parameters, δc and rs by minimising the mean square deviation

σ2
fit =

1
Nbin − 1

Nbin

∑
i
[log10 ρ(ri)− log10 ρNFW(ri|δc, rs)]

2 (4.3.3)

between the binned ρ(r) and the NFW profile. As in Neto et al. (2007), we

perform the fit over the radial range 0.05 < r/r200 < 1. In order to be consistent

with the original NFW work, we express the results in terms of fitted virial mass,

M200, and a concentration, c200 ≡ r200/rs. We note that while the fitted value of

M200 used here and the directly measured M200 used earlier (e.g. in Fig. 3.2) are

not identical they in general agree very accurately with an rms scatter of less

than 3%.

Neto et al. (2007) distinguished relaxed haloes from haloes that were not in

dynamical equilibrium due to recent or ongoing mergers. They found that re-

laxed haloes were well fit by NFW profiles while the profiles of unrelaxed haloes

were lumpier and yielded poorer fits with systematically lower concentrations.

Hence to compare to Neto et al. (2007) we use the following three objective cri-

teria to assess whether a halo has reached equilibrium (Neto et al., 2007; Gao

et al., 2008; Power et al., 2012).

1. The fraction of mass in resolved substructures whose centres lie inside r200:

fsub = ∑Nsub
i 6=0 Msub,i/M200. We require fsub < 0.1 for relaxed haloes.

2. The centre of mass displacement, i.e. the difference between the position of

the potential minimum and the centre of mass, s = |rc− rcm|/r200 (Thomas

et al., 2001). Note that, the centre of mass is calculated using all the parti-

cles within r200, not only those belonging to the FoF or Dhalo. We require

s < 0.07 for relaxed haloes.

3. The virial ratio, 2T/|U|, where T is the total kinetic energy of halo particles
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Figure 4.2: The distributions of the parameters fsub, 2T/|W|, s, used to define

our relaxed sample of haloes are shown as a function of the number of particles

within the FoF halo.

within r200 and U is their gravitational potential self energy. We require

2T/|U| < 1.35 for our relaxed haloes. (For haloes with more than 5000

particles we use a random subset of 5000 particles to estimate U.)

As a test of the Neto’s relaxation criteria, we measured the parameters used

in these criteria for all the FoF haloes in the milli-MillenniumII simulation. This

simulation has the same volume, initial conditions and data format as Millenni-

umII (Boylan-Kolchin et al., 2009), but lower mass resolution. The distribution

of these parameters for this sample is shown in Fig. 4.2. Like Neto we find the

majority of haloes pass all three selection criteria. We also find that the fsub pa-
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rameter is the most sensitive to the number of particles. The distribution shown

in the top left panel of Fig. 4.2 includes some haloes with no resolved substruc-

tures fsub = 0. In such cases, we can use the kinematic information based on

2T/|W| to reject haloes that, despite passing the criterion using fsub, are far from

dynamical equilibrium. The criterion s < 0.07, which rejects haloes in which the

centre of mass and potential are offset is the most constraining. We found that a

big shift between mass centre and potential minimum often indicates an ongo-

ing merger. This criterion is quite closely linked to the particle-bridge problem

in FoF haloes. We find we can successfully remove the unrelaxed haloes in each

halo mass range by combining all the three objective criteria.

Fig. 3.9 shows a single FoF halo and its component Dhaloes which we use to

illustrate the application of these selection criteria and ability of NFW profiles to

fit secondary/non-bijective Dhaloes. The spherically averaged density profiles

and our NFW fits to each of these Dhaloes are shown in Fig. 4.3 along with

the values of the three selection parameters fsub, s and 2T/|U|. The top left

panel of Fig. 4.3 shows the density profile and NFW fit for the main component

of the FoF halo, which can be identified by the cyan circle in Fig. 3.9 which

marks twice the half mass radius the most massive substructure in the FoF halo.

In previous analyses of FoF haloes, such as Neto et al. (2007), this would be

the only density profile fitted to the mass distribution shown in Fig. 3.9. The

bijectively matched Dhalo has the same centre as the FoF halo and the NFW

fit is performed on all the mass within r200, (indicated by the concentric black

circle) consequently the density profile and NFW fit of the bijectively matched

Dhalo is necessarily identical to that or the corresponding FoF halo. Examining

this region in Fig. 3.9, we can clearly see that the mass distribution is asymmetric

and has several distinct substructures indicative of a recent merger. This halo is

not relaxed according to the above selection criteria as it fails to satisfy the cut

on 2T/|U|. Also its value of the centre offset, s, comes close to the threshold.

The NFW fit to its density profile can be seen to have significant deviations at

both large and small radii.

We are also interested in whether NFW profiles provide acceptable fits to



56

2.0

2.5

3.0

3.5

4.0
lo

g
1
0 
ρ
 /

 ρ
2
0
0

c=5.070

 fsub=0.026

 s=0.064

 2T/U=1.65

NFW

Bijective halo

log10  r/r200

2.0

2.5

3.0

3.5

4.0

lo
g

1
0 
ρ
 /

 ρ
20

0

c=6.78

 fsub=0.062

 s=0.028

 2T/U=1.40

NFW

nobijective1

c=8.52

 fsub=0.027

 s=0.011

 2T/U=1.06

NFW

nobijective2

log10  r/r200

c=8.00

 fsub=0.023

 s=0.009

 2T/U=1.03

NFW

nobijective3

2.0 1.5 1.0 0.5 0.0
log10  r/r200

c=4.730

 fsub=0.040

 s=0.030

 2T/U=1.20

NFW

nobijective4

2.0 1.5 1.0 0.5 0.0
log10  r/r200

1.5

2.0

2.5

3.0

3.5

4.0

4.5

lo
g

1
0 
ρ
 /

 ρ
2
00

c=4.050

 fsub=0.010

 s=0.260

 2T/U=1.20

NFW

nobijective5

Figure 4.3: Density profiles, ρ(r), for each of the Dhaloes shown in Fig. 3.9.

The colour of the fitted NFW curve matches the colour coding of the individual

Dhaloes in Fig. 3.9. The two-parameter, δc and rs, NFW least-square fits were

performed over the radial range 0.05 < r/r200 < 1, shown by the black circles

in Fig. 3.9. The minimum fit radius r/r200 = 0.05 is always larger than the

convergence radius derived by Power et al (2003), which we indicate by the solid

vertical line in each panel.
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the other Dhaloes found within this single FoF halo. These are shown in the

remaining panels of Fig. 4.3. According to the selection criteria three of these

Dhaloes (those in the right-hand column) are relaxed. These are the blue, red

and black Dhaloes in Fig. 3.9 and their density profiles are shown, respectively,

in the top, middle and bottom right-hand panels of Fig. 4.3. In all cases we

see that the NFW fits provide a good description of the mass profile of these

relaxed Dhaloes. The remaining two Dhaloes fail one or other of the selection

criteria. The yellow Dhalo of Fig. 3.9, whose density profile is shown in the

middle-left panel of Fig. 4.3, marginally fails the cut on 2T/|U|. The cyan Dhalo

of Fig. 3.9, whose density profile is shown in the bottom-left panel of Fig. 4.3,

which strongly exceeds the threshold on s, can be seen to be very poorly fit by

the NFW profile and have a particularly low concentration. This Dhalo is very

close to being within twice the half mass radius of the most massive substructure

of the FoF halo, marked by the cyan circle in Fig. 3.9. This being the radius used

by the Dhalo algorithm as part of its criteria to determine whether two subhaloes

should be considered as two distinct haloes or components of the same halo. It

is this proximity to a merger that both creates the large offset, s, between the

potential minimum and the centre of mass within r200 and distorts the object’s

density profile. We also note that this Dhalo has the most extreme ratio of r200

to twice its half mass radius. In Fig. 3.4, we saw that for isolated haloes r200

and twice the half mass radius were very comparable, but in contrast we see in

Fig. 3.9 that the r200 of secondary Dhaloes can be significantly boosted by the

density of the surrounding environment.

This systematic difference in the ratio of Dhalo mass to M200 for bijective

and non-bijective Dhaloes is illustrated in Fig. 3.8 which should be contrasted

with the right-hand panel of Fig. 3.2. We see that the scatter in the ratio of

MDhalo/M200 is considerably larger for the non-bijective Dhaloes than it is for

bijective Dhaloes. For bijective Dhaloes the 5 to 95% range of the distribution

spans only a 30% range in the ratio of MDhalo/M200, while this is increased to

approximately a factor of two for the non-bijective Dhaloes. In addition the me-

dian MDhalo/M200 ratio is reduced from 1.2 for bijective Dhaloes to ≈ 0.95 for
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non-bijective Dhaloes. These differences are principally caused by the way the

subfind algorithm (Springel et al., 2001) is affected by the local environment.

subfind locates the edge of a substructure by searching for a saddle point in

the density distribution. Hence if the same sub-structure is placed in a denser

environment this will move the saddle point in and reduce the mass that sub-

find associates with the sub-structure (see Muldrew et al., 2011, for a detailed

discussion). As a Dhalo mass is simply the sum of the masses of the subhaloes

from which it is composed this in turn reduces the mass assigned to the Dhalo.

This systematic dependence of Dhalo mass on environment is one of the reasons

why instead of directly using the Dhalo mass as input to galform semi-analytic

model we instead force the halo masses in the halo merger trees to increase

monotonically so that they do not artificially decrease, just prior to mergers, due

to such environmental effects.

4.4 The mass-concentration relation

Here we compare the mass-concentration relation for FoF haloes that we find

in the high resolution MSII simulation with that found by Neto et al. (2007)

in the lower resolution Millennium Simulation.1 We then go on to compare

this relation with the relation we find for the secondary/non-bijective Dhaloes.

There is no need to separately look at the bijective Dhaloes as their M200 and c

are necessarily the same as that of the corresponding FoF haloes as they have

the same centre and all the surrounding mass is used in the fit. As in Neto

et al. (2007) the mass we use in these relations is the M200 of the NFW fit rather

than the directly measured value. Fig. 4.4 shows concentration as a function

of mass for the range 1010.5 < M200/h−1M� < 1013.75 for our catalogue of FoF

1As a precise test of our methods we first applied our analysis to FoF haloes in the milli-

MillenniumII simulation, which has the same volume, initial conditions and data format as

MillenniumII (Boylan-Kolchin et al., 2009), but lower mass resolution, equal to that of the Mil-

lennium Simulation (Springel et al., 2005) analysed by Neto et al. (2007). We found precise

agreement with the mass-concentration relationship published in Neto et al. (2007).
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haloes. The top panel is for our relaxed FoF halo sample, while the bottom panel

shows results for all the FoF haloes, including systems that do not meet our

equilibrium criteria. In each case we find a significant spread in concentration

at fixed mass with a weak trend for decreasing concentration with increasing

mass. This is generally interpreted (Navarro et al., 1995, 1996a, 1997; Bullock

et al., 2001; Eke et al., 2001; Neto et al., 2007; Gao et al., 2008) as reflecting the

typical formation time of the halo with the lowest mass haloes forming earliest

and having high density cores which reflect the density of the universe at the

time they formed. The dependence of the median concentration of FoF haloes

on mass is well described by the power-law fit

c200 = 5.45± 1.00
(

M200/1014h−1 M�
)−0.084±0.002

, (4.4.4)

for relaxed haloes and by

c200 = 5.01± 1.03
(

M200/1014h−1 M�
)−0.094±0.003

(4.4.5)

for all haloes. These fits were performed only over the mass range 1010.5 <

M200/h−1M� < 1013.75 due to poor statistics at higher masses and are shown by

the blue solid lines in Fig. 4.4. Also shown on Fig. 4.4 is the fit for the median

concentration for relaxed haloes found by Neto et al. (2007). We plot these green

lines only for M200 > 1012/h−1M� corresponding to the resolution limit of their

study. We see that over the overlapping mass range our median concentrations

agree very well with those of Neto et al. (2007) indicating that the mass profiles

over the fitted radial range, −2.5 < log(r/r200) < 0, are not affected by mass res-

olution. Our fit is also similar to the relation c200 = 5.6(M200/1014h−1M�)−0.098

found by Macciò et al. (2007) for relaxed haloes. The small difference could be

because they fit the mean rather than median of the relation or due to differences

in the criteria used to select relaxed haloes. Like us and Neto et al. (2007), Macciò

et al. (2007) find unrelaxed haloes have systematically lower concentrations.

Having demonstrated that for FoF haloes we recover a mass-concentration

relation which is in very accurate agreement with previous work (Neto et al.,

2007; Macciò et al., 2007), we now want to compare mass-concentration relations

for our bijective and non-bijective Dhaloes. The mass-concentration relation we
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find for the bijective Dhaloes is practically identical to that of the FoF haloes

plotted in Fig. 4.4 and so we have chosen not to effectively repeat the same

plot. The similarity is inevitable as Fig. 3.1 shows that for masses greater than

1010.5 h−1M�, for which we can measure concentrations, the fraction of FoF

haloes that have bijective matches with Dhaloes is greater than 95% and these

bijectively matched haloes have identical centres and so identical fitted NFW

mass profiles.

In Fig. 4.5 we show the mass-concentration for relaxed and all non-bijective

Dhaloes. These haloes are all secondary fragments of FoF haloes and so are a

completely disjoint catalogue of haloes to those represented in the FoF mass-

concentration relations of Fig. 4.4. To aid in comparing the two sets of relations

we plot the power-law fits to the median mass-concentration relations of Fig. 4.4

as dashed lines in Fig. 4.5. It can be seen that these are very similar to the

power-law fits to the median relations

c200 = 4.90± 1.00
(

M200/1014h−1 M�
)−0.093±0.003

, (4.4.6)

for relaxed and

c200 = 5.01± 1.00
(

M200/1014h−1 M�
)−0.095±0.004

(4.4.7)

for all the non-bijective Dhaloes which are shown by the solid lines in Fig. 4.5.

Comparison of the bars and whiskers in Fig. 4.4 and Fig. 4.5 show that the

not only do the median mass-concentration relations for FoF and non-bijective

Dhaloes agree very well, but the distribution of concentrations about the me-

dians are also quite similar. The large number of haloes we have in the MII

simulation enables us to look at these distributions in more detail and in Fig. 4.6

we show histograms of the concentration, distributions along with log-normal

approximations

P(log10 c) =
1√

2π σ
exp

−1
2

(
log10 c−

〈
log10 c

〉
σ

)2
, (4.4.8)

for two mass bins centred on 1011 and 1012 h−1M�. We see in all cases that the

non-bijective Dhaloes have a very similar distribution of concentrations as the
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Figure 4.4: The mass-concentration relation for relaxed FoF haloes in MSII (top

panel) and for all the FoF haloes (bottom panel). The boxes represent the 25%

and 75% centiles of the distribution, while the whiskers show the 5% and 95%

tails. The numbers on the top of each panel indicate the number of haloes in each

mass bin. The median concentration as a function of mass is shown by the blue

solid line and is well fit by the linear relations given in equations 4.4.4 and 4.4.5.

The green lines in each panel correspond to fits of Neto et al (2007).
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Figure 4.5: The mass-concentration relation for relaxed non-bijective Dhaloes

in MSII (top panel) and for all the non-bijective Dhaloes (bottom panel). The

boxes represent the 25% and 75% centiles of the distribution, while the whiskers

show the 5% and 95% tails. The numbers on the top of each panel indicate the

number of haloes in each mass bin. The median concentration as a function of

mass is shown by the blue solid line and is well fit by the linear relations given

in equations 4.4.6 and 4.4.7. The blue dashed line in each panel repeats the fits to

the median mass-concentration relation for FoF haloes shown in Fig. 4.4
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distribution of the corresponding FoF sample and that both are approximated

accurately by log-normal distributions. Note that in both cases we are binning

haloes by the M200 of their fitted NFW profile and so we are affected by the

Dhalo mass being perturbed and suppressed in non-bijective Dhaloes. We recall

that the FoF sample is essentially the same as the sample of bijectively matched

Dhaloes and so we conclude that concentration distribution is essentially the

same for both the primary Dhaloes and those that are secondary fragments of

FoF haloes. In all cases the concentration distributions for the relaxed samples

have slightly higher median concentrations and smaller dispersions than the

corresponding complete mass selected samples.

Also of interest is the fraction of both FoF haloes and non-bijective Dhaloes

that satisfy the equilibrium criteria. From the number of objects per mass bin

given in the labels on Figs. 4.4 and 4.5 this can be seen to be in the range of 80

to 85% for both FoF and Dhaloes. One might at first expect that many multi-

nucleated FoF haloes would fail both the threshold on the asymmetry, s, and the

fraction of mass in sub-structures, fsub. However as these statistics are evaluated

only using the mass within r200 and not across the whole FoF halo, ∼> 98% of

FoF haloes pass the substructure threshold and ∼> 88% the asymmetry threshold.

The first of these numbers is slightly lower for the non-bijective Dhaloes, i.e.

only ∼> 93% pass the substructure threshold. However those passing the more

stringent asymmetry threshold is more comparable at ∼> 86%, while for both

FoF and non-bijective Dhaloes ∼> 93% pass the criterion that the virial ratio

2T/|U| < 1.35. Consequently the fraction of the non-bijective Dhaloes that pass

the relaxation criteria is very similar to that for the FoF or bijective Dhaloes.

Hence in both cases the mass-concentration distributions that we have quantified

are representative of the vast majority of the haloes.
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Figure 4.6: The distribution of concentrations for haloes in the two mass bins

10.75 < log10 M200/h−1M� < 11.25 and 11.75 < log10 M200/h−1M� < 12.25.

The upper panels are for samples of relaxed haloes while the bottom panels are

for all haloes whether or not they satisfy the relaxation criteria. In each panel

the blue histogram is for FoF haloes and the red histogram is for Dhaloes that

do not have bijective matches to FoF haloes. The smooth curves are log-normal

approximations with the same log10 c and second moment, σ, as the measured

distributions. The corresponding values of log10 c and σ are given in the legend.
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4.5 Conclusions

We have used the high resolution Millennium Simulation II cosmological N-

body simulation to quantify the properties of haloes defined by the Dhalo algo-

rithm. This algorithm is designed to produce merger trees suitable for use with

the semi-analytic galaxy formation model, galform. We have presented the

properties of the Dhaloes by comparing them with the corresponding properties

of the much more commonly used FoF haloes (Davis et al., 1985).

Despite the complex mapping between FoF and Dhaloes, which results in a

significant fraction of FoF haloes being broken up into multiple Dhaloes while

other FoF haloes get (re)merged into a single Dhalo, we find that the overall

mass functions of the two sets of haloes are very similar. The mass functions of

our Dhalo and FoF halo catalogues are both reasonably well fit over the mass

range of 108 to 1013.5 h−1M� by currently popular analytic mass functions such

as those of Warren et al (2006) and Reed et al. (2007).

The high resolution of the Millennium II simulation has allowed us to study

the density profiles and concentrations of both FoF and Dhaloes over a wide

range of mass. To avoid contaminating our samples with unrelaxed haloes for

which fitting smooth spherically symmetric profiles is inappropriate we exclude

unrelaxed haloes following Neto et al. (2007). We find that 80% of both FoF and

Dhaloes are relaxed according to these criteria. For FoF haloes we accurately re-

produce the mass–concentration distribution found by Neto et al (2007) at high

masses and extend the distribution to much lower masses. Combining our re-

sults with those of Macciò et al. (2007) and Neto et al. (2007), we find that a sin-

gle power law reproduces the mass-concentration relation for over five decades

in mass. We also find that the mass-concentration distributions for Dhaloes agree

very accurately with those for FoF haloes. This is true even for non-bijective

Dhaloes which are secondary components of FoF haloes. The properties of such

haloes have generally been overlooked in previous studies. We show that the

distributions of concentrations around the mean mass-concentration relation are

well described by log-normal distributions for both the FoF and Dhaloes.



5
ORBITAL PARAMETERS OF INFALLING

SATELLITE HALOES IN THE HIERARCHICAL

ΛCDM MODEL

5.1 Introduction

In the current cosmological structure formation model, dark matter haloes grow

by the merging of smaller systems (White & Rees, 1978; Davis et al., 1985), lead-

ing to hierarchical halo growth. Substructures that are accreted onto a host halo

can survive for significant periods of time within the host halo (Chandrasekhar,

1943; Klypin et al., 1999; Moore et al., 1999; Binney & Tremaine, 2008; Boylan-

Kolchin et al., 2008; Jiang et al., 2008). These substructures can host satellite

gforalaxies, such as those found in the Local Group, and galaxy clusters. Thus,

it is important to study the distribution of the initial orbital parameters of sub-

haloes at the time of infall as they represent the initial conditions which deter-

mine the later evolution of the substructures in their host haloes.

Semi-analytic models of galaxy formation rely on prescriptions for dynam-

ical friction survival times and tidal stripping, (see Baugh 2006 for a review).

Assuming the halo potential to be spherically symmetric, a satellite orbit can

be defined by the plane of the orbit and two further parameters related to the

energy and angular momentum such as circularity and pericentre. Previous

authors have studied the distributions of such orbital parameters for substruc-

tures in numerical simulations (Tormen, 1997; Vitvitska et al., 2002; Benson, 2005;

66
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Wang et al., 2005; Zentner et al., 2005; Khochfar & Burkert, 2006; Wetzel, 2011).

Tormen (1997) investigated the infall of satellites into the haloes of galaxy clus-

ter mass, and reported that more massive satellites move along slightly more

eccentric orbits, with lower specific angular momentum and smaller pericen-

tres. Benson (2005) presented evidence for a satellite mass dependence of the

distribution of orbital parameters, but was unable to characterise these trends

accurately due to the limited statistics. Apparently in slight contradiction, Wet-

zel (2011) reports that the orbital parameters do not significantly depend on the

satellite halo mass but depend more on the host halo mass. These studies were

hampered by limited dynamic range and sample size. The high resolution and

large volume of the simulation we analyse allows us to quantify trends in both

satellite and host halo mass.

The two parameters characterising a satellite orbit are, in general, correlated.

Wetzel (2011) provides fits to circularity and pericentre, but he stopped short

of examining correlations between these parameters which are important if one

wants to select representative orbits from the distribution. Khochfar & Burk-

ert (2006) found a tight correlation between pericentre and circularity. Tormen

(1997); Gill et al. (2004); Benson (2005) also find correlations between orbital pa-

rameters.

In this Chapter, we investigate the correlations between different possible

pairs of parameters. We show that to a good approximation total infall velocity

and the fraction of this velocity which is in the radial direction are uncorrelated.

We present fits to these and show that when transformed these fits provide

accurate descriptions of the distributions of other choices of orbital parameters.

Most previous work has focused on orbits only at redshift z = 0, or on the

satellites that are still identified at z = 0. In our work we focus on host haloes

that exist at z = 0, but we analyse the orbits of all satellites that fall into the host

halo after its formation (defined as when its main progenitor had half the final

halo mass), regardless of whether the satellite is still identifiable at z = 0.

This Chapter is structured as follows. In Section 5.2, we briefly outline the

methods including a detailed description of the N-body simulation, the iden-
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tification of halo mergers and the measurement of orbital parameters. In Sec-

tion 5.3, we present detailed analysis of the orbital parameters. We conclude in

Section 5.4.

5.2 Methods

5.2.1 Simulation

Our analysis is based on the DOVE simulation, a ΛCDM cosmological dark

matter only simulation of a periodic volume with side length 100 Mpc, with

cosmological parameters adapted from the wmap7 analysis of Komatsu et al.

(2011). The Hubble parameter, density parameter, cosmological constant, scalar

spectral index and linear rms mass fluctuation in 8 h−1Mpc radius spheres were

H0 = 70.4 km s−1, Ωm = 0.272, ΩΛ = 0.728, ns = 0.97 and σ8 = 0.81, re-

spectively. The dark matter is represented by Np = 16203 particles of mass

mp = 8.8× 106 M�. Initial conditions were set up using second order Lagrangian

perturbation theory (Jenkins, 2010), with phases set using the multiscale Gaus-

sian white noise field Panphasia (Jenkins, 2013). These phases were chosen to be

the same as in the eagle simulation (Schaye et al., 2014) and are fully specified

by the Panphasia descriptor [Panph1,L16,(31250,23438,39063),S12,CH1050187043,

EAGLE L0100 VOL1]. The initial conditions were evolved to z = 0 using the

gadget3 N-body code, which is an enhanced version of the code described in

Springel (2005b).

The particle positions and velocities were output at 160 snapshots, equally

spaced in log(a) from z = 20. At each output, haloes were identified using

a Friends-of-Friends algorithm (FoF; Davis et al., 1985), and the subfind algo-

rithm (Springel et al., 2001) was used to identify self-bound substructures (“sub-

haloes”) within them. We define our FoF haloes by the conventional linking

length parameter of b = 0.2 (the linking length is defined as b times the mean

interparticle separation). Typically the main subfind subhalo contains most of

the mass of the original FoF halo, only unbound particles and those bound to
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secondary subhaloes are excluded. We keep all haloes and subhaloes with more

than 20 particles, corresponding to 2× 108 M�.

5.2.2 Orbital parameters

We define the virial mass, Mvir, and associated virial radius, rvir, of a dark mat-

ter halo using a simple spherical overdensity criterion centred on the potential

minimum:

Mvir =
4
3

π∆ ρcrit r3
vir (5.2.1)

where ρcrit is the cosmological critical density and ∆ is the specified overdensity.

We adopt ∆ = 200 and include all the particles inside this spherical volume, not

only the particles grouped by the adopted halo finder, to define the enclosed

mass, M200, and associated radius r200. This choice of ∆ = 200 is largely a matter

of convention, but has been shown roughly to correspond to the boundary at

which the haloes are in approximate dynamical equilibrium (e.g. Cole & Lacey,

1996). We express velocities in units of the virial velocity, V200, of the host halo.

For a spherical potential, the orbit of a satellite can be fully specified by the

orientation of the orbit and two non-trivial parameters related to its energy, E,

and the modulus of its angular momentum, J. There are various choices for these

two parameters. The choice made by Benson (2005) and others of the radial, Vr,

and tangential, Vθ, velocities at infall benefits from being directly measurable

quantities and being simple. In contrast, Tormen (1997) adopted the circularity,

defined as the total angular momentum in units of the angular momentum for a

circular orbit of the same energy, J/Jcirc(E), and the infall radius in units of the

radius of a circular orbit of the same energy, r/rcirc(E). These have the advantage

of depending only on the conserved quantities E and J (Note, the r here is the

radius at infall and so equals r200 in our study.), but require adopting a model of

the halo potential. The particular form of these two parameters is motivated by

theoretical modelling including that of satellite orbital decay due to dynamical

friction (Lacey & Cole, 1993; Jiang et al., 2008). To define these two parameters,

we adopt a singular isothermal sphere (SIS) (Cole & Lacey, 1996) as a simple

model for the density profile of dark matter haloes. This choice is consistent
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with assumptions in Lacey & Cole (1993) and approximates the more realistic

NFW potential Navarro et al. (1996b) over a large range of halo radii.

Here we present a derivation of the transformations between these two parametri-

sations (following e.g. van den Bosch et al 1999). Defining the zero point of the

gravitational potential to be at r200, where the circular velocity, V200, is given by

V200 =
√

GM200/r200, we can express the gravitational potential as

φ(r) = V2
200 ln(r/r200). (5.2.2)

Thus, for a satellite crossing r200 with radial and tangential velocities, Vr and Vθ,

the total energy per unit mass is

E =
1
2

(
V2

r + V2
θ

)
. (5.2.3)

As the circular velocity is constant for a SIS, the radius, of a circular orbit of the

same energy is given by

1
2

(
V2

r + V2
θ

)
=

1
2

V2
200 + V2

200 ln(rcirc/r200), (5.2.4)

implying
rcirc(E)

r200
= exp

(
V2

r + V2
θ −V2

200

2V2
200

)
. (5.2.5)

As the circular velocity is constant the corresponding angular momentum of a

circular orbit is Jcirc(E) = MsV200rcirc(E), we have

J
Jcirc(E)

=
Vθ

V200
exp

(
−V2

r + V2
θ −V2

200

2V2
200

)
. (5.2.6)

We also show the reduced mass SIS case in the Appendix A1 but we do not

adopt it as the default as in reality the SIS halo will be deformed as the satellite

orbits within it. Also we find for a SIS the reduced mass has little effect (see

Fig. A.3).

Another useful quantity to define is the composite parameter

Θ =

(
J

Jcirc(E)

)0.78( r200

rcirc(E)

)2

. (5.2.7)

Its utility is that Lacey & Cole (1993) showed that the orbital decay time of a

satellite of mass Ms due to dynamical friction within a host halo of mass Mh is
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given by

τmrg = Θ τdyn
0.3722

ln(Λcoulomb)

Mh

Ms
, (5.2.8)

where τdyn is the dynamical time of the host halo and ln(Λcoulomb) is taken

to be ln(Mh/Ms). This formula assumes that the satellite can be treated as a

point mass orbiting in a host halo with a SIS density profile and is valid when

τmrg � τdyn. In this model it is only necessary to know the one-dimensional

distribution of Θ values rather than the bivariate distribution of, say, Vr, and Vθ

to determine the distribution of orbital decay times.

5.2.3 Identifying halo mergers

We follow the evolution, infall and merging of haloes and subhaloes using

merger trees. Our starting point is the catalogue of FoF haloes and their con-

stituent subhaloes at redshift zero. We build subhalo merger trees linking each

subhalo to its progenitors and descendants using the algorithm described in

Chapter 2. Next, we identify both the progenitors of the FoF haloes and the

subhaloes which fall into them. For each FoF halo, we trace its progenitor in

the previous snapshot by identifying the main progenitor of its main subhalo.

We then define the virial radius of this progenitor halo such that a sphere of

this radius centred on the particle at the potential minimum of the main subhalo

encloses 200 times the critical density as defined in Eqn. 5.2.1. We trace the main

progenitor of each redshift zero FoF halo back in this way until the last snapshot

at which its mass is greater than half the final halo mass. We choose not to con-

sider mergers before the formation time of the main halo as we bin our results by

the halo mass at z = 0 and wish this to reflect (within a factor of two) the mass

of the main halo when the merger takes place. To identify subhaloes that merge

onto this main halo progenitor we not only trace the progenitors of subhaloes

that are in the halo at redshift zero, but also those that were inside progenitors

of the main halo at some point but which have since been disrupted, merged or

escaped. Hence, we trace every individual subhalo from its formation redshift

to the redshift when it first crosses the virial radius of the host halo.
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Figure 5.1: Tests of the interpolation scheme on the distributions of the orbital

parameters rcirc(E)/r200, J/Jcirc(E), Vr/V200, V`/V200. The panel shows the dif-

ferential distribution of orbital parameters in the mass ratio bin: Ms/Mh > 0.05

for all the host haloes in our sample. Solid lines show the results using linear

interpolation of energy and angular momentum, dashed lines show results using

linear interpolation of velocity and position.
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In order to find the precise crossing time, we save the orbital information

from the snapshots just before and after a satellite subhalo crosses the virial ra-

dius. Then, we interpolate both the satellite position (relative to the halo centre)

and the halo virial radius linearly to find the time when the subhalo first crosses

the virial radius. To investigate the accuracy of the interpolation scheme we

considered two methods of interpolating the satellite orbital parameters to this

crossing time:

1. We interpolate the energy (using the singular isothermal sphere approxi-

mation of the halo potential described in Section 5.2.2) and angular mo-

mentum linearly in redshift to the crossing time. We then compute other

orbital parameters such as the radial and tangential velocities from this

interpolated energy and angular momentum.

2. Alternatively, we interpolate each component of the satellite’s velocity lin-

early in redshift to the crossing time and then compute the required orbital

parameters from the interpolated velocity and position.

Provided our simulation snapshots are sufficiently closely spaced, we would

expect these two methods to give very similar results. This is indeed what we

find as demonstrated in Fig. 5.1 which compares the distribution of the various

orbital parameters for satellites satisfying Ms/Mh > 0.05 at the time of infall

in our full sample of haloes. Throughout the rest of this chapter, we show

results just from the method that linearly interpolates the energy and angular

momentum. We would expect this to be the more accurate method as these two

quantities are almost conserved and so only vary slowly with the interpolation

parameter.

Accurately defining the orbital parameters at the crossing time is an impor-

tant issue that has been considered in earlier work. The approach adopted

by Benson (2005) and Vitvitska et al. (2002) was to search for pairs of haloes

within some separation rmax which are about to merge and then predict their

crossing time by modelling them as two isolated point masses. A similar ap-

proach was taken by Tormen (1997), Khochfar & Burkert (2006) and Wetzel
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(2011). When using such schemes one must apply a weighting to correct for

the under-representation of satellites with large infall velocities, some of which

will be at separations greater than rmax at the earlier snapshot. In our work, due

to the higher time resolution of our simulation outputs, we do not have to limit

the separation between satellite and host halo at the snapshot prior to infall and

instead form a complete census of all the infalling satellites.

I tested other interpolation schemes. In particular I tested cubic interpolation.

For this I expressed the each Cartesian coordinate of the position of a satellite

with respect to the halo centre as a cubic polynomial in time and determined its

four coefficients using the position and velocity at the two adjacent snapshots.

The cases where the linear and cubic interpolation schemes differed significantly

I tracked down to where the motion of the centre of potential of a satellIite was

not consistent with the mean velocity of the particles assigned to that satellite.

This can happen as in some cases the population of particles belonging to a

particular subhalo can change significantly between snapshots. Hence, linear

interpolation was determiend to be more robust. To improve the interpolation

we could either use a simulation with more frequent snapshots or a substructure

finder that enforces more consistent membership.

5.2.4 Formation and infall redshifts

As we want our measured orbital parameter distributions to be directly applica-

ble to semi-analytic galaxy formation models we trace all the infalling subhaloes

back to the formation time of the main halo, where its formation time is defined

as when its main progenitor has half the final, z = 0, halo mass. We bin our halo

samples by their mass at redshift z = 0 and so by not tracing haloes back further

in time we avoid significant ambiguity in the mass of the main halo at the time

satellites are accreted, i.e. at all infall events the main halo is always within a

factor of two the final halo mass. The distribution of halo formation redshifts,

zHF, are shown in the top row of Fig. 5.2 for each of our final halo mass bins.

As expected we see that lower mass haloes form earlier. The median formation

redshift of our 1012, 1013 and 1014 M� haloes are 1.14, 0.92, and 0.66 respectively.
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Figure 5.2: The distributions of halo formation redshifts and the redshifts at

which satellites fall into these halos. Each column is for a fixed final halo mass as

labelled at the top of the figure. The top row is the distribution of halo formation

redshifts. The middle row is the distribution of satellite infall redshifts for all

infalling satellites, while bottom row is for the subset of these satellites which

survive as subhaloes at z = 0. In the bottom two rows the line colour indicates

the satellite-to-host mass ratio. The red lines are for 0.0001 < Ms/Mh < 0.005,

green for 0.005 < Ms/Mh < 0.05 and blue for Ms/Mh > 0.05.
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The middle row of Fig. 5.2 shows the distribution of infall redshifts, zinfall,

split both by final halo mass and by the ratio of satellite-to-host mass at infall.

These distributions rise steadily towards redshift z = 0 from the upper redshift

set by when the first haloes in the sample form. The most interesting aspect

is that infall redshift distribution at fixed halo mass is essentially independent

of satellite-to-host mass ratio. This is equivalent to the mass distribution of the

infalling satellites, measured in units of the host halo mass, being independent

of redshift. Given that the distribution of host halo masses is constrained not to

vary greatly with redshift (only haloes with mass greater than half the final mass

are retained in the sample) then this behaviour is expected in simple excursion

set models of hierarchical growth (Lacey & Cole, 1993).

The bottom row of Fig. 5.2 also shows distributions of infall redshifts, but

now just for the satellites that survive and are identifiable at redshift z = 0.

Contrasting these distributions with those from the middle row one clearly sees

that the typical infall redshift of surviving satellites is significantly lower than

that of the complete sample. This is, at least in part, a resolution effect as we are

unable to identify satellites with fewer than 20 particles. Thus the shift to lower

infall redshifts is greatest for the lowest mass satellites which are the ones with

the smaller satellite-to-host mass ratio in the lower halo mass bins.

5.3 Orbital parameter distributions

5.3.1 Comparison to previous work

Fig. 5.3 compares our orbital parameter distributions with those from Tormen

(1997), Benson (2005) and Wetzel (2011). In all panels, the black solid lines show

the distributions for satellites with mass ratios in the range 0.05 < Ms/Mh < 0.5

averaged over all our analysed haloes which span the mass range 5× 1011 <

Mh < 2.5× 1014M�. In general our results are in good agreement with these

published datasets and those of Wang et al. (2005); Zentner et al. (2005); Khochfar

& Burkert (2006), despite variations between these studies in the definition of
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Figure 5.3: Comparison to published distributions of the orbital parameters

rcirc(E)/r200, J/Jcirc(E), Vr/V200, and V`/V200. In all the panels the black solid line

shows the distribution of the satellite orbital parameters for infalling satellites in

our analysed host haloes (covering the mass range 5 × 1011 to 2.5 × 1014 M�)

with satellite-to-host halo mass ratios spanning 0.05 to 0.5. This range is typical

of that probed by the samples to which we are comparing. Blue, green and red

dashed lines show the results from the work of Tormen (1997), Wetzel (2011) and

Benson (2005) respectively.
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crossing time and the choice of cosmology.

The selection of Tormen (1997) data which we plot matches the Ms/Mh >

0.051 cut used in our own data, but is for host halos with typical masses of

1015 M�. The good agreement we find with Tormen (1997) is only expected if,

as we find below, the distributions depend only weakly on halo mass at fixed

Ms/Mh. The Benson (2005) data is based on a wide range of simulations of dif-

ferent volumes and resolutions. In this sample he uses all satellites and haloes

with masses greater than 1011 M� and states that the typical ratio Ms/Mh = 0.08.

The smooth radial and tangential velocity distributions we plot in the lower pan-

els of Fig. 5.3 are the fitted distributions presented by Benson (2005). Benson

(2005) and also Vitvitska et al. (2002) modelled the radial distribution as a Gaus-

sian and the tangential distribution as a Rayleigh or 2D Maxwell-Boltzmann

distribution. The agreement with our results is reasonable. The radial and tan-

gential velocity distributions of Wetzel (2011) are in very good agreement with

our results. Like Benson, Wetzel uses all satellites and haloes above a fixed mass

cut, 1010 M�, and so we would expect the mean Ms/Mh ratio to be similar to

that of Benson and to our 0.05 < Ms/Mh < 0.5 sample. The comparison of

J/Jcirc(E) distributions between us and Wetzel is not strictly fair as we compute

Jcirc(E) using the singular isothermal sphere model while he models the satellite

and host as two point masses. However while this introduces a bias for satellites

for which Ms/Mh � 1, we find that the resulting distributions are very similar

for satellites with 0.05 < Ms/Mh < 0.5 (see Appendix A.1).

5.3.2 Orbital parameters: mass ratio and mass dependence

Fig 5.4 presents our results for the orbital parameter distributions for three bins

of halo mass and three bins of satellite-to-host halo mass ratio. We reiterate that

the host halo mass bins are defined by the mass of the host haloes at z = 0 while

the mass ratio, Ms/Mh, is defined by the values at the infall redshift.

1We were able to apply this cut as G. Tormen kindly supplied his catalogue of satellite orbital

parameters in electronic form.
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Figure 5.4: Orbital parameter distributions for bins of different final halo

masses and satellite-to-host halo mass ratios, Ms/Mh. The central value of the

final halo mass bin is indicated at the top of each column, with the rightmost

column overplotting the results from each of the three mass bins using the ap-

propriate line type. The red lines are for 0.0001 < Ms/Mh < 0.005, green for

0.005 < Ms/Mh < 0.05 and blue for Ms/Mh > 0.05. The first two rows show

the radial, Vr/V200, and tangential, V`/V200, velocity distributions. The second

two rows show the circularity, J/Jcirc(E), and rcirc(E)/r200, while the final row

shows the distributions of the composite parameter Θ defined in Eqn. 5.2.7. Note

that for host haloes in the 1014 M� bin, we do not show the Ms/Mh > 0.05

distributions due to the low number of subhaloes.
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Figure 5.5: The bivariate distributions of orbital parameters for all satellites in-

falling onto 1013 M� haloes. The top panels show the two-dimensional distribu-

tion of rcirc(E)/r200 versus J/Jcirc(E) and V`/V200 versus Vr/V200 respectively. The

bottom panels show the two-dimensional distributions of V/V200 versus Vr/V200

and V/V200 versus Vθ/V200. The colour bar illustrates the relative density of

points (on an arbitrary scale).
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Table 5.1: Parameters of the fitted orbital parameter distributions for bins of

final halo mass, Mh, and the satellite-to-host mass ratio at infall, Ms/Mh. The

notation for the parameters of the Voigt and exponential fitting functions are as

defined in Eqns. 5.3.11 and 5.3.12

Mh/M� Ms/ Mh B γ σ µ

1012 0.0001− 0.005 0.049± 0.055 0.109± 0.003 0.077± 0.002 1.220± 0.001

1013 0.0001− 0.005 0.548± 0.105 0.114± 0.010 0.094± 0.006 1.231± 0.002

1014 0.0001− 0.005 1.229± 0.292 0.110± 0.018 0.072± 0.007 1.254± 0.010

1012 0.005− 0.05 1.044± 0.086 0.098± 0.005 0.073± 0.004 1.181± 0.002

1013 0.005− 0.05 1.535± 0.255 0.087± 0.013 0.083± 0.010 1.201± 0.005

1014 0.005− 0.05 3.396± 1.040 0.050± 0.023 0.118± 0.025 1.236± 0.020

1012 0.05− 0.5 2.878± 0.200 0.071± 0.010 0.091± 0.007 1.100± 0.004

1013 0.05− 0.5 3.946± 0.578 0.030± 0.030 0.139± 0.021 1.100± 0.013

1014 0.05− 0.5 2.982± 4.646 −0.012± 0.035 0.187± 0.019 1.084± 0.052

The top two rows of Fig. 5.4 show the distributions of radial and tangential

velocities at infall. The radial distributions peak close Vr = V200 and the tan-

gential at a lower value of around Vθ = 0.65 V200. Both distributions only have

small tails beyond 1.5 V200. Independently of host halo mass, we see that the

distributions of radial velocities become broader for lower mass satellites with

little change in the location of the peak of the distribution. In contrast for the

tangential velocities the mode of the distribution shifts to higher values for less

massive satellites. The most massive satellites are on the most radial, low angu-

lar momentum, orbits, The dependence of these distributions on halo mass at

fixed Ms/Mh is much weaker. This can be seen in the righthand panels where,

to a first approximation, the lines of the same colour (same Ms/Mh) coincide.

There is some residual dependence on halo mass (different line styles), with or-

bits becoming more radial – the Vθ/V200 distributions peaking at lower values –

for more massive haloes, but this trend is much weaker.

The middle row of Fig. 5.4 shows the distributions of circularity, J/Jcirc(E).

The distributions are broad with those for the Ms/Mh > 0.05 bin peaking at

close to a circularity of a half. In each bin of halo mass, we again see the trend,
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for higher mass satellites to have less circular, more radially biased orbits. Also,

once again, the trends with satellite-to-halo mass ratio are much stronger than

those with halo mass.

The penultimate row of Fig. 5.4 shows the distributions of rcirc(E)/r200. This

is essentially a measure of the energies of the orbits, with higher rcirc(E)/r200

corresponding to less bound orbits. At each halo mass, there is a strong trend

for the more massive satellites to be more strongly bound. Again, the variations

of the distributions with halo mass, at fixed satellite-to-halo mass ratio, are much

weaker.

These trends are consistent with the observation that within the filaments of

the cosmic web that surround an accreting dark matter halo, the most massive

infalling haloes move along the central spines of the filaments. In this way

the filamentary structures act as focusing rails which direct massive satellites

onto predominantly radial orbits. Perhaps more simply, the force on the most

massive satellites is dominated by the central halo while lower mass satellites

can be significantly perturbed by other more massive satellites.

We show the distribution of the composite orbital parameter Θ in the bottom

row of Fig. 5.4. We see a clear shift in the distributions towards higher values

of Θ with decreasing values of Ms/Mh and negligible dependence on host halo

mass. According to Eqn. 5.2.8 this will contribute to lower mass satellites having

longer merger timescales but this effect is subdominant to the explicit Mh/Ms

term in that equation which also acts in the same sense.

5.3.3 2D distribution of orbital parameters

As described in the Benson (2005) paper, the radial and tangential velocity dis-

tributions are tightly correlated. Consequently the 1-dimensional distributions

presented in Fig. 5.4 are not a sufficient characterisation of the orbital parameter

distributions. We emphasise this in Fig. 5.5 which shows bivariate distributions

of various orbital parameter combinations.

The top left-hand panel of Fig. 5.5 shows the bivariate distribution of rcirc(E)/r200

and J/Jcirc(E). The first thing to note in this distribution is that there are
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excluded regions at high value of J/Jcirc(E) both for low and high values of

rcirc(E)/r200. These arise from our stipulation that we are characterising the

orbits of satellites when they first cross r200. The plotted distribution touches

the right hand axis at rcirc(E)/r200 = 1 and J/Jcirc(E) = 1. This point cor-

responds to a circular orbit with r = r200. Circular orbits of either larger or

smaller radius would not be included in our sample as they never cross r200.

Hence, rcirc(E)/r200 either increases or decreases away from unity for increas-

ingly eccentric orbits in our sample. This defines the complicated boundary to

the measured bivariate distribution.

The top right-hand panel of Fig. 5.5 shows the correlated bivariate distri-

bution of radial and tangential velocities. This is similar to that presented

and parametrised in Benson (2005). We note that the ridge line of this dis-

tribution is approximately circular, i.e. it corresponds to a fixed total velocity

V =
(
V2

r + V2
θ

)1/2.

The lower two panels of Fig. 5.5 show the two dimensional distributions

of the total velocity versus either the ratio Vr/V or Vθ/V. We see to a good

approximation these pairs of parameters appear uncorrelated. This suggests

that we can construct a simple model for the full bivariate distribution of orbital

parameters by modelling the individual independent distributions of V/V200

and Vr/V. This will then provide a simple parametrised model that can be used

in semi-analytic galaxy formation models.

5.3.4 Fitted distributions

To build a complete model of the bivariate distribution of parameters we per-

form fits to the marginalised distributions of both the total velocity, V/V200,

and the radial-to-total velocity ratio, Vr/V. Assuming these to be independent

we can then transform variables to generate model predictions for the distribu-

tions of any of the other choices of orbital parameters such as J/Jcirc(E) and

rcirc(E)/r200. Here we present these fits as a function of halo mass and satellite-

to-halo mass ratio.

The distributions of V/V200 for each of our samples are shown in Fig. 5.6
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along with Voigt profile fits. The distributions of V/V200 are reasonably sym-

metric about their means but much more centrally peaked than Gaussians of the

same rms width (leptokurtic). We find that the distributions can be fitted well

by Voigt profiles, convolutions of a Lorentz profile,

PL(x; γ) ≡ γ

π(x2 + γ2)
, (5.3.9)

and a Gaussian

PG(x; σ, µ) ≡ 1√
2π σ

exp
(−(x− µ)2

2σ2

)
(5.3.10)

PV(x; σ, γ, µ) =
∫ +∞

−∞
PG(x′; σ, µ)PL(x− x′; γ)dx′ (5.3.11)

where x = V/V200. We determine the best fitting Voigt profiles by finding the

parameters that maximise the likelihood, L = ΠiPV(xi; σ, γ, µ), where the index

i runs over all the satellites in the sample. The resulting fits are shown in Fig. 5.6

and their parameters σ, γ and µ are listed in Table. 5.1.

We find that the distributions Vr/V are well fit by exponential distributions

of the form:

P(Vr/V) = A
(

exp
(

BVr

V

)
− 1
)

. (5.3.12)

Here A is simply a normalisation constant and B is the single free parameter.

The distributions of Vr/V and the corresponding maximum likelihood fits are

shown in Fig. 5.7. (In appendix A.2 we show that the distributions of Vθ/V can

also be fit with this form of distribution function.) The distribution is almost

linear, B� 1, for the combination of low Mh and low Ms/Mh. The distributions

become increasingly radially biased, peaked at Vr/V = 1 (high B), for both

increasing Ms/Mh and Mh, consistent with our earlier discussion.

The trends of the distributions of V/V200 and Vr/V with halo mass and

satellite-to-halo mass ratio are depicted more clearly in Fig. 5.8, which shows all

the fitted distributions on a single panel. In the lower panel we see the tendency

for the distributions to become more radially biased for satellites with higher

Ms/Mh. In the upper panel, it is clear that the V/V200 distributions have very

little dependence on halo mass at fixed Ms/Mh. There is a stronger dependence

on Ms/Mh with samples of larger Ms/Mh ratios having narrower distributions
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Figure 5.6: Probability distribution of the total infall velocity, V/V200, as a

function of both the satellite-to-host mass ratio at infall and the host halo mass.

Each column is for a fixed final halo mass as labelled at the top of the column.

Each row is for a different bin in satellite-to-host mass ratio: top (red lines)

0.0001 < Ms/Mh < 0.005 , middle (green lines) 0.005 < Ms/Mh < 0.05 and

bottom (blue lines) Ms/Mh > 0.05. The dashed lines are the Voigt profile fits

whose parameters, µ, γ and σ are listed in Table 5.1.
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Figure 5.7: Dependence of the orbital parameters Vr/V on the mass ratio be-

tween the satellite halo mass and the host halo mass. Each column is for a fixed

final halo mass as labelled at the top of the figure. Each row is for a different bin

in satellite-to-host mass ratio, top (red lines) 0.0001 < Ms/Mh < 0.005, middle

(green lines) 0.005 < Ms/Mh < 0.05 and bottom (blue lines) Ms/Mh > 0.05

The dashed curves are the best fitting exponential distributions and the corre-

sponding value of the parameter B in Eqn. 5.3.12) is shown on each panel and in

Table 5.1.
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Figure 5.8: The fitted distributions of the orbital parameters V/V200 (top) and

Vr/V (bottom) for the different values of both the satellite-to-host mass ratio and

the host halo mass. Line colour denotes satellite-to-host mass ratio, red 0.0001 <

Ms/Mh < 0.005, green 0.005 < Ms/Mh < 0.05 and blue Ms/Mh > 0.05. The

line style indicates the host halo mass, solid 1012 M�, dashed 1013 M� and dotted

1014 M�.
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and lower mean values. This is consistent with the similar trends in the distri-

bution of rcirc(E)/r200 that we saw in Fig. 5.4. These trends can also be seen in

Fig. 5.9, where we plot the dependence of the fit parameters on Ms/Mh. In all

halo mass bins the mean, µ, decreases strongly for the highest values of Ms/Mh.

The narrower width of the V/V200 distributions for high Ms/Mh, which we see

in Fig. 5.8, is reflected in a decreasing value of γ (the width of the Lorentzian)

with increasing Ms/Mh, which has greater effect on the width of the distribu-

tion than the corresponding slow increase in σ (the width of the Gaussian). The

error bars shown on Fig. 5.9 have been estimated by bootstrap resampling of the

z = 0 halo catalogue and we have investigated the correlations of all the pairs

of parameters. The only significant correlation we find is an anticorrelation be-

tween σ and γ. This is to be expected as the overall width of the distribution

is determined by σ2 + γ2, while their ratio, γ/σ, determines how peaked the

distribution is (its kurtosis).

5.3.5 Derived distributions

If the fits we have presented in Section 5.3.4 are accurate and if Vr/V and V/V200

are uncorrelated then we can use these distributions to derive model distribu-

tions of any other choice of orbital parameter. For instance we can select pairs

of values of Vr/V and V/V200 of a given probability from the fitted distributions

and compute the radial and tangential velocities using

Vr

V200
=

(
Vr

V

)(
V

V200

)
(5.3.13)

and
Vθ

V200
=

(
V

V200

)√
1−

(
Vr

V

)2

. (5.3.14)

We can also derive J/Jcirc(E), rcirc(E)/r200 and Θ from Vr/V and V/V200 using

the equations in Section 5.2.2. We show all the resulting orbital parameter distri-

butions in Fig. 5.10, which should be compared with Fig. 5.4. Direct comparison

of the two figures shows that these are faithful representations of the data and

validate the assumption that, to a good approximation, Vr/V and V/V200 can



90

be treated as independent random variables. The model distributions shown in

Fig. 5.10, particularly the superimposed distributions in the righthand column,

clearly show both the strong dependence on Ms/Mh and the much weaker de-

pendence on Mh.

In the bottom panel, we compare our distributions of Θ to the lognormal

distribution of Θ adopted in the galform model (Cole et al., 2000). We see that

relative to the galform model our distributions are shifted slightly to higher

values of Θ with this becoming more pronounced for massive host halos and

for lower satellite-to-halo mass ratios. The shifts are not large but will lead to

the galform predicting slightly shorter merger timescales and thus few satellite

galaxies in groups and galaxy clusters. This in turn will suppress the predicted

clustering on small scales.
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Figure 5.10: Like Fig. 5.4, but showing the distributions derived from the fits

presented in Section 5.3.4 rather than the directly measured distributions. The

black solid line in the bottom panel is the lognormal distribution from galform

(Cole et al., 2000)

.
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5.4 Conclusions

We have employed the DOVE high resolution cosmological N-body simulation

with more than 4 billion particles to study the distribution of the orbits of in-

falling satellites during hierarchical halo formation in the standard ΛCDM cos-

mology. We study host haloes with masses from 1012 to 1014 M� and satellites

with masses as low as 2× 108 M�. Compared to previous studies (Tormen, 1997;

Vitvitska et al., 2002; Benson, 2005; Wetzel, 2011) we have better mass and time

resolution and a larger sample of satellite orbits.

There are various choices for the pair of orbital parameters that specify a

satellite orbit in a spherical potential. We quantify the distributions of the radial,

Vr, and tangential, Vθ, velocities as well as other common alternatives such as

the circularity, J/Jcirc(E) and the radius of the circular orbit of the same energy,

rcirc(E).

We have examined the dependence of the distributions of these orbital pa-

rameters on both the host halo mass, Mh, and the mass ratio between the satellite

and host, Ms/Mh. We find that the strongest trends are with Ms/Mh at fixed

Mh. Satellites with larger Ms/Mh tend to be on more radial orbits with lower

angular momentum and are more tightly bound. At fixed Ms/Mh there is a

trend for satellites around more massive haloes to also be on more radial orbits,

but this trend is weaker. Insofar as previous authors have examined similar re-

lationships, our results are consistent with their data. However, while Wetzel

(2011) had not detected a significant dependence of orbital parameters on satel-

lite mass ratio, possibly due to their limited sample size, our larger sample of

orbits reveals a dependence, particularly at high mass ratios.

In general we find that complementary pairs of orbital parameters, such as

(Vr,Vθ), are non-trivially correlated, making a complete description of their bi-

variate distribution complex. However, we find that, to a good approximation,

the distributions of total infall velocity V = (V2
r + V2

θ )
1/2 and the ratio Vr/V are

uncorrelated. We present accurate Voigt and exponential fits to their respective

distributions. Assuming them to be uncorrelated, we transform these simple
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bivariate distributions and demonstrate that the distributions of other choices of

orbital parameter can be successfully recovered.



6
CONCLUSION

My research has centred around establishing the nature of the dark matter haloes

by investigating the abundance of haloes as a function of halo mass, the forma-

tion history of each halo, commonly called the merger tree, and the internal

structure of the halo, in terms of radial density profiles and their angular mo-

mentum. During my PhD, I have done in-depth research on Dhalo merger trees

which are used for driving the Durham semi-analytic galaxy formation model

galform, from the Millennium II Simulation (MSII) Boylan-Kolchin et al. (2009)

and orbital parameters in a high resolution N-body cosmological simulation fo-

cusing on the orbits of infalling dark matter substructures.

6.1 N-body halo merger trees

To model galaxy formation, one must first have an accurate model of the evolu-

tion of dark matter haloes. There are two approaches to generating the merger

histories of dark matter haloes. One is the Monte-Carlo approach which sam-

ples the distribution of progenitor masses predicted from the extended Press-

Schechter theory (Lacey & Cole, 1993), and the other method uses halo merger

trees extracted from N-body simulations which have sufficiently frequent out-

puts. The main drawback of N-body merger trees is their finite mass resolution.

But it is now quite common for semi-analytic models to use halo merger trees

due to the improvement of the resolution of N-body simulations like MSII. The

key point for the N-body halo merger tree approach is to provide halo merger

94
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trees which quantify the hierarchical growth of individual dark matter haloes,

it is important to adopt models of the individual haloes that are consistent with

the haloes defined in the merger trees. In the Durham galform model, we use

the Dhalo algorithm which analyses the N-body simulation snapshots to define

a self-consistent set of dark matter haloes and the merger trees describing their

hierarchical evolution. The advantages of merger trees based on Dhalo rather

than the more common FoF haloes is that the Dhalo algorithm maintains as dis-

tinct haloes objects that can be prematurely linked into a single FoF group by

tenuous bridges of particles or by the onset of the overlap of their outer diffuse

haloes. The Dhalo algorithm has been widely exploited in a range of applica-

tions (Bower et al., 2006), but there has been no previous literature on the details

of Dhalo properties such as the halo abundance and internal structure.

During my PhD, I have used the high resolution MSII cosmological N-body

simulation to quantify the properties of haloes defined by the Dhalo algorithm.

I have built Dhalo catalogues from the subhalo merger trees, and found accurate

matches between FoF haloes and Dhaloes. I have conducted a detailed study

of the abundance of Dhaloes of different masses and the internal structure of

Dhaloes.

I have shown that unlike the FoF algorithm, the mass of a Dhalo correlates

much more closely with the standard virial mass, M200, than the corresponding

FoF mass. I have also illustrated how some Dhaloes can be composed of more

than one FoF halo. This occurs as structure formation in CDM models is not

strictly hierarchical and occasionally a halo, after falling into a more massive

halo, may escape to beyond the virial radius of the more massive halo. For the

purposes of the galform semi-analytic model it is convenient to consider such

haloes as remaining as satellites of the main halo. I find that such remerged FoF

haloes are not uncommon, but contribute very little mass to the larger haloes

to which they are (re)attached. Where a FoF halo is split into two or more

Dhaloes, I find that the secondary Dhaloes have a lower median ratio between

the mass of the Dhalo and the virial mass. This is due to the subfind substruc-

ture finder assigning less mass to subhaloes when they move into overdense en-
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vironments. Despite the complex mapping between FoF and Dhaloes, I find that

the overall mass functions of the two sets of haloes are very similar. With the im-

provement of mass resolution of MSII over the Millennium Simulation (Springel,

2005a), I am able to study the density profile and concentrations of both FoF and

Dhaloes over a wide range of mass. I find the mass-concentration distributions

for Dhaloes agree very accurately with those for FoF haloes. This is true even for

the Dhaloes which are secondary components of FoF haloes. The properties of

such haloes have generally been overlooked in previous studies. I also show that

the distributions of concentrations around the mean mass-concentration relation

are well decribed by log-normal distributions for both the FoF and Dhaloes.

6.2 Orbital parameters in the DOVE simulation

In current cosmological models, dark matter haloes grow via the merging of

smaller systems, leading to hierarchical halo growth. The substructures that

merge to become part of the host halo can survive for significant periods of

time within the host halo. These substructures can host satellite galaxies, such

as those found in the Local Group, and galaxy clusters. Thus, it is important

to study the distribution of the initial orbital parameters of subhaloes at the

time of merging into the host haloes as it represents the initial conditions which

determine the later evolution of the substructures in the host.

Having gained a comprehensive understanding of N-body merger trees, I

have started to study the orbital parameters of the dark matter substructures at

the time of merging into their host halo. I use a high resolution N-body Sim-

ulation of the Standard ΛCDM cosmology, Dove (Dark Matter Only Version of

Eagle), which has been carried out in Durham. To measure the orbital parame-

ters, I make use of the 160 N-body snapshot outputs from the dove simulation

which span a range of redshifts. The dark matter haloes in the simulation are

identified by the FoF algorithm. Starting from the haloes at redshift zero, I find

all the progenitors of subhaloes in the haloes by linking them through subhalo

merger trees at each redshift. Then I trace every individual subhalo from its
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earliest redshift to the redshift when it first crosses the virial radius of the host

halo. I store the position and velocity of the subhalo for both the redshift when

it first crosses the virial radius and the one before its first crossing. Then I find

the crossing time by doing linear interpolation. I calculate the radial and tan-

gential velocities, and circularity, by using the interpolated energy and angular

momentum. I find how these orbital parameters depend on the subhalo mass,

the mass ratio between the subhalo and the host halo, and the redshift in three

halo mass ranges, which are 1012M�, 1013M�, 1014M�.

6.3 Future work

In the first project, although detailed comparisons between haloes defined by

the FoF algorithm and the Dhalo algorithm have been conducted, it would also

be interesting to test whether the properties of Dhaloes relative to FoF haloes,

and in terms of their MDhalo/M200 distributions, are completely generic or have

any dependence on cosmological parameters or redshift. Another issue is the

appropriate choice of the virial radius of dark matter haloes. I used the conven-

tional choice of r200 which Cole & Lacey (1996) showed was appropiate for an

Ω = 1 cosmology. However they also pointed out the need for detailed analysis

of haloes formed in models with a cosmological constant. Hence it would be

extremely interesting to investigate these issues using other recent cosmologies

such of that specified by the WMAP7 parameter values. This could be done

using the DOVE simulation which has the WMAP7 cosmology. I am also very

interested in possible redshift dependences between different halo definitions.

The different halo definitions will affect the halo mass and hence the properties

of the galaxies that form in semi-analytic models such as galform.

In my second project, the methods can be improved upon in several ways.

A higher time-resolution simulation would allow a better determination of the

accuracy of the crossing time. Alternatively one might be able to improve the

accuracy using cubic rather than linear interpolation in determining the cross-

ing time. The trends with redshift and cosmological parameters could also be
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examined in the future work.
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Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371

Dodelson S., Widrow L. M., 1994, Physical Review Letters, 72, 17

Einasto J., Klypin A. A., Saar E., Shandarin S. F., 1984, MNRAS, 206, 529



101

Eisenstein D. J., Hu W., 1998, ApJ, 496, 605

Eisenstein D. J. et al., 2005, ApJ, 633, 560

Eke V. R. et al., 2004, MNRAS, 355, 769

Eke V. R., Navarro J. F., Steinmetz M., 2001, ApJ, 554, 114

Evrard A. E. et al., 2008, ApJ, 672, 122

Evrard A. E. et al., 2002, ApJ, 573, 7

Font A. S. et al., 2011, MNRAS, 417, 1260

Font A. S. et al., 2008, MNRAS, 389, 1619

Frenk C. S., White S. D. M., Davis M., Efstathiou G., 1988, ApJ, 327, 507

Friedmann A., 1922, Zeitschrift fur Physik, 10, 377

Gamow G., 1948, Physical Review, 74, 505

Gao L., Navarro J. F., Cole S., Frenk C. S., White S. D. M., Springel V., Jenkins A.,

neto A. F., 2008, MNRAS, 387, 536

Gariazzo S., Giunti C., Laveder M., 2013, Journal of High Energy Physics, 11, 211

Gill S. P. D., Knebe A., Gibson B. K., 2005, MNRAS, 356, 1327

Gill S. P. D., Knebe A., Gibson B. K., Dopita M. A., 2004, MNRAS, 351, 410

Giocoli C., Pieri L., Tormen G., 2008, MNRAS, 387, 689

Gonzalez-Garcia M. C., Nir Y., 2003, Reviews of Modern Physics, 75, 345
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Heitmann K., Lukić Z., Habib S., Ricker P. M., 2006, ApJ, 642, L85

Helly J. C., Cole S., Frenk C. S., Baugh C. M., Benson A., Lacey C., 2003, MNRAS,

338, 903

Hernquist L., 1990, ApJ, 356, 359

Herrero M. J., 1998, ArXiv High Energy Physics - Phenomenology e-prints

Huchra J. P., Geller M. J., 1982, ApJ, 257, 423

Israel H., Schellenberger G., Nevalainen J., Massey R., Reiprich T., 2014, ArXiv

e-prints

Jenkins A., 2010, MNRAS, 403, 1859

Jenkins A., 2013, MNRAS, 434, 2094

Jenkins A., Frenk C. S., White S. D. M., Colberg J. M., cole S., Evrard A. E.,

Couchman H. M. P., Yoshida N., 2001, MNRAS, 321, 372

Jiang C. Y., Jing Y. P., Faltenbacher A., Lin W. P., Li C., 2008, ApJ, 675, 1095

Jiang F., van den Bosch F. C., 2014, MNRAS, 440, 193

Kauffmann G., White S. D. M., 1993, MNRAS, 261, 921

Khochfar S., Burkert A., 2006, A&A, 445, 403

Kim H.-S., Baugh C. M., Benson A. J., cole S., Frenk C. S., Lacey C. G., Power C.,

Schneider M., 2011, MNRAS, 414, 2367
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2009, ApJ, 696, 2179

Lacey C., Cole S., 1993, MNRAS, 262, 627

Lacey C., Cole S., 1994, MNRAS, 271, 676

Lagos C. D. P., Baugh C. M., Lacey C. G., Benson A. J., Kim H.-S., Power C.,

2011, MNRAS, 418, 1649

Linder E. V., Jenkins A., 2003, MNRAS, 346, 573

Łokas E. L., Bode P., Hoffman Y., 2004, MNRAS, 349, 595

Ludlow A. D., Navarro J. F., Springel V., Jenkins A., Frenk C. S., Helmi A., 2009,

ApJ, 692, 931
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A
APPENDIX

A.1 Circularity in the Keplerian approximation

To compare the circularity, J/Jcirc(E), inferred under the assumption that the

infalling satellite and host halo are treated as two point masses on a Keplerian

orbit with the singular isothermal sphere (SIS) model we need to compare the

corresponding expressions for the angular momenta of circular orbits, Jcirc(E).

For the Keplerian case this is easily derived from the angular momentum of a

circular orbit of radius r, Jcirc = µVcircr, where the circular velocity at separation

r is given by µV2
circ = GMhMs/r and the corresponding orbital energy E =

µV2
circ/2− GMhMs/r. Here µ is the reduced mass, which can be expressed in

terms of the satellite and host masses as µ = MsMh/ (Ms + Mh). Eliminating

both Vcirc and r from these three equations yields

JKep
circ (E) =

√
(GMhMs)2µ

−2E
. (1.1.1)

If V is the velocity difference between the satellite and host when the satellite

crosses the virial radius, r200, then

E =
1
2

µV2 − GMsMh

r200
=

1
2

µV2 −MsV2
200, (1.1.2)

where the circular velocity, V200, is given by V200 =
√

GMh/r200. Using Eqn. 1.1.2

to substitute for E in Eqn. 1.1.1 yields

JKep
circ (E)

MsV200 r200
=

1√
2Ms/µ−V2/V2

200

. (1.1.3)
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Figure A.1: A comparison of the Keplerian and singular isothermal sphere

(SIS) models of Jcirc in units of MsV200 r200 for satellites with infall velocity, V, at

the virial radius r200. In each panel, the black solid line is the SIS expression and

the blue solid line is for the Keplerian case in the limit Ms/Mh � 1. The stars

show the result of the full Keplerian expression including the dependence on the

reduced mass, µ, for samples of satellites in different bins of Ms/Mh.
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Figure A.2: Distributions of circularity, J/Jcirc(E), for infalling satellite haloes

for host haloes in a mass bin centred on 1013 M�. Solid curves show the distri-

bution derived assuming a singular isothermal sphere and dashed curves show

the distribution derived using the Keplerian model. The three panels are for the

same three bins of Ms/Mh as in Fig. A.1.
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This compares with the singular isothermal sphere expression for Jcirc derived

in Section 5.2.2,
JSIS
circ(E)

MsV200 r200
= exp

(
1
2

(
V2

V2
200
− 1

))
. (1.1.4)

In the SIS case we could also take account of the reduced mass by treating the

SIS as a rigid potential profile whose centre of mass orbits around the combined

centre of mass of the satellite plus halo. In this case the expression for Jcirc

becomes
JSIS
circ(E)

MsV200 r200
= exp

(
1
2

1
Ms/Mh + 1

(
V2

V2
200
− 1

))
. (1.1.5)

The solid curves in Fig. A.1 compare, as a function of satellite infall veloc-

ity, V, the SIS expression with the Keplerian expression evaluated in the limit

Ms/Mh � 1, such that µ → Ms. The individual points on the different panels

show the results of the full Keplerian expression with its dependence on Ms/µ

applied to our satellite sample in different bins of Ms/Mh. The model curves

necessarily agree at V = V200 because the mass enclosed in a circular orbit at r200,

where the circular velocity is V200, is the same by construction. For Ms/Mh � 1,

the difference between the two models is largest at large V/V200 where the orbits

extend far beyond r200 and hence the mass enclosed in the SIS greatly exceeds

the mass assumed in the point mass approximation. The effect of the reduced

mass, µ, is small for Ms/Mh < 0.05, but for 0.05 < Ms/Mh < 0.5 it has the effect

of reducing JKep
circ (E) and produces values closer to the SIS case. This is demon-

strated in Fig. A.2 which compares the distribution of circularities, J/Jcirc(E),

evaluated using the two different expressions for three ranges in satellite-to-host

mass ratio. Overall, the two models agree well with each other for higher values

of Ms/Mh, but they differ for the lowest mass ratio bins.

Fig. A.3 shows how the Jcirc(E) values are changed in the SIS case if we take

account of the reduced mass. We find the difference is very small for all the

mass ratio bins and is only at all appreciable for the bin 0.05 < Ms/Mh < 0.5.

We do not adopt this as the default because the effect is small, we want to be

compatible with previous analyses and because treating the SIS as responding

rigidly will not be a good approximation.
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Figure A.3: Like Fig. A.1, but now the stars show the result of using the SIS

expression including the dependence on the reduced mass, µ.
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A.2 The distribution of tangential velocities

The bivariate distribution in Fig. 5.5 indicates that Vθ/V and total velocity V/V200

have no correlation. Consequently we could have equally well fitted Vθ/V rather

than Vr/V. Fig. A.4 shows the distributions of Vθ/V and exponential fits of the

form

P(Vθ/V) = C
(

exp
(

DVθ

V

)
− 1
)

. (1.2.6)

The individual fits are compared in Fig. A.5, where we again see the tendency

for more massive satellites to be on more radial orbits. The black solid lines in

Fig. A.5 show the alternative fits which result from the fits to Vr/V and V/V200

presented in Section 5.3.4. Unlike the monotonic exponential fits these curves

turn over at large Vθ/V. However within the noise they are equally good if not

better fits to the data and this supports our choice that Vr/V and total velocity

V/V200 are the best orbital parameters to adopt in order to characterise the full

bivariate parameter distribution.
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Figure A.4: Probability distribution of the orbital parameter Vθ/V, as func-

tions of both the satellite-to-host mass ratio and the host halo mass. Each

column is for a fixed final halo mass as labelled at the top of the column.

Each row is for a different bin in satellite-to-host mass ratio: top (red lines)

0.0001 < Ms/Mh < 0.005, middle (green lines) 0.005 < Ms/Mh < 0.05 and

bottom (blue lines) Ms/Mh > 0.05. The dashed curves are the best fitting expo-

nential distributions. The black solid lines show the distributions derived from

the fits presented in Section 5.3.4.
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Figure A.5: The fitted distributions of the orbital parameter Vθ/V for different

values of both the satellite-to-host mass ratio at infall and the final host halo mass.

The line colour denotes satellite-to-host mass ratio: red 0.0001 < Ms/Mh < 0.005,

green 0.005 < Ms/Mh < 0.05 and blue Ms/Mh > 0.05. The line style indicates

the host halo mass: solid 1012 M�, dashed 1013 M� and dotted 1014 M�


