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Abstract 

The ability of the ancient territorial empires to control water management 

strategies has been proposed but not yet fully explored. Given that most of the 

evidence is derived from historical information, or from isolated, specific 

archaeological studies, a detailed map of ancient irrigation in northern 

Mesopotamia was needed. The present interdisciplinary study used techniques of 

remote sensing and GIS to generate this map. 

CORONA images (1960-1972) were used to identify and record known and new 

water management features, showing the landscape before recent agricultural and 

urban intensification removed archaeological remains. The results of the image 

interpretation were validated through DEM analysis; low resolution SRTM and 

ASTER DEMs were used, as well as a high resolution CORONA DEM, generated 

through applying photogrammetry techniques to CORONA stereopairs. A sample 

of the results was also investigated in the field in July 2010.  

Using multiple techniques to locate and validate data, the large area of northern 

Mesopotamia could be mapped relatively quickly and inexpensively. The results of 

the remote sensing analysis showed that water management developed 

throughout northern Mesopotamia from the Neo-Assyrian to the Early Islamic 

period. Detailed information about the scale and distribution of whole irrigation 

systems was obtained. The present study concluded that the Neo-Assyrian Empire 

had established changes in the landscape that promoted the development of 

large-scale water management; a significant peak later occurred during the time of 

the Early Islamic Empire. Conversely, interruptions to water management occurred 

at times of political instability, (with modern parallels). The powerful later territorial 

empires were able to impose and encourage the development of water 

management throughout the formerly marginal rain-fed zone.  
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Chapter 1: Introduction 

1.1 Introduction 

This thesis has taken an interdisciplinary approach to the subject of ancient water 

management in northern Mesopotamia under the later territorial empires (from 

c.1200 BC-1200 AD), applying methods and concepts from archaeology, 

geography and history. Data were derived from remote sensing analyses, 

fieldwork, and existing surveys and were compiled into a detailed database. 

Water resource management strategies are driven by natural conditions such as 

climate and geology, but also by social and political structures. Modern water 

management in Syria is affected by problems of over-exploitation (Varela-Ortega 

and Sargardoy, 2003) and most recently by the current conflict (e.g. see FAO, 

2012, p2). Recent intensification of irrigated agriculture in the Near East, and the 

political and environmental conflicts that arise from it, have the potential to be a 

source of future problems. Projects in northern Mesopotamia initiated from the mid 

20th century to the present day re-shaped a landscape where rain-fed cultivation 

was often the norm (e.g. see Beaumont, 1996, p137) and where large-scale water 

abstraction was rare. 

The current intensification of water management and control of the landscape 

using large-scale irrigation systems is not unprecedented, however. 

Archaeologists, geographers, historians and early travellers have recorded traces 

of relict irrigation in northern Mesopotamia, much of which is associated with the 

later territorial empires. These are features which are rapidly disappearing due to 

modern agriculture and urbanisation, and which are currently inaccessible 

because of the political issues in Syria and Iraq.  

However, remote sensing technologies are increasingly revolutionising our ability 

to quickly identify ancient water features which are often difficult to locate and 

record on the ground. The present study’s remote sensing approach included the 

use of declassified spy satellite data from the 1960s and 1970s as well as modern 

satellite data and elevation models to identify and record these features, 

generating an innovative region-wide map and locating previously unknown 

features despite their inaccessibility. Because the existing studies had tended to 
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be focused on specific areas or channels, this regional map of known and new 

water management systems was needed.  

A large region (about 100,000 km2) was selected in order to facilitate a more 

detailed and comparative dataset than earlier field-based studies could provide. 

The study area, represented in Figure 1.1, comprised the region of northern 

Mesopotamia, the lands between the Euphrates in northern Syria and the Tigris in 

northern Iraq. The Jazira, the area between the Euphrates and the Turkish border, 

and the lands adjacent to the Euphrates and Tigris were examined. This area was 

selected because it comprised a zone where multiple later territorial empires were 

active, and also because it fits into the ‘zone of uncertainty’. This definition refers 

to the area of northern Mesopotamia where rainfall is at the minimum levels 

required for agriculture (see Wilkinson, 1994, p484). Relying only on rain-fed 

cultivation was possible, but risky, given high variability of precipitation. Irrigation 

was not necessarily essential in this zone, but it represented a way of mitigating 

against the risk. Water systems throughout the zone of variability were recorded 

and analysed using GIS and remote sensing.  

 

Figure 1.1: Project study area with main drainages (derived from a SRTM DEM 

using the ArcGIS hydrology tools; the background is also SRTM).  
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These technologies are ideal for recording large, complex irrigation systems. 

Techniques that incorporate the use of ‘historical’ imagery with more recent 

satellite image and elevation data, and with some fieldwork,  have enabled 

features to be recorded, including those that have recently been destroyed and 

obscured. Image interpretation using CORONA imagery (1960-1972) facilitated 

this.  21st century high resolution imagery (e.g. IKONOS, GeoEye-1, at resolutions 

of 0.5-1 m) has aided image interpretation and in some cases was used as a way 

of obtaining control points for rectification of other data. Detailed hydrological and 

topographical analysis has been facilitated by the generation of DEMs (Digital 

Elevation Models). These have been derived from the 90 m resolution SRTM 

(Shuttle Radar Topography Mission), 30 m ASTER (Advanced Spaceborne 

Thermal Emission and Reflection Radiometer) and for selected features using 

CORONA stereo pair DEMs (c.10m). 

The results of the study were examined in a wider historical context of the later 

territorial empires. Relict water management features in northern Mesopotamia are 

linked to the organising ability of the later territorial empires, from the Neo-

Assyrians (c.1200-600 BC) in the Iron Age to the Early Islamic states (c.700-1200 

AD). While this study discusses the relation between the scale and distribution of 

water management and the economic and political power of these later territorial 

empires, it does so with an understanding of earlier water features that these 

systems succeeded and the later ones that can obscure them (see Figure 1.2).  

  

 

Figure 1.2: Approximate chronology of the later territorial empires (after Wilkinson, 

2003). 
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Some of the earliest evidence for water management is Bronze Age in date, such 

as, for example, historical accounts from Mari and Tell Fray, both on the 

Euphrates. However, archaeological evidence for large-scale canal irrigation is 

first clearly identifiable for the Iron Age (e.g. see Ur, 2005). The centre of the Neo-

Assyrian empire, the region around Nineveh, Assur and Nimrud, was well-watered 

by large-scale canal systems (e.g. see Jacobsen and Lloyd, 1955; Bagg, 2000b; 

Ur, 2005; Altaweel, 2008). Much of the rest of northern Mesopotamia was also 

under the administration of the Assyrians, in territories stretching to the west of the 

well-known Northern Iraq systems. After the fall of the empire in the late 7th 

century BC, the region was contested by the Babylonians and Achaemenid 

Persians (e.g. see Akkermans and Schwartz, 2003, p389), and subsequently 

controlled and contested by the Hellenistic, Parthian, Sasanian, Roman and 

Byzantine empires, states which were interested in ensuring a reliable water 

supply and in underpinning an agricultural economy in their frontier zones. This 

water management activity declined in the 5th and 6th centuries AD, possibly as a 

result of conflict and plague (Kennedy, 2007, p92-95; Morony, 2007), but irrigation 

and cultivation appears to have revived and expanded during the Early Islamic 

period (e.g. see Kennedy, 2011). After the Mongol invasion in the 13th century, 

irrigation  up until the mid 20th century is mainly known from sources such as 

traveller’s accounts (e.g. see Bell, 1924); on the whole, sedentism seems to have 

declined (e.g. see Imber, 2002, p2) presumably along with large-scale irrigation. 

The landscape remained less intensively cultivated, and less intensively irrigated, 

until the later 20th century. 

1.2 Aims and research questions 

The aim of this thesis is to map ancient water management in northern 

Mesopotamia at the time of the later empires, taking an innovative and 

interdisciplinary approach which uses remote sensing, GIS and archaeological 

survey.  

Before the objectives which arise from this aim can be discussed, three initial 

problems need to be outlined: 
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1. Although research into past irrigation exists, most of it tends to be focused 

on specific, contained geographical regions rather than the entirety of 

northern Mesopotamia, or on specific states (although Wilkinson and 

Rayne, 2010 provides an initial discussion). This makes it difficult to draw 

wider conclusions about the scale and distribution of ancient water 

management.  

2. In terms of the literature on water management and Mesopotamia, there 

has been a general focus on the connection between water and power (e.g. 

Scarborough, 2003). However, due the problem described above, any 

conclusions that have been drawn are incomplete. 

3. For a wider-reaching study that considers the relationships between water 

and power, methods that enable a very large area to be examined in detail 

relatively quickly and cheaply are required. The current political situation in 

Syria and Iraq prevents fieldwork, and the damage to archaeological 

remains due to recent agricultural intensification and urbanisation have 

limited the use of some recently gathered remote sensing data (e.g. 

Cunliffe, 2013). 

The present research t needed to mitigate against all three of the above issues.  

Remote sensing and GIS facilitate relatively fast and inexpensive mapping of 

water management features, addressing the problems with undertaking survey in 

Syria. Combining a range of data, both newly identified by this project and from 

existing sources, for example GIS and survey datasets, allowed a detailed map of 

irrigation across a large area to be generated. This enables a new and more 

regional perspective. Given these mitigation strategies, the key research questions 

which this study addresses can be stated:  

1. Is there archaeological evidence for extensive water management systems 

in northern Mesopotamia, and if so, can this evidence be mapped from 

satellite imagery and validated using DEMs (Digital Elevation Models)?  

2. Can declassified ‘historic’ spy satellite data be used to interpret the function, 

development, scale and distribution of ancient water features? 

3. How can we make interpretations from these data to investigate how the 

later territorial empires might have imposed, incentivised and encouraged 

the use of water management technology? 
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The present research compiled the archaeological evidence for water 

management in a detailed database. Rather than focusing on any one piece of 

evidence, multiple sources were drawn upon. The whole study area was examined 

using CORONA images (from the Fragile Crescent Project server, originally from 

http://earthexplorer.usgs.gov/ and the CORONA Atlas of the Middle East, 

http://corona.cast.uark.edu/index.html). Features recognizable as relict artificial 

channels were digitised; they were assigned context and chronology where 

possible, using existing survey and excavation reports. Several of the identified 

features were visited in the field in July 2010. This process enabled the identifiable 

features to be plotted on a map, allowing a detailed and regional-scale picture of 

irrigation at the time of the later empires to be developed. Further key information, 

including validation of function and dating, was provided by DEMs (for example, 

SRTM and ASTER) and survey evidence.  

Once the GIS database had been generated, the mapped water management 

features were analysed in terms of their historical context and scale and 

distribution. Existing archaeological literature suggests that water management 

systems increase in size and complexity over time (see Chapter 1.3). The data 

collected by this study allow the development in terms of scale and distribution of 

water management at the time of the later territorial empires to be mapped, and 

the implications this had for the organising abilities and structures of these 

empires. In the context of this research, scale can be defined as both the size of a 

canal, and the overall size of the system. For example, a canal system with a main 

canal of over 1 km in length can be defined as large scale, while water collection 

using cisterns or check dams can be described as small scale. 

1.3 Theoretical context and research trajectory 

This thesis will discuss how the powerful later territorial empires used and 

developed water management technologies which already existed, expanding 

these into previously marginal areas and into the rain-fed zone of northern 

Mesopotamia, where cultivation relying on rainfall was possible, but risky. 

Conversely, water management in the Near East has often been discussed in 

terms of its ability to drive the development of states, rather than as a tool. In these 
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terms, the earlier states developed in areas such as southern Mesopotamia where 

cultivation was not possible without irrigation. 

The connections between the power of states and how they managed water have 

been discussed by many researchers (e.g. Wilkinson, 2010, p85; Scarborough, 

2003). Given that this project has examined the water management strategies of 

the later territorial empires, and how these developed, the theoretical context 

needs to be recognised.  

In terms of the present study, two important concepts need to be addressed. 

Wittfogel’s ‘hydraulic hypothesis’ (1957)  initiated much of the interest in the 

connection between water and power in the ancient Near East, and so will be 

discussed with reference to more recent ideas. Secondly, the idea of the 

organising power of empires, and the differences between their centres and 

frontiers, will be examined. 

 

Wittfogel 

While current archaeological ideas of water management have made efforts to 

distance the sub-discipline from the details of Wittfogel’s ‘hydraulic hypothesis’ 

(e.g. see Price, 1994 and Butzer, 1996 for arguments against the hypothesis), an 

understanding of how the research trajectory developed is not possible without an 

understanding of Wittfogel’s Marxist ecological theory and how it influenced later 

work. The hydraulic hypothesis (Wittfogel, 1957) suggested a link between the 

development of irrigation and the development of powerful, and ultimately 

‘despotic’ states.  

Wittfogel translated the ideas of Marx and Engels into a more environmental 

theory (Worster, 1993, p32) in which the relationship between nature and 

humankind is significant (e.g. Foster, 2009, p9; Ulmen, 1978, p43). To Wittfogel, 

water was more than the  

... object of utility... to be manipulated and used... tame[d] and harness[ed] 

(as water)... (Parsons, 1977, p64).  
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Wittfogel believed that water management could exert strong influence on the 

structure of society (for example increasing levels of bureaucracy, see Wittfogel, 

1957, p39) when specific criteria were present:  

It is only above the level of an extractive subsistence economy, beyond the 

influence of strong centres of rainfall agriculture, and below the level of a 

property-based industrial civilisation that man, reacting specifically to the 

water deficient landscape, moves toward a specific hydraulic order of 

life.’(Wittfogel,1957, p12).   

Subsequently, research has attempted to test and question the model (e.g. for a 

summary of early ‘testing’, see Mitchell, 1973). Unfortunately, Wittfogel used very 

little empirical evidence to support his theories. Whether Wittfogel was right to 

attribute large-scale irrigation to large-scale states is a recurring theme in the 

literature. While some fear that Wittfogel did not do enough to define the issue of 

‘scale’, (e.g. see Perry, 1988, p79), nevertheless, the terms ‘large-scale’ and 

‘small-scale’ occur frequently as the basis for both affirmation of the hypothesis 

and for criticism. Specific evidence against it has frequently been cited. Robert 

Adams argues that Mesopotamia, an area to which significant ancient irrigation is 

often attributed, only adopted large-scale irrigation during later periods, at a time 

when states were already in existence (Adams, 1974, p4; Mabry, 2000, p287; also 

see Mitchell, 1973, p534). Others have also indicated that large-scale water 

management was a technology applied by ancient states rather that one which 

facilitated them in the first place (e.g. Wilkinson, 2010, p86; Lees, 1994). 

It does seem to be the case that many of the later Empires and states (for 

example, the Assyrian Empire) intensified their agricultural basis with extensive, 

highly managed irrigation systems. However, especially in the early days of 

Wittfogel’s theory some suggested that centralized organisation of water 

management was a necessity (for example, Steward and Murphy, 1977) that led to 

‘bureaucratic abuse’ (Lees, 1994, p362), and indeed a kind of dependence on this 

organisation (Hole, 1974, p271). This school of thought focuses on the complexity 

of managing water; on the problems of maintenance and conflict especially. These 

problems could not be mitigated against without some form of ‘water authority’; 

however it has also been argued that many issues of conflict over water rights 
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could be dealt with by the community, often not requiring recourse to a higher 

authority (e.g. Hunt, 1994, p208).  

More energy has increasingly been devoted to generating case studies that 

question the details of Wittfogel’s theory. Some of these studies demonstrate 

examples where smaller communities appear have organised water management 

themselves (e.g. Butzer, 1996, p202; Hunt and Hunt, 1974, p153; Stride et al, 

2009, p73). The inefficiency of a large system has also been discussed (e.g. Hunt 

and Hunt, 1974, p152): the maintenance and management of extensive and large-

scale irrigation may have set up such systems for failure, or inhibited their wider 

adoption. Indeed, it does seem to have been the case that the later Middle Eastern 

systems were plagued by the issues of salinisation and siltation (e.g. Christensen, 

1993; Adams, 1974, p5). Smaller systems could be more sustainable, avoiding the 

aforementioned problems, and in addition, could be more easily managed at a 

local level, generally requiring less organizational investment (Lees, 1994, p371). 

Qanats are an interesting example of systems which can be managed by local 

communities or landowners rather than administered by a state.  For example, 

recent observations of Iranian qanats indicate that some examples could have 

been administered by local landlords or farmers (Yazdi and Khaneiki, 2010).  

As the evidence from northern Mesopotamia indicates, irrigation sometimes 

seems to have been the result rather than the cause of the growth of states 

(Steward and Murphy 1977, p88).  

In some cases powerful states, for example the Assyrian Empire, may have 

deliberately modified the landscape in order to intensify agricultural production 

(e.g. see Morandi Bonacossi 2000, p360). Wittfogel himself recognised that 

...water-regulation must be carried out socially, either through a state 

already established through some other means...  (Wittfogel 1968, p187).  

The later empires operating in northern Mesopotamia support this argument; they 

used existing technology and methods to develop water management throughout 

their territories (e.g. see Wilkinson and Rayne, 2010, p3).  



32 
 

It is possible that different kinds of systems, managed in different ways, existed 

within the political sphere of the same ‘state’ or Empire; this might vary with 

reference to the differences between the ‘core’ and the ‘periphery’. However, as it 

is important to recognise that inscriptions on Assyrian canal works (Bagg, 2000a, 

p305), for example, might give an impression of a highly state managed system, 

there can always be an element of propaganda present in such evidence.  

The Wittfogel idea has raised more questions than it has answered; many of these 

being interesting and significant sources of potential research. Some believe that  

Wittfogel hysterically saw hydraulic states everywhere he looked...  

(Price, 1994, p192).  

Others suggest that the rejection and perhaps even misuse of the theory has led 

to ‘a misconceived view of the role of irrigation in early complex societies’ (Davies, 

2009, p17).  

Despite this, water management does seem to have been a technology employed 

by powerful states in northern Mesopotamia. This is almost the inverse of the 

Wittfogel model; in the north powerful states imposed existing water management 

technologies in an area of rain-fed cultivation, rather than developing themselves 

as a response to water management. How empires themselves are understood 

must now be examined before studying how and why they might have managed 

water resources. This thesis is moving away from the attempts to ‘test’ Wittfogel’s 

hydraulic hypothesis; rather, it aims to apply methods of remote sensing to 

generating a more detailed and empirical understanding of whole irrigation 

systems, grounded in real evidence.  

 

Empires 

This research has investigated water management at the time of the later empires. 

By incorporating some historical information with the GIS database and survey 

evidence, it is possible to discuss the distribution and patterns in how empires 

managed water. While it was not within the remit of this study to focus on text-

based research, several sources (e.g. Bounni, 1979) contextualised and provided 
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dating information for some canals also identifiable using CORONA (see 

Chapters 2, 5 and 6). Le Strange (1930) was the principle source used for the 

Early Islamic data.  

Although the Mesopotamian languages lacked a word for empire (Larsen, 1979, 

p91), empires can be defined very simply as ‘political mechanisms for capital 

accumulation’ (Sinopoli, 1994, p161). The degree of control exercised and 

autonomy experienced across an empire is also part of their definition; while some 

earlier research insisted perhaps too rigidly that no regions within an empire could 

be ‘sovereign’ (Taagepera, 1978a, p113), more recently empires have been 

described as very varied structures, mixtures of centrally controlled and semi-

autonomous provinces and client kingdoms (e.g. see Sinopoli, 1994, P160). The 

Neo-Assyrian empire conforms to this model, comprising intermixed provinces and 

client states (Bedford, 2009, p42). It may be the first true ‘territorial’ empire. 

The differences between how the centres and frontiers of empires were managed 

need to be recognised. While it is indeed not simple to define (Larsen, 1979, p93), 

the ‘core and periphery’ concept may need some clarification. Typically, the centre 

of the empire is seen as being a tightly managed core of the central bureaucracy. 

The capital city, the core, would usually be the political, economic and religious 

focus of the state (Matthews, 2003b p134). With greater distance, this control 

weakens or changes, with the most peripheral parts of the empire being semi-

autonomous. The restructuring of relations between the differently controlled parts 

of an empire can be complex and deliberate (Eisenstadt, 1979, p22).  

The degrees of control empires exercised over their territories has implications for 

the understanding of how they managed water resources. There is evidence in 

some cases of empires investing significantly in irrigation in the centre of their 

states; the Neo-Assyrian canals in Northern Iraq are an example . Interestingly, 

evidence for similarly intensive canal construction elsewhere in the Neo-Assyrian 

lands is less well known, despite evidence for Assyrian canals in the Habur (e.g. 

see Kuhne, 1991; Ergenzinger et al, 1988). Other empires also invested in water 

management at their centres, including the Roman and Early Islamic empires; 

evidence of irrigation outside the core imperial areas exists in these cases, 

however.  
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Some research has specifically related the presence or absence of water 

management remains to the frontiers of empires. For example, Decker suggested 

that a lack of investment in irrigation in the 6th and 7th centuries was related to 

instability in the Byzantine/Islamic frontier zone (Decker, 2007, p251). Other 

research identified integration of water management and defence, which can be 

illustrated here by the canals and cisterns at Resafa (e.g. see Brinker, 1991), and 

also further afield at the Gorgan Wall in Iran (see Wilkinson et al, 2013). Scholars 

agree that expansion is a crucial, and indeed defining, activity for all empires: 

expansion obviously provides more power for rulers (Burbank and Cooper, 2010, 

p9-10), and regular revenue (Larsen, 1979, P42). Expanding cultivation into 

formerly marginal and uncultivated, unirrigated, lands would have been one facet 

of this.  For example, the activities of the  Early Islamic state brought these kinds 

of lands into cultivation, often using irrigation, providing tax incentives to wealthy 

individuals who undertook this work (Kennedy, 2011, p181-182). 

  

Research trajectory 

The theoretical debates outlined above have formed a backdrop to research into 

ancient water management in the Near East. However, water management may 

well be more complex than the previous theories indicated (Scarborough, 2003, 

p19). Certainly, the Wittfogel theory is not evidence based, and lacks any empirical 

data. In order to understand how the later empires managed their water resources, 

a more detailed dataset is needed, along with a focus on later periods ( e.g. 

Taagepera, 1978a, p123) and with more interdisciplinary outlooks and skills 

(Matthews, 2003b, p153; Sinopoli, 1994, p173). 

Given this, this project has applied an interdisciplinary approach with an emphasis 

on remote sensing to generate an evidence-informed approach to understanding 

how water may have been managed by the later empires, within wider 

hydrological, geomorphological and environmental contexts. 

In order to understand how the later systems might have developed, the evidence 

for earlier ones can be summarised here. While there is evidence that water 

management systems existed prior to the Iron Age, in most cases this is nto 
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comparable to the data for large-scale irrigation at the time of the later empires 

(see chapters 5 and 6). Some of the earlier data is Bronze Age and derived from 

botanical evidence. Evidence from research into phytoliths suggests that they can 

be an indicator of whether or not crops received additional water (Rosen and 

Weiner, 1994; Jenkins et al, 2011, p347). 

Data about Bronze Age irrigation is also contained in some historical texts, for 

example referring to water abstraction in the Balikh and a canal at the site of Tell 

Fray (e.g. see Villard 1987; Bounni 1988). Canals in the Habur may also have 

initially been used in the Middle Assyrian period (see Ergenzinger and Kuhne 

1991; Ergenzinger et al 1988). 

 It is important to note, however, that there is little evidence that many of these 

systems were larger-scale, reticulated canal networks. Pre-Iron Age irrigation may 

have consisted mainly of smaller scale offtakes and water harvesting. 

The existing research has approached the subject from a number of disciplines. In 

some areas, research initially focused on monumental canals associated with 

high-status sites (e.g.  Dalley, 1994), using historical sources and inscriptions as a 

main source of evidence. Archaeological work has  produced surveys and 

excavations of canals , offering a more detailed impression of their morphology 

and enabling an understanding of potential irrigable areas (e.g. see Harper and 

Wilkinson, 1975; Wilkinson, 1998). 

Aerial survey and remote sensing techniques have also been used to map relict 

irrigation. This way of gaining a wider perspective of a landscape has been used in 

archaeology in the Near East since the early days of the technology (e.g. see 

Poidebard, 1934); some of the earliest aerial analysis to record ancient water 

management identified canals around Samarra (Beazley, 1919, 1920). A 

somewhat later example includes the uses of aerial photographs to map extensive 

canals in the Habur (Van Liere and Lauffray, 1954-55). More recently, Ur (2005) 

and Altaweel (2008) used CORONA images to map irrigation in specific areas of 

northern Iraq. 

This thesis also uses remote sensing, but applies it over a much wider scale, 

across the zone of northern Mesopotamia. Techniques such as image 
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interpretation and hydrological analysis are combined with archaeological survey 

data and historical information. This interdisciplinary approach facilitated the 

recording of many known features using CORONA satellite imagery for the first 

time, and also identified and mapped previously unknown features (see Chapters 

5 and 6). By analysing the data over such a large region, an evidence-based 

understanding of the scale and distribution of ancient water management can be 

gained.  

1.4 Environmental context 

The distribution of ancient water management features is affected by the 

availability and type of water resources. The project area lies within the so-called 

‘zone of uncertainty’ (e.g. Jas, 2000). In this region of northern Mesopotamia, 

rainfall is often low and highly variable (e.g. Dennett et al, 1984); making reliance 

on precipitation alone risky. However, resources are available for irrigation in the 

form of permanent natural channels, ephemeral wadis, occasional runoff and as 

ground water. 

Any study of water management in the area of northern Mesopotamia needs to 

consider the climatic, hydrological and geomorphological contexts in which ancient 

agriculture operated. The contextual information will be outlined here. The modern 

climate and it’s drivers will firstly be summarized, with a description of current 

hydrological regimes and precipitation trends. Secondly, land use in terms of 

agriculture and water management will also be indicated, with a discussion of 

current research into past climates through the use of proxies. 

The Jazira is located in the sub-tropical high pressure belt; precipitation occurs in 

the winter, and, due to subsiding air, dry conditions prevail in the summer 

(Wilkinson, 2003, p17), with maximum rainfall in January (Fisher, 1978, p64).To 

the north of the Jazira, the presence of high uplands forces currents of air to rise, 

which influences the pattern of rainfall for much of the fertile crescent (ibid, p66). 

Figure 1.3 shows that the locations of isohyetal lines of average rainfall are 

shaped, to a general degree, by the region’s topography (in some parts of the area 

shown in Figure 1.3 the locations of mountain ranges have influenced the 
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locations of the isohyets); the rainfall data can be compared with the SRTM 

elevation data. 

 

Figure 1.3: Average precipitation in northern Mesopotamia, based on the GPCC 

Full Data Product Version 6 between 1980-2010. Background: SRTM.  

Around 200-250 mm per annum is often defined as the amount of rainfall needed 

when it is used as the main water source for agriculture (e.g. see Wilkinson, 1994, 

p484; FAO and UNESCO, 1962); when less than this is generally the norm, 

irrigation becomes a necessity. However, many archaeological sites are found in 

this marginal zone, right at the edge of rain-fed cultivation: this is inevitably a 

region where agricultural practice is linked to water availability, both in terms of 

rainfall and in terms of rivers and streams (see Riehl, 2009, p94). 

While rain-fed agriculture has often predominated, including in the recent past 

(Beaumont, 1996, p137), in the marginal zone of northern Mesopotamia 

precipitation is also highly variable. It is all too easy to view averages of yearly 

rainfall data in the form of isohyets as boundaries similar to contour lines, 

however, the averages, while informative, mask a considerable degree of 
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variability. If a high proportion of years are dry the agricultural economy will be 

disrupted; while conditions in the past may have been wetter or drier, the potential 

for variability was presumably the same. Some studies have attempted to 

calculate the probability of rainfall in the Near East (Dennett et al, 1984; 

Weiss,1982); for example, the model of Dennett et al used daily rainfall data and  

suggested a high probability of dry spells in March and April at Aleppo (1984, 

p326). Rain gauge data were used by this thesis to model the variability of rainfall 

data from the years 1981-2010 (see Chapter 3). In general, existing studies of 

rainfall patterns were constrained to shorter datasets without the use of the 

interpolated grid used here (e.g. Dennett et al, 1984). The present analysis uses a 

longer, gridded dataset and reveals that much of the study area lies within a zone 

where only 10-15 out of 31 recent years received enough rainfall to cultivate 

without irrigation.  

Wallen’s method (1967) was applied to the GPCC (Global Precipitation 

Climatology Centre) rain gauge dataset in this case. This method calculated 

values of interannual variability relative to the mean values, summing the 

differences between each year; this value was then divided by the mean rainfall 

(see Chapter 3). The present analysis uses a longer dataset, in this case for the 

period 1980-2010 (GPCC Full Data Product Version 6). The use of computer 

statistical packages and GIS made it possible to extrapolate and display these 

estimates for a large geographical area. 

The differences in amounts of rainfall from year to year were compared against the 

mean, generating an index of mean relative interannual variability (shown in  

Figure 1.4). The validity of these data for making assumptions about rainfall 

should be assessed. The IPCC indicate the need to qualify uncertainty carefully 

(Matschoss et al, 2010, p3). The GPCC describe the Full Data Reanalysis product 

as of ‘higher accuracy’ than some of their other datasets (see Schneider et al, 

2011, p3). However, factors such as relatively sparse rain gauge data and the 

possibility of measurement error could be limitations; these are discussed in detail 

in Chapter 3.  

It can be problematic to attempt to apply modern data to the past. However, while 

the period preceding the Iron Age may have been wetter than conditions are today 
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(e.g. see Wick et al, 2003, p673), aridity may have been more comparable to the 

modern situation in the subsequent period of the Later Empires (Iron Age 

onwards). Although the available proxy data are limited, they appear to indicate a 

trend towards increasing aridity (see Wick et al, 2003, p673; Bar-Matthews et al, 

1997, p166).  

Much of the study area falls within zones where variability can be as high as 30-

50%. It is therefore not surprising that when states want to ensure more reliable 

yields, above subsistence level and often for purposes of taxation, water 

management strategies are adopted; such decisions were made by powerful past 

empires as well as by modern states.  

 

Figure 1.4: Mean relative interannual rainfall variability in Northern Mesopotamia. 

Based on the GPCC Full Data Product Version 6 between 1980-2010. 

Irrigation offers a way of ensuring more reliable yields by mitigating against 

temporal and spatial unevenness; it allows for the storage of water at times when it 

is abundant so that it can be used when it is scarcer, for example in cisterns or 

using dams. It also includes transporting water resources to the areas in which 

cultivation occurs, by using canals to channel water to fields away from a river or 
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stream. Diverting water in a canal from an upstream location, for example on the 

Euphrates, allows a downstream area to be irrigated which is elevated above the 

river level.  

The drainage basins of the northern Syrian and Iraqi parts of the Euphrates and 

Tigris form the project area. These rivers and their tributaries (notably the Balikh 

and Habur) provide water for irrigation, obtaining much of their water from 

catchments in Turkey (Kolars and Mitchell, 1991, p81), and also to a lesser degree 

from Syria. The Tigris floods annually in April; the Euphrates floods in May (Fisher, 

1978, p366). However, like rainfall in the region, the annual floods are variable 

(Kliot, 1994, p111), necessitating careful water management both currently and in 

the past.  

Occasional events of high runoff can occur throughout Northern Mesopotamia, 

with water sometimes channeled by seasonal wadis which are otherwise dry. 

While there is evidence that in the past temporary sources of water such as runoff 

and flood water were utilized in the Near East (e.g. Lavee et al, 1997; Berking et 

al, 2010; Beckers et al, 2013) uncontrolled, high-volume flow can conversely be 

catastrophic to cultivation, damaging canals and crops. 

The above hydrologic characteristics of northern Mesopotamia have generated a 

complex geomorphological history. Traces of this have been mapped, including 

relict terraces and meanders of the Euphrates (e.g. Demir et al, 2007; Sanlaville 

and Besancon, 1981). The CORONA images reveal the patterns of past 

meanders. The relationship between the dynamism of the Euphrates and 

archaeology is significant; the river often removes archaeological remains. This 

includes irrigation features dating to the time of the later empires. For example, 

Figure 1.5 shows the truncation of a canal near Tell Fray, between Dibsi Faraj and 

Raqqa. Irrigation in the floodplain of the Euphrates itself therefore probably post-

dates the medieval period. 
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Figure 1.5: CORONA image of truncated canal along Euphrates. Mission KH-4A, 

22 January 1967.   

The tributaries of the Euphrates are also dynamic. The Balikh Valley is an example 

where there are clear traces of a paleaochannel in the north, left dry after the river 

avulsed, and a relict valley created by a former course of the Balikh in the south 

(Hritz, 2013a, p1978). Another example is the Wadi Amarna near Jerablus, which 

is now dry, but evidence of past high episodic flows is indicated in exposed 

sections through its alluvial fills (see Chapter 5). Many other dry channels can be 

traced in the landscape, some revealing relict drainage patterns dating to the 

Pleistocene (Berking et al, 2010, p819) and some which flowed more recently. 

The hydrology and geomorphology of specific channels will be discussed in more 

detail in the results chapters; the hydrologic regimes and development of specific 

channels have a direct impact on the presence and survival of past irrigation 

features.  

 

 

 

http://eros.usgs.gov/#/About_Us/Customer_Service/Data_Citation
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Land use 

 An understanding of the modern agricultural situation in the Near East allows it to 

be compared with the archaeological and historical data and secondly also makes 

it possible to recognize how modern land use impacts on the survival of 

archaeological remains and affects any interpretations of the landscape. Given 

that canals are constructed in the specific locations suitable for irrigation, they are 

often erased and replaced with new systems. The factors which govern land use in 

the Near East will be summarized below: the types of crops grown, current 

irrigation strategies and soil management issues will be outlined. 

Barley and wheat are the most commonly grown crops (Anderson, 2000, p177) in 

northern Syria and Iraq. Wheat is planted on around 60% of cultivated land, much 

of which is irrigated (Yigezu et al, 2013, p15). However, in drier areas, where 

rainfall is less than 300 mm per annum, barley predominates. Cotton (Anderson, 

2000, p177) and sorghum are also grown. The latter is fairly drought resistant and 

can also tolerate some waterlogging, calcareous soils and moderate salinity 

(Young, 1976, p311), making it a good choice of cultivar in more marginal lands in 

the Near East.  

Agriculture in semi-arid environments is constrained by the distribution and timing 

of water resources. In order to take advantage of winter precipitation, crops are 

generally sown in the autumn and harvested in May-June (Charles et al, 2010, 

p186). The crops are most dependent on watering during the stages of 

reproduction and grain filling (Karrou and Oweis, 2012, p95). Water must therefore 

be supplied at this time either through precipitation or irrigation; if the availability of 

water in sufficient quantities does not coincide with these crucial growth stages, it 

will need to be stored, and/or transported from further afield using irrigation. 

Ancient and modern agriculture has also been constrained by soil quality, and at 

the same time has had an effect on it. While there are some extensive areas of 

good soil in the Jazira (Charles et al, 2010, p186) there has been long-term soil 

removal and loss of vegetation due to human activity (Fisher, 1978, p75).  Dryland 

soils tend to contain products of weathering such as calcium carbonates and salts 

(Jewitt, 1966, p105), making them more suitable for grazing than for cultivation. In 

contrast, the alluvial river valleys are more conducive to agriculture because the 
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soils are capable of holding more moisture (Jewitt, 1966, p109); such areas 

therefore become the foci of cultivation. 

Shown in Figure 1.6, gilgai are soil features found in the study area, especially in 

the Balikh Valley. These consist of depressions accompanied by low mounds, 

formed by the expansion of soil after wetting (Young, 1976, p189). Significantly, 

they often arise in areas of former irrigation, indicating that they may sometimes 

also be the result of human activity. This topic will be explored in later chapters. 

 

Figure 1.6: Gilgai in the Balikh Valley. CORONA image 22 January 1967.  

In order to ensure longer-term yields some degree of soil management is 

necessary. For example, the method of fallowing was practiced in the past; this 

increases soil nitrogen and water storage. Manuring was also employed, 

represented by scatters of material on the ground surface, which were contained 

within deposited refuse, and are evidence for the longevity of this practice 

(Wilkinson, 1982; Whyte, 1966, p349). Different tillage methods can also conserve 

soil (e.g. see Morell et al, 2011; Sommer et al, 2012). 
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Salinization is a significant problem that affects soils in the arid and semi-arid 

zones, due to high evapotranspiration caused by high temperatures:  In Iraq, 80% 

of the soil area was classed as saline in the ‘70s (Fisher, 1978, p85).  Most simply, 

the problem is caused by drying of the soil surface, which leads to the capillary 

rise of salts. Waterlogging can lead to a rise in the water table and exacerbate this 

problem, sometimes caused by over-irrigation. However, mitigation can be 

employed through leaching and draining of the affected soils; in Chapter 4 these 

issues and processes will be discussed in more detail.  

Recently, agriculture has become more intensive, necessitating the construction of 

large-scale irrigation projects. As well as agricultural usage, urban, domestic and 

industrial demands have also grown (Fisher, 1978, p37), putting even more 

pressure on water resources. While traditional surface canal irrigation is the 

predominant method used for agriculture (Yigezu et al, 2013, p14), pumps and 

sprinklers are also common. 

 Since the early 20th century, major irrigation schemes have been proposed and 

implemented for Mesopotamia (Willcocks, 1917, p2). Interestingly, one proposal 

suggested copying constructions used in antiquity (Willcocks, 1917, p4). More 

recently however Turkey’s GAP scheme (Southeastern Anatolia Project) is 

impacting on the water resources of its co-riparians Syria and Iraq, with potentially 

serious results. This project involves irrigation and hydro-electric power 

programmes (Anderson, 2000, p176), with a proposal to irrigate 5.9 million ha of 

land (Kolars and Mitchell, 1991, p1). As a result of this scheme, Iraq is likely to 

face water shortages in the immediate future, with Syria following (Kliot, 1994, 

p148); as much as 98% of the flow of the Euphrates comes from Turkey (Kolars 

and Mitchell, 1991, p222). Much of this will be wasted: a significant proportion of 

the resources are likely to be lost through the problems of leakage that are well 

attested in arid regions (Cantor, 1967, p50). There will also be a loss of water in 

the Euphrates-Tigris system due to evaporation and infiltration (Jones et al, 2008, 

p71). In addition, the use of motor-driven pumps and sprinklers has increased; 

sprinklers waste up to 50% of the water used due to evaporation (Fisher, 1978, 

p37).  
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While returns must be seen as worthwhile in the short term, this kind of water 

management is not sustainable in the long term. Methods such as pumping can 

lead to additional problems when overused: for example, groundwater levels in 

Syria have dropped rapidly since the 1980s (Yigezu et al, 2013, p14). Conversely, 

poor drainage can lead to problems of waterlogging.  

Finally it must be recognized that the problem is not just one of quantity, but also 

one of quality. Poor-quality, saline water draining from irrigation works in Turkey 

would re-enter the system (Kolars and Mitchell, 1991, p255) in Syria. In the 1990s, 

the Balikh had run dry due to abstraction for irrigation. However, from the mid 

1990s, it began to flow again as a result of outflow of waste water from the Harran 

Plain to the north. Much of the project area is now watered mainly by big irrigation 

schemes such as the Tabqa dam, with water carried over large distances in open 

canals. Huge irrigation schemes continue to replace earlier, long-term systems, 

potentially with problematic results (e.g. see Beaumont, 1996).  

 

The proxy evidence for palaeoclimate 

The modern situation in terms of climate and land use has been summarised 

above. In order to relate this to water management at the time of the later empires, 

however, the nature of past climate needs to be addressed. While there can be 

uncertainties when dealing with proxy data, evidence would seem to suggest that 

the climate at the time of the later territorial empires, beginning in around 2000 BC, 

was comparable to the present time, although there have been minor fluctuations 

(Bar Matthews et al, 1997, p166); this would make a general comparison with the 

modern rainfall patterns and data worthwhile. The evidence for past climate will 

now be summarised.  

Proxy data from sources such as lake cores, cave sediments and ocean cores can 

give an indication of how climate has changed (e.g. see the research discussed by 

Staubwasser and Weiss, 2006; Wick et al, 2003). Material such as pollen and 

charcoal can be obtained within lake cores (Charles et al, 2010, p189). These can 

be subjected to isotope and chemical analysis; techniques that also can be applied 

to sediments from caves (speleothems).  
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The pollen evidence from the Middle East indicates a drying of the climate from 

around 4200 BP (e.g. see Wick et al, 2003, p673), although it is important to note 

that it can also reflect changes in land use, often initiated by humans. Pollen 

remains, when they can be dated, indicate which tree species were most prevalent 

at which time and in what quantities; this can both reveal information about the 

climate, and about the effects of human activity on the landscape. One of the 

nearest pollen cores to the study area was obtained from Lake Van in Turkey: In 

general, the evidence from this core indicated that tree species declined between 

around 4200-3500 BP. This might indicate increasing aridity (Wick et al, 2003, 

p673). Conversely it could represent tree clearance by humans (Wilkinson, 2003, 

p27). It is important to note therefore that in some cases the pollen evidence might 

indicate human activity rather than climate change. Information about crop species 

grown at this period is complementary: the predominance of more drought 

resistant crops in the Middle Bronze Age (Riehl, 2012, p115; Riehl, 2009, p158) 

also suggests aridity and changes in land use. Similarly, pollen data from the Dead 

Sea indicates drier and warmer conditions from around 3200 BP (Litt et al, 2012). 

The isotope evidence gives similar results. A well-known source of data comes 

from Soreq Cave in Israel: differences in the equilibrium of isotopes within growth 

layers of stalagmites were analysed (see Bar-Matthews et al, 1997). These 

sediments are affected by water and temperature, and as such can give a record 

of climate. While the resolutions of the datasets are different, the Soreq Cave 

evidence suggests that rainfall amounts for the period of 7000-1000 BP are similar 

to those of today (ibid, p166). Kalayci (2013) used the link between modern 

average rainfall patterns and the isotope values derived from Soreq cave to 

extrapolate Bronze Age rainfall (e.g. see ibid. p103-105); using these data, he 

estimated that precipitation reached low values by 2800-2000 BC (ibid. p105), 

reinforcing the trends suggested by the other records. Similarly, the isotopic 

composition of carbon and oxygen in carbonate coatings on stones at Gobekli 

Tepe in Turkey also showed a trend towards higher temperatures and higher 

aridity through the Holocene (Pustovoytov et al, 2007).  

Isotopic balances in plant remains can also be revealing. For example, this 

evidence indicates increasing aridity from around 2000-1600 BC in North East 

Syria (Riehl et al, 2008, p1011). Similarly, juniper charcoals from Arslantepe in 
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Turkey indicated an arid summer climate in around 2200 BC (Masi et al, 2013, 

p70).  

The limitations of the proxy evidence should also be noted. There is some degree 

of uncertainty about past climate conditions. First, it is important to take care when 

extrapolating from one climate zone to the next. In addition, to an extent, the fine 

details of this information are lost due to what is often relatively coarse resolution. 

Evidence is restricted to proxy information which has been preserved, even if it is 

far enough away from a study site that local variations will be lost. Evidence is also 

restricted temporally; there is often a lack of chronological control (see Riehl, 

2007, p99). For example, stone remains at Gobekli Tepe did not yield isotopic 

information after around 4000 BP (Pustovoytov et al, 2007). However, the 

palaeoclimate research does enable the general climatic context for this project to 

be summarised. Analysis of plant remains and isotopes indicates that after around 

4000 BP aridity in Northern Mesopotamia and the Levant increased (e.g. see 

Riehl, 2012, p115; Wick et al, 2003). This can also be corroborated by data from a 

marine core from the Gulf of Oman; an increase of aeolian dust was suggested to 

be representative of an increase in aridity (see Cullen et al, 2000; Roberts et al, 

2011, p150). A drying, but also fluctuating, climate at the time of the later territorial 

empires can be suggested.  

 

Summary and climatic implications 

It was in the above climatic context that the large-scale irrigation systems of late 

antiquity developed. In general the climate was more arid than it had been in 

earlier periods, when rain-fed agriculture seems to have predominated. The 

change from a wetter climate earlier on in the Holocene to the present day aridity 

has been interpreted as a causal factor in social and political events in the Bronze 

Age (e.g. see Staubwasser and Weiss, 2006, p372; Weiss, 1982).  

The change to aridity would have necessitated different production strategies. 

Rainfall quantity may have been a limiting factor for settlement prior to the period 

of the later territorial empires (e.g. Wilkinson, 1994), and as both the present study 

and Kalayci’s study (2013) indicates, rainfall variation may also be significant. 
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Changes to more water-intensive crops in the Iron Age have been proposed, 

based on archaeobotanical evidence (Riehl, 2007, p112); possibly this was 

because irrigation was replacing riskier rain-fed methods in Northern 

Mesopotamia.  

Despite the ‘push’ of aridity, irrigation is not a simple phenomenon. It requires 

some form of management whether at a local or state scale.  Empires had the 

political and economic resources to irrigate, and also the incentive of needing to 

maximize yields in the face of variable precipitation. Water management is tied to 

water politics. Historical records suggest that this was the case as early as the 

Bronze Age (e.g. see Villard, 1987, for evidence of water conflict in the Balikh). 

This is an issue that has not changed; today, management of the Tigris/Euphrates 

system by Turkey, Syria and Iraq has the potential to have massive environmental 

impacts and to stimulate conflict. Turkey is in a position of water-power, having the 

upper riparian position, and a lack of coordinated planning between the co-

riparians has been a source of complaint (Kliot, 1994, p116).  

The issues faced by modern land use described in this chapter will also have 

applied to the ancient systems; natural conditions such as water availability and 

geomorphological constraints affect the design of irrigation. Similarly, competition 

over water resources and political drivers such as tax incentives or instability are 

not new phenomena and will also have been factors in the distribution and 

longevity of past water features. 

1.5 Thesis outline 

With the theoretical and environment context of the present study recognised, its 

structure can now be outlined. First, the project will move on to review the existing 

studies that have recorded water management in northern Mesopotamia. Chapter 

2describes these geographically, generating a detailed map which in itself is a 

significant original contribution.  

Chapter 3 outlines the methods used to map known water management features 

and locate and map previously unknown features. The image interpretation used 

for the initial digitisation is described, followed by explanations of the DEM 

processing and interpretation used to confirm the results and understand the 
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hydrological context of features. The typical forms and functions of these features 

and systems are explained in Chapter 4 with reference to the literature of irrigation 

design and construction.  

Chapters 5 and 6 present the results of the remote sensing study. In 5, which is 

organised spatially, a description is given of the results of locating known features 

using CORONA, and of identifying newly discovered features. The results for the 

Balikh Valley are discussed in a separate chapter (6) because water management 

in the Balikh is particularly complex when compared with data from the rest of the 

study area. 

Finally, the implications of the results are discussed in Chapter 7.These will be 

considered in terms of assessing the original contribution of the present study, of 

how its findings can be validated, and of the theoretical framework in which they 

were analysed. The implications of the results in terms of chronological and 

distributary patterns are investigated. Chapter 8 concludes the study and 

examines the potential for future research.  
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Chapter 2: Spatial Literature review 

 

2.1 Introduction 

Given the interdisciplinary nature of this study, it is not within its remit to outline all 

the research into ancient occupation of northern Mesopotamia, nor is it possible to 

discuss in detail the many irrigation systems of southern Iraq, which have already 

been researched by several scholars (e.g. Pournelle, 2013; Hritz and Wilkinson, 

2006; Adams, 1981, 1974; Gibson, 1972; Jacobsen, 1960). Before a summary of 

the northern irrigation systems is given, however, the key differences between 

southern and northern Mesopotamia can be outlined here in order to contextualise 

the differences between the present study and Wittfogel’s (1957) hypothesis.  

While irrigation in southern Mesopotamia has been linked explicitly to the 

development of the totalitarian power of early states in the region (Wittfogel, 1957), 

water management in northern Mesopotamia may have taken a different 

trajectory. Geomorphologically and climatically the south is also different from the 

north, with rivers forming raised levees, and much lower rainfall. Wilkinson has 

suggested that early irrigation may have been more concerned with modifying and 

maintaining the natural channels than with constructing new systems (Wilkinson, 

2003, p85). More comparably with northern Mesopotamia, large-scale canals are 

known for later periods, from at least as early as the Neo-Babylonian era and into 

the Early Islamic (Wilkinson, 2003, p92-95).  

The aim of this thesis is to use remote sensing to investigate water management 

in northern Mesopotamia. Large-scale irrigation may have been adopted in the 

north later than it was in the south, and was used to make agriculture more 

reliable, rather than simply to make it possible (see Wilkinson and Rayne, 2010, 

p2-3).   

The water management features summarised in this chapter have been presented 

in the existing literature. It is important to note here that the published work 

originates from multiple different perspectives and disciplines, including traditional 

archaeology, landscape archaeology, geomorphology and ancient history. A few 
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specific studies have used remote sensing. However, because CORONA images 

were not declassified until relatively recently, this task had not yet been 

undertaken for many sites. 

This chapter presents a detailed overview of the existing research and establishes 

the need for the detailed mapping undertaken in the two results chapters (5 and 

6). One of the original contributions of this study is the map (Figure 2.1), which 

shows the features mentioned in the literature which could be located and 

digitised. The results generated by this project will be added to the map, 

demonstrating how a more detailed perspective can be gained through the use of 

remote sensing. The irrigation features indicated by the existing research were 

examined using satellite imagery, and previously unknown features located and 

digitised.  

Installations such as dams and reservoirs, as well as damage through agriculture 

and urbanism, have destroyed and obscured many sites. This makes it especially 

important to present a discussion of existing knowledge, because recent changes 

now prevent further research from being undertaken in some areas (for example, 

many sites are now lost underneath the lake Tabqa in Syria). It is also important to 

note here that traditional survey and excavation has been suspended in Syria due 

to the current political turmoil; several on-going projects have turned more to the 

use of remote sensing in the meantime (e.g. see the current project, Wilkinson and 

Rayne, 2010, and Hritz, 2013a, 2013b in the Balikh). 

There are numerous studies that deal with particular water management systems 

or individual features throughout Northern Mesopotamia; these are summarised in 

this chapter. A detailed comprehensive study does not yet exist, although an 

overview of some areas and some results from this study has already been 

presented (Wilkinson and Rayne, 2010). There are a few volumes which compiled 

several specific studies, generally of disparate geographical, temporal and 

functional nature, including some papers relating to the Near East; for example, 

Bienert and Haser (2004) comprised a range of different studies, including 

McQuilty’s study of watermills in Jordan (2004) and Bagg’s analysis of Assyrian 

tunnelling (2004). Wikander (2000) similarly edited a volume of different specific 
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studies and general studies on water management, Ortloff (2009) reviewed 

several key examples of irrigation, Hodge (1991) compiled papers relating to 

features such as aqueducts and mills, and Lightfoot (2009; 1996) presented two 

reports on qanats throughout Syria and Iraq of the Middle East. While the locations 

of qanats were recorded, and the influence of the early territorial empires 

discussed, a detailed record of each mapped feature was generally not provided 

(Lightfoot, 2009; 1996). Beaumont et al also presented studies on qanats 

(Beaumont et al, 1989). In some cases reports from these compilations have 

informed this project; these will be outlined as part of the spatial literature review 

below.  

Currently, the separate nature of the literature makes it difficult to understand 

wider regional issues; a detailed understanding of the chronology and distribution 

of water systems development across Northern Mesopotamia is unclear. However, 

this project has integrated the available data in the literature into a GIS database 

alongside new data described in the results (Chapter 5). Canal systems which 

could be clearly and unambiguously identified using CORONA/maps provided by 

the literature were digitised. This process involved rigorous decisions not to 

include features for which the location was not clearly identifiable. Mapping was 

done systematically for the whole study area, making it possible to address wider 

questions of the scale and distribution of irrigation. An overview of the known 

water systems in Northern Mesopotamia is presented below.  
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Figure: 2.1: Known ancient irrigation systems in northern Mesopotamia (see 

below for more detailed maps and information on each region).  

 

Known water systems in northern Mesopotamia 

2.2 Jerablus 

The region close to the Syrian-Turkish border is the starting point for this study. 

The floodplain terraces adjacent to the Euphrates, the valleys of several tributaries 

and the limestone uplands to the west contain the remains of water management 

features. As in the rest of the study area, cultivation that relies on rainfall holds 

some degree of risk. Precipitation in the Jerablus region is around 400mm per 

year, but with an interannual variability of about 25-30% (see Chapter 3.6, GPCC 

data). The geomorphological and climatic conditions of the region have been 

outlined by Besancon and Sanlaville (1985) and Wilkinson et al (2007).  

Research into settlement remains and other landscape features has been 

undertaken in the region by several projects. Early archaeological research 

focused on the monumental site of Carchemish (Woolley, 1921). Surveys were 

later undertaken in the Upper Euphrates region (e.g. see Copeland and Moore, 

1985; McClellan, 1999). Recent research has adopted a landscape approach and 

recorded 80 archaeological sites as well as off-site features such as canals and 
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routeways, as part of the Land of Carchemish Project (see Table 2.1, also 

Wilkinson et al, 2007; Wilkinson et al, 2011; Wilkinson et al forthcoming). 

 

Table 2.1: Conduits and canals in the Jerablus region. See Chapter 5 for images 

of specific features and Figure 2.2 for a map. 

Name of canal 
(no. in (--) see 
Fig. 2.2) 

Estimated date Approximate size  
(W x D) 

Type Comments or 
reference 

Jemal Canal (1) Late Antique-
Early Islamic 

9-14 m wide 
(surface) 

Euphrates 
canal. 

Wilkinson et al 
2007 

Jerablus Tahtani 
canal  (2) 

Iron Age  Euphrates 
canal. 

 

Hajaliyyeh (3) Late Antique?  Rock-cut 
qanat. 

 

Wadi Sha'ir (4) Late Antique? 50 cm wide Open channel. Wilkinson et al 
2007 

al-Gini' at  (5) Late Antique?  Rock-cut 
qanat. 

Wilkinson et al 
2007 

Nahr al-Amarna-
1  (6) 

Hellen.- Late 
Antique? 

1: 3-4 m x 2.3m 
0.80m x 1.3m 

Earthen canal 
followed by 
stone & rock 
conduit (N 
bank). 

Wilkinson et al 
2007 

Nahr al-Amarna-
2  (7) 

Late Antique  Rock-cut 
conduit (on S 
bank). 

 

LCP 18 (8) Hellen.-Roman  Rock-cut 
conduit. 

 

Wadi Seraisat (9) Late Antique  Rock-cut 
conduit. 

 

Kirk Maghara 
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Figure: 2.2: Ancient water features in the Jerablus region (mapped by the Land of 

Carchemish Project, Durham University. See Table 2.1 for numbered features). 

Archaeological remains have been recorded throughout this landscape which 

represent the period of the later empires. Carchemish was an administrative 

centre of first a Neo-Hittite state and then the Neo-Assyrian empire, having already 

attained political significance in the Bronze Age (Wilkinson et al, 2011). Copeland 

and Moore (1985) recorded mainly tell sites, including evidence of occupation 

during the period of the later empires. The Land of Carchemish Project  located 

tells as well as smaller sites dispersed throughout the surrounding area and dated 

by remains recovered from field surfaces, with occupation identified for the 

Hellenistic, Roman, Byzantine and Early Islamic periods (Wilkinson et al, 2007). 

By the Hellenistic and Roman periods, sites became less tell-based, smaller, and 

more dispersed (Wilkinson et al, 2007, p235), with a similar pattern persisting in 

the Byzantine and Early Islamic periods (Wilkinson et al, 2007, p235). For 

example, a notable Early Islamic site was recorded at Khirbet Seraisat (Wilkinson 

et al, 2007).  
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While earlier surveys mention water management features (e.g. see Copeland and 

Moore, 1985), these were not comprehensively surveyed until recently by the Land 

of Carchemish Project. Woolley (1921) and more recently Wilkinson et al (2007) 

investigated a canal at Jerablus Tahtani. This 9-14 m wide feature flowed between 

the village of Jemal and Tell Jerablus Tahtani. Wilkinson et al (2007) suggest, 

based on associated sites and pottery, that the feature was in use during the 

Byzantine – Early Islamic periods (p236). This survey also indicates that it 

abstracted water from the Euphrates, although its termination is not clear 

(Wilkinson et al, 2007, p236). 

The Land of Carchemish Project also recorded water management features along 

the nearby wadis which drain into the Euphrates, including the Amarna and Sajur, 

both of which formerly flowed year-round. A rock-cut channel was found to have 

abstracted from 'Ain Abid which may have been in use from the late 

Roman/Byzantine periods up until some time in the 20th century (Wilkinson et al, 

2007, p236). In addition, the shafts of a rock-cut tunnel were recorded along Wadi 

al Gini’at, to the north of Tell Amarna, although the feature could not be dated 

(Wilkinson et al, 2007, p236).  

Another rock-cut channel was found along the dry Nahr al-Armana and was lined 

with dressed ashlar blocks. This channel may have cut into an earlier feature; the 

later channel may be Hellenistic to Late Antique (Wilkinson et al, 2007, p236), 

dated by the typical Late Antique claw-tooth chisel marks (Wilkinson et al, 2010, 

p16; Wilkinson and Rayne, 2010, p14).  

At the large Roman, Byzantine and Early Islamic site of Khirbet Seraisat rock-cut 

water channels (see Table 2.1; Figure 2.2) were also recorded, possibly with final 

phases in the Ottoman period. Wilkinson et al (2007) suggest that this series of 

channels may have supplied settlements and agriculture on the floodplain and 

lower terraces. The canals consisted of several channels and a former aqueduct 

taking water into a canyon at the edge of the flood plain, possibly with an 

associated mill (Wilkinson et al, 2007, p236-239). During fieldwork in 2010 this 

study recorded further water management features throughout the Jerablus 

region, which will be outlined in Chapter 5. 
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2.3 Membij Qanats 

To the south of the Sajur numerous water supply features have been recorded by 

Dan Lawrence and Niko Galiatsatos (pers. comm.) in the vicinity of the town of 

Membij (ancient Hierapolis and Bambyce). These include several qanats 

(mentioned briefly by Lightfoot, 1996, p333), also noted by Kamash (2009, vol.3, 

p9-10). While so far evidence for the chronology and significance of these is 

limited, historical sources suggest that there may be a religious association with 

the use of water in Membij. Specifically, Lucian of Samosata, writing in the 

Hellenistic period, recorded water features associated with a temple in the city 

(see Lightfoot, 2003), which may have had a ritual function (Kamash, 2010, p170). 

These qanats appear to have been associated with Hellenistic and Roman 

settlement in the vicinity of Membij (pers comm. Dan Lawrence/Niko Galiatsatos).  

   

Figure 2.3: Features around Membij. Mapped by Dan Lawrence and Niko 

Galiatsatos (pers. comm).  

2.4 Dibsi Faraj 

The fortified Late Roman-Early Islamic site of Dibsi Faraj was also associated with 

water management features. Although they are now lost under the waters of the 

Tabqa Dam, excavation and survey was undertaken in the 1970s (see Harper and 
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Wilkinson, 1975); this project also interpreted historical sources relating to the site. 

Significantly in terms of its location, the Peutinger Table suggests that Dibsi Faraj 

was close to the route to Resafa (Harper and Wilkinson, 1975, p321). The 

historical sources also indicate that a canal flowing close to the site, the Nahr 

Maslama, was a channel built by the Ummayad general Maslama ibn Abdalmalik 

in the 8th century AD (Harper and Wilkinson, 1975, p324). Dibsi Faraj itself 

consisted of a citadel and an outer town on the edge of the limestone steppe, 

overlooking the floodplain (Harper and Wilkinson, 1975, p334). Much of the site 

was built in the 3rd century AD with construction continuing into the 4th and 5th 

centuries (Harper and Wilkinson, 1975, p322). The site seems eventually have 

been destroyed by an earthquake in AD 859, after which occupation was limited; 

finally, the site was deserted from the 12th Century until modern times (Harper and 

Wilkinson, 1975, p324).  

During excavation of the Nahr Maslama, a plaster lined conduit at a depth of 7 m 

was identified (Harper and Wilkinson, 1975, p337). Wilkinson estimates that the 

canal must have flowed at least 8 km upstream in order to have joined with the 

river level (Harper and Wilkinson, 1975, p337). In the 1970s, most of the channel 

had been eroded by the Euphrates (Harper and Wilkinson, 1975, p337), although 

short stretches were still present to the east of the citadel. Within the site itself, 

close to the north wall, two shafts were found which were interpreted as possible 

well shafts, connected by a tunnel (Harper and Wilkinson, 1975, p337).  

The canal may be part of the same system as a canal recorded at Barbalissos, 

upstream of Dibsi Faraj (see Decker, 2009a, p179; Kamash, 2009, vol3 p3), 

although no traces of it upstream of Dibsi Faraj could be detected using the 

CORONA images. Historical research suggests that there was also an irrigation 

channel downstream at the Late Roman site of Sura (see Kamash, 2009, vol3, 

p3). In Chapter 5, CORONA images of Dibsi Faraj and its environs are presented 

(these were not available at the time of the original investigations) which enabled 

further water management features to be identified. 
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Figure 2.4: Water management features now inundated by the Tabqa Dam. The 

canal at Dibsi Faraj was recorded by Harper and Wilkinson (1975). The canal at 

Tell Fray was discussed by Bounni (1988; 1979).  

2.5 Canal between Tell Fray to Qa’lat Ja'bar 

Until the construction of the Tabqa Dam, the partially eroded remains of a 

prominent canal could be seen stretching for about 10 km along the left bank of 

the Euphrates. This was first visible (using CORONA images; see Chapter 5) 

about 1 km upstream of Tell Fray, passing that site, and finally terminating at 

Qa’lat Ja’bar. While Tell Fray and the canal are now submerged, Qa’lat Ja’bar is 

currently situated on the edge of the lake.  

The site of Tell Fray, located within the frontier zones of the Hittite and Assyrian 

empires (Akkermans and Schwartz, 2003, p341), was investigated during 

campaigns in the 1970s. Remains of Hittite, Babylonian and Assyrian occupation 

up until the 13th Century BC were discovered and the location of the Tell Fray part 

of the canal was noted, a feature known as ‘The little Euphrates’ which gave the 

site its modern name (Bounni, 1988, p368-9). The full extent of the canal was not 

identified.  

The ancient name of the site, Yakharisha, was identified from an examination of 

textual evidence from the Nuzi tablets and from texts found at Tell Fray itself 

(Bounni, 1979, p7). Some of the texts also refer to the canal, mentioning that an 

official present at the site was responsible for maintaining canals (Bounni, 1988, 
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p369). Bell also identified the canal, mentioning that part of it had silted up (1924, 

p48-49).  

The CORONA images show that the canal terminates at Qa’lat Ja’bar, a fortified 

citadel which was a major Seljuk, Ayyoubid, and late Abbasid centre (Bounni, 

1979, p7), although the existing literature did not record this segment of the 

feature. Contextual information for this part of the canal can be taken from 

research into the site. Historical accounts suggest that Qa’lat Ja’bar was 

abandoned after the Mongol invasions (Tonghini, 1998, p22).  Excavation and 

pottery evidence indicate that the site was re-occupied and then again abandoned 

at some point in the Mamluk period. A small number of Ottoman finds were 

recovered (Zaqzuq, 1985; Tonghini, 1998).  

The site is well attested to historically. Excavations have, however, enabled the 

creation of pottery sequences (Tonghini, 1998) and investigated water storage 

devices. Zaqzuq (1985) and Tonghini (1998) recorded water towers associated 

with the mosque, a cistern, and rock-cut channels (Tonghini, 1998, p26). 

Unfortunately, most of the documents relating to the 1970s and ‘80s excavations 

were lost (see Tonghini, 1998, p25). Any possible link with the canal will be 

explored in later chapters (see Chapter 5). 

Unfortunately, given that the feature is now submerged, the projects summarised 

here did not undertake detailed investigations into the canal. Attempts to trace it 

over a greater distance were not made. Chapter 5 presents the results of image 

interpretation undertaken by the present thesis which located a much longer 

feature. 

2.6 Resafa  

The Roman- Early Islamic site of Resafa, occupied between the 1st-13th centuries 

AD (Beckers 2007-9), is located well into the area where interannual rainfall 

variability is 40-45% (see Chapter 1 for precipitation averages and variability). 

Although the average rainfall figure places the site in the 200 mm per annum zone, 

about 18-20 years out of 31 received less than 200 mm rainfall.  
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The historical context of Resafa is well known (e.g. see Sack, 2007-9).  The site 

was strategically and politically important in late antiquity and into the Early Islamic 

period. Historical accounts indicate that it was linked to the Roman road system 

between Sura and Palmyra (Kennedy and Riley, 1990, p117), which connected to 

an important route on the Roman frontier, the Strata Diocletiana (Stark, 1966, 

p306). Further evidence from historical sources indicates that water management 

features at the site were in use in the Islamic period, during caliph Hisham’s time 

(Beckers, 2009, p31; Hof, 2007-9, p33). 

Some studies have also used archaeological approaches to record water 

management features. The cisterns at Resafa are well-known, originally from 

historical sources and also now from these archaeological investigations (e.g. 

Sack 2007-9; Brinker 1991). 

 

Figure 2.5: Location of Resafa on the Wadi es Sele. 
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Evidence for different kinds of water storage and collection devices was found. 

Covered bottle-shaped underground tanks (see Figure 2.6) and rooftop cisterns 

collected and stored rainwater (Brinker, 1991, p123) and functioned as an urban 

water supply. A 13th century source indicated that these cisterns dried out towards 

the end of the summer (ibid, p121). Use of groundwater was also problematic, 

given the brackish nature of the water accessed via wells, as described by a 9th 

century AD source (ibid, p120).  

Far larger cisterns, also within the city walls, were fed by water brought in from 

outside. One of these could more correctly be termed a reservoir; Kamash’s 

historical study of Roman water management suggests that it is the largest cistern 

in the Near East, with a capacity of 14600 m3 (Kamash, 2009, p142). As Figure 

2.7 shows, a dam on the Wadi es Sele directed water, via a channel, into the 

cisterns (Berking et al, 2010). The dam, which was recorded as being about 1.70 

m high (Brinker, 1991, p140), had provision against flash floods in the form of a 

spillway (ibid). The point where the canal crossed through the city walls was also 

carefully designed; it was divided into six small channels to prevent military 

incursions (Brinker, 1991, p137; Hof, 2007-09, p33). It seems likely that this 

feature and the presence of the cisterns within the walls may have been 

constructed with a fear of siege in mind, as Kamash suggests (Kamash, 2009, 

p176). 

Most recently, a rainfall-runoff model was applied to examine how the cisterns 

could be filled (Berking et al, 2010). The study indicated that runoff water which 

periodically flowed down the Wadi es Sele was collected behind the dam (Berking 

et al, 2010, p817). Modern daily rainfall records suggested that periodic annual 

rainfall events were capable of filling the cisterns and a rate of 35.9 mm within an 

hour would be sufficient to fill them (Berking et al, 2010, p827).  

The source of Resafa’s urban water supply seems clear. The existing research 

has also investigated how Resafa may have produced food. Berking et al suggest 

that there may have been small gardens alongside the Wadi es Sele, which would 

have been capable of producing sufficient crops to support the city (Berking et al, 

2010, p819). However, it is also possible that other nearby areas such as the 
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Balikh, where perennial water is more abundant, could also have formed resource 

bases.  

 

 

Figure 2.6: Cistern at Resafa (from Brinker, 1991, p123). 
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Figure 2.7: Water management at Resafa (from Brinker, 1991, p125).  

2.7 Heraqlah 

About 12 km west of Raqqa, water management features are apparent close to 

the small circular walled site of Heraqlah. Several of them have been recorded by 

existing research (e.g. see Toueir, 1983; Kamash, 2009), although the dating of 

some of these features is less clear that some reports suggest. Excavations at the 

site itself indicate that it is Early Islamic (Toueir, 1983).   

Gertrude Bell noted the large relict canal which cuts through the walls of Heraqlah, 

and also another channel and associated dyke to the south at Tell Meraish, 

interpreting both canals as part of the same, relict, system (Bell, 1924, p54). The 

Heraqlah canal terminates at Raqqa and has been interpreted by some (e.g. see 

Touier, 1983, p298; Toueir, 1990, p217; Heidemann, 2006, p36) as Early Islamic. 

Toueir (1990) linked the canal to historical accounts of a feature known as the 

Nahr al-Nil, supposedly constructed under the auspices of the Abbasid Caliph 

Harun al Rashid (Toueir, 1990, p217), although he admitted that the channel was 

not excavated and its dating was uncertain (ibid. p218). Kamash (2009, vol3 p4) 

also notes this canal, suggesting that it is cut by an Umayyad qanat and that it 
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would therefore pre-date it. However, despite these interpretations, the CORONA 

images show that it cuts through the walls of Heraqlah, and therefore does appear 

to post-date the site (see Chapter 6). The qanat may in fact be earlier than the 

canal; Kamash’s (2009) interpretation of the qanat as Umayyad could be 

applicable.  

 

Figure 2.8: Canals at Heraqlah and Raqqa discussed in the existing literature. 

These were mapped from satellite imagery (Heraqlah) and from Heidemann, 

(2006) (Raqqa). More detailed mapping using the CORONA images is presented 

in Chapter 6. 

2.8 The Balikh 

The region with the most complex set of water management remains in Northern 

Mesopotamia is undoubtedly the Balikh. A brief summary of existing research into 

these remains is presented here; the results chapter (Chapter 6) identifies further 

features and also attempts to fit them into a chronological and functional 

framework.  

The geomorphological history of the Balikh Valley has created an area of soils 

conducive to agriculture, surrounded by less cultivable steppe. Rainfall is highly 

variable and generally low.  As such, it is an area with an extremely complex past, 
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both in terms of settlement and in terms of water management. Early travellers 

described the valley, noting the presence of ruins (e.g. see Sykes, 1907, p240-; Le 

Strange, 1930, p101-105). The first archaeological investigations in the Balikh 

were undertaken by Mallowan (1946, p114), who dismissed the valley as a 

‘backwater’ However, as was often the case for early surveys, the Roman and 

later remains were discarded, in favour of earlier remains (ibid). De Jong suggests 

that study has neglected the Roman and Byzantine periods in the Balikh, while 

earlier periods and to an extent the Abbasid period are better known (de Jong, 

2011, p274).  

Despite this issue, there has been recent archaeological interest in many aspects 

of the Balikh. In terms of excavation, investigations into the widespread prehistoric 

activity in the Balikh were undertaken by Akkermans, who excavated at Sabi 

Abyad (Akkermans, 1996). Aspects of the Balikh’s small-scale Bronze Age 

occupation were studied through excavations at several key tell sites including 

Hammam et Turkman in the centre of the Balikh valley (Van Loon, 1988) and Tell 

Bi’a in the south (Strommenger, 1981). Other large tell sites include Tell Sahlan in 

the north of the Valley, close to the Balikh's confluence with the Jullab, and Tell es 

Seman in the south. Wilkinson (1998) identified a change in settlement patterns in 

the Balikh from the Iron Age away from a tell-based system to more dispersed 

farmsteads; there are few large sites dating to this period, but Kirbet Ajlan (BS 

386) stands out as a larger site (Wilkinson, 1998, p152). Neo-Assyrian imperial 

interest in the valley is reflected in a contemporary source, the Harran census (e.g. 

see Johns,1901; Fales and Postgate, 1995). Recently, the Hellenistic-Byzantine 

periods have attracted more attention, with investigations at sites such as Tell 

Sheikh Hassan (de Jong and Kaneda, 2004-5). 

The Early Islamic period is well attested. For example, several projects have 

excavated at Raqqa, identifying a settlement, industrial area and palace 

complexes (e.g. see Henderson et al, 2005; al-Khalaf and Kohlmeyer, 1985). At 

this time, the region attained particular prominence under the caliphs al-Mansur 

and Harun al-Rashid. Excavation was also undertaken at Medinat al-Far in the 

north of the Balikh (see Haase, 1996).  
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Data with a more region-wide focus was gathered by surveys, each with a different 

focus. For example, Akkermans studied pre 5th Millennium occupation of the valley 

(Akkermans, 1993), Curvers (1991) focused on the Bronze Age; Bartl (1994) 

investigated the Early Islamic remains; Gerritsen studied the Hellenistic-Parthian 

periods (1996). A key study by Wilkinson (1998) recorded sites and landscape 

features of all periods, including canals as well as sites and field scatters, 

suggesting that irrigation was more significant in later, post-Bronze Age periods 

and supported the overall settlement patterns. Wilkinson’s study concludes that 

water availability in the Balikh prevented settlement from expanding beyond a 

certain size (ibid p84).  
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Figure 2.9: Known water management features in the Balikh Valley, recorded by 

Wilkinson (1998) and Heidemann (2006).  

These projects recorded a landscape of tells in the Bronze Age, with a shift to 

more dispersed, smaller sites from the Iron Age (Wilkinson, 1998) and into the 

Early Islamic period (Bartl, 1994). Others used the survey data to further 

investigate the Balikh; incorporating some data provided by Wilkinson and Rayne, 

(2010), Hritz (2013b) used remotely sense data to examine settlement patterns in 

the Balikh, defining it as an area which experienced economic stability for long 
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periods, but which underwent changes from the Iron Age (Hritz, 2013b, p143). De 

Jong adopted a historical perspective and investigated Roman and Byzantine 

remains, examining survey, excavated and textual data (2011). She suggests that 

at this time the Balikh was capable of supporting its large populations, without 

intensifying production; however, a Roman source indicates that supplies for 

soldiers at Raqqa were imported into the town (de Jong, 2011, p274-275). De 

Jong also presented a discussion of Early Islamic settlement in the valley, 

interpreting the agricultural intensification that occurred at this time as a product of 

the power of Imperial Raqqa (de Jong, 2012, p523). 

Some studies have specifically examined individual water features. Wilkinson’s 

study (1998) was the first that researched specific canals in the Balikh in detail; 

The Sahlan-Hammam canal was investigated, the Nahr al Abbara, and some 

potentially Hellenistic canals in the central part of the Balikh were also noted 

(Wilkinson, 1998). This study also recorded differences in the northern rain-fed 

zone (north of Tell Zkero) and a drier zone south of this; traces of irrigation are 

more numerous in the drier zone (ibid p77-78). 

Wilkinson excavated a section in the Sahlan part of the Sahlan-Hammam canal, 

obtaining a date of the 3rd C BC to 6th C AD using ceramic evidence and a 

radiocarbon date (Wilkinson, 1998, p69; also see Chapter 6). He interpreted the 

two stretches of channels, one close to Tell Sahlan and the other close to Tell 

Hammam, as part of the same feature, with the middle section removed by erosion 

(ibid p69). Wilkinson noted that these were well-defined channels with upcast 

banks, running alongside the Balikh (ibid p67).  

This study interpreted the Nahr al Abbara as Early Islamic, based on evidence 

from ceramic field scatters and by association with nearby sites (ibid p67). The 

channel was described as a meandering ditch with a straight trace, running along 

higher ground between the Balikh and wadi al Keder; part of the system had been 

used as late as the early 20th century, originating in a dam near Tell Sahlan (ibid 

p67). Other parts of the system were aggraded. Limestone blocks which may have 

been former sluices were noted (ibid p68).  
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Parts of other canals were identified. Fragments of a major canal between Tell 

Hammam and Mounbateh were indicated (ibid p82). Other canals south of Tell 

Sheikh Hassan were listed (ibid p67). A pattern of Hellenistic sites along one of 

these canals and away from the river was noted (ibid p82).  

More information about these canals, and the locations of some newly identified 

ones, was presented in Wilkinson and Rayne (2010). Additional channels 

connected to the Nahr al Abbara system were mapped and channels around 

Raqqa, including qanats, were also recorded (ibid). The channels described by 

Wilkinson (1998) and Wilkinson and Rayne (2010) were also discussed by de 

Jong (2011, 2012) and Hritz (2013b). Hritz also presented a discussion of the 

geomorphological context of the Raqqa area (Hritz 2013a), interpreting a feature 

present in the CORONA images as a palaeochannel of the Balikh (ibid p1978). 

Lightfoot (1996, p326) mapped the presence of a qanat in the vicinity of Raqqa, 

but it is not clear, however, which of the several different qanats and tunnels 

identified by the present study was the feature identified by Lightfoot. Heidemann 

also noted water management features close to Raqqa (Heidemann, 2006, 36).  

Past hydrological regimes, current land use and the geomorphological history of 

the Balikh have also been explored. Mulders (1969) carried out a soil survey for 

much of the Valley, recording soil types as well as formations such as gilgai, which 

may be related to waterlogging from past agriculture (on gilgai, see Chapter 1). 

More recently, using remote sensing as well as fieldwork, Alkhaier et al (2012, 

p1837) suggested that deep water tables in some parts of the Balikh relate to 

older, better drained cultivation.  

 Hritz (2013a), Demir et al (2007), and Sanlaville and Besancon (1981) examined 

the geomorphological conditions of the southern Balikh Valley in the area of 

Raqqa, alongside the Euphrates. The chronology of Euphrates river terraces was 

recorded, and in some cases the terraces were dated by association with 

archaeological remains (Demir et al, 2007, p2848). Hritz (2013a) investigated the 

western part of the Balikh ‘horsehoe’, mapping a palaeovalley formed by the 

Euphrates and Balikh. Further north in the valley, another palaeochannel of the 

Balikh has been investigated; for example, Akkermans (1993, p170-180) used 
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coring evidence to suggest that this was a formerly marshy, waterlogged area. 

Beaumont (1996) and Hole and Zaitchik (2007) investigated the impacts and 

viability of modern agriculture in the region, discussing available water sources 

and climatic constraints.  

While research has been carried out into water management in the Balikh, it was 

constrained by several limitations. First, the dynamic nature of the Balikh itself has 

erased and obscured remains. Recent agricultural intensification has also 

removed archaeological features.  Secondly, the water management situation of 

the Balikh is highly complex, with layers of use, reuse and abandonment; a bird’s 

eye view is necessary if it is to be untangled. However, fortunately, this project 

was undertaken with access to a full database of CORONA satellite images (see 

Wilkinson and Rayne, 2010).  

This summary has shown that there is evidence from a range of different studies 

on the Balikh. The present study incorporated all this evidence into a GIS: the 

combined data, including information about water management and settlement, 

could then be compared with the new water management features recorded by the 

present study so that these could be interpreted within their archaeological context 

(see Chapter 6). 
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Figure 2.10: Canals recorded by Wilkinson (1998). Map provided by Wilkinson 

(pers.comm).  

2.9 The Habur 

Like the Balikh, the Habur is another tributary of the Euphrates where ancient 

settlement and associated water supply features are known. In general, the Habur 

region falls into a zone of fairly high uncertain and low rainfall in the south, with 

more reliable precipitation in the north. Given this, rainfed agriculture has been 

recorded in the north during the 20th century (Ergenzinger et al, 1988, p110), but 

the south of the Habur was only used for grazing (ibid.). More recently, new 
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irrigation schemes have started to transform the landscape (e.g. see Hole and 

Zaitchik, 2006).  

There have been excavations, surveys and analyses undertaken across the Habur 

region, with some adopting landscape-based/regional approaches; for example, 

Wilkinson (2000) applied a landscape approach to areas of Northern 

Mesopotamia, including the Habur; Ur (2010b) also discussed survey in the same 

area from a regional perspective. Menze and Ur (2012) employed a remote 

sensing approach to recording archaeological settlements. Much of the existing 

research in the Habur has focused on the mapping of tell sites, generally of 

Bronze Age date (e.g. see Meijer, 1986, who proposed a peak in settlement for the 

Middle Bronze Age) and modelling possible cultivation zones (Deckers and 

Dreschsler, 2011). A decline in settlement was noted at the end of the Bronze Age 

(Deckers and Riehl, 2008, p175; Wilkinson and Barbanes, 2000), followed by 

colonisation and growth involving the Middle and Late Assyrian empires (e.g. see 

Ur and Wilkinson, 2008). A lack of datable material for the later periods has made 

it difficult to assess them, although some material representing the Hellenistic- 

Abbasid periods was collected by Lyonnet (1996). 
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Figure 2.11: Water management features in the Habur region. The features 

around Hamoukar were mapped by Jason Ur (shapefiles provided by Ur, pers. 

comm; also see Ur, 2010a). 
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Figure 2.12: Water management features alongside the Habur recorded by 

Ergenzinger et al (1988).The canals alongside the Euphrates were recorded by 

Geyer and Monchambert (2003).  
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Some of the surveys aimed to record off-site features such as hollow ways (e.g. 

see Ur, 2010), and also water management features. For the northern part of the 

region, whether the radial lines on the satellite images represent hollow ways or 

canals has been debated (see Ur and Wilkinson, 2008, p311-12; McClellan et al, 

2000, p143-51), although, based on their relationship with the topography, it 

seems conclusive that these are roads and not water management features. Other 

studies have also discounted the possibility of significant irrigation in the Upper 

Habur region (Deckers and Riehl, 2008).  

However, some projects have recorded clear evidence for canals further south, 

along the Habur itself. Relict canals in the Habur region were first photographed by 

Poidebard (1934). Early investigations into water management as well as into 

settlement in the region were undertaken by Van Liere and Lauffray (1954-55). In 

addition to recording radial hollow way routes, they used aerial photographs with a 

scale of 1:20.000, originally collected for agricultural purposes (ibid. p131), to 

record dark, vegetated lines. They interpreted the lines as canals, based on their 

tendency to follow the natural contours of the landscape (ibid. p146). They 

recorded traces of canals along the Habur, including some large features south of 

Hasseke (ibid. p147), as well as some branching off-takes and a qanat (ibid. p146-

147).  

The canals alongside both sides of the Habur were investigated by Ergenzinger et 

al (1988) who surveyed and excavated a canal segment alongside Tell Sheikh 

Hamad (ibid. p113). The excavation gave a chronological range for the feature 

from the Middle Assyrian to the Early Islamic periods (ibid. p117).The canals 

initially identified by Van Liere and Lauffray (1954-55) were further recorded; 

according to the published research, they stretched for over 170 km, to the mouth 

of the Habur (ibid. p117). These were found to be up to 6 m wide and with depths 

of up to 1-2 m (ibid. p117). Off-takes were also recorded, notably in a system 

within a wadi east of Tell Saddada (ibid. p117). Significantly, they noted that the 

proposed modern irrigation systems on the Habur would follow a similar alignment 

to the ancient canals, which would result in their removal (ibid. p126). This means 

that the existing studies, and any new information which can be extracted from the 

CORONA images, may now be the only evidence for these canals.  
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Ergenzinger and Kuhne further investigated these long canal systems (1991), 

using aerial photographs and recording them on the ground. They recorded 

several exposed profiles and also undertook excavations. Historical sources and 

ceramic evidence from the excavations as well as from surface survey were used 

to date the features (ibid. p178).  

Ergenzinger and Kuhne (1991) suggest that the first phase of canal-building was 

in the Middle Assyrian period on the eastern bank of the Habur. The Neo-

Assyrians later modified this system. Although a canal running from the JaghJagh 

to Mari has been proposed (Ergenzinger and Kuhne, 1991, p163; p188) it is not 

clear, from examination of the satellite images, whether there is a single canal on 

this route However, canals on both banks of the Habur were in use during the time 

of the later empires. The left-bank canal was abandoned by the Early Islamic 

period in favour of a different canal. The right-bank canal went out of use from the 

time of the Mongol invasion in the 13th century AD (ibid, p163).  

At the time of Ergenzinger and Kuhne’s survey (1991) traces of the canals were 

still visible on the ground (p166); they were also identifiable on Poidebard’s 

photographs (1934). They indicate that the canal on the left bank of the Habur may 

have abstracted from the Habur river and from the Wadi Jaghjagh, and flowed 

high above the fields, allowing large areas to be irrigated (Ergenzinger and Kuhne, 

1991, p171).  

Parts of this large canal abstracting from the river were identifiable between Wadi 

Raml and Tell Sadada. This also flowed high above the fields, at up to 12m above 

present river level (Ergenzinger and Kuhne, 1991, p172). Based on Van Liere and 

Lauffray’s work (1954-55) off-takes were also noted, for example at Tell Sheikh 

Hamad (e.g. see Ergenzinger and Kuhne, 1991, p172-173). In some cases the 

canals needed to cross wadis; dams, weirs and a tunnel were suggested by 

Ergenzinger and Kuhne (ibid.  p170-171).  

The same study proposed that the canals and their maintenance would have been 

the product of considerable labour (Ergenzinger and Kuhne, 1991, p176). A 

consideration of function was also made, with transport as well as irrigation 

suggested (ibid. p175). Their flow calculation indicating that up to 10% of the 
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Habur’s flow could have been diverted by the canals (ibid. p174) represents 

significant water use in the area. Any link between the JaghJagh and the 

Euphrates, via the Habur canals, however, should be approached cautiously; this 

was not clear on examination of the CORONA images (see Chapter 5).  

Ergenzinger and Kuhne (1991) reconstructed the possible routes of the canal (see 

Figure 2.13).Their map gives an impression of a relatively integrated and extant 

feature on either side of the Habur. Whether or not this is confirmed by the 

CORONA evidence will also be discussed in Chapter 5.  

Other studies of water management in the Habur area have also been undertaken. 

More recently, Ur (2010a) has used remotely sense data to record the landscape 

further north, around Hamoukar. As well as mapping settlement and hollow way 

systems, he proposes some further irrigation features. Small-scale possible 

systems near Hamoukar were recorded (Ur, 2010a, p73). An off-take near 

Ramadaniya was interpreted as a canal linked to a Sasanian-Early Islamic site 

(ibid. p89). A comparison between the CORONA images and available DEMs was 

also used to identify a possible canal system near Tell Mashan (ibid. p89). 

However, in order to understand these systems more comprehensively, more 

survey was proposed (ibid. p90).  
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Figure 2.13: Mapped location of Habur canals, from Ergenzinger et al (1988, 

p119). 
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2.10 Balikh- Mari  

The site of Mari, to the south east of the Habur’s confluence with the Euphrates, 

represents a different situation in terms of water management; the site receives 

considerably less rainfall than many of the locations discussed in this chapter. 

Bronze Age water management features of a have been proposed. If this is 

correct, they would be much earlier in date than the other systems discussed in 

this chapter, originating before the period of the later empires.  

The site itself, located alongside the Euphrates in Syria 20 km from the border with 

Iraq, has undergone extensive excavations, initially by Parrot (1956) and later by 

Margueron (2004). The excavations revealed a palace and recovered 

administrative textual sources dating to the Old Babylonian period (e.g. see Jean, 

1952). One of the texts even refers to water management in the Balikh during the 

Bronze Age (e.g. see Villard, 1987), a rare source of evidence for irrigation and 

water competition before the time of the later empires.  

Traces of canals on both sides of the Euphrates between the Balikh and Mari have 

been identified (Geyer and Monchambert, 2003; Margueron, 2004; Dalley, 1984), 

although dating, as ever, proved to be difficult. Margueron recorded and analysed 

traces of several canals (2004), based on an examination of aerial photographs 

and survey as well as comparison with texts. Geyer and Monchambert (2003) 

undertook a detailed archaeological survey of relict canals between Deir ez Zor 

and Mari (see Figure 2.12 for a map; also see Figure 2.14 for an example of their 

research), based on evidence from surface survey, associated sites and in some 

cases aerial photographs. They recorded and suggested dates for several 

significant canals in the region, based on associated field scatters and sites as 

well as historical texts (see Table 2.2). They also noted many shorter segments of 

unknown canals and possible dams (ibid). Their results are presented in detail in 

their volume (2003); rather than reproducing them here, this project has examined 

the evidence for canals visible using CORONA images (Chapter 5). 
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Table 2.2: Suggested dates for canals between Deir ez Zor and Mari, from Geyer 

and Monchambert 2003 (p175-231).  

Canal Date 

Mari canal Bronze Age 

Mohasen canal Bronze Age-Early Islamic 

Nahr Sa’id Islamic 

Canal at El Kita’a Bronze Age-Early Islamic 

Canal near Jebel Mashtala Late Bronze 

Canal of El Jurdi Sharqi Late Bronze-classical 

Nahr Dawrin Bronze Age-Islamic 

Nahr Semiramis Late Antique 

 

Geyer and Monchambert (2003) and Margueron (2004) interpreted a linear feature 

close to Mari as a canal associated with the Bronze Age site. Margueron interprets 

it as a channel which allowed transport from the river to a port (Margeuron 2004, 

p69-70). Another canal, also on the south side of the river, appears to have flowed 

for a longer distance, and may be associated with a dam on the Wadi es Souab, 

although dating evidence is unclear (ibid. p71-72). This was a feature raised above 

the Holocene terrace, so one interpretation could be that it  irrigated fields by 

gravity flow.  

Other significant canals have been recorded on the opposite bank of the 

Euphrates. The Nahr Semiramis originates near Halabiya and flows towards the 

Habur; a Late Antique date has been suggested based on associated 

archaeological sites (Geyer and Monchambert, 2003, p217-222). A long canal, the 

Nahr Dawrin, was traced between the Habur and Abu Kemal with a length of about 

120 km (Margeuron, 2004, p72-73) and with recorded gradients ranging between 

1:1000 – 3:1000 (Geyer and Monchambert, 2003, p200). Bell (1924) also noted 

the canal, mentioning that a line of qanats aligned NNW-SSE ran along part of its 
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route (ibid. p78), and recording some active use of the canal (ibid. 82). As 

discussed above, a connection with the Habur systems has been proposed (e.g. 

see Geyer and Monchambert, 2003, p199), but, given that this cannot be 

confirmed, such a long integrated feature seems unlikely (see Chapter 5).  

Margeuron (2004) emphasises the technological knowledge required to construct 

the canals, linking this with Mari’s power in the 3rd millennium BC, and also raising 

the possibility of parks and gardens (ibid. p69-82), although the available dating 

evidence cannot confirm this. However, historical evidence indicates that the Nahr 

Dawrin canal might have been part of a scheme of agricultural intensification in the 

area undertaken in the 8th century by the Ummayyads (Kennedy, 2011, p194). 

Early Islamic sites were recorded alongside the Dawrin (e.g. see Berthier and 

D’Hont, 2005, p265; Kennedy, 2011, p194). The evidence may be suggesting an 

Early Islamic date for the feature, rather than the earlier, Bronze Age, one 

proposed by Margeuron (2004).  

Another Islamic canal, the Nahr Sa’id, on the opposite bank of the Euphrates, has 

also been discussed in the literature (Geyer and Monchambert, 2003, p183-187; 

Kennedy, 2011, p195; Berthier and D’Hont, 2005, p267). Historical accounts from 

the Ummayyad era link it to the 8th century, with possible continuation into the 11th 

century (Kennedy, 2011). It could not be identified on the CORONA images (see 

Chapter 5). Other canals identified on the ground by Geyer and Monchambert 

(2003) were also not clearly identifiable using CORONA.  
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Figure 2.14: Canals and Bronze Age sites mapped by Geyer and Monchambert 

(2003, p247).  
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Figure 2.15: Margueron 2004, p50, Pl. 17: Margeuron’s (2004) interpretation of 

water management around Mari is based on a theory that linear features in the 

vicinity of the site were canals contemporary with Mari. Dating evidence, however, 

is not clear. 

2.11 Assyrian water management in northern Iraq 

Also within the broader project area are the large relict canals in northern Iraq. 

These features are different to the canals already discussed both in terms of the 

way they have been researched and in terms of their climatic context. They are 

also somewhat earlier in date than many of the systems discussed thus far in this 

chapter. Also, in contrast to the other areas already discussed, landscape 

archaeology research in the northern hinterland of Nineveh, Ashur and Nimrud has 

focused on water management remains (see Ur, 2005, p3420).  

These features are located in a region that generally receives more rainfall and 

more reliable rainfall than the other regions already discussed in this review. Data 

collected between 1980-2010 suggests that precipitation in this region was on 

average at least 400 mm, with around 15-27 % variability (see Chapter 1 and 

Chapter 3.6).  

Text-based research has dated the canals to the period of the Assyrian empire, 

with many forming part of a programme of construction sponsored by the Neo-
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Assyrian King Sennacherib in the 8th century BC (e.g. see Jacobsen and Lloyd, 

1955). Given that inscriptions and other ancient sources are available, they have 

formed the basis of research, with scholars such as Reade (1978a and b) 

attempting to link the features visible in parts on the ground to those discussed in 

the ancient sources. Presumably due to the royal nature of the inscriptions and 

reliefs, there has been significant interest in the ideological nature of Neo- 

Assyrian irrigation in Northern Iraq (e.g. Dalley, 1994). 

Texts and inscriptions have been used extensively to locate canals; in many cases 

they enable a more complex history of the features to be generated. In some 

cases these are directly linked to the water management features themselves. The 

Khinis system is associated with rock-cut inscriptions, including the ‘Bavain 

Inscription’, consisting of Sennacherib’s boasts of irrigation (Layard, 1853, p212) 

and an inscription at Jerwan (Jacobsen and Lloyd, 1955).  

Bagg (2000b) undertook an extensive discussion of the Middle Assyria and Neo-

Assyrian royal inscriptions and other ancient documents relating to water 

management. In some cases however, the features attested to in texts have not 

yet been located on the ground (see Ur, 2005, p323).  

The preoccupation with luxury parks and gardens has been recognised (see Bagg, 

2000a, p303). Dalley has explored the possibility that the idea of ‘hanging gardens’ 

can be applied to raised cultivated parks at Nineveh, interpreting an ancient 

description of a water lifting device as an Archimedes screw (Dalley, 1994, p53). 

The possibility that water could simply have been delivered to gardens via gravity 

flow, however, from a canal at a higher elevation than the site, should also be 

considered. 

Archaeological investigations into Assyrian water management north of Nineveh 

have been undertaken since the 19th century. The interpretation of inscriptions and 

rock reliefs associated with the canals has long formed part of research in this 

area (for example, see Jacobsen and Lloyd, 1955). Some segments of the canals 

themselves were also recorded and discussed by early travellers and scholars 

(e.g. Jones, 1857, p424- 426). 
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Figure 2.16: map of known canals in northern Iraq. These were located by Ur 

(2005), Ur et al (2013) and Altaweel (2008).  

More detailed archaeological research was undertaken by Oates (1968) and 

Reade (1978). Both these studies were especially concerned with linking the 

remains on the ground to the information found in the inscriptions. Most recently, 

Ur (2005) and Altaweel (2008) mapped the Assyrian canals using remote sensing 
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techniques, such as CORONA image interpretation and DEM analysis. They found 

that some channels meandered according to the contours of the landscape, 

apparently with an intention to maintain gradients of around 1 m per km (1:1000) 

(Ur, 2005 used SRTM to obtain this figure, p340), but also others which seemed to 

cut across the natural contours (see Altaweel, 2008, p88). These findings, 

constituting the most recent and comprehensive archaeological surveys of the 

Assyrian water management systems in the region, will be summarised here 

alongside other sources. 

 

 

Figure 2.17: Canals in northern Iraq mapped by Ur (2005, p320; pers comm). 
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Figure 2.18: CORONA image of Bandwai canal, Ur, 2005, p331 (pers. comm). 

The first phase of canal construction undertaken by Sennacherib occurred in 

around 702 BC, and involved a canal which stretched from Kisiri (possibly Tell 

Inthah or al-Shallalat) to fields north of Nineveh (Ur, 2005, p321-322), a feature 

which is identifiable in CORONA imagery (see Altaweel, 2008; Ur, 2005). An early 

account of the system was given in the mid-19th century, recording channels 

alongside the Khosr and terminating in the Tigris, and interpreting one as a city 

moat of Nineveh (Jones, 1857, p424). Jones also mentions the remains of sluices 

and a dam (ibid, p426).   

Reade later undertook a study of the canal (1978a), suggesting that it originated 

from a dam at Shallalat (ibid. p64). It then ran parallel to the River Khosr, at its 

right bank, before turning southwards and flowing over a km from the Khosr (Ur, 

2005, p322). It eventually separated into two branches, one possibly leading to the 

site of Nineveh, and the other possibly irrigating fields (Ur, 2005, p322). Reade 

raises the possibility of a tunnel at the Nineveh end (Reade, 1978a, p66).  

Another prominent set of channels is also apparent north of Nineveh, first located 

by Oates (1968, p51). Attempting to link the texts with features on the ground, 
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Reade recorded a spring which may have fed part of the system (1978a, p69). 

Altaweel (2008) and Ur identified channels in this area using CORONA images 

(Ur, 2005, p323-327): a large earthwork between Maltai and Girepan (the Maltai 

canal) was compared with the Hellenistic canal in the central Balikh (see 

Wilkinson, 1998). The canal appears to have terminated in a natural wadi. The 

CORONA studies also noted traces of other, fragmentary channels in the same 

area (Ur, 2005, p328).  

Irrigation systems originating at Mount Musri are attested to in texts; these may 

correspond to the modern Jebel Ba’shiqa (see Jacobsen and Lloyd, 1935, p35-

36). However, Reade (1978a) recorded carved panels in caverns associated with 

the Jebel Ba’shiqa springs; he links this with Sennacherib’s enlargement of 

streams in the region, but notes the later, Islamic style of the sculptures (Reade, 

1978a, p70).  

Originating at the Jebel al-Qosh, the spring-fed Faida canal was excavated 

through bedrock, flowing to the village of Faida (Ur, 2005, p328-329). The canal 

was associated with stone reliefs (Reade, 1978b, p162-164). Off-takes could also 

be recorded, which Ur interpreted as irrigating the hill-slope (Ur, 2005, p330). 

Altaweel mapped additional channels in this area (2008, fig.50-51). 

The Bandwai canal also originates in the Jebel al-Qosh area (Oates, 1968, p51), 

although its source is unknown (Ur, 2005, p330). Its end point is also debated; 

while Oates recorded it as draining into the Wadi al-Milh (Oates, 1968, p51), Ur 

suggests that it joined a northerly tributary of the same wadi (Ur, 2005, p332). In 

order to lower the canal to a functional depth within its particular landscape, its 

construction resulted in prominent banks (Ur, 2005, p331). Another canal which Ur 

identified in the CORONA imagery, the ‘Tell Uskof canal’, may have been 

connected to the Bandwai, joining the Kisiri system by linking the Wadi al-Milh  

with the Khosr (Ur, 2005, p332). Ur indicates that there was a functioning system 

including these canals, with associated dams, weirs and aqueducts, although 

these have not yet been identified (Ur, 2005).   

Using CORONA, Ur (2005) and Altaweel (2008) traced another canal which may 

have been connected to the same system, namely the Tarbisu. It originated from 
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the Wadi al-Milh and terminated at the village of Sharif Khan (Tarbisu), 8 km north 

of Nineveh (Ur, 2005, p332). The Tarbisu was a  straight, linear channel, with 

‘sharper’ upcast banks (Ur, 2005, p332-333), possibly consisting of two main 

branches (Altaweel, 2008, p73).Ur interpreted it as either a canal which underwent 

longer use than the others, or as one later in date than the Neo-Assyrian canals 

described above (Ur, 2005, p332-333). Altaweel (2008, p118) suggests that some 

of the other canals in Northern Iraq, near the junction between the Tigris and the 

Upper Zab, may also be of an Early Islamic date.  

The Maltai, Faida, Bandwai, Uskof and Tarbisu canals have been interpreted as 

part of an integrated ‘Northern System’ by Ur who suggests that some parts of it 

delivered water into the Khosr River, and that other parts were used for local 

irrigation (Ur, 2005, p333-335).  Off-takes were found linked to the Khinis and 

Faida canals, but others above Kisiri could be post-Assyrian in date (i.e. post 612 

BC: Ur, 2005, p341).  

A canal flowing between the Khinis and Kisiri systems had already been attested 

by some early research, including investigations by Layard (see Layard, 1853, 

p207- 216) and by Lloyd and Jacobsen (1955). The system originated as a weir in 

the Gomel River (Reade, 1978b, p168), where it was associated with Assyrian 

rock-carved inscriptions attesting to Sennacherib’s efforts to manage the flow of 

water (Layard, 1853, p207-212). After this, the canal flowed alongside the river, 

and, at one point, through a tunnel (Ur, 2005, p336). It then crossed a tributary 

valley via an aqueduct south of this point, at Jerwan (Ur, 2005, p337; Jacobsen 

and Lloyd, 1955). Using CORONA imagery, Ur recorded some faint off-takes close 

to this stage (Ur, 2005, p337). The canal eventually turned towards the north and 

crossed to the Khosr basin (Ur, 2005, p338). Parallel channels of this canal were 

recorded between Ain Sifni and Kandalah; Ur suggests that a second canal could 

have been constructed to replace a damaged or poorly-functioning first canal (Ur, 

2005, p338-339).  

Oates (1968) discussed Assyrian water management efforts around Nimrud, to the 

south of Nineveh (Figure. 2.16). He recorded a canal between the Greater Zab 

and Nimrud, which was also attested by an Assyrian source linked to 
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Assurnasirpal (Oates, 1968, p46; Bagg, 2000a, p311). Close to its abstraction 

point, part of the channel traversed a conglomerate bluff via a tunnel system 

(Oates, 1968, p46) known as the Negub tunnel (Reade, 1978b, p171). Altaweel 

more recently also identified further canals in this area visible in the CORONA 

imagery (2008, p74).  

Further south, Assyrian irrigation was identified at Kar-Tukulti-Ninurta (Eickhoff, 

1985; Dittman, 1995); Bagg (2000a) compared textual evidence with the existing 

excavation data, linking inscriptions associated with the king Tukulti-Ninurta in the 

13th century BC with a canal system abstracting from the Tigris, passing through 

the city and draining into the same river (Bagg, 2000a, p307-310). Altaweel 

identified part of this system, in the form of a wide embanked linear feature in the 

CORONA images (Altaweel, 2008, p76). Altaweel also used CORONA images to 

map a significant canal between this area and the Lesser Zab (ibid. p76). Bagg 

associates this canal with the Kar-Tukulti-Ninurta canal, although it lacks dating 

evidence (Bagg, 2000a, p311).  

Most recently, Ur et al (2013) also used CORONA to locate canals south of the 

Upper Zab. They recorded several long, large-scale features in this area, 

recording widths of up to 100 m wide from bank-to-bank (Ur et al, 2013, p106). 

They propose a Neo-Assyrian date for the westernmost canal, based on the 

location of sites, and a Sasanian-Early Islamic date for  the largest canal, which 

flows parallel to the Upper Zab, based on its straightness and size (ibid).  

While research has emphasised a link between the water management features 

discussed above and luxury royal gardens (e.g. see Reade, 1978b, p174), the 

significant use of water for irrigation has also been recognised in the literature 

(Bagg, 2000a, p320). Oates also discussed the economic aspects of Assyrian 

water management (e.g. see Oates, 1968, p51).  

In terms of the implications of the organising power of the Assyrian empire, it 

appears that the Assyrian irrigators made intelligent use of the natural 

environment, using canals to link existing wadis and to channel existing streams. 

As the research summarised above shows, they were capable of integrating large-

scale canals, off-takes and associated infrastructure such as aqueducts and dams 
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to ensure more reliable agricultural yields as well as to supply luxury parks and 

gardens.  

As this study will show, large-scale canal construction in northern Mesopotamia 

was also a feature of post-Assyrian to Early-Islamic times. For example, in the 

context of this summary of the research from northern Iraq, Reade (1978b, p170), 

mentions an Islamic canal on the left bank of the Tigris above Ashur, and Ur 

recognises that the canal at Tarbisu may also post-date the Neo-Assyrian period 

(Ur, 2005, p333). Similarly, a canal mapped  by Altaweel, the Nahr Qanausa, 

which flowed alongside the Tigris near Kar-Tukulti-Ninurta, was interpreted as 

Islamic and included some possible offtakes (Altaweel, 2008, p76). However, in 

general, there has been less exploration of the possibility of later water 

management, and of the possibility that earlier canals may have been reused in 

later times; the preoccupation with the Assyrian texts may have limited interest in 

irrigation in other periods. An investigation into the dating of the identified features 

might prove a useful aspect of future research into this region.  

2.12 Qanats in northern Iraq 

Other water features have been recognized in northern Iraq. There are several 

sources noting qanats on the Sinjar plains, although they do not discuss them in 

detail (see Ur, 2013; Lightfoot, 2009; Al-Sawaf, 1977; Fuccaro,1991; Cressey, 

1958; Poidebard, 1934). Al-Sawaf (1977, p48-50), writing from a 

hydrological/geological perspective, recorded and mapped some of the long-

abandoned qanats in the area; Fucarro’s historical thesis (1991)  attributes the 

qanats to  the medieval period, suggesting that they went out of use by the 

Ottoman period (Fuaccro, 1991, p12).   

In terms of qanats in Iraq, Lightfoot noted the role of the later empires, from the 

Achaemenids to the Ottomans, in the construction of qanats (Lightfoot, 2009, p15-

16). This is also recognized by Wilkinson and Rayne (2010). The presence of the 

Roman frontier in the Sinjar area was emphasised by Lightfoot (2009, p16), 

although any association between this and the qanats cannot be confirmed. 

Literature dealing with the Sinjar qanats is sparse; it is necessary to rely on 

CORONA satellite images to verify their existence (see Chapter 5). 
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2.13 Summary 

This review attempts to list all the known ancient water management features 

between the Euphrates in Syria and the Tigris in Iraq: the area known as northern 

Mesopotamia. This particular region was chosen because; 

1. It is easily definable, based on the position of the major rivers, making a 

comprehensive review of a region possible.  

2. It was within a zone where multiple later territorial empires, from the Assyrian 

to Early Islamic, were active.  

3. The implications of the development of irrigation systems in southern 

Mesopotamia have often been explored. While water management in other 

areas, such as Jordan and Israel, is often documented, and disparate specific 

studies exist for northern Mesopotamia, a spatial review of all known features 

in the area was lacking.  

4. Northern Mesopotamia broadly fits into the ‘zone of uncertainty’, a region 

where rainfall is highly variable temporally, and generally ranges between 200-

500 mm spatially, at the margins of rainfed agriculture.  

A summary of the implications identified by the studies reviewed here can now be 

given. Dating information for canal systems can be difficult to obtain, however, the 

interpretations given in the literature can give an idea of how irrigation might have 

developed (summarised in Table 2.3). The earliest period for which canal-based 

irrigation has been proposed is the Bronze Age; canals around Mari were linked to 

the site (Margueron, 2004), although their date currently cannot be confirmed. 

Textual evidence also indicates canals in the Balikh during the Middle Bronze Age 

(e.g. see Villard, 1987). The long canals alongside the Habur have been given a 

date of origin in the Middle Assyrian period (Late Bronze Age), and most likely 

they were associated with the site of Dur-Katlimmu (Ergenzinger et al, 1988).  

The first real territorial empire, however, was the Neo-Assyrian state (see the 

chronology presented in Chapter 1): this empire has been linked to the extensive, 

large-scale canal systems in Northern Iraq (e.g. see Oates, 1968; Reade, 1978; 

Ur, 2005). Hellenistic canal remains have been recorded in the Balikh (Wilkinson, 

1998; Wilkinson and Rayne, 2010) and around Membij (pers.comm Dan Lawrence 
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and Niko Galiatsatos). Roman features are also known throughout the study area 

(see Kamash’s review, 2009), including cisterns, dams and canals associated with 

the site of Resafa (e.g. see Brinker, 1991). Tunnels around Jerablus may have late 

Roman-Byzantine links (Wilkinson et al, 2007), and the Sahlan-Hammam canal 

has also been dated to this era (Wilkinson, 1998). 

Although Decker (2009b; 2007) has suggested that the Early Islamic period was 

not significant terms of water management, large scale canals dated to that period 

have been located alongside the Euphrates (e.g. see Geyer and Monchambert, 

2003), at Dibsi Faraj (Harper and Wilkinson, 1975) and in the Balikh (Wilkinson, 

1998; Wilkinson and Rayne, 2010). The long canals alongside the Habur 

(Ergenzinger et al, 1988) and the Tarbisu canal in Northern Iraq (Ur, 2005) also 

seem to have continued to function and be maintained in the Early Islamic period.  

Table 2.3: Dating of features from existing literature. 

Period Sites 

Bronze Age Mari(?), Balikh? 

Middle-Assyrian Habur 

Neo-Assyrian Habur and north Iraq (canals near Kisiri, Maltai, 

Faida, Bandwai, Tarbisu, Iskof, Khinis-Kisiri, 

Negub, Nimrud, Kar-Tukulti-Ninurta, Nineveh). 

Hellenistic Balikh? Membij qanats? Habur? 

Roman Resafa, Habur? 

Late Roman/Byzantine Jerablus, Balikh, Habur? 

Early Islamic Dibsi Faraj, Balikh, Habur, Nahr Dawrin, north 

Iraq 

Dating canals is often problematic, partly because absolute dates can generally 

only be derived from datable material obtained through excavation: the Hammam-

Sahlan canal in the Balikh (Wilkinson, 1998) and the Nahr Maslama at Dibsi Faraj 

(Harper and Wilkinson, 1975) were assigned dates in this way.  
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Dating is also difficult because water features such as canals and qanats can 

undergo complex ‘lifetimes’ of construction, use, modification and reuse. For 

example, many canals were identified as being still partially in use in the early 20 th 

century; some of these may have very early origins. The Nahr Dawrin on the 

Euphrates may be at least as old as the Early Islamic period, yet Gertrude Bell, 

visiting it in the early 20th century, mentioned that parts of the canal were still in 

use (Bell, 1924, p82). While of course absolute dates should be obtained when 

possible, rather than thinking of these features only in terms of one period or 

empire, it is important understand them as multi-period features. 

The way these features have been dealt with in the literature should also be noted 

here; specific ways of interpreting water management do seem to be applied to 

features of different periods. The Assyrian canals of northern Iraq are part of a 

tradition of studying water in terms of power, propaganda and luxury. For example, 

the watering of luxury parks and gardens at Nineveh has been emphasised as a 

function of some of the large canals (e.g. see Dalley, 1994; Bagg, 2000b). This is 

generally associated with the power of the king and the empire; the role of 

propaganda is also often discussed.  

In contrast, water management features of other periods have been treated more 

as practical resources. The Mari canals were interpreted as sources of irrigation 

water as well as of transport, supporting the port and trading activities of the site 

(Margeuron, 2004), although dating evidence is still too limited to support this. The 

Balikh canals (mainly Hellenistic-Early Islamic) have been discussed primarily in 

terms of irrigation, although the use of water for industrial activity around Raqqa 

has also been mentioned (Heidemann, 2006).  

Applying both modes of thinking to all the known water management features 

could be attempted. There may be much to be gained from viewing the northern 

Iraqi canals in terms of economic function, and in applying the ideas of luxury and 

power to the Early Islamic canals. In order to explain the distribution of these 

systems, what may be needed is a new framework within which to conceptualise 

water management: 
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1. Features should be thought of as multi-period entities which can outlive the 

state which constructed them, and be adopted by future states. The lifetime 

of canals and other water features may occur over a different trajectory to 

the lifetime of other archaeological remains, such as settlement sites and 

routeways.  

2. Features should be regarded in terms of economic use as well as in terms 

of any ideological associations/consequences.  

These issues will be discussed in detail in Chapter 7. The spatial literature review 

presented here has been used to identify the necessary research, and gaps in 

research, that this project has recorded:  

1. There are parts of northern Mesopotamia which still need to be examined 

for water management features. New features will then be added to the 

GIS.  

2. Many of the existing studies did not have access to remote sensing data 

such as CORONA when they were conducted; the known features from 

these studies can be further examined using this data. 

3. A detailed overview (presented in the form of GIS maps) can be generated 

from all the digitised features.  

Chapters 5 and 6 present the results of detailed image interpretation using 

CORONA images and of further validation using DEMs. Chapter 3 outlines the 

methods used to produce the results, and Chapter 4 outlines the different types 

and scales of water management systems which can be encountered.  
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Chapter 3: Methods 

 

3.1 Methodology 

Given that the aim of this research was to build a detailed database of water 

management throughout northern Mesopotamia, a set of methods which facilitated 

relatively fast mapping across a large area were needed. This research employed 

an interdisciplinary methodology comprising remote sensing techniques alongside 

fieldwork and the incorporation of existing archaeological surveys, adopting the 

broad methodological approach of the AHRC-funded Fragile Crescent Project of 

Durham University (see Galiatsatos et al, 2009). Tables 3.1 and 3.2 show the 

wide range of data used. This detailed database of the locations and hydraulic 

properties of individual systems allowed the distributions of different types of water 

management systems to be recorded, and therefore the scales of control over 

water exercised by the later territorial empires (Neo-Assyrian – Early Islamic) to be 

examined. 

Table 3.1 Remote sensing data used to record ancient irrigation systems. 

Dataset Sensor Date Resolution Purpose/use 

Images  CORONA 

(Missions KH-4A 

and KH-4B). 

1967, 1968, 

1969 1972 

2-5 m To identify water 

features and to assess 

landuse change from 

1960s-2000s.  

 GeoEye-1 2010 0.41-1.65 m Image interpretation 

and control. 

 IKONOS 2010 0.82-3.2 m Image interpretation 

and control. 

 Landsat TM, ETM  1984, 1990, 

2000 

 Image interpretation, 

land use.  

DEMs  SRTM 2000 90 m Information about 

topography of 

landscape, location of 

natural drainages and 

gradients of canals. 

 ASTER DEM 1999-2009 30 m  

 CORONA 1968 c.10 m  
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Table 3.2: Survey, excavation and historical data. 

 Data and use Date Geographical 

range 

Function 

Fieldwork  GPS points 2010 Jerablus region 

and samples from 

the Balikh 

(Heraqlah, Tell es 

Seman and 

canals near Tell 

Hammam et 

Turkman). 

Confirming and 

surveying the 

mapped features and 

identifying new ones. 

New features 

Survey 

Validation of 

features identified 

using image 

interpretation 

Existing 

data  

Unpublished 

survey data (pers. 

comm. Tony 

Wilkinson, Dan 

Lawrence, Niko 

Galiatsatos and 

FCP).  

1990s-2013 Samples from 

Balikh and Membij 

qanats. 

Dating information 

and archaeological 

and historical 

context. 

Published 

archaeological 

surveys (see 

Chapter 2).  

20
th
 and 21

st
 

centuries 

Throughout Near 

East 

Historical data  

 

(e.g. Kamash, 

2009; le Strange, 

1930). 

Bronze Age-

Early Islamic 

Throughout Near 

East. 

Travellers accounts 

(e.g. Bell, 1924; 

Sykes, 1907).  

 

19
th
-20

th
 

centuries 

Throughout Near 

East. 

 

The project aimed to map all the clearly identifiable water management features 

throughout the study area, a region of about 100,000 km2 (see Chapter 3.2), 

recognising that time-intensive traditional fieldwork methods were not practical or 

feasible for large-area survey. Each mapped feature had to be understood within 
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its hydrological, geomorphological and historical context, and examined as 

potentially a part of a more extensive irrigation system. 

The mapping was enabled by using the best available images, which could be 

employed over the large study area. First, an image interpretation survey was 

undertaken. Table 3.1 lists the different datasets used. The main resource 

comprised historical satellite images which were acquired at a time before the 

modern large-scale landscape changes had taken place. Dating to 1960-1972, 

and with a resolution of 2-5 m, CORONA images were originally collected and 

used by the US intelligence agencies. CORONA encompassed several different 

missions; some of these produced better quality images than others.  

Following on from declassification in the 1990s, CORONA images have been used 

to map archaeological landscapes. For example, one of the first archaeological 

uses of CORONA, the research of Donoghue et al (2002) in the Orontes Valley of 

Syria, demonstrated that CORONA provided a high spatial resolution, covering a 

large area in a single panoramic frame at very low cost (Donoghue et al, 2002, 

p221). These properties of the imagery made it an ideal dataset for the present 

study; the majority of images were obtained from the Fragile Crescent Project 

database and from the CORONA Atlas of the Middle East, and had already been 

georectified by these projects. A few further images were obtained directly from 

the United States Geological Survey Earth Explorer service. Chapter 3.2 

describes the process of recording water features using the CORONA images, 

outlining how features were selected, digitised and validated.  

The channels identified using image interpretation (see Chapter 3.2) required 

validation to confirm their function as artificial canals and to recognise their 

chronology. Fieldwork, the use of Digital Elevation Models (DEMs) and 

comparison with existing survey data enabled this. Fieldwork (see Table 3.2) was 

undertaken in July 2010 in Syria in the Jerablus and Balikh regions (Chapter 3.3): 

a sample of channels were recorded using GPS, allowing known features to be 

checked, features identified using image interpretation to be confirmed, and new 

archaeological data to be added to the database. 

Hydraulic validation was provided for most of the features throughout the study 

area by the use of Digital Elevation Models (DEMs) which model the topography of 
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the landscape. The Shuttle Radar Topography Mission (SRTM) and Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs are 

discussed in Chapter 3.4 and their properties outlined in Table 3.1. These were 

used to characterise the topography in which each channel flowed, and also to 

generate networks of natural drainage so that these could be separated from the 

relict artificial features. For features now under the waters of Lake Tabqa 

topographic data were not available. 

A sample of canals in the north of the Balikh valley (the Sahlan Hammam canal 

and the Nahr al Abbara) and natural streams (The Balikh and the Wadi al Keder) 

were also explored using higher resolution DEMs produced using the technique of 

photogrammetry. CORONA satellite KH-4B was equipped with two panoramic 

cameras, allowing stereopairs to be produced. Chapter 3.5 describes how a 

CORONA stereopair (November 1968) was used to derive a DEM of about 10 m 

grid cell size, despite technical challenges. The DEM enabled an understanding of 

the morphology of these individual features which could not be gained through the 

coarser SRTM and ASTER terrain models. 

The issues of rainfall amounts and also variability have been recognised in the 

field of ancient water management (e.g. Wilkinson, 1994) and of modern 

cultivation in semi-arid zones (e.g. see Wallen, 1967). The high variability of 

precipitation experienced in parts of the Near East could have been a factor in 

decisions to irrigate; it would have allowed the generation of more secure crop 

yields which could not be guaranteed when relying on rainfall alone. A shift from 

rain-fed to irrigated agriculture may have occurred at the time of the later territorial 

empires (Neo-Assyrian-Early Islamic). Chapter 1 discussed proxies employed for 

past climate in the study area; Chapter 3.6, with these in mind, describes a set of 

methods used by this project to map modern rainfall variability. 

Levels of uncertainty involved with using all of these datasets and methods need 

to be recognised here (e.g. see definitions by the IPCC, in Matschoss et al, 2010, 

p3). As Brazier et al suggest, data and model certainty are connected (2014, 

p266). In some cases errors could arise from the original data sets, for example 

measurement errors in the rainfall data. Processing errors can also affect the 

elevation models (SRTM, ASTER, and the CORONA DEM). The CORONA 
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photogrammetry data is further affected by problems of obtaining all the necessary 

parameters and because software packages do not always explicitly outline their 

algorithms. At present, the best way of mitigating against many of these problems 

is to validate results and interpretations by using a variety of datasets. For 

example, visual interpretation of a CORONA image might indicate the presence of 

a canal. Using a DEM might verify that a linear feature has hydraulic properties 

consistent with canals, and historical accounts might also further validate it with 

specific descriptions. In order to be explicit about the methods and data sources 

used, these have been outlined in detail here.  

It can be difficult to obtain data for Syria and Iraq, for example ground control and 

high resolution DEMs. Given this, in general, the data represent the best available 

evidence for use in this interdisciplinary project. This is why the coarse resolution 

DEMs and the CORONA DEMs were selected. While TanDEM X data was applied 

for and granted, it was not delivered within the timescale of this research.  

This research needed to mitigate against several potential limitations.  

Unavoidable technical problems limited the size of the area which could be 

modelled using CORONA photogrammetry (see Chapter 3.5), and the war in 

Syria prevented further fieldwork beyond the preliminary sampling undertaken in 

July 2010. Most significantly, the issue of obtaining dates for irrigation systems 

must be recognised here. This is a well-known problem in the field (e.g. see 

discussions in Wilkinson and Rayne, 2010) often because canals tend to be 

reused and modified for long periods of time. However, in many cases relative 

dates could be assigned to the mapped features through association with dated 

sites (see Chapters 5 and 6); sections of a few of the canals had also been 

excavated.  Given the frequently complex life histories of canals and other artificial 

channels, this project proposes to view them as potentially multi-period and multi-

state features.  

Through the application of the techniques discussed in this chapter, a central 

objective of the thesis could be achieved; a detailed dataset of ancient water 

management in Northern Mesopotamia was generated. Following on from a 

description of the methods and irrigation design choices (Chapter 4), the results of 

this dataset will be presented in Chapters 5 and 6. 
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3.2 Image interpretation 

3.2.1 Introduction 

Image interpretation was the primary technique during this research to record 

features of ancient water management. The features were digitised from CORONA 

images and then validated using DEMs and survey data. CORONA images were 

collected between 1960-1972 and declassified in 1995. They were selected as the 

main dataset for the image interpretation undertaken by the present study because 

they represent a time before recent agricultural and urban intensification had 

removed many archaeological remains from the landscape, and they show the 

landscape at a relatively good resolution of 2-5 m. Declassified in 1995, they 

consist of frames scanned from 70 mm X 29.8 inch film at resolutions of 1800-

3600 dpi (see USGS, 2012) (for more details see Chapter 3.5 on 

Photogrammetry). 

The images discussed above were manually examined for traces of water 

management features. To a lesser extent more modern imagery was also used 

(GeoEye-1 and IKONOS). Better preservation of remains during the 1960s is 

captured by the older historical imagery, rendering it the most useful source. 

The use of CORONA to locate archaeological remains is by now well established 

(e.g. see Beck et al, 2007; Wilkinson et al, 2006; Donoghue et al, 2002). The 

Fragile Crescent Project of Durham University integrated archaeological survey 

with image interpretation techniques, identifying features of interest using 

CORONA (Galiatsatos et al, 2009).  
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Figure 3.1: Areas surveyed by the Fragile Crescent Project (figure from Niko 

Galiatsatos). 

Within the project area, CORONA has already been applied to several specific 

areas of water management remains. For example, Wilkinson and Rayne (2010) 

digitised artificial channels in the Balikh Valley and further east. Altaweel (2008) 

and Ur (2005) used CORONA to record large-scale canal networks in Northern 

Iraq, and Ur (2010) also used the imagery to identify possible canal systems near 

Tell Hamoukar. Galiatsatos and Lawrence (perscomm) used CORONA to map 

qanats around Membij. These data have been explained in more detail in Chapter 

2.This project used the same principles but extended the method to encompass 

the whole of northern Mesopotamia, examining an area of c.100,000 km2 using 

CORONA. 

This sampling strategy was chosen for a number of reasons. Firstly, in order to 

draw wider conclusions about water and imperial power, an area which 

encompassed more than one immediate zone of any one empire was needed; the 

selected area comprised the centres and frontier zones of several different 

empires. Secondly, smaller-scale studies already existed (see Chapter). A 

decision was also made to sample the whole of northern Mesopotamia, unlike the 

Fragile Crescent Project, which investigated specific survey regions (see Figure 
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3.1 for these regions; also see Galiatsatos et al, 2009, p2). This was because the 

project aimed to understand patterns of water management throughout the whole 

region, which would not have been possible if only selected parts of it were 

sampled.  

In some cases the recording of archaeological features using remotely sensed 

data has been attempted automatically. An example is the study of Menze et al 

(2006) which used SRTM to classify tell sites. While their model was able to detect 

sites, false positives also resulted (see Menze et al, 2006, p325). The present 

project did not use classification to locate water manage features; first, many of 

these are too small to be identified by the available data, secondly, given the need 

to examine each result for accuracy when undertaking classification, manual 

digitisation was more applicable in this case. How this was undertaken and how 

the results were validated will be outlined below. 
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Figure 3.2 Process of image interpretation used by the present study. 

Load CORONA images 

(Fragile Crescent Project, USGS Earth 
Explorer, CORONA Atlas). 

Orthorectification 

Division into regions 

Transects drawn 

Water features digitised 

Validation (features edited) 

Output (GIS database of water 
management featrues) 
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3.2.2 Processes of Image Interpretation 

The image interpretation process used by this study involved several steps, 

illustrated by Figure 3.2. First, images had to be obtained: Figure 3.3 shows the 

footprints of the images. Images covering the area between the Euphrates and the 

steppe to the east of the Balikh in Syria were provided by the Fragile Crescent 

Project (see Galiatsatos et al, 2009) and had already been orthorectified by the 

FCP team members. The area between the Habur and the Tigris was mapped 

using CORONA obtained from the CORONA Atlas of the Near East (Casana et al, 

2012). Several additional images were obtained and rectified from the USGS by 

the present study, in the form of stereo pairs encompassing the Balikh (from 

November 1968) and a later image of the Western Balikh horseshoe (dating to 

May 1972). These were rectified with reference to Landsat images and already-

rectified CORONA images.  

 

Figure 3.3 Outlines of areas investigated using imagery. Images were obtained 

from the Fragile Crescent Project and the CORONA Atlas of the Near East (Center 

for Advanced Spatial Technologies, University of Arkansas/U.S Geological 

Survey). 
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In order to speed up computer processing, the CORONA images were loaded into 

the GIS software (ArcMap in this case) and viewed in regions. Each frame was 

divided into transects (see Figure 3.4) so that it could be examined for features of 

interest at a scale of 1:30,000. It was found that this scale was sufficient to enable 

channels to be identified. Water features of interest visible in the imagery were 

digitised.  

 

Figure 3.4 CORONA image (22 January 1967) divided into three transects, 

viewable at a scale of 1:30,000. 

 

3.2.3 Feature identification and digitisation 

While digitising water management features, several principles were adhered to. 

These involved only digitising and retaining features which could be reliably 

presumed to be water channels; only retaining those which were clearly artificial 

rather than natural channels; and only retaining features which were not very 

modern (20th-21st century). The process of digitisation will be explained in more 

detail in the validation section below (3.2.4). 

Channels were digitised using the editor toolbar in ArcMap and incorporated into a 

GIS database. Where possible, different parts of irrigation networks were recorded 

according to their function (e.g. main canal, lateral. See Chapter 4 for more 

information). Once the entire area had been examined and features of interest 

digitised, the shapefiles were edited. Features which could not be clearly identified 

as ancient canals were removed.  
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Different types of canals and other artificial channels could be recognised in the 

imagery, as Figure 3.2.5 shows. Given that CORONA imagery is panchromatic, a 

key tool that can be employed is contrast stretching. As Figure 3.2.6 shows, 

different stretches can be employed to enhance the appearance of archaeological 

features. The histogram equalise stretch makes the fainter channels appear darker 

than the surrounding soil. Using these tools in ArcGIS revealed that canals 

consisted of soil-marks or of a channel void depression, and were generally 

represented by darker pixels either as a result of shadowing from banks or from 

vegetation. While some canals lack clear embankments, some canals had 

significant upcast banks (e.g. Figure 3.2.5, number 1), sometimes built as part of 

a need to keep a canal raised above the surrounding fields, and also sometimes 

the product of the dumping of soil excavated from canals during construction and 

cleaning.  

Qanats (see Chapter 4) could also be identified. These are underground 

channels, of which there are several different types. True qanats are groundwater 

collection devices. Tunnels integrated into existing irrigation systems were also 

used, generally in order to cut through higher ground. In some cases, 

subterranean conduits channelled springwater. Generally, they can all be located 

by the presence of lines of lighter-coloured dots, representing maintenance shafts 

surrounded by heaps of spoil (Figure 3.5(4) is an example). 
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Figure 3.5 Examples of channel types in Syria identifiable in 1960s CORONA 

images (22 January 1967). 

 

 

 

 



110 
 

 

Figure 3.6 The panchromatic CORONA images can be enhanced. A standard 

deviation stretch was applied to the left image, and a, a histogram equalise stretch 

to the right. CORONA image 22 January 1967.  

The digitised irrigation systems generally form specific parts of a system (depicted 

in Figure 3.7 and explained in detail in Chapter 4). In some cases they could be 

identified in the imagery; 

1. Abstraction and transportation: an intake system is expected here, from a 

river or dam, for example in the form of an open canal or a weir. A 

transportation canal then takes water supplies to the area to be irrigated. 

The main canals are generally the best preserved parts of relict irrigation 

systems and therefore are mostly to be identified using image 

interpretation. 

2. Use: Irrigation laterals (offtakes) distribute water to the fields. Being smaller 

and often erased these are usually not as well preserved as the 

transportation segments of an irrigation system. In some cases they may be 

too small to be identified in the CORONA imagery. However, ancient 

examples of similar layouts are known, for example, the narrow (1-2 m) 

laterals which were part of the Hohokam systems (Doolittle, 1991, p141). 
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3. Drainage: At the lower end of an irrigation network excess water is removed 

from the system, often by being drained back into a natural water course. 

Occasionally relict examples can be seen in the imagery. 

 

 

Figure 3.7: Schematic diagram of a typical irrigation system. 

Other systems, and parts of systems, for example rock-cut conduits, dams and 

weirs, are not easily recognisable from space. This was generally because they 

were small, indistinguishable from natural geology or obscured by other features. 

These data were therefore derived from fieldwork and existing studies; GPS points 

were collected for features found in Syria in July 2010. Figure 3.8 shows a 

masonry block, discovered in the dry Wadi Armana, indicating the presence of a 

rock-cut channel that could not be identified in the available imagery. Similarly, 

stone blocks were known from the Balikh, possibly associated with the offtakes of 

the Nahr al Abbara system (see Wilkinson, 1998, p68).  
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Figure 3.8: Masonry block with mason’s mark from a rock-cut channel in the 

Jerablus region of north Syria. These rock-cut conduits are not visible from space. 

Photograph: July 2010.  

 

3.2.4 Validation 

While dating of water management features is generally difficult, where possible, 

the channels were validated by relating them to existing surveys and associated 

with sites of known date. In some cases it was possible to use multiple types of 

imagery (e.g. CORONA and IKONOS for the area around Raqqa). Similarly, 

geomorphological considerations were taken into account. Given that research 

assigns a post-medieval date to much of the Euphrates floodplain (e.g. Hritz, 

2013a, p1878), canals within the floodplain can be regarded as post-medieval.  

The appearance of canals can also be used to recognise whether they are pre-

20th century AD. First, the overall ‘straightness’ of canals can be assessed. The 

straightest and ‘sharpest’ canals tend to be modern, often constructed from 

concrete, as Figure 3.9 shows. Modern engineering and construction methods 

have facilitated the cutting through of topography. Ancient channels were more 

likely to follow the natural gradient of the landscape.  
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In contrast, ancient canals will have been susceptible to erosion and infilling over 

time, especially after active use ended, causing them to have a less ‘sharp’ 

appearance. The Sahlan Hammam canal (see Figure 3.10) is a good example. 

While the channel void and upcast banks are visible in the 1990s photograph, they 

are much less clearly delineated than in the case of a recently constructed canal.  

 

Figure 3.9: Modern concrete-lined canal in the Balikh in 2010. 

 

Figure 3.10: Eroded and infilled canal. The upcast banks of the Hammam canal 

(foreground) were still visible in the 1990s (photograph from Tony Wilkinson, 

pers.comm).  
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Ancient canals were sometimes subject to siltation, which can affect their form. 

This can lead to the channels meandering within their original trace, producing a 

distinctive morphology, as Figure 3.2.5 shows. Excessive siltation can be a 

problem in landscapes of low relief and shallow slope (such as the Balikh), 

necessitating frequent cleaning to maintain channel efficiency. 

Areas of ancient irrigation also suffered from problems such as waterlogging and 

salinization, especially where natural drainage was poor or not constructed as part 

of the irrigation system.  Marshy areas with shallow water tables may in some 

cases represent the end points of former canal systems (e.g. see Wilkinson and 

Rayne, 2010, fig.8). Similarly, gilgai (see Chapter 1 and Chapter 6) may also be 

an indicator of relict irrigation, specifically the former flood basins.   

Identification of archaeological features by image interpretation can be further 

validated, in terms of verifying locations and providing dates of use, through 

ground-based survey (for example see Wilkinson et al, 2006, p738). As part of this 

study, a sample of the mapped canals was visited in 2010 during fieldwork. This 

made it possible to confirm whether the channels were still in use. For example, 

the canal between Carchemish and Jerablus Tahtani still contained water when it 

was recorded in the field as well as on satellite images. Known rock cut qanats in 

the Jerablus region were also visited, and several new features recorded. These 

were not identifiable on the imagery, indicating the need for both validation and 

survey using fieldwork. Canals in the Balikh that were visible in the 1960s imagery 

were found to be further eroded by 2010 and some had disappeared altogether.  

In order to validate the linear features visible in the CORONA images, they also 

had to be identified as canals, as opposed to other linear features such as hollow 

ways. Discussions of features in the Habur have dealt with these distinctions (Ur 

and Wilkinson, 2008, p311-12; McClellan et al, 2000, p143-51). Ultimately, 

however, ancient canals, unlike hollow ways, need to allow for gravity flow, 

following the natural contours of the landscape.. It should be noted here that while 

most canals conform to this rule, a few later canals may not. Hollow ways often 

form distinctive patterns, radiating from archaeological sites and cutting across the 

contours. SRTM, ASTER and CORONA-derived DEMs were used by this project 

to test this difference (see Chapter 3.4 and 3.5). Figures 3.11, 3.12 and 3.13 
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show the distinction between linear features near Medinat al Farr in the Balikh; the 

SRTM DEM shows that the hollow way cuts through the landscape with no clear 

topographic trend, while the canal is closely aligned to it, sloping according to a 

clear trend. 

 

Figure 3.11: Linear features around the Early Islamic site of Medinat al Farr. 

CORONA image from 22 January 1967.  



116 
 

 

Figure 3.12: This example of a longitudinal profile of a hollow way runs across the 

natural gradient of the landscape, disregarding it (see Figure 3.11). 

 

Figure 3.13: This example of a canal longitudinal profile shows that it is 

constrained by the need for gravity flow, therefore following the natural contours of 

the landscape (allowing for noise contained in the SRTM DEM) (see Figure 3.11).  

Whether or not a channel was a natural stream or a canal also needed to be 

confirmed.  To some extent this could be done based on their appearance, 

because some canals consisted of fairly straight channels and prominent upcast 

banks. In other cases this was less clear. Again, the DEMs were used for 

validation. Stream networks were derived from the SRTM and ASTER DEMs (see 
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Chapter 3.4). These networks represent natural drainage based on locations of 

flow accumulation. It was found that while the model identified the natural streams, 

it did not identify canals,  allowing the natural and artificial channels to be 

distinguished. Digitised features which were too similar to the modelled stream 

network were discarded, although possible modification of natural streams was 

considered where necessary.  

 

3.2.5 Summary 

The validation process described here enabled irrigation systems and individual 

features and parts of systems to be digitised with a reasonable degree of 

confidence. The CORONA images allowed features to be located which are no 

longer present in the modern landscape and are therefore not identifiable using 

modern imagery. The sampling strategy chosen ensured that a comprehensive 

region could be mapped in its entirety, allowing for the identification of any spatial 

trends and patterns. Using this approach also enabled the full extent of preserved 

segments of canals and offtakes to be recorded, revealing information about the 

scale of ancient water management systems.  

The following sections will describe how DEMs and fieldwork data were used to 

validate the digitised results. Canals could be distinguished from roads and from 

natural streams. In many cases, relative dates could also be assigned based on 

association with known sites.  

 

3.3 Fieldwork 

3.3.1 Introduction 

An initial season of fieldwork was undertaken in Syria in July 2010, as part of 

research carried out by the Land of Carchemish project and Fragile Crescent 

Project of Durham University. Fieldwork enabled several features located using 

satellite imagery to be visited and surveyed. Unfortunately, further fieldwork was 

not possible, given the war in Syria since 2011. However, the work that was 
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undertaken enabled a sample of the remotely sensed evidence to be validated and 

confirmed. 

The Jerablus and Balikh regions were visited. Several relict water features of note 

had already been identified in the Jerablus region by recent survey (see Wilkinson 

et al, 2007). In the Balikh, archaeological survey in the 1990s had recorded relict 

canals (Wilkinson, 1998). On the whole, excavation or fieldwalking were not 

possible at these locations. However, GPS points were collected in order to locate 

features of interest. 

 

3.3.2 Jerablus 

Most of the fieldwork undertaken for this study was carried out in the vicinity of 

Carchemish/Jerablus. Several different sites were visited, including previously 

recorded sites and newly discovered sites. The known sites (already recorded in 

previous years by the Land of Carchemish Project; see Wilkinson et al, 2007) 

included a canal between Carchemish and Jerablus Tahtani; features along the 

Wadis Sajur and Armana; and a rock-cut conduit in the hills south-west of 

Carchemish near Hajaliyyeh. Several further rock-cut conduits were located in the 

Wadi Armana. GPS points were logged for these features and measurements 

noted. They are described in more detail in Chapter 5.  

It should be mentioned here that fieldwork in the Jerablus region recorded features 

that were not visible in the remotely sensed datasets, especially the rock-cut 

conduits in the wadi sides. This raises the likelihood that there are many other 

similar features throughout Northern Mesopotamia that cannot be identified 

without fieldwork. The visibility of the sites visited in 2010 is listed in Table 3.3  
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Table 3.3: Water management features around Jerablus visited during fieldwork in 

2010. See Table 2.1, Figure 2.2 and Chapter 5.2. 

Water management features Visibility 

Carchemish- Jerablus Tahtani canal CORONA and field survey 

Nahr al Amarna rock-cut channels Field survey 

Rock cut channel near Hajaliyyeh Field Survey 

Rock-cut conduit at Khirbet Serisat Field survey 

 

3.3.3 Balikh 

In contrast, in the Balikh water management features could be identified using 

satellite imagery. However, many of the features which were present in the 1960s 

imagery had since been removed from the landscape due to recent intensification 

of agriculture (e.g. see Hole and Zaitchik, 2006). As Table 3.3.2 outlines, three 

known canals were visited in the Balikh region in 2010. The original survey data 

(Wilkinson, 1998) and the satellite data could then be compared with the current 

state of the features.  

Table 3.4: State of preservation of canals in the Balikh in 2010. 

Canals visible in CORONA images Visibility 

Canal at Heraqlah CORONA and field survey 

Sahlan-Hammam channel CORONA 

Nahr al Abbara CORONA. Removed and replaced by wells on 

similar alignment 

 

A canal close to Heraqlah was investigated (see Chapter 5b). It had already been 

noted by several researchers (Bell, 1924, p53-54; Heidemann, 2006, p36; 

Kamash, 2009, vol3 p4) and has been described as Early Islamic (Heidemann, 

2006, p36). However, the CORONA imagery suggested that this canal was post-

Early-Islamic, based on its truncation of the medieval site of Heraqlah. Fieldwork 

confirmed this situation, and also found that the canal had further eroded since the 

time of the CORONA imagery (see Chapter 6). 
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A segment of the Sahlan-Hamman canal, at Tell Hammam et Turkman, was also 

investigated in the field. Originally surveyed by Wilkinson (1998, p70), it is clearly 

identifiable using the CORONA imagery and CORONA-derived DEM (see 

Chapter 6). On the east side of the tell, the Early Islamic Nahr al Abbara (also see 

Wilkinson, 1998, p67) was looked for. Neither canal was present because both 

had been removed since the 1990s, although a series of what appeared to be 

modern wells followed the alignment of the Nahr al Abbara, possibly taking 

advantage of a raised water table within the relict canal. In contrast to the fieldwork 

undertaken at Jerablus, where fieldwork is especially necessary, this rapid change 

in the landscape of the Balikh highlights the usefulness of using remote sensing, 

particularly historical datasets such as CORONA.  

 

3.3.4 Summary 

The sample of sites visited in July 2010 enabled those features themselves to be 

confirmed, and also validated the overall interdisciplinary methodology of the 

project. A range of evidence was needed to identify the features in the database, 

because not all features were identifiable in all the datasets. Some sites were 

identified in the field that were not visible in the imagery, suggesting a need for 

further fieldwork. The results of the fieldwork undertaken in the Balikh showed that 

canal remains that can be located using historical imagery are quickly 

disappearing from the landscape, especially in areas where modern agriculture 

has been focussed.  Many other sites researched by this project have also been 

removed, including several which are now under the waters of the Tabqa Dam (for 

example the canals at Dibsi Faraj and Tell Fray discussed in Chapter 5). 

Throughout the whole project area, modern satellite images such as GeoEye-1 

and IKONOS were generally devoid of the remains that were present in the 

CORONA images. CORONA-based remote-sensing techniques, such as the 

image interpretation and photogrammetry undertaken by this project, are therefore 

the principal ways in which many of these features can now be further 

investigated.  
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The remains only visible on the ground at Jerablus, and the remains only 

identifiable using CORONA elsewhere, serve to emphasise the need for the kind 

of multidisciplinary research undertaken by this study.  

 

3.4 SRTM and ASTER 

3.4.1 Introduction 

Low resolution elevation models were used to recognise the general gradient of 

the landscape in relation to relict water management systems. Secondly, the 

models were used to generate stream networks using processes outlined below.  

SRTM (NASA) and ASTER (NASA and Japan’s METI) DEMs were used in these 

analyses. Both data sets are referenced to the WGS84 datum. While the data sets 

are roughly contemporaneous (launched in 1999 for the ASTER and collected in 

2000 for the SRTM) it is important to note that they were produced in different 

ways and have different resolutions, as Figure 3.14 shows (90m for the SRTM 

and 30m for the ASTER). The SRTM DEM is radar data generated through 

interferometry whereas the ASTER GDEM is the ouput of photogrammetric 

processing of optical satellite images. 
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Figure 3.14: ASTER has a pixel size of 30 m and SRTM of 90 m; both are 

generally too coarse to show relict canals. For this example, contrast stretches 

were applied that best highlight the difference in resolution between the two 

datasets. They contain modern features which were not present at the time of the 

CORONA images used to digitise the canals. 

The freely-available Shuttle Radar Topography Mission (SRTM) data is processed 

to a relatively coarse 90m pixel size (3 arc seconds). However, in general, this has 

a vertical accuracy of about 9 m (Farr et al, 2007, p19). For this project, Version 2 

of the SRTM3 C-band radar data was used; this version has undergone editing 

before delivery and has been validated using GPS data. 

The data were gathered by the NASA space shuttle using dual radar antennas 

which obtained interferometric radar data: collecting two radar datasets from 

different but close vantage points enabled the elevation to be measured by 

triangulating between the position of the antennas and the measured points (Farr 

et al, 2007, p1-5).  

In contrast, the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer Global Digital Elevation Model (ASTER GDEM) was derived using 

stereoscopic spaceborne imagery with a spatial resolution of 15 m;  the GDEM 

has a grid cell size of 30 m (1 arc second) (see Abrams et al, 2010). In general, 
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the vertical accuracy is about 20 m, although this varies (Bulatovic et al, 2012, 

p5916); sampling indicates that the error is worse for hilly terrain (ibid, p5925).  

There are some issues of uncertainty when using SRTM and ASTER data. While 

for example an analysis of SRTM accuracy indicated that SRTM can over predict 

gradient in flatter areas (Kinsey-Henderson and Wilkinson, 2013, p129), such as 

alluvial floodplains (ibid, p133), Vente et al (2009) found that SRTM gave more 

accurate estimates of slope gradient than ASTER. 

Given these problems, one mitigation strategy would be to validate DEMs using 

GPS, if fieldwork were to again be possible in Syria and Iraq. In the meantime, 

data should be analysed using more than one DEM, using high-resolution 

elevation data where possible. CORONA photogrammetry offers the opportunity 

for this. In the future, GPS and TanDEM X data could be applied. 

The different ways the images are obtained can lead to differences in the kinds of 

errors that are produced. For example, SRTM is affected by random speckles of 

noise (Rodriguez et al, 2006, p251). Water surfaces were sometimes also 

measured inaccurately by the C-band radar (Farr et al, 2007, p28), although some 

editing was undertaken for the Version 2 product. Noise can affect both datasets, 

especially in low-lying areas in the SRTM (Sanders, 2007). ASTER is affected by 

cloud cover; some anomalies and missing data values were the result of this (e.g. 

see an assessment by Hirano et al, 2003, p366).  

The focus of this discussion will be the data produced, rather than the undertaking 

of an exercise of comparison. Comparisons between the two datasets have 

already been made: for example, Hayakawa et al (2008, p3-4) suggest that 

ASTER GDEM data contain fewer errors. However, Hirt et al (2010, p20) found 

that in some cases errors present in the ASTER GDEM were significantly limiting 

(stripes (ibid.p13) and clouds (ibid. p11), for example).  

Now that the data itself and associated issues have been reviewed, the process of 

generating the stream network models will be outlined below.  
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3.4.2 SRTM and ASTER stream network models 

Because this research aimed to identify features of ancient water management, it 

was important to distinguish between natural and artificial channels and to 

understand the relationship of artificial features within their hydrological context. 

The most reliable way of doing this was to model the areas where flow is most 

likely to be concentrated using established algorithms; the ArcGIS Spatial Analyst 

toolset, which includes hydrology tools, was used so that this could be done simply 

and quickly.  

This project found that the SRTM and ASTER stream networks identified natural 

channels effectively, an observation that could be confirmed by checking them 

against satellite images where the channels were visible.  

In order to generate the stream networks a sequence of processing was 

undertaken for the data. The same method was used for both SRTM and ASTER. 

This sequence (represented in Figure 3.15) is a long-established and oft-tested 

one (e.g. see Jenson and Domingue, 1988 for an early example which outlines the 

basic processes). How this was employed in the context of the present research 

will now be outlined.  
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Figure 3.15: The process of creating a stream network using the ArcGIS 

hydrology tools is straightforward. 

 

3.4.3 Fill sinks  

Figure 3.16 shows a diagram of a typical sink. Both the SRTM and ASTER 

datasets contain these small errors of isolated pixels of lower elevations (‘sinks’) 

than surrounding pixels which the analysis would mistakenly identify as miniature 

drainage basins; such errors make the analysis impossible. However, these pixels 

can be ‘filled’.  

First, the sink tool can be run to identify their number and depth. The fill tool is 

then used to fill the sinks based on an inputted value. This value, the ‘Z limit’, 

represents the difference between a sink and its pour point, the pixel with the 

lowest elevation of the surrounding pixels which bound the sink. The tool will not 

fill any pixels identified as sinks if the difference is greater than the defined Z limit.  

 

Fill Sinks 

Flow direction 

Flow 
accumulation 

Conditional 

Stream to 
feature 

Output vector 
stream network 
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Figure 3.16: illustration showing how the difference between the lowest pixel and 

the lowest surrounding pixel forms the ‘z limit’.  

Sinks were found in both the SRTM and ASTER DEMs: for the SRTM, across an 

area of 8054 X 4801 cells, 116636 were identified as sinks (see Figure 3.17). The 

fill tool was used to remove these so that further processing could be undertaken.  

 

 

Figure 3.17: The pink dots represent sinks in the SRTM throughout the project 

area. 
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𝐹𝑙𝑜𝑤 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑑𝑒 =
a − b

d
 

 

 

 

Figure 3.18: Flow direction coding.  

 

3.4.4 Flow direction 

Once sinks have been filled, it is necessary to find the direction of flow (see Verdin 

and Verdin, 1999, p5). This could go into any one of the 8 pixels which surround 

one pixel. The default algorithm offered by ArcGIS was used consistently. Future 

comparative exercises could make use of different DEMs and software to use 

alternative algorithms. The flow will follow the greatest descent; coded values are 

assigned for the output based on this.(e.g. see Jenson and Domingue, 1988, 

p1594). The output raster (Figure 3.19) shows the direction of flow for the SRTM 

DEM; however, further processing is needed in order to derive the stream network.  
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Figure 3.19: Flow direction can be modelled using an elevation model such as 

SRTM. The colours represent the coded values assigned by the flow direction 

algorithm.  

 

3.4.5 Flow accumulation 

Once the direction of flow is known, the accumulated flow into each pixel can be 

calculated because the pixels with the highest flow accumulation values are more 

likely to be streams. These values are the accumulated flow from all pixels in the 

flow direction raster that flow into each downslope pixel; the pixel values of the 

output represent the number of pixels that flowed into those pixels. The output of 

using this tool (Figure 3.20) is a representation of drainage patterns in Northern 

Mesopotamia. 
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Figure 3.20: The raster output of the Flow Accumulation tool identifies the 

locations where flow is most concentrated.  

 

3.4.6 Conditional evaluation 

While the flow accumulation raster is informative, it is useful to generate a vector 

drainage network. The flow accumulation raster can therefore be thresholded to 

separate the pixels with the highest values (most likely to be streams) from those 

with lower flow accumulations (more ephemeral, seasonal streams or palaeo-

drainages). Higher threshold values will delineate fewer streams, only selecting 

the more significant features. In this case, the Con [conditional] tool of the ArcGIS 

Spatial Analyst was used to undertake a conditional evaluation of the flow 

accumulation data to produce the output raster.  

The channels which received the most flow were represented by larger cell values 

within the flow accumulation raster. For example, the Euphrates was in this 

category. Smaller wadis and seasonal streams had lower values. Choosing a 

higher threshold value will reveal less of the more ephemeral features but will 

make it more difficult to distinguish visually the significant channels; therefore, 

several different thresholds were used depending on the resolution required for 

specific tasks and maps; Table 3.5 shows the values used to produce the stream 
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networks in Figure 3.21.  For the SRTM flow accumulation raster a conditional 

value of > 100000  was used. This highlighted the most significant channels. 

Table 3.5: Conditional threshold applied to flow accumulation rasters; shown in 

Figure 3.21. 

 SRTM ASTER 

Conditional threshold cell 

value below which streams 

were discarded (see Figure 

3.4.8) 

100000 1500 

 

 

3.4.7 Stream to feature 

The conditional raster can be used to generate a vector stream network. Turning 

the raster into a vector makes it easier to manipulate and display. This works by 

using the flow direction raster and the conditional raster.  

Again, the output of the conditional tool is thresholded; values above the inputted 

threshold will form vector features. Values below this will be discarded and will not 

form part of the output. In the example shown in Figure 3.21, as part of the 

conditional algorithm, all cell values in the SRTM flow accumulation above 100000 

were retained and reclassified as 1, while values below this were classified as 0. 

Using the stream to feature tool, only the 1s will be converted into features.  

 The SRTM was used to identify the most prominent channels throughout the 

whole project area. Even if a lower threshold value had been selected for the 

conditional, the smaller wadis could not have been identified. The higher resolution 

of the ASTER DEM enabled a denser network of streams to be mapped, including 

narrow and ephemeral seasonal wadis. The flow models were later used to display 

the locations of natural channels and for comparison with the locations of artificial 

channels (see Chapter 5 and Chapter 6). Many of the streams identified by the 

use of the hydro tools could be verified through comparison with satellite images 

whereas others were less clear and may be palaeochannels or seasonal streams.  
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Figure 3.21: Drainage network as established using digital elevation models 

(SRTM and ASTER). Different resolutions can be obtained depending on the DEM 

used and on the threshold values selected. 

 

3.4.8 Summary 

The SRTM and ASTER DEMs were effective in determining the general gradient 

of the landscape and in delineating stream networks; that the two models 

corresponded to each other is an indicator of accuracy (also see Bolten and 

Bubenzer, 2006, p273). The stream network data can then be integrated with 

archaeological data to facilitate additional interpretations (see Chapters 5 and 6).  

While the elevation and morphology of larger, occupation sites can be identified 

using these DEMs, relatively narrow, linear features such as the smaller canals 

cannot be picked up (see Figure 3.4.1). As Figure 3.4.1 also shows, the time 

difference between the CORONA images used for mapping and the modern DEMs 



132 
 

used for gradient and hydrological analysis affects the data; for example, modern 

linear features are visible in the ASTER image. Therefore, a way of generating a 

DEM of a better resolution and representing better preservation of archaeological 

remains was researched; this will be described in the next section (Chapter 3.5).  

 

3.5 CORONA Photogrammetry 

3.5.1 Data 

The use of CORONA can extend beyond image interpretation. CORONA involved 

several different satellite missions, which had varying image quality. The satellite 

KH-4B was equipped with two panoramic cameras, in forward and aft positions on 

the satellite (see Figure 3.22). A DEM of finer resolution than SRTM and ASTER 

could be generated using these ‘stereopairs’. Fortunately, cloud-free stereoscopic 

imagery covering most of the Middle East are available and in this case mission 

1105 of the KH-4B satellite was used. The parameters are detailed below; 

however each mission was different so these values are nominal. In this case, a 

stereo-pair dating to 4th November 1968 was used.  

 

 

 

 

 

 

 

Figure 3.22: CORONA image capture, from Goossens et al, 2000, p749; after 

http://www.nro.gov/history/csnr/corona/imagery.html 
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Table 3.6: CORONA mission parameters, from 

http://eros.usgs.gov/#/Guides/disp1 

Satellite KH-4B 

Successful missions 1101 through 1112, 1114 through 1117 

Period of operations September 1967-May 1972 

Amount of film (ft.) 505,970 

No. of primary camera frames 188,526 

 

Satellite KH-4B 

Camera type Panoramic 

Film width 70 mm 

Approx frame format (in.) 2.18 X 29.8 

Focal length (in.) 24 

Best approx film resolution (ln./mm) 160 

Enlargement capability 16 times 

Best approx ground resolution 6 ft 

Nominal system altitude (nautical miles) 81 

Nominal photo scale on film 1:247,500 

Nominal ground coverage (miles) 8.6 X 117 

 

3.5.2 The panoramic camera 

KH-4B offers the best image quality and an overlap of 10% in the flight direction 

(Schmidt et al, 2001, p3123). The camera itself was panoramic, and was able to 

produce panchromatic images (Altmaier and Kany, 2002, p225). The camera 

worked by scanning across the direction of flight, using a Petzval lens and scan 

arm in a rotating drum; the film was parallel to the direction of scan (Galiatsatos, 

2004, p19-27; NRO, http://www.nro.gov/history/csnr/corona/sysinfo.html), which 

enabled a large amount of spatial coverage as well as a high resolution (Sohn et 

al, 2004, p53). 

 

http://eros.usgs.gov/#/Guides/disp1
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Figure 3.23: The J3 camera system used by CORONA mission KH4B, NRO, 

http://www.nro.gov/history/csnr/corona/imagery.html 

 

 

 

 

 

 

 

 

 

 

Figure3.24: CORONA camera systems 

http://www.nro.gov/history/csnr/corona/imagery.html 

Distortions are inevitable when using panoramic cameras (ibid). Correcting for this 

is difficult and not necessarily robust, (Altmaier and Kany, 2002, p228). 
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Unfortunately, the study area of this project is at the edge of the available 

CORONA frames where distortion is highest. 

Sohn et al (2004) attempted to develop algorithms to correct for the panoramic 

distortion that affects CORONA images. The collinearity equations (see below) 

were modified; other methods involve modelling the exterior orientation 

parameters as a function of time. Models like this are still unavailable for use in 

available software packages (Casana and Cothren, 2008, p4), so it was not 

possible to apply them within this project. As the following section will outline, 

however, it was possible to produce an output DEM using the available stereopairs 

with the ERDAS LPS software package. 

 

3.5.3 Image parallax and relief displacement 

The principles of image parallax and relief displacement explain how two images 

of the same scene, in this case CORONA, taken from a different angle, can be 

used to determine the height of features (e.g. see Lillesand et al, 2003, p123-188). 

When a tall object is viewed in an aerial image, the top of it appears to lean away 

from the principal point and the object’s base. Relief displacement (see the 

building represented in figure 3.525) is the fundamental principle which allows the 

determination of height from aerial/satellite imagery (Wong, 1980, p48). When 

using a stereopair (two images), the images will have different vantage points; the 

relative positions of objects in relation to the principal point that are closer to the 

satellite/plane change more between the two images of a stereopair than the 

positions of objects that are further away (therefore lower); this is parallax. Using 

two images in this way is more accurate than only using the principle of relief 

displacement (Lillesand et al, 2003, p124-125). It is the ratio between the ground 

distance and between the photo centres at the times of exposure and the flying 

height of the satellite that determines the vertical exaggeration; the bigger that 

ratio, the bigger the exaggeration (Lillesand et al, 2003, p128). Relief displacement 

can be expressed as; 
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𝑑 =  
𝑟ℎ

𝐻
 

Equation 3.5.1: Relief displacement (see Lillesand et al, 2003, p147). 

 Where; 

d = Relief displacement of given object 

r = Distance from photo principal point (image centres through which the flight 

axis/nadir line is located) to the top of the object 

h = Height of the object 

H = Flying height (with reference to the elevation of the base of the object, not 

to mean sea level) 

 

 

 

Figure3.25: Illustration of relief displacement (see Equation 3.5.1 and Lillesand et 

al, 2003, p147).  

When applying this principle to a stereopair in order to determine the location of 

points the relative orientation of the camera needs to be established from specific 
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parameters of camera rotation and base line direction (exterior orientation) 

(Mugnier et al, 2004, p245), as well as the ground coordinates of at least 3 points 

(Wong, 1980, p57). In the case of CORONA images some of these parameters 

have to be calculated by the software because they have not been released as 

part of the declassification process along with the images. The parameters include 

the angles omega, phi and kappa which describe the angular rotations of the 

image plane (e.g. see Lillesand et al, 2003, p176). This information is needed so 

that the collinearity equations can be applied (Mugnier et al, 2004, p292), which 

describe the relationship between the ground coordinates, image coordinates, and 

the exposure station position and angular orientation of a photograph, and enable 

the ground location to be calculated, (Lillesand et al, 2003, p176-179): 

 

 

𝑥𝑝 =  −f [
m11(X𝑝 − X𝐿) + m12(Y𝑝 − Y𝐿) + m13(Z𝑃 − Z𝐿)

m31(X𝑝 − X𝐿) + m32(Y𝑝 − Y𝐿) + m33(Z𝑃 − Z𝐿)
] 

 

𝑦𝑃 = −f [
m21(X𝑝 − X𝐿) + m22(Y𝑝 − Y𝐿) + m23(Z𝑃 − Z𝐿)

m31(X𝑝 − X𝐿) + m32(Y𝑝 − Y𝐿) + m33(Z𝑃 − Z𝐿)
] 

Equation 3.5.2: The colinearity condition (Lillesand et al, 2003, p176-178). 

 

Where; 

xp, yp = Image coordinates of any point P 

f = focal length of the camera lens 

Xp, Yp, Zp = ground coordinates of point P 

XL, YL, ZL = ground coordinates (exterior orientation) of exposure station L 

M11 etc = Coefficients of a 3x3 rotation matrix defined by angles omega, phi and 

kappa, which are needed to calculate a ground location.   
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The intersection of the epipolar plane that is formed by the projection centres and 

an image point gives the epipolar line where the predicted point is located 

(Mugnier et al, 2004, p260). There is a known relationship between the distance of 

any given point from this line, the flying height of the satellite and the elevation of 

the given point. Relief displacement increases both with the distance from the 

principal point and with the height of an object, (see equation 1 above and 

Lillesand et al, 2003, p150-151). It enables height to be measured; 

 

ℎ =  
𝑑𝐻

𝑟
 

           

Equation 3.5.3: A reorganisation of Equation 3.5.1 shows object height 

determination (Lillesand et al, 2003, p151). 

 

These equations were applied to the 1968 stereopair using  ERDAS LPS software 

to generate a DEM. The necessary processes of gathering control points for 

triangulation and performing image matching using this software are outlined 

below. 

 

3.5.4 Image preparation 

Before assigning control points it was necessary to prepare the CORONA images. 

The area of interest is confined to the east of the frames (see Figure 3.26). It has 

been found that CORONA photogrammetry is more successful when applied to 

smaller images than to the whole 13.8 X 188.3 km frame (e.g. see Casana and 

Cothren, 2008, p4). This is probably because the detrimental effects of the 

distortion across a CORONA panoramic frame are reduced when using a smaller 

segment (ibid). For this study, the same method was applied to both smaller and 

larger areas, and it was confirmed that using smaller areas is more appropriate. 

Therefore, small subsets of the forward and aft frames were taken (see Table 3.7 

and Figure 3.26) of which the aft subset had to be rotated. A potential issue with 

both these processes is the inevitable resampling of a subsetted and rotated 
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image, which changes the pixel values. However this was found to be less 

problematic than using the whole, upside-down frame. 

Table 3.7: CORONA frame subset sizes 

Subset Size (km) 

Nahr al Abbara 2.6 X 4.5 

Hammam et Turkman 1.4 X 0.8 

Canal 0.9 X 1.0 

 

 

Figure 3.26: Areas of CORONA stereo-pair subsets. 4 November 1968. 

 

3.5.5 Triangulation 

3.5.5.1 Interior orientation 

Triangulation is used to improve ground control and orientation of models 

(Forstner, 2004, p847). This works by estimating the optimal parameters by 

minimizing the adjustment residual’s weighted sum-of-squares (Forstner et al, 

2004, p854) to determine the coordinates of all the unknown points. As part of this 

process, the interior and exterior orientations of the images must be known. In 

order to define the interior orientation of the camera, the focal length, coordinates 
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of the principal point and the geometric distortion characteristics of the lens system 

are needed (Wong, 1980, p49). This information is generally added to the 

parameters of the blockfile when using ERDAS LPS. In the present case, the 

coordinates of the principal point were not known. In addition, as explained above, 

only a subset of the frame was used, which did not contain the principal point. The 

interior orientation of film cameras, such as CORONA, is generally not well defined 

(Mugnier et al, 2004, p231); the values provided may only be nominal for this kind 

of data (Forstner et al, 2004, p885). Furthermore the fiducial marks, which can be 

used to relate the image and the position of the camera, are not given for 

CORONA images. Given this lack of camera calibration the software had to 

determine some parameters and a general non-metric camera model was used. 

The parameters are outlined in Table 3.8. 

Table 3.8: Interior orientation and camera parameters. 

Camera model Non-metric camera 

Lens distortion Unknown 

Pixel size (μm) in x and y directions: 7 

Camera focal length 609.6020 

Principal point Unknown 

 

 

3.5.5.2 Exterior orientation 

Similarly, most of the exterior orientation parameters were not available and had to 

be calculated by the software. This is done by space resection, a process which 

uses control point coordinates and the collinearity equations to perform a least 

squares solution (e.g. see Lillesand et al, 2003, p180). These parameters are 

listed in Table 3.9. They are the coordinates of the projection centre (principal 

point), and the rotation angles, and vary with the movement of the camera in 

space (Mugnier et al, 2004, p215). The calculated parameters are outlined in 

Table 3.10. 
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Table 3.9: Exterior orientation parameters. 

Perspective centre Unknown, determined by LPS, status initial 

Rotation angles Unknown, determined by LPS, status initial 

Orientation Down +X 

Flying height 153900 m(approximate) 

 

 

Table 3.10: Estimated exterior orientation parameters calculated by LPS for a 

CORONA DEM of the Sahlan-Hammam canal. 

Image 

ID 

Xs (m) Ys Zs Omega 

(degrees) 

Phi Kappa 

1 408756.400

2 

3986418.167

3 

154321.54

79 

558.3963 -149.3468 467.4987 

2 400353.798

0 

4072751.942

0 

154040.15

83 

-12.8500 -33.5675 -82.0863 

 

 

3.5.5.3 Ground Control Points (GCPs) 

It is generally agreed that ground control is important to improve precision in 

photogrammetry (e.g. see Lillesand et al, 2003, p164). In order to perform 

triangulation successfully using the typical algorithms, control points need to be as 

accurate as possible (Jung et al, 2002, p126). However in this case it was not 

possible to obtain GPS points in the Balikh, because the political situation in Syria 

prevented a second season of fieldwork during which these would have been 

collected. As discussed in the literature review, most studies undertaking 

CORONA photogrammetry were able to collect GPS points, although changes to 

the landscape in recent years made this difficult (e.g. Altmaier and Kany, 2002, 

p227). 

 

Good ground control points - GPS points - were not available for this project. 

Instead, x, y coordinates were collected from already-rectified CORONA (Fragile 
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Crescent Project) and z coordinates were obtained from SRTM. The benefits and 

limitations of this are discussed later. 

 

Table 3.11: Control points and automatically generated tie points. 

Blockfile CPs 

Nahr al Abbara 87, and 184 auto tie points generated 

Hammam et Turkman 40 and 44 auto tie points generated 

Canal 24 and 12 auto tie points generated 

 

The identification of control points from GeoEye-1 images (see Chapter 3.1, Table 

3.1) was attempted, however, the landscape had changed significantly between 

the 1960s and the 2000s, so this was not successful. Using the images rectified by 

the Fragile Crescent Project, however, it was possible to collect points. This was 

done using the point measurement tool in LPS. An even distribution was sought. 

However, for some areas of limited contrast very few points were identified. 

Clearly identifiable points were also sought, for example road intersections and the 

corners of buildings (see Figure 3.27 for an example). 

 

Sometimes there is no access to the original sensor model adjustable parameters, 

as in the case of CORONA. The best mitigation strategy is to use more, and 

accurate, control points (Forstner et al, 2004, p896). Therefore as many well 

distributed points as possible were sought when constructing this CORONA DEM, 

demonstrated by Figures 3.28 and 3.29 (also see Appendix 1). 
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Figure 3.27: Features such as road intersections can make good control points. 

CORONA image 22 January 1967. 

 

3.5.5.4 Auto-tie points 

To improve triangulation it is also possible to generate tie points after the control 

points were inputted. These establish a relative orientation between the two 

images (Altmaier and Kany, 2002, p228). The software identifies similar points in 

the two images. Similarity between these points is then examined within a defined 

region (Jung et al, 2002, p127); the size of this region as well as the size of the 

correlation window are key parameters in determining the success of this method.  

As expected, in this case it was found that the number and accuracy of tie points 

corresponded to the number and accuracy of control points. Low contrast in the 

image also affected the ability of the software to match tie points. 
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Figure 3.28: Tie-point generation using LPS. The green circles represent control 

points and tie points common to both the forward and aft images.   

 

3.5.5.5 Triangulation report 

Given the tie points and the interior and the exterior information, the collinearity 

equations can be applied (see Equation 3.5.2 above) by the computer to perform 

triangulation using least squares adjustment. This process identifies points and 

orientation parameters (Wong, 1980, p88). 

 

The initial computations are used to correct the exterior orientation parameters 

and the ground coordinates. Unknown values are then calculated. These new 

values are then used as new corrections and the procedure is repeated. This 

iteration procedure can be repeated a number of times until the corrections 

become small enough (Wong, 1980, p95-96). In this case, 10 iterations were 

undertaken. 
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The lens distortion model was used and a consideration of earth curvature was 

also made. A projected coordinate system (UTM) was used, for which Earth 

curvature is not eliminated (Mugnier et al, 2004, p302), therefore it was necessary 

to correct for this issue. If we assume for a single photograph covering a limited 

part of the Earth’s surface that the reference surface is a sphere, the following 

equation can be applied; 

𝑟∆=  
𝑟3(𝐻 − h)

2𝑓2𝑅
 

 Equation 3.5.4: Correction for earth curvature (Mugnier et al, 2004, p302). 

        

Where;  

 

R = Earth radius (6,372,200 m) 

H = Flying height above datum 

H = Average terrain height 

F = focal length 

R = radial distance 

r ∆ = earth curvature 

 

 

Table 3.12: Triangulation results. 

Blockfile RMSE (m) 

Nahr al Abbara 2.6 

Hammam et Turkman 1.3 

Canal 1.15 

 

The results of the triangulation of each point were examined in order to determine 

accuracy. For example, for the DEM of Hammam et Turkman a Root Mean Square 

Error (RMSE) of 1.3 was obtained. Initially however some erroneous control and 

tie points were identified through this process and removed, improving the rmse. 

 



146 
 

 

Figure 3.29: Blockfile setup using ERDAS LPS. 

 

3.5.6 DEM extraction: Image matching strategy 

DEM extraction was performed also using ERDAS LPS, using the eATE tool. This 

software uses a feature-based matching technique to generate points; features are 

extracted from both images and compared (Vosselman et al, 2004, p492). Points 

with the highest correlation are selected; the parameters which determine this 

correlation include the search and correlation window sizes and the correlation 

coefficient (Galiatsatos, 2004, p221-222). The parameters selected in this case 

are outlined in Table 3.13 below (also see Figure 3.30). 

 

Least squares estimation is used. Initially, a list of possible conjugate pairs is 

generated. When the cross correlation between a template and search window is 

greater than a certain threshold, the pair is listed as a possible conjugate point 

(Vosselman, 2004, p492). The result is two observation equations with 6 unknown 

parameters for each pair (ibid, p493). Approximate rotation and scale difference 

values are needed (Vosselman, 2004, p493). The template and search window 
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need to have an overlap to let the estimation converge to the correct solution 

(ibid). 

 

The correct correlation algorithm for the data must be selected. In this case, the 

software offered two options: NCC (Normalised Cross Correlator) and SSD (Sum 

of Square Differences), although the associated software documentation does not 

describe these in any detail. The two correlators work differently in terms of how 

they account for differences in the matching windows (Hirschmuller and 

Scharstein, 2009, p1), which  may be particularly significant for CORONA images, 

possibly due to the way the scale of the image varies across the long panoramic 

frame. It has been demonstrated that matching methods like SSD can be more 

accurate than ones like NCC (Wang et al, 2006, p1). Indeed in this case the NCC 

option failed to match the images, while the SSD algorithm was able to obtain 

some results. The SSD algorithm uses a template window (t) to examine every 

location in both the images (f), searching for correlation between the templates 

and the images. This can be most simply expressed as;  

 

 ∑(

𝑥

𝑓(𝑋 + 𝑌) − 𝑡(𝑋))2 

Equation 3.5.5: Sum of Squared Differences (SSD) (e.g. see Boyle and Thomas, 

1988, p45). 

 

f = the image 

t = the search template 

 

 

The squared difference of intensity values is the matching cost; this is then 

summed over square windows to obtain aggregated values (Scharstein and 

Szeliski, 2002, p10). The size of both the template and search windows can be 

set. In this case quite large values were selected in order to maximise chances of 

matching (9x9 and 100 respectively). A larger template window is able to include 

enough intensity variation for reliable matching despite low contrast (Wang et al, 

2006, p2), which was the case here. The size of the DEM pixel will be higher than 
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or equal to the template window size (in terms of number of pixels on a side (see 

Galiatsatos, 2004, p223). 

 

 

Figure 3.30: Image matching strategy selection using lps eATE. 
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Table 3.13: Strategy parameters. 

Most nadir yes 

Gradient threshold 0 

Use all spectral data yes 

Radiometric layer no 

Correlator SSD 

Window size 9 

Coefficient 0.30-0.81 

Blunder PCA 

Std Dev tolerance 3 

Reverse matching yes 

RM tolerance 1 

Additional y parallax 0 

Interpolation Spike 

Point threshold 50 

Search window 100 

LSQ refinement 2 

Edge constraint 3 

Smoothing Low 

Low contrast yes 
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3.5.7 Limitations and evaluation 

There are some limitations and uncertainties which affect results when using 

CORONA stereopairs to extract DEMs, mostly relating to unknown information. It 

is possible that the use of the wrong camera model can lead to errors. This was an 

issue in this case because not all necessary parameters were known: the fiducial 

coordinates, lens distortion coefficients, principle point coordinates, position, 

velocity vectors and attitude angles are all unknown (Sohn et al, 2004, p52). 

Consequently, as many tie points as possible were created. In other studies, this 

has proved to be a way of improving the determination of the interior orientation 

(e.g. Altmaier and Kany, 2002, p230). 

 

Another issue can arise from the subsetting of the image, which means that the 

principal point is shifted from its origin; the subset is treated as the whole image by 

the software. As Altmaier and Kany (2002, p228) suggest, however, the large 

flying height and the use of many GCPs can mitigate against this. 

 

Furthermore, the control used to acquire GCPS in this case was not ideal. Due to 

political conditions, fieldwork to gather GPS points was not possible. Given the 

changes between CORONA images and modern imagery, a rectified CORONA 

image (Fragile Crescent Project) was used to find points. While this means that 

any error in this image will be multiplied into the DEM, it was impossible to find 

sufficient points using modern imagery such as GeoEye-1. Given this, the existing 

CORONA imagery was the best option. 

 

Low contrast in some parts of the images also limited results. Smaller subsets 

were selected, avoiding areas of featureless desert. When an area has low 

contrast the software can fail to estimate parallaxes. Therefore, constraints can be 

assigned which regard the parallaxes as smooth, using surrounding areas to 

interpolate (Vosselman et al, 2004, p499).  Distortions are also high in CORONA 

images, especially further away from the nadir at the image ends (Sohn et al, 

2004, p52), which unfortunately was the location of the area of interest in this 

case. Overall, however, the most problematic issue is integral to the design of the 

software itself. Little scope for adapting parameters to specific imagery is allowed 
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for, because there is a lack of documentation to describe the algorithms that the 

software employs.  Earlier versions of the software may have allowed for more 

flexibility, necessary given that spaceborne non-metric panoramic imagery is very 

uncommon.  

 

The uncertainties inherent in the CORONA DEMs would limit its use in 

applications such as flood modelling. At present, however, it does enable a 

relatively high-resolution view of the landscape around Tell Hammam et Turkman. 

In the future, the DEM could be improved by advances in available software, more 

information about key parameters, and by the use of ground control. 

 

3.5.8 Summary 

This section has outlined the methods used to generate DEMs using subsets of 

panoramic black-and-white CORONA frames. Despite the limitations described in 

this section, which make DEM extraction difficult, by optimising the strategy 

chosen to undertake this it was possible to produce some results including DEMs 

with pixel sizes of about 10 m. These will be used to examine the morphology of 

individual channels (both natural and artificial) in Chapter 6. 

 

3.6 Precipitation isohyets and inter-annual variability 

3.6.1 Introduction 

The study area of this project lies within a zone of low and highly variable 

precipitation. The quantity and reliability of rainfall were significant factors in 

determining whether cultivation relied on precipitation or whether irrigation was 

adopted; around 200-300 mm per year is the limit of rainfed agriculture (see 

Figure 3. 32). Problems of temporal variability (as Figure 3.31 demonstrates) are 

also significant in the Near East. Chapter 1 discusses the potential impact of 

these issues; in this section the methods used for recognising patterns of rainfall 

will be described. 
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It must first be understood that the data represented here are only for a recent 31 

year period (1980-2010), which is not necessarily directly applicable to the past. 

Reconstructions of past climate in the Near East using proxies have been 

attempted (e.g. see Riehl et al, 2008; Wick et al, 2003; Bar-Matthews et al, 

2003);.Recently, these data have even been compared statistically with modern 

rainfall averages (Kalayci, 2013). Black et al (2011) analysed rainfall statistics with 

an emphasis on Jordan. Kalayci’s (2013) research involved incorporating 

comparisons with isotope data into his calculations in order to estimate rainfall 

trends for the Bronze Age. The modern rain gauge data is used by the present 

study to map trends such as the location of different rainfall zones and inter-annual 

variability.  

 

 

Figure 3.31: Rainfall at GPCC grid point 25 km from Carchemish. 
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Figure 3.32: Rainfall at GPCC grid point 34 km south-west of Raqqa. 

 

Figure 3.33:  Boxplot showing statistics for grid points near Carchemish and 

Raqqa. Rainfall is higher in Carchemish, but similar amounts of variability are 

experienced in both locations.  

 

3.6.2 Rain-gauge data processing 

The Global Precipitation Climatology Centre (GPCC) was the source of rain gauge 
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as grids of different resolutions, a 0.5° resolution grid being selected in this case. 

The specific precipitation values for each rain gauge itself are not provided (see 

Schneider et al, 2011, p1). The GPCC interpolated values from the gauges to the 

grid by using a method which took into account the distributions of gauges to the 

grid point and also the directional distribution of gauges in relation to the grid point 

(Schneider et al, 2011, p2). 

The Full Data Reanalysis Product was used because this had a higher accuracy 

than the other products (Schneider et al, 2011, p3). Data was downloaded for the 

area with an upper left corner of 35.25° longitude and 38.75° latitude, and a lower 

right corner of 46.5°  longitude and 30.73°  latitude. Monthly precipitation data 

(mm) were selected for the years between 1980-2010; around 30 years is a typical 

range that is sufficient for analysing rainfall data.  

Using Matlab software, the precipitation data were loaded into the dimensions of 

station (grid point), year and month. By adding the monthly values together for 

each station, the sum total of rainfall for each year, and for each point, was 

obtained. This was done because thresholds of water requirements are generally 

discussed in terms of averages that reflect yearly totals for any given point in the 

Near East, rather than in terms of averages based on monthly figures; e.g. 200 

mm a year is regarded as the limit of rain-fed agriculture (see Chapter 1.4).  An 

average value for the 30 year period was then calculated for each grid point and 

saved in an ascii file. 
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Figure 3.34: Isohyets (31 year average). Monthly values were downloaded from 

the GPCC visualiser and processed to create rainfall isohyets (see description of 

methods above). 

Further analyses were done with these data; the average figure alone can hide 

problems such as the high variability of rainfall in the region and the proportions of 

wet and dry years (e.g. see Heathcote, 1983). Taking 200 mm as the boundary 

below which rain-fed cultivation is not usually possible, the yearly data were 

thresholded and the number of years which received rainfall above the threshold 

value of 200 mm were counted, again for each point.  

Following Wallen’s method (1967, p375), an interannual variability relative to the 

mean value was calculated for each point (see Equation 3.6.1). The differences 

between the total rainfall occurring in each year and its following year for each 

station were calculated ( ][ 1 ii PP  ).This involved using the Matlab functions 

absolute value (abs) and rowwise difference (diff). Absolute value ensures that 

only the absolute value is returned i.e no negative values. Rowwise difference 

calculates the differences between each adjacent value along a row.  
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These were then summed (∑) and divided by the mean rainfall (�̅�), (based on 31 

years) which was multiplied by the number of years used in the calculation. A 

percentage was then calculated and the result saved in the form of ascii grid 

points. 

 

 1

][

100 2

1











nP

PPabs

IAV

n

i

ii

rel  

Equation 3.6.1 (Adapted from Wallen, 1967, p375).  

][ 1 ii PPabs   = the absolute value of the difference in annual rainfall for the station 

in years i – 1 and i. 

 

Figure 3.35: Interannual variability derived using Equation 3.6.1. Data were 

derived from the GPCC Full Data Reanalysis Product and processed using 

methods discussed above (e.g. see Equations 3.6.1 and 3.6.2). An area of low 
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interannual variability to the south of Mosul may be due to a small number of 

erroneous or anomalous points in the original grid.  

3.6.3  Interpolation and contours. 

Once the data were generated, the different analyses were imported into ArcGIS. 

At this stage, they were in the form of grids of points. 

First, interpolation was used to generate rasters. Different interpolation techniques 

exist which can be used for rainfall mapping (see Tabios and Salas, 1985). 

However, in this case Inverse Distance Weighting (IDW) was found to give the 

smoothest interpolation visually, allowing for clearer isohyets to be generated. An 

IDW algorithm is provided as part of the Spatial Analyst toolbox in ArcGIS 

 

𝑃𝑗= ∑  𝑊𝑖𝑗 𝑃𝑖
𝑛
𝑖=1

 

Equation 3.6.2 (After Ball and Luk, 1998). 

 

Pj = Precipitation at point 

Pi = Rainfall depth at gauge 

Wij= Interpolation weights 

 

IDW generates a surface which depends on the distance between the input and 

the interpolated point; the nearest points will have the most influence ( see Lu and 

Wong, 2008, p1044); IDW is particularly applicable in areas where local variability 

can be high (ibid, p1045). Compared to other algorithms provided in the GIS, the 

IDW produced a ‘smoother’ interpolation more suited to the generation of rainfall 

isohyets. 

The default search radius of 12 points, using the variable option, was used in this 

case. A power of 2 was used. An IDW raster for the average rainfall over 31 years 
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was generated. An IDW was also generated for the inter-annual variability index 

(Figure 3. 33). These data indicate that much of the study area, including the 

Balikh Valley, is located in zones of between 30-40% variability.   

Finally, the contour tool was run in order to generate the isohyets for the average 

rainfall data; this is a typical way of displaying hydrological spatial data (see 

Homberger and Wiberg, 2005, p13.1). The output consists of vector contour lines 

which divide the different parts of the IDW (at intervals of 100 mm of rainfall). 

Figure 3.32 shows the result of this. 

 

3.6.4 Evaluation  

There is some degree of uncertainty inherent in using these data, as Chapter 1 

indicates. There are a number of factors which can affect the results generated. 

The GPCC used rain gauges to interpolate the grid used in this analysis.  As part 

of this, they selected and rejected data according to particular parameters, for 

example the number of years of data available (Schneider et al, 2011, p8). The 

raw data used to make the grid was quality controlled, and errors identified 

corrected (Rudolf and Schneider, 2005, p8-9). Given this, it may be possible agree 

with their qualifier of the data as of ‘higher accuracy’ than their other products (see 

Schneider et al, 2011, p3).  

It is important to recognise that the interpolation carried out by the present study is 

based on a relatively sparse grid (0.5 degrees) which itself is based on a relatively 

sparse distribution of rain gauges. Given this, it is important not to over-interpret 

the data at a local scale.  As Figure 3. 36 indicates, the GPCC data on rain gauge 

locations show relatively few rain gauges in the study area; this could hide aspects 

of rainfall trends, given that a high degree of local variation is common in  the 

dryland zones (Heathcote,1983, p26-7). The GPCC did not provide the locations 

of rain gauges in Iraq although they provided rainfall data for that region. 

Presumably the data exists; the GPCC Annual Report for 2007 indicates 56 

stations in Iraq in 2007 (p4), for example, and Becker et al (2012) lists Iraq as a 

contributor. However, the station locations were not released.   
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Any local variability could be missed, and any errors present in the grid, as a result 

of errors in the original rain gauge, would be propagated by the interpolation. The 

GPCC recognise that the most significant potential sources of error arise from an 

insufficient network density, as well as from problems with measurement methods 

(Rudolf and Scheider, 2005, p1). Variability of precipitation can also affect the data 

(ibid, p11); Figures 3.31-3.32 show that there are relatively high standard 

deviations for the 30 year period for each station. 

 

Figure 3.36: The distribution of rain gauges in Syria and Turkey is sparse (rain 

gauge location data for Syria and Turkey from GPCC). The locations provided by 

the GPCC may not represent all the rain gauges used in their grid creation 

method. 

Secondly, the precipitation data are delivered in the form of interpolated grids by 

the GPCC. It is important to recognise that the points in the grid used to produce 

the IDW represent interpolated, rather than true, values. Various studies have 

compared different interpolation methods such as IDW and Kriging (e.g. see 

Groovaerts, 2000; Soenario and Sluiter, 2010). For example a study from West 

Africa found that different interpolation methods did not give the same results, with 
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IDW minimising rainfall amounts (Ruelland et al, 2008, p106); a similar problem 

was identified by Tabios and Salas (1985, p380).  

The present study found that the two interpolations showed similar trends (see 

Figure 3.37). It was found that the difference between the two interpolations was 

less than 20 mm within the study area. Given that in this case rainfall in intervals of 

100 mm was used for interpretations, the degree of difference is relatively small. 

The IDW interpolation was used by this study in most cases. 

 

Figure 3.37: Comparison of interpolation methods showing a positive correlation. 

While the trend line does not fit the data perfectly, it is clear that as the values for 

the IDW increase, so do the values for the kriging.  

An area of low interannual variability in Iraq, south of Mosul (see Figure 3.35), 

may represent errors in the original dataset which were further enhanced by 

interpolation. Five grid points in the GPCC data exhibited smaller differences from 

year to year than the other points, including those nearest to them. This meant that 

the absolute difference value for each of these points was low, affecting the 

outcome of the variability model and interpolation algorithms. Because the GPCC 

dataset is an interpolated grid, it is possible that a limited number of stations 

caused the error, which was propogated during interpolation. It is possible that 

some form of data infilling occurred to replace missing values in the GPCC grid or 

in a rain gauge record or that there was a problem with an individual rain gauge.  
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This resulted in higher values when variabilty was calculated, using the method 

described above (Equation 3.6.1). Inconcistancies in any such dataset are 

possible and can affect the outcome of a model (Bevan, 2011, p19-20). However, 

because it is impossible to know exactly why this problem arose in the original 

dataset, the points should not be removed entirely or edited; rather, an 

understanding of the limitations they represent should be recognised here.  

Other issues of uncertainty could relate to a higher resolution variation over time 

than the monthly data show. The raw GPCC precipitation data are downloadable 

in the form of monthly totals. Many studies of precipitation patterns have analysed 

rainfall in much shorter time-steps (e.g. see Soenario and Sluiter, 2010). This 

might give a higher-resolution of some trends. Because archaeology generally 

uses yearly totals to describe rainfall, for this study, the monthly data were 

summed to create a yearly value for each station over a 30 year period. While data 

of a higher temporal resolution may have revealed some detailed trends in rainfall 

over the past 30 years, this may be less relevant for this project, which seeks 

instead to apply general rainfall patterns to ancient Northern Mesopotamia. It is 

also important to note here that the sources of evidence used represent the best 

data available, with the longest timescales of record, within the constraints of this 

research. 

The problem of applying modern data to ancient climate has also been discussed 

above. In this case the only possible mitigation is to recognise what conditions 

might have prevailed in the past through the use of proxy data; this was described 

in Chapter 1. The proxy evidence does seem to suggest that conditions in the 

period of the later empires were similar to those of today, (e.g. Bar-Matthews et al, 

1997, p166; Riehl et al, 2009, p112), making the modern data somewhat 

applicable to a study of ancient water management dated to the past 3000 years. 

The variability data are especially useful here, because the results of this method 

give an indication of the areas which would have benefited most from irrigation. 

Areas of unreliable rainfall, such as the southern Balikh Valley, could have 

produced higher yields with the application of careful water management, ensuring 

predictable tax yields for powerful states. 



162 
 

Uncertainty in the rain gauge dataset could potentially be reduced with a higher 

resolution gridded dataset, and with an accurate list of the locations of the rain 

gauges used to produce the GPCC product. It could also be more easily qualified 

if compared with different sources of data, for example TRMM. More detailed 

comparison of different interpolation methods could also be carried out. Problems 

inherent in applying the modern rainfall trends to antiquity could be further 

explored if proxy data were compared statistically with the modern data (e.g. see 

Kalayci, 2013). This work could form part of larger-scale research focused 

specifically and exclusively on precipitation trends. 

 

3.7 Summary 

This chapter has outlined a range of different methods used to record and validate 

features of ancient water management. Rather than focusing on only one 

approach, this thesis has used an interdisciplinary methodology in order to 

generate as detailed a database as possible. Image interpretation and fieldwork 

enabled the initial identification of canal systems; use of SRTM and ASTER DEMs 

allowed for gradient data to be collected and for remains to be distinguished from 

natural streams and other linear features; CORONA DEMs revealed the 

morphology of individual channels in more detail; and the precipitation analysis 

contextualised the need for irrigation in this zone of low and variable rainfall. The 

different types and scales of the recorded irrigation systems can now be 

discussed.  
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Chapter 4: Irrigation and drainage 

 

 

4. 1 Introduction 

Water management in Northern Mesopotamia comprises systems of different types, 

functioning at a range of scales, and distributed according to specific environmental 

niches. These systems and conditions need to be described in order to contextualise 

the detailed results of this thesis. An understanding of how irrigation systems function 

in general terms can provide insights into ancient examples. A discussion of location, 

the design of individual parts of systems and the success of different kinds of systems 

will be presented here, informed by modern guidelines (e.g. see Jensen, 1983; 

Zimmerman, 1966). In arid and semi-arid conditions, any source of water will be 

utilised under current economic conditions; around 90% of all global freshwater is 

now used for irrigation (Perez et al, 2011, p663). While rain-fed agriculture may have 

predominated in Northern Mesopotamia prior to the period of the later Empires, 

deliberate water management has since developed to the stage where only around 

12% of arid lands now still rely on precipitation (Heathcote, 1983, p167). 

 

Modern irrigation is meticulously controlled with an understanding of how water flows 

in any specific conditions. Even before more recent methods and technologies, 

however, managing water has always been a complex balance between providing 

enough water and preventing degradation. This notion can be described as the 'water 

balance': 

 

 

Precipitation + Irrigation water = Evaporation + Percolation.    

 

(After van den Berg et al, 1973, p23). 
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The processes and conditions which affect all of these variables may not have been 

as completely understood in the past as they are now.  Some water management 

systems appear to have functioned efficiently in their specific landscapes (e.g. many 

qanats), therefore indicating that local conditions were often factored into the design 

of many systems. 

 

4. 2 Local conditions and water resources 

Water sources, soils, topography, drainage and climate will be unique to a specific 

location. These factors influence evaporation and percolation and control the design 

and efficiency of any water management network; a recognition of these needs to be 

made before more detailed explanations are given.  

 

There are different natural water sources that can be utilised. Perennial rivers 

traditionally form the basis of most canal-based irrigation systems. While major water 

courses in this region like the Euphrates are fed by snow melt in Turkey, others, like 

the Balikh, have their origins in springs at the margins of uplands. Natural wadis that 

channel runoff often cycle between dryness and unpredictable peak discharges, with 

flash floods possible (Agnew and Anderson, 1992, p60-64). Some small-scale water 

management methods work by collecting and re-distributing runoff.  

 

Groundwater can also be utilised. Modern use involves methods such as pumping to 

obtain water and sprinklers to distribute it, but ancient irrigation was also able to tap 

this resource more sustainably through using wells or qanats. 

 

Where water is unevenly distributed temporally and spatially, water storage can be 

practised. Often, systems use a reservoir derived from a water course. This enables 

storage of water so that it can be used at times of low rainfall in crucial stages of crop 

growth. These can be high-capacity structures which can support a canal system, or 

smaller scale tanks and cisterns. 
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Other environmental and geomorphic conditions can also affect the type of water 

management strategy that can be adopted. The texture, depth, salinity and infiltration 

capabilities of soil affect irrigation strategies (Thompson et al, 1983, p48). For 

example, because some relatively impermeable soils can limit infiltration, an effective 

drainage strategy may be needed to prevent flood damage to irrigation systems. 

Other soil types, for example the alluvial soils of river valleys like the Balikh, have a 

higher capacity to hold moisture, making them conducive to cultivation. Soil 

conditions such as high salinity levels can limit yields (e.g. see Young, 1976, p209) 

and soil organic matter levels are also significant (ibid. p306). 

 

The topography of the landscape must be considered. Canal-based irrigation systems 

need a continuous grade (Zimmerman, 1966, p222) that is neither too steep nor too 

shallow: the velocity at which the water in the channel travels must be balanced to 

avoid either erosion or siltation. Micro-topography in individual fields can also affect 

the flow of water. 

 

A major consideration is climate, as discussed in Chapter 1. Amounts and timings of 

precipitation determine not only the kinds of methods used but also whether irrigation 

is used at all, especially in ancient contexts. When an area receives above 300 mm of 

rainfall of year, rain-fed cultivation is possible, although risky; estimates of necessary 

annual rainfall are around 200/250 mm (Wilkinson, 1994, p484; Bagg, 2000a, p309). 

Rainfall is often variable in arid areas and tends to be highly localised (Agnew and 

Anderson, 1992, p49-51). This is indeed an issue in the Middle East, where 

precipitation is highly variable and is mostly confined to the winter months (Fisher, 

1978, p64). It may be that the annual average is not a useful value (see Heathcote, 

1983, p27). Therefore it may be most informative to view it in terms of its variability. 

Yields that rely on this uncertain rainfall are often low and land can become rapidly 

degraded due to uncontrolled runoff (Oweis et al, 1999, p2).  Chapter 3.6 describes a 

method used in this project to model recent rainfall variability in Northern 

Mesopotamia; Chapter 1 explains how this may be applicable to the ancient situation. 

The modelled rainfall variability index suggests that precipitation throughout the study 
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area tends to be variable, even where averages suggest that rainfall can in some 

years be sufficient. The lack of security caused by this variability may have been a 

significant factor behind the widespread distribution of water management features at 

this time. Therefore, the possibility of more secure crop yields encouraged the later 

empires to irrigate. 

 

Timing of precipitation must also be considered. The summer in the Middle East is dry 

and hot, leading to high levels of evaporation. Water quantities must be sufficient to 

water the crop as well as meet its evapotranspiration needs. The choice of crop and 

scheduling of watering are significant because of the response of different crops to 

conditions at key growth stages. The impact of water availability on crops in the past 

has been inferred from studies of preserved plant material (e.g. Fiorentino et al, 

2011). In terms of quantities, wheat needs most water during early growth stages 

(Shalhevet et al, 1981, p9), and a recent comparison of different barley strains has 

shown differing responses to drought (Thameur et al, 2012). A traveller’s report from 

the Balikh suggests that barley, rice and opium were amongst the crops grown in the 

region in the early 20th century (Sykes, 1907, p240), taking advantage of these 

conducive soils and perennial water supply from the river.  

 

4.3 Water management methods 

4.3.1 Water harvesting 

Small-scale methods of gathering water were used in antiquity as well as in some 

contemporary farming. These involve ways of diverting or collecting natural runoff and 

rainfall. These small scale techniques  can be more sustainable than larger-scale 

systems. In some cases they can be as simple as an earth/stone diversion weir 

diverting flood water onto adjacent fields. Figure 4.1 illustrates how water can be 

redirected to the fields straight from a natural channel, without the use of conveyance 

canals. Wilkinson recorded this kind of water harvesting in Yemen, where wadis were 

diverted using dams (Wilkinson, 1997, p387). 
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Figure 4.1: Water diversion from a wadi onto the fields using small weirs.  

 

Water can be harvested from streams, wadis and by capturing runoff. Runoff 

harvesting makes use of surface water resources at times when they are abundant, 

with the amount of water which can be collected dependant on the size of the 

catchment area (Barrow, 1999, p54). The water running off hillsides and down wadis 

is collected behind some kind of interceptor. There are many kinds of earth and stone 

bunds which are used to trap and divert water (e.g. see Barrow, 1999, p62-63). An 

example of this kind of runoff collection has also been recorded in Yemen (Wilkinson, 

1997, p387), where terraces were constructed to guide and hold moisture flowing 

downslope from more mountainous area. 

 

Another example is the use of check dams, constructed in wadi beds, to retain flood 

water in small fields (Heathcote, 1983, p190). Often, a series of dikes and ditches is 

used to redirect and trap this water (Hart et al, 1983, p504). Water can then be 

passed through a series of basins (see Heathcote, 1983, p192). On examination of 
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CORONA images for Syria, examples of these kinds of field structures could be 

identified, especially in the steppe, although their dates and contexts remain 

unknown. Research undertaken in the American southwest recorded check dams 

measuring up to 15 m in length and as close together as 3 m (Doolittle, 1985, p284). 

Rather than creating terraces, the check dams may have functioned to protect fields 

(Doolittle, 1985, p289).  

 

 

4.3.2 Conveyance systems 

Many irrigation systems rely on the transport of irrigation water; these can be 

described as 'reticulation systems' (see Heathcote, 1983, p192). These are larger-

scale, larger-capacity networks comprising extensive canal and channel systems, and 

often include storage, for example dams and reservoirs. As Figure 4.2 demonstrates, 

they can involve both irrigation and drainage. Ancient examples are generally gravity-

flow based systems which use the natural gradient of the landscape; unlike other 

linear features such as roads and tracks, they follow the contours. In some cases, 

canals were made to cut across gradients by the means of excavating a deep 

channel, or even by using water lifting devices such as shadufs. 

 

Terminology used throughout this thesis must be defined here. ‘Canal’ refers to any 

artificial channel; sometimes it is possible to clarify this further to identify main 

conveyor canals and secondary irrigation canals (laterals). Where the secondary 

canals are being discussed in terms of what is visible in a satellite image, rather than 

in terms of their specific function, they are defined as ‘offtakes’.  
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Figure 4.2: Conveyance systems comprise a series of canals enabling abstraction, 

transport of water, and drainage. Storage of water can also be incorporated into these 

systems.  

 

4.4 Components of systems 

While some systems are simple diversions of floods straight to the fields, and others 

involve complex irrigation and drainage networks, many will combine elements of 

both. For example, runoff might be gathered using check dams, and then diverted into 

a system of short canals and ditches. With this flexibility recognised, the different 

functions of parts of systems can now be discussed. 
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Main conveyor 

Sub-main/distribution canal 

Irrigation lateral 

Field lateral 

Irrigation lateral 

Field lateral 

Firstly, an overview of the definitions of the sequence of channels must be given. 

Figure 4.2 and Figure 4.3 demonstrate this sequence. Water is abstracted either 

from a channel or reservoir by the main conveyor canal. This can branch into a 

number of submain conveyors which enable a larger area or areas of differing 

topography to be irrigated. The mains are the main transport canals and the largest 

channels in the system, and consequently the easiest to identify in satellite images. 

The irrigation lateral then takes water from the mains to the fields. Finally, the water is 

drawn from the irrigation lateral into the field lateral and delivered to the crops. 

Drainage channels can be incorporated at different points, but most successfully at 

the lowest point of each system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Sequence of irrigation channels.  

 

 

4.4.1 Abstraction 

Water can be obtained from a range of sources, including rivers, perennial wadis, 

springs and the groundwater itself. Currently wells are common throughout the Middle 

East (e.g. see Beaumont, 1996); water is extracted from the ground using diesel-

powered pumps. However, abstraction can take the form of diversion structures in 
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wadis, designed to capture runoff and redirect it onto adjacent fields. In other cases, 

channels will be dug straight from the bank of a watercourse so that fields can be 

flooded, the water retained within earth dikes and basins. Some kind of sluice 

structure may be required here; in other situations the channels/walls are constantly 

reformed (this was observed near Tell Jerablus Tahtani in Syria in 2010). An example 

is the Nabataean systems in Jordan, which used wadi barriers to divert water (e.g. 

see Finlayson et al, 2011, p212; Oleson, 2007, p220). 

 

 

Figure 4.4: An outlet in a wadi floods a series of basins bounded by earth dikes.  

 

Sometimes more complex structures will be used to provide water to a canal system. 

If there are times when natural water resources are low, reservoirs can be 

constructed. Found at the head of an irrigated area in order to serve it by gravity, 

these enable flow to be regulated and stored during times of low demand (Replogle et 

al, 1983, p332-334). Dams enable water to be impounded in a reservoir and 
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controlled outlets enable it to be released into the irrigation system (ibid, p336-337).  

 

There are examples of even smaller-scale water storage in the form of cisterns and 

tanks. This technology has been used in northern Mesopotamia since at least the Iron 

Age, attested to by the Neo-Assyrian Harran census (see Fales and Postgate 1995), 

possibly referring to features in the Balikh Valley. Examples have been recorded in 

Jordan, where Nabataean rock-cut cisterns were constructed in a bottle shape to limit 

evaporation (Finlayson et al, 2011, p210; OIeson, 2007, p222). 

 

 

4.4.2 Conveyance 

As noted above, water can be conveyed to the fields in very simple ways that require 

relatively little maintenance. Usually, however, a main canal will be needed to 

transport water from the abstraction point across as large an area as possible. As 

Figure 4.3 demonstrates, submains, irrigation laterals and finally the fields 

themselves will derive their water from this canal. In order to irrigate a substantial 

area, the gradient of the main canal should not be too steep; however, if it is too 

shallow, sediments will build up in the channel and limit its efficiency. The slopes of 

the water surface and channel bottom need to be equal, at a velocity that does not 

damage the channel (Kruse et al, 1983, p397).  Recommended gradients from 

irrigation literature are listed in Table 4.1. For the main conveyor canal, a fairly 

shallow gradient of no less than 0.5% and up to 1% is proposed in order to irrigate the 

whole project area (Zimmerman, 1966, p218-221). This channel preferably follows the 

natural contours of the landscape (ibid, p217). The elevation of the conveyor canal 

needs to facilitate free flow at the diversion points (Kruse et al, 1983, p406). 

Prominent banks can be constructed from excavated spoil and further periodically 

enhanced with dredged material. Significantly, many of the ancient main canals 

recorded by this research flowed at lower gradients (as low as c.0.1%) than the 

modern recommended values.  

 

Secondary conveyors (known as irrigation conveyors/irrigation laterals) take water 
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from the main and submain canals over a short distance to the fields. They generally 

need a gradient of between 0.1 and 0.4% (Kruse et al, 1983, p397) and up to 1.5-2% 

(Zimmerman, 1966, p221).  

 

These irrigation laterals are usually the smallest parts of the system visible in 

CORONA images. Usually, they have a capacity of less than 0.3 m3/s; although for 

border or basin irrigation larger streams will be required (Kruse et al, 1983, p395-

397). When the topography is flat, for example in the case of the Syrian Balikh, the 

channel may need to discharge water slightly above the field level (Kruse et al, 1983, 

p406) to allow adequate distribution to the fields.  

 

 

Table 4.1: Recommended gradients for parts of irrigations systems (After 

Zimmerman, 1966; Kruse et al, 1983) 

 

Feature Recommended Gradient % 

Main conveyor 0.5-2.5 

Irrigation lateral 0.1-2 

Field lateral/furrow (not usually 

visible in available imagery) 

Depends on topography and soil 

type. 0.5-1.2 

 

 

 

4.4.3 Field laterals 

The field laterals (not to be confused with the irrigation laterals) deliver water from a 

canal, to the crop. These can be the use-point of both small-scale methods and 

larger, reticulated networks. While open turnouts (structures which divert part of the 

water from a canal to a lesser channel; see FAO 1985) exist (Agnew and Anderson, 
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1992, p149) a sluice gate or siphon can be used to control flow to the field laterals 

(see Kruse et al, 1983, p410-411). Some kind of managed outlet is often highly 

beneficial when using methods like furrow irrigation, enabling equal flows to all 

furrows (Hart et al, 1983, p550). Devices that can be made from brush and stakes 

located at the low points of fields slow down the flow and spread it, or earthen 

embankments and piles of rocks can divert flow (Doolittle, 1991, p143). 

 

The field can simply be flooded straight from the irrigation conveyor/lateral/stream; a 

method known as ‘wild flooding’ (Hansen et al, 1980, p201). While this is the simplest 

method it can lead to waterlogging and salinization. Confining the water to basins 

isolated by dikes can be more efficient, especially when irrigating rice or orchards 

(Hansen et al, 1980, 204). Figure 4.4 shows fields surrounded by earth bunds which 

are inundated with water until the soil is infiltrated. The flow can either reach each 

basin straight from a canal or stream, or, especially where land is sloping, it can pass 

through successive basins (Kay, 1986, p26-35).  

 

Variations such as border irrigation exist, where narrower segments are separated by 

dikes, and contour levee irrigation, where levees are constructed along and 

perpendicular to contours to enclose basins which are inundated with water at the 

highest point and drained along the lowest levee (Hart et al, 1983, p512-p524).  

 

Furrows are an efficient method of delivering water to the crop; they are easy to 

construct and can prevent excessively saline water directly touching plants (Hart et al, 

1983, p532). Furrows will take different forms depending on the crop and soil type. 

Figure 4.6 demonstrates a schematic series of ridges and small evenly spaced 

furrows, periodically flowing with water supplied from a channel, often using siphons; 

a drain at the end of the furrows should collect excess water (Kay, 1986, p57-58). In 

July 2010 furrows were observed in operation near Jerablus Tahtani (see Figure 4.5); 

in this area the water was pumped from the ground using a diesel pump and a small 

earth bank was breached by hand so that water could begin to infiltrate the furrows. 
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Figure 4.5: Furrow irrigation at Jerablus Tahtani, Syria, July 2010.  

 

 

 

 

Figure 4.6: Illustration of furrow irrigation. 
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4.4.4 Drainage 

Drainage is an essential aspect of water management that receives less attention 

than irrigation in studies of past Near-Eastern water management. In general, the 

history of drainage is less well known than the history of irrigation (Gulhati, 1973, 

p12), outside perhaps southern Iraq (e.g. Pournelle, 2003; Adams, 1981).  

 

When the soil is saturated with water, it can pool on the soil’s surface (FAO, 1985), 

potentially damaging crops and raising the water table (FAO, 1985). Unless the water 

table is deep, despite a dry climate, excess and poor quality (e.g. saline) water 

leading to salinization and/or erosion can be a significant problem where the natural 

drainage of soils is limited. Provision to collect and remove excess runoff and 

irrigation water is needed to prevent salt accumulation in the field, for both reticulated 

systems and water harvesting features. 

 

Drainage canals can be used to remove this excess water. Flowing at elevations 

lower than the ground surface (Ochs et al, 1983, p236-248), and with relatively 

shallow gradients of between 0.05 – 0.15% (Hansen et al, 1980, p302), they can be 

located at the lower end of a series of basins or a reticulated canal system to prevent 

waterlogging. Field drains remove excess water from the crop, while interception 

drains run between a slope and the irrigated area, collecting runoff and seepage 

water that flows down the slope before it inundates the flatter irrigation area (e.g. see 

Donnan and Schwab, 1974). Some drains can be used specifically to lower a shallow 

water table. These need to be especially deep (ibid, p99).  

 

When drainage is inadequate irrigation systems can fail, often due to increases in 

salinity. The ancient example of southern Iraq is well known (e.g. see Jacobsen, 

1982). However, this can also be an issue in the northern zone; problems of salinity in 

the Harran Plain, Turkey, have been caused by mismanagement of water resources 

(Yesilnacer and Gulluoglu, 2008).  
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4.4.5 Maintenance 

Maintenance of all the above channels will be necessary. Sediments and weeds can 

build up and need to be removed (Hansen et al, 1980, p250). The dredged material is 

often deposited on the channel banks, which, over the long-term, causes 

accumulations of upcast.  

 

These tasks require some organisation, either at an individual, community, or state 

scale. The state can enforce periodic and regular maintenance tasks, or organisations 

of local stakeholders can enforce it. This can involve significant time and labour: for 

example, up to one and a half months is allocated to this task in the modern day 

Balikh (Alkhaier et al, 2012, p1835), where excessive siltation can be a problem, 

given very low gradients. Uncontrolled flood events can necessitate repairs. 

Scarborough suggests that repair costs after a channel is damaged can be so high 

that they affect the social groups involved (Scarborough, 2003, p93).  

 

 

4.5 Qanats 

While the reticulated systems summarised above are usually comprised of canals, a 

different kind of technology must also be described here. Many types of underground 

water-transport canals or galleries exist (e.g. Bagg, 2004); qanats are subterranean 

channels which tap groundwater and transport it downstream. Several known qanats 

throughout Syria were recorded by Lightfoot (1996). Increasingly, remote-sensing 

based research has revealed more examples in Syria and Iraq. The circular 

maintenance shafts of qanats are visible in aerial and satellite images throughout the 

Middle East (Wilkinson and Rayne, 2010). 

 

As Figure 4.7 shows, a qanat works by drawing water from a 'mother well', dug 

where the water table is high; a sloping subterranean channel then delivers this 

groundwater to irrigated areas (see Lightfoot, 1996, p321). Yazdi and Khaneiki (2010, 

p15-16, p46-50) provide summaries of the different use-points of such systems. For 
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domestic use, gallery-structures allow access both for public and private purposes. In 

terms of irrigation, open channels can originate straight from the point where the 

qanat tunnel meets the surface and irrigate land at a lower elevation from this outlet. 

In some cases irrigation water is stored in a pool which increases the head and the 

amount of water (ibid.) 

 

 

Figure 4.7: Subterranean qanat tunnels extract groundwater and transport it, by 

gravity flow, to the surface. 

 

As long as the rate of groundwater extraction does not exceed the rate of recharge 

these structures can persist for many years, even centuries; unfortunately fossil-fuel 

powered pumping more recently has lowered the water table in many areas to the 

extent that qanats can no longer be used (e.g. see Yazdi and Khaneiki, 2010, p33-

34).  

 

4.6 Efficiency and environmental limitations 

The efficiency of irrigation systems can be measured in terms of crop yields. Large 

scale gravity-based reticulated canal systems are expensive but can provide high 

returns. Pumping directly from the groundwater is a relatively cheap alternative and 



179 

 

can also enable large outputs. However, the effects of this highlight a need to 

recognise the other kind of 'efficiency'. 

 

Many modern water management systems have proved to be unsustainable in the 

long term, suffering problems such as salinization and depletion. Such problems 

beset irrigators in antiquity (e.g. conflict over rights to abstract from the Balikh, see 

Wilkinson, 1998; Villard, 1987; Dossin, 1974). It can therefore be argued that some of 

the more 'traditional' methods are more efficient in the long term, able to deliver 

outputs without causing immediate problems. The longevity of systems such as 

qanats seems to confirm this (Agnew and Anderson, 1992, p140). The different 

impacts and efficiencies of archaeological systems will be discussed in subsequent 

chapters. 

 

The limitations which nevertheless affect even the smaller scale techniques are now 

outlined here. For example, precipitation and subsequent runoff may not occur at the 

ideal times for plant growth (Hart et al, 1983, p551); if storage is not used, this water 

will therefore be wasted and can cause erosional damage to channels necessitating 

frequent maintenance for relatively low returns. Erosion can also be a major limiting 

factor at the field level when applying water using furrows (Hart et al, 1983, p532), as 

the photograph taken in Syria in 2010 shows (Figure 4.5).  

 

Storage may then be the answer. However, substantial water losses affect many 

irrigation schemes through evaporation from reservoirs (Replogle, 1983, p338) and 

seepage from reservoirs and unlined canals where losses can be as great as 1/3 of 

the total water (Kruse et al, 1983, p395). In the case of seepage, the water enters the 

water table and causes further problems (Van Den Berg et al, 1973, p36), especially 

when, as is common, quantities in excess of crop-water requirements are applied 

(Agnew and Anderson, 1992, p148-149). 

 

Where soils are not sufficiently permeable waterlogging can persist. Salts contained 

in the irrigation water will become concentrated on the soil surface when evaporation 
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occurs (Buol et al, 1980, p93). Irrigation can also lead to a rise in the water table; as 

Figure 4.8 shows where evaporation dries the soil surface the shallow ground water 

will be drawn up to the surface by capillary movements and salts will accumulate in 

the root zone (e.g. Hoffman et al, 1980, p145). In high levels these salts can damage 

plants, reducing yields, and prevent further cultivation. Northern Mesopotamia is 

affected by this problem; recent remote sensing research has demonstrated that 

shallow groundwater with concomitant low drainage rates is common (e.g. Alkhaier et 

al, 2012, p1833). 

 

 

 

 

 

 

 

 

 

Figure 4.8: Waterlogging and canal seepage can lead to a rise in the water table, 

drawing salts into the root zone. Salts can also be left behind when surface water 

evaporates. 

 

Mitigation strategies can be adopted to reclaim land and prevent further salinization. 

Drainage channels are often used to remove excess water from an irrigated area and 

lower the water table. Salts left on the soil surface can be removed by flooding the 

field (van den Berg et al, 1973, p19-36); they should then leach downwards. This can 

involve quickly flushing water across the field to remove surface salts. Clearly a 

balance of water that enables leaching but prevents waterlogging must be maintained 

(Jacobsen, 1982, p61). 

 

Investigations in the Beni Amir district in Morocco, where rainfall conditions are similar 

to those of the Near East, show that drainage ditches were used to purge main canals 
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of excess water. In some cases this water was used for further irrigation (e.g. see 

Aragüés et al, 2011, p961). Slightly saline drainage water can be used for cultivation, 

especially when careful timing of applications is employed (e.g. see Sharma et al, 

1994, p25). Water flowing through ancient irrigation systems may often have been 

somewhat saline; using more salt tolerant crops such as barley could have been a 

mitigation strategy (as Sykes, 1907, p240 suggests, this was one of the main crops 

grown in the Balikh in the early 20th century). 

 

4.7 Case study: Hohokam water management 

In order to better place these design factors in a real context which can inform 

understanding of the systems mapped by this thesis two case studies of well 

understood ancient water systems are presented here. Information which can help 

inform the current study includes details of system scales and layout, canal gradients, 

potential irrigated areas, and ways of administering water management.  

 

The Hohokam systems of Arizona were selected because the climate and types of 

technology used are somewhat comparable to those of Syria.  The complex and 

dynamic systems of the Phoenix basin in the USA form a useful example of 

reticulated water management. While it is not within the scope of this project to 

describe the results in detail of the many studies that have investigated it (e.g. 

Howard and Huckleberry, 1991; Breternitz, 1991) summaries of some key 

interpretations can be outlined here.  
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Figure 4.9: Drainage basins of Phoenix, Arizona (from Waters, 2008, p334). 

 

Irrigation abstracting from the Salt and Gila rivers (see Figure 4.9) peaked between 

AD 300-AD 1400 (Waters, 2008, p339). Originally, small-scale methods including 

floodwater farming and small ditches were in use (Howard and Huckleberry, 1991, 

p167). Later, larger canals and associated systems, more comparable to many of the 

systems identified by the present study (see Chapters 5 and 6) were constructed. 

These were dynamic systems operating over a relatively long timescale: ceramic 

evidence in some cases suggests lifespans of at least 100 years (Woodbury, 1960, 

p270). The Hohokam canals underwent constant modification, change and 

replacement (Doolittle, 1991, p144-146). Understanding them as such dynamic 

entities may be a useful paradigm for many ancient systems.  
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The climate of the area ranges between arid and semi-arid, involving both water 

scarcity and occasionally catastrophic summer rainstorms (Hunt et al, 2005, p436-

438). The upper part of the Phoenix basin receives between 220-300 mm of 

precipitation per annum while further downstream the Salt River it is generally limited 

to between 150-210 mm (Cable, 1991, p119). This pattern is not dissimilar to the 

conditions in the Balikh Valley and in the southern part of the study area dealt with by 

this project. 

 

The naturally saline Salt River supported several irrigation systems. Some kind of 

water control structures may have been used to direct water from the Salt river into 

these main canals, possibly a series of dams (Hunt et al, 2005, p448). Elsewhere in 

the Phoenix basin, a reservoir was excavated on the Gila River. This dated to around 

1150-1300 AD and served a main canal (Purdue et al, 2010, p132-140). Similarly, it 

has been suggested that throughout the Phoenix basin systems of weirs and gates 

were used to control abstraction (e.g. see Purdue et al, 2010, p131). 

 

Several main canals have been recorded for ‘Canal System 2’ of the Salt river valley 

(Hunt et al, 2005, p442); estimates of the land irrigated by this system range from 

6075-33916 ha (Howard and Huckleberry, 1991, p186) to 20000 ha (Hunt et al, 2005, 

p435) depending on evaporation and seepage losses and fallow rotation scheduling. 

While designations and definitions vary, eight of the channels have been classified as 

main conveyors, eight distribution (sub-main) channels were recorded, and four 

diversion points were located by archaeological research (Howard and Huckleberry, 

1991, p19-20).  

 

Excavated cross sections of the major canals revealed channels of up to 6-10 m wide 

and 3-4 m deep (Woodbury, 1960, p267). These main and sub-main canals flowed 

along the natural contours, having very shallow gradients (Murphy, 2009, p51); this is 

comparable to many of the canals recorded by this project throughout Northern 

Mesopotamia (see Chapters 5 and 6). Water was then diverted into irrigation 
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laterals/irrigation conveyors that flowed perpendicular to the main conveyors (see 

Murphy, 2009, p51), shown schematically by Figure 4.10. The laterals were 

secondary channels which terminated at the fields and tended to be less than 1m 

wide and around 50 cm deep (Doolittle, 1991, p141). They can be elevated above the 

field surface (Doolittle, 1991, p142).  Analysis of aerial photographs indicates that 

they are spaced about 45-60 m apart. Masse suggests that this pattern is 

representative of the use of wild flooding (1981, p412).  

 

 

 

 

Figure 4.10: Position of irrigation laterals relative to the main/sub-mains possibly 

indicative of wild flooding.  

 

Patterns of fields and field laterals have not always been clearly identified throughout 

the Hohokam region in the archaeological record, but inferences have been made 

based on analogies (e.g. see Hunt et al, 2005, p445; Doolittle, 1991, p140). Given a 
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lack of evidence of furrows, flood-based irrigation may have been used to deliver the 

water to the crop (Murphy, 2009, p52), which would be consistent with Masse’s theory 

of flood-based irrigation (Masse, 1981, p412). 

 

There is also evidence that indicates how the system was maintained. Many of the 

larger canals retain significant banks, initially formed from excavation spoil, and 

afterwards overlain with dredged silts (Woodbury, 1960, p269). Both dredging and the 

removal of excess vegetation may well have been necessary in order to keep 

channels clear. charcoal contained within some of these sediments suggests that the 

burning of vegetation was undertaken (Masse, 1981, p410). Given the low gradients 

of the canals recorded, which were as low as 0.6% for the northern canals of the 

Canal System 2 (Howard and Huckleberry, 1991, p154), it is not surprising that 

evidence for aggradation was noted (Howard and Huckleberry, 1991, p112) or that 

dredging was necessary. Some kind of drainage was presumably undertaken, with 

the distribution canals/irrigation laterals possibly serving a dual purpose of capturing 

and reusing outflow (Murphy, 2009, p53). A drainage function for a canal near the Salt 

River has been suggested based on its alignment (Masse, 1981, p409). 

 

The effect that irrigation had on the environment has also been investigated. Howard 

and Hucklebury (1991, p115-121) argue against a predominantly shallow water table 

based on the relatively deep stratigraphy of metal oxides in the soil, with natural 

leaching possibly removing carbonates. However, given the salinity of the Salt River, 

the fine-textured soils of the region and high evapotranspiration rates, they concede 

that episodes of past salinization may have occurred (ibid.).  Salinization has indeed 

been recorded historically for the region (Howard and Huckleberry, 1991, p115-121). 

Mitigation strategies to prevent excessive salt accumulation may therefore have been 

practised.  

 

Analysis of the social impacts of the Hohokam systems has been made (e.g. Hunt et 

al, 2005). The stability of these systems was affected by flooding, possibly driving 

periods of reorganisation (Waters, 2008, p340). Organisation and reorganisation may 
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well have been overseen by some kind of administrative structure (e.g. see Masse, 

1981, p414), although Hunt et al (2005, p434) suggest that there is no evidence for a 

powerful administrative entity. However, given the scale of many of the systems, 

specialist builders and a large labour force may well have been required (Doolittle, 

1991, p149). This work-force and water management in general may eventually have 

been managed by the mounded villages interpreted as ‘irrigation communities’ 

(Waters and Ravesloot, 2001, p291).  

 

4.8 Case Study:  Irrigation of the Wadi Zerqa, Jordan 

Past irrigation systems in the Jordan Valley provide a case study geographically 

closer to the main study area in Northern Mesopotamia. The Jordan Valley is 

especially dry; comparably to the southernmost parts of the study area. Precipitation 

is less than 200 mm per annum (Black et al, 2011, p17), and winter rainfall may have 

declined between the early Holocene and the pre-industrial period (Brayshaw et al, 

2011, p48) into which the ethnohistorical systems fall. Seasonal flash floods are 

frequent (Finlayson et al, 2011, p192), with the potential to cause catastrophic 

damage to canals.  

 

Despite the extreme dryness of the area, it was selected as a case study because it 

represents similar kinds of irrigation systems to those found throughout the study area 

(especially the Nahr al Abbara in the Balikh—see Chapter 6). Key research into the 

systems in the area of the Wadi Zerqa was undertaken by Kaptijn (2009; 2010) and 

will be discussed here.  

 

The Wadi Zerqa systems are known from traces of irrigation mapped from aerial 

photos (1920s-1960s) and ethnohistorical information (see Kaptijn, 2010, p148). In 

this period, the land was controlled by sheikhs and cultivated by villages working as 

sharecroppers (Kaptijn, 2009, p377), with the land redistributed every few years (ibid. 

p378). The ethnohistorical data were compared with archaeological remains to 

investigate the pre-1960s irrigation system. Kaptijn proposes earlier Bronze Age and 
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Iron Age irrigation (e.g. see Kaptijn, 2010, p155), based on site locations, but the 

origins of the pre-1960s canals may have been from the Mamluk (1250-1516 AD) and 

Early Ottoman (1517-1600) periods. It was suggested that the Mamluk system could 

have been the earliest phase of the ethnohistorical system (described below), with a 

focus on sharecropping of sugar production, controlled and taxed by the sultan 

(Kaptijn, 2010, p153).  

 

The pre-1960s systems could be mapped fairly comprehensively by Kaptijn’s study, 

including all parts of the systems (laterals etc). They derived from three main canals 

abstracting from the Zerqa river (Kaptijn, 2010, p147), and flow for around 6 km (the 

downstream canal), and up to 12 km (the two upstream canals) (see Kaptijn, 2010, 

fig.3). A dense network of irrigation laterals and submains branch out from these, with 

tertiary laterals as close together as 40m. Based on calculations using river discharge 

and crop water use, she suggested that around 1800-4500 ha could have been 

irrigated (Kaptijn, 2009, p352).  

 

This pattern is comparable, although more extensive than, systems in the Balikh such 

as the Nahr Al Abbara, where the landscape was also divided up by irrigation laterals. 

Interestingly, Kaptijn found that the Wadi Zerqa canals were divided between different 

clans, with sheikhs controlling allocation in terms of volume (2010, p148), each farmer 

receiving enough water to irrigate about 10 ha (2010, p149). Based on ethnohistorical 

information, it was also suggested that land would be redistributed regularly, due to 

the varying quality of different plots (Kaptijn, 2010, p149), with maintenance organised 

communally (Kaptijn, 2010, p149). Information about crop choices and associated 

management strategies is also available for the Zerqa.  A focus on sugar production, 

with several mills, is indicated (Kaptiijn, 2009, p424). 

 

4.9 Scales of control of water management strategies 

The social aspects of water management, especially in terms of how they were 

organised and administered, need to be considered. Particular ways of managing 
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water can have certain effects on specific communities: while this comment seems 

ambiguous, patterns do exist. When a region shifts from rain-fed to irrigated 

agriculture changes will occur. While yields will be greater, many social structures 

could be affected. 

 

When extraction exceeds recharge, conflict in some form is inevitable.  Water 

allocation needs to be agreed on, but can frequently lead to disputes (see 

Scarborough, 2003, p92). This is often the stage where more powerful entities than 

individual communities or groups of farmers become or are already involved. It has 

been suggested that large systems and the changes to production that these bring 

necessitate the involvement of governments (e.g see Wittfogel, 1957). In contrast 

there is a general belief that smaller systems tend to be community based and 

managed by the landholders themselves (Agnew and Anderson, 1992, p166). In 

reality, water management throughout an empire could have been a mixture of many 

different forms, with large-scale systems controlled directly by the state in some 

cases, and more locally in others. Similarly, smaller systems such as qanats and 

water tunnels could be part of an imperial landscape (for example at Raqqa), or 

controlled by local landowners and communities. 

 

Sustainable methods like qanats and to some degree, water harvesting, tend not to 

cause problems of depletion. More 'reticulated' methods imposed by higher 

authorities may deliver more reliable crop yields but often at the expense of the 

original resource for many individuals and groups. Change from smaller-scale, 

sustainable methods to unregulated groundwater extraction, for example, can disrupt 

long-successful systems. Modern groundwater pumping across the Middle East has 

rendered many qanats unusable (e.g. see Lightfoot, 2009) by depleting resources 

faster than they can be recharged. Sheridan's analysis of the change from the 

traditional 'acequia' to diesel pumping in Cucurpe, Mexico, is also an illustration 

(1996). Management systems developed to regulate one kind of water strategy often 

cannot function after a shift to a different strategy; flexibility may be key to the long 

term success of any water management scheme. 
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4.10 Summary 

It has been demonstrated in this chapter that water management is a more 

encompassing term than simply ‘irrigation’. Many different ways of abstracting and 

delivering water are used, and drainage must also be incorporated into any model. 

This will include smaller-scale methods such as water-harvesting and also large scale 

systems consisting of complex layouts of main canals and irrigation laterals.  

 

These systems must out of necessity conform themselves to certain aspects of their 

environment, including climate, precipitation and soil. Social and economic issues, 

less easily identifiable, also impact upon design choices. With these issues and 

conditions recognised, water management systems identified using CORONA 

throughout the project area can now be considered. The different types of water 

management, from small-scale water harvesting techniques to larger-scale reticulated 

systems, will be mapped, and the different parts of systems (e.g. laterals, mains) 

recorded where possible (see Chapters 5 and 6). 
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Chapter 5: Water management in northern Mesopotamia 

5.1 Introduction  

The literature review of Chapter 2 has already presented the state of 

understanding of known water features in Northern Mesopotamia. The original 

contribution of the present study will now be addressed. This research has taken 

two forms: firstly, previously unknown water features were identified using 

CORONA imagery and digitised to create shapefiles. The channels were linked to 

features of known date where possible. Secondly, features known through 

archaeological survey, excavation and through interpretation of historical sources 

that had not previously been examined using CORONA were also recorded using 

this image dataset so that a GIS database could be generated. The entire area 

between the Euphrates at Jerablus in Syria and the Tigris in Iraq was scrutinised 

using CORONA at a nominal scale of 1:30,000 (see Chapter 3.2, image 

interpretation methods). DEMs (SRTM, ASTER and CORONA) were used to 

validate features where possible. Because it is recognised here than there are 

some uncertainties inherent in using these data (see Chapter 3), where possible, 

a range of potential values is given. 

It is important to emphasise that this chapter does not represent the entire range 

of water features that are present. More detailed results for each specific area 

exist (see Chapter 2). For example, Geyer and Monchambert (2003) mapped 

many hydraulic features between Deir ez Zor and Mari. The intention here is to 

demonstrate the range and types of features that can be recognized on satellite 

images such as those of the CORONA programme.  

Given the complexity of water management in the Balikh Valley when compared to 

other areas, this will be dealt with in a separate Chapter (Chapter 6). Results from 

the rest of the study area are presented here.  
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Geomorphological and landscape context 

The different landscape zones referred to in this chapter should first be outlined. In 

these terms, the study area consists of several different landscapes. Most ancient 

and modern irrigation was focused in area where water was available, preferably 

year-round, and where soils are conducive to agriculture. This encompasses the 

river valleys of the Euphrates, Tigris and their tributaries, which have tended to be 

foci for cultivation, meaning that many older water management features in the 

river valleys have been erased by modern canals.  

In between the perennial rivers there are also cultivable areas, which can be 

watered by a variety of means including rainfall, springs, pumped groundwater and 

by ephemeral seasonal wadis. They include areas such as the region immediately 

to the south of the Sinjar mountains in Iraq. 

Much of the land, for example the zone between the Balikh and the Iraqi border, 

can be regarded as steppe. It is dominated by gypsiferous or stony soils, and has 

low precipitation and few permanent water sources (Hole and Zaitchik, 2006, 

p139-140). Therefore, it is less conducive to agriculture and large-scale irrigation 

Geomorphological processes are directly linked to the preservation of water 

management systems. The main processes which affect the appearance and 

morphology of relict canals are erosion and infilling.  Erosion both obscures and 

reveals archaeological remains. In some cases erosion exposed previously buried 

features; rock-cut conduits in the Wadi Amarna were revealed in this way (see 

section 5.2 below). Erosion also affects the shape of upcast banks of canals, 

which are reduced in height over time, as Figure 5.1 shows.  

Infilling gradually fills up the channel void with sediments, obscuring the original 

hydraulic cross-section of a canal. As Figure 6.19 shows, the Sahlan-Hammam 

channel had become infilled by the 1990s. The post-Abbasid channel cutting 

through the site of Heraqlah had also been affected by these transformation 

processes. It’s upcast banks (clear in the 1960s CORONA image—Figure 6.62) 

had been eroded away by the time it was visited in 2010, and the channel was 

infilled with sediment (see Figure 6.60). This means that the only way to record 

the original dimensions of a canal is to excavate it; the Nahr Maslama at Dibsi 
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Faraj (Harper and Wilkinson, 1975, p337) and Sahlan-Hammam canal in the 

Balikh (Wilkinson, 1998, p70) were excavated, allowing their dimensions to be 

determined, discharge to be calculated and dating information to be obtained. 

 

Figure 5.1: Schematic diagram showing the morphological difference between 

active and disused canals.  

The dynamic nature of the rivers themselves has also removed archaeological 

evidence. However, these processes have been investigated within the study area 

(Demir et al, 2007). The floodplain of the Euphrates has been dated to a broad 

period of the Holocene; much of it, including the area close to Raqqa, must be 

post 14th century, based on the truncation of Early Islamic sites (Hritz, 2013a, 

p177; Challis et al, 2004, p144). For example, the first part of the canal between 

Tell Fray and Qa’lat Ja’bar has been removed by the Euphrates (see Figure 5.19:) 

therefore, the floodplain in these areas was not investigated as part of the image 

interpretation. It is worth noting here, however, that there is evidence for irrigation 

in the past by the use of water lifting devices (e.g. see Decker, 2009a, p199). It is 

possible that the floodplain was intensively cultivated during the time of the later 

Empires through the use of such techniques 

Water management traces are known throughout all these different landscape 

contexts yet most of this area has not yet been thoroughly investigated or 

surveyed using CORONA images. This is surprising, given the high level of 

archaeological potential of the entire study area, and the possibility of locating 
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features using the CORONA imagery. This chapter will now summarise the results 

of the image interpretation for each region.  

5.2 Jerablus 

Relict water features around Jerablus were identified and visited during fieldwork 

in 2010, including the remains of two large canals.  One still flows to the east of 

Carchemish (A, Figure 5.4), towards Tell Jerablus Tahtani (Wilkinson et al, 

forthcoming). In 2010, it was choked with vegetation (see Figure 5.2). It is 

possible that it dates to the 8th century BC (Wilkinson et al, forthcoming). 

An infilled canal (B, Figure 5.4) flows south of the site of Tell Jerablus Tahtani and 

towards the village of Jemal. As Wilkinson et al (2007 p236) indicate, it was 

probably in use during the Byzantine-Early Islamic periods (dating information was 

based on association with sites). The SRTM and ASTER DEMs indicate that it 

flowed across a landscape with a gradient of about 0.12%- 0.16% respectively 

(this is dependent on the accuracy of the DEMs).  

No use of canals was observed at Jerablus Tahtani in July 2010.Iirrigation was 

conducted by extracting groundwater using diesel pumps; based on the depth of 

the pits in which the pumps were contained, the water table was over 1 m below 

the field level at Jerablus Tahtani. 

 

Figure 5.2: Canal at Carchemish with vegetation. 
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Figure 5.3: Exposed section in the Wadi Armana showing different layers of 

sediments. 

 

Figure 5.4: Channels in the Jerablus region. 

  



195 
 

Along the Wadi Amarna, traces of several rock-cut subterranean channels were 

recorded (see Wilkinson et al, 2007, p236-239). As Figure 5.6 shows, these are 

not visible using CORONA, partly because of their position within the Wadi, and 

partly due to natural landscape conditions such as topography and soil type. It 

seems reasonable to suggest that these rather small channels were designed to 

conduct fairly regular flows of low volume (i.e base flows rather than high floods). 

Using a tributary like the Armana, despite lower base flows, might have been 

easier than irrigating from the Euphrates (see Van Liere, 1963, p115). 

The deeply incised Wadi Amarna is now dry. An exposed section (Figure 5.3) 

shows that it had experienced episodic high-velocity flow (coarser sediments) as 

well as periods of slower flow.  Past settlements appear to have taken advantage 

of this past flow, constructing several water management features along it. A wall 

of dressed stone blocks which may have been a dam, possibly Roman, was 

identified a short distance downstream of Tell Armana. 

Figure 5.5 and Figure 5.6 show some examples of rock-cut conduits, several of 

which were constructed from stone blocks which were inscribed with claw chisel 

marks. A newly identified tunnel was recorded, consisting of a section of a stone-

lined channel which had been exposed by recent erosion. The tunnel was 

associated with a large limestone block inscribed with a mason’s mark (Figure 

5.7). Although the large block may have been in situ, others appeared to have 

moved. 

Three other tunnels which were identified during fieldwork were recorded by the 

land of Carchemish Project (e.g. see Wilkinson et al, 2007). As Figure 5.5 

illustrates, these were high up in the channel stratigraphy and flowed close to sites 

dating to the Hellenistic-Early Islamic periods (see Wilkinson et al, forthcoming).  
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Figure 5.5: Rock-cut tunnel in the Wadi Armana. 

 

Figure 5.6: Map of locations of rock-cut channels and CORONA image. Image 22 

January 1967. 
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Figure 5.7: The block inscribed with a mason’s mark was about 7.10 m below the 

field level, and was located 4.64m above the wadi bed, on layers of sediment and 

stones. Image July 2010. 

Other features within the LCP survey area were also visited in 2010. One of these 

was a subterranean conduit cut into a limestone hill c.5 km South-West of 

Carchemish, close to a site called Hajaliyyeh/Kaklice. The channel does not 

appear to be a qanat. Rather, it may have been conveying spring water. Local 

people informed us that it was ancient, and that the channel had been dry for 10 

years, although some of them remembered it containing water in the winter.  

Interestingly, most of the features identified by fieldwork in 2010 around Jerablus 

were not clearly visible in the CORONA images. Much of the floodplain had been 

scoured by the Euphrates (Wilkinson et al, forthcoming) and the undulating 

limestone areas were pale in the CORONA imagery (ibid), obscuring faint water 

features. This is an important point to consider, because it suggests that other 

features of a similar type and existing within similar landscape contexts (in terms 

of soil type, geomorphology etc) may also be invisible in the CORONA images. 

Only further fieldwork will identify them. 
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5.3 Euphrates - Balikh 

Despite the difficulty of remotely identifying features in the Jerablus area, 

elsewhere, they could be clearly located using CORONA. Several relict water 

features were found in the less-heavily cultivated steppe area north-east of the 

Euphrates, between the river and the Balikh (see Figure 5.8). These consist of a 

few qanats of unknown date. Unfortunately the dates of the sites they are 

associated with have not been confirmed, although based on their morphology, 

tentative dates can be suggested.  

 

Figure 5.8: Water features in the steppe between the Euphrates and the Balikh. 

The link between a particularly large site and a qanat trace should be noted: the 

CORONA image (Figure 5.9) shows a large, unwalled settlement of later antique 

date, possibly Early Islamic, close to the banks of a wadi, 28 km upstream of the 

West Balikh systems (see Chapter 6). Given the size of this site (about 840 x 
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1000m), it clearly once held some significance The qanat trace also visible in the 

image probably supplied it with a reliable water supply. It should also be noted that 

the wadi which runs through the site may have been one of the sources for the 

relict canals in the west part of the Balikh horseshoe, which do have a link with 

some Early Islamic features. If water abstraction rights were already claimed by 

these systems, assuming the water resources were organised by some authority, 

then the upstream site may have needed to construct a separate water supply in 

the form of a qanat. This would also have ensured reliable flows at times of 

reduced flow in the natural stream. 

 

Figure 5.9: See inset within Figure 5.8. Large site and trace of a qanat (marked 

by arrows) identified by present project and also recorded by Dan Lawrence and 

Niko Galiatsatos. CORONA image 22 January 1967. 

There are also other short stretches of qanat in this extensive area of steppe, with 

relict, possible late antique-Islamic structures nearby (for example see the qanat 

and square site in Figure 5.10), again of later antique appearance.  
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Figure 5.10: See inset within Figure 5.8. Features including a qanat in the steppe 

between the Euphrates and the Balikh. CORONA  image 22 January 1967. 

5.4 Membij-Dibsi Faraj 

While water features in the steppe on the left bank of the Euphrates are relatively 

sparse, qanats have been mapped in the lands adjacent to the west and south 

banks of the Euphrates. Dan Lawrence and Niko Galiatsatos mapped numerous 

qanats and qanat segments (Chapter 2) around the town of Membij (ancient 

Hieropolis/Bambyce, possibly of Hellenistic/Roman date, and others between Tell 

Hadidi and Selenkahiye. The present study also recorded these features.  
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Figure 5.11: Qanats between Membij and Dibsi Faraj. Mapped by Dan Lawrence, 

Niko Galiatsatos and present study.  

5.5 Dibsi Faraj 

The large canal at Dibsi Faraj, the Nahr Maslama, is already well known through 

survey and excavation, and has been dated on the basis of Umayyad coins 

(Harper and Wilkinson, 1975, p337). Due to this excavation, the Nahr Maslama is 

one of the few dated ancient canals in Northern Mesopotamia. The present study 

(also see Wilkinson and Rayne, 2010, p127) found that it was also identifiable in 

CORONA images, taken shortly before the investigations in the 1970s were 

carried out. On the imagery, the canal is truncated by relict meanders of the 

Euphrates. This presumably represents post-medieval action, given the medieval 

date of the canal. Interestingly, fragments of a canal similar in appearance to the 

Dibsi Faraj one were found in the imagery further downstream (see Figure 5.12; 

also see Figure 5.13 for location). Based on Harper and Wilkinson’s (1975, p337) 

excavated section, the parameters of the canal can be outlined (Table 5.1) and 

the discharge of the canal suggested, giving a fairly small value in comparison to 

the Sahlan canal in the Balikh. 
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Table 5.1: Parameters of the Nahr Maslama and discharge calculated using 

Manning’s formula. The n value for a straight, earth channel was selected (see 

Philips and Tadayon, 2006). The gradient value is based on assuming a slightly 

shallower gradient than the Euphrates, which was measured using the SRTM 

DEM between the Tabqa Dam and Raqqa. This simply provides an estimated, 

rather than an absolute, idea of the potential values.  

Estimated gradient  Bottom width (m) Depth (m) Flow (m
3
/s) 

0.0004-0.0003 2-3  1-2  2.7-15.5  

 

 

Figure 5.12: A truncated canal on the edge of the Euphrates floodplain (not to be 

confused with the adjacent straighter, clearer-cut modern canal). CORONA image 

22 January 1967. 
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Figure 5.13: Features alongside the Euphrates between Dibsi Faraj and Qa’lat 

Ja’bar.  

Figure 5.16 shows the water management features around the site. The Nahr 

Maslama was not the sole water supply of the Dibsi Faraj area. A qanat was 

identified by the present study (see Figure 5.17; also see Wilkinson and Rayne, 

2010, p127). It stretched over 4 km from the limestone uplands above the site and 

faded out close to it. While the large-scale canal would have provided water for 

irrigation, the qanat may have supplied the site itself with water, and therefore 

presumably was used at some time within the Roman-Early Islamic period 

represented by the site. 
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Figure 5.14: The Nahr Maslama and Dibsi Faraj. CORONA Image 22 January 

1967. 

 

Figure 5.15: Section of the Nahr Maslama (from Harper and Wilkinson 1975, 

Fig.2). 
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Figure 5.17: The qanat is 

visible as a line of white dots, 

representing upcast mounds. 

It is difficult to see at this 

scale of 1:24000. CORONA 

image 22 January 1967. 

Figure 5.16: Water features 

at Dibsi Faraj (from Wilkinson 

and Rayne, 2010, p127) and 

location of section excavated 

by Harper and Wilkinson 

(1975). 
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Figure 5.18: The scale at which the feature is clearly visible (1:10000) shows the 

care needed when undertaking an image interpretation study;.Features such as 

this qanat could be easily missed. CORONA image 22 January 1967. 

5. 6 Tell Fray-Qa’lat Ja’bar canal 

A segment of canal passing along one side of Tell Fray is already known (e.g. see 

Bounni, 1988. Also see Figure 5.13 for a map). However, the present study, using 

CORONA images, found that it extended for some distance both up and 

downstream of Fray, over a distance of about 10 km. Figure 5.13 shows its 

location and Figure 5.19 shows the CORONA image. Unfortunately, given that the 

area is now under water, a DEM-derived gradient could not be assigned. The 

abstraction point of the canal could not be determined, because the canal is 

truncated by the Euphrates. The feature then seems to fade out at Qa’lat Ja’bar. 

Early Islamic features closer to Raqqa were also truncated by the Euphrates; the 

terraces around Tell Fray and Raqqa may therefore be of contemporaneous date. 

Figure 5.16: Water features 

at Dibsi Faraj (from Wilkinson 

and Rayne, 2010). 
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An association with both/either Fray or Ja’bar for this canal seems possible. The 

evidence from Fray indicates a Bronze Age date (see Bounni, 1988, p363-69; also 

see Chapter 2). This could be a canal that either had a relatively early origin, 

perhaps in the Bronze Age, as suggested by the evidence from Fray, that 

continued to be maintained and used into the Early Islamic period, serving some 

purpose for Qa’lat Ja’bar. Alternatively it could have been a later (Early Islamic) 

feature.  

 

Figure 5.19: CORONA image of the Fray-Ja’bar canal. CORONA image 22 

January 1967. 

5.7 Resafa 

Water features at Resafa, including a dam, canal and cisterns, have  already been 

investigated in detail using archaeological excavation (e.g. see Beckers, 2007-9; 

Brinker, 1991) and hydrologically using DEMS (Berking et al, 2010). The present 

study was able to confirm the layout of the known features using CORONA, 

including a dam, canals and cisterns (shown in Figure 5.21). The CORONA 

images also highlighted ruined and relict structures around Resafa including 

possible water features in the basin of the Wadi es Sele (e.g. see Figure 5.22).  
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Figure 5.20: Location of Resafa. 

 

Figure 5.21: The CORONA image (22 January 1967) shows water features 

around Resafa (see Berking et al, 2010, p818). 
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Figure 5.22: Canal traces in the basin of the Wadi es Sele, 3km north of Resafa. 

CORONA image 22 January 1967.  

Because of the faintness of the qanat at Dibsi Faraj, image interpretation had to be 

undertaken carefully in order to locate the features which were visible using 

CORONA. A feature similar in appearance to the dam at Resafa is an example of 

this (see Figure 5.23). It was recorded in the steppe 28 km to the south west of 

Resafa, in an area which was generally devoid of identifiable water systems. 

Given that such ephemeral features are identifiable using CORONA, it is likely that 

this image interpretation study has located a good proportion of them.  
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Figure 5.23: A similar feature to the dam at Resafa was identified 28 km to the 

south west. CORONA image 22 January 1967.  

5.8 Balikh-Habur 

Given the complexity of the Balikh, an entire chapter has been devoted to it 

(Chapter 6). Image analysis was also taken for the areas between the Balikh 

Valley and the Iraqi border. Very few relict water features could be identified in the 

steppe, however, several large-scale canal systems were located alongside the 

Euphrates and the Habur. The Euphrates terraces have been dated by 

archaeological remains and, conversely, their geomorphological context can be 

used to infer the age of some archaeological remains. The mapping undertaken by 

Besancon and Sanlaville (1981) and Demir et al (2007) indicates that the lowest 

terraces of the Euphrates, adjacent to the river, formed during the Holocene. This 

is shown by the location of the archaeological sites and relict canals.  The canal at 

Tell Fray (at least Bronze Age in date, possibly Early Islamic) was truncated by 

former meanders of the river. Close to the Balikh, the floodplain cuts features of 

Early Islamic date and post-Abbasid date (for example the canal at Heraqlah, see 

Chapter 6), showing that it post-dates the early medieval period. Features of 

earlier date will have been removed.  
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Downstream, however, parts of the floodplain are older. The site of Mari and 

possibly associated canals are located within it. Geomorphological mapping 

identified the floodplain in this area as Bronze Age (Demir et al, 2007, p2851). It is 

possible, therefore, that other archaeological features on this terrace, including 

relict canals, could date to this period.  

On the right bank of the Euphrates, especially between Sura and Deri ez Zor, the 

floodplain had clearly eroded right up to the plateau in some places. However, 

many canals have been identified between Deir ez Zor and Mari; Geyer and 

Monchambert (2003) recorded them using archaeological survey (also see 

Chapter 2, Figure 2.12). This study has been able to locate several segments of 

some of these relict canals between the Balikh and Mari using CORONA images. 

As Figure 5.24 shows, traces of a significant feature were located on the north 

bank of the Euphrates, but upstream of Deir ez Zor. The clearest segment visible 

in the CORONA imagery is short (1 km), but it can be seen that it has an infilled 

channel and eroded but visible embankments, and flows across a gradient of 

about 0.14-0.21% (depending on where the measurement is taken along the short 

segment of canal, using SRTM). 

 

Figure 5.24: Canal on north bank of Euphrates. See Figure 5.26 for location. 

CORONA Image 5 November 1968. 
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Figure 5.25: Traces of the Nahr Semiramis are visible on the CORONA imagery. 

See Figure 5.26 for location. CORONA image 5 November 1968.  

Further downstream, a feature also identifiable in the CORONA imagery has been 

recorded by Geyer and Monchambert (2003, p276) as the Nahr Semiramis and 

assigned a late antique date (ibid, p222). They also suggest that it might have its 

origins in a dam upstream near Zalabiya (ibid. p217-218). It may therefore be part 

of the same feature shown in Figure 5.24. Its’ morphological similarity to the other 

large features alongside the Euphrates (for example the Nahr Maslama and Nahr 

Dawrin), should be noted. Flowing close to the floodplain, it is a wide, infilled 

channel with traces of embankments, and potentially was part of a large-scale 

irrigation system. Using CORONA, traces of channels which may also be part of 

the Nahr Semiramis can be traced up until the the Habur. Unfortunately, many of 

the channels recorded on the ground by Geyer and Monchambert (2003) were not 

visible on the CORONA imagery, especially those in the floodplain on the right 

bank of the Euphrates.  
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Figure 5.26: Relict water features alongside the Euphrates located using 

CORONA images. Geyer and Monchambert (2003) surveyed canals between Deir 

ez Zor and Mari in more detail. 
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5.9 The Habur 

The results of image analysis for the Habur region are summarised here. Only 

limited evidence for irrigation in the Upper Habur was identified (e.g. see features 

around Hamoukar, Ur 2010). Careful image analysis undertaken by the present 

study in the same area corroborated this. However, significant canals alongside 

the Habur itself are of particular note (recorded by Van Liere and Lauffray, 1954-

55; Ergenzinger et al, 1988; Ergenzinger and Kuhne, 1991). They may be two of 

the longest features in the entire study area. If they are in fact extant features, they 

join the Upper Habur area with the Euphrates, flowing over a distance of up to 190 

km. The locations of the canals mapped by Ergenzinger et al (1988) have already 

been presented in Chapter 2. The parts of the features identifiable using 

CORONA are discussed and presented here (see Figure 5.27). The two Habur 

channels were originally researched before CORONA was available, but this 

project aimed to identify them using this remotely sensed dataset. Segments of 

these could be identified using the imagery. However, other parts were unclear, 

possibly because, like some channels in the Jerablus area, they were rendered 

obscure in the images by natural conditions, or because they had been removed 

by agricultural intensification and by infilling/erosion. The digitised segments are 

clear in the imagery (see figures below); Figure 5.27 represents the results of 

image interpretation, rather than an exercise in interpolation.  

 

Left bank canal 

The canal on the left-hand bank of the Habur was easier to identify. being a 

prominent earthwork with upcast banks this could frequently be traced, although it 

had been removed by erosion and truncated by the floodplain in some areas. 

Neither the abstraction point nor the drainage point could be clearly identified 

using the CORONA images, but based on its position in the landscape, and on the 

SRTM DEM, gradients can be indicated.  The natural gradient was found to be 

very shallow. Closer to Hasseke, one segment of the canal (see Figure 5.27, 

location 1) had a shallow gradient of 0.12-0.16%, based on the SRTM and ASTER 

data. It is important to note here that it is difficult to get an accurate measurement 

based on such a short segment, using the coarse-resolution elevation data. . 
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Further south (location 2; see Figure 5.31) a longer segment could be measured, 

making it more possible to obtain a more reliable, and very shallow, estimate of 

about 0.5-0.6% (SRTM and ASTER).

 

Figure 5.27: Segments of canals visible using CORONA and locations of 

profiles and CORONA screenshots.  
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The first clearly identifiable segment of it is shown in Figure 5.28. It is visible in 

the CORONA image as a darker line of soil and faint, very eroded banks. It 

appears to have flowed from an unknown point to the north.  

 

Figure 5.28 CORONA image11 December 1967. 

Downstream, the canal is obscured again. Ergenzinger et al (1988, p115) mapped 

it as a long linear feature at this stage, although the same feature, when viewed in 

the CORONA image, is not entirely clear, and in places it is possible that it is 

simply a track. The linear feature is then obscured for about 500 m, but reappears 

on the other side of a wadi draining into the Habur. This time, it is a light coloured 

line between two darker lines, possibly ditches, stretching for about 1.4 km before 

meeting another wadi. It reappears on the other side of the stream as a much 

clearer feature, with a dark, possibly wetted channel flanked by embankments 

(see Figure 5.29). This stretch of the canal may have been re-used for irrigation in 

the 1960s. In some cases it crosses the natural drainages, possibly using 

structures such as aqueducts or inverted siphons (see Figure 5.30). Elsewhere, 

for example in the Wadi Zerqa in Jordan, dams were constructed to protect canals 

from wadis (e.g. see Kaptijn, 2009, p310). 
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For the next 5 km the Habur canal is difficult to identify, because there are 

several long linear features in the area on the same alignment, some of which 

are identifiable as recent canals and trackways. 

 

Figure 5.29: CORONA image 11 December 1967. 

10 km south of this, however, the feature is once more distinguishable (see Figure 

5.32), now as a dark line of channel flanked by fairly prominent raised banks. 

Ergenzinger and Kuhne (1991, p171-172) recorded this part of the feature, 

between Tell Masnaqa and Tell Sadada, as being up to 12 m above the river level. 
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Figure 5.30: In some places segments of canals along the Habur cross wadis. It is 

possible that structures such as siphons or aqueducts were used to facilitate this. 

CORONA image 11 December 1967.  

 

Figure 5.31: Longitudinal profile of a canal segment alongside the Habur, based 

on SRTM  (Location 2, Figure 5.27). Gradient: c. 0.3-0.5%. 
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Figure 5.32: CORONA image 11 December 1967. 

It takes this appearance for around 6 km, before fading out at an incised wadi; the 

canal reappears on the other side as a narrow feature, with less prominent 

embankments (Figure 5.33). Presumably this is part of the same canal system. 

It’s different appearance may be due to the topographical and geomorphological 

conditions which affect it in this location. Given that this was one of the longest 

extant segments of canal along the Habur, the gradient was measured using 

SRTM (see Figure 5.31). At this stage, as Figure 5.33 shows, some short offtakes 

draining towards the Habur can be seen. Whether these were contemporary with 

the original canal, or were later additions, is unclear.  



220 
 

 

Figure 5.33: A canal and offtakes are visible in the CORONA image (11 

December 1967).  

The canal continues for around 8 km to the south, with embankments 

occasionally being visible, and some further offtakes, again of unknown date, 

until its position is again confused by multiple wadis, channels and tracks. 

Fragments of it cut and meander through the landscape. This pattern continues 

for 2 km, when the canal turns towards the east, following the Habur; at this 

stage it appears to have been part of a more recently active irrigation system, 

with faint offtakes visible (see Figure 5.34).  
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Figure 5.34: Canals and possible offtakes. CORONA image 11 December 1967.  

About 6 km to the south the feature reappears as an embanked channel and flows 

for 11 km before fading out at a wadi. Interestingly, at one point there are two 

separate channels of similar appearance; unfortunately mostly truncated by the 

Habur floodplain. For the rest of its length, the canal becomes difficult to trace in 

the CORONA images, aside from a few, mostly faint, segments, and confusing 

trackways on the same alignment. Given its proximity to the floodplain, and the 

presence of more recent irrigation schemes, it is likely that by the 1960s much of 

the canal had been removed since the original investigations discussed in the 

literature review. Ergenzinger and Kuhne (1991, p172-173) noted offtakes in the 

vicinity of Tell Sheikh Hamad, although they could not be clearly distinguished 

from natural wadis in the CORONA images.  

The termination point of the canal was not clear, but, Figure 5.35 demonstrates 

that close to the Habur’s confluence with the Euphrates, a segment of canal, 

possibly part of the same feature but in contemporary use, turns towards the East 

to follow the north bank of the Euphrates before again fading out.  
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Figure 5.35: The canal is only identifiable in the CORONA images as short 

fragments after Tell Sheikh Hamad. A short stretch of canal is visible close to the 

Habur’s confluence with the Euphrates. CORONA image 5 November 1968. 

 

Right bank canal 

The canal on the west side of the Habur can also be recognized. This channel 

was, in general, less clear in the CORONA images than the eastern canal, 

merging at some locations with more recent channels. Again, it was a fragmentary 

feature, making it difficult to obtain an overall gradient. However, based on the 

DEMs, one of the more extant segments (location 3, Figure 5.27) gave a gradient 

of c.0.1%-( SRTM and ASTER) (Figure 5.38).  

Traces of a western canal are visible across the river from the eastern canal’s first 

identifiable segments. However, again it is unclear which linear features are part of 

this canal, which are modern canals, and which are hollow ways or modern track 

ways, because they all follow the same alignment, parallel to the river along its 

natural gradient. Figure 5.36 shows one of these faint, eroded segments. 
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Figure 5.36: Traces of a canal are apparent on the right bank of the Habur. 

CORONA image 11 December 1967. 

About 20 km downstream of the first identifiable fragments, a more substantial 

segment can be recorded; this flows as a faint, narrow and often sinuous feature 

alongside the Habur. Segments with larger upcast banks are then visible (for 

example see Figure 5.37), truncated by the floodplain and by modern irrigation.  

 

Figure 5.37: Segment of canal with upcast banks. CORONA image 11 December 

1967. 
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This pattern continues for about 30 km to the south, until it is replaced by a flatter, 

wider channel that shows signs of more recent use, with associated offtakes in the 

form of submains and irrigation laterals (see Figure 5.39). If it is part of the same 

system, further to the north the channel may have been more elevated above the 

fields, generating the necessary height to allow it to flow over such a long 

distance. Gradient was measured for this segment, because it was the most extant 

part of the right bank canal; a figure of 0.1% was obtained (see Figure 5.39). As it 

gets closer to the Euphrates, it gets more difficult to identify and distinguish from 

contemporary 1960s irrigation. Relict channels in this area, however, which may 

be connected to it, could possibly  also be linked to a very fragmentary channel 

flowing from upstream alongside the Euphrates (possibly the Nahr Semiramis).  

 

 

Figure 5.38: Longitudinal profile of a canal segment alongside the Habur, using 

SRTM (location 3 in Figure 5.27). Gradient: c.0.1%. 
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Figure 5.39: Further downstream the canal is represented by a dark line lacking 

upcast banks, with associated offtakes. CORONA image 5 November 1968. 

5.10 Habur-Iraq border 

Nahr Dawrin 

While the steppe between the Habur and the Iraqi border proved to be devoid of 

water features visible on CORONA images, the land adjacent to the Euphrates 

floodplain was of more interest. The presence of a large canal, the Nahr Dawrin, is 

well-attested to in the literature (e.g. Geyer and Monchambert, 2003; Margueron 

2004). Geyer and Monchambert (2003, p200) measured gradients ranging 

between 1:1000 – 3:1000 for this prominent canal, which flows over a distance of 

around 80 km. It has been proposed (e.g. Ergenzinger and Kuhne, 1991, p174) 

that it joined to the Habur systems. Kamash suggests that it may be Babylonian-

Roman in date (Kamash, 2009, p76-77), although Bell’s account (1924) would 

support a continuation into later periods. Kamash also suggested the presence of 
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Roman dams in the area, based on textual evidence (Kamash, 2009, p77). Early 

Islamic textual evidence gives an Islamic date for the Dawrin (e.g. see Kennedy, 

2011, p194). While the canals around Mari are not clearly visible in the CORONA 

images, significant features between the Habur and the Iraqi border could be 

traced. A canal segment flowing from alongside the left bank of the Habur and 

then for a short distance along the Euphrates before fading out has already been 

described above (see Figure 5.35). It is not clear, from examination of the 

CORONA images, if this feature is joined to the Nahr Dawrin; there are areas for 

which data could not be obtained and there are issues with cloud and poor 

contrast. On the modern imagery (for example see Google Earth), the Euphrates 

has avulsed, potentially erasing features, and the area is obscured by modern 

irrigation and buildings. A join between the Habur canal and the Dawrin is 

therefore not discernable. However, the segments of the Dawrin which could be 

seen using the images (see Figure 5.40) will be described here. 
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Figure 5.40: Canal traces between the Habur and the Iraq.  

The first part of the Dawrin that could be identified using CORONA consisted of 

two very large earthworks, representing channels flanked by embankments (see 

Figure 5.41). Geyer and Monchambert (2003, p202-204) suggest that they 

represent an earlier and a later channel, the first having been removed by the 

Euphrates. 
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Figure 5.41: Two parallel segments of canal flow close to the floodplain (see 

Figure 5.40 for location). CORONA image 5 November 1968. 

 

Figure 5.42: Longitudinal profile from SRTM of a segment of the Nahr Dawrin (see 

Figure 5.40, Location 1). Gradient: c.0.1%.  
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A narrower, less clear feature appears to stem from the upper of the two 

earthworks; it is unclear whether this is a trackway or a canal. This track/channel 

feature cuts across the natural contours, intercepting ephemeral runoff channels, 

for around 40 km, before it is lost under cloud. The gradient of the first 6 km of this 

segment could be measured using the ASTER and SRTM DEMs, giving a value of 

0.05-0.1% (see Figure 5.42).  

A clearer feature can then be identified, flowing about 1 km from the floodplain; 

this is more likely to be a canal, with flanking upcast banks (see Figure 5.43). The 

canal can be traced for about 5 km, before it disappears when reaching an incised 

wadi. After this, again, only faint lines can be located, which may or may not be 

part of the canal. Some very faint features, almost indistinguishable from natural 

streams, continue up to the Iraqi border.  

 

Figure 5.43: A segment of the Nahr Dawrin is also visible closer to the Iraqi 

border. CORONA image 5 November 1968.  

 

Mari 

The two canals known from the opposite bank of the Euphrates, close to Mari, are 

not clear in the CORONA images (however see Geyer and Monchambert, 2003; 

Margueron, 2004). While faint linear features are visible, they are rendered 

obscure by cloud, poor contrast in the imagery, and also agriculture contemporary 

with the images.  
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Iraq 

Parts of northern Iraq within the Jazira region were also examined using CORONA 

images. Existing research in this area has already used CORONA to map water 

features (Ur, 2005; Altaweel, 2008; Ur et al, 2013. See Chapter 2.). The present 

study simply affirms the CORONA image interpretation already undertaken in this 

region.  One new feature close to the Lesser Zab was noted as part of the present 

study, as well as multiple qanats in the Sinjar plains.  

5.11 Qanats on the Tell Afar/Sinjar Plain 

The CORONA image analysis revealed a cluster of qanats below and south of the 

Jebel Sinjar range in the Tell Afar/Sinjar Plain, as well as archaeological sites and 

hollow ways. There are limited data in the available literature to contextualise 

these channels. One source briefly cites historical data attesting to pre-Ottoman 

qanats in this region (Fuccaro, 1991, p12).  

One of the first uses of aerial imagery for recording archaeological features was 

undertaken by Poidebard (1934). This included the mapping of some qanats and 

associated canals at the Roman fortification of d’Al-Han, between the Habur and 

Sinjar (Poidebard, 1934, pl.CXLV). Cressey (1958, p41) lists several disused 

qanats in the area, suggesting that some stretched for considerable lengths.  One 

channel in the Sinjar is mentioned briefly by Lightfoot (2009), who described 

reports of a very long conduit deriving its source from the Sinjar Mountains 

(Lightfoot, 2009, p20). Stein (1941) discussed Roman activity in relation to the site 

of Hatra (119 km to the south of Sinjar), and mentioned the presence of an 

important trading routeway going through the Sinjar plains (Stein, 1941, p303-304; 

Kennedy and Riley, 1990, p77). Lightfoot links this Roman activity to the presence 

of the Sinjar qanat (2009, p16). Interestingly, Lightfoot (1996) and also Kamash 

(2009, p84) emphasise that qanats are often found to be associated with Roman-

Byzantine sites. Lloyd (1938), however, despite surveying and excavating in the 

area, did not mention the qanats, including one that crosses Tell Khoshi (see 

Figure 5.51) although he mentions that several of the existing villages had wells; 

an earlier traveller, Buckingham, also mentions them (1827, p254).  
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Figure 5.44: Qanats clustering south of Sinjar.  

 

Figure 5.45: A dense cluster of qanats/tunnels as well as sites and follow ways 

south of Sinjar is identifiable using CORONA. Image 11 December 1967. 

The CORONA images show a landscape full of qanats and tunnels (see Figure 

5.45) unlike any other part of the study area. A dense cluster of qanats radiates 



232 
 

out from the town of Sinjar into the plain (see Figure 5.44), and is associated with 

sites, hollow ways and relict field systems.  

Some of the qanats may be features contemporary with the 1960s imagery. There 

is evidence throughout Iraq of infiltration qanats, conduits and tunnels channelling 

spring water in use during the 20th century, although they had been declining (see 

Lightfoot, 2009). These are more clearly defined than the older channels, and tend 

to be of the ‘cut-and-cover’ type, which are constructed first as canals and then 

partially covered so that the maintenance gaps are left. As Figure 5.46 shows, 

some of the conduits in the Sinjar area have a different appearance in the images 

to the traditional qanats. Shafts are represented by dark-coloured dots and are 

much closer together and arranged along a lighter strip.  

 

Figure 5.46: 'Cut and cover' channel and resulting open channel south of Sinjar. 

CORONA image 11 December 1967. 

The traditional-style qanats have more widely spaced shafts. Many of the shafts 

are faint and appear disused, as Figure 5.47 shows, although some appear to 

have been modified in their lower reaches, possibly with excavation and covering, 

giving them a ‘cut-and-cover’ appearance. Some are associated with or close to 

settlements of apparent antiquity. These are shown in Figures 5.47, 5.48, 5.49. 

Figure 5.47 shows the outlines of structures, while Figure 5.48 shows a smaller 

site surrounded by walls. 
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Figure 5.47: More ‘traditional’ qanats; shafts are more widely separated. 

CORONA image 11 December 1967. 

 

Figure 5.48: Qanats and sites. CORONA image 11 December 1967. 
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Figure 5.49: Walled site and qanat. CORONA image 11 December 1967. 

 

 

Figure 5.50: Former settlement and qanat. CORONA image 11 December 1967. 
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Figure 5.51: The major 3rd millennium BC site of Tell Khoshi cut by a qanat. This 

feature is presumably later than 1938, when Lloyd excavated, because he did not 

mention its presence. CORONA image 11 December 1967. 

 

Figure 5.52: Complex qanat systems. CORONA image 11 December 1967. 

The complexity of these qanat systems should also be noted. Figure 5.52 shows a 

good example of this complexity: a mixture of new and older conduits is visible, 

with several of these overlying each other. Some of the channels seem to split into 

separate branches, and in other cases, short joining segments seem to link 

separate tunnels. There may be several reasons behind this pattern. Firstly, 
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sometimes it is necessary to dig new channels when older ones have become 

unusable, possibly due to factors such as a change in groundwater levels. In 

addition, the branching nature of the conduits may indicate attempts to irrigate 

larger areas through the modification and extension of existing tunnels. 

Some of the features are also associated with open channels feeding irrigation 

systems. Despite the possible recent dates for these, it is worth considering them 

as comparable examples to the way in which ancient qanat systems may have 

functioned. Clusters of small, possibly ruined walled fields are sometimes located 

close to villages, presumably supplied by the qanats. The systems are also linked 

to patterns of hollow ways. Figure 5.53 depicts a sample of these remains, 

showing Qanats terminating in open channels that feed into the areas of fields 

around the settlements. It is possible that the ‘walls’ evident in the images may 

only be earth bunds used for retaining water. While structures associated with the 

openings of qanats are known (see Chapter 4), in this example from the Sinjar 

Plain the water often passes straight out of the channels and into the field irrigation 

systems.  
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Figure 5.53: A small sample of the irrigation systems and qanats south of Sinjar. 

These were also associated with hollow ways and settlements.  

Overall, these qanats form an interesting cluster, showing a density unknown 

throughout the rest of the study area. They presumably took advantage of high 

water tables around the Sinjar mountain and possibly also of springs in the same 

area. While their date is unknown, a link with the Roman limes (e.g. see Stein, 

1941, p303-304; Lightfoot, 2009, p16) should not be entirely discounted, given the 

antique appearance of several of the systems. In terms of modern imagery, google 

earth (using spot images) was used. The more recent images showed that the 

infiltration qanats and cut-and-cover conduits were mostly not identifiable, 

although pumped wells and sprinkler systems are now present. 
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5.12 North Jazira  

The corner of North-West Iraq above the Sinjar mountains was examined during 

this research. Archaeological survey has also been undertaken here in the past 

(e.g. see Wilkinson and Tucker, 1995). Interestingly, despite the availability of 

CORONA imagery and detailed contour maps (Fragile Crescent Project) no 

distinct water management features could be identified. Presumably rain-fed 

agriculture, wadis and springs formed the principal water resources for the 

settlements of all periods. This shows that an absence of features in the CORONA 

imagery in other areas could indeed in some cases indicate a general absence of 

water features, rather than a lack of visibility in the imagery. The north Jazira falls 

within an area where rainfed agriculture is possible, comparable to the northern 

Habur.  

5.13 The Tigris and Northern Iraq 

The upper reaches of the Tigris within northern Iraq form the eastern limit of this 

research. These were studied using CORONA images by Ur (2005), Altaweel 

(2008) and Ur et al (2013); the Assyrian canals in the region are well known and 

the research has been outlined in the spatial literature review (Chapter 2). This 

project also briefly examined the area of the Tigris using CORONA images, 

confirming the existing mapping and indicating that the hydraulic landscapes of the 

Syrian-Iraqi Jazira continued to the east of the Tigris. The boundary of the study 

area, however, had been drawn in this region. Extending mapping further to the 

east was beyond the scope of the present study. 

A significant feature (see Figure 5.54) identified in the Tigris region by this project 

was a large canal along the south bank of the Lower Zab, where a channel similar 

in appearance is already known to exist on the opposite bank (e.g. see Altaweel, 

2008, fig.33). This appears to abstract from the Lower Zab and flow for about 16 

km. The upper part of it appears to be eroded and disused, while the lower part 

may be associated with some irrigation in the 1960s. There are further, probably 

recent, large scale earthworks in use nearby. 
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Figure 5.54: Canal on south bank of Lower Zab. CORONA image 9 August 1968. 

5.14 Summary 

The results presented in this chapter show that widespread evidence for ancient 

water management can be obtained from an image interpretation analysis of 

CORONA imagery. Digitisation revealed the location and layout of many large-

scale systems throughout Northern Mesopotamia which have now been removed 

by agricultural intensification and urbanisation. Information provided by DEMs 

facilitated the recording of key hydraulic properties of the canals, such as 

gradients, width and depth (see Table 5.2). DEMs enable these data to be 

obtained quickly across a large study area; field-based survey cannot undertake 

this to a similar scale. A review of the literature reveals that relatively few analysis 

of ancient water management have explicitly provided gradient information for 

many channels. For example, it proved difficult to obtain this information from the 

published studies on the Habur canals.  

 The results of the present research show that many of the canals were located in 

areas of fairly flat terrain. For a longer system, this necessitated careful design. If 

the Habur canals are extant systems, this flatness would explain why the heads of 
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the canals are elevated with large upcast banks, while the southern ends appear 

to be flatter features without embankments.  

Table 5.2: Canal gradients in northern Mesopotamia.  

Canal Gradient Source 

Jerablus Tahtani-Jemal 

canal 

0.12%- 0.16% SRTM and ASTER 

Dibsi Faraj c. 0.03- 0.04% Harper and Wilkinson 1975; 

SRTM (profile from  near 

Raqqa)  

Habur (segments of left 

canal) 

0.12-0.6%  SRTM and ASTER 

Habur (segment of right 

canal) 

0.1% SRTM and ASTER 

Nahr Dawrin (segment) 0.05-0.1% SRTM and ASTER 

North Iraq canals 0.1-0.4% Ur, 2005, p340 (using SRTM) 

 

Chronological information in many cases could also be gained, listed in Table 6.1 

(Chapter 6).. Dating information was obtained from existing archaeological 

surveys and excavations and from historical accounts (e.g. see Le Strange, 1930). 

Relative dates could also be suggested based on associations between canals 

and qanats and features of known date. For example, the qanat at Dibsi Faraj 

appears to be directly linked to the site, and was therefore interpreted as 

contemporary with it.  

The remote-sensing based results of this chapter show traces of relict water 

management across a large area. Given the multiple types of data available 

(imagery, DEMs, historical accounts, archaeological surveys) a more detailed 

analysis of a sub-region is possible. This was undertaken for the Balikh Valley. 

The Balikh represents an area of especially dense and complex former irrigation 

and also functioned as an important political and strategic location for different 

empires, making it an ideal case study.  



241 
 

Chapter 6: Water management in the Balikh Valley 

6. 1 Geomorphology and land use 

The physical environment of the Balikh Valley has provided a framework for the 

development of modern and ancient water management. In order to understand 

these locations, and to recognise to what degree archaeology is preserved, a 

discussion of the geomorphological context of the valley must be made. The river 

valley forms a narrow corridor of alluvial, cultivable soils (Wilkinson, 1998; 

Mulders, 1969) between the Turkish Harran Plain in the north and the Syrian part 

of the Euphrates in the south. As the topographic profiles show, the valley is 

bounded on either side by slightly more elevated lands of gypsum soils (see 

Mulders, 1969).  

Figure 6.2 represents the stream network of the valley, as generated using 

ASTER DEM data (see Chapter 3). The long profile of the Balikh itself has a low 

gradient and drains into the Euphrates. The principal source of the Balikh is the 

karstic spring of 'Ain al Arous near the Turkish-Syrian border. As the cross section 

(1) (Figure 6.3) shows1, at this point the corridor of the valley is narrow, being 

some 6 km in width. The stream of the Jullab, which originates in Turkey, joins the 

Balikh north of Tell Sahlan. Below this, and on the east side of the Balikh, the 

Wadi al Keder flows parallel, finally merging with the Balikh below Tell es Seman.  

The differences between the spring-fed Balikh and the seasonal Wadi Al-Keder 

should be recognised here. The slower-flowing Balikh has meandered and 

avulsed, potentially removing channels and also affecting the positions of canals. It 

also flows all year round, functioning as a permanent water source, although over-

abstraction in the 1990s caused it to dry up (Wilkinson pers. comm.). In contrast, 

the Wadi al Keder is seasonal (hence its name ‘wadi’) and does not serve as a 

permanent abstraction point for canals, and as such, is not used for irrigation. A 

straighter channel with a fairly deeply incised floodplain, it occasionally flows with 

higher-velocity run-off. This makes it more useful as a drain (e.g. see the Nahr al 

Abbara system) than as a water source. On the west side of the valley, the Qara 

                                                           
1
 The profiles in this chapter were generated using the SRTM DEM, unless otherwise specified. 

While SRTM is of a low resolution, it enables the general gradient of the landscape through which 
canals flow to be measured. 
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Mokh has its confluence with the Balikh. This stream has its origins close to the 

border. Runoff from other seasonal wadis draining off the steppe lands is also 

incorporated into these rivers and streams. Cloud burst rain storms in the winter 

occur in the Balikh and sometimes runoff rates are high (Mulders, 1969, p33-34).  

In the south, relict terraces of the Euphrates show the river’s movement across its 

floodplain. While some of these movements have erased ancient remains, the 

archaeology has also been used to constrain the date of the terraces, the most 

recent of which formed during the Holocene (Demir et al, 2007, p2848). Only 

remnants of earlier, Pleistocene, terraces still exist (Hritz, 2013a, p1978; Sanlaville 

and Besancon, 1981, p12).  

Early Islamic remains on the Holocene terrace were truncated by the Euphrates 

near Raqqa, indicating that river movements occurred relatively recently, that is 

after 800-1400 AD (Hritz, 2013a, p1977; Challis et al, 2004, p144). Canals visible 

on the floodplain of the Euphrates post-date this era and it has been suggested 

that the flood-plain formed after the medieval period, when the Euphrates 

degraded to a lower level (Mulders, 1969, p44-45).  

The Balikh has also followed a dynamic regime. On Figure 6.2, in the north near 

Tell Sahlan, a palaeochannel (evident on CORONA images) is indicated up to 2 

km to the west of the present day course (as discussed below). The channel 

potentially erased earlier remains, but allowed later features to be assigned 

relative dates in association with it. Cross section 2 (Figure 6.4) crosses this 

feature. A flat, basin-like area that may be associated with the palaeochannel is 

apparent from the profile. It forms an area of natural drainage that may have been 

waterlogged and marshy in the past (Hritz, 2013b, p153; Akkermans, 1993, p170-

80). On the other side of the Balikh, waterlogging can be inferred from the 

presence of subsidence hollows (also known as ‘gilgai’—see Figure 6.1).  

Gilgai are depressions and cracks that form in poorly drained vertisols (Young 

1976, p186-187) through differential shrinking and cracking and subsequent 

expansion, when the soil dries out after irrigation (Mulders, 1969, p32). Vertisols 

are also often the most agriculturally fertile soils (Young, 1976, p180). Because 

gilgai features often form in formerly irrigated areas, it is significant that they are 
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present in this area of relict irrigation. They support the information from relict 

canals that this was a previously irrigated area.  

 

Figure 6.1: Gilgai are visible on this CORONA image. 22 January 1967. 
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 Figure 6.2: ASTER-generated stream network and palaeochannels, with 

locations of cross sections. 
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Figure 6.3: Cross section 1. For cross section locations see Figure 6.2. 

 

Figure 6.4: Cross section 2. For cross section locations see Figure 6.2. 

Further south, another marshy area was present in the central part of the 

‘horseshoe’. This is a semi-circular, horseshoe-shaped band of cultivable land 

between the Balikh and the Euphrates. Marshy conditions in this area formed by 

pooling of the Balikh at times of Euphrates peak flow (Challis et al, 2004, p144). 

Modern intensive irrigation and poor drainage conditions have led to shallow water 

tables in in this region (Alkhaier et al, 2012, p1837), although it should also be 

noted, however, that water tables have been lowered throughout the study region 

by over-pumping from wells. In the Lower Balikh area in the 1960s, the water table 
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was at a depth of about 5-19 m (Mulders, 1969, p55). Recent research in the 

western part of the horseshoe indicated that the water table depth was between 1-

8 m just after irrigation had stopped for the year (Alkhaier et al, 2012, p1836). This 

may also have been an issue in the past, leading to waterlogging and the 

development of gilgai. Overall, it appears that the over-pumping has led to the 

water tables being lowered, while in those areas where there has been copious 

irrigation, the water table has been raised, thereby making salinization more likely.  

The ‘horse shoe’ shape of the lower valley contains relict terraces of the 

Euphrates. Cross sections 3 and 4 show the morphology of this landform.  The 

eastern part of the ‘shoe’ contains the modern course of the Balikh, whereas a 

parallel valley to the west forms the other side of the horseshoe. Recent research 

by Hritz suggests that this may have been formed by an earlier confluence of the 

Euphrates and Balikh before the Balikh moved to the east (Hritz, 2013a, p1978). 
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Figure 6.5: Cross section 3. For cross section locations see Figure 6.2.

 

Figure 6.6: Cross section 4. For cross section profile locations see Figure 6.2. 

The modern water management system has significantly altered the landscape of 

the Balikh since agricultural intensification occurred from the mid-20th century 

onwards, and this is particularly evident on Landsat images taken from 1984, 

1990, and 2000 (see Figure 6.7). This landscape alteration makes it increasingly 

difficult to identify remains of ancient hydraulic structures in the field. Syrian 

abstraction as well as irrigation schemes in Turkey have both dramatically altered 

the river’s discharge. When first recorded, the river had a flow of 6 m 3 /s (Mulders, 

240

260

280

300

320

340

0 5000 10000 15000 20000 25000 30000 35000

El
e

va
ti

o
n

 (
m

) 

Distance (m) 

240

250

260

270

280

290

300

310

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

El
e

va
ti

o
n

 (
m

) 

Distance (m) 

Palaeochannnel/wadi? 

Balikh 

Balikh 

Palaeochannel/wadi 

Euphrates terraces 



248 
 

1969, p54). During the earlier 20th century, the valley seems to have relied on 

irrigating fields from the river, on small areas fed by groundwater, and on rainfall 

(Beaumont, 1996, p148-149). Away from the river itself, traditional rain-fed farming 

predominated prior to the 1980s (Hole and Zaitchik, 2006, p145; Beaumont, 1996, 

p137). By the 1970s, new large-scale irrigation projects had been initiated 

(Ababsa, 2011, p85; Rabo, 1989, p152-153).  

It is clear from the pattern of fields (highlighted in the near infrared band of the 

landsat images) that in 1984 irrigation in the western part of the horseshoe was 

confined to the region north of the Euphrates, and that the upper valley was only 

locally irrigated, as the presence of some canals and offtakes shows.  

In the 1990s, the flow of the Balikh was reduced to the point where the channel 

was sometimes dry (Wilkinson, 1998, p65); by 2010, it was flowing again, but 

mainly with irrigation outflow from Turkey; this outflow may add as much as 368 to 

928 mm3 /yr to the Balikh, of dubious quality (Kolars and Mitchell, 1991, p111). As 

the Landsat images show, by 2000, the area of irrigated fields had substantially 

increased. Canals from the Tabqa dam on the Euphrates, 40 km to the south, now 

deliver useable water to much of the horseshoe zone, serving water management 

schemes which have yet to reach their full, planned, potential (Hole and Zaitchik, 

2006, p150).  

The shallow water tables measured by Alkhaier et al (2012) may result in 

problems of salinity in the present-day Balikh. Because for most of the year natural 

leaching does not occur, sodium and calcium minerals that are drawn to the 

surface are not removed (Mulders, 1969, p30-31). That the relatively salt-tolerant 

crop barley predominates in excavated remains in the Balikh (Hritz, 2013b, p117; 

Akkermans, 1993, p210-13) suggests that salinity may also have affected past 

cultivation. 
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Figure 6.7: This sequence of Landsat images, all taken at a similar time of year, 

shows the expansion of modern irrigation in the Balikh. Images from NASA 

Landsat Program, 1984-2000.  

In summary, much evidence of ancient cultivation has been obscured and erased 

by the modern irrigation systems of the Balikh valley. However, CORONA images 

preserve a view of the relict channels from the 1960s-70s, before significant 

landscape change occurred, enabling them to be recorded.  

Water management systems 

An analysis of rainfall trends was presented in Chapter 1 and Chapter 3, which 

shows that the Balikh is within an area of temporally variable and generally low 

rainfall. In some years, rain-fed agriculture is possible and, in fact, was the 

predominant form of cultivation in the valley in the early 20th century (Beaumont, 

1996, p137). However, relying on rainfall is risky and does not facilitate high crop 

yields. Research indicates that the climate of the region was also arid, although 

fluctuating, during the period of the later territorial empires (Mulders, 1969, p29; 

Bar-Matthews et al, 1997; Masi et al, 2013). Although at present it is not possible 

to directly compare the modern data with the past climate, arid/changing 
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conditions suggested by the proxy data would indicate that irrigation was therefore 

as much of a necessity in the past as it is today.  

Prior to around 1200 BC, the majority of cultivation in the Bronze Age seems to 

have been reliant on rainfall. Survey data suggest that populations in the 

somewhat more reliably wet north were higher than those of the drier south (e.g. 

see Curvers, 1991).  

By the time of the later empires (i.e. after 1200 BC), however, past irrigation can 

be identified, closely aligned to the stream network described above (Figure 6.2). 

This relationship will have resulted in the removal of some features from river 

movements and the covering of others with sediments. Despite this a complex 

pattern of intersecting, overlapping and fragmentary channels of potentially 

multiple phases is identifiable (Figure 6.8). Initially, this seems to be difficult to 

interpret. However, by undertaking an interdisciplinary, remote-sensing based 

study of the region and by drawing in evidence from existing survey2 and 

excavation this study was able to reveal a sequence of identifiable layers of 

activity. These form a ‘palimpsest’ of water management in the Balikh.  

                                                           
2
 The database of sites was compiled from unpublished data (Wilkinson pers. comm) and from 

published surveys (Wilkinson, 1998; Curvers, 1991; Bartl, 1994). 
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Figure 6.8: The Balikh Valley is crowded with artificial canals (mapped from the 

CORONA images). These represent a complex, tangled palimpsest of different 

cycles of use, reuse and modification.  
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Figure 6.9: Locations of longitudinal canal profiles 1-6 shown in sections 6.2 and 

6.3. A linear regression was applied to each profile. 
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6.2. Sahlan and Hammam canals 

The earliest known well-dated canal in the Balikh valley is the Sahlan canal (see 

Figure 6.11 for its route).  Wilkinson’s survey (1998) excavated a section in the 

Sahlan canal (Figure 6.13). The survey obtained a radiocarbon sample from the 

bed deposits of the later phases of the canal providing an uncalibrated date 

of1380+70 BP (Beta-78543) which is around 570 AD  (Wilkinson, 1998, p71).This 

date is supported by the ceramics collected from the overlying deposits within the 

canal void. The dating information suggests that the feature was probably in use 

from the Hellenistic to the early Byzantine period (Wilkinson, 1998, p71). 

As well as being the earliest well-dated feature in the Balikh, the channel is also 

one of the most prominent canals in the valley. Most of the later systems consist of 

narrower canals without significant upcast banks (visible on the CORONA image 

Figure 6.10). The Sahlan canal, in contrast, has clear banks and a wide bed.  

 

Figure 6.10: The Sahlan canal is very apparent by the dark trace of the infilled 

channel and the pale-coloured upcast mounds on this CORONA image. Image 22 

January 1967. 
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Figure 6.11: Sahlan-Hammam canals and a relict canal of unknown date. 
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Figure 6.12: The gradient of the Sahlan channel estimated from SRTM. Canal 

profile 1 (see Figure 6.9). Gradient: 0.2%. 

 

 

 Figure 6.13: Section through Sahlan canal, from Wilkinson, 1998: fig. 5. 
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Figure 6.14: Sites occupied in each period period alongside the palaeochannel. 

 

 

Figure 6.15: Numbers of sites occupied in each period period alongside the 

Sahlan canal. 

The canal appears to abstract water from the west side of the Balikh at Tell 

Sahlan. As the CORONA image clearly shows, it is closely aligned to the current 
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constructed after the avulsion away from a palaeo-channel to the west. After 

running for c.4km, the canal trace seems to have been removed as a result of the 

erosional activity of the Balikh. 

There appears to be a direct relationship between the palaeochannel and 

settlement locations in the area. Were these sites using the channel itself, or were 

they utilising the marshland or other resources in the immediate vicinity? The area 

was marshy at an unknown stage in the past (Hritz, 2013b, p153). Many smaller 

settlements lie close to the course of the palaeo-channel. The earlier sites may 

have been occupied while the channel still flowed and so had a functional 

relationship to the channel: the highest number of associated sites was in the 

Bronze Age (see Figure 6.14). Later on, the focus of settlements shifted closer to 

the current course of the Balikh, indicating that the avulsion creating the new 

channel probably occurred after the Bronze Age. There were several sites close to 

the palaeochannel that post-date the Bronze Age, however, presumably still 

exploiting the specific environmental niche which the palaeochannel and later 

marshes represented. Curvers (1991) interprets one site (322) as a seasonal 

camp —sites like this indicate temporary occupation in order to make use of the 

marshes.  

The relationship between the canal itself and the archaeological sites is less clear, 

as Figure 6.16 shows: there does not seem to be a clear relationship, and it is 

possible that most of these sites are only associated with it by chance. In other 

words, they were present in the area before the canal was dug, and because they 

do not appear to be in the area actually irrigated by the canal, which is not 

preserved. The irrigated area may have been somewhere to the west of the 

channel. 
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Figure 6.16: Archaeological sites alongside the Balikh palaeochannel and the 

Sahlan-Hammam canal.  

An association between sites and canals can only be clearly defined where the 

sites fall within or close to the area irrigated by the canals; canals in the transport 

zone of the canal will only be associated with it by chance. This example highlights 

a more general point about ‘dating’ canals by their association with archaeological 

sites. They must have a functional relationship to those sites; many of the sites in 

the area may have existed prior to the construction of the canals, or after the water 

system was abandoned, and so could have had no relationship to those canals. It 

is only within those areas where there is a functional relationship with the canal 

water (i.e. where it is distributed via laterals to the fields) that it can be suggested 

that sites and canals are contemporary.  

There are fewer sites in general along the canal. a comparison of Figure 6.14-

6.16 does not indicate any obvious trend. The canal itself can be seen to truncate 

some sites which can be assumed to be earlier in date than the canal. The lack of 

a pattern in site locations may be because there was in fact no pattern, as 

suggested above. it would appear this part of the channel functioned merely as 

transport, delivering water to an irrigation zone further downstream, the traces of 

which were lost even by the 1960s.  
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Figure 6.17: The Sahlan canal truncates the Bronze Age site 242 (arrowed). 

Image 22 January 1967. 

Further downstream and close to Tell Hammam et Turkman, another prominent 

segment of canal was identified, which has a similar morphology and alignment to 

the dated Sahlan channel upstream. Like some other well-known ancient canals 

(e.g. the Neo Assyrian canals of northern Iraq) it is a large feature. Analysis of the 

SRTM data does not show the channel itself but when compared with the route of 

the infilled channel shows that it flowed at a shallow gradient of c.0.4% (see 

Figure 6.20 and Figure 6.9). As discussed in Chapter 5, the values obtained from 

the coarse-resolution DEMs are guidelines only; higher resolution DEMs with 

ground validation could give a more accurate result. Overall, SRTM data for the 

Balikh seemed to be less ‘spikey’ than ASTER. There was some difference 

between the two datasets in some locations. 
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Figure 6.18: Lower end of Hammam channel, near Tell Hammam et Turkman. 

Image 22 January 1967.  

The CORONA DEM, however, allows the morphology of the feature to be 

interpreted (see Chapter 3 for an explanation of how the DEM was generated). 

The heights generated using the CORONA DEM were compared to the SRTM 

DEM, and it was found that 98% of the CORONA DEM pixel height values were 

within 7 m of the corresponding SRTM values. The resulting pixel size of the 

output DEM was 10 m (see Chapter 3). The original ancient elevation of the canal 

is unknown but it had been evident in the field in the 1990s from the prominent 

upcast banks that flanked the channel (Wilkinson pers.comm). Even in the 1960s, 

by which time erosion had presumably taken place, these stood at up to 6 m high. 

They may originally have consisted of spoil from the initial construction of the 

feature. Given the shallow gradient (see Figure 6.20) of the feature frequent 

dredging would have been necessary and the dredged material may then have 

been deposited on the banks.  A photograph taken in the 1990s (Figure 6.19) 

shows that these banks had eroded further; by the fieldwork season of 2010, all 

traces of the canal were gone.  
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Figure: 6.19: The upcast banks of the Hammam channel (foreground) were still 

visible in the 1990s (Photograph from Tony Wilkinson, who also provides scale).  

 

 

Figure 6.20: The lower part of the Hammam channel. Canal profile 2 (see Figure 

6.9). Gradient: 0.4% 
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Figure 6.21: The canal is visible as a broad brown line in the CORONA DEM of 

c.10 m resolution.  

 

 

Figure 6.22: Filtered 3D surface of the Hammam canal created using the 

CORONA DEM. The surface was created by taking points at 3 m intervals along  

transects of 130 m in length.  
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Figure 6.23: Cross section of the lower Hammam canal taken using SRTM. The 

arrow points to the location of the canal, which is not discernable using this coarse 

resolution DEM.  

 

Figure 6.24: Cross section. The canal (see arrow) is discernible using the 

CORONA DEM.  
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The value of employing CORONA DEMs is evident when the cross sections 

obtained by using the two data sources are compared. The graphs (Figures 6.23 

and 6.24) (taken from upstream of the area used for the surface (Figure 6.22) show 

that it is clear that the SRTM is too coarse to give fine detail, to the extent that it 

shows a different overall trend: the shape of the canal and its relationship with the 

surrounding topography can be discerned from the CORONA data, however. 

Figure 6.24 shows the shape of the canal and its relationship with the surrounding 

topography. It separates an area of higher ground beyond its right bank, and 

lower-lying land that slopes towards the Balikh from the canal’s left bank.  

Given the similarities between the excavated Sahlan canal and the Tell Hammam 

et Turkman channel it can be suggested that they are part of the same system: the 

central part of the canal would have been removed by later lateral erosion of the 

Balikh. A pattern of gullying follows what would have formed the canal’s path, 

possibly indicating its former presence. Another canal merges with the Hammam 

canal: this seems to be a later modification (this canal of unknown date is shown in 

Figure 6.11). Generally irrigation systems will comprise lateral canals that divert 

water from the main canals to the fields (see Chapter 4). However, in this case, 

only the main canals are apparent: one forming the transport end and the other the 

drainage end. The irrigated zone was probably within the basin to the west of the 

canals, an area which is obscured by later irrigation (‘suggested use zone’ on 

Figure 6. 13). This is supported by the presence of several sites of later date 

(Hellenistic to Early Islamic) in the area north of Hammam et Turkman; their 

distribution in relation to the canals is represented in Figure 6.25. Hammam et 

Turkman itself yielded some archaeological material dated to the Parthian-Late 

Antique periods (De Jong, 2011, p266).  

If these sites were using and maintaining the Hammam-Sahlan canal, it could 

have enabled them to produce considerable agricultural yields. Other functions of 

the canal system such as transport or drainage should also be noted. For 

example, the canal could have served a purpose of protecting the area to its west 

(possible a cultivated/irrigated area) from being flooded by the Balikh. 
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Figure 6.25: The locations of later sites in the vicinity of the Sahlan-Hammam 

canals (Hellenistic-Early Islamic) are indicated and the hypothetical route of the 

missing segment is suggested based on the location of gullying. 

A greater understanding of the economic input of these canals can be gained if the 

discharge is estimated. Using Manning’s formula, an estimate can be made for the 

discharge of both channels. Wilkinson’s excavations of the Sahlan segment (1998, 

p80) enabled a value of 7.8 m3/s to be suggested (see Figure 6.13).  

Applying Manning’s formula to the Hammam segment of the canal, based on the 

CORONA DEM, gives a range as high as 5.6-73  m3/s. Details including the width 

of the channel and its depth were used to calculate discharge: 
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𝑄 =
1.49

𝑛
 𝐴 𝑅2/3𝑆1/2 

 

Q is the discharge 

N is the roughness coefficient  

A is the cross sectional area 

R is the hydraulic radius 

S is the slope 

Equation 6.1: Manning equation (see Clifford Boyer, 1964, p15-32). 

 

However, excavations were not undertaken for the Hammam canal segment. 

While the CORONA DEM can be used to get an idea of the morphology of the 

canal at the time the stereopairs were collected, using the surface topography of 

the feature alone gives the impression that it is a very wide (between 5-10 m) 

feature of up to 0.5-8 m deep: as Figure 6.26 shows, the 1960s surface does not 

give us the true (ancient) parameters of the canal. If it is part of the same system 

as the Sahlan canal, a similar discharge would be expected: therefore the true size 

of the actual channel would be similar. Conversely, the upcast banks do not need 

to be the same for both channels. The morphology of these will be more 

dependent on the natural topography and can change along the length of one 

canal depending on their initial form and on transformation processes.  

Given the above problems, the Manning formula was applied using two different 

values, based on the CORONA DEM, one assuming a wider and deeper channel 

than the other. The ‘n’ value was given as 0.022 for a vegetated earth channel 

(e.g. see Philips and Tadayon, 2006). Figure 6.27 and Table 6.1 show the 

significant difference in flow between relatively similar width and depth values. The 

same gradient used by Wilkinson (0.002, see Wilkinson, 1998, p80) was applied. 
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Figure 6.26: While a DEM can reveal the surface morphology of an ancient canal, 

excavation is needed to get a more accurate value for depth. From the surface 

alone it is difficult to identify the correct parameters.  

 

 

 

Figure 6.27: Sketch indicating the varying estimates of flow depending upon 

different parameters. Channel gradient was 0.002. 
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Table 6.1: Discharge estimates. Small changes in the input parameters (based on 

the CORONA DEM), as these two examples show, have significant impact on the 

results (assuming a channel with an n value appropriate for an earthen 

construction, see Clifford-Boyer, 1964; Phillips and Tadayon, 2007).This table 

represents estimated rather than absolute values, given a lack of an excavated 

section in the Hammam canal, but they serve to illustrate the possibilities of using 

the dimensions of ancient canals. 

Value Low estimate High estimate 

Gradient 0.002 0.002 

Bottom width (m) 5 8 

Depth (m) 0.5 2 

Flow, (m
3
/s) 5.6 73 

 

Using this estimate for illustrative purposes shows the range of uncertainty 

present. The very different results obtained when slightly different parameters are 

input shows the hazards of estimating discharge where clear channel parameters 

are not available. Wilkinson (1998, p80) was able to suggest a more accurate 

value because his calculation was based on an excavated section; the CORONA 

DEM (which is accurate to about ± 7m) only represents the surface of the channel 

in the 1960s, when it was already infilled and eroded. Further excavation in the 

future would enable the parameters for other sections of the canal to be obtained 

more accurately.  

6.3 Nahr al Abbara 

On the east side of the Balikh a more sophisticated canal system has been 

identified. Unlike the Sahlan-Hammam channels, other parts of the Nahr al Abbara 

(also known as the Nahr Turkman) network can be identified, including offtakes 

and drainage (see Figure 6.28).This enables a recognition of a more complete, 

large-scale irrigation system to be made. Parts of this system were investigated by 

Wilkinson in 1998: by association with adjacent sites and field scatters of pottery it 

was dated to the Byzantine-Early Islamic era (Wilkinson, 1998, p68). While the 

channel flowed in the early 20th century (Wilkinson, 1998, p67), by the time of the 

1960s CORONA images, the channel appears to have become meandering and 
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silted for most of its length, suggesting that it was already out of use. By the 

1990s, much of the Balikh valley consisted of fields watered by the river itself 

rather than from such large irrigation systems (Beaumont, 1996, p148). However, 

the Nahr al Abbara was dry by this time (Wilkinson, 1998, p67). During the 2010 

field season the Nahr al Abbara system was no longer identifiable. Instead, well-

like structures along its former course indicated some form of subsurface irrigation. 

This system is not isolated: it functioned within a specific political and economic 

context in the Early Islamic period and may have been associated with nearby 

centres. The large Early Islamic site of Medinat al-Farr may have functioned as a 

way-station and garrison in the Abbasid period (de Jong, 2012, p520). As the 

CORONA image shows, (Figure 6.29), this was a prominent, walled site of around 

124 ha (Bartl, 1994, p221). Streams associated with the site drain into the Nahr al 

Abbara system, into a north-eastern branch which was possibly part of the oldest 

visible channel. The site may also have had some role in managing the Nahr al 

Abbara, while using the Wadi Sluk for its own water supply. Some of the natural 

streams around Medinat al Farr show evidence of canalisation and the hydro (flow 

network) model shows which channels are likely to be natural (see Figure 6.39).  
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Figure 6.28: The Nahr al Abbara water management system.  
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Figure 6.29: Early Islamic features are visible on the 1960s CORONA images. 

Image 22 January 1967. 

At around 56 ha, the Early Islamic site of Khirbet al-Ambar is also one of the 

largest sites in the Syrian Balikh valley. This is a flat site (Bartl, 1994, p219), with a 

dense layout of structures visible in the 1960s CORONA images (see Figure 

6.29).  There are also at least 23 smaller Early Islamic sites within range of the 

Nahr al Abbara, ranging from less than 1 ha to 6 ha in size (Figure 6.30).  
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Figure 6.30: Early Islamic sites as recorded from survey in the vicinity of the Nahr 

al Abbara. See Wilkinson (1998) and Bartl (1994).  

The system is more complete than other examples from the Balikh. While the 

ancient abstraction method used is not confirmed, Wilkinson noted that it used a 

refurbished dam near Tell Sahlan during the 20th century (Wilkinson, 1998, p687). 

Other ancient gravity-flow systems, such as the Hohokam canals, may have used 

reservoirs (Purdue et al, 2010, p132-140) and dams (Hunt et al, 2005, p448). 

The main canals, laterals and drainage channels of the Nahr al Abbara are all 

identifiable from the analysis of the CORONA images. Like the other nearby 

systems, it is constrained by the flat topography of the Balikh, and it flows at a 

shallow gradient of about 0.1% (Figure 6.31). 
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Figure 6.31: Canal profile 3. Nahr al Abbara main conveyor longitudinal profile, 

using SRTM (see Figure 6.9). Gradient: 0.1%. The ASTER DEM gave the same 

value. 

At the same time, however, the designers of the canals made use of the natural 

topography to create a very functional system. Figure 6.28 depicts the different 

parts of the mapped network. The main canal, which abstracts from the Balikh 

near Tell Sahlan, flows along a ridge of higher ground. An examination of the 

ASTER DEM (Figure 6.32) shows this almost imperceptible ridge. Although the 

elevations involved are small, making use of the ridge allowed the canal to supply 

a large area despite its shallow gradient of 0.1% (see Figure 6.31). Sub-mains 

flow diagonally down the ridge, also with low gradients (Figure 6.33) but enabling 

a larger area to be irrigated.  

Unlike the more obscured Sahlan-Hammam channels, the lateral canals of the 

Nahr al Abbara are apparent in the CORONA image and their locations can also 

be identified, despite noise, in the CORONA DEM (Figure 6.34). The laterals 

flowed directly from the main canal perpendicularly down the ridge, giving them a 

steeper gradient of up to 0.5% (SRTM) – 1% (ASTER) (see Figure 6.36). The 

topography also constrains their length: they range in length between 400 to 1000 

m. They are generally spaced at around 500 m apart. Limestone blocks along the 

main canal may have been part of former sluices (Wilkinson, 1998, p68), which 

directed water into the laterals. Presumably farms and small settlements would 

have been located so as to take advantage of the lateral canals from which water 
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could be delivered to the fields: there are in fact several sites close to these 

locations (see Figure 6.30). 

 

Figure 6.32: The ASTER DEM (spatial resolution 30 m) shows that the Nahr al 

Abbara main canal flows along a slight ridge, allowing the off-takes to flow at a 

steeper gradient in this very flat landscape. 
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Figure 6.33: Canal profile 4, submain of the Nahr al Abbara. Gradient: 0.1% 

 

 

 

Figure 6.34: CORONA DEM showing the elevation of the distributary channels of 

the Nahr al Abbara. 

 

y = -0.0011x + 319.52 

312

313

314

315

316

317

318

319

320

321

322

323

0 1000 2000 3000 4000 5000 6000

El
e

va
ti

o
n

 (
m

) 

Distance (m) 

Linear (Series1)



276 
 

 

Figure 6.35: Nahr al Abbara with laterals and location of Nahr al Abbara lateral 

longitudinal profile. Image 22 January 1967. 

 

 

Figure 6.36: Canal profile 5. Nahr al Abbara lateral longitudinal profile (SRTM). 

Gradient: 0.5%. It is important to note that there are some outlying values which 

can affect the calculations of gradient. This is an issue when measuring shorter 

canals, because these represent relatively few points in the DEM. The ASTER 

DEM gave a value of 1% for this channel. 
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Table 6.2: Comparison between gradients of channels within Nahr al Abbara 

system (based on SRTM) and gradients suggested as ideal by the water 

management literature (in this example these are from Zimmerman, 1966).   

Channel SRTM gradient Recommended 

gradient 

Main conveyor 0.1% 0.1-2.5% 

Submain  0.1%  

Lateral 0.5% 0.5-2% 

Balikh drain 0.04%  

Keder drain 0.2%  

 

While this system was used in the Early Islamic period, it may have functioned 

over longer timescales. There are clearly two main canals of different phases of 

use running on contiguous alignments ca. 400 m apart at the north end of the 

system; eventually the channels merge, indicating two separate phases of use on 

the same alignment (see Figure 6.38). The main conveyor canal, visible on the 

CORONA images as a meandering channel, was still in use in the 20th century (for 

example, see Figure 6.38 and also Figure 6.34) (Wilkinson, 1998). While one 

phase of use is Early Islamic, Figure 6.37 shows a pattern of Bronze Age sites 

along the route of the main canal. Although these could be present as a result of 

coincidence, they could also represent the alignment of a former, earlier canal, on 

the same alignment as the Islamic one. Wiggermann (2000, p177) used Middle 

Assyrian texts from Sabi Abyad to suggest that some irrigation was taking place in 

the area in around 1200-1100 BC.  
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Figure 6.37: Bronze Age sites in relation to the Nahr al Abbara main conveyor3.  

                                                           
3
 The database of sites was compiled from unpublished data (Wilkinson pers. comm) and from 

published surveys (Wilkinson, 1998; Curvers, 1991; Bartl, 1994). 
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Figure 6.38: Traces of two main canals along the route of the Nahr al Abbara can 

be seen in the CORONA image. Arrow points to the main conveyor canal. Image 

22 January 1967. 

Drainage is an important factor in ancient water management in the Near East 

which is often overlooked. Despite the aridity of the climate, waterlogging due to 

over-irrigation can occur to the detriment of agricultural productivity. Occasional 

high episodic flows can damage canals and ditches. Salinity is also a problem 

where water tables are shallow and temperatures are high. Therefore there needs 

to be provision to remove excess water.  

At the top end of the area irrigated by the Nahr al Abbara, gilgai formation may 

relate to previous waterlogging in the presence of expanding-lattice clays (see 

Chapter 6.1). Further south, however, it can be seen that the lateral canals mainly 

discharged into the Balikh after relatively short runs. The sub-main canals may 

also have a drainage function and they do not appear to have been associated 

with clear off-takes. The Wadi Al Keder isolates the system on the east side, 

preventing any uncontrolled runoff from the more elevated eastern steppe from 

being led straight into the fields. The ASTER-generated flow network (Figure 6.39) 

shows how the natural drainage system flows towards the Balikh, potentially into 
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and across the Nahr al Abbara. This would have been a significant problem at 

times of particularly high runoff. 

However, the existing hydrological network could have been utilised to mitigate 

against this problem. The floodplain of the Wadi al Keder and wadis which drain 

into it from the north had large cross sectional areas (200-400 m in places) as the 

CORONA DEM (Figure 6.34) shows, suggesting that it sometimes carried relatively 

high flood discharges. Some lateral canals discharge into this natural channel. 

Finally, Figure 6.40 shows how the system terminates in two channels allowing 

discharge into both the Balikh and the Wadi al Keder which also served to isolate 

the system from the area to the south. Figure 6.29 shows the SRTM 

measurement of the gradient of one of these drains, which flows from the Nahr al 

Abbara towards the Wadi al Keder. Figure 6.41 (Canal profile 6) shows that the 

gradient of this channel has a typical downward trend, but that it is affected by 

several unclear peaks and troughs, which may be partially due to modern features 

recorded by the DEM. Interestingly, the canal appears to drop quite sharply as it 

meets the natural stream channel. 

While the Wadi al Keder may have been modified in the past, especially in the 

area between Medinat al Farr and Hammam et Turkman, the ASTER-derived flow 

network model indicates that it is a natural stream (Figure 6.39): the model only 

identifies the natural drainages and does not include canals.  
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Figure 6.39: Flow network calculated using the ASTER DEM .The canal features 

were mapped from CORONA images. 
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Figure 6.40: Nahr al Abbara drainage zone. The wide Keder drain has a gradient 

of 0.2%; a clear trend in the gradient of the Balikh drain is not discernable using 

the available data The CORONA image and DEM shows that these are very 

different channels in plan-form. Image 22 January 1967. 

 

Figure 6.41: Canal profile 6. Longitudinal profile Wadi al Keder drain of Nahr al 

Abbara system using SRTM. Gradient: 0.2% 
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It is now appropriate to summarise how the Nahr al Abbara system was used. The 

general layout of the system and the gradient data are informative. As suggested 

above, the shallow gradient of the main canal (0.1%,  Figure 6.31) allowed it to 

flow for a long distance (25 km), facilitating the irrigation of as large an area as 

possible. The problem of delivering water to the fields at a slighter steeper gradient 

was mitigated against by the layout of the lateral canals, which flowed 

perpendicularly off the ridge where the main canal is located: as a result, most of 

the laterals had gradients as high as 0.5%, consistent with values presented as 

ideal in modern irrigation literature (Table 6.2). At the lower end of the system, the 

split in the main channel allowed it to drain both into the Balikh and also into the 

Wadi al Keder (at a gradient of 0.2%).  

Presumably, the irrigated zone, and individual farms, were located at the lower 

end of each of the irrigation lateral canals. Kaptijn’s study (2009; 2010) of water 

management in the Wadi Zerqa can be compared to the Nahr al Abbara; in the 

Jordanian system, each farmer was assigned enough water to irrigate about 10 ha 

(Kaptijn, 2010, p149). If similar rules can be applied to the Nahr al Abbara, then 

each farm presumably irrigated using one or two of the lateral canals visible in the 

imagery. This would mean that there were at least 20 farms relying on the Nahr Al 

Abbara system, based on its pattern of lateral canals. The nearby Islamic sites of 

Medinat al Farr and Khirbat al-Ambar (possibly ancient Bajadda; see Heidemann, 

2011, p46) could have administered the irrigation system.  

There is a considerable difference in the scale, density and sophistication of the 

Early Islamic Nahr al Abbara when it is compared with the earlier Sahlan-

Hammam system: links between this intensification and the imperial administration 

of the Balikh will be discussed in Chapter 7 . Careful foresight and planning must 

have been employed in the construction of the Nahr al Abbara, enabling irrigators 

to make use of the natural topography of the landscape and of natural drainages. 

The survival of the system into the 1960s gives a rare insight into the different 

levels of water management within a network (the mains, laterals, drains etc).  
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6.4 Central Balikh 

Another system which may have been used in the earlier imperial periods is 

located to the south within the central Balikh Valley. Wilkinson’s 1998 survey 

identified part of this system and, by association with sites of Hellenistic date 

suggested a period of use between the 3rd and 1st centuries BC (p77; also see 

Wilkinson and Rayne, 2010). The CORONA images reveal that this system 

originated from a very long main canal, which abstracted from the Balikh about 1 

km below the terminus of the Hammam canal and flowed with a very shallow 

gradient c.20 km south, finally draining into the stream of the Qara Mokh (Figure 

6.42).  
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Figure 6.42: Canals in the central Balikh, near the Qara Mokh. 
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Figure 6.43: Locations of longitudinal profiles, based on the SRTM DEM. 
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Sub-mains and laterals branch from the main canal, and also drain into the Balikh. 

In the CORONA image, the Hellenistic main channel identified by Wilkinson (1998) 

appears to be linked to a much longer canal which abstracts from close to 

Hammam et Turkman. This flows for over 15 km and follows the alignment of the 

Balikh very closely (see Figure 6.44). The upper canal may represent the 

transport zone of the system, closely following the alignment of the Balikh.  

 

 

Figure 6.44: The upper main canal within the central Balikh system. 

The other branch canals of this system (Figure 6.45) are situated at lower 

elevations relative to the main conveyor canal, but are still higher than the channel 

of the Balikh. Abstracting from higher up the Balikh enables the water to gain 

sufficient elevation for it to be distributed over slightly raised terrain to form a larger 
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irrigated zone. The creation of this zone enabled a larger area (of up to 1,300 ha) 

between the Balikh and Qara Mokh to be cultivated.  

 

Figure 6.45: The irrigated zone of the Hellenistic system is south of the main 

canal. CORONA image 22 January 1967. 

This system flows at a shallow gradient: just 0.07%-0.1% for the main 

conveyor, based on SRTM and ASTER (Figure 6.46; Figure 6.43). This 

presumably would have led to significant siltation, which necessitated frequent 

cleaning. Such siltation may also explain the meandering line of the main 

canals. The short laterals, however, were located at points where they could 

make use of the natural topography in order to flow at a steeper gradient of up 

to 0.4% (see Figure 6.47, Profile 2 on Figure 6.43). 

 

 

Irrigated zone 
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Figure 6.46: Canal long profile 1, main conveyor,  measured using SRTM (see 

Figure 6.43).  Gradient: 0.07%. 

 

 

Figure 6.47: Canal long profile 2, lateral channel, measured using SRTM. 

Gradient: 0.4%. 
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Figure 6.48: Canal profile 3, drain, measured using SRTM. Gradient: 0.2%. 

There is a high variance of scatter due to the short length of this canal and 

influence of modern features recorded by the DEM. 

It is noteworthy that pre-Hellenistic sites in this central part of the Balikh are 

more linked to the natural watercourses than to the canals. However, Figure 

6.49 shows that during the Hellenistic period, a pattern of sites developed that 

is closely aligned to the canals.  

Most of the sites cluster along the route of a submain canal and its associated 

laterals (see Figure 6.42). These sites are small, and  could represent 

individual farming settlements which were making use of the irrigated lands. 

The biggest nearby Hellenistic settlement is Mounbateh (site BS 378), but it is 

on the other side of the Balikh. It is interesting that there is no major centre 

clearly associated with the canals in this area, rather they appear to have 

supplied irrigation water to a dispersed pattern of rural settlements. 

It also worth noting that there are canals of a similar appearance and alignment 

on the opposite bank of the Balikh, above the large Islamic site of Sheikh 

Hassan (see Bartl, 1994 on this site). These canals also originate from a long 

canal that flows close to the river, and also have a meandered, partially 

aggraded appearance.  

y = -0.0019x + 295.74 

294

294.2

294.4

294.6

294.8

295

295.2

295.4

295.6

295.8

296

0 200 400 600 800

El
e

va
ti

o
n

 (
m

) 

Distance (m) 

Linear (Y)



291 
 

 

Figure 6.49: Settlement in the area achieved a peak during the Hellenistic period 

and sites of this date are closely aligned to the canal system.  

After the Hellenistic peak, settlement alongside the canals in the central Balikh 

zone declined. A few Early Islamic sites were situated close to the south end of the 

system, near the drainage points. The evidence does therefore point towards a 

Hellenistic date for the main period of use of this canal at this location.  

The drainage networks generated using SRTM and ASTER DEMs indicate where 

natural drainage basins—such as wadis—are located (see Chapter 3). However, 



292 
 

with the SRTM, noise can be a problem specifically in areas of low-relief (Sanders, 

2007) such as the Balikh, and its resolution is relatively coarse at 90 m. ASTER 

also contains noise and errors (Slater et al, 2011). However, both datasets have 

been used for hydrological modelling with workable outcomes (e.g. see Sanyal et 

al, 2013 for the use of SRTM). 

A comparison of the simple drainage network used in this case with a visual 

inspection of the satellite imagery reveals that the locations of natural drainages 

almost always correspond closely in both types of data, giving a good degree of 

confidence when using the DEMS.  

In general, while the SRTM and ASTER-based drainage networks are successful 

at defining the natural streams and wadis, artificial channels are rarely identified as 

part of the natural drainage network, including some which were still visible at the 

time when the DEM data were collected. While the natural streams and seasonal 

channels are readily defined by the DEM networks, features recognised as canals, 

either in the field or on CORONA images, are evident as distinct anomalies.  

There is a discrepancy between the current and mapped course of the Qara Mokh 

and the modelled one, as Figures 6.42 and 6.49 show: if this is not due to errors 

in the SRTM and ASTER, it may suggest that the stream’s course was diverted at 

some stage in the past, possibly due to human intervention. Because the 

Hellenistic system drains into the channel of the Qara Mokh that is visible on the 

imagery and not picked up by the hydro network, the diversion/avulsion 

presumably occurred no later than the Hellenistic period, if not before.  

 

6.5 Qara Mokh: West system 

This remote sensing analysis suggests that the Qara Mokh (a west-bank tributary 

of the Balikh) was used for irrigation as well as for drainage in the past. However, 

so far, the area to the south-west of the Qara-Mokh, including the western part of 

the horseshoe, has been neglected by research, representing an empty space on 

the map of the ancient Balikh. The CORONA evidence suggests that this 

landscape was heavily exploited even before the modern irrigation schemes 
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obscured it. Hritz interprets the region of the Wadi al Fayd as a previous course of 

the Balikh (Hritz, 2013a, p1978). She labels a channel visible in the historical 

imagery as the palaeochannel itself (ibid, p1981).  While a previous course of the 

Balikh and its relationship with the Euphrates probably shaped this region, the 

visible channel bears more similarities to a canal than to a natural stream. The 

evidence for this will now be summarised. 

Unlike the other irrigation systems discussed above, the West Balikh channels rely 

on the Qara Mokh rather than on the Balikh. There is also evidence of attempts to 

manage and incorporate seasonal runoff in the form of channel straightening and 

incorporation into canals The ASTER -derived hydrological model (see Figure 

6.30) made it possible to distinguish between natural wadis and anomalies in the 

form of artificial canals: these data were examined alongside information about the 

morphology of the channels from the CORONA images to identify which features 

may be man-made.  

First, an explanation of dating evidence is needed. Unlike other relict irrigation 

systems in the Balikh, those of the Qara Mokh have not been excavated or 

surveyed. A few sites are visible close to the canals (see Hritz, 2013a, p1982), but 

their dates are not known. Several phases of use, reuse and modifications can be 

inferred from the complex layers of channels. As will be discussed below, at least 

one of these phases can be dated by a clear association with a subterranean 

tunnel. The tunnel diverts water from the Qara Mokh canals and terminates at the 

Early Islamic palaces north of Raqqa, visibly associated with these remains. This 

suggests an Early Islamic date for at least one phase of use of the Qara Mokh 

channels.  
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Figure 6.50: Flow network and wadis and canals digitised from CORONA imagery 

in the west Balikh horseshoe.  

The analysis of a time series of images indicates that the West Balikh canals are 

not modern. The most recent images show that the modern systems have entirely 

obscured the earlier water management remains (Figure 6.51). Using a 

retrogressive analysis, a Landsat image (see Figure 6.3) of August 2000 shows 

that water management systems in the area are now intensive. An earlier Landsat 

image of 1990 shows less dense cultivation; and prior to this, the 1984 Landsat 
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image was clearly collected before the new irrigation scheme was completed. This 

programme of new water management schemes is well known and has attracted 

some research; irrigation as part of a major dam building scheme developed in the 

1970s (Rabo, 1989, p152). Beaumont (1996) and Hole and Zaitchik (2006) 

mapped irrigations development in the area using Landsat imagery.  Alkhaier et al 

(2012) studied its impact on groundwater levels and quality. Based on this 

evidence they suggested areas which might have undergone irrigation within a 

longer timeframe (ibid. p1837).    

Significant use of the modern systems did not begin until the 1980s, however, and 

parts of this system can be observed under construction in the CORONA images 

(Figures 6.52 and 6.54).  The 1972 image shows what appears to be a newly 

constructed grid of empty, dry canals being built throughout the western 

horseshoe zone. A regular pattern of large fields can be delineated (for example 

around 350 x 780m). At the time of the earlier 1967 image, only a few of the new 

main canals in the south of the zone, near the Euphrates, had already been built 

(Figure 6.54).  

 

Figure 6.51: 2010 Google Earth image of the west Balikh area shows how 

modern irrigation schemes have transformed the landscape and removed and 

obscured the relict channels. 
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Figure 6.52: 16 May 1972 CORONA image. A newly constructed grid of canals 

is being built, overlaying the channel pattern visible in the earlier CORONA 

image. Arrows mark the main canal.  
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Figure 6.53: 16 May 1972 CORONA image. A newly constructed grid of (dry) 

canals is being built, overlaying the channel pattern visible in the earlier 

CORONA image. Arrows mark the main canal.  
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Figure 6.54: 22 January 1967 CORONA image showing the same area as Figure 

6.53 before the new irrigation scheme was constructed. Arrows mark the former 

main canal (of straight trace and meandering form) which was replaced by the 

system visible in the later images. 

Based on this series of images it is clear that the current irrigation schemes in the 

West Balikh did not exist prior to the 1960s: their development from the late 1960s 

and into the 21st century can be mapped. Given this, what period of use can the 

many earlier, relict channels visible in the 1967 CORONA image be assigned to? 
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Aside from a few channels close to the abstraction point with the Qara Mokh, the 

canals in the West Balikh appear disused and poorly maintained in the 1967 

image. No contemporary villages are apparent. As Figure 6.54 shows, some of 

the canals are meandering, presumably due to siltation, and many are clearly dry 

and already eroded. Flooding appears to have damaged others, and un-managed 

waterlogging has led to the development of gilgai (see Chapter 6.1). The canals 

appear to have been abandoned for at least a few years prior to 1968.  

 It was only after the 1920s that agriculture began to intensify in the region 

(Wagstaff, 1985, p241),primarily after the Second World War (Lewis, 1955, p60). 

Although the introduction of canals after the 1940s would make their use very 

short-lived (possibly less than around 30 years), given that new systems were 

already replacing them in the 1960s, the period from around 1920-1960 is one 

contender for the West Balikh canals.  

An earlier date is also possible. However, historical information suggests that this 

part of Syria was not intensively cultivated during the 18th, 19th and early 20th 

centuries. Permanent settlements were rare (Hole, 2006, p144). Insecurity in the 

provinces during the Late Ottoman period (Lewis, 1955, p48) might have been the 

reason behind this decline in cultivation.  

During the 18th, 19th and early 20th centuries the area may well have been devoid 

of significant irrigation, although there has been little research into Ottoman water 

management in general. The West Balikh canals could have been used before this 

later Ottoman period. At intervals Raqqa had some importance as a regional 

centre, being at the frontier of the Ottoman empire (Winter, 2009), although a 

decline in cultivation may have occurred (Kanieski et al, 2013, p3865). Before this 

time, a surge in agricultural prosperity in Northern Syria is suggested for the 

Ayyubid-Mamluk periods by contemporary geographers (Kaniewski et al, 2012, 

p3864).New irrigation activity might have been concomitant with this. Canals of a 

similar appearance in the Wadi Zerqa mapped from 1940s images could be traced 

back using travellers’ accounts at least to the 1840s (Kaptijn, 2009, p311): a 

similar trajectory for the Qara Mokh canals could be possible. 

The association with the Raqqa tunnel may even indicate an Early Islamic phase 

of irrigation in the West Balikh area, a period when Raqqa and the Balikh were 
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even more politically important. It is possible, therefore, that water management in 

the West Balikh area began in the Early Islamic period, and continued into the 

Ottoman era. There might have also been a separate, short-lived phase of 

irrigation in the early 20th century. 

Now that dating possibilities have been summarised, the different channels and 

their function within the network can be described. The CORONA images (see 

Figure 6.55) show that the first set of channels appear to have abstracted water 

from the Qara Mokh, and these are the only part of the system that appears to 

have been in use in the 1960s. Like the central canals, the main canal has a very 

shallow gradient of 0.07-0.1% (SRTM and ASTER data) (see Figure 6.56), but the 

laterals flow perpendicularly down the slope and attain somewhat higher gradients. 

 

Figure 6.55: A main canal abstracting from the Qara Mokh is visible along with 

laterals draining eastwards towards the Balikh (Long profile 1). CORONA 

image 22 January 1967. 

Qara Mokh 

Canal 
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Figure 6.56: Longitudinal profile of the main canal of the Qara Mokh/West Balikh 

system, measured using SRTM (see Figure 6.50; profile taken along route of 

canals from point A to point B).Gradient c.0.07-0.08%. 

 

Figure 6.57: CORONA image showing multiple conveyors along a hillslope. Image 

22 January 1967. 
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A parallel alignment of channels originating from the Qara Mokh canals is 

apparent and may be significant. As the CORONA image shows (Figure 6.57) 

these are fairly narrow features of straight appearance suggesting that they are 

unlikely to be paleo-channels of natural rivers (although they have been 

interpreted this way, see Hritz, 2013a). They appear to be associated with a loose 

pattern of remains forming an unstructured, possibly Early Islamic, settlement. The 

possible canals flow along a shallow hillside, following the contours (see Figure 

6.58). This could constitute a specific form of irrigation that allowed the whole 

hillside to be watered. As such, they have shallow gradients. 

 

 

Figure 6.58: Cross section across multiple conveyors of Qara Mokh system (see 

Figure 6.57). These flow at different levels along the side of a slope and may have 

been intended to intercept runoff.  

These canals are crossed by a wadi just after they begin to fade on the CORONA 

image. The channel of this wadi appears to be canalised. Another main channel of 

straight trace but meandering form originates here (e.g. see  Figure 6.50 and 

Figure 6.54. It may have been receiving water from both the Qara Mokh system 

and from runoff wadis. This channel has been interpreted by Hritz (2013a) as a 

paaleochannel of the Balikh, and indeed the ASTER DEM does identify the 

downstream segments of this feature as a natural channel. Associated, flooded 
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laterals (again, see Figure 6.54) and the straight trace of the channel may be 

evidence of modification of this stream and are certainly evidence of its use for 

irrigation at some time in the past. The main channel flows for about 20 km before 

presumably draining into the Euphrates: its terminus was either obscured or 

erased by more recent cultivation or by movement of the river. 

Some of the laterals are in the form of straight, short, narrow channels flowing 

perpendicular to a straight main or sub-main canal (see Figure 6.54),  showing a 

similarly regular alignment to the examples of relict canals known from the 

Hohokam region (see Chapter 4, Figure 4.9). In the case of the Hohokam, it has 

been proposed that this alignment represents the technique of wild flooding 

(Masse, 1981, p412): it is possibly that a similar technique was used in the Balikh 

horseshoe. 

Evidence of flooding surrounds the West Balikh canals (see Figure 6.54). 

Seasonal, excess water would have been relatively constrained between the two 

areas of higher ground on either side of the narrow valley, without recourse to the 

kind of drainage options which the Nahr al Abbara had. The ASTER hydro model 

and DEMs (Figure 6.50) show the large contributing area of this relatively small 

drainage basin.   

In amongst faded traces of straight canals and laterals, there were many relict, 

sinuous streams within the west valley which may be a result of flooding and 

avulsion. The multiple canals constructed may in part have been an attempt to 

deal with this occasional but potentially catastrophic seasonal runoff. The runoff 

could have been a useful resource if collected and contained effectively. For the 

rest of the year, the system relied on the waters of the Qara Mokh. The 

maintenance and management associated with this problematic system would 

presumably have been complex and it may never have been as successful as the 

Nahr al Abbara. 
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6.6 Raqqa 

Thus far this chapter has described the rural water management systems of the 

Balikh valley. In general, these seem to represent the later periods, primarily the 

Early Islamic period onwards. This was a time when the settlements of Raqqa and 

Al Rafika in the south of the Valley became especially prominent. Throughout the 

Imperial periods, Raqqa had been at the frontier of various empires, including the 

Seleucids and Byzantines (Challis et al, 2004). It then attained increased 

importance in the Early Islamic period, under the caliphs al-Mansur and Harun ar 

Rashid: For a brief time under Harun ar Rashid it was the centre of the Abbasid 

Empire.  

 

Figure 6.59: Tunnels and qanats around Raqqa.  

The two settlements were originally separate entities (Raqqa and al-Rafika). 

Ancient Raqqa probably overlies the Hellenistic Nikephoriom and Seleucid 

Kallinikos; Rafika (which is the centre of modern Raqqa) is the wall-enclosed town 
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to the west, built in the Early Islamic period (e.g. see Challis et al, 2004, p130). 

However, the whole area eventually came to be known as Raqqa. 

The 1967 CORONA image enables the water supply which supported the power of 

this city to be identified. It reveals that Raqqa and the Abbasid palaces to the 

north-west of the city had separate water supplies. In addition, between Raqqa 

and Rafiqa several canals flow through an Early Islamic industrial area and are 

obscured by later activity. Although Heidemann interpreted these as Early Islamic 

features (Heidemann, 2006), this interpretation is incorrect for a long feature 

running west-east. On examining the large canal in the field in 2010, it was found 

that it clearly cut through the walls of the Abbasid site Heraqlah: it was also clear 

that the canal was long abandoned and in a dry and eroded state. The upcast 

banks were about 1.5-2 m high, with a channel void about 10-12 m wide.  

 This interpretation is re-enforced by the 1967 CORONA image which clearly 

shows this E-W canal cutting through the outer walls of Heraqlah (see Figure 

6.62). 

 

Figure 6.60: eroded and overgrown post-Abbasid canal viewed from the north in 

2010. The canal cuts through the site of Heraqlah (the canal is just behind the 

donkey).  
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Figure 6.61: Sketch profile of post-Abbasid canal. 

 

 

Figure 6.62: The east-west canal which clearly truncated Heraqlah. 1967 

CORONA image. 

There are also qanats flowing from the west and north of Heraqlah. It is unclear 

whether or not these are cut by the post-Abbasid canal. The qanats have been 

interpreted as Ummayyad (Kamash, 2009, vol3, p4). The site itself contained two 

wells, on either side of the eastern iwan, c.10 m apart. A raised line of ground 

between them suggested that an underground tunnel connected the wells. The 

wells appear to be contemporary with the site, and when visited in 2010 were both 

choked with masonry. Significantly, this is similar to the construction at Dibsi Faraj 

(Harper and Wilkinson, 1975, fig. H). It is interesting that at both sites qanats were 

also present.  
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The Early Islamic canals which supply Raqqa from the north also seem to derive 

from a qanat, possibly the principal water source of the Early Islamic city. The 

qanat leads from the higher ground to the north down towards Raqqa, and then 

opens out into the surface canals (Figure 6.63).  

 

Figure 6.63: A qanat north of Raqqa terminates in an open channel. CORONA 

image 22 January 1967. 
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Figure 6.64: General location of canals derived from a qanat which supplied 

Raqqa. CORONA image 22 January 1967. 

As Figures 6.64 and 6.65 show, three canals flowed into the area between Raqqa 

and Rafiqa. The large channel visible in Figure 6.64 running west-east is the post-

Abbasid canal discussed above. One of the other two canals clearly originates in a 

qanat.  The longer canal either originates in the same set of qanats, or from 

another source that had disappeared by the time the CORONA images were 

taken. This was a much straighter channel and terminated in a depression which 

may represent the location of a former cistern (birkeh- cf. the cisterns at Resafa) 

amongst the Early Islamic palaces (Figure 6.65). The other channel is more 

meandering, and only flows for c.5 km before fading out in the vicinity of Tell Bi’a 

and presumably draining into the Euphrates. Interestingly, the two channels cross 

each other: it is possible to ask whether one post-dated the other, or if a device 

such as inverted siphon was used. A fragment of another qanat can be seen just 1 

km from the walls of al-Rafika. 
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Figure 6.65: Canals, the depression of a former cistern, and part of a qanat 

identified on the 1967 CORONA image. The walled Islamic city is evident in the 

SW of the image. 

Several palace complexes to the north of Raqqa have been identified on the 

CORONA images. A particularly large set of structures (Figure 6.71), also 

interpreted as an Abbasid palace (Challis et al, 2004, fig.2), is at the periphery of 

the Early Islamic palace complexes. The feature has similarities to other palaces 

of the same period, with components that may represent a race course and a 

hunting park (e.g. see Northedge’s discussion of Samarra, 2005). 

Significantly, however, this palace complex has its own water supply, separate 

from the qanat that feeds Raqqa and Rafika. It originates as an open channel (see 

Figure 6.59 and Wilkinson and Rayne, 2010), connected to the west Balikh 

system of canals which abstract from the Qara Mokh. As the ASTER DEM shows 

(Figure 6.66), it then flows for about 25 km before reaching a major obstruction in 

the form of an elevated area of steppe. 
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Figure 6.66: The ASTER DEM shows that a qanat originates in an area of 

elevated ground north of Raqqa. Another open channel becomes a tunnel in order 

to traverse this area.  

 In order to traverse this upland, the canal cuts straight through the higher ground, 

becoming a tunnel. Maintenance shafts at the surface give the feature a ‘qanat-

like’ appearance (Figure 6.67). There are known, dated parallels for such tunnels 

in the Neo-Assyrian period in Iraq: for example the Negub tunnel which supplied 

9th to 7th century BC Nimrud in Iraq (Figure 6.68).  However, in this case the 

associated archaeological sites suggest that the tunnel is Early Islamic. 
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Figure 6.67: Tunnel shafts indicated by pale coloured upcast mounds. The large 

number of straight pale coloured features are modern dirt tracks leading north from 

Raqqa. CORONA image 22 January 1967. 
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Figure 6.68: This example of a Neo-Assyrian tunnel in Iraq can be used to gain an 

idea of what the Raqqa tunnel might have looked like (personal communication, 

Stephanie Dalley).  
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Figure 6.69: The surface of the Raqqa tunnel compared with its projected route. 

  

Figure 6.69 shows the elevation of the ground surface above the tunnel from the 

point at which the channel meets the higher ground and becomes a tunnel. This 

indicates that the channel must have flowed as deep as 30m below the surface for 

about 10-15 km.  

 

Figure 6.70: Schematic view of suggested tunnel 

Figure 6.70 provides a schematic reconstruction of the feature. Once the higher 

ground is successfully traversed, it becomes an open channel again. Control 

structures in the form of cisterns are associated with it at this stage (see Figure 

6.71). Finally, the channel fades out within the hunting park/race course area of 

the Abbasid palace. It is possible that it could have extended further south and 

supplied the other palaces, however this is not clear on the CORONA images.  
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Figure 6.71: Abbasid palace with a possible race course (cf. Samarra) and an 

outlet channel with cisterns. CORONA image from 1967.  

 



315 
 

 

Figure 6.72: Early Islamic canals, sites and other water features around Raqqa 

and Heraqlah.  

As Figure 6.72 shows, Early Islamic settlement extended throughout the southern 

Balikh Valley. Many of these smaller settlements may have been relying on other 

canal systems such as the Nahr al Abbara in the north of the valley, but altogether 

this combined complex of canals, qanats and tunnels appears to have provided 

the support for the economic and political power of Raqqa. It is clear from the 

above evidence that the city itself utilised several separate sets of water 

management systems. In this semi-arid environment, the complexes of elite 

residences with associated parks and gardens and industrial activities must have 

required large volumes of water: the qanat could have supplied the settlements of 

Raqqa and Rafika, whereas the tunnel from the Qara Mokh area could have 
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supplied the palaces and parks. The qanats around Heraqlah could also have 

supplied Early Islamic sites and fields.  

6.7 Summary 

 

Figure 6.73: Several separate water management systems in the Balikh valley 

could be unpicked from the layers of channels and investigated using DEMs and 

archaeological data.  
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This chapter has described the relict water management features in the Balikh 

Valley for which a date can be suggested, either through excavation, survey, or by 

association with other dated archaeological sites. These are illustrated in Figure 

6.73. Other potentially ancient channels in the valley exist, however, until such 

time as they can be investigated through fieldwork, these are not discussed here. 

The results presented in this chapter can now be summarised. Despite the 

complex palimpsest of relict canals represented in Figure 6.8, by taking an 

interdisciplinary approach using remotely sensed and survey data specific water 

management systems could be identified. Several of these represent large-scale 

irrigation systems with the potential to abstract a significant proportion of the 

available water resources. 

Table 6.3: Summary of key results. 

Canal system Gradient of a main canal, 

based on SRTM and ASTER 

Dating information 

Sahlan/Hammam 0.2-0.4% Hellenistic-Byzantine 

Nahr al Abbara 0.1% Early Islamic 

Central 0.07-0.1% Hellenistic 

Qara Mokh 0.07-1% Early Islamic-later? 

Raqqa Qanats Early Islamic 

 

Table 6.3 lists the key results which enabled this identification. Image 

interpretation of the CORONA images showed five key groups of channels (see 

Figure 6.73; also Table 6.3). While some groups of channels were more 

fragmentary, it was possible to recognise the differences between individual 

systems, and also between main canals and offtakes. For example, the layout and 

hierarchy of the Nahr al Abbara system was very clear in the imagery. 

Topographic data derived from DEMs (SRTM, ASTER and CORONA) facilitated 

an analysis of gradient information. The data show that canals were flowing at very 

shallow gradients, generally lower than values recommended in the modern 

irrigation literature (see Table 4.1). All the canals were inevitably constrained by 

the shallow slope of the Balikh Valley, however, where possible, the lateral canals 

were generally located perpendicular to the main canals to allow more elevation to 
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be gained. The main conveyor canals of the Nahr al Abbara and the central Balikh 

area were aligned to the highest areas of ground in order to facilitate this. 

By using information from survey and excavation reports it was possible to 

understand the phasing of each system. The Sahlan-Hammam canals and the 

canals in the central Balikh represent earlier phases of activity. The earliest 

system known archaeologically, the Sahlan-Hammam system, is fragmentary, 

short, and relatively simple when compared to the later systems, as Figure 6.73 

shows, despite its size and embankments. The irrigated fields that derived their 

water from the canal can no longer be traced, presumably because they have 

been erased by the more recent agricultural systems. The irrigated area of the 

canals in the central Balikh area could be ascertained, however, based on the 

presence of some offtakes and Hellenistic sites. 

The Nahr al Abbara, the West Balikh/Qara Mokh canals and the channels around 

Raqqa are linked to the Early Islamic period. The Nahr al Abbara is a good 

example of how successful ancient engineering could be, by making use of natural 

topography to overcome the potential limitations of a landscape. Figure 6.73 

shows the significant extent of the West Balikh canals, parts of which appear to 

represent a reticulated system. Raqqa itself and the palaces around it had 

separate water supplies, suggesting the great demands placed on the available 

water resources by the presence of the imperial state. 

The evidence from the Balikh shows a peak in irrigation development in the Early 

Islamic period. After this peak, settlement and cultivation in the Balikh seem to 

have declined so that by the early 19th century Raqqa and al-Rakifa were in ruins 

(see Bell, 1924, p55-56).  The geographical and political scales of the Early 

Islamic peak in water management within a wider Near Eastern context will be 

investigated in the next chapter. 
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Chapter 7: Discussion 

7. 1 Introduction 

The results presented in Chapters 5 and 6 have enabled the main aim of this 

research to be addressed; namely, to map ancient water management in northern 

Mesopotamia at the time of the later empires, taking an innovative and 

interdisciplinary approach which uses remote sensing, GIS and archaeological 

survey. The results facilitate a discussion of the implications of the scales of 

control over water exercised by the later territorial empires (Neo-Assyrian-Early 

Islamic), with interpretations of how empires might have imposed and incentivised 

the use of water management technology 

First, existing concepts of ancient water management are discussed to emphasise 

how particular perceptions and methods have created a need for new evidence 

and a more multidisciplinary viewpoint, followed by a summary of the chronological 

trajectory of irrigation. The methodological advances that this research has applied 

to the field will then be assessed in terms of how this work has built upon a more 

traditional approach to understanding ancient water management, and the way in 

which this evidence can be evaluated. The distribution and scale of ancient canal 

systems across the northern Mesopotamia will then be discussed, followed by an 

analysis of how these results support a model of imperial control and 

enhancement of the landscape. 

7. 2. Theoretical framework 

In order to evaluate the contribution of the present study to the subject of ancient 

water management, the contribution of the existing literature to the project’s 

theoretical framework will be assessed. It is important to understand how the 

different approaches used have shaped knowledge of ancient water management. 

As outlined in Chapter 1, ancient water management has traditionally been 

discussed in a framework of water and power. Wittfogel’s hydraulic hypothesis 

(1957), which suggests that the management of water resources leads to state 

development in terms of despotic power, has underpinned much of the existing 

research.  
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Whether large scale systems always represent a complex level of administrative 

and possibly despotic power has been debated (e.g. see Adams, 1974; Mabry, 

2000). Criticism of the hypothesis has suggested that it is possible for irrigation to 

function without the apparatus of a large state or empire, being instead organised 

by local groups (e.g. Hunt and Hunt, 1974, p153; Mabry, 1996). Sheridan (1996), 

analysing water management in Mexico, found that systems of canals were 

organised by local communities of farmers which organised the distribution of 

water and maintenance tasks such as canal cleaning The canals formed mostly 

relatively simple systems consisting of narrow, unlined channels and diversion 

dams (Sheridan, 1996, p36-37). Although these were relatively small-scale regular 

and fairly complex organisation was needed to maintain them; yet this still did not 

require the kind of state that Wittfogel claimed is always necessary. Conversely, 

some scholars agree with Wittfogel in that they assert a need for a high level of 

control when irrigation is used (e.g. Steward and Murphy, 1977). Many large-scale 

contemporary systems, controlled by states, are an example.  

Ultimately, the main problem with Wittfogel’s hypothesis is that it is not fully 

grounded by evidence and this has restricted the productivity of the debate. The 

present study has approached water from a different perspective, aiming instead 

to generate a large database of empirical evidence for  water management which 

can enable new conclusions to be drawn independently of the Wittfogel debate. 

These data suggest the inverse of Wittfogel, namely, that water management 

technologies were used by powerful later empires to enhance and underpin their 

economies (see sections 7.7 and 7.8 below). The extensive canal systems along 

the Euphrates (Chapter 5) are an example of this.  

Since Wittfogel’s 1957 publication, studies have gathered more detailed evidence, 

as Chapter 2 outlines. The results of these have been included in the database 

collated by this research. However, the theoretical approaches of these studies 

should also be recognised.  In general, the existing studies tend to be focused on 

specific features or sites in isolation, without an attempt to generate a more 

comprehensive dataset. In addition, these are taken from a range of perspectives 

which have focused on specific aspects of the evidence.  
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Not all of the existing research was undertaken from a ‘landscape’ perspective; 

disciplines such as ancient history, the history of technology and traditional 

archaeology were some of the first to contribute to knowledge of ancient water 

use. As the literature review (Chapter 2) indicates, the large-scale Assyrian 

systems in northern Iraq are associated with written inscriptions (e.g. Bagg, 

2000b). This gives a useful indication of the purpose and ideological significance 

of irrigation under the Neo-Assyrian empire, but, aside from Ur’s (2005) and 

Altaweel’s (2008) studies there has been less interest in more geographical 

information such as the hydrological context of the canals and exactly how they 

were used. The availability of historical sources for the Neo-Assyrian canals has 

led to a focus on luxury and propaganda (e.g. see Bagg, 2000a, p303). Kamash’s 

(2009; 2010) research compiled information about water management across a 

wider area, but also from a historical basis.  

Geomorphological and modelling based studies of ancient water management in 

northern Mesopotamia, although rare, also exist. One example modelled runoff in 

the watershed in which Resafa is located in order to suggest the rate at which the 

Roman cisterns could have been filled (Berking et al, 2010). Geomorphological 

studies such as Demir et al (2007) and Hritz (2013a) recognised links between the 

locations of archaeological sites, many of which were associated with relict canals, 

and the dynamic activity of rivers over time.  

In a few cases, excavation has been undertaken which allows for detailed 

information about the morphology of individual features to be gathered, as well as, 

crucially, providing dating evidence. Harper and Wilkinson’s (1975) excavations 

and survey at the Nahr al Maslama at Dibsi Faraj recorded an Early Islamic date 

for the canal. The Sahlan part of the Sahlan-Hammam canal was also excavated, 

allowing for a date falling in the range of Hellenistic-Byzantine to be obtained 

(Wilkinson, 1998, p71).  

A few of the studies reviewed in Chapter 2 used aerial photographs, which 

enabled these projects to adopt a landscape perspective. For example, 

Ergenzinger and Kuhne (1988) used aerial images to record canals alongside the 

Hhabur, and Wilkinson (1998) used similar images for the Balikh. CORONA 

images, although gathered in the 1960s and 1970s, were not declassified until the 
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mid-1990s, and so are only recently beginning to be used for the purposes of 

identifying canals. Ur (2010) used them to record features in the Hamoukar area, 

and Ur (2005) and Altaweel (2008) also used them in northern Iraq (2005), 

digitising the Assyrian canals that had previously been researched primarily 

through textual and ground-based evidence. As Chapter 3 described and as 

section 7.4 of this chapter will outline, this project also used CORONA imagery, as 

well as other remotely sensed data including modern satellite images and digital 

elevation models, taking advantage of the large spatial coverage supplied by 

satellite data to map water management at a region-wide scale. 

The disparate nature of the existing research, and also the large range of 

theoretical perspectives which have informed the discipline of ancient water 

management, have influenced the way in which research has been conducted. 

This has potentially obscured significant patterns and trends. An awareness of 

what research biases might exist in the literature is necessary.  

In general, particular areas and particular types of data have been interpreted in 

different ways: the Neo-Assyrian canals have been viewed in terms of power and 

propaganda, while the later features have been regarded as economic features. 

Features dating to the Roman period have been analysed in terms of historical 

sources rather than archaeology (e.g. Kamash, 2009). Overall, research has been 

more within the realms of ancient history/the history of technology (e.g. Wikander, 

2000) than hydrology and geomorphology. The Early Islamic irrigation systems 

have also been examined in the light of the power of the empire, but with more 

focus on economics than on propaganda.  

Current ideas about the chronology of irrigation should also be discussed. A 

detailed description of how water management technologies might have 

developed throughout the entire region of northern Mesopotamia had not yet been 

provided. A map of Early Islamic water management in particular was needed, 

given the density of remains dating to that period and a lack of a region-wide map 

of these. Given the detailed nature of the results of the present research, it was 

possible to undertake this. Thus far there has been relatively little discussion in the 

literature of the trajectory of irrigation development in northern Mesopotamia. 

Using the dataset developed by this project, it has been possible to investigate 
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when large-scale irrigation started to spread throughout the rain-fed zone and 

when it reached a peak in terms of density, scale and distribution (see sections 7.7 

and 7.8).  

The problems with the existing theoretical framework have been recognised. This 

chapter now discusses how the multi-disciplinary approach used by the present 

study has enabled a more general and empirical dataset to be generated, and 

what this reveals about the scales across which the later territorial empires 

managed and controlled water resources. 

7.3. Chronology 

The overall chronology of water management in northern Mesopotamia deserves 

more attention than it has received. The review of known and newly identified 

features presented in this project (Chapters 2, 5 and 6) enables this research gap 

to be addressed; relict features of all periods were recorded, including some which 

cannot yet be dated. The features with dating evidence are outlined in Table 7.1.  

The earliest known evidence for water management in the region is of Bronze Age 

date. The canal at the Hittite-Middle Assyrian site of Tell Fray (see Table 7.1) is 

known from Bronze Age texts discovered at the site and also from the 

investigations at the site itself (see Bounni, 1979, p7). The texts indicate that it was 

in use at the same time as the site (Bounni, 1988, p369). The present study 

located it using CORONA images, and found it extends for much further than had 

previously been recorded; traces of it are found upstream of Tell Fray, and also 

downstream of the site. 

Two large canals near the site of Mari have been attributed the Old Babylonian 

period on the basis of Old Babylonian cuneiform texts (see Margueron, 2004; also 

Table 7.1), although dating evidence of the associated archaeological features is 

not secure. One linear feature which joins the Euphrates with the site may have 

functioned as a transport canal (ibid p69-70); and a long feature originating at the 

Wadi Es Souab may have been used for irrigation (Margeuron, 2004). A document 

found at Mari also refers to Bronze Age irrigation in the Balikh, possibly near Tell 

Hammam et-Turkman (Dossin, 1974; Villard, 1987; Wilkinson, 1998). 



324 
 

Table 7.1: Chronology of features with dating evidence. 

Canals with dating 
information 

Date Evidence Source 

Canal at Tell Fray Bronze Age Historical 
document 

Bounni, 1979, p7; 
Bounni, 1988, p369 

Mari canals Bronze Age? Bronze Age texts 
& archaeology 

Margueron, 2004 

Balikh canal (location 
unknown) 

Late Bronze Age Historical Middle 
Assyrian texts 

Wiggermann, 2000 

Habur canals Middle-Assyrian-Early 
Islamic 

Association with 
sites, survey, 
excavation 

Ergenzinger and 
Kuhne, 1991; 
Ergenzinger et al, 
1988 

Canals in northern Iraq Neo-Assyrian-Early 
Islamic 

Survey, remote 
sensing, 
inscriptions 

e.g. see Bagg, 2000b; 
Ur, 2005, Jacobsen & 
Lloyd, 1935, Altaweel, 
2008 

Canals in central Balikh Hellenistic Survey, surface 
ceramic scatter 

Wilkinson, 1998 

Membij qanats Hellenistic Remote sensing, 
association with 
sites 

Dan Lawrence and 
Niko Galiatsatos 

Resafa channels and 
cisterns 

Roman Excavation and 
survey 

e.g. see Brinker, 1991; 
Berking et al, 2010 

Qanats and rock cut 
channels in the Jerablus 
region 

Roman- Byzantine Survey Wilkinson et al, 2007 

Rock-cut channels at 
Khirbet Serisat 

Early Islamic Survey Wilkinson et al, 2007 

Nahr Masalam and qanat 
at Dibsi Faraj 

Early Islamic Excavation, 
survey and 
remote sensing 

Harper and Wilkinson, 
1975; Wilkinson and 
Rayne, 2010; present 
study 

Qanats at Heraqlah Early Islamic? ? Kamash, 2009 
Raqqa qanats/tunnel Early Islamic? Survey, 

association with 
sites and remote 
sensing 

Present study; 
Wilkinson and Rayne, 
2010; Heidemann, 
2006 

Nahr al Abbara Early Islamic Survey and 
remote sensing 

Wilkinson, 1998; 
present study 

 

The Habur canals are of slightly later date than the two on the Mari side of the 

river. They have been interpreted, through survey, excavation and association with 

known sites, as originating in the Middle Assyrian period, with use and possible 

modification up until the Early Islamic era (Ergenzinger and Kuhne, 1991; 

Ergenzinger et al, 1988). The canal which has been interpreted as joining to the 

Nahr Dawrin, the left-bank canal, was linked to the Neo-Assyrian period 

(Ergenzinger and Kuhne, 1991, p163; p188).  
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Extensive Neo-Assyrian irrigation is well known to have existed in northern Iraq, 

where the systems functioned, in part, to supply the Assyrian capital cities and 

their agricultural hinterland. These systems consisted of several very large, 

prominent canals and traces of infrastructure such as aqueducts and tunnels. 

Much of the investment in irrigation seems to have originated under the auspices 

of the Neo-Assyrian king Sennacherib (8th century BC). Dating evidence in the 

form of inscriptions (e.g. see Bagg, 2000b) renders this one of the most securely 

dated regions of irrigation in northern Mesopotamia (see Table 7.1).  

The next period attested to by the evidence is the Hellenistic period. Wilkinson 

(1998, p68) and Wilkinson and Rayne (2010, p132) suggest that canals in the 

central part of the Balikh may date to this time, based on a clear alignment of sites 

and on field scatters of pottery on the ground surface (see Chapter 6). Again, the 

long Habur canals may have continued to have been in use at this time (see Table 

7.1). Further west, qanats around Membij (Hieropolis/Bambyce) may be 

associated with the Hellenistic settlement and temple (evidence gathered by Dan 

Lawrence and Niko Galiatsatos).  

The Roman Empire is well known to have utilised large-scale water management 

systems. Kamash’s publications (2009; 2010) provide an overview of Roman 

water features throughout the Near East, including parts of Northern 

Mesopotamia. The most researched known Roman water features in the present 

study area are the associated dam and channels at the fort of Resafa (e.g. see 

Brinker, 1991; Berking et al, 2010). 

Features of later date are known throughout northern Mesopotamia; many of these 

seem to have originated in the Roman-Byzantine period and may have continued 

to be used for a long time. Fieldwork undertaken by this project and the Land of 

Carchemish Project (Wilkinson et al, forthcoming; Wilkinson et al, 2007) recorded 

many of these features in the Jerablus area. These include the canal at Jerablus 

Tahtani, dated to the Byzantine-Early Islamic periods (Wilkinson et al, 2007, p236) 

and rock cut channels in the Wadis Amarna, Sajur and al Gini’at which may also 

be Byzantine in date (see Table 7.1). During fieldwork in 2010, a new channel was 

recorded associated with a large limestone block inscribed with a mason’s mark 
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(Figure 7.1) typical of the Byzantine period (Wilkinson et al, 2010, p16; Wilkinson 

and Rayne, 2010, p14).  

 

Figure 7.1: Limestone block with mason’s mark, recorded in the Wadi Amarna 

during fieldwork in July 2010.  

A period of reduced cultivation and declining water management, possibly 

associated with plague (see Kennedy, 2007) has been suggested for the end of 

the Late Antique period, with activity resuming and intensifying in the Early Islamic 

period (Kennedy, 2011; Berthier and D’Hont, 2005 p265). 

The results of this project certainly show that the Early Islamic era was associated 

with widespread management features. Some of them had an earlier origin: for 

example, the canal at Jerablus Tahtani may still have been in use into this period 

and rock-cut channels of a similar date were also recorded at Khirbet Seraisat, 

south of Jerablus (e.g. see Wilkinson et al, 2007). Following the Euphrates 

downstream, the Nahr al Maslama at Dibsi Faraj is a prominent canal securely 

dated to the Early Islamic period (Harper and Wilkinson, 1975). The present study 

used satellite images to show that this feature may have extended to the east (see 

Chapter 5). This study also discovered the faint trace of a qanat, stretching for 

about 4 km from the limestone uplands above Dibsi Faraj and fading out at the site 

itself. The canal and qanat may have been associated with wells excavated within 

the site (see Harper and Wilkinson, 1975, p337). Given the history of Dibsi Faraj, 

the qanat, which is clearly associated with it, was probably in use at some time 

during the Roman-Early Islamic periods.  
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On the opposite bank of the Euphrates the CORONA images show (Chapter 5) 

that the canal at Tell Fray is much longer than the known segment (see Table 7.1 

and Bounni, 1979) and in fact flows towards Qa’lat Ja’bar, seemingly terminating 

at the Early Islamic site. Given this, despite the Bronze Age date discussed above, 

Early Islamic use cannot be ruled out. In addition, several short stretches of qanat 

and canal in the steppe between the Euphrates and the Balikh were identified by 

the present study, associated with sites of Late Antique/Early Islamic appearance. 

The Balikh stands out as a particularly complex area during the Early Islamic era, 

with investment in irrigation already attested in the Umayyad period (Heidemann, 

2011, p47). In the Balikh ‘horseshoe’, Raqqa’s temporary status as the centre of 

the Abbasid empire under the caliph Harun ar Rashid also gave it significance. 

While Heidemann (2006, p36) may be wrong about the canal that cuts through 

Heraqlah, which he associates with the Nahr al-Nil (Heidemann, 2011, p49), other 

features are probably Early Islamic, including short qanats and associated 

channels also noted by Heidemann and further elucidated by the present study 

(see Heidemann, 2006, p36; Wilkinson and Rayne, 2010, p135; also present study 

Chapter 6) and a tunnel connected to a canal which also appears to be linked to 

the Early Islamic remains. Further Early Islamic activity may have occurred at 

Heraqlah; Kamash suggests that there was an Umayyad qanat here (Kamash, 

2009, vol3 p4). This may refer to either or both of the two qanats recorded by the 

present study (see Chapter 6). The site of Heraqlah itself has been excavated and 

interpreted as Abbasid in date (Toueir, 1983).  

Canals in the western part of the Balikh horseshoe are linked to the tunnel system 

and therefore could also share a similar phase of use (see Chapter 6). Further 

north, on the basis of the associated sites, the extensive Nahr Al Abbara system 

has been interpreted as Early Islamic (Wilkinson and Rayne, 2010 p132; 

Wilkinson, 1998, p67-68). The present study demonstrated that this is a significant 

system, with mains and offtakes still visible in the 1960s imagery, allowing the 

layout of this large-scale system to be mapped.  

Water features associated with the Early Islamic period were also located east of 

the Balikh, including the canals alongside the Habur (e.g. see Ergenzinger and 

Kuhne, 1991). Based on historical evidence, it is possible that at least some of the 
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qanats in the Sinjar Plain are Early Islamic (see Fuccaro, 1991, p12). One of the 

large canals in Northern Iraq, the Tarbisu canal, may post-date the Neo-Assyrian 

period (Ur, 2005, p333); again, an Early-Islamic date is possible given its 

similarities with other canals of that date. The results of this project indicate a great 

deal of activity in the Islamic period, both in terms of the re-use of older systems 

and construction of new systems, but Decker, (2009b), mainly using historical 

sources, emphasises a peak in cultivation and related activity in earlier periods, 

including the Sasanian (Decker, 2009b, p190) and Late Roman (Decker, 2009a). 

He suggests that the Islamic irrigation activity was just a ‘restoration’ and 

continuation of these (Decker, 2009b p190; p206), occurring along with some 

changes in settlement patterns (Decker, 2007 p249-250). Interestingly, in a later 

paper Decker (2011) presents a modified view, in which a peak in settlement and 

agriculture, with associated irrigation, was suggested for the Early Islamic period.  

Less evidence of irrigation post-dating the Abbasid empire was found, aside from 

a few textual references and very brief remarks by travellers. However, as already 

stated elsewhere, water systems generally lack much dating evidence; it is likely 

that irrigation was also a feature of the Ottoman period. For example, the West 

Balikh canals may have had some Early Islamic associations, but there was also 

Ottoman activity in the area (Winter, 2009). Ottoman use and extension of Early 

Islamic canal systems is possible; that these are not modern (20th century) canals 

is also likely (see Chapter 6). Similarly, the Nahr Dawrin which flows alongside the 

Euphrates was mentioned by Bell (1924, p78), who notes that parts of it were 

indicated by a line of qanats, and that other segments were still used (p82).  

This review of the chronology of water management in northern Mesopotamia 

enables further questions to be addressed; namely, what the link may have been 

between water management and specific empires, and how the remote sensing 

technologies used by this project might elucidate this.  

7. 4.  Advances in methods 

By employing techniques of remote sensing and GIS (image interpretation, 

photogrammetry, hydrological interpretation), this project has analysed water 

systems at a regional scale in an innovative way. Currently fieldwork in the project 
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area is not possible, therefore remote sensing using satellite images and elevation 

models offers a way to identify and record archaeological features. Moreover, it 

makes it possible to view whole regions relatively quickly and cheaply (Donoghue 

et al, 2002).  There have been many changes to the landscape in recent years, 

erasing and obscuring archaeological remains (see Cunliffe, 2013). Fortunately, 

the historical CORONA imagery offers a way to view the landscape before many 

of these changes occurred.  

The bulk of the existing studies reviewed in Chapter 2 were undertaken at a time 

when satellite images such as the valuable CORONA resource were not available, 

which limited the opportunity for those studies to record new features and locate 

the entire reach of canals. The scale and complexity of an irrigation system can 

only be understood if most of its extent (main channels, off-takes, and drainage 

points) can be identified. Research into ancient water management in general has 

consisted of several separate studies, often dealing with one sub-region or with a 

segment of a particular feature, or perhaps with a focus on features of a particular 

date (e.g. Kamash’s thesis on Roman water management, 2009). Although the 

study of water management calls for an interdisciplinary approach, utilising 

multiple methods such as the analysis of historical documents, satellite images 

and archaeological survey, most of the research originates from specific 

perspectives. 

While the many existing studies represent a large resource of information, the 

separate nature of the research makes drawing wider conclusions about imperial 

water management across such as large area difficult. This study used CORONA 

images to search the entire area of northern Mesopotamia, between the Euphrates 

and the Tigris, for all relict water management features (an area of about 100,000 

km2). Because the nature of the evidence has proved to be mostly later in date, 

this research has concentrated on the systems of the later territorial empires (Neo-

Assyrian-Early Islamic).  

As described in Chapter 3, the use of remote sensing enabled this large area to 

be systematically examined from an interdisciplinary perspective, combining 

elements from the fields of archaeology (e.g. survey), remote sensing (image 

interpretation and photogrammetry) and physical geography (hydrological 
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interpretation). New features were recorded during fieldwork using GPS, and 

digitised from satellite imagery using GIS editing tools. Known features were also 

viewed and digitised using CORONA images and integrated into the GIS 

database; in many cases this enabled further extents and segments of the known 

features to be newly located.  

7. 5 Data Validation 

Because further fieldwork in Syria is currently limited it was not possible to confirm 

the function and dating of all newly identified features through excavation or 

survey. However, it is still possible to validate results, by for example cross 

referencing using a combination of different remotely sensed datasets. 

First, as outlined in Chapter 3.2, it should be noted that there has been discussion 

in the literature about the differences between linear features such as canals and 

hollow ways (e.g. see Ur and Wilkinson, 2008). Given the complex patterns of 

such lines in many parts of the study area, this project used DEMs as a way to test 

features: if features rise up and over watersheds, they are unlikely to be a canal. 

Most ancient canals follow the hydraulic gradient of the land. 

The features presented in the results are lines which passed this particular test 

(gradient graphs are shown in Chapter 5 and 6). For example, there are many 

layers of linear features present in the landscape around the Early Islamic site of 

Medinat al Farr in the Balikh. DEMs can show which ones cut across the natural 

contours, and which run parallel to them, enabling a distinction between hollow 

ways and canals to be made (Figure 7.2 shows the linear features). For example, 

the hollow way to the west of the site rises up and drops down, disregarding the 

natural slope, whereas the canal flows consistently downslope at a gradient of 

2:1000.  
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Figure 7.2: Linear features around Medinat Al Farr. CORONA image dating to 22 

January 1967. 

DEMs also provide information about the function and use of features, enabling a 

more detailed record of each to be generated. The landscape gradients through 

which each feature flowed were recorded, which is information which most of the 

existing studies do not provide in detail. It was then possible to compare this 

gradient data with guidelines listed in irrigation literature (see Chapter 4) which 

recommend, for example, that a main canal can attain an appropriate level of 

efficiency when flowing at gradients of 0.1-2.5% (Zimmerman 1966, p218-221). 

 Based on this, it was possible to identify which channels might have faced 

difficulties such as erosion or siltation, for example by flowing at too shallow a 

gradient. As Chapter 6 shows, in general, higher gradients were identified for the 

shorter laterals in the Balikh, for example for the Nahr al Abbara, than were 

recorded for the longer mains. This is consistent with modern recommendations 

(see Chapter 4). 

Even the relatively coarse SRTM DEM showed that the Nahr al Abbara in the 

Balikh was constructed to make efficient use of the natural topography. Despite 

the overall flatness of the landscape, by occupying a ridge of slightly higher ground 

between the Balikh and the Wadi Al Keder, the canal could flow for a long 
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distance, with the off-takes flowing perpendicular to it watering the fields by taking 

advantage of the slightly increased gradient (see Chapter 6 for more details). It is 

possible that the Hellenistic systems in the central Balikh zone and the West 

Balikh/Qara Mokh systems were also using the topography in this way.  

Gradient information derived from DEMs, alongside the visual inspection of the 

images, also allows the function of each different part of a system to be 

understood. Chapter 4 reviews how main channels and irrigation and field laterals 

function in relation to topography. Being able to separate out each part of a system 

like this is useful, because it can facilitate an understanding of the system as a 

whole. Many past studies, most of which did not have access to remotely sensed 

data, only recorded segments of main channels and did not discuss how the water 

could be delivered from the main to the crop, if the irrigation systems were even 

considered in terms of economics at all. Some studies did note traces of offtakes: 

for example, Van Liere and Lauffray (1954-55, p146-7) and Ergenzinger et al 

(1988, p117). Using CORONA images as well as DEMS, the present study was 

able to identify multiple parts of some systems, the Nahr al Abbara and the West 

Balikh being good examples (Chapter 6). A more complete map such as these 

represent makes it possible to suggest the scale, size and shape of the irrigated 

area. For example up to 3600 ha of cultivated land can be proposed for the Nahr 

al Abbara, based on the layout of the irrigation system.  

Of course, often the large main channel is the only part of the entire water supply 

system that survives, proving to sometimes be the case even when a range of 

sources are used. For example, the Nahr Maslama was excavated (Harper and 

Wilkinson, 1975) and also examined by this study using satellite images, yet no 

offtakes could be identified, presumably because they were eroded away by the 

action of the Euphrates. The same problem was encountered when the Sahlan 

Hammam canal was examined using CORONA images; the irrigation laterals may 

have been removed by subsequent agriculture, or by the Balikh.  

Existing interpretations of some features were tested and updated using the 

remotely sensed data. In some cases, the image interpretation revealed that main 

canal features which had previously only been recorded as shorter segments by 

ground-based survey were in fact much longer canals. The canal flowing from 
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upstream of Tell Fray and terminating at Qa’lat Ja’bar is an example. Conversely, 

features shown to be relatively extant by the existing research were sometimes 

found to be less clear in the CORONA images. Thus only segments of the Habur 

canals mapped by Ergenzinger et al (1988) were identifiable. Similarly, a 

connection proposed between one of the Habur canals and the Nahr Dawrin 

(Ergenzinger and Kuhne, 1991, p163) was not evident using the CORONA 

images. 

Subterranean features should also be mentioned in the context of DEMs. While 

the characteristic pattern of maintenance shafts often signifies a qanat, tunnels 

may take a similar appearance, yet function in a different way. A qanat-like feature 

in the Balikh, terminating near Raqqa, was examined in relation to the topography. 

In fact, rather than being un underground feature tapping water from an 

underground aquifer, it originated as an open channel that passed through a ridge 

of higher ground by means of a tunnel.  

Secondly, as part of the validation process features need to be assigned dates. In 

many cases, especially in the Balikh valley, water features had a clear association 

with settlement sites that had already been excavated and surveyed. For example, 

the tunnel identified flowing towards Raqqa terminated amongst Early Islamic 

structures (e.g. see structures recorded by Henderson et al, 2005; Challis et al, 

2004). This relationship could be clearly observed from a visual inspection of the 

CORONA images. Because the nearby structures had been dated, the tunnel can 

be proposed to be contemporary with them. Similarly, the West Balikh canal 

system to which the tunnel connects was also possibly used in the Early Islamic 

period, given its link to the tunnel and thereby to the palace features.  

It is also important to note that these assessments are made cautiously; while the 

link between the palaces, the tunnel and the canals indicates that the canals may 

have been used at the same time as the tunnel, this link does not necessarily 

reveal when the canals were first built, or when they went out of use. It is possible 

that the canal system was constructed earlier than the tunnel system: it is equally 

possible that the canals were constructed later, as part of modifications to the 

existing tunnel-based system. Assigning dates to water features or lengths of 

canal is a particular problem which will be discussed later in this chapter.  
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Sometimes, however, clear sequences and 'layers' of features could be identified 

in the images, a simple method which at least enabled ‘relative’ dates to be 

assigned. Figure 7.3 shows that there is a clear ‘stratigraphy’ of channels close to 

the Early Islamic site of Heraqlah, near the Balikh.  

The oldest features (Figure 7,3, layer 3) may well be the two qanats, possibly 

associated with each other. One flows E-W, the other N-S. Kamash mentions that 

there is an Umayyad qanat in this area (2009, vol 3, p4), which may refer to one or 

both of these features. It is possible to recognise that these are the oldest 

channels because later features cut them. The first of these is a prominent 

earthwork (2) that also truncates the site of Heraqlah itself, demonstrating that it 

post-dates it. Heidemann (2006, p36), mapping the Raqqa end of the feature, 

suggests that the canal is Abbasid. However, based on its truncation of Heraqlah 

this seems to be incorrect and a post-Abbasid date can be assigned instead. 

Later, narrow channels (1) truncate the large canal: these are the ‘youngest’ 

features identifiable in the CORONA image. The value of the CORONA images in 

enabling this sequence to be untangled cannot be over-emphasised. 

 

 

 

 

 

 

 

 

 

Figure 7.3: A sequence of channels around the Abbasid site of Heraqlah, 

regressing back from the most recent feature (1) to the oldest (3). The CORONA 

image dates to 22 January 1967. 
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While the above example only uses one satellite image to reconstruct a 

stratigraphic sequence of channels, using satellite images of more than one date 

can also help to place features in a sequence. Flooded/silted channels and gilgai 

in the West Balikh area (Chapter 6) may have been part of a former irrigation 

landscape, already in disuse by the time the CORONA images were produced. As 

the sequence of images presented in Chapter 6 demonstrates, the 1967 image 

shows the relict, un-maintained channels clearly; the 1972 image shows that a 

new system was under construction, already erasing the former patterns and 

indicating that these systems were not part of modern water management. Google 

Earth and Landsat images show the new system in use.  

The appearance of artificial channels can also provide information about their 

chronology, when compared with other data. It is worth describing the difference 

between an active and a disused canal here with reference to the results of this 

research. As Chapter 3.2 shows, an active canal may well have water and/or 

vegetation in the channel (represented by a darker area); an example of this is the 

canal between Carchemish and Jerablus Tahtani, which contained water and 

vegetation when visited in 2010. Some of the canals in the Balikh, including parts 

of the Nahr al Abbara, contained water at the time of the CORONA images (see 

Chapter 6). These were therefore represented by dark lines.  

Inactive canals that had been out of use for some time before the CORONA 

images were taken (most ancient canals) were dry and had less clearly defined 

morphologies (see Chapter 3.2). These were infilled, but still had upcast banks. 

This includes the canals along the Euphrates, such as the canal between Tell Fray 

and Qa’lat Ja’bar, the Nahr Maslama, and the Nahr Dawrin (Chapter 5) as well as 

the Sahlan-Hammam canal in the Balikh (Chapter 6) and segments of canals in 

the Habur (Chapter 5).  

Others did not have clear upcast banks, either because they had never been 

prominent, or because they had been eroded/ploughed back into the canal, 

leaving a soil-mark. This includes canals in the Balikh such as some of the artificial 

channels in the West Balikh horseshoe.  

It is worth considering the timescales involved in the ‘decay’ of such features. For 

example, the Sahlan Hammam canal was in use in the Hellenistic-Byzantine 
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periods, therefore by the time of the 1967 CORONA image it was both eroded and 

silted, although the upcast banks were still visible; by the 2010 field visit, it was 

gone. The Nahr Dawrin, which flowed alongside the Euphrates opposite Mari, is 

also a good example. Bell recorded some possible use of its lower reaches in the 

early 20th century (1924, p82). Bell visited at some time shortly before or during 

1910. By the time of the 1968 CORONA image, around 50 years later, it was 

disused and severely eroded, with only short segments of it identifiable. At some 

point over the course of 50 years it went out of even the limited use that Bell 

identified and had almost vanished from the landscape. Given this, around 50 

years therefore could be considered as a possible time frame for the last stages of 

use through to decay when a channel is simply abandoned. Canals of a similarly 

eroded/disused appearance elsewhere, for example, the West Balikh channels, 

could have gone out of use at a similar time, which would give them a terminus 

ante quem of around the end of the Ottoman period. Conversely, other canals 

have vanished much more quickly, due to deliberate human-induced changes. 

Wilkinson (1998) observed the Nahr Al Abbara in the Balikh in the 1990s. By 2010, 

the canal had been removed from the landscape and was replaced by wells 

7.6 Types of channels: form and function 

The types of water features identified by this study can now be outlined and the 

functions of each type considered, before patterns of scale and distribution are 

described. In Chapter 4, the parts of irrigation systems in general were 

considered: different types of system, such as small-scale water harvesting 

devices as well as large-scale canal-based systems and subterranean channels 

were reviewed. The results of this study can now be explained in the light of the 

earlier general review of irrigation. First, smaller-scale features present in the 

study area will be discussed, followed by a review of the large-scale systems.  

Here, ‘small-scale’ describes methods which do not comprise long or multiple 

channels. Instead, it encompasses techniques of water harvesting and storage 

using cisterns.  Overall, water harvesting methods could not easily be identified 

using remote sensing, because these are likely to be small and ephemeral 

structures such as check dams, cisterns and wells.  
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Some former wells and cisterns of unknown date were identifiable using the 

CORONA images, appearing more eroded than the modern examples, and being 

without associated fields. Around Raqqa, however, these were associated with 

relict channels and even sites (see Chapter 6). Cisterns as a means of storing 

water are attested in historical sources including the Neo-Assyrian Harran Census 

(e.g see Fales and Postgate, 1995): therefore their presence in the Balikh as early 

as the Iron Age can be confirmed. Known cisterns of Roman date at Resafa have 

been recorded (Brinker, 1991) and of Early Islamic date in the Balikh (see de 

Jong, 2012, p519). Other rock-cut Hellenistic/Roman cisterns have also been 

identified archaeologically in the Carchemish survey area overlooking the 

Euphrates (Wilkinson et al forthcoming). Areas showing traces of past flooding 

may be indicative of former small-scale water-management such as floodwater 

harvesting or wadi diversion. The West Balikh systems appear to have 

incorporated seasonal wadis (see Chapter 6). Small fields, possibly bounded by 

check dams, are visible in the steppe between the Balikh and the Habur (for 

example see Figure 7.4). Runoff was collected and moisture and sediments 

trapped behind the dams, allowing for seasonal cultivation. It is possible that such 

structures may have been in recent use and of recent construction: for example, 

check dams in current use are known in India (e.g. see Balooni et al, 2008).  
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Figure 7.4: Possible check dams in the steppe, 68 km to the east of the Balikh. 

CORONA image dating to 22 January 1967. Arrows indicate the structures.  

Runoff can also be captured in channels running parallel to a natural hillside, on 

the same alignment as the contours. Once it is captured, runoff is used to water 

crops in basins. Oweis et al (1999) have described mini-catchment runoff 

harvesting. Welderufael et al (2013, p219) also describe something along these 

lines, calling it infield rainwater harvesting. Interestingly, there is a pattern of 

narrow, parallel channels at the upper end of the western Balikh horseshoe (see 

Figure 6.58). While the slope they run across, given the overall flatness of the 

region, is relatively slight at 0.4%, it is possibly sufficient that these could have 

been constructed for some kind of runoff capture.  

Water management involving excessive watering, including both large-scale canal 

systems and small-scale flood-water irrigation, may leave geomorphological 

indicators in the landscape. Gilgai are geomorphological features found in areas of 

vertisols (see Chapter 1). They are common throughout the Balikh, especially in 

areas associated with relict irrigation systems. It is possible that there is a direct 

link between the presence of gilgai and of areas of former irrigation and that these 
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formed as a result of repeated inundation and drying phases of particular irrigation 

schemes. Alkaier et al (2012, p1837) noted shallow water tables in the Balikh 

horseshoe which they attributed to poor drainage associated with modern 

irrigation; they also mention deeper water tables in the West Balikh area which 

they attribute to ‘very old’ cultivation (Alkaier et al, 2010, p1837). Several gilgai in 

this area can be identified in the CORONA images, and are possibly associated 

with relict irrigation channels.  Similarly, gilgai can be seen around the upper 

reaches of the Nahr al Abbara; and significantly they are less prevalent in the 

region of the lower, better-drained part of the system. If this interpretation is 

correct, it might be interesting to use evidence of gilgai as an indicator of relict 

canal systems.  

Larger-scale water management systems are prevalent throughout northern 

Mesopotamia. Large-scale in this case refers to systems consisting of a long main 

canal, rather than a short ditch or wadi diversion structure, capable of irrigating a 

large area and necessitating some investment in construction and maintenance. In 

some cases offtakes are preserved. These are generally easier to identify, 

especially when a main canal has prominent upcast banks. These banks may 

have been constructed as part of the original excavation of the canal, especially if 

there is a need to raise the head of the canal, or protect it from causing/being 

affected by flooding. Additionally, when modern canals are cleaned, material 

dredged from the bed of the canal can be deposited on the banks of the canal 

itself, causing the banks to increase in size. It should be recognised here that this 

kind of canal maintenance is today a regular occurrence: for example, a recent 

study from the Balikh indicated that it occurs every year in November (Alkaier et al, 

2012, p1835). Given the low overall gradient of the Balikh region, the canals also 

flowed at very low gradients (see Chapter 6), barely the minimum required (of 

around 0.1-2.5 % for a main canal). Excessive siltation, necessitating frequent 

cleaning, would have been a significant problem and may have been the reason 

for the tightly sinuous morphology of the Nahr al Abbara. Potentially large amounts 

of labour, and some kind of regulation, might have been required to organise this.   

There are numerous examples of these types of large embanked canals 

throughout the study area including the Nahr Maslama, the canal between Fray 

and Qa’lat Ja’bar, the Sahlan-Hammam canal, the Nahr Dawrin, and the Bandwai 
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canal (see Chapters 5 and 6). These are significant features: for example, the 

Sahlan-Hammam canal is about 6-7 m wide (Wilkinson, 1998, p71). Which part of 

each overall irrigation system they represent should be considered. The size of 

these large features suggests that they form the main canal. Interestingly, where 

the main canals survive, the rest of the irrigation system usually does not. In some 

cases the abstraction point can be inferred from field surveys or from the 

CORONA images. The Sahlan-Hammam canal appears to have abstracted from 

the Balikh close to Tell Sahlan. The reason for the lack of offtakes could simply be 

due to poor preservation of these smaller, secondary canals: the size of the large 

main canals may have aided their survival. The offtakes may have been more 

ephemeral to begin with, and also more likely to be removed by later cultivation 

and human activity.  

Not all main canals are so prominent. Others are narrow, sinuous features, without 

upcast banks. These include the large canal between Carchemish and Jerablus 

Tahtani (see Figure 7.5) and the Nahr al Abbara in the Balikh. The former is still in 

use and of unknown date, and the latter had been in use during the 20th century, 

although it appears also to have functioned in the Early Islamic period.  

 

Figure 7.5: Canal between Carchemish and Jerablus Tahtani.  
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The morphology of these canals is dictated by several factors. The general 

topography of the landscape must be considered; in a flat landscape there can be 

a need to raise the head of a canal sufficiently to allow it to irrigate a larger area, 

entailing a high embankment; this could explain the Sahlan-Hammam canal. A 

large embankment may also be maintained where there is risk of floodwater 

incursion damaging the canal. Meandering but straight canals like the Nahr Al 

Abbara can be a consequence of high siltation caused partly as a result of low 

gradient. 

Main canals should technically not be viewed in isolation. In a few cases, offtakes 

survive. Chapter 4 sets out the sequence of main, submain, irrigation lateral and 

field lateral. Again, the Balikh is an area with many clear examples of irrigation and 

field laterals. As already described in the results (Chapter 6), the Nahr al Abbara 

makes use of a slight ridge of land, so that the irrigation laterals (visible in the 

imagery and also indicated by sluice stones—see Wilkinson 1998 p67-68) can 

flow perpendicular to the main, gaining some elevation and taking advantage of 

the increased gradient. Similarly, a Hellenistic system further south in the valley 

uses these branching channels to irrigate a triangle of land between the Qara 

Mokh and the Balikh: the main canal runs along the upper edge of the flood plain, 

with the submains flowing downwards into the triangular cultivated area. Some of 

the other systems represented only by single, large canals may also have once 

been part of wider networks of laterals with associated control structures. 

Very few examples of laterals can be identified in the study area outside the 

Balikh. Ergenzinger and Kuhne (1991, p172) mention some associated with the 

Habur canals, and Ur (2005) identified a few offtakes abstracting from the Neo-

Assyrian systems (Ur, 2005, p337). Interestingly, some offtakes associated with 

Sennacherib’s canals were found to have inscriptions at each branch point, 

indicating that their presence was part of the overall design of the systems (e.g. 

see Ur, 2005, p342). This supports the likelihood that the other large-scale, 

embanked canals originally could have been part of much more sophisticated 

systems.  

The pattern of field laterals, which stem from the irrigation laterals to deliver water 

to the crop, cannot be identified easily. Generally these will have been so small 
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that they will not have survived. However, some examples of field laterals 

contemporary with the CORONA images are visible. For example, patterns of 

small bunds in the Balikh forming grids may represent basin-type irrigation, 

demonstrating the kind of units that can be watered in this landscape (see 

Chapter 4).  

The associated infrastructure of irrigation such as dams, control structures and 

water-lifting devices can sometimes be inferred, but is generally not identifiable 

using satellite imagery. Travellers’ accounts can give an impression of the use of 

these devices. For example, Bell (1924) mentioned that systems called ‘jirds’ lifted 

water over several levels, up from the Euphrates, to water the floodplain in the 

early 20th century (p80).  

In general, the water management features identified by this project appear to 

have functioned by gravity-flow, although lifting cannot be ruled out. Dalley (1994, 

p53) discusses a device very similar to an Archimedes screw which may have 

watered Neo-Assyrian gardens, although this cannot be confirmed.  

Several of the more complete irrigation systems, again well represented by the 

Balikh, are self-contained, enclosed entities. The Nahr al Abbara is bounded on 

both sides by natural drainages (the Nahr Balikh and the Wadi al Keder). The 

Hellenistic canals further south enclose a roughly triangular area between the 

Balikh and the Qara Mokh. The Sahlan-Hammam canal may have watered an 

area between the Balikh on its right bank and the slighter higher ground of the 

steppe to the west. Elsewhere in Northern Mesopotamia, the Nahr Maslama, the 

Fray-Ja’bar canal, the Mari irrigation canal and the Nahr Dawrin (discussed in 

Chapter 5) occupied boundary areas between the Euphrates flood-plain and the 

more elevated steppe. They were presumably designed to irrigate the lower 

terraces above the river level, increasing the irrigated area. Their position at the 

edge of the more elevated steppe may also have had an added benefit of 

capturing runoff, isolating the fields from potential damage.   

The provision of drainage would further have improved the efficiency of the control 

and protection of past water management systems in Northern Mesopotamia. 

Given the aridity of the landscape, drainage is generally overlooked by the 

literature. As well as serving to remove excess runoff, drainage channels could 
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also remove the water used for irrigation, preventing waterlogging and subsequent 

salinization (see Chapter 4 for an explanation of this problem). It seems unlikely 

that a main canal/system would be entirely emptied of water by the time it reached 

its termination, so some drainage point should be inevitable, generally 

downstream and discharging into the same water course which the main canal 

originally abstracted from.  

There are several examples from the results of this study that illustrate this. The 

Nahr al Abbara was particularly sophisticated (see Chapter 6). It used both the 

Balikh and the Wadi al Keder to channel away drainage water. Offtakes on both 

sides of the main canal drained into these natural streams. The main canal itself 

isolates the system at the upper reaches. At its terminating point, the main canal 

appears to drain into a short channel which flows between the Balikh and Keder, 

effectively allowing drainage into both these streams and isolating the irrigation 

system.  

Frustratingly, many of the canals identified and recorded by this research lack 

clear abstraction and termination points, although some conjectures have been 

made about their locations.  This includes the canals alongside the Euphrates, 

which were eroded by the river.  For example, part of the Nahr al Maslama was 

recorded at Dibsi Faraj, flowing downstream for 3 km (Harper and Wilkinson, 

1975, p337); although its abstraction point is unknown, in order to abstract from 

the river it must have extended at least 8 km upstream (Harper and Wilkinson, 

1975, p337). Interestingly, using the CORONA, short segments of a prominent, 

embanked canal can be traced between the Nahr Maslama at Dibsi Faraj and 

Sura (shown in Chapter 5). It is possible to conjecture that these were part of the 

same, long canal, but impossible to confirm this now that the area has been 

inundated by the Tabqa dam.  

Another canal for which the abstraction point is not clear is the Nahr Dawrin, 

flowing alongside the Euphrates on the left bank opposite Mari. This has been 

interpreted as connecting to the eastern Habur canal (Ergenzinger and Kuhne, 

1991, p188), although this link was not clear in the CORONA images. The 

drainage points of all these channels appear to have been removed by the 

Euphrates. Similarly, the abstraction point of the canal between Tell Fray and 
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Qa’lat Ja’bar is unclear. While the literature only dealt with the segment that 

passes directly below Tell Fray (e.g. see Bounni, 1970; 1988), using CORONA it 

can be traced as far as 2 km upstream of the site where a former meander of the 

Euphrates has truncated it.  

The overall functions of the different types of systems are now reviewed. Irrigation 

is always the biggest consumer of water. The locations and layouts of the more 

extant systems, where patterns of laterals are preserved, show the potential for 

significant ancient water abstraction throughout northern Mesopotamia. It is likely 

that most of the other systems, considering the consumption required, would also 

have been used for irrigation. Other uses can also be considered here, however. 

The short canal between the Euphrates and Mari has been interpreted as a 

navigation canal (Margeuron, 2004), allowing vessels to reach the Old Babylonian 

port (Margeuron, 2004, p69-70), although this idea cannot be confirmed. The Nahr 

Dawrin has also received similar interpretations, indicating that it could have 

connected the Upper Habur with the Euphrates (Ergenzinger and Kuhne, 1991, 

p188; Margeuron, 2004, p72-73): again, this link could not be verified by the image 

interpretation study. However, a transport function could be possible in some 

cases.  

Another use of water which has attracted attention specifically in terms of 

Sennacherib’s canals is the idea of luxury parks and gardens (e.g. Reade, 1987). 

However, considering the scale of the canal systems, it seems surprising that 

these would have been their main use, although the gardens referred to by 

inscriptions and reliefs presumably would have required significant amounts of 

water. These water distribution systems may have been partly economic, growing 

more water- and labour -intensive crops such as fruit. For example, orchards are 

known historically from several areas where ancient irrigation has been recorded 

and in the Balikh, Neo-Assyrian orchards are referred to by the Harran Census 

(see Fales and Postgate, 1995). Le Strange cites historical sources which refer to 

12th century AD date and orange orchards near Mosul (Le Strange, 1930, p88-90). 

The possibility of parks and gardens as consumers of water elsewhere in northern 

Mesopotamia should not be discounted. Landscaped features such as hunting 

parks and racecourses are known from Abbasid Samarra (e.g. see Northedge, 
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2005; Northedge, 2011); a viewing platform comprising a pavilion within the 

racecourse was indicated, surrounded by a moat fed by qanats (Northedge, 2005, 

p156). Gardens have also been suggested for Samarra and other Abbasid sites 

(see Ruggles, 1990, p183) including the palaces of high-ranking early Islamic 

individuals (e.g. see Decker, 2011, p3).  

Given this, it is possible that such viewing platforms were also a feature of the 

Raqqa palaces and could explain several circular structures in the vicinity of the 

palaces and racecourse. Supplying these areas may have been a function of the 

qanats and tunnels associated with Raqqa, which presumably also fulfilled the 

domestic needs of the palaces, city and industrial areas. Heidemann suggests that 

Harun ar Rashid brought water to Raqqa partly to supply the palace gardens 

(Heidmann, 2011, p49). 

Historical sources indicate that other Early Islamic sites in the Balikh also had 

irrigated gardens. Le Strange cites these, indicating the presence of canal 

irrigation in the around Medinat al Farr (Le Strange, 1930, p105). Heidemann 

(2011, p51) also notes irrigated gardens in this area. The evidence for gardens 

does serve as a reminder of the relationship between water and power; gardens 

are certainly a luxury use of water in a semi-arid environment, and are generally 

associated by high-ranking individuals such as kings and caliphs.  
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7.7 Scale and distribution of water systems 

Figure 7.6: The results of the present research and other published CORONA 

studies (see Chapter 2) show ancient water management systems throughout 

northern Mesopotamia (see Chapters 2, 5 and 6 for details of each feature). The 

green area marks the zone between the 200 mm and 300 mm average rainfall 

isohyets (data from GPCC). 

Now that the function and form of the features recorded has been reviewed, the 

trends revealed by the research can be discussed. The results of this study have 

been combined into a GIS database, integrating information about newly identified 

water management features with information about known features.  

 

Scale 

The different scales of the types of water systems outlined above can now be 

discussed. The size, extent and gradient of a channel, as well as the available 

water resources, determine the amount of land which it could irrigate. For 

example, a narrow canal flowing at a steeper gradient would allow less land to be 

irrigated than a wider, deeper, less steep canal, which can flow across a longer 

distance. If the capability of a system can be recognised, an impression of its scale 

can also be suggested. Based on measurements made from satellite images, 
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DEMs, and field survey, scale can be determined for some of the systems 

examined by this research.  

Calculation of canal discharge from the width, depth and gradient was possible for 

a few canals. The Manning formula can be applied (see Chapter 6.2). Eroded, 

infilled canals measured at ground surface level or through using photogrammetry 

do not clearly represent their original dimensions: however, in some cases 

excavation has revealed them. Table 7.2 gives examples of channels for which 

dimensions have been recorded and Table 7.3 suggests the potential areas which 

could have been irrigated, giving an impression of the scale of irrigation in these 

regions.  

Wilkinson’s (1998) excavation of the Sahlan part of the Sahlan-Hammam channel 

indicated a possible discharge of up to 7.8 m3/sec, which could have irrigated an 

area of about 1173-7800 ha (assuming that from 1-1.65 liters/second could water 

1 ha; see Table 7.3; also see Wilkinson, 1998, p81). Other canals of similar 

dimensions (see Table 7.2), and flowing at similar gradients, include the Habur 

canals (see Ergenzinger et al, 1988, p117). With these sizes of irrigated areas 

possible for canals on either side of rivers such as the Balikh and Habur, and with 

the significant mapped extents of canals in northern Iraq and of canals alongside 

the Euphrates in Syria, it was possible that most of the cultivable parts of the river 

valleys were irrigated during the time of the later territorial empires.  

Table 7.2: Dimensions of selected ancient canals. 

Canal and 
location of 
measurement 

Surface Width 
(m) 

Bed 
width (m) 

Depth (m) Gradient Evidence 

Sahlan-
Hammam 

c.10 between 
bank tops 

6.5 0.5-1 0.002 Wilkinson,1998, 
CORONA DEM 

Habur canals 
(near Tell Seh 
Hamad) 

6 between 
bank tops 

? 1-2 0.001-0.002 Ergenzinger et 
al, 1988, p117; 
SRTM 

Nahr Maslama 
(at Dibsi Faraj) 

c.20 between 
bank tops 

c.2-3 c.1-2 Slightly less 
than gradient 
of Euphrates 
(about 0.0004 
between 
Tabqa dam 
and Raqqa) 

Harper and 
Wilkinson, 1975 
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Table 7.3: Potential areas irrigated by selected ancient canals, assuming that 

about 1 litre/second irrigates 1 ha (see Wilkinson, 1998, p81). 

Canal Length of main 
canal 

Potential 
irrigable area 
(ha) 

Source Evidence 

Hammam-
Sahlan 

c.14.3 km 1760-7800 Wilkinson 1998, 
p80-81; 
CORONA image 

Flow calculation 

Hammam-
Mounbateh 
canal 

c. 16 km? 1760-7800 Wilkinson 1998, 
p82; CORONA 
and SRTM 

Flow calculation 

Nahr al Abbara c.24 km 3600-4600? CORONA and 
SRTM 

Layout of canals 

Habur canals c. 170 km? 1760-7800? Ergenzinger et al 
1988, SRTM 

Flow calculation 

Zerqa triangle 
canals, Jordan 

c. 8-12 km? c. 1800-4500 Kaptijn 2009 
(p348-352).  

Crop demand, 
water availability, 
size of irrigated 
area 

Nahr Maslama c. 8 km? c.3340 Harper and 
Wilkinson, 1975; 
SRTM 

Flow calculation 

 

In some cases the irrigated area can be surmised from the outline of the system 

itself, based on mapping from satellite images, even where excavated channel 

sections are unavailable. The Nahr al Abbara, well preserved in the 1960s 

CORONA images, is the best example of this in Northern Mesopotamia. The main 

canals, offtakes and drainage canals, when examined in relation to their 

topography using the DEMs (see Chapter 6) enable a potential irrigated area of 

about 3600 ha to be mapped (see Table 6.3). This value falls into the range 

suggested by Wilkinson (1998) for the Sahlan-Hammam canal. If the base flow of 

the Balikh at Ain al-Arous was about 6 m3/s, which could water up to 6000 ha (see 

Wilkinson, 1998, p81), then the Nahr Al Abbara had the potential to abstract 

around half of the flow of the Balikh: this would be a significant proportion of the 

Balikh’s discharge, and could have had the potential to severely diminish the flow 

of the river. It is likely that a proportion of the available land was under fallow, 

indicating that less than 3600 ha was actively under cultivation at any time, and 
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that different crops had different water requirements (see Kaptijn’s 2009 study of 

the Zerqa Triangle discussed below). This allowed for a water surplus but still 

represented a large-scale system throughout which water allocation may have 

been organised to some degree.  

The data from the Hohokam canal systems (see Chapter 4) also suggests large 

areas could be irrigated from similar gravity-flow based systems (e.g. see Howard 

and Huckleberry, 1991, p186). Kaptijn’s (2009; 2010) example from Jordan may 

provide the best parallel for the Nahr al Abbara in terms of organisation (also see 

Table 6.3). It also had a similar layout to the Nahr Al Abbara, with several main 

canals, submains and laterals (see Kaptijn, 2010, Fig. 3). The Zerqa triangle 

covers about 4700 ha (Kaptijn, 2009, p352), and benefited from a water surplus, 

although water storage was not implemented (ibid. p349-350). Based on river 

discharge and crop water use, she suggested that between 1800-4500 ha could 

have been irrigated in the driest month (May) of sample years (ibid. p352), which 

is comparable to the area irrigated by the Nahr Al Abbara.   

In the early 20th century Zerqa, water allocation was carefully distributed according 

to units of time and by controlled by the means of basic blockages in the canals 

(Kaptijn 2009 p306). It is possible that the Nahr al Abbara operated in a similar 

way. The fairly regular layout of offtakes in the Nahr al Abbara may suggest a 

similar cyclical redistribution, with at least 20 farms cultivating the land, and with 

organisation provided by nearby Early Islamic sites such as Medinet al Farr.    

 

Geographical distribution 

The distribution of these systems can first be discussed in terms of geographic 

spread. The above descriptions show that several distinct ‘types’ of irrigation 

system exist throughout northern Mesopotamia. Systems consisting of large 

canals, often with high upcast banks, but lacking offtakes, are found throughout 

most of the region. Other irrigation systems are represented by narrow main 

canals with clear associated offtakes. Finally, the prevalence of qanats/tunnels 

must also be noted. 
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First, the clearest pattern observable relates to the differences in types of 

landscape through Northern Mesopotamia. In broad terms, the landscape can be 

separated into the riverine valleys and floodplains, and the semi-arid/arid steppe 

lands. The majority of identifiable relict irrigation systems are situated within, or 

alongside, the river valleys and well-watered areas (as Figure 7.5 shows), where 

a year-round supply of water for abstraction was available, along with cultivable 

soils (those with the correct nutrient content and structural and moisture retention 

properties—see Young, 1976). Cultivation outside of the river valleys is more 

restricted. In fact, large relict canals were not identified by image interpretation in 

the steppe, and modern attempts at irrigated agriculture in this area have proved 

to be unsustainable (Hole and Zaitchik, 2006). 

These same landscape divisions have affected the degree of preservation of relict 

features: by the time the most recent (21st century) images (for this study GeoEye-

1 and IKONOS were examined, as well as the images provided by Google Earth) 

had been taken, most of the features mapped by this study had been erased from 

the cultivable areas, being replaced by modern irrigation schemes or urbanisation. 

The same areas which proved conducive to agriculture in the past, naturally also 

prove conducive to agriculture in modern times. Therefore the 1960s-1970s 

CORONA images often constitute the final record of past irrigation systems.  

Before the modern irrigation projects (later 20th-21st century) and landscape 

intensification occurred, some systems with early origins had persisted for many 

years. Some of these may have been used, albeit with modifications, from the 

Early Islamic period up until the 1960s. The Nahr al Abbara is an example (it still 

flowed in the 20th century) which also shows signs of more than one phase of 

ancient main canal on very similar alignments (see Figure 7.7). The original 

choice of location/design was successful enough that these systems outlasted 

their original builders and were adopted and maintained by subsequent 

empires/states. 
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Figure 7.7: Nahr al Abbara dual channels. CORONA image from 22 January 

1967.  

The natural actions of the rivers themselves have often affected the preservation 

and survival of past water management. The river valleys have been transformed 

by their natural hydrological regimes; river avulsion, lateral erosion and flooding 

can all remove or obscure traces of canal systems. For example, the Euphrates 

floodplain evident in the CORONA images has been found to be relatively recent, 

post-dating some of the Early Islamic sites in the area, which have been truncated 

by the Euphrates (Demir et al, 2007, p2848; Hritz, 2013a, p1977; Challis et al, 

2004, p144; Mulders, 1969, p44-45). The Balikh also avulsed, potentially erasing 

former, unknown remains near Tell Sahlan and Tell Hammam et Turkman. The 

Sahlan-Hammam canal, which has a fairly clear abstraction point, must have been 

constructed after this event. 

A significant landscape zone in which ancient irrigation is found is the transition 

zone between the Euphrates valley and the steppe. Former large-scale canals 

flowed along the edge of the steppe, possibly for long distances: by the 1960s, 
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many of these large Euphrates canal systems were only preserved in segments, 

parts of them having been eroded by the river. More recently, the remaining traces 

of some canals (for example the Nahr Maslama and the Fray-Ja’bar canal) have 

been entirely obscured by the waters impounded by major dams.  

Several of these major earthworks can be identified in the CORONA images. Most 

of these canals seem to be later in date (generally Early Islamic), which may 

represent an avoidance of using the less controllable flow of the Euphrates until a 

time when there was sufficient investment and availability of technology. For 

example, Van Liere (1963, p115) suggests that the tributaries were more easily 

used for irrigation than the Euphrates. How the steppe-edge canals might have 

functioned is now considered. The Nahr Dawrin’s position would have meant that it 

was just outside the floodplain and therefore was protected from flood damage 

from the Euphrates. Partially eroded segments of this prominent and long canal 

could be digitised using the CORONA images. The point where it joins the Habur 

system (see Ergenzinger and Kuhne, 1991, p174), could not easily be identified, 

although somewhat ephemeral traces of the Habur canal were recorded upstream. 

An interesting construction of dual channels which seem to have some association 

with a former river meander may be close to a former abstraction point in the form 

of dams on the Euphrates (see Chapter 5, Figures 5.40 and 5.41). 

Between the Balikh and the Habur, there are a few fragments of another large-

scale earthwork that may be a canal and which is similar in appearance to the 

Nahr Dawrin (see Figure 7.8). Figure 5.26 shows a map of the segments digitised 

from the CORONA images. If this is part the same feature located downstream by 

Geyer and Monchambert (2003, p276), it may be part of the Nahr Semiramis. A 

possible link with the Nahr Dawrin can be conjectured, if the canal could have 

crossed the Habur, perhaps by means of an aqueduct; similar situations have 

been proposed for the Neo-Assyrian canals of Northern Iraq (e.g. see Ur, 2005, 

p337). Another possibility is that it is part of the Nahr Sa’id, attested to in historical 

sources as an Early Islamic canal flowing  on the left bank of the Euphrates past 

Circesium (see Le Strange, 1930, p105-106). 
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Figure 7.8: Earthwork of a possible canal segment between the Balikh and the 

Habur. CORONA image from 5 November 1968. Also see Chapter 5, Figure 5.19.  

Upstream of this unknown canal and the Nahr Dawrin, the Nahr Maslama and the 

Fray-Ja’bar canal also flow along the boundary between the steppe and the 

Euphrates floodplain.  Like the canals downstream, these are both wide features, 

with high upcast banks which were presumably a product of the need to raise the 

canal enough to carry water over a significant distance, of regular cleaning, and 

possibly also functioned as a way of protecting the canal/fields from flooding.  

The CORONA images, unavailable at the times of the original investigations, 

revealed other segments of these canals. The early Islamic Nahr Maslama is less 

distinctive away from the Dibsi segment. However, traces of a very similar feature 

were found downstream (see Figure 7.9), also located at the boundary with the 

floodplain. This may also have been part of the Nahr Maslama. Given the size of 

the segments and the upcast banks, it is possible to conjecture that the canal 

would have been a significant feature when it was in use, possibly flowing for 

some distance. 
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Figure 7.9: Segments of an eroded canal on the edge of the Euphrates floodplain 

between Dibsi Faraj and Sura (not to be confused with the adjacent straighter, 

clearer-cut modern canal). CORONA image 22 January 1967. 

On the opposite bank of the Euphrates, the canal between Tell Fray and Qa’lat 

Ja’bar has a similar appearance. The known part of the canal at Tell Fray is only a 

small fragment of the overall channel (see Chapter 2) and is attributed to the 

Bronze Age (Bounni, 1988, p363) As Chapter 5 demonstrates, it was, in the 

CORONA images, still extant over a length of up to 9 km. Its origin and destination 

are not entirely clear, although it may have associations with both Bronze Age Tell 

Fray and Islamic Qa’lat Ja’bar. The similarities between the Fray-Ja’bar, Nahr 

Maslama, Nahr Dawrin canals and the other Euphrates canals downstream of 

Raqqa as well as their presence on both sides of the river may suggest similar 

functions and designs.  Their location may be related to the natural river level. 

Most of the known sites, and presumably their fields, are at the edge of the steppe, 

above the river. It might have been considered more practical to convey water in a 

canal from upstream, where the river level is higher, than to attempt to lift 

significant volumes of water. In general, their presence throughout the Euphrates 

valley shows the ability of the later empires, primarily the Early Islamic state, to 

impose and encourage water management.  

Networks of water supply are also found in many of the Euphrates tributaries of 

northern Mesopotamia. Most of them consist of smaller channels (narrow with 

lower banks) than the Euphrates canals, and some of them are associated with 

offtakes, which give an indication of the size of the irrigated area.  Their survival 
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may be partly due to later re-use and modification on the same alignments, as 

indicated above. The Balikh is the densest area of ancient irrigation, but tributaries 

such as the Habur, the Amarna, the Sajur and many smaller streams are also 

irrigated. The design of systems such as the Nahr al Abbara indicates that natural 

conditions were taken advantage of to maximise the irrigated area, making river 

valleys such as the Balikh economically significant. Cultural factors, such as the 

presence of a powerful state, may also have been a driver of water management 

in the Balikh.  Interestingly, the Upper Habur shows relatively little indication of 

water management, aside from a few potential contenders identified by Ur near 

Hamoukar (2010, p88).  

As well as canals, other features including tunnels and qanats are also found in 

the tributary river valleys. Traces of several rock-cut and masonry water conduits 

were recorded along the Wadis Amarna and Sajur, near Jerablus. Other 

subterranean water tunnels were identified using CORONA in the Balikh Valley, 

with multiple significant examples in the south around Raqqa, and several shorter 

qanats in the north near the Turkish border. These would have provided 

supplemental sources of water alongside smaller streams such as the Sajur.  

Qanats and tunnels in Northern Mesopotamia can also be found in areas away 

from the natural streams, where permanent/easily used water sources were 

relatively distant. They tend to surround the hinterlands of the natural streams and 

rivers, around the edges of the canal-irrigated regions, rather than, with a few 

exceptions, watering the dry steppe lands. They include some rock-cut channels 

found in the Jerablus region, for example, the qanat near Hajaliyyeh (LCP 54; see 

Table 2.1 and Figure 2.2). Similarly, the Membij canals radiate out from the Sajur 

area and the ephemeral water sources associated with it. The Balikh qanats and 

tunnel are another good example of this pattern. The qanats around Heraqlah 

were located in an area where the only other available watercourse was the 

Euphrates, which would have necessitated water lifting and flood mitigation. Using 

qanats may have been the most reliable way to ensure a regular water supply in 

the southern ‘horseshoe’ of the Balikh valley. The Raqqa tunnel could also have 

brought water into the dry horseshoe from the Qara Mokh/Balikh above, rather 

than lifting it from the Euphrates. Comparably, the Dibsi Faraj qanat seems to 

have supplied the site itself with water. These subterranean conduits, at the edges 
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of the natural permanent water sources, represent efforts to extend water into 

more marginal lands.  

The larger groups of qanats tend to form distinct clusters. The qanats around 

Membij form a distinct group (see Chapter 5). The qanats south of south of the 

Sinjar mountains represent another cluster which seem to have tapped the 

enhanced groundwater at the foot of the Sinjar mountain, enabling cultivation to be 

extended further into the plain, carrying fresh water into a region where the 

available water is generally saline (UN-ESCWA and BGR, 2013, p586).  The 

reason for the dense clustering of the Sinjar channels may be simply the presence 

of the appropriate hydrological and geological conditions. There may also be 

cultural factors, such as the presence of a state or community interested in 

investing in them. 

The map of pre-modern water systems in northern Mesopotamia (Figure 7.6) 

shows that there are three main classes of water supply identifiable using 

CORONA images: large, longitudinal canals alongside the Euphrates; generally 

narrower canal features, with associated offtakes, in the valleys of the tributaries; 

and qanats and tunnels in the more marginal lands in the hinterlands of the river 

valleys (cf. Kamash, 2010, p45). It is worth noting that the tunnels and qanats are 

not always, as Kamash indicates, in zones entirely distinct from the valley canals; 

rather, they sometimes extend the irrigated area at the edges of more intensively 

cultivated valleys. 

Outside of these areas of year-round water supply, hydraulic remains are far 

scarcer. The uncultivated steppe lands and plains of northern Syria and Iraq lack 

the large-scale, complex canal systems identified in the alluvial lands, although 

traces of small-scale water harvesting structures such as check dams are 

occasionally evident in the CORONA images.  Several archaeological surveys, as 

well as the present study, have examined regions such as the North Jazira in Iraq 

(see Wilkinson and Tucker, 1995) and found no trace of ancient irrigation systems.  

It is important to reiterate here that known features which could be located were 

mapped, and that features discovered through examination of the CORONA 

imagery were also recorded; any missing features will be those that are less 

visible when using remote sensing (this issue was confirmed during fieldwork (see 
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Chapter 3.2). Overall, a reasonably detailed picture of past water management in 

northern Mesopotamia was generated by this study.  

The patterns identified by this thesis would suggest that water management was 

focused on areas where soils were the most conducive to agriculture, therefore, 

areas in which the investment of building canals was worthwhile. They were also 

located in areas where water sources were available, for example, the Neo-

Assyrian canals of northern Iraq derive their water from perennial rivers. This may 

be why nearby areas, such as the North Jazira in Iraq (Wilkinson and Tucker, 

1995), are devoid of canals, because they lack these year-round sources of water.  

 

Political Distribution 

The patterns mapped using satellite imagery and survey also relate to the 

territories of empires; specifically, the scale of water management systems can 

reflect the span of control of empires. Empires are only likely to invest in water 

management in areas in which they have some jurisdiction. This could include 

their heartlands, and also their frontiers: essentially, areas which already have 

some settlement and infrastructure. Where water management remains can be 

dated, and associated with sites linked to a particular state, the scale of the state’s 

influence in the surrounding countryside can be ‘mapped’. The Balikh is a good 

example. The reaches of the water management features supplying Raqqa and its 

environs stretch across most of the ‘horseshoe’, with possible activity as far west 

as Heraqlah (in the form of qanats). The Balikh horseshoe therefore must have 

been part of the Abbasid imperial landscape. In fact, their control of the 

countryside stretched beyond this: upstream in the north of the Balikh Valley, the 

Nahr al Abbara is a significant system, comprising main canals and offtakes and 

presumably requiring some careful planning and maintenance. Given the dating 

evidence (see Wilkinson, 1998, p67-68), and the proximity of the important Early 

Islamic sites of Medinat al Farr and Khirbet Ambar, this area presumably was also 

under the empire’s influence. Similarly, long canals alongside the Euphrates of 

Early Islamic date, such as the Nahr Maslama, and possibly also the Nahr Dawrin, 

may indicate Early Islamic interest and investment throughout the Syrian 

Euphrates valley.  



358 
 

When choosing to construct a large scale system (i.e not water harvesting), there 

seem to be certain locational requirements: 

1. Permanent water source (river or groundwater) 

2. Soils conducive to agriculture 

3. A sedentary population of sufficient size to supply labour. 

Interestingly, within these cultivated and irrigated areas, there are several regions 

where the density of past water management features is particularly high. In terms 

of really long canals, the Habur and Euphrates regions stand out. In terms of 

overall density and quantity of features, the Balikh is the most complex irrigated 

area. Qanats are most dense around Membij (Hieropolis) and in the Sinjar region.  

The features identified in the more marginal, less populated lands tend to be 

predominantly small-scale water-harvesting devices such as cisterns and check 

dams, and some qanats. Arguably these are irrigation methods which are more 

easily constructed at a community or even farm-based level.  

In terms of population requirements, it is worth noting here that at the time when 

agriculture and presumably large-scale irrigation declined, during the Ottoman 

period, many communities were mobile rather than sedentary (Winter, 2009, 

p253).  

7.8 Scales of Imperial control 

This discussion of the scale and distribution of water management remains 

throughout northern Mesopotamia has demonstrated that many of them were 

constructed and/or used during the time of the later territorial empires. As the map 

(Figure 7.6) shows, canals were located throughout the region, with some 

systems flowing across large areas. Their presence and function can be discussed 

in terms of their historical context, facilitating a recognition of how they represent 

specific scales of imperial control from the time of the Neo-Assyrian empire 

onwards. This section will argue that strong states and empires used 

contemporary technologies effectively and employed multiple forms of control and 

administration of water management at empire-wide scales, supporting their 
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economies by constructing new systems and taking advantage of existing 

landscapes.  

 

Technological development and reuse 

The power to exercise control of water across such large geographical scales was 

exercised through an ability to invest in technology and to control abstraction. The 

technology required for the construction of canal systems and qanats was already 

in existence by the Neo-Assyrian period (Davey, 1985). Historical references to 

canal irrigation in northern Mesopotamia before the period of the later empires (for 

example attested in historical documents from Mari) have already been noted. 

Given this evidence, and also the studies of the well-known Bronze Age irrigation 

systems of southern Mesopotamia (Adams, 1974), it is clear that the later empires 

were able to draw on existing technology.  

However, using the technology would still have necessitated knowledge, 

investment and organisation. Several of the systems of known date mapped by 

this research (see Chapters 5 and 6) show high levels of complexity and 

sophistication. They are represented by two kinds of scale, encompassing irrigated 

area and the size of the main canals themselves. This research identified 

examples of canals facilitating irrigation across larger landscape units, such as the 

Nahr al Abbara and possibly the West Balikh systems. It is also represented by 

long, wide features with significant upcast banks (primarily the Euphrates canals).  

Wittfogel may have been working from a perspective that increased technological 

development in terms of water management was linked to the power of individual 

states (Foster, 2000, p245). Whether or not individual states constructed new 

systems, or took advantage of existing ones, is an important issue to consider 

here. It may be worth noting that water management systems, once they are 

established, become an integral part of the landscape. Maintaining and enhancing 

an existing landscape, assuming that it functions, is generally easier and more 

logical than replacing it.  

There are several cases of technological re-use/borrowing. Sometimes, later 

irrigation systems appear to have followed the same alignments, or even reused 
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and modified the same canals as earlier systems. Again, the Nahr al Abbara can 

be noted here (see Chapter 6). Similarly, Ergenzinger et al (1988) indicate that the 

long canals alongside the Habur might have been in use from the Middle-Assyrian 

to the Early Islamic period, which could indicate use over a period of just over 

1000 years, spanning the eras of several different states and showing that 

maintaining an existing landscape, despite political changes, was practised. By 

taking advantage of existing technological developments states could enhance 

their economic power at relatively low costs: certainly this would have been easier 

than designing new systems. 

In the context of technological re-use the Sinjar qanats are also significant (see 

Chapter 5). Some of these appear to be relatively modern (early-mid 20th century) 

tunnels using an ancient technology; in this period, however, they stand out as an 

exceptionally dense area of irrigation in the midst of largely rain-fed plains; the 

CORONA images show that active irrigation in the 1960s was mostly confined to 

the river floodplains, or to the fields surrounding individual wells. If Lightfoot (2009 

p20) and Fuccaro (1991) are correct that some of them may be ancient, this could 

be a case of much later states attempting to revitalise and apply ancient 

technology.  

Decker emphasises ideas of technological re-use, suggesting that late antique 

water management often borrowed existing technology and further applied it 

(Decker, 2009a, p259). In addition, he indicates that Islamic agricultural systems 

were built upon Roman constructions (Decker, 2009b, p206): overall, he is 

reluctant to emphasise any large-scale intensification and innovation in the Early 

Islamic period, although he recognises these to some extent in a later paper 

(2011). Kennedy (2011) attributes more significance to Islamic irrigation, indicating 

that it supported the growth of large and powerful cities, specifically Baghdad 

(ibid.p195), intensifying agriculture and cultivating marginal lands, rather than only 

re-using the earlier systems. By using existing systems and by also expanding 

irrigation into more marginal lands empires were able to extend the scale of their 

economic control over the landscape. 

The results of this research support Kennedy’s ideas (2011) and Decker’s (2011) 

modified theory, suggesting that the Early Islamic states may have introduced new 
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systems and modified old ones at a greater scale and density than Decker had 

originally indicated. The Nahr al Abbara may be a good example of this, 

representing an extensive and sophisticated system which seems to have been 

constructed in the Early Islamic period. If Kaptijn’s Mamluk sharecropping example 

(Kaptijn 2010) is at all comparable to the Nahr Al Abbara, it might suggest a 

system which produced reliable yields and taxes which, overseen by the nearby 

site of Medinant al Farr, and possibly also by Khirbet al-Ambar, were directly 

managed by the Early Islamic elite. Medinat Al Farr may have been part of an 

estate owned by the Umayyad commander Maslama ibn Abd al-Malik, in the early 

8th century AD (see Heidemann, 2011, p48). Heidemann interprets the site as a 

rural administrative centre, which became a small town in the Abbasid period 

(Heidemann, 2011, p48).  Some of early Islamic evidence gathered by this 

research, therefore, may represent systems managed by elite individuals rather 

than directly by the state.  

 

Scales of control and conflict 

The expansion of imperial water organisation over large geographical scales may 

have led to conflict with existing populations. To what extent these states were 

powerful enough to control irrigation, and to what extent this was a source of 

conflict, can be reviewed here. It is possible that water abstraction which was 

outside of the control of the state may have been discouraged, or at least viewed 

in terms of competition. By managing water at empire-wide scales, the state could 

have limited this kind of threat.  

As discussed in Chapter 1, some scholars have indicated that the potential 

economic power of even local communities organising irrigation could be regarded 

as a threat to the state (Hunt, 1988, p248; Davies, 2009, p29). However, this same 

organisation of water could in itself be a response to the power of the state: 

systems could have been planned, constructed and maintained by local groups, 

with a view to supporting or surviving the demands of the imperial economy. 

There is historical evidence that water conflict existed in ancient northern 

Mesopotamia. A letter from Mari refers to a complaint between two sites in the 
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Balikh: the downstream settlement complained that the city upstream was 

abstracting too much water (Villard, 1987). This is an interesting example of a 

community attempting to deal with water threat received from another similar 

community by appealing to higher authorities. Large-scale irrigation systems like 

the Nahr al Abbara and the canals alongside the Habur could have abstracted 

considerable volumes of water. Whoever controlled these systems may have 

needed to also have some kind of general control over abstraction in the Balikh 

and Habur catchments. That a single system had the potential to abstract so much 

water certainly suggests that whoever administered it maintained the right to 

control abstraction.  

That the later territorial empires imposed new irrigation systems on the landscape 

is clear from the results of this study. How well received these were by existing 

groups is not always so obvious: it is possible that the imposition of new landscape 

changes would be resisted by an established population. In general, whether at a 

local—or large-scale level, as Mabry suggests (2000, p291), farmers are likely to 

be more cooperative if they perceive themselves to be receiving direct benefits 

from an irrigation system. 

 

Effectiveness of control 

Whether or not a system was successful may be reflective of a state’s ability to 

apply technology effectively, or to control abstraction and drainage throughout an 

irrigated area. How sustainable systems were has implications for how efficiently 

they might have functioned and how long they might have persisted. Failure would 

have been a waste of a state’s resources. Complex systems of main canals and 

laterals like the Nahr al Abbara were probably constructed as part of a single 

project. The amount of water which could have been abstracted, and how it would 

have flowed throughout the system would need to have been understood. An 

understanding of drainage needs is also important to prevent waterlogging and 

salinization.  

There are several instances of multiple parallel channels on the same alignments 

and it is possible that these may indicate repeated attempts to design an effective 
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channel with the right balance of flow. An example which may be part of the Nahr 

Dawrin (see Figure 5.41) and a similar system represented by the Nahr al Abbara 

(Figure 7.7) demonstrates this pattern. If the gradient of a system was too low, 

then excessive siltation would have required so much dredging that it could have 

become uneconomic, but if the gradient was too high, then excessive erosion 

could have damaged channels. In addition, other practices such as correctly 

assessing the necessary water availability and the management of drainage and 

mitigation of flooding would also have been needed.  

Systems which show signs of failure include the West Balikh canals. In such 

cases, layers of eroded, silted channels meander across the landscape. 

Throughout the Balikh features such as gilgai indicate episodes of waterlogging 

and drying, and evidence of flooding is also apparent. The management of 

seasonally high runoff may have been significant in this particular case.  

However, other systems show considerable success: the Nahr al Abbara made 

careful use of its topography, allowing a large area to be irrigated. That parts of the 

system were still in use during the 20th century (e.g. see Wilkinson, 1998, p68), but 

on ancient alignments, attests to its success and sustainability. This may well be a 

system which was initially designed as a comprehensive project, including offtakes 

at regular intervals and drainage channels. As proposed above, it may be 

comparable to the Zerqa example (Kaptijn, 2009; 2010), where irrigation was 

controlled as part of a hierarchical system, to produce an economic surplus for the 

sheikh or other elite individual (Kaptijn, 2009, p424).  

There are certainly examples of qanat systems functioning effectively enough that 

they persisted for centuries. Whether or not these were controlled by a state or 

more independently would be interesting to investigate. Rock-cut channels around 

Jerablus appear to have functioned later than the Byzantine period (fieldwork 

2010; see Chapter 3.2), which may also be true for many of the other qanats and 

tunnels identified in the project area. The implication is that these features were in 

use in the Islamic period, reinforcing the evidence for intensive water management 

at that time. 

Certainly, where systems functioned efficiently, they would have supported 

agriculture in areas formerly dependant on unreliable and often low rainfall, 
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inevitably bolstering the economy of the communities that maintained and used 

them and the state which benefited from taxes levied on those communities.  

 

Direct and indirect control 

Control of water by the later territorial empires seems to have taken several 

different forms, often relating to the different scales of control empires were able to 

exercise over the different parts of their territories. In some cases these are 

identifiable. Examples of how states directly sponsored irrigation will now be 

discussed, as well as examples of more indirectly controlled/encouraged water 

management systems.  

In some cases, the empire seems to have directly managed water resources. The 

results of this study (Figure 7.6) show particularly dense concentrations of artificial 

channels around centres such as Raqqa and Nineveh. The channels associated 

with important Early Islamic sites (for example, Baghdad, Samarra and Raqqa) are 

particularly indicative of imperial control, where the state was concerned with 

ensuring reliable supplies of water to the immediate hinterlands of their cities, 

presumably for irrigation as well as for domestic use.  Contemporary sources 

support this (e.g. Toueir, 1990, who cites historical documents). Similarly, the Neo-

Assyrian systems of northern Iraq have been attributed directly to investment by 

the king. 

By organising water management directly, imperial states could ensure how and 

by whom agriculture was conducted. They might also have felt more secure in 

predicting yields, especially if the problem of over-abstraction by other groups 

could be eliminated. Constructing a long canal system could ensure that water 

was abstracted closer to the source, before other groups could divert it, and 

carried safely downstream to the use-point where it was managed by imperial 

authorities. However, Ertsen (2010) has also provided evidence of the opposite 

case, where the state constructed a main canal, and local users administered 

water abstraction further downstream.  

Too much competition for water (and depletion of water in rivers) would have 

made it difficult to maintain sophisticated irrigation systems such as the Nahr al 
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Abbara, or the tunnels and qanats around Raqqa. These kinds of systems are 

generally carefully designed with specific water resources and requirements in 

mind: significant changes to both of these would be effected by uncontrolled 

abstraction upstream. The success of the larger-scale canal systems may, in part, 

have been due to careful control and exercise of power throughout whole 

catchments by imperial authorities or elite individuals.  

This direct imposition of water management in general seems to have been 

related to the differential scales of control across an empire, because the best 

evidence for direct control comes from locations which formed centres of imperial 

control (Raqqa, Baghdad, Samarra). Spatially, the presence of complex irrigation 

systems in these areas directly reflects the strength of imperial control.  

Less direct control involved encouraging and incentivising water management. It 

seems reasonable to suggest that many water management systems, across all 

geographical scales, were not directly administered by the imperial authorities, but 

rather functioned within an imperial administrative framework. For example, 

cisterns in the Harran/Balikh region were recorded by the Harran census (e.g. see 

Fales and Postgate, 1995), and were probably constructed and maintained by the 

individual farms listed, however, they were included in the census presumably 

because they were considered to be part of the farmsteads which the Imperial 

authorities regarded as Neo-Assyrian entities.  

A situation combining different ways of managing water could easily have existed; 

with some irrigation systems being directly managed by the Imperial authorities, 

for example the water supplies of the imperial capitals and their hinterlands, but 

with others receiving less or no oversight. Groups at a local community or even 

individual farm scale could have taken advantage of the increased stability 

available during these times to construct and manage an irrigation system. 

Similarly, they could have been obliged to adopt these methods in the face of 

increasing taxation (e.g. see Wilkinson and Rayne, 2010, p138).  

The way in which investment in irrigation was managed under the Early Islamic 

empires is an interesting example of how water management could be controlled. 

Aside from direct imperial sponsorship of canals, as historical sources suggest, 

wealthy individuals, often members of the royal family or other elites, were 



366 
 

encouraged to bring marginal lands under cultivation by tax breaks and land 

ownership laws (e.g. see Kennedy, 2011, p181-182). This is an example of the 

state (who made the laws) incentivising private individuals/groups to irrigate using 

their own financial resources. In fact, the Early Islamic laws in this case may be an 

explanation for the peak in irrigation at that time. 

Irrigation in the Early Islamic period may have been sponsored by elite families 

(Decker, 2011, p5). This is an example of irrigation managed by groups that do not 

necessarily represent the state themselves, but who operated within and became 

powerful under an overall framework of empire. Kennedy (2011, p194) suggests, 

based on historical evidence, that the Nahr Dawrin may have been part of an 

irrigation scheme initiated by relatives of an Umayyad caliph. This would be an 

example of elites who were part of the state, but not necessarily themselves in 

control of it, taking advantage of the imperial power structures to invest in 

irrigation.  

This form of water control seems to have occurred at empire-wide scales, and was 

not always necessarily confined to the centres of empires; as the Early Islamic 

sources suggest (Kennedy, 2011, p181-182) it also represent attempts to bring 

more marginal lands under cultivation. While the ability to promote this does to an 

extent indicate that imperial control extended beyond the main centres, it may also 

indicate that states were less interested in directly sponsoring and managing 

irrigation outside of these centres. 

 

Centres and frontiers 

The span of an empire’s control over water management can also be discussed in 

terms of the scale of its political control. As discussed above, the clearest 

evidence of direct state involvement comes from the imperial centres (e.g. Raqqa, 

Nineveh and Assur): that is, direct state involvement in enhancing the agricultural 

production of their main power bases. The association between the water 

management features around Raqqa and the Abbasid capital and palaces also 

implies that they were part of the Early Islamic Imperial landscape.  
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Whether the same picture can be identified for the periphery of the later empires’ 

territories should be assessed. The results of this study (Figure 7.6) show that 

irrigation was distributed throughout northern Mesopotamia and was not only 

confined to known centres such as Raqqa and Nineveh. Water management 

features dating to periods when specific areas were at the frontier of empires are 

known; the cisterns at Resafa, and their associated dam and channels, are a good 

example. In this case, the frontier status of the site may have been particularly 

significant; water management and defence were carefully integrated (Brinker, 

1991) to ensure a reliable supply of water even during times of instability. Lightfoot 

(2009, p16) also raised the possibility that qanats at Sinjar may have been linked 

to the Roman limes.  Fuccaro (1991, p12) suggests that these qanats are pre-

Ottoman, giving an idea of a productive landscape of water mills and fields. These 

are specific examples of water management being tied directly to the presence of 

the frontier, to fortifications. Interestingly, at Dibsi Faraj and at Heraqlah water was 

also brought into the sites in a ‘secure’ way, using qanats and wells.  

However, such a peripheral, unstable status may also have been detrimental to 

irrigated cultivation. Kennedy (2011, p196) suggests that when northern 

Mesopotamia was a frontier zone between the Roman and Sasanian empires, 

political conditions were too unstable for cultivation and associated irrigation. 

When more secure dating evidence can be obtained for more irrigation features, 

whether or not the frontier zone throughout the time of the Later Empires was a 

place where irrigated agriculture thrived  can be further explored.  

 

Chronological trajectory of water and power 

The question of when the original landscape changes occurred which supported 

the succession of empires should be investigated. It may have been the Neo-

Assyrian empire which initially imposed some reorganisation on the landscape 

(this reorganisation has been discussed in the literature, e.g. see Wilkinson and 

Barbanes, 2000). To some extent the patterns which the later empires took 

advantage of may have been established in the Iron Age, including investment in 

irrigation. Once the way in which water flows through a landscape has been 



368 
 

established, it is difficult and expensive to change it. If successful, irrigation 

systems will be reused, or new ones at least constructed on the same alignments.   

The agricultural changes established by the Neo-Assyrians enhanced their 

economic power. The canals in the hinterland of Nineveh would have supported 

the agricultural demands of large Assyrian cities in Northern Iraq. Later on, these 

established systems may also have aided subsequent states, again supporting 

their agricultural economies.  

That the later empires were capable of constructing new irrigation systems 

however, also seems to be clear. These hydraulic systems were evidently part of 

the visible, identifiable ‘result’ of their power. The Abbasid remains around Raqqa 

are a good example. Formerly Samarra had been the Early Islamic power-base, 

but once this shifted to the ‘backwater’ of the Balikh, the Abbasid state seems to 

have exercised its authority and economic strength to construct new water 

management features. The water management remains around Raqqa are a direct 

indicator of the state’s power, and they reflect similar work undertaken at Samarra, 

where apparently at the time of Harun ar Rashid a canal was dug to water the 

city’s hinterland (Northedge, 2011, p35).  

It is possible to suggest that there was a gradual development of irrigation, with 

early patterns of use of the rain-fed zone initiated in the Assyrian period (for 

example large-scale irrigation in Northern Iraq). Subsequently, later states re-used 

some of these systems (e.g. the Habur canals), adding new features where 

necessary (such as the Hellenistic canals in the Balikh, and qanats at Membij). 

The Roman and Byzantine states intensified the use of irrigation, establishing the 

use of a range of water management systems including qanats (for example see 

the Jerablus region) and cisterns (Resafa). Cultivation may have affected by 

plagues in the 5th and 6th centuries AD (see Decker, 2009a, p260) and Morony 

(2007) compiled sources which recorded massive depopulation (ibid. p73), 

shortages of labour (ibid. p81) and neglected fields (ibid. p68). Similarly, Kennedy 

suggests that the outbreaks of plague could have been related to changes and 

decline in settlement patterns after the mid 6th century AD (Kennedy, 2007, p92-

95).  
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However, even allowing for some decline in cultivation, by the time the Early 

Islamic empires were active in northern Mesopotamia, the landscape would have 

already contained water management features. These were often re-used by the 

Early Islamic states, who also constructed new systems (for example in the Balikh, 

at Dibsi Faraj and in northern Iraq). This appears to have been an Early Islamic 

peak in irrigation. It is possible that systems that had fallen into disuse in the 5th 

and 6th centuries were repaired at this time, alongside the construction of new 

systems. In the following period, the Ottoman era, irrigation to some extent may 

have declined, although some of the existing systems may have been re-used (for 

example the Nahr Dawrin).  

Based on the results of this study, water management in northern Mesopotamia 

does appear to have intensified in the period of the later empires, developing from 

the landscape changes during the Assyrian period onwards. Whether most 

individual systems were directly governed by the imperial authorities or by local 

communities is unclear. However, it may be useful to recognise the systems as 

part of an imperial framework, in which powerful states were capable of 

constructing new systems, as well as repairing and maintaining existing systems. 

They were also interested in ensuring economic wealth and power through their 

manipulation of these resources, and through taxation of the communities which 

used/managed them.  The differences in the scale, density and distribution of 

canals throughout each empire can also reflect the state’s control over the 

landscape, with this more easily exercised in the centres, but also represented to a 

lesser extent by irrigation in the imperial peripheries. 

Wittfogel recognised a link between water and power, but failed to explain it with 

clearly presented evidence (see Wittfogel, 1957).  This research has discussed 

evidence for water management in northern Mesopotamia, showing that directly 

and indirectly, empires were controlling water, at varying scales of control across 

their territories. As Table 6.3 shows, they were able to irrigate large areas of the 

river valleys, potentially dramatically depleting the available water resources. 

Having a strong administrative structure already in place, and the pressure of 

economic demands, encouraged and compelled the state to undertake and 

promote irrigation and landscape management. Water management seems to 

have been deliberately and directly controlled around the centres, and less 
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directly, but still significantly, encouraged throughout the rest of their lands, as the 

dense networks of canals mapped by this study show. It is less a case of needing 

or developing a certain level of bureaucratic structure, but more a case of using 

this structure effectively. The fact that irrigation is sometimes neglected when 

there is a conflict (cf. modern Syria; see Chapter 8) demonstrates the significance 

of the state in water management.  

 

Water and power 

This research has demonstrated that a detailed dataset of irrigation is needed in 

order to discuss the scale and distribution of water management at the time of the 

later territorial empires. Applying the Wittfogel debate is not productive for imperial 

northern Mesopotamia, given that his argument tends to refer to the drier southern 

Mesopotamia and that most problematically, Wittfogel does not provide the 

empirical evidence (such as data from surveys and excavations) needed to 

validate his theory. 

Data about the form, distribution, scale and administration of water-management 

features makes it possible to address new and important questions about empires 

and water and to what degree empires were able to control their hydraulic 

landscape. The present study provides these data; an area of c.100,000 km, 

representing northern Mesopotamia, was examined for water-management 

features using multiple datasets including CORONA images, DEMs, and survey 

evidence. Traces of irrigation dating to the period of the later empires were 

identified throughout the region, including large-scale reticulated canal systems, 

qanats and tunnels.  

The data gathered by the present study indicate a need for a discussion of how 

and why powerful empires used and developed water-management technologies 

to support their economies. By definition, an empire is a state which exercises 

control over its territories (e.g. Taagepera, 1978a, p113): this might take the form 

of deliberately influencing settlement patterns, for example the Assyrian practice of 

deportations, or by investing resources to construct new irrigation systems. Large-

scale irrigation requires expensive investments in construction, maintenance, 
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administration and potentially in dealing with conflict. Having influence over 

agriculture, whether through imposition, incentives or pressure, would have been 

within the remit of the ancient territorial empires.  

Chapter 1 identified a need to use new datasets to move away from Wittfogel and 

take an evidence-based approach to imperial water management. Satellite images 

allowed the large study area to be examined quickly and in detail; DEMs gave 

hydrological context; survey data provided dating information; and in some cases 

historical accounts revealed further information about how irrigation was imposed, 

incentivised and controlled. The results of this are presented in Chapters 5 and 6. 

Chapter 1 also raises the question of how these data can be used to make 

interpretations of how empires could have imposed or encouraged the use of 

water management technologies.  

Chapter 5 showed that irrigation features dating to the time of the later territorial 

empires are prevalent throughout northern Mesopotamia; from as early as the 

Assyrian period, these states were able to exert an organising influence on the 

landscape, represented by Assyrian canals in northern Iraq and the Habur. 

Chapter 6 examined the complexity of irrigation the Balikh. Given that detailed 

survey and excavation data, as well as the remote sensing data, was available for 

the Balikh, it was possible to map intensive irrigation dating to the period of the 

later empires.  

The present chapter has discussed the results of the interdisciplinary analysis. It 

was found that water-management features were distributed across the cultivable 

areas of northern Mesopotamia, reaching a peak during the Early Islamic era. The 

extensive distribution shows that the Early Islamic economy was capable of 

generating enough demand that even formerly marginal areas were brought into 

cultivation. Expanding cultivation would have been especially necessary in the 

context of the growth of large cities. Areas with permanent water sources, such as 

the Balikh, were irrigated using large-scale, reticulated canal systems. Even areas 

without perennial rivers were irrigated, using tunnels and qanats to tap 

groundwater.  

This research has focused on the period of the later empires, which were the first 

states to exercise control over large areas of the landscape; their ability to apply 
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irrigation throughout their territories, despite transport costs and complex 

administrative structures, is symptomatic of this. The different degrees of control 

exercised in different parts of empires may be significant in the context of water 

and power. In many cases, the densest concentration of large-scale systems 

seems to have been close to imperial heartlands, for example the Neo-Assyrian 

canals in Northern Iraq, and the Islamic features around Raqqa in Syria. While 

these states may have had differing power structures overall, for both of these 

examples, historical evidence suggests that the state (e.g. Sennacherib and Harun 

ar Rashid) was involved in the sponsoring/construction of some of these large 

canals.  

 It is possible that canal systems outside the core areas may have been less tightly 

managed by individual states, but the need for irrigated cultivation in these areas 

was recognised by the Early Islamic empire and incentivised through systems 

such as tax breaks (e.g. Kennedy, 2011, p181-182). Large canal systems were 

recorded by the present study in areas away from the capital cities, for example, 

Neo-Assyrian canals in the Habur region, showing that the state was also willing to 

invest in irrigation, or apply demand, in more peripheral regions.  

This widespread distribution of water management features throughout different 

zones of empires and different types of landscapes shows that empires were 

willing to invest in areas further from their heartlands, demonstrating their control 

over the landscape. States did not have to be directly involved in the management 

and maintenance of irrigation systems; often the influence of their resources, 

technological knowledge, organising abilities and economic demands was 

powerful enough to incentivise/impose irrigation which was then managed by local 

groups (see discussion in Chapter 4). Systems could have been deliberately 

controlled by the state, or administered by elite individuals. The Neo-Assyrian 

systems, some inscribed with Sennacherib’s name, are an example of direct state 

involvement. The Wadi Zerqa example shows elite individuals managing a system 

of sharecropping (see Kaptijn, 2009; 2010). An example of local management is 

Glick’s (1970) analysis of irrigation in medieval Valencia, where local groups 

managed irrigation communally.   
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Demands and incentives for enhanced agriculture led to the presence of the canal 

traces mapped by the present research, all the way down the Euphrates, from 

Carchemish to the Iraqi border. Early Islamic irrigation was not confined to Raqqa 

in the north, or Samarra and Baghdad in the south. Other areas of tight state 

control include frontiers and sites of strategic importance: examples such as 

Resafa and Dibsi Faraj show that states were also able to invest in water-

management systems in frontier areas. Overall, empires were powerful enough to 

be able to invest in irrigation throughout their territories; this would have meant 

exercising control over local populations and over the resources required to apply 

irrigation technology. 

A large body of research has discussed individual areas of irrigation in northern 

Mesopotamia (e.g. see Ur, 2005; Wilkinson, 1998; Geyer and Monchambert, 

2003). The present study has linked these areas and revealed new irrigation 

systems, by using remote sensing to examine the whole region. The widespread 

distribution of water-management systems which this analysis identified, 

throughout different zones of an empire, and the apparent mixture between direct 

state control and incentives, show that the later territorial empires (Neo-Assyrian-

Early Islamic) were able to exercise the power and command the resources 

necessary to invest in irrigation. Rain-fed cultivation is possible in these areas, 

although risky, as the rainfall analysis shows (Chapter 3). Large states, however, 

needed to ensure that their economic basis was more reliably supported with 

higher yields, making investment in irrigation a necessity.  

 

7.9 Justification 

This leads into an understanding of the present issues surrounding water in the 

Near East.  As Chapter 1 outlined, water management is currently a significant 

political issue that is likely to become even more contentious in the future. Syria 

and Iraq are dependent on Turkey’s use of the Euphrates, a situation which has 

already led to conflict (Kliot, 1994). 

The agricultural economic bases of many powerful states, including the later 

territorial empires, were dependant on irrigation to ensure reliable and significant 
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yields. While rain-fed cultivation had been practiced, and was indeed still practiced 

until very recently (Beaumont, 1996, p140), at times when powerful states are 

involved rainfall alone did not seem to be sufficient to secure high yields. Rain-fed 

agriculture often seems to predominate at times when there was something of a 

‘power vacuum’, where there was less active organisation of the landscape, for 

example during the early 20th century.  

The discussion has already dealt with the issues of water competition and how this 

might be a threat to states. Currently, impoundment and over-abstraction of water 

by the Euphrates riparian states can be viewed by downstream states as a threat 

to their own water security. As already mentioned, this was also an issue in the 

past. Many areas of the Middle East now rely on pumping from groundwater, often 

managed at the level of individual farms. Because pumping depletes the water 

table more quickly than it can be recharged, it renders traditional gravity-flow 

systems such as qanats unusable. Examples of the use of pumps were observed 

in the Jerablus region in Syria in 2010. Abstraction by individual farms even using 

ancient methods may have been viewed as a threat to the survival of more 

organised systems by past states.  

When these data were analysed, it was generally not possible to view separate 

periods in isolation. Consequently, water management features with evidence for 

use from the Bronze Age and into the time of the later territorial empires were 

investigated as part of an interlinked trajectory. Many systems appear to have 

been reused, modified, abandoned and replaced with systems on the same 

alignment throughout this time. Irrigation may have declined after the Mongol 

conquests, but traces of check dams and wadi diversions may account for 

agriculture in this period, as well as a reliance on rainfall. A few larger-scale 

reticulated systems may have been used at this time, some with ancient origins, 

notably in the Balikh (e.g. see the West Balikh and the Nahr al Abbara). It was only 

in the mid 20th century onwards that attempts to change this pattern were made, 

with new irrigation schemes being constructed, many of which never reached their 

full potential (Hole and Zaitchik, 2006, p150). 

The ability of a state to control water resources in terms of how they are organised 

and accessed is significant, demonstrating issues which seem to have applied to 
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northern Mesopotamia throughout history. In many ways, the current situation is a 

continuation of the same circumstances/developments that were involved in 

ancient water management.  

7.10 Summary 

This project aimed to generate a detailed map of ancient irrigation in northern 

Mesopotamia, using new and historic high resolution satellite images to record 

new features and digitise known ones. While fieldwork and availability of some 

data (e.g. detailed, accurate CORONA image parameters) was limited, the main 

aim was successfully achieved (see Figure 7.6).  

This map has revealed important patterns, and made it possible to discuss issues 

such as the scale, distribution and chronology of water management in a region 

between the Euphrates and the Tigris. As section 6.7 shows, this included 

extensive systems which were capable of irrigating large areas. Technologies 

including gravity-flow canal systems, qanats and tunnels were applied according to 

natural climatic and hydrological conditions. These were concentrated in areas 

directly controlled by powerful empires, but also, in some cases, supported 

agriculture in more peripheral, but often strategic areas. The use of CORONA 

images and stereopairs in combination with other datasets such as DEMs and 

survey databases facilitated a more detailed and comprehensive reconstruction to 

be generated than had previously been possible, allowing for a discussion of the 

scale of ancient water management based on new and expanded empirical 

evidence.  

The results of this research show the inverse of what Wittfogel (1957) proposed. 

The organising power of the later empires enabled them to impose and incentivise 

irrigation into the formerly marginal lands of the rain-fed zone. The map produced 

by this thesis shows evidence for water management in all the cultivable river 

valleys of northern Mesopotamia, giving an impression of an intensively cultivated 

and managed landscape. 
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Chapter 8: Conclusion 

 

8. 1 Aims and results 

The aim of this research was to map ancient water management systems in 

northern Mesopotamia at the time of the later territorial empires, taking a new and 

interdisciplinary approach that combines the use of remote sensing, GIS and 

archaeological survey. 

Three principal research questions were addressed by the results of this study; 

1. Is there archaeological evidence for extensive water management systems 

in Northern Mesopotamia, and if so, can this evidence be mapped from 

satellite imagery and validated using DEMs? 

2. Can declassified ‘historic’ spy satellite data be used to interpret the 

function, historical context, scale and distribution of ancient water features? 

3. How can we make interpretations from this data to investigate how the later 

territorial empires might have imposed, incentivised and encouraged the 

use of water management technology? 

 

Chapters 5 and 6 show the extensive archaeological evidence for ancient water 

management compiled by this thesis across a 100,100 km2 area. This involved 

mapping areas of water management that had previously not been known, and 

extending knowledge of known features.  

By combining different remotely sensed and archaeological datasets, this research 

demonstrates a new approach to recording water management features, using the 

best available data. Image interpretation was undertaken using 1960s-1970s 

CORONA images. Newly identified irrigation systems and data collected by 

existing surveys and excavations were digitised and incorporated into a GIS 

database. This methodology enabled the construction of a detailed map of 

irrigation systems throughout northern Mesopotamia. Figure 6.5 shows that 

extensive canal-based irrigation systems flowed alongside the Euphrates, and also 
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most of those tributaries of the Euphrates and Tigris which experienced year-

round flow (this includes systems in the Balikh and Habur). Evidence for water 

management outside the main rivers was also found, for example, the qanats 

around Membij and Sinjar.  

Hydrological information about how canals systems functioned and how much land 

they could have watered was derived from DEMs of resolutions between 10-90 m 

(SRTM, ASTER, and CORONA).  The DEMs were used successfully in many 

cases to record the gradients of canals (see Table 5.2), which enabled canals to 

be distinguished from other linear features such as hollow ways, and for their 

efficiency to be estimated. Using DEMs to generate cross-sections was also 

informative. For example, the higher-resolution CORONA DEM cross-section 

(Figure 6.24) shows that the Hammam channel was protected by upcast banks 

and flowed along the bottom of the slope, on a similar alignment to the Balikh 

itself.  

This project successfully used remote sensing to generate a map (Figure 7.6)  of 

water management at the time of the later territorial empires, facilitating the 

interpretation proposed in the second and third research questions. This 

comprised a discussion of the scale and distribution of ancient water management. 

Based on this map, the chronological development of water management in 

northern Mesopotamia was discussed and the role of powerful states in 

establishing and encouraging it assessed. 

The detailed map which was the result of this remote-sensing analysis allowed 

further interpretation. When the digitised data were examined alongside dating 

information from surveys and excavations (such as Wilkinson, 1998; Wilkinson 

and Harper, 1975) a peak in the Early Islamic period could be identified. 

Technological advancement, tax incentives and deliberate action by the state 

allowed water management systems to develop throughout all the irrigable areas 

in this period, intensifying agriculture beyond what was possible when relying on 

precipitation alone. 

It was found that some canal systems had the potential to abstract a large 

proportion of the available flow (e.g. see Chapter 6.5), and that several were of 

dimensions which would have allowed for large areas to be irrigated (see Table 
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6.3), indicating that areas such as the Balikh and land alongside the Euphrates 

could have been heavily cultivated in the past. When this is compared with Le 

Strange’s review of historical sources (1930), it generates a picture of an 

intensively cultivated and managed landscape in the medieval period. 

8.2 Development of water management at the time of the later territorial 

empires 

Based on the results of this research, the development over time of water 

management in northern Mesopotamia can be recognised. Although there is 

evidence for irrigation before the Iron Age, in northern Mesopotamia this seems to 

relate specifically to certain features, such as the canals at Mari, which may have 

Bronze Age dates (see Margeuron, 2004). The canals alongside the Habur may 

represent water management by the Middle Assyrian state, although they were 

reused by subsequent empires. Larger-scale changes in the landscape seem to 

have occurred during the Neo-Assyrian period (e.g. see Wilkinson and Barbanes, 

2000) possibly representing deliberate policies. Given the evidence for Neo-

Assyrian canal-based irrigation in northern Iraq (Oates, 1968; Reade, 1978; Ur, 

2005; Altaweel, 2008) it can be suggested here that the Neo-Assyrian empire laid 

down the foundations for future imperial irrigation. The later states continued to 

reuse some of the older systems, also constructing new ones throughout the Near 

East (for example the Hellenistic-Byzantine Sahlan-Hammam canal). Qanats and 

rock-cut tunnels certainly seem to have spread throughout the study area from the 

Hellenistic-Byzantine period.  

A new peak in this trajectory of development occurred in the Early Islamic period, 

which represents a time when significant large-scale systems were built. These 

included urban and royal supply (for example at Raqqa and Samarra) and large-

scale irrigation canals throughout the countryside (for example along the 

Euphrates). Early Islamic Imperial authorities both deliberately imposed these 

systems on the landscape and encouraged and facilitated irrigation through 

financial incentives, producing complex systems of water management which were 

a reflection both of the power of the state but also of the power of private elite 

individuals operating within its supporting framework. 
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These changes over time appear to directly reflect the organising power of the 

state. Although some of the systems have been more locally/communally 

managed, most of the systems have associations with sites that are known to 

have been significant/powerful. For example the Nahr al Abbara must be linked to 

the Early Islamic sites of Medinat al Farr and Khirbet al-Ambar, and the canals in 

northern Iraq with key Assyrian cities such as Nineveh and Nimrud. While irrigation 

is the biggest consumer of water, the idea of water and luxury should not be 

discounted, with specific reference to the likely presence of gardens and parks at 

imperial sites such as Raqqa and Samarra. This link is a clear indicator of a state’s 

power: if water in an environment where it was relatively scarce and expensive 

could be used for non-essential purposes it suggested that the user was able to 

exercise considerable control over this resource. 

It is worth noting here that at times throughout the period studied when the 

landscape was less tightly or securely controlled, irrigation seems to have 

suffered. The late Ottoman period illustrates this. Travellers’ reports indicate a less 

intensively managed countryside (e.g. see Bell, 1924). Others suggest that in the 

18th-early 20th centuries cultivation, settlement and security declined (e.g. see 

Hole, 2006, p144; Lewis, 1955, p48; Kaniewski et al, 2013, p3865). There are also 

very recent parallels. Modern agriculture has been affected by the current 

instability in Syria, with damage to irrigation systems (FAO, 2013). Neglect in tasks 

such as dredging of canals and damage to canals was noted by a recent Syrian 

report (FAO, 2012, p2), including the Government-run irrigation schemes (FAO, 

2012, p13). Associated social tensions and conflict have arisen over water 

allocation (FAO, 2012, p13). 

Similar issues can be explored for earlier periods. Plagues at the end of the 

Byzantine period also seem to have occurred at the same time as the evidence for 

water management becomes less clear, in contrast to the medieval peak occurring 

at the time of the powerful Early Islamic empires. It is important to note here that 

during periods when states were less powerful or when conditions were more 

unstable/demand was lower, rain-fed agriculture was the norm. This seems to 

have been the case at least in the early-mid 20th century (Beaumont, 1996, p137), 

and also seems to have happened as a response to the recent crisis (FAO, Syria 

Crisis, 2013b). Rain-fed agriculture may also have predominated in northern 
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Mesopotamia during the Bronze Age, before the powerful territorial empires were 

established.  

The security of the centre of empires certainly promoted irrigation. Again, Raqqa 

and Samarra must be cited here, as well as the Neo-Assyrian canals. Increasingly, 

especially from the Roman period onwards, water management strategies were 

also employed in the frontier lands, allowing for secure water supplies even in 

unstable conditions. The features associated with Roman sites throughout 

northern Mesopotamia, such as the canals and cisterns at Resafa, are examples 

of frontier water management. Some of the qanats/tunnels in the Sinjar plains (see 

Lightfoot, 2009, p16) may have links to this period. These patterns indicate that 

the presence of an empire imposed, necessitated and encouraged irrigation in 

previously unprecedented ways.  

These results represent almost the inverse of Wittfogel’s (1957) hypothesis: in this 

case, rather than water management leading to a rise in bureaucratic power itself, 

the later territorial empires of northern Mesopotamia were able to use their 

bureaucratic power to impose and encourage changes to the landscape, further 

enhancing their economic strength. When political conditions were unstable, 

irrigation systems were not maintained and fell into disrepair, a point illustrated by 

current events in Syria. 

Despite the difficulty of dating ancient water management features, this project has 

demonstrated that they can be understood within their chronological contexts. 

Kaptijn’s study of water management around the Wadi Zerqa in Jordan (2009; 

2010) showed how relatively recent irrigation conducted in the 19th and early 20th 

centuries represented one phase of a series of longer term developments and 

changes. Irrigation systems should not be approached as single or even multi-

period features, but as layers of developments. The complex palimpsests of water 

management in the Balikh are an example of this. Different states irrigated on the 

same alignments as their predecessors, choosing the same locations for canals 

based on the natural topography of the landscape, and also reusing existing 

systems.  

It is interesting that this general pattern seemed to continue from the period of the 

later territorial empires into the middle of the 20th century, possibly with a decline 
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at the end of the Early Islamic empires. New irrigation systems have recently 

reshaped the landscape and removed traces of land-use which had developed 

over hundreds or even thousands of years. The modern systems have already 

encountered problems (Kliot, 1994; Hole and Zaitchik, 2006), facing huge and 

unsustainable demands, with large-scale dam building and water abstraction 

causing conflict and lowering water tables faster than they can recharge. Recently, 

the FAO indicated that demand in Syria was close to surpassing supply (Varela-

Ortega and Sagardoy, 2003), and, based on Syrian statistics, indicated that areas 

such as the Balikh and Habur were already over-exploited (Varela-Ortega and 

Sagardoy, 2003). Given all this, it is uncertain whether the post-1950s irrigated 

landscape will have the longevity and sustainability of the systems established and 

developed by the later territorial empires. 

8.3 Evaluation 

The extent to which this project fulfilled the original aims should be recognised 

here. Two specific problems were potential limitations. First, the political situation 

in Syria prevented further fieldwork, making it impossible to confirm more than a 

sample of the remotely-sensed results in the field. While some channels had been 

visited and described in detail by other research (for example the Nahr Maslama; 

see Harper and Wilkinson, 1975), some had not, including the West Balikh 

systems, the Raqqa tunnel and the Sinjar qanats. Secondly, DEMs could not be 

used for all sites; in some cases (for example, at the now-inundated Dibsi Faraj) 

recent landscape changes rendered the modern DEMs unusable. Because the 

process of generating CORONA DEMs was time consuming, and required 

stereopairs sufficiently free of cloud and with sufficient contrast, these were only 

made for parts of the study area (comprising the area around Tell Hammam et 

Turkman in the Balikh). Acquiring control points for these areas in the field was not 

possible, and the available camera parameters were not clearly defined: for 

example, key information used in image matching such as the coordinates of the 

principle point and the lens distortion coefficients was unknown (Sohn et al, 2004, 

p52).  

However, by employing a multidisciplinary approach and by combining different 

datasets it was possible to mitigate against these limitations to generate a 
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comprehensive map. Where one type of information was unavailable, there was 

often an alternative source. For example, the Sahlan Hammam canal could not be 

clearly located using the low-resolution SRTM and ASTER DEMs, but could be 

analysed using the higher resolution CORONA DEMs. Similarly, early 19th 

century/late 18th century travellers’ reports (e.g. Bell, 1924; Sykes, 1907; 

Buckingham, 1827) contained descriptions for features which are now lost, and 

more recent archaeological surveys (for example Wilkinson, 1998; Bartl, 1994) 

provided dating information for sites which could not be visited in the field by the 

present study. As Chapter 6 shows, a detailed picture of ancient water 

management was the result of this interdisciplinary investigation. 

8.4 Future research 

While the map generated by this thesis enables a detailed discussion of the scale 

and distribution of water management, the contribution to understanding of the 

subject that further research could make will be assessed here.  

Although further fieldwork was not possible as part of this project, due to the 

ongoing political situation in Syria, if this were to change in the future specific work 

could be undertaken. For example, the collection of GPS points in the Balikh 

would provide better control for photogrammetric DEM creation. Total station or 

leveller surveys could produce cross-sectional profiles across the canals assessed 

using the DEMs: it would be beneficial to test the accuracy of the DEM-derived 

profiles in this way. The problem of obtaining dating evidence for all of the canals 

in the study area has been discussed above. Further fieldwork could mitigate 

against this by providing ceramic evidence and samples for scientific dating.   

Further work using remote sensing is also possible. The CORONA-derived DEMs 

produced by this research were useful for gaining higher resolution information 

about irrigation in the Balikh than the coarser SRTM and ASTER could provide. 

With more time available for the complex processing required to build the DEMs, 

the same method could be performed for a wider area. For example, this might be 

especially applicable for areas where modern development has completely 

removed features, making DEMs derived from modern data unusable. Areas of 

former large-scale gravity flow irrigation alongside the Euphrates would be 

particularly appropriate for the creation of CORONA DEMs. Moreover, the 
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CORONA DEMs could be further improved if limitations in the algorithms currently 

on offer could be corrected, for example restrictions in the flying height settings 

offered by ERDAS LPS.  

The new TanDEM-X dataset could also be used, using data acquired by the 

Fragile Crescent Project of Durham University. Although it would not reveal 

features of the landscape that are now removed or obscured, as CORONA can, it 

could provide a way of examining larger areas of archaeological landscapes 

relatively quickly and at a high resolution.  

Additional research questions could be explored. For example, mapping could be 

expanded into southern Mesopotamia, an area with different climatic conditions 

and different developmental trajectories in terms of water management. This 

mapping might enable wider issues, such as the link between water and power, to 

be addressed in more detail. Comparing the rainfall variability analysis with proxy 

records (cf. Kalayci, 2013) might also reveal significant trends which could be 

discussed alongside the evidence for water management development.  

Finally, the significance of a detailed understanding of ancient irrigation could be 

contextualised within possibilities for future water management. If the sustainability 

of more ancient systems can be assessed over long timescales, this might have 

implications for current water management practice.  
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Data references 

 

CORONA 

Data from the U.S. Geological Survey (available at 

http://earthexplorer.usgs.gov/) 

1117: 16 May 1972 

1105: 4 November 1968 

 

Fragile Crescent Project (from USGS, http://earthexplorer.usgs.gov/) 

1038:  22 January 1967 

 

CORONA Atlas of the Near East, Center for Advanced Spatial Technologies, 

University of Arkansas/U.S. Geological Survey (available at 

http://corona.cast.uark.edu) 

1102: 11 December 1967 

1104: 9 August 1968 

1105: 5 November 1968 

1107: 1 August 1969 

 

See also: 

USGS Declassified imagery 1 https://lta.cr.usgs.gov/declass_1 USGS guide to 

declassified satellite imagery -1, http://eros.usgs.gov/#/Guides/disp1 

 

National Reconnaissance Office (NRO) 

http://www.nro.gov/history/csnr/corona/imagery.html 

 

 

 

https://lta.cr.usgs.gov/declass_1
http://eros.usgs.gov/#/Guides/disp1
http://www.nro.gov/history/csnr/corona/imagery.html
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Landsat 

NASA Landsat Program, 2010 03 05, Landsat TM scene 

LT51730351984211AAA04, Orthorectified, USGS, Sioux Falls, 29 July 1984 

NASA Landsat Program , 2001-10-17 , Landsat TM scene 

LT51730351990211XXX04,Orthorectified, USGS, Sioux Falls , 30 July 1990 

NASA Landsat Program, 2008-02-22, Landsat ETM+, LE71730352000231SGS00, 

USGS, Sioux Falls, 18 August 2000 

 

ASTER 

The ASTER GLOBAL DEM data was obtained from the online Data Pool at the 

NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth 

Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota 

(https://lpdaac.usgs.gov/data_access 

ASTER GDEM is a product of METI and NASA. Obtainable from 

https://lpdaac.usgs.gov/products/aster_products_table/astgtm  

 

SRTM (from FCP database) 

USGS (2004), Shuttle Radar Topography Mission, 3 Arc Second scenes, Unfilled 

Unfinished 2.0, Global Land Cover Facility, University of Maryland, College Park, 

Maryland, February 2000 

 

Rain gauge data 

Deutscher Wetterdienst, 1996-2011, Global Precipitation Climatology Centre 

(GPCC) http://kunden.dwd.de/GPCC/Visualizer 

 

 

https://lpdaac.usgs.gov/data_access
https://lpdaac.usgs.gov/products/aster_products_table/astgtm
http://kunden.dwd.de/GPCC/Visualizer
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Appendix: CORONA photogrammetry triangulation reports 

Canal near Hammam et Turkman 

            The Triangulation Report With LPS 
 
         The output image x, y units:     pixels 
         The output angle unit:     degrees 
         The output ground X, Y, Z units: meters 
 
              The Input Image Coordinates 
                     image ID = 1 
       Point ID            x             y 
             

1          414.054       211.230 
             3          224.243       170.064 
             4          367.052       452.858 
             5           26.043       435.888 
             6          343.347        27.085 
             7          311.067       417.943 
             8          265.362       353.034 
             9          165.282        37.852 
            10          315.569       182.338 
            11          392.999       127.403 
            12          258.089        72.081 
            13          277.984       252.971 
            14          323.438       323.965 
            15          369.918       394.774 
            16          366.030       224.843 
            17          368.665        63.261 
            18          293.466        12.171 
            19           57.341       148.968 

            20           94.206        99.409 
            21           99.845       248.360 
            22           79.945       341.607 
            23           77.901       401.903 
            24          238.461       396.047 
            25          173.934       413.197 
            26          188.815       315.025 
            27          251.662       209.205 
            28          187.522        75.337 
            29          221.088        67.975 
            30          211.864       132.711 
            31          314.215       106.277 
            32          359.033       277.592 
            33          396.000       122.765 
            34          337.631       149.226 
            35          349.623       159.979 
            36          318.930       182.994 
            37          394.805       232.646 

 
          Affine coefficients from file (pixels) to film (millimeters) 
         A0          A1          A2           B0          B1          B2 
      -1.5890   -0.000000    0.007000      -1.4840    0.007000    0.000000 
 
                     image ID = 2 
       Point ID            x             y 
             1          426.881       282.205 
             3          236.148       208.000 
             4          409.827       525.925 
             5           74.801       449.891 
             6          336.245        77.210 
             7          352.183       479.155 
             8          299.985       405.277 
             9          161.263        56.164 
            10          327.599       234.313 
            11          396.150       191.394 
            12          254.016       107.975 
            13          297.630       299.283 
            14          351.559       382.716 
            15          406.440       467.118 
            16          382.282       286.995 
            17          364.245       120.295 
            18          283.804        53.941 
            19           69.267       153.068 

            20          100.136       106.975 
            21          120.199       264.108 
            22          114.174       356.960 
            23          120.809       420.419 
            24          279.304       445.209 
            25          217.915       449.686 
            26          219.453       349.365 
            27          265.139       253.879 
            28          188.093        99.588 
            29          218.997        97.112 
            30          221.720       169.793 
            31          312.994       158.037 
            32          380.940       341.890 
            33          398.736       186.919 
            34          344.898       204.068 
            35          373.308       227.289 
            36          330.736       235.060 
            37          409.997       302.076 

 
          Affine coefficients from file (pixels) to film (millimeters) 
         A0          A1          A2           B0          B1          B2 
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      -1.8515    0.000000    0.007000      -1.6590    0.007000    0.000000 
 
 
 
      THE OUTPUT OF SELF-CALIBRATING BUNDLE BLOCK ADJUSTMENT 
 
      the no. of iteration =1    the standard error =  1.8861 
      the maximal correction of the object points =   0.00000 
 
      the no. of iteration =2    the standard error =  1.8861 
      the maximal correction of the object points =   0.00000 
 
                     The exterior orientation parameters 
 image ID       Xs            Ys           Zs        OMEGA      PHI      KAPPA 
       1   397452.1731  4071491.4483  150784.0732 -372.5057 -394.6698 -442.1647 
       2   599534.3642  4089909.0019 -153841.3970  198.5702 -509.5860  -72.3136 
 
       The interior orientation parameters of photos 
       image ID     f(mm)        xo(mm)       yo(mm) 
            1     609.6020       0.0000       0.0000 
            2     609.6020       0.0000       0.0000 
 
      The residuals of the control points 
  Point ID      rX          rY          rZ 
 All residuals of fixed GCP are zero. 
 
  The difference of intersected and measured control points 
  Point ID      rX          rY          rZ 
       1     -3.1533     -5.4838      0.7860 
       3      3.2235      4.9718     -9.6947 
       4     -0.1518      0.1848      5.0720 
       5     12.9581     -2.0258     -9.0979 
       6     -0.7512     -2.0166     -0.0819 
       7     -1.9849      0.3937      2.9420 
       8      1.4933      5.0958     -4.6816 
       9     -2.0992     -0.2702      3.0583 
      10     -4.9653     -3.3135      4.0855 
      11     -1.3827     -3.9330      2.0009 
      12     -3.6289     -0.1197      3.0769 
      13    -10.1188     -0.1759      7.4889 
      14     -3.1035      2.0583      5.8925 
      15     -4.7739     -0.1847     -1.9817 
      16     -0.8648     -0.6031      5.2139 
      17      3.9999     -2.9323     -1.5682 
      18     -0.9565     -0.8072     -4.5649 
      19     -3.5392     -0.2034      4.1278 

      20     -8.9578     -0.2793     10.4156 
      21      1.1453      0.2344      1.4776 
      22     -6.2930     -1.5689      4.5538 
      23     -1.1280     -4.7917      0.3282 
      24      1.6509      2.7550     -4.6475 
      25     -0.0886     -2.3291     -0.2875 
      26      0.6935      2.8766      5.3408 
      27      6.8975     -1.3628    -11.3525 
      28     -3.7461      2.7869      3.1177 
      29     -0.4827      1.4436      6.8583 
      30     12.2168      1.8916    -19.6087 
      31      9.8716      1.5551    -12.3730 
      32     -2.4705      0.4247     -2.2383 
      33     -1.4948     -0.4971      1.1080 
      34     -1.2230     -0.2027      1.7742 
      35     16.1600      7.2757      2.4685 
      36     -3.2768     -0.3132      5.2297 
      37      0.2830     -0.5348     -4.1754 

 
                aX          aY          aZ 
             -0.0012     -0.0000      0.0018 
                mX          mY          mZ 
              5.5780      2.6244      6.2376 
                     CE90        LE90  
                   8.9260     10.3969 
 
     The image residuals of intersected GCP 
 
    Point   Image       Vx          Vy 
       1       1      -0.729      -0.087 
       1       2       0.737      -0.005 
 

    Point   Image       Vx          Vy 
       3       1       0.223       0.029 
       3       2      -0.226      -0.001 
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    Point   Image       Vx          Vy 
       4       1      -1.049      -0.126 
       4       2       1.060      -0.006 
 
    Point   Image       Vx          Vy 
       5       1       0.529       0.072 
       5       2      -0.539      -0.006 
 
    Point   Image       Vx          Vy 
       6       1       0.395       0.049 
       6       2      -0.400       0.001 
 
    Point   Image       Vx          Vy 
       7       1       0.000       0.000 
       7       2      -0.000       0.000 
 
    Point   Image       Vx          Vy 
       8       1       0.509       0.064 
       8       2      -0.516       0.000 
 
    Point   Image       Vx          Vy 
       9       1      -0.039      -0.005 
       9       2       0.039       0.000 
 
    Point   Image       Vx          Vy 
      10       1       0.140       0.017 
      10       2      -0.142       0.000 
 
    Point   Image       Vx          Vy 
      11       1      -0.443      -0.054 
      11       2       0.448      -0.002 
 
    Point   Image       Vx          Vy 
      12       1      -1.436      -0.184 
      12       2       1.456       0.003 
 
    Point   Image       Vx          Vy 
      13       1      -0.672      -0.084 
      13       2       0.681      -0.000 
 
    Point   Image       Vx          Vy 
      14       1      -0.573      -0.070 
      14       2       0.579      -0.002 
 
    Point   Image       Vx          Vy 
      15       1      -0.545      -0.066 
      15       2       0.551      -0.003 
 
    Point   Image       Vx          Vy 
      16       1      -0.104      -0.013 
      16       2       0.106      -0.000 
 
    Point   Image       Vx          Vy 
      17       1      -0.363      -0.044 
      17       2       0.367      -0.001 
 
    Point   Image       Vx          Vy 
      18       1      -0.274      -0.035 
      18       2       0.277       0.000 

 
    Point   Image       Vx          Vy 
      19       1       0.076       0.010 
      19       2      -0.077      -0.001 
 
    Point   Image       Vx          Vy 
      20       1       0.481       0.065 
      20       2      -0.490      -0.005 
 
    Point   Image       Vx          Vy 
      21       1      -1.417      -0.191 
      21       2       1.441       0.012 
 
    Point   Image       Vx          Vy 
      22       1      -0.427      -0.058 
      22       2       0.434       0.004 
 
    Point   Image       Vx          Vy 
      23       1       0.173       0.023 
      23       2      -0.176      -0.001 
 
    Point   Image       Vx          Vy 
      24       1       0.769       0.097 
      24       2      -0.780      -0.001 
 
    Point   Image       Vx          Vy 
      25       1       0.809       0.105 
      25       2      -0.821      -0.003 
 
    Point   Image       Vx          Vy 
      26       1       0.335       0.043 
      26       2      -0.340      -0.001 
 
    Point   Image       Vx          Vy 
      27       1      -1.210      -0.154 
      27       2       1.227       0.002 
 
    Point   Image       Vx          Vy 
      28       1       0.127       0.017 
      28       2      -0.129      -0.001 
 
    Point   Image       Vx          Vy 
      29       1      -0.476      -0.062 
      29       2       0.483       0.002 
 
    Point   Image       Vx          Vy 
      30       1       1.414       0.183 
      30       2      -1.436      -0.005 
 
    Point   Image       Vx          Vy 
      31       1      -1.753      -0.219 
      31       2       1.776      -0.002 
 
    Point   Image       Vx          Vy 
      32       1      -0.599      -0.073 
      32       2       0.606      -0.003 
 
    Point   Image       Vx          Vy 
      33       1      -0.346      -0.042 
      33       2       0.350      -0.002 
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    Point   Image       Vx          Vy 
      34       1      -0.049      -0.006 
      34       2       0.050      -0.000 
 
    Point   Image       Vx          Vy 
      35       1       7.487       0.916 
      35       2      -7.574       0.026 

 
    Point   Image       Vx          Vy 
      36       1       0.009       0.001 
      36       2      -0.009       0.000 
 
    Point   Image       Vx          Vy 
      37       1      -0.974      -0.117 
      37       2       0.985      -0.006 

 
    Mean error of 72 image points: ax=0.000, ay=-0.000 
    RMSE of 72 image points: mx=1.443, my=0.125 
 
              The coordinates of object points 
  Point ID         X               Y             Z      Overlap 
       1     504559.9080    4038218.1330      314.0000     2 
       3     504049.0130    4038238.7580      317.0000     2 
       4     504600.3520    4037670.1510      312.0000     2 
       5     503716.7480    4037606.1200      317.0000     2 
       6     504252.2610    4038595.9630      317.0000     2 
       7     504436.5930    4037730.1590      316.0000     2 
       8     504278.7000    4037852.1190      316.0000     2 
       9     503802.9130    4038517.7900      319.0000     2 
      10     504291.1900    4038249.9370      313.0000     2 
      11     504448.8600    4038393.0380      311.0000     2 
      12     504061.6560    4038470.6640      317.0000     2 
      13     504241.4880    4038082.7990      317.0000     2 
      14     504402.6250    4037937.9850      314.0000     2 
      15     504577.3050    4037797.4380      314.0000     2 
      16     504442.8250    4038170.0240      314.0000     2 
      17     504338.0290    4038524.6110      314.0000     2 
      18     504116.5900    4038611.1200      317.0000     2 
      19     503606.0370    4038242.9530      318.0000     2 
      20     503669.3910    4038363.1050      316.0000     2 
      21     503775.0430    4038037.9060      318.0000     2 
      22     503795.2070    4037831.1270      319.0000     2 
      23     503829.8520    4037701.3260      320.0000     2 
      24     504239.3440    4037752.5990      317.0000     2 
      25     504083.1940    4037702.6120      320.0000     2 
      26     504050.7710    4037916.7650      316.0000     2 
      27     504140.0690    4038167.2670      316.0000     2 
      28     503888.4960    4038439.3330      317.0000     2 
      29     503962.7850    4038467.2630      315.0000     2 
      30     503993.1300    4038317.4600      317.0000     2 
      31     504226.7930    4038407.2940      314.0000     2 
      32     504464.6260    4038050.5620      317.0000     2 
      33     504453.1950    4038400.8030      312.6082     2 
      34     504321.9614    4038325.3614      313.2941     2 
      35     504383.5747    4038291.7099      282.8007     2 
      36     504296.8190    4038246.9363      313.7674     2 
      37     504524.0074    4038159.7274      315.2476     2 
              The total object points = 36 
 
        The residuals of image points 
 
    
Point   Image       Vx          Vy 
       1       1       0.921      -2.447 
       1       2       2.078      -1.980 
 
    Point   Image       Vx          Vy 

       3       1       0.759       3.362 
       3       2       0.723       1.093 
 
    Point   Image       Vx          Vy 
       4       1      -2.241      -0.724 
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       4       2      -0.189       0.469 
 
    Point   Image       Vx          Vy 
       5       1      -1.952      -0.254 
       5       2      -2.986      -3.135 
 
    Point   Image       Vx          Vy 
       6       1       0.939      -0.791 
       6       2       0.032      -0.803 
 
    Point   Image       Vx          Vy 
       7       1      -0.009      -0.123 
       7       2      -0.022       0.631 
 
    Point   Image       Vx          Vy 
       8       1       0.474       2.868 
       8       2      -0.203       1.715 
 
    Point   Image       Vx          Vy 
       9       1       0.049      -0.424 
       9       2       0.069       0.354 
 
    Point   Image       Vx          Vy 
      10       1       1.420      -1.736 
      10       2       0.907      -0.560 
 
    Point   Image       Vx          Vy 
      11       1       0.061      -1.986 
      11       2       0.708      -1.422 
 
    Point   Image       Vx          Vy 
      12       1      -0.793      -0.459 
      12       2       2.054       0.610 
 
    Point   Image       Vx          Vy 
      13       1       1.363      -0.646 
      13       2       2.620       1.695 
 
    Point   Image       Vx          Vy 
      14       1      -1.071       0.202 
      14       2       0.125       1.713 
 
    Point   Image       Vx          Vy 
      15       1       1.758       0.367 
      15       2       2.884       0.350 
 
    Point   Image       Vx          Vy 
      16       1      -0.970      -0.936 
      16       2      -0.860       0.219 
 
    Point   Image       Vx          Vy 
      17       1      -1.147      -1.339 
      17       2      -0.570      -1.889 
 
    Point   Image       Vx          Vy 
      18       1       1.291       0.271 
      18       2       1.859      -0.568 
 
    Point   Image       Vx          Vy 
      19       1       0.446      -0.450 

      19       2       0.218       0.635 
 
    Point   Image       Vx          Vy 
      20       1       1.396      -0.988 
      20       2       0.252       1.702 
 
    Point   Image       Vx          Vy 
      21       1      -2.236      -0.346 
      21       2       0.615       0.084 
 
    Point   Image       Vx          Vy 
      22       1       1.045      -1.042 
      22       2       1.748       0.410 
 
    Point   Image       Vx          Vy 
      23       1       1.089      -2.079 
      23       2       0.464      -1.944 
 
    Point   Image       Vx          Vy 
      24       1       0.943       1.857 
      24       2      -0.389       0.667 
 
    Point   Image       Vx          Vy 
      25       1       1.188      -0.879 
      25       2      -0.569      -1.036 
 
    Point   Image       Vx          Vy 
      26       1      -1.560       0.555 
      26       2      -2.147       1.569 
 
    Point   Image       Vx          Vy 
      27       1      -0.911       0.414 
      27       2       1.597      -2.258 
 
    Point   Image       Vx          Vy 
      28       1       0.462       1.027 
      28       2       0.321       1.902 
 
    Point   Image       Vx          Vy 
      29       1      -2.125      -0.319 
      29       2      -1.179       1.190 
 
    Point   Image       Vx          Vy 
      30       1       1.309       3.017 
      30       2      -1.170      -2.068 
 
    Point   Image       Vx          Vy 
      31       1      -2.673       1.612 
      31       2       1.092      -1.405 
 
    Point   Image       Vx          Vy 
      32       1       0.826       0.545 
      32       2       2.090       0.320 
 
    Point   Image       Vx          Vy 
      33       1       0.009      -0.332 
      33       2       0.667       0.040 
 
    Point   Image       Vx          Vy 
      34       1       0.007      -0.270 
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      34       2       0.074       0.187 
 
    Point   Image       Vx          Vy 
      35       1      -0.079       2.950 
      35       2     -14.804       1.453 
 
    Point   Image       Vx          Vy 

      36       1       0.018      -0.670 
      36       2      -0.081       0.639 
 
    Point   Image       Vx          Vy 
      37       1      -0.005       0.195 
      37       2       1.977      -0.580 
 

    Total mean error of 72 image points: ax=0.000, ay=-0.000 
    Total RMSE of 72 image points: mx=2.159, my=1.363 
 
 
 
    The image residuals of the control points 
 
                The image ID = 1 
         Point ID       Vx          Vy 
               1       0.921      -2.447 
               3       0.759       3.362 
               4      -2.241      -0.724 
               5      -1.952      -0.254 
               6       0.939      -0.791 
               7      -0.009      -0.123 
               8       0.474       2.868 
               9       0.049      -0.424 
              10       1.420      -1.736 
              11       0.061      -1.986 
              12      -0.793      -0.459 
              13       1.363      -0.646 
              14      -1.071       0.202 
              15       1.758       0.367 
              16      -0.970      -0.936 
              17      -1.147      -1.339 
              18       1.291       0.271 
              19       0.446      -0.450 

              20       1.396      -0.988 
              21      -2.236      -0.346 
              22       1.045      -1.042 
              23       1.089      -2.079 
              24       0.943       1.857 
              25       1.188      -0.879 
              26      -1.560       0.555 
              27      -0.911       0.414 
              28       0.462       1.027 
              29      -2.125      -0.319 
              30       1.309       3.017 
              31      -2.673       1.612 
              32       0.826       0.545 
              33       0.009      -0.332 
              34       0.007      -0.270 
              35      -0.079       2.950 
              36       0.018      -0.670 
              37      -0.005       0.195 

      RMSE of 36 points: mx=1.217, my=1.408 
 
                The image ID = 2 
         Point ID       Vx          Vy 
               1       2.078      -1.980 
               3       0.723       1.093 
               4      -0.189       0.469 
               5      -2.986      -3.135 
               6       0.032      -0.803 
               7      -0.022       0.631 
               8      -0.203       1.715 
               9       0.069       0.354 
              10       0.907      -0.560 
              11       0.708      -1.422 
              12       2.054       0.610 
              13       2.620       1.695 
              14       0.125       1.713 
              15       2.884       0.350 
              16      -0.860       0.219 
              17      -0.570      -1.889 
              18       1.859      -0.568 
              19       0.218       0.635 

              20       0.252       1.702 
              21       0.615       0.084 
              22       1.748       0.410 
              23       0.464      -1.944 
              24      -0.389       0.667 
              25      -0.569      -1.036 
              26      -2.147       1.569 
              27       1.597      -2.258 
              28       0.321       1.902 
              29      -1.179       1.190 
              30      -1.170      -2.068 
              31       1.092      -1.405 
              32       2.090       0.320 
              33       0.667       0.040 
              34       0.074       0.187 
              35     -14.804       1.453 
              36      -0.081       0.639 
              37       1.977      -0.580 

      RMSE of 36 points: mx=2.801, my=1.317 
 
      Total number of all control image points = 72 
      Total rmsex = 2.159, rmsey = 1.363 
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Area around Hammam et Turkman 

            The Triangulation Report With LPS 
 
         The output image x, y units:     pixels 
         The output angle unit:     degrees 
         The output ground X, Y, Z units: meters 
 
              The Input Image Coordinates 
                     image ID = 1 
       Point ID            x             y 
             1           48.030       285.957 
             2          260.017        42.045 
             3           65.017        42.128 
             4           39.823       215.893 
             5          114.040       369.069 
             6          244.484       615.957 
             7           66.854       500.011 
             8          123.619       619.875 
             9          118.451       446.500 
            10           69.765       339.780 
            11          308.179       199.886 
            12          213.833       400.988 
            13          205.981       470.050 
            14          148.105       232.597 
            15          229.152       134.033 
            16          271.374        30.230 
            17          140.873        31.013 
            18           81.722        27.011 
            19           99.613       107.998 
            20           18.629        88.475 
            21           88.049       293.126 
            22          110.831       265.958 
            23          108.151       166.125 
            24           19.842        45.966 
            25          272.095        94.997 
            26          291.732       138.781 
            27          250.007       576.033 
            28          324.961       674.026 
            30          288.263       436.797 
            31          316.000       484.010 
            32          253.272       210.849 
            33          283.172       356.983 
            34          182.017       201.904 
            35          172.420       132.348 
            36          251.183       274.783 
            37          171.739       326.859 
            39           84.505        26.345 
            40          140.990        33.412 
            41           81.708        43.215 
            42          172.951       168.845 
            43          251.078        22.998 
            44          285.367        24.540 

            45          272.934        48.181 
            46          272.724        86.029 
            47          287.955        92.976 
            48          275.710       115.009 
            49          143.302       256.103 
            50          138.038       273.391 
            51          114.566       287.018 
            52          129.885       305.495 
            53          141.091       316.093 
            54          282.418       174.666 
            55          184.672       318.784 
            56          325.690       420.344 
            57          130.634       490.783 
            58          129.786       542.825 
            59          131.793       560.469 
            60          120.486       572.412 
            61          126.626       589.027 
            62          254.435       568.066 
            63          250.336       605.139 
            64          305.375       603.738 
            65          244.918       637.797 
            66          251.968       656.010 
            67          185.241        18.623 
            68          189.927        36.576 
            69          206.441        39.851 
            70          235.183       127.594 
            71          294.079       129.330 
            72          107.108       370.651 
            73          309.729       280.857 
            74          115.547       446.973 
            75          314.098       494.599 
            76          238.086       562.349 
            77          186.545       592.974 
            78          223.706       608.007 
            79          178.643       223.432 
            80          165.235       644.402 
            81          321.319       663.960 
            82          281.007        58.659 
            83          298.441       222.718 
            84          247.294       583.311 
            85          301.921       589.732 
            86          321.388       606.026 

 
          Affine coefficients from file (pixels) to film (millimeters) 
         A0          A1          A2           B0          B1          B2 
      -2.3800    0.000000    0.007000      -1.2530    0.007000    0.000000 
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                     image ID = 2 
       Point ID            x             y 
             1           25.873       329.915 
             2          277.104        56.025 
             3           72.826        89.055 
             4           24.529       261.669 
             5           82.000       397.866 
             6          188.946       615.733 
             7           19.765       533.967 
             8           62.798       639.294 
             9           78.208       474.505 
            10           41.407       379.468 
            11          307.008       200.867 
            12          182.909       419.908 
            13          166.080       482.941 
            14          134.426       260.157 
            15          234.202       150.952 
            16          290.137        43.010 
            17          153.741        64.896 
            18           92.817        70.730 
            19          102.343       146.927 
            20           16.307       142.719 
            21           66.711       329.934 
            22           92.075       295.983 
            23          101.027       203.518 
            24           25.821       101.922 
            25          283.196       105.980 
            26          297.041       144.963 
            27          197.889       576.020 
            28          265.753       658.547 
            30          256.749       437.091 
            31          279.845       475.047 
            32          251.034       222.811 
            33          261.448       356.520 
            34          174.727       225.113 
            35          174.040       161.694 
            36          241.002       283.703 
            37          148.503       346.910 
            39           95.711        69.605 
            40          153.797        66.727 
            41           90.823        86.835 
            42          170.512       193.459 
            43          269.591        39.034 
            44          305.270        34.815 

            45          289.504        60.157 
            46          284.251        96.939 
            47          299.714       101.184 
            48          283.833       124.799 
            49          128.334       283.169 
            50          121.067       301.017 
            51           94.517       318.308 
            52          108.354       333.627 
            53          118.501       341.949 
            54          283.248       181.362 
            55          163.654       337.192 
            56          297.586       411.762 
            57           86.611       512.960 
            58           80.761       569.213 
            59           79.252       580.617 
            60           66.292       593.925 
            61           70.177       609.065 
            62          205.744       567.060 
            63          196.658       603.934 
            64          254.138       592.931 
            65          187.091       636.153 
            66          192.202       652.785 
            67          201.510        45.087 
            68          204.370        61.787 
            69          221.105        62.190 
            70          240.243       143.086 
            71          301.127       135.501 
            72           76.345       401.161 
            73          298.534       279.159 
            74           75.489       474.553 
            75          277.248       486.489 
            76          189.763       563.986 
            77          131.877       602.472 
            78          168.398       611.395 
            79          169.270       245.247 
            80          103.217       656.262 
            81          263.011       649.057 
            82          296.504        69.094 
            83          294.171       224.318 
            84          196.147       582.788 
            85          252.347       579.766 
            86          270.560       592.240 

 
          Affine coefficients from file (pixels) to film (millimeters) 
         A0          A1          A2           B0          B1          B2 
      -2.4080    0.000000    0.007000      -1.2250    0.007000    0.000000 
 
 
 
      THE OUTPUT OF SELF-CALIBRATING BUNDLE BLOCK ADJUSTMENT 
 
      the no. of iteration =1    the standard error =  1.1530 
      the maximal correction of the object points =   0.00000 
 
      the no. of iteration =2    the standard error =  1.1530 
      the maximal correction of the object points =   0.00000 
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                     The exterior orientation parameters 
 image ID       Xs            Ys           Zs        OMEGA      PHI      KAPPA 
       1   408742.8180  3986422.9817  154316.5211  558.3953 -149.3423  467.4995 
       2   400367.1537  4072756.3707  154047.2375  -12.8510  -33.5628  -82.0861 
 
       The interior orientation parameters of photos 
       image ID     f(mm)        xo(mm)       yo(mm) 
            1     609.6020       0.0000       0.0000 
            2     609.6020       0.0000       0.0000 
 
      The residuals of the control points 
  Point ID      rX          rY          rZ 
 All residuals of fixed GCP are zero. 
 
  The difference of intersected and measured control points 
  Point ID      rX          rY          rZ 
       
1     -1.1911     -0.1472      0.9960 
       2      2.2922      1.2160     -2.9622 
       3     -0.6217     -2.3927     -0.2114 
       4      1.9162      0.5260     -2.4775 
       5     -0.7428     -2.8913      0.7991 
       6     -0.3669      5.0345      5.0917 
       7      1.0755      0.0944     -0.5317 
       8      4.8476     -2.1632     -0.9422 
       9     -1.0322     -4.8172      8.2427 
      10     -3.1943     -2.2674      3.0674 
      11      0.0544     -0.3683     -1.8784 
      12      0.9797      5.5021     14.6123 
      13      5.7990      1.2292      0.9915 
      14     -1.3482      5.6486      0.8672 
      15     -0.4469     -1.4183      2.4339 
      16     -1.7225      1.0940      7.1142 
      17      1.2705     -2.0146     -2.0506 
      18      0.8431     -1.6200     -1.6644 
      19      3.4196     11.1686    -10.8796 
      20      1.4120     -2.4580      0.6482 
      21     -5.3473     -2.9701     -6.1039 
      22      1.0936      3.9081    -13.1910 
      23      8.0098     -4.8687    -11.2411 
      24      1.5290      1.7276      6.1236 
      25     -0.5446     -1.6586     -1.0070 
      26      4.3684     -8.5731     -1.0118 
      27     -5.2509     -0.6111      3.4986 
      28     -1.5303     -0.7535      1.2235 
      30      1.1938      2.5153    -10.0748 
      31      1.2859     -3.9106    -13.7370 
      32     -3.4749      4.8576     12.4370 
      33      6.5816      0.7969     -5.5177 
      34      1.9156      0.0438     -0.7195 
      35     -9.1040      0.8567     11.2909 
      36     -4.4947     -1.8855      2.4307 
      37     -2.8607     -0.3655     -4.1965 
      39      0.5618     -0.2199     -0.9912 
      40     -0.0392     -0.0490     -0.2482 
      41      0.6369     -0.2390     -1.0649 
      42      0.2098     -0.1169     -0.5388 
      43     -1.0758      0.3442      1.5389 
      44     -1.3175      0.4704      2.1269 

      45     -0.9925      0.3457      1.5532 
      46     -0.6616      0.2348      1.0585 
      47     -0.6672      0.2605      1.1745 
      48     -0.4381      0.1645      0.7436 
      49      0.3532     -0.1480     -0.6690 
      50      0.3339     -0.1380     -0.6162 
      51      0.3227     -0.1139     -0.5052 
      52      0.2687     -0.1061     -0.4734 
      53      0.2520     -0.1058     -0.4784 
      54     -0.0365      0.0372      0.1835 
      55      0.3192     -0.1430     -0.6464 
      56      1.2266     -0.3537     -1.4958 
      57     -0.6200      0.2136      0.9319 
      58     -1.2416      0.4278      1.8894 
      59     -1.1650      0.4054      1.7589 
      60     -1.3846      0.4930      2.1477 
      61     -1.4759      0.5210      2.2560 
      62      0.2700     -0.1193     -0.5318 
      63      0.0239     -0.0421     -0.1975 
      64      0.9077     -0.3039     -1.3062 
      65     -0.2259      0.0391      0.1491 
      66     -0.2317      0.0410      0.1563 
      67     -0.5507      0.1224      0.5162 
      68     -0.4788      0.1022      0.4288 
      69     -0.5989      0.1503      0.6480 
      70     -0.2072      0.0457      0.1920 
      71     -0.3864      0.1727      0.7941 
      72     -0.0217      0.0225      0.1045 
      73      0.6125     -0.1486     -0.6168 
      74     -0.4575      0.1730      0.7575 
      75      1.1789     -0.3617     -1.5730 
      76      0.0934     -0.0635     -0.2967 
      77     -0.7679      0.2320      0.9837 
      78     -0.3950      0.0954      0.3935 
      79      0.2946     -0.1401     -0.6406 
      80     -1.5049      0.4984      2.1313 
      81      0.9495     -0.3162     -1.3466 
      82     -0.9416      0.3403      1.5326 
      83      0.2629     -0.0412     -0.1533 
      84      0.1102     -0.0703     -0.3161 
      85      0.9027     -0.3023     -1.3022 
      86      1.1779     -0.3769     -1.6135 
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                aX          aY          aZ 
             -0.0000     -0.0000     -0.0000 
                mX          mY          mZ 
              2.3103      2.3402      4.3616 
                     CE90        LE90  
                   5.0199      7.2113 
 
     The image residuals of intersected GCP 
 
    
Point   Image       Vx          Vy 
       1       1       0.386       0.020 
       1       2      -0.381      -0.069 
 
    Point   Image       Vx          Vy 
       2       1       0.200       0.010 
       2       2      -0.198      -0.036 
 
    Point   Image       Vx          Vy 
       3       1      -0.115      -0.006 
       3       2       0.113       0.021 
 
    Point   Image       Vx          Vy 
       4       1      -0.450      -0.023 
       4       2       0.445       0.081 
 
    Point   Image       Vx          Vy 
       5       1      -0.954      -0.049 
       5       2       0.943       0.171 
 
    Point   Image       Vx          Vy 
       6       1      -0.127      -0.007 
       6       2       0.125       0.023 
 
    Point   Image       Vx          Vy 
       7       1       0.657       0.034 
       7       2      -0.649      -0.118 
 
    Point   Image       Vx          Vy 
       8       1      -0.096      -0.005 
       8       2       0.095       0.017 
 
    Point   Image       Vx          Vy 
       9       1      -0.177      -0.009 
       9       2       0.175       0.032 
 
    Point   Image       Vx          Vy 
      10       1       0.230       0.012 
      10       2      -0.227      -0.041 
 
    Point   Image       Vx          Vy 
      11       1      -0.197      -0.010 
      11       2       0.194       0.035 
 
    Point   Image       Vx          Vy 
      12       1       0.163       0.008 
      12       2      -0.161      -0.029 
 
    Point   Image       Vx          Vy 
      13       1      -0.350      -0.018 

      13       2       0.346       0.063 
 
    Point   Image       Vx          Vy 
      14       1      -0.887      -0.046 
      14       2       0.876       0.159 
 
    Point   Image       Vx          Vy 
      15       1       0.601       0.031 
      15       2      -0.593      -0.108 
 
    Point   Image       Vx          Vy 
      16       1       0.088       0.005 
      16       2      -0.087      -0.016 
 
    Point   Image       Vx          Vy 
      17       1       0.004       0.000 
      17       2      -0.004      -0.001 
 
    Point   Image       Vx          Vy 
      18       1       0.150       0.008 
      18       2      -0.148      -0.027 
 
    Point   Image       Vx          Vy 
      19       1       0.610       0.032 
      19       2      -0.602      -0.109 
 
    Point   Image       Vx          Vy 
      20       1      -1.219      -0.064 
      20       2       1.203       0.218 
 
    Point   Image       Vx          Vy 
      21       1       0.367       0.019 
      21       2      -0.362      -0.066 
 
    Point   Image       Vx          Vy 
      22       1      -0.823      -0.043 
      22       2       0.813       0.147 
 
    Point   Image       Vx          Vy 
      23       1      -0.749      -0.039 
      23       2       0.739       0.134 
 
    Point   Image       Vx          Vy 
      24       1       0.328       0.017 
      24       2      -0.324      -0.059 
 
    Point   Image       Vx          Vy 
      25       1       0.280       0.014 
      25       2      -0.276      -0.050 
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    Point   Image       Vx          Vy 
      26       1      -0.336      -0.017 
      26       2       0.332       0.060 
 
    Point   Image       Vx          Vy 
      27       1      -1.000      -0.052 
      27       2       0.989       0.180 
 
    Point   Image       Vx          Vy 
      28       1      -0.004      -0.000 
      28       2       0.004       0.001 
 
    Point   Image       Vx          Vy 
      30       1       0.063       0.003 
      30       2      -0.062      -0.011 
 
    Point   Image       Vx          Vy 
      31       1      -0.189      -0.010 
      31       2       0.187       0.034 
 
    Point   Image       Vx          Vy 
      32       1       1.307       0.067 
      32       2      -1.290      -0.234 
 
    Point   Image       Vx          Vy 
      33       1      -0.253      -0.013 
      33       2       0.250       0.046 
 
    Point   Image       Vx          Vy 
      34       1      -0.292      -0.015 
      34       2       0.288       0.052 
 
    Point   Image       Vx          Vy 
      35       1       0.283       0.015 
      35       2      -0.279      -0.051 
 
    Point   Image       Vx          Vy 
      36       1       1.214       0.062 
      36       2      -1.199      -0.218 
 
    Point   Image       Vx          Vy 
      37       1      -0.420      -0.022 
      37       2       0.415       0.075 
 
    Point   Image       Vx          Vy 
      39       1       0.103       0.005 
      39       2      -0.102      -0.018 
 
    Point   Image       Vx          Vy 
      40       1       0.075       0.004 
      40       2      -0.074      -0.013 
 
    Point   Image       Vx          Vy 
      41       1       0.191       0.010 
      41       2      -0.189      -0.034 
 
    Point   Image       Vx          Vy 
      42       1       0.177       0.009 
      42       2      -0.175      -0.032 
 

    Point   Image       Vx          Vy 
      43       1      -0.066      -0.003 
      43       2       0.065       0.012 
 
    Point   Image       Vx          Vy 
      44       1      -0.033      -0.002 
      44       2       0.033       0.006 
 
    Point   Image       Vx          Vy 
      45       1       0.070       0.004 
      45       2      -0.070      -0.013 
 
    Point   Image       Vx          Vy 
      46       1      -0.092      -0.005 
      46       2       0.091       0.017 
 
    Point   Image       Vx          Vy 
      47       1       0.121       0.006 
      47       2      -0.120      -0.022 
 
    Point   Image       Vx          Vy 
      48       1      -0.040      -0.002 
      48       2       0.039       0.007 
 
    Point   Image       Vx          Vy 
      49       1      -0.046      -0.002 
      49       2       0.046       0.008 
 
    Point   Image       Vx          Vy 
      50       1       0.147       0.008 
      50       2      -0.145      -0.026 
 
    Point   Image       Vx          Vy 
      51       1      -0.036      -0.002 
      51       2       0.035       0.006 
 
    Point   Image       Vx          Vy 
      52       1       0.033       0.002 
      52       2      -0.032      -0.006 
 
    Point   Image       Vx          Vy 
      53       1      -0.085      -0.004 
      53       2       0.084       0.015 
 
    Point   Image       Vx          Vy 
      54       1      -0.145      -0.007 
      54       2       0.143       0.026 
 
    Point   Image       Vx          Vy 
      55       1      -0.066      -0.003 
      55       2       0.065       0.012 
 
    Point   Image       Vx          Vy 
      56       1      -0.321      -0.016 
      56       2       0.317       0.058 
 
    Point   Image       Vx          Vy 
      57       1       0.184       0.010 
      57       2      -0.182      -0.033 
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    Point   Image       Vx          Vy 
      58       1       1.404       0.073 
      58       2      -1.389      -0.252 
 
    Point   Image       Vx          Vy 
      59       1       0.229       0.012 
      59       2      -0.226      -0.041 
 
    Point   Image       Vx          Vy 
      60       1       0.355       0.018 
      60       2      -0.351      -0.064 
 
    Point   Image       Vx          Vy 
      61       1       0.136       0.007 
      61       2      -0.135      -0.024 
 
    Point   Image       Vx          Vy 
      62       1       0.063       0.003 
      62       2      -0.063      -0.011 
 
    Point   Image       Vx          Vy 
      63       1      -0.020      -0.001 
      63       2       0.020       0.004 
 
    Point   Image       Vx          Vy 
      64       1      -0.059      -0.003 
      64       2       0.059       0.011 
 
    Point   Image       Vx          Vy 
      65       1       0.011       0.001 
      65       2      -0.011      -0.002 
 
    Point   Image       Vx          Vy 
      66       1       0.042       0.002 
      66       2      -0.041      -0.008 
 
    Point   Image       Vx          Vy 
      67       1      -0.069      -0.004 
      67       2       0.069       0.012 
 
    Point   Image       Vx          Vy 
      68       1       0.028       0.001 
      68       2      -0.028      -0.005 
 
    Point   Image       Vx          Vy 
      69       1      -0.022      -0.001 
      69       2       0.022       0.004 
 
    Point   Image       Vx          Vy 
      70       1       0.030       0.002 
      70       2      -0.029      -0.005 
 
    Point   Image       Vx          Vy 
      71       1      -0.100      -0.005 
      71       2       0.099       0.018 
 
    Point   Image       Vx          Vy 
      72       1      -0.034      -0.002 

      72       2       0.033       0.006 
 
    Point   Image       Vx          Vy 
      73       1      -0.206      -0.011 
      73       2       0.204       0.037 
 
    Point   Image       Vx          Vy 
      74       1      -0.079      -0.004 
      74       2       0.078       0.014 
 
    Point   Image       Vx          Vy 
      75       1       0.232       0.012 
      75       2      -0.230      -0.042 
 
    Point   Image       Vx          Vy 
      76       1       0.204       0.010 
      76       2      -0.202      -0.037 
 
    Point   Image       Vx          Vy 
      77       1       0.009       0.000 
      77       2      -0.009      -0.002 
 
    Point   Image       Vx          Vy 
      78       1      -0.089      -0.005 
      78       2       0.088       0.016 
 
    Point   Image       Vx          Vy 
      79       1      -0.054      -0.003 
      79       2       0.053       0.010 
 
    Point   Image       Vx          Vy 
      80       1      -0.014      -0.001 
      80       2       0.014       0.003 
 
    Point   Image       Vx          Vy 
      81       1      -0.135      -0.007 
      81       2       0.133       0.024 
 
    Point   Image       Vx          Vy 
      82       1       0.018       0.001 
      82       2      -0.018      -0.003 
 
    Point   Image       Vx          Vy 
      83       1      -0.146      -0.008 
      83       2       0.144       0.026 
 
    Point   Image       Vx          Vy 
      84       1      -0.091      -0.005 
      84       2       0.090       0.016 
 
    Point   Image       Vx          Vy 
      85       1      -0.043      -0.002 
      85       2       0.042       0.008 
 
    Point   Image       Vx          Vy 
      86       1      -0.064      -0.003 
      86       2       0.063       0.012 

 
    Mean error of 168 image points: ax=0.000, ay=-0.000 
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    RMSE of 168 image points: mx=0.407, my=0.054 
 
              The coordinates of object points 
  Point ID         X               Y             Z      Overlap 
       1     504601.3250    4037669.0860      306.0000     2 
       2     505052.5800    4038347.5600      303.0000     2 
       3     504560.1430    4038215.2890      302.0000     2 
       4     504554.8350    4037816.9070      303.0000     2 
       5     504797.2240    4037537.5470      300.0000     2 
       6     505213.9090    4037081.2640      298.0000     2 
       7     504722.5890    4037216.5340      307.0000     2 
       8     504905.0130    4036997.9320      303.0000     2 
       9     504831.8560    4037371.3390      302.0000     2 
      10     504674.1500    4037567.5760      308.0000     2 
      11     505232.3640    4038038.5190      300.0000     2 
      12     505042.7030    4037518.5000      317.0000     2 
      13     505053.7480    4037373.5860      310.0000     2 
      14     504835.6790    4037849.1950      301.0000     2 
      15     505009.4760    4038127.9510      299.0000     2 
      16     505080.0051    4038380.7582      294.4476     2 
      17     504748.2140    4038292.6020      301.0000     2 
      18     504598.4150    4038260.3100      300.0000     2 
      19     504669.5260    4038083.1060      311.0000     2 
      20     504451.9930    4038080.4800      305.0000     2 
      21     504709.7260    4037684.1300      312.0000     2 
      22     504757.7240    4037756.3810      304.0000     2 
      23     504699.2990    4037975.4160      318.0000     2 
      24     504442.4200    4038169.7400      302.0000     2 
      25     505103.5540    4038242.6550      303.0000     2 
      26     505162.8080    4038167.6160      302.0000     2 
      27     505216.9730    4037177.2680      299.0000     2 
      28     505439.4980    4037015.5730      302.0000     2 
      30     505256.2210    4037501.3480      321.0000     2 
      31     505350.2370    4037427.9810      312.0000     2 
      32     505099.1760    4037969.5730      294.0000     2 
      33     505219.5190    4037678.7680      300.0000     2 
      34     504908.1050    4037944.8880      304.0000     2 
      35     504865.6920    4038086.0060      302.0000     2 
      36     505120.7970    4037837.4620      298.0000     2 
      37     504933.0930    4037667.4600      303.0000     2 
      39     504605.4025    4038262.2718      299.2867     2 
      40     504752.0607    4038286.1871      297.2395     2 
      41     504603.5045    4038223.1687      300.7966     2 
      42     504879.2514    4038012.5907      299.3855     2 
      43     505025.7937    4038383.5631      298.7355     2 
      44     505113.5749    4038403.8646      298.1568     2 
      45     505089.5964    4038343.4715      299.8086     2 
      46     505101.6684    4038260.8131      300.1463     2 
      47     505143.2169    4038256.2719      300.1092     2 
      48     505118.8175    4038199.4984      301.2222     2 
      49     504833.8258    4037801.8444      299.9373     2 
      50     504826.5944    4037760.4199      300.6578     2 
      51     504771.1009    4037714.2482      301.2898     2 
      52     504816.6639    4037684.6455      301.0486     2 
      53     504848.6301    4037669.3086      300.7279     2 
      54     505156.7022    4038074.4295      300.7174     2 
      55     504960.1152    4037693.5902      300.4121     2 
      56     505352.3288    4037569.7610      299.6881     2 
      57     504884.7077    4037281.7180      299.6191     2 
      58     504890.1439    4037160.8493      321.6576     2 
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      59     504911.5521    4037130.1840      300.5934     2 
      60     504887.9938    4037096.6496      299.7169     2 
      61     504908.5792    4037064.4077      300.0598     2 
      62     505224.0898    4037198.5350      300.6460     2 
      63     505225.7911    4037114.4425      301.7552     2 
      64     505365.0923    4037156.0039      300.7544     2 
      65     505224.4243    4037039.9356      300.4280     2 
      66     505248.2131    4037004.8579      301.2382     2 
      67     504858.6752    4038348.6288      297.0171     2 
      68     504876.9666    4038312.7757      297.1706     2 
      69     504919.9784    4038317.0213      296.8586     2 
      70     505022.2382    4038145.1364      298.9467     2 
      71     505170.5677    4038181.1192      300.5805     2 
      72     504780.4872    4037526.2284      302.9233     2 
      73     505264.1162    4037862.8067      298.6099     2 
      74     504826.6195    4037364.5908      305.8615     2 
      75     505348.1421    4037399.1621      303.2744     2 
      76     505181.8953    4037200.1896      299.3366     2 
      77     505061.6379    4037097.5084      299.4449     2 
      78     505158.9032    4037089.4838      302.2926     2 
      79     504912.6988    4037897.7812      298.5349     2 
      80     505024.9614    4036970.1090      300.5764     2 
      81     505424.8493    4037034.9706      303.1135     2 
      82     505113.2957    4038326.0415      300.2325     2 
      83     505216.4365    4037982.1552      296.9063     2 
      84     505211.5717    4037160.5858      299.6756     2 
      85     505351.9953    4037184.4129      299.9478     2 
      86     505406.8337    4037162.3599      300.0606     2 
              The total object points = 84 
 
        The residuals of image points 
 
    
Point   Image       Vx          Vy 
       1       1       0.592       0.170 
       1       2      -0.141      -0.205 
 
    Point   Image       Vx          Vy 
       2       1       0.021       0.053 
       2       2      -0.524       0.771 
 
    Point   Image       Vx          Vy 
       3       1       0.321      -0.999 
       3       2       0.681      -0.965 
 
    Point   Image       Vx          Vy 
       4       1      -0.574      -0.201 
       4       2       0.226       0.544 
 
    Point   Image       Vx          Vy 
       5       1      -0.701      -1.177 
       5       2       1.381      -1.161 
 
    Point   Image       Vx          Vy 
       6       1      -1.603       2.614 
       6       2      -1.506       1.541 
 
    Point   Image       Vx          Vy 
       7       1       0.379      -0.090 
       7       2      -0.947      -0.060 

 
    Point   Image       Vx          Vy 
       8       1      -1.560      -1.601 
       8       2      -1.275      -1.049 
 
    Point   Image       Vx          Vy 
       9       1      -1.608      -1.420 
       9       2      -0.771      -3.139 
 
    Point   Image       Vx          Vy 
      10       1       0.793      -0.385 
      10       2       0.546      -1.280 
 
    Point   Image       Vx          Vy 
      11       1       0.288      -0.314 
      11       2       0.653       0.125 
 
    Point   Image       Vx          Vy 
      12       1      -4.297       3.358 
      12       2      -4.565       0.336 
 
    Point   Image       Vx          Vy 
      13       1      -2.876      -0.097 
      13       2      -2.229       0.161 
 
    Point   Image       Vx          Vy 
      14       1      -0.943       2.663 
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      14       2       0.522       2.581 
 
    Point   Image       Vx          Vy 
      15       1       0.231      -0.362 
      15       2      -0.820      -1.031 
 
    Point   Image       Vx          Vy 
      16       1      -1.155       1.211 
      16       2      -1.214      -0.400 
 
    Point   Image       Vx          Vy 
      17       1       0.172      -1.188 
      17       2       0.226      -0.674 
 
    Point   Image       Vx          Vy 
      18       1       0.356      -0.927 
      18       2       0.108      -0.557 
 
    Point   Image       Vx          Vy 
      19       1       1.424       3.741 
      19       2      -0.701       6.060 
 
    Point   Image       Vx          Vy 
      20       1      -1.770      -1.268 
      20       2       0.805      -1.021 
 
    Point   Image       Vx          Vy 
      21       1       4.141      -1.089 
      21       2       3.434      -0.253 
 
    Point   Image       Vx          Vy 
      22       1       1.909       0.595 
      22       2       2.989       3.583 
 
    Point   Image       Vx          Vy 
      23       1      -0.603      -3.956 
      23       2       0.868      -0.903 
 
    Point   Image       Vx          Vy 
      24       1      -1.927       1.041 
      24       2      -2.527      -0.210 
 
    Point   Image       Vx          Vy 
      25       1       0.845      -0.722 
      25       2       0.360      -0.610 
 
    Point   Image       Vx          Vy 
      26       1      -1.207      -4.379 
      26       2      -0.080      -3.781 
 
    Point   Image       Vx          Vy 
      27       1       0.125       0.550 
      27       2       2.243      -0.290 
 
    Point   Image       Vx          Vy 
      28       1       0.305      -0.065 
      28       2       0.389      -0.415 
 
    Point   Image       Vx          Vy 
      30       1       2.050       0.249 

      30       2       1.523       2.391 
 
    Point   Image       Vx          Vy 
      31       1       3.095      -2.859 
      31       2       3.344       0.129 
 
    Point   Image       Vx          Vy 
      32       1      -0.869       3.516 
      32       2      -3.428       0.393 
 
    Point   Image       Vx          Vy 
      33       1      -1.372      -0.843 
      33       2      -1.061       0.794 
 
    Point   Image       Vx          Vy 
      34       1      -0.835      -0.277 
      34       2      -0.278       0.067 
 
    Point   Image       Vx          Vy 
      35       1       0.779       2.303 
      35       2       0.463      -0.713 
 
    Point   Image       Vx          Vy 
      36       1       2.404      -0.054 
      36       2       0.166      -1.131 
 
    Point   Image       Vx          Vy 
      37       1       1.763      -0.142 
      37       2       2.516       0.636 
 
    Point   Image       Vx          Vy 
      39       1       0.158      -0.231 
      39       2      -0.060      -0.011 
 
    Point   Image       Vx          Vy 
      40       1       0.156      -0.031 
      40       2       0.005       0.001 
 
    Point   Image       Vx          Vy 
      41       1       0.237      -0.249 
      41       2      -0.156      -0.030 
 
    Point   Image       Vx          Vy 
      42       1       0.243      -0.106 
      42       2      -0.116      -0.021 
 
    Point   Image       Vx          Vy 
      43       1      -0.075       0.389 
      43       2       0.075       0.013 
 
    Point   Image       Vx          Vy 
      44       1      -0.110       0.518 
      44       2      -0.017      -0.003 
 
    Point   Image       Vx          Vy 
      45       1       0.026       0.388 
      45       2      -0.094      -0.017 
 
    Point   Image       Vx          Vy 
      46       1      -0.129       0.255 
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      46       2       0.069       0.012 
 
    Point   Image       Vx          Vy 
      47       1       0.056       0.286 
      47       2      -0.170      -0.030 
 
    Point   Image       Vx          Vy 
      48       1      -0.075       0.177 
      48       2       0.014       0.002 
 
    Point   Image       Vx          Vy 
      49       1       0.000      -0.158 
      49       2       0.084       0.015 
 
    Point   Image       Vx          Vy 
      50       1       0.187      -0.137 
      50       2      -0.113      -0.021 
 
    Point   Image       Vx          Vy 
      51       1      -0.021      -0.127 
      51       2       0.043       0.008 
 
    Point   Image       Vx          Vy 
      52       1       0.059      -0.111 
      52       2      -0.013      -0.002 
 
    Point   Image       Vx          Vy 
      53       1      -0.052      -0.115 
      53       2       0.112       0.021 
 
    Point   Image       Vx          Vy 
      54       1      -0.181       0.027 
      54       2       0.110       0.019 
 
    Point   Image       Vx          Vy 
      55       1      -0.012      -0.151 
      55       2       0.110       0.020 
 
    Point   Image       Vx          Vy 
      56       1      -0.379      -0.425 
      56       2       0.241       0.042 
 
    Point   Image       Vx          Vy 
      57       1       0.167       0.244 
      57       2      -0.187      -0.034 
 
    Point   Image       Vx          Vy 
      58       1       1.364       0.543 
      58       2      -1.405      -0.258 
 
    Point   Image       Vx          Vy 
      59       1       0.194       0.454 
      59       2      -0.238      -0.044 
 
    Point   Image       Vx          Vy 
      60       1       0.298       0.552 
      60       2      -0.379      -0.070 
 
    Point   Image       Vx          Vy 
      61       1       0.085       0.572 

      61       2      -0.157      -0.029 
 
    Point   Image       Vx          Vy 
      62       1       0.105      -0.119 
      62       2      -0.028      -0.005 
 
    Point   Image       Vx          Vy 
      63       1       0.024      -0.036 
      63       2       0.062       0.011 
 
    Point   Image       Vx          Vy 
      64       1      -0.048      -0.337 
      64       2       0.053       0.009 
 
    Point   Image       Vx          Vy 
      65       1       0.056       0.055 
      65       2       0.036       0.006 
 
    Point   Image       Vx          Vy 
      66       1       0.087       0.059 
      66       2       0.006       0.001 
 
    Point   Image       Vx          Vy 
      67       1      -0.001       0.154 
      67       2       0.144       0.026 
 
    Point   Image       Vx          Vy 
      68       1       0.093       0.135 
      68       2       0.043       0.008 
 
    Point   Image       Vx          Vy 
      69       1       0.029       0.184 
      69       2       0.082       0.015 
 
    Point   Image       Vx          Vy 
      70       1       0.056       0.060 
      70       2      -0.000      -0.000 
 
    Point   Image       Vx          Vy 
      71       1      -0.169       0.175 
      71       2       0.041       0.007 
 
    Point   Image       Vx          Vy 
      72       1      -0.053       0.018 
      72       2       0.015       0.003 
 
    Point   Image       Vx          Vy 
      73       1      -0.270      -0.193 
      73       2       0.132       0.023 
 
    Point   Image       Vx          Vy 
      74       1      -0.110       0.181 
      74       2       0.056       0.011 
 
    Point   Image       Vx          Vy 
      75       1       0.213      -0.399 
      75       2      -0.270      -0.047 
 
    Point   Image       Vx          Vy 
      76       1       0.249      -0.050 
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      76       2      -0.161      -0.029 
 
    Point   Image       Vx          Vy 
      77       1       0.033       0.263 
      77       2       0.028       0.005 
 
    Point   Image       Vx          Vy 
      78       1      -0.046       0.112 
      78       2       0.136       0.024 
 
    Point   Image       Vx          Vy 
      79       1       0.008      -0.146 
      79       2       0.106       0.019 
 
    Point   Image       Vx          Vy 
      80       1      -0.022       0.548 
      80       2       0.034       0.006 
 
    Point   Image       Vx          Vy 
      81       1      -0.128      -0.353 
      81       2       0.123       0.021 

 
    Point   Image       Vx          Vy 
      82       1      -0.040       0.375 
      82       2      -0.056      -0.010 
 
    Point   Image       Vx          Vy 
      83       1      -0.204      -0.068 
      83       2       0.085       0.015 
 
    Point   Image       Vx          Vy 
      84       1      -0.047      -0.071 
      84       2       0.129       0.023 
 
    Point   Image       Vx          Vy 
      85       1      -0.031      -0.334 
      85       2       0.037       0.007 
 
    Point   Image       Vx          Vy 
      86       1      -0.071      -0.423 
      86       2       0.035       0.006 

 
    Total mean error of 168 image points: ax=0.000, ay=-0.000 
    Total RMSE of 168 image points: mx=1.112, my=1.152 
 
 
 
    The image residuals of the control points 
 
                The image ID = 1 
         Point ID       Vx          Vy 
               1       0.592       0.170 
               2       0.021       0.053 
               3       0.321      -0.999 
               4      -0.574      -0.201 
               5      -0.701      -1.177 
               6      -1.603       2.614 
               7       0.379      -0.090 
               8      -1.560      -1.601 
               9      -1.608      -1.420 
              10       0.793      -0.385 
              11       0.288      -0.314 
              12      -4.297       3.358 
              13      -2.876      -0.097 
              14      -0.943       2.663 
              15       0.231      -0.362 
              16      -1.155       1.211 
              17       0.172      -1.188 
              18       0.356      -0.927 
              19       1.424       3.741 
              20      -1.770      -1.268 
              21       4.141      -1.089 
              22       1.909       0.595 
              23      -0.603      -3.956 
              24      -1.927       1.041 
              25       0.845      -0.722 
              26      -1.207      -4.379 
              27       0.125       0.550 
              28       0.305      -0.065 
              30       2.050       0.249 

              31       3.095      -2.859 
              32      -0.869       3.516 
              33      -1.372      -0.843 
              34      -0.835      -0.277 
              35       0.779       2.303 
              36       2.404      -0.054 
              37       1.763      -0.142 
              39       0.158      -0.231 
              40       0.156      -0.031 
              41       0.237      -0.249 
              42       0.243      -0.106 
              43      -0.075       0.389 
              44      -0.110       0.518 
              45       0.026       0.388 
              46      -0.129       0.255 
              47       0.056       0.286 
              48      -0.075       0.177 
              49       0.000      -0.158 
              50       0.187      -0.137 
              51      -0.021      -0.127 
              52       0.059      -0.111 
              53      -0.052      -0.115 
              54      -0.181       0.027 
              55      -0.012      -0.151 
              56      -0.379      -0.425 
              57       0.167       0.244 
              58       1.364       0.543 
              59       0.194       0.454 
              60       0.298       0.552 
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              61       0.085       0.572 
              62       0.105      -0.119 
              63       0.024      -0.036 
              64      -0.048      -0.337 
              65       0.056       0.055 
              66       0.087       0.059 
              67      -0.001       0.154 
              68       0.093       0.135 
              69       0.029       0.184 
              70       0.056       0.060 
              71      -0.169       0.175 
              72      -0.053       0.018 
              73      -0.270      -0.193 

              74      -0.110       0.181 
              75       0.213      -0.399 
              76       0.249      -0.050 
              77       0.033       0.263 
              78      -0.046       0.112 
              79       0.008      -0.146 
              80      -0.022       0.548 
              81      -0.128      -0.353 
              82      -0.040       0.375 
              83      -0.204      -0.068 
              84      -0.047      -0.071 
              85      -0.031      -0.334 
              86      -0.071      -0.423 

      RMSE of 84 points: mx=1.094, my=1.199 
 
                The image ID = 2 
         Point ID       Vx          Vy 
               1      -0.141      -0.205 
               2      -0.524       0.771 
               3       0.681      -0.965 
               4       0.226       0.544 
               5       1.381      -1.161 
               6      -1.506       1.541 
               7      -0.947      -0.060 
               8      -1.275      -1.049 
               9      -0.771      -3.139 
              10       0.546      -1.280 
              11       0.653       0.125 
              12      -4.565       0.336 
              13      -2.229       0.161 
              14       0.522       2.581 
              15      -0.820      -1.031 
              16      -1.214      -0.400 
              17       0.226      -0.674 
              18       0.108      -0.557 
              19      -0.701       6.060 
              20       0.805      -1.021 
              21       3.434      -0.253 
              22       2.989       3.583 
              23       0.868      -0.903 
              24      -2.527      -0.210 
              25       0.360      -0.610 
              26      -0.080      -3.781 
              27       2.243      -0.290 
              28       0.389      -0.415 
              30       1.523       2.391 
              31       3.344       0.129 
              32      -3.428       0.393 
              33      -1.061       0.794 
              34      -0.278       0.067 
              35       0.463      -0.713 
              36       0.166      -1.131 
              37       2.516       0.636 
              39      -0.060      -0.011 
              40       0.005       0.001 
              41      -0.156      -0.030 
              42      -0.116      -0.021 
              43       0.075       0.013 
              44      -0.017      -0.003 

              45      -0.094      -0.017 
              46       0.069       0.012 
              47      -0.170      -0.030 
              48       0.014       0.002 
              49       0.084       0.015 
              50      -0.113      -0.021 
              51       0.043       0.008 
              52      -0.013      -0.002 
              53       0.112       0.021 
              54       0.110       0.019 
              55       0.110       0.020 
              56       0.241       0.042 
              57      -0.187      -0.034 
              58      -1.405      -0.258 
              59      -0.238      -0.044 
              60      -0.379      -0.070 
              61      -0.157      -0.029 
              62      -0.028      -0.005 
              63       0.062       0.011 
              64       0.053       0.009 
              65       0.036       0.006 
              66       0.006       0.001 
              67       0.144       0.026 
              68       0.043       0.008 
              69       0.082       0.015 
              70      -0.000      -0.000 
              71       0.041       0.007 
              72       0.015       0.003 
              73       0.132       0.023 
              74       0.056       0.011 
              75      -0.270      -0.047 
              76      -0.161      -0.029 
              77       0.028       0.005 
              78       0.136       0.024 
              79       0.106       0.019 
              80       0.034       0.006 
              81       0.123       0.021 
              82      -0.056      -0.010 
              83       0.085       0.015 
              84       0.129       0.023 
              85       0.037       0.007 
              86       0.035       0.006 

      RMSE of 84 points: mx=1.129, my=1.103 
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      Total number of all control image points = 168 
      Total rmsex = 1.112, rmsey = 1.152 
 
 

Area of the Nahr al Abbara 

            The Triangulation Report With LPS 
 
         The output image x, y units:     pixels 
         The output angle unit:     degrees 
         The output ground X, Y, Z units: meters 
 
              The Input Image Coordinates 
                     image ID = 1 
       Point ID            x             y 
             1          707.176       725.056 
             2          727.881       728.089 
             3          665.938       803.136 
             4          584.196       664.962 
             5          549.959       635.070 
             6          441.194       659.948 
             7          151.172       568.086 
             8          432.039       894.974 
             9          418.920       791.902 
            10          613.056      1036.847 
            11          259.109       941.112 
            12          120.996       985.730 
            13          163.179       798.921 
            14          262.136       742.986 
            15          105.184       506.919 
            16          298.258       424.665 
            17          597.093       393.839 
            18          349.158       220.006 
            19          241.625       322.625 
            20          189.142        42.022 
            21          143.313       149.094 
            22          425.035        72.937 
            23          603.008        49.826 
            24          492.289       153.998 
            25          514.801       260.127 
            26          499.002       364.007 
            27          646.066       511.094 
            28          830.974       505.126 
            29          801.024       360.853 
            30         1386.211        45.886 
            31         1455.894      1138.895 
            32         1402.230       768.073 
            33         1479.288       383.928 
            34         1792.127       420.903 
            35         1656.954       416.785 
            36         1592.853       305.927 
            37         1610.064       125.070 
            38         1648.720       983.954 
            39         1143.189        30.874 
            40         1171.983       205.950 
            41         1078.262       387.245 
            42         1056.296       614.075 
            43         1095.759       730.018 

            44         1110.061       891.057 
            45         1198.875      1101.337 
            46          756.255      1117.000 
            47          790.078       963.987 
            48          576.827       947.912 
            49          729.979       320.762 
            50          846.841       133.778 
            51          228.275       653.036 
            52          421.458       578.096 
            53         1022.992       131.678 
            54          891.203       354.296 
            55         1709.913       696.754 
            56         1238.177       354.996 
            57          433.974        32.190 
            58          462.820        38.579 
            59          400.647        90.383 
            60          562.956        20.015 
            61          606.591        45.998 
            62          594.810        65.468 
            63          675.494        49.361 
            64         1373.655        52.525 
            65         1440.668        93.971 
            66         1429.183       105.064 
            67         1610.657        94.252 
            68         1566.474       114.181 
            69          479.364       160.325 
            70          583.593       141.475 
            71          616.663       194.594 
            72          713.733       130.973 
            73          685.139       135.885 
            74          696.677       171.485 
            75          661.154       215.165 
            76          647.802       236.935 
            77          714.421       236.120 
            78          797.589       191.641 
            79         1404.409       150.818 
            80         1404.203       186.786 
            81         1454.003       135.329 
            82         1441.216       157.139 
            83         1420.128       200.197 
            84         1543.660       128.554 
            85         1770.617       132.643 
            86         1722.862       226.970 
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            87          501.723       284.797 
            88          579.000       304.765 
            89          526.222       312.369 
            90          520.631       331.226 
            91          609.182       382.970 
            92          662.990       276.613 
            93          754.828       281.967 
            94          793.671       343.858 
            95          813.215       365.226 
            96          812.643       381.411 
            97         1381.796       338.497 
            98         1467.188       314.648 
            99         1440.453       373.981 
           100          494.028       391.669 
           101          618.598       405.849 
           102          669.449       411.135 
           103          809.094       401.970 
           104          784.923       460.700 
           105         1402.431       404.908 
           106         1391.252       481.420 
           107         1420.343       423.161 
           108         1631.722       490.627 
           109         1664.463       430.398 
           110          533.904       636.329 
           111          631.627       637.707 
           112          783.715       523.314 
           113          819.349       530.241 
           114         1379.205       521.484 
           115         1378.830       529.354 
           116         1390.735       534.408 
           117         1573.768       557.402 
           118         1588.747       563.350 
           119         1569.587       590.972 
           120          566.004       677.854 
           121          600.626       706.254 
           122          683.639       640.977 
           123          822.298       716.467 
           124         1369.943       667.647 
           125         1391.669       675.015 
           126         1365.132       690.455 
           127         1377.844       693.007 
           128         1477.268       729.148 
           129         1466.274       756.947 
           130          413.552       802.914 
           131          615.518       773.092 
           132          611.917       818.982 
           133          627.996       819.101 
           134          590.176       894.856 
           135          802.566       778.899 
           136          800.407       792.373 
           137          787.629       819.315 
           138          777.317       821.620 
           139          775.949       884.483 
           140         1386.210       780.472 
           141         1418.177       783.535 
           142         1399.274       813.305 
           143         1368.238       820.983 
           144         1409.252       783.848 
           145          218.639       972.940 
           146          428.472       912.366 

           147          618.061       918.842 
           148          720.061       908.122 
           149          711.203       940.988 
           150          779.369       897.243 
           151          794.097       896.654 
           152          774.825       923.142 
           153          787.820       960.852 
           154         1377.210       968.007 
           155         1358.402       981.041 
           156         1368.729       983.078 
           157          267.394      1025.878 
           158          278.680      1147.042 
           159          683.787      1056.213 
           160          770.820      1108.168 
           161         1358.041      1038.070 
           162         1403.288      1091.368 
           163         1423.666      1099.750 
           164         1455.299      1129.124 
           165          540.670        42.168 
           166          674.244       101.471 
           167         1366.434       617.966 
           168         1397.338       723.519 
           169          513.847        55.946 
           170          648.552       114.186 
           171         1441.663       103.717 
           172          779.856       179.485 
           173          738.376       326.448 
           174          710.838       377.354 
           175          694.963       497.914 
           176          807.926       486.960 
           177          820.548       487.111 
           178         1104.724       441.108 
           179         1399.574       454.198 
           180         1438.970       419.453 
           181         1386.354       600.436 
           182         1603.936       582.142 
           183         1487.477       651.945 
           184          671.737       802.389 
           185          778.061       883.801 
           186         1387.837       766.821 
           187         1381.048       856.609 
           188         1357.077       899.018 
           189         1351.687       959.703 
           190          698.442      1055.882 
           191          731.866      1073.655 
           192          647.852       343.547 
           193          702.519       787.522 
           194          826.118       869.585 
           195         1378.269       489.666 
           196          630.117       839.487 
           197         1369.089       884.114 
           198          399.147       111.379 
           199          603.593       144.821 
           200          657.083       108.332 
           201         1433.960       175.151 
           202         1418.396       182.068 
           203          746.503       413.707 
           204          763.701       448.364 
           205          755.211       456.765 
           206          622.986       752.703 
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           207          672.565       641.715 
           208          772.021       697.697 
           209          754.481       718.625 
           210          604.202       872.759 
           211          720.529       885.216 
           212         1117.073       871.653 
           213          727.347      1113.165 
           214         1131.804      1130.615 
           215          731.712       729.157 
           216         1401.856       776.081 
           217         1458.864       745.882 
           218         1446.297       119.921 
           219          745.603      1073.527 
           220         1383.058       993.003 
           221         1650.348        39.819 
           222         1398.199       203.339 
           223         1460.446       313.476 
           224          808.863       685.157 
           225         1391.234       718.337 
           226          731.661       872.008 
           227         1143.189      1115.917 
           228          819.073      1128.095 
           229         1173.361       216.400 
           230         1604.199       310.285 
           231         1605.387       119.786 
           232          550.260       182.648 
           233         1413.653       418.757 
           234          727.901       633.569 
           235          651.085       668.447 
           236          770.097       717.963 
           237         1439.422       729.432 
           238         1379.205       746.737 
           239         1439.094       737.836 

           240         1467.086      1152.426 
           241          640.538       425.386 
           242         1496.655       616.676 
           243         1452.002       735.486 
           244          267.264      1026.881 
           245         1406.714        82.399 
           246          795.848       182.806 
           247         1484.723       276.844 
           248          579.871       707.028 
           249         1393.289       687.875 
           250          629.623      1002.024 
           251          787.352       954.291 
           252         1364.634       928.359 
           253          202.891      1071.604 
           254         1447.136      1111.056 
           255         1559.475       158.585 
           256         1073.999       634.381 
           257          775.348       821.331 
           258          212.581      1156.719 
           259         1364.396       584.473 
           260          827.364       763.990 
           261          860.440        17.347 
           262         1173.619       187.977 
           263         1527.633       221.795 
           264          802.363       270.918 
           265          226.437      1059.155 
           266          725.963       364.302 
           267         1382.596       322.853 
           268         1069.567       617.426 
           269          714.286       869.566 
           270          564.994       689.503 
           271          750.607      1098.642 

 
          Affine coefficients from file (pixels) to film (millimeters) 
         A0          A1          A2           B0          B1          B2 
      -4.5045    0.000000    0.007000      -6.2825    0.007000   -0.000000 
 
                     image ID = 2 
       Point ID            x             y 
             1          907.037       788.952 
             2          929.085       790.959 
             3          891.242       873.969 
             4          767.913       735.901 
             5          723.028       703.990 
             6          624.054       729.326 
             7          306.043       635.035 
             8          686.103       967.996 
             9          642.588       863.237 
            10          909.342      1113.005 
            11          525.854      1013.157 
            12          401.706      1059.117 
            13          389.185       868.945 
            14          471.205       811.997 
            15          242.135       572.090 
            16          400.013       475.162 
            17          697.346       461.007 
            18          397.033       284.824 
            19          322.458       394.808 
            20          184.045       104.930 

            21          172.185       211.919 
            22          428.024       136.010 
            23          597.167       113.959 
            24          520.064       219.083 
            25          574.963       326.001 
            26          591.050       429.979 
            27          781.107       579.145 
            28          964.932       574.037 
            29          889.841       427.056 
            30         1370.899       110.835 
            31         1781.314      1214.972 
            32         1613.135       839.246 
            33         1572.795       457.100 
            34         1893.142       486.043 
            35         1757.262       485.818 
            36         1659.067       371.999 
            37         1620.910       191.930 
            38         1926.315      1058.353 
            39         1126.776        94.093 
            40         1211.138       270.963 



445 

 

            41         1172.086       454.069 
            42         1221.046       683.823 
            43         1296.822       800.046 
            44         1362.062       966.208 
            45         1511.968      1177.565 
            46         1077.729      1195.028 
            47         1064.150      1038.844 
            48          847.125      1022.794 
            49          807.100       385.928 
            50          865.997       200.053 
            51          408.953       722.107 
            52          579.024       646.910 
            53         1031.439       197.704 
            54          984.535       423.659 
            55         1869.916       727.540 
            56         1320.170       422.964 
            57          424.803        95.907 
            58          455.721       102.173 
            59          409.457       154.231 
            60          549.438        84.770 
            61          600.676       110.741 
            62          595.064       130.307 
            63          670.435       114.104 
            64         1363.391       117.277 
            65         1443.024       159.061 
            66         1434.869       170.109 
            67         1611.912       158.801 
            68         1573.920       179.662 
            69          509.188       225.161 
            70          606.850       207.105 
            71          655.834       259.352 
            72          732.890       196.096 
            73          706.647       201.221 
            74          728.458       236.933 
            75          706.419       281.352 
            76          700.368       303.409 
            77          765.756       301.751 
            78          834.516       255.501 
            79         1424.295       216.343 
            80         1435.177       252.560 
            81         1468.992       200.643 
            82         1462.926       222.551 
            83         1455.426       265.901 
            84         1556.034       193.417 
            85         1782.700       197.371 
            86         1764.506       292.520 
            87          569.275       351.164 
            88          652.527       371.557 
            89          602.370       378.996 
            90          602.340       398.240 
            91          706.212       450.349 
            92          727.355       343.268 
            93          819.358       347.817 
            94          877.708       409.739 
            95          903.365       430.957 
            96          907.582       447.235 
            97         1460.127       405.478 
            98         1537.654       381.252 
            99         1529.783       441.307 
           100          593.980       457.642 

           101          722.592       473.722 
           102          774.812       478.888 
           103          910.450       468.111 
           104          904.909       528.404 
           105         1501.551       472.270 
           106         1514.169       549.679 
           107         1524.809       491.113 
           108         1756.521       558.787 
           109         1770.497       497.720 
           110          708.957       706.026 
           111          806.646       708.357 
           112          921.675       592.006 
           113          960.353       599.134 
           114         1514.338       590.414 
           115         1516.568       598.117 
           116         1529.932       603.460 
           117         1719.700       626.816 
           118         1736.531       632.723 
           119         1725.806       660.918 
           120          753.501       748.669 
           121          796.509       777.448 
           122          859.263       711.447 
           123         1020.586       787.697 
           124         1550.878       738.434 
           125         1574.708       745.020 
           126         1553.453       762.206 
           127         1566.518       763.922 
           128         1676.490       800.644 
           129         1673.202       828.847 
           130          639.655       874.658 
           131          832.291       845.867 
           132          841.702       892.372 
           133          857.707       892.333 
           134          843.174       969.381 
           135         1020.138       850.392 
           136         1020.633       864.271 
           137         1016.958       891.427 
           138         1007.199       893.789 
           139         1025.521       958.790 
           140         1600.942       852.937 
           141         1634.214       856.184 
           142         1624.413       886.191 
           143         1596.024       894.276 
           144         1625.269       856.581 
           145          496.091      1046.346 
           146          686.872       987.114 
           147          878.638       993.310 
           148          977.158       982.691 
           149          978.379      1016.114 
           150         1032.913       971.635 
           151         1047.408       971.327 
           152         1036.177       997.872 
           153         1061.268      1036.112 
           154         1650.855      1043.714 
           155         1636.360      1057.067 
           156         1647.438      1059.224 
           157          561.388      1100.460 
           158          609.971      1223.846 
           159          986.562      1133.577 
           160         1090.089      1186.586 
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           161         1653.599      1115.247 
           162         1715.485      1169.528 
           163         1738.566      1177.852 
           164         1779.377      1207.706 
           165          534.006       106.872 
           166          684.600       166.247 
           167         1531.914       688.494 
           168         1595.518       795.123 
           169          511.672       120.569 
           170          663.393       179.489 
           171         1447.032       168.841 
           172          813.034       244.615 
           173          817.340       393.185 
           174          805.167       444.338 
           175          826.232       566.351 
           176          935.541       554.192 
           177          948.236       554.161 
           178         1215.777       508.075 
           179         1513.793       522.099 
           180         1541.553       487.238 
           181         1546.446       670.268 
           182         1757.309       651.530 
           183         1663.341       722.285 
           184          896.077       873.654 
           185         1027.350       958.114 
           186         1598.420       839.126 
           187         1619.967       930.423 
           188         1609.315       973.435 
           189         1622.923      1035.385 
           190         1001.015      1133.035 
           191         1039.755      1151.268 
           192          732.132       410.588 
           193          922.754       856.180 
           194         1070.999       943.076 
           195         1503.630       557.755 
           196          866.416       912.930 
           197         1616.417       958.303 
           198          414.071       175.883 
           199          627.858       210.446 
           200          670.470       173.718 
           201         1461.404       240.608 
           202         1448.042       247.755 
           203          851.825       481.184 
           204          879.678       515.845 
           205          873.982       524.581 
           206          833.470       824.554 
           207          848.295       712.533 
           208          965.142       765.843 
           209          952.544       781.084 
           210          850.475       946.576 
           211          970.664       959.562 
           212         1360.512       944.304 
           213         1047.777      1191.053 
           214         1455.989      1207.478 
           215          932.458       791.811 
           216         1615.556       848.674 

           217         1662.796       817.816 
           218         1456.495       185.068 
           219         1053.828      1151.279 
           220         1664.464      1069.271 
           221         1634.453       104.307 
           222         1434.350       269.902 
           223         1530.524       380.342 
           224          993.457       749.684 
           225         1587.818       790.103 
           226          976.993       945.794 
           227         1462.798      1191.585 
           228         1143.554      1206.425 
           229         1214.321       279.632 
           230         1673.008       378.138 
           231         1614.591       184.862 
           232          586.358       248.180 
           233         1516.845       486.520 
           234          900.998       703.695 
           235          835.746       739.408 
           236          968.083       782.102 
           237         1639.170       801.395 
           238         1583.900       819.086 
           239         1640.918       809.943 
           240         1798.349      1231.266 
           241          749.839       493.007 
           242         1660.869       687.400 
           243         1649.479       809.282 
           244          561.580      1101.531 
           245         1405.815       147.682 
           246          830.028       246.551 
           247         1543.585       343.002 
           248          775.870       778.063 
           249         1574.068       762.791 
           250          890.666      1070.243 
           251         1058.569      1029.177 
           252         1625.875      1003.324 
           253          510.223      1146.227 
           254         1765.760      1189.617 
           255         1580.628       223.618 
           256         1244.458       703.758 
           257         1007.299       892.691 
           258          546.113      1233.604 
           259         1519.130       653.927 
           260         1040.154       818.079 
           261          839.825        71.746 
           262         1208.173       260.986 
           263         1573.343       272.734 
           264          864.409       336.781 
           265          554.453      1141.120 
           266          816.795       431.386 
           267         1455.999       389.520 
           268         1234.402       687.197 
           269          959.286       943.742 
           270          766.930       774.976 
           271         1066.405      1169.438 

 
          Affine coefficients from file (pixels) to film (millimeters) 
         A0          A1          A2           B0          B1          B2 
      -4.3715    0.000000    0.007000      -7.0525    0.007000    0.000000 
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      THE OUTPUT OF SELF-CALIBRATING BUNDLE BLOCK ADJUSTMENT 
 
      the no. of iteration =1    the standard error =  2.6039 
      the maximal correction of the object points =   0.00000 
 
      the no. of iteration =2    the standard error =  2.6039 
      the maximal correction of the object points =   0.00000 
 
                     The exterior orientation parameters 
 image ID       Xs            Ys           Zs        OMEGA      PHI      KAPPA 
       1   610890.8760  4002770.1317  153248.5928   12.8839   33.8929  -82.2626 
       2   408869.8469  3985914.9215  154321.9328  378.6637  -30.6871  277.5169 
 
       The interior orientation parameters of photos 
       image ID     f(mm)        xo(mm)       yo(mm) 
            1     609.6020       0.0000       0.0000 
            2     609.6020       0.0000       0.0000 
 
      The residuals of the control points 
  Point ID      rX          rY          rZ 
 All residuals of fixed GCP are zero. 
 
  The difference of intersected and measured control points 
  Point ID      rX          rY          rZ 
       
1     22.5149      6.6374    -20.5718 
       2     26.2892      7.5607    -19.4998 
       3      9.1905     -2.0625     -7.1800 
       4      1.4148     -5.2946      3.6203 
       5      2.5057     -1.6284      2.4747 
       6      5.7139     -3.0673      4.7684 
       7     -2.9593     -2.7035      9.7339 
       8      4.2497     -2.1002      0.8783 
       9      3.7374     13.0874      5.9997 
      10      9.1323     -3.0738     -3.6078 
      11      6.0804     -4.2531      2.0669 
      12      2.8359     -7.8765      3.6183 
      13      3.5246     -3.7236     10.1006 
      14      5.0043     -5.7020      9.4188 
      15     -4.3186     -3.8829     13.6543 
      16     -1.6527     -9.5825     -5.7101 
      17      1.3935     -2.4625      3.0240 
      18      6.2655      5.8017      4.9092 
      19      0.3841      5.8049      9.5393 
      20      0.3663      5.7682     17.1765 
      21    -21.6776      3.5304     19.3344 
      22      0.8448      8.7363      5.5600 
      23    -21.7592      2.0951      7.0249 
      24      1.8724      1.2000      2.4009 
      25      3.8660      2.6967      4.2806 
      26     -1.4372     -2.2962      5.2940 
      27     19.2341    -13.9840      2.1363 
      28      2.4905     -5.3672      1.5390 
      29      6.0681      0.2033     -1.9138 
      30     19.8995      3.1890     -7.3397 
      31    -14.3761      9.1905     13.7724 
      32     -5.3051      1.4989      6.5648 

      33     10.2307     -1.9827      6.9246 
      34    -16.9006      0.7828     14.2445 
      35    -22.5507     -2.7000      7.9457 
      36     -1.8180      7.2045      5.1552 
      37     -5.2284     -1.4087      2.2909 
      38    -16.8145      3.2596     21.0916 
      39      4.4699     -1.5768     -7.3173 
      40      9.6151    -16.2112     -4.7127 
      41      6.1459      1.3432     -6.0566 
      42    -10.7442    -15.7645     -2.5328 
      43     -1.7274     -0.7936     -1.7367 
      44     -5.5540      1.2154      2.3519 
      45     -6.9747      1.8668     -0.6274 
      46      4.4795     17.9685      4.8129 
      47      3.3700     -3.1015      1.5631 
      48      1.6473     -4.6656      4.2500 
      49      7.8558      2.1517      4.4303 
      50      2.6368     -6.3406     -1.0516 
      51      0.2622     -1.8631      9.0968 
      52      3.1452      5.6152      3.0357 
      53     23.9634      0.8857    -22.2938 
      54    -13.9490     -9.0609     11.5800 
      55     22.8921      9.1151    -28.3897 
      56     -6.3976    -10.9834     -8.5935 
      57      2.5572     -4.1417      2.2594 
      58      1.8915     -3.6911      1.4118 
      59      3.3564     -4.3449      3.4470 
      60     -0.1659     -2.3315     -1.2886 
      61     -0.9159     -1.7101     -2.1969 
      62     -0.7019     -1.8251     -1.9000 
      63     -1.9646     -0.8683     -3.5000 
      64     -2.1000      4.2863     -1.5846 
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      65     -0.9326      3.9570      0.1629 
      66     -1.0665      3.8101     -0.1103 
      67      2.3289      4.0242      5.4833 
      68      1.4779      3.7697      3.9782 
      69      1.5346     -2.9474      1.1832 
      70     -0.4657     -1.7840     -1.4962 
      71     -0.9861     -1.3021     -2.0860 
      72     -2.3705     -0.4214     -3.9327 
      73     -2.0035     -0.7083     -3.4719 
      74     -2.1203     -0.5620     -3.5880 
      75     -1.6210     -0.8312     -2.9101 
      76     -1.4213     -0.9107     -2.6257 
      77     -2.2779     -0.3451     -3.7361 
      78     -3.1572      0.3081     -4.8431 
      79     -1.2473      3.2634     -0.6283 
      80     -1.1023      2.8746     -0.5542 
      81     -0.5303      3.4803      0.6184 
      82     -0.6467      3.2192      0.3245 
      83     -0.8017      2.7322     -0.1257 
      84      1.0824      3.5780      3.2747 
      85      6.6066      3.1068     12.0768 
      86      5.8025      1.7624     10.1910 
      87      1.0524     -2.1088      0.7810 
      88     -0.3515     -1.3109     -1.0960 
      89      0.5747     -1.7447      0.1834 
      90      0.6734     -1.7029      0.3541 
      91     -0.8311     -0.7829     -1.6314 
      92     -1.6116     -0.6960     -2.8324 
      93     -2.6675     -0.0029     -4.2101 
      94     -2.9511      0.2634     -4.5476 
      95     -3.0778      0.3695     -4.7056 
      96     -3.0597      0.3719     -4.6774 
      97     -0.8603      1.3758     -0.7897 
      98      0.4496      1.4420      1.3513 
      99      0.2073      0.8982      0.7276 
     100      1.1500     -1.6055      1.1513 
     101     -0.9715     -0.6343     -1.7932 
     102     -1.6562     -0.3093     -2.7400 
     103     -3.0174      0.3655     -4.6156 
     104     -2.8002      0.3270     -4.2947 
     105     -0.3135      0.7170     -0.1875 
     106     -0.2426      0.0877     -0.3441 
     107      0.0393      0.4924      0.2823 
     108      4.6735     -1.3521      7.0111 
     109      5.2479     -0.8207      8.1790 
     110      0.2091      0.1466      0.3734 
     111     -1.2435      0.4383     -1.7885 
     112     -2.7659      0.4200     -4.2085 
     113     -3.0008      0.5087     -4.5471 
     114     -0.3116     -0.1867     -0.5739 
     115     -0.2942     -0.2473     -0.5716 
     116     -0.0920     -0.3444     -0.2875 
     117      3.5465     -1.6916      5.0296 
     118      3.9158     -1.8698      5.5540 
     119      3.5683     -2.0144      4.9273 
     120     -0.3538      0.5103     -0.3598 
     121     -0.8887      0.7537     -1.1036 
     122     -1.8621      0.5584     -2.7196 
     123     -2.9820      0.8412     -4.3914 
     124     -0.0671     -1.2090     -0.6154 

     125      0.3025     -1.4093     -0.1113 
     126     -0.0890     -1.3288     -0.6950 
     127      0.1190     -1.4353     -0.4128 
     128      2.0067     -2.5099      2.1841 
     129      1.8574     -2.6300      1.8931 
     130      2.1997      1.1732      3.9040 
     131     -1.1644      1.1706     -1.3574 
     132     -1.1727      1.4552     -1.2512 
     133     -1.3741      1.4476     -1.5752 
     134     -0.9998      1.9959     -0.7468 
     135     -2.8906      1.0431     -4.1702 
     136     -2.8819      1.0837     -4.1368 
     137     -2.8219      1.2074     -3.9916 
     138     -2.7595      1.2398     -3.8781 
     139     -2.7986      1.4889     -3.8097 
     140      0.4489     -2.0742     -0.1429 
     141      1.0130     -2.3790      0.6413 
     142      0.7409     -2.3980      0.1948 
     143      0.2318     -2.1572     -0.5191 
     144      0.8539     -2.3006      0.4186 
     145      6.4790      2.8523     11.2359 
     146      1.6464      2.2594      3.5175 
     147     -1.3951      2.1196     -1.3251 
     148     -2.4211      1.7828     -3.0850 
     149     -2.3866      1.9892     -2.9377 
     150     -2.8294      1.5308     -3.8419 
     151     -2.9129      1.4725     -3.9935 
     152     -2.8244      1.6587     -3.7777 
     153     -2.9355      1.7719     -3.9019 
     154      0.6248     -3.0326     -0.2156 
     155      0.3240     -2.8767     -0.6280 
     156      0.4996     -3.0056     -0.3961 
     157      4.9797      3.6123      9.2344 
     158      4.2521      5.2650      8.8139 
     159     -2.3227      2.8149     -2.4523 
     160     -3.0356      2.6110     -3.6417 
     161      0.3857     -3.1220     -0.6023 
     162      1.2464     -3.9444      0.4725 
     163      1.6454     -4.2649      0.9818 
     164      2.3158     -4.8675      1.8317 
     165      0.2680     -2.5813     -0.6959 
     166     -1.8952     -0.8485     -3.3602 
     167     -0.2449     -0.8435     -0.7448 
     168      0.5129     -1.7910      0.0763 
     169      0.8073     -2.9043      0.0215 
     170     -1.5148     -1.1150     -2.8787 
     171     -0.8738      3.8445      0.2109 
     172     -3.0135      0.1780     -4.6941 
     173     -2.4668     -0.0706     -3.9248 
     174     -2.1504     -0.1542     -3.4565 
     175     -1.9511      0.0739     -3.0537 
     176     -2.9514      0.4320     -4.4953 
     177     -3.0318      0.4664     -4.6095 
     178     -3.2916      0.9213     -4.8605 
     179     -0.1978      0.2887     -0.1849 
     180      0.3386      0.4631      0.7535 
     181      0.0238     -0.8334     -0.3091 
     182      4.3444     -2.1969      6.1131 
     183      1.9989     -1.9487      2.4084 
     184     -1.8502      1.3233     -2.4077 
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     185     -2.8106      1.4776     -3.8335 
     186      0.4473     -2.0024     -0.1144 
     187      0.5110     -2.4835     -0.1994 
     188      0.1859     -2.4705     -0.7101 
     189      0.1862     -2.7056     -0.7848 
     190     -2.4483      2.7354     -2.6908 
     191     -2.7356      2.6560     -3.1682 
     192     -1.3867     -0.6410     -2.4513 
     193     -2.1412      1.2296     -2.9423 
     194     -3.0463      1.2575     -4.3156 
     195     -0.4209      0.0728     -0.6369 
     196     -1.4266      1.5737     -1.6057 
     197      0.3585     -2.5165     -0.4544 
     198      3.3890     -4.2442      3.5306 
     199     -0.7979     -1.5503     -1.9248 
     200     -1.6420     -1.0284     -3.0485 
     201     -0.6881      3.0143      0.1735 
     202     -0.9048      2.9334     -0.2125 
     203     -2.4966      0.1004     -3.9039 
     204     -2.6348      0.2308     -4.0708 
     205     -2.5570      0.2114     -3.9562 
     206     -1.2353      1.0513     -1.5273 
     207     -1.7399      0.5403     -2.5309 
     208     -2.6709      0.8321     -3.9241 
     209     -2.5389      0.9168     -3.7457 
     210     -1.1482      1.8195     -1.0626 
     211     -2.4002      1.6607     -3.1019 
     212     -2.6312     -0.3077     -4.3462 
     213     -2.7686      2.9312     -3.1001 
     214     -2.4358     -0.6297     -4.0996 
     215     -2.3569      0.9629     -3.4426 
     216      0.7071     -2.1851      0.2316 
     217      1.6850     -2.4786      1.6820 
     218     -0.7288      3.6619      0.3713 
     219     -2.8305      2.5697     -3.3463 
     220      0.7612     -3.2284     -0.0620 
     221      2.9464      4.8390      6.8133 
     222     -1.1244      2.7046     -0.6740 
     223      0.3240      1.4746      1.1579 
     224     -2.9000      0.7801     -4.3409 
     225      0.3978     -1.7096     -0.0714 
     226     -2.4750      1.5610     -3.2678 
     227     -2.3315     -0.7517     -4.0184 
     228     -3.2704      2.3474     -4.1238 

     229     -3.4820      2.2345     -4.5850 
     230      3.2443      1.0653      5.7050 
     231      2.3437      3.6669      5.3484 
     232      0.1373     -2.0272     -0.6402 
     233     -0.0869      0.5583      0.1073 
     234     -2.3001      0.5951     -3.3996 
     235     -1.5074      0.6270     -2.1269 
     236     -2.6557      0.9022     -3.9195 
     237      1.2760     -2.1827      1.1478 
     238      0.2599     -1.8032     -0.3291 
     239      1.2894     -2.2433      1.1445 
     240      2.5913     -5.1703      2.1646 
     241     -1.2808     -0.4279     -2.1976 
     242      2.0757     -1.7050      2.6404 
     243      1.5164     -2.3483      1.4849 
     244      4.9794      3.6147      9.2492 
     245     -1.5025      4.0413     -0.7371 
     246     -3.1523      0.3068     -4.8469 
     247      0.6173      1.8265      1.7822 
     248     -0.5944      0.7182     -0.6485 
     249      0.3386     -1.5274     -0.0632 
     250     -1.5515      2.5319     -1.5663 
     251     -2.9286      1.7371     -3.9009 
     252      0.3521     -2.6995     -0.5260 
     253      6.5538      4.2489     11.9485 
     254      2.1222     -4.6608      1.6067 
     255      1.5461      3.1785      3.8543 
     256     -3.1144      0.3474     -4.8346 
     257     -2.7506      1.2492     -3.8644 
     258      5.9372      5.5117     11.5582 
     259     -0.0012     -0.0012      0.0009 
     260      0.0027      0.0067     -0.0081 
     261     -0.0044     -0.0030      0.0004 
     262     -0.0039     -0.0033      0.0012 
     263     -0.0023     -0.0037      0.0025 
     264     -0.0025     -0.0009      0.0002 
     265      0.0049      0.0074     -0.0001 
     266     -0.0017      0.0001     -0.0002 
     267     -0.0023     -0.0032      0.0015 
     268      0.0005     -0.0006     -0.0000 
     269      0.0029      0.0021     -0.0014 
     270     -0.0000      0.0000      0.0000 
     271     -0.0000     -0.0000     -0.0000 

 
                aX          aY          aZ 
             -0.0001     -0.0000     -0.0001 
                mX          mY          mZ 
              5.3141      3.5408      5.3759 
                     CE90        LE90  
                   9.5189      8.8516 
 
     The image residuals of intersected GCP 
 
    Point   Image       Vx          Vy 
       1       1       0.159      -3.893 
       1       2      -0.149       3.883 
 
    Point   Image       Vx          Vy 
       2       1       0.180      -4.408 

       2       2      -0.169       4.398 
 
    Point   Image       Vx          Vy 
       3       1       0.044      -1.069 
       3       2      -0.040       1.066 
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    Point   Image       Vx          Vy 
       4       1       0.004      -0.103 
       4       2      -0.004       0.103 
 
    Point   Image       Vx          Vy 
       5       1       0.035      -0.865 
       5       2      -0.034       0.861 
 
    Point   Image       Vx          Vy 
       6       1       0.040      -0.985 
       6       2      -0.038       0.979 
 
    Point   Image       Vx          Vy 
       7       1       0.058      -1.463 
       7       2      -0.057       1.447 
 
    Point   Image       Vx          Vy 
       8       1       0.052      -1.228 
       8       2      -0.045       1.221 
 
    Point   Image       Vx          Vy 
       9       1       0.051      -1.229 
       9       2      -0.046       1.222 
 
    Point   Image       Vx          Vy 
      10       1       0.007      -0.156 
      10       2      -0.006       0.156 
 
    Point   Image       Vx          Vy 
      11       1       0.111      -2.605 
      11       2      -0.095       2.584 
 
    Point   Image       Vx          Vy 
      12       1       0.122      -2.846 
      12       2      -0.103       2.818 
 
    Point   Image       Vx          Vy 
      13       1       0.103      -2.474 
      13       2      -0.093       2.450 
 
    Point   Image       Vx          Vy 
      14       1       0.091      -2.214 
      14       2      -0.084       2.195 
 
    Point   Image       Vx          Vy 
      15       1       0.066      -1.663 
      15       2      -0.066       1.644 
 
    Point   Image       Vx          Vy 
      16       1       0.306      -7.914 
      16       2      -0.318       7.843 
 
    Point   Image       Vx          Vy 
      17       1      -0.011       0.285 
      17       2       0.012      -0.284 
 
    Point   Image       Vx          Vy 
      18       1      -0.045       1.207 
      18       2       0.050      -1.196 
 

    Point   Image       Vx          Vy 
      19       1      -0.149       3.894 
      19       2       0.159      -3.854 
 
    Point   Image       Vx          Vy 
      20       1      -0.100       2.769 
      20       2       0.119      -2.736 
 
    Point   Image       Vx          Vy 
      21       1      -0.055       1.486 
      21       2       0.063      -1.468 
 
    Point   Image       Vx          Vy 
      22       1      -0.063       1.726 
      22       2       0.074      -1.712 
 
    Point   Image       Vx          Vy 
      23       1      -0.069       1.917 
      23       2       0.083      -1.906 
 
    Point   Image       Vx          Vy 
      24       1      -0.062       1.679 
      24       2       0.071      -1.667 
 
    Point   Image       Vx          Vy 
      25       1      -0.037       0.973 
      25       2       0.040      -0.967 
 
    Point   Image       Vx          Vy 
      26       1      -0.002       0.052 
      26       2       0.002      -0.052 
 
    Point   Image       Vx          Vy 
      27       1       0.010      -0.262 
      27       2      -0.010       0.261 
 
    Point   Image       Vx          Vy 
      28       1      -0.005       0.137 
      28       2       0.005      -0.137 
 
    Point   Image       Vx          Vy 
      29       1       0.006      -0.160 
      29       2      -0.007       0.160 
 
    Point   Image       Vx          Vy 
      30       1       0.016      -0.436 
      30       2      -0.019       0.439 
 
    Point   Image       Vx          Vy 
      31       1      -0.113       2.576 
      31       2       0.093      -2.602 
 
    Point   Image       Vx          Vy 
      32       1      -0.018       0.435 
      32       2       0.017      -0.439 
 
    Point   Image       Vx          Vy 
      33       1      -0.085       2.219 
      33       2       0.092      -2.236 
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    Point   Image       Vx          Vy 
      34       1       0.086      -2.253 
      34       2      -0.094       2.282 
 
    Point   Image       Vx          Vy 
      35       1       0.004      -0.114 
      35       2      -0.005       0.115 
 
    Point   Image       Vx          Vy 
      36       1       0.049      -1.314 
      36       2      -0.055       1.326 
 
    Point   Image       Vx          Vy 
      37       1       0.022      -0.615 
      37       2      -0.027       0.620 
 
    Point   Image       Vx          Vy 
      38       1      -0.100       2.348 
      38       2       0.088      -2.378 
 
    Point   Image       Vx          Vy 
      39       1       0.012      -0.332 
      39       2      -0.015       0.332 
 
    Point   Image       Vx          Vy 
      40       1       0.019      -0.523 
      40       2      -0.022       0.525 
 
    Point   Image       Vx          Vy 
      41       1       0.013      -0.342 
      41       2      -0.014       0.342 
 
    Point   Image       Vx          Vy 
      42       1       0.001      -0.033 
      42       2      -0.001       0.033 
 
    Point   Image       Vx          Vy 
      43       1       0.016      -0.399 
      43       2      -0.015       0.401 
 
    Point   Image       Vx          Vy 
      44       1      -0.064       1.528 
      44       2       0.057      -1.535 
 
    Point   Image       Vx          Vy 
      45       1      -0.077       1.761 
      45       2       0.064      -1.772 
 
    Point   Image       Vx          Vy 
      46       1      -0.036       0.822 
      46       2       0.029      -0.822 
 
    Point   Image       Vx          Vy 
      47       1      -0.010       0.223 
      47       2       0.008      -0.223 
 
    Point   Image       Vx          Vy 
      48       1       0.013      -0.310 
      48       2      -0.011       0.309 
 

    Point   Image       Vx          Vy 
      49       1       0.010      -0.275 
      49       2      -0.011       0.274 
 
    Point   Image       Vx          Vy 
      50       1      -0.054       1.468 
      50       2       0.063      -1.464 
 
    Point   Image       Vx          Vy 
      51       1       0.052      -1.280 
      51       2      -0.049       1.268 
 
    Point   Image       Vx          Vy 
      52       1       0.021      -0.518 
      52       2      -0.020       0.515 
 
    Point   Image       Vx          Vy 
      53       1      -0.037       1.020 
      53       2       0.044      -1.020 
 
    Point   Image       Vx          Vy 
      54       1      -0.046       1.196 
      54       2       0.049      -1.195 
 
    Point   Image       Vx          Vy 
      55       1       0.754     -18.851 
      55       2      -0.740      19.075 
 
    Point   Image       Vx          Vy 
      56       1      -0.007       0.174 
      56       2       0.007      -0.175 
 
    Point   Image       Vx          Vy 
      57       1      -0.088       2.453 
      57       2       0.106      -2.432 
 
    Point   Image       Vx          Vy 
      58       1      -0.080       2.216 
      58       2       0.096      -2.198 
 
    Point   Image       Vx          Vy 
      59       1      -0.073       1.992 
      59       2       0.085      -1.975 
 
    Point   Image       Vx          Vy 
      60       1      -0.095       2.635 
      60       2       0.114      -2.618 
 
    Point   Image       Vx          Vy 
      61       1      -0.080       2.222 
      61       2       0.096      -2.209 
 
    Point   Image       Vx          Vy 
      62       1      -0.077       2.120 
      62       2       0.091      -2.108 
 
    Point   Image       Vx          Vy 
      63       1      -0.070       1.946 
      63       2       0.084      -1.937 
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    Point   Image       Vx          Vy 
      64       1       0.021      -0.578 
      64       2      -0.025       0.581 
 
    Point   Image       Vx          Vy 
      65       1       0.030      -0.819 
      65       2      -0.036       0.824 
 
    Point   Image       Vx          Vy 
      66       1       0.030      -0.837 
      66       2      -0.036       0.842 
 
    Point   Image       Vx          Vy 
      67       1       0.061      -1.699 
      67       2      -0.074       1.714 
 
    Point   Image       Vx          Vy 
      68       1       0.041      -1.120 
      68       2      -0.049       1.129 
 
    Point   Image       Vx          Vy 
      69       1      -0.056       1.523 
      69       2       0.064      -1.512 
 
    Point   Image       Vx          Vy 
      70       1      -0.067       1.830 
      70       2       0.078      -1.819 
 
    Point   Image       Vx          Vy 
      71       1      -0.030       0.819 
      71       2       0.035      -0.815 
 
    Point   Image       Vx          Vy 
      72       1      -0.048       1.305 
      72       2       0.056      -1.299 
 
    Point   Image       Vx          Vy 
      73       1      -0.053       1.437 
      73       2       0.061      -1.430 
 
    Point   Image       Vx          Vy 
      74       1      -0.043       1.164 
      74       2       0.049      -1.160 
 
    Point   Image       Vx          Vy 
      75       1      -0.046       1.244 
      75       2       0.052      -1.238 
 
    Point   Image       Vx          Vy 
      76       1      -0.046       1.215 
      76       2       0.051      -1.210 
 
    Point   Image       Vx          Vy 
      77       1      -0.025       0.671 
      77       2       0.028      -0.669 
 
    Point   Image       Vx          Vy 
      78       1       0.002      -0.043 
      78       2      -0.002       0.043 
 

    Point   Image       Vx          Vy 
      79       1       0.025      -0.678 
      79       2      -0.029       0.682 
 
    Point   Image       Vx          Vy 
      80       1       0.025      -0.681 
      80       2      -0.029       0.685 
 
    Point   Image       Vx          Vy 
      81       1       0.033      -0.892 
      81       2      -0.039       0.898 
 
    Point   Image       Vx          Vy 
      82       1       0.032      -0.873 
      82       2      -0.038       0.879 
 
    Point   Image       Vx          Vy 
      83       1       0.030      -0.813 
      83       2      -0.035       0.818 
 
    Point   Image       Vx          Vy 
      84       1       0.051      -1.395 
      84       2      -0.061       1.406 
 
    Point   Image       Vx          Vy 
      85       1       0.081      -2.241 
      85       2      -0.098       2.266 
 
    Point   Image       Vx          Vy 
      86       1       0.066      -1.788 
      86       2      -0.077       1.807 
 
    Point   Image       Vx          Vy 
      87       1      -0.038       1.009 
      87       2       0.042      -1.002 
 
    Point   Image       Vx          Vy 
      88       1      -0.034       0.901 
      88       2       0.037      -0.897 
 
    Point   Image       Vx          Vy 
      89       1      -0.032       0.831 
      89       2       0.034      -0.825 
 
    Point   Image       Vx          Vy 
      90       1      -0.033       0.859 
      90       2       0.035      -0.854 
 
    Point   Image       Vx          Vy 
      91       1      -0.018       0.469 
      91       2       0.019      -0.467 
 
    Point   Image       Vx          Vy 
      92       1      -0.035       0.938 
      92       2       0.039      -0.934 
 
    Point   Image       Vx          Vy 
      93       1      -0.013       0.343 
      93       2       0.014      -0.342 
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    Point   Image       Vx          Vy 
      94       1       0.007      -0.194 
      94       2      -0.008       0.193 
 
    Point   Image       Vx          Vy 
      95       1       0.017      -0.444 
      95       2      -0.018       0.444 
 
    Point   Image       Vx          Vy 
      96       1       0.020      -0.510 
      96       2      -0.021       0.509 
 
    Point   Image       Vx          Vy 
      97       1       0.021      -0.546 
      97       2      -0.023       0.550 
 
    Point   Image       Vx          Vy 
      98       1       0.031      -0.825 
      98       2      -0.035       0.832 
 
    Point   Image       Vx          Vy 
      99       1       0.022      -0.586 
      99       2      -0.024       0.590 
 
    Point   Image       Vx          Vy 
     100       1       0.007      -0.191 
     100       2      -0.008       0.190 
 
    Point   Image       Vx          Vy 
     101       1      -0.020       0.510 
     101       2       0.021      -0.508 
 
    Point   Image       Vx          Vy 
     102       1      -0.014       0.361 
     102       2       0.015      -0.360 
 
    Point   Image       Vx          Vy 
     103       1       0.019      -0.497 
     103       2      -0.020       0.496 
 
    Point   Image       Vx          Vy 
     104       1       0.005      -0.127 
     104       2      -0.005       0.127 
 
    Point   Image       Vx          Vy 
     105       1       0.023      -0.601 
     105       2      -0.025       0.605 
 
    Point   Image       Vx          Vy 
     106       1       0.014      -0.361 
     106       2      -0.015       0.364 
 
    Point   Image       Vx          Vy 
     107       1       0.015      -0.377 
     107       2      -0.016       0.380 
 
    Point   Image       Vx          Vy 
     108       1       0.025      -0.630 
     108       2      -0.026       0.637 
 

    Point   Image       Vx          Vy 
     109       1       0.039      -1.023 
     109       2      -0.042       1.034 
 
    Point   Image       Vx          Vy 
     110       1       0.021      -0.530 
     110       2      -0.021       0.527 
 
    Point   Image       Vx          Vy 
     111       1      -0.000       0.012 
     111       2       0.000      -0.012 
 
    Point   Image       Vx          Vy 
     112       1       0.002      -0.051 
     112       2      -0.002       0.050 
 
    Point   Image       Vx          Vy 
     113       1       0.001      -0.024 
     113       2      -0.001       0.024 
 
    Point   Image       Vx          Vy 
     114       1       0.005      -0.125 
     114       2      -0.005       0.126 
 
    Point   Image       Vx          Vy 
     115       1       0.009      -0.233 
     115       2      -0.009       0.235 
 
    Point   Image       Vx          Vy 
     116       1       0.004      -0.107 
     116       2      -0.004       0.107 
 
    Point   Image       Vx          Vy 
     117       1       0.002      -0.051 
     117       2      -0.002       0.051 
 
    Point   Image       Vx          Vy 
     118       1       0.003      -0.085 
     118       2      -0.003       0.086 
 
    Point   Image       Vx          Vy 
     119       1      -0.007       0.176 
     119       2       0.007      -0.178 
 
    Point   Image       Vx          Vy 
     120       1       0.011      -0.283 
     120       2      -0.011       0.282 
 
    Point   Image       Vx          Vy 
     121       1       0.011      -0.275 
     121       2      -0.011       0.274 
 
    Point   Image       Vx          Vy 
     122       1       0.002      -0.060 
     122       2      -0.002       0.060 
 
    Point   Image       Vx          Vy 
     123       1       0.002      -0.057 
     123       2      -0.002       0.057 
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    Point   Image       Vx          Vy 
     124       1      -0.017       0.412 
     124       2       0.016      -0.415 
 
    Point   Image       Vx          Vy 
     125       1      -0.001       0.019 
     125       2       0.001      -0.019 
 
    Point   Image       Vx          Vy 
     126       1      -0.034       0.830 
     126       2       0.033      -0.836 
 
    Point   Image       Vx          Vy 
     127       1      -0.017       0.423 
     127       2       0.017      -0.426 
 
    Point   Image       Vx          Vy 
     128       1      -0.030       0.730 
     128       2       0.029      -0.737 
 
    Point   Image       Vx          Vy 
     129       1      -0.037       0.897 
     129       2       0.035      -0.906 
 
    Point   Image       Vx          Vy 
     130       1       0.046      -1.116 
     130       2      -0.042       1.109 
 
    Point   Image       Vx          Vy 
     131       1      -0.001       0.017 
     131       2       0.001      -0.017 
 
    Point   Image       Vx          Vy 
     132       1       0.000      -0.004 
     132       2      -0.000       0.004 
 
    Point   Image       Vx          Vy 
     133       1       0.002      -0.049 
     133       2      -0.002       0.049 
 
    Point   Image       Vx          Vy 
     134       1       0.002      -0.045 
     134       2      -0.002       0.044 
 
    Point   Image       Vx          Vy 
     135       1       0.014      -0.339 
     135       2      -0.013       0.338 
 
    Point   Image       Vx          Vy 
     136       1       0.008      -0.194 
     136       2      -0.007       0.194 
 
    Point   Image       Vx          Vy 
     137       1       0.012      -0.291 
     137       2      -0.011       0.291 
 
    Point   Image       Vx          Vy 
     138       1       0.012      -0.293 
     138       2      -0.011       0.293 
 

    Point   Image       Vx          Vy 
     139       1      -0.016       0.380 
     139       2       0.014      -0.379 
 
    Point   Image       Vx          Vy 
     140       1      -0.043       1.037 
     140       2       0.040      -1.045 
 
    Point   Image       Vx          Vy 
     141       1      -0.048       1.156 
     141       2       0.045      -1.166 
 
    Point   Image       Vx          Vy 
     142       1      -0.050       1.198 
     142       2       0.046      -1.208 
 
    Point   Image       Vx          Vy 
     143       1      -0.055       1.334 
     143       2       0.051      -1.344 
 
    Point   Image       Vx          Vy 
     144       1      -0.049       1.189 
     144       2       0.046      -1.199 
 
    Point   Image       Vx          Vy 
     145       1       0.102      -2.383 
     145       2      -0.086       2.363 
 
    Point   Image       Vx          Vy 
     146       1       0.021      -0.505 
     146       2      -0.019       0.503 
 
    Point   Image       Vx          Vy 
     147       1       0.007      -0.176 
     147       2      -0.007       0.176 
 
    Point   Image       Vx          Vy 
     148       1      -0.009       0.220 
     148       2       0.008      -0.220 
 
    Point   Image       Vx          Vy 
     149       1      -0.011       0.266 
     149       2       0.010      -0.265 
 
    Point   Image       Vx          Vy 
     150       1      -0.015       0.352 
     150       2       0.013      -0.352 
 
    Point   Image       Vx          Vy 
     151       1      -0.023       0.533 
     151       2       0.020      -0.533 
 
    Point   Image       Vx          Vy 
     152       1      -0.015       0.358 
     152       2       0.013      -0.358 
 
    Point   Image       Vx          Vy 
     153       1      -0.018       0.429 
     153       2       0.016      -0.429 
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    Point   Image       Vx          Vy 
     154       1      -0.098       2.291 
     154       2       0.085      -2.311 
 
    Point   Image       Vx          Vy 
     155       1      -0.101       2.375 
     155       2       0.088      -2.395 
 
    Point   Image       Vx          Vy 
     156       1      -0.105       2.458 
     156       2       0.091      -2.479 
 
    Point   Image       Vx          Vy 
     157       1       0.092      -2.134 
     157       2      -0.077       2.118 
 
    Point   Image       Vx          Vy 
     158       1       0.092      -2.083 
     158       2      -0.073       2.068 
 
    Point   Image       Vx          Vy 
     159       1      -0.025       0.567 
     159       2       0.020      -0.566 
 
    Point   Image       Vx          Vy 
     160       1      -0.049       1.114 
     160       2       0.040      -1.114 
 
    Point   Image       Vx          Vy 
     161       1      -0.123       2.862 
     161       2       0.105      -2.886 
 
    Point   Image       Vx          Vy 
     162       1      -0.149       3.433 
     162       2       0.125      -3.465 
 
    Point   Image       Vx          Vy 
     163       1      -0.151       3.466 
     163       2       0.126      -3.499 
 
    Point   Image       Vx          Vy 
     164       1      -0.166       3.799 
     164       2       0.138      -3.837 
 
    Point   Image       Vx          Vy 
     165       1      -0.089       2.468 
     165       2       0.107      -2.451 
 
    Point   Image       Vx          Vy 
     166       1      -0.055       1.509 
     166       2       0.065      -1.502 
 
    Point   Image       Vx          Vy 
     167       1      -0.016       0.408 
     167       2       0.016      -0.411 
 
    Point   Image       Vx          Vy 
     168       1      -0.029       0.714 
     168       2       0.028      -0.720 
 

    Point   Image       Vx          Vy 
     169       1      -0.086       2.377 
     169       2       0.102      -2.360 
 
    Point   Image       Vx          Vy 
     170       1      -0.063       1.726 
     170       2       0.074      -1.718 
 
    Point   Image       Vx          Vy 
     171       1       0.030      -0.840 
     171       2      -0.037       0.845 
 
    Point   Image       Vx          Vy 
     172       1      -0.027       0.734 
     172       2       0.031      -0.732 
 
    Point   Image       Vx          Vy 
     173       1      -0.017       0.449 
     173       2       0.019      -0.448 
 
    Point   Image       Vx          Vy 
     174       1      -0.008       0.216 
     174       2       0.009      -0.215 
 
    Point   Image       Vx          Vy 
     175       1      -0.001       0.014 
     175       2       0.001      -0.014 
 
    Point   Image       Vx          Vy 
     176       1       0.022      -0.552 
     176       2      -0.022       0.552 
 
    Point   Image       Vx          Vy 
     177       1       0.025      -0.651 
     177       2      -0.026       0.650 
 
    Point   Image       Vx          Vy 
     178       1       0.023      -0.590 
     178       2      -0.024       0.592 
 
    Point   Image       Vx          Vy 
     179       1       0.018      -0.467 
     179       2      -0.019       0.470 
 
    Point   Image       Vx          Vy 
     180       1       0.018      -0.460 
     180       2      -0.019       0.464 
 
    Point   Image       Vx          Vy 
     181       1      -0.004       0.105 
     181       2       0.004      -0.105 
 
    Point   Image       Vx          Vy 
     182       1       0.004      -0.098 
     182       2      -0.004       0.099 
 
    Point   Image       Vx          Vy 
     183       1      -0.011       0.268 
     183       2       0.011      -0.271 
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    Point   Image       Vx          Vy 
     184       1       0.034      -0.824 
     184       2      -0.031       0.822 
 
    Point   Image       Vx          Vy 
     185       1      -0.017       0.392 
     185       2       0.015      -0.392 
 
    Point   Image       Vx          Vy 
     186       1      -0.040       0.985 
     186       2       0.038      -0.992 
 
    Point   Image       Vx          Vy 
     187       1      -0.065       1.546 
     187       2       0.059      -1.558 
 
    Point   Image       Vx          Vy 
     188       1      -0.072       1.718 
     188       2       0.065      -1.731 
 
    Point   Image       Vx          Vy 
     189       1      -0.095       2.224 
     189       2       0.083      -2.242 
 
    Point   Image       Vx          Vy 
     190       1      -0.023       0.519 
     190       2       0.019      -0.518 
 
    Point   Image       Vx          Vy 
     191       1      -0.033       0.769 
     191       2       0.028      -0.769 
 
    Point   Image       Vx          Vy 
     192       1      -0.023       0.600 
     192       2       0.025      -0.598 
 
    Point   Image       Vx          Vy 
     193       1       0.082      -1.976 
     193       2      -0.075       1.972 
 
    Point   Image       Vx          Vy 
     194       1      -0.007       0.177 
     194       2       0.007      -0.177 
 
    Point   Image       Vx          Vy 
     195       1       0.018      -0.456 
     195       2      -0.019       0.459 
 
    Point   Image       Vx          Vy 
     196       1       0.004      -0.094 
     196       2      -0.004       0.093 
 
    Point   Image       Vx          Vy 
     197       1      -0.070       1.662 
     197       2       0.063      -1.675 
 
    Point   Image       Vx          Vy 
     198       1      -0.077       2.101 
     198       2       0.089      -2.083 
 

    Point   Image       Vx          Vy 
     199       1      -0.064       1.739 
     199       2       0.074      -1.729 
 
    Point   Image       Vx          Vy 
     200       1      -0.065       1.787 
     200       2       0.077      -1.778 
 
    Point   Image       Vx          Vy 
     201       1       0.033      -0.892 
     201       2      -0.038       0.897 
 
    Point   Image       Vx          Vy 
     202       1       0.028      -0.753 
     202       2      -0.032       0.758 
 
    Point   Image       Vx          Vy 
     203       1      -0.006       0.143 
     203       2       0.006      -0.143 
 
    Point   Image       Vx          Vy 
     204       1       0.005      -0.128 
     204       2      -0.005       0.128 
 
    Point   Image       Vx          Vy 
     205       1       0.001      -0.022 
     205       2      -0.001       0.022 
 
    Point   Image       Vx          Vy 
     206       1       0.011      -0.279 
     206       2      -0.011       0.278 
 
    Point   Image       Vx          Vy 
     207       1      -0.004       0.103 
     207       2       0.004      -0.103 
 
    Point   Image       Vx          Vy 
     208       1       0.063      -1.542 
     208       2      -0.060       1.540 
 
    Point   Image       Vx          Vy 
     209       1       0.184      -4.511 
     209       2      -0.174       4.504 
 
    Point   Image       Vx          Vy 
     210       1       0.009      -0.202 
     210       2      -0.008       0.202 
 
    Point   Image       Vx          Vy 
     211       1      -0.011       0.255 
     211       2       0.010      -0.255 
 
    Point   Image       Vx          Vy 
     212       1      -0.017       0.414 
     212       2       0.016      -0.416 
 
    Point   Image       Vx          Vy 
     213       1      -0.029       0.653 
     213       2       0.023      -0.653 
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    Point   Image       Vx          Vy 
     214       1      -0.075       1.710 
     214       2       0.061      -1.719 
 
    Point   Image       Vx          Vy 
     215       1       0.184      -4.502 
     215       2      -0.173       4.494 
 
    Point   Image       Vx          Vy 
     216       1      -0.046       1.122 
     216       2       0.043      -1.131 
 
    Point   Image       Vx          Vy 
     217       1      -0.037       0.916 
     217       2       0.036      -0.924 
 
    Point   Image       Vx          Vy 
     218       1       0.033      -0.896 
     218       2      -0.039       0.902 
 
    Point   Image       Vx          Vy 
     219       1      -0.038       0.885 
     219       2       0.032      -0.884 
 
    Point   Image       Vx          Vy 
     220       1      -0.109       2.550 
     220       2       0.095      -2.572 
 
    Point   Image       Vx          Vy 
     221       1       0.063      -1.759 
     221       2      -0.078       1.775 
 
    Point   Image       Vx          Vy 
     222       1       0.012      -0.329 
     222       2      -0.014       0.331 
 
    Point   Image       Vx          Vy 
     223       1       0.026      -0.676 
     223       2      -0.028       0.681 
 
    Point   Image       Vx          Vy 
     224       1       0.127      -3.142 
     224       2      -0.122       3.139 
 
    Point   Image       Vx          Vy 
     225       1      -0.033       0.800 
     225       2       0.031      -0.806 
 
    Point   Image       Vx          Vy 
     226       1      -0.004       0.101 
     226       2       0.004      -0.100 
 
    Point   Image       Vx          Vy 
     227       1      -0.052       1.199 
     227       2       0.043      -1.206 
 
    Point   Image       Vx          Vy 
     228       1      -0.052       1.178 
     228       2       0.042      -1.179 
 

    Point   Image       Vx          Vy 
     229       1       0.053      -1.439 
     229       2      -0.061       1.444 
 
    Point   Image       Vx          Vy 
     230       1       0.018      -0.484 
     230       2      -0.020       0.488 
 
    Point   Image       Vx          Vy 
     231       1       0.054      -1.476 
     231       2      -0.064       1.489 
 
    Point   Image       Vx          Vy 
     232       1      -0.055       1.474 
     232       2       0.062      -1.465 
 
    Point   Image       Vx          Vy 
     233       1       0.017      -0.452 
     233       2      -0.019       0.455 
 
    Point   Image       Vx          Vy 
     234       1       0.006      -0.145 
     234       2      -0.006       0.145 
 
    Point   Image       Vx          Vy 
     235       1       0.002      -0.057 
     235       2      -0.002       0.057 
 
    Point   Image       Vx          Vy 
     236       1       0.149      -3.652 
     236       2      -0.141       3.647 
 
    Point   Image       Vx          Vy 
     237       1      -0.038       0.922 
     237       2       0.036      -0.930 
 
    Point   Image       Vx          Vy 
     238       1      -0.042       1.032 
     238       2       0.040      -1.040 
 
    Point   Image       Vx          Vy 
     239       1      -0.040       0.990 
     239       2       0.039      -0.998 
 
    Point   Image       Vx          Vy 
     240       1      -0.174       3.962 
     240       2       0.143      -4.003 
 
    Point   Image       Vx          Vy 
     241       1      -0.008       0.214 
     241       2       0.009      -0.213 
 
    Point   Image       Vx          Vy 
     242       1      -0.021       0.534 
     242       2       0.021      -0.539 
 
    Point   Image       Vx          Vy 
     243       1      -0.078       1.918 
     243       2       0.075      -1.935 
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    Point   Image       Vx          Vy 
     244       1       0.091      -2.111 
     244       2      -0.076       2.095 
 
    Point   Image       Vx          Vy 
     245       1       0.020      -0.561 
     245       2      -0.024       0.564 
 
    Point   Image       Vx          Vy 
     246       1       0.001      -0.027 
     246       2      -0.001       0.027 
 
    Point   Image       Vx          Vy 
     247       1       0.037      -0.987 
     247       2      -0.042       0.995 
 
    Point   Image       Vx          Vy 
     248       1       0.016      -0.383 
     248       2      -0.015       0.381 
 
    Point   Image       Vx          Vy 
     249       1      -0.104       2.564 
     249       2       0.101      -2.583 
 
    Point   Image       Vx          Vy 
     250       1       0.145      -3.380 
     250       2      -0.123       3.371 
 
    Point   Image       Vx          Vy 
     251       1      -0.012       0.283 
     251       2       0.010      -0.283 
 
    Point   Image       Vx          Vy 
     252       1      -0.083       1.957 
     252       2       0.074      -1.973 
 
    Point   Image       Vx          Vy 
     253       1       0.121      -2.787 
     253       2      -0.099       2.764 
 
    Point   Image       Vx          Vy 
     254       1      -0.164       3.766 
     254       2       0.137      -3.804 
 
    Point   Image       Vx          Vy 
     255       1       0.052      -1.431 
     255       2      -0.062       1.443 
 
    Point   Image       Vx          Vy 
     256       1       0.012      -0.298 
     256       2      -0.012       0.298 
 
    Point   Image       Vx          Vy 
     257       1       0.031      -0.740 
     257       2      -0.028       0.740 
 

    Point   Image       Vx          Vy 
     258       1       0.107      -2.425 
     258       2      -0.085       2.405 
 
    Point   Image       Vx          Vy 
     259       1       0.001      -0.033 
     259       2      -0.001       0.033 
 
    Point   Image       Vx          Vy 
     260       1       0.365      -8.894 
     260       2      -0.339       8.892 
 
    Point   Image       Vx          Vy 
     261       1       0.126      -3.520 
     261       2      -0.153       3.512 
 
    Point   Image       Vx          Vy 
     262       1      -0.131       3.536 
     262       2       0.151      -3.546 
 
    Point   Image       Vx          Vy 
     263       1       0.318      -8.634 
     263       2      -0.368       8.704 
 
    Point   Image       Vx          Vy 
     264       1      -0.012       0.319 
     264       2       0.013      -0.318 
 
    Point   Image       Vx          Vy 
     265       1      -0.028       0.653 
     265       2       0.023      -0.648 
 
    Point   Image       Vx          Vy 
     266       1      -0.013       0.338 
     266       2       0.014      -0.337 
 
    Point   Image       Vx          Vy 
     267       1       0.025      -0.652 
     267       2      -0.027       0.656 
 
    Point   Image       Vx          Vy 
     268       1       0.001      -0.015 
     268       2      -0.001       0.015 
 
    Point   Image       Vx          Vy 
     269       1      -0.011       0.263 
     269       2       0.010      -0.263 
 
    Point   Image       Vx          Vy 
     270       1      -0.275       6.729 
     270       2       0.260      -6.701 
 
    Point   Image       Vx          Vy 
     271       1       0.118      -2.709 
     271       2      -0.097       2.708 
 

    Mean error of 542 image points: ax=-0.000, ay=-0.000 
    RMSE of 542 image points: mx=0.083, my=2.104 
 
              The coordinates of object points 
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  Point ID         X               Y             Z      Overlap 
       1     505042.8910    4037516.5530      334.0000     2 
       2     505094.4580    4037516.0800      334.0000     2 
       3     505007.0820    4037333.8840      322.0000     2 
       4     504713.0510    4037614.9930      313.0000     2 
       5     504601.8990    4037669.2790      312.0000     2 
       6     504340.9410    4037581.9580      315.0000     2 
       7     503546.4500    4037696.7940      318.0000     2 
       8     504478.7140    4037059.9280      316.0000     2 
       9     504376.8300    4037267.7550      314.0000     2 
      10     505031.1530    4036802.0190      316.0000     2 
      11     504065.0060    4036910.2330      315.0000     2 
      12     503746.9370    4036772.5050      317.0000     2 
      13     503729.2680    4037192.5400      316.0000     2 
      14     503942.2510    4037348.2760      315.0000     2 
      15     503389.4730    4037819.3980      318.0000     2 
      16     503808.0140    4038084.4600      316.0000     2 
      17     504560.0830    4038214.9560      314.0000     2 
      18     503804.0810    4038515.1330      319.0000     2 
      19     503608.5600    4038248.3830      318.0000     2 
      20     503281.3510    4038858.2580      316.0000     2 
      21     503261.1760    4038610.6980      317.0000     2 
      22     503902.7970    4038860.3510      318.0000     2 
      23     504362.1760    4038971.5810      310.0000     2 
      24     504129.2060    4038708.1280      319.0000     2 
      25     504257.1420    4038479.5220      316.0000     2 
      26     504293.1000    4038251.4910      315.0000     2 
      27     504745.8870    4037983.4050      312.0000     2 
      28     505231.9530    4038041.9560      314.0000     2 
      29     505051.9480    4038347.4890      316.0000     2 
      30     506309.0260    4039214.0090      316.0000     2 
      31     507272.1840    4036813.5980      315.0000     2 
      32     506873.0320    4037624.2000      316.0000     2 
      33     506794.4240    4038491.2990      316.0000     2 
      34     507639.9260    4038506.3540      319.0000     2 
      35     507298.6220    4038476.2790      318.0000     2 
      36     507038.2880    4038695.1040      317.0000     2 
      37     506963.1070    4039105.8870      319.0000     2 
      38     507661.3230    4037215.6830      316.0000     2 
      39     505697.2910    4039181.2020      317.0000     2 
      40     505887.7620    4038816.2940      319.0000     2 
      41     505774.1650    4038371.0970      317.0000     2 
      42     505891.5230    4037879.9820      316.0000     2 
      43     506063.1880    4037621.5870      318.0000     2 
      44     506215.7290    4037264.6540      317.0000     2 
      45     506582.2600    4036829.4190      317.0000     2 
      46     505456.8260    4036646.0290      309.0000     2 
      47     505439.1030    4037015.5450      312.0000     2 
      48     504887.1530    4036988.2390      311.0000     2 
      49     504841.9650    4038413.2080      311.0000     2 
      50     505017.5520    4038866.7640      315.0000     2 
      51     503798.0520    4037531.3530      315.0000     2 
      52     504236.9120    4037747.3880      317.0000     2 
      53     505431.5500    4038920.9460      318.0000     2 
      54     505307.0470    4038392.0040      315.0000     2 
      55     507538.4570    4037915.1830      317.0000     2 
      56     506170.9790    4038500.7010      319.0000     2 
      57     503896.5982    4038964.7259      321.7708     2 
      58     503975.4732    4038959.1282      322.2420     2 
      59     503850.6524    4038826.6041      321.3275     2 
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      60     504219.9102    4039028.1599      321.6138     2 
      61     504349.4360    4038983.7908      321.1873     2 
      62     504332.6992    4038937.3326      321.3574     2 
      63     504528.6350    4038996.4607      321.4757     2 
      64     506307.4179    4039193.5892      315.8467     2 
      65     506505.7114    4039121.7306      316.3972     2 
      66     506483.9245    4039094.2069      316.2101     2 
      67     506935.6149    4039170.9978      315.7817     2 
      68     506837.2788    4039113.6835      315.4551     2 
      69     504100.9572    4038694.6551      320.6899     2 
      70     504355.4353    4038766.0624      320.1699     2 
      71     504476.1070    4038659.9088      319.7792     2 
      72     504681.4624    4038827.9786      319.9402     2 
      73     504612.5398    4038808.2822      321.2268     2 
      74     504665.6013    4038733.4878      319.9729     2 
      75     504604.3792    4038626.2275      319.4817     2 
      76     504585.8066    4038573.8820      320.4213     2 
      77     504754.8856    4038596.4529      319.4510     2 
      78     504936.6487    4038720.6982      319.3316     2 
      79     506452.1786    4038986.2734      316.4122     2 
      80     506476.0784    4038907.1442      316.6421     2 
      81     506567.4917    4039034.7741      316.5862     2 
      82     506549.8028    4038983.2104      316.6139     2 
      83     506525.8766    4038882.3604      317.3055     2 
      84     506789.7153    4039076.1077      316.4685     2 
      85     507365.1661    4039133.1058      315.7058     2 
      86     507308.8519    4038912.0484      317.0937     2 
      87     504243.2358    4038425.7213      319.1813     2 
      88     504455.5377    4038404.0923      319.6502     2 
      89     504325.3521    4038371.9055      319.5820     2 
      90     504323.6088    4038328.4414      318.9269     2 
      91     504585.9439    4038240.5173      318.7377     2 
      92     504651.4179    4038491.0217      319.7337     2 
      93     504888.6753    4038507.6036      318.1052     2 
      94     505031.1239    4038382.7315      319.5177     2 
      95     505095.1440    4038341.8573      318.9228     2 
      96     505104.4794    4038306.1063      318.5506     2 
      97     506522.9779    4038566.7777      318.5406     2 
      98     506722.9198    4038644.4245      318.4241     2 
      99     506696.1338    4038505.7433      319.6222     2 
     100     504295.9251    4038188.8026      318.0236     2 
     101     504625.7490    4038192.4754      318.5936     2 
     102     504759.5743    4038196.0742      318.7843     2 
     103     505109.5823    4038259.5196      318.6448     2 
     104     505088.7031    4038121.4838      319.1636     2 
     105     506620.9101    4038426.8018      319.9186     2 
     106     506644.8194    4038254.9595      320.6923     2 
     107     506678.4798    4038391.5498      319.6421     2 
     108     507259.3311    4038305.5606      322.2235     2 
     109     507301.0629    4038447.7564      321.7307     2 
     110     504566.3082    4037658.4403      317.1732     2 
     111     504817.7349    4037683.7095      317.5908     2 
     112     505126.7600    4037983.0417      316.5265     2 
     113     505223.9875    4037977.7811      318.7832     2 
     114     506641.3208    4038163.0532      320.4882     2 
     115     506645.9221    4038145.8147      320.9463     2 
     116     506679.4886    4038137.9756      320.9051     2 
     117     507158.7166    4038141.0541      323.0002     2 
     118     507200.6823    4038132.4673      323.3315     2 
     119     507170.8458    4038065.8791      323.0931     2 
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     120     504676.9156    4037575.6531      316.7783     2 
     121     504784.8282    4037523.2997      316.5809     2 
     122     504952.8350    4037692.3603      317.6637     2 
     123     505358.9018    4037567.2729      318.7764     2 
     124     506718.2182    4037838.0753      322.8088     2 
     125     506778.0329    4037829.2483      323.0733     2 
     126     506722.0867    4037785.5714      323.4384     2 
     127     506755.3953    4037784.7947      323.0057     2 
     128     507031.3469    4037734.7091      323.7049     2 
     129     507021.2400    4037670.5824      322.0531     2 
     130     504370.9756    4037253.8647      314.2308     2 
     131     504869.4258    4037379.0524      317.1583     2 
     132     504890.1838    4037276.9226      314.8565     2 
     133     504931.3408    4037281.6993      314.9588     2 
     134     504886.2986    4037102.5153      314.0449     2 
     135     505351.1581    4037424.0188      318.7301     2 
     136     505352.8953    4037393.9679      315.7363     2 
     137     505339.7050    4037330.4479      317.1369     2 
     138     505314.6873    4037322.3008      316.6485     2 
     139     505354.8671    4037181.5031      317.0025     2 
     140     506834.9852    4037594.5942      321.9248     2 
     141     506918.6477    4037597.0236      323.1630     2 
     142     506890.8359    4037526.0696      322.9628     2 
     143     506817.7388    4037499.5166      322.9622     2 
     144     506896.0845    4037593.6549      322.7673     2 
     145     503984.5359    4036819.3483      308.1492     2 
     146     504482.9746    4037014.9861      311.0539     2 
     147     504974.4961    4037058.2002      314.9973     2 
     148     505228.3233    4037112.4304      316.4822     2 
     149     505228.1297    4037037.0300      316.2140     2 
     150     505372.4038    4037154.4149      317.1772     2 
     151     505409.6507    4037159.8573      317.2778     2 
     152     505378.2928    4037095.9118      316.7924     2 
     153     505438.0154    4037016.3082      318.0058     2 
     154     506941.3174    4037177.7846      325.2214     2 
     155     506902.8987    4037143.1990      325.5101     2 
     156     506930.6520    4037141.6539      325.9462     2 
     157     504147.1110    4036716.3116      309.2092     2 
     158     504259.7599    4036450.8079      308.7855     2 
     159     505237.1813    4036773.3686      315.7677     2 
     160     505496.2235    4036684.4155      318.4562     2 
     161     506940.8794    4037017.1356      325.9119     2 
     162     507092.1578    4036913.0438      327.6149     2 
     163     507149.6208    4036900.8480      328.3797     2 
     164     507249.8744    4036845.5900      329.5260     2 
     165     504177.7426    4038972.9432      321.4248     2 
     166     504560.2097    4038881.6506      320.1821     2 
     167     506675.3761    4037946.1294      322.0513     2 
     168     506825.7927    4037723.0123      323.6744     2 
     169     504118.4226    4038934.7831      321.6330     2 
     170     504503.7185    4038845.4042      320.9124     2 
     171     506514.8619    4039100.6220      316.4975     2 
     172     504883.0470    4038740.9082      318.8539     2 
     173     504877.9728    4038403.7512      319.1910     2 
     174     504841.7382    4038283.6076      318.2352     2 
     175     504883.3798    4038012.4251      317.4795     2 
     176     505164.8787    4038071.2606      318.7569     2 
     177     505197.3145    4038074.8356      319.0234     2 
     178     505888.8443    4038260.5024      317.9071     2 
     179     506647.0337    4038317.5030      320.0318     2 
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     180     506722.2472    4038405.5797      318.4344     2 
     181     506713.9813    4037991.0940      322.3658     2 
     182     507251.5753    4038095.8927      323.3740     2 
     183     507005.3250    4037907.6339      324.1234     2 
     184     505031.4957    4037333.7021      315.7032     2 
     185     505359.7088    4037183.6582      316.8954     2 
     186     506829.9074    4037625.0925      321.9588     2 
     187     506874.6845    4037424.7647      323.7426     2 
     188     506843.0641    4037324.1109      324.1128     2 
     189     506871.1415    4037188.2908      324.9464     2 
     190     505274.3166    4036778.7971      315.9183     2 
     191     505371.8747    4036749.4915      316.2406     2 
     192     504657.4408    4038339.2209      318.1147     2 
     193     505100.4935    4037378.1420      317.7202     2 
     194     505472.7734    4037230.1616      317.8392     2 
     195     506617.2902    4038233.3222      320.4353     2 
     196     504951.1759    4037237.1950      315.5940     2 
     197     506862.9723    4037360.6643      323.6032     2 
     198     503860.8047    4038779.3336      320.4215     2 
     199     504409.1302    4038764.5420      320.3323     2 
     200     504522.1161    4038860.5375      321.6612     2 
     201     506543.8277    4038941.5340      317.0356     2 
     202     506509.0996    4038921.6156      317.0205     2 
     203     504957.8476    4038213.7505      318.2419     2 
     204     505025.5857    4038142.6537      318.4943     2 
     205     505009.8870    4038121.2496      318.7210     2 
     206     504874.4895    4037427.0805      317.4459     2 
     207     504924.8265    4037687.1246      317.1757     2 
     208     505217.7916    4037596.5148      319.7951     2 
     209     505184.3825    4037551.9278      317.9485     2 
     210     504907.1640    4037156.0131      314.5782     2 
     211     505213.9548    4037163.0691      316.6467     2 
     212     506213.7207    4037314.4302      319.2143     2 
     213     505387.8563    4036660.9771      316.9735     2 
     214     506429.2889    4036746.8597      322.5429     2 
     215     505132.5354    4037522.0212      316.4715     2 
     216     506872.1405    4037608.5750      322.7423     2 
     217     506995.5123    4037692.3913      322.6109     2 
     218     506537.3995    4039066.4971      316.3429     2 
     219     505407.4560    4036753.6409      317.2156     2 
     220     506973.2590    4037124.2545      325.5907     2 
     221     506998.8885    4039301.7123      314.8994     2 
     222     506472.2521    4038868.2714      316.6954     2 
     223     506705.0160    4038644.7631      318.2278     2 
     224     505296.8150    4037640.7256      312.0804     2 
     225     506806.8139    4037732.3789      323.4858     2 
     226     505232.3744    4037196.3036      315.5008     2 
     227     506448.0185    4036783.7484      322.8420     2 
     228     505631.9313    4036655.8037      317.7692     2 
     229     505909.3802    4038777.7243      316.6031     2 
     230     507067.1020    4038692.4944      319.1178     2 
     231     506939.7060    4039112.9998      316.0274     2 
     232     504298.0696    4038665.7222      320.0908     2 
     233     506658.5930    4038399.4026      319.7183     2 
     234     505060.8605    4037722.2691      317.9347     2 
     235     504888.9683    4037621.5436      318.2078     2 
     236     505224.3186    4037556.2163      318.0633     2 
     237     506936.2520    4037722.2397      323.8432     2 
     238     506794.7865    4037666.3193      322.1908     2 
     239     506940.4572    4037703.8159      322.8869     2 
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     240     507295.5484    4036797.9456      330.0114     2 
     241     504694.4794    4038156.5293      317.5652     2 
     242     507003.7137    4037987.4024      322.2611     2 
     243     506967.0282    4037712.4768      315.5857     2 
     244     504147.4926    4036713.9980      309.2076     2 
     245     506412.0166    4039136.9817      316.5655     2 
     246     504926.1011    4038739.7409      319.2828     2 
     247     506741.8090    4038732.7239      318.4673     2 
     248     504731.8896    4037515.6173      316.0402     2 
     249     506783.3060    4037798.9575      309.9281     2 
     250     505026.5589    4036895.6174      267.9588     2 
     251     505432.0077    4037031.0512      317.6451     2 
     252     506882.1718    4037261.6148      324.3609     2 
     253     504011.2885    4036596.2671      306.3991     2 
     254     507217.1078    4036882.6080      329.3633     2 
     255     506849.5447    4039014.9190      315.9370     2 
     256     505942.1834    4037825.1008      317.8201     2 
     257     505312.2208    4037322.3373      321.0007     2 
     258     504095.1286    4036409.5062      305.9175     2 
     259     506646.4053    4038019.5715      320.2800     2 
     260     505398.7748    4037483.5694      318.1728     2 
     261     504968.3628    4039134.9284      308.5868     2 
     262     505891.6732    4038831.2768      314.2652     2 
     263     506817.5122    4038882.5068      332.2422     2 
     264     505001.1387    4038545.7233      315.6698     2 
     265     504103.1865    4036617.6229      363.5526     2 
     266     504870.0135    4038316.3410      315.7135     2 
     267     506513.3137    4038603.1763      317.4795     2 
     268     505915.7034    4037861.1149      311.9026     2 
     269     505184.4898    4037197.4582      312.8917     2 
     270     504698.4655    4037530.4738      334.2671     2 
     271     505433.3822    4036710.1410      315.2334     2 
              The total object points = 271 
 
        The residuals of image points 
 
    
Point   Image       Vx          Vy 
       1       1     -13.964      -4.934 
       1       2      -3.959       3.272 
 
    Point   Image       Vx          Vy 
       2       1     -15.229      -5.096 
       2       2      -5.701       4.128 
 
    Point   Image       Vx          Vy 
       3       1      -4.875      -3.415 
       3       2      -1.972      -1.154 
 
    Point   Image       Vx          Vy 
       4       1       0.943      -1.997 
       4       2      -1.520      -1.897 
 
    Point   Image       Vx          Vy 
       5       1      -0.137      -1.369 
       5       2      -1.643       0.298 
 
    Point   Image       Vx          Vy 
       6       1      -0.628      -1.972 
       6       2      -3.489      -0.121 

 
    Point   Image       Vx          Vy 
       7       1       3.784      -1.173 
       7       2      -1.248       1.543 
 
    Point   Image       Vx          Vy 
       8       1      -1.095      -2.249 
       8       2      -1.971       0.172 
 
    Point   Image       Vx          Vy 
       9       1      -1.478       5.094 
       9       2      -2.737       7.546 
 
    Point   Image       Vx          Vy 
      10       1      -3.934      -2.465 
      10       2      -2.791      -2.088 
 
    Point   Image       Vx          Vy 
      11       1      -1.186      -4.500 
      11       2      -3.069       0.619 
 
    Point   Image       Vx          Vy 
      12       1       0.840      -5.944 
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      12       2      -2.224      -0.420 
 
    Point   Image       Vx          Vy 
      13       1       1.606      -2.922 
      13       2      -3.964       1.788 
 
    Point   Image       Vx          Vy 
      14       1       1.105      -3.689 
      14       2      -4.412       0.500 
 
    Point   Image       Vx          Vy 
      15       1       5.364      -1.284 
      15       2      -1.667       1.752 
 
    Point   Image       Vx          Vy 
      16       1       0.704     -12.773 
      16       2       1.538       2.999 
 
    Point   Image       Vx          Vy 
      17       1       0.463      -0.447 
      17       2      -1.303      -1.091 
 
    Point   Image       Vx          Vy 
      18       1      -1.920       4.085 
      18       2      -3.502       1.629 
 
    Point   Image       Vx          Vy 
      19       1       1.276       7.694 
      19       2      -2.169      -0.165 
 
    Point   Image       Vx          Vy 
      20       1       3.135       7.605 
      20       2      -4.013       1.861 
 
    Point   Image       Vx          Vy 
      21       1      12.199       6.735 
      21       2       4.129       3.561 
 
    Point   Image       Vx          Vy 
      22       1      -0.096       6.241 
      22       2      -1.439       2.777 
 
    Point   Image       Vx          Vy 
      23       1       9.524       4.871 
      23       2       7.022       1.018 
 
    Point   Image       Vx          Vy 
      24       1      -0.342       2.436 
      24       2      -1.221      -0.949 
 
    Point   Image       Vx          Vy 
      25       1      -0.801       2.537 
      25       2      -2.462       0.532 
 
    Point   Image       Vx          Vy 
      26       1       2.053      -0.154 
      26       2      -0.734      -0.369 
 
    Point   Image       Vx          Vy 
      27       1      -5.107      -7.052 

      27       2      -8.341      -6.686 
 
    Point   Image       Vx          Vy 
      28       1       0.042      -2.125 
      28       2      -1.436      -2.461 
 
    Point   Image       Vx          Vy 
      29       1      -2.760      -0.640 
      29       2      -1.930      -0.294 
 
    Point   Image       Vx          Vy 
      30       1      -9.642      -1.047 
      30       2      -5.958      -0.084 
 
    Point   Image       Vx          Vy 
      31       1       7.529       9.239 
      31       2       2.519       3.749 
 
    Point   Image       Vx          Vy 
      32       1       3.364       2.260 
      32       2       0.524       1.253 
 
    Point   Image       Vx          Vy 
      33       1      -2.149       1.778 
      33       2      -5.600      -2.830 
 
    Point   Image       Vx          Vy 
      34       1       9.784       0.910 
      34       2       3.022       5.165 
 
    Point   Image       Vx          Vy 
      35       1      10.802       0.942 
      35       2       6.782       1.027 
 
    Point   Image       Vx          Vy 
      36       1       1.099       2.648 
      36       2      -0.462       5.194 
 
    Point   Image       Vx          Vy 
      37       1       2.717      -0.653 
      37       2       1.427       0.547 
 
    Point   Image       Vx          Vy 
      38       1      10.881       7.521 
      38       2       1.556       2.323 
 
    Point   Image       Vx          Vy 
      39       1      -3.206      -2.252 
      39       2      -0.036      -1.470 
 
    Point   Image       Vx          Vy 
      40       1      -2.836      -8.738 
      40       2      -2.938      -7.685 
 
    Point   Image       Vx          Vy 
      41       1      -3.892      -0.894 
      41       2      -0.941      -0.097 
 
    Point   Image       Vx          Vy 
      42       1       5.338      -6.726 
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      42       2       4.536      -6.677 
 
    Point   Image       Vx          Vy 
      43       1       0.360      -0.893 
      43       2       1.065      -0.063 
 
    Point   Image       Vx          Vy 
      44       1       2.458       2.669 
      44       2       1.685      -0.443 
 
    Point   Image       Vx          Vy 
      45       1       2.218       2.868 
      45       2       2.975      -0.667 
 
    Point   Image       Vx          Vy 
      46       1      -2.713       9.102 
      46       2      -2.574       7.485 
 
    Point   Image       Vx          Vy 
      47       1      -0.555      -1.102 
      47       2      -1.747      -1.590 
 
    Point   Image       Vx          Vy 
      48       1       0.940      -1.866 
      48       2      -1.762      -1.356 
 
    Point   Image       Vx          Vy 
      49       1      -2.168       0.872 
      49       2      -4.127       1.337 
 
    Point   Image       Vx          Vy 
      50       1      -0.554      -1.572 
      50       2      -0.831      -4.530 
 
    Point   Image       Vx          Vy 
      51       1       2.320      -0.878 
      51       2      -2.356       1.491 
 
    Point   Image       Vx          Vy 
      52       1      -1.106       2.178 
      52       2      -1.894       3.201 
 
    Point   Image       Vx          Vy 
      53       1     -14.426      -2.856 
      53       2      -3.989      -4.542 
 
    Point   Image       Vx          Vy 
      54       1       9.007      -0.472 
      54       2       2.590      -3.106 
 
    Point   Image       Vx          Vy 
      55       1     -15.690     -19.894 
      55       2      -2.575      18.627 
 
    Point   Image       Vx          Vy 
      56       1       1.709      -5.485 
      56       2       4.379      -5.694 
 
    Point   Image       Vx          Vy 
      57       1      -0.033       0.838 

      57       2      -1.512      -4.132 
 
    Point   Image       Vx          Vy 
      58       1      -0.027       0.713 
      58       2      -1.050      -3.765 
 
    Point   Image       Vx          Vy 
      59       1      -0.013       0.411 
      59       2      -2.136      -3.667 
 
    Point   Image       Vx          Vy 
      60       1      -0.062       1.453 
      60       2       0.448      -3.795 
 
    Point   Image       Vx          Vy 
      61       1      -0.051       1.222 
      61       2       0.953      -3.179 
 
    Point   Image       Vx          Vy 
      62       1      -0.045       1.101 
      62       2       0.791      -3.104 
 
    Point   Image       Vx          Vy 
      63       1      -0.049       1.184 
      63       2       1.679      -2.633 
 
    Point   Image       Vx          Vy 
      64       1      -0.049       1.182 
      64       2       1.252       2.389 
 
    Point   Image       Vx          Vy 
      65       1      -0.040       0.981 
      65       2       0.360       2.633 
 
    Point   Image       Vx          Vy 
      66       1      -0.034       0.868 
      66       2       0.475       2.561 
 
    Point   Image       Vx          Vy 
      67       1      -0.027       0.706 
      67       2      -2.229       4.007 
 
    Point   Image       Vx          Vy 
      68       1      -0.041       1.007 
      68       2      -1.515       3.178 
 
    Point   Image       Vx          Vy 
      69       1      -0.010       0.327 
      69       2      -0.874      -2.758 
 
    Point   Image       Vx          Vy 
      70       1      -0.034       0.872 
      70       2       0.589      -2.762 
 
    Point   Image       Vx          Vy 
      71       1       0.004       0.016 
      71       2       0.900      -1.587 
 
    Point   Image       Vx          Vy 
      72       1      -0.026       0.700 
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      72       2       1.922      -1.828 
 
    Point   Image       Vx          Vy 
      73       1      -0.028       0.752 
      73       2       1.668      -2.050 
 
    Point   Image       Vx          Vy 
      74       1      -0.019       0.534 
      74       2       1.733      -1.722 
 
    Point   Image       Vx          Vy 
      75       1      -0.021       0.565 
      75       2       1.373      -1.866 
 
    Point   Image       Vx          Vy 
      76       1      -0.019       0.531 
      76       2       1.223      -1.849 
 
    Point   Image       Vx          Vy 
      77       1      -0.001       0.124 
      77       2       1.813      -1.144 
 
    Point   Image       Vx          Vy 
      78       1       0.024      -0.415 
      78       2       2.404      -0.228 
 
    Point   Image       Vx          Vy 
      79       1      -0.028       0.726 
      79       2       0.667       2.109 
 
    Point   Image       Vx          Vy 
      80       1      -0.020       0.557 
      80       2       0.586       1.942 
 
    Point   Image       Vx          Vy 
      81       1      -0.028       0.743 
      81       2       0.082       2.530 
 
    Point   Image       Vx          Vy 
      82       1      -0.022       0.613 
      82       2       0.194       2.367 
 
    Point   Image       Vx          Vy 
      83       1      -0.013       0.406 
      83       2       0.357       2.048 
 
    Point   Image       Vx          Vy 
      84       1      -0.021       0.570 
      84       2      -1.206       3.309 
 
    Point   Image       Vx          Vy 
      85       1      -0.016       0.461 
      85       2      -5.522       4.707 
 
    Point   Image       Vx          Vy 
      86       1      -0.000       0.098 
      86       2      -4.760       3.476 
 
    Point   Image       Vx          Vy 
      87       1      -0.004       0.145 

      87       2      -0.596      -1.900 
 
    Point   Image       Vx          Vy 
      88       1      -0.006       0.199 
      88       2       0.416      -1.588 
 
    Point   Image       Vx          Vy 
      89       1      -0.000       0.067 
      89       2      -0.266      -1.607 
 
    Point   Image       Vx          Vy 
      90       1      -0.004       0.132 
      90       2      -0.344      -1.602 
 
    Point   Image       Vx          Vy 
      91       1       0.004      -0.053 
      91       2       0.724      -0.962 
 
    Point   Image       Vx          Vy 
      92       1      -0.011       0.329 
      92       2       1.340      -1.493 
 
    Point   Image       Vx          Vy 
      93       1       0.008      -0.100 
      93       2       2.072      -0.700 
 
    Point   Image       Vx          Vy 
      94       1       0.026      -0.551 
      94       2       2.247      -0.072 
 
    Point   Image       Vx          Vy 
      95       1       0.035      -0.770 
      95       2       2.326       0.214 
 
    Point   Image       Vx          Vy 
      96       1       0.037      -0.831 
      96       2       2.310       0.283 
 
    Point   Image       Vx          Vy 
      97       1       0.004      -0.008 
      97       2       0.528       1.108 
 
    Point   Image       Vx          Vy 
      98       1       0.005      -0.031 
      98       2      -0.510       1.602 
 
    Point   Image       Vx          Vy 
      99       1       0.007      -0.103 
      99       2      -0.264       1.061 
 
    Point   Image       Vx          Vy 
     100       1       0.033      -0.791 
     100       2      -0.764      -0.447 
 
    Point   Image       Vx          Vy 
     101       1      -0.000       0.039 
     101       2       0.822      -0.950 
 
    Point   Image       Vx          Vy 
     102       1       0.004      -0.063 
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     102       2       1.318      -0.733 
 
    Point   Image       Vx          Vy 
     103       1       0.036      -0.814 
     103       2       2.279       0.272 
 
    Point   Image       Vx          Vy 
     104       1       0.018      -0.426 
     104       2       2.132      -0.087 
 
    Point   Image       Vx          Vy 
     105       1       0.015      -0.296 
     105       2       0.156       0.915 
 
    Point   Image       Vx          Vy 
     106       1       0.016      -0.357 
     106       2       0.165       0.375 
 
    Point   Image       Vx          Vy 
     107       1       0.008      -0.124 
     107       2      -0.090       0.628 
 
    Point   Image       Vx          Vy 
     108       1       0.022      -0.504 
     108       2      -3.563       0.618 
 
    Point   Image       Vx          Vy 
     109       1       0.024      -0.531 
     109       2      -4.075       1.357 
 
    Point   Image       Vx          Vy 
     110       1       0.013      -0.426 
     110       2      -0.190       0.625 
 
    Point   Image       Vx          Vy 
     111       1      -0.003       0.025 
     111       2       0.927       0.038 
 
    Point   Image       Vx          Vy 
     112       1       0.012      -0.298 
     112       2       2.102      -0.113 
 
    Point   Image       Vx          Vy 
     113       1       0.011      -0.266 
     113       2       2.279      -0.128 
 
    Point   Image       Vx          Vy 
     114       1       0.012      -0.270 
     114       2       0.252      -0.007 
 
    Point   Image       Vx          Vy 
     115       1       0.017      -0.405 
     115       2       0.239       0.075 
 
    Point   Image       Vx          Vy 
     116       1       0.013      -0.292 
     116       2       0.095      -0.073 
 
    Point   Image       Vx          Vy 
     117       1       0.012      -0.290 

     117       2      -2.629      -0.291 
 
    Point   Image       Vx          Vy 
     118       1       0.015      -0.350 
     118       2      -2.904      -0.293 
 
    Point   Image       Vx          Vy 
     119       1       0.009      -0.221 
     119       2      -2.610      -0.676 
 
    Point   Image       Vx          Vy 
     120       1       0.000      -0.090 
     120       2       0.224       0.484 
 
    Point   Image       Vx          Vy 
     121       1      -0.001      -0.049 
     121       2       0.617       0.526 
 
    Point   Image       Vx          Vy 
     122       1       0.002      -0.089 
     122       2       1.393       0.086 
 
    Point   Image       Vx          Vy 
     123       1       0.003      -0.128 
     123       2       2.240       0.072 
 
    Point   Image       Vx          Vy 
     124       1       0.007      -0.199 
     124       2       0.169      -1.016 
 
    Point   Image       Vx          Vy 
     125       1       0.023      -0.631 
     125       2      -0.116      -0.669 
 
    Point   Image       Vx          Vy 
     126       1      -0.006       0.157 
     126       2       0.211      -1.498 
 
    Point   Image       Vx          Vy 
     127       1       0.009      -0.270 
     127       2       0.044      -1.113 
 
    Point   Image       Vx          Vy 
     128       1       0.006      -0.181 
     128       2      -1.327      -1.693 
 
    Point   Image       Vx          Vy 
     129       1       0.002      -0.098 
     129       2      -1.195      -1.941 
 
    Point   Image       Vx          Vy 
     130       1       0.001      -0.193 
     130       2      -1.826       1.972 
 
    Point   Image       Vx          Vy 
     131       1      -0.018       0.406 
     131       2       0.805       0.405 
 
    Point   Image       Vx          Vy 
     132       1      -0.022       0.525 
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     132       2       0.787       0.565 
 
    Point   Image       Vx          Vy 
     133       1      -0.019       0.443 
     133       2       0.943       0.579 
 
    Point   Image       Vx          Vy 
     134       1      -0.031       0.780 
     134       2       0.606       0.895 
 
    Point   Image       Vx          Vy 
     135       1       0.007      -0.295 
     135       2       2.144       0.465 
 
    Point   Image       Vx          Vy 
     136       1       0.001      -0.128 
     136       2       2.139       0.342 
 
    Point   Image       Vx          Vy 
     137       1       0.002      -0.154 
     137       2       2.079       0.508 
 
    Point   Image       Vx          Vy 
     138       1       0.001      -0.130 
     138       2       2.028       0.534 
 
    Point   Image       Vx          Vy 
     139       1      -0.026       0.665 
     139       2       2.057      -0.017 
 
    Point   Image       Vx          Vy 
     140       1      -0.004       0.083 
     140       2      -0.138      -2.000 
 
    Point   Image       Vx          Vy 
     141       1      -0.006       0.145 
     141       2      -0.549      -2.193 
 
    Point   Image       Vx          Vy 
     142       1      -0.006       0.132 
     142       2      -0.334      -2.282 
 
    Point   Image       Vx          Vy 
     143       1      -0.012       0.304 
     143       2       0.047      -2.369 
 
    Point   Image       Vx          Vy 
     144       1      -0.008       0.190 
     144       2      -0.430      -2.209 
 
    Point   Image       Vx          Vy 
     145       1      -0.010       0.024 
     145       2      -5.293       4.605 
 
    Point   Image       Vx          Vy 
     146       1      -0.035       0.867 
     146       2      -1.473       1.831 
 
    Point   Image       Vx          Vy 
     147       1      -0.026       0.646 

     147       2       0.898       1.035 
 
    Point   Image       Vx          Vy 
     148       1      -0.028       0.712 
     148       2       1.733       0.338 
 
    Point   Image       Vx          Vy 
     149       1      -0.033       0.867 
     149       2       1.690       0.400 
 
    Point   Image       Vx          Vy 
     150       1      -0.025       0.653 
     150       2       2.076       0.027 
 
    Point   Image       Vx          Vy 
     151       1      -0.030       0.793 
     151       2       2.151      -0.193 
 
    Point   Image       Vx          Vy 
     152       1      -0.028       0.724 
     152       2       2.061       0.085 
 
    Point   Image       Vx          Vy 
     153       1      -0.031       0.836 
     153       2       2.140       0.056 
 
    Point   Image       Vx          Vy 
     154       1      -0.031       0.896 
     154       2      -0.162      -3.707 
 
    Point   Image       Vx          Vy 
     155       1      -0.034       1.008 
     155       2       0.061      -3.754 
 
    Point   Image       Vx          Vy 
     156       1      -0.036       1.056 
     156       2      -0.063      -3.877 
 
    Point   Image       Vx          Vy 
     157       1      -0.022       0.414 
     157       2      -4.198       4.542 
 
    Point   Image       Vx          Vy 
     158       1      -0.043       1.165 
     158       2      -3.779       5.214 
 
    Point   Image       Vx          Vy 
     159       1      -0.053       1.594 
     159       2       1.574       0.520 
 
    Point   Image       Vx          Vy 
     160       1      -0.061       1.932 
     160       2       2.156      -0.220 
 
    Point   Image       Vx          Vy 
     161       1      -0.045       1.387 
     161       2       0.043      -4.354 
 
    Point   Image       Vx          Vy 
     162       1      -0.053       1.694 
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     162       2      -0.548      -5.217 
 
    Point   Image       Vx          Vy 
     163       1      -0.051       1.632 
     163       2      -0.832      -5.354 
 
    Point   Image       Vx          Vy 
     164       1      -0.054       1.777 
     164       2      -1.299      -5.895 
 
    Point   Image       Vx          Vy 
     165       1      -0.051       1.237 
     165       2       0.123      -3.691 
 
    Point   Image       Vx          Vy 
     166       1      -0.029       0.772 
     166       2       1.600      -2.176 
 
    Point   Image       Vx          Vy 
     167       1       0.002      -0.051 
     167       2       0.276      -0.857 
 
    Point   Image       Vx          Vy 
     168       1       0.003      -0.089 
     168       2      -0.223      -1.527 
 
    Point   Image       Vx          Vy 
     169       1      -0.045       1.078 
     169       2      -0.270      -3.686 
 
    Point   Image       Vx          Vy 
     170       1      -0.037       0.922 
     170       2       1.340      -2.473 
 
    Point   Image       Vx          Vy 
     171       1      -0.037       0.915 
     171       2       0.323       2.607 
 
    Point   Image       Vx          Vy 
     172       1      -0.010       0.319 
     172       2       2.343      -1.051 
 
    Point   Image       Vx          Vy 
     173       1       0.002       0.007 
     173       2       1.928      -0.813 
 
    Point   Image       Vx          Vy 
     174       1       0.011      -0.214 
     174       2       1.680      -0.578 
 
    Point   Image       Vx          Vy 
     175       1       0.011      -0.270 
     175       2       1.502      -0.238 
 
    Point   Image       Vx          Vy 
     176       1       0.033      -0.825 
     176       2       2.224       0.369 
 
    Point   Image       Vx          Vy 
     177       1       0.037      -0.920 

     177       2       2.279       0.473 
 
    Point   Image       Vx          Vy 
     178       1       0.030      -0.683 
     178       2       2.450       0.600 
 
    Point   Image       Vx          Vy 
     179       1       0.017      -0.355 
     179       2       0.108       0.586 
 
    Point   Image       Vx          Vy 
     180       1       0.010      -0.171 
     180       2      -0.324       0.739 
 
    Point   Image       Vx          Vy 
     181       1       0.012      -0.304 
     181       2       0.054      -0.510 
 
    Point   Image       Vx          Vy 
     182       1       0.019      -0.454 
     182       2      -3.213      -0.381 
 
    Point   Image       Vx          Vy 
     183       1       0.014      -0.363 
     183       2      -1.386      -0.953 
 
    Point   Image       Vx          Vy 
     184       1       0.012      -0.473 
     184       2       1.298       1.224 
 
    Point   Image       Vx          Vy 
     185       1      -0.026       0.670 
     185       2       2.067      -0.037 
 
    Point   Image       Vx          Vy 
     186       1      -0.003       0.066 
     186       2      -0.145      -1.912 
 
    Point   Image       Vx          Vy 
     187       1      -0.015       0.400 
     187       2      -0.138      -2.704 
 
    Point   Image       Vx          Vy 
     188       1      -0.019       0.526 
     188       2       0.119      -2.914 
 
    Point   Image       Vx          Vy 
     189       1      -0.031       0.918 
     189       2       0.151      -3.537 
 
    Point   Image       Vx          Vy 
     190       1      -0.050       1.485 
     190       2       1.677       0.511 
 
    Point   Image       Vx          Vy 
     191       1      -0.055       1.653 
     191       2       1.913       0.185 
 
    Point   Image       Vx          Vy 
     192       1      -0.000       0.056 
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     192       2       1.147      -1.098 
 
    Point   Image       Vx          Vy 
     193       1       0.056      -1.724 
     193       2       1.496       2.285 
 
    Point   Image       Vx          Vy 
     194       1      -0.014       0.306 
     194       2       2.264       0.036 
 
    Point   Image       Vx          Vy 
     195       1       0.021      -0.490 
     195       2       0.301       0.439 
 
    Point   Image       Vx          Vy 
     196       1      -0.020       0.452 
     196       2       0.971       0.679 
 
    Point   Image       Vx          Vy 
     197       1      -0.018       0.475 
     197       2      -0.013      -2.857 
 
    Point   Image       Vx          Vy 
     198       1      -0.022       0.573 
     198       2      -2.163      -3.723 
 
    Point   Image       Vx          Vy 
     199       1      -0.034       0.840 
     199       2       0.822      -2.602 
 
    Point   Image       Vx          Vy 
     200       1      -0.041       1.003 
     200       2       1.434      -2.509 
 
    Point   Image       Vx          Vy 
     201       1      -0.017       0.486 
     201       2       0.242       2.280 
 
    Point   Image       Vx          Vy 
     202       1      -0.020       0.547 
     202       2       0.425       2.071 
 
    Point   Image       Vx          Vy 
     203       1       0.010      -0.218 
     203       2       1.925      -0.428 
 
    Point   Image       Vx          Vy 
     204       1       0.019      -0.448 
     204       2       2.011      -0.111 
 
    Point   Image       Vx          Vy 
     205       1       0.014      -0.338 
     205       2       1.957      -0.216 
 
    Point   Image       Vx          Vy 
     206       1      -0.005       0.038 
     206       2       0.861       0.630 
 
    Point   Image       Vx          Vy 
     207       1      -0.005       0.086 

     207       2       1.305      -0.069 
 
    Point   Image       Vx          Vy 
     208       1       0.055      -1.571 
     208       2       1.948       1.589 
 
    Point   Image       Vx          Vy 
     209       1       0.157      -4.485 
     209       2       1.741       4.605 
 
    Point   Image       Vx          Vy 
     210       1      -0.022       0.510 
     210       2       0.731       0.945 
 
    Point   Image       Vx          Vy 
     211       1      -0.027       0.690 
     211       2       1.728       0.246 
 
    Point   Image       Vx          Vy 
     212       1       0.003      -0.170 
     212       2       2.088      -0.920 
 
    Point   Image       Vx          Vy 
     213       1      -0.054       1.670 
     213       2       1.910       0.433 
 
    Point   Image       Vx          Vy 
     214       1      -0.033       1.013 
     214       2       1.994      -2.345 
 
    Point   Image       Vx          Vy 
     215       1       0.154      -4.424 
     215       2       1.598       4.641 
 
    Point   Image       Vx          Vy 
     216       1      -0.006       0.157 
     216       2      -0.328      -2.105 
 
    Point   Image       Vx          Vy 
     217       1       0.001      -0.033 
     217       2      -1.073      -1.909 
 
    Point   Image       Vx          Vy 
     218       1      -0.031       0.794 
     218       2       0.222       2.595 
 
    Point   Image       Vx          Vy 
     219       1      -0.055       1.712 
     219       2       1.996       0.015 
 
    Point   Image       Vx          Vy 
     220       1      -0.036       1.081 
     220       2      -0.246      -4.044 
 
    Point   Image       Vx          Vy 
     221       1      -0.050       1.158 
     221       2      -2.778       4.551 
 
    Point   Image       Vx          Vy 
     222       1      -0.032       0.819 
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     222       2       0.636       1.500 
 
    Point   Image       Vx          Vy 
     223       1      -0.001       0.112 
     223       2      -0.407       1.450 
 
    Point   Image       Vx          Vy 
     224       1       0.115      -3.239 
     224       2       2.074       3.128 
 
    Point   Image       Vx          Vy 
     225       1      -0.001       0.019 
     225       2      -0.138      -1.589 
 
    Point   Image       Vx          Vy 
     226       1      -0.019       0.473 
     226       2       1.790       0.340 
 
    Point   Image       Vx          Vy 
     227       1      -0.017       0.454 
     227       2       1.913      -1.881 
 
    Point   Image       Vx          Vy 
     228       1      -0.056       1.829 
     228       2       2.362      -0.445 
 
    Point   Image       Vx          Vy 
     229       1       0.045      -0.918 
     229       2       2.443       2.070 
 
    Point   Image       Vx          Vy 
     230       1      -0.023       0.603 
     230       2      -2.640       1.457 
 
    Point   Image       Vx          Vy 
     231       1      -0.030       0.752 
     231       2      -2.199       3.609 
 
    Point   Image       Vx          Vy 
     232       1      -0.019       0.498 
     232       2       0.127      -2.446 
 
    Point   Image       Vx          Vy 
     233       1       0.010      -0.188 
     233       2      -0.001       0.718 
 
    Point   Image       Vx          Vy 
     234       1       0.007      -0.227 
     234       2       1.725       0.130 
 
    Point   Image       Vx          Vy 
     235       1      -0.002       0.007 
     235       2       1.112       0.164 
 
    Point   Image       Vx          Vy 
     236       1       0.128      -3.650 
     236       2       1.861       3.727 
 
    Point   Image       Vx          Vy 
     237       1      -0.002       0.053 

     237       2      -0.779      -1.825 
 
    Point   Image       Vx          Vy 
     238       1      -0.007       0.182 
     238       2      -0.015      -1.888 
 
    Point   Image       Vx          Vy 
     239       1      -0.004       0.092 
     239       2      -0.782      -1.921 
 
    Point   Image       Vx          Vy 
     240       1      -0.054       1.836 
     240       2      -1.487      -6.171 
 
    Point   Image       Vx          Vy 
     241       1       0.009      -0.207 
     241       2       1.032      -0.594 
 
    Point   Image       Vx          Vy 
     242       1      -0.001       0.038 
     242       2      -1.457      -1.090 
 
    Point   Image       Vx          Vy 
     243       1      -0.037       1.009 
     243       2      -0.918      -2.876 
 
    Point   Image       Vx          Vy 
     244       1      -0.020       0.440 
     244       2      -4.200       4.521 
 
    Point   Image       Vx          Vy 
     245       1      -0.051       1.180 
     245       2       0.812       2.334 
 
    Point   Image       Vx          Vy 
     246       1       0.021      -0.400 
     246       2       2.404      -0.246 
 
    Point   Image       Vx          Vy 
     247       1       0.002       0.027 
     247       2      -0.679       1.976 
 
    Point   Image       Vx          Vy 
     248       1       0.003      -0.126 
     248       2       0.387       0.655 
 
    Point   Image       Vx          Vy 
     249       1      -0.069       1.867 
     249       2      -0.044      -3.282 
 
    Point   Image       Vx          Vy 
     250       1       0.066      -2.400 
     250       2       0.908       4.394 
 
    Point   Image       Vx          Vy 
     251       1      -0.023       0.673 
     251       2       2.131       0.187 
 
    Point   Image       Vx          Vy 
     252       1      -0.023       0.681 
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     252       2       0.014      -3.244 
 
    Point   Image       Vx          Vy 
     253       1      -0.014       0.315 
     253       2      -5.484       5.704 
 
    Point   Image       Vx          Vy 
     254       1      -0.055       1.816 
     254       2      -1.166      -5.786 
 
    Point   Image       Vx          Vy 
     255       1      -0.015       0.416 
     255       2      -1.535       3.214 
 
    Point   Image       Vx          Vy 
     256       1       0.024      -0.641 
     256       2       2.378       0.049 
 
    Point   Image       Vx          Vy 
     257       1       0.018      -0.571 
     257       2       2.004       0.986 
 
    Point   Image       Vx          Vy 
     258       1      -0.038       1.205 
     258       2      -5.112       5.893 
 
    Point   Image       Vx          Vy 
     259       1       0.002      -0.033 
     259       2      -0.001       0.032 
 
    Point   Image       Vx          Vy 
     260       1       0.361      -8.893 
     260       2      -0.338       8.894 
 
    Point   Image       Vx          Vy 
     261       1       0.128      -3.521 
     261       2      -0.152       3.511 
 
    Point   Image       Vx          Vy 

     262       1      -0.129       3.535 
     262       2       0.152      -3.547 
 
    Point   Image       Vx          Vy 
     263       1       0.320      -8.635 
     263       2      -0.368       8.703 
 
    Point   Image       Vx          Vy 
     264       1      -0.011       0.319 
     264       2       0.014      -0.319 
 
    Point   Image       Vx          Vy 
     265       1      -0.031       0.656 
     265       2       0.021      -0.645 
 
    Point   Image       Vx          Vy 
     266       1      -0.012       0.338 
     266       2       0.015      -0.337 
 
    Point   Image       Vx          Vy 
     267       1       0.026      -0.653 
     267       2      -0.027       0.655 
 
    Point   Image       Vx          Vy 
     268       1       0.000      -0.016 
     268       2      -0.001       0.015 
 
    Point   Image       Vx          Vy 
     269       1      -0.013       0.264 
     269       2       0.009      -0.262 
 
    Point   Image       Vx          Vy 
     270       1      -0.275       6.729 
     270       2       0.260      -6.701 
 
    Point   Image       Vx          Vy 
     271       1       0.118      -2.709 
     271       2      -0.097       2.708 
 

    Total mean error of 542 image points: ax=-0.000, ay=-0.000 
    Total RMSE of 542 image points: mx=2.415, my=2.753 
 
 
 
    The image residuals of the control points 
 
                The image ID = 1 
         Point ID       Vx          Vy 
               
1     -13.964      -4.934 
               2     -15.229      -5.096 
               3      -4.875      -3.415 
               4       0.943      -1.997 
               5      -0.137      -1.369 
               6      -0.628      -1.972 
               7       3.784      -1.173 
               8      -1.095      -2.249 
               9      -1.478       5.094 
              10      -3.934      -2.465 
              11      -1.186      -4.500 

              12       0.840      -5.944 
              13       1.606      -2.922 
              14       1.105      -3.689 
              15       5.364      -1.284 
              16       0.704     -12.773 
              17       0.463      -0.447 
              18      -1.920       4.085 
              19       1.276       7.694 
              20       3.135       7.605 
              21      12.199       6.735 
              22      -0.096       6.241 
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              23       9.524       4.871 
              24      -0.342       2.436 
              25      -0.801       2.537 
              26       2.053      -0.154 
              27      -5.107      -7.052 
              28       0.042      -2.125 
              29      -2.760      -0.640 
              30      -9.642      -1.047 
              31       7.529       9.239 
              32       3.364       2.260 
              33      -2.149       1.778 
              34       9.784       0.910 
              35      10.802       0.942 
              36       1.099       2.648 
              37       2.717      -0.653 
              38      10.881       7.521 
              39      -3.206      -2.252 
              40      -2.836      -8.738 
              41      -3.892      -0.894 
              42       5.338      -6.726 
              43       0.360      -0.893 
              44       2.458       2.669 
              45       2.218       2.868 
              46      -2.713       9.102 
              47      -0.555      -1.102 
              48       0.940      -1.866 
              49      -2.168       0.872 
              50      -0.554      -1.572 
              51       2.320      -0.878 
              52      -1.106       2.178 
              53     -14.426      -2.856 
              54       9.007      -0.472 
              55     -15.690     -19.894 
              56       1.709      -5.485 
              57      -0.033       0.838 
              58      -0.027       0.713 
              59      -0.013       0.411 
              60      -0.062       1.453 
              61      -0.051       1.222 
              62      -0.045       1.101 
              63      -0.049       1.184 
              64      -0.049       1.182 
              65      -0.040       0.981 
              66      -0.034       0.868 
              67      -0.027       0.706 
              68      -0.041       1.007 
              69      -0.010       0.327 
              70      -0.034       0.872 
              71       0.004       0.016 
              72      -0.026       0.700 
              73      -0.028       0.752 
              74      -0.019       0.534 
              75      -0.021       0.565 
              76      -0.019       0.531 
              77      -0.001       0.124 
              78       0.024      -0.415 
              79      -0.028       0.726 
              80      -0.020       0.557 
              81      -0.028       0.743 
              82      -0.022       0.613 

              83      -0.013       0.406 
              84      -0.021       0.570 
              85      -0.016       0.461 
              86      -0.000       0.098 
              87      -0.004       0.145 
              88      -0.006       0.199 
              89      -0.000       0.067 
              90      -0.004       0.132 
              91       0.004      -0.053 
              92      -0.011       0.329 
              93       0.008      -0.100 
              94       0.026      -0.551 
              95       0.035      -0.770 
              96       0.037      -0.831 
              97       0.004      -0.008 
              98       0.005      -0.031 
              99       0.007      -0.103 
             100       0.033      -0.791 
             101      -0.000       0.039 
             102       0.004      -0.063 
             103       0.036      -0.814 
             104       0.018      -0.426 
             105       0.015      -0.296 
             106       0.016      -0.357 
             107       0.008      -0.124 
             108       0.022      -0.504 
             109       0.024      -0.531 
             110       0.013      -0.426 
             111      -0.003       0.025 
             112       0.012      -0.298 
             113       0.011      -0.266 
             114       0.012      -0.270 
             115       0.017      -0.405 
             116       0.013      -0.292 
             117       0.012      -0.290 
             118       0.015      -0.350 
             119       0.009      -0.221 
             120       0.000      -0.090 
             121      -0.001      -0.049 
             122       0.002      -0.089 
             123       0.003      -0.128 
             124       0.007      -0.199 
             125       0.023      -0.631 
             126      -0.006       0.157 
             127       0.009      -0.270 
             128       0.006      -0.181 
             129       0.002      -0.098 
             130       0.001      -0.193 
             131      -0.018       0.406 
             132      -0.022       0.525 
             133      -0.019       0.443 
             134      -0.031       0.780 
             135       0.007      -0.295 
             136       0.001      -0.128 
             137       0.002      -0.154 
             138       0.001      -0.130 
             139      -0.026       0.665 
             140      -0.004       0.083 
             141      -0.006       0.145 
             142      -0.006       0.132 
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             143      -0.012       0.304 
             144      -0.008       0.190 
             145      -0.010       0.024 
             146      -0.035       0.867 
             147      -0.026       0.646 
             148      -0.028       0.712 
             149      -0.033       0.867 
             150      -0.025       0.653 
             151      -0.030       0.793 
             152      -0.028       0.724 
             153      -0.031       0.836 
             154      -0.031       0.896 
             155      -0.034       1.008 
             156      -0.036       1.056 
             157      -0.022       0.414 
             158      -0.043       1.165 
             159      -0.053       1.594 
             160      -0.061       1.932 
             161      -0.045       1.387 
             162      -0.053       1.694 
             163      -0.051       1.632 
             164      -0.054       1.777 
             165      -0.051       1.237 
             166      -0.029       0.772 
             167       0.002      -0.051 
             168       0.003      -0.089 
             169      -0.045       1.078 
             170      -0.037       0.922 
             171      -0.037       0.915 
             172      -0.010       0.319 
             173       0.002       0.007 
             174       0.011      -0.214 
             175       0.011      -0.270 
             176       0.033      -0.825 
             177       0.037      -0.920 
             178       0.030      -0.683 
             179       0.017      -0.355 
             180       0.010      -0.171 
             181       0.012      -0.304 
             182       0.019      -0.454 
             183       0.014      -0.363 
             184       0.012      -0.473 
             185      -0.026       0.670 
             186      -0.003       0.066 
             187      -0.015       0.400 
             188      -0.019       0.526 
             189      -0.031       0.918 
             190      -0.050       1.485 
             191      -0.055       1.653 
             192      -0.000       0.056 
             193       0.056      -1.724 
             194      -0.014       0.306 
             195       0.021      -0.490 
             196      -0.020       0.452 
             197      -0.018       0.475 
             198      -0.022       0.573 
             199      -0.034       0.840 
             200      -0.041       1.003 
             201      -0.017       0.486 
             202      -0.020       0.547 

             203       0.010      -0.218 
             204       0.019      -0.448 
             205       0.014      -0.338 
             206      -0.005       0.038 
             207      -0.005       0.086 
             208       0.055      -1.571 
             209       0.157      -4.485 
             210      -0.022       0.510 
             211      -0.027       0.690 
             212       0.003      -0.170 
             213      -0.054       1.670 
             214      -0.033       1.013 
             215       0.154      -4.424 
             216      -0.006       0.157 
             217       0.001      -0.033 
             218      -0.031       0.794 
             219      -0.055       1.712 
             220      -0.036       1.081 
             221      -0.050       1.158 
             222      -0.032       0.819 
             223      -0.001       0.112 
             224       0.115      -3.239 
             225      -0.001       0.019 
             226      -0.019       0.473 
             227      -0.017       0.454 
             228      -0.056       1.829 
             229       0.045      -0.918 
             230      -0.023       0.603 
             231      -0.030       0.752 
             232      -0.019       0.498 
             233       0.010      -0.188 
             234       0.007      -0.227 
             235      -0.002       0.007 
             236       0.128      -3.650 
             237      -0.002       0.053 
             238      -0.007       0.182 
             239      -0.004       0.092 
             240      -0.054       1.836 
             241       0.009      -0.207 
             242      -0.001       0.038 
             243      -0.037       1.009 
             244      -0.020       0.440 
             245      -0.051       1.180 
             246       0.021      -0.400 
             247       0.002       0.027 
             248       0.003      -0.126 
             249      -0.069       1.867 
             250       0.066      -2.400 
             251      -0.023       0.673 
             252      -0.023       0.681 
             253      -0.014       0.315 
             254      -0.055       1.816 
             255      -0.015       0.416 
             256       0.024      -0.641 
             257       0.018      -0.571 
             258      -0.038       1.205 
             259       0.002      -0.033 
             260       0.361      -8.893 
             261       0.128      -3.521 
             262      -0.129       3.535 
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             263       0.320      -8.635 
             264      -0.011       0.319 
             265      -0.031       0.656 
             266      -0.012       0.338 
             267       0.026      -0.653 

             268       0.000      -0.016 
             269      -0.013       0.264 
             270      -0.275       6.729 
             271       0.118      -2.709 

      RMSE of 271 points: mx=2.683, my=2.653 
 
                The image ID = 2 
         Point ID       Vx          Vy 
               1      -3.959       3.272 
               2      -5.701       4.128 
               3      -1.972      -1.154 
               4      -1.520      -1.897 
               5      -1.643       0.298 
               6      -3.489      -0.121 
               7      -1.248       1.543 
               8      -1.971       0.172 
               9      -2.737       7.546 
              10      -2.791      -2.088 
              11      -3.069       0.619 
              12      -2.224      -0.420 
              13      -3.964       1.788 
              14      -4.412       0.500 
              15      -1.667       1.752 
              16       1.538       2.999 
              17      -1.303      -1.091 
              18      -3.502       1.629 
              19      -2.169      -0.165 
              20      -4.013       1.861 
              21       4.129       3.561 
              22      -1.439       2.777 
              23       7.022       1.018 
              24      -1.221      -0.949 
              25      -2.462       0.532 
              26      -0.734      -0.369 
              27      -8.341      -6.686 
              28      -1.436      -2.461 
              29      -1.930      -0.294 
              30      -5.958      -0.084 
              31       2.519       3.749 
              32       0.524       1.253 
              33      -5.600      -2.830 
              34       3.022       5.165 
              35       6.782       1.027 
              36      -0.462       5.194 
              37       1.427       0.547 
              38       1.556       2.323 
              39      -0.036      -1.470 
              40      -2.938      -7.685 
              41      -0.941      -0.097 
              42       4.536      -6.677 
              43       1.065      -0.063 
              44       1.685      -0.443 
              45       2.975      -0.667 
              46      -2.574       7.485 
              47      -1.747      -1.590 
              48      -1.762      -1.356 
              49      -4.127       1.337 
              50      -0.831      -4.530 
              51      -2.356       1.491 

              52      -1.894       3.201 
              53      -3.989      -4.542 
              54       2.590      -3.106 
              55      -2.575      18.627 
              56       4.379      -5.694 
              57      -1.512      -4.132 
              58      -1.050      -3.765 
              59      -2.136      -3.667 
              60       0.448      -3.795 
              61       0.953      -3.179 
              62       0.791      -3.104 
              63       1.679      -2.633 
              64       1.252       2.389 
              65       0.360       2.633 
              66       0.475       2.561 
              67      -2.229       4.007 
              68      -1.515       3.178 
              69      -0.874      -2.758 
              70       0.589      -2.762 
              71       0.900      -1.587 
              72       1.922      -1.828 
              73       1.668      -2.050 
              74       1.733      -1.722 
              75       1.373      -1.866 
              76       1.223      -1.849 
              77       1.813      -1.144 
              78       2.404      -0.228 
              79       0.667       2.109 
              80       0.586       1.942 
              81       0.082       2.530 
              82       0.194       2.367 
              83       0.357       2.048 
              84      -1.206       3.309 
              85      -5.522       4.707 
              86      -4.760       3.476 
              87      -0.596      -1.900 
              88       0.416      -1.588 
              89      -0.266      -1.607 
              90      -0.344      -1.602 
              91       0.724      -0.962 
              92       1.340      -1.493 
              93       2.072      -0.700 
              94       2.247      -0.072 
              95       2.326       0.214 
              96       2.310       0.283 
              97       0.528       1.108 
              98      -0.510       1.602 
              99      -0.264       1.061 
             100      -0.764      -0.447 
             101       0.822      -0.950 
             102       1.318      -0.733 
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             103       2.279       0.272 
             104       2.132      -0.087 
             105       0.156       0.915 
             106       0.165       0.375 
             107      -0.090       0.628 
             108      -3.563       0.618 
             109      -4.075       1.357 
             110      -0.190       0.625 
             111       0.927       0.038 
             112       2.102      -0.113 
             113       2.279      -0.128 
             114       0.252      -0.007 
             115       0.239       0.075 
             116       0.095      -0.073 
             117      -2.629      -0.291 
             118      -2.904      -0.293 
             119      -2.610      -0.676 
             120       0.224       0.484 
             121       0.617       0.526 
             122       1.393       0.086 
             123       2.240       0.072 
             124       0.169      -1.016 
             125      -0.116      -0.669 
             126       0.211      -1.498 
             127       0.044      -1.113 
             128      -1.327      -1.693 
             129      -1.195      -1.941 
             130      -1.826       1.972 
             131       0.805       0.405 
             132       0.787       0.565 
             133       0.943       0.579 
             134       0.606       0.895 
             135       2.144       0.465 
             136       2.139       0.342 
             137       2.079       0.508 
             138       2.028       0.534 
             139       2.057      -0.017 
             140      -0.138      -2.000 
             141      -0.549      -2.193 
             142      -0.334      -2.282 
             143       0.047      -2.369 
             144      -0.430      -2.209 
             145      -5.293       4.605 
             146      -1.473       1.831 
             147       0.898       1.035 
             148       1.733       0.338 
             149       1.690       0.400 
             150       2.076       0.027 
             151       2.151      -0.193 
             152       2.061       0.085 
             153       2.140       0.056 
             154      -0.162      -3.707 
             155       0.061      -3.754 
             156      -0.063      -3.877 
             157      -4.198       4.542 
             158      -3.779       5.214 
             159       1.574       0.520 
             160       2.156      -0.220 
             161       0.043      -4.354 
             162      -0.548      -5.217 

             163      -0.832      -5.354 
             164      -1.299      -5.895 
             165       0.123      -3.691 
             166       1.600      -2.176 
             167       0.276      -0.857 
             168      -0.223      -1.527 
             169      -0.270      -3.686 
             170       1.340      -2.473 
             171       0.323       2.607 
             172       2.343      -1.051 
             173       1.928      -0.813 
             174       1.680      -0.578 
             175       1.502      -0.238 
             176       2.224       0.369 
             177       2.279       0.473 
             178       2.450       0.600 
             179       0.108       0.586 
             180      -0.324       0.739 
             181       0.054      -0.510 
             182      -3.213      -0.381 
             183      -1.386      -0.953 
             184       1.298       1.224 
             185       2.067      -0.037 
             186      -0.145      -1.912 
             187      -0.138      -2.704 
             188       0.119      -2.914 
             189       0.151      -3.537 
             190       1.677       0.511 
             191       1.913       0.185 
             192       1.147      -1.098 
             193       1.496       2.285 
             194       2.264       0.036 
             195       0.301       0.439 
             196       0.971       0.679 
             197      -0.013      -2.857 
             198      -2.163      -3.723 
             199       0.822      -2.602 
             200       1.434      -2.509 
             201       0.242       2.280 
             202       0.425       2.071 
             203       1.925      -0.428 
             204       2.011      -0.111 
             205       1.957      -0.216 
             206       0.861       0.630 
             207       1.305      -0.069 
             208       1.948       1.589 
             209       1.741       4.605 
             210       0.731       0.945 
             211       1.728       0.246 
             212       2.088      -0.920 
             213       1.910       0.433 
             214       1.994      -2.345 
             215       1.598       4.641 
             216      -0.328      -2.105 
             217      -1.073      -1.909 
             218       0.222       2.595 
             219       1.996       0.015 
             220      -0.246      -4.044 
             221      -2.778       4.551 
             222       0.636       1.500 
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             223      -0.407       1.450 
             224       2.074       3.128 
             225      -0.138      -1.589 
             226       1.790       0.340 
             227       1.913      -1.881 
             228       2.362      -0.445 
             229       2.443       2.070 
             230      -2.640       1.457 
             231      -2.199       3.609 
             232       0.127      -2.446 
             233      -0.001       0.718 
             234       1.725       0.130 
             235       1.112       0.164 
             236       1.861       3.727 
             237      -0.779      -1.825 
             238      -0.015      -1.888 
             239      -0.782      -1.921 
             240      -1.487      -6.171 
             241       1.032      -0.594 
             242      -1.457      -1.090 
             243      -0.918      -2.876 
             244      -4.200       4.521 
             245       0.812       2.334 
             246       2.404      -0.246 
             247      -0.679       1.976 

             248       0.387       0.655 
             249      -0.044      -3.282 
             250       0.908       4.394 
             251       2.131       0.187 
             252       0.014      -3.244 
             253      -5.484       5.704 
             254      -1.166      -5.786 
             255      -1.535       3.214 
             256       2.378       0.049 
             257       2.004       0.986 
             258      -5.112       5.893 
             259      -0.001       0.032 
             260      -0.338       8.894 
             261      -0.152       3.511 
             262       0.152      -3.547 
             263      -0.368       8.703 
             264       0.014      -0.319 
             265       0.021      -0.645 
             266       0.015      -0.337 
             267      -0.027       0.655 
             268      -0.001       0.015 
             269       0.009      -0.262 
             270       0.260      -6.701 
             271      -0.097       2.708 

      RMSE of 271 points: mx=2.113, my=2.850 
 
      Total number of all control image points = 542 
      Total rmsex = 2.415, rmsey = 2.753 
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