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List of Notation 

         pose of the robot at time t 

         position of the n-th landmark 

        set of all n landmark positions 

         sensor observation at time t 

         set of all observation {        } 

         robot control at time t 

         set of all controls {        } 

         data association of observation at time t 

         set of all data associations {        } 

               vehicle motion model 

               vehicle measurement model 

         control noise 

         measurement noise 

         expected measurement of landmark 

            measurement innovation 

         innovation covariance matrix 

         FastSLAM particle set at time t 

  
   

      m-th FastSLAM particle set at time t 

     
   

      
   

     n-th landmark mean and covariance in the m-th particle 

            normal distribution with mean   and covariance   

  
   

      importance weight of the m-th particle 
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Abstract 

 

Simultaneous Localization and Mapping (SLAM) is a fundamental problem for 

building truly automatic robots. Varieties of methods and algorithms have been 

generated, and applied into mobile robots during the last thirty years. However, each 

algorithm has its strength and weakness. This thesis studies the most recent published 

techniques in the field of mobile robot SLAM. Specifically, it focuses on investigating 

robot path and landmark position estimating errors made by different methods. The 

Hybrid method, which uses FastSLAM method as front-end and uses EKF-SLAM 

method as back-end, combines both methods advantages, producing smaller errors on 

estimating robot pose. The Hybrid method solves the single robot SLAM problems by 

summing the weighted mean values of each particle in FastSLAM. The contributions 

of this thesis is it presents an alternate mapping algorithm that extends this 

single-robot Hybrid SLAM algorithm to a multi-robot SLAM algorithm. In this 

algorithm, each robot draws map of the environment separately, and robots could 

transfer their mapping information into a central computer. The central computer 

could merge the landmark positions from different robots. At last, a revised landmark 

position as well as its covariance will be calculated. Landmark positions are fused 

together according to two robots feature information by using Kalman Filters. 
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1 Introduction 

The problem of Simultaneous Localization and Mapping (SLAM) has attracted many 

researchers in the field of robotics. SLAM addresses the problem of a mobile robot 

moving through an area without of any map information as a priori. The robot 

acquires observations of environment by its limited range-finder sensors and estimates 

its pose according to its odometry measurement. But both sensing observations and 

odometry measurement are affected by noise from either environments or robot 

systems. The aim of SLAM is to build a map of the environment and the path of the 

robot (Dellaert et al. 1999). This has been considered as a fundamental problem to 

build a truly autonomous robot system (Thrun 2002). 

Robot SLAM could be considered as either single robot SLAM or multi-robot SLAM. 

If there is only one robot which is used for building maps of the environment, that is 

single robot SLAM problem. Similarly, if there are more than one robot working 

cooperatively to estimate maps of the environment. That is the multi-robot SLAM 

problem. Obviously, the control of group of autonomous robots could be more 

complicated compared to single robot in terms of system control, map fusing, memory 

requirement, but can bring more benefits to human beings, in terms of time 

consuming and map accuracy. 

This thesis will focus on investigating SLAM algorithms for team robots. It will 

develop a multi-robot SLAM algorithm called multi-Hybrid SLAM in a simulation 

level, assuming data association is known. The data association problem in robot 

SLAM is another essential problem for mobile robot navigation, which is the process 

of relating features (landmarks), observed in the environment to features (landmarks) 

viewed previously or to features (landmarks) in a map. The existing single hybrid 

SLAM uses FastSLAM algorithm’s particles to present possible robot locations. For 

each particle, it contains all observed landmark location and covariance (uncertainty) 

information (Brooks & Bailey, 2009). Then, all these possible locations and positions 
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of landmarks are summed together by weighted mean, as well as their uncertainties 

(covariance matrix). Mapping of the environment and robot path are presented by the 

mean values and a covariance matrix. 

It will extend the current hybrid SLAM algorithm to a multi-robot SLAM. The basic 

idea is that each robot could explore a certain area individually by using single Hybrid 

SLAM algorithm. Therefore, features of the environment are presented by a mean 

value and a covariance matrix. When two robots detect each other, they could transfer 

their feature information to each other according to their current location and the 

distance. When finishing the transfer, those features that have been detected by both 

robots could be summed together by Kalman Filter according to each feature’s mean 

value and its covariance. 

1.1 Motivation of SLAM 

SLAM is a fundamental capability for mobile vehicle robots exploring in unknown 

environments where global position system (GPS) is not available. When exploring in 

these areas, robots should have some knowledge of their environment to estimate the 

path of navigation. However, to build a map of surrounding environment, it is 

necessary to know the true path of the robots as priori. This chicken-egg relationship 

between localization and mapping makes errors in robots' sensor readings enlarged by 

the errors in robots' motion (Thrun et al. 1998). Similarly, when robots move, their 

pose estimate is corrupted by measurement noise. To achieve the task of navigation in 

unknown environment, robots have to find appropriate estimation for both feature 

positions in the environment and robot locations. In robot SLAM, the process of 

estimating feature positions is called observation model. It gives robot locations and 

sensing information (distance and angles between robot and observed landmark) as 

input, the output is landmark position in the map. The process of estimating robot 

locations is called motion model. It gives robot pose for time t-1 and the control as 

input. The output of current robot pose is calculated by adding the prose for time t-1 
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and current robot control. 

The reasons for building multi-robot system is very different. However, one of the 

main motivations is the efficiency of multi-robots system. That is, compared to a 

single autonomous robot, a team of multiple robots can perform a mission better in 

terms of time cost and map quality. A team of robots could search the required 

environment cooperatively to directly reduce time cost of exploring; nevertheless, a 

team of robots usually have multiple points of view to the objectives in the 

environment. Environment objectives (e.g. landmarks) can be better estimated by 

fusing member robots' sensing data, which in turn increases the system effectiveness. 

Moreover, the reliability of multi-robot is higher than single robot because a team of 

robots could suffer one or two robots are damaged after robots begin their tasks. The 

rest of team members could finish those tasks that should be finished by those broken 

robots. Finally, instead of building a single powerful robot, building a team of robot 

can be easier and cheaper, can make the system tolerant to possible robots' faults, but 

can achieve complicated tasks as powerful as a single robot. 

1.2 Application of SLAM 

SLAM, as one of the most essential capability, has been widely used into autonomous 

mobile robots (Kuemmerle et al. 2009, Andreas et al. 2004, Cheein et al. 2010). 

Generally speaking, SLAM is used for autonomous vehicle navigating reliably cross 

those extreme areas where globally accurate position data (e.g. GPS) is not available, 

and are too distant, too dangerous, or too costly to allow human access into. These 

areas are, such as deep sea, underground, and on the surfaces of other planets. 

However, the applications of multi-SLAM may involve different fields, e.g., industrial 

robots, military and service robotics, and research and rescue robots, and they may be 

different in terms of missions, e.g., exploration and mapping, box pushing, military 

operation, unstructured environment navigation, and so on (Marjovi et al. 2009, 

Martijn & Andreas 2007, Wu et al. 2009). 
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One successful applications of SLAM in autonomous robots is used for assistant 

robots. Cheein (2010) applied Extended Kalman Filter (EKF) based SLAM into an 

assistance wheelchair to help those disabled people with navigation. The wheelchair is 

a semi-autonomous robot, which uses the biological signals to command the 

wheelchair. The operator (a C4 or C5 spinal cord injury) controls the direction of 

motion by means of electromyography (EMG) signals from the neck and the arm 

muscles. Then the wheelchair could map the environment and chooses paths for 

navigation instead of the patient. 

SLAM is not only used for help with disabled people, but also applied with search and 

rescue program. In the NASA's disaster assistance and rescue team training (DART) 

project, researchers in the Stanford University robotics laboratory developed an 

air-ground cooperation SLAM algorithm into team robots. In this project, ground 

vehicles are used for rescuing. Aircrafts as they have a larger point of view, are used 

for searching and mapping the environments, and guiding land rovers to the areas 

with injuries. 

1.3 SLAM Problem Definition 

Considering a mobile robot moving cross an unknown environment, the robot could 

detect distance between robots and features in environment by using its sensors. But 

these sensor readings sometimes are not reliable. This is because, for example, laser 

and stereovision are sensitive to differences in lighting, and some feature surface does 

not reflect sound echoes well enough to be sensed by sonar. Robot controls are also 

suffered by noise. Simultaneous Localization and Mapping (SLAM) is the process of 

recovering the map of environment and the path of robot from the noisy controls and 

measurements. 

If either the robot position or the map of environment is known with certainty, then 

the estimation of robot pose and feature of environment could use independent filters. 

However, for example, if the position of robot in the environment is unknown, errors 
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in robot's pose correlates errors in the map, and even worse, errors in robot's path 

could enlarge errors in map. Therefore, the state of robot pose and map must be 

estimated simultaneously. 

 

Figure 1: As the uncertainty of robot pose becomes larger, the uncertainty of nearby landmarks 

increases. The uncertainties of robot pose are drawn as shaded ellipses, and the uncertainties of 

landmarks are drawn as un-shaded ellipses (Montemerlo et al. 2002). 
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Figure 2: Revisiting known landmarks decreased not only the robot uncertainty, but also the 

uncertainty of landmarks previously observed (Montemerlo et al. 2002). 

Figure 1.1 graphically shows the correlation in error between estimated robot pose 

and landmark positions. A robot moves from the left top along with the dashed line, 

observing nearby landmarks, drawn as circles. The shaded ellipses present the 

uncertainty of robot pose overt time. As a result of control error, the uncertainty in 

robot pose became larger and larger as robot moves. The estimations of nearby 

landmarks are drawn as un-shaded ellipses. It is clearly to see that as the uncertainty 

of robot pose increased, the uncertainty of newly observed landmarks increased as 

well. 

In Figure 1.2, the robot finishes the loop, and detects a previously observed landmark. 

As the accuracy of first landmark is known with high accuracy, the uncertainty of 

robot pose will decrease. In turn, the uncertainty of other previously observed 

landmarks are decrease as well. Figure 1.2 clearly shows the correlated nature of 

SLAM problem. Errors in map are correlated errors in robot poses. Any observing 

information with high certainty will reduce uncertainty of previously observed 

landmarks. 

1.4 Multiple Robot SLAM 

For a multi-robot SLAM problem, this means that each robot holds its unique SLAM 

posterior according its current pose and a corresponding map of environment. When 

robots detect others and communicate their beliefs of the environment, such SLAM 

posterior can be combined, and narrow the hypothesis space for each robot. 

1.4.1 Posterior Estimation 

According to the previous description of the SLAM problem, a robot motion and 

observations of its environment are both noisy. Therefore, each control and 

observation can be thought as a mean value coupled with a probability uncertainty. 

This uncertainty is usually called covariance. For example, the mean value of robot 
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motion presents robot position in the environment, and the probability uncertainty 

shows how much we trust the robot stands in that area. On the other hand, the mean 

value of observation presents the relative distance between robot position and 

objective features in its environment, and the uncertainty expresses the errors in 

objective features. The idea to the SLAM problem is to estimate a posterior 

probability distribution over all possible maps and all possible robot poses, given the 

sensor readings and odometry information. This distribution is called the SLAM 

posterior. 

This posterior estimation approach may seem incalculable at first. But by making 

certain assumptions of the state of the world, this posterior function can be computed 

efficiently and recursively. It will be discussed later in chapter 3. 

1.5 Objectives 

This MSc thesis aims to study the most recent published techniques in the field of 

Simultaneous Localization and Mapping (SLAM) and extend single robot SLAM 

algorithm into multi-robot SLAM. In particular, we will focus on SLAM techniques 

on 2D-SLAM with limited sensors and homogeneous multi-robot SLAM. 

1. Conduct a literature review on SLAM method to obtain cutting edge 

techniques in this field. 

2. Classify methods in the literature, to build up a data base. 

3. Identify pros and cons of the main approaches based on readings. 

4. Implement the some common methods to gain knowledge on its working 

principles. 

5. Formulate possible improved methods for multi-robot SLAM. 
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1.6 Proposed method 

This thesis will study the multi-robot SLAM problem by first analyzing popular single 

robot SLAM algorithms. A single robot SLAM is the fundamental problem for 

multi-robot SLAM. Because there are many successful single SLAM algorithms 

applied to multi-robot SLAM. Therefore, it must focus on analyzing the advantages 

and shortcomings of different SLAM algorithms. And then choosing an optimized 

algorithm and applying this algorithm on team robots. It found that the hybrid-SLAM 

algorithm has more advantages over others on estimating robot locations and 

landmark positions by doing comparing experiment on computers. 

The basic idea for team robot SLAM is to use different robots’ observation 

information to reduce estimation errors of robot pose and landmark positions. It is 

assumed that different team member robots could transfer their landmark information 

(positions and covariance) to the central computer. When the central computer 

receives landmark information from different robots, it can merge this information 

together by Kalman filter. For example, when two robots transfer the same landmark 

information by using two different landmarks’ information, the computer could merge 

this information together by adding the variable on x-coordinate and the variable on 

y-coordinate according to Kalman filter, respectively. This is because the algorithm 

assumes variables on x-coordinate and y-coordinate are independent. They have no 

relationship between them. 

For multi-hybrid SLAM algorithm, each member of robot will do the hybrid SLAM 

individually in the map. When they obtain a new landmark or update an old landmark, 

this new information will transferred to a global map. In the global map, if this new or 

updated landmark has been found by other robots, the algorithm could merge this 

landmark position with positions that are obtained by other robots. 

The multi-robot SLAM algorithm will be done on a simulation level. Simulation  

will be finished on the Matlab. Robots in the simulation are assumed to equip with 
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limited laser sensors, which allow them to find landmarks or other robots. Large scale 

of mapping environment is not concerned because the experiment is done on a low 

personal computer. The population of landmarks is small. 

1.7 Thesis Outline 

1 Chapter 2 will describe some relative works in the field of robotic SLAM 

problems. It first gives a problem definition of SLAM problem concerning to the 

uncertainty in robot motion and observation. The most important problem is that 

how to correctly estimate robot poses when robot controls and measurements are 

both noisy. Then, it shows some different literatures of robot SLAM techniques 

for both single and team robots. These techniques can be summarized as Kalman 

filters (KF) and Extended Kalman Filter (EKF), Expectation Maximization (EM), 

Sparse Extended Information Filter (SEIF), The Thin Junction Tree Filter (TJTF), 

Particle filter (PF) and FastSLAM, sub-map methods. 

2 Chapter 3 will formulate the SLAM problem and describe the theories and 

mathematics for EKF-based approach and PF-based approach. It will illustrate 

the basic theories on EKF-based SLAM method and PF-based SLAM method, 

and give a comparison for both methods in simulation level to show the 

estimation result in 2-D SLAM. 

3 Chapter 4 will describe the simplest version of the Hybrid approach SLAM 

algorithm with known data association. The basic idea for hybrid approach 

SLAM will be illustrated in this chapter. Experiment results will be compared 

with EKF SLAM algorithm and FastSLAM algorithm on the accuracy of robot 

pose and landmark positions. 

4 Chapter 5 will extend this Hybrid approach algorithm to multi-robot SLAM 

algorithm, and compare the result (the estimation errors on robot path and 

landmark positions) with a multi-FastSLAM algorithm.  



18 

 

5 Chapter 6 will give the conclusions that in a simulation level, the hybrid method 

could be used for multi-robot SLAM and the result is better than 

multi-FastSLAM algorithm in accuracy. Future work will also be discussed in 

this chapter. 

6 Appendix will show the Matlab code for multi-robot SLAM simulation. In this 

simulation, there are 18 landmarks in total in the environment, and two robots are 

given fixed path. Simulation set up refers to the data in Chapter 4. 
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2 Literature Review 

This chapter will present an overview of the simultaneous localization and mapping 

problem (SLAM), along with the most common SLAM approaches from literatures. 

In the beginning, it first illustrates a short history of robot SLAM for readers to well 

understand researcher's primary ideas on reducing noise in robot localization and 

mapping problem, and how these ideas formulate to solve the problem of SLAM. 

Some different SLAM approaches for single robot will be discussed in section 2.2, 

and section 2.3 will discuss the most popular multi-SLAM techniques for team of 

robots. Then a short conclusion of this chapter will be proposed in section 2.4. 

2.1  History of Robot SLAM 

When mapping and localization were introduced by researchers in the early 1980's, 

the work at that time focused on solving mapping and localization independently. 

Robot mapping is the problem of acquiring an accurate map of the environment given 

some knowledge of robot's position and motion. The work in robotic mapping 

typically assumes that the robot's localization in the environment is 100% certain and 

focused mainly on analyzing the measurement data obtained from a noisy world to 

build up a map to present that environment. On the other hand, robot localization is 

another problem of estimating robot pose (robot's position and heading). Much work 

has been done on how to reduce the control error and robot slip problem when a robot 

is running through an area. In this situation, a map of working environment with 

landmarks is required as a prior knowledge for robot to determine where it is. 

Smith et al. (1990) first introduced the idea of solving both of the mapping and 

localization problems, simultaneously. They developed a probabilistic method to 

indicate the spatial relationship between landmarks in an environment when robot is 

estimating its pose, currently. The map is represented as a set of landmark position 

and a covariance matrix is used to present the uncertainty of either the landmark or 
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the robot's pose. This kind of map today is usually mentioned as feature-based map, 

and this problem is called CML (Concurrent Mapping and Localization), but now 

more people would like to use SLAM (Simultaneous Localization and Mapping) 

(Thrun et al. 2005). 

Since then, a probabilistic approach has become a standard way of solving the SLAM 

problem. Many issues associated with Kalman filter approach have been approved 

and other experiments by using an improved method, Particle filter technique, also 

accomplish the target successfully. 

2.2 Current Single SLAM Solutions 

Robotic mapping can be dated back to 30 years ago, and since 1990s probabilistic 

approaches have become dominant in robot SLAM, Kalman Filters (KF), Particle 

Filters (PF) and graphical SLAM became the three most popular solutions to SLAM 

(Sciliano & Khatib, 2007). The KF SLAM is the earliest solution to SLAM, which 

was fond by Smith et al. (1990). But this method has been a little unpopular because 

of its limitation of high computational complexity. PF is a new solution to solve the 

SLAM problem, and it provides some new solution to the data association problem. 

The third way of solving the SLAM problem is based on graphical properties, which 

has been successfully applied on some SLAM problem. In the followings there is a 

summary of classical and different solutions for current robot SLAM. 

2.2.1 Extended Kalman Filter 

Many of the original SLAM ideas came from a seminal paper submitted by Smith & 

Cheeseman (1986) and with their followers Csorba (1997), Guivant et al (2000), 

Huang & Dissanyake (2007), Liu & Thrun (2002), Baiyley et al. (2006), Tesli et al, 

(2011), who proposed the use of the Extended Kalman Filter (EKF) to estimate the 

SLAM posterior. The EKF represents the SLAM posterior as a high-dimensional, 

multivariate Gaussian by considering robots' odometry readings and sensing readings. 

Each multivariate Gaussian is parameterized by a mean value and a covariance matrix. 
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The mean value describes the most likely position of the robot and landmarks, while 

the covariance matrix describes the correlations between all pairs of state variables. 

In the EKF SLAM, the complicated motion and the measurements are approximated 

by linear function. There are two substantial drawbacks in EKF-based SLAM: the 

quadratic computational complexity in the number of landmarks and the number of 

robots and the sensitivity to data association.  

The disadvantage of the EKF to estimate SLAM posterior is computational 

complexity. There is a high demand for memory space for the EKF because the 

covariance matrix grows quadratically with the number of landmarks. Hence, the 

EKF-based SLAM algorithms could not work in large environments with the number 

of landmarks over several hundreds. 

In a 2-D mapping world, the covariance matrix (a covariance matrix is a matrix that 

presents the robot path and landmark position estimation uncertainties in robot SLAM) 

is expressed as a 2N+3 by 2N+3 matrix, where N is the total number of landmarks in 

the map and 3 is the robot pose with x position, y position and headings in the map. 

Therefore, it is easy to prove that memory requirement for the covariance matrix 

grows quadratically (approximately  ). Moreover, as the covariance matrix presents 

correlations between all features and other features in the map, any change in matrix 

will affect other elements. When new observations arrive, the EKF algorithm has to 

re-calculate all elements in the covariance matrix, which requires quadratic time. In 

practice, truly EKF-based algorithm is rarely used in real world applications. Instead, 

a large number of similar methods are used to reduce the computational complexity in 

the EKF updating process (Wan & Merwe, 2000). 

The second problem with EKF-based SLAM approach is single-hypothesis data 

association. The data association problem is that each observation made by robots 

comes with a given mark that shows which landmark the robot is detecting. In the 

EKF-based SLAM approach, the robots are usually given known data association. But 
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in real world application, the associations between observations and landmarks are not 

clear. They must be determined by data association algorithms in order to well 

estimate robot pose and landmark positions. 

The very basic idea for the EKF-based approach for data association is to assign each 

observation to landmarks by using Maximum Likelihood (ML) method. For each new 

observation of landmarks, it is assigned to the landmark which is the most likely to 

generate it. If the probability is lower than certain number, a new landmark is 

observed. The problem is that once a wrong data association between robot 

observations and landmarks is made, the EKF can not revise this mistake. If a large 

number of observations are mismatched, the EKF will give a bad estimation of 

posterior. It is possible to improve the accuracy of data association in the EKF, but it 

is expensive in computational cost. 

2.2.2 Graphical based SLAM 

The graphical based SLAM was first introduced in (Cheeseman & Smith, 1986). In 

graph based SLAM method, poses of robot and landmark positions are thought as 

nodes. Different nodes are connected by the lines. This lines are called constrains. 

Every consecutive pair of robot poses is constrained by a probability distribution 

conditioned to odometry measurement. Other constrains between robot poses and 

landmark positions are constrained by a probability distribution conditioned to feature 

observations. These constraints represent the log likelihood of the measurement and 

the motion model. The graphical based SLAM algorithm first interprets the sensor 

readings to extract the constraints, and then sum these constraints for the mimmum 

number, which could be thought as a least squares problem (Sciliano & Khatib, 2007).  

If the observation noise is Gaussian and the data association is known, the goal of a 

graph based mapping algorithm is to compute a Gaussian approximation of the 

posterior over the robot trajectory from the initial time to current time. This involves 

computing the mean of this Gaussian as the configuration of the nodes that maximize 

the likelihood of the observation. Once this mean is known the information matrix of 
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the Gaussian can be obtained.  

Graphical SLAM methods have the advantage that they scale to much 

higher-dimensional maps than EKF SLAM (Cheeseman & Smith, 1986). As the main 

problem of EKF SLAM is the quadratic covariance matrix. With the increasing 

number of landmarks, the computational complexity will increase quadratically. But 

there is no such problem in graphical based SLAM, as the update time of the graph is 

constant, and the amount of memory required is linear. 

The disadvantage of graphical based SLAM is that it should optimize for the whole 

path of robot poses. If the robot path is long, the optimization may become 

cumbersome. 

2.2.3 Expectation Maximization 

The Expectation Maximization (EM) method is a stochastic approach developed by 

Dellaer et al. (2003), Thrun et al. (2004), Ruhnke et al. (2011). It was developed in the 

context of maximum likelihood (ML) estimation and it offers an optimal solution for 

map building. The EM is able to build a map when the robot's pose is known by 

means of expectation. There are two steps in EM SLAM: an expectation step (E-step), 

in which the posterior over robot poses is calculated for a given map, and 

maximization step (M-step), in which the most likely map is calculated given these 

poses expectations. The result is a series of increasingly accurate maps, while the 

initial map is an empty map (Thrun 2002). 

The advantage of the EM method is that it solves the correspondence problem. It 

continues to localize the robot relative to the map generated in the E-step. The pose 

posteriors calculated in the E-step correspond to different hypotheses as to where the 

robot might have been. Therefore, it tried different correspondences. When building 

maps in the M-step, these correspondences are translated into features in the map, 

which, in turn, either get reinforced in the next E-step or disappear.   
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The problem of EM method is that when robot generates a new map to maximize the 

likelihood of the sensor readings in M-step, it should compute all the poses from the 

initial to current. It usually takes a long time to draw a map. 

2.2.4 Sparse Extended Information Filter 

Sparse Extended Information Filter (SEIF) is an optimal solution to the SLAM 

problem compared to EKF (Liu & Thrun 2002, Eustice & Ma 2005, Walter et al. 

2007). The SEIF applies an alternative parameterization of KF, called information 

matrix. Instead of updating a covariance matrix in KF, the SEIF updates the 

information matrix (precision matrix). But the SEIF method uses the EKF to linearize 

the motion and measurement models. The advantage of SEIF method is that it makes 

the motion and measurement updates happen to be in constant time, if the covariance 

matrix is dense and the precision matrix may be sparse or many of its entries may be 

small. 

2.2.5 Thin Junction Tree Filter 

The Thin Junction Tree Filter (TJTF) is a SLAM algorithm based on the same 

principle of SEIF (Paskin 2003). It maintains a sparse network of probabilistic 

constraints between state variables, which enables efficient inference. The SLAM 

posterior is represented with a graphical model called Junction Tree. The size of this 

tree grows as new landmarks are incorporated to the map. TJTF has the advantage 

over SEIF that global maps can be extracted without any matrix inversion. This 

algorithm requires linear computation, which can be reduced to constant time with 

further approximation (Thrun 1998). But the disadvantages of TJTF method is that as 

the number of landmarks increase, the size of the tree grows. This size could be very 

large in sometime (Frank et al. 2004). 

2.2.6 Particle Filter 

The Particle Filter (PF) presents the posterior of SLAM estimation by a set of samples 

with different weights to present a proper path of the robot (Fox et al. 2000, 

Montemerlo et al. 2002). Each particle is attached with N independent landmarks 
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estimates (implemented as EKF), and hold a local map of the environment. The 

algorithm that is used for updating particle filter is called FastSLAM. The FastSLAM 

algorithm uses Rao-Blackwelized particle filter to solve the SLAM problem 

(Montemerlo et al. 2002, Stachiss & Burgard 2004, Baily, Nieto & Nebot 2006). In 

the algorithm, the uncertainty of robot motion is approximated with many hypotheses. 

Each hypothesis presents a possible robot path. Each path generates its own local map, 

in which landmarks are estimated by using Extended Kalman filters. This approach 

dramatically reduces the computational complexity compared to traditional 

EKF-based SLAM. As it contains multiple hypotheses to estimate the robot pose and 

data associations, the estimation of map could be more accuracy. The Particle method 

also has its problem on recording robot's trajectory. 

One of the most important drawbacks for FastSLAM in use is it is difficult to record 

the path and its uncertainties. Robot pose is presented by choosing the particle with 

the highest weight. The weight value is a normalized character for all the particles. 

When a particle is selected to present current robot pose, the algorithm believes robot 

is absolutely there, and map features are read from this particle to represent the 

environment. The problem of this is the highest weighted particle may be changed at 

any time. So the robot path will not be continuous. But in the real world, a robot will 

continually move across an area. 

This lack of record in remembering trajectory's uncertainty may also involve a 

problem that the estimations of SLAM posteriors are overconfident. FastSLAM or PF 

is discrete; sometimes the particle with the highest weights is not the peak value on 

real posterior of SLAM estimation. Therefore, it will make mistakes on estimating 

robot path and mapping the environment when applying on real robot SLAM. 

2.2.7 Sub-map Method 

The sub-map method is EKF-based approach for SLAM problem, which decompose 

global map into smaller sub-maps (Dissanayake et al. 2002, Roman & Singh 2005). A 

robot formulates a small sub-map with known robot pose. In this case, a robot is 
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usually assumed standing in the middle of the sub-map. When the robot moves out of 

the sub-map, it either creates a new sub-map or localizes itself in a previous 

formulated sub-map. A global map is a combination of these sub-maps in sparse 

network relationship. The sub-map method generates the same results as EKF-based 

SLAM, but with a lower computational requirement. Network Coupled Feature Maps, 

ATLAS, the Local Mapping algorithm, and Decoupled Mapping frameworks all 

consider relationships between a sparse network of sub-maps. 

2.2.8 Hybrid Method 

The Hybrid method is a combination SLAM method of EKF-SLAM and FastSLAM 

(Brooks & Bailey 2009). It contains both methods' strengths and avoids the weakness 

of these two methods. Map of the environment is produced by FastSLAM. Each 

particle's local map is then fused into an EKF-SLAM back-end. Then, the result in 

terms of robot poses and landmark positions are used as the initial information for the 

next time. The use of FastSLAM avoids linearization of the motion model and 

provides a high level of robustness to data association. The use of EKF-SLAM allows 

the uncertainty of robot path to be remembered, and avoids robot's poses become 

overconfident. 

2.2.9 Summary of single robot SLAM 

This thesis summarizes key properties of some of the most important algorithms in 

Table 2.1 and Table 2.2. The goal of this section is to clearly show the advantages and 

shortcomings of individual approaches. 

In table 2.1, the map representation is summarized in the field representation, which 

has been defined before in details. The field sensor noise on the right of representation 

line means the kind of noise which the individual algorithm could process. Most 

algorithms only apply the Gaussian noise, but the EM algorithm could deal any noise. 

This means that the EM algorithm is more suitable for the real world environment. 

The field labeled uncertainty refers to the way uncertainty is represented in the 

resulting map. For the “Posterior poses and map”, results are presented by a robot 
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pose or landmark position coming with a belief. While for the “Maximum likelihood 

map”, the result is presented by only one map the best matching real word. 

Correspondence line indicates whether an algorithm can cope with unknown 

correspondence problem. The field of online means whether an algorithm is an online 

algorithm, which means the algorithm could produce the map before it finishing 

receiving all information data. 

Table 2.1: lists of key properties of some of the most important algorithms 

 Representation 
Sensor 

noise 
Uncertainty Correspondence Online 

Kalman 

filter 

Landmark 

position 
Gaussian 

Posterior 

poses and map 
no yes 

Graphical 

map 
Point obstacles Gaussian 

Maximum 

likelihood 

map 

no no 

EM Point obstacles Any 

Maximum 

likelihood 

map 

yes no 

SEIF 
Landmark 

position 
Gaussian 

Posterior 

poses and map 
no yes 

TJTF 
Landmark 

position 
Gaussian 

Posterior 

poses and map 
no yes 

PF 
Landmark 

position 
Gaussian 

Posterior 

poses and map 
no yes 

Sub-map 

method 

Landmark 

position 
Gaussian 

Posterior 

poses and map 
no yes 

Hybrid 

method 

Landmark 

position 
Gaussian 

Posterior 

poses and map 
no yes 

 

Table 2.2 shows the advantages and disadvantages of filtering approaches applied into 

the SLAM. As it is disused before, the advantages and short comings is comparable. 

Any of these algorithms has its unique advantages and its short comings as well. 
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However, each of these algorithms has its limitation, but most of these filters have 

been successfully applied for single robot SLAM in real world.  

Table 2.2: lists of advantages and disadvantages of filtering approaches applied into single robot 

SLAM. 

Pros. Cons. 

Kalman Filter/ EKF 

-Handle uncertainty 

-High convergence 

-Computational complexity 

-Poor in data association 

Graph based SLAM 

-Linear memory requirement -Map generates should compute the whole pass 

Expectation Maximization (EM) 

-Optimal to map building 

-Solve data association 

-Map generates should compute the whole pass 

Sparse Extended Information Filter (SEIF) 

-Fast for high dimensional maps -Poor in data association 

The Thin Junction Tree Filter 

-Reduce computational complexity -Large size of the tree 

Particle Filter/FastSLAM 

-Low computational complexity - SLAM posteriors are overconfident 

-Map accuracy very depend on the number of 

particles 

Sub-map Method 

-Reduce memory usage 

-easy to build topological map for large 

environment 

-Require multiple map merging 

-Poor in data association 

Hybrid Method 

-Reduce memory requirement -Poor in data association 

Table 2.2 makes a survey of major algorithms in the field of robotic SLAM. The 

major paradigms in table 2.2 included Kalman filter method, graphical based method, 

EM method, sparse extended information filter method, the thin junction tree filter 

method, Particle filter method, sub-map method and hybrid method. Basic idea has 

been illustrated before, and their relative strengths and weaknesses have been pointed 
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out. In the following, there will be a short discussion of the algorithm. 

It is noticed that all these algorithms described in the literature are of the state of the 

art method in robot SLAM, specifically in the indoor environment. These methods 

work with an assumption of robot navigating in a structured, static indoor 

environment. Robot odometry and sensing noise is assumed as a Gaussian white noise. 

However, the EM method could deal with non-Gaussian noise, but in the work (Corff 

et al. 2011) the authors set the noise as a Gaussian noise to compare the experiment 

results with EKF.  

It is also noticed that there are three basic paradigms in robot SLAM algorithm. The 

first one is known as Kalman filter SLAM. It is the earliest solutions to robot SLAM 

problem. In this thesis, the EKF method, SEIF method, TJTF method, and sub-map 

method could be considered as the Kalman filter paradigms. As all these methods use 

Kalman filter to update robot pose and landmark position uncertainties to calculate the 

posterior. Representations of maps are presented by a mean value and the value’s 

uncertainty. The limitations of these methods are to reduce the computational 

complexity of the quadratic covariance matrix. Although, the TJTF method and 

sub-map method reduce this problem to a linear complexity, they are still a Kalman 

filter based method to SLAM algorithm, which use a Taylor-series expansion to press 

the motion and observation model (the mean and uncertainties) from current time to 

the next time. Another limitation of the Kalman filter is they are all poor in dealing 

with the data association problem. Robot poses and map updates are very depending 

on correct data association. 

The second paradigm of robot SLAM is graph based method. This method solves the 

SLAM problem by sparse optimization, which is to choose a robot pose to maximum 

matching the map with the highest probability or the minimum errors. Therefore, this 

family could be thought as a least squares problem. Graph based method and EM 

method could be considered as members of this family. The quadratic computation 

complexity in EKF paradigm has been well solved in this paradigm. From the 
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literatures, it could see that the EM method is not very much depend on data 

association, because in the M-step, robot pose which generated in the E-step are 

repeatedly correspond to different hypotheses (correct or incorrect) to find a best 

matching pose from all possible positions. After doing this, the incorrect hypotheses 

will be deleted as the incorrect data association would result in a small likelihood in 

the final result. The limitation of this method is it is an offline SLAM method. The 

offline SLAM means that the final map and robot pose should be calculated when all 

information data (odometry meter and sensing readings) are collected, or when robot 

produce the map at time t, it should calculate all information data from time 0 (the 

initial) to the current time t. With the increasing robot trajectory, robot will take a very 

long time to get the result. 

The third paradigms of robot SLAM is based on particle filter. FastSLAM is a 

member of this family. In particle filter family, robot potential poses are presented by 

a set of particles. Each particle is given a weight to present the possibility where robot 

may stand on this position. Usually the particle with the highest weight is chosen as 

the robot current pose. And landmarks are presented by a mean and a covariance 

which is similar to the KF family. As FastSLAM uses particle filter to estimates robot 

poses, robot odometry error could be non-Gaussian, which means a robot drift and 

slip error could be set as real world situation. But for the observation model, this 

method can only produce the Gaussian noise sensor measurements. The advantage of 

this method is the low computational complexity, but the limitation is that map 

accuracy is much depends on the population of particles. An experiment shows that 

the more particles it chooses the accuracy the map will be. But with more particles 

added into this method, the calculation will increase. Another limitation of this 

method is the overconfident problem. For some reasons, most particles will locate into 

a certain area, but this area is far from the correct robot pose. When this happens, a 

map is formulated possibly wrong at that time, as robot pose only be chosen from the 

particles with highest weight.  
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This thesis will use the Hybrid method to solve the robot SLAM problem. The Hybrid 

method is a combination of EKF SLAM and FastSLAM. It uses the FastSLAM 

algorithm to estimate robot pose and uses the EKF to record robot trajectory and the 

map of environment. This is because it contains strengths and avoids weakness for 

both methods. It will first compare the experiment result with EKF and FastSLAM in 

terms of robot pose accuracy and landmark accuracy, and then it will expend this 

method to a two robot SLAM algorithm. 

2.3 Successful Work on Multi-Robot SLAM 

The above literatures are about SLAM methods for single robot. In recent years, 

researchers found that building a team of robots could have obvious advantages rather 

than single one in terms of stability, speed, and accuracy. Therefore, researchers' 

interests changed into team robot SLAM. In the followings, it will introduce some 

literatures on multi-robot SLAM. 

2.3.1 Particle Filter Multi-SLAM 

Howard (2006) works out an algorithm to solve multi-robot SLAM problem by using 

particle filter. This work can be considered as an extension work of (Fox et al. 2000). 

Robots could either know initial poses of all the robots or determine their relative 

poses (distance and headings) when they meet. This algorithm works under the 

assumption that robots can recognize each member in the team and determine their 

pose and transfer their motions and observations reliably. The basic idea is that a robot 

has no prior information of other robots, therefore robot performs single robot SLAM 

until it observes another one. When two robots (robot A and robot B) meet each other 

at time t, they determine their relative pose by using their own sensors. Then particle 

filter of robot A adds two additional parameters: a causal instance corresponding to 

forward motion of the robot, and an acausal instance corresponding to time-reversed 

motion of robot. Then the queued data of robot B (observation and odometry) is 

divided into causal instance and acausal instance as well. The causal instance is empty 
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at the time when they are meeting and it is updated with the odometry and observation 

data of robot B received by wireless. The causal queue is used to localize the 

observation of robot B into the map of robot A after the time when they meet. The 

acausal queue is used to combine the observation of robot B to the map of robot A 

before the time they meet. Integration of data in the acausal queue is considered to be 

a virtual robot moving backward until the beginning. So in this manner, one robot can 

combine the observation of all the robots into a single map. Therefore, each robot will 

produce a map of whole area after they meet each other. No map merging is required 

since all robots presented a map of whole environment.  

2.3.2 SEIF Multi-SLAM 

Thrun & Liu (2003) solved the problem of multi-robot SLAM by using Sparse 

Extended Information Filter (SEIF). The SEIF is an extended version of the 

information filter. Its estimation process is very similar to the EKF. The information 

matrix is the core in SEIF, which is like the covariance matrix in EKF. SEIF works by 

updating the information matrix. But there is a little different. SEIF only updates 

those observed landmarks in the information matrix. For those unobserved landmarks, 

SEIF keeps them the same as before. This filter has low estimation accuracy, but has 

high computation speed compared to EKF estimation.  

Robots can obtain global map by building joint maps with their relative starting 

locations are unknown and landmarks are ambiguous under SEIF algorithm. Each 

robot perform individual SEIF based SLAM to formulate a partial/local map. Every 

local map is merged when all the searching is finished. To properly merge these local 

maps, the algorithm searches every landmark in local maps. For each identified 

landmark, the algorithm identifies three adjacent landmarks that fall into small radius. 

The relative distance and angles of each triangle are recorded as signs for map 

merging. The contribution of this algorithm is that it reduces the computation 

complexity of map merging by searching triangle signs instead of each grid of local 

maps.  
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2.3.3 EKF Multi-SLAM 

Dissanayake et al. (2000) and Seib et al. (2011) proposed a multi vehicle map 

building algorithm based on EKF for multiple vehicles with knowing initial poses and 

unique landmarks. The main contribution of this paper is the authors produced an 

effective communication among team members to update their observations and 

making the system reliable.  

Zhou & Roumeliotis (2006) proposed an algorithm by using EKF to estimate robot 

poses and landmark positions. The basic idea is that robots are arranged or randomly 

meet at least once for each two robots. Robots' local map can be transferred to other 

robots when they meet based on sensing measurement. The problem is that when they 

transferring local map data, there may be duplicate landmarks due to the uncertainty 

of landmark estimation. The authors developed Sequential Nearest Neighbor Test to 

detect and combine duplicate landmarks. The idea is that if L1 and L2 present the 

same landmark in different local map, the distance between them in merged map 

should be zero or within a small number. Therefore, the authors set a small valid 

number as a threshold to determine if the two landmarks are the same one. If the 

distance is smaller than the threshold number, then they are considered as the same 

one in the merged map.    

2.3.4 Other Methods 

Wang et al. (2007) presented a solution to multi-robot SLAM problem based on 

D-SLAM (Decoupled SLAM) framework. Robots start without known relative 

locations. Each robot builds local maps of its own by traditional EKF SLAM 

algorithm. D-SLAM framework is used to merge those partial maps. Since robots 

apply EKF SLAM algorithm independently to each other, the local maps are 

uncorrelated with each other as well. The map merging is conducted by an algorithm 

developed from image registration method. The idea of image registration is to find 

the transformation of different local maps to join them together. The transformation T 

can be calculated by correlating features in local maps. At last, a correspondence 



34 

 

value is proposed to verify feature correspondence. Transformation with large 

correspondence value presents maps with high similarity. 

Change et al. (2007) proposed a novel algorithm to build a Topological/Metric maps 

by multi-robots. In this paper, each robot performs a Rao-Blackwellized particle filter 

to formulate a metric map (vertex). The authors set each metric map (vertex) with a 

fixed set. The initial location of the robot is set to the center of the square. When  a 

robot moves into a new metric map or when two robots meet each other, an edge is 

build to present the difference of coordinate in the two metric. Thereby, it is very easy 

to solve the map merge problem in multi-robot SLAM. 

2.3.5 Summary of multi-robot SLAM 

From the previous literatures, it could know that the simplest way of solving 

multi-robot SLAM is to apply the map merging algorithms. Different robots' local 

map are fused together to formulate a global map. The difficulty of this idea is how to 

correctly find those overlapped area which are made by different robots. It is also 

known that EKF, PF, and SEIF SLAM methods have been applied into multi-robot 

SLAM. The idea of these methods to estimate robot poses considering the information 

collected by all team members. 

This thesis will follow the same idea to expand the Hybrid SLAM method into two 

robots SLAM. As it discussed in Chapter 1, the difficulty of this method is how to use 

the additional information from the detected robot to narrow robot's SLAM posterior. 

In the Multi-Hybrid SLAM algorithm, the positions of landmarks will be summed 

together by using Kalman filter. The landmark posterior of the multi-hybrid SLAM is 

the sum of each robot's posterior for landmarks. 

2.4 Conclusion 

It is clear that researchers became more interested in developing algorithms for team 

robot rather than single robot. This is because a team of robots have obvious 
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advantages rather than single robot to accomplish a task in terms of time consuming, 

stability and energy cost. Therefore, it is necessary to work on team robot SLAM 

algorithm. It is notable that most literature focuses on solving computational 

complexity, but few papers work on increasing estimation accuracy.  

There are two main ideas for generating multi-robot SLAM algorithms. The first one 

is directly applying single robot SLAM algorithms into each team robot to map the 

environment independently, and then propose a method to merge these local maps into 

a global map. The difficulty of this idea is how to correctly and efficiently find out the 

overlapped area between different local maps for map merging. The second idea is 

expanding current single robot SLAM algorithm for team robots. The algorithms, 

such as KF, SIEF, FastSLAM and sub-map method have been successfully applied 

into multi-robot SLAM algorithms already.  

In this thesis, it will apply the single robot SLAM algorithm into multi-robot SLAM. 

This is because, with multiple points of view, team robots could have a better 

knowledge in estimating their poses and the environment. And also, robots could have 

a better decision on navigation by sharing their information. 

2.4.1 Proposed Solution 

The multi-Hybrid SLAM method will be proposed in this thesis. The multi-Hybrid 

SLAM method is formulated by expanding single Hybrid SLAM algorithm. It 

assumes that there are two robots exploring a certain area, knowing each other's 

location at initially. Each robot performs a single Hybrid SLAM algorithm when they 

are moving. The resulting mapping information of each individual robot will be 

transferred to the central computer to merge different robots’ map into more accurate 

map by using Kalman filter which will be disused in Chapter 4. 
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3 SLAM 

The previous chapters illustrated background information on robot simultaneous 

localization and mapping problem, as well as some typical solutions to robot SLAM 

problem. In this chapter, methodologies and mathematical details on EKF and 

FastSLAM will be presented. This chapter will illustrate how these two methods filter 

out noise on robot controls and sensor readings respectively when a robot moves 

across an unknown area. 

3.1 SLAM Posterior 

The pose of the robot at time t will be denoted   . For robots operating in a planar 

environment, this pose consists of the robot's x-y position in the plane and its heading 

direction. The complete trajectory of the robot, consisting of the robot's pose at each 

time step, will be written as   , 

                  

The environment of the robot's working area can be presented as a set of point 

landmarks. These landmarks present the locations of features extracted from sensor 

data, and will be denoted            . The entire map of the environment will be 

written as  . 

As the robot moves through the environment, it will collect relative information about 

its own motion. This information can be measured by using odometer attached on the 

wheels of the robot, or by recording the control command executed by robot. In robot 

SLAM problem, any measurement of the robot's motion will be referred as a control. 

The control at time t will be written as   . Similarly, the set of all controls executed by 

the robot will be written as   . Therefore, 
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As the robot moves through the environment, it will observe nearby features 

(landmarks). In the most common cases of the SLAM problem, the observation 

information will contain both the range and bearing to nearby obstacles. Hence, the 

observation at time t can be written as   . The set of all observations collected by the 

robot will be written as   , 

                    

In robot SLAM, sensor measurements can be decomposed into information about 

individual landmarks. Each observation of landmark can be incorporated 

independently from the other measurements. Thus, it is assumed that each observation 

provides information about the location of one landmark relative to the robot's current 

pose. The variable n represents the identity of the landmark being observed. In 

practice, the identities of landmarks usually can not be observed, because the robot 

has limited knowledge to identify landmarks. The identity of the landmark 

corresponding to the observation will be written as   , where              . For 

example,       means that at time t=5, the robot observed landmark number 4. 

Landmark identities are commonly referred as data associations or correspondences. 

The set of all data associations will be written as   , 

                    

For simplicity, it is assumed that at time t, the robot observed exactly one 

measurement     and executes exactly one control    . The goal of SLAM is to 

recover the best estimation of the robot pose    and the map   , given the set of 

noisy observations     and controls   . In Bayesian probabilities, it is expressed by 

the following posterior, also referred as the SLAM posterior, which has been 

mentioned before in Chapter 1 and Chapter 2, 
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3.2 Mathematical Derivation 

It is not difficult to understand that the current pose of the robot    can be written as a 

probabilistic function of the pose at the previous time step       add the control     

executed by the robot. This function is referred as the motion model. It describes, 

firstly, how controls change the pose of robot, and secondly, how the control noise 

influences the uncertainty of robot pose estimation. The motion model is written as, 

                  

Sensor readings collected by the robot are also presented by a probabilistic function. 

This function is referred as the measurement model. The observation     is a function 

of the landmark being observed and the pose of    . The measurement model describes 

the error model of the robot's sensor. The measurement model is written as, 

                   

Therefore, the SLAM posterior at time t can be computed recursively by using the 

motion model, the measurement model and the SLAM posterior at time t-1. This 

recursive update rule is called Bayes filter for SLAM, which is the basis for the 

majority of online SLAM algorithm. 

3.2.1 Bayes Filter Derivation 

The Bayes Filter can be derived from the SLAM posterior. Assume that at time t, a 

robot moves across an area without prior knowledge about this environment. It 

obtains information of features by using its sensors readings and estimates its pose by 

using odometer readings. Therefore, the posterior of SLAM can be written as, 

                                                          
                (3.1) 

Where    is a normalizing constant number. According to the Markov chain 

assumption, we know that the observation factor     is isolated from the previous 
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observations and controls. It is only relevant to the current robot pose   , the map   , 

and the latest data association    . Hence the posterior can be written as, 

                                                                 (3.2) 

Then, according to the law of Total Probability theorem, we can expand the rightmost 

term on the pose of the robot at time t-1, 

                     

                                
                     

                       (3.3) 

Then, we can expand the leftmost term inside the integral by using the definition of 

conditional probability. This is because in robot SLAM problem, the map of 

environment is independ robot pose at any time. The true map of environment is static, 

and it would not change. Therefore, we get, 

                     

                              
                          

                    
                  

(3.4) 

We can note that, robot pose     in the second term inside the integral is only a 

function of previous robot pose        and latest control     as it is previously 

described as the motion model, 

                     

                              
                                    

                  

(3.5) 

Then, we can combine the first term and the third term in the integral, 

                     

                                                                          (3.6) 
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To simplify this equation, since the current control   and data association     

provides no new information about     , we can delete these factors in the rightmost 

term of the integral. Then, it is easy to see that the result is a recursive formula to 

compute the SLAM posterior at time t by providing the SLAM posterior at time t-1. 

And computation is based on calculating the motion model                    , and 

the measurement model                , 

                     

                                                                           (3.7) 

3.3 Kalman Filtering 

Most ideas of SLAM algorithms came from a seminal paper by Smith & Cheeseman 

(1986). They proposed the application of the Extended Kalman Filter (EKF) to 

estimate the SLAM posterior. 

The EKF presents the SLAM posterior as a multivariate Gaussian parameterized by a 

mean    and a covariance matrix   . The mean values describe the most likely 

position of the robot and landmarks, and the covariance matrix encodes the pairwise 

correlations between all pairs of other state variables. 

To keep this problem as simple as possible, here it is only consider a 1-dimensional 

example of EKF estimation robot pose. Suppose a mobile robot is moving through a 

line on the ground. It makes two different observations    and     with two different 

sensors. It is known that each sensor has its own accuracy. Therefore, the observation 

detected by the first sensor has an error modeled by a Gaussian with standard 

deviation   . The error of the second sensor is also normally distributed with standard 

deviation   . The robot would like to combine both readings into a single estimation 

to best estimate the distance between its position and the landmark. 

To our common sense, if both sensors have the same error (        ), it is just take 
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the average of both values. If the first sensor, for example, is greatly superior     

   , the robot will keep     as the estimation, and vice versa. In any other case, the 

robot would like to formulate a weighted average of both readings to compute an 

estimation of z. Therefore, the question is which the best weighted average is. 

 

Figure 3.1: Combination of two different normal distributions by using Kalman Filter 

According to the Kalman Filter, we know that one possibility is weighting each 

reading inversely proportional to its precision, that is, 

  

  

  
    

  

  
 

 

  
    

 

  
 

                           (3.8) 

Or simplifying, 

  
    

        
 

  
      

                         (3.9) 

This estimation above can be also rewritten as, 

                                   (3.10) 
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Where    
  
 

  
      

 . And the covariance of the combined result is, 

   
  
   

 

  
      

                          (3.11) 

If we introduce a gain factor K, we can rewrite the best estimation of covariance as, 

          
                       (3.12) 

Note that    could not be a measurement. It can be a current belief in the landmark 

position with a covariance    
 . And      can be a measurement with the error 

covariance    
 . The Kalman filter would combine the robot current belief with the 

measurement in order to provide the best possible estimation. Fig 3.1 shows an 

illustration of how Kalman filter combined two different distributions into one final 

distribution. Note that the estimation of z fulfills the boundary conditions mentioned 

above. And the covariance    is smaller than any of   
  and    

 , which means the 

combined distribution has a higher belief of where the landmark is. This meets our 

common sense. 

It is easy to expand this 1-D problem to 2-D problem. For static landmarks, their x 

value and y value in an x-y coordinate are independent. The position on x-axis has 

nothing relative to the position on y-axis for the same landmark. Therefore, a 2-D 

Kalman filter in could be divided into two 1-D Kalman filter problem. This method 

will be used in Chapter 5, where when two robots detected a same landmark, the 

landmark’s posterior could be updated by using the statistic Kalman filter to accurate 

the position of landmarks as well as to reduce uncertainty of this landmark’s 

covariance. 

From the EKF experiment results later in Chapter 4, it could be noticed that when we 

read the covariance matrix of EKF from the result, there always some “0” in the 

matrix. If we temporarily set the covariance matrix as P here, where 
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                (3.13) 

       presents a robot covariance which is a 3 x 3 matrix. We do not concern about 

the robot here.            and            are two 2 x 2 matrixes which present 

landmark 1 and landmark 2’s covariance. They can be pressed as  

            
  
  

                  
  
  

            (3.14) 

We noticed that only the grid one the diagonal grids has a value (here for a, b, c, and 

d), and on the other grids, the value are always 0. This in turn proved that the position 

x and position y has nothing relative with each other for the same landmark. And we 

could divide the 2-D Kalman filter problem into two 1-D Kalman filter problem. 

3.4 Extend Kalman Filter 

The basic Kalman Filter algorithm is the optimal estimator for a linear system with 

Gaussian noise. The EKF is an extension of the basic Kalman filter to non-linear case. 

The EKF expresses the non-linear models of motion and measurement models by 

using the linearized functions that are around the most-likely state of the system. The 

different between Kalman filter and EKF is that, the KF is used in a statistic situation. 

For example, when two maps are produced by two robots, then a KF can be used to 

merge them together. However, when a robot is moving through an environment, the 

robot’s map should be updated by using an EKF. 

The motion model will be written as a non-linear function            with linearized 

noise covariance   . And the measurement model will be written as the non-linear 

function          with linearized noise covariance   . The update equation of EKF 

can be written as follows, 

  
                                   (3.15) 
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                                  (3.16) 

       
              

       
                 (3.17) 

       
   

                            (3.18) 

   
     

                              (3.19) 

      
   

   
                           (3.20) 

      
             

                     (3.21) 

             
                       (3.22) 

For a complete mathematical introduction the Kalman Filter, see Kalman (1960). 

Kalman Filter is an optimal mathematic for estimation of linear system. But in real 

world, the environment is rarely linear. Therefore, it still needs the EKF to estimate 

the result. 

There are two well known problems for EKF-based SLAM. The first problem is 

quadratic complexity computation. The number of mathematical operations required 

to consider a control and an observation into the filter. For example, if k is the 

measurement number and n is the state number, then the computational complexity is 

              (Montemerlo et al. 2002). For this reason, EKF only works well 

within small area with fewer landmarks (less than a few hundred). But most real 

world environments have many more than a few hundred features in them. In these 

environments, we could see the flaw of EKF. 

The second problem with EKF is it has single data association hypothesis per 

observation. The data association method is based on maximum likelihood heuristic. 

The problem is that once an incorrect data association is made, it will be never 

removed. This will possibly make a big mistake. This problem is a minor question in 



45 

 

this thesis. Although it is very important to real robot SLAM algorithm, this thesis 

focus produces an accuracy estimation of both robot poses and landmarks' positions. 

3.5 Particle Filter 

The Kalman Filter and the EKF present the probability distribution function (pdf) by 

using a parameterized model (a multivariate Gaussian). The basic idea of Particle 

Filter presents the pdf by using a set of sample states, or particles. The density of the 

samples (particles) in one area of the state space will represent the probability of that 

region. For example, the area with high probability will contain more particles; while 

on the other hand, region with low probability will hold fewer or even no particles. If 

given enough particles, the true pdf can be approximated exactly by using Particle 

Filter or Monte Carlo approximation. 

3.5.1 Implementation in Robot Localization 

Here, it gives a short example for robot localization problem by using Particle Filter 

to illustrate the basic idea that how a Particle Filter works on estimating posterior. The 

idea of Particle Filter Localization algorithms is to represent the belief by a set of m 

weighted samples distributed according to the posterior                     , where, 

                                                     (3.23) 

Each      here is a particle (a state) to present robots potential locations, and      is 

non-negative number, called importance weight, which sum up to one. In the initial 

pose, particles' importance weights are set uniformly as 1/m, where $m$ is the number 

of particles. 

The Particle Filter localization algorithm can be written in three steps: 

1. Prediction (Sampling). Sample a state  
  by drawing randomly particles   

  

according to the motion mode                 . Noise is usually assumed to be 
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Gaussian, with normal distribution. See Figure 3.2 

 

Figure 3.2: The result of prediction (Fox et al. 2000). The robot starts from left-bottom and move 

to the right-top. Particles on the right-top present the posterior distribution of motion model. 

 

Figure 3.3: The result of update step (Fox et al. 2000). The robot observed a landmark at the 

top-left, and each particle's weight has been re-assigned according to that measurement. Darker 

particles present they have higher weights. 

2. Update. Each particle's weight is the likelihood of the measurement model 

               from that particle's hypothesis. See Figure 3.3. 
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Figure 3.4: The result of resample step (Fox et al. 2000). A new set of particles is chosen so that 

each particle survives in proportion to its weight. The cloud of resampled particles is more 

condensed and smoother than un-resampled cloud. 

3. Resample. Deleting particles with low weights, and break particles with high 

weights into more than one particle. The resample step is necessary because most 

of the particles have drifted enough for their weight to become too small to 

contribute to the pdf of the moving robot. See Figure 3.4. 

Liu (2008) proposed an effective sample size (ESS) to estimate the number of 

near-zero-weight particles. When the number of ESS drop below a certain 

threshold, usually a percentage of the number of particles M, then the particle 

population is resampled. In this thesis, we set it to 50%. The ESS is calculated by 

the following, 

   
  

 

 
            

                     (3.24) 

     
 

                             (3.25) 

Where M is the number of particles,      is the weight for each particle i. ESS is 

the population of effective particles. 
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Figure 3.5: The Particle Filter is applied for real robot localization. (a) Initially, particles are 

randomly set all over the whole map with equal weights. (b) After several sampling and 

Re-sampling loops, the robot has more confidence on where it is. (c) Finally, it finds its 

approximate position in the environment (Fox et al. 2000). 

Particle filter has been successfully applied in a variety of real world estimation 

problem in many different fields. One of the most important applications of particle 

filter in robotics SLAM is Monte Carlo Localization (MCL) (Thrun et al. 2001). In 

MCL, a set of particles are used to present the possible pose of a robot in a fixed map, 

shown in Fig 3.5. Not every particle in MCL are equally present the possibility that a 

robot may stand on that position. Each particle holds a weight to present how 

important it is, and this means the possibility that a robot may appear on that position. 

Unfortunately, the MCL is only used for robot localization. This is because it can not 

update landmarks' information. Robots must be given enough environment prior 

knowledge before applying MCL in a real robot. In this case, a much advanced 

algorithm, called FastSLAM, was developed by Montemerlo (2003). In the following, 

we will have a look at the FastSLAM algorithm, which is more advance in landmark 

updating. 

3.5.2 FastSLAM 

Most of SLAM approaches are based on estimating the posterior over maps and robot 

pose. It is written as, 
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But the FastSLAM solution is a little different. It computes the posterior over maps 

and robot path. As there are many particles to present possible pose of a robot, so we 

use    instead of   , 

                     

In FastSLAM, the conditional independence is an important consequence. Given 

knowledge of the robot's path, an observation of one landmark will not provide any 

information about the position of any other landmark, 

                                             
               

     (3.26) 

This factorization, first developed by Doucet et al. (2000), states that the SLAM 

posterior can be separated into a product of a robot path posterior, and N landmark 

posterior conditioned on the robot's path. The proof of the FastSLAM can be 

referenced by Montemerlo et al. (2002). 

3.5.3 FastSLAM Algorithm 

FastSLAM estimates the path posterior                     using a modified particle 

filter. The landmark positions are estimated using EKFs. Therefore, FastSLAM 

exploits the factored representation by maintaining MN+1 filters. All these MN+1 

filters are low-dimensional and each update of the filter demands a constant 

computation cost. In total, there are MN EKFs, N is the number of landmarks, and M 

is the number of particles. Particles in FastSLAM will be denoted as, 

  
      

    
      

      
      

    
      

      
             (3.27) 

Where i is the index of the     particle,   
  is the path of the robot at time t, 

    
          

  are the mean and covariance of the Gaussian representing the     

landmark location. The update of FastSLAM is very similar to PF, but there is a little 

bit different, and the performance is the following steps: 
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1. Sampling new poses. The same with PF, FastSLAM estimates the new position by 

drawing a set of sample according to the motion model, and formulate a set of 

temporary particles 

  
           

                          (3.28) 

Here   
  is the posterior estimate for the robot pose at time t-1 for the     particle. 

2. Updating the observed landmark estimate. Then FastSLAM updates the posterior 

over each of the landmarks. Landmarks in FastSLAM are represented by a mean 

value and its covariance. For each of the landmark, if it is not observed, it keeps 

the mean value and covariance unchanged. If the landmark is observed, it updates 

according to, 

       
                     

      
                            (3.29) 

If the observation does not correspond to any of the landmarks that have been 

observed, then a new landmark is added to the map. 

For those observed old landmarks, it updates the posterior by using the standard 

EKF measurement update, 

       
   

                               (3.30) 

    
      

        
  

     
   

    
        

               (3.31) 

              
   

    

                         (3.32) 

           
   

    

     
                         (3.33) 

     
   

         
   

                              (3.34) 
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                  (3.35) 

3. Resampling. At last, FastSLAM resample this set of particles. It draws from its 

temporary particles with replacement according to an importance weight. The 

necessity to resample arises from the fact that the particle in the temporary set is 

not distributed according to the desired posterior. It draws only according to the 

most recent control, assigning no information for the measurement. 

The landmark estimator is an EKF, so this observation likelihood can be computed 

in closed form. The probability of the observation    equal to the probability of 

the innovation      
 
 being generated by a Gaussian with zero mean and 

covariance Q. therefore, the weight function can be written as, 

  
           

 

       
 

 
      

 
      

        
 
        (3.36) 

These three steps together consists the update rule of the FastSLAM algorithm for 

SLAM problem in a closed form. It is notable that the new samples are only 

depending on the most recent pose. Consequently, past poses can safely be 

discarded. Therefore, the FastSLAM does not depend on time t, which means it 

can not remember the long-time trajectory. 

3.6 Conclusion 

This chapter illustrated the basic methods for EKF-SLAM and FastSLAM to estimate 

robot pose and landmark positions. The EKF is a mathematical tool to filter out noise 

from true values. It presents the result by a mean value and a covariance. The mean 

value means the expected value and the covariance means the uncertainty of this 

expected value. By using the EKF, we can get the result value close to the true value. 

FastSLAM can be considered as a combination of M independent EKFs, where M is 

the number of particles. For each of the particle, it updates its local map by using the 
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EKFs (update robot pose and detected landmark positions). But the posterior is 

presented by a set of particles. The density of particles presents the possible location 

of robots. The map of the environment is presented by the highest weighted particle's 

local map. 

Both the EKF-based SLAM and Particle-based SLAM (FastSLAM) have their 

strengths and weakness. The Particle Filter has its strength on non-linear system 

estimation, and lower computation complexity. Given enough particles, the Particle 

Filter can exactly estimate the state of system. But it suffers from its tendency 

sometimes to become overconfident which means that it is unable to succeed 

estimating the SLAM posterior in a single run. Therefore, a combined Hybrid SLAM 

method could be formulated by using the strengths and avoiding the weakness of both 

methods. 
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4 Hybrid SLAM 

Chapter 3 introduced the principles for EKF-based SLAM and Particle Filter based 

SLAM (FastSLAM). It is known that both methods have their strengths and weakness. 

In this chapter, it will illustrate a hybrid method of EKF-based SLAM and FastSLAM 

to estimate the posterior of SLAM, which uses the FastSLAM as front-end to produce 

maps of environment and uses the EKF as back-end to record robot path. In robot 

SLAM, the front-end is the process of observe features of map given robot locations. 

The back-end is the process of localizing robot's pose into a map given a map of 

environment. 

4.1 Introductions to Hybrid Method 

The hybrid method SLAM focuses on the problem of feature-based SLAM, where the 

environment is presented as a set of isolated landmarks. The standard solution is by 

using a Bayesian approach to calculate the joint probability distributions of robot path 

and maps. There are two current popular algorithms to modeling this distribution. The 

first one is EKF-based SLAM, which presents robot pose as a single Gaussian with 

high-dimension. The other approach is to use Particle Filter to present the robot path 

by using a set of particles. Examples of this approach include FastSLAM.  

Both of these approaches have their strengths and disadvantages. In particular, the 

EKF-based SLAM is weak for its computational complexity. The computational 

complexities rise quadrally as the number of landmarks increase. The estimation of 

robot motion model is linearized, which is not suitable for robot work in real 

environment. Last, it has difficulty in data association. It requires making hard data 

association decision to choose the most likely hypothesis. Once a bad data association 

is made, it cannot revise it. 

In contrast to the EKF, the FastSLAM does not suffer from computational complexity 
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problem and is much more robust in data association. For data association, each 

particle is allowed to make isolated decisions. As time passes, the particle which had 

made a bad data association will be removed in the resampling step of Particle Filter. 

Therefore, the error in data association will be corrected. 

The disadvantage of FastSLAM is over confident estimation. This means that in the 

process of FastSLAM, the region of small area contains more particles. This over 

confident problem makes FastSLAM difficult to estimate a good map. Another 

problem is the result of posterior of FastSLAM very much depends on the number of 

particles. Different sampling particles will produce different uncertainty. For example, 

when a smaller number is used, the filter will underestimate the total uncertainty 

because there are not enough particles to represent those areas with low probability. 

The majority of particles are located the region with high probability that robot 

position may locate. For expressing whole uncertainty and avoiding over confident, 

the EKF is far superior. By using a covariance matrix, uncertainty does not 

decompose. The uncertainty could be a very small value, but it will never be zero 

when applying the EKF to update robot pose and landmark positions. 

Therefore, it is necessary to produce a hybrid filter, which combines the advantages of 

both approaches. Here, it uses the FastSLAM as a front-end and the EKF-SLAM as 

back-end. The FastSLAM front-end is used to build local maps, and it is robust 

enough to do the data association. The EKF-SLAM back-end is used to calculate the 

position of robots and landmarks in a Gaussian model, which is used for further map 

jointing for multi-robot SLAM. 

4.2 FastSLAM Posterior as Single Gaussian 

Before we talk about this problem, it should first have a look at the FastSLAM. The 

FastSLAM algorithm factors distribution as follows, 

                                             
               

      (4.1) 
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Where on the right hand, the first factor presents robot path at time t, and the second 

factor present all landmarks' position given robot pose. The posterior distribution is 

represented as a set of M particles, with each particle, consisting of a robot pose   
 , a 

weight  , and N EKF estimations of landmarks described by the mean     
  and 

covariance     
 , 

  
      

    
      

      
       

      
                   (4.2) 

Alternatively, each particle can equivalently be represented as, 

  
      

    
    

                           (4.3) 

Where   
     

      
           

      
    denotes the ith particle's robot pose and the 

mean values of all landmarks, and   
  denotes a block-diagonal covariance matrix, 

which contains robot covariance and the covariance of each landmark,   
  is zero in 

this case, because the particle has no uncertainty about its location, 

  
  

 
 
 
 
 
  

    

     
   

 
 

 
 

  
 

 
    

  
 
 
 
 

                      (4.4) 

By using this representation, the posterior of FastSLAM can be calculated as a single 

Gaussian with mean value    and a covariance    according to moment matching, 

       
  

     
                          (4.5) 

       
    

      
        

     
   

                 (4.6) 

where   
  is the covariance matrix of robot pose. It sets as 0 at the initial, which 

means that there is no uncertainty about robot pose at the beginning. 
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Here, this thesis will take a simple example to illustrate how a FastSLAM posterior 

could be calculate as a single Gaussian posterior. Assuming at some time, for example 

at time = t, a robot get the posterior by using FastSLAM with two detected landmarks. 

Therefore, N = 2 in the equation (4.2). And then we assume the population of 

particles is 3 (3 particles is not enough to acquire an accurate map in real world or 

even in a simulation level on computer, but here we just set this number for examples). 

Then the equation 4.2 could be expressed as, 

  
      

   

  
 

  
 

  
 

   
    
 

    
    

      
  

       
    

    
 

    
    

      
  

       
           (4.7) 

In equation 4.7,    
    

    
    presents first particle’s location at time t. 

     
      

              
      

    present the first and the second landmarks position in 

first particle.  
      
  

       
   and  

      
  

       
   are the covariance for each particle. For 

particle number 2 and particle number 3 it could be documented as   
  and   

 . 

Where: 
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Alternatively,   
  could equivalently be represented as, 
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The same as particle number 2 and number 3, where 
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     (4.12) 

On the next, we could calculate the weight mean of these three particle’s location to 

present robot’s pose and landmarks’ position at time t.  
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Then the uncertainty could be calculated, 
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(4.14) 

In this example, the covariance matrix is a 7   7 matrix, with first three left top 

matrix presents the robot’s pose uncertainty.  

After these three steps, the FastSLAM posterior with particles and weight has been 

summed together with a Gaussian posterior. 

4.3 Hybrid Method SLAM Algorithm 

In real world SLAM applications, data association problem is the most difficult. 

However, this data association is not the main interest of this thesis. For this reason, 

this hybrid method algorithm is assumed that correct data association is made. 

The algorithm first predicts and updates robot pose and landmarks by using standard 

FastSLAM, in which, the robot pose posterior is estimated by using a particle filter. 

The landmark posteriors are estimated by using EKFs. Each particle records a set of 

landmarks of its own by using EKFs. Different particles estimate and update the 

posterior of landmarks dependently to each other. This part of algorithm is very 



59 

 

similar to FastSLAM. 

When the importance weight is calculated, in FastSLAM algorithms, the 

representation of robot path and location of landmarks are selected as the position of 

particles with the highest weight. In the hybrid SLAM algorithm, the position of robot 

path and landmarks are presented by the weight mean of each particle, and covariance 

is the sum of each particle's difference between the weight mean value and each 

particle's position value, multiplying its weight. 

The last step of hybrid SLAM algorithm is re-initialization. All particles' information 

should be reset as the calculated new values. In each particle, the estimated position of 

robot and landmarks are reset as the weighted mean of all particles, as well as the 

covariance of each particle. Note that, in FastSLAM, there is no covariance 

concerning to robot pose. The uncertainty of robot pose is represented by different 

particles and their weights. However in hybrid SLAM, the uncertainties of robot pose 

influences the robot's observations for the next time. Therefore, we add this 

uncertainty to the observation noise for the next time step. 

4.3.1 Sampling a New Pose 

The first step of the hybrid SLAM is to estimate the robot's new pose at time t, given 

the information      from last time. This information contains robot pose, particle’s 

weight, all detected landmark positions, and their uncertainties (covariance 

matrix) .This estimation of a new robot pose for time t is obtained by sampling from 

the probabilistic motion model by using particle filter. As this part of algorithm is the 

same with FastSLAM, the motion model noise could be set with any non-Gaussian 

function. But in this thesis, we still use Gaussian noise for motion noise. 

     is robot pose for time t-1,    is the control input, with velocity and turnings,    

is the control noise at time t, with         presents the transform error and         

presents the turning error. M is the population of particles.      is robot pose at time 

t-1, which is         . The output of this algorithm is the new particles’ position, 
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which presents a potential location of a robot at time t. 

Algorithm for sampling a new pose (    ,   ,   ) 

1: for i = 1 to M              % M particles in total 

2:      
        

                                                   

                                                    

                      

  

3: endfor 

4: return   
    

 

4.3.2 Updating the Landmark Estimates 

In the SLAM approach, the landmarks are conditioned on the robot's path. Therefore, 

landmark positions can not be easily obtained by robot's observation information, as 

sensor readings are always affected by noise. One of the most important things for 

robot SLAM is to update and revise the estimated landmark positions. As the Hybrid 

method uses FastSLAM as front-end, the landmark updating step is exactly the same 

with FastSLAM. 

For those re-observed landmarks, landmark position is updated by an EKF. The basic 

idea is that as we know the position of the re-observed landmark at time t-1, and we 

know the new particle’s position by using sampling a new pose (    ,   ,   ) 

algorithm, we could compute the estimated distance and bearing between the particle 

and the observed landmark. This is   . 

Then the Jacobians    of observation model could be calculated by 

    

         

  

         

  

 
         

 

         

 

                       (4.15) 
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                   (4.16) 

Where the robot pose at time t is presented as                 , and the current 

landmark position is <         >. n is the landmark order. q is the distance between 

robot and the current observed landmark. The Jacobians generalizes the gradient of a 

scalar valued function from current robot pose to the observed landmark position. Or 

it can be considered as the uncertainty change rate along with the range. Then the 

observation uncertainty can be calculated by using 

              
   

    

                           (4.17) 

Where    is observation noise, which is a Gaussian noise.        
   

 is the nth 

landmark’s uncertainty at time t-1. Then we could get the updated position of 

landmark as well as its covariance. First we calculate the Kalman gain, then we use 

this gain to update landmark’s information. 

           
   

    

     
                         (4.18) 

     
   

         
   

                               (4.19) 

     
   

          
        

   
                    (4.20) 

For those unobserved landmarks, the SLAM algorithm keeps all information the same 

with their previous time step. The mean values of position and the same values of 

covariance matrix are kept unchanged. 

It is notable that, when a new landmark is observed, the algorithm should give this 

landmark a covariance to represent its uncertainty. There is a very simple way of 

doing this. Instead of computing the correct initial covariance, the covariance can be 

set to a high value (Thrun et at, 1998). Either use these following methods, or just 
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manually set a number. In this thesis, it set this value at 30 meters to present the 

covariance. The value 30 is big enough to cover all possible landmark positions when 

the robot first observes this landmark. 

Algorithm for update landmark information (                         ) 

1: for all observed landmarks, do 

2:    if landmark never seen before 

3:        
    

    
    

    
    

      
             

             
  

4:    endif 

5:       

         

  

         

  

 
         

 

         

 

   

6:                
             

  

7:        
  

                          
  

8:                     
   

9:        
   

         
   

              

10:         
                 

11: endfor 

12: return (        
   

) 

In this algorithm,         are robot pose at time t-1 and t.           are the sensing 

readings, with    presents the distance between a robot and the observed landmark 

while    presents the angle between a robot and the observed 

landmark.                are landmarks location value and its covariance matrix at 
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time t-1. The output of this algorithm is the updated landmark information in terms of 

feature’s location and its uncertainties. 

4.3.3 Calculating Importance Weights  

The most important thing in FastSLAM is particle's weight, because the SLAM 

posterior in Particle Filter is represented by a set of particles with different weights. In 

HybridSLAM, the SLAM posterior is represented by a mean value and a covariance 

matrix. But these values are calculated by using particles' position and their weights. 

In this section, it will illustrate how to compute particles' weights. mth particle’s 

weight could be calculated by: 

  
   

 
 

         
     

 

 
          

 
      

  
                 (4.21) 

4.3.4 Calculating the Single Gaussian Posterior 

For each time of step, all particles’ information should be summed together to get 

robot pose and the features’ locations as well as their uncertainty by using equation 

(4.5) and (4.6). This summed result is then used as the initial information for the next 

time step. A simple example has been given in previous section, and it is not difficult 

to do this. 

As none of the FastSLAM update equations depend on the total path and only the 

most recent pose is used to update the particle set, particles could forget all 

information before time t-1. Fortunately, the Hybrid method SLAM can help 

FastSLAM to remember its data before time t-1. 

4.4 The Experiment 

This thesis setups experiments to compare three different SLAM filters to compare 

their estimation ability. The experiments focus on algorithms’ ability to correct 

estimate robot’s pose and landmark positions in a simulation environment. This was 

done by asking one robot moving with the same trajectory (the same control input) 



64 

 

and the same environment (the same landmarks positions and the same noise for both 

control and sensing) but applying different algorithms. Robot poses errors over the 

whole pass and a landmark position will be compared. In this experiment, data 

association is assumed to be known. 

4.4.1 Filters 

Experiments compared the following filters in simulation level: 

1. EKF-SLAM algorithm which is described in Chapter 3, 

2. FastSLAM algorithms which is described in Chapter 3, and 

3. HybridSLAM algorithm which is a combination of FastSLAM and EKF SLAM 

algorithm. 

4.4.2 Environment 

The experimental environment consisted of 500 steps of movement in a simulated 

2-dimensional world of size 100m x 100m. This simulated world contains 18 unique 

landmarks. Robots move in a constant speed of approximately 0.47m per step (in this 

simulation algorithms, robot true is obtained by left click the mouse, robot whole path 

will first be summed together, and then divided by 500, finally it will calculate robot 

moving speed). The turning angle is from         to           . It uses a      

range sensor with a maximum range of 20m. The particle number is 50 in this 

experiment. Robot control noise in distance is set as 5cm, and the noise in angle is set 

as   . The error for the range find is 2m in distance and    . 

When robots start in this experiment, is assumed robots known its starting pose with a 

high certainty.  

4.4.3 Results  

Figure 4.1 illustrates the SLAM result for EKF algorithm. The expected robot path is 

indicated by green line (path), the red stars in this map are the true positions for 
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landmarks. The red line (path) is the estimated path for robot thought where they are 

in the map. The blue spots in the map around the red stars are the estimated landmark 

positions. The robot starts at left-bottom which is at about (10, 40) in the map, and 

stops at about (70, 70) in the map. 

 

Figure 4.1: EKF-SLAM 2-D simulation result. Green line is the true path, and red line is the 

estimated path of robot thinking where it is. Red stars are the true positions  

Figure 4.2 illustrates the SLAM result for FastSLAM algorithm. The expected robot 

path is indicated by red line (path), the red stars in this map are the true positions for 

landmarks. The green line (path) is the estimated path for robot thought where they 

are in the map. The blue spots in the map around the red stars are the estimated 

landmark positions. The robot starts at left-bottom which is at about (10, 40) in the 

map, and stops at about (70, 70) in the map.  

From the results, we can see that on the right-bottom side of the map, the estimated 

robot path is suddenly far from the true path with a large error. This happens probably 

because of the FastSLAM’s overconfidence. For some reasons, particles in FastSLAM 

are sampled in a certain area where it is far from the true path. And FastSLAM can 

only remember their path for a short time (from t-1 to t), this mistake can not be 

corrected immediately. Therefore, this error lasts for some time. 
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Figure 4.2: FastSLAM 2-D simulation result. Red line is the true path, and green line is the 

estimated path of robot thinking where it is. Red stars are the true positions and blue spots are the 

estimated robot landmarks. 

 

Figure 4.3: HybridSLAM 2-D simulation result. Red line is the true path, and green line is the 

estimated path of robot thinking where it is. Red stars are the true positions and blue spots are the 

estimated robot landmarks. 

Figure 4.3 illustrates the SLAM result for FastSLAM algorithm. The expected robot 

path is indicated by red line (path), the red stars in this map are the true positions for 

landmarks. The green line (path) is the estimated path for robot thought where they 

are in the map. The blue spots in the map around the red stars are the estimated 
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landmark positions. The robot starts at right-bottom which is at about (80, 40) in the 

map, and stops at about (70, 70) in the map. 

From this result, we can see that robot path is smoother than FastSLAM. There is no 

such “jump” in the map, and the average error between true landmark positions and 

estimated landmark positions is smaller than EKF SLAM. 

 

Figure 4.4: A comparison of pose accuracy by three SLAM algorithms 

The pose accuracy of Hybrid method SLAM was compared with that of the EKF 

SLAM and FastSLAM algorithms on computers (shown in Figure 4.4). The error of 

the EKF is shown in green color. Red line shows the errors of FastSLAM estimation 

and the blue line represents estimation errors of HybridSLAM. The x-axis is the true 

path, which means zero error. 

In this experiment, filters estimation error increases with time. However, the hybrid 

SLAM method has a lower error in robot pose estimation, with a maximum error of 2 

meters. The EKF SLAM algorithm estimation error could be 7 meters at maximum, 

and the error performed by FastSLAM algorithm is about 3 meters at maximum. 

Before 400 time steps, the hybrid SLAM's error is quite small, with the error within 

0.5 meter. This experiment suggests that the hybrid SLAM algorithm has a better 
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performance compared to EKF SLAM algorithm and FastSLAM algorithm, and in a 

relevant small distance, the HybridSLAM algorithm has a very small estimation error. 

The performance of HybridSLAM algorithm on different terrain was compared with 

that of FastSLAM algorithm in the experiment. In this simulation, different Terrain is 

presented by different levels of odometric noise (with high level odometric noise = 

50cm in distance and low level odometric noise = 5cm in distance; with high level 

odometric noise    in heading and low level odometric noise =     in heading). 

The result of the HybridSLAM algorithm and FastSLAM algorithms given low and 

high levels of odometric noise are shown in Figure 4.5(a), (b), (c) and (d). The 

number of landmarks and landmarks’ position is the same with that from Figure 4.1 to 

Figure 4.3. Exact positions could be found in the Appendix. But here, this thesis 

deletes those landmarks from the map, because this experiment only concerns about 

robot’s path. 

Both algorithms correct estimated robot path when the odometric noise is low. But the 

FastSLAM fails when the odometric noise is high. The FastSLAM algorithm localizes 

the robot in an incorrect location often. From this experiment, it shows that the 

HybridSLAM could be used in a complicated terrain rather than the FastSLAM 

algorithm. 
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Figure 4.5 (a) HybridSLAM with high odometry error 

 

Figure 4.5 (b) HybridSLAM with high odometry errors 

 

Figure 4.5 (c) FastSLAM with high odometry error 
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Figure 4.5 (d) FastSLAM with low odometry error 

Another experiment is set to evaluate the errors in landmark estimation for different 

SLAM algorithm. The map of environment is represented by different landmarks in 

this thesis. Therefore, the performance in landmark estimation presents the accuraty of 

map. In Figure 4.6, there is a comparison of estimation errors are made by EKF, 

FastSLAM and HybridSLAM algorithms. The red line indicates the estimation errors 

of FastSLAM. Green line is the result errors of EKF-SLAM, and blue line is 

Hybrid-SLAM errors for landmarks.  

In this experiment, a robot detected this landmark at its initial time, and then robot left 

this landmark at the 45th steps (out of the maximum detecting range for sensors). 

After that time, the estimated position of landmarks keeps the same, as well as 

landmarks covariance. When the robot first detected this landmark, there was a big 

error in all EKF-SLAM, FastSLAM, and Hybrid SLAM algorithms as we set the 

initial uncertainty value are very high. Then as time goes by, all of these three 

algorithms successfully reduce this error within 5 meters. But the EKF-SLAM 

algorithm performs better. When robot left this landmark, the estimation error of 

EKF-SLAM algorithm is the smallest, with about 2 meters. 
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Figure 4.6: The comparison of accuracy in landmark positions. The landmark is chosen as the first 

landmark that robot detected 
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4.5 Conclusion 

This chapter illustrated the basic Hybrid method for robot SLAM. Generally, the 

Hybrid SLAM posterior is the weight mean of each particle in FastSLAM. Robot 

poses and landmark positions are presented by mean values and their covariance. The 

mean value of robot pose is also used as its starting pose for the next time step. The 

advantage of this method to present robot path is that it look smoother compared to 

FastSLAM. It clearly showed in the experiment that robot path for FastSLAM will go 

far away from its true path and then suddenly jump back around the true path. This is 

because the particle used to present robot pose and landmarks is changed. This 

situation does not happen in EKF-SLAM and Hybrid-SLAM. We also found that 

Hybrid SLAM has a smaller error in estimating robot pose, and this estimation is not 

affected by odometry noise as much as FastSLAM is. 
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5 Multi-Hybrid SLAM 

Most SLAM problems are done by using a single robot, but there is some research 

that has been conducted on using team robot for the SLAM problem. Chapter 4 has 

illustrated the basic Hybrid SLAM algorithm. This thesis proposed a new 

multi-SLAM algorithm, which is called multi Hybrid SLAM. This chapter will 

illustrate the basic idea for multi-robot Hybrid SLAM algorithm, and give some 

experiment results on multi-Hybrid SLAM algorithm compared with 

multi-FastSLAM algorithm. 

5.1 Multi-Hybrid SLAM 

When applying the multi-Hybrid SLAM, robots are assumed to conduct the SLAM 

problem individually. A limited senor is equipped on the robot, which used to sense 

landmarks or other member robots. When a robot senses another robot, they can start 

to transfer their mapping information to each other. In this thesis, the mapping 

information involves landmark positions and the positions’ covariance. The distance 

and bearing could be known between two robots when they are meeting. This thesis 

here only considers two robots SLAM situation with the data association is known.  

The basic idea for this multi-hybrid SLAM is to merge landmarks on different maps. 

One landmark could be located on different positions in different maps that draw by 

different robots. This is because of noise that either comes from robot itself or comes 

from the environment. Kalman filter is known as one of the most powerful 

mathematic tool to handle noise problem. The algorithm will use Kalman filter to 

merge the same landmark in different maps. The solution has been discussed in 

Chapter 3.  

For example, when two robots meet at a time, one landmark   is presented by    
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and     in different robot’s map, as well as their covariance     
  

 

  
   

and     
  

 

  
  . Then estimating this landmark position could be considered as 

two 1-D Kalman filter problem for x-axis and y-axis.  

Then we can calculate the new position for this landmark: 
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                             (5.4) 

By using the Kalman filter, we could combine those landmarks’ position from 

different maps to find a new position for those landmarks.  

5.2 Experiment 

5.2.1 Filters 

Experiments compared the following filters in simulation level: 

1. Single Hybrid SLAM which has been discussed in Chapter 4, 

2. Multi-FastSLAM algorithms, and 

3. Multi-Hybrid SLAM algorithm. 

Experiments are set to compare the estimation accuracy on robot path and landmarks 

positions. In this experiment, a robot or robots randomly move through an open area 
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perform the three algorithms on computers. Robot path and landmarks positions are 

record for this comparison.   

5.2.2 Environment  

The experimental environment consisted of 500 steps of movement in a simulated 

2-dimensional world of size 100m x 100m. This simulated world contains 18 unique 

landmarks. Robot speed and turning angles are not set as constant value because the 

robot randomly moves in this simulation area. It uses a      range sensor with a 

maximum range of 20m. The particle number is 50 for FastSLAM and Hybrid SLAM. 

Robot control noise in distance is set as 5cm, and the noise in angle is set as   . The 

error for the range find is 2m in distance and    . Robot initial pose is known. 

5.2.3 Results 

This section will present experimental results to validate the performance of the 

multi-Hybrid SLAM algorithm. Figure 5.1 is the experiment result for multi-Hybrid 

SLAM. This is a whole process from time 0 to time = 500 (the end). We record some 

maps at time = 20, time = 100, time = 200 and time = 500. Red paths are the true 

trajectories and green paths are the estimated paths. Blue spots are the estimated 

position of landmarks, and red stars are the true position of landmarks. Robot 1 starts 

at the position of (40, 80) and moves to the left. Robot 2 starts at the position of (10, 

40) and moves to the right. 

At the beginning, two robots only detect 6 landmarks. Therefore only those landmarks 

are detected have an estimated position which is presented by a blue spot. With time 

goes on, more and more landmarks are detected by both robots. And robot poses are 

updated by those landmarks. 
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Figure 5.1(a): Multi-Hybrid SLAM simulation result at time = 20 

 

Figure 5.1(b): Multi-Hybrid SLAM simulation result at time = 100 
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Figure 5.1(c): Multi-Hybrid SLAM simulation result at time = 200 

 

Figure 5.1(d): Multi-Hybrid SLAM simulation result at time = 500 

From this result, we can see that the Hybrid SLAM algorithm could accomplish the 

task of team robot SLAM. In order to see its performance, it sets two experiments to 

compare its accuracy in robot pose estimations and landmark position estimations. In 

the following two sections, the experiences are set to compare with Multi-FastSLAM 

algorithm and single Hybrid-SLAM algorithm in the same environment. 
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Figure 5.2: Experiment result on accuracy comparison of robot path 

Figure 5.2 illustrates the simulation results of multi-Hybrid SLAM algorithm 

compared with single Hybrid SLAM algorithm and multi-FastSLAM algorithm in 

robot pose estimation. Red line indicates the distance error of single hybrid SLAM 

algorithm, green line is the estimation error of multi-FastSLAM algorithm, and the 

blue line is the estimation error of multi-Hybrid SLAM algorithm. The total time step 

is 500, and the number of particles is 50. 

This figure clearly shows that multi-robot SLAM algorithms have smaller distance 

errors compared with single robot SLAM in robot path estimation. This is because 

particles' weights are not only updated in their own map, but also updated in other 

robot's map when two robots detected each other. Therefore, each particle could have 

an accurate weight to present the possible position of robot. Compared to the two 

multi-SLAM algorithms, the multi-Hybrid SLAM algorithm has a better result than 

multi-FastSLAM algorithm, with the error of path estimation within 0.5 meters. This 

is because the hybrid SLAM algorithm is superior to the FastSLAM algorithm, which 

has been clearly proved in Chapter 4. 
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Figure 5.3: The performance of multi-Hybrid SLAM on landmark estimation against single 

Hybrid SLAM and multi-FastSLAM 

Figure 5.3 compares the landmark estimation errors of multi-Hybrid SLAM algorithm 

with that of single Hybrid SLAM algorithm and multi-FastSLAM algorithm. The 

landmark is chosen by the first landmark that robots found in the environment. The 

blue line and red line indicates the errors of multi-Hybrid SLAM and 

multi-FastSLAM, respectively. The green line demonstrates the errors generated by 

single Hybrid SLAM. In this simulation, it records the errors made by robot 1. 

The robot found the first landmark at its starting position. At the very beginning, 

errors are estimated by both multi-hybrid SLAM algorithm and multi-FastSLAM 

algorithm are very large. But the estimation error made by single Hybrid SLAM is 

relatively small. Then at time steps 120, robot 2 found the same landmark, and the 

estimation error made by multi-SLAM algorithms fall dramatically to a distance error 

of no more than 1 meter. But this error made by single Hybrid SLAM did not reduce 

until the 240th time step. This is because the robot is far away from this landmark 

before the 240th time step. Observation sensors could not detect this landmark. This 
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error reduced after 240th time step is because the robot moved, and it was close 

enough for sensors to detect this landmark. The final errors are very close. Therefore, 

these three SLAM algorithms are work successfully in estimating features of 

environment. 

5.3 Discussion 

This Chapter has illustrated a multi-Hybrid SLAM method to solve the multi-robot 

SLAM problem. The basic idea used in this thesis is to combine the same landmark’s 

position from different robot map by using Kalman filter. Kalman filter is a 

mathematic tool to reduce estimation error by handling noise in the environment. 

However, Kalman filter has its limitation of linear problem. In other words, when 

combing landmarks, robots should stop and stand in environment and wait until the 

combination is finished. Because when robots move, the relationship between robot 

pose and the map is not linear. This is because of the motion model and observing 

model are not linear in robot SLAM. This algorithm works in Chapter 5 because the 

algorithm recorded those landmark positions to a new map out of robot’s map. For 

every loop, robots will send their estimated landmark position to a new global map. 

Landmark combination is done on this new map. 

This multi-hybrid SLAM gives two possible landmark positions, then merge them 

together to find a better estimation. It looks like here are two expected value 

(landmark positions), and then the algorithm sum them together. An optional idea is to 

use one robot's (robot A) landmark position and its covariance as the expected value. 

When another robot (robot B) detects this robot, robot B could use the landmark's 

position and covariance as observation information, and the distance between two 

robots could then be considered as the control. Jabobians is the observation value 

between robot B and the landmark. Then it could use the EKF to update the landmark 

information for robot B.   
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6 Conclusions and Future Work 

This thesis was aimed at developing multi-robot SLAM algorithm through 

communication. The multi-Hybrid SLAM algorithm developed during this thesis 

showed an improvement on robot path estimation and landmark position estimation.  

To develop a better filter to apply in multi-robot system, this thesis first compared 

current popular solutions to single robot SLAM in the literature level. It then selected 

three of the most popular solutions, which are EKF SLAM, FastSLAM, and the 

Hybrid methods, to test their performance in a simulation level. The simulated results 

show that the Hybrid method holds the smallest estimation errors in robot path 

estimation, compared to EKF SLAM and FastSLAM. This is because particle-based 

filter (FastSLAM and Hybrid SLAM) is more advanced in filtering out noise from 

true values. The current robot pose is estimated according to all its previous poses 

from the initial time in the Hybrid method, rather than its last time in FastSLAM. 

Therefore, robot path estimation error in the Hybrid method is smaller than the 

FastSLAM.  

It also shows that, in the figure of landmark position estimation, the EKF method has 

the smallest error. This is probably because there are not sufficient particles, as the 

number of particle is set to 50 in this thesis. But the Hybrid method still performs 

better than the FastSLAM.  

In single robot SLAM results, it also shows that robot path estimated by using the 

Hybrid method looks smoother than FastSLAM, and is not greatly influenced by 

odometric errors. This means that the Hybrid method can be applied in a wild range of 

automatic robots. 

This thesis also expands this advanced Hybrid method to develop a multi-robot 

SLAM solution. From the simulation result, it shows that both robot path estimation 

and landmark position estimations are smaller than single robot estimation. This is 
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because in a robot team, the robot will acquire additional information from its 

teammate to narrow its SLAM posterior. The performance of multi-Hybrid method is 

the best as well, with the smallest estimation in robot path and the first observed 

landmark position.  Therefore, we can say that the multi-robot SLAM algorithm has 

been developed in estimating robot pose and landmark positions in 2-D simulation 

level.  

6.1 Contributions of this thesis 

This thesis has presented a survey of current state-of-the-art filtering techniques used 

in mobile robot SLAM problem. It made main contributions to understand the popular 

SLAM algorithms, focusing on discussing the advantages and disadvantages of each 

approach. Considering of the strengths and weakness of different SLAM algorithms, 

it proposed a hybrid-SLAM algorithm used for team robots SLAM. In particular, the 

contributions of this thesis are, 

1. A literature review of current works on mobile robot SLAM algorithms, with 

attention to those algorithms which can be used for multi-robots. (Chapter 2) 

These SLAM approaches (Kalman Filter, Expectation Maximization approach, 

Sparse Extended Information Filter, Particle Filter, and Sub Map Method) could 

be divided into two groups: Kalman Filter (KF)/Extended Kalman Filter (EKF) 

based SLAM, and Particle Filter (PF) based. The Kalman Filter based SLAM is a 

continued estimation of SLAM posterior. It assumes that robots current states are 

based on its previous pose, landmarks are relevant to current pose. However, 

Particle Filter based SLAM is a discrete estimation. Robot pose and positions of 

landmarks are independent to its previous time. The pros and cons of each method 

have been discussed in Table 2.1. 

Multi-robot SLAM strategies are mainly come from single robot SLAM 

algorithms. Most of the popular SLAM strategies have been extended for 
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multi-robot SLAM. Therefore, this thesis extended the Hybrid method SLAM 

algorithm to multi-robot SLAM.  

2. This thesis describes standard EKF SLAM algorithm and PF/FastSLAM 

algorithms in detail. It explained math fundamentals of both algorithms. Then the 

simulations of both algorithms have been made to describe the results in 2-D 

environments. (Chapter 3) 

3. A more advanced hybrid method was introduced by combing the strengths of 

EKF-based SLAM and PF-based SLAM algorithms (Chapter 4). The Hybrid 

method used FastSLAM to estimate robot poses and solve data associations. The 

EKF is used to record trajectory and to prevent the FastSLAM posterior over 

confidence. The result shows that the Hybrid method is better in estimations robot 

pose than EKF based SLAM, but has a equivalent level to FastSLAM. 

4. In Chapter 5, the Hybrid SLAM algorithm was expanded into multi-robot SLAM 

algorithm. The idea of this algorithm is that each single robot perform single 

hybrid SLAM algorithm. The result of landmark positions will transfer to a central 

computer. The computer will merge positions from different robots. At last, this 

merged position will transfer back to each single robot. Results shows that the 

multi-hybrid algorithm successfully finished two robots SLAM task. The 

performance of multi-Hybrid SLAM algorithm is superb in robot pose estimations 

compared to the multi-FastSLAM algorithm and single Hybrid SLAM algorithm. 

6.2 Future Work 

Data association algorithms should be added into this multi-robot SLAM algorithm. 

In this thesis, it assumes data association problem has been exactly known. A further 

work needs to be done on applying the multi-Hybrid SLAM algorithm without 

knowing the data association problem. The basic idea to overcome this problem is 

based on it believes two landmark in the real world environment will not be too close. 
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Then for each observed landmark, it will set a small area. When another observed 

landmark position located in this area, it believes this is the observed landmark. If not, 

then it is a new landmark. 

This multi-hybrid algorithm could be easily applied for three or more robots. Each 

member could send their landmarks to the global map. And this is not time consuming. 

The problem of this algorithm is how could we guarantee those landmarks we 

combined indicating the same landmark if the correspondence is not known. An idea 

to solve this problem is that we could combine those landmarks located very near to 

others. These may the same one on different robot maps. A further experiment will be 

set up to show this result. 

It is also noticed that there is another way to update those landmarks that detected by 

other robots. When two robots (robot A and robot B) meet each other (distance and 

bearing between the two robots is d), both of them have observed one landmark  . 

Then the landmark’s position located in robot A’s map could be considered as an 

expected position, and the landmark’s position located in robot B’s map could be 

considered as an observing position. Then we can calculate the combined mean value 

and the covariance for this landmark. The idea is that considering landmark position 

in robot A's map as the expected position. In EKF SLAM, this is the landmark 

position at time t-1. Then the observed distance d is considered as the control   in 

EKF SLAM. Landmark position in robot B could be considered as the observed 

information at time t in EKF SLAM. Jacobian could use equation (4.15), where s is 

the location for robot B,   is the observed landmark for both robots. The advantage 

of this idea is that landmark position could be updated immediately when two robot 

meet. The information will not require transferred to a central computer. Robots could 

work independently in the environment without outside information. 
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Appendix 

This is the Matlab code for multi-Hybrid SLAM simulation. 

clear all; 

NumberTimeStamps = 500; 

MapDimension = [1,100;1,100]; 

NPARTICLES = 50; 

MAX_RANGE= 20.0; 

NEFFECTIVE=0.75*NPARTICLES; 

pp=[10.238 13.66 26.891 59.054 72.513 48.561 47.421 93.955 83.234

 35.787 18.907 35.331 32.137 28.715 51.298 67.722 78.444 70.003; 

39.645 71.487 85.961 89.434 58.171 28.934 18.513 27.197 41.092

 80.461 85.671 63.961 43.408 33.276 53.539 70.908 85.961 76.697]; 

% landmarks positions 

NumberLandmarks = size(pp,2);       

%calculate the number of landmarks 

figure(1); clf; 

title('Introduce trajectory around landmarks'); 

v=[MapDimension(1,1) MapDimension(1,2) MapDimension(2,1) MapDimension(2,2)]; 

axis(v); hold on; 

plot(pp(1,:),pp(2,:),'r*'); 

pin = 1; button = 0; fi = 0; 

npoints = 0; dist = 0; 

t=[80.238 13.66 26.891 59.054 72.513 48.561 47.421 93.955 83.234 35.787

 18.907 35.331 32.137 28.715 51.298 67.722 78.444 70.003; 

39.645 71.487 85.961 89.434 58.171 28.934 18.513 27.197 41.092

 80.461 85.671 63.961 43.408 33.276 53.539 70.908 85.961 76.697]; 

% trajectory for robot 1 

npoints=size(t,2); 

for i=1:size(t,2)-1 

dist = dist + norm(t(:,npoints) - t(:,npoints-1)); 

% calculate the length of robot 1’s path 

    npoints = npoints-1; 

end 

point = 2; dist2=0; incdist=dist/NumberTimeStamps; 

tt(:,1)=t(:,1); 

for i = 2:NumberTimeStamps 

    tt(:,i) = tt(:,i-1) + incdist*((t(:,point)-t(:,point-1))/norm(t(:,point)-t(:,point-1))); 

vv(:,i-1)=tt(:,i)-tt(:,i-1); 

 % vx,vy present velocities for robot 1. In this algorithm, it uses vx, vy to present the control. 

vx^2+vy^2=1. 
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plot(tt(1,i),tt(2,i),'b'); 

%plot the true robot path of robot 1 

    dist2 = dist2 + incdist; 

    if (dist2 + incdist) > norm(t(:,point)-t(:,point-1)) && abs((dist2 + incdist) - norm(t(:,point) - 

t(:,point-1))) > abs(dist2-norm(t(:,point)-t(:,point-1))) 

        point = point + 1; dist2 = 0; 

    % this means it have finished plotting the whole path 

    end 

end 

pin = 1; button = 0; fi = 0; 

npoints = 0; dist = 0; 

t2=[10.238 71.487 85.961 89.434 58.171 28.934 18.513 27.197 41.092

 80.461 85.671 63.961 43.408 33.276 53.539 70.908 85.961 76.697; 

39.645 13.66 26.891 59.054 72.513 48.561 47.421 93.955 83.234

 35.787 18.907 35.331 32.137 28.715 51.298 67.722 78.444 70.003]; 

% trajectory for robot 2 

npoints=size(t2,2); 

for i=1:size(t2,2)-1 

    dist = dist + norm(t2(:,npoints) - t2(:,npoints-1)); 

    npoints = npoints-1; 

end 

point = 2; dist2=0; incdist=dist/NumberTimeStamps; 

tt2(:,1)=t2(:,1); 

for i = 2:NumberTimeStamps 

    tt2(:,i)=tt2(:,i-1)+  

incdist*((t2(:,point)-t2(:,point-1))/norm(t2(:,point)-t2(:,point-1)));  

    vv2(:,i-1)=tt2(:,i)-tt2(:,i-1);  

    plot(tt2(1,i),tt2(2,i),'b'); 

    dist2 = dist2 + incdist; 

    if (dist2 + incdist) > norm(t2(:,point)-t2(:,point-1)) && abs((dist2+ 

incdist)-norm(t2(:,point)-t2(:,point-1))) > abs(dist2-norm(t2(:,point)-t2(:,point-1))) 

        point = point + 1; dist2 = 0; 

    end 

end 

[velocity,del_theta,theta,theta_r]=caculate_velocity(vv,NumberTimeStamps);  

% calculate velocity for robot1 

[velocity2,del_theta2,theta2,theta_r2]=caculate_velocity(vv2,NumberTimeStamps); 

%calculate velocity for robot2 

xtrue=[tt;theta];           

% true path for robot 1 

xtrue2=[tt2;theta2]; 

% true path for robot 2 

[particle_xv,particle_w,particle]=initialize_particle(xtrue(:,1), NPARTICLES);     

% initialization for robot 1 
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[particle_xv2,particle_w2,particle2]=initialize_particle(xtrue2(:,1),NPARTICLES); 

%initialization for robot 2 

r = [(15)^2 0; 0 10*pi/18^2];    % initial uncertainty for landmarks 

rg = (3.0*pi/180)^2;           % control error in distance 

rv = (0.05)^2;                % control error in angle 

R= [2^2 0; 0 pi/18^2];         % observing error 

ftag= 1:NumberLandmarks;      

% ftag is used to indicate robot 1’s orders of landmarks 

ftag2= 1:NumberLandmarks;  

% ftag is used to indicate robot 2’s orders of landmarks 

g(NumberTimeStamps)=0; 

Vn=0; Gn=0;  

Vn2=0; Gn2=0; 

plandmarks=pp; 

da_table= zeros(1,size(pp,2));           

% data association table for robot 1 

da_table2= zeros(1,size(pp,2));  

% data association table for robot 2 

for i=1:NumberTimeStamps-1 

[Vn,Gn,theta_Gn]= add_control_noise(rv,rg,NPARTICLES);            

% add control noise, the input is control noise parameter for distance and headings, the 

output is a set Gaussian noise formulated by (0,rv^2) and (0. rg^2) 

[Vn2,Gn2,theta_Gn2]= add_control_noise(rv,rg,NPARTICLES); 

% this is the noise for robot 2 

[particle_xv]=predict_robot_pose(particle_xv,velocity(i),del_theta(i),Vn,Gn,NPARTICLES);  

% robot 1’s predicated, the predicted pose is calculated by adding robot control and control 

noise 

poses[particle_xv2]=predict_robot_pose(particle_xv2,velocity2(i),del_theta2(i),Vn2,Gn2,NPA

RTICLES); 

% robot 2’s predicated, the predicted pose is calculated by adding robot control and control 

noise 

[z,ftag_visible]= get_observations(xtrue(:,i), pp, ftag, MAX_RANGE);   

% sensing observed landmarks. the input is robot 1’s true pose, all landmark positions, ftag 

and max sensing range; the output is ftag for observed landmark for robot 1 

[z2,ftag_visible2]= get_observations(xtrue2(:,i), pp, ftag2, MAX_RANGE);    

% sensing observed landmarks. the input is robot 2’s true pose, all landmark positions, ftag 

and max sensing range; the output is ftag for observed landmark for robot 2 

z= add_observation_noise(z,R);              

% add observing noise for robot 1 

z2= add_observation_noise(z2,R); 

% add observing noise for robot 1 

Nf= size(particle(1).lm,2);            

%numbers for observed landmarks of robot 1, this is used for add new landmarks to 

“particle(1).lm,2” 
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Nf2=size(particle2(1).lm,2); 

%numbers for observed landmarks of robot 2, this is used for add new landmarks to 

“particle2(1).lm,2” 

   [zf,idf,zn,da_table]= data_associate_known(z, ftag_visible, da_table,Nf);  

%store new and old landmarks in zn and zf for robot 1 

   [zf2,idf2,zn2,da_table2]= data_associate_known(z2, ftag_visible2, da_table2,Nf2); 

%store new and old landmarks in zn and zf for robot 2 

     for j=1:NPARTICLES 

        if ~isempty(zf)  

        % if robot 1 finds old landmarks, landmark information should be updated and particle’s 

weight should be calculated 

           [w,zp]= compute_weight(particle_xv(:,j),particle(j),zf,idf,R);  

%compute the weight 

           particle_w(j)= particle_w(j)*w;  

%normalize particle’s weight, if not weight will be too small to calculate 

           particle(j)= landmark_update(particle_xv(:,j), particle(j),zf, idf, R);    

%update old landmarks 

        end 

         if~isempty(zn)  

         % if robot 1 finds new landmarks, landmark information should be added into the 

particle 

[particle_xv(:,j),particle(j)]=add_landmark(particle_xv(:,j),particle(j),zn,r,NPARTI

CLES);  

              % add new landmark to tables 

         end 

     end 

  sum_weight = sum(particle_w);    

  if sum_weight~=0 

      particle_w=particle_w/sum_weight; 

  else 

%compute the weight for each particle for robot 1 

      for j=1:NPARTICLES 

        particle_w(j)=1/NPARTICLES; 

      end 

% for the next time step, particles’ weight should be initialized; this is different from FastSLAM, 

because in Hybrid SLAM, all particles’ positions will be set on the weighted mean positions 

  end 

  nn=size(particle(1).lm,2);     

% calculate the weighted mean as well as the covariance by using hybrid method 

  lmx=zeros(1,nn);lmy=zeros(1,nn); 

  for j=1:NPARTICLES  

      wx(j)=particle_xv(1,j)*particle_w(j);   % weighted mean for x variable of robot 1 

      wy(j)=particle_xv(2,j)*particle_w(j);   % weighted mean for y variable of robot 1 

      wz(j)=particle_xv(3,j)*particle_w(j);   % weighted mean for heading variable of robot 1 
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      lm(j).x(1,1:nn)=particle(j).lm(1,1:nn)*particle_w(j);    

% weighted landmark positions in x coordinate 

      lm(j).x(2,1:nn)=particle(j).lm(2,1:nn)*particle_w(j);  

% weighted landmark positions in y coordinate 

      lmx(1:nn)=lmx(1:nn)+lm(j).x(1,1:nn);    

      lmy(1:nn)=lmy(1:nn)+lm(j).x(2,1:nn);    

  end 

  real(1,i)=sum(wx); 

  real(2,i)=sum(wy); 

  real(3,i)=sum(wz); 

for j=1:NPARICLES 

    cov1_x(1:nn)=particle_w(j)*(cov1_x(1:nn)+( lm(j).x(1,1:nn)-lmx(1:nn))^2); 

    % covariance for robot 1in xx 

    cov1_y(1:nn)=particle_w(j)*(cov1_y(1:nn)+( lm(j).x(2,1:nn)-lmx(1:nn))^2); 

    % covariance for robot 1 in yy 

end 

  for j=1:NPARTICLES 

      particle_xv(:,j)=real(:,i); 

      particle(j).lm(:,1:nn) = [lmx(1:nn);lmy(1:nn)]; 

  end 

      for j=1:NPARTICLES        % done for robot 2 

         if ~isempty(zf2) 

              [w2,zp2]= compute_weight(particle_xv2(:,j), particle2(j), zf2, idf2, R);  

               particle_w2(j)= particle_w2(j)*w2; 

               particle2(j)= landmark_update(particle_xv2(:,j), particle2(j), zf2, idf2, R); 

         end 

         if~isempty(zn2)  

   

[particle_xv2(:,j),particle2(j)]=add_landmark(particle_xv2(:,j),particle2(j),zn2,r,NPARTICLES); 

         end 

      end 

  sum_weight2 = sum(particle_w2); 

  if sum_weight2~=0 

      particle_w2=particle_w2/sum_weight2; 

  else 

      for j=1:NPARTICLES 

        particle_w2(j)=1/NPARTICLES; 

      end 

  end 

  nn2=size(particle2(1).lm,2); 

  lmx2 = zeros(1,nn2);lmy2 = zeros(1,nn2); 

  for j=1:NPARTICLES  

      wx2(j)=particle_xv2(1,j)*particle_w2(j); 

      wy2(j)=particle_xv2(2,j)*particle_w2(j); 
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      wz2(j)=particle_xv2(3,j)*particle_w2(j); 

      lm2(j).x(1,1:nn2)=particle2(j).lm(1,1:nn2)*particle_w2(j); 

      lm2(j).x(2,1:nn2)=particle2(j).lm(2,1:nn2)*particle_w2(j); 

      lmx2(1:nn2)=lmx2(1:nn2)+lm2(j).x(1,1:nn2); 

      lmy2(1:nn2)=lmy2(1:nn2)+lm2(j).x(2,1:nn2); 

  end 

  real2(1,i)=sum(wx2); 

  real2(2,i)=sum(wy2); 

  real2(3,i)=sum(wz2); 

for j=1:NPARICLES 

    cov2_x(1:nn)=particle_w(j)*(cov2_x(1:nn)+( lm2(j).x(1,1:nn)-lmx2(1:nn))^2); 

    cov2_y(1:nn)=particle_w(j)*(cov2_y(1:nn)+( lm2(j).x(2,1:nn)-lmy2(1:nn))^2); 

end 

  for j=1:NPARTICLES 

      particle_xv2(:,j)=real2(:,i); 

      particle2(j).lm(:,1:nn2) = [lmx2(1:nn2);lmy2(1:nn2)]; 

  end 

 [particle,da_table]=recieve_information(da_table,da_table2,particle,particle2,pp,NPARTICLES); 

[particle2,da_table2]=recieve_information(da_table2,da_table,particle2,particle,pp,NPARTICLE); 

 %merge the map  

    clf; hold on; title('MultibybridSLAM');               % plotting the results 

    plot(pp(1,:),pp(2,:),'r*'); 

    v=[MapDimension(1,1) MapDimension(1,2)  

       MapDimension(2,1) MapDimension(2,2)]; 

    axis(v); 

    plot(real(1,1:i),real(2,1:i),'g'); 

    plot(real(1,i),real(2,i),'g.'); 

    plot(real2(1,1:i),real2(2,1:i),'g'); 

    plot(real2(1,i),real2(2,i),'g.'); 

    plot(xtrue(1,i),xtrue(2,i),'r.'); 

    plot(xtrue(1,1:i),xtrue(2,1:i),'r'); 

    plot(xtrue2(1,i),xtrue2(2,i),'r.'); 

    plot(xtrue2(1,1:i),xtrue2(2,1:i),'r'); 

    for k=1:nn 

        plot(lmx(1,k),lmy(1,k),'b.'); 

    end 

    bbb(:,1:nn,i)=[lmx(1:nn);lmy(1:nn)]; 

    for k=1:nn2 

        plot(lmx2(1,k),lmy2(1,k),'b.'); 

    end 

    drawnow; hold off; 

end 

function [velocity,del_theta,theta,del_theta_r] =caculate_velocity(vv,NumberTimeStamps) 

% this function is to calculate robot control over all time, oututs are velocities in distance and 
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angles. 

for i=1:NumberTimeStamps-1 

    velocity(i)=norm([vv(1,i);vv(2,i)]);  

    theta(i+1)=atan2(vv(2,i),vv(1,i)); 

    del_theta(i)=theta(i+1)-theta(i); 

    del_theta_r(i)=theta(i)*180/pi; 

end 

function [particle_xv,particle_w,particle]=initialize_particle(xtrue,np) 

% this is initialization function, particle weights are 1/numbers of particles, the initial landmark 

for each particle is empty 

for i=1:np 

    particle_w(i)= 1/np; 

    particle_xv(:,i)= xtrue; 

    particle(i).lm= []; 

    particle(i).lp= []; 

end 

function [Vn,Gn,theta_Gn]= add_control_noise(V,G,np) 

% formulating control noise 

for i=1:np 

    Vn(i)=randn(1)*V; 

    Gn(i)=randn(1)*G; 

    theta_Gn(i)=180/pi*Gn(i);  % in degrees 

end 

function particle_xv=predict_robot_pose(particle_xv,velocity,del_theta,Vn,Gn,np) 

% this is robot motion model, knowing robot pose at last time, and guess robot pose at current 

time 

 for j=1:np 

    particle_xv(:,j)=[particle_xv(1,j)+(velocity+Vn(j))*cos(Gn(j)+del_theta+particle_xv(3,j)); 

   particle_xv(2,j)+(velocity+Vn(j))*sin(Gn(j)+del_theta+particle_xv(3,j)); 

   particle_xv(3,j)+del_theta+Gn(j)]; 

 end 

function [z,idf]= get_observations(x, lm, idf, rmax) 

% get robot observed landmarks, inputs are robot current pose, all landmarks, and the max sensing 

range, outputs are the distance and bearings between robot pose and observed landmarks, and the 

indications of landmarks in landmark table 

[lm,idf]= get_visible_landmarks(x,lm,idf,rmax); 

z= compute_range_bearing(x,lm); 

function [lm,idf]= get_visible_landmarks(x,lm,idf,rmax) 

dx= lm(1,:) - x(1);   % distance in x-coordinate 

dy= lm(2,:) - x(2);   % distance in y-coordinate 

phi= x(3);          % angels 

ii= find((dx.^2 + dy.^2) < rmax.^2);      % find which landmark is oberved      

lm= lm(:,ii);           %store the result 

idf= idf(ii);            % store the indications 
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function z= compute_range_bearing(x,lm)   

dx= lm(1,:) - x(1); 

dy= lm(2,:) - x(2); 

phi= x(3); 

z= [sqrt(dx.^2 + dy.^2);             % the distances and angels for observed landmarks 

    pi_to_pi(atan2(dy,dx) - phi)];    % limited the angle between –pi to pi 

function z= add_observation_noise(z,R)      

% for all observed landmark positions, it adds a noise to them  

len= size(z,2); 

    if len > 0 

        z(1,:)= z(1,:) + randn(1,len)*sqrt(R(1,1));   %randomly add a noise 

        z(2,:)= z(2,:) + randn(1,len)*sqrt(R(2,2)); 

end 

function [zf,idf,zn,table]= data_associate_known(z, idz, table,Nf) 

% find which landmarks are observed and which are not in landmark table 

zf= []; zn= [];             

%zf presents observed landmark positions; zn presents new landmark positions 

idf= []; idn= []; 

% the indications of observed (idf) and new(idn) landmarks 

for i=1:length(idz) 

    ii= idz(i); 

if table(ii) == 0          

% when a landmark is found, then the data association table will change for 0 to 1, which 

mean it has been corresponded. 

        zn= [zn z(:,i)]; 

        idn= [idn ii]; 

        table(ii)=1; 

    else 

        zf= [zf z(:,i)]; 

        idf= [idf table(ii)]; 

    end 

end 

table(idn)= Nf+ (1:size(zn,2));        % add new features to data association table  

function [w,zp]= compute_weight(particle_xv, particle, zf, idf, R); 

% inputs are particle positions, updates particle weights according to those observed landmarks 

[zp,Hv,Hf,Sf,d]= compute_jacobians (particle_xv,particle, idf, R); 

% this parts could reference Fastslam tutorials by Montement  on his phd thesis.  

v= zf-zp; 

v(2,:)= pi_to_pi(v(2,:)); 

w= 1; 

for i=1:size(zf,2) 

    S= Sf(:,:,i);  

    den= sqrt(2*pi*det(S)); 

    num= exp(-0.5 * v(:,i)' * inv(S) * v(:,i)); 
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    w = w*num/den; 

end 

function [zp,Hv,Hf,Sf,dd]= compute_jacobians(particle_xv, particle,idf, R) 

xv= particle_xv; 

xf= particle.lm(:,idf); 

Pf= particle.lp(:,:,idf); 

for i=1:length(idf) 

    dx= xf(1,i)-xv(1);    % distances in x 

    dy= xf(2,i)-xv(2);    % distances in y 

    d2= dx.^2 + dy.^2;   % distances in angle 

    d= sqrt(d2);         % distances 

    dd(:,i)=d; 

    zp(:,i)= [d; pi_to_pi(atan2(dy,dx) - xv(3))];      

    Hv(:,:,i)= [-dx/d,  -dy/d,   0;           % jacobians 

             dy/d2, -dx/d2, -1]; 

    Hf(:,:,i)= [ dx/d,   dy/d;  

            -dy/d2,  dx/d2]; 

    Sf(:,:,i)= Hf(:,:,i) * Pf(:,:,i) * Hf(:,:,i)' + R;      % observe noise 

end 

function particle= landmark_update(particle_xv, particle, zf, idf, R) 

    lm=particle.lm(:,idf); 

    lp=particle.lp(:,:,idf); 

    [zp,Hv,Hf,Sf]= compute_jacobians(particle_xv,particle, idf, R); 

    v= zf-zp;  

    for i=1:length(idf) 

    vi= v(:,i); 

    Hfi= Hf(:,:,i);       

    Pfi= lp(:,:,i); 

    xfi= lm(:,i);         

    [lm(:,i), lp(:,:,i)]= KF_cholesky_update(xfi,Pfi, vi,R,Hfi); 

end 

particle.lm(:,idf)= lm;   % store landmark positions 

particle.lp(:,:,idf)= lp;   % store covariance for landmarks 

function [particle_xv,particle]=add_landmark(particle_xv,particle,z,R,np) 

% inputs are new landmarks and old particle information, outputs are new landmark information, 

this information adds new landmark position and covariances. 

    lenz= size(z,2); 

    lm= zeros(2,lenz);          

    lp= zeros(2,2,lenz); 

    xv= particle_xv; 

for i=1:lenz 

    r= z(1,i); b= z(2,i); 

    s= sin(xv(3)+b);  

    c= cos(xv(3)+b); 
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    lm(:,i)= [xv(1) + r*c;   

             xv(2) + r*s]; 

    Gz= [c r*s;  

         s r*c]; 

    lp(:,:,i)= Gz*R*Gz'; 

end 

lenx= size(particle.lm,2); 

ii= (lenx+1):(lenx+lenz); 

    particle.lm(:,ii)= lm; 

particle.lp(:,:,ii)= lp; 

function 

[recieve,recieve_table]=recieve_information(recieve_table,send_table,recieve,send,pp,np) 

% this is function transferring information to the central computer to merge two robot’s individual 

map 

lm=[];lp=[]; 

% initial summed map is empty 

send_lm=[];send_lp=[]; 

recieve_lm=[];recieve_lp=[]; 

matrix=[]; var=[]; 

for i=1:length(pp) 

    len=size(recieve(1).lm,2); 

if recieve_table(i)==0 & send_table(i)~=0 

% if the landmark is never merged or never found, just add a new landmark 

        for j=1:np 

            n = send_table(i); 

            lm = send(j).lm(:,n); 

            lp = send(j).lp(:,:,n); 

            recieve(j).lm(:,len+1)=lm; 

            recieve(j).lp(:,:,len+1)=lp; 

        end 

        recieve_table(i)=len+1; 

    end 

        if recieve_table(i)~=0 & send_table(i)~=0 

     % for those observed landmarks, sum them togethor 

            for j=1:np 

                n = send_table(i); 

                m = recieve_table(i); 

                send_lm = send(j).lm(:,n); 

                send_lp = send(j).lp(:,:,n); 

                recieve_lm = recieve(j).lm(:,m); 

                recieve_lp = recieve(j).lp(:,:,m); 

                var = send_lm'*(recieve_lp.^2/(send_lp.^2+recieve_lp.^2))+  

recieve_lm'*(send_lp.^2/(send_lp.^2+recieve_lp.^2)); 

                send(j).lm(:,n)=var'; 
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                recieve(j).lm(:,m)=var'; 

                

matrix(1,1)=send_lp(1,1).^2.*recieve_lp(1,1).^2/(send_lp(1,1).^2+recieve_lp(1,1).^2); 

matrix(1,2)=send_lp(1,2).^2.*recieve_lp(1,2).^2/(send_lp(1,2).^2+recieve_lp(1,2).^2);                

matrix(2,1)=send_lp(2,1).^2.*recieve_lp(2,1).^2/(send_lp(2,1).^2+recieve_lp(2,1).^2);              

matrix(2,2)=send_lp(2,2).^2.*recieve_lp(2,2).^2/(send_lp(2,2).^2+recieve_lp(2,2).^2); 

                send(j).lp(1,1)=sqrt(matrix(1,1)); 

                send(j).lp(1,2)=sqrt(matrix(1,2)); 

                send(j).lp(2,1)=sqrt(matrix(2,1)); 

                send(j).lp(2,2)=sqrt(matrix(2,2)); 

                recieve(j).lp(:,:,m) = send(j).lp(:,:,n); 

        end 

    end 

end 
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