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Abstract

Luminescent transition metal complexes have attracted much attention in recent

years due to their potential as phosphors in organic light-emitting devices, their

use in sensory systems and their applications in bioimaging. It is often desirable to

predict the photophysical properties of such compounds to allow tailored design,

accentuating certain characteristics. This combined experimental and theoretical

study of the excited states of platinum complexes outlines synthesis, photophys-

ical measurements and theoretical consideration of some such compounds, giving

insight into the theoretical techniques applied.

Reproduction of absorption spectra is described for a series of previously reported

Pt(II) complexes, using different basis sets, functionals and solvent models, the

techniques then applied to a novel set of related Pt(IV) complexes. Understanding

of these parameters was then used for more complicated modelling of the emis-

sive process in thiolate-substituted derivatives of Pt(dpyb)Cl. These were studied

experimentally and theoretically, showing a change in excitation character upon

coordination of the thiolate ligand. TD-DFT showed the importance of modelling

solvent for the prediction of the correct excitation character, alongside a consid-

eration of techniques and mathematical parameters for the correct calculation of

emission energies.

Bis-imine, bis-ketimine and bis-oxime ligands have been synthesised by Schiff base

condensation chemistry and their corresponding N∧C∧N-coordinated Pt(II) com-

plexes prepared. A wide range in quantum yields was observed and attributed

to varying rates of non-radiative decay. Consideration of the S0 and T1 geome-

tries by DFT and their distortion relative to one another showed the origin of

this decay. Methyl-substituted benzenes were investigated for similar properties.

Those derivatives for which the calculations predict significant distortion do show

emission properties typical of triplet state distortion. However, due to “triplet

instabilities”, TDA geometries appear to be more reliable than those calculated

by DFT, showing better consistency with the experimental trends.

Techniques described above were also applied to other classes of Pt(II) complexes.

The rate of radiative decay was considered for these compounds by taking into

account both the orbital overlap and the degree to which the metal atom was

involved in the excitation.
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Introduction

Luminescent transition metal complexes have attracted much attention in re-

cent years due to their potential application in a diverse range of areas. Various

groups have exploited their photophysical properties in organic light emitting

devices (OLEDs),1–4 white light OLEDs (WOLEDs),5–7 for bioimaging appli-

cations8–11 and in small molecule sensory systems.12–16

The incorporation of a metal atom into a compound drastically increases

the efficiency of phosphorescent emission. This is desirable for production

of low energy display screens and white lighting applications, enabling energy

conservation. It has been found that the wavelength of emission can also be

systematically tuned. This is achieved by alteration of ligand substituents,

allowing for specific colour design and work towards WOLEDs to be under-

taken.17

Phosphorescent emitters have longer lifetimes of emission (on the order of

microseconds) than traditional, metal-free, fluorescent compounds. This is

advantageous in bioimaging, allowing a time-gated approach so that autoflu-

orescence from the cell has time to decay before images are viewed.18

Luminescent systems have also been designed where emission properties are

altered in the presence of oxygen or small cations to act as sensory systems.

Emission properties of devices can be monitored to assess whether a given

1



2 · What is luminescence?

analyte is present and if so in what order of concentration.19–22

This literature review will briefly consider different electronic excitations that

can take place and the difference between them. Factors that determine the

luminescent properties of a compound will then be discussed along with strate-

gies for promoting luminescence in transition metal complexes. The discussion

will be broadly divided in to two: the first half predominantly considering the

luminescent properties of terdentate platinum(II) complexes and the second,

theoretical methods for predicting the absorption and emission properties of

such complexes.

1.1 What is luminescence?

Photoluminescence is the emission of radiation subsequent to excitation of an

atom or molecule through the absorption of radiation. Luminescence is an

inefficient process in the majority of molecules since excited species can also

return to the ground state by non-radiative decay pathways that normally

predominate. In this second process, energy is lost by thermal dissipation to

the molecule’s surroundings, often via kinetic motion of the bonds. Lumines-

cent decay of the excited state can be broadly divided into two categories:

fluorescence and phosphorescence.

Fluorescence is the emission of light from an excited state whose spin multiplic-

ity is the same as that of the ground state (usually singlets). Once absorption

of light has occurred and an electron has been promoted in a molecule, inter-

system crossing (ISC) can occur, changing the spin multiplicity to the triplet

excited state. Relaxation of the molecule from the triplet state through a

radiative transition (phosphorescence) is a spin-forbidden process with rate

constants as low as 0.1-100 s−1 for purely organic molecules. Incorporation of

high spin-orbit coupling (SOC) metals (such as platinum or iridium) into a

molecule relaxes the spin selection rule, and allows relaxation through phos-

phorescent radiation from the triplet excited state, Tn, to the ground state,

S0. Radiative decay through this pathway is still significantly slower than flu-

orescence, leading to longer emission lifetimes (on the order of microseconds)



Introduction · 3
What makes a good emitter?

ground state

Energy

S1

S2

Sn

ab
so

rp
tio

n

flu
or

es
ce

nc
e T1

T2

ph
os

ph
or

es
ce

nc
e

ISC

kf
kp

S0

IC'

IC

ISC'

IC and IC' = internal conversion ISC and ISC' = intersystem crossing

kISC

kISC'

kIC

=  vibrational relaxation

TA

Friday, 1 July 2011

Figure 1.1: A Jablonski diagram to illustrate possible electronic transitions taking place.

in phosphorescence. These processes are illustrated in the Jablonski diagram

shown in Figure 1.1.

1.1.1 What determines efficiency of emission?

The efficiency of a compound’s luminescence is measured by its quantum yield,

Φlum. This is determined by the relative rate constants for radiative (kr, the

sum of kf and kp) and non-radiative (knr) decay (assuming that the emitting

state is formed with unitary efficiency upon absorption of light), according

to Equation 1.1 (where nE is the number of photons emitted and nA is the

number absorbed).

Φlum =
nE

nA

=
kr

kr + knr
(1.1)
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Unlike many purely organic molecules, for complexes with small ligands and

metals that have high spin-orbit coupling constants (such as platinum), ISC

will be much faster than the rate of emission from the singlet excited state.

This means that any observed emission normally emanates from the triplet

excited state, namely phosphorescence. The exception to this rule is if the

excited state is isolated away from the metal centre.23

1.1.2 Electronic transitions

In organometallic compounds, the emissive state (which is usually the lowest

energy excited state) can generally be described as one of four states. These

are: metal centred (MC) d-d states, metal-to-ligand charge transfer (MLCT),

ligand-to-metal charge transfer (LMCT) and ligand centred transitions (LC).

These are illustrated schematically in Figure 1.2. Though broadly classed into

these states, if they are similar in energy, mixing of the states can occur and

emission may be the result of a combination of transitions. The nature of

the transition will greatly affect the emission observed and therefore design

in this area can contribute to tuning of emission properties. For this reason,

many groups employ the use of density functional theory (DFT) calculations

to predict the character of the transitions.

1.1.3 Strategies for promoting luminescence

According to Equation 1.1, promotion of luminescence will involve either an

increase in the rate of radiative decay (kr), or a decrease in the rate of non-

radiative decay (knr). In phosphorescent metal complexes, the metal character

of the excited state becomes important in determining the efficiency of emis-

sion. The rate constant for radiative decay should be highest for excited states

composed of a high degree of metal character.

Non-radiative decay of the excited states of platinum(II) complexes can be

best understood in terms of a simplified potential energy surface diagram

(Figure 1.3). The potential energy surface of the d-d excited state is displaced

relative to the ground state in these complexes, since they have a strong prefer-

ence for the square planar geometry in the ground state. This is due to ligand
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Figure   1.2 Schematic energy level diagram showing possible excited states in metal 

complexes. 

 

In multimetallic clusters and in square planar complexes, orbital interactions 

between metals can lead to metal–metal-to-ligand charge transfer (MMLCT) or 

other more complex excited states that can be tuned to a specific function. 

 

1.1.2 Complexes of Iridium(III) 

Iridium(III) is isoelectronic with ruthenium(II), but studies into the use of the 

former metal in polypyridyl and related compounds were slower to take off than 

for the latter, in part due to the harsher reaction conditions required to substitute 

the ligands occupying the coordination sphere of the third row, more highly 

charged Ir3+ ion.11 

 

1.1.2.1 Iridium(III) complexes with bipyridine-type ligands 

As a third row transition metal, iridium(III) has lower lying d states than 

ruthenium(II) and thus the Ir(III) centre is more difficult to oxidise leading to 

differences in the observed emissive excited states.  [Ir(bpy)3]3+ complexes, for 

example, show predominantly LC type emission12 which contrasts with the 

MLCT emission of the pseudo-isoelectronic analogue [Ru(bpy)3]2+ reflecting the 

lower energy of the d orbitals in Ir(III).  The introduction of negatively charged 

Figure 1.2: An energy level diagram to illustrate the various possible excited states of complexes.

field stabilisation and means that the unoccupied dx2−y2 orbital will be very

strongly anti-bonding in character. Population of this d-d state will therefore

lengthen the platinum-ligand bond, distorting the complex and resulting in

non-radiative decay. Though the d-π* and π-π* state may be lower in energy

than the d-d, excited molecules (excitation shown along the red arrow of Fig-

ure 1.3) can cross over at the isoenergetic point to the d-d excited state and

decay non-radiatively, following the blue arrow pathway.

There are two possible strategies then to reduce the rate of non-radiative

decay: first to ensure that the lowest lying excited state is not a MC d-d

state, second to increase the gap between the lowest lying excited state and

the d-d excited state.

1.2 Luminescent platinum(II) complexes of aromatic terdentate pincer

ligands

1.2.1 N∧N∧N-coordinated ligands

First synthesised by Morgan et al. in 1934,24 the N∧N∧N-coordinated ter-

pyridyl complex of platinum (Figure 1.4) was investigated with respect to its
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Figure 1.3: Potential energy surface diagram to show deactivation by d-d states for a D2d

distorted Pt(II) complex.

coordination properties. Derivatives of this complex were later studied by

Lippard who altered the ancillary ligand to incorporate biological moieties.

These were used to form DNA intercalators in an attempt to utilise elec-

tron microscopy to follow the platinum at base-specific sites by sequencing

polynucleotides attached to the molecule.25 The photophysical properties of

the complex were not investigated until the 1990s when it was found that,

contrary to expectation, luminescence at room temperature was not observed.

While non-radiative decay by distortion was reduced by a rigid, terdentate

ligand (preventing the D2d distortions illustrated in Figure 1.3), the coordi-

nation angle of the N∧N∧N ligand around platinum is smaller than would

be most favourable (180◦ for N−Pt−N).26 This strain lowers the ligand field

splitting energy, such that the strongly-antibonding dx2−y2 orbital lies at a

similar energy to the ligand π*. This means that promotion from the excited

state to this orbital can occur at ambient temperature, followed by ISC and

non-radiative decay back to the ground state. It is obvious, then, that for

room temperature luminescence to be possible for such structures, either the

ligand field strength must be increased, raising the antibonding dx2−y2 orbital
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Figure 1.4: Terpyridyl platinum(II) complex

so that it can no longer be populated, or the radiative excited state lowered

to an extent where population of dx2−y2 is no longer possible.

McMillin et al. showed that substitution of the proton at the 4 position of

the central pyridine ring (by either an electron withdrawing or electron donat-

ing group) produced compounds that were luminescent at room temperature.

This was achieved by increasing the gap between the excited radiative decay

state and the deactivating, state as illustrated in Figure 1.5.27 Electron donat-

ing groups (such as NMe2, Φlum = 0.08 in DCM) stabilised the MLCT state

in relation to the deactivating d-d states, due to conjugated systems formed

between the lone pairs of the electron-rich substituents and the terpyridine lig-

and. A new π-π* state is then formed with ILCT, increasing the gap between

the emissive and non-radiative states. Electron withdrawing groups (such as

CN, Φlum = 0.005 in DCM) lowered the MLCT state further than the d-d

state, increasing the energy gap and making the deactivating d-d state more

difficult to populate.

Other studies have shown that 6-membered chelating ring systems (Figure

1.6) relieve ring strain in the system compared to their 5-membered chelate

ring counterparts. This gives a bite angle for the ligand closer to 180◦ which

in turn gives a stronger ligand field, promoting the deactivating d-d states to

a higher, less thermally accessible energy and reducing non-radiative decay.

Garner et al. showed phosphorescence from N∧N∧N-coordinated Pt(II) com-

plexes modified in this way, with quantum yields of up to 4% in solution, at

ambient temperature.28 It should nonetheless be noted that electronic factors
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Figure 1.5: Molecular orbital diagram for the proposed excited state energies for 4-substituted
N∧N∧N Pt(II) complexes for both electron withdrawing and electron donating substituents.27

are still important since the related azaindole-based complex is non-emissive

at room temperature, despite having a computationally predicted N−Pt−N

angle of 179◦.

Substitution of the chloride ancillary ligand by a stronger field ligand has

also been shown to increase ligand field splitting, increasing the energy of the

d-d states and reducing the likelihood of their population. Several groups

have replaced the chloride by ligands such as cyanides or acetylides.30–32 For

example, substitution of the chloride in the complex shown in Figure 1.6 for

an acetylide increased the quantum yield of luminescence from 3.6 to 4.2%.29

The combined effect of substituting the 4-position of the central pyridine ring

and also the chloride for a stronger field ligand was nicely illustrated by Sun

and coworkers (Figure 1.7).33 In this example, substitution of the pyridine
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Figure 1.6: Three N∧N∧N-coordinated Pt(II) complexes and their quantum yields in DCM
solution at room temperature.26;28;29

Figure 1.7: N∧N∧N-coordinated Pt(II) complexes reported by Sun and coworkers and their
quantum yields, lifetimes and emission maxima in MeCN solution at room temperature.33

central ring with an NMe2 group gave a complex which was weakly emissive

at room temperature (Φlum = 0.0064), then metathesis of the chloride for an

acetylide increased the quantum yield by over two orders of magnitude (Φlum

= 0.11)
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Figure 1.8: Structures of the parent terdentate cyclometallated Pt(II) complexes.

1.2.2 Ligands with aromatic amines and a cyclometallated carbon

atom

Replacement of one or more of the nitrogen atoms in the terpyridine ligand

by a cyclometallating carbon atom has a profound effect on the luminescent

properties of the compound. While [Pt(tpy)Cl]+ emits no light at room tem-

perature, Pt(dpyb)Cl (Figure 1.8) is intensely luminescent and shows Φlum =

0.60 (in DCM solution at room temperature). The carbon anion is a strong

σ donor to the metal. Synergy with the π-accepting ability of the pyridyl

rings means that such ligands create a very strong ligand field, raising the en-

ergy of the deactivating d-d states. While there are many examples of N∧C∧N

and N∧N∧C-coordinated complexes, C∧N∧C analogues are still relatively rare,

perhaps due to the unfavourable trans effect of two mutually trans cyclomet-

allated rings.

N∧N∧C-coordinated complexes

Constable et al. first showed in 1990 that 6-phenyl-2,2′-bipyridine could

be made to cyclometallate to platinum to give the parent N∧N∧C-coordinated

complex shown in Figure 1.8.34;35 In contrast to the N∧N∧N parent complex,

the N∧N∧C shows room temperature luminescence (λmax = 565 nm, Φlum =

0.025 in DCM solution at 298 K).36 The blue shift of the complex’s emission

with increased polarity of solvent (∆λmax from dichloromethane to acetoni-
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Figure 1.9: Structures and emission properties of N∧N∧C-coordinated Pt(II) complexes with
different ancillary ligands. Measurements taken in degassed acetonitrile solution at 298 K.37

trile = 15 nm) suggests that radiative character was due mainly to the MLCT

state. A reduction in the emission lifetime was observed with increasing con-

centration, indicative of self quenching by the complex. This is unsurprising

since the planar structure of the molecule allows close packing and overlap of

the delocalised electrons.

As for the N∧N∧N-coordinated complex, Yip et al. reported that metathesis

of the ancillary ligand allowed subtle tuning of the emission properties of the

complex and that a stronger field ligand gave an increase in quantum yield of

luminescence (Figure 1.9).37 Lu et al. later synthesised an extensive library of

organometallic N∧N∧C-Pt(II) complexes, illustrating the control that is possi-

ble over the emission properties of this type of complex.38 They systematically

altered the ancillary ligand, along with substituents, on both the pyridyl and

phenyl rings; electron withdrawing groups gave a blue shift in emission while

electron-rich substituents caused emission to move into the red (Figure 1.10).

Fillaut et al. more recently showed that even subtle changes to the ancil-

lary ligand can have a profound effect on the emission properties observed.

They showed that addition of cyanide to their N∧N∧C-coordinated complex

(which showed no luminescence in solution at room temperature) increased

the efficiency of emission due to the introduction of a MLCT/L′LCT excita-
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Figure 1.10: Normalised emission spectra for the N∧N∧C-Pt(II) complex with various R sub-
stituents shown. Spectra were taken at 298 K in DCM solution.38

tion in the cyanide rich form (determined by TD-DFT studies). This gave a

highly selective sensor for CN− as illustrated in Figure 1.11.16

Photophysical properties of the N∧N∧C complexes are also significantly in-

fluenced by the identity of the metallated aryl ring, a pattern exemplified be-

tween the compounds shown in Figure 1.12.38 More recently, Huo and cowork-

ers showed a small increase in emission efficiency by increasing the size of one

of the 5-membered chelate rings to a 6-membered ring.39 It can be seen from

these results that the luminescence of these systems is vastly improved from

that of the N∧N∧N complexes. Emission spectra for the N∧N∧C complexes

are usually broad and origninate mainly from the MLCT state, though other

states can be introduced by alteration of the ligands. Wavelengths of emission

have been successfully altered by systematic introduction of substituents on

the N∧N∧C and ancillary ligands. Room temperature quantum yields vary

greatly though most are moderate and in the region of 0.1 or below.
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Figure 1.11: N∧N∧C complex before and after reaction with CN− (top) and changes in pho-
toluminescence intensity of the complex (2.0× 10−5 M in DCM) with addition of cyanide
(<2.4×10−5 M n-Bu4NCN).16

C∧N∧C-coordinated complexes

Given the vast improvement in room temperature luminescence observed

upon the introduction of a single coordinating carbon into the complexes, it

could be assumed that incorporation of a second such carbon atom would

again improve luminescence properties. Complexes of this type (C∧N∧C-

coordinating) were first synthesised and studied by Von Zelewsky and cowork-

ers in 1988;40 a simplified route to their formation was since reported by Cave

et al. in 2000.41 Photophysical study of these complexes showed that they

were not luminescent in DCM solution at room temperature, though they
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Figure 1.12: Structures and emission properties of N∧N∧C-coordinated Pt(II) complexes with
altered carbon-coordinating rings. Measurements taken in degassed DCM solution at 298 K.38

did show emission of light in the solid state and in alcohols at 77 K.42 By

studying the crystal structures of a variety of compounds based around the

C∧N∧C ligand coordinated to platinum, the group found that this series of

molecules have a tendency to interact with one another through a variety of

π stacking interactions. Other such complexes (for example [Pt(N∧N∧C)Cl])

show π stacking between pairs of the aromatic terdentate ligands, combined

with metal-metal platinum interactions.43;44

In the last ten years a variety of C∧N∧C-coordinated Pt(II) complexes have

been reported but few have shown any room temperature luminescence in solu-

tion.45–49 The carbon-platinum bonds are elongated in these compounds where

the cyclometallating carbons are trans to one another compared to those com-

pounds where they are either cis or there is only one such carbon.45;50 This is

thought to be due to the unfavourable nature of having two cyclometallating

carbons trans to one another.
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N∧C∧N-coordinated complexes

The N∧C∧N-coordinated complex shown in Figure 1.8 was first reported

by Cárdenas et al. in a study comparing the different reactions of the lig-

and 1,3-di(2-pyridyl)-benzene with platinum and palladium.51 Reaction with

K2PtCl4 gave the structure shown while reaction with Pd(OAc)2 produced

a dimeric complex with four acetate groups bridging two doubly metallated

ligands. Williams et al. studied the photophysical properties of the platinum

complex, reporting unusually high quantum yields of luminescence, the parent

compound showing a quantum yield of 0.60 in DCM solution at room tem-

perature.52

Alteration of substituents at the position para to the platinum of the ben-

zene ring can be used to tune wavelength of emission. Many cyclometallated

complexes of this form have been reported, one series of which, illustrating

the range of energies possible, is shown in Figure 1.13.53 Electron donating

aryl substituents caused a red shift in the emission while electron deficient

substituents gave a blue shift. A combination of electrochemical and density

functional theory (DFT) studies suggested that the HOMO was located on

this part of the complex while the LUMO (which was unaffected by these

substituents) was located on the pyridyl rings (Figure 1.14). The energy of

the HOMO can therefore be altered without affecting that of the LUMO.53

Tuning of emission energy can also be achieved by substitution at the 4-

position of the pyridyl rings. This alters the energy of the LUMO which can

be destabilised by the introduction of electron donating alkyl groups to give

a blue shift.54

To date very little work has focused on the effect of relieving ring strain of the

N∧C∧N-coordinated complexes through increase in the size of the chelate ring.

Yoshida et al. fused a nickel porphyrin with an N∧C∧N-coordinated platinum

complex (in both the +2 and +4 oxidation state) incorporating 6-membered

chelate rings. Crystal structures were obtained of the different complexes,

the Pt(II) compound showing relief of ring strain with a N−Pt−N angle of
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Figure 1.13: Normalised emission spectra of the eight complexes shown, in DCM at 298 K.53

Figure 1.14: Frontier orbitals for the Pt(II) complex of 1,3-di(2-pyridyl)-benzene. Calculations
performed with B3LYP with a CPCM for DCM.53
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Figure 1.15: Geometries and photophysical properties of three N∧C∧N-coordinated Pt(II) com-
plexes (in DCM at 298 K) showing their chelate ring size.28;52;57

176.5◦ 55 (compared to 161.1(2)◦ for Pt(dpyb)Cl).51

Williams and coworkers showed that augmentation of the 5-membered chelate

ring of the N∧C∧N-coordinated complex to a 6-membered ring had a profound

effect on the emissive properties of the complex (Figure 1.15, right).28 In con-

trast to the N∧N∧N complex, emission efficiency was dramatically reduced

(from Φ = 60 to 1.6%, in DCM solution at room temperature) as was its

emission energy (λmax = 491 to 645 nm). The group optimised the ground

state geometry using DFT to investigate the effect of increasing chelate ring

size on the compound. The calculations showed a relief of ring strain and

a N−Pt−N angle of 178.5◦ which was subsequently reinforced by the crys-

tal structure of a close derivative, for which the angle was 177.8(2)◦.56 The

reduction in quantum yield was attributed to the radiative transition being

less allowed, rather than to any detrimental effect on the rate of non-radiative

decay.

Vezzu et al. synthesised a series of N∧C∧N complexes with one 5 and one

6-membered chelate ring, one example of which is shown in Figure 1.15.57 In

this example, a small increase in quantum yield was observed (compared to

Pt(dpyb)Cl), despite the shift in λmax to a lower energy (by 600 cm−1). Crys-

tal structures obtained by X-ray diffraction showed that the increase in one of

the chelate rings (from 5 to 6-membered) resulted in a near linear N−Pt−N

angle (172.93(8)◦).
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Figure 1.16: Reversible binding of SO2 to a Pt(II) complex with an amine-based pincer ligand
ligand.61

As for the other compounds discussed, substitution of the chloride ancillary

ligand of the N∧C∧N-coordinated complexes has, in some cases, been shown

to moderately increase the quantum yield of emission both in the solid state

(with an NCS ligand)58 and in solution (with an acetylide ligand).59;60

1.3 N∧C∧N-coordinated ligands of non-aromatic amines

Many examples of N∧C∧N-coordinated platinum complexes have also been

reported incorporating non-aromatic amine ligands. Studies by Terheijden et

al. showed the ability of one such saturated complex to bind sulfur dioxide in

both solution and the solid sate61 in a reversible process which was accompa-

nied by a change from colourless to orange. Crystallographic characterisation

of the SO2 adduct (for X = Br) showed η1-binding of the small molecule to

the platinum, giving a square-pyramidal geometry (Figure 1.16).

A series of similar complexes with various substituents at the 4-position of

the benzene ring (R in Figure 1.16) were later reported. This allowed for tun-

ing of the response to SO2.
62;63 Crystal structures of the compound shown in

Figure 1.16 (R = OH, X = Cl) were also obtained by Albrecht et al. in both

the bound and unbound states.64 These studies showed hydrogen bonding be-

tween chlorine and −OH groups which was unaltered by the presence of SO2.

Solid-state exposure of the complex to SO2 showed conversion to the adduct

in just one minute.
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Similar saturated-amine ligands have since been used to form platinum com-

plexes for luminescence studies by Connick and coworkers.65–68 The colourless

compounds displayed strong UV absorption, attributed to MLCT transitions.

Energies of absorption decreased with increasing electron density on the metal

upon substitution of the ancillary ligand (Figure 1.17). Although the com-

plexes showed no emission at room temperature, they displayed broad, low

energy emission at 77 K (Figure 1.18) which was attributed to 3MC excited

states.

Various related complexes with substitution of the aromatic ring (Figure 1.19)

have also been made by reaction of an aldehyde group at the 4-position of the

benzene ring on the pre-formed complex.69 These compounds have been stud-

ied for their non-linear optical properties since they show a large change in

dipole moment upon excitation. Three of the complexes showed room tem-

perature fluorescence: the NMe2 (λmax = 432 nm), CN (λmax = 466 nm)

and NO2 (λmax = 677 nm) substituted derivatives. Fluorescence, rather than

phosphorescence, was assigned due to the short lifetimes of emission observed

(∼200 ps in DCM solution) and the extended conjugation of the ligand. Each

of these three showed a strong positive solvatochromic response, indicative of

the charge transfer nature of the excitation.

There are some examples in the literature of imine-based complexes of Pt(II)

(Figure 1.20, left).70 In contrast to the complexes of saturated amine lig-

ands, these compounds showed phosphorescence at room temperature, al-

though quantum yields were quite low (0.13-0.18%). Energies of emission

were ∼575 nm with little change for different substituents. Song and cowork-

ers have recently synthesised a series of related compounds71 (Figure 1.20,

right) which showed significantly elevated quantum yields (Φlum < 15% in

DCM solution). The addition of the aromatic ring results in delocalisation

over the whole ligand, making the compound much more like Pt(dpyb)Cl.
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Figure 1.17: UV-vis absorption spectra of the compounds shown at 298 K in methanol.65

Figure 1.18: Normalised emission spectra at 77 K in 3:1 ethanol/methanol glass for the com-
pounds shown (L corresponds to the ligand shown in Figure 1.17).65
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Figure 1.19: Structure of the Pt(II) amine complexes.69

Figure 1.20: Structure of the Pt(II) imine complexes.70;71
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1.4 Other luminescent Pt(II) complexes

Thus far only complexes incorporating a terdentate ligand coordinated to

Pt(II) have been discussed. A search of the literature shows a plethora of

other luminescent Pt(II) complexes, often formed from one bidentate, cy-

clometallating ligand (such as 2-phenylpyridine) and one other co-ligand such

as β-diketonate,72–75 acetylide,76–78 carbene,79;80 2-picolinate81;82 or 8-hydroxy

quinoline.83 An example of each is shown in Figure 1.21. In these examples,

the TD-DFT studies, combined with observed photophysical behaviour of the

compounds, show that excitations are usually centred on the cyclometallating

ligand with only a small contribution from the co-ligand (though there are

some exceptions to this).82;84;85 This is illustrated by the orbital plots calcu-

lated for Pt(ppy)(acac) by Brooks et al. (Figure 1.22).

1.4.1 Increasing ligand rigidity

Mdleleni et al. reported that Pt(ppy)(ppyH)Cl is only weakly emissive in a so-

lution of toluene at room temperature (Figure 1.23).86 The local coordination

sphere of this complex (two pyridine rings, one cyclometallated carbon and

a chloride ligand) is the same as that of the brightly emissive NCN complex

shown in Figure 1.13 (where R = H). Despite this, the emission efficiency of

the two complexes varies significantly; while the energy of emission is simi-

lar between the two, the lifetime was an order of magnitude shorter for the

less rigid complex (τdeg = 641 ns in toluene for bidentate, 7200 ns for terden-

tate in DCM).52;86 The increased rigidity of the terdentate ligand compared

to the bidentate prevents distortion from local D4h to D2d symmetry in the

excited state. This process has been described by many groups as a route for

non-radiative decay.87;88 Comparison of the room temperature solution state

emission spectra show the ratio of the 0−0 band compared to the 0−1 band is

higher for the terdentate ligand than the bidentate, providing further evidence

for more excited state distortion in the latter (see Section 1.7).

Tetradentate ligands for platinum(II) complexes have received increasing inter-

est in recent years.89–91 The advantageous increase in rigidity from bidentate to
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Figure 1.21: Examples of a β-diketonate (top left),73 2-picolinate (top right),82 acetylide (bot-
tom left),76 carbene (bottom middle)79 and 8-hydroxylquinoline83 Pt(II) complex, showing λmax

of emission and Φlum at 298 K in DCM solution.

Figure 1.22: HOMO (left) and LUMO (right) orbital plots for Pt(ppy)(acac), calculated by DFT
with B3LYP.73
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Table 8. Luminescence Data for Pt(ppy)(CO)Cl (l), Pt(ptpy)(CO)C1(2), and Pt(ppy)(Hppy)Cl (3)" 
lifetime 

complex solid, 298 K solid, 77 K soln, 298 K soln, 77 K 
WPPY )(CO)Cl 1.1 ps (528 nm) 3.5 pus (523 nm) 28 ps (476 nm) 
WPtPY )(CO)C1 959 ns (510 nm) 6.1 ps (506 nm) 32 ps (483 nm) 
WPPY )(HPPY)C1 473 ns (505 nm) 6.9 ps (498 nm) 641 ns (489 nm) 11.2 ps (479 nm) 
2-phenylpyridine 
2-p- tolylpyridine 

> 100 ms (430 nm)c 
> 100 ms (442 nm)d 

Emission spectra and lifetime measurements were taken in toluene or in the solid state. Highest energy feature of the luminescence emission 
maxima. In propionitrilehutyronitrile (4/5, v/v) glass, from ref 31. In butyronitrile glass. 

Pt(I1) centers may be occurring in solid 2 and presumably in of 3 at 77 K were less dramatic, albeit the former is red-shifted 
solid 1. At such intermediate distances, weak interactions 
between the n-orbitals of the ortho-metalated ligands on adjacent 
molecules may also be important to the spectroscopy. 

Such intercomplex interactions generally lead to excimeric 
emissions that are characterized by Gaussian-shaped emission 
bands in complexes with shorter R-R  separation^.^^^^^ In 
agreement with this interpretation, the differences between the 
solid state and the dilute frozen glass solution emission spectra 

compared to the latter. The much longer Pt-Pt internuclear 
distances in the solids of 3 preclude Pt-Pt interactions in the 
ground and excited states. Furthermore, the absence of coplanar 
stacking of z-unsaturated ligands argues against significant 
n-interactions between adjacent molecular units. 

In an effort to test the validity of the above argument, 
concentration dependence studies were undertaken using com- 
plexes 2 and 3. The 77 K emission spectra of 3 in toluene 

Figure 1.23: Structure and spectra of the complex studied by Mdleleni et al. Left: room
temperature UV-vis absorption spectrum in DCM. Right 77 K emission spectra in toluene (solid
line) and in the solid state (dashed line). Inset: Emission spectrum in toluene at 298 K.86
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Figure 1.24: Structures and emission properties of three tetradentate platinum(II) complexes
made by Huo and coworkers. Spectra and quantum yields measured in a solution of 2-
methyltetraydrofuran at room temperature.94

terdentate ligands (vide supra) can potentially be increased further with such

a ligand, increasing thermal stability and reducing the rate of non-radiative

decay.92 For example, cis-Pt(ppy)2 exhibits D2d distortion in the excited state

leading to non-radiative decay and almost no room temperature emission.93

Huo and coworkers showed that by linking together the two bidentate ligating

units, thus increasing rigidity, the quantum yield of luminescence could be

significantly improved (Figure 1.24).94

Turner et al. have since shown the synthesis and properties of some tetraden-

tate Pt(II) complexes with oxygen linkers, increasing the chelate ring size (one

example shown in Figure 1.25).95 Despite the strained geometry adopted by

the complex (illustrated in the crystal structure), quantum yields obtained
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Figure 1.25: Crystal structure of a tetradentate Pt(II) complex determined by Turner et al.95

Hydrogen atoms omitted for clarity.

for the series of complexes were high (Φlum = 0.39-0.64 in DCM solution at

room temperature). The group found that these compounds were particularly

efficient in a doped PMMA film, achieving quantum yields as high as 0.97 in

OLED devices.

1.5 DFT and TD-DFT calculations

It is often desirable to predict the emissive properties of a given complex or

series of complexes prior to synthesis in order to tailor the design of the com-

pound towards particular properties. Many groups employ the use of density

functional theory (DFT)96–98 and its time-dependent derivative (TD-DFT)99

in order to predict energies of absorption and emission of these compounds

(or to rationalise their photophysical behaviour). This is done routinely in the

literature with various degrees of success. S0 → Sn excitations are formally al-

lowed and an oscillator strength for the excitation is usually calculated, giving

some indication as to the intensity of each absorptive process. It is often also

important to rationalise the efficiency of emission of a complex. This is more

rarely attempted since spin-orbit coupling (SOC) from the heavy metal atom

(which allows the formally forbidden phosphorescence and ISC to occur) is

usually omitted from such calculations due to the complexity of its inclusion.
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As we have seen through experimental studies, even with inclusion of SOC,

emission efficiency is complex; both kr and Σknr must be considered, each

comprised of many different factors.

1.6 TD-DFT calculation of excitation energies

The calculation of excitation energies by TD-DFT, both for absorption and

emission of compounds, is desirable since it can help inform researchers on

which compounds to make for their application of choice as well as providing

reassurance that the correct transition is being described by the calculation.

There are various ways different researchers calculate these quantities, often

dependant on the time and computing power available. There are many ex-

amples of each in the literature and so only a few examples in each case will

be discussed alongside the general principle.

In their review, Adamo and Jacquemin have outlined different methods that

are commonly used for calculation of S0 → S1 excitation energies; these are

illustrated in Figure 1.26.100;101 The same principles can generally be applied

in the calculation of triplet excitation energies. Optimisation of the ground

state geometry followed by TD-DFT calculation (Evert−abso) represents the

absorptive process, in this example for the S0 → S1 excitation. The same

calculation at the S1 excited state geometry, Evert−fluo corresponds to fluo-

rescence (or for triplet excitations at the triplet-optimised geometry, phos-

phorescence, Evert−phos). Optimisation of the triplet geometry followed by

TD-DFT excitation calculations (equvalent to Evert−phos) is frequently used in

the literature39;102;103 and is the closest estimation to the actual process tak-

ing place. Calculations of the S0 → T1 excitation at the triplet geometry can

though sometimes produce excitation energies which are unexpectedly low in

energy (or even imaginary, vide infra). The difference between the two min-

ima, Eadia is the adiabatic energy. This method is occasionally used by groups

to calculate phosphorescent emission (T1 → S0)
104 but will generally calculate

excitation energies which are too high since it considers only the difference in

the two minima.
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Figure 1.26: Potential energy curve diagram representing two singlet states and possible methods
for calculating excitation energies.100

For triplet emission, S0 → T1 excitations calculated at the S0 geometry

(Evert−abso) will necessarily be too high in energy. This is common practice

however105–107 since it saves on computational time, requiring only one geom-

etry optimisation for prediction of both absorptive and emissive properties.

Similarly, triplet geometries are often optimised from the compound’s crystal

structure (or optimised ground state) geometry.108;109 It should be noted that

once symmetrical, a geometry cannot break its symmetry during the calcu-

lation and this practice can lead to the optimisation of false global minima.

Excitation energies calculated at the crystal structure geometry itself are also

commonplace.110–112 These values should be approached with caution since the

geometry obtained is the result of intermolecular interactions not considered

in the calculation.

1.6.1 Triplet instabilities

The phenomenon of unexpectedly low excitation energies, sometimes calcu-

lated with TD-DFT, for S0 → T1 excitations has recently been discussed in

small molecule systems and ascribed to “triplet instabilities”. First we will
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consider the triplet instability problem in Hartree Fock (HF) theory since it

is well known and documented,113–116 then the discussion will be widened to

TD-DFT.

Figure 1.27 shows the potential energy curve for H2, calculated by Tozer and

coworkers.117 Unrestricted Hartree-Fock (UHF) theory uses different orbitals

for the α and β electrons while restricted Hartree-Fock (RHF) uses a single

molecular orbital twice, multiplied once by α and once by β. We would expect

the energies of the two spin states (singlet and triplet) to converge as the two

hydrogen atoms dissociate; this is exactly what was shown by the group for

the two UHF calculations. In contrast, they showed that the 1Σ+
g RHF energy

became too high as the molecule dissociated due to ionic components in the

wave function (an unphysical result of the calculation). For UHF the 3Σ+
u

and 1Σ+
g states became degenerate at high values of R, but for RHF the 3Σ+

u

state was much lower than 1Σ+
g , showing that the RHF calculations for H2 are

unstable with respect to the breaking of spin-symmetry.

Exact orbital exchange in DFT

Exact orbital exchange in DFT is the HF exchange energy expression, eval-

uated using Kohn-Sham orbitals. Many groups use hybrid functionals118–127

with a fixed amount of exact orbital exchange, α, (e.g. as B3LYP, 20%128–130

and PBE0, 25%131;132) for DFT calculations, in place of generalised gradient

approximations (GGAs) such as PBE.132;133 This is because GGAs generally

underestimate excitation energies; introduction of exact exchange increases

these energies, particularly in singlet excitations, although in some cases the

energies become significantly lower for triplets. More recently, Coulomb-

attenuated or range-separated functionals have also been used since they have

been shown to improve calculation of long-range, charge-transfer type excita-

tion energies but maintain a good approximation of localised excitations.134–138

These functionals vary the amount of exact orbital exchange as a function of

the inter-electron distance, r12; for example, CAM-B3LYP134 has an initial

α of 19%, increasing to 65% at high r12. It is perhaps unsurprising therefore

that DFT functionals incorporating some degree of exact orbital exchange will
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Figure 1.27: HF electronic energy of H2 calculated as a function of bond length.117

suffer from the same triplet stability difficulties as HF.

Measuring stability

Tozer and coworkers showed that the “stability measures” of a given ge-

ometry could be quantified by consideration of the eigenvalue in the electronic

Hessian, which becomes negative with low stability.117;139 This indicates that

specific orbital rotations of an identified space-spin symmetry (similar to the

rotations involved when describing excited states) can result in lower total

energies (see Appendix, Figure 9.1 for examples calculated for H2).

The similarity in the equations used to calculate excited state energies and

stabilities140;141 means that geometries with a low stability are more likely to

be associated with an inaccurate total energy. The group showed that this

was indeed the case by calculating excitation energies of H2 as a function of

bond length. Contrary to the exact excitation energy which tends to zero with
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dissociation of the H−H bond, the difference in energy between the curves in

Figure 1.27 (∆SCF excitation energy) becomes negative (see Appendix, Fig-

ure 9.1) as a consequence of the ground state energy being significantly too

high. The group showed that when the HF stability was high (>2 eV) exci-

tation energies did not seem to suffer, but lower stabilities than this gave low

excitation energies, the extreme example being negative stabilities precipitat-

ing imaginary excitation energies. The same analysis with TD-DFT showed

a similar correlation though the threshold at which stabilites became too low

was less well defined for Coulomb-attenuated functionals since the amount of

exchange will vary between compounds.

The Tamm-Dancoff approximation

Tozer and coworkers recommended the use of the Tamm-Dancoff (TDA)

approximation for calculating excitation energies with low triplet stabilities.117;139

This allows excitations between occupied and virtual orbital pairs while pre-

cluding de-excitations. The group calculated singlet and triplet excitation

energies of four small molecule compounds (ethene, butadiene, benzoquinone,

naphthalene) as a function of α with both TD-DFT and TDA.117 The results

for butadiene are shown in Figure 1.28. They showed that for the singlets,

GGAs (α = 0) underestimated the energies, which then increased with increas-

ing α. For the triplet excitation, energies decreased with increasing exchange,

dramatically dropping below 0 for 13Bu. TDA increased the excitation ener-

gies in each case, even for the very low or negative excitation energies. They

showed for all the molecules that TDA generally improves the excitation ener-

gies compared to the reference values. Peach and Tozer later showed the use

of TDA with CAM-B3LYP for reliable calculation of low-overlap, low stability

excitation energies.142

1.7 Franck-Condon principle

During an electronic transition, the Franck-Condon (FC) principle states that

the probability for the transition is greater when the two vibrational wave

functions have high overlap.144–146 This is because the nuclei are much heavier

than the electrons, so the electronic transitions proceed much faster than the
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Figure 1.28: Singlet (left) and triplet (right) excitation energies of butadiene as a function
of exact exchange (α). Dashed lines show reference values.143 Lighter colours show TD-DFT
excitations and darker colours those computed by TDA.117

nuclei can respond. Excitations then proceed without a change in geometry

so the highest intensity band is the one where the nuclei have the highest

probability of being at the same initial geometry. Franck-Condon states are

therefore normally electronically and vibrationally excited. A quantum me-

chanical description of the theory states that the intensity of each vibronic

transition will be proportional to the square of the overlap integral of the two

vibrational wave functions in the transition. An illustration of this is shown in

Figure 1.29, which shows that as distortion increases the 0−0 band decreases

in intensity relative to the other bands.

1.7.1 Calculating electronic excitation properties with vibrational

structure

Excitation energies calculated by those methods described in Section 1.6 are

often used to predict the absorption spectra of complexes.107;148;149 For S0 →
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Figure 1.29: Illustration of the quantum mechanical model for Franck-Condon overlap with
increasing distortion from a-c.147

Sn excitations the output from the calculation is usually an excitation en-

ergy and an oscillator strength (f), showing the probability of the excitation.

Measured at room temperature, absorption spectra are a mixture of many dif-

ferent excitations, both electronic and vibrational so that broad bands, often

incorporating more than one excitation, are obtained. It is often therefore

desirable to “convolute” these computationally obtained energies for compari-

son to experimental results. The most common way to achieve this is to place

a Lorentzian or Gaussian curve over each excitation with a fixed energy of

broadening (e.g. 0.1 eV) at half the oscillator strength maximum. Various

researchers achieve this either manually150 or using a program such as Gauss-

Sum,104;151–154 or SWizard.110

One example of manual convolution of absorption excitations was recently

given by Li et al.150 The group optimised the ground state geometry of each

of the six N∧N∧C-coordinated complexes shown in Figure 1.30 then calcu-
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lated the 40 lowest singlet excitations at that geometry using TD-DFT. Each

individual excitation (shown by the vertical lines in Figure 1.30) was then

broadened by a Gaussian function with a line width of 0.1 eV to give the

spectra shown. The calculations were performed using the conductor polar-

ized continuum model (CPCM)155 for DCM and the experimentally obtained

spectra shown were obtained from solutions of DCM at room temperature.

This gave reasonable reproduction of the trend in absorption energies between

the complexes, though the energies of the calculated bands are blue-shifted

from the experimental values. Consideration of the oscillator strength of each

excitation allows more informed consideration of which orbitals are affecting

that region of the spectrum so that those with insignificant probabilities will

not dominate and can be ignored. For example, the group showed that where

R = NO2, excitations to S3, S4 and S6 dominated the spectra so only these

orbitals were considered (Figure 1.31).

Though there have been some studies on the calculation of FC integrals,156–158

they are computationally demanding for large molecular systems and are usu-

ally reserved for small molecule study.159–164 For example, Ziegler and cowork-

ers used TD-DFT to predict and study the absorption spectra of MnO−4 ,

TcO−4 , RuO−4 and OsO−4 .165 They optimised the singlet excited states us-

ing TD-DFT and the ground state by direct minimisation of the SCF energy.

Franck-Condon factors were calculated from two vibrational mode calculations

at the two different electronic states of the molecule. The energies and inten-

sities obtained from this calculation were then broadened using Lorentzian

functions with a half-width of 60 cm−1. This approach (as illustrated by

MnO−4 , Figure 1.32) shows a good reproduction of the absorption spectrum

structure though the energies were lower in the calculated spectra.

1.8 Modelling solvent

Unless otherwise specified, DFT calculations are performed in the gas phase

in vacuum. Since these conditions are difficult to reproduce experimentally

and different solvents can have a profound effect on the emission properties

observed, it is often desirable to specify solvent in the calculations. The two
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Figure 1.30: Top: experimental UV-vis absorption spectra at 298 K in DCM. Bottom: calcu-
lated absorption spectra; vertical lines show individual excitations and their oscillator strengths.
Calculations performed with CAM-B3LYP with the LANL08 basis set for Pt and 6-31G∗ for all
other atoms.150Table 4. Natural Transition Orbitals (NTOs)a Representing Transitions That Correspond to the Main Absorption Bands for

Complexes 1−6

aNote that excited-state NTOs differ from the ground-state MOs, and rather can be considered as the linear combination of the ground-state MOs
that contribute to a given excited state.

Table 5. Natural Transition Orbitals Contributing to the Lowest-Energy Absorption “Tail” for Complexes 1−6

Inorganic Chemistry Article

dx.doi.org/10.1021/ic400683u | Inorg. Chem. 2013, 52, 7578−75927585

Figure 1.31: Natural transition orbitals for the transitions corresponding to the main absorption
bands for the complex shown in Figure 1.30 where R = NO2.150
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Figure 1.32: Experimental and simulated second and third bands of MnO−4 .165

main approaches for estimation of solvent effects are explicit and implicit mod-

els. Explicit models treat every solvent molecule individually, calculating their

interaction with one another and the compound of interest. Though this has

been attempted for some small molecule systems, it is computationally de-

manding so is not used routinely in larger systems.166

Implicit solvent models describe the area around the compound of interest

as a structureless continuum. For example, the Polarisable Continuum Model

(PCM)167 is often used in calculations of large molecules (such as platinum

complexes) by many groups.108;110;150 This approach omits specific solvent in-

teractions but describes the polarity of the environment.

Inclusion of solvent in a calculation can have a significant effect on the ex-

citation energies calculated. Che and Tong calculated the phosphorescent

emission energies of five Pt(II) complexes (structures shown in Figure 1.33,

these compounds will be discussed in more detail in Section 1.9.1) by optimis-

ing both the T1 and S0 geometries and calculating E0−0.154 They performed

these calculations both in solvent and in vacuum for all five complexes, the en-

ergies for which are shown in Figure 1.33. Not only are the energies themselves
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Figure 1.33: Structures and calculated phosphorescence emission energies of the complexes
studied by Tong and Che (energies shown for both DCM and vacuum).154 The T1 → S0

energies were calculated by the energy difference between the T1 and S0 optimised geometries.

different but also the trend between them. In vacuum, energies of emission

increase:

2 < 4 < 3 < 5 < 1

In DCM emission energies increase:

3 < 2 < 5 < 4 < 1

This highlights the importance of solvent inclusion in some calculations since

they can have a large effect on the energies calculated.

1.9 DFT calculations for intensity

Estimations of phosphorescence efficiencies in the literature are rare compared

to discussion of orbitals and excitation energies. The inclusion of SOC in cal-
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culations, to enable the estimation of kr, is far from routine. There are however

some examples from groups who have attempted to rationalise the emission

efficiencies of Pt(II) complexes using DFT. Some examples are outlined below.

1.9.1 DFT calculations on N∧N∧C, C∧N∧C and N∧C∧N complexes

DFT and TD-DFT methods have been employed by Tong and Che to try

to explain why terdentate C∧N∧C-coordinated Pt(II) complexes showed weak

luminescence at room temperature, N∧N∧C were weakly emissive and N∧C∧N

were highly intense emitters.154

TD-DFT calculations were performed on the five complexes shown in Fig-

ure 1.33 to attempt to understand the different emission properties observed

in a study highlighting the complexity of rationalising Φlum. The group calcu-

lated the radiative rate constant for each complex then considered its possible

non-radiative decay pathways with the intention of understanding three main

observations:

1. 1 has a high emission efficiency but 2 is only weakly emissive in solution

at 298 K

2. 3 is non-emissive at 298 K, despite the increased strength in ligand field

from 1 and 2

3. the effect of π conjugation in 4 and 5 on emission efficiency

Rates of radiative decay were calculated by looking at a combination of three

factors. First, SOC matrix elements between the emissive triplet and singlet

excited states; second, the energy ratio between those two states and finally,

the oscillator strength of the Sn → S0 transition with which the emissive triplet

state undergoes SOC. kr calculated for each complex is shown in Table 1.1.

They reasoned that emission in 1 was in fact coming from the T2 state since

the radiative rate constant was much higher for that transition (109 × 104

s−1) and Stokes shift for the S0 → T2 excitation at the T1 optimised geometry

(3500 cm−1) was more like the value obtained experimentally (4600 cm−1)17;52

than the Stokes shift of the S0 → T1 excitation (8100 cm−1).
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Complex[a] Φlum T1 → S0 kr
/ eV 104 / s−1

1 0.6017;52 2.62 1.04

2 0.20168 2.34 1.70

3 0.025168 2.29 0.785

4 −42 2.52 5.23

5 0.002154 2.43 0.0153

Table 1.1: Experimental quantum yields, phosphorescent energies (calculated in DCM) and
calculated rates of radiative decay (T1 → S0) for the five complexes studied by Tong and
Che.154 [a]Complex labels refer to those shown in Figure 1.33

Rates of non-radiative decay were considered more qualitatively through dis-

tortion between the excited triplet and ground states and the energy difference

between those two states (since a smaller gap will lead to faster non-radiative

decay).

The group showed that (unlike the other three complexes) compounds 2 and

3 underwent significant distortion away from planarity at the T1 excited state

(Figure 1.34) suggesting a possible route for non-radiative decay. They also

showed that the calculated energies of emission (E0−0 between optimised T1

and S0 geometries in DCM) (shown in Figure 1.33) decreased in the order:

1 > 4 > 5 > 2 > 3

This suggests, for example, that 3 will have a higher rate of non-radiative

decay than 1. The complexity of considering d-orbital splitting was also un-

derlined since a compromise must be made between the large splitting between

occupied and unoccupied d orbitals needed to make them thermally inaccessi-

ble for quenching87 and the necessity for them to be close in energy for efficient

SOC between excited singlet and triplet states. For example, they calculated

2 and 3 to have the smallest d-orbital splittings between the two highest lying

occupied d orbitals, (∆ddocc, at the S0 geometry), giving the largest SOC and

the highest kr. Clearly this is not the case since 2 is weakly emissive169 and 3
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Figure 1.34: Optimised S0 (left) and T1 (right) geometries of compounds 2 (top) and 3 (bot-
tom). Complexes are viewed from the side to show distortion away from planarity.154

is non-emissive42 in DCM at 298 K. Conversely, 3 and 5 had high dd∗ splitting

which should reduce their knr but these compounds also had poor emission

efficiencies.42;154

These calculations illustrate then that predicting efficiency of emission is a

complex process where many different factors must be considered. Calcu-

lation of radiative rate constants alone is not sufficient since non-radiative

processes must also be considered which are much more difficult to quantify.

Emission from the T2 excited state (as assigned for 1) is rare (Kasha’s rule

states that phosphorescent emission will occur from the lowest triplet excited

state) and should be assigned with caution since unexpectedly low excitation

energies could be due to triplet instabilities.

1.9.2 Increase in luminescence efficiency in dimeric complexes

Kataoka et al. have recently reported the theoretical study of the two Pt(II)

complexes shown in Figure 1.35.108 The 2-phenyl-6-(1H -pyrazol-3-yl)-pyridine

ligand shown coordinated to platinum in Figure 1.35 has received interest from
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several synthetic groups.170–172 Interestingly, the neutral dimer complex ex-

hibits a significantly higher quantum yield of phosphorescence (0.59 in DMF

at 300 K) than the chloro-substituted complex (Φlum = 0.14 in DMF at 300

K). A similar phenomenon has been reported for various other complexes: the

dimer exhibits greater emission efficiency than the mono-nuclear platinum(II)

complex.37;38 The group analysed the complexes using DFT and TD-DFT to

investigate their ground and excited state geometries, their absorption and

emission processes and to investigate the difference in quantum yields of lu-

minescence observed.

The optimised ground state (S0) structures of the two complexes were com-

pared with crystal structure geometries. It was found that the geometries were

generally in good agreement with one another. There are one or two excep-

tions to this, for example the Pt−Cl bond length was longer in the optimised

geometry (compared to the crystal structure) due to intermolecular forces in

the crystal. It should be noted that each geometry optimisation was started

at the crystal structure geometry. TD-DFT calculations were performed at

the optimised S0 geometry; the calculated excitation energies and oscillator

strengths showed good agreement with the general shape of the experimental

spectra though the energies themselves were slightly low. It is possible that

this is a result of geometry optimisation from the crystal structure geome-

try: if a local minimum has been found due to symmetry constraints then the

ground state will be too high in energy, resulting in lower excitation energies.

The group also optimised the S1 and T1 excited state geometries from the

crystal structure, by TD-DFT, showing that excitation energies for T1 →
S0 emission gave red-shifted values from experimental results for both the

monomer (553 nm calculated, 501 nm experimental) and the dimer (560 nm

calculated, 503 nm experimental). For both complexes the excitations were
3π − π∗/3MLCT in character (Figure 1.35, bottom), with the second ligand

playing almost no role in the excitation for the dimer. They concluded that

the second ligand played a role only in rigidifying the complex to prevent

distortion leading to non-radiative decay.
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[23,24]. However, among them, phosphorescence emission of 2 is
outstandingly efficient. The high Fpho. of 2 is possibly because the
coordination structure at the platinum center of 2 is more rigid
than that of 1. However, this premise has not yet been verified. To
further understand and develop the photophysical properties of
derivatives of 1 and 2, it is useful to investigate them using quan-
tum chemical calculations.

In this study, we analyzed 1 and 2 theoretically via density
functional theory (DFT) and time-dependent DFT (TDDFT)
in conjunction with the polarizable continuum model (PCM)
solvent effect for the following reasons: a) to investigate their
stable molecular geometries in the ground (S0) and excited (S1
and T1) states, electronic structures, and photophysical proper-
ties (including absorption and phosphoresce); and b) to elucidate
the reason for the significantly higher Fpho. of 2 compared to
that of 1.

2. Calculation details

All quantum chemical calculations were performed using the
Gaussian 09 B.01 program package. The hybrid DFT functional
PBE0 was used with the effective core potential (ECP) basis set
(SDD) for the Pt atom and the Dunning’s correlation consistent
double zeta basis set (cc-pVDZ) for the other atoms [25]. The
solvent effect of the DMF ( 3¼ 37.219) was considered by the PCM.
X-ray crystal structures for 1 and 2 were obtained from the
Cambridge Structural Database (CSD). Thus, we used the X-ray
structures as initial geometries and optimized. Full optimization
of the geometry without symmetry constraints was performed in
DMF for the S0 state, and the resulting geometry was confirmed to
be at a potential energy minimum by vibrational frequency
analysis (no imaginary frequencies). The spin-allowed and spin-
forbidden excitations were calculated using the TDDFT method.
It should to be noted that the oscillator strengths of the spin-
forbidden excitations were set to zero for the triplet TDDFT cal-
culations in the Gaussian program. Using the energy gradient of
the TDDFT method, the geometries of the S1 and T1 states in DMF
were also optimized. The orbital contributions (%) of the Pt atom,
the L ligand, and the Cl counter-ion moieties in their respective
molecular orbitals (MOs) were estimated from the square of the
MO coefficients. Phosphorescence energies were calculated as the
energy differences between the S0 and T1 states at the T1 opti-
mized geometry. Here, the total energies of T1 state were calcu-
lated by unrestricted DFT (DSCF). MOs and spin density maps were
drawn using the GaussView 5.0 visualizer.

3. Results and discussions

3.1. Molecular geometries for the S0 state

First, we performed S0 state optimizations for the geometries
of 1 and 2 in DMF. Table 1 lists the selected optimized geometrical
parameters with X-ray crystal diffraction data for the two com-
plexes, and the obtained optimized geometries are depicted
in Fig. 1.

The S0 optimized structure of 1 has square planar coordination
geometries as observed experimentally, and its structural param-
eters are in general agreement with the corresponding experi-
mental values. For example, bond length differences between the
X-ray structure and the optimized geometry in the C^N cyclo-
metalated ligand moieties are within 0.020 !A. In the region sur-
rounding the Pt center, although the Pt1eCl1 bond length for the
optimized geometry is slightly longer (0.039 !A) than that in the X-
ray structure, the other coordination bond lengths (Pt1eC1, Pt1e
N1, and Pt1eN2) are reasonably reproduced in the experimental
structure. This Pt1eCl1 bond length difference is due to intermo-
lecular forces in crystal.

For 2, we obtained a plane-like structure, which is similar to the
X-ray structure of 2. The optimized geometrical parameters of 2 are
also in good agreement with those of the X-ray structure of 2.
Additionally, optimized geometry of 2 has nearly perfect C2 sym-
metry, that is to say, corresponding geometrical parameters among
two [Pt(L)] fragments in 2 are almost equal. In comparisonwith the
optimized geometry of 1, the Pt1eC1 and Pt1eN1 bond lengths in 2
are slightly greater, whereas the Pt1eN2 bond length is constant. It
is considered that these differences in bond lengths surround Pt
atoms are due to trans-effect.

3.2. Electronic structures for the S0 state

Assignments of MO localizations and estimations of orbital
contribution via DFT electronic structure calculations are critical for
deep understanding the potential photophysical abilities of phos-
phorescence metal complexes. Especially, it is well known that the
SOC of phosphorescence metal complexes, which enhance Fpho., is
increased by high orbital contributions of the metal d-orbital in
unstable occupied MOs. In addition, DFT calculations also clearly
show ded orbital splitting of Pt atoms, which is one of the reasons
for the decrease in Fpho., while experimental observation of this
value is very difficult. Therefore, we analyzed the electronic
structures of 1 and 2. Fig. 2 shows the electronic structures and

Fig. 1. Ground state optimized molecular geometries of 1 (left) and 2 (right).

Y. Kataoka et al. / Journal of Organometallic Chemistry 743 (2013) 163e169164

rings. In other words, it is expected that the pyrazolyl rings
functioned as auxiliaries for maintaining rigid structures of 1 and
2. In addition, the main electronic density change in 2 occurred on
one half-side of 2, which is the part that modified its geometry
between the S0 and T1 states. That is, it is also determined that one
half-side of 2 is utilized as an auxiliary for maintaining the rigid
structure of 2 and is not directly related to phosphorescence
emissions.

3.6. Discussion of phosphorescence quantum yield and potential
energy surface analysis

As mentioned above, the electronic structures and photo-
physical processes of 1 and 2 can be characterized clearly. However,
the reason for significantly higher Fpho. of 2, compared with that of
1, has not yet clarified. We discuss this issue with respect to our
calculation results.

Fig. 3. Changes in the electron density distribution upon T1 / S0 electronic excitation of 1 and 2. (violet and green colors corresponds to an increase and decrease of electron
density, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. (a) Differences in (a) total energy at S0 state, (b) ded orbital splitting at S0 state, (c) total energy at S1 state and (d) total energy at T1 state of 1 and 2 depending on the Pt1eN2
bond length.

Y. Kataoka et al. / Journal of Organometallic Chemistry 743 (2013) 163e169 167

Figure 1.35: Top: ground state optimised geometries of the complexes studied by Kataoka et
al.108 Bottom: density difference plots for the S0 → T1 excitation at the T1 geometry. Purple
and green zones show increase and decrease of electron density respectively.108

1.9.3 Estimating distortion

Monkman and coworkers made and studied a series of Pt(II) complexes with

one bidentate, N∧C-coordinated ligand and the other two coordination sites

filled either by an acetylacetonate ligand or one chloride and one sulfoxide

group.173 Two examples are shown in Figure 1.36, both of which showed al-

most negligible emission in solution at room temperature, and the group em-

ployed DFT and TD-DFT techniques in an attempt to understand why.
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Figure 1.36: Structures and properties of the complexes studied by Monkman and coworkers.
λmax represents the experimentally measured emission in DCM at 298 K, S0 → T1 the calculated
excitation at the ground state geometry, ∆ C=N the change in C=N bond length between the
S0 and T1 geometries and ∆ Geometry the difference between the energy of the ground state
geometry (S0) and the single point singlet calculation at the triplet geometry (T1).173

For both compounds shown in Figure 1.36 they observed that the S0 → T1

excitation calculated at the S0 and T1 geometries gave very different exci-

tation energies from those observed experimentally, suggesting that the T1

excited state geometries were very different from the ground state geometries

for these compounds. Optimisation of the T1 excited state geometry revealed

that elongation of the C=N bond occurs in the excited state compared to the

ground state geometry. They also observed that single point singlet calcu-

lations at the T1 geometry gave reasonably different SCF energies from the

ground state geometries, illustrating the difference between the two geome-

tries and concluded that the combination of all these results show significant

excited state distortion leading to non-radiative decay.

Though a helpful analysis, widespread application of this technique should

be approached with caution since it relies heavily on small differences in com-

puted energies. We have already seen that these can suffer in the triplet state

from instabilities. Inherent errors in DFT and TD-DFT also mean that an

error of at least 0.3 eV115;116;139;141;174–179 is present in most calculations so

that over-interpretation of calculated values is not advised.
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1.10 Objectives

This brief review has highlighted the wide variety of luminescent platinum

complexes present in the literature and various techniques for enhancing cer-

tain photophysical properties. By careful ligand design, compounds can be

tailored to absorb and emit over a wide range of wavelengths. Different effi-

ciencies of emission can also be achieved, from complexes which do not emit

at room temperature to those with extremely high quantum yields. While

much of this ligand design is systematic, for example increased rigidity leads

to slower rates of non-radiative decay, often the results can be unexpected.

DFT and TD-DFT have been shown to be useful tools in both predicting

and rationalising certain photophysical properties of these types of complexes.

The theory is utilised by many groups but often using different techniques.

Detailed calculations analysing the theory itself are often performed on small

molecule systems so that it is difficult then to get an idea of the accuracy of

different methods.

This project presents a combined theoretical and experimental approach to

a better understanding of the accuracy and application of DFT in predicting

and rationalising the excited state behaviour of platinum complexes, partic-

ularly luminescent efficiencies. Conversely, it is also concerned with further

investigating the experimental properties of platinum derivatives and the effect

of ligand manipulation on their excited state properties.
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Pt(II) and Pt(IV) complexes of

ligands based on

1,3-dipyridylbenzene

2.1 Chapter outline

In this chapter, the photophysical properties of a series of N∧C∧N-coordinated

Pt(II) complexes will be discussed. Williams and coworkers reported the syn-

thesis and photophysical properties of terdentate Pt(II) complexes, cyclomet-

allated at the C-2 position of the benzene ring, of the form shown in Figure 2.1.

These complexes exhibited unusually high quantum yields of luminescence,

the parent complex (R and R′ = H) with a quantum yield of 0.60 in degassed

dichloromethane.52 The group also showed how alteration of substituents at

R and R′ could be used to tune the wavelength of emission, reporting a series

of cyclometallated complexes of this form with a wide-ranging wavelength of

emission.17

The complexes (shown in Figure 2.2) were originally prepared and their pho-

tophysical properties studied by a previous member of the group, Lisa Mur-

phy.180 Some examples and other new derivatives discussed in later chapters

were prepared during this work, the synthesis of which is closely related so will

be discussed together here. PtL1−4Cl and PtLF1−4Cl, made by Lisa Murphy

45
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Figure 2.1: General structure of the N∧C∧N-coordinated Pt(II) complexes.

(Figure 2.2) provide two series of closely related compounds where absorption

and emission differ subtly as the position of a methyl group is shifted round

the pyridine rings. They will be used to consider the accuracy of the standard

procedures which are generally employed for the prediction of these properties

for phosphorescent compounds.

The experimentally obtained photophysical results will first be outlined, be-

fore consideration of the ability of TD-DFT to replicate the trends observed.

This chapter is predominantly concerned with the calculation of absorption

energies. They will be discussed in detail, considering methods of convolution,

and various mathematical parameters such as basis set, choice of functional

and modelling of solvent. The ability of TD-DFT to replicate the phosphores-

cent emission energies of the compounds will then briefly be discussed along

with an excursus on the relative difficulties and accuracies of such calculations.

Alongside discussion of the synthesis of the Pt(II) complexes we will also

describe the synthesis of some closely related Pt(IV) compounds. The proper-

ties of the Pt(IV) analogues will be returned to towards the end of the chapter

when their stability (with regard to decomposition) under various conditions

will be investigated. The experimentally obtained photophysical properties of

the Pt(IV) compounds will then be discussed and, finally, using the same tech-

niques as developed for the Pt(II) compounds, the ability of DFT to model

their absorption properties, relative both to one another, and to their reduced

platinum(II) analogues, will be considered.
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Figure 2.2: The chemical structures of the two series of complexes studied.

2.2 Synthesis

The eight previously made platinum(II) complexes, for which we will consider

the modelling of absorption spectra in this chapter, are shown in Figure 2.2.

The compounds can be divided into two sets of four: those with a fluorine atom

at the 3 and 5 positions on the benzene ring, PtLFnCl, and those without,

PtLnCl. This conveniently provides two sets of very closely related complexes

for analysis by TD-DFT.

2.2.1 Ligand synthesis

Stille cross-coupling

Ligands HL1 and HLF1−4 (Figure 2.3) were synthesised via the Stille cross-

coupling reaction.180 First, pyridyl stannane precursors were made via a two-

step process (as shown in Scheme 2.1) by lithiation at the 2-pyridyl posi-

tion, followed by nucleophilic substitution with Bu3SnCl. With one exception

(vide infra), 2-bromo substituted pyridines were directly lithiated by mix-

ing with n-BuLi, at 0 ◦C, to give exchange of the bromine for lithium.181 In

the case of HLF2 however, the lithiated pyridine was formed directly from
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Figure 2.3: The chemical structures of the two series of ligands studied.

Scheme 2.1: Schematic representation of the ligand formation using Stille cross-coupling. R
represents a methyl group at each of the positions 3-6 around the pyridine ring and R′ represents
either a fluorine or hydrogen atom. DMAE = dimethylaminoethanol.
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Figure 2.4: Mixed lithium aggregate intermediate

4-methylpyridine, instead of the 2-bromo analogue, according to a route de-

veloped by Kaminski et al.,182 where n-BuLi was first mixed with dimethy-

laminoethanol (DMAE), in dry hexane, before addition of the 4-functionalised

pyridine molecule. Upon addition, a mixed lithium aggregate intermediate is

formed (Figure 2.4). The increased acidity of the proton at the position or-

tho to the nitrogen, combined with proximity within the aggregate, leads to

selective ortho lithiation. It should be noted, however, that this method is

only reliably selective for 4-substituted pyridines since its use where there is

substitution at other positions in the ring would lead to a mixture of isomers.

Once the lithiated product was obtained, it was converted to the stannane

analogue by mixture with tributyltin chloride. Since the stannanes were found

to partly decompose during column chromatography, they were used without

purification, and an estimate of conversion of the reactants to products was

taken from the 1H NMR spectrum (by comparing integrals of the aromatic

region of the spectrum with the integrals of the aliphatic region).

The crude stannane was next coupled to 1,3-dibromobenzene, using the bis-

(triphenylphosphine)palladium(II) chloride catalyst under inert conditions which

gave, after purification by column chromatography, the pure ligand.

Suzuki-Miyaura cross-coupling

Ligands HL3 and HL4 (Figure 2.3) were synthesised in the same project via

the Suzuki-Miyaura cross-coupling reaction (Scheme 2.2), using Na2CO3 as a

base and a dimethoxyethane/water (1:1) solvent system, in the presence of a
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Scheme 2.2: Schematic representation of the ligand formation using Suzuki-Miyaura cross-
coupling. R represents a methyl group at positions 5 or 6 of the pyridine ring.

Pd(PPh3)4 catalyst. The solvent, base and ligand precursors were degassed

using the freeze-pump-thaw methodology and placed under an atmosphere

of nitrogen, before addition of the catalyst. The mixture was then heated

under nitrogen, at 85 ◦C, for two days before purification by column chro-

matography. Ligands HL6 and HL7 were also made using the Suzuki-Miyaura

cross-coupling reaction, according to literature procedures.

During the present work, the unsubstituted ligand HL5 was synthesised by

two different methods: conventionally for this ligand, by a Stille cross-coupling

reaction (discussed in Section 2.2.1) and also using a Suzuki-Miyaura cross-

coupling reaction. The use of 1,3-benzene-diboronic acid to prepare HL1 by

a Suzuki-Miyaura reaction has not previously been reported, despite the po-

tential benefits such a method would offer over the Stille cross-coupling (e.g.

innocuous side-products and a one-step reaction). We found that the com-

pound could indeed be prepared by such a method, in the one-step process

outlined in Scheme 2.2 (more details are given in Chapter 8). The identity

of the ligand, formed by both techniques, was confirmed by 1H NMR spec-

troscopy, which was in good agreement with literature values for this well

reported compound. Indeed, aside from the obvious benefits afforded by the

use of a one-step reaction (compared to the three steps required by Stille), the

avoidance of toxic heterocyclic stannane reagents, and undesirable reactants

such as butyl lithium, we found that the yield obtained in the case of the

Suzuki-Miyaura method (70%) was significantly higher than that obtained by

the Stille (55%).
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2.2.2 Cyclometallation of ligands to give Pt(II) complexes

Two methods were used for cyclometallation of the ligands to give plat-

inum(II) complexes (Scheme 2.3). The first involved reaction of the ligand

with K2PtCl4, in either acetic acid or a mixture of MeCN and H2O (3:1) at

reflux under nitrogen. Purification was then achieved by isolating the precip-

itated solid, using centrifugation, and washing it with various solvents, before

extraction into DCM.

Microwave cyclometallation was achieved in a reaction analogous to the one

described by Wang et al.,183 using a mixture of acetic acid and water (9:1)

as the solvent, at a much higher concentration, for just thirty minutes. The

use of the microwave allowed higher temperatures of reaction than the boiling

point of the solvent (in this case 160 ◦C) which, combined with the increased

concentration of the reactants in solution, is thought to be the reason for the

elevated rate of reaction. We found an even higher yield than Wang et al.

(91% compared to 80%), perhaps due to the degassing of the reaction mix-

ture, in our case, leading to less decomposition. This technique was also used

for the first time to generate PtL5Br by reaction of the ligand with K2PtBr4.

This method led to improved yields at the same time as decreasing reaction

times. It was also used for complexes PtL6Cl and PtL7Cl, with similar results.

Scheme 2.3: Schematic representation of the three methods used for cyclometallation of the
ligand. R represents a methyl group at each of the positions 3-6 of the pyridine ring and R′

represents either a fluorine or hydrogen atom.
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Figure 2.5: Molecular structures of the four tri-halogenated Pt(IV) complexes synthesised.

2.2.3 Oxidation of Pt(II) to Pt(IV)

While this study is primarily concerned with the synthesis and study of Pt(II)

complexes, it was decided to investigate their oxidised derivatives too: N∧C∧N-

coordinated Pt(IV) complexes. Since these compounds are isoelectronic with

their Ir(III) analogues, which have been shown to be highly emissive, it is

interesting to see what the phosphorescent properties of these previously in-

vestigated Pt(IV) complexes are. A brief excursus will follow on the synthesis

and characterisation of the compounds made of this type.

Synthesis of tri-halogenated platinum(IV) complexes

Initially, oxidation of the Pt(II) species was attempted by reaction with

copper(II) chloride.184 CuCl2 and the Pt(II) complex were added to a mix-

ture of methanol and DCM (1:1), and stirred at room temperature for 24 h.

CuCl was then removed by filtration and the product purified from the solvent

mixture. Although this procedure was successful, there was not a complete

conversion of reactants to products so it was decided to use a procedure that

had been previously developed in the group.
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Scheme 2.4: Synthetic pathway to Pt(IV) complexes.

According to a procedure developed by Lisa Murphy180 for five related N∧C∧N-

coordinated Pt(II) complexes, three new tri-chloro Pt(IV) complexes were

synthesised. The oxidation was achieved by taking up the Pt(II) complex

in a small volume of chloroform and bubbling chlorine gas through the solu-

tion for 30 minutes, with the exclusion of light. The solution became paler

in colour after just a couple of minutes, indicating that oxidation had taken

place, though chlorine was added for some time afterwards to try to ensure

complete conversion. The solvent was removed quickly under reduced pressure

since decomposition of the product was observed in solution in the presence

of light (see Section 2.5.2). In each case the Pt(IV) complex was obtained as

a powder, paler in colour than its Pt(II) analogue.

In an attempt to find less harsh (and experimentally demanding) methods

for oxidation of Pt(II), bromine and iodine were investigated as potential ox-

idising agents. A similar technique as for Cl2 was used for the oxidation,
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using PtL5X as the test species. In each case the halogen, X2, was added in

large excess to the respective halide-substituted PtL5X complex, in a solution

of chloroform. The mixture was then stirred with the exclusion of light for

various amounts of time (in the case of Br2 it was found that the reaction

had proceeded after 24 h). The product precipitated from solution and could

therefore be easily obtained by centrifugation and subsequent washings. As

expected, oxidation by bromine was slower and there were traces of PtL5Br

in the product (either due to decomposition or incomplete conversion) whilst

there was little evidence of a reaction occurring with I2 (even after 72 h).

The PtLnCl3 products appeared pure by 1H NMR and mass spectrometry

but upon photophysical analysis, traces of the Pt(II) complex were seen in

the emission spectrum. Since these compounds are so emissive compared to

their Pt(IV) analogues, only a tiny amount of the starting material would need

to be present to dominate the entire emission spectrum. It is thought that the

compounds readily decompose, probably to something similar to the Pt(II)

starting material, upon irradiation with light. This will be further discussed

in Section 2.5.2.

Synthesis of other platinum(IV) complexes

Von Zelewsky et al. showed that reaction of some Pt(II) complexes with

an alkyl halide (as both reactant and solvent) oxidised the Pt(II) compound

to give the Pt(IV) product (with the halide and alkyl group as the two new

ligands).185 Unfortunately, attempts at synthesis of Pt(IV) complexes contain-

ing a tridentate ligand and one monodentate ligand according to this method,

shown in Scheme 2.5, gave only a mixture of starting materials and decompo-

sition products (after 2 h heating at 60 ◦C).

Newman et al. showed that a similar reaction proceeded by first oxidation

and then cyclometallation186 (Scheme 2.6) so the compound will be first ox-

idised (since we know that this can be done cleanly and to completion); and

then the bidentate ligand coordinated, rather than the one-step oxidation and

coordination employed by Jenkins and Bernhard (Scheme 2.6).187 We synthe-
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sised two N∧C∧N-coordinated Pt(IV) complexes from PtL5Cl3: one with a

cyclometallated bidentate ligand, [PtL5(ppy)Cl]+ formed upon reaction with

ppyH, and one with two coordinating pyridine rings, [PtL5(bpy)Cl]2+ from

reaction with bpy (Scheme 2.4). Both reactions were conducted with the ex-

clusion of light to prevent decomposition (see Section 2.5.2).

Scheme 2.5: Attempted preparation of a Pt(IV) complex using benzyl chloride.

Scheme 2.6: The two routes used for synthesis of Pt(IV) complexes. The one-step reaction used
by Jenkins and Bernhard (top) is shown in purple and the two-step oxidation and cyclometallation
employed by Newman et al. (bottom) in green.

For the ppy complex, [PtL5(ppy)Cl]+, silver trifluoromethanesulfonate was

added as a chloride scavenger to help drive the reaction. The pure product

was obtained by changing the counter ion from triflate to Cl− to improve
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the solubility of the complex in water, allowing impurities to be removed by

washing the solution with DCM. Changing the counter ion back to PF6
− then

allowed washing with water. Use of acetonitrile during the preparation and

manipulation of this compound was necessarily avoided since it is a poten-

tially coordinating solvent. Unlike its precursor, once formed, this complex

appeared to be stable with respect to light and showed no traces of the Pt(II)

compound by NMR, mass spectrometry and even emission spectroscopy.

The bpy-substituted complex proved to be more complicated to synthesise

than its cyclometallated analogue. While it was found that the use of the

chloride scavenger was unnecessary for formation of the product, initial at-

tempts at synthesis in a mixture of polar, protic solvents (MeCN:H2O 3:1),

with an excess of bpy, heated at reflux for 48 h, showed no appreciable for-

mation of product, merely a red solid containing the bipyridine. We were

concerned about the ability of the acetonitrile molecule to bind to the plat-

inum so the solvent was changed to ethylene glycol (which also enabled higher

reaction temperatures). When heated at reflux for 12 h, a dark red solution

was obtained which, once purified by conversion to the PF6
− salt, yielded a

red product which included a mixture of bipyridine, Pt(II) starting material

and the desired Pt(IV) product. Finally it was found that gradual heating

(as described in Chapter 8) discouraged the entropically favoured production

of Pt(II) starting material. Purification was achieved by taking the reaction

mixture and purifying immediately using HPLC. This gave a white powder

whose NMR spectrum was consistent with the desired Pt(IV) product − we

are unsure as to the origin of the deep red impurity. All of these reactions

were performed under nitrogen with the exclusion of light wherever possible.

In a proof-of-principle reaction, it was shown possible to alter the ancillary

Cl− ligand on [PtL5(ppy)Cl]+ for 1-ethynyl-3,5-bis(trifluoromethyl)benzene.

Initially, a mixture of methanol and acetone, 7:1, was used, the acetone to

improve the solubility of the complex. The complex was taken up in the sol-

vent with sodium hydroxide and the acetylide and stirred for 19 h. Under

these conditions no reaction occurred. Upon addition of a catalytic amount of

copper iodide, however, with a further 2 h stirring at room temperature, some
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formation of product was shown to occur by mass spectrometry. We therefore

postulate that with longer reaction times and possibly a higher temperature

of reaction, a greater yield could be obtained.

Characterisation of platinum(IV) complexes

Oxidation of PtL5Cl to PtL5Cl3 resulted in deshielding and a consequent

downfield shift of signals in the proton NMR spectrum (Figures 2.6 and 2.7).

The heteronuclear coupling constand between 195Pt and H6 in the ligand was

also reduced. This proton is shifted further downfield on moving from PtL5Cl3

to PtL5Cl3 (9.54 and 9.72 ppm respectively, Figure 2.8). This mirrors the be-

haviour of their Pt(II) analogues, PtL5Cl and PtL5Br, which have shifts of

9.34 and 9.56 ppm respectively. Both Pt(IV) compounds are deshielded rela-

tive to their Pt(II) counterparts. A HRMS spectrum was obtained of PtL5Cl3,

with a peak corresponding to the mono-cation (after removal of one Cl− ion),

confirming the identity of this compound and in keeping with previously re-

ported data.180

Substitution of two chloride ions by either bpy or ppy results in an upfield

shift of the proton at the 6-position of the pyridine ring (on the tridentate lig-

and), the effect of which is greater in the cyclometallated bidentate ligand (7.95

ppm) than for bpy (8.36 ppm). There is also a change in shift of the cyclomet-

allated carbon atom of the N∧C∧N ligand upfield from the Pt(II) compound

(160.7 ppm for [PtL5(ppy)Cl]+, 154.0 ppm for [PtL5(bpy)Cl]2+, compared to

161.8 ppm for PtL5Cl). Both these compounds display the expected added

protons from the bidentate ligand, upfield of the N∧C∧N protons. Only one

isomer of [PtL5(ppy)Cl]+ was observed: that with the nitrogen atom of the

bidentate ligand trans to the carbon atom of the tridentate ligand. Assignment

of this isomer was achieved by comparison of the NMR spectrum with that of

an iridium analogue where a NOSEY spectrum had been obtained188 and also

by consideration of the crystal structure (vide infra). Formation of this isomer

uniquely is presumably due to the unfavourable trans disposition of the two

cyclometallated carbon atoms in the other isomer. Analysis by mass spec-

trometry of [PtL5(bpy)Cl]2+ showed peaks for both the +1 and +2 fragments
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Figure 2.6: 1H NMR spectrum of the aromatic region of PtL5Cl in CDCl3, at 700 MHz NMR.

Figure 2.7: 1H NMR spectrum of the aromatic region of PtL5Cl3 in CDCl3, at 700 MHz.
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Figure 2.8: 1H NMR spectrum of the aromatic region of PtL5Br3 (top) and PtL5Cl3 (bottom),
both in CDCl3 and run with a 700 MHz NMR spectrometer. PtL5Br3 could not be formed
without a large amount of the starting material, PtL5Br remaining which is also present in the
spectrum.

according to whether the compound had either one or no counter ions present.

Small crystals of [PtL5(ppy)Cl]+ and [PtL5(bpy)Cl]2+ were obtained by slow

evaporation from acetone and their molecular structure determined by X-ray

diffraction, the structures of which are shown in Figures 2.9 and 2.10 re-

spectively. The geometries are distorted octahedral and a summary of the

important bond lengths and angles about platinum can be seen in Table 2.1.

Each carbon atom is trans to a nitrogen rather than to another carbon in

[PtL5(ppy)Cl]+ to reduce the unfavourable trans interaction of the two car-

bon atoms. The Pt−Cl bond is longer for the ppy-substituted complex than

for bpy, and much more like that of the Pt(II) complex, PtL5Cl which has a

Pt−Cl bond length of 2.417(2) Å and a Cl also trans to a carbon atom.51 Both

complexes display a Pt−Cl bond which is shorter and more like Pt(II) than

two related (though substituted) N∧C∧N and N∧C-coordinated Ir(III) com-

plexes (which have bonds of 2.462(2) and 2.469(1) Å in length).189 The Pt-C



60 · Synthesis

Figure 2.9: Crystal structure of [PtL5(ppy)Cl][PF6] from acetone

bond of the N∧C∧N ligand is elongated in both these structures compared

to the Pt(II) complex which is 1.907(8) Å, and is slightly longer in the bpy

analogue compared to the ppy. The elongation of this bond is presumably to

reduce steric interactions, which are introduced upon oxidation of Pt(II), since

there are more groups attached to the platinum centre. The N−Pt−N angle

is roughly the same between all three complexes (PtL5Cl angle 161.1(2)◦). To

our knowledge there is no Ir(III) complex in the literature for comparison with

the bpy Pt(IV) compound.

Comparison of these new Pt(IV) structures with those of PtL5Cl3 (which has

Pt−C and Pt−Cl bond lengths of 1.945(4) and 2.3189(10), 2.3195(10) and

2.4457(11) Å respectively)180 shows little change of the Pt−C bond length for

[PtL5(ppy)Cl]+ and a slight elongation in [PtL5(bpy)Cl]2+. The Pt−Cl bond

is slightly longer in [PtL5(ppy)Cl]+ than [PtL5(bpy)Cl]2+ since it is trans to

the Pt−C bond in the former. The Pt−Cl bond lenth increases in the order:
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Figure 2.10: Crystal structure of [PtL5(bpy)Cl][PF6]2 from acetone

[PtL5(bpy)Cl]2+ < PtL5Cl3 < [PtL5(ppy)Cl]+ < PtL5Cl3

(Cl trans to Pt−N) (Cl trans to Pt−C)

It can be seen from Table 2.1 that the Pt−C and Pt−N bonds are longer

on the ppy ligand than the N∧C∧N ligand. This is probably due to proximity

of the tridentate ligand to the Pt atom, allowing close bonding of three atoms,

while if the ppy is close this is only advantageous to two bonding atoms. Steric

interactions prevent both ligands from being close in space to the Pt at once.
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[PtL5(ppy)Cl]+ [PtL5(bpy)Cl]2+

Bond lengths:

Pt−N 2.0450, 2.0533 2.0558(1), 2.0585(1)

Pt−C 1.9410 1.9668(1)

Pt−N 2.1335 2.0361(1), 2.1476(1)

Pt−C 2.0218(1) −
Pt−Cl 2.4186(1) 2.3038(1)

Bond angles:

N−Pt−N 161.05 161.76

N−Pt−C 80.69 80.61
80.47 81.16

N−Pt−Cl 90.75 90.26
91.14 90.10

N−Pt−N 99.20 99.02, 88.16,
99.49 99.11, 93.22

N−Pt−C 90.82 −
89.27

C−Pt−N 176.80 175.96
96.61

C−Pt−C 96.45 −
C−Pt−Cl 89.59 88.87

N−Pt−N − 79.36

N−Pt−C 80.36 −
N−Pt−Cl 93.61 95.16

173.98

C−Pt−Cl 173.94 −

Table 2.1: Selected bond lengths (Å) and bond angles (◦) found for the Pt(IV) crystal structures.
Purple text indicates atoms bound from the N∧C∧N ligand while green text shows atoms from
the bpy or ppy ligand.
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2.3 Photophysical properties of Pt(II) complexes

2.3.1 Absorption properties of PtLnCl and PtLFnCl

The experimental UV-vis absorption spectra of PtL1−4Cl and PtLF1−4Cl in

DCM are shown in Figure 2.11. It can be seen that the non-fluorinated com-

plexes absorb at a lower energy than their fluorinated counterparts and that

there is a well-defined band at about 340 nm in the former group with no ob-

vious corresponding band in the latter. It was also reported that the PtL1−4Cl

series display a formally forbidden S→T transition although these bands were

shown to be very weak due to their formally forbidden nature (Table 2.2).

Figure 2.12 shows the UV-vis absorption spectra of PtL3Cl and PtLF3Cl in

various different solvents. It can be seen that both display negative solva-

tochromism in the lowest energy S0 → Sn absorption band.

2.3.2 Emission properties of PtLnCl and PtLFnCl

The wavelengths of emission of the PtL1−4Cl and PtLF1−4Cl complexes are

shown in Table 2.3. The PtLF1−4Cl series all emit at a higher energy than

their non-fluorinated counterparts.

2.4 TD-DFT studies of Pt(II) complexes

2.4.1 Simulated absorption spectra of Pt(II) complexes

In this section we will discuss, in some depth, the ability of DFT to pre-

dict the absorptive properties of the two series of complexes: PtL1−4Cl and

PtLF1−4Cl. Simulation of these properties has been investigated for similar

compounds by other groups.190;191 In many ways, the prediction of the absorp-

tion of light by a compound is much more straightforward than calculation of

the emissive properties, some of the complexities of which will be discussed

in later chapters. One of the complications attributable to absorption, but

not emission, however, is that for excitation of the ground state molecule to a

singlet excited state, any one of a large number of singlet excited states can
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Figure 2.11: Normalised UV-vis absorption spectra of PtLnCl (top) and PtLFnCl (bottom) series
in DCM at 298 K. The intensity of the absorption band at ∼380 nm is normalised for ease of
comparison. The unsubstituted complex (shown in green) represents the Pt(II) complex in each
case with no methyl groups. Figures taken from Lisa Murphy’s thesis.180
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Figure 2.12: Normalised UV-vis absorption spectra of PtL3Cl (top) and PtLF3Cl (bottom) in
different solvents at 298 K. The intensity of the absorption band at ∼380 nm is normalised for
ease of comparison. Figures taken from Lisa Murphy’s thesis.180
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Absorbance λmax/ nm
(ε / L mol−1cm−1)

PtL1Cl 322 (5180), 334 (5289), 363 sh (4383),
382 (6333), 405 sh (4299), 459* sh, 489*

PtL2Cl 326 (7820), 356 (6420), 374 (8930),
400 (7040), 479* (260)

PtL3Cl 335 (12350), 360 (9150), 370 (11210),
399 (8464), 455* sh (280), 490* (130)

PtL4Cl 327 (6500), 339 sh (6030), 390 sh (6440),
413 (6730), 492* (310)

PtLF1Cl 323 (6030), 336 (8010), 361 (6030),
375 (7110), 444*(110),474* (90)

PtLF2Cl 316 (8910), 329 sh (10790), 358 (9000),
372 (11320), 433* (180), 462* (150)

PtLF3Cl 322 (5820), 336 (8620), 358 (6330),
372 (6730), 442* (110), 473* (80)

PtLF4Cl 292 (13890), 329 (5550), 341 (5980),
382 (6480), 475* (120)

Table 2.2: Wavelengths of absorption of PtLnCl and PtLFnCl series at 298 K in DCM. *For-
bidden S0 → T1 absorption bands.

be accessed. Indeed it has even been shown that some compounds can absorb

to a triplet excited state. Some of these transitions are more favourable than

others. For example, the excitation from S0 → S1 may be so unfavourable

that it is not seen at all, other excitations may be weak, and excitation from

S0 to S5 (for example) may dominate the low energy region of the absorption

spectrum. For this reason, when considering the TD-DFT calculation of the

absorption spectrum, it is easiest to compare the experimental spectrum with

a convoluted spectrum rather than individual excitations.

For each given excitation TD-DFT will calculate a single point energy along

with an indication of the probability of that excitation, the oscillator strength
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Emission λmax Energy of triplet state
/ nm / eV[a]

PtL1Cl 497, 529, 565 sh 2.49

PtL2Cl 487, 521, 560 2.55

PtL3Cl 494, 528, 565 sh 2.51

PtL4Cl 506, 529 569 sh 2.45

PtLF1Cl 487, 513, 555 sh 2.55

PtLF2Cl 467, 498, 529 2.65

PtLF3Cl 478, 510, 543 sh 2.59

PtLF4Cl 494, 530, 565 sh 2.51

Table 2.3: Wavelenth of phosphorescent emission and energy of the T1 triplet state of PtLnCl
and PtLFnCl series at 298 K in DCM. [a] Estimated from wavelength of 0−0 band.

(f). Experimentally we measure extinction coefficients which show how strongly

the sample absorbs light at a given wavelength. The calculated oscillator

strength gives an indication of the probability of a transition between en-

ergy levels occurring. Since TD-DFT calculations are generally run at 0 K,

this does not take into account broadening by vibration which can be added

in later, generally by convolution of the excitations and oscillator strengths

found. Usually this is achieved by putting a set width (often 0.6 eV) at half

the line maximum and drawing a Gaussian shaped curve over the top.192

All the Gaussian curves are then added together to give the predicted spec-

trum. There are other ways of creating such a spectrum (one of which will

be discussed later in this section) but these are usually too computationally

demanding for general use. In this section we will discuss the ability of DFT

to reproduce experimental trends in the absorption spectra of the mentioned

compounds with consideration of how the inclusion of various computational

parameters affects the trends observed. The TD-DFT results obtained will be

presented as convoluted absorption spectra.

Unless otherwise stated, DFT and TD-DFT calculations presented in this

chapter were performed using PBE0, in vacuum with the LANL2DZ basis set
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for platinum and cc-pVDZ for all other atoms. Where indicated a PCM for

solvent was applied. Ground state and triplet excited state geometries were

optimised by direct minimisation of the SCF energy and checked to be a true

minimum by frequency calculations at the same level of theory. Convolution

of excitation energies for absorption spectra was achieved using a 0.6 eV full

width at half maximum Gaussian. Various combinations altering the func-

tional, point of inclusion of solvent model and different basis sets were used

as indicated throughout to investigate the importance and significance of each

on the results obtained.

Calculations in vacuum

Initial attempts to reproduce the trends in absorption spectra of PtL1−4Cl

and PtLF1−4Cl were conducted in vacuum, using PBE0, with basis sets LANL2DZ

for platinum and cc-pVDZ for all other atoms. The S0 ground state geometry

was first optimised, then the first ten singlet excitations at this geometry com-

puted. The convoluted spectra produced are shown in Figure 2.13. In general

this method produced reasonable results. The trend between the two series

of complexes, PtLnCl and PtLFnCl was correct, with a blue shift seen for the

fluorinated compounds, as seen in the experimental spectra. The difference in

calculated wavelength of absorption between the two series was also good, for

example, the λmax of PtL3Cl and PtLF3Cl were 399 and 372 nm experimen-

tally and 404 and 371 computationally (Table 2.4).

Within each series (with the exception of PtLF2Cl) the general trends were

well reproduced despite the very small difference in energy between them.

The difference between λmax of the absorption bands was less well reproduced:

comparison of Figure 2.11 with 2.13 shows that the relatively large gap be-

tween PtL1Cl and PtL4Cl observed experimentally is not reproduced by these

calculations.

Calculations with a PCM for solvent

Since photophysical measurements are usually conducted in a solvent at

high dilution (to reduce the probability of aggregate or excimer formation) and
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Figure 2.13: Convoluted absorption spectra of PtLnCl (top) and PtLFnCl (bottom) series,
calculated by TD-DFT. Excitation energies calculated are shown in the Appendix, Tables 9.1
and 9.2.
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Calculated Experimental
λmax / nm λmax / nm

PtL1Cl 403 405 sh

PtL2Cl 408 400

PtL3Cl 404 399

PtL4Cl 409 413

PtLF1Cl 375 375

PtLF2Cl 376 372

PtLF3Cl 371 372

PtLF4Cl 386 382

Table 2.4: Wavelenth of the lowest energy S0 → Sn absorption band from Figure 2.13. Equiv-
alent experimental values are shown for comparison.

these solvents can affect the energies of absorption and emission obtained, it

is desirable to include such solvents in the calculation. Inclusion of solvent

increases computational time so it is often omitted entirely or included only

in the TD-DFT calculation. Inclusion of large numbers of individual solvent

molecules around the compound of interest to calculate their interaction with

it would make the time-cost of calculations prohibitively high. Instead of this,

many groups use a polarisable continuum model (PCM) for solvent where

spheres are drawn around each atom of the molecule and a dielectric constant

applied to the space outside the spheres. The drawback of such a technique

is that intermolecular interactions (such as π-stacking) are not taken into ac-

count. We will now assess the effect of a PCM for solvent and the effect of

its inclusion on both geometry optimisation and TD-DFT calculations for the

absorption spectra of PtL3Cl and PtLF3Cl.

Figure 2.14 shows the calculated absorption spectra of PtL1−4Cl and PtLF1−4Cl

where both the geometry optimisation and TD-DFT calculations included a

PCM for DCM (the solvent used experimentally). The excitation energies

obtained are higher in energy than those computed in vacuum. Inclusion of

solvent in this way correctly increases the wavelength of the lowest energy
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band of PtL4Cl, so that the gap between this band and the same band in

PtL2Cl is 14 nm (c.f. 13 nm experimentally). The other three complexes all

have their lowest energy band at essentially the same position, only varying

between the three by 2 nm. The same is true of the PtLFnCl series.

Further investigations were pursued considering only PtL3Cl and PtLF3Cl.

Figure 2.15 shows the convoluted absorption spectra of these two complexes in

six solvents of varying polarity. The geometry was first optimised in vacuum,

then the solvent model applied for the TD-DFT calculations. The spectra

show that for the lowest energy band the negative solvatochromism displayed

experimentally is correctly predicted in both cases.

Figure 2.16 compares absorption spectra generated where the solvent model

is included at different points in the calculations. Method A takes the ground

state geometry computed in vacuum and applies a solvent for the TD-DFT

calculations while Method B includes solvent for both geometry and TD-DFT.

In general, the point of inclusion makes little difference, though in acetoni-

trile, a highly polar solvent (dielectric constant = 37.5), the band at ∼300 nm

decreases by 0.11 eV with Method B. Excitations calculated in vacuum at the

crystal structure geometry are also shown. This geometry is often used for

such calculations since it is a known, experimental geometry and also saves on

computational time. Since we have seen, though, that the excitation energies

calculated are dependent on the geometry used, the results could be skewed

by use of a geometry which has been obtained due to the intermolecular in-

teractions present in the formation of the crystal structure.

Calculations with different basis sets and functionals

Calculations where larger basis sets are used are generally considered to be

more accurate though they take longer to compute; computational accuracy

does not necessarily give results closer in energy to those obtained experimen-

tally since, for example, calculations simulate in the gas phase at 0 K. They

can also encounter more difficulty in converging. Choice of basis set is, as with

all factors, a compromise between using one small enough to obtain results
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Figure 2.14: Convoluted absorption spectra of PtLnCl (top) and PtLFnCl (bottom) series cal-
culated with a PCM solvent model for DCM (for all calculations). Excitation energies calculated
are shown in the Appendix, Tables 9.3 and 9.4.
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Figure 2.15: Convoluted absorption spectra of PtL3Cl (top) and PtLF3Cl (bottom) calculated
by TD-DFT in various solvents. The ground state geometry was first optimised in vacuum, then
the excitation energies obtained using TD-DFT, with a PCM of the indicated solvent applied.
Excitation energies calculated are shown in the Appendix, Tables 9.5 and 9.6.
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Figure 2.16: Convoluted absorption spectra of PtL3Cl (top) and PtLF3Cl (bottom) calculated
by TD-DFT. Method A: the ground state geometry was first optimised in vacuum then the
excitation energies obtained using TD-DFT with a PCM of the indicated solvent applied. Method
B: both the ground state geometry optimisation and the TD-DFT were calculated with a PCM
applied. The black line indicates TD-DFT calculations in vacuum at the crystal structure
geometry. Excitation energies calculated are shown in the Appendix, Table 9.7.
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in a reasonable time-span and one large enough to give reasonably reliable

results. The spectra from TD-DFT excitations using four different basis sets

(at the cc-pVDZ geometry) for PtL3Cl and PtLF3Cl are shown in Figure 2.17.

They show the λmax varying significantly depending on the basis set used in

each case.

Figure 2.18 shows the convoluted absorption spectra for the same two com-

pounds where the geometry was also computed using the indicated basis set.

In this second example of varying basis sets, aug-cc-pVDZ is not shown since,

despite several attempts, a geometry optimisation using this basis set could

not be made to converge. For the rest of the discussion cc-pVDZ will be used

for all atoms except platinum since this appeared to give reasonable results,

similar to that of cc-pVTZ but in a more achievable time span.

Finally, convoluted absorption spectra were calculated with various basis sets

and the functional altered to CAM-B3LYP to see if longer-range interactions

had any effect on excitation energies calculated. Again, cc-pVDZ and cc-pVTZ

gave very similar results but calculations with cc-pVDZ were much quicker.

CAM-B3LYP will be used in later chapters where there are compounds with

low orbital-overlap excitations so that a long-range corrected functional is

necessary to accuarately describe the processes taking place.

Simulated absorption spectra of Pt(II) complexes without convolution

As previously alluded to, it is possible to calculate the absorption spectra

of compounds using TD-DFT but without merely placing a Gaussian curve

over the excitation: instead the calculation takes into account the vibrations

of the ground and excited states of the molecule during calculation of the

excitation intensities. To evaluate the vibrations, the structure of each indi-

vidual excited state must be computed, followed by a frequency calculation at

that structure. In two proof-of-principle calculations this was attempted for

PtL3Cl and PtLF3Cl, in vacuum, using PBE0 (the same parameters as used

for Figure 2.13). Due to the computationally demanding nature of these calcu-

lations, only the first five singlet excitations were computed for each. Whilst a
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Figure 2.17: Convoluted absorption spectra of PtL3Cl (top) andPtLF3Cl (bottom) calculated by
TD-DFT. Geometries were calculated with cc-pVDZ and LANL2DZ, then TD-DFT excitations
calculated with LANL2DZ for Pt and the indicated basis set for the other atoms. Excitation
energies calculated are shown in the Appendix, Tables 9.8 and 9.9.
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Figure 2.18: Convoluted absorption spectra of PtL3Cl (top) and PtLF3Cl (bottom). Calculations
were run with LANL2DZ for Pt and the indicated basis set for the other atoms for both the
geometry optimisation and TD-DFT. Excitation energies calculated are shown in the Appendix,
Tables 9.8 and 9.9.
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Figure 2.19: Convoluted absorption spectra of PtL3Cl (top) and PtLF3Cl (bottom) calculated
by TD-DFT using CAM-B3LYP. Excitation energies calculated are shown in the Appendix, Table
9.10.
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result more similar to room temperature experimental spectra is obtained by

calculations such as these, the calculation time required is vastly increased.

For example, in the case of PtLF3Cl, calculating the absorptive properties

for 20 excited states using conventional methods (optimisation of the ground

state geometry followed by TD-DFT calculations to find the energy of the

excitations) took just over 23 h cpu time. Meanwhile, the same calculation

using this method took nearly 5.4 years cpu time. For this reason, while it

was possible to re-run calculations shown to have imaginary frequencies when

using the first method, it is not practical to keep repeating calculations us-

ing the second method, and consequently some of the results have imaginary

frequencies, showing that they are not at a true minimum.a Singlet excited

state geometries calculated for PtL3Cl were also shown to have imaginary fre-

quencies.b Although geometry optimisations and frequency calculations were

successfully performed, Franck-Condon excitation energies could not be com-

puted due to a problem with the Gaussian program (possibly from calculations

requiring consideration of so many different vibrational modes.)

The same calculations were therefore performed for benzene for the S0 and

S1 geometries to give an idea of the quality of spectrum that might be ob-

tained. Both the experimental absorption spectrum (in DCM at 298 K) and

the calculated spectrum are shown in Figure 2.20. The calculated spectrum

(although shifted to a higher energy) shows good reproduction of the spectrum

structure, especially when taking into account that DFT simulates at 0 K and

experimental results were obtained at 298 K. Calculations were performed

with PBE0, using cc-pVDZ, in vacuum.

2.4.2 Calculated emission energies of PtLnCl and PtLFnCl

Comparison of Tables 2.3 and 2.5 show that the excitation energies calculated

for triplet emission by TD-DFT do not give a very good reproduction of the

aFor PtLF3Cl: S1 geometry, 2 imaginary frequencies, 817.82 i cm−1 and 104.09 i cm−1;
S2 geometry, 1 imaginary frequency, 7.80 i cm−1; S4 geometry, 1 imaginary frequency,
174.70 i cm−1.

bFor PtL3: S2 geometry, 1 imaginary frequency, 46 i cm−1.16; S5, 1 imaginary frequency,
41.44 i cm−1.
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Figure 2.20: Experimental (298 K, in DCM solution) and theoretical (taking into account
Franck-Condon factors) absorption spectra of benzene.

Energy / eV Wavelength / nm Experimental
wavelength / nm

PtL1Cl 2.07 600 497

PtL2Cl 1.00 1236 487

PtL3Cl 0.87 1429 494

PtL4Cl 0.68 1817 506

PtLF1Cl 0.85 1465 487

PtLF2Cl 2.19 565 467

PtLF3Cl 1.02 1217 478

PtLF4Cl 1.03 1199 494

Table 2.5: Calculated excitation energies for phosphorescent excitation from S0 to T1 at the
T1 excited state geometry for the PtLnCl and PtLFnCl series of compounds. Experimental
wavelengths correspond to the 0,0 band at 298 K in DCM.



Pt(II) and Pt(IV) complexes of ligands based on 1,3-dipyridylbenzene · 81

experimental trends observed. Unlike the values calculated for absorption,

not only are the trends incorrect, but the magnitude varies dramatically. The

calculation of triplet excitations can be fraught with difficulty for various

reasons (such as triplet instabilities in high overlap compounds like these, see

Chapter 1, Section 1.6.1) and there are a number of ways to calculate them

both by direct optimisation of the triplet geometry and by TD-DFT. This will

be the subject of some of the following chapters.

2.5 Pt(IV) complexes

2.5.1 Photophysical properties of Platinum(IV) complexes

The synthesis and photochemistry of terdentate Pt(II) complexes has been ex-

tensively studied in recent years and many brightly emissive examples discov-

ered. In contrast, little is known of the photophysical properties of cyclomet-

allated Pt(IV) complexes which are isoelectronic with their Ir(III) analogues.

The first cyclometallated Pt(IV) complexes made were non-emissive at room

temperature.193 However, some, incorporating multiple ring systems with two

cyclometallating ligands, showed room temperature emission194 since the lig-

and field is sufficiently strong to displace the d-d* states to a high enough en-

ergy that they no longer provide a deactivation pathway at room temperature.

Another example of this is given by Kunkely and Vogler in their discussion of

methyl Pt(IV) complexes.195 They show that [Pt(bpy)(CH3)3I] displays room

temperature emission while [Pt(bpy)2Cl2]
2+ does not. The anionic ligands

raise the metal d orbital, thus promoting MLCT and increasing kr.

The UV-vis absorption spectrum for PtL5Cl3 is shown in Figure 2.22 along-

side that of its parent compound, PtL5Cl for comparison. It can be seen that

upon oxidation to the Pt(IV) species the lowest energy absorption bands are

displaced to higher energy than the Pt(II) species. At room temperature, no

emission could be detected from PtL5Cl3. Although this compound is clearly

a weak emitter, the high quantum yield of emission from its decomposition

product (PtL5Cl) swamps the spectrum so that even if some is present it is

too weak to be seen by comparison.
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Figure 2.21: Normalised UV-vis absorption spectrum (purple) and emission spectrum (blue) of
[PtL5(ppy)Cl]+ in DCM solution at 298 K.

Coordination of a second, bidentate ligand was achieved, giving [PtL5(ppy)Cl]+

and [PtL5(bpy)Cl]2+. Despite the increase in ligand field strength and lig-

and rigidity of these compounds compared to PtL5Cl3, no room tempera-

ture emission was observed for [PtL5(bpy)Cl]2+ and only weak, blue, struc-

tured emission for [PtL5(ppy)Cl]+ (Figure 2.21). Synthesis of [PtL7(ppy)Cl]+

is desirable since the phosphorescent efficiency of both [PtL5(ppy)Cl]+ and

[PtL5(bpy)Cl]2+ are poor. It is hoped that the lower energy provided by de-

localisation of electrons over this ligand could match the lower energy of the

platinum in this higher oxidation state, thus optimising the emissive prop-

erties of the compound. The same is true of the CF3 substituted complex,

[PtL6(ppy)Cl]+, however in this case the lower energy would be achieved by

the electron withdrawing character of the CF3 groups.
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2.5.2 Stability of Platinum(IV) complexes

As previously mentioned, although 1H NMR analysis of PtL5Cl3 showed no

detectable traces of impurities, once the photophysical properties of the com-

pound were studied the emission spectrum was dominated by the Pt(II) com-

pound, PtL5Cl. The Pt(II) compound is vastly more emissive than the Pt(IV)

analogue so any traces remaining will dominate the emission spectrum. De-

spite extensive attempts at synthesis of a pure sample, the emission spectrum

continued to be dominated by PtL5Cl. For this reason, a series of studies

were undertaken to investigate if decomposition from Pt(IV) to Pt(II) could

be occurring during irradiation of the sample with light whilst taking the mea-

surements. Figure 2.22 shows the normalised absorption spectra of PtL5Cl and

of PtL5Cl3 before and after 5 h irradiation of light with a UV lamp (at a peak

wavelength of 254 nm). It shows that irradiation of the sample introduces a

new band to the spectrum at ∼365 nm which is lower energy than that of the

Pt(IV) compound, but not as low as Pt(II).

Time dependent studies of the decomposition of Pt(IV) complexes PtL5Cl3

and PtL5Br3 were undertaken under various conditions. The absorption spec-

trum was measured every 30 minutes during exposure of the sample to UV

light. Figure 2.23 follows the decomposition of PtL5Cl3 and PtL5Br3 in DCM.

The rate constant for decomposition of PtL5Cl3 in DCM was calculated as

2×104 s−1 (assuming 5 hours to be time =∞). Analysis of the compound by

mass spectrometry, after 6 days in a solution of acetonitrile, with intermittent

UV irradiation showed decomposition to the Pt(II) complex and coordination

of acetonitrile in the place of chloride. Decomposition of the bromo analogue

is more rapid than that of the chloro.

Figure 2.24 compares the decomposition of PtL5Cl3 in different solvents: chlo-

roform and acetonitrile (DCM is shown in Figure 2.23). The effect of ambient

light on the sample is shown in the Appendix, Figure 9.3 − it shows that

there is no measurable decomposition of the sample under these conditions.

Also shown in this figure is the spectrum of a sample kept in solution in the

dark for 45 h as a control for these experiments. This sample also shows no
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Figure 2.22: Normalised UV-vis absorption spectra of PtL5Cl, PtL5Cl3 and PtL5Cl3 after 5 h
UV irradiation, all compounds in DCM. The intensity of the lowest energy absorption band is
normalised for ease of comparison.

measurable decomposition.

The effect of heat on decomposition of PtL5Cl3 was also investigated (Fig-

ure 9.3). The sample was heated at reflux, in chloroform, with the exclusion

of light for 20 h but showed no signs of decomposition. The same is true of a

sample stored in the solid state in ambient light for three months.

2.5.3 DFT of platinum(IV) complexes

As illustrated by Figure 2.22, oxidation of PtL5Cl to PtL5Cl3 results in a

shift of the lowest energy absorption band to a higher energy. Calculation

and convolution of the first ten singlet excitations at the ground state geom-

etry for PtL5Cl and PtL5Cl3 in DCM (Figure 2.25), shows the same pattern.

In PtL3Cl, the S0 → S1 transition dominates the low energy region of the

spectrum (Figure 2.26) while for PtL5Cl3, it is the S0 → S8 transition that

domintates (Figure 2.27). In this transition, the density difference plots show
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Figure 2.23: UV-vis absorption spectra of PtL5Cl3 in DCM (top) and PtL5Br3 in DCM (bottom).
Measurements were taken every 30 minutes and the progress of the decomposition can be seen
as you move from purple plots to red.
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Figure 2.24: UV-vis absorption spectra of PtL5Cl3 in chloroform (top) and MeCN (bottom).
Measurements were taken every 30 minutes and the progress of the decomposition can be seen
as you move from purple plots to red.
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Figure 2.25: Convoluted absorption spectra of PtL5Cl, PtL5Cl3, PtL5Br and PtL5Br3 calculated
by TD-DFT in DCM. Individual excitations are shown by the vertical lines.

that the HOMO will be partially on the electron withdrawing chlorine atoms

which stabilise the HOMO, increasing the energy of the absorption band.

Consideration of the S0 → S1 plots alone (excitation wavelength = 419 nm)

would suggest the reverse but the oscillator strength is so low in this case (f

= 0.0006) that this transition is probably too weak to be observed. The same

pattern is seen for the bromo analogues.
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Figure 2.26: Density difference plots for excitation from the ground state to S1 for PtL5Cl,
PtL5Cl3, PtL5Br and PtL5Br3 calculated by TD-DFT in DCM.

Figure 2.27: Density difference plots for excitation from the ground state to the the excited
state shown for PtL5Cl, PtL5Cl3, PtL5Br and PtL5Br3 calculated by TD-DFT in DCM. In each
case the excitation shown is the one found to dominate the low end of the spectrum in Figure
2.25. Excitation energies calculated are shown in the Appendix, Table 9.11
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2.6 Concluding remarks

The synthesis and photophysical properties of some Pt(II) and Pt(IV) deriva-

tives of PtL5Cl have been discussed along with a computational study of

their behaviour. Though the tri-halogenated Pt(IV) complexes were unstable

in solution and under UV irradiation, those with a second, bidentate ligand

([PtL5(ppy)Cl]+ and [PtL5(bpy)Cl]2+) were shown to be stable. The low-

energy region of the absorption spectra could be reproduced with a reasonable

degree of accuracy by TD-DFT, reproducing both the general trend between

compounds in solution and the solvatochromic response exhibited by two ex-

ample complexes. The differing energies of absorption between the Pt(II) and

Pt(IV) complexes in light of such calculations was understood with the aid of

density difference plots, once the transition dominating the low energy region

of the spectrum had been identified. Analysis of different basis sets, points of

inclusion for a solvent model and functionals informed further the behaviour

of each of these mathematical parameters for DFT and TD-DFT calculations

in later chapters.





3

Synthesis and photophysical

properties of N∧C∧N-coordinated

Pt(II) complexes incorporating

thiolate coligands

3.1 Chapter outline

In this chapter we will discuss two sets of compounds: the first, PtL5SR and

PtL8SR (shown in Figure 3.1), was synthesised by a previous member of the

group.a Then, in the course of this project, electrochemical and solvatochromic

properties of those compounds were investigated, alongside TD-DFT studies,

in an attempt to better understand the photophysical processes taking place.

The second set of compounds (shown in Figure 3.2) was later synthesised and

studied in the same manner, to see if the trends observed in the first set were

carried through to the second, and what effect substituents on the N∧C∧N

ligand had on the properties observed.

This chapter will concentrate on experiment, considering the synthesis of this

class of compound and describing photophysical properties in comparison with

aSynthesis and preliminary photophysical study of PtL5SR and PtL8SR at both 298 K
(in DCM) and 77 K (in EPA glass) were performed by William Tarran.196

91
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Figure 3.1: Structural formulae of the ten thiolate complexes prepared by William Tarran.

those of PtL5Cl. This will highlight the dramatic change brought about by

substitution of a chloride ancillary ligand by a thiolate. The following chapter

describes the in-depth theoretical study of the complexes, considering the im-

portance of both solvent and functional when attempting to predict the type

of transition occurring in absorption or emission, the orbitals involved and the

energy associated with it.

3.2 Synthesis of complexes

The six new complexes, PtL6−9STol and PtL6−9SNit, were synthesised in the

same way as the previously reported PtL5/8SR complexes. Each was prepared
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Figure 3.2: Structural formulae of the six new thiolate complexes prepared in this work.

from the parent chloro compound (PtL6Cl, PtL7Cl and PtL9Cl) by addition of

the complex to a degassed solution of the potassium salt of the desired thiolate

(ArS−K+) in methanol, as illustrated in Scheme 3.1. The potassium thiolate

was prepared immediately before use and the reaction proceeded at room tem-

perature, precipitating the products as intensely red, orange or yellow solids.

The compounds were then washed successively with water, methanol and di-

ethyl ether to give the analytically pure product.

Although synthesis of PtL7SNit was attempted, it was not possible to ob-

tain a pure sample. There was some evidence of product formation by mass

spectrometry but NMR spectroscopy showed there to be a mixture of products

in every case:

(ASAP+) m/z = 681.1 [M + H]+;
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HRMS (AP+) m/z = 679.0836 calculated for [C30H19N3O2S
194Pt]+ 679.0825

Some attempts were made at purification by extensive washings but to no

avail. Due to the instability of the complexes in solution, other attempts

towards purification were abandoned.

Scheme 3.1: General scheme for the synthesis of complexes with a thiolate ancillary ligand.

Characterisation of new thiolate complexes

Evidence for the successful synthesis of these complexes was compiled pre-

dominantly through 1H and 13C NMR spectroscopy. Though very stable in the

solid state, the complexes were found to decompose relatively quickly in solu-

tion. It was found that decomposition proceeded much more rapidly in CDCl3

than in DMSO-d6. While it was not possible to obtain a proton spectrum in

CDCl3 before significant decomposition had occurred, analysis in DMSO-d6

even allowed for the time consuming 13C spectrum to be obtained. This is

illustrated in Figures 3.3 to 3.5. The 1H spectrum in DMSO-d6 (Figure 3.3)

shows the expected set of signals with no evidence of any impurities. Figure

3.4 shows that in CDCl3, after 20 minutes there is a mixture of products and

a consequently very complicated NMR spectrum. After 72 hours however, the

spectrum looks quite similar to that of the chloro-substituted product, PtL9Cl

(shown in Figure 3.6 for reference), suggesting that the thiolate ligand has dis-

sociated. The NMR spectra showed similar resonance peaks in each case to

the parent chloro complex with the addition of the expected peaks from the

thiolate ligand.
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Figure 3.3: 1H NMR spectrum of the aromatic region of PtL9STol in DMSO-d6, run at 700
MHz.
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Figure 3.4: 1H NMR spectrum of the aromatic region of PtL9STol in CDCl3, run at 400 MHz,
within 20 minutes of the sample being prepared.
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Figure 3.5: 1H NMR spectrum of the aromatic region of PtL9STol in CDCl3, run at 400 MHz,

after 72 hours (from the same sample as for Figure 3.4).
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Figure 3.6: 1H NMR spectrum of the aromatic region of PtL9Cl in CDCl3 run at 700 MHz.
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Solid state ASAP allowed for analysis of the compounds by mass spectrome-

try without decomposition complications that had previously been observed

using electrospray ionisation. It also had the added advantage of a lower sus-

ceptibility to fragmentation, enabling observation of molecular ion peaks with

the thiolate ancillary ligand still bound.

3.3 Electrochemistry of PtL5/8SR

The PtL5SR and PtL8SR series of compounds were studied electrochemically

to investigate their ground-state redox potentials by cyclic voltammetry. Mea-

surements were taken of each compound in a solution of DCM, in the presence

of Bu4NPF6 (0.1 M) as the supporting electrolyte. The values obtained can

be seen in Table 3.1, relative to the ferrocene | ferrocenium couple (Fc | Fc+)

under the same conditions.

In the region −0.4 to +0.3 V all of the complexes exhibit a well-defined, ir-

reversible oxidation wave. In each case, this oxidation wave is cathodically

shifted from the parent, chloro-substituted complex (values for which are also

shown in Table 3.1). The trend in oxidation potentials of the four aryl thiolate

complexes (R = OMe < Me < H < NO2) qualitatively reflects the electron-

donating character of the thiolate substituent (R = OMe > Me > H > NO2).

Of the thiolate series, the two methanethiolate complexes are the most read-

ily oxidised (Ep
ox ∼0.35 V). The PtL8SR series exhibits a small cathodic shift

from the PtL5SR series.

A reduction wave is also displayed by all of the aryl thiolate complexes at

∼ −1.45 V. At high scan rates the wave is partially reversible, with peak-to-

peak separation of 200 − 300 mV. At lower scan rates, < 100 mV s−1, the

return wave becomes poorly defined.

A number of studies, particularly by Eisenberg et al.197 198 199 200 and by Wein-

stein et al.,201 202 203 204 have investigated related complexes of the form Pt(N∧N)(S∧S),

(where N∧N represents a diimine ligand such as bipyridine and S∧S a chelating

dithiolate or two mono-dentate thiolate ligands). It is interesting to compare
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Ep
ox−E1/2

red Ep
ox /V(b) E1/2

red / V(b)

( / mV)

PtL5SMe 1.72 −0.36 −1.36

PtL5SPh 1.36 −0.03 −1.39 (240)

PtL5STol 1.26 −0.10 −1.36 (220)

PtL5SAni 1.35 −0.12 (c)

PtL5SNit 1.62 +0.26 −1.36

−1.73 (160)

PtL8SMe - −0.35 (c)

PtL8SPh 1.37 −0.07 −1.44 (290)

PtL8STol 1.27 −0.11 −1.38 (280)

PtL8SAni 1.21 −0.22 −1.43 (250)

PtL8SNit 1.58 +0.13 −1.45 (200)

−1.87 (90)

Table 3.1: (b) Using Bu4NPF6 (0.1 M) as the supporting electrolyte. Peak potentials are given
for the oxidations, all of which were irreversible, and for those reductions where the return wave
was poorly defined. For reductions showing return waves, the quoted values refer to E1/2 and
the peak-to-peak separation is given in parenthesis. Values refer to a scan rate of 100 mV s−1,
and are quoted relative to Fc+ | Fc. (c) The reduction wave was poorly defined for this complex.

these studies with the thiolate systems described above. They also show an ir-

reversible oxidation process and one or two reversible (or partially reversible)

reduction processes. Similar results have been reported for terpyridyl ana-

logues of the form Pt[(N∧N∧N)SR]+.205 In-depth studies using EPR, resonance

Raman spectroscopy and TD-DFT calculations indicate that the reduction is

based predominantly on the diimine ligand. The oxidation meanwhile involves

the metal and thiolate ligands instead.206
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3.4 Photophysical properties of the complexes

3.4.1 Absorption

Within a few minutes of addition of the chloro-complex to potassium thiolate

solution, a dramatic deepening in colour was observed from the pale, yellow,

chloro-complex to an intensely red, orange or yellow thiolate complex, indi-

cating a significant change in the absorptive properties of the compound. The

spectral origins of this can be observed by comparison of the energy of UV-vis

absorption bands of PtL5/8SR and of PtL5/8Cl (Figure 3.7 and Table 3.2): the

thiolate complexes absorb much further into the red region of the spectrum

than the chloro-complexes. Comparison of PtL8SPh to PtL8Cl shows that

while both display common intense bands in the far UV (λmax = 380 nm for

PtL8Cl and 373 nm for PtL8SPh), the longest wavelength spin-allowed band

in PtL8Cl is a shoulder (397 nm) while the thiolate, PtL8SPh, has a well de-

fined, intense, broad band centred at 465 nm, with no equivalent transition in

the PtL8Cl spectrum.

PtL5SR and PtL8SR

Comparison of the absorption spectra within the PtL5SR series reveals a

marked difference between the nitro substituted compound, PtL5SNit, and

the other four which are all very similar to one another (Figure 3.8). In the

case of the nitro complex, the low energy region of the spectrum shows a very

intense band at 415 nm (ε = 17100 M−1 cm−1) which probably incorporates

the bands of the type displayed in this region by the other four complexes,

suggesting that there must be one extra, very intense transition in PtL5SNit.

Other complexes incorporating 4-nitrophenylthiolate with other metal ions

have exhibited similarly intense bands in the same region of the absorption

spectrum.207 The same pattern is seen for the PtL8SR series, the spectra of

which are better defined in the low-energy region and slightly red-shifted com-

pared to their PtL5SR analogues. The aryl-substituted thiolates, excluding

the nitro, increase in λmax in the order:

phenyl < tolyl < anisyl
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Figure 3.7: Absorption spectra of PtL5Cl and PtL5SPh in DCM at 298 K.

PtL6SR and PtL7STol

Figure 3.9 shows the absorption spectra of PtL6STol and PtL6Cl with max-

ima and extinction coefficients shown in Table 3.3. PtL6STol absorbs further

into the red region of the spectrum than PtL5SR or PtL8SR, tailing off at

around 600 nm. The same is true of PtL7STol which shows a very similar,

though slightly more structured, absorption spectrum (Figure 3.10).

Figure 3.9 shows that while the absorption spectrum of PtL6SNit is red-shifted

from PtL6Cl, its absorption does not extend nearly so far into the red region

of the spectrum as PtL6STol. The strongly absorbing band at 414 nm is es-

sentially the same position as that of PtL5SNit at 415 nm although without

the shoulder displayed by the latter.
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Figure 3.8: Absorption spectra of PtL5SR (top) and PtL8SR (bottom) in DCM at 298 K.
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Figure 3.9: Absorption spectra of PtL6Cl, PtL6STol and PtL6SNit in DCM at 298 K. The
spectra have been normalised to the same absorbance at the high energy band ∼240 nm for
ease of comparison.
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Figure 3.10: Absorption spectrum of PtL7STol in DCM at 298 K.
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Absorption λmax /nm (a)

(ε /M−1 cm−1)

PtL5Cl 332 (6510), 380 (8690), 401 (7010),
454 (270), 485 (240)

PtL5SMe 332 (7490), 365 (5660), 377 (5980), 465sh (2210)

PtL5SPh 363 (6420), 376 (6510), 452 sh (2040)

PtL5STol 363 (5700), 377 (5990), 460 sh (1820)

PtL5SAni 365 (7490), 377 (7580), 463 sh (2450)

PtL5SNit 305 (15500), 335 (8950), 376 sh (11000),
415 (17100), 455 sh (13600)

PtL8Cl 329 (7560), 380 (9990), 397 (7880),
446 (180), 478 (200)

PtL8SMe 307 (19800), 330 sh (11600), 369 (6690), 468 (3250)

PtL8SPh 330 sh (12200), 360 (7350), 373 (7780), 465 (2890)

PtL8STol 332 sh (11100), 362 (7380), 375 (7820), 469 (2720)

PtL8SAni 332 sh (11600), 362 (7490), 376 (7660), 472 (3150)

PtL8SNit 305 (17000), 333 sh (8030), 378 (11500),
415 (17800), 455 sh (13800)

Table 3.2: UV-vis absorption data for the PtL5SR and PtL8SR series of compounds and their
chloro-analogues (for reference) at 298 K in DCM. (a) Absorption maxima > 300 nm.

PtL9SR

The absorption spectra of PtL9Cl and its thiolate derivatives PtL9STol

and PtL9SNit are shown in Figure 3.11. The lowest energy absorption band

of PtL9SNit is strongly absorbing with a λmax of 423 nm and a shoulder at 470

nm - in essence it is very similar to the absorption spectra of the other related

nitro compounds. The absorption spectrum of the tolyl-substituted analogue

is much more blue-shifted than PtL5/8STol; it shows similar wavelengths of ab-

sorption as PtL9Cl, though the spectrum is much less structured. Complexes

of L9 show the largest difference between λmax of the lowest energy band for

their nitro and tolyl thiolate complexes of any of the complexes discussed.
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Absorption λmax /nm (a)

(ε /M−1 cm−1)

PtL6STol 237 (71200), 270 (65900), 295 sh (45800),
319 sh (23400), 349 (11600), 386 (11700),

461 (3660), 530 sh (2380)

PtL6SNit 236 (41800), 266 (35700), 283 (26500),
296 (25500), 316 sh (17100), 352 (10900),

414 (22600), 497 sh (3180)

PtL7STol 234 (110000), 284 (105000), 341 (30400),
362 sh (25600), 410 (20400), 450 sh (6230),

502 sh (6390)

PtL9STol 259 sh (37300), 270 sh (32900), 372 sh (4670)

PtL9SNit 252 (20900), 290 sh (7590), 339 (6750),
425 (13800), 466 sh 11600

Table 3.3: UV-vis absorption data for PtL6SR, PtL7STol and PtL9SR at 298 K in DCM. (a)
Absorption maxima > 230 nm.

3.4.2 Luminescence

Emission of PtL5SR and PtL8SR

The emission properties of the PtL5SR and PtL8SR series, measured by

William Tarran,196 are summarised in Table 3.4 and the luminescence spectra

at 298 K in DCM are shown in Figure 3.12. All 12 compounds are luminescent

in solution, at room temperature, upon excitation with high energy light.

Exchange of the chloride ancillary for a thiolate (PtL5/8Cl to PtL5/8SR) alters

the nature of the emission spectrum from highly structured in the green region

of the spectrum to broad and red-shifted to the deep red part of the spectrum.

The λmax of emission decreases between the complexes in the order:

PtL5Cl > PtL5SPh > PtL5SMe > PtL5STol > PtL5SAni > PtL5SNit

The same pattern is shown for the PtL8R series with one exception: PtL8SMe

(λmax = 642 nm) and PtL8SPh (λmax = 643 nm) swap order, but the differ-
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Figure 3.11: Absorption spectra of PtL9Cl, PtL9STol and PtL9SNit in DCM at 298 K. The
spectra have been normalised to the same absorbance at the high energy band ∼255 nm for
ease of comparison.

ence in magnitude between the two is negligible. Comparison of PtL5Cl with

PtL5SPh shows that, as well as the loss of vibrational structure and red shift

in the emission spectrum of the thiolate complex, the quantum yield is signif-

icantly reduced (from 0.60 to 0.17) and the lifetime decreased by an order of

magnitude (7.2 µs to 0.77 µs). Though the thiolate quantum yield is signif-

icantly reduced from PtL8Cl, 0.17 is still exceptionally high for a compound

emitting in such a deeply red region of the spectrum (634 nm). The energy

gap law states that as the excited state energy decreases (or wavelength of

emission increases), the rate of non-radiative decay of a complex will increase

exponentially. The same pattern is shown for the PtL8SR series. With the

exception of the two nitro-substituted compounds, the thiolate complexes of

L8 are red-shifted compared to the corresponding L5 analogues. The nitro-

substituted complexes, PtL5SNit and PtL8SNit, have much longer lifetimes

than the other aryl thiolates:
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PtL5/8SNit � PtL5/8SPh > PtL5/8STol > PtL5/8SAni

The luminescence quantum yields follow the same order as the lifetimes, with

the exception of the nitro-compounds, which have small quantum yields de-

spite their long lifetimes. The radiative rate constants of the nitro complexes

are two or three orders of magnitude smaller than the other thiolate com-

plexes. Table 3.4 also shows that the emission of all ten thiolate complexes

is blue shifted at 77 K compared to room temperature measurements, and

that the largest shift is displayed for the PtL5/8SNit complexes. Finally, it

can be seen that the emission spectrum of PtL5SMe is essentially the same as

that of PtL5SPh (the same is true of the PtL8SR series) but that the methyl

substituted compound exhibits much weaker emission, with a lower quantum

yield, and a shorter lifetime.

Emission of PtL6SR, PtL7STol and PtL9SR

All five of the new complexes were luminescent at 77 K in EPA glass and

all except PtL6STol emitted in solution at 298 K (Table 3.5). Selected exci-

tation spectra are shown in the Appendix (Figure 9.4). As with the PtL5SR

and PtL8SR compounds, low temperature emission was blue-shifted from that

at room temperature. PtL9STol appeared to decompose particularly quickly

in solution so it was not possible to obtain a complete set of measurements

for this compound and the quantum yield shown was measured in aerated

solution to prevent decomposition during degassing.

Figure 3.13 shows that upon substitution of the chloride ligand by STol,

the emission changed from highly structured to broad and red-shifted, as for

PtL5SR and PtL8SR. The quantum yields were also reduced by more than

an order of magnitude, so much so in the case of PtL6STol that no room

temperature emission was observed. The emission wavelength of these three

compounds increases in the order:

PtL9STol < PtL7STol < PtL6STol

Both PtL6SNit and PtL9SNit are red-shifted from their chloro-analogues, but

while PtL9SNit is red-shifted from PtL9STol, PtL6SNit is blue-shifted from
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Figure 3.12: Normalised emission spectra of PtL5SR (top), and PtL8SR (bottom) in DCM at
298 K.
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Figure 3.13: Normalised emission spectra of PtL6SR, PtL7STol and PtL9SNit in EPA glass at
77 K. PtL9STol is in aerated DCM at 298 K.

PtL6STol. PtL6SNit is the only complex in either series whose low temperature

lifetime (850 ns in EPA glass) is shorter than at 298 K (9700 ns in a degassed

solution of DCM).

3.4.3 Solvatochromism of PtL5/8SPh and PtL5/8SNit

The effect of solvent on the absorption and emission properties of PtL8SPh

(Figures 3.14 and 3.15) and PtL8SNit (Figures 3.16 and 3.17) was investi-

gated in the course of this project (Table 3.6). PtL8SPh displays negative

solvatochromism in the low energy absorption band (Figure 3.14): the λmax

shifts from 494 nm in toluene, to 453 nm in acetonitrile. In contrast, the

intensely absorbing, low energy band at ∼415 nm of PtL8SNit, shows little

evidence of solvatochromism (Figure 3.16).
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Figure 3.14: Absorption spectra PtL8SPh in four solvents of varying polarity at 298 K. The
spectra have been normalised to the same absorbance at longest-wavelength maximum to aid
comparison.
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Figure 3.15: Normalised emission spectra of PtL8SPh in various solvents at 298 K.
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Figure 3.16: Absorption spectra PtL8SNit in four solvents of varying polarity at 298 K. The
spectra have been normalised to the same absorbance at longest-wavelength maximum to aid
comparison.
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Figure 3.17: Normalised emission spectra of PtL8SNit in various solvents at 298 K.
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Solvent Emission Φlum τ / ns kr / Σknr /

λmax / nm × 102 degassed 103 s−1 104 s−1

(a) (a)

PtL8SPh Toluene 614 25 1232 21 61

THF 624 1.6 927 170 91

Acetonitrile 649 7.2 250 290 370

PtL8SNit Toluene 550 29 6285 46 11

THF 587 2.7 7090 3.8 14

Acetonitrile 646 0.36 3080 1.2 32

Table 3.6: Luminescence data for PtL8SPh and PtL8SNit in various solvents at 298 K (solvents
shown in order of increasing polarity).

(a) kr and Σknr are the radiative and non-radiative rate constants estimated from the
quantum yield and lifetime.

3.5 TD-DFT studies and discussion of electronic properties of the

complexes

In this section a summary of the final results from Chapter 4 will be given

to enable discussion of the experimental results alongside analysis by TD-

DFT. A more detailed discussion of the pros and cons of various methods and

modelling of different parameters will then be given in the following chapter.

3.5.1 Emission

PtL5SR and PtL8SR

The density difference plots for the S0 → T1 excitation at the T1 geometry

of PtL5SR and PtL8SR (calculated in DCM with PBE0) are shown in Figure

3.18. In general they show that there is very little difference between the

plots for PtL5SR and PtL8SR: the ester group of PtL8SR has almost no role

in the excitation at all. PtL5/8SPh, PtL5/8STol, PtL5/8SAni and to a lesser

extent PtL5/8SMe all show the same type of excitation: charge transfer from
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the thiolate ligand to the platinum and N∧C∧N ligand. In contrast, the den-

sity difference plots of PtL5/8SNit show a high overlap excitation with both

electron depletion and accretion plots centred on the thiolate ligand.

A combined study of the electrochemical and photophysical properties of these

complexes alongside TD-DFT studies yields insight into the nature of the ex-

citations taking place. The density difference plots of PtL5/8SPh, PtL5/8STol,

PtL5/8SAni and PtL5/8SMe show that the excited state of these complexes

is dPt/πRS → π∗NCN in nature. This charge-transfer excited state explains

many of the photophysical properties of these compounds. First, the red-shift

in λmax of emission for PtL8SR compared to PtL5SR is due to the electron-

withdrawing ester group in the former, stabilising the LUMO (which is located

on the N∧C∧N ligand and Pt metal) and reducing the energy of emission.

The stabilising effect of this group is small since it is located on the central

phenyl ring of the N∧C∧N ligand which, as shown in the density difference

plots, has a low contribution to the LUMO. The increase in energy of emis-

sion upon cooling of these complexes to 77 K is consistent with a low overlap,

charge-transfer excitation since reorganisation of the solvent to stabilise the

excited state is not possible in frozen glass, unlike room temperature measure-

ments. As previously mentioned, with increasing electron-donating ability of

the thiolate ligand, there is a decrease in the energy of emission; the more

electron-donating substituents favouring a charge transfer excitation. Con-

sideration of the electrochemical measurements alongside the photophysical

ones shows a linear correlation of the first three aryl thiolates (SPh, STol and

SAni) between their emission energies and [Eox−Ered]. Interestingly the nitro-

substituted complex does not follow this trend (Figure 3.19). A line of best

fit through these first three compounds gives a gradient of 7800 cm−1 /V.

Analysis of the density difference plots for PtL5/8SNit shows a very different

excitation character: the excited state is localised on the thiolate ligand with

almost no involvement of the metal or N∧C∧N ligand. The long lifetimes and

low rates of radiative decay of these complexes, despite high orbital overlap,

seem therefore to be due to a low contribution of the metal in the excited state

of the ILCT. This difference in character explains the discrepancies between
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Figure 3.18: Density difference plots of the S0 → T1 excitation at the T1 geometry for PtL5SR
(top) and PtL8SR (bottom), calculated with PBE0, with a PCM for DCM, basis sets: LANL2DZ
for platinum and cc-pVDZ for all other atoms.
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Figure 3.19: Energy of absorption(top) and emission(bottom) versus the difference between
the oxidation and reduction potentials of PtL8SR. The blue dotted line through the absorption
data points represents the linear best fit for all four complexes, gradient = 2100 cm−1/V. The
red dashed line for the emission data represents the best fit for the phenyl, tolyl and anisyl
complexes, but excluding the nitro analogue; gradient = 7800 cm−1/V.

this compound and the others in the series in Figure 3.19. A plot of {ln knr}
against the emission energy of the thiolate complexes (estimated from their

emission maxima) is shown in Figure 3.20 for PtL5/8SR. Omission of the two

nitro-substituted complexes from the line of best fit shows a convincing linear

relationship between the other eight complexes. PtL5SNit and PtL8SNit have

lower knr than expected for their emission energies were a charge-transfer ex-

cited state to be adopted, providing further evidence for a difference in nature

of the excitation for these two compared to the other compounds in the series.

PtL6SR, PtL7STol and PtL9SR

The equivalent density difference plots for PtL6/9STol and PtL6/9SNit are

shown in Figure 3.21. For the nitro-substituted complexes they show the same

transition as PtL5/8SNit: a high overlap excitation based on the thiolate lig-

and. The tolyl analogues show a charge-transfer excitation from the thiolate
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Figure 3.20: A plot to show {ln knr} versus the emission energy of the PtL5/8SR complexes.
PtL5SR are shown by the red circles and PtL8SR by the blue squares. The line shown is the
least-squares linear fit through all data points except for PtL5/8SNit (which are shown in the
bottom left corner of the graph).

ligand to the platinum and N∧C∧N ligand. PtL9STol displays less delocalisa-

tion in the electron accretion plot than the other compounds since it has no

aromatic rings, while PtL7STol shows extended electron delocalisation, incor-

porating the quinoline groups. The electron augmentation plot of PtL6STol

incorporates the CF3 groups, the electron-withdrawing nature of which should

therefore affect the energy of the “LUMO”.

Since the LUMO for the low-overlap, tolyl-substituted compounds is centred

on the N∧C∧N ligand and Pt, the different ligands about platinum have a

significant effect on the emission observed. The CF3 group and delocalised

electrons of the quinoline ligand (PtL6STol and PtL7STol respectively) sta-

bilise the LUMO, giving a red shift in emission. In contrast, the limited

delocalisation over the imine ligand, combined with the electron-donating cy-

clohexyl groups of PtL9STol, destabilises the LUMO giving a blue shift (Fig-

ure 3.13). The predicted red-shift in PtL6STol to such a low energy is one

possible explanation for lack of room temperature emission: the higher rate
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Figure 3.21: Density difference plots of the S0 → T1 excitation at the T1 geometry for
PtL6/9SNit, PtL6/9STol and PtL7STol in DCM.

of non-radiative decay (predicted by the energy gap law) could be inhibiting

emission. Orbitals involved in emission of the two nitro-substituted complexes,

PtL6SNit and PtL9SNit, are centred on the thiolate ligand so are less affected

by the N∧C∧N ligand and its substituents. Like PtL5/8SNit, PtL6SNit and

PtL9SNit have a reduced rate of radiative decay compared to their parent

chloro-compounds since there is less metal character, making the transition

less allowed. The shorter lifetime of PtL6SNit at low temperature, compared

to room temperature, could be due to a change in the emissive state. The elec-

tron withdrawing CF3 groups reduce the energy of the N∧C∧N ligand, making

it closer to that of the nitro-thiolate ligand. Emission from PtL6SNit at 77 K

could therefore be more like the low-overlap excitation seen for PtL6SNit.
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3.5.2 Absorption

The new band introduced in the low energy region of the thiolate-complex

absorption spectrum can be rationalised as a new low-energy charge-transfer

state, also reported in related diimine complexes.206 The electron rich sulfur

is expected to give a HOMO localised over the thiolate and the metal atom.

This is in contrast to the chloro ancillary complex where the most electron

rich component is the metal atom and the cyclometallated carbon of the lig-

and. In both cases the LUMO should remain largely on the pyridyl rings of

the N∧C∧N ligand. TD-DFT calculations on PtL8SPh showed this to be the

case; S0 → S1 and S0 → S2 excitations dominate the low energy region of

the simulated absorption spectrum, their density difference plots are shown in

Figure 3.22. The low energy region of the charge-transfer complex absorption

spectra is dominated by this dPt/πRS → π∗NCN, non-centrosymmetric move-

ment of electron density, giving rise to the solvatochromic response observed.

The strongly absorbing bands present in the nitro-substituted complexes ap-

pear to be due to the addition of an ILCT excitation (Figure 3.22), explain-

ing why no solvatotchromic response was seen for the band at 415 nm for

PtL8SNit. The nitro-substituted complexes also showed weaker excitations

for the charge transfer-type excitation, dPt/πRS → π∗NCN which is the origin of

the lower energy bands which did show some change in energy with polarity

of solvent. The effect was not so great as for PtL8SPh however since there

was some ILCT character involved in the excitation.

PtL6SR and PtL7STol

Addition of an electron-withdrawing CF3 group to the 4-position of each

pyridine ring of PtL5Cl gives PtL6Cl and a red shift in the absorption spec-

trum.208 This is due to the electron withdrawing nature of the CF3 groups

which stabilise the pyridyl ring-based LUMO as discussed in Chapter 4. Sub-

stitution of the Cl− for a thiolate group, producing a complex where exci-

tations are charge transfer in nature should then decrease the energy of the

LUMO further, without affecting the position of the HOMO, shifting the ab-
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Figure 3.22: Density difference plots of the S0 → Sn excitations at the S0 geometry for PtL8STol
and PtL8SNit in DCM, calculated with CAM-B3LYP, in DCM, with cc-pVDZ and LANL2DZ
for Pt.

sorption even further to the red. This is indeed the case for PtL6STol, the

excitations are similar in nature to those of PtL8STol (density difference plots

for PtL6STol are shown in Chapter 4). The absorption spectrum of PtL7STol

is similar to that of PtL6STol. In this case, the LUMO is stabilised by delo-

calisation of electrons over extended π-conjugation. In contrast, for PtL6SNit,

the electron density remains on the nitro ligand upon excitation, therefore the

absorption spectrum is similar to that of PtL5SNit and PtL8SNit, without the

increase in red shift shown for PtL6STol, since the CF3 groups are uninvolved

in the excitation. Density difference plots of S0→ Sn excitations for these

complexes are shown in Chapter 4.

The energies of the absorption bands of PtL9STol are perhaps counterin-

tuitive since, though a change is shown in the absorption spectrum upon
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replacement of the chloride by the STol group, the absorption spectrum is

blue-shifted rather than red. For the chloro complex, PtL9Cl, the N∧C∧N

ligand is involved in both the HOMO and LUMO while for PtL9STol it only

contributes to the LUMO. As for the emission, the electron-donating cyclo-

hexyl groups, combined with the reduced electron-delocalisation over the imine

ligand, destabilise the LUMO, compared to the other thiolate complexes, in-

creasing the energy gap and giving the observed blue shift. Comparison of

all five STol-substituted complexes shows an increase in wavelength of the

lowest-energy absorption band with increasing electron-withdrawing nature

of the substituent group:

PtL9STol < PtL5STol < PtL8STol < PtL6/7STol

3.6 Concluding remarks

We have seen that substitution of the chloro ligand of the well-known Pt(dpyb)Cl-

type complexes has a profound effect on the electronic properties of the molecule.

With the exception of PtL9R, a red-shift in both the absorption and emission

spectra is observed upon coordination of a mono-dentate thiolate ligand. The

luminescence quantum yields were reduced by such a substitution but were

still high for platinum(II) complexes emitting in this region of the spectrum.

In general two types of excited states were observed and assigned based on

their properties and accompanying TD-DFT studies: ILCT when an electron-

withdrawing, nitro-substituted thiolate ligand was coordinated and dPt/πRS →
π∗NCN for phenyl, tolyl, anisol and methyl-substituted thiolates.

Comparison of PtL5SR, PtL6SR, PtL7STol, PtL8SR and PtL9SR series al-

lowed study of the role of the N∧C∧N ligand in the charge-transfer type exci-

tations. Substitution of functional groups on the pyridine rings of this ligand

allowed control over the energy of the LUMO while having little effect on the

HOMO.
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A computational study of

N∧C∧N-coordinated Pt(II)

complexes incorporating thiolate

coligands

4.1 Chapter outline

Chapter 3 described the synthesis and photophysical properties of various

N∧C∧N-coordinated platinum(II) complexes incorporating a monodentate thi-

olate ligand. A short summary of TD-DFT calculations performed on these

molecules was presented in order to understand the excitations taking place.

This chapter will now expound upon those results, showing different methods

for the calculations presented and analysing their success at predicting the

observed characteristics.

Given what we have seen experimentally about the photophysical behaviour

of these compounds, there are three main trends we would hope to be re-

producible using DFT: the difference in the type of transition of the nitro-

substituted complexes, the trend in energy of emission between the compounds

and finally their emission energies in different solvents. Each of these will be

discussed in turn. The ten compounds of the general formulae PtL5SR and

123
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PtL8SR will be discussed first and in detail, with complexes PtL6SR and

PtL9SR considered at the end of the chapter, as test cases, to see if the prin-

ciples determined hold true for a differing set of compounds.

Unless otherwise stated, DFT and TD-DFT calculations presented in this

chapter were performed in vacuum, using PBE0. Where solvent is indicated,

a PCM for the specified solvent was applied. The LANL2DZ basis set was

used for platinum and cc-pVDZ for all other atoms. Ground state and triplet

excited state geometries were optimised by direct minimisation of the SCF

energy and checked to be a true minimum by frequency calculations at the

same level of theory as the geometry optimisation. Convolution of absorption

spectra was achieved using a 0.6 eV full-width-at-half-maximum Gaussian.

4.2 Predicting the correct transition

Chapter 3 discussed how the nitro-substituted complexes (PtL5SNit and PtL8SNit)

showed phosphorescent emission of different character from the other com-

pounds in the series: PtL5/8SNit excitations were centred on the thiolate

ligand, rather than the charge transfer transitions seen for the other com-

plexes. Naturally it is expected that this would be reflected in the orbital

plots generated from DFT for the transition from the T1 excited state to the

S0 ground state. We would expect to see from these density difference plots

an excitation similar to the schematic example of high overlap shown in Fig-

ure 4.1 for PtL5/8SNit and the low overlap, charge transfer excitation for the

other PtL5/8SR complexes. We will now consider the aptitude of different

theoretical models for predicting the nature of these transitions.

4.2.1 Presentation of orbital plots

It is well known that, contrary to the rather simplistic explanation often used

to teach the concept of emission, emission of light from T1 to S0 does not

always involve purely the HOMO and LUMO orbitals. Instead, any given

transition is usually made up of many small contributions from various other

orbitals. In order for simplified visualisation of the processes occurring, the

orbitals with the highest contribution to the relevant transition are usually
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Figure 4.1: A cartoon schematic to show the types of excitations expected for the different
thiolate complexes. The oval represents the thiolate ligand and the rectangle the platinum atom
and N∧C∧N ligand. Orange and purple represent zones of electron depletion and augmentation
respectively upon excitation of the molecule.

shown along with their respective contributions. The user must then attempt

to manually overlay each of these in their head to understand the transition

that is taking place. Figure 4.2 and Table 4.1 show the orbital plots and

their relative contributions for T1 to S0 emission for PtL5SPh. This can be

compared to the density difference plot for the same calculation, also shown

in Figure 4.2 (in the box). It can be seen that in this example case, consid-

eration of the orbital plots alone could lead to the incorrect transition being

assigned; in contrast the density difference plot clearly shows electron den-

sity rearranging, but remaining upon the thiolate ligand unambiguously. For

this reason we will henceforth use density difference plots of the lowest energy

triplet transition for the remainder of this discussion.

4.2.2 Predicting the correct orbital plots for the nitro compound

Initial, simplistic calculations on the PtL5R and PtL8R series of compounds

(PBE0, cc-pVDZ and LANL2DZ) do not show the pattern in transitions that

we would expect from the experimentally obtained data. While the four charge

transfer-type compounds do indeed show movement of the electron from the

thiolate ligand to the platinum and N∧C∧N ligand, this type of transition is
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Figure 4.2: Orbital plots at the T1 geometry for PtL5SPh; PBE0 geometry, CAM-B3LYP TD-
DFT.

Transition Contribution

HOMO−4 → LUMO+1 0.140

HOMO−2 → LUMO −0.159

HOMO−1 → LUMO −0.137

HOMO → LUMO 0.602

HOMO → LUMO+1 −0.177

Table 4.1: Orbital contributions for emission from T1 to S0 for PtL5SPh; PBE0 geometry,
CAM-B3LYP TD-DFT.
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also predicted for the nitro-substituted complex. For PtL5SNit and PtL8SNit

we would expect to see the electron density remaining on the thiolate ligand

in the excited state - this ligand-centred transition would explain the lower

energy of emission, the longer life times and the trends in solvatochromism.

This pattern is shown in Figure 4.3 for both series, PtL5SR and PtL5SR.

A series of calculations were next carried out to investigate the effect of a

PCM solvent model on the density difference plots observed. The results of

this are shown in Figures 4.4 and 4.5 which show that such an inclusion dra-

matically affects the type of transition observed, as does the point at which

it is included in the calculation. For the “correct” density difference plots to

be observed, it is essential that the solvent of choice is included for both the

geometry optimisation and the time-dependent studies. Surprisingly this is

true for both the polar solvent, DCM and the non-polar hexane. It is therefore

not merely the case that one state is stabilised by the presence of a particu-

lar solvent, rather that the inclusion of any solvent at all affects the results

observed. We can see this effect demonstrated in a more quantitative manner

by looking at the energies of the lowest triplet excitation in each case. For

both solvents, performing the geometry optimisation in the solvent with the

subsequent TD-DFT calculation in vacuum achieves a value much closer to

the value where both calculations are in solvent than when optimisation is in

vacuum and TD-DFT in solvent. In other words, looking at DCM in Figure

4.4, result (d) is more similar to (e) than to (c). Perhaps this is unsurprising

since experimentally the polarity of the solvent can cause a different excited

state geometry to be stabilised, giving a solvatochromic response. We would

therefore expect the presence of solvent to have a greater effect on the ge-

ometry and thus the emission observed than if applied at a fixed geometry.

Unsurprisingly, the polar solvent, DCM, has a much greater effect on the ex-

citation energies calculated than the non-polar solvent hexane.

For obvious reasons it is important to see that, with the same solvent treat-

ment, the other complexes retain their predicted charge transfer character.

This is indeed the case, as illustrated with the examples of PtL8SPh and

PtL5SPh, shown in Figures 4.6 and 4.7 respectively.
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Figure 4.3: Density difference plots of the S0 → T1 excitation at the T1 geometry for PtL5SR
(top) and PtL8SR (bottom) in vacuum.
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Figure 4.4: Density difference plots for PtL8SNit. Energies shown correspond to the S0 →
T1 excitation. Plots showing where the electron density is moving from are only shown for
one example since they are all essentially the same (they can be seen in the Appendix, Figure
9.5). (a) and (b) show “HOMO” and “LUMO” equivalents respectively, for both geometry and
TD-DFT in vacuum, (c) geometry calculated in vacuum, TD-DFT in DCM, (d) geometry in
DCM, TD-DFT in vacuum, (e) geometry and TD-DFT both in DCM, (f) geometry calculated
in vacuum, TD-DFT in hexane, (g) geometry in hexane, TD-DFT in vacuum, (h) geometry and
TD-DFT both in hexane.
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Figure 4.5: Density difference plots for PtL5SNit. Electron depletion plots in the Appendix,
Figure 9.6. See Figure 4.4 for details.
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Figure 4.6: Density difference plots for PtL8SPh. Electron depletion plots in the Appendix,
Figure 9.7. See Figure 4.4 for details.
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Figure 4.7: Density difference plots for PtL5SPh. Electron depletion plots in the Appendix,
Figure 9.8). See Figure 4.4 for details.
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4.3 Predicting trends between complexes in absorption

In an attempt to reproduce the trends in absorption energy observed experi-

mentally between PtL5SR and PtL8SR, the first ten singlet excitations at the

ground state geometry (in DCM using the PCM) were computed using both

PBE0 and CAM-B3LYP. The latter was used since it has been shown that

charge-transfer transitions with low orbital overlap, which can be quantified

by Λ,174 are not usually well described by hybrid functionals such as PBE0,

but are better represented by the use of long range corrected functionals such

as CAM-B3LYP.209;210

Figures 4.8 to 4.11 show that in each case the strongly absorbing band seen in

each nitro complex (PtL5SNit and PtL8SNit) is clearly displayed. In keeping

with experimentally obtained data, λmax for this band is higher in energy than

the lowest energy band of each of the charge-transfer type compounds. For

both PBE0 and CAM-B3LYP the trend in wavelength of the lowest energy

absorption band is the same as observed experimentally (Chapter 3, Table

3.2). While PBE0 predicts excitation energies which are too low in energy in

comparison to experimental data, CAM-B3LYP predicts energies which are

too high for the four charge-transfer type compounds. However, the difference

in energy between the excitations is marginally better for CAM-B3LYP than

PBE0.

4.4 Predicting trends between complexes in emission

We will now consider the energy of phosphorescent emission of these com-

plexes to see if DFT can be used to predict the trends exhibited. It is worth

noting that direct comparison of experimental data with theory is not possi-

ble. Calculations such as these are undertaken with many assumptions: the

calculations simulate at 0 K, in the gas phase and often in a vacuum (or a

PCM solvent model, considering only general polarity and constrictive nature

in space of addition of solvent, not interactions between the compound of in-

terest and individual solvent molecules). The theory also assumes that there

is no interaction of the compound with other species (either of the same kind,
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Figure 4.8: Convoluted absorption spectra of PtL8SR in DCM, calculated by TD-DFT. Excita-
tions calculated are shown in the Appendix in Table 9.12.
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Figure 4.9: Convoluted absorption spectra of PtL5SR in DCM, calculated by TD-DFT. Excita-
tions calculated are shown in the Appendix in Table 9.13.
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Figure 4.10: Convoluted absorption spectra of PtL8SR in DCM, calculated by TD-DFT with
CAM-B3LYP. Excitations calculated are shown in the Appendix in Table 9.14.
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Figure 4.11: Convoluted absorption spectra of PtL5SR in DCM, calculated by TD-DFT with
CAM-B3LYP. Excitations calculated are shown in the Appendix in Table 9.15.
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or, for example, with oxygen) which has been shown to have a profound effect

on the emissive properties observed.19;211 Experimentally, the probability of

interactions with other compounds present can be significantly reduced by us-

ing high dilution (separating individual molecules of the studied compound).

For these reasons we will consider only the trends observed within the series,

rather than trying to compare individual calculated energies with their exper-

imental counterparts.

Table 3.4 (Chapter 3) illustrates well the difficulty of predicting trends in

emission energy. It can be seen that three pairs of complexes (PtL5SAni and

PtL8STol, PtL5STol and PtL8SMe, and PtL5SMe and PtL5SPh) swap order

in their emission energy between 298 K (in DCM) and 77 K (EPA glass). All

values also increase to a higher energy upon cooling; the difference is between

0.3 and 0.4 eV. We know that both solvent (see Section 4.5) and tempera-

ture can have a large effect on the energy of emission that is observed. It is

therefore difficult to know which results to compare with (since calculations

are simulated at 0 K), or what to attempt to account for in the calculation

in terms of solvent, since the lowest temperature measurements are necessar-

ily done in EPA glass which cannot be easily modelled in calculations. The

difference in the trends between these two sets of data are shown with the

violet and black lines in Figure 4.12 for 0 K and 298 K respectively. At 0

K, the excitations should be essentially free of solvent effects since the low

temperature prevents reorganisation of solvent molecules which are therefore

unable to stabilise the excited state.

For these reasons, only general trends between the energies of emission of

the thiolate compounds will be discussed. Tables 4.2 and 4.3 show that the

prediction of even these trends is fraught with difficulty, certain compounds

when calculated never fit the trend in energy shown experimentally. Since the

character of the excitation is different for PtL5/8SNit and PtL5/8SMe do not

contain an aromatic ring, it is more difficult to compare calculations of these

four with the charge-transfer, aromatic thiolate complexes. These compounds

will therefore only be considered in their pairs and not with the rest of the

set.
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Figure 4.12: A graph to show the trend in excitation energies calculated for the thiolate series
of complexes with experimental results (at 298 K in DCM and at 77 K in EPA) for reference.
Compound 1: PtL5SNit, 2: PtL8SAni, 3: PtL8SNit, 4: PtL5SAni, 5: PtL8STol, 6: PtL5STol,
7: PtL8SMe, 8: PtL8SPh, 9: PtL5SMe, 10: PtL5SPh.
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Figure 4.13: A graph to show the trend in excitation energies calculated for the thiolate series
of complexes with experimental results (at 298 K in DCM and at 77 K in EPA) for reference.
Compound 1: PtL5SNit, 2: PtL8SAni, 3: PtL8SNit, 4: PtL5SAni, 5: PtL8STol, 6: PtL5STol,
7: PtL8SMe, 8: PtL8SPh, 9: PtL5SMe, 10: PtL5SPh.
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PBE0: PBE0: CAM-B3LYP:

Method A Method C Method C

Stability Λ Stability Stability

PtL5SMe 1.69 0.18 1.59 0.30

PtL5SPh 1.56 0.29 1.59 0.23

PtL5STol 1.48 0.28 1.59 0.20

PtL5SAni 1.30 0.25 1.59 −0.19

PtL5SNit 1.64 0.35 1.43 0.03

PtL8SMe 1.26 0.42 1.60 0.68

PtL8SPh 1.54 0.29 1.64 0.02

PtL8STol 1.46 0.27 1.64 0.12

PtL8SAni 1.25 0.22 1.63 1.41

PtL8SNit 1.66 0.34 1.44 1.27

Table 4.4: Stabilities and Λ values calculated for the thiolate series of complexes.

Method A: geometry and TD-DFT calculations both run in vacuum. Method C: geom-
etry and TD-DFT calculations both run in DCM.

4.4.1 PBE0 calculations

Various different methods were used in an attempt to reproduce the trends

in energy seen between the complexes experimentally. The different methods

(vide infra) varied in their point of inclusion of solvent as well as the model

used to predict the energy of T1 → S0 emission; the results outlined in Figure

4.12 all used PBE0 as the functional. The S0 → T1 excitation was calculated

in each case at the geometry optimised as indicated.
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Method A: Geometry − T1 geometry calculated, optimised in vacuum

TD-DFT − calculated in vacuum

Method B: Geometry − T1 geometry calculated, optimised in vacuum

TD-DFT − calculated with a PCM for DCM

Method C: Geometry − T1 geometry calculated, optimised with a

PCM for DCM

TD-DFT − calculated with a PCM for DCM

Method C2: Geometry − S0 geometry calculated, optimised with a

PCM for DCM

TD-DFT − calculated with a PCM for DCM (since this

is at the S0 geometry, this is really the formally forbidden

S0 → T1 absorption rather than emission)

Method D: Geometry − T1 geometry optimised with a PCM for DCM

Excitations − calculated using TDA with a PCM for DCM

Table 4.2 and Figure 4.12 show that most techniques using PBE0 as a func-

tional give reasonably good results at predicting the trend in emission between

all ten complexes. Indeed, all methods A-D give the same general trend for

the aromatic charge transfer compounds as for the experimental results at 298

K in DCM. The lowest energy excitations are calculated entirely in vacuum

(Method A) with the excitation energies increasing upon inclusion of solvent

(DCM). Calculations in vacuum for both geometry and TD-DFT show an

exaggerated trend between the complexes: the gaps in energy between each

are generally much bigger than observed experimentally, especially in the case

of the two PtLnSMe complexes. The incorrect relationship between the en-

ergies of PtL5SNit and PtL8SNit should be ignored since, as previously dis-

cussed, the incorrect excitation is being described (Section 4.2.2). Method

B (geometry optimisation in vacuum, TD-DFT in DCM) is also inaccurate

since the density difference plots showed some charge transfer character for

PtL5/8SNit. The effect was not so pronounced though which is reflected in the
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excitation energies calculated. Inclusion of a PCM solvent for DCM for both

calculations (geometry and TD-DFT), Method C, shows probably the closest

reproduction of the experimental results in DCM with values calculated for

the two OMe-substituted thiolates exceptionally close. Method C2 shows the

trend predicted when the first triplet excitation is calculated at the singlet ge-

ometry (geometry and TD-DFT in DCM). This is a commonplace technique

in the literature which circumvents difficulties encountered with triplet insta-

bilities (discussed in Chapter 1, Section 1.6.1) in the geometry optimisation

(although these are still present when calculating the excitations themselves)

and optimising to a state which is not the true triplet minimum. In this case

the general trend is similar to that observed experimentally although, as ex-

pected, the energy of the excitation in each case is increased. Calculation

using this method relies upon the geometry of the triplet excited state being

very close to that of the ground state.

Compounds which exhibit a high level of overlap between excited and ground

state orbitals have recently been shown to be highly susceptible to triplet insta-

bilities. This can lead to unexpectedly low calculated energies of emission from

T1 for these compounds. Stability calculations on PtL5SNit and PtL8SNit

show that calculations on both of these compounds experience such difficul-

ties (Table 4.4), explaining the low energies of emission calculated. Tozer and

co-workers showed that this can be overcome in small molecules with the use

of the Tamm-Dancoff approximation (TDA).117 Method D therefore applies

the TDA to the geometries which were previously calculated in DCM with

PBE0. It is interesting to see that while there is very little difference in the

excitation energy calculated for the charge transfer-type compounds, there is

a significant increase in the excitation energy calculated for both of the nitro

compounds (∼0.2 eV) presumably since these two compounds were adversely

affected by a low triplet stability. Unfortunately in this case however, the

use of TDA does not improve upon the trends calculated with conventional

DFT for the aryl-substituted, charge-transfer type complexes. This is perhaps

unsurprising since the low overlap and moderately acceptable stability at the

calculated triplet geometries is not too much of a problem in this case.
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4.4.2 CAM-B3LYP calculations

We will now briefly consider the use of CAM-B3LYP with these charge transfer

complexes to see what effect a long range corrected functional has on the

energies calculated and trends observed. Once again, different methods were

used to see how well each reproduced the experimental trends in energy. In

this case, most calculations were performed with CAM-B3LYP though, where

indicated, some geometries were optimised using PBE0. Methods C and C2

are those outlined in Section 4.4.1, using CAM-B3LYP in place of PBE0 as

the functional.

Method E: Geometry − T1 geometry optimised with PBE0 and a

PCM for DCM

Excitations − calculated using TDA with CAM-B3LYP

Method F: Geometry − T1 geometry optimised with PBE0 and a

PCM for DCM

Excitations − calculated using TD-DFT with CAM-

B3LYP and a PCM for DCM

It is clear from a first glance at Figure 4.13 (Table 4.3) that calculations

using the CAM-B3LYP functional give very different results from those us-

ing PBE0. The most noticeable change is the significantly higher excitation

energies which are greater in most cases than even the low temperature ex-

perimental results. It seems that, in general, the trends are also less well

described. Excitations calculated using Method C (geometry and TD-DFT

with CAM-B3LYP at the T1 geometry in DCM) are not included in Figure

4.13 since the energies are extremely low.

Calculations where the geometry optimisation and TD-DFT were both per-

formed using CAM-B3LYP (both in vacuum and in DCM) are not shown in

Figure 4.13 since the excitation energies calculated were exceptionally low

(Table 4.3). Many different minima were found (each with no imaginary

frequencies) when the geometry was calculated using this functional. It is

thought that the stabilities were so low that the T1 geometry itself was ad-
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versely affected, giving a false minimum. Despite this, study of the density

difference plots showed that the correct type of transition in each case was

still predicted. This phenomenon is further discussed in Chapter 6. Since

it was suspected that triplet instabilities had compromised the CAM-B3LYP

geometries, CAM-B3LYP excitations at a PBE0 geometry were computed to

see what effect this had on the trends observed. This was done using both

TD-DFT and the Tamm-Dancoff approximation (TDA). Excitation energies

calculated with TDA are not susceptible to triplet instabilities (see Chapter

1, Section 1.6.1). Figure 4.13 shows that for most of the compounds (except-

ing PtL5SNit and PtL5STol) there was very little difference between energies

calculated with TDA and TD-DFT. Both of these techniques gave a poor

representation of the experimental trends though perhaps this is unsurprising

since we have seen that the combination of both geometry and TD-DFT have

a significant impact on the excitation energies, so that if each is calculated

using a different functional, inconsistent results will be obtained.

The importance of the geometry optimisation is underlined by the trend pro-

duced by calculation of the S0 → T1 excitation at the ground state geometry

with CAM-B3LYP in DCM. While the relationship between PtL5SNit and

PtL8SNit is correctly reproduced (albeit at a much higher energy, as we would

expect when calculating this value as an absorptive process, rather than emis-

sive), the other eight complexes show roughly the same energy for the S0 →
T1 excitation. This can be explained upon consideration of the density dif-

ference plots for this transition, Figures 4.14 and 4.15: entirely the wrong

transition is being described. The thiolate ligand has virtually no effect on

the excitation energies calculated because it is not involved in the predicted

transition. For these compounds then, despite their charge transfer nature, it

seems that PBE0 is a better choice of functional for description of phospho-

rescent emission since it is not so susceptible to the triplet instability problem

when calculating the T1 excited state geometry (CAM-B3LYP has a higher α

at high r12 than PBE0, see Chapter 1). Tozer and co-workers have shown that

use of TDA with CAM-B3LYP excitations can help eliminate complications

with triplet instabilities when calculating the excitations themselves.142 Since

CAM-B3LYP predicts the trend better than PBE0 for absorption in these
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compounds and stability with CAM-B3LYP is low, ideally, a CAM-B3LYP

TDA geometry would be calculated for each of these compounds. Subtle dif-

ferences in the geometry of the complexes could make the small alterations

necessary for correct reproduction of the trends. If a geometry can be found

with circumvention of the triplet instability problem, then TDA excitation

energies calculated at this geometry may reproduce the experimental trend

better. Unfortunately these calculations were outside the scope of this project

since calculations were performed with QChem which was unable to perform

TDA geometry optimisations with a PCM solvent model, using CAM-B3LYP

or PBE0 as the functional. Finally, it should be noted that inherent errors

in DFT and TD-DFT calculations mean that an error of at least 0.3 eV is

present in most calculations (as outlined in Chapter 1). This error covers the

whole span of experimental emission energies (both at 298 and 77 K). It could

therefore be considered that trends calculated by TD-DFT are in fact quite

good.

4.5 Predicting trends in solvatochromism

Chapter 3, Section 3.4.3 outlined the experimental dependence of the thiolate

complexes on solvent for wavelengths of absorption and emission. Since we

have seen the importance of the inclusion of solvent in TD-DFT calculations

for the generation of reliable results, it is important to investigate whether this

method can predict solvatochromic shifts in energy using the PCM solvent

model. In order to investigate the reliability of these solvent calculations, the

absorption and emission properties of two of the complexes, in various solvents,

were measured experimentally, and the corresponding TD-DFT calculations

performed for comparison. One charge transfer complex, PtL8SPh, and one

ILCT, PtL8SNit, were investigated and the results summarised in Chapter 3,

Table 3.6.

4.5.1 Solvatochromism in absorption

It is difficult to know which transitions are responsible for a change in en-

ergy of absorption since, unlike emission, many transitions are possible from

the singlet ground state to any number of singlet (or even in some cases the
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Figure 4.14: Density difference plots of absorption from S0 to T1 for PtL5R series of complexes
in DCM, calculated with CAM-B3LYP.

Figure 4.15: Density difference plots of absorption from S0 to T1 for PtL8R series of complexes
in DCM, calculated with CAM-B3LYP.
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triplet) excited states. It is unsurprising therefore that when trying to simulate

the trend exhibited by the lowest energy band in the absorption spectrum by

looking at the lowest energy singlet absorption at the ground state geometry,

we find negative solvatochromism predicted for both PtL8SPh and PtL8SNit

(Appendix, Table 9.16). Indeed the density difference plots for S0 → S1 show

transitions that are charge transfer from the thiolate ligand to the N∧C∧N

ligand/platinum in character, even for PtL8SNit.

Figures 4.16 and 4.17 show density difference plots for the first two and three

singlet excitations for PtL8SPh and PtL8SNit respectively, at the ground state

geometry, in THF. Reference to the simulated absorption spectrum (Figure

4.18) and the excitations calculated to generate it (Appendix, Table 9.16) show

that for PtL8SPh, the low energy region of the absorption spectrum is domi-

nated by the lowest energy S0 → S1 transition, with moderate influence from

S0 → S2. Figure 4.16 shows that both of these excitations are charge-transfer

in nature and therefore their energy will be highly influenced by polarity of

solvent. The TD-DFT in this case correctly predicts negative solvatochromism

in the lowest energy band of the absorption spectrum both by looking at the

lowest energy singlet excitation (S0 → S1) and by production of a convoluted

absorption spectrum. Equivalent plots of the two complexes in MeCN and

DCM are shown in the Appendix, Figures 9.10 and 9.12 respectively.

PtL8SNit also shows the two lowest energy excitations (S0 → S1 and S0 → S2)

as charge transfer in character, displaying wavelengths dependent on solvent

polarity (Figure 4.17) but, as illustrated in Figure 4.19, these transitions are

so weak they have very little influence on the overall spectrum. Instead, the

whole of this region of the spectrum is dominated by the S0 → S3 excitation

at ∼385 nm. Figure 4.17 shows that this excitation is centred on the thiolate

ligand and therefore is not influenced to such a degree by choice of solvent. It

does however show very slight positive solvatochromism, in keeping with the

experimentally obtained spectra (Chapter 3, Figure 3.16).



A computational study of Pt(II) complexes with thiolate coligands · 149

Figure 4.16: Density difference plots for the first two excitations of PtL8SPh in THF at the
ground state geometry with oscillator strength for each transition (f).

Figure 4.17: Density difference plots for the first three excitations of PtL8SNit in THF at the
ground state geometry with oscillator strength for each transition (f).
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Figure 4.18: Convoluted absorption spectra PtL8SPh in three solvents of varying polarity, calcu-
lated by TD-DFT. Vertical lines show excitation energies and oscillator strengths (values shown
in Appendix, Table 9.16); the curve shows the convoluted spectrum.

4.5.2 Solvatochromism in emission

Figure 3.15 (in Chapter 3) shows that PtL8SPh gives a red shift in emission

with increasing polarity of solvent. Perhaps unexpectedly, Figure 3.17 (Chap-

ter 3) shows that PtL8SNit also gives a red shift in emission with increasing

polarity in contrast to behaviour exhibited in absorption. In fact, the shift

in wavelength is greater in PtL8SNit than PtL8SPh. Examination of density

difference plots for the S0 → T1 excitation at the triplet excited state geom-

etry in various solvents (Figures 4.20 (MeCN), 4.21 (DCM), 4.22 (THF) and

4.23 (toluene)) shows the thiolate-centred excitation which is influenced by

change in solvent. Scrutiny of the orbital plots in these figures alongside their

relative contributions to the excitation (Table 4.5) suggests a possible origin

for this solvatochromic response: with decreasing polarity, a small degree of

charge transfer character enters the excitation. We know from PtL8SPh that
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Figure 4.19: Convoluted absorption spectra PtL8SNit in three solvents of varying polarity, calcu-
lated by TD-DFT. Vertical lines show excitation energies and oscillator strengths (values shown
in Appendix, Table 9.16); the curve shows the convoluted spectrum.

the more polar solvents induced a red shift in emission which partly explains

the effect seen here. This is compounded in this case by the change in ex-

citation type as illustrated in Figure 4.24. The charge-transfer excitations

were higher in energy than those centred exclusively on the thiolate ligand.

Therefore inclusion of some charge transfer character in the excitation (as in

the case of THF and toluene) will induce a blue shift in the emission energy.

The exaggerated shift in energy with change in solvent is then a combination

of the red shift induced by the non-polar solvent, combined with the red shift

precipitated by change in character of emission towards charge-transfer in the

non-polar solvents. This is reflected in the predicted energies of emission in

each of these solvents, shown in Table 4.5.



152 · Predicting trends in solvatochromism

Figure 4.20: Orbital and density difference plots of the S0 → T1 excitation of PtL8SNit at the
T1 geometry in MeCN.

Figure 4.21: Orbital and density difference plots of the S0 → T1 excitation of PtL8SNit at the
T1 geometry in DCM.
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Figure 4.22: Orbital and density difference plots of the S0 → T1 excitation of PtL8SNit at the
T1 geometry in THF.

Figure 4.23: Orbital and density difference plots of the S0 → T1 excitation of PtL8SNit at the
T1 geometry in toluene.
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Transition Contribution

MeCN(a) (37.5)(b) 661 nm(c)

HOMO−7 → LUMO −0.112

HOMO → LUMO 0.692

DCM (8.9) 650 nm

HOMO−8 → LUMO 0.110

HOMO → LUMO 0.675

HOMO → LUMO+1 0.155

THF (7.6) 647 nm

HOMO−8 → LUMO 0.107

HOMO → LUMO 0.663

HOMO → LUMO+1 0.198

Toluene (2.4) 620 nm

HOMO−8 → LUMO+2 0.104

HOMO → LUMO −0.362

HOMO → LUMO+2 0.579

Table 4.5: Orbital contributions for the S0 → T1 excitation at the T1 geometry for PtL8SNit
in the indicated solvent. (a) solvent modelled, (b)(dielectric constant of solvent), (c) λmax

predicted.

4.6 DFT of PtL6SR and PtL9SR

4.6.1 Absorption

Convoluted absorption spectra of PtL6STol, PtL6SNit, PtL9STol and PtL9SNit

are shown in Figures 4.25 (PBE0) and 4.26 (CAM-B3LYP). As for PtL5/8SR,

and as outlined in the experimental data, the nitro-substituted compound in

both cases shows one very intensely absorbing band (at ∼340 nm with CAM-

B3LYP) which is due to the thiolate-centred ILCT (Figures 4.29 and 4.31 for

PtL6SNit and PtL9SNit respectively, equivalent density difference plots for

PBE0 are shown in the Appendix). The weaker absorbing band tailing into
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Figure 4.24: Illustration of the proposed reasons for the solvatochromic response shown by
PtL8SNit.

the red region of the spectrum of PtL6STol and PtL9STol can be attributed

to the S0 → S1 and S0 → S2 charge transfer excitations which have lower

oscillator strengths as shown in Figures 4.28 and 4.30.

Figure 4.25 shows that the trend in energy of the lowest energy absorption

band between the three PtL9R complexes when calculated with PBE0 is in-

correct: in PtL9STol this band extends far into the red region of the spectrum.

When the calculation is repeated using the CAM-B3LYP functional (Figure

4.26), a much lower wavelength is predicted for this band, in keeping with the

experimental spectrum. This is presumably due to the LUMO-destabilising

nature of the cyclohexyl groups being taken into account with the long range

corrected functional. PtL6R shows the same pattern though less dramatically;

though the trend is correct with PBE0 (Figure 4.25), the difference in energy

of the absorption bands of the different complexes is exaggerated while it is

correctly muted by CAM-B3LYP (Figure 4.26).

4.6.2 Emission

Density difference plots for the S0 → T1 excitation at the triplet excited state

geometry for PtL6/9STol and PtL6/9SNit are shown in Chapter 3, Figure 3.21.
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Figure 4.25: Convoluted absorption spectra of PtL6SNit and PtL6STol (top) and PtL9SNit and
PtL9STol (bottom) in DCM, calculated by TD-DFT. Excitations calculated are shown in the
Appendix, Table 9.17, density difference plots in Figures 9.13, 9.15 and 9.17.
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Figure 4.26: Convoluted absorption spectra of PtL6SNit and PtL6STol (top) and PtL9SNit and
PtL9STol (bottom) in DCM, calculated by TD-DFT with CAM-B3LYP. Excitations calculated
are shown in the Appendix, Table 9.18.
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Figure 4.27: Density difference plots for the first two excitations of PtL9Cl and PtL6SCl in DCM
at the ground state geometry with oscillator strength for each transition (f). Calculations were
run with CAM-B3LYP.

They show that for both PtL6SR and PtL9SR DFT predicts a charge-transfer

transition for the two STol-substituted compounds and a thiolate-based tran-

sition in the case of the nitro compound, in line with the experimentally ob-

tained results. The excitation energies also shown in Chapter 3, Figure 3.21

show that the red-shift of PtL6STol relative to PtL9STol is correctly predicted,

as is the red-shift of the PtL6STol relative to its SNit counterpart. Despite the

correct transition being assigned, PtL9STol is predicted to be lower in energy

of emission than PtL9SNit, though this is perhaps unsurprising since we have

seen that different types of transitions cannot always be predicted accurately

within a trend, especially when one is low in orbital overlap (PtL9STol) and

the other is high (PtL9SNit).

4.7 Concluding remarks

This chapter has discussed the merits and shortcomings of DFT calculations

on two groups of complexes. The first, made up of two series of closely related

compounds (PtL5SR and PtL8SR), were used as a test set to investigate the

ability of TD-DFT to reproduce trends in absorption and emission energies,
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Figure 4.28: Density difference plots for the first two excitations of PtL6STol in DCM at the
ground state geometry with oscillator strength for each transition (f). Calculations were run
with CAM-B3LYP.

Figure 4.29: Density difference plots for the first four excitations of PtL6SNit in DCM at the
ground state geometry with oscillator strength for each transition (f). Calculations were run
with CAM-B3LYP.
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Figure 4.30: Density difference plots for the first two excitations of PtL9STol in DCM at the
ground state geometry with oscillator strength (f). Calculations were run with CAM-B3LYP.

Figure 4.31: Density difference plots for the first three excitations of PtL9SNit in DCM at the
ground state geometry with oscillator strength for each transition (f). Calculations were run
with CAM-B3LYP.
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along with their correct density difference plots. Studies on these complexes

showed the importance of solvent inclusion at all stages of the calculation

(both geometry optimisation and TD-DFT) for prediction of the correct or-

bital plots and assignment of excitation character.

For all the series of complexes studied (PtL5SR, PtL6SR, PtL8SR and PtL9SR),

trends predicted in absorption energies were closer to experimentally obtained

results when using a long range corrected functional, CAM-B3LYP, than with

PBE0. For emission the reverse was true due to lower triplet stabilities when

using CAM-B3LYP than PBE0. TDA excitations were calculated at the DFT-

optimised T1 geometry, though it is suggested that the geometries themselves

had been adversely affected by the low stabilities. For these reasons, TDA

excitations at a TDA geometry, using CAM-B3LYP, are suggested as a possi-

ble route to the best reproduction of experimental trends. In general, singlet

absorption is much more straightforward to predict than phosphorescent emis-

sion since there is less difficulty in ensuring you have the true ground state

minimum (instead of a localised triplet minimum) and triplet instabilities do

not need to be taken into account.

Trends in solvatochromism of the complexes were also reproduced and ac-

counted for by analysis of the orbital plots for the relevant complexes.





5

Pt(II) complexes of ligands based

on 1,3-diiminobenzene

5.1 Introduction

In this chapter we will consider a series of tridentate imine-based ligands for

use in Pt(II) complexes. Previous work on some of these complexes inves-

tigated their use as catalysts,212 while we intended to study their emission

properties. Such ligands might be used to synthesise relatively cheap, easy-to-

make Pt(II) complexes in which a simple imine C=N unit replaces the pyridyl

rings of the complexes of Chapters 2-4. The ligands can be formed by a sim-

ple condensation reaction between an aldehyde and an amine without recourse

to the Pd catalysts required for the dipyridylbenzene ligands. This method

allows a great number of ligands to be synthesised relatively easily since the

reaction can take as little as thirty minutes to reach equilibrium. A large va-

riety of R and R′ substituents are possible, allowing for diversity of products

(Figure 5.1).

Synthesis of these imine (R′ = H, R = CnHm) ligands will first be discussed

in this chapter, then their ketimine (R′ = Me) and oxime (R = OCnHn)

analogues. We will then consider the synthesis of the complexes along with

ancillary ligand metathesis. The photophysical properties of the complexes

will be discussed in Section 5.3 and interpreted using DFT calculations in

163
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Figure 5.1: General structure of complexes with 1,3-diiminobenzene ligands.

Section 5.4. DFT calculations have been successfully used to rationalise the

drastically differing quantum yields of emission measured among the series of

complexes.

5.2 Synthesis

5.2.1 Synthesis of ligands

In this investigation, three series of ligands were synthesised: imines, ketimines

and bis-oximes. The ligands made are shown in Figure 5.2.

Imine formation - introduction

The condensation of a carbonyl group with an amine to give an imine

(Scheme 5.1) is a reversible reaction. Since the discovery of Schiff bases in

1864,213 they have been widely used in chemical reactions and thoroughly re-

searched.214 Imine formation is normally carried out in anhydrous organic sol-

vents, which pushes the equilibrium position towards the condensation product

through loss of water.215

It is well known that the rate-determining step of decomposition (shown in

Scheme 5.2) is imine hydrolysis (step 1) when at neutral or alkaline pH.216 In

addition, it has been demonstrated that the rate of hydrolysis of retinyliden-

emethylamine (a Schiff base) is significantly slower in acidic conditions than in

neutral. This is attributed to a change in the rate determining step from step

1 of the reaction to step 2 when at a low pH. While formation of the imine

group is affected by general acid catalysis, the presence of a strong acid in
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Figure 5.2: The chemical structures of the three sets of ligands synthesised.
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Scheme 5.1: Mechanism for the reaction of carbonyls with amines to give imines.

the reaction mixture will protonate the amine, removing it from the reaction

mixture and shifting the position of the equilibrium towards its formation.216

It is clear, therefore, that the pH of imine chemistry is an important factor

in determining the speed and position of equilibrium that is obtained, the

importance of which was seen upon attempts to cyclometallate these ligands

(Section 5.2.2).

Scheme 5.2: Hydrolysis of imines to give carbonyl and amine species.

Imine ligand formation

Ligand synthesis followed that described by Fossey and Richards212 (Scheme

5.3), though some difficulty was met in reproduction of reported results. Fos-

sey et al. drove formation of imine to completion by reflux of a small excess of

amine with the aldehyde, in ethanol, for thirty minutes. The solvent was then

removed, the product taken up in ethyl acetate and rapidly filtered through
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Scheme 5.3: Formation of N∧C∧N imine ligands.

a small plug of silica to remove the amine. This gave a product containing a

small amount of aldehyde (for example 6% in the case of LImPh) which they

removed by recrystallisation from ethyl acetate/petroleum ether. Though this

procedure was repeated with success for the phenyl substituted imine, on rep-

etition for the cyclohexyl substituted analogue we found that extensive hydrol-

ysis of the imine occurred upon filtration through silica. This is presumably

due to the presence of water in the silica and to its slightly acidic nature. The

apparent higher stability of the phenyl substituted imine could be due to an

extended system of delocalised electrons encompassing both the phenyl group

and the imine bond. An adapted method was therefore necessary for the syn-

thesis of the cyclohexyl compound and other aliphatic substituted imines.

We will first consider synthesis of the cyclohexyl-substituted ligand, LImCy,

since this informed the method used for synthesis of the other ligands. Since

excess amine was used to drive the reaction to completion, this was the impu-

rity which had to be removed upon completion of the reaction. Various dif-

ferent purification techniques were employed to attempt its removal without

causing hydrolysis of the product, including extremely fast filtering through

a silica plug (which caused hydrolysis), selective precipitation (taking up the

mixture in ethyl acetate followed by addition of hexane), and removal of the

amine by heating the product on the high vacuum line (since the boiling point

of the amine is 134.5◦C217). All of these were to no avail.

Since all attempts at removing the amine were unsuccessful, synthesis was

attempted using an excess of aldehyde to drive the reaction. The same diffi-

culty was encountered since the aldehyde has similar solubility properties to

the imine product; purification by recrystallisation was unsuccessful. Finally,
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synthesis was attempted with the aldehyde and amine groups in equimolar

quantities. All glassware and equipment was extensively dried prior to use

to exclude water, so that equilibrium would not be shifted (according to Le

Chatelier’s principle) towards reactants. The reaction showed very good con-

version and, after washing with cold hexane (0◦C), the pure product was

obtained in good yield. Synthesis of LImPhOMe and LImPhCF3 was also achieved

by use of equimolar quantities of reactants to avoid the need for purification,

once again delivering the pure product in high yield.

Synthesis of butyl-substituted imines was more straightforward than their

phenyl and cyclohexyl analogues since both n-butylamine and t-butylamine

have low boiling points (77 and 44 - 46◦C respectively).217 This meant that

the amine could be used in a large excess, driving the position of the equilib-

rium towards the products. The amine was then easily removed under reduced

pressure upon completion. In order to reach a boiling point high enough for

reaction of the two molecules, the reaction mixture was heated under nitrogen

(to exclude atmospheric water) in a sealed flask rather than using a condenser.

This meant that the low boiling point amines were not lost through evapora-

tion, keeping them in solution to react with the aldehyde groups. This gave

complete conversion to LImnBu and LImtBu with no need for further purification.

Characterisation of imine ligands

Condensation of an amine and isophthalaldehyde to give the imine ligand

species resulted in a significant upfield shift of the N=C−H proton in the 1H

NMR spectrum. For example, the O=C−H proton of isophthalaldehyde has a

chemical shift of 10.13 ppm (in CDCl3), while the equivalent proton in LImCy

has a shift of 8.34 ppm. The other three aromatic protons were also shifted

upfield though the magnitude was not so large.

Crystals of LImPhOMe suitable for analysis by X-ray diffraction were obtained

by slow evaporation from a mixture of methanol and DCM. The structure

obtained and packing adopted by this molecule are shown in Figure 5.3. The

structure confirmed the identity of the compound. It is interesting to note
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Figure 5.3: Crystal structure (top) and illustration of the packing (bottom) adopted by LImPhOMe.

that despite the number of aromatic rings included in this molecule there are

no π − π interactions.

Ketimine ligand formation

Due to the ease with which the imines were hydrolysed and the difficulty

which was then encountered upon attempts to cyclometallate them (vide in-

fra), it was decided to synthesise a series of ketimine ligands. These would

be more sterically hindered, preventing the approach of water molecules to

the sp2 carbon centre and therefore making them more stable towards hy-

drolysis. The ketimines were synthesised according to the method shown in

Scheme 5.4. Unsurprisingly, the synthesis of ketimines required harsher con-

ditions than those used for their imine analogues, since the carbonyl carbon

is more sterically hindered and less electrophilic. Synthesis of these novel

molecules was based on a route for ketimine formation described by Malkov

et al.218 where the reactants were heated in dry toluene, under nitrogen and
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Scheme 5.4: Formation of N∧C∧N ketimine ligands.

in the presence of molecular sieves. Synthesis of the cyclohexyl substituted

compound was initially attempted to refine the synthetic process since some

difficulty was encountered in getting complete conversion to the bis-ketimine.

Once this was achieved, phenyl and butyl substituted compounds were syn-

thesised using the same method with relative ease.

Several different methods were attempted for the synthesis of the cyclohexyl-

substituted ketimine ligand, LKetCy since it was found that, as for the imine

analogues, hydrolysis often occurred during purification of the product. Al-

though in this case there was some success with purification by recrystalli-

sation from hexane, there was significant product loss and the compound

obtained still retained a small amount of impurity.

Initially, cyclohexylamine was reacted in a slight excess with 1,3-diacetylbenzene

in dry toluene (using oven dried glassware), in the presence of activated molec-

ular sieves and with a calcium chloride drying tube. The reaction mixture was

heated at reflux overnight with the aim to remove water molecules produced

using the molecular sieves, shifting the equilibrium in favour of the products.

While some conversion of reactants to products was observed, complete con-

version did not occur and as mentioned above, purification by filtration of a

DCM solution through silica to remove the amine led to the hydrolysis prod-

uct. Repetition of this reaction with the ketone and amine functional groups

in a 1:1 molar ratio did not give complete conversion to products.

Synthesis of the ketimine ligand was attempted in ethanol since polar solvents

are good at stablising localised charges formed in transition states; ethanol

was used as the solvent for synthesis of the imine ligands with great success.
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Unfortunately, reflux of the ketone with cyclohexylamine for 5 hours in ethanol

(in the presence of activated molecular sieves) showed almost no conversion

of reactants to products at all. This is probably due in part to the signifi-

cantly reduced temperature of reaction in ethanol (b.p. of 79◦C) compared to

toluene (110◦). Alcohol solvents also tend to contain a small amount of water

which, if not all removed by the molecular sieves, would shift the position of

equilibrium away from the product. For this reason the toluene solvent system

was returned to.

During the overnight reflux of the reaction mixture, the molecular sieves be-

came broken up into fine particles and the efficiency of their removal of water

was questioned. We therefore attempted the reaction with activated molecu-

lar sieves placed in a soxhlet condenser to see if this allowed a more efficient

removal of water. Three times the volume of toluene was required for use

of the soxhlet condenser resulting in the increased reaction time of 36 hours.

Very little condensation product was observed at all under these conditions.

This is probably due to two contributing factors: first, the increased volume

of solvent and second, the absence of the molecular sieves from the reaction

mixture. Though the volume of solvent was increased by a factor of three,

the length of time was also increased. It should also be considered that the

soxhlet condenser works in cycles, filling up and emptying, therefore the vol-

ume of solvent in the reaction mixture is always varying and rarely the full

amount. The decrease in conversion of reactants to products cannot entirely

be explained by the decrease in concentration. It is likely that the molecular

sieves played a catalytic role in the reaction when used in the reaction flask

itself. The addition of a reaction surface is known to increase rates of such

reactions, even though the precise details of how it does so remain unclear,

and it can reasonably be suggested that this is the case here.

Finally, the reaction was carried out in the presence of molecular sieves but

with a second quantity of sieves added half way through the reaction time.

The additional sieves would make up for any inefficiencies from the first batch

breaking up. The reaction time was extended to 48 hours and the ketone

and amine functional groups combined in a 1:1 ratio. This resulted in near
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complete conversion of reactants to products and the small amount of starting

material was removed by washing of the product with cold hexane (0◦C).

The corresponding ketimine ligand of aniline was then prepared simply us-

ing the same procedure and the product obtained in a high yield (87%). The

synthesis of the n-butyl analogue was carried out with a large excess of amine,

in dry toluene and in the presence of molecular sieves. The purification was

simple since the excess amine (combined with removal of water) drove the re-

action to completion. The amine could then be easily removed under reduced

pressure, after the removal of the molecular sieves, by filtration.

Synthesis of the t-butyl substituted compound was also attempted (Scheme

5.5). The synthetic method used for the other three compounds was un-

successful in this case, presumably due to the boiling point of t-butylamine

(44-46◦C) which is much lower than that of toluene and the reaction tem-

perature previously used. Since the boiling point was so low, the amine was

added in large excess (5:1 molar ratio) and the reaction carried out at 110◦C

in toluene in a sealed flask, under nitrogen. Almost no conversion of reactants

was observed though a small amount of the monomeric species was seen by 1H

NMR spectroscopy. To ensure that the lack of reaction was not due to loss of

the amine, the reaction was repeated with extra t-butylamine added half way

through the reaction time (along with the molecular sieves) but after 48 hours

at reflux temperature still only a small amount of the monomeric product was

detected and it was concluded that the product formation was likely to be

hindered due to the steric constraints of t-butylamine. While it is possible

that given a long period of time the product may have formed, it was decided

that the length of time of reaction required and volume of amine needed (to

replace any lost during the reaction) were too great to pursue synthesis of this

product.

Characterisation of ketimine ligands

The ketimine ligands were characterised by 1H and 13C NMR spectroscopy

and high resolution mass spectrometry. The two solid ketimine ligands (cyclo-
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Scheme 5.5: Unsuccessful method attempted for synthesis of tbutyl-substituted ketimine ligand.

hexyl and phenyl substituted) were also characterised by elemental analysis.

Crystals of these two compounds suitable for X-ray diffraction analysis were

obtained by slow evaporation from DCM, and the resulting structures are

shown in Figures 5.4 and 5.5. The structures confirmed the identity of the

compounds. Interestingly, the conformations adopted by these two molecules

around the bonds labelled C7-C9 are different. For the phenyl-substituted

compound the phenyl groups on the nitrogen atoms are in a different plane

to the rest of the molecule despite the fact that this must prevent the pos-

sibility of extended conjugation across the whole molecule. This is due to

steric constraints between this group and the methyl substituent on the imine

group. The difference in geometry between the two compounds could be due

to the difference in size between the two substituent groups or perhaps just

to different packing effects.

Bis-oxime ligand formation

A great deal of difficulty was encountered upon attempting to cyclometal-

late the imine and ketimine ligands to platinum due to competitive hydrolysis

of the ligand (see Section 5.2.2). For this reason, oximes were considered in

place of the imine/ketimine groups, since oximes are more stable to hydrolysis.

The electronegative oxygen can take part in delocalisation of the double bond,

reducing the δ+ on the carbon atom and making the group less susceptible to

nucleophilic attack. The oxime functional group is synthesised by condensa-

tion of a ketone or aldehyde group with hydroxylamine219 (Scheme 5.6).

At a neutral pH the attack of the nitrogen atom on the carbonyl compound

is fast. The overall rate of the reaction therefore depends on the equilibrium
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Figure 5.4: Crystal structure of LKetCy

Figure 5.5: Crystal structure of LKetPh

Scheme 5.6: Mechanism for the formation of an oxime.
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concentration of the addition compound and on the rate of its acid-catalysed

dehydration. Under acidic conditions the rate limiting step is the attack of

the free nitrogen base on the carbonyl compound and is not dependent on

general acid catalysis.220

Synthesis of LOxImBn (Figure 5.2) was attempted according to a method similar

to one described by Godineau et al.221 The reaction was carried out in a solu-

tion of sodium acetate (which acts as a buffer), in DCM, at room temperature.

A mixture of isomers was obtained according to the conformation around the

C=N double bonds. This problem was not encountered for imine and ketimine

ligand synthesis since the reaction was performed at high temperature, giv-

ing the thermodynamic product and Z→E isomerisation in imines probably

has a lower energy barrier. The isomers and any remaining starting material

were separated from each other with ease by column chromatography and the

desired EE isomer was isolated for characterisation. The fractions contain-

ing the other isomers (EZ and ZZ) were combined and the solvent removed.

This mixture of isomers was then put under an atmosphere of nitrogen and

heated strongly for two lots of 2.5 minutes, giving ∼ 60% conversion to the EE

isomer, the thermodynamic product. For this reason, if the reaction were to

be repeated, heating upon completion of the reaction and before purification

should give a greater yield. Alternatively, carrying out the reaction with heat-

ing in a different polar, aprotic solvent with a higher boiling point (such as

DMF or acetonitrile), should give a higher yield of the desired product. It is

testament to the stabilising presence of the oxygen atom in the molecule that

the compound resisted hydrolysis both in the presence of water and during

purification by column chromatography. As discussed later (Section 5.2.2),

the product showed little hydrolysis even when heated under reflux in acetic

acid while similar imine and ketimine molecules showed extensive degradation.

Ligands LOxImOH, LOxIm and LOxKet were also synthesised using this method.

5.2.2 Synthesis of complexes

Significant difficulty was encountered in the cyclometallation of the imine and

ketimine ligands to platinum since both series of ligands were found to be very
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Figure 5.6: The chemical structures of the three sets of complexes synthesised.
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water-sensitive. Decomposition of the imine series was characterised by the

disappearance of the imine proton in the 1H NMR spectrum, and appearance

of the aldehyde proton. Despite the increased steric protection afforded to the

ketimine ligands there seemed to be no difference between the two series of

ligands in their propensity to hydrolysis. This difficulty of competitive hydrol-

ysis was not encountered with the oxime series due to the stabilising effect of

the oxygen atoms.

Synthesis of the complexes was initially attempted according to the proce-

dure described by Fossey and Richards212 for both the cyclohexyl and phenyl

substituted imines and for the cyclohexyl substituted ketimine, but all to no

avail. Analysis of the reaction products by 1H NMR spectroscopy showed

complete hydrolysis of ligands to their starting materials with no formation

of the platinum complex. Though this method has previously been used with

success, hydrolysis of the compounds is unsurprising since (as previously dis-

cussed) the decomposition of the imine bond is acid catalysed. Furthermore,

acidification of the amine decomposition product removes this molecule from

the equilibrium, driving the position of the equilibrium towards hydrolysis.

Nevertheless, water must be present for this decomposition to occur. For this

reason, extensive care was taken in drying both the glassware, the solvent and

the hygroscopic potassium tetrachloroplatinate in an attempt to prevent the

breakdown of the compounds.

Synthesis of the metallated products was successfully achieved by use of tri-

methylphosphate which has been used in other cyclometallation reactions.222

Difficulty was encountered, however, in complete removal of such a high boil-

ing point solvent (197◦C) from the product. Despite extensive attempts at

extraction, chromatography, recrystallisation, vaccum distillation and wash-

ings, the solvent present could only be reduced, never removed entirely. The

cyclometallated product seemed to show some solvatochromic response (by

eye) and it is suspected that the compound forms an adduct or clathrate with

the trimethyl phosphate, explaining why it is so difficult to separate.

Since hydrolysis of the ligands was the main barrier to successful cyclometalla-
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Figure 5.7: Proposed structure of by-product formed upon attempts to cyclometallate LImCy.

tion, it was postulated that reaction of the ligands with potassium tetrachloro-

platinate in an alcohol would allow the ligands to re-form once hydrolysed.

Binding of the ligands to the platinum would then remove them from the

equilibrium mixture, driving the reaction towards the formation of products.

Though formation of the Pt(II) complex was not observed after reaction in

propanol (probably due to the reduced reaction temperature), some formation

of complex was observed in butan-1-ol. Attempted cyclometallation in butan-

1-ol seemed to favour formation of a second product. Analysis of the mixture

by mass spectrometry showed a combination of products and a peak with a

platinum isotope pattern corresponding to the compound shown in Figure 5.7.

Finally, cyclometallation was achieved in acetic acid with drying of both sol-

vent and metal salt prior to synthesis by reflux of both in the presence of acetic

anhydride, reaction of which with any water present in the potassium tetra-

chloroplatinate crystals would result in the production of acetic acid. This was

followed by addition of a large excess of ligand, allowing for some sacrificial

degradation. This method was successful and purification was achieved either

by passing the product through a small plug of silica or, for some complexes,

by HPLC. Hydrolysis of the excess ligand for the aromatic amine ligands re-

sulted in reaction between the amine and acetic acid molecules to give the

corresponding acetamide, small crystals of which were obtained and analysed

by X-ray diffraction (Figure 5.8).



Pt(II) complexes of ligands based on 1,3-diiminobenzene · 179

Figure 5.8: Crystal structure of acetamide produced upon attempts to cyclometallate
PtLImCF3Cl.

Characterisation of complexes

The identity of each of the complexes was confirmed by 1H and 13C NMR

spectroscopy. Successful cyclometallation of the ligand showed the introduc-

tion of platinum satellites in the 1H spectrum for the protons at positions 3

and 5 of the benzene ring and, for the imine complexes, the N=C−H proton.

High resolution mass spectrometry also confirmed the identity of the species;

all of the data for compounds previously reported was in good agreement with

the literature values.

Small crystals, suitable for X-ray diffraction, were obtained of PtLImPhCF3Cl

(CDCl3), PtLKetnBuCl (methanol/water), PtLOxImCl (DCM) and PtLOxKetCl

(CDCl3) by slow evaporation from the indicated solvents (Figures 5.9 - 5.12).

The crystal structures of PtLImtBuCl and PtLImPhCl have previously been

determined by Fossey and Richards.212 A summary of some of the impor-

tant bond lengths and angles of PtLImPhCF3Cl, PtLKetnBuCl, PtLOxImCl and

PtLOxKetCl is shown in Table 5.1.
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PtLImPhCF3Cl shows a nearly planar environment around the Pt atom with

only very slight twisting out of the plane (presumably to minimise steric in-

teractions). The two pendant phenyl groups are twisted relative to the rest of

the molecule, preventing delocalisation of electrons over the whole molecule.

This is also true of PtLImPhCl212 and in fact the LKetPh ligand (see Section

5.2.1, Figure 5.5). PtLKetnBuCl shows a very small distortion away from pla-

narity about one of the nitrogen atoms; again it is assumed that this is to

minimise steric interactions due to the increased interactions introduced by

the combination of methyl groups alongside n-butyl pendants. PtLOxImCl

shows some bowing around the C−Pt−Cl but has the two less bulky OMe

groups pointing in the same direction. The same is true of PtLOxKetCl.

In all these cases the N−Pt−N angle is more strained than for the platinum(II)

complex of 1,3-di(2-pyridyl)benzene, PtL5Cl (161.1(2)◦), this is particularly

pronounced in the two oxime complexes, PtLOxImCl and PtLOxKetCl which

have values of around 157◦ for this angle. The C−Pt−Cl bond is also distorted

in these new complexes, again particularly in the oximes which are contorted

away from the linear 180◦ which we would expect (PtL5Cl is 179.0(3)◦). The

Pt−C bond lengths are longer for the oxime complexes than for the imine and

ketimine compounds but are all on average around the same length as PtL5Cl

(1.907(8) Å). This is also true of the Pt−Cl bond (2.417(2) Å for PtL5Cl).

In contrast all of the C=N bonds are much shorter for these new compounds

compared to PtL5Cl which has lengths of 1.365(9) and 1.374(9) Å, which is

not a true C=N bond since the bond order is ∼ 1.5 instead of 2.

The packing of PtLImPhCF3Cl is made up of sheets of the planar section of

the molecules with the pendant groups in between. Each molecule is rotated

90◦ to the ones above and below it, maximising π−π stacking while minimising

unfavourable steric interactions (see Figure 5.9). The crystal of PtLOxKetCl

was shown to contain two non-equivalent geometries of the complex as shown

in Figure 5.12. There seem to be no other electronic interactions in the packing

of the other complexes (extended packing shown in Appendix).
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Figure 5.9: Crystal structure of PtLImPhCF3Cl.
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Figure 5.10: Crystal structure of PtLKetnBuCl. Packing shown in Appendix, Figure 9.18.

Figure 5.11: Crystal structure of PtLOxImCl. Packing shown in Appendix, Figure 9.19.

5.2.3 Metathesis of the ancillary ligand

Substitution of the chloride ancillary ligand for a stronger field ligand should

increase ligand field splitting, increasing the energy of the d-d state, reducing

likelihood of its population and therefore reducing non-radiative decay. Sub-

stitution of this ligand has been attempted with success by several groups in

related complexes such as Pt(N∧N∧C)Cl, who have converted the chloride to

ligands such as cyanides or acetylides.29–32
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Figure 5.12: Crystal structure of PtLOxKetCl. Packing shown in Appendix, Figure 9.20.

The chloride ligand of an example imine complex, PtLImCyCl was substituted

by various other ancillary ligands to see what effect this had on the photophys-

ical properties of the molecule. The chemical structures of the four complexes

made are shown in Figure 5.13. Synthesis and photophysical characterisation

of PtLImCySTol and PtLImCySNit have been discussed more fully in Chapter 3

(Sections 3.2 and 3.4 respectively).

Synthesis of PtLImCyC2Ar

The chloride ancillary ligand of PtLImCyCl was substituted for an acetylide

using a technique similar to that of Baik et al. for other N∧C∧N-coordinated

Pt(II) complexes but without the use of a chloride scavenger.60 The reaction

proceeded under mild conditions at room temperature, the acetylide depro-

tonated by sodium hydroxide, then once reacted with the platinum complex,

the product retrieved from solution as a light yellow precipitate (Scheme 5.7).

Purification was achieved by washing with methanol. Although stable enough

to acquire a crystal structure, PtLImCyC2Ar did show some decomposition in
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Figure 5.13: The chemical structures of the complexes synthesised incorporating a monodentate
ligand other than chloride.

DCM. The electron-withdrawing CF3 groups of the acetylide ligand help to

stabilise the Pt−C bond in its unfavourable position: trans to another cy-

clometallated bond.

Synthesis of PtLImCyCN

Substitution of the chloride ligand by CN was also attempted though with

limited success (Scheme 5.8). A solution of KCN and PtLImCyCl in methanol

were stirred for ∼12 h at room temperature to give a pale, yellow solid. Anal-

ysis of this product in the solid state by ASAP mass spectrometry (at both

high and low resolution) showed data in line with formation of the correct

product:
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Scheme 5.7: Formation of PtLImCyC2Ar.

(ASAP+) m/z = 517.2 [M + H]+; HRMS (AP+) m/z = 515.1829 [M]+;

calculated for [C21H27N3
194Pt]+ 515.1832.

Solvation of the compound for analysis by NMR (or photochemical analysis)

induced rapid decomposition.

Scheme 5.8: Formation of PtLImCyCN.

Characterisation of PtLImCyC2Ar

A small crystal of PtLImCyC2Ar was obtained by slow evaporation from

deuterated chloroform. Its structure is shown in Figure 5.14 with some se-

lected bond lengths and angles in Table 5.2. It is interesting to note that the

acetylide group is contorted out of the plane of the molecule, with the C≡C−C

bond at 170.55◦ rather than the linear 180◦. Both CF3 groups and one of the

cyclohexyl rings are disordered. The C−Pt bond of the ancillary ligand is quite

long for a cyclometallated bond (2.0499 Å) due to the unfavourable trans ef-

fect of two such carbon atoms. The C−Pt bond of the N∧C∧N is slightly

longer than the equivalent bond in the other chloride-substituted complexes
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Figure 5.14: Crystal structure of PtLImCyC2Ar. Packing shown in Appendix, Figure 9.21.

Bond lengths / Å Bond angles / ◦

N−Pt 2.0734, 2.0684 N−Pt−N 156.75

C−Pt 1.9430 N−Pt−C 78.42, 78.33

C−Pt 2.0499 N−Pt−C 101.11, 102.14

C≡C 1.2012 C−Pt−C 179.05

Pt−C≡C 174.42

C≡C−C 170.55

Table 5.2: Selected bond lengths (Å) and angles (◦) found for the crystal structure of
PtLImCyC2Ar. Purple text indicates atoms bound from the N∧C∧N ligand while green text
shows atoms from the acetylide ancillary ligand.

(see Table 5.1) due to the same effect.

Analysis by 1H and 19F NMR showed the expected extra peaks but analy-

sis by 13C NMR was not possible due to decomposition of the complex in

solution over longer periods of time. ASAP mass spectrometry showed the

expected molecular ion peak.
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5.3 Photophysical properties of the complexes

5.3.1 Absorption

The absorption spectra of the new complexes were recorded in DCM at room

temperature. They show bands with high extinction coefficients in the far UV

and moderately intense bands at longer wavelengths, around 450-420 nm.

As illustrated by Figure 5.15, the absorption wavelengths of PtLImCyCl and

PtLKetCyCl are very similar to that of PtL5Cl, with the band at ∼400 nm

overlapping for all three complexes. The low energy absorption bands were

slightly more intense in PtL5Cl (Table 5.3). The new complexes show slightly

less structured spectra than PtL5Cl and lack the additional band displayed

at 380 nm. PtLImCyCl and PtLKetCyCl absorb more strongly between 340 and

360 nm than PtL5Cl. They showed no evidence of the weak, spin-forbidden

S0 → Tn excitations shown by PtL5Cl at longer wavelengths.52

The five alkyl-substituted imine and ketimine complexes (PtLImCyCl, PtLKetCyCl,

PtLImnBuCl, PtLImtBuCl and PtLKetnBuCl) all show very similar absorption

spectra (Figures 5.15 and 5.16); their lowest energy absorption band (∼390

nm) increases in wavelength in the order:

PtLImtBuCl < PtLImCyCl < PtLImnBuCl < PtLKetCyCl < PtLKetnBuCl

with a difference of only 1250 cm−1 between the λmax of PtLImtBuCl and

PtLKetnBuCl. The absorption spectra of the imine complexes is more struc-

tured than that of the ketimines.



Pt(II) complexes of ligands based on 1,3-diiminobenzene · 189

300 320 340 360 380 400 420 440 460 480
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wavelength / nm

N
or
m
al
is
ed

ab
so
rb
an

ce

PtLKetCyCl PtL5Cl PtLImCyCl

Figure 5.15: Normalised absorption spectra of PtLImCyCl, PtLKetCyCl and PtL5Cl in DCM.

The absorption spectrum of PtLImCF3Cl is red-shifted from all of the other

compounds, the lowest energy absorption band has a λmax of 426 nm, com-

pared to 385 nm for PtLImCyCl (Figure 5.17). In contrast, PtLOxKetCl is

blue-shifted from all the other compounds (λmax = 379 nm).

5.3.2 Emission

The emission spectra of the new complexes were recorded both in degassed

DCM at room temperature (Figures 5.18, 5.19 and 5.20) and in EPA glass at

77 K. With the exception of PtLOxKetCl, the platinum(II) complexes shown in

Figure 5.6 were all luminescent in solution at room temperature. They showed

low energy, red emission at 298 K (λmax ∼ 600 nm) with the 0−1 band highest

in relative intensity. Emission spectra of the new complexes were obtained at

different concentrations. This had no effect on the structure of the spectra ob-

tained, indicating that there was no emission from excimer formation. There

was a slight blue shift in emission energy upon cooling to 77 K. Quantum

yields of luminescence were relatively low, ranging from ∼2% for some of the
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Figure 5.16: Normalised absorption spectra of the three butyl-substituted derivatives in DCM.
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Figure 5.17: Normalised absorption spectra of PtLOxImCl, PtLOxKetCl, PtLImCyCl and PtLImCF3Cl
in DCM.
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Absorption λmax / nm (a)

(ε / M−1 cm−1)

PtL5Cl 332 (6510), 380 (8690), 401 (7010),
454 (270), 485 (240)

PtLImCyCl 255 (34100), 295 (8590), 329 (6530),
385 (6060)

PtLImnBuCl 254 (26000), 296 (10800), 330 (6130),
387 (6230)

PtLImtBuCl 253 (20700), 288 (7010), 317 (4220),
381 (3860)

PtLImPhCF3Cl 262 (29100), 312 sh (15200), 339 (8720),
426 (7780)

PtLKetCyCl 253 (15600), 296 (5950), 399 (4070)

PtLKetnBuCl 251 (21400), 297 (6530), 400 (6120)

PtLOxImCl 257 (16200), 331 (6030), 378 (4390),
398 sh (3150)

PtLOxKetCl 250 (16500), 288 (6480), 326 (5430),
379 (4720)

PtLImCyC2Ar 286 (15400), 352 sh (6530), 387 (5370),
415 sh (4870)

Table 5.3: UV-vis absorption data for the imine, ketimine and oxime complexes in DCM solution
at 298 K. (a) Absorption maxima > 250 nm.
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imine complexes to PtLOxKetCl which showed no room temperature emission.

Lifetimes of emission in degassed DCM varied between 13 ns (PtLOxImCl) and

740 ns (PtLImnBuCl). A summary of the emission properties for the complexes

studied is shown in Table 5.4.

Comparison of PtLImCyCl and PtL5Cl shows that the emission properties of

these two N∧C∧N-coordinated Pt(II) complexes are very different from one

another. Emission from PtLImCyCl is much lower in energy than PtL5Cl and

shows a red shift of 2380 cm−1 between the two 0−0 bands (at room tem-

perature, in DCM). The quantum yield is also significantly reduced from 60%

(PtL5Cl) to just 1.8%. While both compounds display highly structured emis-

sion spectra, the ratio of the band intensity changes. The 0−0 band is most

intense for PtL5Cl while the 0−1 band is for PtLImCyCl at both room temper-

ature (DCM) and 77 K (EPA glass). The degassed lifetime (τdeg) is an order

of magnitude shorter for PtLImCyCl (700 ns) than for PtL5Cl (7200 ns). In

stark contrast to PtL5Cl, PtLImCyCl shows no evidence of excimer formation.

The reduced emission quantum yield of in PtLImCyCl compared to PtL5Cl

is due to a combination of a slightly reduced kr in the new compound and

a significantly increased knr (by two orders of magnitude), as illustrated in

Figure 5.21. The excited state energy of PtLImCyCl is significantly lower than

PtL5Cl, which increases the rate of non-radiative decay. Intuitively it is pre-

sumed that the dramatic increase in the rate of non-radiative decay is also due

to intramolecular energy transfer to the C=N bonds of PtLImCyCl, combined

with increased flexibility within the ligand allowing for non-radiative decay

through molecular motion.

The reduction in intermolecular interactions and lack of excimer formation

in PtLImCyCl compared to PtL5Cl is presumably due to the steric protection

afforded by the bulky substituent groups in the former, preventing the close

approach of molecules that is required for the necessary orbital overlap (or

possibly due to lack of complementarity in electron density distribution at

the ground and excited states). Shortened excited state lifetimes will also

disfavour excimer formation.
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Figure 5.18: Normalised emission spectra of the three butyl-substituted derivatives in degassed
DCM at 298 K.
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Figure 5.19: Normalised emission spectra of the two cyclohexyl-substituted derivatives in de-
gassed DCM at 298 K.
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Figure 5.20: Normalised emission spectra of PtLOxImCl and PtLImPhCF3Cl in degassed DCM at
298 K.

Figure 5.21: A diagram to summarise some of the emission properties of PtL5Cl (left) and
PtLImCyCl (right).



Pt(II) complexes of ligands based on 1,3-diiminobenzene · 195

E
m

is
si

on
Φ

lu
m

τ
/

n
s

k
Q
O

2
/

k
r

/
Σ
k
n
r

/
E

m
is

si
on

77
K

λ
m
a
x

/
n
m

×
10

2
d
eg

as
se

d
10

8
M
−
1
s−

1
10

4
s−

1
10

6
s−

1
λ
m
a
x
(0
−
0
)

τ

(2
98

K
)

[a
er

at
ed

]
(b
)

(c
)

(c
)

/
n
m

/
µ

s

P
tL

Im
C
y
C
l

55
6,

59
9,

64
7,

1.
8

70
0

[3
10

]
8.

2
2.

5
1.

4
5
3
2

,
57

8,
63

2,
21

00
71

9,
80

4
69

2,
77

2

P
tL

Im
n
B
u
C
l

55
6,

60
0,

65
0

1.
7

74
0

[3
30

]
7.

6
2.

3
1.

3
5
3
2

,
58

0,
63

6,
63

0
69

4

P
tL

Im
t
B
u
C
l

53
6,

57
5,

61
5

0.
09

6
38

[3
7]

3.
2

2.
5

26
5
1
4

,
55

8,
61

0,
57

0
66

8,
73

8

P
tL

Im
P
h
C
F

3
C
l

66
0

0.
22

-
-

-
-

5
7
7

,
62

7,
68

7
-

P
tL

K
e
tC

y
C
l

58
5

0.
12

41
[3

6]
15

2.
9

24
5
3
6

,
57

2,
62

1,
72

0
68

5

P
tL

K
e
tn

B
u
C
l

53
7,

57
9,

63
5

0.
88

37
0

[2
10

]
9.

3
2.

4
2.

7
5
3
0

,
57

6,
62

8,
72

0
69

6
sh

P
tL

O
x
Im

C
l

59
7

0.
02

2
13

[1
2]

29
1.

7
77

5
0
8

,
54

3,
58

6,
58

0
64

2,
70

4

P
tL

O
x
K
e
t
C
l

-
-

-
-

-
-

-
-

P
tL

Im
C
y
C

2
A
r

55
9,

60
1,

65
0

sh
2.

8
65

0
[2

50
]

11
4.

3
1.

5
5
3
1

,
57

7,
63

4,
79

0
69

4

T
ab

le
5.

4:
L

u
m

in
es

ce
n

ce
d

at
a

fo
r

th
e

im
in

e,
ke

ti
m

in
e

an
d

ox
im

e
co

m
p

le
xe

s
in

D
C

M
so

lu
ti

on
at

29
8

K
an

d
in

E
P

A
(a

)
at

77
K

.
Q

u
an

tu
m

yi
el

d
s

ar
e

m
ea

su
re

d
re

la
ti

ve
to

[R
u

(b
py

) 3
]C

l 2
in

H
2
O

.

(a
)

E
P

A
=

d
ie

th
yl

et
h

er
/

is
op

en
ta

n
e

/
et

h
an

ol
,

2:
2:

1
v/

v.
(b

)
k
Q
O

2
is

th
e

b
im

ol
ec

u
la

r
ra

te
co

n
st

an
t

fo
r

q
u

en
ch

in
g

by
m

ol
ec

u
la

r
ox

y-
ge

n
at

29
8

K
,

es
ti

m
at

ed
fr

om
th

e
re

la
ti

ve
lif

et
im

es
in

d
eg

as
se

d
an

d
ae

ra
te

d
so

lu
ti

on
s,

as
su

m
in

g
[O

2
]

at
1

at
m

pr
es

su
re

of
ai

r
=

2.
2

m
m

ol
d

m
−
3
.

(c
)
k
r

an
d

Σ
k
n
r

ar
e

th
e

ra
d

ia
ti

ve
an

d
n

on
-r

ad
ia

ti
ve

ra
te

co
n

st
an

ts
es

ti
m

at
ed

fr
om

th
e

q
u

an
tu

m
yi

el
d

an
d

lif
et

im
e

at
29

8
K

.



196 · Photophysical properties of the complexes

Comparison of diimine complexes with one another

During the course of this work, similar imine complexes were made and

their photophysical properties studied by Raftery and co-workers.223 They al-

tered the 4-position of the benzene ring to various delocalised electron systems,

finding through TD-DFT studies that this pendant arm was significantly in-

volved in the excitations taking place. The phosphorescent emission of our

complexes gave structured emission in the red region of the spectrum with

λmax ∼600 nm, similar to that of those other imine compounds previously

reported.223 Unlike the other imine compounds reported, the most intense

band for all of the imine and ketimine complexes was the 0−1, suggesting a

significant degree of distortion between the ground and excited states. There

was a slight blue-shift in the emission maxima at low temperature, an effect

which was slightly augmented in the imines compared to the ketimines.

The λmax of emission was remarkably similar for PtLImCyCl, PtLKetCyCl,

PtLImnBuCl and PtLKetnBuCl (Figures 5.23 and 5.22), while PtLImtBuCl shows a

slight blue shift. In contrast, PtLOxImCl shows a significant blue-shift in emis-

sion energy of 2380 cm−1 from PtLImCyCl (for λmax at 77 K) and PtLImPhCF3Cl

is red-shifted from all the other compounds (for λmax a shift of 1350 cm−1 com-

pared to PtLImCyCl at 77 K).

Despite the very similar energies of emission of most of the complexes, Ta-

ble 5.4 shows that both the quantum yields and lifetimes vary significantly.

PtLImCyCl and PtLImnBuCl had quantum yields an order of magnitude higher

than those imine complexes previously reported.223 Comparison of PtLImCyCl

and PtLKetCyCl shows that upon addition of the methyl groups to give the

ketimine derivative, the quantum yield is reduced by an order of magnitude,

as is knr, while kr remains roughly the same, as illustrated in Figure 5.25 (each

of the lifetimes is also reduced by an order of magnitude). The same is true of

the three butyl-substituted complexes, the quantum yields of which decrease

(knr increases) in the order:

PtLImnBuCl > PtLKetnBuCl > PtLImtBuCl
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Figure 5.22: Normalised emission spectra of the three butyl-substituted derivatives in EPA glass
at 77 K.
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Figure 5.23: Normalised emission spectra of the two cyclohexyl-substituted derivatives in EPA
glass at 77 K.
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Figure 5.24: Normalised emission spectra of PtLOxImCl, PtLImCyCl and PtLImPhCF3Cl in EPA
glass at 77 K.

Intensity of 0−0 Intensity of 0−1 Intensity of 0−2

PtLImCyCl 0.76 1 0.61

PtLKetCyCl 0.56 1 0.73

PtLImnBuCl 0.87 1 0.59

PtLKetnBuCl 0.78 1 0.62

PtLImtBuCl 0.82 1 0.60

Table 5.5: Experimental values for the intensity of the 0−n vibronic bands relative to the
intensity of the 0−1 vibronic band for the imine and ketimine complexes at 77 K in EPA glass.

Table 5.5 shows the intensities of the 0−0 and 0−2 vibronic bands relative

to the intensity of the 0−1 vibronic band for the various imine and ketimine

complexes. The 0−0 band is highest in relative intensity for those compounds

with higher quantum yields, suggesting that the higher rates of non-radiative

decay are due to increased distortion in the excited state.
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Figure 5.25: A diagram to summarise the trends in quantum yields and rates of radiative and
non-radiative decay for the cyclohexyl (top) and butyl (bottom) substituted complexes.
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5.3.3 Photophysical properties of the PtLImCyX complexes (X 6= Cl)

As discussed in Chapter 3, substitution of the chloride ancillary ligand of

PtLImCyCl by a thiolate has a profound effect on the absorption and emis-

sion properties of the complex: the absorption spectra change dramatically in

structure for both PtLImCySTol and PtLImCySNit: there is a loss of structure

for PtLImCySTol and the nitro complex absorbs much further into the red re-

gion of the spectrum. The structure of the emission spectra is also altered,

with the 0−0 band becoming highest in relative intensity for the thiolate com-

plexes, which was accompanied by a smaller shift in the λmax and a reduction

in the quantum yield of luminescence.

The absorption and emission spectra of PtLImCyC2Ar are shown in Figures

5.26 and 5.27 respectively, alongside those of PtLImCyCl for comparison. Fig-

ure 5.26 shows that the acetylide ligand introduces a new low energy band

into the absorption spectrum, with a shoulder at 415 nm. (c.f. 385 nm for

PtLImCyCl). The acetylide ligand also introduces a strongly absorbing band at

286 nm, with an extinction coefficient of 15400 M−1 cm−1. The emission spec-

trum of PtLImCyC2Ar shows almost no distinction from that of PtLImCyCl (Fig-

ure 5.27), although the quantum yield increased from 0.018 to 0.028, alongside

a slight increase in the rate of radiative decay, kr (Table 5.4).

5.3.4 OLED generation

Introduction to OLEDs

Part of the impetus towards the synthesis of these complexes was their po-

tential for use in OLEDs. Some PtL8Cl-type complexes have previously been

incorporated into OLEDs, with substitution of the ester group for groups with

varying electron-donating and withdrawing properties allowing for tuning of

emission colour.224 When incorporated into OLEDs, these compounds dis-

played high external quantum efficiencies (4-16% ph e−1).
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Figure 5.26: Absorption spectra of PtLImCyCl and PtLImCyC2Ar in DCM at 298 K, normalised
at the longest wavelength absorption band.
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Figure 5.27: Normalised emission spectra of PtLImCyCl and PtLImCyC2Ar at 77 K in EPA glass.
Spectra in degassed DCM at 298 K are shown in the Appendix, Figure 9.22.
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Complexes incorporating a substituted dipyridylbenzene (dpyb) ligand require

cross-couping reactions and the use of palladium catalysts in their synthesis

(see Chapter 8 for details) which are often considered undesirable for use in

OLEDs since small Pd impurities can lead to defects in the devices.225 These

imine ligands, synthesised by a simple condensation reaction and without the

use of such catalysts, are potentially interesting for OLED applications. The

imine-type complexes also showed no sign of excimer formation. Excimers

have been used for WOLED production,226 but are not desirable in every de-

vice since their formation changes the wavelength of emission and can reduce

efficiency.

PtLImCyCl in an OLED

PtLImCyCl was investigated for use in OLEDs since it showed one of the

highest quantum yields of luminescence and its synthesis did not require the

use of HPLC, enabling it to be made in relatively large quantities with ease.

Two OLEDs were made by our collaborator in Bologna, Dr Cocchi, one with

the emissive layer (EML) made of 5% PtLImCyCl in TCTA and the other with

a neat film of the complex. Both devices had the configuration:

ITO / TPD:PC [75%:25%] (60 nm) / TCTA (10 nm) / EML (30 nm) / TAZ

(30 nm) / LiF (0.5 nm) / Al (100 nm)

Figure 5.28 shows the electroluminescence spectra of the two devices, showing

that the electroluminescent emission is coming from the active layer itself,

with a slightly higher intensity for the device where the EML is made from

5% PtLImCyCl. The turn-on voltage is lower in the blend device, which can

also achieve a higher brightness at the same voltage compared to the neat

film device (Figure 5.29). Although the blend device has a lower efficiency

compared to the neat film, its efficiency is more stable at higher currents

compared to the latter (Figure 5.30). The efficiency for both devices is poor

(1%), perhaps unsurprisingly given the solution state quantum yield for this

complex (1.8%). No “excimer-like” emission was seen in the neat film device

in contrast to PtL5Cl devices.
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Figure 5.28: Electroluminescence spectra of the two OLEDs incorporating PtLImCyCl as a neat
film or doped at 5% by mass in TCTA.

5.4 Density functional theory calculations

Unless otherwise stated, DFT and TD-DFT calculations described in this

chapter were performed using PBE0 in DCM using a PCM for solvent. The

LANL2DZ basis set was used for platinum and cc-pVDZ for all other atoms.

Ground state and triplet excited state geometries were optimised by direct

minimisation of the SCF energy and checked to be a true minimum by fre-

quency calculations at the same level of theory.

5.4.1 Absorption of PtLIm/Ket/OxCl

The ground state geometries of each of the eight complexes were optimised

by direct minimisation of the SCF energy; those compounds where crystal

structures were obtained showed a good correlation between the theoretical

and experimental structures with the exception of the nitrogen substituents,

which is unsurprising due to their high degree of flexibility (see Appendix,
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Figure 5.29: Brightness-voltage plots of the two OLEDs incorporating PtLImCyCl.

Figure 5.30: Electroluminescence quantum efficiency-electric current density plots of the two
OLEDs incorporating PtLImCyCl.
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Figure 9.23). The convoluted absorption spectra of PtLImCyCl, PtLKetCyCl,

PtLOxKetCl and PtLImPhCF3Cl are shown in Figure 5.31. The vertical lines rep-

resent the individual excitations calculated by TD-DFT, which are also shown

in Table 9.19. Both these show that the low energy region of the spectrum is

dominated in each case by the S0 → S1 excitation, the density difference plots

for which are shown in Figure 5.32. Figure 5.31 shows that, like the experi-

mentally obtained spectra, the wavelength of the low-energy absorption band

is remarkably similar for PtLImCyCl and PtLKetCyCl; PtLOxKetCl is blue-shifted

from these two and PtImPhCF3Cl is significantly red-shifted from all the other

compounds. Consideration of the density difference plots for each of these

gives insight into the electronic origin of these observations: PtLImCyCl and

PtLKetCyCl both have very similar excitations while PtLOxKetCl incorporates

the electron-donating OMe group and PtLImPhCF3Cl shows delocalisation over

the CF3-substituted phenyl rings at the S1 excited state.

Figures 5.33 and 5.34 show the equivalent spectra and density difference plots

for the butyl-substituted compounds and PtLOxImCl. PtLImtBuCl, PtLImnBuCl

and PtLKetnBuCl show the same transition as PtLImCyCl and PtLKetCyCl for

S0 → S1, and this transition once again dominates the low energy region of

the spectrum. Neither the alkyl-pendant groups, nor the methyl groups of

the ketimine complexes play a significant role in the excitation, showing why

substitution of one for another has little effect on the absorption spectrum

obtained. The electron-donating OMe groups of PtLOxImCl are not signifi-

cantly involved in the S0 → S1 excitation so there is less of a blue-shift for this

complex than for PtLOxKetCl, but the spectrum is slightly blue-shifted from

the other complexes since the presence of the OMe groups will still necessarily

affect the nature of the complex.

The loss of structure in the absorption spectra of the ketimines compared

to the imines observed experimentally is also shown in the convoluted absorp-

tion spectra. According to the TD-DFT calculations, this loss of structure

appears to be due to both the increased proximity of the S0 → S1 and S0 →
S8 excitations, and also the increased intensity of the S0 → S4 excitation in

PtLKetCyCl and the S0 → S3 excitation in PtLKetnBuCl.
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Figure 5.31: Convoluted absorption spectra of PtLImCyCl, PtKetCyCl, PtLOxKetCl and
PtLImPhCF3Cl, calculated by TD-DFT. Excitations shown in the Appendix, Table 9.19.

Figure 5.32: Density difference plots for the S0 → S1 excitation at the ground state geometry
for PtLImCyCl, PtKetCyCl, PtLOxKetCl and PtLImPhCF3Cl, calculated by TD-DFT.
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Figure 5.33: Convoluted absorption spectra of PtLImtBuCl, PtLImnBuCl, PtLKetnBuCl and
PtLOxImCl, calculated by TD-DFT. Excitations shown in the Appendix, Table 9.20.

Figure 5.34: Density difference plots for the S0 → S1 excitation at the ground state geometry
for PtLImtBuCl, PtLImnBuCl, PtLKetnBuCl and PtLOxImCl, calculated by TD-DFT.
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S0 geometry T1 geometry

S0 S1 S0 T1

PtLImCyCl −0.488 −0.386 −0.482 −0.489

PtLImCyC2Ar −0.821 −0.502 −0.827 −0.831

Table 5.6: Mulliken charges on the ancillary ligand of the two PtLImCyR complexes at the ground
and excited states. Those calculated at the S0 geometry, representing absorption, are shown on
the left and at the T1 geometry (emission) on the right.

5.4.2 Absorption and emission of PtLImCyC2Ar

Figures 5.35 and 5.36 show that while the acetylide ligand is involved in the

absorption excitation in the low energy end of the spectrum (the S0 → S1

transition is almost charge transfer in nature), it plays almost no part in

emission. The Mulliken charges on the ancillary ligand of PtLImCyCl and

PtLImCyC2Ar of the excitations for absorption and emission are shown in Table

5.6. The difference between the Mulliken charge on the ancillary ligand for

S0 → S1 (at the ground state geometry - absorption) is −0.319 (−0.103 for

the Cl of PtLImCyCl) while for S0 → T1 (at the T1 geometry-emission), it is

just 0.004 (0.007 for PtLImCyCl). This explains why the absorption spectra

of PtLImCyCl and PtLImCyC2Ar are so different from one another while their

emission properties are essentially the same: the ancillary ligand plays a large

role in absorption (in the low energy region of the spectrum) but almost none

in emission. Equivalent density difference plots for PtLImCyCl are shown in

Figures 5.32 and 5.37.

5.4.3 Emission of PtLIm/Ket/OxCl

Density difference plots of the excitation

Density difference plots for the S0 → T1 excitation at the T1 geome-

try for each of the eight chloro-substituted complexes are shown in Figure

5.37. The plots show a transition with a high degree of orbital overlap in-

cluding a moderate involvement of the nitrogen-pendant groups in the exci-

tation. The involvement of the pendant groups in PtLImPhCF3Cl, PtLOxImCl
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Figure 5.35: Convoluted absorption spectra of PtLImCyCl and PtLImCyC2Ar, calculated by TD-
DFT. Excitations shown in the Appendix, Tables 9.21 and 9.19.

Figure 5.36: Density difference plots for the S0 → S1 excitation at the ground state geome-
try (left) and S0 → T1 excitation at the T1 excited state geometry (right) for PtLImCyC2Ar,
calculated by TD-DFT.
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and PtLOxKetCl complexes explains why these groups alter the emission en-

ergy of these three complexes: delocalisation of electrons over the aromatic

pendant rings in PtLImPhCF3Cl and electron-donating OMe groups of the two

oxime complexes. The blue-shift observed experimentally for the two oxime

complexes is due to destabilisation of the LUMO by the electron-donating

−OMe group, increasing the energy of emission. The red-shift in the experi-

mental emission spectrum of PtLImPhCF3Cl can be attributed to delocalisation

of electrons over the pendant phenyl groups (according to the density differ-

ence plots), which was not possible with the other, alkyl derivatives.

While the alkyl substituents of the other five complexes are involved in the

excitation, as are the methyl groups of the ketimines, these groups have very

little effect on the energy of emission since the difference between the groups

is minimal and their contribution to the overall excitation is small. The low

variation in experimental energy of emission also suggests that neither the

methyl groups of the ketimines, nor the alkyl pendants have very much influ-

ence on the excited state energy of the complexes. The ability of TD-DFT to

calculate the excitation energies themselves was poor (vide infra), though the

density difference plots are qualitatively informative, showing that each of the

alkyl-substituted complexes are essentially showing the same type of emission.

Non-radiative decay due to distortion

As discussed in Section 5.3.2, the emission efficiency of the eight com-

plexes considered in this chapter varies dramatically, despite similar energies

and characteristics of emission. Estimation of the rates of radiative and non-

radiative decay for each of these complexes from their lifetimes of emission

shows that while the rate of radiative decay, kr, remains approximately con-

stant, the rate of non-radiative decay, Σknr varies by nearly two orders of

magnitude. There are many and varied routes of non-radiative decay for an

excited state complex (such as solvent interaction, aggregate formation and

deactivating d-d states) but this discussion will focus on distortion.
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Figure 5.37: Density difference plots for the S0 → T1 excitation at the T1 excited state geometry
for the imine, ketimine and oxime complexes, calculated by TD-DFT.
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Figure 5.38: A schematic diagram to show routes of non-radiative decay enabled by distortion.

Figure 5.38 shows a schematic diagram of two possible excitations: the left

where there is no distortion between the S0 ground state and the T1 excited

state, and the right where there is significant distortion between the two states.

Where there is no distortion, relaxation of the excited state to the ground state

gives emission of light (unless there is some other deactivating process). In the

second example, the excited state energy curve is shifted with respect to that

of the ground state, giving a crossing point between the two curves and allow-

ing non-radiative decay to occur (blue arrows on the right hand side diagram).

When undertaking calculations of this kind it is common to assume that the

ground state and triplet excited states of metal complexes will be the same;

triplet excitations can often be performed at either the ground state geom-

etry or at the crystal structure geometry. Both of these techniques present

problems, the first is the equivalent to S0 → T1 absorption and will therefore

predict an emission energy that is too high, while the second takes a solid-

state geometry which has been formed through a combination of packing and

solvent interactions, at the ground state geometry. Since the excitation en-

ergies are heavily dependent on geometry, it is important to calculate the

correct geometry to ensure that the right excitation process is being described

by the calculation. When calculating the triplet excited state geometry it is
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also common to optimise from the ground state geometry in order to reduce

the necessary calculation time. This technique is also not optimal since, as

we will see in this section, triplet excited state geometries are not necessarily

symmetrical and due to the nature of the calculation itself, once a symmet-

ric geometry has been obtained, other non-symmetrical geometries cannot be

found resulting in a false minimum.

Figures 5.39 and 5.40 show the superimposed S0 and T1 geometries of each of

the complexes, both optimised by direct minimisation of the SCF ground and

triplet states. Table 5.7 gives a quantitative indication of the distortion of the

T1 excited state versus the S0 ground state alongside the rates of non-radiative

decay for reference. The large increase in Σknr (of an order of magnitude) from

PtLImCyCl to PtLKetCyCl is accompanied by an increase in the RMSD of 0.2

Å. The three butyl-substituted complexes increase in distortion in the order:

PtLImnBuCl < PtLKetnBuCl < PtLImtBuCl

This correlates with their increase in rate of non-radiative decay and conse-

quently the decrease in their quantum yields.

Unsurprisingly, the two oxime complexes and PtLImPhCF3Cl do not fit in with

the trend of the other five aliphatic complexes since the functional groups

present (and the aromatic rings in PtLImPhCF3Cl) change the nature and energy

of the excitation taking place. Table 5.7 does show, though, that PtLOxKetCl

distorts more in the triplet state than PtLOxImCl, which suggests a possible

origin for the lack of emission of PtLOxKetCl at room temperature. PtLOxImCl

showed a substantial degree of distortion and a high rate of non-radiative

decay (7.7 × 107 s−1), resulting in a very low quantum yield of 0.022%. A

further increase in the rate of non-radiative decay through distortion would

then presumably result in a lack of room temperature emission.

Rate of radiative decay

Table 5.8 shows that while the rate of radiative decay remains approxi-

mately constant for the related alkyl-substituted complexes, it is reduced to
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Figure 5.39: Geometries (side-view) and superimposed structures (viewed along the Cl−Pt
bond) of the S0 ground state (red) and T1 excited state (green) for the five aliphatic complexes,
calculated by DFT.
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Figure 5.40: Geometries (side-view) and superimposed structures (viewed along the Cl−Pt bond)
of the S0 ground state (red) and T1 excited state (green) for the PtLOxImCl, PtLOxKetCl and
PtLImPhCF3Cl, calculated by DFT.

RMSD / Å Σknr / 106 s−1

PtLImCyCl 0.34 1.4

PtLImnBuCl 0.20 1.3

PtLImtBuCl 0.47 26

PtLImPhCF3Cl 0.49 -

PtLKetCyCl 0.54 24

PtLKetnBuCl 0.36 2.7

PtLOxImCl 0.31 77

PtLOxKetCl 0.54 -

Table 5.7: Root-mean-square displacement and rate of non-radiative decay of the S0 ground
state and T1 excited state geometries of each of the eight complexes, calculated by DFT.
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Λ[a] kr / 104 s−1

PtLImCyCl 0.58 2.5

PtLImnBuCl 0.59 2.3

PtLImtBuCl 0.62 2.5

PtLImPhCF3Cl 0.65 -

PtLKetCyCl 0.66 2.9

PtLKetnBuCl 0.62 2.4

PtLOxImCl 0.45 1.7

PtLOxKetCl 0.47 -

Table 5.8: TD-DFT values for lambda and metal character, and experimental kr of each of the
eight complexes. Λ was calculated in vacuum at the DCM geometry.

1.7× 104 s−1 for PtLOxImCl. The reduction in the radiative rate constant cor-

relates with a decrease in the orbital overlap of the transition, quantified by

lambda (Λ). It is interesting to note the slight increase in the rate of radiative

decay for each of the distorting complexes, despite the decrease in quantum

yield (which has been attributed to non-radiative decay through excited state

distortion). For example, PtLImCyCl has a lower rate of radiative decay than

PtLKetCyCl (2.5× 104 and 2.9× 104 s−1 respectively), which again, correlates

with an increase in Λ.

TD-DFT calculation of emission energies

The energies for the S0 → T1 excitation at the T1 geometry for each

of the eight complexes, corresponding to the density difference plots shown

in Figure 5.37, are shown in Table 5.9; neither the magnitude of the ener-

gies, nor the general trends between the complexes are correct. In Chapter

3 we showed that, due to the low overlap involved in the excitation, a long

range corrected functional (CAM-B3LYP) was needed to correctly predict the

trends in excitation energies and the increased propensity of the CAM-B3LYP

functional towards triplet instabilities in the calculations was also discussed.

While triplet instabilities are less often encountered with PBE0, higher orbital
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Energy / eV Energy / nm

PtLImCyCl 1.29 962

PtLImnBuCl 1.32 941

PtLImtBuCl 0.97 1280

PtLImPhCF3Cl 1.29 965

PtLKetCyCl 0.73 1690

PtLKetnBuCl 1.17 1060

PtLOxImCl 0.37 i 3400 i

PtLOxKetCl 0.64 i 1940 i

Table 5.9: Energies for the S0 → T1 excitation at the T1 geometry for each of the eight
complexes. i = imaginary value.

overlap in the excitation increases their likelihood. These imine, ketimine and

oxime complexes show a large degree of orbital overlap in their S0 → T1 excita-

tion so that even when using the PBE0 functional difficulties are encountered,

giving the low excitation energies shown in Table 5.9. For the oximes, they

become so low that a negative value is obtained.

As previously discussed, there are many and various ways to calculate the

phosphorescence emission energy. The results of some of these for the three

butyl-substituted complexes, as a test set, are shown in Table 5.10 along with

the experimental values for comparison. With the exception of S0 → T1

absorption, none of the values shown give an accurate representation of the

trends observed experimentally.

Excitation energies calculated at the SCF geometry are much lower than those

obtained experimentally but are greatly improved by the use of TDA. While

the TD-DFT excitation energies for all the triplet geometry calculations are

much too low, the values calculated at the TD-DFT geometry are particularly

poor and show imaginary excitations for all three complexes. In each of these

calculations the triplet instability is so high that, as for the thiolate complexes,



218 · Density functional theory calculations

PtLImnBuCl PtLImtBuCl PtLKetnBuCl

eV nm eV nm eV nm

Experimental (298 K)(a) 2.23 556 2.31 536 2.31 537

Experimental (77 K)(b) 2.33 532 2.41 514 2.34 530

S0 → T1 absorption(c) 2.38 520 2.45 506 2.45 505

SCF, T1 geometry 1.32 941 0.97 1280 1.17 1060

SCF/TDA(d) 2.43 510 1.52 813 1.53 808

TD-DFT, T1 geometry(e) −0.92 −1350 −0.96 −1290 −0.91 −1370

TD-DFT/TDA(f) 0.70 1780 0.61 2040 0.63 1970

RI-CC2(g) 1.79 1050 0.81 1530 0.56 2210

RI-CC2(h) 1.27 973 1.06 1170 0.79 1570

Table 5.10: Energies calculated for the S0 → T1 excitation of the three butyl-substituted
complexes.

(a) Measurements taken in DCM solution. (b) Measurements taken in EPA glass. (c)

Excitation at the S0 optimised geometry, calculations performed in vacuum. (d) Excitation
calculated by TDA at the T1 SCF geometry. (e) Excitation at the T1 geometry, optimised
by TD-DFT, calculations performed in vacuum and due to the computationally demanding
nature of the calculation, frequency calculations were not performed to ensure a minimum had
been found. (f) Excitation calculated by TDA at the T1 TD-DFT geometry. (g) RI-CC2 for
both geometry optimisation and excitations, performed by our collaborator, Andreas Köhn (h)

TD-DFT excitations, calculated with PBE0 in vacuum, at the geometry from (g).

the geometries themselves have been compromised. The effect is magnified in

calculation of the TD-DFT geometry since the triplet excitation is involved in

the optimisation of the geometry. TDA excitation energies at this geometry

improve on the values obtained so that they are all positive but they are still

far too low in energy compared to the experimental values. Even excitation

energies calculated by RI-CC2 are significantly lower in energy than observed

experimentally.

It is possible that the geometries themselves have been adversely affected

by low triplet stability, this is certainly the case for those optimised by TD-
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DFT. The trends in energy might therefore be improved by optimisation with

TDA, as for the thiolate complexes discussed in Chapter 4. It is unsurpris-

ing, though, that where there is a large degree of distortion between the ex-

cited state and ground state, prediction of excitation energies is poor. In

the complex where there is little distortion (PtLImnBuCl), the energy for the

S0 → T1 excitation, computed at the SCF geometry, using TDA to avoid

triplet instability (2.43 eV, 510 nm) is remarkably similar to experimental

values (2.33 eV, 532 nm at 77 K). The excitation energies for PtLImtBuCl and

PtLKetnBuCl decrease with increasing distortion, the opposite to the exper-

imental trend. Excitation energies calculated where there is no distortion,

at the singlet ground state, reproduce the trend well. The prediction of low

excitation energies where there is significant distortion at the excited state

geometry will be further discussed in Chapter 6.

5.5 Concluding remarks

The photophysical properties of eight Pt(II), chloro-substituted, imine com-

plexes have been studied; they show phosphorescent emission in the red region

of the spectrum. The five alkyl-substituted complexes show remarkably simi-

lar emission spectra to one another but quantum yields that vary by over two

orders of magnitude (from 1.8 to 0.022%). The difference in quantum yield can

be attributed, by the use of DFT, to non-radiative decay pathways through

distortion between the ground state and excited state geometries, which is

more prevalent in some compounds than others. Substitution of the chloride

for another ancillary ligand (such as acetylide) dramatically affects the absorp-

tive properties of the compound, but not the emission. TD-DFT showed that

this ancillary ligand was only involved in the absorption excitations, not the

emission. Due to the high level of excited state distortion, excitation energies

could not be reproduced by TD-DFT calculations; S0 → T1 excitations at the

ground state geometry did show good reproduction of the trends observed.
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The triplet excited states of

methyl-substituted benzenes

6.1 Introduction

Triplet instabilities showed a significant, detrimental effect on the reliable pre-

diction of the excitation energies of many of the compounds studied in previous

chapters; in some cases the predicted energies were even negative. In some

examples, TDA calculations at the DFT geometry still showed implausibly

low excitation energies, suggesting that the T1 geometry itself was adversely

affected. In large complexes, where little is already known about the nature

of the excited state adopted, it is difficult to fully comprehend whether such

problems are due to the computational methods employed, or to the physi-

cal nature of the compounds themselves. Furthermore, such large compounds

require very time consuming calculations so that more computationally ex-

pensive investigations (such as coupled cluster or TDA geometries) are not

routinely feasible.

Theoretical studies of pairs of compounds such as PtL5/8SPh and PtL5/8STol

(Chapter 3) or PtLImCyCl and PtLKetCyCl (Chapter 5) seemed to show that

compounds where extra methyl groups were included suffered more from the

triplet instability problem. It was decided to conduct a combined experimen-

tal and theoretical study on a series of model organic compounds to see if such
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effects could be reproduced, enabling detailed study and a better understand-

ing of the processes taking place.

In this chapter the photophysical properties of a series of benzene-based com-

pounds with increasing numbers of methyl substituents will be discussed. The

compounds (shown in Figure 6.1) were purchased, purified and their photo-

physical properties studied as a simplified example of some of the compounds

that we have discussed in other chapters for the purpose of probing the influ-

ence of proximal methyl groups. Since these compounds are small and well

characterised they provide a set that can be investigated in detail by theoret-

ical calculations alongside their experimental photophysical properties. They

also displayed excitations high in orbital overlap (with correspondingly high

Λ values) making them particularly susceptible to triplet instabilities.

6.2 Computational details

Unless otherwise stated, DFT calculations described in this chapter were per-

formed using PBE0 with cc-pVDZ. All calculations were performed in vacuum.

T1 and S0 geometries were optimised by direct minimisation of the SCF en-

ergy and checked to be a true minimum by frequency calculations at the same

level of theory. TDA geometry optimisations and excitations were performed

with B3LYP and cc-pVDZ, in vacuum, by Michael Peach.

6.3 The compounds

The thirteen compounds we will consider in this chapter are shown in Figure

6.1. They can be broadly divided into groups according to how many methyl

groups they possess. For example, ArMe2, ArMe2a and ArMe2b form a group

of isomers that all contain two methyl substituents, but differ in their relative

disposition. The photophysical properties of many of these compounds have

been previously discussed in various papers,227–229 though, to our knowledge,

this is the only study of the complete set displaying the phosphorescence of

all thirteen of them.
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Figure 6.1: The chemical structures of the aromatic compounds studied.
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6.4 Experimental photophysical data

The thirteen substituted-benzene compounds showed fluorescence bands be-

tween ∼260 and 330 nm and phosphorescence between ∼350 and 480 nm in

MP (methylcyclohexane and isopentane in a 3:1 v/v ratio) glass at 77 K.

A summary of their phosphorescent emission energies and quantum yields is

shown in Table 6.1. Increasing numbers of methyl substituents resulted in a

red shift in phosphorescent emission and a partial loss of vibrational structure.

The full spectra (including the fluorescence of each compound) are shown in

the Appendix, Figures 9.24 to 9.36.

Quantum yields of phosphorescence were measured in MP glass, relative to

toluene (Φphos = 0.26).227 The determination of quantum yields is, unfortu-

nately, susceptible to considerable uncertainty and variation from one mea-

surement to the next, particularly for measurements at low temperature in-

volving short λ excitation. For this reason, an average was taken of three

readings. The values obtained should still only be used as a general guide for

comparison within each series rather than considered as an absolute value.

Within the xylene series (ArMe2) it can be seen that the quantum yields

increase as the methyl groups move further away from one another around

the ring:

ortho < meta < para

This correlates with an increase in the intensity of the 0−0 band relative

to that of λmax (Figure 6.2). The same pattern can be seen with benzene

compared to toluene: the ratio of the intensity of the 0−0 band to the intensity

at λmax is higher for toluene than benzene (Figure 6.3) and the quantum yield

of phosphorescence is also higher. The pattern is less clear in the tri and

tetra-substituted series (Figures 6.4 and 6.5 respectively). For the former, the

quantum yield increases as the methyl groups are spaced further apart:

ArMe3 < ArMe3a < ArMe3b

In the tetramethyl-substituted complexes ArMe4a is more emissive than the

other three:
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Figure 6.2: Phosphorescent emission spectra of ArMe2, ArMe2a and ArMe2b at 77 K in MP.
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Figure 6.3: Phosphorescent emission spectra of ArH and ArMe at 77 K in MP.
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Experimental Φphos

/ nm / eV

ArH 337 3.68 0.11

ArMe 344 3.60 0.26

ArMe2 346 3.58 0.34

ArMe2a 351 3.53 0.46

ArMe2b 354 3.50 0.51

ArMe3 350 3.54 0.33

ArMe3a 355 3.49 0.37

ArMe3b 355 3.49 0.45

ArMe4 360 sh 3.44 0.34

ArMe4a 355 3.49 0.54

ArMe4b 357 3.47 0.45

ArMe5 398[a] 3.12 0.34

ArMe6 442[a] 2.81 0.23

Table 6.1: Emission wavelengths of the 0−0 band for each of the substituted-benzene com-
pounds at 77 K, in MP glass. [a]λmax, 0−0 band indistinguishable. Quantum yields were
calculated relative to toluene.227

ArMe4a < ArMe4b < ArMe4

ArMe5 and ArMe6 show decreased Φphos from the tetramethyl-substituted

compounds. They both show poorly structured emission (Figure 6.6) and weak

phosphorescence compared to the fluorescence spectrum (Appendix, Figures

9.35 and 9.36).

6.4.1 Experimental photophysical conclusions

Taking ArMe2, ArMe2a and ArMe2b as an example series, the increase in

quantum yield through the series might be due (at least in part) to a decrease

in distortion of the T1 excited state relative to the S0 ground state, given that
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Figure 6.4: Phosphorescent emission spectra of ArMe3, ArMe3a and ArMe3b at 77 K in MP.
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Figure 6.5: Phosphorescent emission spectra of ArMe4, ArMe4a and ArMe4b at 77 K in MP.
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Figure 6.6: Phosphorescent emission spectra of ArMe5 and ArMe6 at 77 K in MP.

the relative intensity of the 0−0 band increases in this order (see Chapter 1,

Section 1.7). Since the three compounds are isomeric, there is unlikely to be a

significant difference in the excitation taking place and all three have similar

energies of emission. The same pattern is seen in the ArMe3 series although

the trend in the 0−0 band is not so clear.

Distortion may also explain the difference in emission intensities of the other

compounds: the reduced quantum yields in ArMe5 and ArMe6, despite the in-

creased number of methyl groups, is presumably due to distortion from steric

crowding of the groups at the excited state.

6.5 Computational studies on benzene triplet state

The small size of benzene lends itself well to computational study since high

level calculations can be performed on a reasonable time scale. Indeed cou-

pled cluster calculations have recently been reported for all twelve fluorine-

substituted benzene compounds.230 It has also been shown that at a pla-
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nar symmetrical geometry their excitation energies can be reproduced with

good accuracy.231 For these reasons there are many studies of benzene and its

derivatives in the literature at different levels of theory. Various experimental

spectroscopic and semi-empirical theoretical studies have suggested that the

triplet excited state geometry of benzene is D2h in symmetry.232–240

6.5.1 DFT calculations

Optimisation of the T1 excited state geometry of benzene from various differ-

ent non-symmetrical starting geometries gave a structure with D2h symmetry,

shown on the left of Figure 6.7, geometry A. This geometry has two elongated

C−C bonds (1.52 Å compared to 1.39 Å) opposite to one another, in keep-

ing with structures previously discussed in the literature.232–240 In an attempt

to see if another, lower energy geometry could be found by starting from

a distorted structure, the optimised T1 geometry of 1,2,3-trimethylbenzene

(ArMe3) was used as a starting geometry for optimisation of benzene with

the three methyl groups replaced by hydrogen atoms. The resulting geometry

of this calculation is also shown in Figure 6.7, on the right hand side, geometry

B. It can be seen that the ring is twisted away from planarity and the bond

lengths altered. Neither of the two geometries showed any imaginary frequen-

cies. Interestingly, this new, lower symmetry geometry is lower in energy than

the first.

TD-DFT calculation of the S0 → T1 excitation at each geometry showed an

emission energy of 2.84 eV (437 nm) for geometry A and just 0.59 eV (2110

nm) for geometry B. While the excitation energy calculated at geometry A is

quite low in energy compared to the experimental spectrum (Figure 6.3), the

energy calculated at geometry B is extremely low, reminiscent of some of the

excitation energies calculated at distorted structures in previous chapters. It

is also interesting to note that stability calculations at each geometry show a

much lower stability for geometry B (0.12) than geometry A (1.64). Excita-

tion energies, stabilities and Λ for the two geometries are shown in Table 6.2.

The lowest energy, distorted structure will be referred to for the remainder of

this discussion.
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Figure 6.7: T1 excited state geometry A (left) and geometry B (right), optimised for benzene
by DFT. Geometry energies are given in hartrees. The C−C bond lengths (Å) are shown in
green and the dihedral angle in purple.

6.5.2 CCSD calculations

CCSD calculations at the two geometries shown in Figure 6.7 showed that,

contrary to the DFT results, the D2h geometry is in fact the lowest energy con-

figuration of benzene at the T1 excited state. This suggests that optimisation

of the T1 geometry can in some cases lead to a lowest energy geometry being

obtained which is not in fact the true minimum, despite the lowest energy

geometry normally being considered to be the true one.
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Geometry A Geometry B

Energy / eV 2.84 0.59

Wavelength / nm 437 2110

Stability 1.64 0.12

Λ 0.92 0.86

TDA energy / eV 3.32 1.55

TDA wavelength / nm 373 802

Table 6.2: Excitation energies, stabilities and Λ for the S0 → T1 excitation of benzene at the
two different T1 geometries. TDA excitation energies are calculated at the two DFT geometries
with PBE0.

6.5.3 TDA and TD-DFT geometry optimisation

Section 6.5.1 showed that for both geometries A and B of benzene, the stability

for the excitation was low, resulting in low excitation energies from TD-DFT.

Excitation energies calculated with TDA circumvented this problem, giving

higher energy excitations in each case. Although use of TDA for calculation

of the excitation energies improved the values obtained, the energies were still

low, especially for the lowest energy geometry, B. We suspected that the low

stability was adversely affecting the geometries themselves, leading to the low

excitation energies and ultimately to the incorrect geometry being predicted

as the lowest energy conformation. Geometry optimisation using TDA was

therefore attempted.

The T1 geometry optimised by TDA is shown in Figure 6.8; it is D2h in

symmetry and the lowest energy geometry found, even when starting from

the geometry of ArMe3 - there was no distorted geometry as for DFT. The

S0 → T1 excitation energy was 3.37 eV, similar to that of geometry A, when

the excitation energy was calculated by Tamm-Dancoff. This suggests that

while DFT can in some cases predict an incorrect geometry as the lowest T1

state, TDA correctly predicted the geometry for benzene.
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Figure 6.8: T1 excited state geometry optimised for benzene by TDA. The C−C bond lengths
(Å) are shown in green and the dihedral angle in purple

6.6 Calculations on substituted benzene compounds

Section 6.5 showed that DFT incorrectly predicted the lowest energy triplet

geometry of benzene if starting from a distorted structure but that TDA

predicted the correct one. We will now widen the discussion to the other

substituted-benzene compounds to see if this occurrence can be more widely

observed, or if it is an isolated case. Chapter 5 showed that optimisation

of the T1 geometry and comparison of it to the S0 geometry could be used

to predict increased rates of non-radiative decay and subsequent lowering of

quantum yields. Although rates of radiative and non-radiative decay could

not be measured experimentally for these benzene analogues, it is interesting

to see if distortion in the excited state relative to the ground state correlates

with decreased efficiency of emission. Those compounds where the 0−0 band

in the emission spectrum is lower compared to λmax should also be those which

display a large degree of distortion. Geometries calculated using DFT will first

be discussed, then those computed with TDA.

6.6.1 DFT geometries

The T1 excited state geometries of the thirteen benzene-derivative compounds

calculated by DFT are shown in Figures 6.9, 6.10 and 6.11. RMSD values be-

tween the ground state and T1 excited state geometries are shown in Table

6.3 alongside their experimental quantum yields. There appears to be a weak
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DFT TDA Φphos

RMSD / Å RMSD / Å

ArH 0.1274 0.0521 0.11

ArMe 0.0632 0.0498 0.26

ArMe2 0.0557 0.3492 0.34

ArMe2a 0.0504 0.1298 0.46

ArMe2b 0.0492 0.0478 0.51

ArMe3 0.5644 0.4965 0.33

ArMe3a 0.0524 0.0891 0.37

ArMe3b 0.0487 0.0457 0.45

ArMe4 0.0452 0.4700 0.34

ArMe4a 0.5624 0.4703 0.54

ArMe4b 0.2309 0.2068 0.45

ArMe5 0.2927 0.4740 0.34

ArMe6 0.5437 0.4649 0.23

Table 6.3: RMSD between the S0 and T1 geometries of the benzene derivatives calculated
by DFT and TDA. TDA calculations were performed with B3LYP, as were their corresponding
ground state geometries. Quantum yields of phosphorescence are shown for comparison.

correlation between those compounds which indicated distortion experimen-

tally and those predicted to do so theoretically. The exception to this is the

ArMe4 series which shows the inverse of the expected relationship.
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Figure 6.9: Lowest energy T1 excited state geometries of benzene derivatives, calculated by DFT (left) and TDA (right). ArH optimised from
distorted geometry.
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Figure 6.10: Lowest energy T1 excited state geometries of benzene derivatives, calculated by DFT (left) and TDA (right).
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Figure 6.11: Lowest energy T1 excited state geometries of benzene derivatives, calculated by DFT (left) and TDA (right).
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Figure 6.12: A graph to show the trend in excitation energies calculated for the compounds
with experimental results (at 77 K in MP) for reference. Compound numbers refer to those in
Table 6.4.

The excitation energies calculated by TD-DFT are shown in Table 6.4

alongside experimental values for the 0−0 band for comparison. The energies

predicted by TD-DFT at the DFT-optimised T1 geometry are shown in Ta-

ble 6.4 and plotted with the experimental values in Figure 6.12. As we saw

for benzene, some of the compounds with very distorted geometries showed

excitation energies that were very low; ArMe6 was the extreme case with an

imaginary excitation energy of −0.49 eV. Excitations calculated using TDA

at the DFT geometry did show an increase in energy and all excitations cal-

culated were positive but they were still much too low and did not fit the

experimental trend observed.
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Experimental TD-DFT DFT/TDA TDA

/ nm / eV / eV / eV / eV

1 ArH 337 3.68 0.59 1.55 3.37

2 ArMe 344 3.60 2.74 3.19 3.26

3 ArMe2 346 3.58 2.68 3.13 2.27

4 ArMe2a 351 3.53 2.68 3.13 3.17

5 ArMe2b 354 3.50 2.62 3.06 3.10

6 ArMe3 350 3.54 0.27 1.36 1.78

7 ArMe3a 355 3.49 2.60 3.03 3.06

8 ArMe3b 355 3.49 2.62 3.06 3.09

9 ArMe4 360 sh 3.44 3.17 3.66 1.76

10 ArMe4a 355 3.49 0.47 1.40 1.91

11 ArMe4b 357 3.47 2.41 2.84 2.92

12 ArMe5 398[a] 3.12 2.67 3.19 1.82

13 ArMe6 442[a] 2.81 -0.49 1.19 2.08

Table 6.4: Excitation energies of the benzene derivatives calculated by TD-DFT, TDA at the
DFT geometry and TDA at the TDA geometry. Experimental spectra were obtained at 77 K,
in MP glass and refer to the 0−0 band. [a]λmax since the 0−0 band is indistinguishable.

6.6.2 TDA geometries

The geometries for the thirteen compounds optimised using TDA are shown

in Figures 6.9, 6.10 and 6.11. These geometries are very different from those

optimised by DFT, a fact which is highlighted by the differences shown in

the RMSDs between the two methods (Table 6.3). For example, the RMSD of

ArMe2 according to DFT is just 0.0557 Å, but 0.3492 Å at the TDA geometry.

Conversely, the RMSD of ArH decreases from 0.1274 Å to just 0.0521 Å with

TDA. The trends in RMSD correlate much better with those in quantum yields

of phosphorescence for the TDA geometries than they did for those calculated

with DFT. There is a more convincing decrease in the RMSD from ArMe2
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through to ArMe2b, correlating with the increase in quantum yield which is

visually represented in the relative heights of the bands in the emission spectra

(Figure 6.2):

ArMe2 < ArMe2a < ArMe2b

Φphos 0.34 0.46 0.51

RMSD 0.35 0.13 0.05

The only exception to this correlation is ArMe4a. This compound has

the highest quantum yield in the ArMe4X series, but also the highest RMSD.

While the RMSD is high for the geometry optimised by both DFT and TDA,

it is lower for TDA (0.4703 Å , compared to 0.5624 Å with DFT) and es-

sentially the same degree of distortion as ArMe4 (RMSD = 0.4700 Å). It

could be that inclusion of a solvent model in the TDA geometry optimisation

(which is not at present possible with QChem) could alter the geometry found.

While there is a visible improvement in the trend in predicted excitation ener-

gies calculated by TDA from those computed by TD-DFT (Figure 6.12), the

trend is still dissimilar to the experimental one. Noticeably, the compounds

with the low excitation energies are those predicted to show significant distor-

tion both experimentally and according to TDA. For example, ArMe2 shows

2.27 eV for S0 → T1 compared to 3.17 and 3.10 eV for ArMe2a and ArMe2b

respectively.

6.7 Concluding remarks

The emission spectra of benzene and its twelve methyl-substituted derivatives

have been measured and trends in their quantum yields of phosphorescence

established. The quantum yields alongside relative intensities of bands in the

emission spectra were used to indicate distortion in the excited state of the

compounds relative to the ground state. The relative distortions were com-

pared and contrasted with RMSD between the T1 and S0 geometries for the

thirteen compounds calculated by both DFT and TDA.
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Analysis of the results (along with coupled cluster calculations) showed that

DFT can, in some cases, predict the incorrect lowest energy T1 geometry. This

was illustrated by calculations on benzene and widened to the larger set of

compounds; the TDA and DFT geometries were dissimilar and the TDA ge-

ometries showed a better correlation with the experimental results obtained.

Compounds showing a large degree of distortion between the ground and ex-

cited states consistently showed poor correlation between predicted and exper-

imental energies of emission. Care should therefore be taken when using opti-

mised triplet DFT geometries in case the incorrect geometry is assigned: the

lowest energy geometry is not necessarily the correct one. It should be noted

however that these compounds were the extreme example with exceptionally

high orbital overlap (leading to low stability) and were designed specifically

to test this theory.
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Application of TD-DFT to other

contemporary Pt(II) complexes

7.1 Introduction

The computational studies in Chapters 2 and 3 focused predominantly on

the use of TD-DFT to predict absorption and emission energies respectively.

Chapter 6 discussed the use of distortion at the triplet state geometry to

predict relative rates of non-radiative decay in small, organic, molecules while

Chapter 5 augmented this discussion to a series of larger, phosphorescent,

Pt(II) complexes. Equation 7.1 shows that the quantum yield of luminescence

is dependent on both the rate of radiative and non-radiative decay, such that

a sufficiently low value of the former, or a high of the latter, can result in a

lack of detectable room temperature emission from any given compound.

Φlum =
kr

kr + Σknr
(7.1)

It is well known that both the degree of orbital overlap and the magnitude of

metal character in a given transition have significant influence on the rate of

radiative decay, kr, for phosphorescent emission. The Franck-Condon princi-

ple states that transitions with a high degree of orbital overlap will be more

favourable than those with a low degree of overlap, and will therefore proceed

at a faster rate (see Chapter 1, Section 1.7). Orbital overlap can be quantified

241
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computationally using TD-DFT, calculating Λ as discussed in Chapter 3. The

heavy metal atom in a complex, such as platinum or ruthenium, introduces

spin-orbit coupling, making formally forbidden intersystem crossing (ISC) and

phosphorescent emission more allowed. For this reason, compounds with a

high degree of metal character in the phosphorescent transition are likely to

have a high kr, since the transition should be more allowed, while the inverse

is true of those with a low degree of metal character.

There are many factors affecting the rate of non-radiative decay, not all of

which can be easily quantified (such as quenching by interaction with other

molecules e.g. solvent interactions, aggregate formation, O2 quenching). One

of the significant contributors to Σknr which can be quantified is geometric

distortion between the excited state and ground state, the increasing degree

of which facilitates non-radiative decay in line with the energy gap law.

In previous chapters we have seen various examples of compounds synthe-

sised with their photophysical properties rationalised, explained or predicted

with the use of DFT. While it is important to study some such sets in detail

in order to fully understand the effect of various parameters on the values

and properties predicted, it is also important to apply these techniques to a

wider variety of complexes, to see if the same theories hold true, precipitating

reliable results. In this chapter, various different compounds (made by other

groups or people) will be considered to see if the DFT can reliably account for

their photophysical properties, using the techniques outlined in the previous

chapters, with a particular focus on quantum yield of emission. At the end of

this chapter values for Mulliken charges on the Pt atom, Λ (for orbital over-

lap) and RMSD (for distortion) for all complexes discussed are summarised

in one large table together (Table 7.6) for comparison of different complexes

with one another.

7.1.1 DFT calculations

Apart from the exceptions outlined in the text, DFT and TD-DFT calculation

described in this chapter were performed using PBE0, in DCM, using a PCM
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for solvent. The LANL2DZ basis set was used for platinum and cc-pVDZ

for all other atoms. Ground state and triplet excited state geometries were

optimised by direct minimisation of the SCF energy and checked to be a true

minimum by frequency calculations at the same level of theory. Convolution

of absorption spectra was achieved using a 0.6 eV full width at half maximum

Gaussian.

Chapter 3 showed the importance of the inclusion of solvent in some calcula-

tions for prediction of the correct transition. The exceptions in the text are

those where published results were reported in vacuum; solvent calculations

were also performed to ensure the correct transition was predicted. PBE0 was

chosen as a functional due to the increased triplet instabilities experienced by

CAM-B3LYP. In such calculations, geometry optimisation by direct minimi-

sation of the SCF energy using PBE0 can be used initially to assess the type

of transition taking place, then the functional and method altered if necessary

(e.g. CAM-B3LYP with TDA).

7.2 PtL1−4Cl and PtLF1−4Cl compounds revisited

Table 7.1 shows that the efficiency of emission of the PtL1−4Cl and PtLF1−4Cl

compounds (discussed in Chapter 2) varies dramatically: PtLF2Cl has a very

high quantum yield of 0.87 while PtLF4Cl has a low quantum yield of just

0.02. The only difference between these two compounds (which have fairly

similar energies of emission, 467 and 494 nm respectively) is the position of

the methyl groups on the pyridine ring.

The quantum yields of the PtLnCl series increase in the order:

PtL4Cl < PtL3Cl < PtL1Cl < PtL2Cl

The same pattern is shown for the PtLFnCl series, with the exception of

PtLF1Cl, which has a low quantum yield. While there is some variation of

both energy of emission and orbital overlap (Λ) with position of the methyl

group, neither are of significant magnitude to explain the vastly different effi-

ciencies of emission observed. Inspection of the geometries and density differ-

ence plots of these eight complexes shows that, unlike the other compounds,
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Emission Φlum kr Σknr

λmax / nm / 104 s−1 / 104 s−1

PtL1Cl 497, 529, 565 sh 0.51 6.6 6.3

PtL2Cl 487, 521, 560 0.73 7.3 2.7

PtL3Cl 494, 528, 565 sh 0.13 1.2 7.8

PtL4Cl 506, 529, 569 sh 0.03 − −

PtLF1Cl 487, 513, 555 sh 0.39 5.3 8.4

PtLF2Cl 467, 498, 529 sh 0.87 11 1.6

PtLF3Cl 478, 510, 543 sh 0.67 6.4 3.1

PtLF4Cl 494, 530, 565 sh 0.02 − −

Table 7.1: Luminescence data for PtL1−4Cl and PtLF1−4Cl in degassed DCM solution at 298
K. kr and Σknr are the radiative and non-radiative rate constants estimated from the quantum
yield and lifetime at 298 K.

PtL4Cl, PtLF1Cl and PtLF4Cl show significant distortion away from planarity

at both the S0 and T1 geometries, due to steric interactions between the methyl

groups and either the chlorine or fluorine atoms (Figure 7.1). This distortion

occurs to such an extent that the density difference plots of the S0 → T1

excitation at the T1 geometry are altered (Figure 7.2). Furthermore, these

three complexes show distortion between the S0 and T1 geometries, leading

to non-radiative decay (Figure 7.3). Consideration of the relative intensities

of the vibronic bands in the emission spectra of these complexes (Table 7.2)

confirms experimentally that there is distortion between the two states since

the intensity of the 0−1 vibronic band relative to the 0−0 band is increased

in PtL4Cl, PtLF1Cl and PtLF4Cl compared to the other five compounds.

Table 7.1 shows that the increased efficiency of emission of PtL2Cl compared

to PtL1Cl, and PtL1Cl over PtL3Cl, is due to both an increase in the rate

of radiative decay, kr, and a decrease in the rate of non-radiative decay, knr.

Distortion is lowest for PtL2Cl (decreasing knr) and highest for PtL1Cl, while

Λ is highest for PtL3Cl (increasing kr) and lowest for PtL2Cl. The overall

efficiency of emission of these is then due to subtle differences in a variety of
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Figure 7.1: Density difference plots for the S0 → T1 excitation of PtL1−4Cl (top) and PtLF1−4Cl
at the triplet excited state geometry, T1.
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Figure 7.2: PtL1−4Cl (top) and PtLF1−4Cl at the triplet excited state geometry, T1, viewed
along the Cl−Pt−C bond.

Intensity of 0−0 Intensity of 0−1 Intensity of 0−2

PtL1Cl 1 0.66 0.27

PtL2Cl 1 0.60 0.28

PtL3Cl 1 0.58 0.24

PtL4Cl 1 0.70 0.30

PtLF1Cl 1 0.86 0.43

PtLF2Cl 1 0.55 0.23

PtLF3Cl 1 0.56 0.23

PtLF4Cl 1 0.70 0.36

Table 7.2: Experimental values for the intensity of the 0−n vibronic bands relative to the
intensity of the 0−0 vibronic band for the PtLnCl and PtLFnCl series of complexes.
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Figure 7.3: Superimposed structures of the S0 ground state (red) and T1 excited state (green)
for the eight PtL1−4Cl (top) and PtLF1−4Cl complexes, viewed along the Cl−Pt−C bond.

factors.

7.3 Acetylacetonate compounds

7.3.1 Introduction and experimental considerations

A series of ortho-platinated complexes bound to various β-diketonate ligands

of the form [Pt(N∧C)(O∧O)] were synthesised by Spencer et al. to study their

liquid crystal and luminescent properties.241 Complexes of this type usually

have an excited state located on the metal and cyclometallated ligand, with

the second (in this case β-diketonate) an innocent auxiliary ligand, having

little effect on the emission properties observed. The compounds investigated

were those shown in Figure 7.4, with long alkoxy chains R and R′ on either

end of the ppy ligand. The tfac complex showed formation of two different

isomers, designated cis and trans according to the relative positions of the

CF3 group and the pyridyl ring about platinum. While one could be favoured

in synthesis, it could not be achieved specifically, and a single isomer could

not be obtained for photophysical study. Despite this, by recrystallisation, a

36:1 ratio could be purified and study of this alongside a sample of a 1:1 mix-

ture of the isomers allowed some understanding of the electronic properties of

the individual isomers. It was concluded that the trans isomer emitted at a

higher energy than the cis, but with a significantly lower quantum yield since,

when in a 1:1 ratio, emission from the cis dominated the spectrum (Figure
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Figure 7.4: The chemical structures of the four acac complexes studied.

7.5). Unexpectedly, the hfac complex was not emissive at room temperature.

Given that the O∧O ligand was not initially expected to be involved in the

excited state, the drastic drop in emission efficiency upon alteration of this

ligand from acac or tfac to hfac was surprising.

In an attempt to understand the range of emission efficiencies observed, DFT

calculations were performed on the four analogous complexes shown in Figure

7.4 where R = R′ = H. The alkoxy chains were removed from those studied

experimentally, since the effect had been shown to be the same over a range of

substituents, and because the extra computational time associated with such

long chains was prohibitive.

7.3.2 Ground state studies

The ground state geometries of the four compounds shown in Figure 7.4 were

optimised by DFT with both PBE0 and CAM-B3LYP, in vacuum and with

a PCM for DCM. All four methods gave essentially the same results, those

shown are for PBE0 with DCM. Some of the key bond lengths and angles

calculated for cis-[Pt(ppy)(tfac)] and trans-[Pt(ppy)(tfac)] at the S0 geometry

are shown in Figure 7.6. They show good agreement with those found for a
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Figure 7.5: The emission spectra of [Pt(ppy)(tfac)] in EPA glass at 77 K. Green line: the
spectrum of the 1:1 mixture of isomers. Purple line: corresponding spectrum of the sample in
which one isomer has been concentrated to 36:1 by fractional recrystallisation.

Figure 7.6: Bond lengths (Å) and angles ( ◦) calculated by DFT for trans-[Pt(ppy)(tfac)] and
cis-[Pt(ppy)(tfac)] at the ground state geometry.

closely related compound in the crystal structure of the trans isomer with a

methyl group on the phenyl ring. Figure 7.6 shows that, despite the difference

in quantum yield observed experimentally, there is little difference in bond

lengths and angles between the two isomers at the ground state geometry.

Density difference plots for the S0 → T1 excitation at the ground state ge-

ometry are shown in Figure 7.7; they show a marked difference between

[Pt(ppy)(hfac)] and the other three compounds. While [Pt(ppy)(hfac)] shows

electron depletion from the aryl ring of the ppy ligand and augmentation on
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the hfac ligand, the other three complexes display rearrangement of electron

density on the ppy ligand upon excitation, consistent with normal excited

states in these complexes: dPt/πN∧C → π∗N∧C (mixed MLCT/LLCT). The

change in excitation shown for [Pt(ppy)(hfac)] can presumably be attributed

to the stabilisation of the π∗ orbitals by the electron-withdrawing groups to

such an extent that the LUMO is positioned there instead. Interestingly, the

LUMO of [Pt(ppy)(hfac)] is very similar to the LUMO+2 of [Pt(ppy)(acac)]

(Figures 9.38 and 9.37), in keeping with the findings of Ghedini et al. who

showed that for some related cyclometallated Pt(II) and Pd(II) complexes the

LUMO and LUMO+1 swapped between the acac and hfac complexes.242 The

excitation associated with [Pt(ppy)(hfac)] has a lower orbital overlap (Λ =

0.42), perhaps explaining in part the lower quantum yield observed due to the

lower rate of radiative decay.

7.3.3 Triplet excited state studies

Optimisation of the first triplet excited state geometry, T1, for each of the

four complexes shows another probable origin for the variation of emission

efficiency between the four complexes. Figure 7.8 shows the T1 geometry of

each complex superimposed upon its respective ground state geometry, S0. It

clearly shows that [Pt(ppy)(acac)] undergoes virtually no geometrical distor-

tion upon excitation while, to varying degrees, all of the other three do, the

largest change in geometry being shown by [Pt(ppy)(hfac)]. The significant

distortion in [Pt(ppy)(hfac)] resulting in an increase in non-radiative decay,

combined with decrease in radiative decay already discussed, suggests an ori-

gin for the lack of emission displayed by the hfac complexes in general.

The distortion of cis-[Pt(ppy)(tfac)] and trans-[Pt(ppy)(tfac)] again provide

a possible explanation for the difference in emission efficiencies displayed by

these two isomers. Quantification of the extent of distortion by calculation of

the root-mean-square displacement of the atoms between the two states (S0

and T1) shows that the extent of distortion increases in the order:

[Pt(ppy)(acac)] < cis-[Pt(ppy)(tfac)] < trans-[Pt(ppy)(tfac)] < [Pt(ppy)(hfac)]
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Figure 7.7: Density difference plots for the S0 → T1 excitation of the four complexes at the
ground state geometry: (a) [Pt(ppy)(acac)]; (b) [Pt(ppy)(hfac)]; (c) trans-[Pt(ppy)(tfac)]; (d)
cis-[Pt(ppy)(tfac)].
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Figure 7.8: Superimposed structures of the S0 ground state (red) and T1 excited state (green)
for the four complexes of Figure 7.4. (a) [Pt(ppy)(acac)]; (b) [Pt(ppy)(hfac)]; (c) trans-
[Pt(ppy)(tfac)]; (d) cis-[Pt(ppy)(tfac)].

This suggests that the trans isomer distorts more in the triplet state than the

cis, leading to a greater rate of non-radiative decay and therefore less efficient

emission.

7.4 Effects of cis/trans isomerisation on emission in styryl-appended

platinum complexes

7.4.1 Experimental studies

The compound shown in Figure 7.9 was synthesised by Nisic et al. for studies

into its potential for use in OLEDs.4 The absorption and emission properties

of the complex were found to change upon irradiation with light as, upon

irradiation, the trans isomer isomerised to the cis (Figure 7.10). Prior to ir-

radiation, weak green phosphorescence was observed at room temperature in

the form of a highly structured emission spectrum with the 0−0 band highest

in intensity, the spectrum being very similar in nature to that of PtL5Cl. At

77 K, in EPA glass, a vibrational structured emission was observed in the

red region of the spectrum (λ = 600-800 nm). After irradiation, there was

a substantial increase in the intensity of emission which remained green and

structured with the 0−0 band highest in intensity. The low temperature emis-

sion spectrum showed a new set of bands between 480 and 600 nm (typical
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Figure 7.9: The chemical structures of the two isomers studied.

for PtL5Cl-type emission) together with (though much more intense than) the

lower energy bands observed prior to irradiation. A change was also observed

in the absorption spectrum following irradiation, the complex absorbed more

weakly for λ > 310 nm and at a higher energy lacked the lower energy shoul-

der centred around 425 nm..

It was concluded that the higher energy emission was attributable to the

cis isomer whose emission was of the same character as PtL5Cl both at room

temperature and 77 K. The lower energy bands observed at 600-800 nm were

only seen at 77 K and emanated from the trans isomer which did not emit at

room temperature. The cis isomer absorbed more weakly and to a higher en-

ergy than the trans. In an attempt to reproduce the experimentally obtained

trends to confirm the behaviour of each isomer and to better understand the
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Figure 7.10: Left: emission spectra of PtL10Cl at 77 K in EPA glass before and after UV
irradiation. Right: absorption spectra of PtL10Cl in DCM at 298 K before and after irradiation
with a UV lamp for 7 minutes.

origin of their difference in photophysical properties, both were studied by

TD-DFT at the ground state and the triplet excited state geometry, T1.

7.4.2 Ground state DFT studies

As found experimentally, the convoluted absorption spectrum shows that the

cis isomer of PtL10Cl absorbs less intensely, and at a higher energy than the

trans (Figure 7.11). Analysis of the density difference plots for the first three

S0 → Sn excitations (Figure 7.13) shows that each of the three transitions is

essentially the same in nature for both isomers, but higher in energy and with

a lower oscillator strength for cis. The spectrum in both cases is dominated by

the S0 → S3 transition in which the pendant participates in both the electron

accretion and depletion plots.

7.4.3 Excited state DFT studies

Figure 7.14 shows the density difference plots for the S0 → T1 excitation at the

T1 excited state geometry for both isomers of PtL10Cl. These show that for

emission, the transition is very different for the two isomers. PtL10−cisCl shows
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Figure 7.11: Convoluted absorption spectra of PtL10−cisCl and PtL10−transCl calculated by TD-
DFT at the ground state optimised geometry. Individual excitations are shown by the vertical
lines (also shown in Appendix, Table 9.23).

almost no pendant involvement in the excitation, which looks very like that

of the compound without the pendant, PtL5Cl in character.53 In contrast, the

density difference plots for PtL10−transCl show movement of the electron den-

sity almost entirely on the pendant itself. The low metal character involved

in emission for this complex means that despite the high orbital overlap (Λ =

0.64 for trans, 0.39 for cis), emission from the triplet state is weak with a rate

of radiative decay too low to be observed at room temperature and resulting

in a lifetime at 77 K which is longer for trans than for cis (13 and 6.7 µs

respectively). The extended conjugation for PtL10−transCl results in the lower

emission energy which is similar to that of E-stilbene phosphorescence (λmax

= 580).243

Despite the high degree of distortion shown for the cis isomer, it is thought

that distortion of the triplet excited state relative to the singlet ground state,
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Figure 7.12: Density difference plots for excitation of PtL10−cisCl at the optimised ground state
geometry, S0.

Figure 7.13: Density difference plots for excitation of PtL10−transCl at the optimised ground
state geometry, S0.
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Figure 7.14: Density difference plots for the S0 → T1 excitation of PtL10−cisCl (top) and
PtL10−transCl (bottom) at the triplet excited state geometry, T1.

leading to non-radiative decay, is not in this case a significant factor. In fact

while the RMSD is 1.7906 Å (compared to 0.0563 Å for the trans isomer),

upon comparison of the structure of the two states after removal of the pen-

dant moiety, the RMSD is reduced to 0.0147 Å (0.0126 Å for trans), showing

that the displacement was just due to a slight movement in the whole pendant,

resulting in a extremely high value for the complex as a whole (Figure 7.15).

Since the pendant arm is not involved in the transition in the case of the cis

isomer, and due to the nature of its origin, this is thought to be unimportant.
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Figure 7.15: Superimposed structures of the S0 ground state (red) and T1 excited state (green)
for the two isomers of PtL10Cl.

Figure 7.16: The chemical structures of the two phosphinine complexes studied.

7.5 Platinum complexes with a phosphinine ligand

7.5.1 Introduction and experimental considerations

Moussa et al. synthesised the first example of a luminescent, cyclometal-

lated, Pt(II) complex with a phosphinine co-ligand, PtPhos, shown in Figure

7.16.244 Although there are a few reports on the coordination chemistry of
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Figure 7.17: Density difference plots for excitation of PtPhos at the triplet excited state geom-
etry, T1.

phosphinines with Pt(II),245;246 there are no studies into the electronic excited

states of such compounds. A cyclometallated, tris-P∧C coordinated Ir(II)

complex was recently shown to be non-emissive even at low temperature due

to non-radiative decay.247 PtPhos displayed phosphorescent emission at 77 K

in EPA glass (λmax = 586 nm) with a long lifetime of 230 µs. The low temper-

ature emission spectrum was very similar to that of the phosphorescence band

displayed by the phosphinine proligand, only without an accompanying fluo-

rescence band, and the phosphorescence lifetime was two orders of magnitude

shorter for the complex. This suggested that the T1 excited state was similar

in character to that of the proligand, incorporating enough metal character to

promote intersystem crossing and emission from T1 → S0, thus increasing the

radiative rate constant and shortening the lifetime.

7.5.2 DFT calculations

PtPhos

Density difference and orbital plots for the S0 → T1 excitation at the triplet

geometry (calculated with PBE0 in DCM) are shown in Figures 7.17 and 7.18

respectively, with orbital contributions shown in Table 7.3. The excitation is

shown to be predominantly HOMO → LUMO in character, with both sets of

orbitals centred on the phosphinine ligand trans to the cyclometallated carbon.

Although there is precedent for this type of transition,84;85 it is unusual since,

as highlighted in Section 7.3, in Pt(N∧C)-type complexes the excitation is
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Figure 7.18: HOMO and LUMO orbital plots for excitation of PtPhos at the triplet excited state
geometry, T1.

Transition Contribution

PtPhos

HOMO → LUMO 0.739

HOMO ← LUMO 0.280

PtPhosMe

HOMO → LUMO 0.659

HOMO → LUMO+2 −0.126

HOMO ← LUMO 0.101

Table 7.3: Dominant orbital contributions for excitation from S0 to T1 at the triplet excited
state geometry of PtPhos and PtPhosMe.

more normally centred on the cyclometallated ligand. The excitation has a

high degree of orbital overlap (Λ = 0.76) but despite this the rate of radiative

decay is low which is probably due to the low metal character associated with

the transition, resulting in the long lifetime.

PtPhosMe

DFT calculations were also performed on PtPhosMe (Figure 7.16), initially

in an attempt to reduce calculation time involved in investigating PtPhos.

Figures 7.19 and 7.20 show though that the excitation S0 → T1 excitation (at
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Figure 7.19: Density difference plots for excitation of PtPhosMe at the triplet excited state
geometry, T1.

Figure 7.20: HOMO and LUMO orbital plots for excitation of PtPhosMe at the triplet excited
state geometry, T1.

the triplet geometry) is very different for this compound from that observed

for PtPhos, serving as a reminder that it is not always possible to replace

bulky, computationally expensive groups with smaller ones as models as is

commonplace in the literature. The excitation is based instead on the ppy

ligand and involves a greater degree of metal character suggesting a much

higher rate of radiative decay would exist for this compound, increasing the

efficiency of emission.

7.6 Pt(II) compounds of ligands featuring 6-membered chelate rings

7.6.1 Introduction

As previously discussed, the N∧N∧N-coordinated [Pt(tpy)Cl]+ is non-emissive

in solution at room temperature despite its rigid terdentate ligand.248 This
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is thought to be because of a rather weak ligand field as a result of the poor

N−Pt−N angle. Maximum orbital overlap would be achieved by a ligand

with a bite angle of 180◦ while tpy only achieves an angle of 163.5(7)◦ in

[Pt(tpy)Cl]ClO4.
249 This reduction in efficiency of emission is again illustrated

by two ruthenium complexes, [Ru(tpy)2]
2+ and [Ru(bpy)3]

2+. The former,

with N−Ru−N angles of 158.3(3) - 159.1(2)◦ and a subsequently weaker ligand

field is essentially non-emissive at room temperature,250–253 while [Ru(bpy)3]
2+

has a quantum yield of 0.028 even in aerated aqueous solution at room tem-

perature.254

Larger bite angles afforded by 6-membered chelation have proved a possible

route to more efficient emission. Use of 2-(8-quinolyl)-1,10-phenanthroline as a

ligand gives an N∧N∧N-coordinated Pt(II) complex with one 5-membered and

one 6-membered chelate ring, with a quantum yield of 0.002 in DCM at room

temperature, due to the relieved ring strain.255 Two complexes, each incor-

porating two 6-membered chelates around Pt(II) with N∧C∧N coordination,

were therefore synthesised by previous members of the group to investigate

whether the emissive properties of the complexes could be made more efficient

in this way (Figure 7.22).

Perhaps surprisingly, neither complex showed improved efficiency of emis-

sion compared to the 5-membered chelate ring, N∧C∧N-coordinated complex,

PtL5Cl. PtL11Cl had a quantum yield of luminescence (in degassed DCM

solution at room temperature) of just 1.6%28 (compared to 60% for PtL5Cl)

while PtL12Cl showed no room temperature emission at all (Figure 7.22).256

Although the energy of emission of PtL11Cl at 298 K (in DCM) was very low

(λmax = 645 nm), the rate of non-radiative decay was extremely low (7× 104

s−1 compared to 5.5 × 104 s−1 for PtL5Cl - λmax = 491 nm). The reduced

efficiency of emission was therefore due to a low rate of radiative decay (103

s−1).
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Figure 7.21: The chemical structures and emission properties of the Pt(II) complexes with two
6-membered chelate rings.

7.6.2 Calculations

TD-DFT was employed to help understand the reduced efficiencies of these

complexes compared to similar complexes with 5-membered chelate rings. Op-

timised ground state geometries of the two complexes are shown in Figure 7.22.

They show that the 6-membered chelate rings about platinum did indeed re-

lieve ring strain, giving N∧C∧N angles of 179.2◦ and 179.6◦ for PtL11Cl and

PtL12Cl respectively (compared to 161.2◦ for PtL5Cl). Both geometries show

twisting of the ligand to achieve this angle (Figure 7.22). The ground state

and triplet state geometries of both complexes were very similar, with RMSDs

of just 0.1416 (PtL11Cl) and 0.1528 (PtL12Cl), in keeping with the low rate of

non-radiative decay observed experimentally for PtL11Cl.

Orbital and density difference plots for the S0 → T1 excitation of PtL11Cl and

PtL12Cl at the T1 geometry are shown in Figures 7.23 and 7.24 respectively.

PtL11Cl shows moderate orbital overlap for the excitation (Λ = 0.60) but low

metal character. The combination of the two of these results in the low rate of

radiative decay observed experimentally. PtL12Cl shows lower orbital overlap

(Λ = 0.40) than PtL11Cl and a higher Mulliken charge on the platinum atom

at both S0 and T1 states of the T1 geometry (Table 7.6), indicating a lower
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Figure 7.22: S0 optimised geometries of PtL11Cl (left) and PtL12Cl (right), viewed from the
front (top) and along the Cl−Pt−C bond (bottom).

involvement of the platinum in the excitation. This combination of factors

could therefore be reducing the rate of radiative decay to such a degree that

no room temperature emission is observed.

7.7 Compounds with a tetradentate ligand

7.7.1 Introduction

As discussed in Chapter 1, rigidity within the ligand can help to prevent dis-

tortion, reducing the propensity to non-radiative decay by this route. In sharp

contrast to the high quantum yield of PtL5Cl, cis-[Pt(ppy)2] (with two biden-

tate ligands) exhibits little emission at room temperature. This is due to D2d

distortion in the excited state.93 A tetradentate ligand, made up of two ppy

groups, bound by an −NPh linker, and bound with C∧N∧N∧C-coordination

to Pt(II), was synthesised by Vezzu et al.94 The increased rigidity afforded

by the tetradentate ligand prevents D2d distortion, and the positioning of the

carbon atoms cis to one another prevents unfavourable trans interactions.
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Figure 7.23: Orbital and density difference plots for the S0 → T1 excitation of PtL11Cl at the
T1 geometry.

Figure 7.24: Orbital and density difference plots for the S0 → T1 excitation of PtL12Cl at the
T1 geometry.
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Transition Contribution

PtL11Cl

HOMO−3 → LUMO −0.117

HOMO−1 → LUMO −0.253

HOMO → LUMO 0.624

HOMO ← LUMO 0.133

PtL12Cl

HOMO−4 → LUMO −0.235

HOMO → LUMO 0.610

HOMO → LUMO+4 −0.106

Table 7.4: Dominant orbital contributions for excitation of PtL11 and PtL12 from S0 to T1 at
the triplet excited state geometry.

The compound most like cis-[Pt(ppy)2] showed highly efficient emission with

a quantum yield of 0.74 (in degassed 2-methyltetrahydrofuran at 298 K). The

only difference between this complex and cis-[Pt(ppy)2] was the linker between

the two N∧C ligands; the two complexes showed similar excited states in TD-

DFT studies. The significant increase in emission can then be attributed to

the increased rigidity.

In view of the possible advantages in emission offered by increased rigidity,

two tetradentate Pt(II) complexes were made by previous members of the

group to investigate their luminescent properties. Both are shown in Figure

7.25; PtL13 was found to be highly emissive with a quantum yield of 0.74 in

solution at room temperature257 while PtL14 was only emissive at 77 K.258

7.7.2 Calculations

Comparison of the ground state and T1 excited state geometries of the two

tetradentate platinum(II) complexes showed that both had very little distor-

tion between the two geometries. The RMSD of PtL13 was 0.0211 Å and PtL14

was 0.0283 Å, indicating that the increased rigidity of the tetradentate ligand
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Figure 7.25: The chemical structures of the two complexes with a tetradentate ligand.

did prevent distortion between the ground state and excited state geometries

for these two complexes.

For PtL13, the low rate of non-radiative decay, combined with high orbital

overlap (Λ = 0.68) and moderate contribution of the metal to the excited

state (Figure 7.26) resulted in a high quantum yield of luminescence (0.74 in

degassed DCM solution). This was despite a relatively low energy of emission

(λmax = 585 nm in DCM at 298 K).

In spite of the similarity of the ground state and excited state geometries

of PtL14 and its structural similarity to PtL13, no room temperature emission

was observed. Low temperature emission (at 77 K in EPA glass) from PtL14

showed λmax of 599 nm indicating that it emits in the same region of the spec-

trum as PtL13. This suggests that the effect is not a result of non-radiative

decay due to lower energy emission. Comparison of Figures 7.26 and 7.27

alongside the Mulliken charges on platinum for both complexes (Table 7.6)

shows that the metal character of the excitation in PtL14 is reduced from that



268 · Concluding remarks

Transition Contribution

PtL13

HOMO−1 → LUMO −0.142

HOMO → LUMO 0.630

HOMO → LUMO+1 0.217

HOMO ← LUMO 0.110

PtL14

HOMO → LUMO 0.693

Table 7.5: Dominant orbital contributions for excitation of PtL13 and PtL14 from S0 to T1 at
the triplet excited state geometry.

in PtL13. The Mulliken charges of PtL14 are much higher at both the ground

and excited states than on PtL13. The orbital overlap is also reduced (Λ =

0.46 for PtL14 compared to 0.68 for PtL13). The combination of reduced metal

character and lower orbital overlap then points to a reduced rate of radiative

decay in PtL13 compared to PtL14; this leads to a reduced quantum yield of

luminescence.

7.8 Concluding remarks

In this chapter we have seen the importance of both minimising the rate of

non-radiative decay and maximising the rate of radiative decay for efficiency

of emission and high quantum yields of luminescence. Methods discussed in

previous chapters for predicting non-radiative decay through distortion have

been applied successfully to a wider variety of platinum(II) complexes. Dis-

cussion of orbital overlap (quantified by Λ) and metal character of excitations

have provided a route to better predict rates of radiative decay using DFT.

While obtaining numerical values which depict geometrical distortion and or-

bital overlap is relatively straightforward, considering the contribution of the

metal atom to the excitation is much more qualitative and a combination of

orbital plots and Mulliken charge analysis had to be used. Ideally, future

work in this area could focus on deriving a means to obtain a more quantita-
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Figure 7.26: Orbital and density difference plots for excitation of PtL13 from S0 to T1 at the
triplet geometry.

Figure 7.27: Orbital and density difference plots for excitation of PtL14 from S0 to T1 at the
triplet geometry.
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S0 Mulliken T1 Mulliken Λ RMSD

charge charge / Å

PtL1Cl 0.720 0.678 0.63 0.0253

PtL2Cl 0.722 0.674 0.62 0.0236

PtL3Cl 0.708 0.668 0.65 0.0246

PtL4Cl 0.571 0.573 0.58 0.2204

PtLF1Cl 0.657 0.634 0.55 0.2389

PtLF2Cl 0.724 0.696 0.64 0.0232

PtLF3Cl 0.712 0.692 0.65 0.0247

PtLF4Cl 0.571 0.611 0.61 0.2648

[Pt(ppy)(acac)] 0.769 0.736 0.64 0.0261

[Pt(ppy)(hfac)] 0.922 0.898 0.42 0.4185

trans-[Pt(ppy)(tfac)] 0.796 0.779 0.49 0.3101

cis-[Pt(ppy)(tfac)] 0.807 0.790 0.46 0.2496

PtL10−cisCl 0.631 0.633 0.39 1.5608

PtL10−transCl 0.628 0.628 0.64 0.2605

PtPhos 0.431 0.456 0.76 2.0603

PtPhosMe 0.392 0.390 0.68 0.0969

PtL11Cl 0.601 0.596 0.60 0.1416

PtL12Cl 0.769 0.721 0.40 0.1528

PtL13Cl 0.943 0.927 0.68 0.0211

PtL14Cl 1.134 1.119 0.46 0.0283

Table 7.6: Values for Mulliken charges on Pt, Λ (to quantify orbital overlap) and distortion
(RMSD) for the twenty complexes studied in this chapter. S0 and T1 excited state Mulliken
charges are for platinum at the T1 geometry. Λ was calculated using PBE0 in vacuum and,
just for PtPhos, 6-31G as a basis set on all atoms except Pt. Root-mean-square displacement
between the ground state and T1 excited state geometries of each of the complexes, calculated
by DFT.
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tive measure of this value where only the electron concerned in the excitation

is considered instead of the overall charge on the metal atom.





8

Experimental

8.1 Materials and equipment

8.1.1 General experimental

All solvents used were Analar quality (with the exception of acetonitrile which

was HPLC grade) and were used without further purification. Dry, air-free

solvents were obtained by passing through a Pure Solv 400 solvent purification

system. Water was purified using the PuriteSTILL PlusTM system and had a

conductivity of 0.04 µS cm−1. Unless stated otherwise all reagents were used

as supplied from commercial sources. Reactions requiring an inert atmosphere

were carried out using Schlenk line techniques under an atmosphere of dry ni-

trogen.

Thin layer chromatography (TLC) was carried out on silica plates (Merck

Art 5554) which were fluorescent upon irradiation at 254 nm. Column chro-

matography was carried out using silica (Merck Silica Gel 60, 230-400 mesh).

HPLC was achieved using an analytical Varian LC-diode array detector, then

a semi-prep Varian LC- UV-vis detector. A gradient solvent system of ace-

tonitrile/water was used.

273
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8.1.2 Characterisation techniques

1H NMR spectra were recorded in the indicated solvents on Mercury-400,

Varian-200, Varian-500, Varian VNMRS-600 or Huple-VNMRS-700 MHz in-

struments. 13C spectra were recorded at 126 MHz on the Varian Inova-500 or

at 176 MHz on the Huple-VNMRS-700 MHz. Chemical shifts are quoted rel-

ative to the appropriate protio-solvent resonances, and all J values are given

in Hz. Owing to chemical shift anisotropy, 195Pt−1H couplings become poorly

resolved at high fields (e.g. 700 MHz) and so in some cases it is not possible

to record the corresponding J value.

Low-resolution electrospray mass spectra (ES) were recorded using a Thermo

Finnigan LTQ FT mass spectrometer, with methanol or acetonitrile as the

carrier solvent. Accurate ES mass spectra were obtained using either a LCT

Premier XE mass spectrometer (Waters Ltd, UK) or a LTQ FT mass spec-

trometer (Thermo-Finnigan Corporation).

C, H and N analysis was achieved using an Exeter Analytical E-440 elemental

analyser.

8.1.3 Photophysical characterisation

UV/Vis absorption spectra were measured using a Biotek Instruments UVIKON

XS spectrometer operating with LabPower software. The sample was held in

a quartz cuvette of 1 cm path length, and spectra were recorded against a

reference of pure solvent held in a matched cuvette. Extinction coefficients

were determined using a dilution method, and graphical application of the

Beer-Lambert law:

A = ε l c (8.1)

A represents absorbance, ε molar absorptivity, l the path length and c the

concentration of the sample.

Solution-based emission and excitation spectra were acquired on a Jobin Yvon-
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Spex Fluoromax-2 spectrometer. All samples were contained within quartz

cuvettes of 1 cm path length. Samples that were to be measured in the ab-

sence of air were placed in quartz cuvettes that were modified with appropriate

glassware to allow connection to a high vacuum line. To remove air prior to

the measurement, the sample was degassed within the cuvette by three freeze-

pump-thaw cycles. Emission was recorded at 90◦ to the excitation source, and

appropriate filters were used when required to remove second-order peaks. All

emission spectra were corrected after acquisition for dark count and for the

spectral response of the detector. Excitation spectra were automatically cor-

rected upon measurement for lamp output, through use of a beam splitter

which directs 8% of the excitation light to a reference photodiode.

The quantum yields were determined relative to a reference solution contain-

ing [Ru(bpy)3]Cl2. The quantum yield of this complex is well established in

air-equilibrated H2O to be 0.028.254 To measure the quantum yield, a sample

of complex in DCM was prepared so that the absorbance at the chosen exci-

tation wavelength was below 0.1, to minimise inner-filter effects. A solution

containing [Ru(bpy)3]Cl2 with similar optical density was prepared, and the

emission spectra of the complex and reference were measured under identical

conditions (i.e. same excitation wavelength, same slit size). The quantum

yield was determined from the absorbance and emission data by use of Equa-

tion 8.2 (applicable only for solutions of low optical density):

Φ = Φst

[
I

Ist

] [
ODst

OD

] [
n2

n2
st

]
(8.2)

Φ represents the quantum yield, I the overall integrated intensity, OD the

optical density at the chosen wavelength and n2 the refractive index of the

solvent; the subscript st denotes the standard and all other values the sample.

Lifetimes were determined using an Edinburgh Instruments OB 920 fluorime-

ter. Luminescence lifetimes of the complexes up to approximately 10 µs were

measured by time-correlated single-photon counting method, using an EPL-

375 pulsed-diode laser as excitation source (374 nm excitation, pulse length of

60 ps). The laser repetition rate was selected so that the pulse period was at

least 5-10 times longer than the complex lifetime. The emission was detected



276 · Materials and equipment

at 90◦ to the excitation source, after passage through a monochromator, using

a Peltier-cooled R928. Lifetimes in excess of 10 µs were measured by mul-

tichannel scaling, and a xenon flash lamp was used as the excitation source

(excitation wavelength matched to a suitable absorption band of the complex,

pulse length of 2 µs).

The lifetimes were obtained by least-squares fitting to a mono-exponential

decay and goodness-of-fit was assessed from the residuals. Low temperature

(77 K) experiments were performed using a glass vacuum cold finger appara-

tus built in house. A small amount of sample was dissolved in a 2:2:1 solvent

mix of ether/isopentane/ethanol (EPA), and placed into a glass tube. The

cold finger was filled with liquid nitrogen and the tube containing the sample

was inserted. EPA forms an amorphous glass upon freezing, which has a very

low propensity for cracking.

8.1.4 Electrochemistry

Cyclic voltammetry of the complexes was performed with a µAutolab Type III

potentiostat using GPES Manager software. Three electrodes were inserted

into the sample: a glassy-carbon working electrode, and platinum wire refer-

ence and working electrodes. Sample concentrations of ∼1 mM in DCM were

used with 0.1 M [Bu4N][PF6] as the electrolyte, which was recrystallised and

rigorously dried before use. These solutions were purged with nitrogen gas for

ten minutes with stirring, then the measurements recorded without stirring.

Voltammograms obtained were referenced to the ferrocene-ferrocenium couple

(E1/2 = 0.42 V vs. SCE).

8.1.5 DFT and TD-DFT calculations

DFT geometry optimisations, frequency, stability and TD-DFT excitation cal-

culations were performed using Gaussian 09.259 For platinum, the Los-Alamos

LANL2DZ effective core potentials (ECPs) were used to treat the core elec-

trons, in combination with the LANL2DZ basis set for the valence electrons.
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Basis sets used for other atoms along with choice in functional are indicated

in the main body of the text. Frequency calculations were performed at each

geometry at the same level of theory as the optimisation to ensure that the

geometries do indeed correspond to minima on the potential energy surface.

Geometries and orbitals were visualised using Gaussview 5.0; the default con-

tour value of 0.02 au was used for each of them. Densities were also plotted

using Gaussview 5.0, where the default contour value of 0.0004 au2 was used.

Values for Λ and TDA excitation energies were calculated using Dalton 2011260

with the indicated basis sets and functionals. TDA geometries were optimised

and their frequency calculations performed in Q-Chem 4.0.261 Coupled cluster

calculations were performed by our collaborators using Turbomole v6.5.

8.2 Synthesis of ligands and ligand precursors

Preparation of 2-(tributylstannyl)pyridine

2-Bromopyridine (5.0 g, 31.6 mmol) was placed in a two-necked round bot-

tom flask fitted with a condenser and suba seal. Dry THF (25 mL) was added

to the flask under nitrogen and the reaction mixture cooled to −78◦C in dry

ice. n-Butyl lithium (34.8 mmol, 2.5 M in hexane) was added over a period

of 20 minutes then the reaction mixture was stirred for a further 90 minutes.

Bu3SnCl (10.29 g, 31.6 mmol) in dry THF (6 mL) was then added under nitro-

gen over a period of 20 minutes before stirring for a further 90 minutes. The

reaction mixture was then allowed to warm to room temperature. Water (30

mL) was added to the mixture and stirred for 10 minutes. The product was
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extracted into diethyl ether (5× 50 mL), dried over Na2SO4, filtered and the

solvent removed under reduced pressure to give 2-(tributylstannyl)pyridine as

a brown oil, 70% pure based on 1H NMR integrals; (ES+) m/z = 366.1 [M +

H]+; HRMS (ES+) m/z = 366.1550 [M + H]+; calculated for [C17H32N
116Sn]+

366.1552. Experimental data obtained was in good agreement with the liter-

ature.262

Preparation of L5 - Stille method

70% pure 2-(tributylstannyl)pyridine (671 mg, 1.27 mmol of compound),

1,3-dibromobenzene (150 mg, 0.64 mmol), bis-(triphenylphosphine)palladium(II)

chloride (16.5 mg, 0.014 mmol), lithium chloride (197 mg, 4.65 mmol) and

toluene (5 mL) were added to a dry Schlenk tube and degassed using the

freeze, pump, thaw method. The mixture was then heated under nitrogen at

150◦C for three days. After cooling to room temperature, saturated potas-

sium fluoride solution (1.3 mL) was added and the solution was stirred for 30

minutes. The precipitated solid was removed by filtration and washed with

toluene (4 mL). Sodium hydrogen carbonate solution (10%, 7 mL) was added

to the combined filtrates, the product extracted into dichloromethane (3× 15

mL) and dried over magnesium sulfate. The product was filtered, the solvent

removed under reduced pressure and the product purified by column chro-

matography (hexane / diethyl ether gradient, 100 / 0 to 10 / 90 on silica) to

give the product as a brown, oily solid (114 mg, 55%); δ H (700 MHz; CDCl3)

8.72 (2 H, ddd, J 1.0, J 1.9 and J 4.8, H2′), 8.63 (1 H, td, J 0.6 and J 1.8,

H2), 8.06 (2 H, dd, J 1.8 and J 7.7, H4 and H6), 7.85 (2 H, dt, J 1.0 and J 7.9,

H5′), 7.77 (2 H, td, J 1.8 and J 7.7, H4′), 7.59 (1 H, td, J 0.6 and J 7.7, H5),

7.25 (2 H, m, H3′); δ C (700 MHz; CDCl3) 157.2 (C3), 149.6 (C2′), 139.8 (C3
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and C1), 136.8 (C4′), 129.2 (C5), 127.5 (C4 and C6), 125.5 (C2), 122.2 (C3′),

120.7 (C5′); (ES+) m/z = 233.2 [M + H]+; HRMS (ES+) m/z = 233.1074 [M

+ H]+; calculated for [C16H13N2]
+ 233.1079. Experimental data obtained was

in good agreement with the literature.262

Preparation of L5 - Suzuki-Miyaura method

Benzene-1,3-diboronic acid (150 mg, 0.91 mmol), bromopyridine (286 mg,

1.81 mmol) and sodium carbonate (7.5 mL, 1 M) were added with DME (7.5

mL) to a Schlenk tube and degassed using the freeze, pump, thaw method.

The tetrakis(triphenylphosphine) palladium(0) catalyst (52 mg, 0.044 mmol)

was then added under a flow of nitrogen and the mixture heated at reflux

overnight. Water (5 mL) was then added and the product was extracted into

DCM (3× 30 mL) before drying over potassium carbonate. The solution was

filtered and the solvent removed under reduced pressure before drying on the

high vacuum line giving a yellow oil. The product was purified by column

chromatography on silica (hexane / ethylacetate gradient, 100 / 0 to 70 / 30)

to give the product as a brown oily solid (147 mg, 70%). Experimental data

obtained was in good agreement with the literature.262

Preparation of L6

Benzene-1,3-diboronic acid (200 mg, 1.21 mmol), 2-bromo-4-(trifluoromethyl)

pyridine (0.39 mL, 3.15 mmol), sodium carbonate (845 mg, 7.97 mmol),

methanol (7 mL) and toluene (7 mL) were placed in a Schlenk tube fitted

with a magnetic stirrer bar and condenser. The mixture was degassed using
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the freeze, pump, thaw method and placed under an atmosphere of nitrogen.

The tetrakis(triphenylphosphine) palladium(0) catalyst (92 mg, 0.08 mmol)

was then added under a stream of nitrogen and the mixture heated at re-

flux for 48 hours before cooling to room temperature. The solvent was then

removed under reduced pressure and the residue taken up in DCM (30 mL)

and water (20 mL) before extraction of the product into DCM (3 × 20 mL).

The mixture was dried over magnesium sulfate and filtered. Al2O3 (0.9 chro-

matographic grade) was added, the suspension shaken several times and the

alumina removed by filtration to give the crude product. The ligand was then

taken up in DCM and flushed through a plug of silica, the solvent removed

under reduced pressure and the residue dried on the high vacuum line to give

the analytically pure product (106 mg, 24%): δ H (400 MHz; CDCl3) 8.92 (2

H, d, J 4.8, H2′), 8.73 (1 H, t, J 1.6, H2), 8.14 (2 H, dd, J 1.6 and J 7.6, H3 and

H4), 8.04 (2 H, t, J 0.8, H5′), 7.66 (1 H, t, J 8, H5), 7.50 (2 H, dd, J 0.8 and J

4.8, H3′ ; (ES+) m/z = 369.0 [M + H]+; HRMS (ES+) m/z = 369.0835 [M +

H]+; calculated for [C18H11N2F6]
+ 369.0826. The experimental data obtained

was in good agreement with the literature.208

Preparation of L7

Benzene-1,3-diboronic acid (228 mg, 1.38 mmol) and 1-chloroisoquinoline

(445 mg, 2.72 mmol) were placed in a Schlenk tube fitted with a condenser

and stirrer bar together with toluene (10 mL), ethanol (10 mL), water (5 mL)

and sodium carbonate (806 mg, 7.60 mmol). The mixture was degassed using

the freeze, pump, thaw method and placed under an atmosphere of nitrogen.

The tetrakis(triphenylphosphine) palladium(0) catalyst (45 mg, 0.04 mmol)

was added under a stream of nitrogen and the mixture heated at reflux for
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36 hours. After cooling to room temperature, water (9 mL) was added and

the product extracted into DCM (3 × 50 mL). The extracts were dried over

anhydrous potassium carbonate, filtered and the solvent removed under re-

duced pressure. The brown solid was recrystallised from acetonitrile to give

the analytically pure product as an off-white solid (314 mg, 69%); δ H (400

MHz; CDCl3) 8.62 (2 H, d, J 5.8, H2′), 8.19 (2 H, d, J 8.4, H5′ or H8′), 8.05 (1

H, t, J 1.8, H2), 7.85 (4 H, m, H5′ or H8′), 7.72 (1 H, t, J 5.0, H5), 7.64 (4 H,

m, H6′/7′), 7.51 (2 H, m, H4/6); (ES+) m/z = 333.1 [M + H]+; HRMS (ES+)

m/z = 333.1374 [M + H]+; calculated for [C24H17N2] 333.1392. Analytical

data obtained was in good agreement with the literature.28

8.2.1 Synthesis of imine ligands

Isophthalaldehyde, the amine and ethanol were added to an oven-dried flask

fitted with a magnetic stirrer bar and a reflux condenser. The reactants were

heated at reflux under nitrogen for three hours then the solvent was removed

under reduced pressure.

Preparation of LImPh

Isophthalaldehyde (500 mg, 3.72 mmol), aniline (800 mg, 8.56 mmol) and

ethanol (40 mL) were added to an oven dried flask fitted with a magnetic

stirrer bar, a reflux condenser and a calcium chloride drying tube. The re-

actants were heated at reflux for 45 minutes then the ethanol was removed

under reduced pressure. The resulting oil was adsorbed onto silica and passed

quickly through a small plug of silica (in 50 mL portions of 25% ethyl acetate
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in hexane). After analysis by TLC, fractions containing the desired product

were combined and the solvent removed under reduced pressure to give a pale

yellow solid. This was recrystallised from ethyl acetate/petroleum ether to

give LImPh as a pale, yellow powder (650 mg, 61%); Found: C, 84.48; H, 5.69;

N, 9.96%. C20H16N2 requires C, 84.48; H, 5.67; N, 9.85%; δ H (700 MHz;

CDCl3) 8.54 (2 H, s, H7), 8.41 (1 H, s, H2), 8.05 (2 H, dd, J 2.0 and J 8.0, H4

and H6), 7.59 (1 H, t, J 8.0, H5), 7.41 (4 H, m, H9), 7.25 (6 H, m, H10 and H11);

δ C (700 MHz; CDCl3) 159.5 (C7), 151.7 (C8), 136.7 (C1 and C3), 131.2 (C4

and C6), 129.3 (C2), 129.2 (C5), 129.2 (C9), 126.2 (C11), 120.9 (C10); (ES+)

m/z = 285.4 [M + H]+; HRMS (ES+) m/z = 285.1398 [M + H]+; calculated

for [C20H17N2]
+ 285.1392. Analytical data obtained was in good agreement

with the literature.212

Preparation of LImPhOMe

Isophthalaldehyde (500 mg, 3.73 mmol), p-anisidine (919 mg, 7.46 mmol)

and ethanol (25 mL). Recrystallisation from ethanol gave the product as a pale

yellow solid (580 mg, 45%); Found: C, 76.71; H, 5.79; N, 8.01. C22H20N2O2

requires C, 76.72, H, 5.85, N, 8.13%; δ H (600 MHz; CDCl3) 8.56 (2H, s, H7),

8.37 (1H, s, H2), 8.00 (2H, dd, J 1.8 and J 7.8, H4 and H6), 7.56 (1H, t, J 7.8,

H5), 7.27 (4H, m, H10), 6.95 (4H, m, H6), 3.84 (6H, s, CH3); δ C (500 MHz;

CDCl3) 158.71 (C11), 157.74 (C7), 144.82 (C8), 137.27 (C1 and C3), 130.90

(C4 and 6), 129.39 (C5), 129.16 (C2), 122.49 (C10), 114.66 (C9), 55.72 (CH3);

(ES+) m/z = 345.3 [M + H]+; HRMS (ES+) m/z = 345.1614 calculated for

[C22H21N2O2]
+ 345.1603.
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Preparation of LImCF3

Isophthalaldehyde (200 mg, 1.49 mmol), 3,5-bis(trifluoromethyl) aniline

(0.6 mL, 3.84 mmol) and ethanol (5 mL). The product was a white powder

(0.80 g, 97%); Found: C, 51.73; H, 2.15; N 4.96. C23H12F12N2 requires C,

51.81; H, 2.17; N, 5.04%; νmax/ cm−1 1640 (N=C); δ H (500 MHz; CDCl3)

8.58 (2H, s, H7), 8.51 (1H, t, J 1.7, H2), 8.12 (2H, dd, J 1.7 and J 7.7, H4 and

H6), 7.77 (2H, s, H11), 7.68 (1H, t, J 7.7, H5), 7.65 (4H, s, H9); δ C (500 MHz;

CDCl3) 161.8 (C7), 152.8 (C8), 136.0 (C1 and C3), 132.6 (q, J 133.1, CF3),

132.5 (C4 and C6), 129.7 (C2), 129.6 (C5), 123.1 (d, J 272.9, C10), 121.0 (m,

C9), 119.5 (m, C11); δ F (400 MHz; CDCl3) −63.31; (ES+) m/z = 557.2 [M +

H]+; HRMS (ES+) m/z = 557.0845 [M + H]+; calculated for [C24H13N2F12]
+

557.0887.

Preparation of LImCy

Isophthalaldehyde (500 mg, 3.73 mmol), cyclohexylamine (721 mg, 7.27

mmol) and ethanol (26 mL). The crude solid was washed twice with hexane
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to give LImCy as a white, oily solid (1.02 g, 92%); νmax/ cm−1 1644 (N=C); δ

H (700 MHz; CDCl3) 8.34 (2 H, s, H7), 8.03 (1 H, s, H2), 7.77 (2 H, dd, J 1.5

and J 8.0, H4 and H6), 7.42 (1 H, t, J 8.0, H5), 3.20 (1 H, m, H8), 1.83 and

1.36 (8 H, m, H10), 1.73 and 1.58 (8 H, m, H9), 1.68 and 1.26 (4 H, m, H11);

δ C (700 MHz; CDCl3) 158.2 (C7), 137.0 (C1 and C3), 129.7 (C4 and C6),

128.7 (C5), 127.57 (C2), 65.9 (C8), 34.3 (C9), 25.6 (C11), 24.8 (C10); (ES+)

m/z = 297.0 [M + H]+; HRMS (ES+) m/z = 297.2345 [M + H]+; calculated

for [C20H29N2]
+ 297.2331.

Preparation of LImnBu

Isophthalaldehyde (200 mg, 1.49 mmol), n-butylamine (1 mL, 10 mmol)

and ethanol (5 mL) were added to a 50 mL, oven dried flask fitted with a

magnetic stirrer bar. In this instance, the flask was flushed with nitrogen,

sealed and heated at reflux for three hours. The solvent and excess amine

were removed under reduced pressure to give LImnBu as a colourless oil (370

mg, 100%); νmax/ cm−1 1645 (N=C); δ H (500 MHz; CDCl3) 8.30 (2 H, s ,

H7), 8.03 (1 H, s , H2), 7.79 (2 H, dd, J 1.5 and J 7.5, H4 and H6), 7.44 (1 H,

t, J 7.5, H5), 3.62 (4 H, td, J 1.5 and J 2.0, H8), 1.69 (4 H, m, H9), 1.40 (4

H, m, H10), 0.96 (6 H, t, J 7.5, H11); δ C (500 MHz; CDCl3) 160.5 (C7), 137.0

(C1 and C3), 129.9 (C4 and C6), 129.1 (C5), 128.2 (C2), 61.7 (C8), 33.2 (C9),

20.7 (C10), 14.1 (C11); (ES+) m/z = 245.4 [M + H]+; HRMS (ES+) m/z =

245.2012 [M + H]+; calculated for [C16H25N2]
+ 245.2012.
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Preparation of LImtBu

Isophthalaldehyde (200 mg, 1.49 mmol), tert-butylamine (0.5 mL, 5 mmol)

and ethanol (5 mL) were added to a 50 mL oven dried flask fitted with a mag-

netic stirrer bar. The flask was flushed with nitrogen, sealed and heated at

reflux for three hours. The solvent and excess amine were removed under

reduced pressure to give LImtBu as a white powder (366 mg, 100%); Found

C, 77.95, H, 9.77, N, 11.30. C16H24N2 requires C, 78.14, H, 9.90; N, 11.46%;

νmax/ cm−1 1682 (N=C); δ H (500 MHz; CDCl3) 8.33 (2 H, s, H7), 8.07 (1 H,

t, J 1.5, H2), 7.80 (2 H, dd, J 1.5 and J 7.5, H4 and H6), 7.44 (1 H, t, J 7.5,

H5), 1.30 (18 H, s, H9); δ C (500 MHz; CDCl3) 155.3 (C7), 137.7 (C1 and C3),

129.6 (C4 and C6), 129.0 (C2), 128.0 (C5), 57.6 (C8), 30.0 (C9); (ES+) m/z

= 245.3 [M + H]+; HRMS (ES+) m/z = 245.2018 [M + H]+; calculated for

[C16H25N2]
+ 245.2018. Analytical data obtained was in good agreement with

the literature.212

8.2.2 Synthesis of ketimine ligands

1,3-Diacetylbenzene, the amine and toluene were placed in an oven dried,

round bottomed flask fitted with a magnetic stirrer bar and reflux condenser.

Activated 4 Å molecular sieves were added to the flask (1.25 g) and the re-

actants were heated at reflux, under nitrogen for 48 hours. Half way through

this time period a further 1.25 g of molecular sieves were added. The molecu-

lar sieves were then removed from the reaction mixture by filtration and were

washed with toluene (2 × 2 mL). The washings were combined with the fil-

trate and the solvent (along with any excess amine) removed under reduced
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pressure.

Preparation of LKetPh

1,3-Diacetylbenzene (100 mg, 0.62 mmol), aniline (287 mg, 3.08 mmol)

and toluene (5 mL) to give a yellow solid. The crude product was washed

with cold hexane (2× 1 mL) to give LKetPh as a pale, yellow powder (169 mg,

87%); Found C, 83.23; H, 6.43; N, 8.57. C22H20N2 requires C, 84.58; H, 6.45;

N, 8.97%; νmax/ cm−1 1685 (N=C); δ H (500 MHz; CDCl3) 8.57 (1 H, dt,

J 1.5 and J 15, H5), 8.07 (2 H, m, H4 and H6), 7.55 (1 H, m, H2), 7.37 (4

H, m, H9), 7.13 (6 H, m, H10 and H11), 2.68 (6 H, s, CH3); δ C (500 MHz;

CDCl3) 129.6, 129.3, 129.0, 123.7, 119.7, 115.5, 81.8, 27.1, 17.9; (ES+) m/z

= 313.2 [M + H]+; HRMS (ES+) m/z = 313.1706 [M + H]+; calculated for

[C22H21N2]
+ 313.1705.

Preparation of LKetCy

1,3-Diacetylbenzene (500 mg, 3.08 mmol), cyclohexylamine (611 g, 6.16

mmol) and toluene (15 mL). The crude product was washed with cold hexane
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(6 × 1 mL) to give LKetCy as a colourless, crystalline solid (480 mg, 48%);

Found: C, 80.22; H, 9.66; N, 8.05. C22H32N2 requires C, 81.43; H, 9.94; N,

8.63%; νmax/ cm−1 1682 (N=C); δ H (700 MHz; CDCl3) 8.04 (1 H, t, J 2.0,

H2), 7.72 (2 H, dd, J 1.5 and J 7.5, H4 and H6), 7.34 (1 H, t, J 7.5, H5),

3.47 (2 H, m, H8), 2.26 (6 H, t, J 7.0, CH3), 1.83 and 1.38 (8 H, m, H10),

1.68 and 1.55 (8 H, m, H9), 1.28 (4 H, m, H11); δ C (700 MHz; CDCl3) 162.9

(C7), 142.3 (C1 and C3), 128.2 (C2), 127.7 (C4 and C6), 125.3 (C5), 60.3 (C8),

33.8 (C9), 26.0 (C11), 25.2 (C10), 15.7 (CH3); (ES+) m/z = 325.4 [M + H]+;

HRMS (ES+) m/z = 325.2641 [M + H]+; calculated for [C22H33N2]
+ 325.2644.

Preparation of LKetnBu

1,3-Diacetylbenzene (200 mg, 1.23 mmol), n-butylamine (0.5 mL, 5 mmol)

and toluene (5 mL) the flask was sealed, flushed with nitrogen and no reflux

condenser used in this instance to give LKetnBu as a light brown oil (252 mg,

75%); νmax/ cm−1 1684 (N=C); δ H (500 MHz; CDCl3) 8.10 (1 H, t, J 1.5,

H2), 7.76 (2 H, dd, J 2.0 and J 8.0, H4 and H6), 7.36 (1 H, t, J 7.5, H5),

3.48 (4 H, t, J 7.5, H8), 2.25 (6 H, s, CH3), 1.73 (4 H, m, J 7.5, H9), 1.46

(4 H, m, J 7.5, H10), 0.97 (6 H, t, J 7.0, H11); δ C (500 MHz; CDCl3) 165.1

(C7), 141.8 (C1 and C3), 128.3 (C2), 127.7 (C4 and C6), 125.1 (C5), 52.3 (C8),

33.3 (C9), 21.1 (C10), 15.9 (CH3), 14.3 (C11); (ES+) m/z = 273.3 [M + H]+;

HRMS (ES+) m/z = 273.2331 [M + H]+; calculated for [C18H29N2]
+ 273.2331.
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8.2.3 Synthesis of oxime ligands

Isophthalaldehyde, the amine hydrochloride salt, sodium acetate and dichloro-

methane were added to a flask fitted with a magnetic stirrer bar and stirred

at room temperature for 20 hours. The reaction mixture was then quenched

with water (10 mL) and stirred for a further hour. The crude product was

extracted into dichloromethane (3 × 10 mL), dried over magnesium sulfate,

filtered and the solvent removed under reduced pressure. The product was

purified by column chromatography on silica with dichloromethane.

Preparation of LOxImOH

Isophthalaldehyde (300 mg, 2.24 mmol), hydroxylamine hydrochloride (228

mg, 3.28 mmol), sodium acetate (606 mg, 7.39 mmol) and DCM (15 mL)

were placed in a clean, dry Schlenk tube which was flushed with nitrogen then

stoppered and stirred at room temperature for 24 h. Water (30 mL) was then

added and the suspension stirred for a further 90 min. The DCM was then

removed under reduced pressure and the product extracted into ethylacetate

(5 × 40 mL). The solvent was then removed under reduced pressure and the

product dried on the high vacuum line to give the product as a white powder

(148 mg, 55%); νmax/ cm−1 1694 (N=C); δ H (400 MHz; CO(CD3)2) 8.04 (2

H, s, H7), 7.75 (1 H, t, J 1.5, H2), 7.50 (2 H, dd, J 1.5 and J 7.5, H4 and

H6), 7.29 (1 H, t, J 7.5, H5), 2.79 (2 H, s, OH); (ES −) m/z = 163.2 [M-H]−;

HRMS (ES−) m/z = 163.0513 [M − H]−; calculated for [C8H7N2O2]
− 163.058.
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Preparation of LOxIm

Isophthalaldehyde (100 mg, 0.75 mmol), methoxyamine hydrochloride (108

mg, 1.6 mmol), sodium acetate (202 mg, 2.5 mmol) and DCM (6 mL) to give

the product as a clear oil (12 mg, 22%); δ H (700 MHz; CDCl3) 8.06 (2 H, s,

H7), 7.77 (1H, t, J 1.7, H2), 7.59 (2 H, dd, J 1.7 and J 7.8, H4 and H6), 7.38 (1

H, t, J 7.7, H5), 3.99 (6 H, s, CH3); δ C (700 MHz; CDCl3) 147.9 (C7), 132.7

(C3 and C1), 129.0 (C5), 128.1 (C4 and C6), 125.5 (C2), 62.1 (CH3); (ES+)

m/z = 193.2 [M + H]+; HRMS (ES+) m/z = 193.0987 [M + H]+; calculated

for [C10H13N2O2]
+ 193.0977.

Preparation of LOxKet

1,3-Diacetylbenzene (100 mg, 0.62 mmol), methoxyamine hydrochloride

(103 mg, 1.2 mmol), sodium acetate (202 mg, 2.5 mmol) and acetonitrile (5

mL) were added to a clean, dry Schlenk tube and heated at reflux for 2 h. The

solvent was then removed under reduced pressure and the product taken up

in water (10 mL) and DCM (25 mL). The product was extracted into DCM

(3 × 25 mL), dried over magnesium sulfate, filtered and the solvent removed

under reduced pressure to give the product in a mixture of three isomers as
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a cloudy white oil (121 mg, 89%); δ H (700 MHz; CDCl3) 7.89 (1H, t, J 1.9,

H2), 7.64 (2H, dd, J 1.8 and J 7.8, H4 and H6), 7.36 (1H, t, J 7.8, H5), 4.01

(6H, s, OCH3), 2.24 (6H, s, CH3); δ C (700 MHz; CDCl3) 154.7 (C3 and

C1), 137.2 (C7), 128.8 (C5), 127.0 (C4 and C6), 124.1 (C2), 62.3 (OCH3), 13.1

(CH3); (ES+) m/z = 221.2 [M + H]+; HRMS (ES+) m/z = 221.1298 [M +

H]+; calculated for [C12H17N2O2]
+ 221.1290.

Preparation of LOxImBn

Isophthalaldehyde (100 mg, 0.74 mmol), O-benzylhydroxylamine hydrochlo-

ride (207 mg, 1.68 mmol), sodium acetate (202 mg, 2.46 mmol) and dichloro

methane (6 mL). The product was purified by column chromatography on

silica with dichloromethane. The desired isomer (EE) was retrieved from the

column first (then the others later). Removal of solvent under reduced pres-

sure gave a white oil (71 mg, 28%); δ H (700 MHz; CDCl3) 8.14 (1 H, s, H7),

7.76 (1 H, s, H2), 7.59 (2 H, dd, J 1.5 and J 7.5, H4 and H6), 7.42 (4 H, d,

J 7.5, H2′), 7.37 (4 H, t, J 7.5, H3′), 7.32 (2 H, t, J 7.0, H4′), 5.23 (4 H, s,

CH2); δ C (500 MHz; CDCl3) 148.4 (C7), 137.4 (C1′), 132.8 (C1 and C3), 129.0

(C5), 128.5 (C3′), 128.4 (C2′), 128.2 (C4 and C6), 128.0 (C4′), 125.7 (C2), 76.5

(CH2); (ES+) m/z = 345.3 [M + H]+, m/z = 367.3 [M + Na]+; HRMS (ES+)

m/z = 345.1614 [M + H]+; calculated for [C22H21N2O2]
+ 345.1603.



Experimental · 291

8.3 Synthesis of Pt(II) complexes

8.3.1 Synthesis of Pt(II) complexes of heterocyclic ligands

Potassium tetrachloroplatinate, acetic acid and the chosen ligand were placed

in a Schlenk tube fitted with a magnetic stirrer bar and condenser. The sus-

pension was degassed using the freeze, pump, thaw method and heated at

reflux, under an atmosphere of nitrogen for 60 hours. The mixture was then

cooled to room temperature and the acetic acid removed by centrifugation to

give the crude product.

Preparation of PtL5Cl

1,3-Dipyridylbenzene (70 mg, 0.30 mmol), potassium tetrachloroplatinate

(147 mg, 0.35 mmol) and acetic acid (9 mL) were placed in a clean, dry Schlenk

tube fitted with a condenser and magnetic stirrer bar and degassed using the

freeze, pump, thaw method. The mixture was then heated at reflux for 60

hours under nitrogen before cooling to room temperature. The crude, solid

product was removed from the solvent by separation on the centrifuge then

washed first with water (4 mL), then methanol (4 mL) and finally diethyl ether

(4 mL). The product was then extracted into DCM and the solvent removed

under reduced pressure to give PtL5Cl as a yellow solid (70 mg, 51%); δ H

(700 MHz; CDCl3) 9.34 (2 H, m with coupling to 195Pt, H2′), 7.94 (2 H, td,

J 1.6 and J 7.6, H4′), 7.68 (2 H, m, H5′), 7.44 (2 H, d, J 7.7, H3 and H5),

7.28 (2 H, ddd, J 1.4, J 5.6 and J 7.3, H3′), 7.21 (1 H, t, J 7.6, H4); δ C (700

MHz; CDCl3) 167.3 (C2′), 161.8 (C1), 152.2 (C4′), 140.9 (C2 and C6), 139.1
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(C6′), 124.1 (C3 and C5), 123.1 (C3′), 122.9 (C4), 119.2 (C5′); (ES+) m/z =

426.0 [M − Cl]+; HRMS (AP+) m/z = 425.0547 [M − Cl]+; calculated for

[C16H11N2
194Pt]+ 425.0549. Experimental data obtained was in good agree-

ment with the literature.262

8.3.2 Synthesis of Pt(II) complexes of heterocyclic ligands by microwave

irradiation

The platinum salt, ligand, acetic acid and water were placed in a microwave

vial fitted with a magnetic stirrer bar and the vial sealed. The vessel was

degassed through a syringe needle, using the freeze, pump, thaw method and

placed under an atmosphere of nitrogen. The suspension was heated at 160◦C

for 30 minutes fixed hold time before cooling to room temperature. The sol-

vent was removed by centrifugation to give the crude product.

Preparation of PtL5Cl

1,3-Dipyridylbenzene (109 mg, 0.47 mmol), potassium tetrachloroplatinate

(200 mg, 0.48 mmol), acetic acid (1.2 mL) and water (0.3 mL). The crude

product was washed with water (5 mL), then methanol (5 mL), then diethyl

ether (5 mL) before extraction into DCM. The solvent was removed under

reduced pressure and the complex dried on the high vacuum line to give the

analytically pure product (197 mg, 91%). Experimental data obtained was in

good agreement with the literature.262
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Preparation of PtL5Br

1,3-Dipyridylbenzene (29 mg, 0.12 mmol), potassium tetrabromoplatinate

(75 mg, 0.13 mmol), acetic acid (0.9 mL) and water (0.1 mL). The crude prod-

uct was washed with water (3 mL), then methanol (3 mL) and finally ether

(3 mL). The complex was extracted into DCM and the solvent removed under

reduced pressure to give the analytically pure product (35 mg, 58%); δ H (400

MHz; CDCl3) 9.56 (2H, ddd with coupling to 195Pt, J 0.8, J 1.6 and J 5.7,

H2′), 7.93 (2H, ddd, J 1.6, J 7.6 and J 8.1, H4′), 7.69 (2H, ddd with coupling

to 195Pt, J 0.8, J 1.5 and J 8.0, H5′), 7.45 (2H, d with coupling to 195Pt, J

7.6, H3 and H5), 7.27 (3H, m, H4 and H3′); (ASAP+) m/z = 506.0 [M]+.

Preparation of PtL6Cl

L6 (86 mg, 0.23 mmol), potassium tetrachloroplatinate (100 mg, 0.24

mmol), acetic acid (2.7 mL) and water (0.3 mL). The crude product was

washed with methanol (3× 5 mL), water (3× 5 mL), ethanol (3× 5 mL) then

ether (3×5 mL) before drying on the high vacuum line to give the analytically

pure product as an orange solid (125 mg, 91%); δ H (700 MHz; CDCl3) 9.53
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(2H, d with coupling to Pt, H2′), 7.87 (2H, s, H5′), 7.59 (2H, d, J 7.7, H3 and

H5), 7.51 (2H, dd, J 1.8 and J 5.9, H3′), 7.33 (1H, t, J 7.7, H4); δ C (700

MHz; CDCl3) 168.6 (C6′), 163.5 (C1), 153.3 (C2′), 141.1 (d, J 34.9, C4′), 139.9

(C2 and C6), 125.5 (C3 and C5), 123.5 (C4), 122.2 (d, J 273.9, CF3), 119.3

(C3′), 115.4 (C5′); δ F (600 MHz; CDCl3) −65.1 (CF3); (ASAP+) m/z = 562.0

[M − Cl]+; HRMS (AP+) m/z = 602.0533 calculated for [C20H12N3F6
194Pt]+

602.0562

Preparation of PtL7Cl

General procedure E was followed: 1-[3-(isoquinolin-1-yl)phenyl]isoquinoline

(97 mg, 0.29 mmol), potassium tetrachloroplatinate (134 mg, 0.32 mmol),

acetic acid (1.35 mL) and water (0.15 mL). The crude product was washed

with methanol (3 × 3 mL), water (3 × 3 mL), ethanol (3 × 3 mL) and ether

(3×3 mL), then extracted into DCM. The solvent was removed under reduced

pressure and the compound dried on the high vacuum line to give the analyt-

ically pure product (73 mg, 45 %); δ H (400 MHz; CDCl3) 9.51 (2H, d, J 6.4,

H2′), 8.97 (2 H, d, J 8.8, H5′ or H8′), 8.28 (2H, d, J 8, H3/5), 7.94 (2 H, d, J

8, H5′ or H8′), 7.84 (2 H, m, H6′ or H7′), 7.76 (2 H, m, H6′ or H7′), 7.67 (2 H,

d, J 6.3, H3), 7.43 (1 H, t, J 7.8, H4); (ASAP+) m/z = 560.1 [M]+; HRMS

(AP+) m/z = 560.0544 [M]+; calculated for [C24H15N2Cl194Pt]+ 560.0551.

8.3.3 Synthesis of Pt(II) complexes of imine ligands

Potassium tetrachloroplatinate, acetic acid and acetic anhydride were placed

in a dry Schlenk fitted with a magnetic stirrer bar and condenser. The suspen-
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sion was degassed using the freeze, pump, thaw method and heated at 80◦C

for 40 minutes under nitrogen. The mixture was then allowed to cool to room

temperature and the ligand added before being degassed again. The suspen-

sion was heated at reflux for 60 hours under nitrogen before being allowed to

cool to room temperature. The solvent was removed under reduced pressure,

the resulting solid taken up in DCM and flushed through a small plug of silica.

Preparation of PtLImCyCl

Potassium tetrachloroplatinate (50 mg, 0.12 mmol), acetic acid (3 mL),

acetic anhydride (0.1 mL), LImCy (180 mg, 0.61 mmol). The isolated orange

solid was washed with hexane (9× 2.5 mL) to give the product as an orange

solid (37.8 mg, 60%); δ H (700 MHz; CDCl3) 8.31 (2 H, s with coupling to
195Pt, J 74, H7), 7.39 (2 H, d, J 7.6, H3 and H5), 7.09 (1 H, t, J 7.6, H4),

4.15 (2 H, tdd, J 2.0, J 5.5 and J 11.8, H8), 2.18 (4 H, d, J 11.7, H9
eq), 1.86

(4 H, m, H10
eq), 1.70 (6 H, m, H9

ax and H11
eq), 1.46 (4 H, qt, J 3.6 and J

13.3, H10
ax), 1.24 (2 H, qt, J 3.8 and J 13.2, H11

ax); δ C (700 MHz; CDCl3)

173.3 (C1), 172.3 (C7), 141.9 (C2 and C6), 126.2 (C3 and C5), 122.3 (C4), 67.8

(C8), 33.2 (C9), 25.4 (C11), 25.3 (C10); (ES+) m/z = 490.1 [M − Cl]+; HRMS

(ES+) m/z = 489.1812 [M − Cl]+; calculated for [C20H27N2
194Pt]+ 489.1801.

Analytical data obtained was in good agreement with the literature.212
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Preparation of PtLImnBuCl

Potassium tetrachloroplatinate (50 mg, 0.12 mmol), acetic acid (3 mL),

acetic anhydride (0.1 mL), LImnBu (117 mg, 0.48 mmol). The isolated orange

solid was purified by HPLC to give the product as an orange solid (16 mg,

28%); δ H (700 MHz; CDCl3) 8.26 (2 H, s with coupling to Pt J 77, H7),

7.41 (2 H d with coupling to Pt J 7 and J 7, H3 and H5), 7.10 (1 H, t, J

7.6, H4), 4.01 (4 H, m, J 7, H8), 1.93 (4 H, p, J 7, H9), 1.38 (4 H, m, J 4,

H10), 0.95 (6 H, t, J 7.4, H11); δ C (700 MHz; CDCl3) 175.3 (C7), 141.4 (C6

and C2), 126.1 (C3 and C5), 122.3 (C4), 61.1 (C8), 32.5 (C9), 19.7 (C10), 13.7

(C11); (ES+) m/z = 466.37 [M − Cl]+; HRMS (AP+) m/z = 437.1483 [M −
Cl]+; calculated for [C16H23N2

194Pt]+ 437.1488. Analytical data obtained was

in good agreement with the literature.212

Preparation of PtLImtBuCl

Potassium tetrachloroplatinate (50 mg, 0.12 mmol), acetic acid (3 mL),

acetic anhydride (0.1 mL), LImtBu (117 mg, 0.48 mmol). The isolated orange
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solid was recrystallised from DCM/diethyl ether to give the product as an

orange solid (18 mg, 32%); δ H (700 MHz; CDCl3) 8.26 (2 H, s with coupling

to Pt, J 76, H7), 7.38 (2 H, d, J 7.6, H3 and H5), 7.13 (1 H, t, J 7.6, H4),

1.71 (18 H, s, H9); δ C (700 MHz; CDCl3) 171.9 (C7), 170.8 (C8), 142.7 (C2

and C6), 127.4 (C3 and C5), 122.8 (C4), 65.9 (C1), 30.1 (C9); (ES+) m/z =

466.34 [M − Cl]+; HRMS (AP+) m/z = 437.1488 [M − Cl]+; calculated for

[C16H23N2
194Pt]+ 437.1488. Analytical data obtained was in good agreement

with the literature.212

Preparation of PtLImPhCF3Cl

Potassium tetrachloroplatinate (50 mg, 0.12 mmol), LImPhCF3 (268 mg,

0.48) and acetic acid (3 mL). After cooling to room temperature the product

remained in solution so the solvent was removed under reduced pressure and

the crude product purified by column chromatography (on silica, eluting with

toluene) to give the analytically pure product as a red solid (21 mg, 22%);

Found: C, 36.75; H, 1.37; N, 3.48. C24H11ClF12N2Pt requires C, 36.68; H,

1.37; N, 3.48%; δ H (700 MHz; CDCl3) 8.71 (2H, s with coupling to Pt, J

154, H7), 8.00 (4H, s, H9), 7.87 (2H, s, H11), 7.82 (2H, s, H11), 7.82 (2H, d,

J 7.7, H3 and H5), 7.36 (1H, J 7.7, H4); δ C (700 MHz; CDCl3) 179.5 (C1),

179.4 (C7), 148.8 (C8), 141.5 (C2 and C6), 132.2 (q, J 34.1, CF3), 130.2 (C3

and C5), 124.9 (q, J 4, C9), 123.7 (C4), 122.3 (p, J 3.8, C11), 120.4 (C10); δ

F (600 MHz; CDCl3) −62.9 (CF3); (AP+) m/z = 790.0 [M − Cl + MeCN]+;

HRMS (AP+) m/z = 790.0629 calculated for [C26H14N3F12
194Pt]+ 790.0623.



298 · Synthesis of Pt(II) complexes

Preparation of PtLKetCyCl

Potassium tetrachloroplatinate (50 mg, 0.12 mmol), acetic acid (2.5 mL),

acetic anhydride (0.1 mL), LKetCy (132 mg, 0.41 mmol). The isolated solid

was purified by HPLC to give the product as an orange solid (19 mg, 28%);

δ H (500 MHz; CDCl3) 7.24 (2H, d, J 7.8, H3 and H5), 7.13 (1H, t, J 7.3,

H4), 4.19 (2H, s, H8), 2.99 (4H, s, H9
eq), 2.45 (6H, s, CH3), 1.89 (4H, d, J

13.3, H10
eq), 1.58 (8H, m, H9

ax and H11), 1.30 (4H, m, H10
ax); δ C (500 MHz;

CDCl3) 181.4 (C1), 167.9 (C7), 144.1 (C2 and C6), 127.1 (C3 and C5), 121.3

(C4), 64.9 (C8), 30.0 (C9), 25.4 (C10), 24.3 (C11), 15.8 (CH3); (ES+) m/z =

517.3 [M − Cl]+; HRMS (ASAP+) m/z = 517.2115 [M − Cl]+; calculated for

[C22H31N2
194Pt]+ 517.2114.

Preparation of PtLKetnBuCl

Potassium tetrachloroplatinate (100 mg, 0.24 mmol), acetic acid (4 mL),

acetic anhydride (0.1 mL), LKetnBu (262 mg, 0.96 mmol). The isolated solid

was purified by HPLC to give the product as an orange solid (24 mg, 20%); δ
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H (500 MHz; CDCl3) 7.26 (2 H, d, H3 and H5), 7.13 (1H, t, J 5, H4), 4.14 (4

H, m, J 8.0, H8), 2.39 (6H, t, J 4.5, CH3), 1.82 (4H, m, J 7.5, H9), 1.47 (4 H,

m, J 7.5, H10), 0.981 (6 H, t, J 7.5, H11); δ C (500 MHz; CDCl3); 182.9 (C7),

170.7 (C1), 144.0 (C2 and C6), 126.7 (C3 and C5), 121.3 (C4), 54.7 (C8), 32.2

(C9), 20.5 (C10), 14.9 (CH3), 14.2 (C11); (ASAP+) m/z = 466.2 [M − Cl]+;

HRMS (ASAP+) m/z = 466.18211 [M − Cl]+; calculated for [C18H27N2
194Pt]+

465.17954.

Preparation of PtLOxImCl

Potassium tetrachloroplatinate (50 mg, 0.12 mmol), acetic acid (2 mL),

acetic anhydride (0.1 mL), LOxIm (51 mg, 0.27 mmol). The isolated solid was

recrystallised from DCM to give the product as an orange solid (9 mg, 18%);

νmax/ cm−1 1686 (N=C); δ H (500 MHz; CDCl3) 8.60 (2H, s with coupling

to Pt J 76, H7), 7.44 (2H, d with coupling to Pt J 4.0 and J 7.5, H3 and

H5), 7.22 (1H, t, J 8, H4), 4.24 (6H, s, CH3); δ C (500 MHz; CDCl3) 170.77

(C7), 168.79 (C4), 135.94 (C2 and C6), 126.37 (C3 and C5), 124.34 (C1), 65.14

(CH3); (ES+) m/z = 385.1 [M − Cl]+; HRMS (AP+) m/z = 385.0460 [M −
Cl]+; calculated for [C10H11N2O2

194Pt]+ 385.0447.
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Preparation of PtLOxKetCl

Potassium tetrachloroplatinate (75 mg, 0.18 mmol), acetic acid (2 mL),

acetic anhydride (0.1 mL), LOxKet (122 mg, 0.55 mmol). The isolated solid

was recrystallised from DCM to give the product as an orange solid (18 mg,

22%); δ H (500 MHz; CDCl3) 7.33 (2H, d, H3 and H5), 7.25 (1H, t, J 7, H4),

4.17 (6H, s, OCH3), 2.47 (6H, t, J 4.5, CH3); δ C (500 MHz; CDCl3) 179.8 (C2

and C6), 167.0 (C7), 138.4 (C4), 126.6 (C3 and C5), 123.5 (C1), 64.0 (OCH3),

13.7 (CH3); (ES+) m/z = 415.2 [M − Cl]+; HRMS (AP+) m/z = 413.0768

[M − Cl]+; calculated for [C12H15N2O2
194Pt]+ 413.0760.

8.4 Synthesis of Pt(IV) complexes

8.4.1 Synthesis of trichloro-Pt(IV) complexes

The platinum(II) complex was taken up in chloroform and chlorine gas (gen-

erated in a separate flask by addition of concentrated hydrochloric acid to

potassium permanganate) bubbled through the solution, with stirring, for 30

minutes. The solvent was removed under reduced pressure and the compound

taken up again in chloroform (25 mL). The solvent was removed once again

under reduced pressure (this enabled complete removal of any residual chlo-

rine) and the products dried on the high vacuum line.
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Preparation of PtL5Cl3

PtL5Cl (20 mg, 0.04 mmol) and chloroform (20 mL). The product was

obtained as a pale yellow powder (21 mg, 99%); δ H (700 MHz; CDCl3) 9.54

(2H, d with coupling to 195Pt, J 5.4, H2′), 8.05 (2H, t, J 7.7, H4′), 7.95 (2H, d,

J 8.2, H5′), 7.76 (2H, d, J 7.7, H3 and H5), 7.52 (2H, t, J 6.7, H3′), 7.48 (1H,

t, J 7.8, H4); (AP+) m/z = 497.0 [M − Cl]+; HRMS (AP+) m/z = 494.9922

[M − Cl]+; calculated for [C16H11N2Cl2
194Pt]+ 494.9926.

Preparation of PtL7Cl3

PtL7Cl (20 mg, 0.04 mmol) and chloroform (25 mL) to give the product

(24 mg, 96%); δ H (700 MHz; CDCl3) 9.70 (2 H, d, J 7.5, H2′), 9.04 (2 H, d,

J 8.4, H5′ or H8′), 8.55 (2 H, d, J 8.0, H3 and H5), 8.11 (2 H, d, J 8.0, H5′

H8′), 7.93 (3 H, m, H4 and H6′ or H7′), 7.71 (2 H, m, H6′ or H7′), 7.53 (2 H,

m, H3′); (ASAP+) m/z = 596.0 [M − Cl]+.
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Preparation of PtL5Br3

PtL5Br (34 mg, 0.07 mmol) was taken up in chloroform (25 mL) in a

round bottomed flask. Bromine (0.05 mL, 0.97 mmol) was added, the flask

stoppered and the solution stirred for 24 hours. The yellow precipitate was

isolated by centrifugation, washed with chloroform (3×4 mL) and dried on the

high vacuum line to give the product (14 mg, 30%); δ H (700 MHz; CDCl3)

9.72 (2H, m, H2′), 8.02 (2H, m, H4′), 7.95 (2H, d, J 7.9, H5′), 7.78 (2H, t,

J 7.6, H3 and H5), 7.48 (2H, m, H2′), 7.43 (1H, t, J 7.6, H2′). Some of the

platinum(II) starting material was found in analysis of the product since the

Pt(IV) complex is unstable.

Preparation of [PtL5(ppy)Cl]+

PtL5Cl (50 mg, 0.11 mmol) was oxidised to PtL5Cl3 (vide supra). The re-

sultant complex was taken up in toluene (6 mL) with silver trifluoromethane-

sulfonate (65 mg, 0.25 mmol) and 2-phenylpyridine (25 mg, 0.16 mmol). The
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mixture was heated at reflux, under nitrogen, with the exclusion of light for 24

hours. After cooling to room temperature, the precipitated solid was isolated

on the centrifuge and washed with toluene (2 × 3 mL). The crude product

was extracted into acetone (3×5 mL) and the solvent removed under reduced

pressure. The product was then dissolved in the minimum volume of acetone

and a saturated solution of KCl in acetone added drop wise to precipitate

the chloride salt of the complex. This was isolated on the centrifuge, taken

up in water and washed with DCM (5 × 20 mL). The water was removed

under reduced pressure. The PF6
− salt was obtained by taking the complex

up in the minimum volume of water and pouring it into excess solution of

saturated KPF6 in water to precipitate the product. The solid was isolated

by centrifugation and then washed with water (5 × 3 mL) before drying on

the high vacuum line to give the analytically pure product (14 mg, 17%); δ H

(700 MHz; (CD3)2CO) 9.91 (1H, ddd, J 0.8, J 1.6 and J 5.5, ppy-H6′), 8.68

(1H, d, J 8.3, ppy-H3′), 8.57 (1H, td, J 1.7 and J 5.8, ppy-H4′), 8.49 (2H, dd,

J 1.4 and J 8.0, H5′), 8.28 (2H, d, J 7.8, H3 and H5), 8.27 (2H, td, J 1.5 and J

8.2, H4′), 8.09 (2H, m, ppy-H5 and ppy-H5′), 7.95 (2H, dd with coupling to Pt,

H2′), 7.82 (1H, t, J 7.8, H4), 7.45 (2H, ddd, J 1.5, J 5.9 and J 7.5, H3′), 7.19

(1H, ddd, J 1, J 7.2 and J 7.8, ppy-H4), 6.95 (1H, m, ppy-H3), 6.18 (1H, dd

with coupling to Pt, ppy-H2); δ C (700 MHz; (CD3)2CO) 166.1 (C6′), 162.1

(ppy-C6), 160.7 (C1), 150.8 (C2′), 149.1 (ppy-C6′), 143.4 (C4′), 143.2 (ppy-C4′),

141.9 (ppy-C2′), 138.9 (C2), 136.0 (ppy-C5), 132.9 (ppy-C3), 130.7 (ppy-C2),

128.7 (C3 and C5), 128.4 (ppy-C4), 128.3 (C4), 127.6 (ppy-C5′), 127.0 (C3′),

126.9 (ppy-C1), 124.0 (C5′), 123.0 (ppy-C3′); (ES+) m/z = 616.2 [M + H]+;

HRMS (ES+) m/z = 614.0901 calculated for [C27H19N3Cl194Pt]+ 614.0894.
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Preparation of [PtL5(bpy)Cl]2+

PtL5Cl (20 mg, 0.04 mmol) was oxidised to PtL5Cl3 (vide supra). The

resultant complex was then taken up in ethylene glycol (2 mL) with 2,2-

bipyridine (41 mg, 0.26 mmol) and stirred at room temperature, under nitro-

gen with the exclusion of light for 30 minutes. The mixture was then gradually

heated: 1.5 hours at 40◦C, 30 minutes at 75◦C, 30 minutes at 80◦C and 16

hours at 100◦C. After cooling to room temperature the dark red solution was

purified by HPLC. After removal of solvent under reduced pressure, the PF6
−

salt was obtained by taking the complex up in the minimum volume of water

and pouring it into excess solution of saturated KPF6 in water to precipitate

the product. The solid was obtained by centrifugation and then washed with

water (5×3 mL) before drying on the high vacuum line to give the analytically

pure product (9 mg, 25%); δ H (700 MHz; D2O) 9.77 (1 H, d, J 5.3, bpy-H6′),

8.95 (1 H, d, J 8.2, bpy-H3′), 8.82 (1 H, t, J 8.1, bpy-H4′), 8.73 (1 H, d, J 8.1,

bpy-H2), 8.43 (1 H, dd, J 5.3 and J 8.0, bpy-H5′), 8.36 (2 H, d J 8.0, H2′),

8.32 (1 H, t, J 7.9, bpy-H3), 8.24 (2 H, d, J 7.8, H3′), 8.22 (2 H, d, J 8.1, H3

and H5), 7.92 (1 H, t, J 7.9, H4), 7.81 (1 H, d, J 6.1, bpy-H5), 7.76 (2 H, d, J

6.0, H5′), 7.52 (1 H, t J 6.9, bpy-H4), 7.42 (2 H, t, J 6.8, H4′); δ C (700 MHz;

D2O) 164.0 (C2 and C6), 155.0 (bpy-C6), 154.0 (C1), 153.4 (bpy-C2′), 149.9

(C5′), 148.8 (bpy-C5), 148.4 (bpy-C6′), 144.4 (bpy-C3), 144.2 (bpy-C4′), 144.1

(C3′), 137.6 (C6′), 130.7 (bpy-C5′), 130.0 (C4), 130.0 (bpy-C4), 129.3 (C3 and

C5), 127.1 (bpy-C2), 127.0 (C4′), 126.6 (bpy-C3′), 124.4 (C2′); (ES+) m/z =

308.5 [M]2+, m/z = 763.6 [M + PF6]
+; HRMS (ES+) m/z = 759.0519 [M +
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PF6]
+; calculated for [C26H19N4F6PCl192Pt]+ 582.8916.

8.5 Metathesis of the ancillary ligand

Preparation of PtL5I

PtL5Cl (40 mg, 0.09 mmol) was suspended in acetone (8 mL) and silver

trifluoromethanesulfonate (28 mg, 0.11 mmol) added. The mixture was stirred

for 1.5 hours at room temperature. The precipitated silver chloride was re-

moved by centrifugation and potassium iodide (28 mg, 0.17 mmol) added to

the acetone solution which was subsequently stirred for a further 2 hours. The

complex was precipitated from the reaction mixture, isolated by centrifuga-

tion and washed with ethanol (2 mL), then water (2 mL), then ether (2 mL)

before drying on the high vacuum line to give the analytically pure product

(31 mg, 65%); δ H (400 MHz; CDCl3) 9.90 (2H, m with coupling to 195Pt J

45, H2′), 7.91 (2 H, td, J 1.6 and 7.8, H4′), 7.68 (2 H, m, H5′), 7.45 (2 H, d,

J 7.7, H3 and H5), 7.25 (3 H, m, H4 and H3′ ; (ASAP+) m/z = 553.0 [M]+;

HRMS (AP+) m/z = 551.9598 calculated for [C16H11N2I
194Pt]+ 551.9594.



306 · Metathesis of the ancillary ligand

Preparation of PtLImCyAcet

1-Ethynyl-3,5-bis(trifluoromethyl)benzene (7 mg, 0.03 mmol) and sodium

hydroxide (1 mg, 0.03 mmol) were taken up in methanol (5 mL) and stirred

at room temperature for 30 minutes. PtLImCyCl (15 mg, 0.03 mmol) was then

added and the mixture stirred for 12 hours at room temperature. The prod-

uct was precipitated, isolated on the centrifuge, washed with methanol (1 mL)

and dried on the high vacuum line to give the analytically pure product (10

mg, 46%); δ H (700 MHz; CDCl3) 8.47 (2H, s with coupling to Pt J 66, H7),

7.79 (2H, s, H4′ and H6′), 7.59 (1H, s, H2′), 7.45 (2H, d, J 7.7, H3 and H5),

7.09 (1H, t, J 7, H4), 3.90 (2H, t, J 10.5, H8), 2.10 (4H, d, overlapping signals,

H9
eq), 2.06 (4H, q, J 11.9, H9

ax), 1.91 (4H, d, J 14, H10
eq), 1.70 (2H, d, J 12.6,

H11
eq), 1.41 (4H, q, J 12.6, H10

ax), 1.24 (2H, q, J 12.6, H11
ax); δ F (700 MHz;

CDCl3) −63.205 (CF3); (ASAP+) m/z = 727.2 [M + H]+; HRMS (AP+) m/z

= 726.1961 [M]+; calculated for [C30H30N2F6
194Pt]+ 726.1940.
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Preparation of PtLImCyCN

PtLImCyCl (30 mg, 0.02 mmol) and potassium cyanide (8 mg, 0.12 mmol)

were placed in a clean, dry Schlenk, in methanol (5 mL) and stirred at room

temperature for 16 hours. The methanol was then removed under reduced

pressure and the products taken up in DCM, washed with water (10 mL),

dried over MgSO4, filtered and the solvent removed under reduced pressure.

The product was dried on the high vacuum line (4 mg, 34%). (ASAP+)

m/z = 517.2 [M + H]+; HRMS (AP+) m/z = 515.1829 [M]+; calculated for

[C21H27N3
194Pt]+ 515.1832.

8.5.1 Substitution of chloride ancillary for a thiolate ligand

The chosen thiolate ligand and methanol were placed in a Schlenk tube and

degassed using the freeze, pump, thaw method before being placed under an

atmosphere of nitrogen. Potassium tert-butoxide was then added under a

stream of nitrogen and the resultant solution stirred for 5 minutes. The plat-

inum(II) complex was then added, as a solid, under a stream of nitrogen and

the mixture stirred for 16 hours. The crude product was obtained as a pre-

cipitate which was isolated on the centrifuge.
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Preparation of PtL6STol

p-Thiocresol (22 mg, 0.18 mmol), methanol (3 mL), potassium tert-butoxide

(19 mg, 0.17 mmol) and PtL6Cl (40 mg, 0.07 mmol). The crude product was

washed with methanol (5× 4 mL) and dried on the high vacuum line to give

the analytically pure product (34 mg, 71%): δ H (600 MHz; (CD3)2SO) 9.39

(2H, d with coupling to 195Pt, J 8.1, H2′), 8.50 (2H, s, H5′), 8.06 (2H, d, J

7.7, H3 and H5), 7.81 (2H, m, H3′), 7.34 (3H, m, H4 and SAr-H2), 6.78 (2H,

d, J 8.1, SAr-H3), 2.12 (3H, s, CH3); δ C (600 MHz; (CD3)2SO) 170.7 (C1),

169.5 (C6′), 154.1 (C2′), 144.0 (SAr-C1), 140.3 (C2 and C6), 139.4 (C4′), 132.1

(SAr-C2), 130.1 (SAr-C4),128.5 (SAr-C3), 126.8 (C3 and C5), 124.0 (C4), 122.6

(CF3), 120.3 (C3′), 116.9 (C5′), 20.4 (CH3); δ F (400 MHz; (CD3)2SO) −63.55

(CF3); (ASAP+) m/z = 686.1 [M + H]+; HRMS (AP+) m/z = 683.0605 [M

+ H]+; calculated for [C25H17N2F6S
192Pt]+ 683.0627.

Preparation of PtL6SNit
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4-Nitro-thiophenol (27 mg, 0.17 mmol), methanol (2 mL), potassium tert-

butoxide (19 mg, 0.17 mmol) and PtL6Cl (40 mg, 0.07 mmol). The crude

product was washed first with methanol (5 × 4 mL), then with ether (5 × 3

mL). The deep red solid was dried on the high vacuum line to give the ana-

lytically pure product (33 mg, 66%): δ H (400 MHz; (CD3)2SO) 9.20 (2 H,

d, J 6.0, H2′), 8.50 (2 H, s, H5′), 8.02 (2 H, d, J 7.6, H3 and H5), 7.79 (4

H, m, HNit−2 and HNit−3), 7.61 (2 H, d, J 8.8, H3′), 7.32 (1 H, t, J 7.2, H4);

(ASAP+) m/z = 717.0 [M + H]+; HRMS (AP+) m/z = 714.0322 [M + H]+;

calculated for [C24H14N3O2F6S
192Pt]+ 714.0321.

Preparation of PtL7STol

p-Thiocresol (5 mg, 0.04 mmol), methanol (3 mL), potassium tert-butoxide

(7 mg, 0.06 mmol) and PtL7Cl (20 mg, 0.04 mmol). The crude product was

washed first with methanol (3×2 mL), then ether (3×2 mL). The pale yellow

solid was dried on the high vacuum line to give the analytically pure product

(21 mg, 74%): δ H (400 MHz; (CD3)2SO) 9.41 (2 H, d, J 8, H2′), 9.13 (2 H,

d, J 8, H5′ or H8′), 8.55 (2 H, d, J 8, H3/5), 8.12 (2 H, d, J 8, H5′ or H8′), 8.00

(2 H, t, J 8, H6′ or H7′), 7.90 (4 H, m, HTol−2/3), 7.54 (1 H, t, J 8, H4), 7.41

(2 H, d, J 8, H6′ or H7′), 6.77 (2 H, d, J 8, H3); (ASAP+) m/z = 648.1 [M]+;

HRMS (AP+) m/z = 648.1132 calculated for [C31H22N2S
194Pt]+ 648.1132.
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Preparation of PtLImCySTol

p-Thiocresol (6 mg, 0.05 mmol), methanol (3 mL), potassium tert-butoxide

(8 mg, 0.07 mmol) and PtLImCyCl (25 mg, 0.05 mmol). The crude product

was washed first with methanol (3× 2 mL), then ether (3× 2 mL). The pale

yellow solid was dried on the high vacuum line to give the analytically pure

product (18 mg, 59%): δ H (700 MHz; (CD3)2SO) 8.69 (2H, s with coupling

to Pt J 70, H7), 8.5645 (2H, d, J 7.7, H3 and H5), 7.25 (2H, d, J 7.7, SAr-

H2′), 7.14 (1H, t, J 7.7, H4), 6.83 (2H, d, J 8.4, SAr-H3′), 3.77 (2H, tt, J 2.8

and J 11.2, H8), 2.18 (3H, s, CH3), 1.91 (4H, d, J 11.2, H9
eq), 1.67 (4H, d,

J 12.6, H10
eq), 1.53 (2H, d, J 12.6, H11

eq), 1.44 (4H, q, J 12.6, H9
ax), 1.07

(2H, q, J 12.6, H11
ax), 0.99 (4H, q, J 12.6, H10

ax); δ C (700 MHz; (CD3)2SO)

176.45 (C7), 145.31 (SAr-C4′), 142.74 (C2), 133.52 (SAr-C2′), 131.23 (SAr-

C1′), 128.67 (SAr-C3′), 127.43 (C3), 122.88 (C4), 66.43 (C8), 40.46 (C1), 33.88

(C9), 25.78 (C10), 25.65 (C11), 21.09 (CH3); (ASAP+) m/z = 614.2 [M + H]+,

m/z = 654.2 [M + MeCN]+; HRMS (AP+) m/z = 612.2068 [M]+; calculated

for [C27H34N2S
194Pt]+ 612.2070.
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Preparation of PtLImCySNit

4-Nitro-thiophenol (8 mg, 0.05 mmol), methanol (3 mL), potassium tert-

butoxide (8 mg, 0.07 mmol) and PtLImCyCl (25 mg, 0.05 mmol). The crude

product was washed first with methanol (5×4 mL), then with ether (5×3 mL)

before drying on the high vacuum line to give the analytically pure product

(21 mg, 65%): δ H (400 MHz; (CD3)2SO) 8.70 (2 H, s with coupling to Pt, J

144, H7), 8.86 (2 H, d, J 9.3, H3 and H5), 7.57 (4 H, m, H2′ and H3′), 7.19 (1

H, t, J 7.6, H4); 3.78 (2 H, t, J 12.2, H8), 1.92 (4 H, d, J 11.8, H9
eq), 1.69 (4

H, d, J 12.6, H10
eq), 1.52 (6 H, m, H9

ax and H11
eq), 1.02 (6 H, m, H10

ax and H11
ax);

(ASAP+) m/z = 644.2 [M + H]+; HRMS (AP+) m/z = 644.1829 calculated

for [C26H32N3O2S
194Pt]+ 644.1842.
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Appendix

9.1 Publications arising from work discussed in this thesis

‘Phosphorescent, liquid-crystalline complexes of platinum(II): influence of the

beta-diketonate co-ligand on mesomorphism and emission properties’

Matthew Spencer, Amedeo Santoro, Gemma R. Freeman, Álvaro Dı́ez, Paul

R. Murray, Javier Torroba, Adrian C. Whitwood, Lesley J. Yellowlees, J. A.

Gareth Williams and Duncan W. Bruce

Dalton Trans., 2012, 41, 14244-14256.

This article features on the front cover of the issue.

Book chapter: ‘Metal complexes of pincer ligands: excited states, photochem-

istry and luminescence’ in ‘Organometallic Pincer Chemistry’

Gemma R. Freeman and J. A. Gareth Williams

Top. Organomet. Chem., 2013, 40, 89-130.

‘Platinum(II) complexes with cyclometallated 5-π-delocalized-donor-1,3-di(2-

pyridyl)benzene ligands as efficient phosphors for NIR-OLEDs’

Filippo Nisic, Alessia Colombo, Claudia Dragonetti, Dominique Roberto, Adri-

ana Valore, Joanna M. Malicka, Massimo Cocchi, Gemma R Freeman and J.

A. Gareth Williams

J. Mater. Chem. C, 2014, 2, 1791-1800.

313
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‘An unprecedented cyclometallated platinum(II) complex incorporating a phos-

phinine co-ligand: synthesis and photoluminescence behaviour’

Jamal Moussa, Thomas Cheminel, Gemma R. Freeman, Lise-Marie Chamoreau,

J. A. Gareth Williams and Hani Amouri

Dalton Trans., 2014, 43, 8162-8165.

‘Platinum(II) complexes of N∧C∧N-coordinating 1,3-di(2-pyridyl)benzene lig-

ands: thiolate co-ligands lead to strong red luminescence from charge-transfer

states’

William A. Tarran, Gemma R. Freeman, Lisa Murphy, Adam M. Benham,

Ritu Kataky and J. A. Gareth Williams

Inorg. Chem., 2014, 53, 5738-5749.
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9.2 Conferences attended

Young and early careers researchers’ meeting: Photochemistry group, Durham;

13th January 2010.

Controlling photophysical properties of metal complexes: Toward molecular

photonics (COST meeting), Prague; 17th - 19th May 2010.

Poster presentation: “An easy route to terdentate Pt(II) complexes”

Universities of Scotland inorganic chemistry conference, Durham; 8th - 9th

July 2010.

Poster presentation: “New terdentate ligands for light-emitting Pt(II) com-

plexes”

RSC Photochemistry group and Dublin chemistry: Photochemistry and pho-

tochemical techniques, Dublin; 16th - 18th May 2011.

Oral presentation: “New terdentate ligands for light-emitting complexes”

19th International symposium on the photochemistry and photophysics of co-

ordination compounds, Strasbourg; 3rd - 7th July 2011.

Oral presentation: “New terdentate ligands for light-emitting metal com-

plexes”

LEA Rennes-Durham meeting, Durham; 3rd - 4th April 2012.

Photoactivatable metal complexes: from theory to therapy, London; 18th -

19th June 2012.

Flash poster presentation: “Time-resolved emission imaging microscopy

(TREM) with highly luminescent metal complexes”

9.3 Work outside the department

26th - 30th March 2012, laser microscopy laboratory, Rutherford-Appleton Lab-

oratories, Oxfordshire. Two-photon excitation imaging studies of a series of

Pt(II) complexes within cells.
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9.4 Crystal structure data

Crystal data and structure refinement for LImPhOMe:

Identification code 13srv241

Empirical formula C22H20N2O2

Formula weight 344.40

Temperature 120 K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group P212121

Unit cell dimensions a = 5.7513(4) Å α = 90◦.

b = 8.2979(5) Å β = 90◦.

c = 36.710(2) Å γ = 90◦.

Volume 1751.9(2) Å3

Z 4

Density (calculated) 1.306 Mg/m3

Absorption coefficient 0.084 mm−1

F(000) 728.0

Crystal size 0.44× 0.42× 0.12 mm3

Theta range for data collection 2.22 to 57◦.

Index ranges −7 ≤ h ≤ 7,−11 ≤ k ≤ 11,−49 ≤ l ≤ 49

Reflections collected 16394

Independent reflections 4447 [R(int) = 0.0619]

Data / restraints / parameters 4447 / 0 / 315

Goodness-of-fit on F2 1.001

Final R indices [I>2sigma(I)] R1 = 0.0440, wR2 = 0.1000

R indices (all data) R1 = 0.0603, wR2 = 0.0.1064

Largest diff. peak and hole 0.26 and −0.19 e.Å−3
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Crystal data and structure refinement for LKetCy:

Identification code 10srv055

Empirical formula C22H32N2

Formula weight 324.50

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group Pnma

Unit cell dimensions a = 10.1990(3) Å α = 90◦.

b = 36.0846(10) Å β = 90◦.

c = 5.1886(2) Å γ = 90◦.

Volume 1909.54(11) Å3

Z 4

Density (calculated) 1.129 Mg/m3

Absorption coefficient 0.065 mm−1

F(000) 712

Crystal size 0.26× 0.25× 0.20 mm3

Theta range for data collection 3.39 to 25.03◦.

Index ranges −11 ≤ h ≤ 12,−42 ≤ k ≤ 42,−6 ≤ l ≤ 6

Reflections collected 12671

Independent reflections 1709 [R(int) = 0.0403]

Completeness to theta = 25.00◦ 99.8 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.807

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 1709 / 0 / 113

Goodness-of-fit on F2 1.241

Final R indices [I>2sigma(I)] R1 = 0.0664, wR2 = 0.1338

R indices (all data) R1 = 0.0741, wR2 = 0.1369

Largest diff. peak and hole 0.190 and −0.225 e.Å−3
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Crystal data and structure refinement for LKetPh:

Identification code 10srv099

Empirical formula C22H20N2

Formula weight 312.40

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group C 2/c

Unit cell dimensions a = 19.4573(13) Å α = 90◦.

b = 7.1105(4) Å β = 109.304(2)◦.

c = 12.7922(8) Å γ = 90◦.

Volume 1670.31(18) Å3

Z 4

Density (calculated) 1.242 Mg/m3

Absorption coefficient 0.073 mm−1

F(000) 664

Crystal size 0.22× 0.20× 0.10 mm3

Theta range for data collection 2.22 to 25.03◦.

Index ranges −23 ≤ h ≤ 23,−6 ≤ k ≤ 8,−15 ≤ l ≤ 15

Reflections collected 4736

Independent reflections 1481 [R(int) = 0.0482]

Completeness to theta = 25.00◦ 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.769

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 1481 / 0 / 111

Goodness-of-fit on F2 1.030

Final R indices [I>2sigma(I)] R1 = 0.0634, wR2 = 0.1642

R indices (all data) R1 = 0.0921, wR2 = 0.1957

Largest diff. peak and hole 0.434 and −0.239 e.Å−3
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Crystal data and structure refinement for PtLKetnBuCl:

Identification code 10srv176

Empirical formula C18H27ClN2Pt

Formula weight 501.96

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group P 21 21 21

Unit cell dimensions a = 5.07110(10) Å α = 90◦.

b = 14.0644(3) Å β = 90◦.

c = 25.1994(5) Å γ = 90◦.

Volume 1797.27(6) Å3

Z 4

Density (calculated) 1.855 Mg/m3

Absorption coefficient 7.955 mm−1

F(000) 976

Crystal size 0.40× 0.12× 0.10 mm3

Theta range for data collection 2.17 to 25.02◦.

Index ranges −6 ≤ h ≤ 5,−16 ≤ k ≤ 16,−29 ≤ l ≤ 29

Reflections collected 10806

Independent reflections 3153 [R(int) = 0.0304]

Completeness to theta = 25.00◦ 99.9 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.436

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3153 / 0 / 204

Goodness-of-fit on F2 1.035

Final R indices [I>2sigma(I)] R1 = 0.0174, wR2 = 0.0382

R indices (all data) R1 = 0.0194, wR2 = 0.0389

Absolute structure parameter 0.358(8)

Largest diff. peak and hole 1.231 and −0.534 e.Å−3
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Crystal data and structure refinement for PtLOxImCl:

Identification code 10srv190

Empirical formula C10H11ClN2O2Pt

Formula weight 421.75

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group Pbca

Unit cell dimensions a = 11.2334(2) Å α = 90◦.

b = 12.0769(2) Å β = 90◦.

c = 16.7780(4) Å γ = 90◦.

Volume 2276.18(8) Å3

Z 8

Density (calculated) 2.461 Mg/m3

Absorption coefficient 12.549 mm−1

F(000) 1568

Crystal size 0.40× 0.12× 0.12 mm3

Theta range for data collection 2.43 to 26.37◦.

Index ranges −11 ≤ h ≤ 14,−15 ≤ k ≤ 15,−16 ≤ l ≤ 20

Reflections collected 11241

Independent reflections 2329 [R(int) = 0.0297]

Completeness to theta = 25.00◦ 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.369

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2329 / 0 / 147

Goodness-of-fit on F2 1.087

Final R indices [I>2sigma(I)] R1 = 0.0187, wR2 = 0.0417

R indices (all data) R1 = 0.0236, wR2 = 0.0435

Largest diff. peak and hole 1.438 and −0.940 e.Å−3
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Crystal data and structure refinement for PtLImPhCF3Cl:

Identification code 13srv181

Empirical formula C24H11ClF12N2Pt

Formula weight 785.89

Temperature 120 K

Crystal system Orthorhombic

Space group Fddd

Unit cell dimensions a = 14.8776(2) Å α = 90◦.

b = 33.7860(6) Å β = 90◦.

c = 39.8394(7) Å γ = 90◦.

Volume 20025.5(6) Å3

Z 32

Density (calculated) 2.085 Mg/m3

Absorption coefficient 5.819 mm−1

F(000) 11904.0

Crystal size 0.4927× 0.1243× 0.0591 mm3

Theta range for data collection 5.48 to 64.08◦.

Index ranges −21 ≤ h ≤ 21,−49 ≤ k ≤ 49,−59 ≤ l ≤ 57

Reflections collected 95510

Independent reflections 6657 [R(int) = 0.0674]

Completeness to theta = 25.00◦ 100.0 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.369

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 6657 / 15 / 358

Goodness-of-fit on F2 1.056

Final R indices [I>2sigma(I)] R1 = 0.0284, wR2 = 0.0664

R indices (all data) R1 = 0.0409, wR2 = 0.0701

Largest diff. peak and hole 1.56 and −1.11 e.Å−3
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Crystal data and structure refinement for PtLImCyC2Ar:

Identification code 12srv038

Empirical formula C30H30F6N2O0.72Pt

Formula weight 739.17

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Trigonal

Space group P−3

Unit cell dimensions a = 18.2589(3) Å α = 90◦.

b = 18.2589(3) Å β = 90◦.

c = 14.7397(3) Å γ = 120◦.

Volume 4255.67(13) Å3

Z 6

Density (calculated) 1.731 Mg/m3

Absorption coefficient 4.998 mm−1

F(000) 2171

Crystal size 0.29× 0.21× 0.14 mm3

Theta range for data collection 2.58 to 29.25◦.

Index ranges −19 ≤ h ≤ 24,−24 ≤ k ≤ 23,−18 ≤ l ≤ 20

Reflections collected 38686

Independent reflections 7068 [R(int) = 0.0503]

Completeness to theta = 27.00◦ 99.9 %

Absorption correction Analytical

Max. and min. transmission 0.519 and 0.364

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 7068 / 620 / 524

Goodness-of-fit on F2 1.040

Final R indices [I>2sigma(I)] R1 = 0.0408, wR2 = 0.0853

R indices (all data) R1 = 0.0589, wR2 = 0.0947

Largest diff. peak and hole 2.094 and −1.619 e.Å−3
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Crystal data and structure refinement for PtLOxKetCl:

Identification code 12srv035

Empirical formula C12H15ClN2O2Pt

Formula weight 449.80

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21/c

Unit cell dimensions a = 7.3897(2) Å α = 90◦.

b = 17.5102(4) Å β = 91.383(2)◦.

c = 20.6523(4) Å γ = 90◦.

Volume 2671.53(11) Å3

Z 8

Density (calculated) 2.237 Mg/m3

Absorption coefficient 10.699 mm−1

F(000) 1696

Crystal size 0.3874× 0.2038× 0.1145 mm3

Theta range for data collection 2.76 to 29.25◦.

Index ranges −10 ≤ h ≤ 10,−23 ≤ k ≤ 21,−28 ≤ l ≤ 27

Reflections collected 24679

Independent reflections 6379 [R(int) = 0.0319]

Completeness to theta = 27.00◦ 99.2 %

Absorption correction Analytical

Max. and min. transmission 0.363 and 0.123

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 6379 / 0 / 333

Goodness-of-fit on F2 1.083

Final R indices [I>2sigma(I)] R1 = 0.0287, wR2 = 0.0689

R indices (all data) R1 = 0.0335, wR2 = 0.0712

Largest diff. peak and hole 2.310 and −0.930 e.Å−3
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Crystal data and structure refinement for [PtL5(ppy)Cl]+:

Identification code 12srv082

Empirical formula C27H19ClF6N3PPt

Formula weight 760.96

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P 21/n

Unit cell dimensions a = 11.3178(3) Å α = 90◦.

b = 13.8020(4) Å β = 95.380(3)◦.

c = 16.1527(5) Å γ = 90◦.

Volume 2512.07(13) Å3

Z 4

Density (calculated) 2.012 Mg/m3

Absorption coefficient 5.797 mm−1

F(000) 1464

Crystal size 0.11× 0.08× 0.05 mm3

Theta range for data collection 3.57 to 26.37◦.

Index ranges −14 ≤ h ≤ 14,−17 ≤ k ≤ 17,−11 ≤ l ≤ 20

Reflections collected 11451

Independent reflections 5121 [R(int) = 0.0580]

Completeness to theta = 26.00◦ 99.8 %

Absorption correction Analytical

Max. and min. transmission 0.773 and 0.568

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5121 / 12 / 352

Goodness-of-fit on F2 0.994

Final R indices [I>2sigma(I)] R1 = 0.0440, wR2 = 0.0599

R indices (all data) R1 = 0.0673, wR2 = 0.0694

Largest diff. peak and hole 1.216 and −1.274 e.Å−3
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Crystal data and structure refinement for [PtL5(bpy)Cl]2+:

Identification code 12srv145

Empirical formula C29H25ClF12N4OP2Pt

Formula weight 966.01

Temperature 120(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P−1

Unit cell dimensions a = 9.4819(3) Å α = 75.837(3)◦.

b = 12.0126(4) Å β = 79.211(3)◦.

c = 15.1624(5) Å γ = 74.144(3)◦.

Volume 1597.36(9) Å3

Z 2

Density (calculated) 2.008 Mg/m3

Absorption coefficient 4.665 mm−1

F(000) 936

Crystal size 0.17× 0.11× 0.09 mm3

Theta range for data collection 2.49 to 26.37◦.

Index ranges −11 ≤ h ≤ 11,−15 ≤ k ≤ 12,−16 ≤ l ≤ 18

Reflections collected 12869

Independent reflections 6518 [R(int) = 0.0557]

Completeness to theta = 26.00◦ 99.9 %

Absorption correction Analytical

Max. and min. transmission 0.710 and 0.549

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 6518 / 180 / 545

Goodness-of-fit on F2 1.005

Final R indices [I>2sigma(I)] R1 = 0.0454, wR2 = 0.0600

R indices (all data) R1 = 0.0627, wR2 = 0.0646

Largest diff. peak and hole 1.445 and −1.075 e.Å−3
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9.5 Chapter 1
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Excited state Crystal
structure
geometry

MeCN CTC

λ /nm f λ /nm f λ /nm f

PtL3Cl

1 404 0.0060 374 0.0004 389 0.0015

2 394 0.0869 370 0.1817 389 0.1845

3 363 0.0003 342 0.0106 350 0.0098

4 350 0.0061 336 0.0106 338 0.0000

5 341 0.0001 326 0.0000 337 0.0298

6 335 0.0000 312 0.0000 336 0.0000

7 330 0.0600 307 0.0966 325 0.0000

8 322 0.0010 304 0.0000 322 0.0850

9 307 0.0236 298 0.0512 313 0.0001

10 294 0.0020 296 0.3393 312 0.2493

PtLF3Cl

1 391 0.0059 363 0.0003 376 0.0018

2 374 0.0669 351 0.1398 364 0.1630

3 362 0.0000 342 0.0106 346 0.0103

4 347 0.0066 341 0.0260 342 0.0108

5 337 0.0461 315 0.0000 333 0.0000

6 331 0.0001 310 0.0000 320 0.0000

7 322 0.0000 309 0.1175 308 0.0000

8 318 0.0016 300 0.2965 305 0.1265

9 314 0.0278 297 0.0000 303 0.1106

10 306 0.0008 296 0.1191 297 0.2828

Table 9.7: First ten singlet excitations of PtL3Cl (top) and PtLF3Cl (bottom), calculated by
TD-DFT. The indicated solvent was modelled for both the geometry optimisation and TD-DFT.
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Excited state 6-31G cc-pVDZ cc-pVTZ

λ /nm f λ /nm f λ /nm f

PtL3Cl

1 403 0.0025 349 0.1755 352 0.0021

2 397 0.0973 349 0.0005 351 0.1662

3 360 0.0000 308 0.0096 313 0.0081

4 357 0.0063 302 0.0000 304 0.0365

5 343 0.0000 300 0.0348 304 0.0121

6 342 0.0000 290 0.0000 292 0.0000

7 340 0.0468 280 0.0001 281 0.0794

8 316 0.0025 279 0.0769 280 0.0003

9 315 0.0376 275 0.0147 278 0.0177

10 299 0.0064 273 0.0000 265 0.0001

PtLF3Cl

1 334 0.0007 339 0.0002 341 0.0003

2 326 0.1290 328 0.1583 329 0.1429

3 309 0.0114 305 0.0100 308 0.0085

4 301 0.0815 302 0.0294 305 0.0532

5 296 0.0000 298 0.0000 300 0.0000

6 282 0.0000 275 0.0001 277 0.0000

7 275 0.0350 275 0.0660 273 0.1003

8 273 0.0001 275 0.0000 272 0.1004

9 266 0.0000 270 0.1040 269 0.0000

10 264 0.1074 266 0.0000 264 0.0000

Table 9.10: First ten singlet excitations of PtL3Cl (top) and PtLF3Cl (bottom), calculated by
TD-DFT using CAM-B3LYP. The basis set used for all atoms except Pt (both for geometry
optimisation and TD-DFT) is indicated in the table.
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Figure 9.2: UV-vis absorption spectra of PtL5Cl3 kept in solution, in ambient conditions (top)
and in the dark (bottom) between measurements. Measurements were taken every 30 minutes
up to 3 hours, then one spectrum is shown after 45 h. The progress of the decomposition can
be seen as you move from purple plots to red.
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Figure 9.3: UV-vis absorption spectra of PtL5Cl3.
Top: sample in chloroform, heated at reflux, with exclusion of light for various time points up
to 20 h.
Bottom: sample kept in ambient conditions in the solid state and compared to the absorption
spectrum of a newly made sample.
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9.7 Chapter 3
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Figure 9.4: Normalised excitation spectra of PtL6SNit and PtL7STol in DCM at 298 K.
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9.8 Chapter 4

Figure 9.5: Density difference plots for S0 → T1 excitation at the T1 geometry of PtL8SNit.

Plots show electron depletion. (c) geometry calculated in vacuum, TD-DFT in DCM, (d)

geometry in DCM, TD-DFT in vacuum, (e) geometry and TD-DFT both in DCM, (f) geometry

calculated in vacuum, TD-DFT in hexane, (g) geometry in hexane, TD-DFT in vacuum, (h)

geometry and TD-DFT both in hexane.
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Excited state THF DCM MeCN

λ /nm f λ /nm f λ /nm f

PtL8SNit

1 457 0.0227 455 0.0241 444 0.0285

2 426 0.0063 423 0.0066 413 0.0071

3 384 0.5579 385 0.5602 385 0.5455

4 353 0.0042 352 0.0043 350 0.0040

5 348 0.1138 348 0.1152 346 0.1061

6 344 0.0164 344 0.0168 343 0.0169

7 334 0.0032 333 0.0136 332 0.0226

8 332 0.0213 332 0.0110 326 0.0005

9 326 0.0028 326 0.0025 325 0.0015

10 320 0.0027 318 0.0040 318 0.0113

PtL8SPh

1 515 0.0264 512 0.0267 497 0.0265

2 484 0.0132 481 0.0136 466 0.0143

3 369 0.0016 367 0.0015 358 0.0010

4 359 0.0171 358 0.0177 354 0.0183

5 352 0.0851 351 0.0895 348 0.0882

6 349 0.0389 348 0.0356 344 0.0086

7 346 0.0069 345 0.0088 340 0.0327

8 333 0.0052 333 0.0088 332 0.0173

9 332 0.0048 331 0.0061 328 0.0122

10 331 0.0299 330 0.0261 325 0.0048

Table 9.16: First ten singlet excitations of PtL8SNit (top) and PtLF8SPh (bottom) calculated
by TD-DFT in the indicated solvent for both geometry optimisation and TD-DFT.
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Excited state Cl STol SNit

λ /nm f λ /nm f λ /nm f

PtL6R

1 409 0.0025 589 0.0243 509 0.0102

2 394 0.1470 531 0.0237 454 0.0088

3 369 0.0078 416 0.0021 390 0.1624

4 349 0.0407 398 0.0026 380 0.3409

5 346 0.0000 377 0.0773 368 0.0159

6 344 0.0000 372 0.0031 368 0.1104

7 321 0.0002 369 0.0213 367 0.0326

8 321 0.0000 359 0.0090 350 0.0448

9 312 0.0661 353 0.0030 342 0.0057

10 297 0.3784 347 0.0434 341 0.0038

PtL9R

1 369 0.0664 503 0.0376 460 0.0686

2 367 0.0032 493 0.0130 437 0.0078

3 355 0.0219 373 0.0072 392 0.4710

4 353 0.0091 366 0.0236 360 0.0027

5 342 0.0000 356 0.0025 359 0.0045

6 338 0.0028 354 0.0053 352 0.0122

7 332 0.0146 343 0.0197 347 0.0542

8 307 0.1893 329 0.0403 338 0.0222

9 273 0.0199 323 0.0328 322 0.0249

10 268 0.0213 316 0.1399 316 0.0381

Table 9.17: First ten singlet excitations of PtL6STol, PtL6SNit, PtL6Cl, PtL9STol, PtL9SNit
and PtL9Cl at the ground state geometry, calculated by TD-DFT in DCM.
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Figure 9.6: Density difference plots for S0 → T1 excitation at the T1 geometry of PtL5SNit.
Plots show electron depletion. (c) geometry calculated in vacuum, TD-DFT in DCM, (d)
geometry in DCM, TD-DFT in vacuum, (e) geometry and TD-DFT both in DCM, (f) geometry
calculated in vacuum, TD-DFT in hexane, (g) geometry in hexane, TD-DFT in vacuum, (h)
geometry and TD-DFT both in hexane.
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Figure 9.7: Density difference plots for S0 → T1 excitation at the T1 geometry of PtL8SPh.
Plots show electron depletion. (c) geometry calculated in vacuum, TD-DFT in DCM, (d)
geometry in DCM, TD-DFT in vacuum, (e) geometry and TD-DFT both in DCM, (f) geometry
calculated in vacuum, TD-DFT in hexane, (g) geometry in hexane, TD-DFT in vacuum, (h)
geometry and TD-DFT both in hexane.
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Figure 9.8: Density difference plots for S0 → T1 excitation at the T1 geometry of PtL5SPh.
Plots show electron depletion. (c) geometry calculated in vacuum, TD-DFT in DCM, (d)
geometry in DCM, TD-DFT in vacuum, (e) geometry and TD-DFT both in DCM, (f) geometry
calculated in vacuum, TD-DFT in hexane, (g) geometry in hexane, TD-DFT in vacuum, (h)
geometry and TD-DFT both in hexane.
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Figure 9.9: Density difference plots for the first two excitations of PtL8SPh, at the ground state
geometry, in MeCN, showing the oscillator strength for each transition (f).

Figure 9.10: Density difference plots for the first three excitations of PtL8SNit, at the ground
state geometry, in MeCN, showing the oscillator strength for each transition (f).
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Figure 9.11: Density difference plots for the first two excitations of PtL8SPh, at the ground
state geometry, in DCM, showing the oscillator strength for each transition (f).

Figure 9.12: Density difference plots for the first three excitations of PtL8SNit, at the ground
state geometry, in DCM, showing the oscillator strength for each transition (f).
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Figure 9.13: Density difference plots for the first excitation of PtL9Cl and the first two excitations
of PtL6Cl, at the ground state geometry, in DCM, showing the oscillator strength for each
transition (f).
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Figure 9.14: Density difference plots for the first two excitations of PtL6STol, at the ground
state geometry, in DCM, showing the oscillator strength for each transition (f).

Figure 9.15: Density difference plots for the first three excitations of PtL6SNit, at the ground
state geometry, in DCM, showing the oscillator strength for each transition (f).
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Figure 9.16: Density difference plots for the first excitation of PtL9STol, at the ground state
geometry, in DCM, showing the oscillator strength for each transition (f).

Figure 9.17: Density difference plots for the first three excitations of PtL9SNit, at the ground
state geometry, in DCM, showing the oscillator strength for each transition (f).
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Excited state Cl STol SNit

λ /nm f λ /nm f λ /nm f

PtL6R

1 353 0.0001 425 0.0232 380 0.0042

2 345 0.2177 379 0.0788 343 0.1419

3 320 0.0140 337 0.0018 337 0.1139

4 307 0.0732 327 0.0883 334 0.4534

5 291 0.0000 322 0.0117 330 0.0934

6 287 0.0000 313 0.0103 320 0.0357

7 280 0.0570 306 0.0881 307 0.0917

8 279 0.0941 302 0.0101 304 0.0000

9 276 0.0000 298 0.0414 290 0.0005

10 269 0.0931 294 0.0148 287 0.0183

PtL9R

1 338 0.0020 392 0.0483 373 0.1517

2 337 0.0794 367 0.0370 342 0.1434

3 324 0.0144 330 0.0105 339 0.3946

4 321 0.0432 328 0.0009 328 0.0023

5 302 0.0002 322 0.0048 326 0.0155

6 295 0.0006 312 0.0570 322 0.0051

7 282 0.1217 301 0.0065 308 0.0678

8 276 0.0216 299 0.0625 304 0.0009

9 269 0.0642 293 0.0547 296 0.0018

10 267 0.1042 281 0.0846 283 0.0548

Table 9.18: First ten singlet excitations of PtL6STol, PtL6SNit, PtL6Cl, PtL9STol, PtL9SNit
and PtL9Cl in DCM. Calculated by TD-DFT with CAM-B3LYP at the ground state geometry.
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9.9 Chapter 5

Figure 9.18: Crystal packing of PtLKetnBuCl.
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Figure 9.19: Crystal packing of PtLOxImCl.

Figure 9.20: Crystal packing of PtLOxKetCl.
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Figure 9.21: Crystal packing of PtLImCyC2Ar.
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Figure 9.22: Normalised emission spectra of PtLImCyCl and PtLImCyC2Ar in degassed DCM at
298 K.

Excited state λ /nm f

1 390.62 0.0894

2 376.40 0.0477

3 372.60 0.0176

4 358.58 0.0042

5 354.09 0.0197

6 350.42 0.0132

7 337.11 0.0004

8 310.31 0.4899

9 300.01 0.0202

10 299.81 0.0268

Table 9.21: First ten singlet excitations of PtLImCyC2Ar, calculated by TD-DFT.
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Figure 9.23: Overlay of crystal structure (blue) and S0 DFT (red) geometries of PtLImPhCF3Cl,
PtLKetnBuCl, PtLOxImCl and PtLOxKetCl. DFT calculations performed with PBE0, in DCM.
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9.10 Chapter 6
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Figure 9.24: Emission spectrum of ArH, at 77 K, in an MP glass.
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Figure 9.25: Emission spectrum of ArMe, at 77 K, in MP glass.
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Figure 9.26: Emission spectrum of ArMe2, at 77 K, in MP glass.

280 300 320 340 360 380 400 420 440 460
0.0

0.2

0.4

0.6

0.8

1.0

Wavelength / nm

N
or
m
al
is
ed

in
te
n
si
ty

Figure 9.27: Emission spectrum of ArMe2a, at 77 K, in MP glass.
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Figure 9.28: Emission spectrum of ArMe2b, at 77 K, in MP glass.
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Figure 9.29: Emission spectrum of ArMe3, at 77 K, in MP glass.
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Figure 9.30: Emission spectrum of ArMe3a, at 77 K, in MP glass.
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Figure 9.31: Emission spectrum of ArMe3b, at 77 K, in MP glass.
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Figure 9.32: Emission spectrum of ArMe4, at 77 K, in MP glass.
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Figure 9.33: Emission spectrum of ArMe4a, at 77 K, in MP glass.
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Figure 9.34: Emission spectrum of ArMe4b, at 77 K, in MP glass.
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Figure 9.35: Emission spectrum of ArMe5, at 77 K, in MP glass.
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Figure 9.36: Emission spectrum of ArMe6, at 77 K, in MP glass.
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9.11 Chapter 7

Figure 9.37: Orbital plots for the first triplet excitation of [Pt(ppy)(acac)] in DCM at the ground

state geometry. Calculations performed with PBE0, cc-pVDZ and LANL2DZ.

Figure 9.38: Orbital plots for the first triplet excitation of [Pt(ppy)(hfac)] at the optimised

ground state geometry.
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Figure 9.39: Orbital plots for the first triplet excitation of cis-[Pt(ppy)(tfac)], in DCM, at the
optimised ground state geometry.

Figure 9.40: Orbital plots for the first triplet excitation of trans-[Pt(ppy)(tfac)], in DCM, at the
optimised ground state geometry.
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Transition Contribution

[Pt(ppy)(acac)]

HOMO−3 → LUMO 0.222

HOMO−3 → LUMO+1 0.109

HOMO−3 → LUMO+2 0.104

HOMO−1 → LUMO 0.397

HOMO → LUMO 0.457

HOMO → LUMO+3 0.113

[Pt(ppy)(hfac)]

HOMO−5 → LUMO 0.153

HOMO−4 → LUMO −0.275

HOMO−3 → LUMO −0.242

HOMO−1 → LUMO 0.448

HOMO → LUMO 0.369

cis-[Pt(ppy)(tfac)]

HOMO−3 → LUMO −0.154

HOMO−3 → LUMO+2 −0.149

HOMO−1 → LUMO 0.357

HOMO → LUMO 0.453

HOMO → LUMO+1 −0.226

HOMO → LUMO+3 0.118

trans-[Pt(ppy)(tfac)]

HOMO−3 → LUMO −0.190

HOMO−3 → LUMO+2 −0.153

HOMO−1 → LUMO −0.338

HOMO → LUMO 0.469

HOMO → LUMO+1 −0.193

HOMO → LUMO+3 0.118

Table 9.22: Dominant orbital contributions for excitation of [Pt(ppy)(acac)], [Pt(ppy)(hfac)],
cis-[Pt(ppy)(tfac)] and trans-[Pt(ppy)(tfac)] from S0 to T1 at the optimised S0 geometry.
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Excited state PtL10−cisCl PtL10−transCl

λ /nm f λ /nm f

1 444 0.0282 458 0.1896

2 437 0.0822 448 0.1750

3 379 0.3570 394 1.2780

4 378 0.0231 369 0.0907

5 369 0.4518 363 0.0771

6 343 0.0102 345 0.0100

7 334 0.0082 341 0.0040

8 331 0.0039 332 0.0136

9 328 0.0000 330 0.0001

10 322 0.0434 326 0.0389

Table 9.23: First ten singlet excitations of PtL10−cisCl and PtL10−transCl, calculated by TD-DFT
at the optimised S0 geometry.
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Geiger and P. D. Harvey, Inorg. Chem., 2009, 48, 446.

[150] Z. Li, E. Badaeva, A. Ugrinov, S. Kilina and W. Sun, Inorg. Chem.,

2013, 52, 7578.

[151] D. P. Rillema, A. J. Cruz, C. Moore, K. Siam, A. Jehan, D. Base,

T. Nguyen and W. Huang, Inorg. Chem., 2013, 52, 596.

[152] N. M. O’Boyle, A. L. Tenderhold and K. M. Langner, J. Comput. Chem.,

2008, 29, 839.

[153] M. Rudolph and J. Autschback, J. Phys. Chem. A, 2011, 115, 2635.

[154] G.-M. Tong and C.-M. Che, Chem. Eur. J., 2009, 15, 7225.



386 · Bibliography

[155] V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19, 404.

[156] A. J. Bridgeman, Inorg. Chem., 2008, 47, 4817.

[157] A. J. Bridgeman, B. Courcot and T. Nguyen, Dalton Trans., 2012, 41,

5362.

[158] R. Borrelli, A. Capobianco and A. Peluso, Can. J. Chem., 2013, 91,

495.

[159] I. Alata, R. Omidyan, M. Broquier, C. Dedonder and C. Jouvet, Chem.

Phys., 2012, 399, 224.

[160] I. Alata, R. Omidyan, C. Dedonder-Lardeux, M. Broquier and C. Jouvet,

Phys. Chem. Chem. Phys., 2009, 11, 11479.

[161] C.-H. Chang, G. Lopez, T. J. Sears and P. M. Johnson, J. Phys. Chem.

A, 2010, 114, 8262.

[162] I. Conti, E. Di Donato, F. Negri and G. Orlandi, J. Phys. Chem. A,

2009, 113, 15265.

[163] C. W. Muller, J. J. Newby, C.-P. Liu, C. P. Rodrigo and T. S. Zwier,

Phys. Chem. Chem. Phys., 2010, 12, 2331.

[164] I. Pugliesi and K. Müller-Dethlefs, J. Phys. Chem. A, 2006, 110, 13045.

[165] L. Jose, M. Seth and T. Ziegler, J. Phys. Chem. A, 2012, 116, 1864.

[166] V. Barone, J. Bloino, S. Monti, A. Pedone and G. Prampolini, Phys.

Chem. Chem. Phys., 2011, 13, 2160.

[167] J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999.

[168] S. Kui, I. Sham, C. Cheung, C.-W. Ma, B. Yan, N. Zhu, C.-M. Che and

W.-F. Fu, Chem. Eur. J., 2007, 13, 417.

[169] S.-W. Lai, M. C.-W. Chan, T.-C. Cheung, S.-M. Peng and C.-M. Che,

Inorg. Chem., 1999, 38, 4046.



Bibliography · 387

[170] C.-K. Koo, B. Lam, S.-K. Leung, M. H.-W. Lam and W.-Y. Wong, J.

Am. Chem. Soc., 2006, 128, 16434.

[171] C.-K. Koo, Y.-M. Ho, C.-F. Chow, M. H.-W. Lam, T.-C. Lau and W.-Y.

Wong, Inorg. Chem., 2007, 46, 3603.

[172] C.-K. Koo, K.-L. Wong, C. W.-Y. Man, Y.-W. Lam, L. K.-Y. So, H.-L.

Tam, S.-W. Tsao, K.-W. Cheah, K.-C. Lau, Y.-Y. Yang, J.-C. Chen and

M. H.-W. Lam, Inorg. Chem., 2009, 48, 872.

[173] S. U. Pandya, K. C. Moss, M. R. Bryce, A. S. Batsanov, M. A. Fox,

V. Jankus, H. A. Al Attar and A. P. Monkman, Eur. J. Inorg. Chem.,

2010, 2010, 1963.

[174] M. J. G. Peach, P. Benfield, T. Helgaker and D. J. Tozer, J. Chem.

Phys., 2008, 128, 044118.
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