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scattering in heterogeneous media

Ganesh Chandrasen Diwan

Abstract

The understanding of complex wave phenomenon, such as multiple scattering in

heterogeneous media, is often hindered by lack of equations modelling the exact

physics. Use of approximate numerical methods, such as Finite Element Method

(FEM) and Boundary Element Method (BEM), is therefore needed to understand

these complex wave problems. FEM is known for its ability to accurately model the

physics of the problem but requires truncating the computational domain. On the

other hand, BEM can accurately model waves in unbounded region but is suitable

for homogeneous media only. Coupling FEM and BEM therefore is a natural way to

solve problems involving a relatively small heterogeneity (to be modelled with FEM)

surrounded by an unbounded homogeneous medium (to be modelled with BEM).

The use of a classical FEM-BEM coupling can become computationally demanding

due to high mesh density requirement at high frequencies. Secondly, BEM is an

integral equation based technique and suffers from the problem of non-uniqueness.

To overcome the requirement of high mesh density for high frequencies, a technique

known as the ‘Partition of Unity’ (PU) method has been developed by previous

researchers. The work presented in this thesis extends the concept of PU to BEM

(PUBEM) while effectively treating the problem of non-uniqueness. Two of the

well-known methods, namely CHIEF and Burton-Miller approaches, to overcome

the non-uniqueness problem, are compared for PUBEM. It is shown that the CHIEF

method is relatively easy to implement and results in at least one order of magnitude

of improvement in the accuracy. A modified ‘PU’ concept is presented to solve

the heterogeneous problems with the PU based FEM (PUFEM). It is shown that

use of PUFEM results in close to two orders of magnitude improvement over FEM

despite using a much coarser mesh. The two methods, namely PUBEM and PUFEM,

are then coupled to solve the heterogeneous wave problems in unbounded media.

Compared to PUFEM, the coupled PUFEM-PUBEM apporach is shown to result

between 30-40% savings in the total degress of freedom required to achieve similar

accuracy.
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Chapter 1

Motivation and Objective

The mathematics of the full treatment may be altogether beyond human power in a

reasonable time; nevertheless... (Heaviside,[76])

1.1 Long range propagation, short waves and heterogeneous me-

dia

The study of wave propagation and scattering is important in fields such as acoustics, seismic

analysis, non-destructive testing, electromagnetics to name a few. One of the reasons why the

phenomenon of wave propagation is important to scientists and engineers is that waves can travel

a long distance compared to their wavelength. Consider for example the case of underwater

sound propagation. The oceans are transparent to low frequency sound and the acoustic waves

are known to travel great distances of several thousand kilometers in a particular waveguide

region known as SOund Frequency and Ranging (SOFAR) channel [46]. The second example is

that of high frequency (HF) radar signals. It is known that radar signals can travel with little

attenuation in the line of sight (ground wave propagation) as the absorption in the atmosphere is

negligible for electromagnetic waves. HF radars are increasingly used in several remote sensing

applications such as ocean current measurements, early warning systems for Tsunamis and oil

spills, remote surveillance [4, 12, 177]. Earthquakes are another important wave phenomenon

which can be felt over great distances. The Koyna dam earthquake that killed close to 200

people in Western India was felt over a distance up to 700 km from its epicenter, the Koyna

Dam [134]. Typical frequencies in the long range propagation used in underwater acoustics are

– 1 –



1.1. Long range propagation, short waves and heterogeneous media 2

from 20 Hz to 500 Hz. The wavelength, say λ, can be given by the relation

λ =
2π

k
=
c

f
(1.1)

where k is the wavenumber, c is the speed of the propagating wave and f is the frequency of

the wave. This indicates that the wavelengths under consideration range from 75 m (for f = 20

Hz) to 3 m (for f = 500 Hz) with c = 1500 m/s. Note that as the frequency increases, the

wavelength decreases. Consequently, the long range propagation could mean detecting acoustic

pulses at a distance of 5-10 km from the source. In case of remote sensing application such

as HF radar, the wavelength ranges from 40 m to 5 m whereas the waves are used for remote

sensing in a region that is at a distance up to 200 km. It can therefore be understood that for

the purpose of numerically simulating these wave problems, one needs to model a domain that

spans thousands of wavelengths and this can be identified as the first challenge in numerical

modelling.

The second problem when numerically solving the wave problems is the increasing frequency.

Applications such as medical imaging which rely on the use of ultrasonic waves involve acoustic

pulses with frequencies ranging from 1 MHz to 15 MHz. This results in a wavelength of 1.5 mm

(for f = 1 MHz) to 100 microns (for f = 15 MHz) for c = 1500 m/s. Modelling such short

wavelength problems with the classical Finite Element Method (FEM) or Boundary Element

Method (BEM) would be a highly computationally intensive task. For example a numerical

study of ultrasonic wave propagation in human bones using a 3D FE model was carried out by

Protopappas et al [150]. The computational model was taken as a hollow cylinder with outer

and inner radii as 8.61 and 4.53 mm respectively, while the length of the cylinder was 50 mm.

This cylinder is equivalent in volume to a solid cube of side approximately 20 mm. The authors

used a FE model with 4 million degrees of freedom (with eight-node linear hexahedral continuum

elements, element type C3D8R in ABAQUS version 6.4) and the problem was solved using a

64-CPU, Origin 2000 supercomputer with 32 Gbytes shared memory. The typical computational

time was 40 min and the frequencies tested ranged from 0.1-1.5 MHz.

Another example is of a short wave problem in seismic wave scattering. Consider an earth

model using a cube domain of side 3 km and let the acoustic wave speeds range from 1500 to

4500 km/s (and thus a heterogeneous problem). Now consider an acoustic source with frequency
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25 Hz, thus the shortest wavelength would be λ = 1500/25 = 60 m. Thus the problem size in

terms of wavelengths is 50× 50× 50. If the wave propagation is simulated only for 1 sec in this

domain, using the explicit Finite Difference Method (FDM) and if 10 grid points per wavelength

are taken, one would need a stencil of 500 × 500 × 500 grid points. The total number of grid

point evaluations is therefore 5000 × 5003 = 6.25 × 1011 [178].

It is therefore clear that numerically solving wave problems can become computationally de-

manding either due to

1. a very large computational domain relative to the wavelength, or,

2. highly heterogeneous media with either a low (seismic waves in geophysical exploration)

or a high frequency (ultrasonic waves in human tissue) wave.

At this point, it will be useful to define a parameter τ that specifies the number of degrees of

freedom per wavelength, i.e.,

τ = λ

(

nDof

A

)1/2

for 2D FEM (1.2a)

τ = λ

(

nDof

P

)

for 2D BEM (1.2b)

where nDof is the total degrees of freedom in the problem, A is the area under consideration

when solving the problem with FEM (A =
∫

dA) and P is the length of the boundary (P =
∫

dΓ)

when solving the problem with BEM. We have considered the definition of the parameter τ for

a two dimensional case alone as it is the focus of this thesis. It is well known that both FEM

and BEM require τ ≈ 6 to 10 to model the wave scattering problems and obtain results with

engineering accuracy (≈ 1%). Clearly the nDof needed (see (1.2)) grows linearly for BEM

and quadratically for FEM with the wavenumber k. This is a major problem when modelling

short waves with FEM or BEM as a FE or BE mesh satisfying τ ≈ 6 to 10 will lead to large

computer memory requirements especially at high frequencies (see Figure 1.1). Consider the

practical problem of the seismic waves mentioned earlier. If a time harmonic case was to be

solved with FEM, with source frequency of 100 Hz (λ = 1500/100 = 15 m), the problem size

in terms of wavelength is 200 × 200 × 200. The ‘rule of thumb’ of τ ≈ 10 requires a FE mesh

with (200 × 10)3 = 8 × 109 nodes. Even if such a large model could be constructed and run

using parallel processors, a major problem with polynomial based FEM or BEM remains which
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Figure 1.1: nDof vs k at τ = 10 for FEM and BEM

is known as the pollution error. As the frequency of the wave increases, the error in the solution

grows even if the criteria of τ ≈ 10 is followed [9]. This is a major concern for engineers as many

imaging problems involve very short waves.

1.2 Unbounded domain problem

The FEM has long established itself as an attractive choice for numerical modelling wave scat-

tering problems [73], [71], [175]. The most important feature of FEM is that it is a general

numerical method that can be applied to complex geometries and heterogeneous materials.

Consider the wave scattering problem encountered in ocean acoustics or in ultrasound imaging.

The acoustic medium in these cases is highly heterogeneous (such as temperature and density

dependent sound speed in oceans or soft and attenuating tissues in the brain) and often with

intricate features (nonplanar bathymetry and complex tissue structures). FEM therefore ap-

pears to be an ideal choice in such applications. FEM however can become computationally

intensive when modelling unbounded media. Consider a wave being scattered from an object

and propagating in an unbounded medium such as sound scattering from underwater ship hull

or electromagnetic scattering from an aeroplane. Since the real life media (oceans, atmosphere)
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are practically infinite to be modelled on a finite computer, the computational domain needs to

be truncated to a finite size for the purpose of numerical modelling. A suitable ‘non reflecting

boundary condition’ (NRBC) then needs to be used on the truncated domain if FEM is used.

Since these boundary conditions are not exact, spurious reflections occur at these boundaries

which pollute the solution obtained with FEM. The larger the computational domain, the bet-

ter the results obtained with a NRBC. Clearly, for long range propagation problems, FEM will

become expensive. There is abundant literature on this topic and NRBCs will be discussed in

Chapter 3 in detail (§3.3). At this point, it should suffice to say that the development of an

optimal NRBC is still an ongoing research topic.

BEM on the other hand is known to be best suited for wave problems in unbounded, linear,

homogeneous media [36], [186],[95]. The major advantage of BEM is that the dimension of the

problem is reduced by one. This drastically reduces the total number of degrees of freedom

(ndof) needed to solve a particular scattering problem. Coupling of FEM with BEM therefore

appears to be a natural way of solving wave problems in unbounded media. A coupled algo-

rithm would ideally use FEM in the region where geometry is complex and/or the medium is

heterogeneous. The BEM would be used for treating waves in the unbounded and homogeneous

medium. As will be discussed later in the thesis, the limitation of a coupled FEM-BEM approach

remains the unsymmetric structure of the linear system of equations formed as a result of direct

coupling.

1.3 Non-uniqueness of the boundary integral equations in acous-

tics

BEM in acoustics is based on use of boundary integral equations (BIE) which are known to result

in non-unique solutions at certain characteristic frequencies (or wavenumbers) for an unbounded

domain problem [36]. BEM either used on its own or in a coupled FEM-BEM algorithm for

solving acoustic scattering problems, will result in a non-unique solution at the characteristic

wavenumbers. While it is possible to predict these characteristic wavenumbers for simple shaped

scatterers (sphere, cylinder), for practical problems might involve wave scattering from arbitrary

shaped obstacles, for which these wavenumbers cannot be known in advance. Additionally, the

characteristic wavenumbers become densely packed for increasing frequencies. Several methods
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are available to alleviate the problem of non-uniqueness each with its own advantages and

disadvantages.

1.4 Objective and organisation of the thesis

With this background in mind, a question such as the following can be phrased. Can we devise

an algorithm to solve the wave scattering problem efficiently such that

1. FEM can be used for modelling the heterogeneous domain,

2. BEM can be used to model the homogeneous unbounded domain,

3. The algorithm provides a unique solution at all wavenumbers no matter what the shape

of the scatterer, and,

4. the requirement on τ can somehow be reduced.

Whereas, the requirements mentioned in 1, 2 and 3 above can be met with the use of a coupled

FEM-BEM approach along with some arrangement for BEM to handle the non-uniqueness

problem, the reduction in the parameter τ can be achieved using the ‘Partition of Unity’ (PU)

concept. The PU method was introduced by Melenk and Babuška [124, 125]. The idea used

was to inject the knowledge of the problem under consideration into the FE approximation

space, namely the particular solution of the partial differential equation governing the physics.

For example time harmonic wave problems are governed by the Helmholtz equation and plane

waves or Bessel functions, which are the particular solutions of the Helmholtz equation, can be

effectively used as the ‘enrichment’ along with the classical polynomial shape functions. This

was shown in many works to be effective in reducing the τ requirement besides alleviating the

problem of pollution error; see [25, 48, 54, 81, 142, 156]. The objective of the thesis therefore

can be stated as

‘to develop an algorithm for coupling PU based FEM and BEM for solving wave

scattering in heterogeneous media while effectively handling the problem of non-

uniqueness’

The remainder of this thesis is arranged as follows. Chapter 2 gives background theory of acous-

tic wave scattering and a discussion on Sommerfeld’s radiation condition. Chapter 3 mainly

reviews the weak formulation required for FEM and the boundary integral equation for acoustic

wave scattering problems but also provides a brief discussion on other numerical methods in
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use for wave problems. Some of the NRBCs used for FEM in this thesis are also introduced.

Chapter 4 discusses the concept of element based discretization along with the idea of ‘Partition

of Unity’∗. The discretization of the weak form and the BIE using the PU concept are discussed.

Chapter 5 compares the Partition of Unity BEM implementations of Combined Helmholtz Inte-

gral Equation Formulation (CHIEF) and Burton-Miller approaches which are used to treat the

non-uniqueness problem of the integral equations. Chapter 6 first introduces the idea of mixed

basis and then provides results for PUFEM for heterogeneous wave problems. Next in Chapter

7, the method described in Chapter 5, namely PUBEM is coupled with the PUFEM method

described in Chapter 6. Finally Chapter 8 gives conclusions and directions for future work. In

general, the main contribution of this thesis is in Chapters 5 to 7 where the objectives discussed

above will be incorporated.

∗‘Partition of unity’ and ’plane wave basis’ are often used synonymously.



Chapter 2

Acoustic scattering: background

theory and numerical methods

This chapter gives the background theory for the Helmholtz equation followed by various nu-

merical methods presently in use in the acoustics community for its solution. The basic theory

of acoustic wave propagation and derivation of the wave equation can be found in many acous-

tics textbooks [133], [94]. §2.1 gives the PDE governing time harmonic propagation of acoustic

waves, namely the Helmholtz equation.

2.1 The Helmholtz equation

Consider a linear acoustic problem in a domain in R
d denoted by Ω∞. The wave equation in

Ω∞ is then given as [94]

ρ(x)∇ ·
(

1

ρ(x)
∇p̂(x, t)

)

+
1

c2(x)

∂2p̂(x, t)

∂t2
= 0 (2.1)

where p̂ is the acoustic pressure, c is the thermodynamic speed of sound, t is the time, ρ is the

mass density of the considered medium, ∇ is the gradient operator and x is a considered point

in the domain Ω∞. The sound speed c can be given by the relation,

c =
B

ρ
(2.2)

where, B is the adiabatic bulk modulus of the medium. Some basic assumptions in deriving the

wave equation (2.1) are enumerated to follow.

– 8 –



2.1. The Helmholtz equation 9

1. The medium Ω∞ is inviscid thus the phenomenon of wave propagation will be lossless.

2. The amplitude of the acoustic wave under consideration will be assumed to be relatively

small and therefore the change in the density of the medium is small.

The classical choice of the time dependence in acoustics is e−iωt where ω is the circular frequency

of the propagating wave and i =
√
−1∗. The acoustic pressure p̂(x, t) can therefore be expressed

as,

p̂(x, t) = p(x)e−iωt (2.3)

where p(x) is the amplitude of the complex pressure. Many practical applications involve mod-

elling the response of a physical system due to periodic forces and more often than not these

forces are time harmonic in nature. The circular frequencies of such forces can be different

and so interpreted as harmonic components. The acoustic response of the system therefore can

be considered as a linear combination of these harmonic components and usually only a finite

number of such harmonic components are important. For example the sound power radiated

from an engine cover (such as oil pan, cam cover) shows peaks at certain frequencies which turn

out to be the natural vibration modes of the covers [77], see Figure 2.1. It is therefore clear

Figure 2.1: Sound power radiation from engine cover (ref. Herrin et el [77])

that for practical purposes where the response of the physical system only for certain harmonics

is required, expressing the pressure in a form given by (2.3) is more convenient. The physical

quantity of interest then becomes the spatial part, i.e., p(x) of the dynamic quantity p̂(x, t) for

∗It is clear that since the time factor is discarded, for a time dependence of the form e−iωt one recovers a
traveling wave with positive exponent i.e., eikr, r being the position vector.
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a given frequency ω. If one is interested in building a dynamic pressure field, the inverse Fourier

transform can be used. In this thesis, however, only monofrequency time harmonic waves are

considered. Thus for a progressive wave with circular frequency ω, a reduced wave equation or

the Helmholtz equation† can be obtain by using (2.3) in (2.1), i.e.,

ρ(x)∇ ·
(

1

ρ(x)
∇p(x)

)

+ k2p(x) = 0, x ∈ Ω∞ ⊂ R
d (2.4)

where k = ω/c is the wavenumber. It may be noted that in view of (2.2), the wavenumber k is

allowed to change in the domain Ω∞.

2.2 Wave scattering: the boundary value problem and bound-

ary conditions

A basic wave propagation problem, such as a plane wave propagating in an unbounded medium,

can be solved relatively easily with either (2.1) or (2.4). However, as discussed in §1.1, in

practice engineers are more interested in situations where waves encounter obstacles or the

acoustic medium undergoes a change in the properties resulting in interesting phenomena such

as multiple scattering and/or reflections at the interface between two media. In this section, the

boundary value problem (BVP) for wave scattering is described for a time harmonic case (i.e.

using the Helmholtz equation (2.4)).

The total acoustic pressure p(x) due to a time harmonic wave with wavenumber k propagating

in the infinite medium Ω∞ satisfies (2.4). Consider such a wave, pinc, scattering off an obstacle

Ωs bounded by a surface Γs in R
2 and let n denote the normal vector to Γs which points away

from the acoustic medium. Let psct denote the scattered acoustic pressure. Thus,

p(x) = pinc(x) + psct(x) (2.5)

Though no surface can be considered as perfectly reflecting or perfectly absorbing, for practical

purposes, it can be assumed that a given surface is either sound hard or sound soft. The obstacles

considered in this thesis are assumed to be perfectly sound hard meaning there is total reflection

of the waves from the obstacle surfaces. In other words, the normal component of fluid particle

†Hermann Ludwig Ferdinand von Helmholtz (1821-1894)-German physicist, carried out fundamental research
in the fields of acoustics, optics and electromagnetism.
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n

Ω∞

Ωs

Γs

pinc

Figure 2.2: Definition of an acoustic scattering problem

velocity is zero on these surfaces, i.e.,

1

iρω

∂p(x)

∂n(x)
= 0 x ∈ Γs (2.6)

Apart from having to satisfy (2.4) and a boundary condition such as in (2.6), the total acoustic

field also needs to satisfy the ‘radiation condition’ at infinity attributed to Sommerfeld ‡. For a

wave problem either in acoustics, electromagnetics or optics, Sommerfeld states ‘... the sources

must be sources, not sinks, of energy. The energy which is radiated from the sources must scatter

to infinity; no energy may be radiated from infinity into the prescribed singularities of the field ’

in his classical book on partial differential equations [168]. Established over a hundred years ago

in 1912, Sommerfeld’s radiation condition is essential in ensuring a unique solution to a wave

scattering problem. Firstly, as per Sommerfeld’s radiation condition, the scattered wave satisfies

psct(x) = O

(

1

|x|

)

, |x| → ∞ (2.7)

uniformly in all directions and this condition is generally regarded as a regularity condition at

infinity. Secondly, at infinity the field psct must be representable as a sum of (alternatively an

integral of) only divergent waves. Thus there cannot be any wave of incoming type at infinity.

This second condition can be established with the use of Green’s theorem applied to (2.4); see

§9.1 in [170]. For this purpose consider a region bounded internally by Γs and externally by Σ,

‡Arnold Johannes Wilhelm Sommerfeld (1868-1951)- German theoretical physicist who pioneered developments
in atomic and quantum physics.
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then, Green’s theorem for (2.4) for a point x that lies outside Γs but interior to Σ gives

psct(x) =

∫

Γs

(

∂psct(x)

∂n(x)
G− psct(x)

∂G

∂n

)

dΓs +

∫

Σ

(

∂psct(x)

∂n(x)
G− psct(x)

∂G

∂n

)

dΣ (2.8)

where G is the Green’s function for the Helmholtz equation (2.4). To clarify matters, let us

consider a 3D case as the Green’s function is simpler and therefore differentiation of G in (2.8)

is relatively easy. The Green’s function G in 3D is given as

G =
eikR

4πR
(2.9)

where R is the distance of point x from Σ. Using (2.9) in (2.8) and simplifying, we obtain

psct(x) =
1

4π

∫

Γs

eikR

R

∂psct(x)

∂n(x)
dΓs −

1

4π

∫

Γs

∂

∂n

[

eikR

4πR

]

psct(x)dΓs+

+
1

4π

∫

Σ
psct(x)

eikR

R2
dΣ− 1

4π

∫

Σ
R

(

∂psct(x)

∂n(x)
− ikpsct(x)

)

eikR

R2
dΣ (2.10)

The first two integrals in (2.10) represent diverging or outgoing waves from the source. The third

integral in (2.10) vanishes on account of the condition in (2.7), and the last integral in (2.7)

represents the incoming waves from the points on surface Σ and must be carefully accounted for.

Unless a condition on the last integral in (2.10) is specified, the solution interior to the surface

Σ will also contain incoming waves which is an unphysical situation as we know for a scattering

problem with no sources at infinity the waves must only be outgoing. Therefore, to ensure a

unique solution, we must have,

lim
r→∞

r

(

∂psct(x)

∂r
− ikpsct(x)

)

= 0 (2.11)

Equation (2.11) is known as Sommerfeld’s radiation condition and the limit in (2.11) must

be approached uniformly and through all angles. As mentioned earlier, we consider only 2D

problems in this thesis for which the term r in (2.11) needs to be replaced by r1/2. Thus the

general form of the radiation condition can be given by

lim
r→∞

r
d−1
2

(

∂

∂r
− ik

)

psct(x) = 0 (2.12)
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where d is the dimension of the space. The BVP in 2D (d = 2) therefore can be summarized as:

Find the total acoustic pressure p(x) such that,

ρ(x)∇ ·
(

1

ρ(x)
∇p(x)

)

+ k2p(x) = 0, x ∈ Ω∞ ⊂ R
2, (2.13a)

1

iρω

∂p(x)

∂n(x)
= 0 x ∈ Γs, (2.13b)

lim
r→∞

psct(x) = 0, (2.13c)

lim
r→∞

r
1
2

(

∂

∂r
− ik

)

psct(x) = 0. (2.13d)

2.3 Numerical methods for time harmonic acoustics

Numerical modelling of wave scattering problems is indispensable unless the geometry under

consideration is simple such as a sphere or a cylinder so that the analytical solutions can be con-

structed. In real life however such simple shapes are not always possible. Consider for example

the noise radiation from an internal combustion engine where the numerical modelling either

with FEM or BEM is essential. Another case is that of scattering of ultrasound in a heteroge-

neous medium such as human tissue where it is impossible to construct an analytical solution.

In this section, an overview of some of the methods in use for numerical modelling of acoustic

scattering for high frequency problems is presented. The methods briefly reviewed here are i)

PUFEM, ii) PUBEM, iii) ultraweak variational formulation (UVWF) and iv) the discontinuous

Galerkin method (DG). There are numerous other methods being used for modelling the wave

problems such as ray tracing and statistical energy analysis.

2.3.1 Partition of Unity Finite Element Method (PUFEM)

The development of the FEM goes more than five decades back where it originated as a numerical

tool for analysing civil engineering structures [35]. Since then, with the advent of technology in

computer science, FEM like several other fields has undergone many developments. The basic

essence of the FEM however can be described in two steps [78]:

1. Writing a variational statement of the problem under consideration; and

2. approximating the solution of the equations in the variational statement using the finite

element basis.
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As will become apparent later in the thesis (see §3.1), the variational form contains derivatives

of first order as opposed to the original second order derivatives present in the PDE (strong

form). This means the constraints on the solution variable of the PDE are less stringent or are

‘weak’ in the variational form. An exhaustive review of the FEM would be beyond the scope

of this thesis but there are numerous textbooks on FEM covering a wide variety of engineering

applications; see [42] (flow problems), [131] (electromagnetic waves), [190] (solid mechanics),

[152] (heat problems). A brief review of FEM applied to wave problems along with the boundary

conditions for unbounded problems is given by Bettess [16]. Thompson has given a review of

FEM for time harmonic acoustic problems in [175]. Here we briefly review some contributions in

the FEM/PUFEM specifically applied to wave problems. The FEM has been used extensively for

acoustic-structure interaction for the past four to five decades and the majority of the studies

were focussed on interior problems. Young and Crocker used FEM for the transmission loss

analysis of a muffler [39]. Craggs used tetrahedral and cuboid finite elements for determining

the mode shapes of the interior of a passenger car [38]. Gladwell studied vibration problems

using adjoint pressure and displacement models [60]. There are many other studies conducted

for interior problems; see [7, 92, 135, 172]. As discussed at the end of §1.1, the primary difficulty

with the classical FEM (polynomial shape function based) remains the high resolution needed

and the pollution error at high frequencies. Ihlenburg [83] gives the following equation for the

relative error bound (ẽ1) for a finite element solution of an oscillatory problem such as the

Helmholtz equation,

ẽ1 ≤ C1hk + C2k
3h2, hk < 1, (2.14)

where h is the element size, k is the wavenumber and C1 and C2 are constants that are indepen-

dent of the wavelength. It can be noted that though the product kh is kept constant, the second

term k3h2 in (2.14) will result in an error that will grow with the wavenumber k. In order to

control the error therefore, one would need to keep refining the mesh (or add more dof in the

system) such that the product k3h2 is kept constant as the wavenumber k increases. This clearly

is a highly computationally intensive task for high wavenumbers. Ihlenburg gives a second error

bound if the order (p) of the polynomial is varied along with the size of the element (h).

ẽ1 ≤ C1

(

hk

2p

)p

+ C2k

(

hk

2p

)2p

, hk < 1, (2.15)



2.3. Numerical methods for time harmonic acoustics 15

The first term in (2.15) gives the approximation error whereas the second term gives the pollution

error in the solution. Clearly, the errors can be significantly reduced by increasing the order of

the approximation p instead of simply refining the FE mesh (i.e. reducing h). An alternative

to the h and p refinement is to use a modified FE basis such as in PUFEM. The concept used

in PUFEM is to use the plane waves along with the classical polynomial basis functions. Thus

the basis function at a node on a finite element will be of the form Nje
ikd·x, where d is the unit

vector, x is the spatial location of the node and Nj is the polynomial shape function at node

j§. It has been shown that if many plane waves are used at each node, the requirement on τ

is significantly reduced. For example, as demonstrated through several papers on PUFEM for

wave scattering problems the value of the parameter τ needed for high frequency problems is

close to 2 as against 10 as needed by classical FEM; see [17, 106–108, 129, 142]. As discussed

earlier (see §1.4), though the concept of the Generalised FEM such as PUFEM was originally

introduced by Melenk and Babuška [124, 125], the full potential of this method was greatly

exploited by Bettess and coworkers to solve short wave diffraction problems [100–102, 104, 105].

The major problems with PUFEM however are:

1. ill-conditioning of the linear system of equations with increasing wavenumber, and,

2. the requirement to evaluate highly oscillatory integrals.

Mohamed [128] studied PUFEM for wave diffraction problems for homogeneous media using

various convergence studies viz. h, p and q ¶. Mohamed reports a linear rise in the condition

number of the system matrix with the addition of plane waves (q-convergence) and/or mesh

refinement (h-convergence). It is observed through the results presented in [128] that errors from

PUFEM do not improve despite either the h or q refinement because of severely ill-conditioned

systems (condition no. ≈ 1019). The second problem is that of highly oscillatory integrals. To

this effect, numerous authors have devised special quadrature schemes that efficiently evaluate

the oscillatory integrals. For example, Sugimoto et al [171] use a semi-analytical approach to

integrate the oscillatory functions in a straight edged quadrilateral finite element. Ortiz and

Sanchez [138] use triangular elements and perform a coordinate transformation (rotation in

a local coordinate system) such that the oscillatory kernel varies only in a single direction.

§The concept of shape functions will be discussed in Chapter 4.
¶q convergence is achieved by successively adding plane waves at a finite element node while keeping the mesh

resolution h and order of the polynomial p constant.
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Significant savings in the number of operations were demonstrated. Both the issues of ill-

conditioning and oscillatory integrals will be further discussed in the thesis, however, at this

point, a general conclusion from the previous work can be mentioned. PUFEM can result in a

reduction in the parameter of τ by at least a quarter, thus the gain in solving a 2D problem is

42 = 16 over the classical FEM.

2.3.2 Partition of Unity Boundary Element Method (PUBEM)

The advantage of using BEM over FEM is well known which is that of working in one dimension

less than that for FEM. Despite this significant advantage, BEM does not enjoy the popularity

that FEM has primarily because of the following reasons:

1. dense and unsymmetric linear system,

2. singular integrals, and,

3. inability to model heterogeneous material.

FEM on the other hand results in sparse symmetric linear systems for which efficient solvers

are widely available. Harari and Hughes [73] compare FEM and BEM for Helmholtz problems

and give a clear cut verdict in favour of FEM. Obviously, when solving 3D problems, the mesh

generation is very easy for BEM and therefore for sound radiation or scattering problems, BEM

appears to be a natural choice. Recent developments in BEM such as fast multipole [32, 40,

136] or hierarchical matrix methods [21] indicate fast solutions can be retrieved using efficient

algorithms. In general, since the Sommerfeld’s radiation condition is automatically satisfied by

the Green’s functions, BEM has been very popular in numerically solving the wave problems for

unbounded homogeneous media, see [6, 11, 26, 30, 34, 109, 111, 185]. After its use in FEM, the

concept of plane wave basis was further extended to BEM (PUBEM) by Perrey-Debain and co-

workers; see [144, 146, 147]. It can be observed from the work of Perrey Debain and co-workers

on PUBEM that close to 4 orders of magnitude improvement can be achieved over classical

BEM despite using 4 times less degrees of freedom per wavelength. Recently Peake et al [140]

have used the Non-uniform rational B-spline (NURBS) basis functions to extend the capability

of plane wave based BEM (XIBEM). These authors report a significant reduction in the degrees

of freedom required for a given problem. For an accuracy of 1%, three-times fewer degrees of

freedom are required for XIBEM simulations than for conventional BEM. In summary, similar
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to PUFEM, PUBEM also outperforms the classical BEM in the τ requirement. This, however,

comes at having to solve a dense unsymmetric and an ill-conditioned linear system. Apart from

having to deal with singular integrals, some of the problems encountered when solving exterior

acoustic scattering problems with PUBEM are

1. ill-conditioned system of equations,

2. highly oscillatory integrals,

3. non-uniqueness of integral equations, and,

4. exact geometry requirement.

The last aspect of exact geometry is important because when solving short wavelength problems,

any inaccuracies in representing the actual geometry of the scatterer can accentuate the errors in

the solution. This is especially true for PUBEM because the condition numbers encountered are

significantly high (greater than 1010). At such high condition numbers, it becomes imperative

to compute the PUBEM integrals with at least double precision. The accurate representation of

the geometry is therefore important for PUBEM computations. There are few more reasons for

the requirement of exact geometry and these will be discussed in Chapter 5 as well (see §5.2).

The problem of unsymmetric matrices mentioned earlier can be alleviated if Galerkin BEM is

used [11, 26, 26, 27]. Though mathematically more robust, the method involves time consuming

double integrals. It is important to note here that both PUFEM and the PUBEM ‖ studied in

this thesis require the number of degrees of freedom to grow as the product ka increases, where

a is the significant dimension of the scatterer. Whereas for the PUFEM work mentioned earlier,

the dof needed for a fixed accuracy grows as (ka)N , PUBEM requires the dof to grow (ka)N−1,

N being the dimension of the problem. Chandler-Wilde et al [28] have shown that for high

wavenumbers this requirement for plane wave enriched Galerkin BEM grows only logarithmically.

It should however be noted that, both PUBEM and Galerkin BEM suffer from the problem of

non-uniqueness. To the author’s knowledge, no comparison between these two methods has

been published to date. However, collocation based BEM appears to be more popular among

engineers as it is easy to implement and integration time required is less.

‖i.e. plane wave based direct collocation BEM
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2.4 Methods with discontinuous basis functions

Often we encounter situations where the medium is not homogeneous. It is convenient to assume

piecewise constant properties within each element and then use discontinuous basis functions

for each individual finite element. These discontinuous basis functions then need to be tied

in some manner. There are primarily three numerical methods which are classified according

to the way the continuity on the basis function across each element is enforced viz. i) Ultra

Weak Variational Formulation (UVWF) ii) discontinuous enrichment method (DEM) and iii)

the method of least squares.

2.4.1 Ultra weak variational formulation (UWVF)

In UWVF, as the name suggests, the continuity is enforced on the discontinuous basis functions

weakly through the variational formulation. Cessenat and Despres presented this method by

solving the Helmholtz equation in 2D and showed that the order of convergence for UVWF is

lower bounded by a linear function of the number of basis functions per element [25]. The method

is efficient as the unknown variable is defined on the interface between elements and a plane

wave basis is used for the approximation. Naturally after the matrix equations are solved and if

the solution inside the element is required, the method requires to solve additional equations to

compute the solution within a finite element. In order to be able to get the solution at all the

points in the domain, all the equations on the interface of elements will have to be solved thus

increasing the complexity of the method. Although the method was derived by Cessenat in his

PhD thesis [24] for Helmholtz and Maxwell equations, it was later extended to solve problems

in linear elasticity [80] and fluid-structure interaction [79]. Compared to PUFEM, UWVF can

result in a better conditioned linear system by changing the number of enrichment functions on

each element [81].

2.4.2 Discontinuous enrichment method (DEM)

The DEM is similar to UWVF as it uses discontinuous basis for each element but the continuity

is enforced via use of Lagrange multipliers [48–50, 121, 174]. It may be noted that, Farhat et al,

after their first paper on DEM [48], dropped the polynomial shape functions, thus retaining only

the plane wave as a basis. This approach was termed as ‘discontinuous Galerkin’ (DG) method;

see [49]. Gabard used the DG method to solve the Helmholtz equation with a focus on studying

the locking phenomenon [52]. Farhat et al show the convergence of DG for mid-frequency
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Helmholtz problem using higher order (Q2, Q4) elements. Amara et al show a convergence

analysis for low order elements for the DG method for the Helmholtz problems. See [121] for an

application of DG to wave propagation in multi-fluid media, [189] for elastic wave propagation

problems, [122] for vibration problems.

2.4.3 Least square method (LSM)

In the LSM approach, a functional containing penalty terms involving the jumps across the

element interfaces is minimized. The method can be attributed to Jirousek and Wrblewski [87]

who showed that the convergence can be achieved without refining or increasing the polynomial

order in the mesh but by simply adding more enrichment functions. The least square method,

like any other wave based method (DG, UVWF) is a Trefftz based method where the differential

equation is needed to satisfy inside the element and the continuity conditions can be enforced

later on the inter element boundaries. Stojek [169] used Bessel and Hankel functions as the

T-complete set to solve Helmholtz problem using LSM. It was shown that special techniques

such as infinite elements are not needed if a Bessel basis is used. The concept of LSM was

further studied by Monk and Wang [132] for the Helmholtz equation where they compared the

performance of the plane wave and the Bessel functions basis. The authors observed that the

plane waves are preferable as the oscillatory integrals can be evaluated rapidly. Gamallo and

Astley compared UWVF and LSM for wave problems in a soft-duct and in an L-shaped domain

with a sharp corner[53]. They conclude UWVF to be superior to LSM as the former provides

a better accuracy for a given number of degrees of freedom and with a low condition number.

The ill-conditioning of the wave based methods such as DG or LSM has been widely reported.

Gamallo and Astley also report the problem with conditioning in one of their results where they

could not achieve the convergence by simply adding more enrichment functions.



Chapter 3

Weak formulation and the Boundary

Integral Equation

The weak form needed for the FEM and the boundary integral equation for acoustics are the

concern of this chapter. Although the weak form for FEM when solving wave problems is well

known, it is discussed here to underline some differences when solving a heterogeneous wave

problem. Additionally, some of the well known NRBCs will also be introduced in this chapter.

3.1 Weak form for FEM

Recall the Helmholtz equation in Chapter 2 (2.4) which is reproduced here for convenience.

ρ(x)∇ ·
(

1

ρ(x)
∇p(x)

)

+ k2p(x) = 0, x ∈ Ω∞ ⊂ R
d (3.1)

As is well known, the PDE such as in (3.1) is a strong form of the governing equation for waves,

meaning, (3.1) requires a strong continuity of the variable p. Thus any solution that satisfies

(3.1) has to be differentiable up to and including the order of the PDE in (3.1) (i.e. they have

to be second order differentiable). A weak form on the other hand requires the variable p to

be weakly continuous. Clearly for complex geometries and where an exact solution cannot be

found, use of the weak form is justified as we hope a function that satisfies the weak form gives

us results with acceptable engineering accuracy. The finite element formulations based on the

weak form are known to result in a well-behaved system of equations apart from being able to

handle complex boundary conditions and geometries [151, 190]. The weak form for a given PDE

– 20 –
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can be obtained either by using i) energy principles ii) or by the weighted residual method. We

will follow the method of weighted residuals in this thesis.

Before we proceed with the weak formulation for the BVP defined in (2.13), we need to

redefine the infinite domain Ω∞ for the following reason. Recall that the 2D domain of interest

is unbounded in (3.1) (also see Figure 2.2). In order to be able to model the problem on a finite

computer, we need to truncate the domain by introducing an artificial boundary Γr (see Figure

3.1). Of course this artificial boundary needs to have certain boundary condition for the BVP

in (2.13) to be meaningful and these boundary conditions will be discussed subsequently.

Ωf

Ω0

Γr

pinc

Γs

Ωs

n

Figure 3.1: Definition of an acoustic scattering problem with artificial boundary Γr.

It can be observed that Γr = Ω0 ∩Ωf where Ω0 is the homogeneous exterior medium and Ωf

is the computational domain. Let v be a weighting function and multiplying (3.1) with v then

integrating gives
∫

Ωf

v

(

∇ ·
(

1

ρ(x)
∇p(x)

)

+
1

ρ(x)
k2p(x)

)

dΩ = 0 (3.2)

Using Green’s theorem for (3.2) gives,

∫

Ωf

1

ρ(x)

(

∇p · ∇v − k2vp
)

dΩ−
∫

Γr

v
1

ρ(x)

∂p

∂n
dΓr = −

∫

Γs

v
1

ρ(x)

∂p

∂n
dΓs, (3.3)

It should be noted here that any form of heterogeneity that may arise in the computational

domain Ωf is purely because of the change in the density (ρ = ρ(x)) in the present case.



3.2. Non-reflecting boundary conditions 22

Secondly, the weak form in (3.3) is in terms of the total acoustic pressure. It is not uncommon

to use the scattered part psct of the field to write the weak form. The reason for using the total

acoustic field p as the variable in the weak form is the following. Consider a case where the

computational domain Ωf contains heterogeneities which might exhibit different wavenumbers

and assume that the weak form is in terms of scattered pressure, i.e.,

∫

Ωf

1

ρ(x)

(

∇psct · ∇v − k2vpsct
)

dΩ −
∫

Γr

v
1

ρ(x)

∂psct

∂n
dΓr = −

∫

Γs

v
1

ρ(x)

∂psct

∂n
dΓs, (3.4)

While, we could make some approximation for psct or its normal derivative ∂psct

∂n on the exterior

artificial boundary Γr, we cannot make such an approximation about ∂psct

∂n on Γs. Consider the

case of the sound hard scatterer where it is known that the normal particle velocity vn (see

(2.13)) is zero on Γs and that vn is a function of total acoustic pressure p and not the scattered

pressure psct. Therefore for such a case, the weak form must be written in terms of total acoustic

pressure. In another situation, where two different media are present, compatibility conditions

need to be used. One of the conditions is that the total acoustic pressure must be continuous

across the interface which is another reason why the weak form used in this thesis is in terms of

total acoustic pressure.

3.2 Non-reflecting boundary conditions

It is known that using a boundary condition on Γr in a naive or oversimplified manner can result

in large spurious reflections. Givoli in his review paper [55] describes what exactly these spurious

reflections are. He solved the Helmholtz equation with a Sommerfeld-like boundary condition

on Γr and demonstrated that results are seriously polluted because of the reflections from the

boundary. However, for this particular example, no error analysis was provided. As described

earlier we need to have a boundary condition on the boundary Γr such that the boundary

appears truly transparent to the outgoing waves. Deriving an accurate non-reflecting boundary

condition, the numerical analysis of the associated FEM and its use in various wave problem

situations (heterogeneous, layered, multiple scattering), is a continuing field of research. In this

section, we will briefly review, some important contributions made towards the development

of effective NRBCs followed by introducing some NRBCs which are popular among engineers

for solving wave problems with FEM. The boundary conditions reviewed here are those used in

time-harmonic acoustic problems. Of course, NRBCs do exist for time-dependent wave equation



3.2. Non-reflecting boundary conditions 23

with non-constant coefficients but to review all the NRBCs for wave problems in general will be

beyond the scope of this thesis.

Based on the way psct and ∂psct

∂n are related, the NRBCs can be broadly classified into two

main categories i) local and ii) non-local. A local NRBC relates psct and ∂psct

∂n using differentials

whereas a non-local NRBC uses an integral equation for the same. In general non-local conditions

are more accurate than local conditions but difficult to implement at the same time [55].

3.2.1 Non-local NRBCs

Non-local NRBCs are sometimes referred to as exact conditions on the truncation boundary Γr.

Consider for instance the following equation,

∂psct

∂n
= Bpsct, on Γr (3.5)

For a non-local NRBC, the operator B is an integral operator. If it is possible to find an operator

B such that the solution psct is an exact solution to the original unbounded problem of wave

scattering, then we can say that the condition given in (3.5) is an exact NRBC. It is not always

possible to find such an operator, for example when the truncation boundary is not a circle or a

sphere. One of the early attempts in devising a non-local condition is by Gustafsson and Kreiss

for a hyperbolic wave equation in waveguide geometry [66]. They derived a non-local condition

using a Fourier expansion and implemented it for a finite difference scheme. Hagstrom and Keller

studied a non-linear parabolic problem (a reaction-diffusion equation) and derived the non-local

boundary condition [68]. Hagstrom and Keller [67] derived exact boundary conditions for to solve

nonlinear elliptic and parabolic problems. Ting and Miksis use the Kirchhoff integral equation on

the truncation boundary to replace an approximate NRBC but do not give a numerical analysis

[176]. When solving time-dependent problems in unbounded domains with non-local NRBC, the

requirement on the boundary condition to be able to remember the information from previous

time steps is important; see for example [179]. Choosing an appropriate time integration scheme

is therefore crucial when using non-local NRBC in time. Many authors therefore use local NRBC

for time and non-local NRBC for space; see [57, 63]. Following the work of Ting and Miksis

in [176], Givoli and Cohen extended their approach of using Kirchhoff integral for 3D acoustic

and elastic waves. They investigated the temporal instabilities associated with the introduction

of the Kirchhoff integral using a one dimensional problem. Givoli and Keller derived an exact
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non-local condition for the Laplace equation (an elliptic problem) to analyse linear electrostatic

problems [59]. They chose a sphere in 3D and a circle in 2D as their artificial boundary and

coined the term Dirichlet-to-Neumann or the DtN map. Earlier, Givoli and Keller used the

DtN condition for the reduced wave equation where they have also examined the convergence

of FEM when the DtN map is used for unbounded problems [93]. Other closely related works

(i.e. specifically for wave problems) are that of Fix and Marin [51], Marin [118], Goldstein [61].

Marin [118] solved acoustic scattering in 2D from infinite cylinders and used an integral operator

as the non-local boundary condition. Fix and Marin presented a non-local outflow condition

for waveguide problems in [51]. The concept involved decomposing the far field into a normal

mode representation and using that in a variational Galerkin scheme. Goldstein [61] derived a

nonreflecting boundary condition using the eigenvalues and eigenfunctions of the Laplacian for

the waveguide problem. Bayliss et al used Goldstein’s NRBC [61] for waveguides, employing a

finite element scheme with a preconditioned conjugate gradient linear equation solver. There

are several other PDEs for which non-local NRBCs have been developed; see a review in [74].

Following the review of the work on non-local NRBCs, certain key points must be mentioned

when using a non-local NRBC:

1. The non-local NRBC needs an analytical shape for the truncation boundary Γr, i.e., a

sphere in 3D or a circle in 2D,

2. computational effort is increased as the condition imposed is not local, and,

3. for a finite element framework, the bandwidth of the coefficient matrix is increased by the

number of degrees of freedom on Γr.

Givoli and Keller [93] have shown that with the marginal increase in the number of degrees

of freedom due to use of the DtN condition, the bandedness of the coefficient matrix for FEM

can still be maintained provided the finite element nodes are carefully numbered. The nonlocal

nature of the DtN condition, at the first sight, gives an impression that the sparseness of the

matrix is affected, but, a renumbering method used by Givoli and Keller has been shown not

to degrade the sparsity of coefficient matrix; see for more details on the implementation of DtN

using a renumbering approach Chapter 8 of reference [56].
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3.3 Local NRBCs

One of the most cited work on local NRBC is by Engquist and Majda (EM) [44] (also see [45]).

They developed a series of local NRBCs using the theory of pseudodifferential operators for

acoustics and linearized shallow water equations. Another well known local NRBC is due to

Bayliss and Turkel [15] and Bayliss, Gunzburger and Turkel [14] commonly known as the BGT

conditions. EM and BGT are the most widely used local NRBCs in the acoustics community.

Both EM and BGT conditions were originally derived for the time-dependent wave equation but

of course their time-harmonic counterparts can be obtained by following the same procedure as

for the Helmholtz equation. A review of high order local NRBCs is given by Givoli in [58]. As

the author notes, a high order NRBC, where the order stands for the level of accuracy, is not

always a good choice. For example an arbitrarily high order NRBC in [15], although it can result

in highly accurate solution, is in practicality very difficult to implement in a finite element code.

Since we will be studying EM, BGT and Feng NRBCs in this thesis, it will be appropriate to

review the background for these conditions in more detail.

3.3.1 Engquist-Majda NRBC

Consider the Helmholtz equation for scattered wave alone but for simplicity let us omit the

reference to density terms, i.e.,

∂2psct

∂2x
+
∂2psct

∂2y
+ k2psct = 0 (3.6)

If we were to look for a nontrivial solution of (3.6) of the form

psct = X(x)Y (y), (3.7)

we should have,

X
′′
/X + Y

′′
/Y + k2 = 0, or, (3.8a)

−X
′′
/X = Y

′′
/Y + k2. (3.8b)
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Since, the left hand side of (3.8b) is a function of x alone and the right hand side is a function

of y alone, both sides must be equal to a constant, say η. Thus,

X
′′
+ ηX = 0, (3.9a)

Y
′′
+ (k2 − η)Y = 0. (3.9b)

Of course, the equations in (3.9) need to hold simultaneously. Let η = ξ21 and k2−η = k2−ξ21 =

ξ22 , thus the system in (3.9) becomes,

X
′′
+ ξ21X = 0, (3.10a)

Y
′′
+ ξ22Y = 0. (3.10b)

Clearly, the solution for (3.6) will be of the form

psct(x, y) = ei(ξ1x+ξ2y) (3.11)

which is simply a plane wave ∗. It can be observed that,

ξ1 = ±
√

k2 − ξ22 (3.12)

and the equation (3.12) is known as the dispersion relation [94]. Consider a straight line segment

of Γr and define s = ξ2/k, we have,

ξ1 = ±k
√

1− s2 (3.13)

It may be noted that ξ1 = +k
√
1− s2 indicates a plane wave travelling in the positive x direction

whereas ξ1 = −k
√
1− s2 indicates a plane wave travelling in the negative x direction. The non-

reflecting condition then can be chosen such that Γr allows only outgoing waves, i.e., choosing

the equation with the positive sign. Thus,

∂psct

∂x
= Bpsct, on Γr (3.14)

∗If we were to take the wave equation as the starting point in place of the Helmholtz equation, we would have,
p(x, y, t) = ei(−ωt+ξ1x+ξ2y).
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Two important observations about (3.14) are:

1. because (3.13) involves an irrational function of s, B is a pseudodifferential operator there-

fore not easy for computer implementation, and,

2. when implementing (3.14), an inverse Fourier transform of B will be needed (for example

to solve the wave equation) and this makes the operator B non-local both in space and

time.

Engquist and Majda [44] used a rational approximation based on Padé’s approximations of

increasing accuracy for the irrational function in (3.13). Each higher order of approximation of

increasing accuracy therefore corresponds to a local NRBC of the corresponding order. Originally

Padé’s approximations were derived for solving the one-way equations in ocean acoustics and

were found to be useful in deriving local NRBCs. The boundary operator B for 1st and 2nd

order due to Engquist and Majda are given by

Bpsct =

(

∂

∂r
− ik +

1

2R

)

psct = 0, · · · (1st order) (3.15a)

Bpsct =

[

∂

∂r
−
(

ik − 1

2R

)

psct −
(

i

2kR2
+

1

2k2R3

)

∂2

∂θ2

]

psct = 0 · · · (2nd order) (3.15b)

where R is the distance from origin. Importantly, the authors [44] have also shown that the

boundary operators in (3.15) are most accurate if the incident wave is at normal incidence to the

boundary Γr (rarely a case in multiple scattering problems). The reflection coefficient, which

is a measure of the amount of energy reflected back from the a surface, can be given for EM

operators as [44, 83],

|Rn| =
∣

∣

∣

∣

cos θ − 1

cos θ + 1

∣

∣

∣

∣

n+1

, (3.16)

where Rn is the reflection coefficient, θ is the angle of incidence and n is the order of the

boundary operator B in (3.14). Clearly, for higher order conditions we would expect negligible

energy reflected in to the computational domain (see Figure 3.2), however this comes at the

cost of having to implement higher order derivative terms in the finite element code. It may be

noted that although the EM conditions are based on the Padé’s approximation, there are many

other possibilities for approximating the irrational function in (3.13). For example, Halpern and

Trefethen use a different approximation for each different incident wave angle; see [69].
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Figure 3.2: Reflection coefficient as a function of angle of incidence and order of NRBC, [44].

3.3.2 Bayliss-Gunzburger-Turkel (BGT) NRBC

The technique of Bayliss et al [14, 15] is based on expanding the solution in the far field in terms

of an infinite series. These series expansions were originally derived by Atkinson [8] and Wilcox

[182]. Consider, for example, the expansion for the solution of the Helmholtz equation in 2D,

psct =

√

2

πkr
ei(kr−

π
2
)

∞
∑

j=0

Fj(θ)

rj
(3.17)

where Fj denotes the eigenfunctions of the Laplacian and θ the polar angle. Bayliss et al [14]

show that a differential operator of the following form exactly absorbs the first m modes in the

expansion,

Pm =
m
∏

j=1

[

∂

∂r
− ik +

2j − 3
2

r

]

(3.18)

Thus, Pm can be termed as an mth order BGT damper. Bayliss et al [15] prove that the distance

between the original solution and the one with BGT condition of mth order is O(R−m− 1
2 ), where

R is the radius of the truncation boundary as before. Following the paper of Bayliss and co-

workers, several authors have extended the use of the BGT condition to other problems. Pinsky

and Abboud used the BGT condition for solving a time-dependent fluid-structure interaction

(FSI) problem with FEM [148] . The authors [149] later extended this work for a viscoelastic
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structure and attempted to resolve some of the difficulties associated with radial partial deriva-

tives appearing in the BGT expressions. Manoj and Bhattacharyya [115] studied a 2nd and

3rd order BGT damper for transient FSI problem with an out-of-core solver for FEM. The first

order BGT and EM operators are identical and so only the 2nd order BGT operator is given

below,

(ik − 1

R
)
∂psct

∂r
+

1

2

(

2k2 +
3ik

R
− 3

4R2
+

1

R2

∂2

∂θ2

)

psct = 0. (3.19)

3.3.3 Feng NRBC

Finally, we mention the last NRBC of interest in this thesis which is due to Feng [91]. Feng

derived his NRBC by first finding a DtN-like condition on the boundary Γr and then localizing

this equation on Γr. The localization is achieved by using an asymptotic approximation that

is valid at a large distance from the scatterer. It may be noted that this approach is similar

to that followed by Bayliss et al [14]. Again, the first order NRBC of Feng is identical to first

order BGT and EM NRBCs and we list only the 2nd and 3rd order Feng NRBCs below.

− ∂psct

∂r
−
(

−ik +
1

2R
− i

8kR2

)

psct +
i

2kR2

∂2psct

∂θ2
= 0, 2nd order (3.20)

−∂p
sct

∂r
−
(

−ik +
1

2R
− i

8kR2
− 1

8k2R3

)

psct+

(

i

2kR2
+

1

2k2R3

)

∂2psct

∂θ2
= 0, 3rd order (3.21)

3.4 Some observations about NRBCs

The non-local and local boundary conditions mentioned here have been compared by numerous

authors for their accuracy for solving exterior acoustic problems. Shirron compared various

NRBCs in his PhD thesis [160]. Shirron studied the scattering problem when a circular cylinder

is insonified with only a certain incident mode. Of course, the scattered wave will have only that

particular mode which needs to be absorbed by the NRBC on Γr. From the results in Shirron’s

thesis it can be observed that the BGT conditions of 2nd order are the most accurate. Shirron

and Babuška [161] compared the performance of BGT, EM and Feng conditions with the infinite

element method for exterior acoustic problems in 2D (scattering from a circular cylinder) and

in 3D (scattering from a sphere). The authors demonstrate that the conjugated infinite element

approach is superior to any of the NRBCs mentioned and for high wavenumbers the results from

all the NRBCs are close to each other. Laghrouche et al [107] have performed a comparison of
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these NRBCs on similar lines but in a plane wave enriched FEM scheme. From their results, it

can be seen that with increasing wavenumbers, the difference between the errors from various

NRBCs is diminished. In summary, based on the results in [83, 107, 160], it can be observed

that:

1. For sufficiently large radius R of the truncation boundary Γr, BGT, EM and Feng’s NRBCs

are equivalent, †

2. As the wavenumber increases, the difference between the 1st and 2nd order BGT condition

diminishes, and,

3. Most importantly, as observed by Ihlenburg in his benchmark book [83], simply increasing

the order of the damping operator B does not improve the accuracy. In fact, for higher

wavenumbers, the accuracy of the solution is bound to decrease as the wavenumber k is

in the denominator.

3.5 Weak form for scattering problem

It may be noted that, we have studied only the local NRBCs in this thesis. Therefore, in this

section, we will first include the local NRBC in the weak form and then obtain the discrete FE

equations. It is important to note here that the NRBCs discussed in previous sections apply to

an outgoing scattered wave. (3.14) is reproduced below for convenience,

∂psct

∂r
= Bpsct, on Γr (3.22)

Using (2.5) in (3.22),

∂p

∂r
− ∂pinc

∂r
= B

(

p− pinc
)

on Γr. (3.23)

Or,

∂p

∂r
= B

(

p− pinc
)

+
∂pinc

∂r
on Γr. (3.24)

As mentioned earlier, all of the obstacles considered here are sound hard, thus any term con-

taining normal derivative of the total acoustic pressure on a surface ( ∂p∂n) must vanish. Thus

†This observation will be tested in this thesis in the context of plane wave enriched FEM.
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with the use of (3.24), (3.3) reduces to,

∫

Ωf

1

ρ(x)

(

∇p · ∇v − k2vp
)

dΩ−
∫

Γr

1

ρ(x)
vBpdΓ =

∫

Γr

1

ρ(x)
v

(

∂pinc

∂r
−Bpinc

)

dΓ (3.25)

This is the final weak form for the scattering problem considered in this thesis and will be used

for solving the wave scattering problems using either the polynomial FEM or PUFEM. It should

be noted here that the weak form in (3.25):

1. has only total acoustic pressure p as the unknown, and,

2. the field on the radiation boundary Γr is approximate and governed by the operator B.

Of course, the weak form in (3.25) can be used for a homogeneous computational domain Ωf ,

i.e. when ρ = ρ(x) = const. The FE discretization process for this weak form will be discussed

in Chapter 4 (§4.3).

3.6 The boundary integral equation

The Boundary Integral Equation method (BIEM) or the Boundary Element Method (BEM) are

used synonymously for the discrete form of the method based on boundary integral equations.

In this thesis, we will adapt the latter name, the BEM.

As stated before, the BEM is suited for problems where the medium under consideration is

homogeneous, isotropic and linear. This is not to say that BEM cannot be used for a heteroge-

neous medium problem. Consider for example the problem depicted in Figure 3.3. If the acoustic

media viz. medium 1 and 2 are assumed themselves to be homogeneous, it is possible to use

a pair of integral equations on the interface between the two media to solve for the scattering

problem. This approach was used by Costabel and Stephan to solve a transmission problem

[37] using Galerkin BEM. Kittappa and Kleinman used a coupled integral equations to solve

a 3D transmission problem [96]. They used a Neumann series for approximating the solution

on the interface and then used an iterative procedure to solve the coupled system. Kleinman

and Martin have derived a single integral equation to solve the transmission problem [97]. The

idea used by Kleinman and Martin is to combine the equations from direct and indirect BIE to

obtain a single ’hybrid’ equation for the transmission problem.
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pinc

Medium 1

Medium 2

Figure 3.3: Heterogeneous wave scattering problem for BEM-BEM coupling

However, even the idea of coupled or single integral equation would work only if the Green’s

function for individual regions are known. For a problem with multiple or spatially dependent

wavenumbers, it would be difficult to use the boundary integral equation approach. Interestingly,

there have been some attempts to obtain the Green’s function for such cases, but only very simple

cases can be considered. See for experimental studies on ‘retrieval’ of the Green’s function in

ultrasonics [181], underwater acoustics [153] or in seismic waves [157] and for theoretical studies,

see [116, 154, 158, 166, 180]. One must however keep in mind that the experimental techniques

and the quality of the results obtained depends heavily on the complexity of the media involved.

Many attempts, therefore, in deriving the Green’s functions for heterogeneous media remain

restricted to simple geometries or configurations. For example, Michalski and Mosig derive

Green’s functions to solve electromagnetic wave problem in a multilayerd medium [127]. Jensen

and Freeze [85] obtain the Green’s function recursively for an electromagnetic problem and use a

domain decomposition approach. In a parallel work, Jensen [86] derived the Green’s function for

acoustic scattering by cylindrical and spherical inclusions similar to [85] and the computational

complexity of this recursive algorithm is shown as O(N2) in 2D and O(N7/3) in 3D. Presenting

a complete and up-to-date account of the research focused on Green’s functions and integral

equation techniques is beyond the scope of this research, because, as mentioned earlier (§1.4),

the motivation of this thesis is to use BEM for treating wave propagation in homogeneous

unbounded domain.
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3.7 Boundary integral equation (BIE) for exterior acoustics

The procedure for obtaining an integral equation from a given PDE is well established [34].

There are basically two ways to obtain an integral equation:

1. by the indirect integral equation method, or,

2. by the direct integral equation method.

The indirect method is older than the direct method and involves use of ‘single’ and ‘double’

layer potentials. The direct method, on the other hand, uses Green’s theorem applied to the

differential equation and is the method used in this thesis. Before we proceed to obtain the direct

BIE for the Helmholtz equation, it is useful to describe the concept of Green’s functions which

are also known as ‘fundamental solutions’. The Green’s function for the Helmholtz equation

(2.4) in 2D (assuming constant density ρ) is given as

G(x,y) =
i

4
H

(1)
0 (kr), (3.26)

where x,y ∈ R
2, H

(1)
0 (·) is the Hankel function of order zero and of the first kind, k is the

wavenumber of homogeneous medium and r = |y− x|. In general, the Hankel function of order

n can be given as

H(1)
n (kr) = J (1)

n (kr) + iY (1)
n (kr), (3.27)

where J
(1)
n (·) and Y (1)

n (·) are Bessel functions of order n and kind 1 and 2 respectively. At this

point, we make a note that only the Bessel function of the second kind i.e., Y
(1)
n (·) is singular

at r = 0 (see Figure 3.4) and this creates considerable difficulties in implementing the BIE that

we will be using. It is easy to see that G(x,y) satisfies the Helmholtz equation (2.4) with an

appropriate right hand side. More precisely, the Green’s function satisfies the inhomogeneous

Helmholtz equation where the right hand side is a point source term given by a Dirac Delta

function, i.e.,

∇2G(x,y) + k2G(x,y) = −δ(x,y) (3.28)

where x is the source point and y is the field point. Green’s function therefore can also be

interpreted as the ‘effect’ experienced at point y due to a point source at x.
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The procedure for deriving the BIE for an exterior acoustic problem now follows. We repro-

duce Figure 3.1 for this purpose with some modifications.

Ωf

Ω0

Γr

pinc

Γs

Ωs
n

npoint x

Γǫ

Ωǫ

Figure 3.5: Exterior acoustic problem
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The objective is to solve Helmholtz equation using BIE for a homogeneous medium. It is

therefore convenient to rewrite (2.4) by eliminating the density term ρ, thus,

∇2p(x) + k2p(x) = 0, x ∈ Ωf ⊂ R
2 (3.29)

Note that we have added a small circular area Ωǫ surrounding the singular point x bounded by

Γǫ. Let ǫ be the radius of circular boundary Γǫ. We have also retained the boundary Γr that

we used for the FEM. It will soon be clear that the integrals over the boundary Γr vanish due

to the Sommerfeld radiation condition.

Green’s second theorem is well known and can be written for the geometry shown in Figure

3.5 as,
∫

Γs+Γǫ+Γr

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ =

∫

Ωf−Ωǫ

(

G∇2p− p∇2G
)

dΩ (3.30)

where G is the same two point Green’s function defined in (3.26) but we have dropped x and y

only for convenience. For the precise requirements on the functions p and G in order to satisfy

(3.30), see discussion in [36]. Of course, one obvious requirement is that both p and G must be

at least twice differentiable.

Now, since we have excluded the singular point x from the domain under consideration, i.e.

Ωf − Ωǫ (see Figure 3.5), we must have, from (3.29),

∇2p = −k2p (3.31a)

∇2G = −k2G (3.31b)

Thus,

G∇2p− p∇2G = G(−k2p)− p(−k2G) = −k2pG+ k2pG = 0 (3.32)

Therefore the integral on the right hand side in (3.30) vanishes. Let us split the boundary

integral on the left hand side in (3.30) for convenience and also use (3.32), thus, (3.30) reduces

to,

∫

Γs

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ +

∫

Γǫ

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ

+

∫

Γr

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ = 0, x ⊂ Ωf (3.33)
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We now analyse each of the integrals in (3.33) separately. Let us denote the second integral in

(3.33) as I2, thus,

I2 =

∫

Γǫ

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ

=

∫

Γǫ

G
∂p

∂n
dΓ−

∫

Γǫ

p
∂G

∂n
dΓ (3.34)

Consider the first integral in (3.34) and let us take the limit as ǫ→ 0,

lim
ǫ→0

∫

Γǫ

G
∂p

∂n
dΓ (3.35)

Note that G is a two point function where the source point is x and the integration point y is

located on Γǫ (see Figure 3.6). Thus, |y − x| = ǫ, or,

G =
i

4
H

(1)
0 (kǫ) =

i

4

(

J0(kǫ) + iY0(kǫ)

)

(3.36)

n
Γǫ

Ωǫ

source point x integration point y

ǫ

Figure 3.6: Excluded region for ǫ→ 0

Also, the asymptotic behaviour of Bessel functions J0 and Y0, for a given argument x can be

given as [1, 137],

lim
x→0

J0(x) = 1 (3.37a)

lim
x→0

Y0(x) =
2

π
ln(x) (3.37b)

Clearly, Y0(·) (and hence the Green’s function) becomes singular in view of (3.37b), however,

it can be observed that the integration length dΓ goes to zero much faster (linearly) than the

function Y0(·) goes to zero (logarithmically) when the limit ǫ → 0 is taken. Therefore, we can
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write,

lim
ǫ→0

∫

Γǫ

G
∂p

∂n
dΓ = 0 (3.38)

Let us now consider the second integral in (3.34) and let us subtract and then add the value of

pressure p at point x from the second integral in in (3.34), i.e.,

∫

Γǫ

p
∂G

∂n
dΓ (3.39a)

=

∫

Γǫ

(

p(y)− p(x)

)

∂G

∂n
dΓ + p(x)

∫

Γǫ

∂G

∂n
dΓ (3.39b)

Now, the last integral in (3.39b) is considered below when limit ǫ→ 0, i.e.,

lim
ǫ→0

p(x)

∫

Γǫ

∂G

∂n
dΓ (3.40)

Using polar coordinates, dΓ = ǫdθ and using the limits of integration for circle as θ ∈ [0, 2π],

(3.40) reduces to,

lim
ǫ→0

p(x)

∫

Γǫ

∂G

∂n
dΓ

= lim
ǫ→0

p(x)

∫ 2π

0

∂G

∂n
ǫdθ

= p(x) (3.41)

It is evident that as ǫ→ 0, the pressure at integration point and the singular point becomes the

same and therefore the first integral in (3.39b) vanishes, i.e.,

lim
ǫ→0

∫

Γǫ

(

p(y)− p(x)

)

∂G

∂n
dΓ = 0 (3.42)

We therefore have,

I2 = −p(x) (3.43)

Now, let us denote the last integral in (3.33) as I3,

I3 =

∫

Γr

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ (3.44)
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Sommefeld’s regularity condition requires that the physical solution p (or its derivative) behaves

similar to the fundamental solution (or its derivative) as the radius of Γr (say R) increases. Thus

if the function p and G have the same form at infinity, we have,

I3 = lim
R→0

∫

Γr

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ = 0 (3.45)

Therefore, using (3.43) and (3.45) in (3.33), we can write,

− p(x) +

∫

Γs

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ = 0, x ⊂ Ωf (3.46)

Note that in (3.46), point x is still in the domain and not on the boundary Γs. If we know

the pressure p and its normal derivative ∂p
∂n on the boundary, we can compute the pressure

field in the entire domain using (3.46). This is a useful boundary integral equation as only the

boundary values of p and ∂p
∂n are needed and more importantly (3.46) will not contain singular

terms as point x is not taken on Γs. However, such an equation will be of limited use as both

the boundary pressure and its normal derivative need to be specified. For a well-posed problem

therefore, we need to place the source point x on the boundary Γs, and in doing so, as before,

we exclude a small domain Ωǫ from the boundary Γs. If Γs is taken as a smooth surface, Ωǫ can

be conveniently taken as a semicircle for 2D problems (see Figure 3.7).

Ωf

Γs

Ωs

Ωǫ

n

Γǫ

n

Figure 3.7: Exclusion of domain for evaluation of the jump term
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The steps followed in arriving at (3.43) (i.e. through (3.43) and (3.45)) can be repeated to

obtain,

lim
ǫ→0

∫

Γǫ

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ

= − lim
ǫ→0

∫

Γǫ

p
∂G

∂n
dΓ

= − lim
ǫ→0

∫ π

0
p
∂G

∂n
ǫdθ

= −1

2
p(x) (3.47)

Using (3.47) when x ⊂ Γs therefore gives,

− 1

2
p(x) +

∫

Γs

(

G
∂p

∂n
− p

∂G

∂n

)

dΓ = 0, x ⊂ Γs (3.48)

It can be noted that for (3.48) the integral is evaluated only over the semicircular region (θ ∈

[0, π]) and this is the reason we obtain a factor of 1/2 commonly called as the jump term. In

a general case however, when Γs is not smooth, the solid angle subtended at x needs to be

computed and the free term, say c(x), is then given as

c(x) =
α

2π
(3.49)

The BIE for the exterior problem therefore can be written as,

c(x)p(x) +

∫

Γs

p
∂G

∂n
dΓ =

∫

Γs

G
∂p

∂n
dΓ, x ⊂ Γs (3.50)

When solving the exterior acoustic scattering problem due to a known incident wave, (3.50)

needs to include the incident wave as follows,

c(x)p(x) +

∫

Γs

p
∂G

∂n
dΓ =

∫

Γs

G
∂p

∂n
dΓ + pinc(x), x ⊂ Γs (3.51)

Note that when solving exterior acoustic problems using (3.51), the density term ρ is not consid-

ered as (3.51) applies to homogeneous domain. However, as will become clear later in the thesis

(see §7.1), the term 1/ρ needs to be retained in the BIE when this equation is to be coupled

with the weak form (3.25).



Chapter 4

Discretization and plane wave

enrichment

This chapter gives the discrete equations obtained from the weak form and BIE discussed in

the previous chapter. Explicit expressions for the element matrix integral will be given in this

chapter. First, the concept of shape functions is introduced in the finite element context. This

will be followed by a discussion on the idea of plane wave enrichment.

4.1 Galerkin method

We know that the PDE in (2.4) is satisfied at each continuum point in Ωf . Consider such S

continuum points in the domain Ωf and let us write the weak form in (3.25) using a compact

operator notation, i.e.,

∫

Ωf

TTTTXXX(p)dΩ +

∫

Ωf

UUUTYYY(p)dΩ +

∫

Γ
UUUTZZZ(p)dΓ =

∫

Γ
UUUTFFF(pinc)dΓ (4.1)

where p is the vector of unknown field variable i.e., pressure p in the computational domain Ω

and pinc is the vector of known incident wave (pinc) evaluated on Γr, and,

TTT = [T1,T2, · · · ,TS ], and, UUU = [U1,U2, · · · ,US ] (4.2)

– 40 –
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are the arbitrary functions evaluated at n points viz. x1,x1, · · · ,xS , in the domain Ωf . In view

of (3.25), we should have,

Xi(p) =
1

ρ(x)
∇p(x)

∣

∣

∣

∣

x=xi

, Yi(p) = − 1

ρ(x)
k2p(x)

∣

∣

∣

∣

x=xi

, (4.3a)

Zi(p) = − 1

ρ(x)
Bp(x)

∣

∣

∣

∣

x=xi

, Fi(p
inc) =

1

ρ(x)

(

∂pinc(x)

∂r
−Bpinc(x)

)∣

∣

∣

∣

x=xi

(4.3b)

Alternatively we can write,

∫

Ωf

S
∑

i=1

TiXi(p)dΩ +

∫

Ωf

S
∑

i=1

UiYi(p)dΩ +

∫

Γr

S
∑

i=1

UiZi(p)dΓ =

∫

Γr

S
∑

i=1

UiFi(p
inc)dΓ (4.4)

We have used this operator notation here only for compactly writing the weak form and to

explain the concept of the Galerkin formulation in a concise manner. Clearly, if we are able

to find the non-zero functions TTT and UUU, then this automatically means that the PDE in (3.25)

will be satisfied (even though in a weak manner), via the original weak form in (3.25) (or the

notation form in (4.4)). It is important to mention that the functions TTT and UUU need to satisfy

certain conditions. We note that the weak form in (3.25) has the derivatives of the pressure

field that are of first order whereas the original PDE, namely the Helmholtz equation in (2.4),

has derivatives of the second order. Clearly, we will need functions TTT and UUU such that their

first derivative exists. In general, if the weak form involves derivatives of order m then the trial

functions TTT andUUU need to be chosen such that their (m−1)th derivative is continuous. Moreover,

the choice of the trial functions TTT and UUU will depend on the quality of the results they provide

or how efficiently they approximate the field variable in the computational domain. By quality,

we mean the accuracy of the results which in turn means the ‘convergence’ of the method. A

common choice in the finite element community is to chose TTT and UUU to be polynomials although

there are several other options possible. Let the pressure field in the computational domain be

approximated by

p ≈ p̄ =
n
∑

j=1

Njaj, (4.5)

where Nj is the function of the independent variable (the spatial coordinates) and aj represent

the degrees of freedom for the discrete approximation. Equation (4.5) can be compactly written

in vector notation as

p ≈ p̄ = Na (4.6)
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Let the vector UUU be approximated by

UUU =

n
∑

j=1

wjaj (4.7)

It is immediately clear that the approximation for the vector TTT is

TTT =

n
∑

j=1

∇wjaj (4.8)

where wj are the weighting functions and aj are the unknown multipliers that we need to

determine. Using (4.7) and (4.8) in (4.1), we obtain,

aj
T

[

∫

Ωf

∇wT
j XXX (Na) dΩ +

∫

Ωf

wT
j YYY (Na) dΩ+

∫

Γr

wT
j ZZZ (Na) dΓ−

∫

Γr

wT
j FFFdΓ

]

= 0 (4.9)

It is interesting to note here that the term XXX (Na) (or YYY (Na)) is the ‘residual’ resulting from the

approximation that we make in (4.5). The similar residual term for the boundary integral term

is ZZZ (Na). Note that since the terms XXX (Na) and YYY (Na) are weighted and integrated over the

domain Ωf (or the term ZZZ (Na) over the boundary Γr), the method is also called the ‘weighted

residual method’. There are various choices available for choosing the weighting functions wj

such as i) subdomain collocation, ii) point collocation and iii) the Bubnov-Galerkin method.

Here, we use the Bubnov-Galerkin method more commonly known as Galerkin method∗ where

the weighting functions wj are chosen to be same as the basis functions Nj . This choice is

arguably the most popular in the finite element community for the following reasons

1. The choice wj = Nj generally leads to a symmetric linear system of equations.

2. The Galerkin method results in a positive-definite coefficient matrix. It is known that a

positive definite matrix has a unique inverse and therefore the linear system resulting from

the Galerkin method has a unique solution†.

∗Boris G. Galerkin (1871-1945). Galerkin was a Russian engineer who published his first technical paper on
the buckling of bars while imprisoned in 1906 by the Tzar in pre-revolutionary Russia.

†An n× n complex matrix A is said to be positive definite if, cTAc > 0, c ∈ C
n.
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In practical terms, a symmetric, positive-definite linear system enables use of highly efficient

solvers. Recall the weak form (3.25) from Chapter 3 which is reproduced below,

∫

Ωf

1

ρ(x)

(

∇p · ∇v − k2vp
)

dΩ−
∫

Γr

1

ρ(x)
vBpdΓ =

∫

Γr

1

ρ(x)
v

(

∂pinc

∂r
−Bpinc

)

dΓ (4.10)

Substitute (4.5) in (4.10) and noting that we use the Bubnov-Galerkin formulation, we obtain,

n
∑

j=1

[

∫

Ωf

1

ρ(x)

(

∇NT
i · ∇Nj − k2NT

i Nj

)

dΩ−
∫

Γr

1

ρ(x)
BNT

i NjdΓ

]

aj (4.11)

=

n
∑

j=1

[∫

Γr

1

ρ(x)
NT

i

(

∂pinc

∂r
−Bpinc

)

dΓ

]

Consequently, a discrete system of equations can be formed from (4.11), i.e.,

[

[K]− [M] +B [C]

]

{a} = {f} (4.12)

where

[K] =

∫

Ωf

1

ρ(x)
∇Ni∇Nj dΩ , [M] =

∫

Ωf

1

ρ(x)
k2NiNj dΩ ,

[C] = −
∫

Γr

1

ρ(x)
BNiNj dΓ , {f} =

∫

Γr

1

ρ(x)

(

Ni
∂pinc

∂r
−BNip

inc

)

dΓ (4.13)

where i, j = 1, 2, , · · · n and thus the dimension of the matrices [K], [M] and [C] will be n× n,

and that for the vector {f} will be n × 1. The assembly of (4.12) leads to a global system of

equations

Ax = f (4.14)

where the vector x contains the unknown multipliers ajs. We call [K], [M], [C] and {f} the

stiffness, mass, damping matrices and the load vector respectively.

4.2 Selection of the trial functions

We have only stipulated thatNj are chosen as functions of the independent variables, namely, the

spatial coordinates. Before we proceed further, we need to briefly discuss specifically this spatial

dependence of the trial functions Nj . Consider a case where we have a computational domain
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wherein the geometry is very simple and let the medium properties vary smoothly over the

domain and on the boundary. It is known that for such cases, a global trial function can be used

and such methods which are based on global functions are known as pseudo-spectral methods

[16, 151]. For example, when solving a wave propagation problem in a layered medium, the

trial functions can be chosen as the eigenfunctions of the underlying differential equation. It is

known that, for example in a homogeneous layered medium, the eigenfunctions for the Helmholtz

equation are sinusoidal functions and therefore can be conveniently used as trial functions.

However, it is also known that if the layered medium is not homogeneous (i.e. either non-smooth

variation or multiple discontinuities in the density), then obtaining eigenfunctions analytically

is not possible. It should not be forgotten that analytical expressions for eigenfunctions can be

obtained for very simple geometries. Now, as outlined in Chapter 1, we are interested in this

thesis in solving a problem where internal discontinuities are encountered in Ωf . Also, we would

like to pose no restriction on the shape of the domain Ωf . In such a case, since global trial

functions are impractical, we use the so called local trial functions. Here, each trial function

is non-vanishing in a small subdomain where the coefficients are smooth functions of spatial

coordinates. This forms the basis of the ‘finite element method’ where an element is a small

subdomain where we assume a smooth variation in the medium properties. We therefore divide

our computational domain, into a finite number of subdomains or elements which are connected

and the joining points of the adjacent elements are termed as nodes.

The concept of local trial functions can be compactly explained via a simple 1D example as

shown in Figure 4.1. Consider a 1D domain of length L divided into n− 1 elements (and thus n

1 2 3

1 2

j-1 j+1

j
N (x)

j-1 j

n

n-1

n-1
x

L

nodes

Elements

Figure 4.1: Concept of local trial functions

nodes) with each element having two nodes. We let the medium properties be discontinuous at

the nodes. As seen from Figure 4.1, the local trial functions for a given node j (i.e. Nj) can be

constructed using a linear combination of spatial coordinates of the nodes corresponding to the

element containing the node j. This idea can be given by the well known Lagrange expansion
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x

y

1

2

3

4

Figure 4.2: 4-noded quadrilateral element

as

Nj(x) =

n
∏

i=1

x− xi
xj − xi

, i 6= j, (4.15a)

Nj(x) = 0, x ≤ xj−1, x ≥ xj+1 (4.15b)

Since the jth nodal trial function Nj can be computed independently of the other elements

that do not contain node j, the concept of using a local trial function is usually termed as local

support in FEM. In other words, the trial functions Nj are non-zero only locally. It is clear that

if we divide the computational domain Ωf , we will be able to treat the change in the density

by assuming a piecewise constant variation, and complicated geometries can be modelled by

choosing appropriate elements. If the change in medium property is not smooth, obviously, we

will have to take a very small element size, such that, within each element, we can safely assume a

constant density value. However, as mentioned before (see §3.1), though we will consider density

as a function of space (ρ = ρ(x)), the variation considered here is only a step discontinuity and

not a continuous variation.

4.3 FE discretization

It will now be appropriate to introduce the finite element ‘type’ that we will use in this thesis.

For the problems studied here, we have considered only the 4-noded quadrilateral finite element

(see Figure 4.2). It is clear that the pressure field is a scalar quantity and thus the element in

Figure 4.2 has only 4 degrees of freedom. If we assume a bilinear interpolation, the pressure
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p(x) at a point x inside the finite element can be given as a function of the pressure values at

the finite element nodes, i.e.,

p(x) = N1(x)p1 +N2(x)p2 +N3(x)p3 +N4(x)p4 (4.16)

where pj (j = 1, 2, 3, 4) is the pressure value at the jth finite element node and Nj are the linear

interpolation functions. Alternatively, we can write (4.16) in a compact form as,

p(x) = Nepe (4.17)

where

Ne = [N1, N2, N3, N4] and (4.18)

pe = [p1, p2, p3, p4]
T (4.19)

The local matrices or commonly called element matrices and can be given as

[Ke] =

∫

Ωe
f

1

ρ(x)
∇(Ne)T∇(Ne) dΩ , [Me] =

∫

Ωe
f

1

ρ(x)
k2(Ne)T(Ne) dΩ ,

[Ce] = −
∫

Γe
r

1

ρ(x)
B(Ne)T(Ne) dΓ , {f e} =

∫

Γe
r

1

ρ(x)

(

(Ne)
∂pinc

∂r
−B(Ne)pinc

)

dΓ (4.20)

where Ωe
f represents the element area (as Ωf ⊂ R

2) and Γe
r represents the element boundary.

The global coefficient matrix A in (4.14) can then be obtained by first evaluating the element

matrices in (4.20) and following the assembly process as per element connectivity. This is a

standard procedure in FEM and for details see Chapter 12 in [13]. As Nj is chosen as the linear

function of nodal coordinates (say (xj , yj)), we can write,

N e
j (x, y) = γj1 + γj2x+ γj3y, j = 1, · · · , 4, (4.21)
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Figure 4.3: Coordinate transformation

and therefore,


















γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

γ41 γ42 γ43



















=













1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4













−1

(4.22)

It can be noted that (4.22) will be dependent upon the spatial coordinates and it is highly

inconvenient to perform matrix inversions such as in (4.22) for each element‡. Also, as can be

noted from any of the equations from (4.20) or (4.13), if we assume that the density or the

medium properties in general, are constant within a finite element, the element matrices such

as [Ke] or [Me] will depend only on the element geometry. It is for these reasons, it is desirable

that Nj be made functions of coordinates over some master element. The transformation of a

physical element such as the one shown in Figure 4.2 into a master element is shown in Figure

4.3. As can be seen, the physical element is mapped from (x, y) to (ξ, η) coordinates and these

new coordinates are commonly called intrinsic coordinates. Any point in the finite element can

be given as a linear function of ξ and η, i.e.,

x =
1

4
x1(1− ξ)(1− η) +

1

4
x2(1 + ξ)(1 − η) +

1

4
x3(1 + ξ)(1 + η) +

1

4
x4(1− ξ)(1 + η) (4.23)

and

y =
1

4
y1(1− ξ)(1− η) +

1

4
y2(1 + ξ)(1 − η) +

1

4
y3(1 + ξ)(1 + η) +

1

4
y4(1− ξ)(1 + η) (4.24)

‡Of course, inverting a rectangular matrix will require pseudo-inverse method, however, for a triangular element
a square matrix can be obtained and the inverse can be computed in a straightforward manner.
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where (xj , yj) (j = 1, · · · , 4) are the nodal coordinates of the element under consideration in the

physical (x, y) space and ξ, η ∈ [−1, 1]2. Consider the stiffness matrix integral, say Ie, for an

element that covers the subdomain Ωe
f and rewrite the equation for [Ke] in (4.20), i.e.,

Ie =

∫

Ωe
f

1

ρ(x)
∇(Ne)T∇(Ne) dΩ (4.25)

The (x, y) to (ξ, η) coordinate mapping necessitates that we include a parameter called Jacobian

(denoted as J) when performing above integration in (ξ, η) space, i.e.,

Ie =

∫ 1

−1

∫ 1

−1

1

ρ(x)
∇(Ne)T∇(Ne) |J |dξdη (4.26)

where |J | is the determinant of the Jacobian of transformation matrix J which is given as

J =







∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η






(4.27)

Clearly |J | is a scaling factor between an elemental area dxdy to the area dξdη in the intrinsic

coordinates, i.e.,

dxdy = |J |dξdη (4.28)

For simple element shapes, such as triangles or rectangles, the Jacobian can be computed an-

alytically. For a four noded linear element as shown in Figure 4.2, it is clear that the element

matrices ([Ke], [Me], [Ce] ) will be of size 4 × 4 and the global matrix formed after assembly

(see (4.14)) will be of size n × n if there are n finite element nodes in the FE mesh of the

computational domain Ωf .

4.4 BE discretization

Implementing the BIE introduced in the previous chapter (see §3.7) for numerical computations

extends the concept of finite elements (not the Galerkin formulation) to the integral equations.

The underlying principle of using the discretization remains the same. The most significant

difference is the appearance of Green’s functions in the BEM and the singular nature of the

kernels associated with them along with the reduced dimensionality. In this section we will

briefly review the BE discretization. Since the BEM is essentially extending the concept of
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finite elements to BIE, following the discussion in §4.2, it transpires that the concept of global

and local trial spaces applies equally to BIE. The T-matrix method uses the global trial functions

whereas the BEM, like FEM, uses local trial spaces [190]. In this thesis, we will discretize the

BIE discussed in §3.7 using the local trial spaces arriving at a method commonly known as

the BEM. Recall the BIE in (3.51) in the previous chapter for acoustic scattering problem (see

Figure 4.4) which is reproduced below for convenience.

1

ρ
c(x)p(x) +

∫

Γs

1

ρ
p(x)

∂G(x,y)

∂n
dΓ(y) =

∫

Γs

1

ρ

∂p

∂n
G(x,y)dΓ(y) +

1

ρ
pinc (4.29)

Following the concepts discussed in §4.2, the acoustic pressure at a point y ∈ Γs can be given

Γs

Ω∞

Ωs

pinc

Γe
s

j

j − 1

j + 1

Nj

Figure 4.4: Boundary Element discretization and local trial space

as

p(y) =
n
∑

j=1

Nj(y)pj , y ∈ Γs (4.30)

and similarly,

∂p(y)

∂n
=

n
∑

j=1

Nj(y)
∂pj
∂n

, y ∈ Γs (4.31)

Clearly, we have 2n unknowns as per (4.30)-(4.31). If we now use (4.30)-(4.31) in (4.29) and

choose the points xj (j = 1, · · · , n) such that we have n equations or an equivalent matrix

system given by

Ha−Gb = f (4.32)

where

Hij =
1

ρ(x)
c(x)Ni(x) +

∫

Γs

1

ρ(y)

∂G

∂n
Nj(y)dΓ (4.33)
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Gij =

∫

Γs

1

ρ(y)
GNj(y)dΓ (4.34)

and

fi =
1

ρ(x)
pinc. (4.35)

The vectors a and b respectively contain the point values for pressure and the normal derivative.

Clearly, since both are unknowns, in order to be able to solve (4.32), we will need boundary

conditions to be provided at n points. Often, it is assumed that the scatterer boundary Γs is

sound hard ( ∂p∂n = 0), leading to

Ha = f (4.36)

Assuming a local support for the shape functions Nj , we can discretize the scatterer surface

Γs =
⋃ne

i=1 Γ
e
s and thus, equations (4.33)-(4.34) can be recast as

Hij =
1

ρ(x)
c(x)Ni(x) +

ne
∑

i=1

∫

Γe
s

1

ρ(y)

∂G

∂n
N e

j (y)dΓ (4.37)

Gij =

ne
∑

i=1

∫

Γe
s

1

ρ(y)
GN e

j (y)dΓ. (4.38)

It should be noted that in the approach in obtaining a system of linear equations, such as in

(4.36) or in (4.32), we follow a collocation approach. As noted before, we place the point x

on the boundary Γs and obtain a discrete equation valid at that point. Conventionally, the

collocation points x are chosen as the element nodes (see Figure 4.4), thus when (4.36) is solved,

we recover the acoustic pressures on the surface of the scatterer given an incident wave and

the boundary condition for ∂p
∂n . Of course, there will be approximations introduced when using

(4.30) or (4.31). As for FEM, the BIE in (4.29) can also be solved in a weak manner a procedure

commonly known as Galerkin BEM.

4.5 Plane wave enrichment

We discussed in §2.3.1 the pollution error in the context of FEM. There have been both theoret-

ical [84] and numerical [72] studies that prove that it is impossible to avoid the pollution error

for Galerkin based FEM. However, the generalised Galerkin FEM has been shown to reduce

these errors substantially but it is known that is not possible to completely remove the pollution

errors, see the theoretical analysis by Babuška and Sauter in [10]. The BEM, like FEM, is also
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an element based method and as mentioned previously, it requires the thumb rule of τ ≈ 10 to

be followed in order to obtain results with engineering accuracy, i.e. 1% error. In this section,

we discuss the concept of plane wave enrichment for the Galerkin FEM (§4.3) and for the BEM

(§4.4). The idea of using a plane wave basis is identical for FEM and BEM. However, it will be

convenient to separately write the equations with plane wave enrichment for FEM and BEM to

assess their individual numerical performance.

4.5.1 Galerkin FEM with plane wave enrichment

Recall (4.16) that expands the acoustic pressure in terms of the corresponding nodal values using

a bilinear interpolation, i.e.,

p(x) = N1(x)p1 +N2(x)p2 +N3(x)p3 +N4(x)p4 (4.39)

Figure 4.5 shows a plane wave enriched finite element. Each of the finite element nodes (1

through 4) is shown along with three red arrows that represent plane waves associated with that

particular node. We therefore say, in Figure 4.5, the local approximation made at each of the

finite element nodes is enriched with three plane waves. Equation (4.40) gives a corresponding

expansion for the acoustic pressure.

Figure 4.5: Plane wave enriched finite element
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p(x) =N1(x)

3
∑

m=1

eikd1m·xa1m +N2(x)

3
∑

m=1

eikd2m·xa2m +N3(x)

3
∑

m=1

eikd3m·xa3m+

N4(x)
3
∑

m=1

eikd4m·xa4m (4.40)

In (4.40), d1m gives the direction of the mth plane wave associated with node 1 with amplitude

a1m, d2m gives the direction of the mth plane wave associated with node 2 with amplitude a2m

and so on. Also note that the direction vector djm at node j is of unit length. In compact

notation therefore, we can write, in general for a finite element with n nodes,

p(x) =

n
∑

j=1

Nj(x)





Mj
∑

m=1

eikdjm·xajm



 (4.41)

We thus have a plane wave expansion of the pressure field where the unknowns at each node are

the plane wave amplitudes ajm. The number of plane waves at node j is Mj and distribution of

the directions at each node is assumed uniform. For example, if we take three plane waves at

each node, then they are at 120◦ from each other. In compact form, this can be given as,

θlm = l
2π

Mj
(4.42)

where l = 1, 2, · · · ,Mj . We thus have the possibility of choosing a variable number of directions

for each of the finite element nodes. It is possible that, in certain cases, the direction of the

incident wave pinc is not known beforehand, and in such a case, it may be convenient to set

the directions of the plane waves uniformly or equally distributed as per (4.42). It is clear from

the comparison of Figures 4.2 and 4.5 (and also from (4.39) and (4.41)) that the number of

unknowns per element has increased due to the use of the plane wave enrichment from four

nodal values to 4 × 3 (plane waves) = 12. Now, let us define a ‘modified’ shape function, say

χjm, which is a product of the mth plane wave at node j (eikdjm·x) and the polynomial shape

function Nj, i.e.,

χjm(x) = Nj(x)e
ikdjm·x (4.43)

Thus, the acoustic pressure in (4.41) can be expressed in a further compact form,

p(x) =

n
∑

j=1

Mj
∑

m=1

χjm(x)ajm (4.44)
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Alternatively, following the idea used in writing (4.17), we can express the pressure p(x) using

a matrix notation,

p(x) = QQQeAAAe (4.45)

where QQQe is a row vector given by,

QQQe = [Q1, · · · ,Qn] (4.46)

and AAAe is a column vector given by,

AAAe = [A1, · · · ,An]
T (4.47)

The elements of the vectors QQQe and AAAe are further given by

Qj =
[

χj1, χj2, χj3, · · · , χjMj

]

(4.48)

and

Aj =
[

aj1, aj2, aj3, · · · , ajMj

]T
. (4.49)

The enriched element matrices in view of (4.45) can therefore be given as

[K̄e] =

∫

Ωe
f

1

ρ
∇(QQQe)T∇(QQQe) dΩ , [M̄e] =

∫

Ωe
f

1

ρ
k2(QQQe)T(QQQe) dΩ ,

[C̄e] = −
∫

Γe
r

1

ρ
B(QQQe)T(QQQe) dΓ , {f̄ e} =

∫

Γe
r

1

ρ

(

(QQQe)
∂pinc

∂r
−B(QQQe)pinc

)

dΓ (4.50)

It should be noted that, the element matrices in (4.50) for the plane wave enriched approach

are denoted with an overbar and thus they should be distinguished from their polynomial based

counterparts in (4.20). Assembling the enriched element matrices in (4.50), and keeping in mind

element connectivity, we obtain a global linear system of equations for the plane wave enriched

FEM or PUFEM,

Āx̄ = f̄ (4.51)

Note again that we distinguish the linear system for PUFEM in (4.51) and that for the poly-

nomial based FEM in (4.14) by using an overbar for the global matrices of the former. The

unknown vector x̄ contains the amplitudes of the plane waves associated with each node in the
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finite element mesh. If the FE mesh for the entire computational domain contains ntot nodes

and each node is enriched with M plane waves (a uniform enrichment) then we would have

total number of unknowns as ntotM and the dimension of the system matrix Ā in (4.51) would

be ntotM × ntotM . Once the system of equations in (4.51) is solved, we can reuse (4.41) to

recombine the plane wave amplitudes to obtain the acoustic pressure at a desired point in the

computation domain.

4.5.2 A remark on the plane wave basis in (4.41)

Before proceeding further, we make a note of the difference between the element matrices for

the FEM (see (4.20)) and for the PUFEM (see (4.50)). Note that for element matrices for

PUFEM, we have considered the density ρ to be a constant value. The density term in (4.50)

is not a function of the spatial coordinates (ρ 6= ρ(x)) whereas the weak form we originally

used (see (3.25)) allows for the variable density (and hence variable wavenumber). This would

potentially mean that with the polynomial FEM system (4.14) we are able to solve a truly

heterogeneous problem whereas it will not be possible with the PUFEM system in (4.51) as the

density is assumed to be constant for the latter. This conflict can be explained by considering

at equation (4.41). Note that (4.41) gives a plane wave expansion of the pressure field p(x),

x being the point in the computational domain. Observe that the plane wave basis in (4.41)

has only one wave number, namely k. It is important here to note that we use only those basis

functions in PUFEM that satisfy the Helmholtz equation. For example, plane waves of the form

eikx or Bessel functions of the first kind J(kx), which form a complete T set are to be used

in PUFEM. However, it is known that for a domain Ωf where the variation of the medium

properties results in the Helmholtz equation with non-constant coefficients, it is not possible to

obtain the particular solution in closed form. It is for this reason we use a constant density term

in the equations appearing in enriched element matrices in (4.50). The question would then

naturally arise “how do we solve a heterogeneous problem using the PUFEM?”. We discuss

this aspect in more detail in Chapter 6 where we will need to modify our basis in (4.41) so that

heterogeneity can be modelled without having to look for particular solutions that satisfy the

heterogeneous Helmholtz equation globally. At this point, it should be kept in mind that if the

basis such as in (4.41) is used, we can solve only a homogeneous wave scattering problem with

PUFEM i.e. we need to have the density and hence wavenumber as a constant.
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4.5.3 BEM with plane wave enrichment

We discussed how the concept of local trial functions in the FEM is extended to BEM in §4.4.

In a similar manner, the concept of plane wave enrichment is extended to BEM. Figure 4.4 is

reproduced below but with each boundary element node now enriched with three plane waves.

Let the acoustic pressure at a point y on the boundary Γs be expressed using plane wave basis

Figure 4.6: Plane wave enriched boundary elements

as,

p(y) =
n
∑

j=1

Nj(y)

Mj
∑

m=1

eikdjm·yajm, y ∈ Γs (4.52)

and the normal derivative ∂p
∂n expressed as,

∂p(y)

∂n
=

n
∑

j=1

Nj(y)

Mj
∑

m=1

eikdjm·ybjm, y ∈ Γs (4.53)

Following the concept we used in writing (4.45), (4.52) and (4.53) can be written using compact

vector notations,

p(y) = RRReAAAe, y ∈ Γs (4.54a)

∂p(y)

∂n
= RRReBBBe, y ∈ Γs. (4.54b)
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where, RRRe is the row vector given by

RRRe = [R1, · · · ,Rn] (4.55)

and AAAe and BBBe are column vectors given by,

AAAe = [A1, · · · ,An]
T (4.56a)

BBBe = [B1, · · · ,Bn]
T . (4.56b)

Note that, whereas the row vector RRRe is obtained from the multiplication of the boundary

element shape functions with the plane waves, the row vector QQQe in (4.46) is obtained with the

multiplication of finite element shape functions with the plane waves. The elements of the vector

RRRe are further given by

Rj =
[

χj1, χj2, χj3, · · · , χjMj

]

(4.57)

The enriched boundary element matrices therefore can be written as

[H̄] =
1

ρ(x)
c(x)RRRe(x) +

ne
∑

i=1

∫

Γe
s

1

ρ(y)

∂G

∂n
RRRe(y)dΓ (4.58)

[Ḡ] =

ne
∑

i=1

∫

Γe
s

1

ρ(y)
GRRRe(y)dΓ. (4.59)

which leads to a global PUBEM system given by

H̄ā− Ḡb̄ = f̄ (4.60)

As mentioned previously, note that, the global PUBEM system matrices in (4.60) are denoted

with an overbar to distinguish them from the global polynomial BEM matrices in (4.32). The

vector ā contains the amplitudes (ajm) of the plane waves associated with the pressure data on

the scatterer boundary Γs (or the Dirichlet data) and the vector b̄ contains the amplitudes (bjm)

of the plane waves associated with the normal derivative of the pressure data on the scatterer

boundary Γs (or the Neumann data). We will need to specify a boundary condition on Γs in
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order to be able to solve (4.60). For a sound hard boundary Γs, (4.60) reduces to

H̄ā = f̄ (4.61)

Consider the geometry shown previously in Figure 4.6 where the boundary Γs is discretized

using linear two noded elements. If there are ne such elements in total on Γs, there will be in

total ne nodes
§. If each of the boundary element nodes is enriched withM plane waves (uniform

enrichment), the size of the system matrix H̄ in (4.61) will be neM × neM . Once the linear

system in (4.61) is solved and the plane wave amplitudes associated with the Dirichlet data

computed, (4.52) can be used to recombine the plane wave amplitudes to obtain the pressure

field at all the points on the boundary of the scatterer. We should remark here that in most

PUBEM formulations published to date, a Neumann or Robin condition is used to avoid having

to approximate the Neumann data using a separate plane wave basis (or polynomial basis in

case of the conventional BEM), thereby avoiding the computation of vector b̄. This specific

aspect will be discussed again in Chapter 7 in §7.2.

4.6 Overview

In this chapter, we have reviewed the basic FE and BE discretization process for the weak form

and the boundary integral equation respectively. Following the arguments presented in Chapter

1 for the pollution error, a plane wave based FE and BE formulation was presented. One can

note from the plane wave based approximations, both for PUFEM and PUBEM (see equations

(4.41) and (4.52)), that the associated element matrix integrals involve oscillatory terms, i.e.

the integrals involved in the plane wave based methods are of the form

I(k, x) =

∫

f(x)eikg(x)dx (4.62)

With increasing wavenumbers, these integrals need to be evaluated carefully so that their con-

vergence is ensured. We mentioned briefly, in the first chapter (see §1.3) the problem of non-

uniqueness of the BIE. In the next chapter, we focus on this particular aspect of the BIE and two

prominent methods used to handle this characteristic. Several other associated aspects, such

§For linear two noded elements, the total number of boundary elements on Γs = total number of boundary
element nodes.
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as various orders of singularities and the methods to accurately evaluate the integrals involving

the singularities, are also discussed.



Chapter 5

Overcoming non-uniqueness:

comparison of CHIEF and

Burton-Miller formulations

5.1 Introduction

As mentioned earlier in §1.3, the Boundary Integral Equation (BIE) in (3.51) for an exterior

acoustic problem suffers from non-uniqueness of the solution. The BIE in (3.51), hereafter called

the ‘Conventional BIE’ (CBIE), results in a non-unique solution at certain irregular frequen-

cies for the corresponding interior problem and it is known that this is a purely mathematical

phenomenon [36]. Two of the available approaches to overcome the non-uniqueness are the

Combined Helmholtz Integral Equation Formulation (CHIEF) method [155] and the Burton-

Miller method [22]. The primary motivation of this chapter is to compare these two methods

for the PUBEM formulation and choose the best for coupling with PUFEM formulation. The

two methods are compared for their accuracy, solution efficiency and conditioning of the coeffi-

cient matrix. Next, we review previous work carried out on the CHIEF and Burton and Miller

formulations.

5.2 Background material

The CHIEF method due to Schenck [155] uses some additional Helmholtz integral equations

evaluated at points interior to the scatterer (and exterior to the acoustic domain) which are

– 59 –
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appended in the original system matrix. Although this results in an over-determined system,

CHIEF ensures a unique solution at an irregular frequency provided the chosen interior points do

not lie on the nodal lines of the eigenmodes of the interior Helmholtz problem. This, however,

can introduce uncertainties at high wavenumbers as the nodal lines become densely packed

in the interior which makes it difficult to find suitable locations for the placement of interior

points. Apart from stating the problem with the interior collocation points when they lie on the

nodal lines of the interior modes, Schenck has not provided any criteria as to what number of

CHIEF points be chosen to ensure a unique solution. To this effect, some work has been done

by Wu and Seybert [187], Juhl [90] to further enhance the CHIEF method to obtain a unique

solution. Wu and Seybert propose a weighted residual form of the CHIEF method which can

ensure a unique solution using the concept of a ‘CHIEF block’. A CHIEF block is a volume

considered inside the scatterer where the CHIEF equation (or the interior Helmholtz problem)

is solved in a weighted residual sense. Juhl’s approach on the other hand uses the Singular

Value Decomposition (SVD) technique to identify the rank deficiency of the coefficient matrix

and with this assess the quality of the CHIEF points. An important observation of Juhl relates

to the accuracy with which the scatterer geometry is modelled and the associated possibility to

circumvent the non-uniqueness problem. It is known that the CBIE can result in a non-unique

solution at wavenumbers near the eigenvalues of the interior problem for a coarse mesh. This

‘band’ of spurious wavenumbers is the major concern when solving exterior acoustic problems

as one is less likely to solve exactly at a spurious wavenumber. As observed by Juhl, the non-

uniqueness in this particular spurious ’band’ may be avoided if one uses a fine mesh. Note that a

fine mesh would essentially mean modelling the geometry more accurately, though, this comes at

the cost of excessive computation. One of the motivations for using Partition of Unity methods

(apart from obtaining a very high accuracy), is to be able to use a coarse mesh. It is therefore

crucial that the geometric modelling of the scatterer be accurate for exterior acoustic problems

in view of the problem with non-uniqueness in the spurious band. A rigorous analytical and

numerical investigation of the CHIEF method has been presented by Chen et al [29] for the

spurious eigensolution in a multiply connected domain. There are several other variations of the

CHIEF method and for a good discussion on the non-uniqueness problem and on the several

enhancements of the CHIEF method, see Chapter 15 by Marburg and Wu in [117]).
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Another method to avoid the non-uniqueness problem is due to Burton and Miller [22]. They

showed that the integral equation resulting from linear combination of the CBIE and its normal

derivative at the collocation point always results in a unique solution. The major problem

with this method is the evaluation of a hypersingular integral∗ which arises as a result of the

differentiation of the CBIE at the collocation point. There are various techniques available to

handle the hypersingular integral in the Burton-Miller formulation. One such technique is the

‘regularisation’ procedure which is a subtraction of singularity technique (SST) combined with

identities from potential theory [109]. Various methods of regularisation for use with the BEM

technique for acoustic and elastic scattering problems can be found in [113],[82],[33],[114],[110].

Another technique is due to Guiggiani [65] which is based again on the subtraction of singularity

but it does not use the identities from potential theory. Rather, the technique is based on

expanding the singular kernel in a Taylor series using polynomial shape functions. Although

mathematically elegant and widely applied for practical problems [126],[163] (Dual BEM for

fracture mechanics), [162](Stokes flow in duct), it can become difficult to obtain complicated

expansions for the fundamental solutions (the Green’s functions). Often an exact geometry is

essential in the PUBEM technique [145] and Guiggiani’s method can become highly involved

when performing the analytical integration on the exact boundary. Also, since the PUBEM is

specifically aimed at solving short wavelength problems, the use of an approximate model of the

scatterer geometry can introduce numerical dispersion in the solution. It is for this reason that

we use the regularisation procedure [109] where the singularity subtraction is analytical.

The BEM system of equations, formed using either the CHIEF or Burton-Miller formulation,

is dense and often ill-conditioned (in the case of plane wave based methods). This may be

become a problem for high frequency problems when using conventional direct solvers as the

cost of solving the system scales with O(N3) where N is the total number of equations in the

BEM system. One of the many techniques to accelerate the BEM solution is the Fast Multipole

Method (FMM). An adaptive version of the FMM [159],[184] has been used to solve several 3D

acoustic scattering problems using the Burton and Miller formulation. The authors show that

significant savings in CPU time can be achieved compared to the conventional BEM or non-

adaptive FMM. Load balancing is known to be a problem for parallel implementation of FMM.

∗The precise definitions for the terms such as hypersingular, strongly singular and weakly singular will be given
in §5.3. At this point, it is suffice to say that these terms indicate the ‘severity’ of the singular nature of the
integrand in the BIE.
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Hariharan et al [75] present an algorithm that avoids the load balancing steps and demonstrate

considerable speed-up for the parallel FMM for electromagnetic scattering problems.

5.3 Orders of singularity

An important observation of the integral equation based methods that use the Green’s function

(such as BEM) is that these methods inherently suffer from singularities. This is because the

fundamental solution is a two point (x and y) function and as these two points are brought close

to each other (|y−x| → 0), a singularity appears in the solution process†. More importantly, the

singularity appearing in the solution process is unrelated to the physical problem that we intend

to solve. For example, the exterior acoustic problem considered here, namely the Helmholtz

BVP (2.13), should be free from singularities provided the scatterers are perfectly smooth. The

integral formulations that we will use (viz. CHIEF and Burton and Miller) involve either weak,

strong or hypersingular integrals and we will be discussing some special techniques designed

to handle these integrals (see §5.4.1 for the regularisation to handle the hypersingular integral

and §5.7 for the weakly singular integrals). Therefore, before we proceed with the integral

formulations for handling the non-uniqueness, it is essential that we precisely define what we

mean by various orders (weak, strong and hyper) of singularities.

Consider a real function f(x,y) and let this function be bounded everywhere in the domain

of interest, say V ⊂ R
d where d is the dimension of the space. In the context of BEM, x will

be the collocation or source point and y will be the field or integration point. Let the distance

between the collocation point and field point be denoted as r. We are now interested in the

behaviour of the following integral

I =

∫

V

f(x,y)

rν
dV (y) (5.1)

where ν is a real number. In general, it can be said that, if the integrand in (5.1) becomes infinite

at some point(s) in the integration interval, the integral in I is (5.1) singular. However, the order

of singularity of the integral I in (5.1) is determined through the values that the parameter ν

assumes and this is summarised in Table 5.1. It is clear that for ν = 0, the integrand in (5.1)

will be regular and the integration can be performed using well known quadrature schemes such

as Gauss-Legendre (GL) or the trapezium rule. Weakly singular integrals (0 < ν < d) on the

†Recall that the Green’s function for the Helmholtz equation is G = i
4
H

(1)
0 (kr) and r = |y − x|
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ν Order of singularity

0 Regular
0 < ν < d weakly singular
ν = d strongly singular

ν = d+ 1 hypersingular
ν = d+ 2 supersingular

Table 5.1: Orders of singularity

other hand, if treated in the same manner as the regular integrals, i.e. without any regard

to the singularity, may not converge at all. For this purpose one either needs to use special

quadrature scheme such as the logarithmic GL as the conventional GL scheme is not useful.

In the boundary element computations, especially those involving oscillatory terms (such as

in PUBEM), we need to have integrals that converge rapidly. Many techniques have been

developed in the past to efficiently evaluate the weakly singular integrals and we will compare

some of these techniques in §5.7. The strongly and hypersingular integrals however need some

special attention and the techniques that will be discussed in §5.7 are not suitable for strongly

and hypersingular integrals. We can show through examples that a weakly singular integral can

exist. But, the strongly singular integrals of some functions simply may not exist and we need

to consider their existence by following an approach called Cauchy principal value (CPV) sense.

Of course, the strongly singular and hypersingular integrals that arise in the integral equations

of the physical problems, such as the acoustic scattering considered in this thesis, must exist.

The CPV approach is a limiting process where the singularity is excluded by encircling it with a

small volume and the behaviour of the integral is examined as this volume is reduced. The CPV

approach used for strongly singular integrals however does not work for hypersingular integral

and we need to use what is called Hadamard finite part approach for the hypersingular integral.

The concepts of CPV and Hadamard finite part are well documented [165], but we briefly discuss

the limiting process here for completeness.

5.3.1 Weakly singular integral

Consider again the integral in (5.1). For simplicity we assume the domain V in (5.1) to be a

smooth curve Γ with length L as shown in Figure 5.1. Consider now the interval [a, b] on the

curve Γ. We are interested in the integral in (5.1) that is evaluated over the domain Γ − Γǫ as
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Γǫ

ǫ
Γ

x

L

a

b

Figure 5.1: Limit process for defining a singular integral

we shrink the semicircular region Γǫ, or more precisely,

I = lim
ǫ→0

∫

Γ−Γǫ

f(x,y)

rν
dΓ(y) (5.2)

The integral I in (5.2) is called a weakly singular integral if the limit exists independent of the

shape of Γǫ. Consider a function f(x,y) = ln |y − x| and let ν = 0. It is clear from Figure 5.2
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ln
 |y

−
x|

Figure 5.2: Logarithmically singular function ln(y − x)

that the function ln(y − x) becomes singular when y = x (the singular point is x = 1.5) in the
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interval [1, 2]. By approaching the singularity from left and right, we can verify this as follows.

Iweak = lim
ǫ1→0

∫ x−ǫ1

a
ln |y − x|dΓ + lim

ǫ2→0

∫ b

x+ǫ2

ln |y − x|dΓ (5.3)

= (x− a) ln(x− a) + (b− x) ln(b− x) + (a− b)

It can therefore be observed that though the function ln |y−x| is singular at x = y, its integral

can be evaluated.

5.3.2 Strongly singular integral

Consider now an integral with f(x,y) = 1 and ν = 1, thus,

Istrong =

∫ b

a

1

|y − x|dΓ, x ∈ (a, b) (5.4)

The integrand in (5.4) has a strong singularity at x = y (see Figure 5.3, x = 1.5) Following the
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Figure 5.3: Strongly singular function 1/|y − x|

same limiting approach used for weakly singular integrals, we obtain,

Istrong = lim
ǫ1→0

∫ x−ǫ1

a

1

|y − x|dΓ + lim
ǫ2→0

∫ b

x+ǫ2

1

|y − x|dΓ (5.5)

= ln |y − x|
∣

∣

∣

∣

x−ǫ1

a

+ ln |y − x|
∣

∣

∣

∣

b

x+ǫ2
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If the singularity at x is approached from both sides symmetrically, i.e. by setting, ǫ1 = ǫ2, we

obtain,

Istrong = ln
b− x

x− a
(5.6)

Note that the result in (5.6) is possible if and only if the exclusion zone Γǫ is made symmetric

by setting ǫ1 = ǫ2. It can therefore be said that, the integral Istrong exists in a CPV sense if the

exclusion zone Γǫ is symmetric and integral Istrong should strictly be denoted as

Istrong = p.v.

∫ b

a

1

|y − x|dΓ = ln
b− x

x− a
(5.7)

5.3.3 Hypersingular integral

Finally, consider an integral with f(x,y) = 1 and ν = 2, thus,

Ihyper =

∫ b

a

1

|y − x|2 dΓ, x ∈ (a, b) (5.8)

The integrand in (5.8) is hypersingular at x = y (see Figure 5.4, x = 1.5) The integral Ihyper is
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Figure 5.4: Hypersingular function 1/|y − x|2

divergent and its interpretation in the sense of Hadamard is necessary. The justification of doing

so is given by Krishnasamy et al in [99]. The Hadamard principal value (HPV) (alternatively
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called Hadamard finite part) of the integral Ihyper is given as

HPV

∫ b

a

1

|y − x|2 dΓ = lim
ǫ→0

(∫ x−ǫ

a

1

|y − x|2 dΓ +

∫ b

x+ǫ

1

|y − x|2dΓ− 2f(y)

ǫ

)

(5.9)

Again, as can be noted from (5.9), the exclusion zone is symmetric with radius ǫ.

Now that we have discussed the various orders of singularity, we can introduce the integral

formulations to treat the non-uniqueness and various singular integrals encountered therein.

5.4 Integral equation formulations for handling non-uniqueness

Recall the CBIE given in Chapter 3 (see §3.7) for an acoustic scattering problem governed by

the Helmholtz differential equation. The CBIE is reproduced here for convenience.

c(x)p(x) +

∫

Γs

∂G

∂ny
p(y)dΓ =

∫

Γs

G
∂p(y)

∂ny
dΓ + pinc(x), x,y ∈ Γs (5.10)

where x is the collocation or source point (see Figure 5.5), y the field point, r = |y− x|, G the

Γs

Ω∞

Ωs

pinc

Collocation point x

Field point y

Figure 5.5: Definition: Collocation and field point

free space Green’s function for the Helmholtz problem, ny the outward normal at point y on

the boundary Γs, p(y) the unknown acoustic pressure and pinc(x) the known incident acoustic

wave. The term c(x) is the free coefficient which depends on the local geometry of Γs at x. As

mentioned before, in this thesis we assume Γs is smooth and take c(x) = 1
2 . Thus when the

normal derivative of the acoustic pressure is prescribed on the boundary, (5.10) can be used
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to compute the acoustic pressure. Note that we have removed the density term ρ(x) from the

integral equation. This is because

1. we want to investigate the performance of the two methods (viz. CHIEF vs Burton-Miller)

to overcome the non-uniqueness problem and,

2. we will be solving an acoustic problem in a homogeneous medium only and therefore it is

convenient to take the density to be constant.

The Green’s function for the Helmholtz equation in two-dimensions is given by

G =
i

4
H0(kr) (5.11)

where H0(·) is the first kind Hankel function of order zero.

5.4.1 Burton-Miller formulation

The Burton-Miller equation is obtained by combining the CBIE and its normal derivative using

a coupling constant. The normal derivative of (5.10) at the collocation point x with respect to

the direction of the normal at x is given by

c(x)
∂p(x)

∂nx
+

∫

Γs

∂2G

∂nx∂ny
p(y)dΓ =

∫

Γs

∂G

∂nx

∂p(y)

∂ny
dΓ +

∂pinc(x)

∂nx
(5.12)

and the Combined Hypersingular BIE (CHBIE) due to Burton and Miller [22] is

c(x)p(x) + αc(x)
∂p(x)

∂nx
+

∫

Γs

∂G

∂ny
p(y)dΓ + α

∫

Γs

∂2G

∂nx∂ny
p(y)dΓ =

∫

Γs

G
∂p(y)

∂ny
dΓ + α

∫

Γs

∂G

∂nx

∂p(y)

∂ny
dΓ + pinc(x) + α

∂pinc(x)

∂nx
(5.13)

where α is a coupling constant most commonly taken as i/k. In the present study, we analyse the

acoustic scattering from a sound hard surface for which the normal derivative of the total acoustic

pressure vanishes. Therefore, all the terms in (5.13) involving the term ∂p
∂n vanish. Although

(5.13) results in a unique solution, its main drawback remains the numerical treatment of the

hypersingular integral, i.e. the last integral on the left hand side. Chen et al [30] and more

recently Li and Huang [109] presented the following weakly singular form of the hypersingular



5.4. Integral equation formulations for handling non-uniqueness 69

integral

∫

Γs

∂2G

∂nx∂ny
p(y)dΓ =

∫

Γs

[

∂2G

∂nx∂ny
− ∂2G0

∂nx∂ny

]

p(y)Γ (5.14)

+

∫

Γs

[p(y)− p(x)−∇p(x) · (y − x)]
∂2G0

∂nx∂ny
dΓ

+

∫

Γs

∇p(x) · ny
∂G0

∂nx
dΓ− 1

2
∇p(x) · nx

where G0 is the free space Green’s function for the Laplace equation and is given as

G0 =
1

2π
ln

(

1

r

)

. (5.15)

Again, for the present case of a hard boundary, the last term on the right hand side of (5.14)

vanishes. Consequently, the final equation for this case of a hard boundary can be expanded as

c(x)p(x) +

∫

Γs

∂G

∂ny
p(y)dΓ + α

∫

Γs

[

∂2G

∂nx∂ny
− ∂2G0

∂nx∂ny

]

p(y)dΓ (5.16)

+ α

∫

Γs

[p(y)− p(x)−∇p(x) · (y − x)]
∂2G0

∂nx∂ny
dΓ+

α

∫

Γs

∇p(x) · ny
∂G0

∂nx
dΓ = pinc(x) + α

∂pinc(x)

∂nx
.

The explicit expressions for various derivatives of the Green’s function involved in (5.16) are given

Appendix A. The second approach to handle the non-uniqueness problem, namely the CHIEF

formulation, relies on adding some extra collocation points in the interior of the scatterer and

then solving the resulting system of equations. This essentially is appending the discretized form

of the CBIE with some additional equations evaluated in the interior of the scatterer. Since the

discretization process is the same either for CHBIE used previously or CHIEF and since both

will contain the CBIE, we first discuss the discretized form of CHBIE and this will then be

followed by the implementation of the CHIEF method.

5.4.1.1 Plane wave basis and and discretization of CHBIE

Recall the equation in compact form for the plane wave basis for the approximation of pressure.

We have reproduced (4.54a) for convenience,

p(y) = RRRe(y)AAAe(y), y ∈ Γs (5.17)
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The RRRe(y) term indicates that the vector corresponds to the boundary element containing the

point y and AAAe(y) is the vector of unknown plane wave amplitudes of the boundary element

nodes containing the point y. Using (5.17), we can write the following discretized form of (5.16)

C1 +

s=4
∑

s=1

ne
∑

e=1

Ies = C2 + C3 (5.18)

where

C1 = c(x)RRRe(x)AAAe(x) (5.19)

Ie1 =

∫

Γe
s

(

∂G

∂ny

)

RRRe(y)AAAe(y)dΓe (5.20)

Ie2 = α

∫

Γe
s

∂2G

∂nx∂ny

(

RRRe(y)AAAe(y) −RRRe(x)AAAe(x)

)

dΓe (5.21)

Ie3 = α

∫

Γe
s

∂2G0

∂nx∂ny

(

RRRe(y)AAAe(y) −RRRe(x)AAAe(x)

)

−

(

∂RRRe(x)

∂x
AAAe(x)rx +

∂RRRe(x)

∂y
AAAe(x)ry

)

dΓe (5.22)

Ie4 = α

∫

Γe
s

∂RRRe(x)

∂x
AAAe(x)nx(x) +

∂RRRe(x)

∂y
AAAe(x)ny(y)dΓ

e(q) (5.23)

and

C2 = pinc(x) ; C3 = α
∂pinc(x)

∂nx
(5.24)

where ne is the total number of boundary elements dividing the boundary Γs, and Γe is the

division of Γs corresponding to the eth boundary element, ajm(x) (ajm(y)) is the amplitude of

mth plane wave associated with jth node on the element that contains the collocation point x

(field point y), Nj(x) (Nj(y)) are the polynomial shape functions for node j of the element

containing the collocation point x (field point y), nx(y) and ny(y) are the x and y components

of the unit outward normal at the field point y on the boundary Γs. Also, rx = x(y)−x(x) and

ry = y(y) − y(x) where x and y are the Cartesian coordinates. Choosing appropriate locations

on the boundary Γs as collocation points x yields the following set of linear equations

[H̄]{ā} = {F̄} (5.25)
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where the vector ā contains the amplitudes of plane waves. The load vector F̄ is obtained as

{F̄} = {C2 +C3} (5.26)

where {C2} and {C3} are the vectors formed using (5.24). The matrix H̄ is obtained by

evaluating the boundary integrals. The solution of the linear system (5.25) yields the amplitudes

of the plane waves, AAAe which can be used to recover the acoustic pressures on the boundary Γs

using (5.17).

5.4.2 CHIEF formulation

For the CHIEF formulation, we need some additional equations formed using the collocation

points in the interior of the scatterer (i.e. x ∈ Ωs). If the collocation point x is moved in the

interior, the CBIE in the interior becomes

∫

Γs

∂G

∂ny
p(y)dΓ = pinc(x), y ∈ Γs,x ∈ Ωs (5.27)

Note that we have omitted the term containing ∂p
∂ny

as the scatterer is assumed to be sound

hard‡. Secondly, the jump term c(x) = 0 by definition as for any interior collocation point, the

term c(x) vanishes. Following the similar discretization process as described in §5.4.1.1, we can

write (5.27) in the following discretized form,

ne
∑

e=1

Ieint = fint (5.28)

where

Ieint =

∫

Γe
s

∂G

∂ny
RRRe(y)AAAe(y)dΓe, y ∈ Γs,x ∈ Ωs (5.29)

and

fint = pinc(x), x ∈ Ωs. (5.30)

Choosing the interior collocation locations x, we can form a set of linear equations

[H̄int]{āint} = {F̄int} (5.31)

‡This is because y ∈ Γs and Γs is sound hard.
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Additionally, we can form another system of equations by using the terms I1, C1 and C2 alone

as they correspond to the discretized form of the CBIE.

[H̄CBIE]{āCBIE} = {F̄CBIE} (5.32)

It can be seen that the matrix [H̄CBIE] is obtained by evaluating the boundary integrals corre-

sponding to the CBIE only (i.e. (5.10) minus the integral containing the ∂p
∂n term). The final

system of equations for the CHIEF formulation is then given as







H̄CBIE

H̄int

















āCBIE

āint











=











F̄CBIE

F̄int











(5.33)

Now, in order to ensure a unique solution using the CHIEF formulation, the questions that

naturally arise are,

1. where do we place the interior (x ∈ Ωs) collocation points?

2. how many such points are sufficient to ensure that the non-uniqueness problem is solved?

We will answer these questions through the numerical examples presented in §5.8.

5.5 Collocation

We discussed earlier in §2.3.2 the requirement for an exact geometry for PUBEM in order to

obtain accurate results. We therefore use the exact geometry of the scatterer so that Γe
s becomes

analytical and is given as

Γe
s = {γes(ξ) : −1 ≤ ξ ≤ 1}. (5.34)

It is a common practice in the conventional BEM to use the boundary element nodes as the

collocation points. However, since the number of unknowns is increased due to the introduction

of the plane wave basis, we require additional collocation points as the total number of unknowns

has now increased to 2neM as compared to 2ne for conventional collocation BEM, for the case

of a 3-noded continuous element. It is therefore convenient to write,

Ps =

{

γes(ξ) : ξ = a− 2 +
m− 1

M
, a = 1, 2, m = 1, 2, ..M.

}

(5.35)
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where s = 1, 2, ..., 2M , with 2M being the total number of degrees of freedom for the element

Γe
s. It follows immediately that (5.35) generates the collocation points ps that are regularly

spaced in {ξ : −1 ≤ ξ ≤ 1}. A theoretical restriction on the continuity of the acoustic pressure

requires further attention to the placement of point P in the case where two adjacent elements

are concerned. A frequently mentioned problem with continuous elements for the use with

hypersingular integrals is the Hölder continuity requirement on the density function ( or the

acoustic pressure in the present case). The Hölder continuity requirement needs the density

functions to be C1,α continuous whereas the continuous elements are only C0,α continuous at

the inter-element edges. Although satisfactory results have been presented by violating this

condition [113], we will follow a collocation strategy where the collocation points always lie

entirely inside an element which automatically satisfies the C1,α condition [98].

5.6 Numerical integration

It can be observed that the boundary integrals in (5.16) become oscillatory in nature due to

the introduction of the plane wave basis apart from the inherent oscillatory nature of the fun-

damental solution present in the kernel of the integral equation, i.e. the Green’s function. A

complicating factor for the integration is that the PUBEM formulation encourages the use of

elements spanning many wavelengths, so there is the requirement to evaluate accurately highly

oscillatory integrals. Apart from the requirement of using an analytical geometry where possible,

accuracy of the PUBEM solution heavily depends on how accurately these oscillatory integrals

are evaluated. Also it should not be forgotten that the PUBEM system is highly ill-conditioned

and the errors in modelling the geometry can result in erroneous solution particularly at high

frequencies. We use a subdivision of the −1 ≤ ξ ≤ 1 interval into C cells of equal size to evaluate

the oscillatory integrals using Gauss quadrature. In the present work, we use 10 Gauss points

per cell. There are other more sophisticated integration schemes but this scheme is adopted,

namely, element subdivision in C equal length cells, for its robustness. To make this concept

clear, let us rewrite one of the boundary integrals, say Ie1 (see (5.20)),

Ie1 =

∫

Γe

(

∂G

∂ny

)

3
∑

j=1

Nj(y)

Mj
∑

m=1

ajm(y)eikdjm·ydΓe (5.36)
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Using the first parametric mapping (5.34), Ie1 can be written as

Ie1 =

∫ ξ=1

ξ=−1

(

∂G

∂ny

)

3
∑

j=1

Nj(y)

Mj
∑

m=1

ajm(y)eikdjm ·yJ(ξ)dξ (5.37)

where J(ξ) is the Jacobian of transformation Γe → ξ. Now, using the division of the ξ interval

in C cells, we can write (5.37) as

Ie1 =
C
∑

∫ η=1

η=−1

(

∂G

∂ny

)

3
∑

j=1

Nj(y)

Mj
∑

m=1

ajm(y)eikdjm·yJ(η)dη. (5.38)

Now η is the local coordinate in each individual cell and J(η) is the Jacobian of transformation

Γe → η. Note that ξ → η is a simple linear mapping.

ξ = −1

ξ

ξ = +1

η = +1

η = −1

η

An individual cell

Singular element divided in 6 cells

Figure 5.6: Cell subdivision for oscillatory integrals in PUBEM

5.7 Coordinate transformation techniques for weakly singular

integrals

It was briefly mentioned in Chapter 3 (see §3.7, also see Figure 3.4) that the Green’s function

for the Helmholtz equation in 2D exhibits singular nature due to the Bessel function of the

second kind Yn(·). We also reviewed the definitions of various orders of singularities in §5.3. As

was mentioned in §5.6, the integrals obtained after regularisation of the hypersingular integral

following the approach of Chen et al [30] are still weakly singular. This requires a suitable

coordinate transformation to be applied so that the integrals are evaluated correctly. From

the several coordinate transformation methods available, we compare the performance of four
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different techniques for evaluating the weakly singular integrals in (5.16). The coordinate trans-

formation methods investigated here are i) Telles [173], ii) Monegato - Sloan (MS [130]), iii)

bicubic [23] and iv) Wu’s transformation [186]. The Telles and MS transformations are applied

in the entire local interval η ∈ (−1, 1) if it contains the singular point, x. Bicubic and Wu’s

scheme, on the other hand, split this local interval (η) towards the left and right of the singu-

larity (i.e. the point x) and then apply the transformation in each individual interval. It may

be noted that all of these techniques are aimed only at handling weakly singular integrals.

The various coordinate transformations discussed here rely on mapping the original local

coordinate η in to a different coordinate, say γ. Naturally, while performing the mapping from

η to γ, we will need to compute the Jacobian of transformation, say J(γ). It is this Jacobian, in

most cases, that handles the weak singularity. The underlying principle being, the coordinate

transformation η → γ is written such that, at the singular point, the Jacobian of transformation

J(γ) has a minimum value (ideally zero for a truly singular function). Thus, at the singularity,

we multiply a high value of the integrand§ by a very low value of Jacobian J(γ) and thus we have

a regular function. In the following sections, we briefly review the coordinate transformation

techniques.

5.7.1 Telles transformation

The Telles transformation uses the following nonlinear coordinate mapping

η(γ) = aγ3 + bγ2 + cγ + d (5.39)

Equation (5.39) thus gives a third degree relation between η and γ. Let us denote the intrinsic

coordinate at the singular point x as η̄. Then, the constants a, b, c and d can be found by using

following conditions

η|γ=1 = 1 (5.40a)

η|γ=−1 = −1 (5.40b)

dη

dγ
|η̄ = 0 (5.40c)

d2η

dγ2
|η̄ = 0 (5.40d)

§Because the integrand is singular at x = y
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The conditions in (5.40a) and (5.40b) are trivial. The condition in (5.40c) indicates that the

Jacobian J(γ) should decrease the order of singularity at the singular point η̄. The fourth

condition in (5.40d) specifies that the gradient of the singularity is smooth at the singular point

after the coordinate transformation. The constants in (5.39) are then given as,

a = 1/Q (5.41a)

b = −d = −3γ̄/Q (5.41b)

c = 3γ̄2/Q (5.41c)

Q = 1 + 3γ̄2 (5.41d)

where

γ̄ = (η̄η∗ + |η∗|) 1
3 + (η̄η∗ − |η∗|) 1

3 + η̄ (5.42a)

η∗ = η̄2 − 1 (5.42b)

Let f(η) be a weakly singular function at η = η̄ where η ∈ [−1, 1]. Then,

I =

∫ η=1

η=−1
f(η)dη (5.43)

is a weakly singular integral. The coordinate mapping η → γ gives the following regular integral,

I =

∫ γ=1

γ=−1
f(η(γ))J(γ)dγ, (5.44)

where

J(γ) =
3(γ − γ̄)2

1 + 3γ̄2
(5.45)

Equation (5.44) can be implemented with the usual Gauss quadrature. An important feature of

Telles transformation is that the Gauss integration points get clustered near the singular point.

Since we have a higher density of the integration points near the singular point, the integrand

is now smooth and accurate evaluation of the integral becomes possible.
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5.7.2 Bicubic transformation

The concept used in bicubic transformation is similar to the Telles transformation. As the name

suggests, the singular interval (in the present case η ∈ [−1, 1]) is divided in to two parts viz.

towards the left and the right of the singular point η̄, and a cubic transformation is then applied

separately in both parts. The bicubic transformation is originally attributed to Cerrolaza and

Alarcon [23]. Consider the weakly singular integral in (5.43 and let the interval η ∈ [−1, 1] be

divided in to two parts i) η1 ∈ [−1, η̄] (left of singularity) and ii) η2 ∈ [η̄, 1] (right of singularity).

Thus, (5.43) can be rewritten as

I =

∫ η=1

η=−1
f(η)dη

=

∫ η1=η̄

η1=−1
f(η1)dη1 +

∫ η2=1

η2=η̄
f(η2)dη2 (5.46)

Note that, the left interval is given by η1 ∈ [−1, η̄] and the right interval by η2 ∈ [η̄, 1] and these

coordinates are given as

η1 = η̄ +A(ζ1 − 1)2 +B(ζ1 − 1)3 (5.47a)

η2 = η̄ + C(ζ2 − 1)2 +D(ζ2 − 1)3 (5.47b)

Following the transformations given in (5.47) the coordinates η1 and η2 will be replaced by ζ1

and ζ2 respectively. Thus, similar to the conditions mentioned in (5.40), we can write for ζ1,

η1|ζ1=−1 = −1 (5.48a)

η1|ζ1=1 = η̄ (5.48b)

η1|µn = η̄ − ǫ (5.48c)

and

η1|ζ2=−1 = η̄ (5.49a)

η1|ζ2=1 = 1 (5.49b)

η1|−µn = η̄ + ǫ (5.49c)
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where µn is the largest Gaussian point abscissa of the Gauss quadrature rule being used. The

constants A,B,C and D are given as

A =
−8ǫ− (1 + η̄)(µn − 1)3

8(µn − 1)2 + 4(µn − 1)3
, B = − 4ǫ− (1 + η̄)(µn − 1)2

8(µn − 1)2 + 4(µn − 1)3
(5.50a)

C =
8ǫ+ (1− η̄)(µn − 1)3

8(µn − 1)2 + 4(µn − 1)3
, D =

−4ǫ+ (1− η̄)(µn − 1)2

8(µn − 1)2 + 4(µn − 1)3
(5.50b)

Thus, after the coordinate mappings, (5.46) can be rewritten as

I =

∫ ζ1=1

ζ1=1
f(η1(ζ1))J(ζ1)dζ1 +

∫ ζ2=1

ζ2=1
f(η2(ζ2))J(ζ2)dζ2 (5.51)

where the Jacobians of transformation are given as

J(ζ1) = 2A(ζ1 − 1) + 3B(ζ1 − 1)2 (5.52a)

J(ζ2) = 2C(ζ2 + 1) + 3D(ζ2 + 1)2 (5.52b)

As seen from (5.48c) and (5.49c), the bicubic mapping depends on a parameter ǫ and Chen [31]

derived an expression for optimal value of ǫ given by the following inequality,

ǫ >
1 + η̄(1− µn)

2

4
(5.53)

5.7.3 Wu’s transformation

This technique relies again on interval splitting. Wu’s [186] transformation (η → γ) is given as

η = η̄ − γ2, η < η̄ (5.54a)

η = η̄ + γ2, η > η̄ (5.54b)

Thus,

γ =
√

1 + η̄
∣

∣

∣

η=−1
(5.55a)

γ =
√

1− η̄
∣

∣

∣

η=1
(5.55b)

γ = 0|η=η̄ (5.55c)
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The weakly singular integral therefore is divided as follows,

I =

∫ γ=0

γ=
√
1+η̄

f(η(γ))J(γ)dγ +

∫ γ=
√
1−η̄

γ=0
f(η(γ))J(γ)dγ (5.56)

It should be noted that, from (5.54), differentiation gives,

dη = −2ζdγ, η < η̄ (5.57a)

dη = 2ζdγ, η > η̄ (5.57b)

Clearly, when working in the transformed coordinate γ, the Jacobian of transformation will

involve a factor of 2γ. Since 2γ tends to zero much faster than 2 ln(γ), any logarithmic singularity

will be effectively cancelled. Note that (5.56) does not have the usual [-1,1] limits to be able to

implement the usual Gauss quadrature and therefore needs a further transformation.

5.7.4 Monegato-Sloan transformation

The Monegato-Sloan transformation (MST) can be considered as a generalised polynomial trans-

formation. The Telles transformation mentioned previously is a special case of the MST. Al-

though Monegato and Sloan used their scheme for the solution of integral equations for an airfoil

problem, the use of MST for singular integrals was first investigated by Johnston and Elliot [89].

A MST of order q can be given as

γ = η̄ + δ(η̄,m)(η − η0)
m (5.58)

where

δ(η̄,m) = 2−m
(

[1 + η̄]
1
m + [1− η̄]

1
m

)m
(5.59)

and

η0 =
[1 + η̄]

1
m − [1− η̄]

1
m

[1 + η̄]
1
m + [1− η̄]

1
m

(5.60)

and the parameter m must be an odd integer. Thus the weakly singular integral when MST is

used can be given as follows,

I =

∫ γ=1

γ=−1
f(η(γ))J(γ)dγ (5.61)
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where

J(γ) = m2−m
(

[1 + η̄]
1
m + [1− η̄]

1
m

)

(η − η0)
m−1 (5.62)

5.7.5 Split Telles transformation

It has been demonstrated by Singh and Tanaka that the cubic transformations, such as Telles,

are not very effective when the singularity is at the end of the singular element [164]. This can

be a case when a continuous element (2 or 3 noded) is used and nodal collocation is performed.

In such cases, Singh and Tanaka suggest that the singular element be partitioned and the Telles

scheme is then applied separately in each part and therefore called ‘Split Telles transformation’.

Though this is similar to the bicubic approach, it may be noted that the split Telles approach

does not need a criterion as required by the bicubic method (see (5.53)). The weakly singular

integral following a split Telles approach can be given as [164]

I = I1 + I2 (5.63)

where

I1 =
3

8
(1 + η̄)

∫ 1

−1
f(η(η1(γ), γs)(γ − 1)2dγ (5.64a)

I2 =
3

8
(1− η̄)

∫ 1

−1
f(η(η2(γ), γs)(γ + 1)2dγ (5.64b)

and the non-linear transformations in each interval are given as

η1(γ) =
1

4

(

γ3 − 3γ2 + 3γ + 3
)

, η̄ = 1 (5.65a)

η1(γ) =
1

4

(

γ3 − 3γ2 + 3γ − 3
)

, η̄ = −1 (5.65b)
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5.8 Scattering from sound hard cylinder(s)

Recall the definition used for parameter τ for BEM in Chapter 1 (see (1.2b)). We rewrite (1.2b)

and remembering wavelength λ = 2π/k,

τ = λ

(

nDof

Length

)

=

(

2π

k

)

T

2πa

=
T

ka
(5.66)

where T is the total number of degrees of freedom in the system for one cylinder and a is the

radius of the cylinder. Thus, for the problem of scattering from a single cylinder with unit

radius, τ = T/k where T will be the product of the total number of nodes on the scatterer

boundary and number of plane waves per node. It should be noted that we use one integration

cell per collocation point and thus the total number of degrees of freedom T (in 5.66) is equal

to the total number of integration cells used on the boundary of one cylinder, i.e.

T = neC (5.67)

The parameter C is the number of integration cells per element (see 5.38). For all the results

presented in this chapter the parameter τ ≈ 3.0 unless otherwise mentioned. This value has

been found to be sufficient to recover solutions with acceptable engineering accuracy with L2

errors close to 1% and moderate condition numbers which can be efficiently handled with the

SVD algorithm, see [145]. For smooth scatterers, this accuracy will be shown to be much better

(≈ 10−4). Also all the results are obtained with 30 integration (Gauss) points per wavelength

unless otherwise mentioned. Note that the focus of present thesis is to develop an algorithm

for coupling PUFEM with PUBEM. Therefore, a rigorous numerical study of the number of

integration points per wavelength needed for PUBEM, for a given range of k and geometry is

not presented here. For both the single cylinder and four cylinder examples, we use two 3-

noded continuous elements per cylinder along with the trigonometric shape functions presented

by Peake et al [141]. The trigonometric shape functions have been shown to improve the

accuracy over the conventional polynomial shape functions because of their smoothness and
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C∞ continuity; see [141]. Thus the single cylinder case has only two continuous elements and

the four cylinder case uses 8 continuous elements. For all computations the integration points

are placed analytically on the scatterer boundary. We now define the relative L2 error for the

total acoustic pressure p on the boundary Γ, E2(Γs) as

E2(Γs) =
‖p − p̃‖
‖p̃‖ (5.68)

where p is the numerically computed solution and p̃ is the analytical solution computed using

the infinite or approximate series for a given scattering problem [20]. Note that the norms

in (5.68) are taken in L2 sense over the boundary Γs. The coefficient matrix H̄ generated

using the plane wave basis is always highly ill-conditioned. A typical condition number for

the coefficient matrix H̄ for a moderately high value of k > 100 is approximately 1015. The

problem of poorly conditioned systems due to the use of the plane waves has been widely

reported; see the discussion in [103] and the references therein. In general, the condition number

for a plane wave enriched BEM increases as the wavenumber increases. Clearly, in order to

obtain accurate and reliable results from such highly ill-conditioned systems one must ensure

that sufficient arithmetic precision is maintained in the computation of the matrix terms. We

use double precision arithmetic for all the computations in this study. A natural choice for

obtaining accurate solution from the ill-conditioned system (5.25) is therefore the SVD technique.

The applicability of SVD for obtaining accurate solutions from ill-conditioned systems is well

established and the readers may be referred to the benchmark paper by Golub and Kahan [62]

for the underlying theory. In the present study, we obtain the solution vector ā in (5.25) by

solving the following complex linear least squares problem:

min ‖F̄− H̄ā‖2 (5.69)

using the SVD of H̄.

The 2-norm condition number for the matrix H̄, κ(H̄) may be defined as

κ(H̄) =
σmax(H̄)

σmin(H̄)
(5.70)
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where σmax(H̄) and σmin(H̄) are the maximum and minimum singular values of the matrix H̄

respectively computed using the SVD. Relevant routines from the LAPACK library are used to

solve (5.69) [3]. As discussed in §5.1, the placement of interior collocation points for the CHIEF

method can become an issue. For the numerical examples presented here, the interior points are

placed randomly in the interior of the cylinder(s). This randomness can practically guarantee

that there will always be enough CHIEF points to provide the linear independence needed to

obtain a unique solution. The number of interior points (or the number of CHIEF equations)

used here is 20% of the total number of equations in (5.25) since this has been found to give

stable results for the CHIEF method. Also the CHIEF points in the interior of the cylinder(s)

are placed such that the integrals in the CHIEF integral equation (5.27) do not become near-

singular. For this, the interior collocation points are placed in a circle of radius 0.9a (a being the

radius of the cylinder), and within this circle the interior collocation points are placed randomly.

5.8.1 Scattering from a single sound hard cylinder

We first investigate the performance of CHIEF and Burton-Miller methods for the classical

problem of plane wave scattering from an acoustically hard cylinder of infinite extent. The

analytical solution for the scattered pressure on the surface of a hard cylinder centred at origin

(0, 0) due to an incident acoustic plane wave with direction (−1, 0) is given by an infinite series

[20],

ps(x) = − J′0(ka)
H′

0(ka)
H0(kr)− 2

∞
∑

ν=1

iν
J′ν(ka)
H′

ν(ka)
Hν(kr) cos(νθ), (5.71)

where x = r(cos(θ), sin(θ)), Hν(·) is the Hankel function of the first kind and order ν, Jν(·)

is the Bessel function of the first kind and order ν. The prime sign denotes a derivative with

respect to kr. The total acoustic pressure p can be computed by performing a complex addition

of incident wave to the scattered pressure given by (5.71), i.e., p = pinc + psct. The relative L2

error for the total acoustic pressure is then computed using (5.68).

5.8.1.1 Truncated SVD

Before proceeding to the error analyses for the scattering problems with different coordinate

transformation schemes for singular integrals, we first present results that demonstrate the

ability of SVD to produce stable and accurate results via the single cylinder scattering problem.

Since the coefficient matrix H̄ is ill-conditioned (or rank deficient), this makes the problem

stated in (5.69) ill-posed because a small perturbation in the right hand side vector b̄ can result
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in a significantly large perturbation in the solution vector ā. It is therefore important to be able

to solve (5.69) reliably when κ(H̄) is significantly high to obtain stable and accurate solution.

In the present study, we use the truncated SVD routine ZGELSS from LAPACK to solve (5.69).

The principle used in ZGELSS is to obtain a minimum ||ā|| solution from the set of least squares

solutions that minimize ‖b̄− H̄ā‖2 over a solution space that is spanned by the singular vectors

with singular values greater than ǫ0, where ǫ0 is the user input for the truncation threshold of

singular values. This essentially means filtering out those singular values from the SVD of H̄

that are below ǫ0 and solving (5.69) with a modified H̄, possibly with an improved rank. A

well known method to estimate the suitable value for the parameter ǫ0 is the so called L-curve

method [70]. Figure 5.7 shows the L-curves for (5.25) for the problem of plane wave scattering

from a single cylinder for three different wavenumbers, namely, k = 32, k = 100 and k = 152.

The singular values (σc) computed using SVD for each wavenumber case corresponding to the

respective L-curve corner points are also shown in Figure 5.7. For example, the corner value for

k = 32 is σc(k = 32) = 1.82 × 10−4, indicating that it is possible to obtain accurate solution

by truncating the singular values that are below σc(k = 32), i.e. by setting ǫ0 = 1.82 × 10−4

for the k = 32 case. Although the threshold value ǫ0 is dependent on the wavenumber of

the problem being solved, in this study, we take the threshold ǫ0 = 1.0 × 10−10, as this was

found to give satisfactory results for all the examples considered. This is demonstrated through

numerical results for various values of ǫ0 as shown in Figure 5.8. The results shown in Figure

5.8 are only for the CHIEF method, however, similar behaviour is observed in the results for

the Burton-Miller method as well. As seen from Figure 5.8, it is clear that the SVD algorithm

with ǫ0 = 1.0× 10−10 produces stable results with very good accuracy (relative L2 errors better

than 10−4).

5.8.1.2 Comparison of CHIEF and Burton-Miller methods with singular integra-

tion schemes

We now present the comparison between the CHIEF and the Burton-Miller methods with various

singular integration schemes. Figure 5.9 shows the relative L2 error, E2(Γs) for CHIEF and

Burton-Miller methods and Figure 5.10 gives the comparison for the condition number defined

in (5.70). The multiple lines for the Burton-Miller method in Figures 5.9-5.10 correspond to

various coordinate transformation schemes used to handle the weakly singular integrals.
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Figure 5.7: L-curve for (5.69) for scattering from single cylinder.

As seen from Figure 5.9, CHIEF provides better accuracy compared to Burton-Miller results

obtained with various singular integration schemes at 30 integration points per wavelength. Note

that when the weak singularity in (5.16) is handled with the Telles scheme without splitting the

interval containing the singularity (η ∈ (−1, 1)), the Burton-Miller formulation needs at least

300 integration points per wavelength to achieve a comparable accuracy to that of CHIEF with

30 integration points per wavelength. It should be mentioned here that although the regularised

form of the Burton-Miller formulation used here is only weakly singular, the third integral on

the left hand side of (5.16) converges extremely slowly. Consequently, Burton-Miller needs a

very high number of integration points in order to achieve an accuracy comparable to that from

the CHIEF method, if it uses the Telles transformation without interval splitting. The efficacy

of the Telles scheme for handling the weakly singular integrals has been investigated by many

researchers,[23],[164],[88]. It is clear from these studies that the Telles transformation when

used without partitioning gives poor results. Singh and Tanaka[164] report at least 3 orders

of magnitude improvement for a logarithmic singularity when the Telles transformation is used

with the partition of the interval for 10 Gauss points. We see from Figure 5.9 that splitting the
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Figure 5.8: PUBEM results for various values of ǫ0 for single cylinder problem.

local interval η ∈ (−1, 1) indeed improves the Burton-Miller result in comparison with the result

obtained without splitting the interval. Similar numerical experiments carried out with conven-

tional polynomial BEM show that the L2 errors with the various singular integration schemes

discussed do not vary significantly. For instance, the L2 errors for the single cylinder problem

using the quadratic discontinuous elements are of the O(10−3) for all the singular integration

schemes discussed and for τ = 20. The collocation points used are the nodal locations of the

discontinuous element which is a common practice followed in conventional polynomial BEM.

We use discontinuous elements for polynomial BEM in order to satisfy the Hölder continuity

requirement on the hypersingular integral. It is found that when the element nodes are used

as the collocation points, the convergence of the slowly converging integral in (5.16) is possible

with a relatively low number (10 to 12) of Gauss points irrespective of the singular integration

scheme used. Therefore, the results obtained with various singular integration schemes remain

within the same order of magnitude for polynomial BEM. This disparity in the results with

various singular integration schemes for PUBEM and polynomial BEM can be attributed to the
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Figure 5.9: E2(Γs) for the single cylinder problem.

fact that the collocation points used in PUBEM are not element nodes causing the integrals for

PUBEM to converge slowly.

The condition numbers for CHIEF for k < 64 are better in comparison with Burton-Miller

but degrade with increasing k (see Figure 5.10). Interestingly an accurately computed Burton-

Miller solution provides a better conditioning of the system matrix. Amini and Harris [2] studied

the dependence of the condition number on the wavenumber k. The numerical examples they

presented are with conventional BEM and with k < 20 for a 3D problem. It follows from their

work that the condition number for a regularised Burton-Miller formulation increases steadily

with growing k and the coupling parameter α. In a PUBEM context, as shown in Figure 5.10,

the ill-conditioning arising from the plane wave basis is the dominant effect and the steady

increase noticed by Amini and Harris is no longer evident. However, despite the high condition

numbers encountered, the SVD algorithm is able to find a unique solution. It is evident from

Figure 5.9 that the PUBEM implementations of both CHIEF and Burton-Miller are accurate

and stable over the range of wavenumbers considered here.
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Figure 5.10: κ(H̄) for the single cylinder problem.

5.8.2 Scattering from an array of four cylinders

The scattering from a multi-cylinder array presents a more challenging case as it involves multiple

reflections from individual cylinders which ultimately forms the total acoustic field. The recursive

multiple reflections make this problem an ideal candidate to test the efficacy of PUBEM to

obtain an accurate solution. We consider a setting of four unit radius sound hard cylinders of

infinite extent with their centres placed at (-2,-2), (2,-2), (2,2) and (-2,2) in a two dimensional

homogeneous unbounded acoustic medium (air). A unit amplitude plane wave with wavenumber

k is taken to be incident on this cylinder array at an angle of θI = 45◦ with the horizontal. There

are various methods to solve a multiple scattering boundary value problem such as that described

and a good review of these methods can be found in [120]. We use the formula proposed by Linton

and Evans [112] (eq. 2.15) to compare our PUBEM solution for the total acoustic pressure on

the surface of each cylinder. The formula proposed by Linton and Evans is based on the addition

theorem that combines the separable solutions of Helmholtz equation, see [120] for details. The

addition theorem can be efficiently used to compute the solution but the infinite series has to

be truncated in practice. Theoretically of course, an infinite sum should result in a converged

solution. However, when solving even the truncated system of linear equations, the addition of
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extra terms in the series can make the system matrix highly ill-conditioned. Figure 5.11 shows

the dependence of the condition number of the system matrix formed from (2.15) in [112] on

the number of terms included in the series. Note that k = 2.4048 is an irregular wavenumber

(first zero of the first kind Bessel function, J0). Clearly the reason for such significantly high

condition numbers is the wide spread of eigenvalues with the growing number of terms in the

series. In light of the result shown in Figure 5.11 it becomes imperative to find the number of
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Figure 5.11: Stability of Linton-Evans series, eq. (2.15) in [112].

terms needed to include in the series in order to obtain a correct solution from the truncated

series. This is because the relative L2 errors will depend heavily on how accurately the series in

[112] is computed. A good discussion on the upper and lower bounds on the number of terms to

be included in the series can be found in [139]. More related works from the acoustics domain

[188], [41] give an empirical relation for a two cylinder problem, for the number of terms that

need to be included for a given value of ka where a is the radius of the cylinder. Recently,

Antoine et al [5] have presented an empirical relationship for the number of terms to be used in
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Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4

CHIEF BM CHIEF BM CHIEF BM CHIEF BM

τ ≈ 3.0 5.98E-04 1.03 2.15E-04 2.71 2.78E-04 6.26 1.67E-04 2.01

τ ≈ 3.5 8.67E-06 4.06E-05 1.28E-05 9.39E-05 7.6E-06 3.29E-05 516E-06 3.82E-05

τ ≈ 3.9 2.01E-07 4.07E-06 1.87E-07 4.01E-06 3.46E-07 6.32E-06 1.92E-07 5.17E-06

Table 5.2: PUBEM results - E2(Γs) for scattering from four cylinder array for k = 36.9171 and
θI = 45◦, 100 terms in Linton-Evans series.

the infinite series for scattering from multiple circular cylinders

Mu =

[

kau +

(

1

2
√
2
ln
(

2
√
2πkauǫ

−1
)

)
2
3

(kau)
1
3 + 1

]

, (5.72)

where Mu is the minimum number of terms that need to be included in the infinite series for

the uth cylinder with radius au, and ǫ is the desired error bound on the Fourier coefficients that

need to be computed in the infinite series. The value of error bound on the Fourier coefficients

used by Antoine et al was 10−8. For our case of scattering from identical circular cylinders (all

cylinders are unit radius), the number of terms Mu obtained from (5.72) for each cylinder is the

same (say M). We use (5.72) only as a guideline to find the number of terms (M) needed in

the Linton-Evans series (2.15 in [112]) with ǫ = 10−8 in (5.72). A system of linear equations of

size Nc(2M +1) is then formed where Nc is the number of cylinders (4 in the present case). We

use a linear least squares solver with QR factorisation to solve this system of linear equations

using suitable routines from the LAPACK library and obtain the total acoustic pressure on

each cylinder surface. This solution is considered as the reference solution and used to compute

the relative L2 error (see (5.68)) for our PUBEM solution with the CHIEF and Burton-Miller

methods. For the error analysis of the four cylinder problem, we consider three cases of the

wavenumber, namely, k = 36.9171, k = 100 and k = 150. It may be noted that from the

three cases mentioned, k = 36.9171 and k = 150 are irregular wavenumbers. The regularised

Burton-Miller results included for comparison here are obtained with the Telles scheme for the

weakly singular integrals in conjunction with splitting the interval η ∈ (−1, 1). The L2 error

results shown in Tables 5.2-5.4 are obtained using two continuous elements per cylinder with

trigonometric shape functions as indicated previously. All the results are obtained with 30

integration points per wavelength. The condition numbers for the first case of k = 36.9171 are

given in Table 5.5 and for the latter two cases of k = 100, 150 in Table 5.6. We have usedM =

100 for k = 36.9171, M =150 for k = 100, and M =200 for k = 150, in the Linton-Evans series.
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Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4

CHIEF BM CHIEF BM CHIEF BM CHIEF BM

τ ≈ 2.2 43.80 39.34 24.83 16.80 30.95 20.84 24.52 28.28

τ ≈ 2.6 7.66E-05 2.30E-03 1.27E-04 4.72E-03 3.52E-04 3.10E-02 8.88E-05 5.17E-03

τ ≈ 3.0 3.77E-07 8.18E-06 5.65E-07 1.09E-05 5.08E-07 9.83E-06 5.78E-07 2.04E-05

Table 5.3: PUBEM results - E2(Γs) for scattering from four cylinder array for k = 100 and
θI = 45◦, 150 terms in Linton-Evans series.

Cyl. 1 Cyl. 2 Cyl. 3 Cyl. 4

CHIEF BM CHIEF BM CHIEF BM CHIEF BM

τ ≈ 2.2 8.26 15.26 12.53 27.67 42.43 98.36 15.68 37.90

τ ≈ 2.6 6.73E-05 3.0E-03 7.30E-05 2.6E-03 7.23E-05 4.8E-03 7.98E-05 7.0E-03

τ ≈ 3.0 6.48E-05 6.47E-05 6.40E-05 6.39E-05 6.68E-05 6.70E-05 6.40E-05 6.46E-05

Table 5.4: PUBEM results - E2(Γs) for scattering from four cylinder array for k = 150 and
θI = 45◦, 200 terms in Linton-Evans series.

It may be noted that the number of terms used for the cases studied here (M) is higher than

those prescribed by (5.72) and this is done in order to obtain the maximum possible accuracy

for the solution obtained from the Linton-Evans series. We reiterate the fact that the errors

listed in Tables 5.2-5.4 are for the particular number of terms used in the Linton-Evans series.

The condition number of the coefficient matrix for the Linton-Evans series for k = 36.9171 with

100 terms was 14.28, for k = 100 with 150 terms was 12.28 and that for k = 150 with 200

terms was 16.29. It can be noted from the Tables 5.2-5.4 that the accuracy of both CHIEF and

regularised Burton-Miller methods improves with more plane waves per node i.e. by increasing

the value of the parameter τ . Finally we present a polar plot for the total acoustic pressure, p,

on the surface of the first cylinder with centre at (-2,-2) for the case of k = 150 (Figure 5.12).

The case of k = 150 is chosen as at such a high wavenumber, the recursive reflections give rise

to an interesting scattering pattern. An additional plot is shown in Figure 5.13 for the same

case but only for the region θ ∈ [0, π4 ] on the first cylinder where θ is measured anticlockwise.

This is the region where the effect of recursive reflections is the most prominent. The plots

shown correspond to the result presented in Table 5.4 with τ = 3.0. From Figures 5.12-5.13,

it is evident that the PUBEM solution is able to capture efficiently a complex pattern of the

scattered wave at a reasonably high wavenumber. It is not possible to distinguish the CHIEF

and Burton-Miller results from Linton-Evans series solution as all three of them visually lie on

top of each other.
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k = 36.9171

CHIEF BM

τ ≈ 3.0 3.78E+08 1.01E+10

τ ≈ 3.5 3.67E+09 1.39E+10

τ ≈ 3.9 1.31E+12 1.24E+11

Table 5.5: PUBEM conditioning - κ(H̄) for CHIEF and regularised Burton-Miller method for
four cylinder problem, k = 36.9171.

k = 100 k = 150

CHIEF BM CHIEF BM

τ ≈ 2.2 1.35E+06 6.54E+05 2.88E+07 4.46E+07

τ ≈ 2.6 1.32E+08 9.41E+09 2.07E+11 2.13E+10

τ ≈ 3.0 3.0E+14 2.89E+10 9.96E+14 5.11E+10

Table 5.6: PUBEM conditioning - κ(H̄) for CHIEF and regularised Burton-Miller method for
four cylinder problem at k = 100 and k = 150.

5.9 Scattering from a long capsule

It is known that the density of characteristic wavenumbers for a given scatterer geometry in-

creases as the wavenumber increases. This is a major concern for the CHIEF method when

choosing the interior collocation points. For an elongated object the problem may be exac-

erbated as the characteristic wavenumbers become very closely spaced. For this purpose, we

will investigate PUBEM implementation of only the CHIEF method for an elongated body. In

order to study this problem, we consider the geometry that of a long capsule (Figure 5.14). The

overall length of the capsule is (b+ 2R) where b is the length of the straight edge and R is the

radius of the semicircular end of the capsule. A total of four cases are presented for two values

of the ratio b/a, where a is the perimeter of the semicircular end. For all the cases, three noded

continuous elements with trigonometric shape functions are used. The integration points are

placed analytically on the geometry. As before, the value of parameter τ is taken as 3.0. Since

we intend to investigate the performance of the CHIEF method at high wavenumbers, it will be

convenient to define the relative L2 error in total acoustic pressure on the boundary of capsule

as

E2(Γs) =
‖pj − p1‖

‖p1‖
(5.73)

where pj is the solution obtained from the jth instance of CHIEF method and p1 is the solution

from the first instance of CHIEF method at a given wavenumber. Note that for each instance

of the CHIEF method, the location of the interior collocation points will be different as they



5.9. Scattering from a long capsule 93

  1

  2

  3

30

210

60

240

90

270

120

300

150

330

180 0

 

 

CHIEF
Burton−Miller
Linton−Evans, 200 terms

Figure 5.12: |p| for cylinder 1, k = 150.

are positioned completely randomly each time. Therefore, the solution at every instance from

the CHIEF method will differ from each other. This potentially forms the basis for testing the

stability of the method for an elongated geometry where the characteristic wavenumbers are

very closely spaced. A total of one hundred instances are tried for each case to examine the

stability of the CHIEF method. For this problem, both of the semicircular ends of the capsule

are modelled with one element. The parameters used for this problem are summarized in Table

5.7. As is evident from Figure 5.15, the CHIEF method is stable even for a considerably

elongated geometry at b/a = 10 and 20. For such a geometry, one would expect the eigenvalues

for the interior Dirichlet problem to be extremely close to each other making CHIEF method

susceptible to errors in finding the correct solution. However as seen from Figure 5.15, the

strategy described earlier (see the discussion preceding §5.8.1) to position the CHIEF points
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Figure 5.13: |p| for cylinder 1 for θ ∈ [0, π4 ], k = 150.

b/a k P/λ ne T

10 48 528 22 1548

10 100 1100 22 3300

20 32 672 42 2016

20 64 1344 42 4032

Table 5.7: Parameters for capsule problem, P = 2a+2b, T : total degrees of freedom for capsule
problem.

completely randomly with sufficient offset from the boundary gives good results (O(10−4)).

Interestingly, the CHIEF results become increasingly stable as the wavenumber increases. Note

that two of the cases solved here have more than 1000 wavelengths around the scatterer which

makes them particularly attractive problems to be solved with PUBEM.

5.10 Conclusions

As was mentioned at the beginning of this chapter (§5.1), the motivation of comparing CHIEF

and Burton-Miller methods was to find out which method is more suitable for coupling with

PUFEM. The findings in this chapter are summarised as follows.

1. The error analyses presented for the classical single and the multiple scattering problems

show that the CHIEF method outperforms Burton-Miller method by at least one order

of magnitude for the range of wavenumbers considered. The Burton-Miller method can
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Figure 5.14: Capsule geometry.
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Figure 5.15: E2(Γs) for the capsule problem.

prove competitive despite the difficult and slowly converging integrals if suitable coordi-

nate transformations are implemented. Investigation of several coordinate transformation

techniques for the weakly singular integrals in the regularised Burton-Miller formulation

shows that the Telles transformation with interval splitting is the most accurate method.

For both single and multiple scattering problems, the enriched form of the regularised

Burton-Miller formulation has smaller condition numbers when compared to the CHIEF

method.

2. The final example shows that the CHIEF results are stable even for an elongated capsule

problem for the medium range of wavenumbers. This indicates that the CHIEF method

may be preferred over the Burton-Miller formulation, at least for simpler geometries and
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moderate wavenumbers (k < 200), as the former does not have the problem of hypersingu-

lar integrals. Of course, we need to have a sufficient number of interior collocation points

so that the linear independence of the coefficient matrix H̄ is ensured. The stability and

accuracy of the PUBEM scheme have both been clearly demonstrated in previous works

[141–143, 145] and here further evidence is provided. In Figure 5.15, the stability of the

CHIEF method through repeated instances is shown, and highly accurate solutions are

demonstrated in Figures 5.9, 5.13 and Tables 5.2-5.4.

In the next chapter, the PUFEM approach is investigated for solving heterogeneous wave scat-

tering problems.



Chapter 6

PUFEM for heterogeneous media

6.1 Introduction

This chapter focuses on solving wave scattering problems in heterogeneous media. The primary

goal of this chapter is to discuss the concept of mixed basis for the problem with multiple

heterogeneities. Additionally, some of the well known NRBCs that were discussed in Chapter 3

(see §3.3) will also be compared for the PUFEM.

6.2 Wave scattering in heterogeneous media

Recall the equation (3.25) for the weak form for the Helmholtz equation which is reproduced

below for convenience,

∫

Ωf

1

ρ(x)

(

∇p · ∇v − k2vp
)

dΩ−
∫

Γr

1

ρ(x)
vBpdΓ =

∫

Γr

1

ρ(x)
v

(

∂pinc

∂r
−Bpinc

)

dΓ (6.1)

It is generally not possible to solve the Helmholtz equation for a heterogeneous problem in closed

form. Since in this chapter, we intend to study the convergence of the PUFEM approach, it is

imperative that

1. we solve a problem which is heterogeneous in nature, and,

2. at the same time, an analytical solution be available for that problem.

One such problem which is heterogeneous and for which a truncated series solution can be found

is defined in Figure 6.1. We consider here the problem of a plane wave scattering in a medium

with a jump in the wavenumber where the jump arises on account of a discontinuity in the

– 97 –
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Γs

Γi

Γr

pinc
Ω1

Ω0

Ω∞

Figure 6.1: Wave scattering in medium with a jump in wavenumber.

density ρ of the medium. Let ρ1 and ρ0 respectively be the densities of the fluids contained in

the annular regions Ω1 and Ω0. Note that the domains of interest are canonical annular circular

rings for which a truncated series solution can be constructed. We seek the total acoustic

pressure in the computational domain defined as Ωf = Ω1 ∪ Ω0. Let the circular scatterer

boundary be denoted with Γs with radius r1. Let Γi with radius r2 be the interface between the

regions Ω1 and Ω0 and let Γr with radius r3 be the artificial circular truncation boundary. We

denote k1 and k0 as the wavenumbers in the regions Ω1 and Ω0 respectively. Thus, the plane

wave pinc(x) = eik0d·x travelling in the direction d will be scattered from a circular scatterer in

a media with a jump in the wavenumber. In Figure 6.1, Ω∞ is the homogeneous and unbounded

domain with wavenumber k0, thus, k∞ = k0.

6.3 Boundary conditions

Let p1 and p0 denote the total acoustic pressures in the domains Ω1 and Ω0 respectively. The

scatterer is assumed to be fully rigid, and so, on Γs we have

∂p1(x)

∂n
= 0, x ∈ Γs, (6.2)

In view of (6.2), we have a total reflection of the incident plane wave off the cylinder surface

Γs. The normal particle velocity across the interface, Γi, between the two domains must be

continuous i.e.,

1

ρ1

∂p1(x)

∂n
=

1

ρ0

∂p0(x)

∂n
, x ∈ Γi, (6.3)

The third boundary condition is for the scattered waves that travel away from the scatterer into

the unbounded domain Ω∞. We truncate the infinite domain by introducing an approximate



6.4. Mixed basis for heterogeneous wave problem 99

condition over an artificial boundary (denoted by Γr) (this boundary condition has been already

discussed in §3.5, see (3.24)),

∂p

∂r
= B

(

p− pinc
)

+
∂pinc

∂r
on Γr. (6.4)

where the B is the local radiation boundary damper operator for any of the NRBCs discussed

in §3.3. It may be noted that the weak form in (6.1) is similar to the one used in [106] except for

the inclusion of a additional boundary integral in [106] that takes into account the continuity of

normal particle velocity across the interface Γi which does not appear in (6.1).

6.4 Mixed basis for heterogeneous wave problem

Recall the discussion in Chapter 4 (see §4.5.2) on the difficulty in the use of the plane wave

basis expansion (4.41) for a heterogeneous problem. It was remarked that in order to solve a

heterogeneous problem, we need to have a modified basis which includes the information of the

underlying heterogeneous problem. In this section, an idea of modified basis, hereafter called

mixed basis is discussed.

The problem considered in Figure 6.1 has only a single jump in the density and thus has two

distinct wavenumbers, namely k1 and k0. It should be noted that with the FEM there is no need

to consider interface conditions because the boundary integral contributions from either sides

of the interface cancel each other. However, if the problem is solved with enriching the FEM

space with plane waves (i.e. PUFEM) of different wavenumbers on each side of the interface

(see Figure 6.2), a constraint equation needs to be provided in order to ensure the continuity.

Consider for example, the pressure field approximation in a given region that uses the plane

wave basis with the corresponding medium wavenumber, i.e.,

p(x) =

4
∑

j=1

Nj

Mj
∑

m=1

eik1djm·x a1jm, x ∈ Ω1, (6.5a)

p(x) =

4
∑

j=1

Nj

Mj
∑

m=1

eik0djm·x a0jm, x ∈ Ω0, (6.5b)

If the basis equations (6.5a)-(6.5b), are used in the PUFEM, then continuity across the interface

needs to be enforced using the Lagrange multipliers, see for example [106]. Applying such



6.4. Mixed basis for heterogeneous wave problem 100

k1 region k0 region

k1 wave
k0 wave

Figure 6.2: Plane wave basis for heterogeneous problem, Laghrouche et al [106]

constraints may become computationally demanding particularly when multiple discontinuities

are present.

In the mixed basis considered here the plane wave basis associated with each wave number

is continuous across the interface, hence, there is no need for Lagrange multipliers. The mixed

basis uses two sets of plane waves each with a different wavenumber, and to blend these two

sets together the plane waves are applied globally over the entire domain. Mathematically, the

concept of mixed basis can be described as follows. The heterogeneity arising on account of

variation in the density in Ωf results in a corresponding change in the wavenumber k. Let the

computational domain Ωf contain heterogeneities with L distinct densities (and hence L distinct

wavenumbers), i.e.,

Ωf = Ωk1 ∪ Ωk2 ∪ · · · ∪ΩkL , (6.6a)

Ωki ∩ Ωkj = ∅, when i 6= j, i, j = 1, · · ·L. (6.6b)

The pressure field at a point x ∈ Ωf using the ‘mixed’ basis for a n-noded finite element is then

given as,

p(x) =

n
∑

j=1

Nj

L
∑

l=1

Ml
∑

m=1

aljml
eikldjml

·x, x ∈ Ωf , (6.7)
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k1 wave

k2 wave

Figure 6.3: Mixed basis for heterogeneous problem

where, aljml
denotes the amplitude of the mth plane wave at the jth node with wavenumber kl,

and l = 1, · · · , L. It will be useful to rewrite (6.7) in a compact notation∗ similar to (4.45) (see

§4.5),

p(x) = Q̂̂Q̂QeÂ̂ÂAe, x ∈ Ωf , (6.8)

where Q̂̂Q̂Qe is a row vector given by,

Q̂̂Q̂Qe =
[

Q̂1, · · · , Q̂n

]

(6.9)

and Â̂ÂAe is a column vector given by,

AAAe =
[

Â1, · · · , Ân

]T
(6.10)

The elements of the vectors Q̂̂Q̂Qe and Â̂ÂAe are further given by

Q̂j = [Ψj1,Ψj2, · · · ,ΨjL] (6.11a)

Ψjl =
[

ψl
j1, ψ

l
j2, · · · , ψl

Ml

]

(6.11b)

ψl
jml

(x) = Nj(x)e
ikldjml

·x (6.11c)

∗These notations will be useful when forming a coupled PUFEM-PUBEM system in Chapter 7.
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and

Âj = [Φj1,Φj2, · · · ,ΦjL] (6.12a)

Φjl =
[

alj1, a
l
j2, · · · , aljml

]

(6.12b)

It is important here to note that the element matrices in (4.50) and the resulting linear system

of equations in (4.51) corresponds to the PUFEM with the homogeneous basis (4.41) or (4.45).

The element matrices needed for the PUFEM system using the mixed basis in (6.7) (or its

compact form in (6.8)), can be formed by simply replacing QQQe in (4.50) with Q̂̂Q̂Qe. A linear system

of equations similar to (4.51) can then readily be formed to solve the heterogeneous problems.

It is clear that if we set L = 1, it will become a homogeneous problem and we have

Q̂̂Q̂Qe = QQQe (6.13)

Compared to the approach of Laghrouche et al [106] (Figure 6.2), the concept of mixed basis in

(6.7) (Figure 6.3) will result in an increased number of unknowns at every node. However, since

the mixed basis now contains the plane waves representing each of the individual heterogeneities,

the continuity requirement on the solution and normal derivative across the interface separating

the two media is naturally satisfied. Of course, if there are many heterogeneities, each with a

different wavenumber, the mixed basis will result in a large linear system. For example, in a

problem involving L distinct heterogeneities, the total degrees of freedom in the PUFEM linear

system will be ntotML, where ntot is the total number of nodes in the FE mesh, M =
∑L

l=1Ml

is the total number of plane waves at each node, and Ml is the total number of plane waves

corresponding to an individual heterogeneity. Clearly, the size of the system grows linearly

with L if M is constant at each node. However, the use of the mixed basis is justified in cases

when the number of distinct density jumps L is small but Ωf is allowed to have many such

heterogeneities. For instance consider the configuration shown in Figure 6.4. A problem such as

that in Figure 6.4, would become computationally intensive when solved using polynomial FEM

(or with PUFEM and with the basis defined in (6.5)) as even if L is kept small, a high number

of heterogeneities would require a very refined mesh leading to a large linear system.
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Figure 6.4: Medium with multiple heterogeneities and with three density jumps (L = 3).

6.5 Numerical examples

In this section, several numerical examples are presented to illustrate the effectiveness of the

PUFEM with the mixed basis for solving problems in heterogeneous media. In order to establish

the convergence, the problem defined in §6.2 is solved. For a problem where an analytical

solution is difficult to find, a fine FEM mesh is used to recover a converged reference solution.

The efficiency of the PUFEM is demonstrated here by achieving a similar accuracy to the FEM

but with a much lower number of degrees of freedom which will be quantified in each case.

6.5.1 Acoustic wave scattering with a single jump

Let us consider the problem of wave scattering in heterogeneous media as depicted in Figure

6.1. For this example a series solution can be derived as discussed in Appendix B . We can

therefore demonstrate the h-convergence through mesh refinement and q-convergence through

addition of enrichment functions or the plane waves. For the examples presented in this section,

the BGT-2 damper condition is used on Γr (see (3.19)). Since the wavelength changes across

the interface Γi, it is convenient to define parameters τ1 and τ0 as dof/λ for domains Ω1 and Ω0

(Ωf = Ω1 ∪Ω0) respectively, i.e.,

τ1 = λ1

√

n1M

AΩ1

, (6.14a)

τ0 = λ0

√

n0M

AΩ0

. (6.14b)
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where, n1 and n0 are the total number of nodes respectively in Ω1 and Ω0, M is the total

number of plane waves at each node, niM thus gives the total dof in Ωi, (i = 0, 1) and AΩi
gives

the area of the computational domain Ωi. We use the following convention when setting up the

problem data,

ρ0/ρ1 = 1.2 when k0 > k1 (6.15a)

ρ0/ρ1 =
1

1.2
when k0 < k1 (6.15b)

6.5.1.1 h-convergence

We consider the various radii for the geometry shown in Figure 6.1 as r1 = 1, r2 = 2 and r3 = 3.

For numerical integration inside a given finite element, we use a ngauss×ngauss rule where ngauss
is the number of integration of points per wavelength and set ngauss = 10, which is a common

practice when solving wave problems. For instance, if an element spans four wavelengths then

the integration rule leads to 40× 40 integration points. Note that for PUBEM computations in

Chapter 5, we used 30 integration points per wavelength due to the presence of Green’s functions

which are oscillatory in nature. For PUFEM, however, only the plane wave basis appears in the

integration and therefore 10 integration points per wavelength were found to give satisfactory

results. This was also observed by Mohamed; see [128]. In all simulations, the integration points

are placed analytically on the geometry. The accuracy of PUFEM is investigated using a relative

L2-norm as the measure given by,

E2(Γs) =
‖p− p̃‖L2(Γs)

‖p̃‖L2(Γs)
, (6.16)

E2(Ωf ) =
‖p− p̃‖L2(Ωf )

‖p̃‖L2(Ωf )
, (6.17)

where, p̃ is the total acoustic pressure obtained using the series solution given in Appendix B.

For h convergence, two FE meshes, as shown in Figure 6.5, are considered for the PUFEM.

The h-refinement in the PUFEM is discussed using the considered meshes in Figure 6.5. To

this end we summarize in Table 6.1 the errors E2(Γs) and E
2(Ωf ), and the condition number κ

(actually log10(κ)). Here, M1 and M0 refer to the number of plane waves used for enrichment
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(a) Mesh 1 (b) Mesh 2

Figure 6.5: Mesh configurations for h-convergence

Case k1 k0 M1 nDof E2(Γs) E2(Ωf ) log10(κ)

1 π 2π 8 192 2.37E-01 3.18E-01 4.5
Mesh 1 2 π 2π 16 384 1.14E-02 1.09E-02 8.6

3 π 2π 32 768 8.61E-04 5.63E-03 18.9

4 π 2π 8 640 2.95E-03 1.10E-02 7.6
Mesh 2 5 π 2π 16 1280 1.04E-04 5.57E-03 14.1

6 π 2π 32 2560 1.24E-04 5.56E-03 20.2

Table 6.1: Results for h-refinement in PUFEM for wave scattering in a medium with single
jump.

with wavenumbers k1 and k0 respectively. In this test example we have used the same enrichment

for wavenumbers k1 and k0, i.e. M1 =M0. It is clear that, in most cases, PUFEM exhibits close

to an order of magnitude better accuracy near the scatterer when compared with the errors in

the entire domain (E2(Γs) is generally smaller compared to E2(Ωf ) except for case 1 and 2).

This can be explained by the fact that near the scatterer, the elements are smaller in size and

as we move away from the scatterer the elements increase in size. Thus, near the scatterer, in

general, the FE space is more enriched compared to the elements near the radiation boundary

Γr because the enrichment functions used are uniform. As expected, smaller errors are obtained

on the finer mesh 2 than the mesh 1 for the considered cases which confirm the h-convergence of

the PUFEM. The large values of the condition number should also be noticed in the presented

results. It is worth mentioning that solving the wave scattering problem discussed here with

conventional FEM is computationally very demanding. For example, solving the considered

wave scattering in a medium with single jump (i.e. with k0 = 2π, k1 = π) using FEM with

linear quadrilateral elements with 3108 degrees of freedom results in an E2(Ωf ) ≈ 12%. We will

provide results with polynomial FEM for this problem in §6.5.1.3 to get a perspective on the

quality of FEM results when using a comparable nDof and τ to that for PUFEM. In Figure 6.6

we present the PUFEM results obtained on Mesh 2 using k1 = 2π and k0 = 4π. In this figure,
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Figure 6.6: Real part (Figures 6.6a and 6.6c) and imaginary part (Figures 6.6b and 6.6d) of
total pressure for wave scattering in a medium with single jump using k1 = 2π and k0 = 2k1.



6.5. Numerical examples 107

the real and imaginary parts of the total pressure and the series solution are displayed. As can

be seen from the results presented for the considered values of k1 and k0, there is no visual

difference between the PUFEM solution and the analytical solution. The PUFEM accurately

resolves this test problem on a reasonably coarse mesh and without any special treatment of the

interface between the two media such as Lagrange multipliers discussed in [49, 106] for acoustics

and in [47] for electromagnetics.

6.5.1.2 q-convergence

The next concern is to study the q-refinement in the PUFEM for this test example using different

values of the ratio k0/k1. In Table 6.2 we list the obtained PUFEM results on the Mesh 2 shown

in Figure 6.5 and the wavenumber k1 = π. It is evident that the PUFEM can predict accurate

solutions even for higher values of the ratio k0/k1. It should be noted that for results in Table

6.2, the number of plane waves M1 is not the same as the number of plane waves M0, unlike

in Table 6.1 where we used M1 = M0, indicating that the proposed PUFEM can work with

unequal enrichment functions. In these simulations, increasing the value of the ratio k0/k1 or

the number of enrichments M1 or M0 results in an increase in the condition number associated

with the PUFEM. As can be noted from Table 6.2, the number of plane waves associated with the

k0/k1 Case M1 M0 nDof E2(Γs) E2(Ωf ) log10(κ) τ1 τ0
1 4 16 800 1.11E-03 5.79E-03 8.34 14.2 5.5

2 2 8 16 960 5.02E-04 5.61E-03 9.23 15.6 6.0
3 12 16 1120 1.81E-04 5.58E-03 12.07 16.9 6.5
4 16 16 1280 1.10E-04 5.57E-03 14.13 18.05 6.9

5 16 32 1920 2.68E-04 1.11E-02 16.15 22.1 5.7
3 6 20 32 2080 1.84E-04 1.11E-02 18.56 23.0 5.9

7 24 32 2240 3.78E-04 1.11E-02 19.43 23.8 6.1
8 32 32 2560 3.06E-04 1.11E-02 20.48 25.5 6.6

9 32 48 3200 2.50E-03 4.85E-02 20.42 28.5 5.5
4 10 36 48 3360 1.79E-03 4.85E-02 20.81 29.2 5.6

11 40 48 3520 3.45E-03 4.85E-02 20.83 29.9 5.8
12 48 48 3840 1.53E-03 4.85E-02 21.25 31.2 6.0

Table 6.2: Results for q-refinement in PUFEM for wave scattering in a medium with single
jump.

higher wavenumber k0 are kept constant whereas those associated with k1 are increased steadily.

Interestingly, we do not see much improvement in the accuracy both on the scatterer and in the

entire domain (i.e. the errors remain within the same order of magnitude for each case). Apart

from this, the condition number of the PUFEM system increases drastically. It is observed that

for the first case, when k0/k1 = 2, there is only one order of magnitude improvement due to
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q-refinement. Note that for this case, the log10 value of the condition number increases from

8.34 to 14.13. However, for the cases k0/k1 = 3 and k0/k1 = 4 we see that the errors remain

stagnant within the same order of magnitude despite the addition of more plane waves. The

possible cause appears at first sight to be the condition number of the PUFEM system which is

of the order 1020 for k0/k1 ratios of 3 and 4.

6.5.1.3 Comparison with FEM

Before proceeding further, a comparison with classical FEM is in order. The results presented

in previous sections demonstrated the h and q convergence of the PUFEM algorithm. We now

investigate the results obtained with the FEM for the similar range of nDof and the parameter

τ1 and τ0 used for PUFEM. For this purpose, consider again the two layer problem defined in

§6.2. We set k1 = π and k0 = 2π and the density ratios are chosen following (6.15). The FE

mesh for the FEM results is chosen such that the parameters τ1 and τ0 are in the similar range

as used for the first case in Table 6.2 (i.e. for case k0/k1 = 2). The parameter nDof is increased

by successively refining the mesh and the BGT-2 damper condition is used on Γr. Table 6.3 lists

the L2 errors computed in the entire computational domain along with the parameters τ1 and

τ0 used. It can be observed that despite using higher values of τ1 and τ0 (third column onwards

k0 = 2π, k1 = π

nDof 1008 1512 3108 3612 4200 5040 6300 8400
τ1 14.9 18.34 26.30 28.35 30.57 33.49 37.44 43.24
τ0 5.8 7.10 10.19 10.98 11.84 12.97 14.50 16.75

E2(Ωf ) 5.70E-01 3.30E-01 1.22E-01 1.07E-01 9.64E-02 8.88E-02 8.38E-02 8.0E-02

Table 6.3: FEM results for two layer problem

in Table 6.3), the FEM results in Table 6.3 show a very slow convergence as compared to the

PUFEM results in Table 6.2. Note again that, the degrees of freedom per wavelength required

by the FEM, in the region with higher wavenumber, is significantly high (τ1 > 40) to achieve an

error of O(10−2). In contrast, better level of accuracy (O(10−3)) can be achieved with PUFEM

with a significantly less degrees of freedom in the region with higher wavenumber (τ1 ≈ 18). This

clearly shows the advantage of using the plane wave enrichment and indicates that a significant

improvement in the results can be obtained despite using less degrees of freedom per wavelength

with PUFEM. It is important to note here that the NRBC used here for the FEM results in

Table 6.3 is the same as that used for the PUFEM results in Table 6.2 (i.e. the BGT-2 damper

condition). This indicates that the slow convergence associated with the FEM in Table 6.3 is
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not due to the approximate NRBC but rather due to the inability of the FEM to efficiently

model the heterogeneous wave scattering problem.

6.5.1.4 Reversal of wavenumbers and effect of radiation boundary

As seen from Table 6.2, it appears that the results from PUFEM stagnate due to poor condi-

tioning of the system matrix. In order to verify this, we repeat the numerical experiment in

Table 6.2 for the first two ratios (k0/k1 = 2 and k0/k1 = 3), except, the wavenumber in the

inner and outer layers are reversed. Note that with this we also reverse the number of plane

waves used in the interior and exterior. The results are noted in Table 6.4. Some observations

k1/k0 Case M1 M0 nDof E2(Γs) E2(Ωf ) log10(κ) τ1 τ0
1 16 4 800 1.50E-02 1.66E-02 8.46 7.14 11.06

2 2 16 8 960 1.51E-02 1.65E-02 9.16 7.82 12.11
3 16 12 1120 1.50E-02 1.65E-02 12.09 8.44 13.08
4 16 16 1280 1.50E-02 1.64E-02 14.07 9.03 13.98

5 32 16 1920 2.16E-02 1.82E-02 16.21 7.37 17.13
3 6 32 20 2080 2.16E-02 1.82E-02 19.19 7.67 17.83

7 32 24 2240 2.16E-02 1.82E-02 19.61 7.96 18.50
8 32 32 2560 2.16E-02 1.82E-02 20.05 8.51 19.78

Table 6.4: q-convergence with reversal of wavenumbers and r(Γi) = 3.

summarizing Tables 6.2 and 6.4 follow.

1. Observe that the range of the condition numbers shown in Tables 6.2 and 6.4 for the k0/k1

ratios of 2 and 3 is approximately the same. Observe that log10(κ) varies between 8.5 to

14 for a k0/k1 ratio of 2 and 16 to 20 for the ratio of 3. However, the parameters τ1 and τ0

vary significantly in Tables 6.2 and 6.4. This is expected as the wavenumbers are reversed

(see the formulae in (6.14)).

2. The accuracy of PUFEM deteriorates when the lower wavenumber region is placed in the

exterior for the same number of enrichment functions. For example, observe that the L2

error on the scatterer for the first case (k1 = π, k0 = 2π) in Table 6.2 is O(10−3) with

M1 = 4 and M0 = 16. This case when reversed (k1 = 2π, k0 = π) in the first case in

Table 6.4 with M1 = 16 and M0 = 4, we see that the L2 error on the scatterer is O(10−2).

Similar behaviour can be observed for other cases as well. This can be explained by the

reduction in the parameter τ1 for the results shown in Table 6.4. Note that for k0/k1 ratios

of 2 and 3, the parameter τ1 in Table 6.2 is greater than that for the results shown in Table

6.4. Clearly therefore we would expect better accuracy on the scatterer in Table 6.2.



6.5. Numerical examples 110

3. Most importantly, note the condition numbers listed in Tables 6.2 and 6.4. For both sets,

we observe that the PUFEM system is severely ill-conditioned and would expect this to

affect the accuracy of the results. A second numerical experiment is therefore carried out,

where we use the same data as in Table 6.4, but we place the radiation boundary Γr farther

from the scatterer by taking r(Γi) = 4. These results are presented in Table 6.5.

4. As seen from Table 6.5 (where r(Γi) = 3), we see that the condition numbers are again

in the same range as in Table 6.4 (where r(Γi) = 3). However, we observe that despite

the same range of condition numbers encountered, the accuracy of the results is improved

by placing the radiation boundary further away. Note that the parameter τ1 is the same

for the cases in Tables 6.4 and 6.5, whereas, the parameter τ0 is always small in Table 6.5

compared to Table 6.4. Thus, despite having a smaller τ0 in Table 6.5 compared to that

in Table 6.4, Table 6.5 exhibits better accuracy not only on the scatterer but also globally.

k0/k1 Case M1 M0 nDof E2(Γs) E2(Ωf ) log10(κ) τ1 τ0
1 16 4 1120 1.33E-02 1.41E-02 8.49 7.14 9.21

2 2 16 8 1344 4.47E-03 3.67E-03 8.84 7.82 10.09
3 16 12 1568 4.12E-03 3.53E-03 11.91 8.44 10.90
4 16 16 1792 3.85E-03 3.48E-03 13.83 9.03 11.65

5 32 16 2688 3.78E-03 3.55E-03 15.99 7.37 14.27
3 6 32 20 2912 3.80E-03 3.54E-03 18.21 7.67 14.86

7 32 24 3136 3.80E-03 3.53E-03 18.29 7.96 15.42
8 32 32 3584 3.82E-03 3.54E-03 19.91 8.51 16.48

Table 6.5: q-convergence with reversal of wavenumbers and r(Γi) = 4.

6.5.2 Plane wave scattering in a medium with multiple jumps.

In this example, the problem of wave scattering in a medium with multiple jumps in the density

is solved. Consider a sound hard cylinder surrounded by four concentric fluid layers as shown

in Figure 6.7 with wavenumbers k1 = k3 and k2 = k4 = k0. As in the previous example,

we use linear quadrilateral finite elements for the spatial discretization, see Figure 6.7. The

analytical solution for this problem can be found using the approach used for a two layer problem

as discussed in Appendix B. However, the expressions for interface coefficients will be highly

involved. Therefore, a FEM solution obtained using a fine mesh with 705920 degrees of freedom

is used as the reference to obtain a converged solution. The motivation in solving this problem is

to demonstrate the idea illustrated in Figure 6.4. Although individual fluid pockets as depicted

in Figure 6.4 are not considered here, the problem in Figure 6.7 demonstrates that if there
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Figure 6.7: Mesh used for wave scattering in a medium with multiple jumps.

are multiple jumps in the density but the number of distinct densities involved is small, the

mixed basis is an attractive alternative to the Lagrange multipliers. Figure 6.8 presents the

PUFEM results obtained using k1 = k3 = 2π and k2 = k4 = 2k1 whereas, those obtained using

k1 = k3 = π/2 and k2 = k4 = 4k1 are presented in Figure 6.9. It is clear that the PUFEM

accurately captures the small wave features in this problem and produces similar scattering

patterns as those obtained using FEM on a very fine mesh. To further compare the PUFEM to

the standard FEM we present in Figure 6.11 the modulus of the total pressure on the scatterer

surface obtained using PUFEM and FEM using three different meshes. It is clear that for the

considered three FEM results included in Figures 6.10 and 6.11, only the FEM solution on the

finest mesh (705920 dof) matches well with the solution from PUFEM. The significant savings

in degrees of freedom with PUFEM is evident. Although, for the present study, the entire FE

domain is enriched with both k1 and k0 plane waves, it is indeed possible to use this enrichment

in a more optimal way. For example, when the k0/k1 ratio is very high, using a combined basis

will result in an excessive enrichment in the region of the lower wavenumber. It is therefore

essential to optimize the present approach such that the combined basis is applied only on the

interface of regions with different wavenumbers. The FE nodes close to (and on) the scatterer

can be enriched with k1 plane waves alone whereas those near the radiation boundary can be

enriched with k0 plane waves alone. Use of Lagrange multipliers is inevitable when solving wave

scattering problems with plane wave based methods in a domain that has jumps in the medium

properties. Laghrouche et al. [106] and Farhat et al. [49] (for acoustics) and more recently

Facco et al. [47] (for electromagnetics) have used the Lagrange multiplier to solve the wave

problem with jump in wave speed. While continuity conditions can be correctly enforced using
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(b) PUFEM: nDof = 3840
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(c) Polynomial FEM: nDof = 705920
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(d) Polynomial FEM: nDof = 705920

Figure 6.8: Real part (first column) and imaginary part (second column) of total pressure for
wave scattering in a medium with multiple jumps using k1 = k3 = 2π and k2 = k4 = 2k1.



6.5. Numerical examples 113

 

 

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) PUFEM: nDof = 3840

 

 

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) PUFEM: nDof = 3840

 

 

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) Polynomial FEM: nDof = 705920

 

 

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(d) Polynomial FEM: nDof = 705920

Figure 6.9: Real part (first column) and imaginary part (second column) of total pressure for
wave scattering in a medium with multiple jumps using k1 = k3 = π/2 and k2 = k4 = 4k1.
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∣ at θ = 0 with k1 = k3 = 2π and k2 = k4 =
2k1.
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Figure 6.11:
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∣p
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∣ on Γs with k1 = k3 = 2π and k2 = k4 = 2k1.

the Lagrange multipliers, the problem such as illustrated in Figure 6.7 can bring significant

challenges during the implementation.

6.5.3 Comparison of NRBCs

It is imperative that the different NRBCs discussed in §3.3 be compared for their accuracy so

that the best among them can be chosen for a further comparison with the coupled PUFEM-

PUBEM (in Chapter 7). For this purpose, we again consider the two layer problem and carry

out numerical experiment by setting first i) k1 = π, k0 = 2π and then ii) k1 = 2π, k0 = π. This

reversal of wavenumbers is needed to understand the effect it has on the accuracy of the PUFEM

solution. Figure 6.12 shows a comparison between various NRBCs when k1 = π, k0 = 2π (higher

wavenumber in exterior case). As expected, the first order BGT condition (BGT-1) performs

poorly and the associated errors remain more than 10%. In contrast, BGT-2 and EM-2 boundary

conditions result in errors of O(10−3). When the wavenumbers are reversed, it can be seen that

the accuracy of PUFEM is diminished by close to two orders of magnitude as shown in Figure

6.13. Note that when the region with a lower wavenumber is placed in the exterior, the radiation

boundary damper has to deal with waves which have longer wavelength. On the other hand,

if the region with higher wavenumber is in the exterior, the boundary damper is more effective

as the wavelength is shorter. In general, the PUFEM solution with BGT-2, EM-2 and Feng-3

boundary dampers appears to be within the same range of accuracy. Laghrouche et al [107]
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have studied various NRBCs for PUFEM but for a homogeneous wave scattering problem. They

conclude that as the wavenumber increases, BGT-2, EM-2 and Feng-3 boundary dampers result

in the same level of accuracy. We will consider only the BGT-2 boundary damper for the

comparison with coupled PUFEM-PUBEM approach.
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Figure 6.12: Comparison of local NRBCs for PUFEM, k1 = π, k0 = 2π

10 15 20 25 30 35 40

10
−2

10
−1

E
2 (Γ

s)

k
1
 enrichment functions (M

1
)

 

 

BGT−1
BGT−2
EM−2
Feng−2
Feng−3

Figure 6.13: Comparison of local NRBCs for PUFEM, k1 = 2π, k0 = π



6.6. Conclusions 116

6.6 Conclusions

The PUFEM is extended here for a wave scattering problem in heterogeneous media by blending

the enrichment functions of each material/subdomain into a global enrichment which is then

applied over the entire domain. The enrichment continuity is naturally ensured without having

to enforce it between the subdomains as in previous approaches. On the other hand, the weak

discontinuities of the material’s interface are approximated by the finite elements polynomial

shape functions †. The extension has a wide range of applications especially in problems of

multiple scales of interest. Some of the applications where the concept of mixed basis can be

really beneficial is discussed in Chapter 8 (§8.2.1). We introduce the PUFEM-PUBEM coupling

in the next chapter.

†We always have an interface between two media lying on element boundaries and it never passes through the
element.



Chapter 7

The partition of unity coupled

FE-BE method

Before presenting the coupled PUFEM-PUBEM algorithm, let us recall the weak form for

PUFEM that we used in the last chapter,

∫

Ωf

1

ρ(x)

(

∇p · ∇v − k2vp
)

dΩ−
∫

Γr

1

ρ(x)
vBpdΓ =

∫

Γr

1

ρ(x)
v

(

∂pinc

∂r
−Bpinc

)

dΓ (7.1)

The weak form for PUFEM is reproduced here only to bring out the difference between (7.1)

and the weak form that we will use for the coupled PUFEM-PUBEM approach.

7.1 Weak form for coupled PUFEM-PUBEM formulation

The weak form for PUFEM that is suitable for coupling with PUBEM is obtained in the same

way as in §3.1 except we make no approximation on Γr for the scattered waves∗.

Following the steps in §3.1, the Helmholtz equation in (2.4) when multiplied with a test

function v gives,

∫

Ωf

(

ρ−1∇v · ∇p− ρ−1k2vp
)

dΩ −
∫

Γr

ρ−1v
∂p

∂n
dΓ = 0. (7.2)

It should be noted that the normal derivative of pressure, i.e., ∂p
∂n that appears in the line integral

in (7.2) is an unknown and as such (7.2) cannot be solved on its own. The driving term, viz.

the incident wave, is introduced after coupling (7.2) with the BIE for pressure p on Γr. The BIE

∗see (7.1) where the boundary damper operator B is an approximation for the scattered waves.

– 117 –
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Γs

n

n
BE region (Ω0)

pinc

Coupling boundary between FE-BE region (Γr)

FE region (Ωf )

Figure 7.1: Coupled FEM-BEM problem

for total acoustic pressure on Γr is

ρ(x)−1c(x)p(x) +

∫

Γr

ρ(x)−1 ∂G(x,y)

∂ny
p(y)dΓ−

∫

Γr

ρ(x)−1G(x,y)
∂p

∂n
dΓ

= ρ(x)−1pinc(x), x,y ∈ Γr, (7.3)

It is important to note here that,

1. the BIE in (7.3) is the conventional BIE,

2. (7.3) is normalised with the density term in order to be coupled with the weak form in

(7.2), and,

3. Γr needs to be a transparent surface for the waves that scatter from the boundary Γs and

propagate into Ω0. The integral involving the term ∂p
∂n in (7.3), therefore, does not vanish

on Γr
†. We will thus have an additional boundary integral in the BIE for the coupled

PUFEM-PUBEM compared to the CBIE we used in Chapter 5 for solving scattering from

hard cylinders.

The CBIE in (7.3) describes an outgoing wave through Γr exactly (at least the continuous

equations) but, as was discussed in Chapter 5, it suffers from the problem of non-uniqueness. The

CBIE in (7.3) even when coupled with the weak form in (7.2) will result in the non-uniqueness

†Note that the BIE or the hypersingular form of the CHBIE we used in Chapter 5 was solved on Γs and not
on Γr. The integrals involving the terms ∂p

∂n
either in the CBIE or CHBIE vanish as we only needed to solve the

scattering problem on the scatterer Γs.
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problem. The CHIEF method discussed in Chapter 5 will be used here to overcome the non-

uniqueness problem in the coupled PUFEM-PUBEM approach. The integral equation for the

CHIEF is reproduced below,

ρ(x)−1c(x)p(x) +

∫

Γr

ρ(x)−1 ∂G(x,y)

∂ny
p(y)dΓ−

∫

Γr

ρ(x)−1G(x,y)
∂p

∂n
dΓ

= ρ(x)−1pinc(x), y ∈ Γr,x ∈ Ωf ∪ Ωs (7.4)

Note that the CHIEF points that we used in Chapter 5 were located inside the scatterer (i.e.

interior to Γs). Since (7.4) will now be applied on the coupling boundary between the FE and

BE regions, i.e. Γr, the CHIEF point locations can be taken such that y ∈ Γr and x ∈ Ωf ∪Ωs.

Note that x is the interior collocation point and y is the integration point for CHIEF. Also,

recall from the discussion in Chapter 5 that CHIEF equations can become redundant if the

CHIEF points lie on the nodal lines of the interior Dirichlet problem. However, following the

procedure in Chapter 5, we choose the CHIEF points randomly, so that the CHIEF method

gives stable and accurate results. The PUFEM-PUBEM coupling is achieved by arranging the

matrix equations resulting from the discretization of equations (7.2), (7.3) and (7.4). Before

forming the coupled system, however, we need to consider the plane wave basis that we will use

for (7.2), (7.3) and (7.4). Only after introducing the plane wave basis for a coupled approach,

will we be able to discuss the matrix manipulation that will give a coupled system.

7.2 Plane wave basis for the coupled PUFEM-PUBEM

Let us reproduce the compact notation (6.8) we introduced in Chapter 6 for the pressure field

at a point x ∈ Ωf using the mixed basis,

p(x) = Q̂̂Q̂QeÂ̂ÂAe (7.5)

Recall that in (7.5), the row vector Q̂̂Q̂Qe is computed using the product of finite element shape

functions and a combination of plane waves with the constituent wavenumbers in the domain Ωf .

The basis in (7.5) can be readily used for approximating the pressure variable p(x) appearing in

the integral over Ωf in (7.2). However, the same plane wave amplitudes in the basis in (7.5) can

not be used to approximate the normal derivative of the pressure appearing in the boundary

integral over Γr. This is because ∂p
∂n on the FE-BE coupling boundary Γr, either in (7.2) or
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waves representing the pressure field p

waves representing the normal derivate of pressure field ∂p
∂n

BE region (Ω0)

FE region (Ωf )

Figure 7.2: Plane wave basis for pressure and its normal derivative for coupled PUFEM-PUBEM

in (7.3), is also an unknown. This requires that the quantity ∂p
∂n on Γr also to be expressed

using the plane wave basis approximation similar to (7.5). Clearly, we need to have different

amplitudes for the plane waves that approximate the quantity ∂p
∂n on Γr, than those in (7.5)

(i.e. the elements of vector Â̂ÂAe) . Let these new plane wave amplitudes that correspond to the

Neumann data be denoted as bljml
, i.e., the amplitude of the mth plane wave at the jth node

with wavenumber kl, l = 1, · · · , L. We can therefore write,

∂p(x)

∂n
=

n
∑

j=1

Nj

L
∑

l=1

Ml
∑

ml=1

bkljml
eikldjml

·x, x ∈ Γr. (7.6)

Following the convention we used for writing (7.5), (7.6) can be further written in the compact

form as,

∂p(x)

∂n
= Q̂̂Q̂QeB̂̂B̂Be (7.7)

The plane wave basis given in (7.5) and (7.7) are depicted in Figure 7.2. It is important to

note here that the differentiation of (7.5) does not lead to (7.7) so that these two expansions

for pressure and its normal derivative are not explicitly mutually consistent. However, this is
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standard in BEM‡, and the consistency is derived from their roles in the boundary integral

equation which also contains the Green’s function and its normal derivative. Following this, two

important points need to be underlined here:

1. For a coupled PUFEM-PUBEM approach, both (7.5) and (7.6) are needed for the weak

form (7.2), and,

2. Note that both (7.5) and (7.6) are mixed basis expansions, but, the plane wave basis

defined for a PUBEM system in Chapter 4, i.e., (4.54a) and (4.54b), uses only a single

wavenumber, namely k. Therefore, we need to modify the basis (4.54a) and (4.54b) so

that the plane wave amplitudes for the basis to be used in a PUBEM system are shared

with those used in the PUFEM system. In other words, we also need to write a mixed

basis for the PUBEM system.

In view of point 2, we can write following matrix notations that will be used for a PUBEM

system,

p(y) = R̂̂R̂ReÂ̂ÂAe, y ∈ Γr (7.8a)

∂p(y)

∂n
= R̂̂R̂ReB̂̂B̂Be, y ∈ Γr (7.8b)

where, R̂̂R̂Re is the row vector given by

R̂̂R̂Re =
[

R̂1, · · · , R̂n

]

(7.9)

The elements of the vectors R̂̂R̂Re are further given as,

R̂j = [Ψj1,Ψj2, · · · ,ΨjL] (7.10a)

Ψjl =
[

ψl
j1, ψ

l
j2, · · · , ψl

Ml

]

(7.10b)

ψl
jml

(x) = Nj(x)e
ikldjml

·x, x ∈ Γr (7.10c)

The coupling is realised in the process as the plane wave amplitudes corresponding to a Dirichlet

or Neumann value on the FE-BE interface Γr are common for PUFEM and PUBEM. Use of a

‡Recall that we defined two separate basis for pressure and its normal derivative for a PUBEM framework; see
(4.54a) and (4.54b) for details. However, we did not use the basis in (4.54b) because ∂p/∂n = 0 on Γs is assumed.
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separate basis, such as in (7.5) and (7.7), is not needed when the iterative FE-BE coupling algo-

rithms are used; see [167],[43]. The process of PUFEM-PUBEM coupling is now demonstrated

through the matrix equations in the following section.

7.3 Linear system of equations for coupled PUFEM-PUBEM

Let the linear system of equations for the coupled PUFEM-PUBEM approach be given as

[Ac]{uc} = {fc} (7.11)

where [Ac] is the coupled PUFEM-PUBEM system matrix, {uc} is the vector that contains

unknown plane wave amplitudes associated with pressure and its normal derivative and {fc} is

the right hand side vector computed using collocation of the known incident wave on Γr. The

coupled matrix [Ac] is composed of seven distinct block matrices viz. A1,A2,A3,A4,A5,A6,

and A7. The coupled linear system in (7.11) can be written using the block matrix form as,
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The individual element matrices for the block matrices in (7.12) are given as

[Ae
1] =

∫

Ωe
f
\Γe

r

1

ρ(x)

(

∇(Q̂̂Q̂Qe)T∇(Q̂̂Q̂Qe)− k2(QQQe)T(QQQe)
)

dΩ , (7.13a)

[Ae
2] =

∫

Ωe
f
∩Γe

r

1

ρ(x)

(

∇(Q̂̂Q̂Qe)T∇(Q̂̂Q̂Qe)− k2(QQQe)T(QQQe)
)

dΩ , (7.13b)

[Ae
3] =

∫

Γe
r

1

ρ(x)
(Q̄̄Q̄Qe)T(Q̄̄Q̄Qe) dΓ (7.13c)

[Ae
4] =

1

ρ(x)
c(x)R̂̂R̂Re(x) +

ne
∑

i=1

∫

Γe
r

1

ρ(y)

∂G

∂n
R̂̂R̂Re(y)dΓ, x,y ∈ Γr (7.13d)

[Ae
5] =

ne
∑

i=1

∫

Γe
r

1

ρ(y)
GR̂̂R̂Re(y)dΓ, x,y ∈ Γr (7.13e)

[Ae
6] =

1

ρ(x)
c(x)R̂̂R̂Re(x) +

ne
∑

i=1

∫

Γe
r

1

ρ(y)

∂G

∂n
R̂̂R̂Re(y)dΓ, x ∈ Ωf ∪ Ωs,y ∈ Γr (7.13f)

[Ae
7] =

1

ρ(x)
c(x)R̂̂R̂Re(x) +

ne
∑

i=1

∫

Γe
r

1

ρ(y)

∂G

∂n
R̂̂R̂Re(y)dΓ, x ∈ Ωf ∪ Ωs,y ∈ Γr (7.13g)

Note that the global vector of unknown plane wave amplitudes corresponding to the pressure

data has been divided into two vectors (see the column vector in (7.12)), namely, Â̂ÂAΩf\Γr
and

Â̂ÂAΩf∩Γr .

As the subscript indices indicate, the vector Â̂ÂAΩf\Γr
contains the unknown plane wave ampli-

tudes of those nodes which lie in the computational domain Ωf but not on the FE-BE coupling

boundary Γr. Whereas, Â̂ÂAΩf∩Γr contains the plane wave amplitudes corresponding to the pres-

sure data for only those nodes which lie on Γr. As shown in (7.12), the two block matrices A1

and A2, multiply with Â̂ÂAΩf\Γr
and Â̂ÂAΩf∩Γr respectively. The blocks A4 and A5 are obtained

by performing the boundary integrals related to BIE in (7.3) over the coupling boundary Γr

following the same procedure used in Chapter 5 (see §5.6). Similarly, the blocks A6 and A7

are obtained by performing the boundary integrals related to the CHIEF integral equation (7.4)

over Γr. The number of interior collocation points (nc) for CHIEF is taken as 20% of nFBM . As

can be seen, the right hand side vector is also split between vectors b1 and b2. The vector, b1

is obtained by collocation of the incident wave on the FE-BE coupling boundary Γr (see (7.3)),

and the vector b2 is computed using the interior collocation of the incident wave in the CHIEF

integral equation (see (7.4)). The precise dimensions of the block matrices can be determined

as follows.
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Let the total number of nodes in the computational domain be ntot and nFB be the total num-

ber of nodes on the FE-BE coupling boundary Γr. We assume, as before, a uniform enrichment

i.e., each node is enriched with equal number of plane waves in the present implementation. If

each node is enriched with a total of M plane waves§, where

M =
L
∑

l=1

ml (7.14)

The dimensions of the various block matrices in (7.12) are listed in Table 7.1, It can therefore

Matrix/Vector Dimension

A1 ntotM
A2 nFBM
A3 nFBM
A4 nFBM
A5 nFBM
A6 nc × nFBM
A7 nc × nFBM

Â̂ÂAΩf\Γr
(ntot − nFB)M

Â̂ÂAΩf∩Γr nFBM

B̂̂B̂BΓr nFBM
b1 nFBM
b2 nc

Table 7.1: Dimensions of the block matrices and vectors in the coupled system (7.12), nc =
20%(nFBM).

be seen from Table 7.1, the size of the coupled PUFEM-PUBEM system matrix [Ac] will be

nDof = nc + ntotM + nFBM (7.15)

To understand how a PUFEM linear system visually compares with the coupled system in (7.12),

see Figure 7.3. It can be observed that [Ac] is partly symmetric (due to presence of symmet-

ric blocks A1,A2, and A3) and partly unsymmetric (due to presence of unsymmetric blocks

A4,A5,A6 and A7) which renders use of a symmetric profile solver impossible. A matrix pre-

multiplication such as [Ac]
T[Ac] would make the resulting system symmetric but because both

the PUFEM and PUBEM systems are ill-conditioned, such an approach may not be inefficient.

§Recall that L here is the total number of distinct density jumps.
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(a) PUFEM: nDof = 384, nnz = 43008

(b) Coupled PUFEM-PUBEM, nDof = 512, nnz = 88576

Figure 7.3: PUFEM vs Coupled PUFEM-PUBEM system comparison, nnz: number of non-zeros
in the system matrix
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Figure 7.4: FE mesh for PUFEM and coupled PUFEM-PUBEM

7.4 Numerical examples

The PUFEM and coupled PUFEM-PUBEM approaches are compared in this section through

various numerical examples arranged as follows. Firstly, the q and h convergence of the two

methods are compared in §7.4.1 and §7.4.2 respectively. The q-convergence is achieved by

increasing the total number of plane wavesM at a finite element node, whereas the h-convergence

is achieved by refining the FE mesh. This is followed by a comparison between PUFEM and

coupled PUFEM-PUBEM for a fixed accuracy in computing the total acoustic field (§7.4.3).

For all the results presented in §7.4.1, §7.4.2 and §7.4.3, the canonical problem of the plane

wave scattering in annular layers (see Figure 6.1 in Chapter 6) will be used. PUFEM and

coupled PUFEM-PUBEM are then compared with the polynomial FEM in §7.4.4 where the

three methods are investigated for their accuracy for a given value of the parameter τ which

represents the number of degrees of freedom per wavelength. Finally, the results for an example

comparing the three methods where an analytical solution can not be obtained are shown. In

the last case, a finite element solution with a very refined mesh (polynomial based FEM) is used

as a reference solution to obtain a converged solution.

7.4.1 q-convergence:

To demonstrate the q-convergence of the coupled PUFEM-PUBEM approach and for comparison

with PUFEM we consider the FE mesh with nθ = 8 and nr = 2, where nθ and nr are the number

of finite elements in the circumferential and the radial direction respectively (see Figure 7.4). It

can be noted that the thickness of each fluid layer is contained within a single finite element. A

numerical experiment is carried out by first setting k1 = π, k0 = 2π, and ρ0/ρ1 = 1.2. Therefore,

the interior and exterior fluid layers will contain respectively 2 and 1 wavelengths each. These

data are then reversed in the next test i.e., k1 = 2π, k0 = π, and ρ1/ρ0 = 1.2. It is evident from
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Figure 7.5: L2 error on Γs
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Figure 7.6: L2 error on Γr and in Ωf



7.4. Numerical examples 129

2.4 2.6 2.8 3 3.2 3.4

5

10

15

20

Log
10

(ndof)

Lo
g 10

 o
f κ

(A
) 

 

 

PUFEM
Coupled PUFEM−PUBEM

(a) k1 = π, k0 = 2π

2.4 2.6 2.8 3 3.2 3.4

5

10

15

20

Log
10

(ndof)

Lo
g 10

 o
f κ

(A
) 

 

 

PUFEM
Coupled PUFEM−PUBEM

(b) k1 = 2π, k0 = π

Figure 7.7: Conditioning of the linear systems



7.4. Numerical examples 130

the plots for the L2 error on the scatterer in Figure 7.5a that the q-convergence performance

on the scatterer surface, for both PUFEM and coupled PUFEM-PUBEM, is approximately

the same below log10(nDof) = 3.2 and when k1 < k0. However, further addition of plane

waves for the coupled PUFEM-PUBEM results in an improvement of approximately one order

of magnitude in E2(Γs). The improvement achieved with the use of the coupled formulation

is even more evident when the medium with longer wavelength (or smaller wavenumber) is

placed in the exterior. Thus, when k0 < k1, the coupled PUFEM-PUBEM solution shows

approximately 2 orders of magnitude improvement for the q-convergence for E2(Γs) (see Figure

7.5b). For the results on Γr and in Ωf , the coupled PUFEM-PUBEM formulation again shows

an improvement of close to 2 orders of magnitude for both k1 < k0 and k1 > k0 case (see

Figure 7.6). Clearly, in the case of PUFEM, in order to effectively absorb an outgoing wave

with longer wavelength, the boundary Γr needs to be placed further away from the scatterer.

This would mean adding more layers of finite elements in the radial direction (i.e. increasing nr)

and therefore incurring an increased computational effort. It is known that both PUFEM and

PUBEM result in ill-conditioned systems. The improvement in the accuracy in the case of the

coupled PUFEM-PUBEM approach is accompanied with a corresponding rise in the condition

number, κ(A) (A is the given system matrix) (see Figure 7.7). However, the SVD solver used

here, namely ZGELSS, is able to efficiently handle the ill-conditioning and yields an accurate

solution.

For completeness, a comparison of the coupled PUFEM-PUBEM results with and without

the use of the CHIEF method is shown in Figure 7.8. The L2 error E2(Ωf ) is plotted against

the wavenumber k0. For the results shown in Figure 7.8, the values of the wavenumber in the

exterior (i.e. k0) are chosen as the characteristic wavenumbers for the CBIE defined in eq.

(7.3). At these wavenumbers, the CBIE in (7.3) fails to provide a unique solution, whether used

individually or coupled with the weak form in (7.2). Note that the non-uniqueness of the CBIE

is independent of the properties of the acoustic medium that lies in the interior or the density

ratio ρ1/ρ0; see [119]. The wavenumbers on the x axis used in Figure 7.8 can be found by

solving an interior Dirichlet problem on Γr, classically known as the Sturm-Liouville problem.

The characteristic wavenumbers are then the square roots of these eigenvalues. The FE mesh

used in this example is the same as used for q-convergence results and the number of plane waves

per node is chosen such that τ0 ≈ 10 is maintained. This value of τ0 is chosen to ensure that
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there are enough degrees of freedom to approximate the solution and any jump in the errors

is not due to poor approximation of the solution. The wavenumber in the interior is taken as

k0/2 and ρ0/ρ1 as 1.2. As seen from Figure 7.8, the L2 errors for the coupled PUFEM-PUBEM
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Coupled PUFEM−PUBEM without CHIEF
Coupled PUFEM−PUBEM with CHIEF

Figure 7.8: L2 errors (E2(Ωf )) for the coupled PUFEM-PUBEM: with and without CHIEF, all
the values of k0 are irregular wavenumbers

without the CHIEF method indicate that no correct solution is obtained. Whereas, using the

interior collocation with the CHIEF method results in the solution with errors between 10−2 to

10−4 indicating that the non-uniqueness problem can be effectively overcome with the CHIEF

method. For this case, the condition number comparison of the coupled system matrix Ac with

and without the use of the CHIEF method is shown in Figure 7.9. It can be seen that with

the use of the CHIEF method not only does the coupled system recover an accurate solution at

characteristic wavenumbers, the method also shows some improvement in the condition number

of the system matrix. As seen from Figure 7.8, close to two orders of magnitude improvement

is achieved at characteristic wavenumbers with the use of the CHIEF method.

7.4.2 h-convergence:

Three different FE mesh configurations are considered (see Figure 7.10) for studying the h-

convergence of PUFEM and coupled PUFEM-PUBEM approach. Tables 7.2-7.4 show a com-

parison between PUFEM and the coupled PUFEM-PUBEM for the various error norms given in

(6.16)-(6.17). An additional error norm (see (7.16)) computed on the FE-BE coupling boundary

Γr is also included which gives the accuracy of the given method to compute the pressure field
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Figure 7.9: Condition number κ(Ac) for the coupled PUFEM-PUBEM approach: with and
without CHIEF

PUFEM Coupled PUFEM-PUBEM

Mesh E2(Γs) E2(Γr) E2(Ωf ) Log10(κ) E2(Γs) E2(Γr) E2(Ωf ) Log10(κ)

a 1.20E-02 1.10E-02 1.35E-02 7.83 1.01E-02 3.38E-03 5.47E-03 17.57
b 6.19E-03 1.00E-02 1.18E-02 13.91 1.69E-04 2.93E-05 8.40E-05 17.65
c 6.19E-03 1.00E-02 1.18E-02 19.57 1.23E-05 3.26E-05 1.96E-05 17.75

Table 7.2: h-convergence for k1 = 3π, k0 = 2π,M1 = 16,M0 = 16.

away from the scatterer.

E2(Γr) =
‖p− p̃‖L2(Γr)

‖p̃‖L2(Γr)
, (7.16)

The parameter κ listed in Tables 7.2-7.4 is the 2-norm condition number of the considered system

matrix. It was found that a minimum of 16 plane waves per node for each wavenumber

are needed (i.e., M1 = 16,M0 = 16) to achieve an accuracy of the order 10−2 for the cases

considered in Tables 7.2 and 7.3. This requirement was found to be 32 plane waves per node

for each wavenumber for the case in Table 7.4. It is seen that for the various cases of k1 and k0

considered, the coupled PUFEM-PUBEM formulation outperforms PUFEM. It is noteworthy

that the improvement in the accuracy for PUFEM is accompanied by a steep rise (at least

PUFEM Coupled PUFEM-PUBEM

Mesh E2(Γs) E2(Γr) E2(Ωf ) Log10(κ) E2(Γs) E2(Γr) E2(Ωf ) Log10(κ)

a 4.28E-02 4.28E-02 6.64E-02 5.82 4.84E-02 4.23E-02 7.90E-02 17.54
b 3.42E-03 8.73E-03 1.09E-02 10.75 6.05E-04 2.51E-04 3.43E-04 17.65
c 3.38E-03 8.73E-03 1.09E-02 17.86 1.60E-05 3.55E-05 2.02E-05 17.72

Table 7.3: h-convergence for k1 = 4π, k0 = 3π,M1 = 16,M0 = 16.
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(a) Mesh a: nr = 2, nθ = 8 (b) Mesh b: nr = 4, nθ = 16

(c) Mesh c: nr = 8, nθ = 32

Figure 7.10: FE meshes for h-convergence.

PUFEM Coupled PUFEM-PUBEM

Mesh E2(Γs) E2(Γr) E2(Ωf ) Log10(κ) E2(Γs) E2(Γr) E2(Ωf ) Log10(κ)
a 4.03E-02 3.63E-02 8.55E-02 7.95 3.80E-02 2.20E-02 6.69E-02 17.99
b 1.72E-03 9.81E-03 1.09E-02 16.50 1.03E-04 2.57E-05 1.01E-04 18.03
c 1.72E-03 9.81E-03 1.09E-02 20.74 5.01E-05 3.47E-05 2.42E-05 18.67

Table 7.4: h-convergence for k1 = 6π, k0 = 5π,M1 = 32,M0 = 32.

10 orders of magnitude) in the condition number. In contrast, the condition numbers for the

coupled PUFEM-PUBEM results remain within the same range as the accuracy of the solution

improves with the mesh refinement.

7.4.3 PUFEM vs coupled PUFEM-PUBEM comparison for a fixed accuracy

Often engineers are interested in knowing the CPU time and the total degrees of freedom required

to achieve a preset tolerance in the calculation of the solution variable. From the results in §7.4.1

or 7.4.2, it can be seen that it is difficult to obtain an accuracy of 1% (or E2(Ωf ) ≈1E−02)

for PUFEM with the radius of the radiation boundary as r(Γr) = 3m. As mentioned earlier,

the improvement in the PUFEM results can be obtained by placing the radiation boundary

further away from the scatterer (i.e by increasing r(Γr)). We consider two cases for the fixed



7.4. Numerical examples 134

Interior wavenumber (k1), k1/k0 = 2 Interior wavenumber (k1), k1/k0 = 3
π 2π 3π 4π 5π π 2π 3π 4π 5π

log10(nDof)(1) 2.95 3.13 3.35 3.43 3.55 2.95 3.13 3.25 3.43 3.65
log10(nDof)(2) 2.89 3.06 3.28 3.36 3.49 2.89 3.06 3.19 3.36 3.54
log10(nnz)(1) 5.87 6.22 6.67 6.83 7.08 5.87 6.22 6.47 6.83 7.27
log10(nnz)(2) 5.71 6.06 6.51 6.67 6.92 5.71 6.06 6.31 6.67 7.02
Tintgn (1) 0.71 5.01 29.9 80.69 243.23 0.71 4.99 19.95 81.25 342.52
Tintgn (2) 5.45 13.72 49.63 95.51 221.4 5.67 14.08 33.82 98.66 273.7
Tsolve (1) 0.13 0.43 1.88 3.25 7.48 0.13 0.43 0.98 3.23 14.47
Tsolve (2) 3.19 11.17 47.56 80.1 189.17 3.15 11.15 25.03 81.9 292.53

Table 7.5: Case (a): PUFEM vs coupled PUFEM-PUBEM for 1% accuracy,
(1): PUFEM, (2): coupled PUFEM-PUBEM

accuracy viz. (a) E2(Ωf ) ≈ 0.01 and (b) E2(Ωf ) ≈ 0.005. For both cases two ratios of k1/k0

are considered, viz. k1/k0 = 2 and k1/k0 = 3. Only for the PUFEM, we choose the radius

of the radiation boundary as r(Γr) = 4 for case (a) and r(Γr) = 5 for case (b) to minimize

the reflections at Γr. However, for the coupled PUFEM-PUBEM approach, the radius of the

radiation boundary will not make a difference and therefore we use r(Γr) = 3, nr = 2 for both

the cases (a) and (b). For the case of PUFEM, we choose nr = 6 for the case (a) and nr = 8

for the case (b). For both PUFEM and the coupled PUFEM-PUBEM, we take nθ = 16. It

may be noted that the tolerance limit in case (a) on E2(Ωf ) is set to 0.01 (or 1%) which is

generally regarded as the engineering accuracy. The total degrees of freedom for a particular

case is increased by successively adding plane waves (increasing M) in the basis until the preset

error tolerance is achieved.

Tables 7.5 and 7.6 compare various parameters obtained for 1% (case (a)) and 0.5% (case

(b)) accuracies respectively. In total, five cases for k1 are tested each for the ratios k1/k0 = 2

and k1/k0 = 3. For each case, PUFEM and coupled PUFEM-PUBEM are compared for the

total dof (nDof), number of non-zero entries (nnz) in the system matrix, integration (Tintgn)

and solution times (Tsolve). Note that the integration time for the coupled PUFEM-PUBEM

approach includes the time needed to integrate the weak form in (7.2) and the boundary integral

equations in (7.3) and (7.4). In addition to the results in Tables 7.5 and 7.6, a graph is included

showing the variation of the parameter τ1 against the wavenumber k1 for 1% and 0.5% accuracies

for k1/k0 = 2 (Figure 7.11a) and k1/k0 = 3 (Figure 7.11b). The savings achieved in terms of

the total degrees of freedom needed (nDof) and the amount of fill-in (nnz) are highlighted in

Tables 7.7-7.8. As summarised in Tables 7.7-7.8, for an error tolerance of 1%, a significant

amount of savings can be achieved in the total degrees of freedom needed (≈ 12− 15%) and in



7.4. Numerical examples 135

Interior wavenumber (k1), k1/k0 = 2 Interior wavenumber (k1), k1/k0 = 3
π 2π 3π 4π 5π π 2π 3π 4π 5π

log10(nDof)(1) 3.06 3.36 3.54 3.61 3.71 3.06 3.36 3.46 3.54 3.80
log10(nDof)(2) 2.89 3.06 3.28 3.36 3.49 2.89 3.06 3.28 3.36 3.56
log10(nnz)(1) 6.1 6.7 7.05 7.19 7.4 6.10 6.70 6.89 7.05 7.58
log10(nnz)(2) 5.71 6.06 6.51 6.67 6.92 5.71 6.06 6.51 6.67 7.06
Tintgn (1) 1.46 18.56 94.43 218.91 563.65 1.44 18.64 62.11 164.79 840.00
Tintgn (2) 5.49 13.88 50.86 97.24 220.9 5.50 13.79 49.83 96.29 299.89
Tsolve (1) 0.18 1.34 4.36 6.81 14.29 0.18 1.33 2.55 4.34 25.94
Tsolve (2) 3.2 11.2 47.57 80.2 177.28 3.14 11.12 48.73 80.19 310.67

Table 7.6: Case (b): PUFEM vs coupled PUFEM-PUBEM for 0.5% accuracy,
(1): PUFEM, (2): coupled PUFEM-PUBEM
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(b) k1/k0 = 3

Figure 7.11: Dependence of τ1 on k1

Interior wavenumber (k1), k1/k0 = 2

Accuracy π 2π 3π 4π 5π

% saving in nDof 12.90 14.89 14.89 14.89 12.90
1% % saving in nnz 30.82 30.82 30.82 30.82 30.82

% saving in Tintgn -667.61 -173.85 -65.99 -18.37 8.98

% saving in nDof 32.39 49.88 45.05 43.77 39.74
0.5% % saving in nnz 59.26 77.09 71.16 69.80 66.89

% saving in Tintgn -276.03 25.22 46.14 55.58 60.81

Table 7.7: % saving achieved using coupled PUFEM-PUBEM approach for k1/k0 = 2
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Interior wavenumber (k1), k1/k0 = 3

Accuracy π 2π 3π 4π 5π

% saving in nDof 12.90 14.89 12.90 14.89 22.38
1% % saving in nnz 30.82 30.82 30.82 30.82 43.77

% saving in Tintgn -698.59 -182.16 -69.52 -21.43 20.09

% saving in nDof 32.39 49.88 33.93 33.93 42.46
0.5% % saving in nnz 59.26 77.09 58.31 58.31 69.80

% saving in Tintgn -281.94 26.02 19.77 41.57 64.30

Table 7.8: % saving achieved using coupled PUFEM-PUBEM approach for k1/k0 = 3

the amount of fill-in (≈ 30%) if the coupled PUFEM-PUBEM approach is used. Of course, the

integration time is higher for most cases of the coupled approach when 1% accuracy is sought.

However, use of coupling PUFEM-PUBEM appears justifiable when higher accuracy of 0.5%

is sought where we find an average 42% saving in the nDof and close to a 68% saving in the

fill-in along with a significant reduction in the integration time. It can be observed from Figure

7.11 that the parameter τ1 reduces as the wavenumber k1 increases for both PUFEM and the

coupled PUFEM-PUBEM and appears to approach a value close to 5.0.

7.4.3.1 Choice of M1 and M0

Intuitively, the mixed basis enrichment can be considered to be dependent upon the ratio of

k1 and k0. The numerical tests, however, show that the best results can be obtained if the

enrichment for k1 and k0 is nearly uniform¶ i.e. by taking M1 ≈M0, where M1 and M0 are the

number of plane waves at each node with k1 and k0 in the basis respectively. We consider again

the canonical two layer problem defined in Figure 6.1 (Chapter 6). The finite element mesh used

is seen in Figure 7.4. Four cases for the wavenumbers are considered (i) k1 = π, k0 = 2π, (ii)

k1 = 2π, k0 = π, (iii) k1 = π, k0 = 3π and (iv) k1 = 3π, k0 = π. Note that case (ii) is simply the

data reversed in case (i) and case (iv) is the data reversed in case (iii). We take M1 +M0 = 32

for cases (i) and (ii) and M1 +M0 = 40 for cases (iii) and (iv). Figures 7.12 and 7.13 show

the L2 error in Ωf (E2(Ωf )) plotted against M1. As seen from Figures 7.12 and 7.13, the L2

errors are sensitive to the ratio of M1 and M0. Towards the left end of the plot, either in Figure

7.12 or 7.13, there will be too few plane waves with k1 in the basis (M1 ≪ M0) resulting in a

poor modelling of the waves in the Ω1 region. In contrast, towards the right end of the plots,

M1 ≫ M0 and there will be too few waves with k0 in the basis causing poor modelling of the

waves in the exterior Ω2. From the results shown in Figures 7.12-7.13, a suitable combination

¶We observed similar behaviour in the results listed in Table 6.4 for PUFEM.
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Figure 7.12: M1 and M0 combination, k1(k0) = π, k0(k1) = 2π, M1 +M0 = 32.
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E2(Ωf )

k1 τ1 τ0 (a) (b) (c)

π 6.38 9.89 4.05E-01 6.76E-01 5.00E-01
2π 4.51 6.99 8.98E-01 5.37E-01 5.25E-01
3π 5.21 8.07 8.91E-01 3.35E-01 3.36E-01
4π 5.05 7.82 1.21E+00 3.30E-02 3.21E-02
5π 5.11 7.91 1.03E+00 1.37E-02 4.22E-03
6π 4.99 7.73 1.12E+00 1.11E-02 4.88E-03
7π 4.99 7.74 9.95E-01 9.78E-03 4.37E-03
8π 5.05 7.82 1.14E+00 1.79E-02 8.72E-03
9π 4.91 7.61 1.42E+00 3.42E-02 2.21E-02
10π 4.94 7.66 1.59E+00 1.11E-02 4.44E-03

Table 7.9: FEM (a) vs PUFEM (b) vs Coupled PUFEM-PUBEM (c) for a given τ1, k0 = k1/2

appears to be M1 = M0 to achieve results with accuracy of 1% or better. We therefore choose

M1 =M0 for all the numerical examples pertaining to the two layer problem.

7.4.4 Comparison with polynomial FEM for given τ1

A comparison between the polynomial FEM, PUFEM and the coupled PUFEM-PUBEM is now

presented. These three methods are compared for a given range of τ1. It can be seen from

(6.14a) (or (6.14b)) that using a fixed value of parameter τ1 (or τ0) can result in a non integer

value for M . We therefore choose the parameter τ1 ≈ 5 so that the total number of plane

waves per node is an integer. Also, τ1 ≈ 5 is chosen because the results in §7.4.3 indicate that

τ1 needs to be maintained close to 5 to achieve an accuracy of 1% (i.e. when k1 > k0). The

FE mesh chosen for PUFEM and coupled PUFEM-PUBEM uses nθ = 16 and nr = 4 and the

radius of the radiation boundary is taken as r(Γr) = 3m. The number of plane waves per node

M is then chosen such that (6.14a) results in a value for τ1 that is close to 5. Also, the FE

mesh for polynomial FEM is chosen such that the parameters τ1 and τ0 for PUFEM (or coupled

PUFEM-PUBEM) match with the corresponding parameters for polynomial FEM. Table 7.9

gives E2(Ωf ) for the three methods. The wavenumber k1 varies between π to 10π and we take

k0 = k1/2. As seen from Table 7.9, for lower wavenumbers (k1 ≤ 3π) all three methods perform

poorly. This can also be observed from the PUFEM results published by Laghrouche et al (see

Table 1 in ref. [106]) where higher values of τ are needed for an accuracy close to or better than

1% for wavenumbers below 4π. However, as the wavenumber k1 is increased, both PUFEM and

coupled PUFEM-PUBEM result in an accuracy between 1-3% for τ1 ≈ 5. FEM results in an

unacceptable solution with errors more than 100% for almost all the cases of k1 > 4π. Table 7.9

again underlines that the plane wave enrichment can result in significant improvement in the

accuracy over FEM for a given number of degrees of freedom.
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(a) problem 1 (b) problem 2

Figure 7.14: Split cylinder problems

Problem k1 k2 k0 ρ1/ρ0 ρ2/ρ0
Figure 7.14a 2π - π 1.2 -
Figure 7.14b 2π 1.5π π 1.2 1.1

Table 7.10: Problem data for Figure 7.14

7.4.5 Split cylinder problem

For the two layer problem considered in §7.4.1, it was possible to construct an analytical solution.

However, for a composite structure made up of a halfway split inner cylinder and each half with

a different medium density (and hence different wavenumber), it will not be possible to obtain

an analytical solution (see Figure 7.14a). A more complicated configuration is shown in Figure

7.14b where the inner cylinder is split into four equal sectors. The wavenumbers and density

ratios used for this problem are listed in Table 7.10. As before, we consider the plane wave

scattering (eik0x) from the sound hard cylinder for the problems defined in Figures 7.14a-7.14b.

Note that k0 is the wavenumber of the homogeneous exterior medium. For both problems in

Figure 7.14, the reference solution is obtained by a refined polynomial FEM with 164480 nodes

in the mesh and with the radius of the circular radiation boundary Γr as 6m. The radius of Γr

is taken as 6m in order to minimize the spurious reflections from the radiation boundary when

obtaining the reference solution. Also, for both the problems in Figure 7.14, we use the same

FE mesh as shown in Figure 7.4 for PUFEM and coupled PUFEM-PUBEM. The mixed basis

discussed in the last chapter withM1 =M0 = 8 is used to solve the problem in Figure 7.14a, and

M1 = M2 = M0 = 16 for the problem in Figure 7.14b, for both PUFEM and coupled PUFEM-

PUBEM. These values were chosen as they were found to result in a convergent solution. A

polynomial FEM solution is also computed for comparison with the radius of the radiation
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Figure 7.15: ℜ(p) in Ωf for split cylinder problem 1 in Figure 7.14a

boundary as 3. To demonstrate the advantage of using the mixed enrichment, the number of

nodes used when polynomial FEM is used for comparison, are taken to be of the same order

of magnitude as the total degrees of freedom used in the PUFEM or the coupled PUFEM-

PUBEM approach. As can be seen from Figures 7.15 and 7.16, the wave scattering for the split

cylinder problems is complicated at the interface of the two media. When the total degrees of

freedom used is the same order for all methods, both PUFEM and coupled PUFEM-PUBEM

show a clear advantage due to the use of the plane wave enrichment. The errors associated with

PUFEM and coupled PUFEM-PUBEM are close to between 1-3% whereas the FEM results in an

Figure 7.14a Figure 7.14b

1 2 3 1 2 3

dof 520 384 512 1984 1152 1548

E2(Ωf ) (%) 120 2.9 2.7 170 2.6 1.8

Table 7.11: 1: FEM, 2: PUFEM, 3: Coupled PUFEM-PUBEM, Reference solution is polynomial
FEM with 164480 nodes
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Figure 7.16: ℜ(p) in Ωf for split cylinder problem 2 in Figure 7.14b
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unacceptable solution with an error of more than 100%. It should be noted that the errors given

in Table 7.11 are only indicative as there is no analytical solution for the considered problem.

Though the reference FE solution used here has 164480 nodes, it still is an approximate solution

as it makes use of the BGT-2 NRBC on Γr.

7.5 Conclusions

In this chapter, the concept of mixed basis is shown to extend to the coupled PUFEM-PUBEM

approach directly. The coupling of PUFEM and PUBEM is presented through detailed matrix

equations. A comparison between FEM, PUFEM and coupled PUFEM-PUBEM for heteroge-

neous problems is presented. In general, it can be concluded that the plane wave based methods,

both PUFEM and coupled PUFEM-PUBEM, outperform FEM. The error analyses presented,

for both q and h refinement, indicates that close to two orders of magnitude improvement in the

global error measure E2(Ωf ) can be obtained with the coupled PUFEM-PUBEM algorithm in

comparison with the PUFEM approach. Both FEM and PUFEM are limited in accuracy due to

use of the approximate NRBC on Γr. A problem of a split cylinder is solved where an analytical

solution can not be found and the mixed basis is shown to recover an accurate solution for

this problem. It is also shown that FEM, when used with similar order for the total degrees of

freedom results in unacceptable solutions.



Chapter 8

Conclusions

8.1 Concluding remarks

The main aim of this thesis was to present an algorithm to solve wave scattering problems

in a heterogeneous medium in an unbounded domain. Coupling of PUFEM with PUBEM

was motivated by the fact that PUFEM inherently needs an approximate boundary condition

whereas PUBEM can accurately represent the scattered waves in the homogeneous domain. The

use of a plane wave basis, both for FEM and BEM, was motivated by the fact these methods

tend to become inefficient for high frequencies requiring 10 degrees of freedom per wavelength.

Chapter 1 discussed these aspects and Chapter 2-4 further provided the background material

on the theory of the acoustic waves, the weak formulation and the BIE (Chapter 2), element

based discretization (Chapter 3) and the concept of plane wave basis (Chapter 4).

The motivation of the numerical studies carried out in Chapter 5 was to investigate an

effective way to overcome the non-uniqueness problem in the BIE. Particularly, the effect of

ill-conditioned systems and ability of CHIEF and Burton-Miller methods to accurately recover

solutions at characteristic wavenumbers was of interest. It was demonstrated in Chapter 5 that

scattering from smooth obstacles, when the exterior medium is homogeneous, can be effectively

solved using the PUBEM approach. In general, L2 errors of the order 10−6 could be achieved

with the PUBEM using both the CHIEF and Burton-Miller approaches, although the CHIEF

approach was found to always result in better accuracy. As demonstrated via results presented

in Chapter 5, the number of degrees of freedom per wavelength (τ) needed for PUBEM is close

to 3 for the examples considered and can go below 3 for higher wavenumbers. This is 3-4 times

– 143 –
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smaller than that required in the polynomial based BEM where τ needs to be ≈ 10 to obtain

solutions within the engineering accuracy of 1%. The results presented indicate that the CHIEF

method is attractive is it involves simpler boundary integrals than those involved in the Burton-

Miller approach, besides the ease of implementation of the former. Ill-conditioning of the linear

systems still remains a problem, as also observed in previous works, but numerical results in

Chapter 5 indicate that SVD is a reliable method to solve such systems.

Chapter 6 demonstrated the efficacy of PUFEM for solving wave scattering in heterogeneous

media. The concept of mixed basis is shown to be effective in recovering the acoustic field for

these problems. It was argued that the mixed basis is effective for problems where the number

of distinct jumps (L) is small. The size of the PUFEM system can be seen to grow as a linear

function of L (keeping the number of plane waves at each node constant). However, many

practical applications such as composite structures where the interaction of waves (especially

ultrasound) needs to be studied due to alternate layers which are themselves homogeneous, the

approach of mixed basis presented in Chapter 6 can be effective.

Chapter 7 demonstrated the coupling of PUFEM with PUBEM. Since both methods are plane

wave based, the coupling can be achieved by a simple matrix arrangement. From the results in

§7.4.3, it can be concluded that the coupled PUFEM-PUBEM approach can be preferred over

PUFEM when an accuracy close to or better than 1% is sought in view of savings achieved for

the total degrees of freedom (nDof) (approx. 12-15%) and the fill-in (nnz) (approx. 30%). For

the heterogeneous problems, for both PUFEM and coupled PUFEM-PUBEM, it is found that

the parameter τ needed in the region with higher wavenumber is close to 5 to achieve accuracy

between 1-3%. However, when similar values of τ in the higher wavenumber region are used for

classical FEM, the results obtained are unacceptable with errors more than 100%. In general,

the proposed method of coupling PUFEM and PUBEM is promising in view of the significant

reductions achieved in the degrees of freedom required which motivates its extension in solving

3D heterogeneous wave problems. The disadvantage of using an unsymmetric coupling approach,

such as the one used in this study, is clearly the high solution time needed. However, this can

be justified given that the accuracy levels of < 0.5% cannot be achieved using PUFEM when

r(Γr) is small.
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8.2 Recommendations for future work

8.2.1 Biomedical problems

In this thesis we assumed that the acoustic medium is lossless but very does rarely such a

situation arise in real life. Of course, for practical purposes, many engineering computations

can be safely carried out assuming no loss in the energy of the wave, other than the geometric

spreading, as it propagates through the medium. One of the problems where PUFEM can

become attractive is modelling ultrasound in an attenuating human tissue. To the author’s

knowledge, PUFEM has not been used to model high frequency sound waves in an attenuating

media. If ultrasonic scattering from only a single tissue is sought and if the tissue properties

can be considered as only weakly or slowly varying, the approach of spectral methods such as

the k-space method or pseudospectral method, have been found to be effective [18, 123, 183].

However, a major shortcoming of the spectral methods remains that the heterogeneity that can

be handled is only ‘weak’. It is not clear, hitherto, as to how a scattering problem with severe

impedance mismatch would be handled with the k-space approach. Such a problem could arise

in the case of a tissue that is in close vicinity of a bone∗. The concept of mixed basis discussed

in Chapter 6 can be effective in such a case.

8.2.2 Coupling of PUFEM and plane wave based Galerkin BEM

The author acknowledges other methods of symmetric FE-BE coupling such as using Galerkin

BEM and the Calderón projectors, which can result in a symmetric linear system resulting in a

faster solution time. Perhaps the second most attractive feature of the Galerkin BEM, other than

its symmetry, is its ability to handle the singularities of various orders (weak, strong and hyper)

without the need for a special treatment for each singularity type. Various orders of singularities

were discussed in Chapter 5 (see §5.3) and the need of C1,α continuity for the hypersingular

integrals†. With the use of Galerkin BEM it can be shown that one can use C0,α continuity

and the hypersingular integral still exists [19]. Although a comparison of (collocation based)

PUBEM and plane wave based Galerkin BEM (PUGBEM) has not appeared in the literature

to the author’s knowledge, it is known that the Galerkin BEM is generally more accurate than

∗Speed of an acoustic wave inside bone is ≈ 5000 m/s whereas the speed in a soft tissue is ≈ 1500 m/s and
therefore a strong impedance mismatch.

†Recall that this is the reason we collocate away from element edges when using continuous elements.
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collocation BEM. Coupling of PUFEM with PUGBEM is therefore a very attractive method

and can be studied for its convergence properties.

8.2.3 Multiple scattering problems with non-circular boundaries

Consider a problem of multiple scattering as illustrated in Figure 8.1. The region between

two scatterers gives rise to multiple reflections. More importantly, since the scattered waves

FE region for coupled PUFEM-PUBEM

FE region for PUFEM

Figure 8.1: Multiple scattering problem

always have to be outgoing for the NRBC to be accurate, for multiple scattering problems,

the truncation boundary Γr in the case of FEM or PUFEM always needs to be away from the

region where multiple reflections are likely to occur. Traditional NRBCs can be extended to

solve multiple scattering problems by enclosing each individual scatterer within a sphere and

then deriving DtN maps between different spheres [64]. The limitation again is that of having

to use canonical shapes like spheres for containing the scatterers. Although the examples solved

here for demonstrating the convergence of the coupled PUFEM-PUBEM approach considered

only a circular shape for Γr, PUBEM poses no restriction on the requirement of the shape of

Γr. Theoretically, therefore, a problem where Γr is non-circular (see Figure 8.1) and where

the normal vector to the boundary Γr can be uniquely defined, the coupled PUFEM-PUBEM

approach can be shown to achieve a reduction in the total degrees of freedom needed. It should

be remarked here from the conclusions drawn in Chapter 5 (§5.10) that the CHIEF method is

stable for elongated geometries and no difficulty is encountered when solving scattering from

such shapes. This indicates that not only the coupling of PUFEM-PUBEM is an attractive
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alternative to the conventional NRBC based PUFEM, the stability of the CHIEF method to

handle the non-uniqueness for an elongated geometry motivates its use in multiple scattering

problems where the boundary Γr can be taken as line tracing the exterior of the scatterers.
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Appendix A

Fundamental solutions and their

derivatives

In Chapter 5 (see §5.4.1), we are required to evaluate the fundamental solutions G,G0 and their

derivatives. We have

G =
i

4
H0(kr) =

i

4
(J0(kr) + iY0(kr)) (A.1)

G0 =
1

2π
ln

1

r
= − 1

2π
ln r (A.2)

The first derivatives of these fundamental solutions are as follows:

∂G

∂nx
=
k

4
(Y1(kr)− iJ1(kr))

∂r

∂nx
(A.3)

∂G

∂ny
=
k

4
(Y1(kr)− iJ1(kr))

∂r

∂ny
(A.4)

∂G0

∂nx
= − 1

2πr

∂r

∂nx
(A.5)

∂G0

∂ny
= − 1

2πr

∂r

∂ny
(A.6)

and in which we can use the derivatives

∂r

∂nx
=

−r · n(x)
r

,
∂r

∂ny
=

r · n(y)
r

(A.7)
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The second derivatives of the fundamental solutions are as follows:

∂2G

∂nx∂ny
=
k

4
[Y1(kr)− iJ1(kr)]

∂2r

∂nx∂ny

+

1

4

[(

kY0(kr)−
Y1(kr)

r

)

− i

(

kJ0(kr)−
J1(kr)

r

)]

∂r

∂nx

∂r

∂ny
(A.8)

∂2G0

∂nx∂ny
=

1

2πr2
∂r

∂nx

∂r

∂ny
− 1

2πr

∂2r

∂nx∂ny

(A.9)

in which we can use the derivative

∂2r

∂nx∂ny

=
−1

r

(

nx · ny +
∂r

∂nx

∂r

∂ny

)

(A.10)



Appendix B

Analytical solution for two layer

problem

The analytical solution given here is for a two layer problem but the procedure can also be

generalised for a multi-layered problem. Consider the geometry in Figure 6.1. It is convenient

to consider the polar coordinate (r, θ) system for specifying any point in (Ω0∪Ω1). The pressure

at a point (r, θ) in Ω0 due to the incident wave in the exterior region (Ω0) with wavenumber

k0 = ω/c0 is given as [133]

p0i = eik0r cos(θ)

=

∞
∑

n=0

ǫni
nJn(k0r) cos(n(θ − θI)) (B.1)

where,

ǫn =















1, if n = 0

2, otherwise,

(B.2)

where, i is the imaginary unit and J0(·) is the Bessel function of first kind. The total pressure

in Ω0 is

p0 = p0i + p0s (B.3)

where p0s is the scattered pressure in the exterior region and can be expressed as

p0s =
∞
∑

n=0

CnH
(1)
n (k0r) cos(nθ). (B.4)
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where H
(1)
n (·) is the Hankel function of the first kind. The total pressure in the inner region

(Ω1) can be given as

p1 =

∞
∑

n=0

(

AnH
(1)
n (k1r) +BnH

(2)
n (k1r)

)

cos(nθ). (B.5)

where, H
(2)
n (·) is the Hankel function of the second kind.

B.1 Boundary conditions

In order to obtain explicit expressions for the interface coefficients viz. An, Bn and Cn we need

three boundary conditions. The natural boundary condition for a sound hard cylinder surface

is,

∂p1
∂r

= 0 on Γs (B.6)

Using eq. (B.5) and setting r = a in eq. (B.6) where a is the radius of the cylinder centred at

origin,

∂

∂r

( ∞
∑

n=0

(

AnH
(1)
n (k1a) +BnH

(2)
n (k1a)

)

cos(nθ)

)

= 0. (B.7)

Rearranging the above equation,

AnH
(1)′

n (k1a) +BnH
(2)′

n (k1a) = 0, (B.8)

or,

AnC1 = −BnC2. (B.9)

where C1 = H
(1)′

n (k1a) and C2 = H
(2)′

n (k1a) and the primes indicate the derivative with respect

to the argument. The second boundary condition is the continuity of acoustic pressure on Γi, Let

the radius of the circular interface Γi between Ω1 and Ω0 be denoted as ri. Then the boundary

condition specifying the continuity of acoustic pressure on Γi at r = ri is

p0i + p0s = p1 (B.10)

Using (B.1), (B.4) and (B.5) and setting r = ri, we get,

C3An +C4Bn = C6 + C5Cn. (B.11)
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C3 = H
(1)
n (k1ri), C4 = H

(2)
n (k1ri), C5 = H

(1)
n (k0ri) and C6 = ǫni

nJn(k0ri) .

Continuity of radial component of particle velocity on Γ1:

The continuity of radial component of velocity is given by

1

ρ0

∂

∂r
(p0i + p0s) =

1

ρ1

∂p1
∂r

(B.12)

Using (B.1), (B.4) and (B.5) and setting r = ri, we get,

C7An + C8Bn = C9Cn + C10, (B.13)

where, C7 = qH
(1)′

n (k1ri), C8 = qH
(2)′

n (k1ri), C9 = H
(1)′

n (k0ri), C10 = ǫni
nJ ′

n(k0ri) and q =

ρ0/ρ1.

B.2 Coefficients:

(B.9) gives

An = −C2

C1
Bn (B.14)

(B.11) gives

− C3
C2

C1
Bn +C4Bn = C5Cn +C6 →

(

C4 −
C2C3

C1

)

Bn = C5Cn + C6 (B.15)

(B.13) with (B.14) gives

− C7
C2

C1
Bn + C8Bn = C9Cn + C10 (B.16)

(B.15) gives

Bn =

(

C5C1

C1C4 − C2C3

)

Cn +
C6C1

C1C4 − C2C3
(B.17)

Use (B.17) in (B.16), thus,

(

C8 −
C7C2

C1

)(

C5C1

C1C4 − C2C3
Cn +

C6C1

C1C4 − C2C3

)

= C9Cn + C10 (B.18)

Simplifying,

Cn =
C12 − C10

C9 − C11
(B.19)
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where,

C11 =

(

C1C8 − C2C7

C1C4 − C2C3

)

C5 (B.20)

C12 =

(

C1C8 − C2C7

C1C4 − C2C3

)

C6 (B.21)

Coefficients Cn (eq. B.19), Bn (eq. B.17) and An (eq. B.14) can now be used to compute the

total wave at any point in the entire domain i.e. Ω1 ∪ Ω0.



Appendix C

Sturm-Liouville problem

As discussed in Chapter 6 and 7, the boundary Γr, is always taken as a perfect circle enclosing

the heterogeneous fluid domain (Ωf ) to be modelled. It is therefore clear that when using

a plane wave enriched coupled FE-BE algorithm, we are only concerned with the eigenvalues

of the interior Dirichlet problem that is defined with a circular boundary. This amounts to

finding the eigenvalues of an idealized membrane in R
2 classically known as the ‘Sturm-Liouville

problem’.

C.1 The Sturm-Liouville problem

Consider a circular membrane of radiusR∗. It is immediately clear that the most convenient form

of describing a transverse motion of a point on the membrane surface is writing the Helmholtz

equation in cylindrical coordinates, i.e.,

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+ k2u = 0, (C.1)

where u(r, θ) is the transverse displacement of a point given by the polar coordinates (r, θ) and

k is the wavenumber. Let,

u = R(r)Θ(θ), (C.2)

and let the membrane be subject to a homogeneous Dirichlet boundary condition at r = R, i.e.,

R(R) = 0. (C.3)

∗Only on this occasion, we denote the radius of FE-BE coupling boundary Γr to be R.
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Using equation (C.2) into equation (C.1) gives,

Θ
d2R

dr2
+

Θ

r

dR

dr
+

R

r2
d2Θ

dθ2
+ k2RΘ = 0. (C.4)

Multiplying equation (C.4) by r2/ΘR and rearranging,

r2

R

(

dR

dr2
+

1

r

dR

dr

)

+ k2r2 = − 1

Θ

d2Θ

dθ2
. (C.5)

It is evident that the left hand side of equation (C.5) is a function of radial coordinate r alone

and the right hand side of equation (C.5) is a function of θ alone. It therefore transpires that

both the sides of equation (C.5) must be equal to the same constant. Let this number be denoted

as m2. Thus the right hand side of equation (C.5) now becomes,

− 1

Θ

d2Θ

dθ2
= m2, or,

d2Θ

dθ2
= −m2Θ (C.6)

Using equation (C.6) in equation (C.5)

d2R

dr2
+

1

r

dR

dr
+

(

k2 − m2

r2

)

R = 0 (C.7)

Equation (C.7) is known as the ‘Bessel’s equation’ and its solution can be given in the form,

R(r) = AJm(kr) +BYm(kr). (C.8)

Note that Ym(kr) is singular at r = 0 and therefore in order to have a finite displacement at

r = 0 (i.e., at the origin), we must have B = 0. Therefore,

R(r) = AJm(kr). (C.9)

In view of the Dirichelt boundary condition in equation (C.3), to have a nontrivial solution (i.e.

A 6= 0), we must have

Jm(kR) = 0 (C.10)
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Therefore, if jmn denotes the argument for which equation (C.10) holds, then the wavenumber

k assumes discrete values kmn = jmn/R.

C.2 Characteristic wavenumbers

Recall now the classical two layer acoustic scattering problem defined earlier in Chapter 6, (see

Figure 6.1) and is reproduced here for convenience (see Figure C.1). Let the radius of the

Γs

Γi

Γr

pinc
Ω1

Ω0

Ω∞

Figure C.1: Wave scattering in medium with a jump in wavenumber.

truncation boundary be r(Γr) = 3. Figure C.2 shows the Bessel functions of first kind (Jm) with

their zero crossings marked. Only the Bessel functions up to the 2nd order (i.e., from J0 to J2)

are plotted for a wavenumber ranging from 0.1 to 10. The marked zeros crossings are also listed

in Table C.1.
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❍
❍
❍
❍
❍❍

m
n

1 2 3 4 5

0 0.8016 1.8400 2.8846 3.9305 4.9770

1 1.2772 2.3385 3.3912 4.4412 5.4902

2 1.7119 2.8057 3.8733 4.9320 5.9866

Table C.1: Characteristic wavenumbers of interior Dirichlet problem.

0 2 4 6 8 10
−0.5

0

0.5

1
J

0

J
1

J
2

k

Figure C.2: Bessel functions with zero crossings

As we know that non-uniqueness is independent of the interior wavenumber k1 or the density

ratio ρ1/ρ0, we can set interior wavenumber k1 = 0.8k0, with no loss of generality. The density

ratio is ρ1/ρ0 = 1.2 if k1 > k0 and ρ0/ρ1 = 1.2 if k0 > k1. We use the coupled FE-BE formulation

with the polynomial basis alone for this exercise. For all the computations, we use nθ = 48 and

nr = 20, unless otherwise mentioned. The principal reason behind using a polynomial basis

is that the linear system will not suffer from the ill-conditioning due to the plane wave basis.

The ill-conditioning, if any, should arise only on account of the non-uniqueness. Figure C.3

shows the L2 errors on the scatterer when one of the wavenumbers (either k1 or k0) is set

to the wavenumbers listed in Table C.1. The blue lines correspond to the results when the

wavenumber in the exterior is the non-unique k listed in Table C.1 and the red lines correspond

to the results when the wavenumber in the interior is set to the non-unique k. The exercise of
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setting the interior k to the non-unique k is performed purely to show that the non-uniqueness

is independent of the wavenumber in the interior. Note that the dof are fixed for this exercise

which is the reason behind an increasing L2 error with the increase in the wavenumber. It can

be noted from Figure C.4 that the condition number for the case when the non-unique k is in

the exterior is slightly higher compared to the case when it is in the interior.
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J
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 modes with nonunique k in interior

Figure C.3: L2 errors on the scatterer: coupled polynomial FEM-BEM
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Figure C.4: Condition number of the system matrix: coupled polynomial FEM-BEM
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For the sake of completeness, a L2 error plot comparing the results when CHIEF method is

used is shown in Figure C.5. The comparison is shown only for the modes corresponding to J0

when used as the wavenumber in the exterior. The advantage due to CHIEF method is evident

from figures C.5-C.6.
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Figure C.5: E2(Γs) for coupled polynomial FEM-BEM: with and without CHIEF method
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