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Abstract

This thesis discusses periodic one dimensional arrays of BPS monopoles. An

approximation based on the spectral curve is shown to provide an increasingly

accurate description of the monopole fields in the limit of large monopole size to

period ratio. Away from this limit the periodic monopole is studied by means

of the Nahm transform, which leads to a dual system of Hitchin equations

on a cylinder. A combination of analytical and numerical techniques is used

to study the spatial symmetries of the periodic 2-monopole and its moduli

space. In particular, the asymptotic moduli space metric is determined from

the Nahm data, and symmetric one parameter families of monopole scattering

processes are identified through the core of the moduli space. These ideas are

readily applicable to higher charge periodic monopoles.
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1

Introduction

1.1 Overview of the Thesis

This chapter sets the scene by reviewing what is known of monopoles in R3,

highlighting in particular the results and techniques used in their study, while

referring to the original papers for full details. Following on from these classical

results, chapter 2 discusses a modification of the mathematical tools to infinite

singly periodic chains of monopoles and discusses previous work in this area.

The first main strand of this thesis, chapter 3, describes an approximation

to the monopole fields in the limit in which the size of each monopole in the

chain is much larger than the spacing between monopoles. The content of

this chapter was published as Periodic monopoles from spectral curves (refer-

ence [Mal13]), and evidence for the validity of the ‘spectral approximation’ is

provided throughout the remaining chapters.

The second topic involves using the Nahm transform to study spatial sym-

metries of the monopole solutions and to describe the low energy interaction

of such monopole chains via the moduli space approximation. This is done in

chapter 4, which contains work published in [Mal13] and in collaboration with

my supervisor in Geometry of periodic monopoles, [MW13].

These chapters are followed by three shorter chapters: chapter 5 describes

the limits of the scaling of the monopole size to period ratio, while chapter

6 generalises the discussion of the preceding chapters to higher charge chains.

These chapters are based on the preprints [Malb] and [Mala], respectively.

Chapter 7 summarises the thesis and outlines ideas for future work.

1



2 1 Introduction

Throughout the thesis, mention will be made of the applicability of our

ideas to the doubly periodic monopole on a square lattice, drawing from

[MW14].

1.2 BPS Monopoles

The Bogomolny-Prasad-Sommerfield (BPS) monopole in R3 is described by

classical solutions to the Bogomolny equations,

F = − ∗DΦ with F = dA+ A ∧ A (1.1)

where F is a 2-form field strength, A is a 1-form gauge potential valued in the

Lie algebra of some group G (we will consider G = SU(N), and in particular

G = SU(2) for the remainder of this discussion) and Φ is a Lie-algebra-valued

scalar, the ‘Higgs field’ which is constrained to satisfy tr(Φ2) = constant at

large distances. The covariant derivative D acts on p-forms ω via

Dω = dω + A ∧ ω − (−1)pω ∧ A ⇒ D2ω = F ∧ ω − ω ∧ F.

The Hodge ∗ acts on 1-forms by ∗ωidxi = 1
2
εijkωidx

j ∧ dxk (the summation

convention applies, and we are working with the Euclidean metric throughout).

In components, we then have F = 1
2
Fijdx

i∧ dxj and the Bogomolny equations

become

Fij = [Di, Dj] = ∂iAj − ∂jAi + [Ai, Aj]

=−εijkDkΦ = −εijk (∂kΦ + [Ak,Φ]) .

As we are dealing with gauge theories, the monopole fields are defined up to

gauge transformations. For su(2)-valued fields, the Bogomolny equations are

invariant under the action of g ∈ SU(2),

A → g−1Ag + g−1dg Φ → g−1Φg.

We will motivate the Bogomolny equations (1.1) in two ways. Firstly, we

perform a dimensional reduction on the anti-self-duality equations on R4,

Fij = −1

2
εijklFkl, (1.2)
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whose solutions describe Yang-Mills instantons. Requiring that all the fields

are independent of one of the coordinate directions, x4, say, and setting A4 =

Φ returns the Bogomolny equations. Similar dimensional reductions will be

considered in sections 2.2 and 3.5.

The Bogomolny equations are also obtained from the three-dimensional

Yang-Mills-Higgs action,

S = −1

4

∫
R3

tr
(
F ∧ ∗F +DΦ ∧ ∗DΦ + λ(1− ‖Φ‖2)ω

)
, (1.3)

where ω is the volume form on R3, the length-squared of Φ for G = SU(2) is

‖Φ‖2 = −1
2
tr(Φ2) and the trace is taken in the Lie algebra. From this per-

spective, the Higgs field is introduced in order to circumvent Derrick’s theorem

and allow solutions which are stable under an isotropic rescaling of the spa-

tial coordinates. Exact solutions to the resulting equations of motion are only

known for λ = 0, as long as, in this limit, the boundary condition ‖Φ‖2 → 1

is retained (this is known as the ‘BPS limit’). A lower energy bound can be

computed by looking for stationary points of the action (1.3), an argument due

to Bogomolny:

S = −1

4

∫
R3

tr ((F + ∗DΦ) ∧ ∗ (F + ∗DΦ)− 2F ∧DΦ) .

The first term is positive, such that minimum energy solutions obey (1.1) and

have an energy

E = −1

2

∫
R3

tr (∗DΦ ∧DΦ) = −1

2

∫
R3

d tr (Φ ∗DΦ) , (1.4)

where use has been made of the Jacobi identity, which together with (1.1)

implies the Bianchi identity,

εijk[Di, [Dj, Dk]] = 0
(1.1)
=⇒ D ∗DΦ = 0. (1.5)

The total energy can be computed using the divergence theorem,

E = −1

2

∫
∂R3=S2

∞

tr (Φ ∗DΦ) , (1.6)
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and straightforward manipulations [War81] show that the energy density is

given by

E = −1

4
d ∗ d tr

(
Φ2
)

= −1

4
∇2 tr

(
Φ2
)

=
1

2
∇2‖Φ‖2. (1.7)

Equations 1.6 and 1.7 will be used later in this thesis.

Solutions to (1.1) in R3 describe non-Abelian core regions, which allows

them to be smooth and free of singularities (although smooth solutions in the

presence of point-like Dirac monopoles have also been studied [ChD08]). Away

from the core region, the fields can be seen to approach those of an Abelian

magnetic monopole exponentially fast.

Monopole solutions are characterised by their topological charge. In the

SU(2) case this is computed via

k = −
∫
S2
∞

tr(FΦ)

4π‖Φ‖
∈ Z, (1.8)

and turns out to be identical to the number of zeros of Φ counted with multi-

plicity, [Sut96a].1 Then, the asymptotic length of the Higgs field is

‖Φ‖∞ = 1− k

2r
+O(r−2). (1.9)

Topologically, the charge arises due to the Higgs field breaking the gauge sym-

metry G to a residual symmetry group H. Then Φ∞ lies in the gauge orbit of

the coset group G/H, allowing a classification of monopoles by the homotopy

group π2(G/H) of maps from the 2-sphere at spatial infinity to G/H. The

number of topological invariants generated in this way depends on the pattern

of symmetry breaking (which is said to be ‘maximal’ if all the eigenvalues of Φ∞

are distinct, or ‘minimal’ if all but one of them are the same). For G = SU(2)

we have H = U(1) and one magnetic charge. In the SU(3) case there are

two possibilities, and we discuss how these apply to the periodic monopole in

chapter 3.

The interpretation of monopoles as possessing magnetic charge equal to

their topological charge arises from consideration of the fields far from the

non-Abelian core. In this region the Abelian field strength and magnetic field

1 Although this observation also holds for the periodic monopole, there is evidence that it
is not the case for the doubly periodic monopole, [MW14].
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are defined through

fij = −tr(FijΦ)

2‖Φ‖
, bi =

1

2
εijkfjk,

such that the magnetic and topological charges are related by

g =

∫
bi dSi = 2πk.

As such, far from the non-Abelian core these solutions behave much like the

Abelian magnetic monopoles studied by Dirac [Dir31], who first realised their

topological nature. The development of non-Abelian gauge theory by Yang and

Mills [YM54] paved the way towards singularity-free solutions with magnetic

charge.

Solutions to the Bogomolny equations (1.1) have been studied using a range

of methods. The observation that non-Abelian gauge theories support regular

monopole solutions with the action (1.3) was made by ’t Hooft and Polyakov

[’tHo74, Pol74]. The exact solution of charge 1 with λ = 0 was given by

Prasad & Sommerfield [PS75], and is spherically symmetric. It has, however,

been shown [WG76] that no spherically symmetric monopoles exist for k > 1,

although axially symmetric toroidal configurations are always a possibility in

this case. Charge 2 monopoles were studied soon thereafter by a variety of

methods, although formulæ for the Higgs field are only known explicitly on

the coordinate axes. The techniques used include Ward’s adaptation of the

twistor construction of instantons [War81] and the approach of Forgács et

al. in terms of integrable systems and Bäcklund transformations [FHP81], while

many of the analytical details were studied by Jaffe & Taubes [JT80]. We will

focus primarily on Nahm’s adaptation of the Atiyah-Drinfeld-Hitchin-Manin

(ADHM) construction of instantons [Nah80, AHDM75], which is the method

most easily applicable to k > 2, and a working description of this technique is

given in the following section. Our discussion will draw both from the original

papers and from the exposition of Manton & Sutcliffe [MS04].

Charge k monopoles are characterised by 4k parameters, known as ‘moduli’.

Roughly speaking, for well separated monopoles, they describe the positions

and phases of the monopoles (although this interpretation fails when two mo-

nopoles are in close proximity to one another). The moduli describe solutions

to the Bogomolny equations of equal energy, an observation which provides

a method of determining the low energy dynamics of multimonopoles via the
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‘moduli space approximation’. This procedure will be discussed in section

1.4. The dimension of the moduli space was computed rigorously by Weinberg

[Wei80].

Within mathematical physics, non-Abelian monopoles appear in a variety of

settings. In cosmology, they occur as topological defects created by phase tran-

sitions in the early universe and diluted during inflation [VS94]. They played

an important part in the development of electromagnetic and strong/weak cou-

pling duality [MO77] and their existence has been predicted by string theory

[HW97] (see also section 2.4 of this thesis). M-theory has led to the Basu-

Harvey generalisation of the Nahm equations [BH05], and there has been some

headway into understanding monopoles in the ‘bulk’ spacetime of the anti-de

Sitter/conformal field theory correspondence [Sut10]. Although direct exper-

imental evidence of monopoles is lacking, effective monopoles have been de-

tected in condensed matter contexts, most notably in spin ices [MT+09]. A

brief overview of these topics is given in [Raj12].

1.3 Nahm Transform and Spectral Curves

In this section we discuss two tools which prove useful in the study of mono-

poles: the Nahm transform and spectral curves. The key characteristics of these

methods will be described, paving the way for their subsequent application to

monopoles on R2 × S1 later in this thesis.

The Nahm transform provides a bijection between solutions to the Bo-

gomolny equations and solutions of the Nahm equations on a line segment

[Nak93]. The transformed set of equations is usually easier to address, both

analytically and numerically, than the Bogomolny equations. However, carry-

ing out the inverse transform to obtain the monopole fields must generally be

performed numerically. The other strength of the Nahm transform is the way

spatial symmetries are encoded, which allows the construction of monopoles

of high symmetry such as those of the Platonic solids, [HS96].

Spectral curves describe monopoles by means of their scattering data, and

are related to the Nahm description by the Lax formalism. Knowledge of the

allowed polynomial form of the spectral curve gives information about both

the monopole and Nahm transformed fields, as well as indicating the spatial

locations of the monopoles.
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1.3.1 Nahm Transform

The Nahm transform extends the ADHM construction of instantons by re-

placing the linear ADHM operator by a differential operator built from the

monopole fields and twisted by a parameter z ∈ R which is interpreted as a

coordinate on the reciprocal space. For the SU(2) monopole of charge k the

procedure was well described by Corrigan & Goddard [CG84], which we now

summarise.

Given su(2)-valued monopole fields Φ(x), Ai(x) we construct the differen-

tial operator

∆̃ = σi ⊗ (12∂i + Ai)− 12 ⊗ (iΦ + z)

where we make use of the Pauli matrices with conventions

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0

0 −1

)
.

The idea is to look for k independent spinors vα satisying ∆̃vα = 0. These are

arranged into the columns of a 2× k matrix V normalised to
∫
V †V d3x = 1k.

From V we construct three anti-Hermitian k× k matrices Ti(z) defined in the

domain z ∈ (−1
2
, 1

2
),

Ti(z) = −i

∫
R3

xi V
†V d3x.

These are known as ‘Nahm matrices’ and satisfy the Nahm equations

dTi
dz

= −εijkTjTk (1.10)

together with the boundary condition that the {Ti} have simple poles at z =

±1
2

whose residues define a k-dimensional representation of su(2). Solving the

Nahm equations can be a lot simpler than tackling the Bogomolny equations

directly. For example, the charge 1 monopole has Ti = xi (where the {xi}
denote the Cartesian coordinates of the location of the monopole), while the

charge 2 case can be solved in terms of elliptic functions (see [BPP82] for

details). In general, the trace of the Nahm matrices gives the monopole centre

of mass, allowing us to consider only their trace free part. For convenience,

we introduce the terminology ‘forward Nahm transform’ to refer to the above

procedure of mapping from monopole fields to Nahm equations.

Given a solution to the Nahm equations, we will use the ‘inverse Nahm

transform’ to construct the monopole fields from the Nahm data. This requires
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us to find the two dimensional kernel Ψ of the operator

∆ =12k ⊗ ∂z −
(
σi ⊗ 12 x

i
)† − i (σi ⊗ Ti)†

=

(
1k(∂z − x3) + iT3 −1k(x1 − ix2) + i(Ti − iT2)

−1k(x1 + ix2) + i(T1 + iT2) 1k(∂z + x3)− iT3

)
(1.11)

with Ψ normalised to ∫ 1/2

−1/2

Ψ†Ψ dz = 12.

Then the monopole fields satisfying the Bogomolny equations (1.1) are given

by

Φ(x) = i

∫ 1/2

−1/2

zΨ†Ψ dz Ai(x) =

∫ 1/2

−1/2

Ψ†∂iΨ dz.

In chapter 2 we will make use of the result of Braam & van Baal [BvB89] that

a generalised Nahm transform maps between solutions of self-duality equations

on reciprocal 4-tori. By rescaling the radii of these tori, and suitably amending

the boundary conditions, this picture has led to a variety of Nahm transforms

on different manifolds, as has been summarised by Jardim [Jar04]. In later

chapters, we will see how the R3 monopole Nahm data arises as a limit of the

Nahm data of a periodic monopole.

The Nahm transform also allows the construction of monopoles of higher

gauge group, in which case the Nahm matrices are defined over a sequence of

line segments with certain matching conditions. For an example of this use,

see [HS97].

1.3.2 Spectral Curves

Hitchin [Hit82] defines the monopole spectral curve as the set of lines γ in R3

on which the operator

(Dγ + iΦ)v = 0 (1.12)

has a normalisable solution. This set of lines describes a complex curve on

TCP1, the tangent space to the Riemann sphere. In complex coordinates (ξ, η),

where ξ is a coordinate on the Riemann sphere and η is a suitably normalised

coordinate on the tangent plane at ξ, the spectral curve of a monopole centered

at x = (x1, x2, x3) is

η − (x2 − ix1) + 2x3ξ + (x2 + ix1)ξ2 = 0,
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which is known as the ‘star’ at (x1, x2, x3). The spectral curve for well separated

higher charge monopoles is closely approximated by the product of stars at each

monopole location.

From the Nahm transform perspective, the same spectral curve is obtained

by expressing the Nahm equations (1.10) in Lax form with ξ as a spectral

parameter,

dT

dr
= [T, T+] where

{
T = (T1 + iT2)− 2iT3ξ + (T1 − iT2)ξ2

T+ = −iT3 + (T1 − iT2)ξ

then the characteristic equation det(1kη+T (ξ)) = 0 is the k-monopole spectral

curve. Conversely, given a spectral curve we can deduce the eigenvalues of the

Nahm matrices.

The fact that the spectral curve is a polynomial in both η and ξ, together

with other data that can be derived relating the coefficients of the various

terms, restricts our attention to a specific form of spectral curve. One can

then impose certain symmetries on the spectral curve to obtain the curve cor-

responding to a monopole with these symmetries, such as the axially symmetric

case [Hit82] or to families of solutions with Platonic symmetry [HS96]. Many

of the features of the spectral curve of monopoles in R3, including the approx-

imate factorisation of the spectral curve and the way symmetries are encoded,

extend to the periodic case, as will be seen in chapters 3 and 6.

It should be noted in this section that the scattering data (1.12) is only

holomorphic if the operator (Dγ +iΦ) is compatible with the Bogomolny equa-

tions [Hit82]. For instance, holomorphicity of scattering in the z direction,

[Dx + iDy, Dz + iΦ] = 0, (1.13)

is implied by the Bogomolny equations.

1.4 Moduli Space

The force between two ’t Hooft-Polyakov monopoles was computed by Man-

ton [Man77], who found that for monopoles of equal charge the scalar at-

traction exactly cancels the electromagnetic repulsion. This allows the exis-

tence of the static multimonopole solutions described in section 1.2. Intro-

ducing a Lorentzian time direction, one can begin to consider the behaviour

of multimonopoles with initial velocities. At large separations, the lack of
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inter-monopole forces implies that the monopoles move with constant velocity.

Studying the detailed behaviour at small separations in principle requires a

solution to the full second-order field equations obtained from the action (1.3)

in Minkowski space. However, a major result in soliton theory is the ‘moduli

space approximation’ due to Manton [Man82] who showed that the dynamics

of slowly-moving monopoles can be approximated by an effective Lagrangian

on the 4k-dimensional moduli space.

The moduli spaceMk is defined as the space of admissible solutions to the

Bogomolny equations within the topological sector of charge k modulo gauge

transformations which preserve the boundary data. The zero binding energy

means that all configurations on the moduli space have the same potential

energy, so that no values of the moduli are energetically favoured. Thus, if

the initial motion is at small kinetic energy and tangent to the moduli space

then subsequent motion will remain in the moduli space (so it can be assumed

that the static Bogomolny equations are always satisfied). Rigorous results

describing the régime of validity of the approximation and the effect of radiative

corrections were provided by Stuart [Stu94]. In particular, it is found that the

smaller the initial velocity the longer the moduli space approximation can be

trusted.

Motion on the moduli space is governed by the kinetic energy, resulting in

a Lagrangian which is quadratic in the time derivatives of the moduli. This

provides a metric on the moduli space, which is constructed explicitly by taking

the L2 norm of tangent vectors, given by the perturbations (which arise due

to a small change in one of the moduli)

Ai → Ai + δAi Φ → Φ + δΦ

satisfying the Bogomolny equations (linearised in the perturbations)

Di(δAj)−Dj(δAi) = −εijk (Dk(δΦ)− [Φ, δAk]) . (1.14)

The effect of the gauge freedom on the moduli space is removed by projecting

the perturbations to the component orthogonal to the gauge orbits. Equiva-

lently, we impose that the perturbations satisfy the gauge orthogonality con-

dition

Di(δAi) + [Φ, δΦ] = 0 (1.15)
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which arises from consideration of the effect of infinitesimal gauge transforma-

tions g = (12 + ε), which map

Ai → Ai +Diε Φ → Φ + [Φ, ε], (1.16)

which, considered as perturbations, also satisfy the linearised Bogomolny equa-

tions (1.14). We ensure that perturbations are orthogonal to gauge orbits by

imposing that the kinetic energy

1

2

∫
R3

tr
(
(δAi)

2 + (δΦ)2
)
d3x

is invariant under the gauge transformation (1.16), leading to the condition∫
R3

tr (δAiDiε+ δΦ[Φ, ε]) d3x = 0.

Using the cyclic property of the trace to rearrange the commutators and in-

tegrating the first term by parts leads to the gauge condition (1.15), together

with the requirement that δA falls sufficiently fast at large radial distance. A

similar exercise for instantons gives the gauge condition Dµ(δAµ) = 0, of which

(1.15) is simply a dimensional reduction. Tangent vectors satisfying these re-

quirements are known in the literature as ‘zero modes’. The metric on the

moduli space is then given by

gab =
1

2

∫
R3

tr (δaAiδbAi + δaΦδbΦ) d3x,

where a, b = 1, . . . , 4k label perturbations arising from a change in each of the

moduli.

Parameters whose variation leads to non L2 normalisable deformations of

the fields should be kept fixed, as such perturbations require an infinite energy.

1.4.1 The Atiyah-Hitchin Metric

In general, it is hard to compute the metric on the moduli space explicitly. One

of the major successes in the field was Atiyah & Hitchin’s computation of the

metric of the 2-monopole system, [AH85, AH88]. This made use of the facts

thatM2 is of dimension 8, has a hyper-Kähler metric and an SO(3) symmetry
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group. Furthermore, the centre of mass can be factored out,

M2 ' R3 × S1 ×M0
2 / Z2,

where the quotient by Z2 is due to centering the total phase (for a description

in terms of Donaldson rational maps see [MS04]) andM0
2 has dimension 4. As

we shall see, for the periodic monopole we have no choice but to factor out the

centre of mass.

The Atiyah-Hitchin metric has two important geodesic submanifolds, which

are known as the Atiyah-Hitchin cone and Atiyah-Hitchin trumpet. The first of

these describes planar scattering, including the celebrated 90◦ scattering angle

for head-on collisions (in which case there is an intermediate step compris-

ing the axially symmetric 2-monopole discussed in section 1.2). The Atiyah-

Hitchin trumpet allows for full three dimensional motion of the monopoles,

and assigns to them an electric charge due to variation in the phase parameter

(such ‘dyon’ solutions were considered by Julia & Zee [JZ75]). Details of these

geodesics are discussed in the book [AH88], and it will be seen in chapter 4 that

qualitatively similar geodesic submanifolds can be identified for the periodic

monopole.

The asymptotic form of the Atiyah-Hitchin metric simplifies considerably,

and was first computed by Manton [Man85]. The metric is of Taub-NUT type

with negative mass parameter, and can be written in Gibbons-Hawking form

[GH78], an observation which can equally be made for periodic monopoles. For

a radial coordinate r, spherical angular coordinates θ and φ and a phase angle

ψ, the asymptotic (large r) metric is

ds2 =

(
1− 1

r

)(
ṙ2 + r2θ̇2 + r2 sin2(θ)φ̇2

)
+

(
1− 1

r

)−1 (
ψ̇ + cos(θ)φ̇

)2

(1.17)

and the corrections to this are exponentially small. Manton’s calculation is

based on using the forces between well separated monopoles to write down an

effective Lagrangian in terms of the relative positions of the monopoles. This

procedure can be employed more generally, and is of use when the complete

details of the fields are unknown: the periodic monopole is a prime example

[ChK02].

For other cases in which the metric is unknown, one can obtain geodesic

submanifolds as the fixed point of some spatial symmetry group acting on the
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monopole space. This has allowed, for example, the identification of one param-

eter families of a charge 3 monopole scattering process [HS96] with tetrahedral

symmetry. Similar arguments will be made to describe geodesic submanifolds

of the monopole chain in section 4.3.6.

Another example for which the full metric is known is the Lee-Weinberg-Yi

metric [LWY96] for certain SU(3) monopoles. In this case, head-on scattering

leads to a 180◦ scattering angle. Again, similar results have been found for the

periodic monopole (sections 3.4.3 and 4.3.2).

Finally, we remark that the bijection between the monopole and Nahm

spaces leads to an isometry in their moduli spaces. This allowed Houghton

et al. [HIM99] to explicitly regain the Atiyah-Hitchin metric from the Nahm

data. These findings inspire the approach taken in chapters 3 and 4 to deduce

the moduli space metric of the periodic monopole from the Nahm transformed

fields. The results can then be favourably compared with the asymptotic metric

deduced from the monopole side of the transform [ChK02].

1.5 Periodic Instantons

Before commencing our discussion of periodic monopoles, it will be useful

to review the better studied periodic instanton, or ‘caloron’, with which the

periodic monopole shares qualitative features.

This system was motivated by Harrington & Shepard [HS77] by its con-

tribution to the vacuum state of a thermal field theory (with the instanton

corresponding to the zero temperature limit), who also constructed the first

examples, [HS78]. The construction makes use of the JNR family of instan-

tons, [JNR77], in which a charge n instanton gauge potential is given by the

derivative of a sum over (n + 1) weighted double poles in R4. This allows a

construction of calorons by equally spacing the poles along a line (as it stands,

this construction does not work for the doubly periodic instanton as the double

sum required for this case is divergent). The effect of altering the relative size

and period of the instantons in the chain was studied by Gross et al. [GPY81],

where it was shown that taking the small period (infinite temperature) limit

of the caloron recovers the Prasad-Sommerfield monopole [PS75].

Garland & Murray [GM88] noticed that calorons can be understood as

monopoles whose gauge group is a loop group (an affine extension of a semi-

simple Lie group). In sections 2.4 and 3.5 we will describe the string theoretical

interpretation of this result, as applied to the compactified case (i.e. doubly
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periodic instantons as periodic monopoles whose gauge group is a loop group).

This leads to the interpretation of a caloron as being made up of constituent

monopoles. In fact, an SU(N) caloron may be composed of up to N monopole

constituents, [KvB98a]. In order for a caloron to display the maximal number

of constituent monopoles, the boundary conditions must be sufficiently general.

In particular, the asymptotic holonomy of the gauge potential in the periodic

direction must be non-trivial. A consequence of this is that the Harrington-

Shepard caloron does not split into constituents. Solutions with constituents

were constructed by Kraan & van Baal [KvB98b] using the Nahm transform

(which for the caloron leads to Nahm data on a circle), and by Lee & Lu [LL98],

who suitably glued together the Nahm data of the two constituent monopoles.

Other systems of periodic solitons have also been studied, such as periodic

Skyrmions, periodic sigma models and doubly periodic instantons. Some ex-

amples can be found in the references [FP04, Har08]. In all of these cases there

is a splitting into constituents, and as we shall see, the periodic monopole is

no different.
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Monopole Chains

The Bogomolny equations on R2 × Ŝ1 were first studied by Cherkis & Ka-

pustin [ChK01, ChK02, ChK03].2 We refer to solutions of these equations

interchangeably as periodic monopoles, or monopole chains when visualised as

an embedding into R3 (there is the interesting question of non-periodic per-

turbations to such a chain, although this lies outside the scope of this thesis).

Approximate analytical and numerical solutions of topological charge 1 and

2 were constructed by Ward and Harland [War05, HW09] using the Nahm

transform, while numerical studies were also carried out by Dunne & Khemani

[DK05]. The remainder of this chapter describes the setup and introduces the

spectral curve and Nahm transform for monopole chains.

2.1 Monopole Data

As discussed in chapter 1, BPS monopoles are described by a dimensional

reduction of the anti-self-dual Yang-Mills equations to three Euclidean dimen-

sions. Then the component of the gauge potential in the suppressed direction

becomes a scalar Higgs field Φ̂ valued in the Lie algebra su(N) and satisfying

the Bogomolny equations (1.1)

F̂ = − ∗ D̂Φ̂. (2.1)

In this thesis, we will be concerned with solutions periodic in one of the

remaining spatial directions, and will use coordinates x + iy = ρeiθ = ζ ∈

2 From this point on we use the notation ˆ to distinguish the monopole fields and physical
space from their Nahm transformed counterparts.

15
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C ∼= R2 and z ∈ R/βZ. The fields at large ρ are chosen to match those of an

Abelian chain, such that Φ̂∞ behaves as log(ρ), and the Bianchi identity (1.5)

requires Φ̂∞ to be a harmonic function on R2× Ŝ1. Imposing strict periodicity

in θ and z then requires θ dependence to enter Φ̂∞ at O(ρ−1) and z dependence

to contribute at O(ρ−1/2e−ρ), well within the core non-Abelian region.

Monopoles for gauge group SU(N) have been discussed by various authors,

[Wei80, War82, LWY96, MS04, Har08, Shn]. In the case of SU(N) periodic

monopoles the boundary data is defined by an N -component vector of integers,

`. Recalling that the monopole fields are valued in su(N) (so are N × N

traceless anti-Hermitian matrices) and noting that we are free to permute the

entries in Φ̂ by a choice of gauge, the elements of ` satisfy

N∑
i=1

`i = 0 and `i ≥ `i+1. (2.2)

We also have real vectors v and b and a complex vector µ, whose components

again sum to zero, and obey vi ≥ vi+1 if `i = `i+1. These coefficients (as well

as other subleading terms) are the parameters and moduli of a solution. From

now on we make the distinction between parameters, which must be kept fixed

(such as the boundary conditions and the centre of mass) and moduli, which

are allowed to vary. The physical significance of the parameters and moduli of

the periodic monopole will be identified in section 3.1.

At large radial distance ρ the fields must resemble a chain of Dirac mono-

poles, and are hence Abelian and diagonal, such that (up to a choice of gauge)

the N diagonal entries are

−iβΦ̂∞= ` log(ρ) + v + Re(µζ−1) +O(ρ−2)

iβÂ∞=
(
`θ + b+ Im(µζ−1)

)
dz +O(ρ−2), (2.3)

and are combined, defining v = v + ib, into

βφ̂∞ = −iβ(Φ̂− iÂz)∞ = ` log(ζ) + v + µζ−1 +O(ρ−2). (2.4)

Such a monopole can be constructed by a minimal embedding of fundamen-

tal SU(2) monopoles in the (N − 1)-dimensional co-root space with integer

magnetic weights ki arranged into a vector k,

` =
N∑
i=1

`iei =
N−1∑
i=1

kiβ
∗
i
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Figure 2.1: Root diagram for SU(3) showing magnetic weights (k1, k2) allowed
by (2.2).

where for convenience the co-root vectors are represented in terms of N -

dimensional vectors β∗i = ei − ei+1 and the {ei} are basis vectors for `. The

SU(3) case is illustrated in figure 2.1. It is possible to convert between the

elements of ` and those of k using

kj =

j∑
i=1

`i and `i = ki − ki−1, (2.5)

where it should be understood that k0 = kN = 0 and we define K = max{ki}.
Throughout this thesis, a specific class of SU(N) periodic monopole will often

be referred to simply by its (N − 1)-dimensional charge vector k.

As is done for monopoles in R3 [War82, MS04, Har08], fundamental mo-

nopole masses are defined by the pattern of symmetry breaking of the leading

terms in Φ̂. In particular, the ith mass is

mi = `i − `i+1

where an interpretation as a physical mass requires the specification of a radial

cut-off, due to the logarithmic growth of the Higgs field at large ρ. If all the

masses are non-zero (in other words, if the leading diagonal entries in Φ̂ are

distinct), the SU(N) gauge symmetry is maximally broken by the asymptotic

Higgs field to U(1)N−1. Otherwise, there may be unbroken subgroups according

to whether the corresponding vi are the same or different. This can occur for
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configurations lying on the lines k1 = 2k2 and k2 = 2k1, and we will see

examples of this in section 3.4.2. On the other hand, if k1 = k2 we are open

to the possibility of an SU(2) monopole ‘trivially embedded’ into SU(3) via a

negative root. This will be discussed further in section 3.4.1.

Motivated by (1.8), we define the total monopole charge

q = − lim
R→∞

∫
ρ=R

tr(F̂ Φ̂)

4π‖Φ̂‖
(2.6)

where integration is over the 2-torus at radial infinity, the length of the Higgs

field is defined by ‖Φ̂‖2 = −1
2
tr(Φ̂2) and tr(·) denotes the trace in the Lie

algebra. Applying (2.6) to the su(N)-valued fields (2.3), the total charge, q, is

given by the product of fundamental charges and masses,

q2 ∝
N∑
i=1

`2
i =

N−1∑
i=1

kimi. (2.7)

A similar result holds for SU(N) monopoles in R3 [Wei80], although it is note-

worthy that in contrast to the R3 case (1.9) both the charges and masses

are now determined from the leading asymptotic term in Φ̂ (which explains

why q2, not q, appears in (2.7)). Consequently, as described in the preceding

paragraph, certain patterns of symmetry breaking can only be achieved by a

particular choice of fundamental charges.

As pointed out in [ChK01], the total energy is logarithmically divergent,

such that the Bogomolny bound (1.4) is

E = −1

2

∫
R2×Ŝ1

tr(∗D̂Φ̂ ∧ D̂Φ̂) =−1

2

∫
ρ=R

tr(Φ̂ ∗ D̂Φ̂)

=
π

β

N∑
i=1

`i (`i log(R) + vi) (2.8)

and we understand the Bogomolny equations to give a solution which minimises

the energy in a region with R large but finite. The appearance of q2 in the

leading term of (2.8) supports our identification of the {mi} as the masses of

the constituent monopoles.

As is done for the periodic instanton (section 1.5), it is useful to consider

the holonomy in the periodic direction. Explicitly, we are to solve the matrix

equation

∂zV (ζ, z) = φ̂ V (ζ, z) (2.9)
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with boundary condition V (ζ, 0) = 1N , for V (ζ, β); in particular this fixes

det(V ) = 1. Under a gauge transformation with ĝ = ĝ(ζ, z) ∈ SU(N), the

fields and holonomy transform as

Φ̂ 7→ ĝ−1Φ̂ĝ

Â 7→ ĝ−1Âĝ + ĝ−1dĝ

V (ζ, z) 7→ ĝ−1(ζ, z)V (ζ, z)ĝ(ζ, 0),

where ĝ(ζ, 0) is introduced to ensure the boundary condition on V (ζ, z) is

satisfied. As long as ĝ is strictly periodic, i.e. ĝ(ζ, β) = ĝ(ζ, 0), then the

characteristic polynomial of V (ζ, β) is gauge invariant. Asymptotically, using

(2.4), the holonomy takes the form

V (ζ, β) = diag
(
ζ`1ev1(1 + µ1ζ

−1 +O(ρ−2)), . . .
)
. (2.10)

The analysis of the Bogomolny equations carried out by Cherkis & Kapustin

[ChK01] establishes that the characteristic equation of the holonomy is in fact

holomorphic, and is thus a polynomial in ζ.

2.2 Nahm Transform

It is shown in [CG84, BvB89] that the Nahm transform provides a bijection

between self-dual Yang-Mills fields on the torus T̂ 4 and the reciprocal torus T 4.

It is believed [Jar04] that other self-dual Yang-Mills systems can be obtained

by suitable rescalings of the tori. In the present case, it is therefore expected

that the Nahm dual to the monopole on R2 × Ŝ1 is a Hitchin system [Hit87]

on the ‘Hitchin cylinder’ R× S1 where the S1 has the dual period 2π/β, and

this correspondence was established in [ChK01].34 Following the notation of

[War05, HW09] the cylinder is parametrised by the coordinates r ∈ R and

t ∈ R/(2π/β)Z, which are combined into a complex coordinate s = r+ it. The

Hitchin fields are a dimensional reduction of the anti-self-duality equations

(1.2) with A1 = As +As̄, A2 = i(As−As̄), A3 = 1
2
(Φ−Φ†), A4 = −1

2
i(Φ + Φ†)

valued in u(K) (or su(K) if the monopole centre of mass is fixed at the origin).

3 The fact Hitchin equations are conformally invariant allows us to map solutions to other
manifolds, including R2 or S2. We choose the cylinder to keep explicit the link with the
Nahm transform. This gains particular relevance when we make the comparison with
doubly periodic instantons in section 3.5.

4 This argument also suggests that the doubly periodic monopole, or monopole on R× T 2,
is self-reciprocal under the Nahm transform.
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This gives

Fss̄ = −1

4
[Φ,Φ†] Ds̄Φ = ∂s̄Φ + [As̄,Φ] = 0 (2.11)

with † denoting the complex conjugate transpose.5 We shall often refer to this

system of Hitchin equations on a cylinder as ‘Nahm/Hitchin data’, in order

to emphasize the fact that the Nahm data is given by Hitchin equations. The

monopole fields are recovered, up to a gauge, by finding solutions of the inverse

Nahm operator (motivated by the R3 case, equation 1.11),

∆Ψ =

(
1K(2∂s̄ − z) + 2As̄ 1Kζ − Φ

1K ζ̄ − Φ† 1K(2∂s + z) + 2As

)
Ψ = 0. (2.12)

For SU(N) periodic monopoles, Ψ is a (2K × N) matrix subject to the nor-

malisation condition ∫ ∞
−∞

dr

∫ π/β

−π/β
dt (Ψ†Ψ) = 1N . (2.13)

One can then, in principle, construct the monopole fields using

Φ̂ = i

∫ ∞
−∞

dr

∫ π/β

−π/β
dt (rΨ†Ψ), Âi =

∫ ∞
−∞

dr

∫ π/β

−π/β
dt (Ψ†∂iΨ). (2.14)

Gauge transformations ĝ acting on the monopole fields and g and h on the

Nahm fields transform Ψ as

Ψ(s; ζ, z) 7→ U(s)−1Ψ(s; ζ, z) ĝ(ζ, z). (2.15)

where U(s) = h⊗ g(s), with h a constant 2× 2 matrix serving to permute the

entries in ∆ and also those of Ψ. This freedom to rearrange makes it evident

that it is irrelevant whether the derivatives ∂r and ∂t are introduced in the

same or different entries of ∆, the two configurations differing only by a choice

of gauge.

Finally, it should be noted that in the β → 0 limit the Nahm transform

is expected to be self-reciprocal, mapping between two Hitchin systems of

different rank and boundary conditions. Evidence for this is provided in section

5.2.

5 In this context Φ should more properly be thought of as a 1-form Φds, [Hit87].
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2.3 Spectral Data

Following Hitchin [Hit82], we are interested in describing the periodic monopole

by means of a holomorphic curve on the twistor space of R2 × S1. The key

observation of [ChK01, Che07] is that one can restrict to scattering in the

periodic direction and consider the characteristic equation of the z-holonomy,

det(1Nw − V (ζ, β)) = 0, which relates monopole data to Nahm data through

the parameter w = eβs. This provides a holomorphic curve S in C×C∗ known

as the monopole spectral curve, which for an SU(N) periodic monopole of

charge k is

wN + P1,k1(ζ)wN−1 + . . .+ PN−1,kN−1
(ζ)w + (−1)N = 0 (2.16)

where the Pi,ki(ζ) denote polynomials in ζ with leading term proportional to

ζki . For SU(2) chains this can be written

bkζ
k + bk−1ζ

k−1 + · · ·+ b1ζ + (b0 + w + w−1) = 0. (2.17)

The relation (2.16) shows that by performing a coordinate redefinition w 7→
w−1 the largest of the ki (if it is unique) can be chosen to lie in the first half

of the entries of k. Referring to the SU(3) case (figure 2.1), this amounts to

identifying the regions on either side of the line k1 = k2, and we will choose to

work with the configurations below that line.

In addition to the monopole spectral curve (2.16), Cherkis & Kapustin

[ChK01, ChK03] introduce a second, equivalent, spectral curve relating the

coordinate on R2 in the monopole space to the characteristic equation of the

Hitchin Higgs field Φ,

det(1Kζ − Φ(s)) = 0 ⇒ ζK − tr(Φ)ζK−1 + . . .+ (−1)Kdet(Φ) = 0,

(2.18)

where the intermediate terms are given by symmetric polynomials in the eigen-

values of Φ. By rewriting (2.16) as a polynomial in ζ, a comparison can be

made with the coefficients of (2.18) to obtain gauge invariants of Φ. In par-

ticular, it should be noted that det(Φ) will have singularities at finite |r| if

K appears more than once in k. Smooth behaviour at large |r| requires the

introduction of singularities, both to the monopole and Hitchin fields.

We remark on the similarity of the definition of the spectral curve of the

periodic monopole to the scattering data used for monopoles in R3 (see section
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1.3.2), and in particular to scattering data in the periodic (z) direction. In

section 3.1 we will see that this spectral data is insensitive to half of the mod-

uli (in particular, z separations and relative phases between the monopoles).

The remaining moduli can be introduced to the spectral curve by the use of

parabolic line bundles [Harb], where additional data is added to the singular

points of the spectral curve, at (w, ζ) = (0,∞) and (∞,∞).

One can define complementary spectral data from scattering along a general

direction of R2×S1, [Che07]. The resulting spectral curve has not been studied

in detail, but it is reasonable to expect that it would encode the remaining

moduli. Note furthermore that although a similar compatibility condition to

(1.13) can be given in spherical polar coordinates, it is not possible to do

this in cylindrical polars. Consequently the problem cannot be simplified by

restricting to scattering data along lines containing x = y = 0 and orthogonal

to z (as might be tried as a näıve extension of the Jarvis rational map approach

[MS04]).

2.4 String Theory Setting

The relation between periodic monopoles and compactified supersymmetric

gauge theories is explained in detail in [Kap98, ChK01, ChK03]. It provides

a physical context for the root structure presented in section 2.1, as well as

a supersymmetric gauge theoretical interpretation of the spectral curve and

moduli space. The type IIB setup of interest consists of N parallel D5-branes

extended along the x0-x5 directions and separated along x6, with x3 compact-

ified on a circle. Ending on each of the ith pair of adjacent D5-branes we have

(N − 1) stacks of ki D3-branes extended along the x0-x2 directions with finite

extent in x6. From the point of view of the D5-brane system, each of the D3-

branes is seen as a fundamental SU(2) periodic monopole of type i localised

in the x3-x5 directions of the D5-brane worldvolume, and translationally in-

variant along x0-x2. Performing a T -duality in the x3 direction returns a IIA

system of D4-branes extended along x0-x3, x6, ending on N other D4-branes

extended along x0-x2, x4, x5. The field equations on the (x3, x6)-cylinder are

nothing other than the Hitchin equations of section 2.2. The tension between

the D4-branes causes them to deform, such that the x6 direction of the cylinder

becomes of infinite extent.
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0 1 2 3○ 4 5 6 7 8 9

D5 x x x x x x

D3 x x x x

T3

y
0 1 2 3○ 4 5 6 7 8 9

D4 x x x x x

D4 x x x x x

Introducing n+ and n− semi-infinite D3-branes ending on the first and N th D5-

branes is equivalent to the introduction of Dirac singularities to the monopole

system. Compactifying the x6 direction, such that the left and right D3-branes

coincide, is equivalent to adding an N th root to the Lie algebra su(N). The

duality described above then leads to Hitchin equations on the 2-torus (x3,

x6). Such a system of singular monopoles and the relation of the torus to the

Nahm data of the doubly periodic instanton will be discussed in section 3.5.





3

The Spectral Approximation

This chapter considers the limit of large monopole size to period ratio and de-

scribes an approximation which accurately describes the periodic monopole in

this limit. The motivation for this approach is Ward’s approximate analytical

evaluation of the inverse Nahm transform [War05], together with the study of

the spectral curves carried out by Cherkis & Kapustin [ChK01, ChK03]. The

recipe for the spectral approximation for the charge 1 case is given in section

3.1. This is then applied to the charge 2 monopole chain (section 3.2), allowing

us to consider geodesics on the resulting moduli space (section 3.3). A gener-

alisation to higher gauge groups is considered in section 3.4, and the relation

to the doubly periodic instanton is described in section 3.5. A discussion of

the application of the spectral approximation to higher monopole charges is

postponed to chapter 6. Evidence for the validity of the approximation will

be presented throughout the remaining chapters. The work in this chapter

was published in JHEP with the title Periodic monopoles from spectral curves,

[Mal13].

3.1 Introducing the Approximation

Due to the difficulty of finding exact solutions to the inverse Nahm operator

(2.12) and motivated by Ward’s approximate k = (1) solution [War05],6 we will

consider a construction based on the spectral curves (2.16, 2.18). The following

paragraphs describe the procedure to be followed and in the remainder of this

section we use the results of [War05] to illustrate the application and régime

of validity of the approximation.

6 Recall that we are using the notation defined on page 17 for the charge vector k.

25
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Given an SU(N) monopole with charge vector k it is straightforward to

write down the spectral curves (2.16) and (2.18), where the polynomials Pi,ki(ζ)

can be expressed in terms of the data v, µ. We will be interested in the spectral

points, those values of ζ at which two or more of the eigenvalues of V (ζ, β)

coincide. These points are located by finding the zeros of the discriminant

Dk of the polynomial in w (as a function of ζ). Our interest in the spec-

tral points stems from the finding in the k = (1) case, discussed in section

3.1.1, that peaks in energy density are always located at the spectral points

(although there can be exceptions when two spectral points coincide). It can

be checked by explicit calculation for small N that the highest power of ζ in

Dk is 2
∑N−1

i=1 ki, and we expect there to be this many spectral points (this has

been checked as far as N = 4). We will see from various examples that away

from the central region of the moduli space, the spectral points occur in pairs,

forming
∑N−1

i=1 ki fundamental monopoles. This observation is reminiscent of

the splitting of periodic instantons into monopole constituents (section 1.5).

However, for the periodic monopole, constituents are always present as the

holonomy is always non-trivial due to the logarithmic growth of the entries

of φ̂. From (2.10), a trivial asymptotic holonomy requires `i = 0, ∀i. Al-

though this condition cannot be achieved for the regular SU(2) monopole, it

is possible to set some of the `i = 0 for higher rank gauge group or upon the

addition of Dirac singularities. These cases will be considered in sections 3.4

and 3.5, respectively, and we will see that there is a corresponding pole in the

Nahm/Hitchin data.

The spectral curve (2.16) of the SU(N) charge k periodic monopole contains

2
∑N−1

i=1 (ki + 1) real coefficients. We know from [ChK03] that the complex

coefficient of ζki in each of the polynomials Pi,ki(ζ) is a parameter determined

by the boundary data v. The centre of mass of the spectral points is factored

out by choosing µ such that the term of order ζ2
∑
ki−1 in Dk vanishes, and we

will say that such a monpole is centered.7 Overall, this yields 2
∑N−1

i=1 ki − 2

real relative moduli, precisely half the number expected were we to consider

the full three dimensional picture. This suggests our approach is insensitive

to relative z and phase differences between the fundamental monopoles, such

that its validity is expected to improve as the ratio of the monopole size to its

period becomes large. We will refer to the moduli appearing in the spectral

curve as reduced moduli, and will see in section 4.1 that in the SU(2) charge

7 It should be noted [ChK02] that the infinite mass of a periodic monopole precludes vari-
ation of the centre of mass coordinates, and that it is thus not physically meaningful to
consider an ‘uncentered’ moduli space.
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k = (2) case they parametrise a geodesic submanifold of the full moduli space

when certain symmetries are imposed.

3.1.1 SU(2) Charge 1 - Spectral Curve

We illustrate the procedure by reviewing the approximate construction of

[War05] for k = (1). In this case the asymptotic monopole field (2.4) and

holonomy (2.10) are

φ̂ =
1

β

(
log(ζ) + v + µζ−1 + . . .

)
σ3

V (ζ, β) = diag
(
ζev + µev + . . . , ζ−1e−v + . . .

)
so tr(V ) = (ζ + µ)ev holds for all ζ (all subleading terms must cancel if the

monopole fields are to be smooth) and the spectral curve is (note that the

Nahm/Hitchin fields are of rank 1)

w2 − 2(ζ + µ)w/C + 1 = 0 ζ − Φ = 0, (3.1)

with spectral points where the roots of the w polynomial coincide, i.e. at ζ =

−µ±C such that C defines the ‘size’ of the monopole and is given in terms of

the boundary data by C = 2e−v. Then by rearranging (3.1) and centering the

monopole chain by setting µ = 0, the Hitchin Higgs field is

Φ = C cosh(βs)

while the Hitchin gauge potential Ar can be set to zero by a gauge transfor-

mation and the Hitchin equations (2.11) are satisfied trivially, for constant At.

The inverse Nahm transform (2.12) requires a solution of

∆Ψ =

(
2∂s̄ − z ζ − Φ

ζ̄ − Φ† 2∂s + z

)(
ψ11 ψ12

ψ21 ψ22

)
= 0 (3.2)

(such that At is absorbed into z). For (ζ, eβs0) ∈ S, (ζ − Φ) will vanish at

βs = ±βs0 = ± cosh−1 (ζ/C) , (3.3)

such that away from the spectral curve,

ζ − Φ = ±βC(s± s0) sinh(βs0) +O(s± so)2 = ±β(s± s0)ξ +O(s± so)2
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where ξ2 = ζ2−C2. As mentioned by [War05], solutions to (3.2) are supported

near the points s = ±s0 = ±(r0+it0) on the Hitchin cylinder. The independent

solutions take the form of Gaussian peaks localised at each of ±s0, assembled

into

Ψ ≈ N

(
ξE− |ξ|E+

−|ξ|E− ξ̄E+

)
(3.4)

where

log(E±(s)) = −1
2
β|ξ|

(
(r ± r0)2 + (t± t0)2

)
− izt (3.5)

and we have chosen a different gauge to [War05], such that the monopole fields

are explicitly independent of z. Such a solution is valid when the peaks on

R×S1 are well separated, so that there are two independent solutions of (3.2).

Furthermore, the peaks must be narrow compared to the cylinder to ensure the

correct periodicity in z and t (note that away from this limit it is not possible to

extract a phase e−izt from Ψ as is done in equation 3.5, while at the same time

preserving the periodicity condition). These conditions are simultaneously

ensured if we stay away from the spectral points ζ = ±C. It follows that a

rough estimate for the domain of validity of the spectral approximation is to

require the width of the peaks in E± to be much less than the period 2π/β,

i.e.

2

√
1

β|ξ|
� 2π

β
⇒ |ζ2 − C2| � β2

π4
. (3.6)

As long as the peaks are narrow, such that the t-integral of Ψ†Ψ can be eval-

uated as an infinite Gaussian integral, the normalisation factor N is deter-

mined from (2.13) to be |N |2 = β/(2π|ξ|). After a gauge transformation

ĝ = exp(1
4

log(ξ̄/ξ)σ3) the monopole fields are

Φ̂ = ir0σ3 Âz = −it0σ3 (3.7)

Âζ =
ζ

4ξ2
e−β|ξ||s0|

2

σ1 Âζ̄ = −Â†ζ ,

with r0 and t0 defined through (3.3). We choose the branch t0 ∈ (−π/β, π/β)

and |s0| is to be understood as

|s0|2 = inf
n∈Z

(
r2

0 + (t0 + πn/β)2
)
.

It is important to note that the fact the monopole Higgs field can be read off

directly from the spectral curve (3.1) via s0 (3.3) is not simply a restatement of
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the boundary conditions, as use has also been made of the fact the coefficients

in w of the spectral curve are polynomials in ζ, whose coefficients encode the

moduli in a particular way [ChK03]. This result will be used in sections 3.2, 3.4

and 3.5 when we discuss the charge 2, SU(3) and singular periodic monopoles.

It is useful to combine the fields (3.7) into iφ̂ = Φ̂−iÂz and â = Âζdζ+Âζ̄dζ̄

(see equation 2.4). We note that â approaches zero exponentially fast away

from the spectral points ζ = ±C, and the fields are Abelian and trivially satisfy

Hitchin equations in this limit, suggesting that they are truly two dimensional.

Noting that |s0| has dimensions of β−1, we conjecture that in the limit β → 0

(where (3.6) holds for all ζ) a solution is provided by

φ̂ = s0(ζ)σ3 â = 0, (3.8)

which satisfies the Bogomolny equations with the correct boundary conditions

(2.4). The fact the fields in (3.7) and (3.8) are not smooth (they are continuous,

but not differentiable on the line x ∈ [−C,C], y = 0) means the approximation

of this section is only expected to be exact as a limiting case. As will be

seen in section 3.3, this approximation also leads to the correct asymptotic

behaviour of the moduli space metric. Futher evidence for the validity of this

approximation is provided by a numerical study of the effect of increasing the

size-to-period parameter C (see chapter 5). This procedure is equivalent to

reducing β, together with a rescaling of the x and y coordinates by
√
C.

3.1.2 Charge 1 - Energy

We use the energy density formula (1.7)

E =
1

4
∇2 |tr(Φ̂2)|

where the Laplacian is ∇2 = 4∂ζ∂ζ̄ . The Higgs field (3.7) is

Φ̂ =
i

β
Re

(
cosh−1

(
ζ

C

))
σ3 =

i

β
log

∣∣∣∣∣∣ ζC +

√(
ζ

C

)2

− 1

∣∣∣∣∣∣σ3, (3.9)

giving an energy density

E1 =
1

β2|ξ|2
=

1

β2

1√
ρ4 − 2ρ2C2 cos(2θ) + C4

. (3.10)
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Figure 3.1: An SU(2) periodic monopole. On the left is a contour plot of the
energy density (3.10) and on the right of log(disc(Φ̂)+0.001). The discriminant
vanishes on a line joining the spectral points, whose locations are indicated by
black dots on the right hand diagram. Note the loss of axial symmetry and the
appearance of constituents, which coincide when the monopole size |C| = 0
(when arg(C) can have no effect).

Contours of E1 describe Cassini ovals (the locus of points such that the product

of distances to two foci is constant) with foci at the spectral points, where the

energy is peaked, as shown in figure 3.1. The separation of the spectral points

by 2C allows us to interpret C as the characteristic size of the monopole. The

relation (3.6) gives an estimate as to when it should be possible to resolve the

monopole constituents. In particular, the spectral approximation is valid at

ζ = 0 if C � β/π. In other words, the spectral approximation holds at large

C and/or small β. The discriminant of Φ̂, defined as the square of the product

of differences between the eigenvalues of Φ̂, is disc(Φ̂) = 4r2
0. The profile of

‖Φ̂‖2 is qualitatively in agreement with numerical investigations of n equally

spaced monopoles as n is increased, [DK05].

We next use the divergence theorem to compute the total energy enclosed

in a region with ρ = R� C

V1 =
1

4

∫∫∫
ρ≤R
∇2|tr(Φ̂)2| ρ dρ dθ dz =

Rβ

4

∫
ρ=R

(
∂ρ|tr(Φ̂)2|

)
dθ

and note that the leading term of the integrand at large ρ is

∂ρ|tr(Φ̂)|2 ∼ 4

ρβ2
log

(
2ρ

C

)
,

resulting in

V1 =

∫∫∫
ρ≤R
E1 ρ dρ dθ dz =

2π

β
log

(
2R

C

)
(3.11)
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in agreement with (2.8). Finally, we note that the Higgs field (3.9) vanishes

along a line between the spectral points, figure 3.1. This observation survives

for higher charges and gauge groups, where the discriminant of the Higgs field

vanishes along lines joining the constituents in pairs. Unlike in the case of

the periodic instanton (which develops monopole constituents, section 1.5),

this illustrates how the constituents of the periodic monopole are confined.

Separating the constituents by increasing C changes the boundary data and

leads to non L2 normalisable deformations of the fields. This fixes C as a

parameter rather than a modulus.

As an alternative to using the monopole energy formula (1.7), the energy

density (3.10) can also be obtained from a Bogomolny argument for Hitchin

equations (the U(1) version of which is given in [Saç84]),

E = −tr

((
F̂ζζ̄ −

1

4

[
φ̂, φ̂†

]2
)2

+
(
D̂ζ̄ φ̂

)(
D̂ζ φ̂

†
)

(3.12)

− i

4

(
∂x(φ̂D̂yφ̂

†)− ∂y(φ̂D̂xφ̂
†)
))

.

The energy is minimised by setting the first two terms to zero, which are the

Hitchin equations and are automatically satisfied by the fields (3.8). Evaluating

the third term recovers (3.10). The total energy can be computed using Green’s

theorem in the plane, giving the energy (3.11) up to a factor of β for the z

integral.

3.2 Charge 2

In this section we apply the spectral approximation to the SU(2) monopole of

charge k = (2), which has two real reduced moduli. Using symmetries of the

spectral curves this can be reduced to two one-parameter families, although

we withhold showing that this two dimensional reduced moduli space is itself

a geodesic submanifold of the full four dimensional moduli space until section

4.1.2.

In the limit of large monopole size to period ratio in which the spectral ap-

proximation becomes exact it is possible to compute a metric on the two dimen-

sional reduced moduli space. Its asymptotic form agrees with the ALG metric

of [ChK02], allowing numerical integration of non-trivial geodesics, which will

be considered both in the monopole space and on the dual cylinder. Finally,
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we will study two solutions of the rank 2 Hitchin system with the same spectral

curve [HW09, Hara], and briefly compare their scattering properties.

3.2.1 Spectral Approximation

The general form of the monopole spectral curve (2.16) of the charge k = (2)

periodic monopole is

w2+P1,2(ζ)w+1 = 0 with P1,2(ζ) = −
(
2ζ2 − 2BCζ −K

)
/C (3.13)

with B,K ∈ C. The spectral points are located at the values of ζ where

(P1,2(ζ))2 = 4. Fixing the centre of mass at the origin (B = 0), we expect

energy peaks at the four points

ζi = ±
√
K/2± C (3.14)

(where the ± signs are independent).8 As in the k = (1) case, C is a parameter

fixed by the boundary conditions, while K is a complex modulus. For |K|/C �
2 the spectral points occur in two pairs which are interpreted as fundamental

monopoles of size |C
√

2/K| separated by a distance |
√

2K|. It is noteworthy

that the fundamental monopoles get smaller as they are separated, an effect

of the long range Higgs field.

Motivated by (3.7) we assume the monopole Higgs field is given by Φ̂ =

iRe(s0)σ3, where s0 is obtained by rearranging the spectral curve for s(ζ),

Φ̂ =
i

β
Re

(
cosh−1

(
2ζ2 −K

2C

))
σ3 (3.15)

and compute the energy in the region |ζ| ≤ R, with R �
√
K, using (1.7) to

find

V2 =
4π

β
log

(
2R2

C

)
,

again in agreement with (2.8). Applying the divergence theorem to ∂KE for

large ρ,

∂KE∈ ∝ ∂K∂ρ|tr(Φ̂2)| ∼ ρ−3 log(ρ),

confirms that the total energy is independent of the modulus K.

8 Note that to regain the k = (1) limit we should instead fix K = 0, B 6= 0 and let C →∞.
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The energy density of a generic SU(2) periodic monopole with spectral

curve

w2 + P (ζ)w + 1 = 0 (3.16)

is obtained from (1.7) via the roots

w±(ζ) =
1

2

(
−P (ζ)±

√
P 2(ζ)− 4

)
as

E =
1

4
∇2
(
(Re(logw+))2 + (Re(logw−))2) . (3.17)

Expanding about a point ζ = ζ0 + ε, we have P (ζ) = P (ζ0) + εP ′(ζ0) +O(ε2)

and

w± =
1

2

(
−P (ζ0)− εP ′(ζ0) + · · · ±

√
(P 2(ζ0)− 4) + 2εP (ζ0)P ′(ζ0) + . . .

)
.

The energy density (3.17) is computed at ζ = ζ0 using polar coordinates ε =

ρeiθ centered at ζ0, and will be finite unless w± contains terms of order ε` with

` < 1. The energy is thus finite everywhere except at those points ζ = ζ0 for

which P 2(ζ0) = 4 (in which case the square root introduces a factor of ε1/2).

In particular, the energy density has a simple pole where the discriminant of

(3.16) vanishes. The only exception to this is when P ′(ζ0) = 0, in which case

the square root contributes a term of order ε and the energy is finite. For

the charge 2 monopole, this has the effect of giving a finite energy where two

spectral points coincide.

The preceding argument is given for its relevance to monopoles in higher

gauge groups: the quadratic spectral curve (3.16) then becomes a cubic or

higher order polynomial. A similar argument can be made regarding the po-

sitions of energy peaks at spectral points. However, as will be seen in section

3.4, it is not necessarily the case that for gauge groups other than SU(2) the

energy density should be finite when two spectral points coincide.

3.2.2 Symmetric Charge k

The spectral curve of the dihedral D2k-symmetric charge k = (k) monopole is

C cosh(βs) = ζk ⇒ Φ̂ =
i

β
Re

(
cosh−1

(
ζk

C

))
σ3.
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This time we compute the energy density using the general formula

E =
1

β2

∣∣∣∣ ∂ζP√
P 2 − 4

∣∣∣∣2 where Φ̂ =
i

β
Re

(
cosh−1

(
P (ζ)

2

))
σ3,

from which we again see that the energy density is peaked at the spectral points

unless ∂ζP (ζ) = 0 there. For the case P (ζ) = 2ζk/C, the spectral points are

located on a circle of radius ρ = C1/k and the energy density is

Ek =
k2

β2

ρ2k−2√
ρ4k − 2C2ρ2k cos(2kθ) + C4

, (3.18)

where we note that the energy density at the origin vanishes for all k > 1. The

total energy obtained from this formula is again in agreement with (2.8), while

the energy per unit charge in the region 0 ≤ ρ ≤ aC1/k is

Vk
k

(0 ≤ ρ ≤ aC1/k) =
πa2k

β
3F2

(
1
2
, 1

2
, 1

2
; 1, 3

2
; a4k

)
(3.19)

=

{
πa2k

(
1 +O(a4k)

)
/β (a < 1)

4G/β (a = 1)

where 3F2 is the generalised hypergeometric function, G ≈ 0.916 is Catalan’s

constant and we have used the following identities for the elliptic integral K(κ)

[GR94a]:

K(κ) =

∫ π/2

0

1√
1− 2κ cos(2α) + κ2

dα (κ < 1), (3.20)

4ab

∫ z

0

κ2ab−1K(κb) dκ = πz2ab
3F2

(
1
2
, 1

2
, a; 1, a+ 1; z2b

)
. (3.21)

Figure 3.2 shows how the total energy in a period cylinder, (3.19), is increas-

ingly located at its edge as k is increased. An expansion of the fields at small

and large ρ yields{
−iβΦ̂ ∼ (ρk/C) sin(kθ)σ3 (ρk � C),

−iβΦ̂− log
(
2ρk/C

)
σ3 ∼ (2ρk/C)−2 cos(2kθ)σ3 (ρk � C).

These results resemble those found for spherical magnetic bags of large charge,

as first studied by [Bol06], and it is interesting to see evidence of a ‘magnetic

cylinder’ with similar properties.
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0.5 1
a

0.5

1

ΒV�H4GkL

Figure 3.2: Normalised energy per unit charge enclosed in a period cylinder
of radius aC1/k for various values of the charge k. Solid line: k = 1, dashed:
k = 2, dotted: k = 10. The energy density is increasingly located on a shell of
radius ρ = C1/k.

3.2.3 Symmetries

Geodesic submanifolds of the two dimensional reduced moduli space are ob-

tained by looking at symmetries of the spectral curve (3.13). Fixing the pa-

rameters B = 0 and C ∈ R, we impose invariance of (3.13) under a reflection

symmetry in the line θ = α/2, encoded by the map ζ 7→ eiαζ̄. This requires

that we simultaneously map w 7→ e−2iαw̄ (t 7→ −t − 2α/β) and K 7→ e2iαK̄.

The original spectral curve (3.13) is recovered by complex conjugation as long

as α is chosen to be 0 or π/4. These choices of α correspond to the one pa-

rameter families K ∈ R and K ∈ iR, respectively. In section 4.1 it will be

shown that the reduced moduli provide a geodesic submanifold of the full four

dimensional moduli space, allowing us to consider the above one parameter

families as geodesics. The definition of a metric on the reduced moduli space

will be considered in the following section.

More information about these geodesics can be obtained by considering

the π/2 rotation symmetry ζ 7→ iζ, which requires w 7→ −w (t 7→ t + π/β)

and K 7→ −K. For the one parameter families found above, passing through

K = 0 leads to the right angled scattering processes shown in figure 3.3 overleaf.

Particularly interesting points in the moduli space are K/C = ±2, where two

of the spectral points coincide at the origin (although there is no energy peak

associated with them) and K = 0, where the D2 symmetry is enhanced to D4.

This is nothing but the symmetric configuration considered in section 3.2.2.

Away from the families K ∈ R and K ∈ iR, the symmetry group is the cyclic
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Figure 3.3: Energy density contour plots for charge k = 2 within the spectral
approximation. Left: geodesic with K ∈ R (to be read from left to right
and top to bottom). Right: geodesic with K ∈ iR. The central symmetric
configurations have K = 0, while those with just two energy peaks have K/C =
±2. It is noteworthy that the axial symmetry of the ‘doughnut’ charge 2
monopole in R3 [War81] is replaced by a discrete dihedral (D4) symmetry.
Note how the constituents themselves (indicated by black dots) as well as the
monopoles as a whole undergo 90◦ scattering. The spacing between snapshots
is taken relative to the metric defined in section 3.3.

group C2. For K/C ∈ [−2, 2] the fundamental monopoles lose their individual

identities and the discriminant vanishes on a cross shape joining the four peaks.

3.3 Metric

In this section we compute the asymptotic metric of the monopole fields (3.8)

for a charge 2 periodic monopole within the spectral approximation. The

results are compared to the asymptotic metric obtained by considering the

interaction of well separated monopole chains, [ChK02]. Assuming our metric

is globally accurate when the spectral approximation is valid, we compute new

monopole scattering processes and discuss the dual motion of the zeros of the

Hitchin Higgs field Φ on the cylinder.

3.3.1 Definition

We use the general formalism for obtaining the moduli space metric from the

variation of the fields (section 1.4). For z-independent fields the metric is given
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by

g =
1

2
K̇ ˙̄K

∫
R2

tr
(
δφ̂δ̄φ̂† + δφ̂†δ̄φ̂− 4δâζ̄ δ̄âζ − 4δâζ δ̄âζ̄

)
ρdρdθ (3.22)

where it is understood that the fields satisfy the gauge condition (see section

1.4)

4
(
D̂ζδ(âζ̄) + D̂ζ̄δ(âζ)

)
= [φ̂, δ(φ̂†)] + [φ̂†, δφ̂] (3.23)

which arises as a dimensional reduction of the equivalent gauge orthogonality

condition for instantons, Dµ(δAµ) = 0. Here δ indicates differentiation with

respect to K, and ˙ is differentiation with respect to an affine time τ .

From (3.8) there is a centered charge 2 solution of the Bogomolny equations

with

βφ̂ = cosh−1

(
2ζ2 −K

2C

)
σ3 â = 0,

valid sufficiently far from the spectral points, for which the orthogonality con-

dition (3.23) holds trivially and only the first term in (3.22) contributes. As

discussed in section 3.1.1, it will be assumed that this becomes exact in the

limit of z independence. It follows that the metric is given by

g =
1

4β2
K̇ ˙̄K

∫
1√

(ζ2 −K/2)2 − C2

1√
(ζ̄2 − K̄/2)2 − C2

ρ dρ dθ. (3.24)

For given K the integral can be written in terms of products of distances to

the four spectral points, which are located at ζi(K) = ±
√
K/2± C, defining

the conformal factor Ω(K),

g =
1

4β2
K̇ ˙̄K

∫
1

|ζ − ζ1||ζ − ζ2||ζ − ζ3||ζ − ζ4|
ρ dρdθ = ΩK̇ ˙̄K.

3.3.2 Asymptotics

The integral in (3.24) can be computed in the limit in which the monopoles

are well separated, |K|/C � 2. Two of the peaks are placed near the origin,

at ζ = ±ε, and the others are centered at some large distance R along the

x-axis (for simplicity we consider K = keiϕ ∈ R). Integrating out to some ρ0

(with R� ρ0 � ε),

Ω ∼ 1

R2

∫ ρ0

0

1

|ζ + ε||ζ − ε|
ρ dρ dθ.
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This integrand is identical to that of (3.18), so

Ω ∼ 1

R2
log

(
2ρ0

ε

)
.

We recall from section 3.2.1 that the separation R and size 2ε of the funda-

mental monopoles in this limit are, respectively, given by

R = (2k)1/2 ε = C(2k)−1/2 = C/R, (3.25)

allowing us to express the metric either in terms of k or of the monopole

separation R,

g ∼ 1

k
(log(k) + c) k̇2 ∼ (log(R) + c′) Ṙ2.

The latter agrees, up to prefactors, with the asymptotic metric computed in

[ChK02], which is an ALG metric of limiting Gibbons-Hawking type [GH78].

The constants c and c′ depend on the upper limit of integration ρ0 and are

related to the redefinition of v performed in [ChK02] when a chain of n mo-

nopoles is studied in the limit of n → ∞. The same asymptotic form of the

metric will be recovered more carefully in section 4.3.

3.3.3 Integration

There are three specific values of K at which evaluation of the conformal factor

Ω(K) can be performed analytically (see figure 3.3 for the relevant monopole

configurations),

K = 0 Ω =
1

32πβ2C

(
Γ
(

1
4

))4

K → ±2C Ω ∼ − π

8β2C
log (|K ∓ 2C|) (3.26)

where, for K = 0, use has been made of (3.21). The integral diverges at

K/C = ±2, when two of the spectral points coincide and there is a double

pole in the integrand. We employ these results to ensure a correct numerical

implementation of the integral for general K, and the result is shown in figure

3.4. Further evidence for this metric will be provided in section 4.3.2.

Using polar coordinates K = keiϕ, the geodesic equations are

2Ωk2ϕ̈+ (∂ϕΩ)(k2ϕ̇2 − k̇2) + 2(∂kΩ)k2ϕ̇k̇ + 4Ωkϕ̇k̇= 0

2Ωk̈ + (∂kΩ)(k̇2 − k2ϕ̇2) + 2(∂ϕΩ)ϕ̇k̇ − 2Ωkϕ̇2 = 0 (3.27)
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Re(K)

Ω.C

Im(K)

Figure 3.4: Surface plot of the conformal factor, computed from (3.24), for
the relative reduced moduli space in the limit of large monopole size to period
ratio, with β = 2π. The infinite peaks (3.26) are at K/C = ±2.

where ˙ denotes differentiation with respect to the parameter time τ . In partic-

ular, there are geodesics with ϕ̇ = 0, for which the geodesic equations become

∂ϕΩ = 0 and

2Ωk̈ + (∂kΩ)k̇2 = 0 ⇒
∫ √

Ω dk = b1τ + b2, (3.28)

where b1 and b2 are constants of integration. As can be seen from figure 3.4

such geodesics are only possible for ϕ = 0, π/2, which are precisely the geodesic

submanifolds K ∈ R and K ∈ iR obtained by symmetry arguments in section

3.2.3.

The logarithmic behaviour of Ω in the vicinity of K/C = ±2 (equation

3.26), combined with the implicit expression for k(τ) (3.28), is sufficient to

show that geodesics can cross the points K/C = ±2 in finite parameter time.

The more complete treatment of the Hitchin system carried out in section 4.1

and [MW13], valid outside of the spectral approximation, shows a branching

behaviour at K/C = ±2, with some geodesics capable of crossing these points,

while others appear to turn back on themselves.

3.3.4 New Geodesics

In complex coordinates the geodesic equations (3.27) are

ΩK̈ + (∂KΩ)K̇2 = 0
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Figure 3.5: Geodesic for initial condition K/C = 5(1 + i), K̇/C = −0.03(1 + i)
with step size 0.03. The left hand plot displays the geodesic on the K-plane
(with shaded circles at K/C = ±2). Tick marks every 722 timesteps indicate
the positions of the energy density snapshots displayed to the right.

and its complex conjugate. We write this as a system of coupled partial dif-

ferential equations,

Ωv̇ + (∂KΩ)v2 = 0 K̇ = v

and obtain ∂KΩ by differentiating the integrand of Ω before performing the

integral (this choice of ordering was found to give greater numerical precision),

∂KΩ =
1

2

∫
(ζ2−K/2)

(
(ζ2 −K/2)2 − C2

)−3/2 (
(ζ̄2 − K̄/2)2 − C2

)−1/2
ρ dρ dθ,

which must again be integrated numerically. Then, by specifying initial val-

ues of K and K̇, geodesics are integrated using a fourth order Runge-Kutta

procedure. Two such non-trivial geodesics are displayed in figures 3.5 and 3.6,

which are to be compared with those of figure 3.3. It is worth noting that

geodesics crossing the line segment −2 < K/C < 2 (figure 3.5) scatter by

swapping constituents, otherwise there is glancing scattering and each funda-

mental monopole retains its identity (figure 3.6). As was seen in figure 3.3,

a geodesic meeting K/C = ±2 has two coincident spectral points, whose as-

sociated energy density vanishes. Numerical examples suggest that the only

geodesic to cross these points is that with K ∈ R.
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Figure 3.6: Geodesic for initial conditions K/C = 5 + 2i, K̇/C = −0.042
with step size 0.03. Tick marks are at every 950 timesteps. In this case the
fundamental monopoles retain their separate identities.

3.3.5 Zeros on the Cylinder

Rewriting the spectral curve (3.13) as a polynomial in ζ and comparing with

(2.18) we find

ζ2 − (C cosh(βs) +K/2) = 0 ⇒ −det(Φ) = C cosh(βs) +K/2.

Note how setting B = 0 means there is no term of order ζ, so Φ is traceless.

The determinant of the Hitchin Higgs field has two zeros whose locations on

the cylinder depend on K/C. In section 4.1 we will see that these values are

of interest as they provide approximate locations for peaks in the gauge field

Fss̄ on the Hitchin cylinder, defined through equation 2.11. As det(Φ) is an

even function of s, the zeros are always on opposite sides of the cylinder, at

s = ±s0. They are located on the circle r = 0 if −2 ≤ K/C ≤ 2 and coincide

at s0 = iπ/β, 0 if K/C = 2,−2. This again illustrates, as discussed in section

3.2.3, that K = 0 is a particularly symmetric case, for which the zeros are at

±iπ/2β. The motion of the zeros corresponding to the geodesics with K ∈ R
and K ∈ iR are shown in figures 3.7 and 3.8 overleaf. Other geodesics, such

as those of figures 3.5 and 3.6, lead either to glancing scattering of the zeros

(if K/C passes between −2 and 2, figure 3.5) or to them returning in the same

direction they came in from (if K/C does not cross the line segment [−2, 2],

figure 3.6).
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−0.2 −0.1 0 0.1 0.2

−0.25

0

0.25

Figure 3.7: Motion of zeros on the Hitchin cylinder for K ∈ R, where the top
and bottom edges of the diagram are identified and the z period is taken to
be β = 2π. Arrows indicate the direction of K increasing from K/C = −4.5,
with spacing determined by the velocity using the metric (3.24). The black
dots are at K/C = ±2 (note that in these cases the zeros coincide), while the
grey dots are at K = 0. Zeros at the same K are located at opposite points
on the cylinder, obtained by reversing the signs of r and t.

−0.2 −0.1 0 0.1 0.2

−0.25

0

0.25

Figure 3.8: The setup is the same as that of figure 3.7, this time with K ∈ iR.
The arrow indicates the evolution with Im(K) increasing from Im(K) = −4.5.
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3.4 SU(3) Periodic Monopoles

Monopoles in R3 have been considered for higher rank gauge groups by various

authors [Wei80, LWY96, MS04, Shn]. In this section we apply the results of

the spectral approximation to the SU(3) periodic monopole and consider the

basic properties for k = (1, 1) and k = (2, 1), which have two and four reduced

relative moduli, respectively.

Following the arguments of section 2.1, the SU(3) periodic monopole has

spectral curve (2.16)

w3 + P1,k1(ζ)w2 + P2,k2(ζ)w − 1 = 0 (3.29)

where

Pi,ki(ζ) = ai,kiζ
ki + . . .+ ai,1ζ + ai,0.

As discussed in sections 2.1 and 2.3, we take k1 ≥ k2. The root diagram was

shown in figure 2.1. Our procedure will be to express the coefficients of Pi,ki(ζ)

in terms of the boundary data (2.4, 2.10) and hence to determine the positions

of spectral points from the discriminant D(k1,k2), which we obtain from the

rank (2N − 1) Sylvester matrix,

D(k1,k2) = det


1 P1,k1 P2,k2 −1 0

0 1 P1,k1 P2,k2 −1

3 2P1,k1 P2,k2 0 0

0 3 2P1,k1 P2,k2 0

0 0 3 2P1,k1 P2,k2

 .

In analogy with sections 3.1.1 and 3.2.1, we are interested in the eigenvalues

of the holonomy V , i.e. the solutions to the cubic equation (3.29) for w(ζ).

This manipulation is performed numerically to give three eigenvalues wi =

exp(β(ri + iti)) from which Φ̂ ∝ diag(r1, r2, r3) and the quantities of interest

are9

E ∝ ∇2
(
r2

1 + r2
2 + r2

3

)
, discriminant = (r1− r2)2(r2− r3)2(r3− r1)2.

9 Recall that in the SU(2) case (section 3.1 and figure 3.1) a similar calculation gave Φ̂ =
ir0σ3, E ∝ ∇2r20 and disc. = 4r20.
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3.4.1 Trivial Embedding

For k = (1, 1), symmetry breaking is maximal (the entries of ` = (1, 0,−1) are

all distinct) and we use the standard form of the holonomy (2.10) to identify

the spectral curve coefficients with the asymptotic data v, µ by

k = (1, 1)

{
a1,1 = −ev1 a1,0 = −(µ1ev1 + ev2)

a2,1 = ev1+v2 a2,0 = (µ1 + µ2)ev1+v2 + e−v2 .
(3.30)

The discriminant is

D(1,1) = a2
1,1a

2
2,1ζ

4 + 2
(
a1,1a2,1(a1,1a2,0 + a1,0a2,1) + 2(a3

1,1 − a3
2,1)
)
ζ3 + . . . ,

(3.31)

such that the spectral points are centered if the coefficient of ζ3 vanishes,

(2µ1 + µ2)ev1+2v2 = e3v2 + 1.

As noted in section 2.3, the fact K is repeated (i.e. `2 = 0) means the Nahm

data will in general have a singularity at finite |r|, namely at s = v2/β. As we

are working with SU(3) the determinant will also have three zeros.

If v2 = 0 and µ2 = 0 (such that the centering condition becomes µ1ev1 = 1)

then the monopole is an SU(2) monopole embedded along the root β∗3 = −β∗1−
β∗2. This allows the spectral curve to be factorised,

(w − 1)
(
w2 − (ev1ζ + 1)w + 1

)
= 0.

In this limit, three of the spectral points coincide and, as expected, the mono-

pole fields resemble those of an SU(2) monopole with k = (1). In this case the

Nahm data is smooth, as the singularity coincides with one of the zeros.

v2 6= 0

We deform away from the SU(2) embedding by changing the boundary condi-

tions to allow non-zero v2. The spectral curve again factorises, and centering

identifies

a1,0 = −1

2

(
3ev2 + e−2v2

)
a2,0 =

1

2

(
e2v2 + 3e−v2

)
.

with a1,1 and a2,1 as in (3.30). The situation is shown in figure 3.9. In the

Nahm picture, the Higgs field has a simple pole at s = v2/β. For µ2 = 0 one of
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Figure 3.9: Deformations of the k = (1, 1) monopole by changing v2 away from
zero. Here v2 = 1.2 and µ2 = 0. On the left is plotted the energy density and
on the right the discriminant of Φ̂. There is no energy density associated with
the coincident spectral points on the right. The discriminant vanishes on a
line joining the spectral points on the left, and on a circle passing through the
double spectral point and surrounding the other two.

the zeros coincides with the pole, giving the two zeros characteristic of SU(2)

solutions.

µ2 6= 0

In a similar way, we can fix the boundary conditions to v2 = 0 and allow

the moduli µ1 and µ2 to vary in such a way that the spectral points remain

centered. The coefficients in (3.30) become

a1,1 = −ev1 a1,0 = −(1 + µ1ev1)

a2,1 = ev1 a2,0 = 3− µ1ev1 .

Varying µ1 separates the three coincident spectral points and introduces a

second fundamental monopole, as shown in figure 3.10 overleaf.

3.4.2 Minimal Symmetry Breaking

The k = (2, 1) spectral curve has

k = (2, 1)

{
a1,2 = −ev1 a1,1 = −µ1ev1

a2,1 = ev1+v2 + e−v2 a2,0 = (µ1 + µ2)ev1+v2 − µ2e−v2 ,

and discriminant

D(2,1) = a2
1,2

(
a2

2,1 + 4a1,2

)
ζ6 + 2a1,2

(
a1,2a2,1a2,0 + a1,1a

2
2,1 + 6a1,1a1,2

)
ζ5 + . . .



46 3 The Spectral Approximation

Figure 3.10: Deformations of the k = (1, 1) monopole with v2 = 0. On the left
are contours of energy density for µ1ev1 = 1. On the right, for µ1ev1 = 1.2. For
these examples, the discriminant pairs up the spectral points on the horizontal
axis. The line of zero discriminant joining the other two points is found to
wrap around the left hand spectral point.

Figure 3.11: D3-symmetric k = (2, 1) periodic monopole with spectral curve
w3 − ζ2w2 + 2ζw − 1 = 0. Energy density on the left and the discriminant of
Φ̂ on the right.

and the remaining coefficient, a1,0, is to be considered a modulus. In this case,

two of the `i are repeated (from (2.5) we have that ` = (2,−1,−1)), allowing

minimal symmetry breaking if v = (2v,−v,−v), for which centering implies

that

a1,2 = −e2v a1,1 = −µ1e2v a2,1 = 2ev a2,0 = µ1ev.

In fact, this condition is equivalent to the coefficient of ζ6 in D(2,1) vanishing,

which was not a possibility for the SU(2) or k = (1, 1) cases considered so far.

The coefficient of ζ4 also vanishes if we set P1,2 = −1
4
P 2

2,1, such that three of

the spectral points are sent to infinity. This leaves µ1 as a complex modulus,

and a symmetric configuration is obtained by taking µ1 = 0, such that the

coefficients of ζ2 and ζ also vanish, figure 3.11.
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Figure 3.12: Deformation of the subleading term. Starting from the shaded
point we deform parallel to β∗2.

Figure 3.13: D6-symmetric k = (2, 1) periodic monopole with spectral curve
w3 − ζ2w2 − 1 = 0. On the left is plotted the energy density and on the right
the discriminant of Φ̂.

v2 6= v3

Following [War82] we deform by adding to v a constant diagonal term δβ∗2

for some complex δ (we can rearrange the entries such that Re(δ) ≥ 0), figure

3.12. The total energy (2.8) is unchanged, but there is a different pattern of

symmetry breaking. Explicitly, a1,2 and a1,1 are unaltered, while

a2,1 = 2ev cosh(δ) a2,0 = ev
(
µ1eδ + 2µ2 sinh(δ)

)
.

Such deformations have the effect of moving the three remaining spectral points

in from infinity. A particularly symmetric example, with δ = iπ/2, is shown in

figure 3.13.
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The k = (2, 1) Nahm data is of rank 2, smooth, and has three zeros. For the

spectral curve w3− ζ2w2 + 2aζw− 1 = 0 relevant to both the cases considered

above (figures 3.11 and 3.13), the Hitchin Higgs fields have

tr(Φ) = 2aw−1 and − det(Φ) = w − w−2.

The determinant has zeros at βs = 0,±2iπ/3. This is reminiscent of the fact

that the most symmetric k = (2) configurations were found to have zeros

located symmetrically on the Hitchin cylinder (figure 3.7).

3.4.3 Speculative Geodesic

In section 4.1.2 it is shown that of the four real relative moduli of the SU(2)

monopole of charge k = (2), there is a two dimensional geodesic submanifold

corresponding to varying the two moduli present in the spectral curve. This

justifies the identification of one dimensional submanifolds in section 3.2.3.

The SU(3) monopole of charge k = (1, 1) also has four real relative moduli,

and we will assume that the two which appear in the spectral curve again

provide a geodesic submanifold.

The reduced moduli are constrained by looking for configurations invariant

under a reflection in the x-axis, which we perform by mapping ζ 7→ ζ̄ and

w 7→ w̄. This requires all the coefficients ai,j in (3.30) to be real. A symmetric

choice of boundary conditions is provided by requiring the two fundamental

monopoles to be of the same size, which we do by further imposing invariance

of the spectral curve under ζ 7→ −ζ and w 7→ w−1. These conditions result in

ev2 = −1 and

a1,1 = −ev1 a1,0 = 1− µ1ev1 a2,1 = −ev1 a2,0 = µ1ev1 − 1,

where µ1 ∈ R provides a one parameter family once we fix the remaining

boundary data v1 = 0 (note that this is a different situation to the trivial

embedding of section 3.4.1, where v2 = 0). Figure 3.14 illustrates the resulting

scattering process. As mentioned in [MS04], the monopoles scatter back off

each other in a head-on collision, although with a deformed shape. By allowing

different boundary conditions, one can in fact find one parameter families de-

scribing the less symmetric cases in which the monopoles are of different sizes,

or when one of the incoming monopoles is rotated by an angle of π/2. As

was noted for the SU(2) periodic monopole in sections 3.1.2 and 3.2.3, we find
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µ
1
 = 8 µ

1
 = 4 µ

1
 = 2

µ
1
 = 0.5 µ

1
 = 0 µ

1
 = −0.05

µ
1
 = −0.5 µ

1
 = −2 µ

1
 = −8

Figure 3.14: Sequence arising by varying the real parameter µ1 with v1 = 0 and
v2 = iπ. Plots show the discriminant of Φ̂. In the Nahm transformed picture,
motion of the zeros of det(Φ) follows a similar pattern to that shown in figure
3.7, although now with the third zero fixed at s = 0 and the singularity at
s = iπ/β. The zeros are coincident when µ1 = 4 and two of them reach the
singularity when µ1 = 0. The energy density is peaked at all the spectral
points except the central point for µ1 = 0 (see the discussion of section 3.2.1).
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that when the spectral points are well separated, those of each fundamental

monopole are joined by lines of vanishing discriminant.

3.5 Singularities and the Doubly Periodic

Instanton

In the region where z dependence can be ignored, the fields of a configuration

of positive and negative Dirac monopoles at ζ = ζ±i are

iβΦ̂ =
1

2

n+∑
i=1

log
(
|ζ − ζ+

i |2
)
− 1

2

n−∑
i=1

log
(
|ζ − ζ−i |2

)

iβÂz =
i

2

n+∑
i=1

log

(
ζ̄ − ζ̄+

i

ζ − ζ+
i

)
− i

2

n−∑
i=1

log

(
ζ̄ − ζ̄−i
ζ − ζ−i

)
allowing us to compute the holonomy and hence write down the spectral curve,(

n−∏
i=1

(ζ − ζ−i )

)
w −

(
n+∏
i=1

(ζ − ζ+
i )

)
= 0, (3.32)

and there are thus no moduli. Cherkis & Kapustin [ChK03] argue that singu-

larities can be introduced to the SU(N) periodic monopole by modifying the

spectral curve (2.16) to

P0,n−(ζ)wN + P1,k1(ζ)wN−1 + . . .+ PN−1,kN−1
(ζ)w + (−1)NPN,n+(ζ) = 0

where P0,n−(ζ) and PN,n+(ζ) are the monic polynomials appearing in (3.32).

The principal use of Dirac singularities is in changing the boundary con-

ditions on the Nahm/Hitchin data. In particular, adding K positive and K

negative singularities to the monopole with k = (K,K, . . . ,K) renders det(Φ)

bounded at |r| → ∞ (which will allow us to identify the ends of the cylinder

to form a torus), albeit with singularities at finite |r| due to K appearing more

than once in k. We illustrate this by means of the SU(2) charge k = (1) mono-

pole with two singularities, where we require the spectral curve to be invariant

under w 7→ w−1 in order that the monopole fields are valued in su(2). The

relevant spectral curve is

(ζ − ζ0)w2 − 2(aζ + b)w + (ζ − ζ0) = 0 (3.33)
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such that the boundary conditions (2.10) translate to

a = cosh(v) b = µ sinh(v)− ζ0 cosh(v)

and the spectral curve (3.33) can be rearranged to give the Hitchin Higgs field

Φ = ζ = ζ0 +
µ sinh(v)

cosh(βs)− cosh(v)
. (3.34)

Applying the method of section 3.1, the spectral points are located at

ζ =
ζ0 + b

1− a
and ζ =

ζ0 − b
1 + a

,

which are centered if ab + ζ0 = 0, and are coincident if aζ0 + b = 0. The

monopole Higgs field is

Φ̂ =
i

β
Re cosh−1

(
cosh(v) +

µ sinh(v)

ζ − ζ0

)
σ3.

In the case where a = 0 and ib = C, this simplifies to

Φ̂ =
i

β
Re cosh−1(C/ζ)σ3

which is related to the fields of sections 3.1.1 and 3.1.2 by a simple inversion

transformation ζ 7→ C2/ζ̄, with a corresponding change of boundary condi-

tions.

In analogy with monopoles appearing as constituents of periodic instantons

(see, for example, [KvB98a, KvB98b, LL98]), it is expected that the doubly

periodic instanton will be related to the periodic monopole [ChK03, FP04].

The Nahm data for the doubly periodic instanton are Hitchin equations on

a 2-torus T 2. The charge 1 case is considered in [FP04], where the Hitchin

system is Abelian. This allows the Hitchin gauge potentials to be expressed

as derivatives of a harmonic potential, and the Higgs field is chosen to be

proportional to As in order to share its singularities,

As = ∂sϕ As̄ = −∂s̄ϕ Φ = ζ0 + α∂sϕ



52 3 The Spectral Approximation

where, in our notation, the fundamental solution to Laplace’s equation on the

torus is

ϕ =
1

2
log

∣∣∣ϑ3

(
i

2π
(s̄β1 + v̄) + 1

2
+ iβ1

2β2
, iβ1
β2

)∣∣∣2∣∣∣ϑ3

(
i

2π
(s̄β1 − v̄) + 1

2
+ iβ1

2β2
, iβ1
β2

)∣∣∣2
with β1 and β2 the periods of the instanton, and ϑ3 is the doubly periodic

Jacobi theta-function, which can be conveniently expressed as

ϑ3(w, τ) =
∞∑

n=−∞

eiπn2τ+2iπnw. (3.35)

The result (3.34) is recovered in the limit β1 = β, β2 → 0, such that only the

n = 0 and n = −1 terms contribute to (3.35),

ϕ =
1

2
log

∣∣1− eβs̄+v̄
∣∣2

|1− eβs̄−v̄|2
⇒ Φ = ζ0 −

αβ

2

sinh(v)

cosh(βs)− cosh(v)
,

which is precisely of the form (3.34). In [FP04], α is interpreted as a size, which

when set to zero provides axially symmetric fields. In the monopole picture

this corresponds to setting µ = 0, in which case aζ0 + b = 0 and the spectral

points coincide, again leading to axial symmetry.

The need for singularities when making the comparison with the doubly

periodic instanton is reminiscent of the intepretation of periodic instantons

as monopoles whose gauge group is a loop group [GM88]. In practice, this

amounts to adding a root to the gauge group such that all of the `i vanish

and we are at the origin of the root diagram, see figure 2.1 and section 2.4.

From the discussion of sections 2.1 and 3.1, the additional fundamental mono-

pole expected from the extra root fits in with the observation in [FP04] that

the doubly periodic instanton consists of two periodic monopole constituents,

separated in one of the periodic directions.
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3.6 Concluding Remarks

This chapter developed a technique, motivated by [ChK01, ChK03, War05,

HW09], to study the singly periodic BPS monopole. This was checked against

numerical studies of the SU(2) cases of charge 1 and 2. Geodesic motion on

an effective two dimensional moduli space compared favourably with analytic

results for charge 2. In particular, it was found that motion transverse to

the periodic direction provides a geodesic submanifold. Some simple SU(3)

configurations and singular periodic monopoles were also considered in this

context. The Nahm transform relates the periodic monopole to a Hitchin

system on the cylinder, giving rise to lumps whose motion is described, at

large separations, by the motion of zeros of the spectral curve polynomial.





4

Nahm Transform

The aim of this chapter is to study the moduli which are not encoded within

the spectral approximation of chapter 3. The approach will be to use the

Nahm transform to study symmetries of the monopole chain for two distinct

solutions of the Nahm/Hitchin data. This is done in section 4.1, and is followed

in section 4.2 by a discussion of numerical solutions to the Hitchin equations.

Finally, in section 4.3 we construct the metric on the moduli space by means of

suitable approximations to the Nahm/Hitchin data at large K. By considering

the symmetries of the system, two geodesic submanifolds are identified, and

these are compared with the Atiyah-Hitchin cone and trumpet. The work in

this section is based on the joint publication Geometry of periodic monopoles

[MW13], and care has been made to indicate my supervisor’s contribution.

4.1 Charge 2

The centered SU(2) charge k = (2) periodic monopole has four real moduli,

two of which, as was seen in sections 2.3 and 3.2.1, are encoded in the spectral

curve and describe the relative xy positions of the fundamental monopoles in

R2. The remaining two moduli are expected to describe the relative phase

and z separation. By considering the action of gauge transformations on the

inverse Nahm operator (as defined in section 2.2) we will see that the two

reduced moduli appearing in the spectral curve provide a geodesic submanifold

of the full moduli space. The one parameter families K ∈ R and K ∈ iR are

studied, and we will find that the details of z behaviour depend on our choice

of solution of the Hitchin equations on the Hitchin cylinder. The work in this

55
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section is motivated by [HW09, Hara], and it should be noted that the results

are independent of the spectral approximation of chapter 3.

4.1.1 Hitchin Equations on the Cylinder

The Nahm data of interest are u(2)-valued (or su(2)-valued if the monopole is

centered) Hitchin fields (Φ, A) (2.11) on the dual cylinder,

Fss̄ = −1

4
[Φ,Φ†] Ds̄Φ = ∂s̄Φ + [As̄,Φ] = 0 (4.1)

with det(Φ) determined by the spectral curve as described in section 3.3.5. It

is straightforward to show [HW09] that the Hitchin equations can be solved

(up to U(1) gauge transformations) by

Φ =

(
0 µ+eψ/2

µ−e−ψ/2 0

)
As̄ = aσ3 +αΦ As = −āσ3− ᾱΦ†

(4.2)

where

−det(Φ) = µ+µ− = C cosh(βs) +K/2

and a, α and ψ are functions of (s, s̄) satisfying 4a = −∂s̄ψ,

∇2Re(ψ) = 2(1 + 4|α|2)
(
|µ+|2eRe(ψ) − |µ−|2e−Re(ψ)

)
(4.3)

and

e−Re(ψ)/2 ∂s
(
αµ+eRe(ψ)

)
+ eRe(ψ)/2 ∂s̄

(
ᾱµ̄−e−Re(ψ)

)
= 0, (4.4)

with the imaginary part of ψ chosen in such a way that Φ has the correct t-

period of 2π/β. We remark on the similarity of (4.3) and (4.4) to the Toda and

Ernst equations, respectively [MW96]. However, the standard methods used

to tackle these systems have not so far been successful in providing analytical

solutions to the present generalisation. Instead, we will resort to studying the

symmetries of the equations and look for numerical solutions.

It is clear that α = 0 allows (4.4) to hold trivially, and in the next subsection

it will be seen that it in fact provides a two dimensional geodesic submanifold of

the relative moduli space. When this is the case, there are two fundamentally

different solutions for Φ according to the allocation of the zeros of det(Φ)

between its two non-vanishing components:
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• Harland’s solution [Hara] places both zeros in the same component,

µ+ = C cosh(βs) +K/2 µ− = 1 (4.5)

with Im(ψ) = 0. We call this the ‘zeros together’ solution.

• On the other hand, Harland & Ward [HW09] place one zero in each

component of Φ,

µ± =

√
C

2

(
eβs/2 +W±1e−βs/2

)
where

K

C
= W +

1

W
(4.6)

this time with Im(ψ) = −βt. This is the ‘zeros apart’ solution.

For α = 0 the Hitchin Higgs fields with ‘zeros together’ and ‘zeros apart’ are

thus of different matrix rank (in particular, for K/C = −2 at s = 0, the

‘zeros apart’ Higgs field is of rank 0, which can never be the case in the ‘zeros

together’ configuration) and there is no smooth gauge transformation between

them. As such, the ‘zeros together’ and ‘zeros apart’ solutions are disconnected

two dimensional submanifolds of the moduli space. It is expected that in the

full four dimensional moduli space one can interpolate between the two cases.

4.1.2 Symmetries

In this section we impose symmetries on the Hitchin equations and use the

Nahm operator (2.12) to determine the resulting symmetry groups of the mo-

nopole fields. This will allow us to identify one parameter families of mono-

poles, which are plotted in chapter 5.

Once the Hitchin equations of section 4.1.1 have been solved, one should

apply the procedure of section 2.2 to extract the monopole fields. This has

been done numerically for the ‘zeros apart’ case [HW09]. Here, we consider

symmetries of the Nahm transform by means of gauge transformations (2.15).

This is achieved by first looking for transformations of the Nahm data (s;K) 7→
(s′;K ′) motivated by the symmetries of the spectral curve presented in section

3.2.3. The equations 4.3 and 4.4 are required to hold in the new coordinates,

with the transformed fields

(Φ, A)(s;K) 7→ (Φ′, A′)(s′;K ′)

(∆,Ψ)(s; ζ ′, z′;K) 7→ (∆,Ψ)(s′; ζ ′, z′;K ′) = (∆′,Ψ′)(s; ζ ′, z′;K).
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We then search for a gauge transformation U and a transformation (ζ, z) 7→
(ζ ′, z′) of the monopole coordinates which express ∆′ in terms of ∆, in such

a way that the resulting monopole fields are gauge equivalent to the original

monopole fields, but evaluated at the new coordinates, (ζ ′, z′). We recall from

equation 2.15 in section 2.2 that U acts as

∆′(s; ζ ′, z′;K) =U−1(s)∆(s; ζ ′, z′;K)U(s)

Ψ′(s; ζ ′, z′;K) =U−1(s)Ψ(s; ζ ′, z′;K),

and we assume it can be written in block form as U = h ⊗ g, where h is a

constant 2× 2 matrix which permutes the entries of ∆. The matrix g ∈ U(2)

acts as a gauge transformation on the Hitchin fields and is required to be

strictly periodic in t, such that Φ and the t-holonomy of A are well defined.10

If det(g) = 1 (or can be made so by multiplication by a constant phase), then

the monopole centering is unchanged. On the other hand, if det(g) ∝ eiβt

then the transformed fields are shifted by β/2 in z, as will be relevant for the

W 7→ W
−1

symmetry discussed below. In all cases, symmetries are up to gauge

equivalence (so they describe symmetries of the energy density isosurfaces).

For completeness, we recall the Nahm operator (2.12) in the k = (2) case,

∆ =

(
12(2∂s̄ − z) + 2As̄ 12ζ − Φ

12ζ̄ − Φ† 12(2∂s + z) + 2As

)
. (4.7)

A study of the geodesic with α = 0, K ∈ R and the symmetry K 7→ −K was

carried out in [HW09]. Here we summarise the results and give evidence of

new geodesics.

Symmetries can be classified by the dihedral group in three dimensions (see,

for example, [Ham62, Mil72]): Dnh describes n-fold rotational symmetry and

reflection in a plane whose normal is parallel to the axis of symmetry, while

Dnd has an axis with n-fold rotational symmetry and 2n-fold rotoreflectional

symmetry (in which rotation is combined with reflection in a plane orthogonal

to the axis). In both cases there are 2n axes11 of 2-fold rotational symmetry

orthogonal to the principal symmetry axis. Both of these groups contain the

two dimensional Dn group as a subgroup, and Dnd is a subgroup of D(2n)h.

The reader may find it useful to visualise these symmetries with reference to

10 It may be possible, as part of future research, to investigate new symmetries by weakening
the periodicity condition on g in such a way that certain key quantities such as det(Φ)
remain periodic.

11 In R3 one has n such axes; the periodicity doubles this number.
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the energy density plots of chapter 5 and the generalisations to higher charges

in chapter 6.

z 7→ z + β

To illustrate the process, we note that the Hitchin fields are unchanged under

the joint action of U = e−iβt14 and (ζ, z) 7→ (ζ, z + β), indicating that the

monopole fields are unchanged by a period shift, as hoped.

α = 0

Again keeping s and K unchanged, we take U = σ3⊗ 12 and (ζ, z) 7→ (−ζ, z).

As long as α = 0 the Hitchin fields become (Φ, A) 7→ (−Φ, A), so that Ψ± 7→
±Ψ± and the monopole fields are thus invariant under a rotation by π about

the z-axis. This justifies our assumption throughout section 3.2 that α = 0 is

a geodesic submanifold in which the two moduli which do not appear in the

spectral curve are kept fixed.

Symmetries with α 6= 0 are considered in section 4.1.3, where it is also

shown that (ζ, z) ∼ (−ζ,−z) is a symmetry for all α. This implies that

configurations other than the symemtric ones considered below have symmetry

group C2h consisting of a 180◦ rotation and a reflection z 7→ −z.

‘Zeros Together’

The geodesic submanifolds K ∈ R and K ∈ iR are fixed by the D2h symmetries

(the symmetry group of a cuboid)

• (s;K) 7→ (s̄; K̄) ⇒ (ζ, z) ∼ (ζ̄ ,−z) for K ∈ R,

• (s;K) 7→ (s̄+ iπ/β;−K̄) ⇒ (ζ, z) ∼ (iζ̄ ,−z) for K ∈ iR.

The calculation for the case K ∈ R is given in more detail in appendix A,

which serves to illustrate the procedure for the remaining cases.

Incoming and outgoing points on these geodesics are related by the sym-

metry

• (s;K) 7→ (s;−K) ⇒ (ζ, z) 7→ (iζ, z),

and hence both geodesics describe 90◦ scattering in the xy plane. The inter-

mediate point of the scattering process, with K = 0, enjoys an enhanced D4h

symmetry.
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‘Zeros Apart’

In this case we use the coordinate W defined in (4.6) and find symmetries

fixing the geodesic submanifolds W ∈ R and W ∈ iR,

• (s;W ) 7→ (s̄;W ) ⇒ (ζ, z) ∼ (−ζ̄ ,−z) for W ∈ R,

• (s;W ) 7→ (s̄+ iπ/β;−W ) ⇒ (ζ, z) ∼ (iζ̄ ,−z) for W ∈ iR.

These families again have D2h symmetry. Opposite points on each of these

geodesics are related by the symmetry

• (s;W ) 7→ (s̄;W
−1

) ⇒ (ζ, z) 7→ (ζ̄ , β/2− z).

Overall then, the geodesic with W ∈ R has incoming and outgoing monopoles

aligned with the x-axis but shifted by half a period in the z direction. The

W ∈ iR geodesic, on the other hand, additionally involves a 90◦ rotation in

the xy plane. Note that in the ‘zeros together’ case a geodesic is allowed to

cross the points K/C = ±2, although this is not possible in the ‘zeros apart’

configuration (see also section 3.3.3). The symmetry (s;W ) 7→ (s̄;W
−1

) fixes

an additional geodesic submanifold with |W | = 1, for which the monopoles

remain centered at (ζ, z) = (0,±β/4) and oscillate in shape. This geodesic

surface will be discussed in more detail in sections 4.3.6 and 5.3, after the

remaining moduli have been identified.

There are particular values of the modulus W for which solutions have an

enhanced symmetry:

• W = 1 has (ζ, z) ∼ (ζ, β/2− z) ∼ (ζ, z+β/2), denoted by D2h×Z2, and

• W = i has (ζ, z) ∼ (iζ, β/2− z) ∼ (iζ, z + β/2), denoted by D2d × Z2,

where the factors of Z2 indicate that these configurations have eight axes of

2-fold rotational symmetry in each period, instead of the usual four. The fixed

points of these symmetries, at z = ±β/4, turn out to be the z positions of the

monopoles in these cases, and plots of these configurations are given in chapter

5. The symmetries of the W = ±1 configurations reflect the fact that this is a

charge 1 chain of rescaled period, and consequently Fss̄ = 0. This observation

is studied in further detail in section 6.2.

It should be noted that the branching behaviour presented in this section

agrees with [MW13, Mala], and supersedes the interpretation found in earlier

work [HW09, Mal13].
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4.1.3 Symmetries with α

In this section we use the method of section 4.1.2 to study the effect of the

moduli encoded by α in equations 4.2, 4.3 and 4.4. We will see that particular

spatial symmetries impose constraints on α such as its phase, or its parity

under a transformation of the coordinate s. In the special case of α = 0 the

symmetries are enhanced, and we recover those of the preceding section.

Reflection - ‘zeros together’

First of all we consider the transformation s 7→ −s. It is easy to check that

the ψ and α equations still hold for all α, such that, in particular, the function

ψ remains unchanged and a 7→ −a. The transformed Hitchin fields can be

expressed as (Φ′, A′s̄) = (Φ,−aσ3 + α′Φ) = (Φ,−As̄) if α 7→ α′ = −α (with

fixed point set α = 0). We can also write the transformed fields in a slightly

different way, by a different choice of gauge, as (Φ′, A′s̄) = (−σ3Φσ3,−σ3As̄σ3),

with α′ = α. The two ways of writing the transformed Hitchin fields correspond

to the monopole fields being invariant under (ζ, z) 7→ (ζ,−z) (only for α = 0)

and (ζ, z) 7→ (−ζ,−z) (true for all α and K), together with Φ̂ 7→ −Φ̂, arising

from (2.14) due to r 7→ −r. This transformation of Φ̂ ensures the Bogomolny

equations are preserved. Note, however, that it does not force Φ̂ = 0 on z = 0,

due to the gauge equivalence between Φ̂ and −Φ̂.

Reflection - ‘zeros apart’

In this case the details of s 7→ −s work out slightly differently: (µ± 7→ W±1µ∓,

ψ 7→ −ψ − 2 log |W |, a 7→ a), but we still find two ways of expressing the

transformed fields: σ1(Φ,−As̄)σ1 for α = 0 or σ2(−Φ,−As̄)σ2 for all α.

The above results show that a reversal of all monopole coordinates is always

a symmetry. A special case is provided by α = 0. If the charge 2 periodic

monopole is considered as two parallel chains of small monopoles, then this

suggests that α = 0 describes the situation with zero z offset. It is then

evident that there is an enhanced symmetry in this case. Varying the z offset,

the symmetry (ζ, z) 7→ (−ζ,−z) still holds. Continuing with this picture of

chains of small monopoles, one might expect an enhanced symmetry in the

opposite limiting case, namely when the z separation of each of the chains is

half a period, i.e. (ζ, z) ∼ (−ζ, z + β/2), but it is not clear how to implement

this symmetry at the level of the Nahm/Hitchin data.

Next, we look at the symmetries with fixed set K ∈ R and K ∈ iR.



62 4 Nahm Transform

K ∈ R

For ‘zeros together’ we take (s;K) 7→ (s̄; K̄), and for ‘zeros apart’ (s;W ) 7→
(s̄;W ). There are then two possibilities for the transformed Hitchin fields:

(Φ′, A′s̄) = σ1(Φ†, As)σ1 = σ2(−Φ†, As)σ2. In the first case, α 7→ −ᾱ, so we

take α ∈ iR, while in the second α ∈ R. They correspond, respectively, to

the symmetries (ζ, z) ∼ (ζ̄ ,−z) and (ζ, z) ∼ (−ζ̄ ,−z) (again, it is useful to

visualise these in the ‘chain of small monopoles’ picture). It should be noted

that this transformation is compatible with the reflection symmetry which

was shown above to hold for all α. Furthermore, the enhanced symmetry

(ζ, z) 7→ (ζ,−z) is still seen to hold only when α = 0.

K ∈ iR

This time we take (s;K) 7→ (s̄+ iπ/β;−K̄) for ‘zeros together’ and (s;W ) 7→
(s̄+iπ/β;−W ) for ‘zeros apart’. We again find two possibilities for α: Re(α) =

∓Im(α), with symmetries (ζ, z) ∼ (±iζ̄ ,−z). The corresponding gauge trans-

formations are g± = i(σ1 ± σ2)/
√

2 with (Φ′, A′s̄) = g−1
± (∓iΦ†, As)g±.

The above considerations suggest a link between the spatial symmetries of the

monopole and the complex behaviour of the function α, as well as the direc-

tion of the gauge transformations in the σ1/σ2 plane of SU(2). In all the cases

considered above, the symmetry group is D1d (note that D1d = C2h ⊂ D2h,

so is contained in the symmetries of section 4.1.2), and the axis of rotational

symmetry in the ζ plane is parallel to iα. It may be possible to make use

of these observations to identify a one parameter family of ‘maximally offset’

chains, with the D1d symmetry (ζ, z) ∼ (−ζ, z + β/2) ∼ (−ζ,−z).

4.1.4 Numerical Solutions

Numerical solutions to (4.3) with α = 0 were obtained by Harland & Ward

[HW09]. They employed a gradient descent method to minimise the functional

E[Re(ψ)] =

∫ (
1

2
(∂jRe(ψ))2 + 2|µ+|2eRe(ψ) + 2|µ−|2e−Re(ψ) − Re(ψ0)

)
dr dt

(4.8)

with respect to ψ where the boundary condition satisfies

Re(ψ0) → log
|µ−|
|µ+|

as r → ∞. (4.9)
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This boundary condition comes from the observation that at large |r|, F ≈ 0

and (4.3) is solved by setting both sides to zero (this solution has a singularity

at finite r, so is not globally valid, although it will be considered further in

sections 4.3.2, 5.1.2 and 6.2). This consideration also allows us to place a cutoff

at large |r|.
Minimising (4.8) by use of the Euler-Lagrange equations returns the Hitchin

equation (4.3). For numerical minimisation, ψ is considered as an n dimen-

sional vector, where n is the number of grid points on the cylinder. The

gradient ∇E of (4.8) is again an n dimensional vector given by the bracketed

term in

δE =

∫ (
−∂2

jRe(ψ) + 2|µ+|2eRe(ψ) − 2|µ−|2e−Re(ψ)
)
δψ dr dt

and acts on δψ (note that this vanishes when (4.3) is satisfied). Deforming

a trial function ψ satisfying the boundary condition (4.9) to ψ + λ∇E for

some real parameter λ we search for the value of λ which minimises the error

in (4.3). This process is repeated until such an error reaches a predefined

tolerance value.

This procedure was used for section 4.2 and in chapter 5. A generalisation

to higher charges will be used in chapter 6 (see section 6.2). A modification of

this method was also used in [HW09] to perform the inverse Nahm transform

numerically. This uses the numerical solutions of ψ to construct Φ and A, and

then minimises the quantity

E =

∫
(∆Ψ)†∆Ψ dr dt,

to determine Ψ, where ∆ and Ψ are defined in equation 2.12. This numerical

Nahm transform is used in chapters 5 and 6.

4.2 Lumps on the Cylinder

In this section, we fix the gauge (4.2) and consider the quantity B defined

through

Fss̄ = Bσ3 = −1

8
∇2Re(ψ)σ3

with α = 0. Equation 4.3 is solved numerically using the relaxation method of

section 4.1.4 for different values of the parameters and moduli.
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Following the geodesics described in section 4.1.2 results in the motion

of two peaks in F which (for large C) closely track the zeros of det(Φ), as

displayed in figures 3.7 and 3.8. This dual dynamics on the Nahm/Hitchin

cylinder suggests a physical interpretation of the moduli, which will be used

in section 4.3 to study the moduli space metric. It also provides an interesting

example of dual dynamics in the Nahm transformed space. This is in contrast

to the Nahm transform for monopoles on R3, where the Nahm data boundary

conditions fix the peaks to the endpoints of the Nahm line segment. It should

also be contrasted with the doubly periodic monopole, in which the Nahm

transform is self-reciprocal and again describes the motion of doubly periodic

monopoles [War05, MW14].

4.2.1 Peaks in the Nahm/Hitchin Gauge Field

Snapshots of |B| through different scattering processes are given in figure 4.1.

We note in particular that in the ‘zeros apart’ case the lumps annihilate at

K/C = ±2, when µ+ = µ−. On the other hand, in the ‘zeros together’

solution the lumps do not vanish, but reach a minimum size at K = 0.

Numerically, a dependence on C is also observed, with two limiting cases.

For small monopole size C the lumps widen and lose t-dependence to become

Nahm data on a line segment. However, at large C, which is the case of interest

in chapter 3, the lumps become sharply peaked and (4.3) is solved by setting

both sides to zero (note how the size of the lumps scales inversely to the size

of the monopoles as C is varied). It is in the latter case that the spectral

approximation improves in accuracy, and that the positions of the lumps are

found to most closely track the zeros of det(Φ) shown in figures 3.7 and 3.8.

This behaviour is illustrated in figure 4.2, and further details of these limiting

cases will be given in sections 5.1.1 and 5.2.1.

4.2.2 Holonomies

The quantity B is also relevant to the computation of holonomies of At around

the cylinder. To see this we integrate B over the cylinder,

H =

∫
R×S1

B dr dt = −1

8

∫
R×S1

∇2Re(ψ) dr dt.
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Figure 4.1: Lumps in |B| for various values of K in the ‘zeros together’ solution
(left) and the ‘zeros apart’ solution (right) for C = 1 and β = 2π, using the
same vertical scale throughout. The positions of the lumps should be compared
with the positions of the zeros of det(Φ), as indicated in figures 3.7 and 3.8. It
should also be noted that the lumps are of different sign in each case.
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Figure 4.2: Profiles through the maxima of |B| in the t and r directions for var-
ious values of C, with K/C = 6 and β = 2π in the ‘zeros apart’ configuration.
The height of the C = 1 peak (red) is used to normalise those for C = 5 (blue)
and C = 10 (green). Notice how the peaks get narrower as C is increased. The
r positions of the maxima (approximately 0.42, 0.33 and 0.30, respectively) ap-
proach the position of the zero of det(Φ), at r = β−1 cosh−1(K/2C) ≈ 0.28.



66 4 Nahm Transform

-0.5 0 0.5
-0.5

0

0.5

Figure 4.3: 2γ/π as a function of r for the ‘zeros together’ solution (solid line)
and the ‘zeros apart’ solution (dashed line), in both cases with K/C = 7,
C = 200 and β = 2π.

Applying the divergence theorem and using At = As + As̄ gives

H = −1

8

∫
∂(R×S1)

∂rRe(ψ) dt =

∫
∂(R×S1)

(
Re(a)− 1

8
∂tIm(ψ)

)
dt. (4.10)

This integral is performed over two circles S1
± bounding the region of interest

on the cylinder (the two paths contribute with opposite sign). For both the

‘zeros together’ and ‘zeros apart’ solutions (4.5, 4.6), Im(ψ) is independent of r

and linear in t, such that the contribution from the final term in (4.10) cancels

between the two integrals, and we are left with

H =

∫
S1
+

Re(a) dt−
∫
S1
−

Re(a) dt = γ+ − γ−,

where the final equality defines γ(r) as the integral of Re(a(r, t)) over a t period.

Note that for the ‘zeros apart’ solution (4.6), a change in the sign of Im(β)

changes γ 7→ γ + π/2.

We now compute the holonomy V (r, 2π/β) of At around the cylinder,

through

∂tV (r, t) = −AtV (r, t)

with the condition V (r, 0) = 12. Then we have that V (r, 2π/β) = exp(2iγσ3),

which we relate to H by

1

2
tr
(
V+V

−1
−
)

= cos (2(γ+ − γ−)) .

The volume of the peaks in figure |B| can then be computed from the holono-

mies of At. A plot of γ versus r is given in figure 4.3. It should be noted that
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Figure 4.4: Effective potential for the kinks in figure 4.3 (blue) compared with
the sine-Gordon potential (4.11) of the same energy (red), which fixes λ ≈ 9.3.

these quantities are not related to the energy of the Hitchin system. Using a

similar expression to the Bogomolny energy (3.12) gives the energy density of

the lumps as

E =
1

8
∇2
(
|f |2 + |g|2

)
,

which diverges when integrated over the cylinder.

It is interesting to attempt a description of the holonomy in figure 4.3

in terms of one dimensional kinks. This is motivated by the classical work

of Atiyah & Manton [AM89], who showed that computing the holonomy of

an instanton gauge potential along some fixed direction in R4 provides an

approximate Skyrmion field (in fact, it provides an exact BPS Skyrme field

in which the Skyrme field couples to a tower of vector mesons, [Sut10]). A

lower dimensional analogue was described in [Sut92], where approximate sine-

Gordon solitons are constructed from CP1 lumps, which are in turn dimensional

reductions of the self-duality equations on R2,2, [MW96]. In the present case,

if the kinks in ϕ ≡ 2γ/π (figure 4.3) are considered to be static, then they can

be approximated by solutions to the sine-Gordon equation,

d2

dr2
ϕ =

d

dϕ
U(ϕ) with U(ϕ) = 2λ2 sin2(2πϕ), (4.11)

where each soliton provides an energy E = 2λ/π. An effective potential is

obtained numerically using

U(r) =
1

2

(
d

dr
ϕ(r)

)2

,

and can be approximated with the sine-Gordon potential (4.11) so that the

total energy is the same in both cases. The results are displayed in figure 4.4.
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4.3 The Moduli Space Metric

In this section we compute the asymptotic moduli space metric from the Nahm

transformed fields. Firstly we implement the gauge orthogonality condition for

Nahm/Hitchin data, which can be done explicitly when C is large or the lumps

of section 4.2 are well separated (|K|/C � 2). This procedure gives the metric

for α = 0 in both of these cases. Next, we discuss the remaining moduli by

their effect on the Hitchin lumps and compare the resulting asymptotic metric

(valid for large separations) with that computed by Cherkis & Kapustin from

the monopole side of the Nahm transform [ChK02]. Part of this work was

published in collaboration with Ward [MW13].

4.3.1 General Considerations

In order to obtain a well defined metric we impose the condition that perturba-

tions to the fields are orthogonal to the gauge orbits. This is implemeted by a

dimensional reduction of the equivalent condition for instantons, Dµ(δAµ) = 0

(see sections 1.4 and 3.3), with A1 = As+As̄, A2 = i(As−As̄), A3 = 1
2
(Φ−Φ†),

A4 = −1
2
i(Φ + Φ†),

4 (D′sδA
′
s̄ +D′s̄δA

′
s) =

[
Φ′, δ(Φ′†)

]
+
[
Φ′†, δΦ′

]
(4.12)

where the primes indicate that this is only true in a particular gauge, and δ

is a change in the fields due to an increment in the moduli (here denoted Ki),

e.g.

Ki 7→ Ki + δKi ⇒ Φ(Ki) 7→ Φ(Ki) +
∑
j

δKj
∂Φ(Ki)

∂Kj

.

Combining the Hitchin equations (4.1) with the gauge fixing condition (4.12),

we find that perturbations to the Hitchin fields must obey

D′s̄(δΦ
′) = [Φ′, δA′s̄] [Φ′, δ(Φ′)†] = 4D′s̄(δA

′
s) (4.13)

together with boundary conditions δΦ → 0, δA → 0 as r → ±∞ and the

constraint δ(det(Φ)) = constant(r, t).

Once this gauge has been found (either analytically or numerically), the

metric on the moduli space is given by a dimensional reduction of the instanton
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metric, g ∝
∫
δA′µδA

′
µ,

g =
1

2

∫
R×S1

tr
(
δΦ′(δΦ′)† + 4δA′s̄(δA

′
s̄)
†) dr dt. (4.14)

4.3.2 Large C

Harland & Ward’s [HW09] solution (4.2) allows a residual local gauge trans-

formation with g = eiuσ3 where u is a real function of r, t and K (see also

section 4.2). This has the effect of mapping ψ 7→ ψ′ = ψ − 4iu. We now look

for a function u such that the primed fields satisfy the gauge condition (4.12),

which becomes (with ∇2 = 4∂s∂s̄)

4 (∂sδa− ∂s̄δā) + 2i∇2δu = fδf̄ − f̄ δf + ḡδg− gδḡ+ 4i(|f |2 + |g|2)δu. (4.15)

We now use the definitions f = µ+eψ/2, g = µ−e−ψ/2 and a = −1
4
∂s̄ψ. Equation

4.15 then becomes

2i∂∇2u = −
(
µ̄+∂µ+eRe(ψ) − µ̄−∂µ−e−Re(ψ)

)
+ 4i(|f |2 + |g|2)∂u (4.16)

which we compare with the K derivative of the ψ equation,

∂∇2ψ = 2
(
µ̄+∂µ+eRe(ψ) − µ̄−∂µ−e−Re(ψ)

)
+ 2

(
|µ+|2eRe(ψ) + |µ−|2e−Re(ψ)

)
∂ψ

(4.17)

where we simplify notation by using (for the remainder of this section) the

abbreviations ∂ = ∂K and ∂̄ = ∂K̄ , and noting that ∂Im(ψ) = 0. Comparing

these equations suggests we take

u(K, K̄) =
1

4
iψ + v(K̄). (4.18)

Similarly, imposing the gauge condition for K̄ variations gives

u(K, K̄) = −1

4
iψ + ṽ(K) (4.19)

for functions v(K̄) and ṽ(K) which can be determined up to a constant by

equating (4.18) and (4.19). Together these imply that ∂̄ψ′ = ∂ψ̄′ = 0 and

consequently ∂̄f ′ = ∂f̄ ′ = ∂̄g′ = ∂ḡ′ = ∂̄a′ = ∂ā′ = 0.
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Having fixed the gauge we use the definition of the fields in terms of f ′, g′

and a′ to obtain the metric gKK̄ = Ω(K)dKdK̄ with

Ω(K) =
1

2

∫
R×S1

∂∂̄

(
|f ′|2 + |g′|2 +

1

2
|∂s̄ψ′|2

)
dr dt. (4.20)

A similar computation to that above has been implemented numerically by

Ward (see figure 4.6 at the end of this discussion). Here we ask whether it is

possible to obtain more explicit information in the limit of large C. The fact

|µ+µ−| scales as C suggests solutions to (4.3) are only supported when both

sides vanish, as can also be seen numerically by plotting figure 4.1 for larger

C. This gives the singular solution12

Re(ψ) = log
|µ−|
|µ+|

,

from which (4.18) and (4.19) result in

u =
i

8
log

(
µ−µ̄+

µ+µ̄−

)
⇒ Φ′ =

√
fg

(
0 1

1 0

)
. (4.21)

In this gauge the metric reduces to

Ω(K) =
1

2

∫
R×S1

tr
(
∂Φ′∂̄(Φ′†)

)
dr dt =

1

2

∫
R×S1

tr
(
∂Φ′(∂Φ′)†

)
dr dt

=
1

4

∫
|∂det(Φ′)|2

|det(Φ′)|
dr dt =

1

16

∫
1

|C cosh(βs) +K/2|
dr dt (4.22)

where the second equality follows from the fact Φ is holomorphic in K and the

third is a rewriting of (4.20), where the final term vanishes in this limit. The

integral for the conformal factor is straightforward to perform numerically.

The result is shown in figure 4.5 and should be compared with figure 3.4,

obtained from the monopole fields within the spectral approximation. The

equality between the integrals (4.22) and (3.24) can in fact be seen directly by

the coordinate transformation ζ =
√
C cosh(βs) +K/2, such that

dr∧dt =
i

2
ds∧ds̄ =

2i|ζ|2

β2C2| sinh(βs)|2
dζ∧dζ̄ =

4|C cosh(βs) +K/2|
β2
∏4

i=1 |ζ − ζi|
dx∧dy

12 It should be noted that although this solution only depends on K/C, numerical solutions
away from this singular limit (such as those of figure 4.1) depend on both K/C and C.
Furthermore, whenever this solution is valid, then ψ, and hence Φ and F , do not depend
on the moduli encoded in the function α.
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Figure 4.5: Surface plot of the conformal factor. Peaks are at K = ±2C.

where the product is over the spectral points (3.14). It is possible to evaluate

the integral (4.22) explicitly when K = 0 in terms of elliptic integrals,∫∫
dr dt

| cosh(βs)|
=

∫ ∞
r=−∞

dr

∫ 2π/β

t=0

dt
1√

cosh2(βr)− sin2(βt)
=

=
4

β

∫ ∞
r=−∞

sech(βr)K(sech(βr)) dr =
8

β2

∫ 1

y=0

K(y)√
1− y2

dy =
1

2πβ2

(
Γ(1

4
)
)4
,

(4.23)

in agreement with (3.26). The gauge condition has been implemented numer-

ically by Ward, with conventions

2C2
W = C CKW = −K. (4.24)

The results presented in figure 4.6 overleaf show that the large C limit is valid

for C & 50. In this limit, we see from (4.21) and (4.22) that the metric is

insensitive to our choice of ‘zeros together’ or ‘zeros apart’ configuration in

section 4.1.1, as was suggested by the spectral approximation of chapter 3.

The independence of the singular solution to (4.3) from the moduli encoded

in α will be explored further in the next section, where we will see that the

resulting contributions are suppressed in this limit. Similar expressions to

(4.16) and (4.17) can be given when α 6= 0, although in this case there do not

seem to be any helpful cancellations.
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Figure 4.6: gKWKW
(K = 0) against C2

W = C/2 for numerical solutions with
β = 2π, with a straight line fit of gradient 0.0870 (the analytical gradient
expected from (4.23, 4.24) is g(0) ≈ 0.08708). The ‘large C limit’ appears to
be a good approximation for C & 50. (Note the scaling with C arises from
combining the conformal factor (4.22) with the rescaled K coordinates.)
[Unpublished figure due to Ward.]

A Remark on the SU(3) Metric

The integrand in (4.22) can be obtained from the spectral curve (3.13) using

(2.18), which tells us that det(Φ) = −(C cosh(βs) +K/2). We apply the same

idea to the SU(3) periodic monopole of charge k = (1, 1). This monopole was

previously discussed in section 3.4.1 and section 3.4.3, where a symmetric one

parameter family was described within the spectral approximation. This time,

the spectral curve is (equations 3.29 and 3.30; recall that w = eβs = eβ(r+it))

w3 + (a1,1ζ + a1,0)w2 + (a2,1ζ + a2,0)w − 1 = 0

together with the centering condition (3.31)

a1,1a2,1(a1,1a2,0 + a1,0a2,1) + 2(a3
1,1 − a3

2,1) = 0. (4.25)

The coefficients a1,1 and a2,1 are parameters, and are fixed by the boundary

conditions. Using (4.25) to write a2,0 in terms of a1,0 leaves us with one complex

modulus a1,0.

The Hitchin spectral curve (2.18) now tells us that Φ = ζ. For rank 1
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Nahm/Hitchin data, the gauge condition (4.12) is automatically satisfied. Con-

sidering variations of the modulus a1,0, the moduli space metric (4.14) is

ga1,0a1,0 =

∫ ∣∣∣∣ ∂ζ∂a1,0

∣∣∣∣2 dr dt =
1

|a1,1|2

∫ ∣∣∣∣a1,1w − a2,1

a1,1w + a2,1

∣∣∣∣2 dr dt
(note that this formula also works for the charge 2 SU(2) case (4.22)). The

integral is now divergent, suggesting that a1,0 is not a modulus but must be

kept fixed. Thus, although figure 3.14 describes a symmetric one parameter

family of SU(3) monopoles, it does not represent their physical scattering. It

may, in fact, be necessary to keep not just the overall centre of mass fixed,

but also the centre of mass of each species of monopole. If this were the case,

the k = (1, 1) monopole would have no reduced moduli, while the k = (2, 1)

monopole would have 2 real reduced moduli describing the relative motion of

the monopoles embedded along the root β∗1.

R3 monopoles embedded via different roots of su(3) are allowed to interact,

in a way described by the Lee-Weinberg-Yi metric [LWY96]. This metric is

globally of Taub-NUT type (equation 1.17 with r replaced by −r).

4.3.3 Incorporating the Remaining Moduli

The numerical solutions to the Hitchin equations (4.3) studied in section 4.2

show that for |K|/C � 2 the lumps on the cylinder become sharply peaked

at s = ±βs0 = ± cosh−1(K/2C), as shown in figure 4.2. In order to study the

effect of the remaining moduli we will work with the approximate fields for

|Re(s)| < |Re(s0)|

φ =
√
C cosh(βs) +K/2 σ3 at =

β

2π
iθσ3 ar = 0. (4.26)

In the ‘outside’ region, where |Re(s)| > |Re(s0)|, the Higgs field φ is branched

along the half-lines t = t0 (for r > r0) and t = −t0 (for r < −r0). The Higgs

field changes by a sign across the cut, and is matched by a gauge transformation

in the σ1/σ2 plane of su(2). This allows an additional contribution to the gauge

potential at, which is independent of r, valued in σ1/σ2, and supported only

along the cut. The gauge field vanishes everywhere except at s = ±s0, where

at is discontinuous, giving rise to delta-function peaks in the field strength f

at these points. To each of the peaks we assign a unit vector f± in the σ1/σ2

plane of su(2).
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Motivated by numerical examples by Ward we define one of the two re-

maining moduli, θ, by the holonomy of at in the central region (see also figure

4.3),

U0 = Pexp

(
−
∫ 2π/β

0

at(0, t) dt

)
2 cos(θ) = tr(U0),

which we compute through ∂tU(t) = −at(0, t)U(t), with U(0) = 12 and U0 =

U(2π/β). This defines θ up to a sign, and in particular if we take K = keiϕ then

the sign of θ changes as ϕ goes from 0 to 2π (here we simplify the discussion by

taking Re(K) > 0). A prescription to fix the sign was given by Ward [MW13].

This is done by defining the sign of θ as the sign of the real or imaginary part

of the quantity i.tr(U0φ) evaluated at r = t = 0. The details will not affect our

discussion of the asymptotic metric, where we take Re(K) > 0 (section 4.3.4),

but we will make use of this procedure in section 4.3.6.

The fourth modulus, ω, is the relative phase between the peaks at s = ±s0.

This is computed by parallel propagating f− along a path γ from −s0 to s0

using ∂γf− = −[aγ, f−], to obtain f̃−. Then ω is the angle between f+ and f̃−,

2 cos(ω) = tr(f+f̃−),

and is defined up to a sign, which can again be fixed by comparing with the

sign of φ(0).13

4.3.4 The Asymptotic Metric

The moduli space metric for well separated periodic monopoles was deduced

by Cherkis & Kapustin [ChK02] from physical considerations by studying the

effective Lagrangian of a system of two monopole chains, following Manton’s

earlier approach for monopoles in R3, [Man85]. One can obtain a metric of the

same ALG form from the Nahm/Hitchin perspective. We do this by identifying

four orthogonal perturbations of the fields, which arise from certain perturba-

tions of the moduli, and then changing coordinates to obtain the metric on

13 This definition of ω rests on the fact that the peaks in |f | become delta functions for large
|K|/C, so is only well defined in the asymptotic region of the moduli space. Numerical
studies by Ward suggest that a globally valid modulus can be obtained from the difference
of the asymptotic holonomies (which individually are fixed by the boundary conditions),

2 cos(ω̃) = tr(U+U
†
−), with ω̃− ω = π. In section 4.3.4 we will work with ω rather than ω̃

because, as discussed above, (4.26) is only valid in the interior region, |Re(s)| < |Re(s0)|.
However, when we come to discuss geodesic surfaces through the centre of the moduli
space in section 4.3.6, our definition of ω will be in terms of ω̃.



4.3 The Moduli Space Metric 75

the moduli space itself. This scheme was proposed by Ward, while its correct

form of implementation arose from various discussions.

The first step is to define a set of vectors of perturbations to the approxi-

mate fields (4.26) given by Vi = (δiφ, δias̄) (we will see below that i = 1, . . . , 4)

with inner product

〈Vi, Vj〉 =
1

2
Re

∫
tr
(
(δiφ)(δjφ)† + 4(δias̄)(δjas̄)

†) dr dt.
We observe that if V1 = (δ1φ, δ1as̄) is a perturbation satisfying (4.13) then so

are

V2 = (δ2φ, δ2as̄) = (iδ1φ, iδ1as̄)

V3 = (δ3φ, δ3as̄) = (2δ1as,
1
2
δ1φ
†)

V4 = (δ4φ, δ4as̄) = (2iδ1as,
1
2
iδ1φ

†) (4.27)

for which the inner product is 〈Vi, Vj〉 = p2δij for some constant p (which is

computed below).

Each of these perturbations Vi gives rise to a change in the moduli δiK
a =

(δiKr, δiKi, δiθ, δiω) with K = Kr + iKi. The most general perturbation can

then be expressed as the linear combination V = aiVi, with a corresponding

change in the moduli δKa = aiδiK
a. The coefficients ai for a given variation

of the moduli are given by

ai = (Q−1)iaδK
a,

where

Qai = δiK
a =


δ1Kr δ2Kr δ3Kr δ4Kr

δ1Ki δ2Ki δ3Ki δ4Ki

δ1θ δ2θ δ3θ δ4θ

δ1ω δ2ω δ3ω δ4ω

 (4.28)

and the metric is computed as the inner product of the tangent vectors,

g = 〈V, V 〉= 〈aiVi, ajVj〉

= (Q−1)ia(Q
−1)jbδK

aδKb〈Vi, Vj〉

= p2
(
(Q−1)TQ−1

)
ab
δKaδKb

⇒ gab = p2
(
QQT

)−1

ab
.

A suitable perturbation to the Hitchin fields (4.26) corresponding to Kr 7→
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Kr + ε is δ1φ = 1
4
εh(r, t)σ3, δ1as̄ = 0, or equivalently δ1Kr = ε, δ1Ki = δ1θ =

δ1ω = 0, where we define

h(r, t) = (−detφ)−1/2 = (C cosh(βs) +K/2)−1/2.

The norm-squared of V1 is

〈V1, V1〉 = p2 = ε2I =
1

16
ε2
∫
|h(r, t)|2 dr dt. (4.29)

For V2 we take δ2φ = 1
4
iεh(r, t), δ2as̄ = 0 and δ2Ki = ε, δ2Kr = δ2θ = δ2ω = 0.

Continuing with the scheme of (4.27) we get δ3φ = 0 and δ3as̄ = 1
8
εh(r, t)σ3,

and we must compute the effect of this change on the θ and ω moduli. For

θ, we use the approximate solution (4.26) and δ3at = −1
4
iεRe(h)σ3 to find

δ3θ = −1
4
εRe(h0), where

h0 =

∫ 2π/β

0

h(0, t) dt. (4.30)

The perturbation V3 does not affect f± (this has been checked numerically

by Ward), so a variation in ω arises only from the change of the gauge potential

a along the path γ between −s0 and s0, i.e. the new f̃− is computed by parallel

propagating f− using ∂γf− = −[aγ+δaγ, f−]. This results in δ3ω = −ε(Im(J)+

Re(L)), where (recalling the definition K = keiϕ),

J =

∫ r0

0

h(r, t0) dr L =

∫ t0

π/β

h(0, t) dt ≈ h0
ϕ

β
. (4.31)

The variation of ω is only path-independent up to winding round the cylinder,

due to the twisted nature of the moduli. The contour used for (4.31) is sketched

in figure 4.7.

Similarly to V3, the perturbation V4 has δ4φ = 0, δ4as̄ = 1
8
iεh(r, t)σ3, with

δ4Kr = δ4Ki = 0, δ4θ = −1
4
εIm(h0) and δ4ω = ε(Re(J)− Im(L)).

The components of the metric are

gKrKr = p2(δ1Kr)
−2

gKiKi
= p2(δ2Ki)

−2

gθθ = p2((δ3ω)2 + (δ4ω)2)D−1

gωω = p2((δ3θ)
2 + (δ4θ)

2)D−1

gθω = gωθ =−p2(δ3θδ3ω + δ4θδ4ω)D−1
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Figure 4.7: Contour on the Hitchin cylinder used to parallel propagate f−
from s− (the left dot) to s+ on the right. Circling the cylinder in the opposite
direction modifies L to L ≈ h0(π − ϕ)/β.

where D = (δ3θδ4ω−δ3ωδ4θ)
2 and the integrals I, h0, J and L can be evaluated

by an expansion in k = |K|. To first order, we have h ≈ 0 for |r| > |r0| and

h ≈ (2/K)1/2 for |r| < |r0|, where βr0 ≈ log(k/C) and βt0 ≈ ϕ+ π. Then

I ≈ π

2β2k
log

(
4k

C

)
h0 ≈

2π

β

√
2

K
J ≈ 1

β

√
2

K
log

(
4k

C

)
, (4.32)

where the subleading coefficients (the factors of 4 in I and J) are found by the

more careful expansion of appendix B.

Putting everything together and replacing K by the dimensionless quantity

KW = −K/C together with C = 2C2
W and dK = −2C2

WdKW (equations 4.24)

gives the asymptotic metric

ds2 =
π log(4|KW |)

β2

(
C2
W

|dKW |2

|KW |
+
β2

π2
dθ2

)
+

+
β2

π log(4|KW |)

(
π

2β
dω − 2πϕ

β2
dθ

)2

, (4.33)

which is of the expected Gibbons-Hawking form [GH78], as was found by

Manton [Man85] for the Atiyah-Hitchin metric for monopoles in R3, (1.17).

This metric is therefore Ricci flat and corresponds exactly with the asymptotic

metric of Cherkis & Kapustin [ChK02] computed from the long range monopole

fields:

ds2
CK =

log(R2eπvren)

4π

(
dx2 + dy2 + dz2

)
+

4π

log(R2eπvren)

(
dt

2
+

4π2

β
θrel dz

)2

.

Here the coordinates x, y and z denote the relative positions of the monopole
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chains and t is a relative phase. The x and y separations are combined into

x + iy = Reiθrel . From (3.25) we identify R = 2CW
√
|KW | and θrel = ϕ/2.

Comparing the remaining moduli and taking into account their respective pe-

riodicities, we relate

• the monopole z separation to the holonomy modulus θ via z = βθ/π ∈
(−β, β], and

• the relative monopole phase t to the Nahm/Hitchin phase ω via t =

−ω/2 ∈ [−π/2, π/2).

Our approach also allows us to determine the parameter vren, which is defined

in [ChK02] as a renormalised constant arising from the divergent sum defining

the asymptotic Higgs field of an infinite line of Dirac monopoles. In particular,

we find πvren = log(2/C).

Finally, we note that in the limit of β → 0 or C → ∞, the |dKW |2 term

dominates ds2. Indeed, this is the limit in which the spectral approximation

is expected to be valid. In the strict limit, the conformal factor for the |dK|2

part of the metric is given by the integral I (equation 4.29), which is now valid

for all values of K/C, including the interior region of the moduli space (see

equation 4.22 and figure 4.5).

Sources of Error

It should be noted that in all of the above the knock-on effect of perturbations

has been neglected. For example, the perturbation V2 of the moduli was as-

sumed to affect only φ and not as̄. In fact, a change in K affects the positions

s = ±s0 of the delta functions, which in turn alters the path γ between them

and hence has an effect on the modulus ω. Including this effect in our compu-

tation of the metric gives contributions which decay at large K faster than the

leading terms. We note, however, that including such first order corrections

fills all the off-diagonal terms in Q.

It should also be noted that the asymptotic metric for two monopoles in R3

has exponentially small subleading terms [GM86]. In view of the off-diagonal

terms in Q, (4.28), this exponential proximity to a Taub-NUT-like metric no

longer holds, at least within the crude approximation of the Nahm/Hitchin

data as two delta functions.

Another source of error arises in our computation of δθ, and whether we

use its definition as the t-holonomy at r = 0 via (4.30), or attempt to read it

off directly from the variations of the fields via (4.26). These approaches agree
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to first order, but differ in their subleading terms, at O((k/C)−3/2). However,

the factors of 4 appearing in (4.32) and computed in appendix B have been

confirmed numerically by Ward for smaller C.

These observations may reduce the relevance of the study of geodesics on

the asymptotic metric, which will nevertheless be discussed briefly in the next

subsection.

4.3.5 Geodesics on the Asymptotic Metric

Conserved quantities for motion on the asymptotic metric (4.33) can be iden-

tified either by solving the Killing equations, or by considering the metric as a

Lagrangian and studying the Euler-Lagrange equations of motion, via a simi-

lar argument to that of Gibbons & Manton [GM86] for two monopoles in R3.

Writing ρ = xx̂+ yŷ, the metric is

ds2 = f(ρ)(dx2 + dy2 + dz2) + f(ρ)−1(dt+ h(θ)dz)2,

and the Killing equations ∂aξb + ∂bξa = 2ξcΓ
c
ab can be solved on Maple if we

impose the condition ∂aξ
a = 0. The most general Killing vector under this

assumption is then

ξ = c1(−y∂x + x∂y − αz∂t) + c2∂z + c3∂t = c1ξ
J + c2ξ

pz + c3ξ
q,

for constants c1, c2, c3.

The conserved quantities pz and q also follow directly from the Lagrangian

L = f(ρ)(ẋ2 + ẏ2 + ż2) + f(ρ)−1(ṫ+ h(θ)ż)2,

as the canonical momenta pxi = ∂L/∂ẋi conjugate to translations in z and the

phase direction,

q = pt = 2f(ρ)−1(ṫ+ h(θ)ż) pz = 2f(ρ)ż + qh(θ),

and these are conserved due to the Euler-Lagrange equations, ṗxi = ∂L/∂xi.
The conserved quantity J is a modified angular momentum in the xy plane

plus a ‘Poincaré term’ consisting of a z dependent translation in the phase

direction t. To see this, we combine the momenta px and py into

p = 2f(ρ)ρ̇,
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for which the Euler-Lagrange equations give

ṗ = f ′(ρ)

(
ρ̇2 − ż2 − q2

4

)
ρ̂+

qżh′(θ)

ρ
ẑ × ρ̂.

The planar angular momentum ρ × p is not conserved (in particular, ρ × ṗ
contains a term proportional to ρ× (ẑ× ρ̂) = ρẑ). We compensate for this by

adding a term −qh′(θ)z and making use of the fact that q̇ = h′′(θ) = 0 to find

J = ρ× p− qh′(θ)z.

We note that the Poincaré term is parallel to the ‘orbital term’, in contrast to

the case of Gibbons & Manton [GM86], in which the two terms are orthogonal.

Despite the similarities with the R3 monopole case, there does not appear to be

a generalisation of a conserved Runge-Lenz vector of the form K = p×J + v

for some suitably chosen vector v (the case of Gibbons & Manton being specific

to the case f = 1− 1/r). Furthermore, we note that the vectors ξJ and ξpz do

not commute.

With the conserved quantities J , pz and q in mind, we can search for

geodesics on the asymptotic moduli space. We again simplify the problem by

looking for geodesics with ρ̇ = 0, and in this case it is easy to see that no such

geodesics exist.

It is worth reiterating the caveat that unlike the case of the Atiyah-Hitchin

metric, the metric currently under consideration is not exponentially close to

the complete metric on the moduli space of two monopole chains. There is

thus no guarantee that any geodesics on the metric (4.33) provide an accurate

description of two such monopole chains, even when well separated.

4.3.6 Geodesic Surfaces

As was outlined in sections 4.1.2 and 4.1.3, the symmetries of the Hitchin equa-

tions, spectral curve and Nahm operator fix geodesic submanifolds of the full

moduli space, which are valid even in the interior region of the moduli space.

In particular, it was shown that setting the modulus α to zero provides two

two-dimensional families of solutions (which we referred to as ‘zeros together’

or ‘zeros apart’, according to the allocation of the zeros of det(Φ) among the

entries of the 2×2 matrix Φ). We are now in a position to study these surfaces

with reference to the moduli θ and ω. Recall from section 4.1.3 that there is

a symmetry z 7→ −z associated with the transformation (Φ, A) 7→ (−Φ, A),
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which sets the modulus α appearing in (4.3, 4.4) to α = 0. Furthermore, from

the prescription given in section 4.3.3 to fix the signs of θ and ω, this symme-

try of the Hitchin fields is associated with the transformations θ 7→ −θ and

ω 7→ −ω. We then have four geodesic surfaces, with θ, ω ∈ {0, π} (recall from

section 4.3.3 that in the central region of the moduli space, ω is defined via

the globally valid ω̃ = ω + π).

From the discussion of holonomies in section 4.2.2, we see that the ‘zeros

together’ solution has ω = 0, and θ = 0 or π according to the choice of

Im(ψ) = 0 or 2βt. This gives two disconnected surfaces describing physically

equivalent scattering processes. Geodesics on either of these surfaces describe

monopole scattering in the xy plane, and particularly symmetric examples are

the 90◦ scattering processes with K ∈ R and K ∈ iR. Each of the surfaces

is analogous to the Atiyah-Hitchin cone, which describes 90◦ scattering of R3

monopoles in the plane. Energy density plots illustrating this geodesic are

given in chapter 5.

On the other hand, the ‘zeros apart’ configuration has ω = π, and asymp-

totically we have two separate sheets, with θ = 0 and θ = π. Unlike in the

previous case, however, the ‘zeros apart’ case contains configurations which are

invariant under a shift by β/2, namely when K/C = ±2, which is a charge 1

chain of period β/2 (see [HW09] and section 6.3). Thus, in this case the central

region of the moduli space is branched over the line segment −2 ≤ K/C ≤ 2,

and crossing this line segment transfers us from one sheet to the other. This

branching structure explains the use of the coordinateW in section 4.1.2, where

K/C = W + 1/W , ensuring that the correct branch is chosen when crossing

|W | = 1. This surface is analogous to the Atiyah-Hitchin trumpet, although,

unlike in the case of monopoles in R3, the trumpet has two openings to be-

come a ‘double trumpet’, with a closed geodesic about its waist (see figure 4.8

overleaf).

Referring to figure 4.5, which gives the conformal factor multiplying the

KK̄ part of the metric for large C, we note that in the ‘zeros together’ config-

uration geodesics are allowed to pass over the peaks at K/C = ±2. However,

for ‘zeros apart’, geodesics reaching these points bounce back to give two dis-

tinct scattering processes: a scattering geodesic for K/C ≥ 2 (or K/C ≤ −2)

and a closed geodesic with −2 ≤ K/C ≤ 2. For ‘zeros together’, Ward has

implemented the gauge condition (4.12) numerically and plotted the conformal

factor for various values of C (see figure 1 of [MW13]). This illustrates the

smoothing out of the peaks and the approach to the rotational symmetry of
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Figure 4.8: Sketch of the ‘double trumpet’ showing the geodesics with W ∈ R,
W ∈ iR and |W | = 1 identified in section 4.1.2.

the R3 limit as C → 0. In this limit, we expect there to be an approximate

symmetry fixing geodesics with W = p2eiν for p ∈ R and a given ν ∈ R. The

resulting trajectories describe two consecutive 90◦ scattering processes, with an

overall scattering angle of ν and a shift by β/2. This can be seen by applying

the method of section 4.1.2. For general C, the asymptotic form of (4.6) for

|W | � 1 is

µ+ ≈
√
C

2
eβs/2 µ− ≈

√
C

2
W−1e−βs/2,

then transforming W 7→ e2iνW−1 and using a similar approximation for |W | �
1 gives

µ+ ≈
√
C

2
W e−βs/2 µ− ≈

√
C

2
eβs/2,

which relates the Higgs fields at large and small |W | by the gauge transforma-

tion

Φ 7→ eiνg−1Φg with g =

(
0 eiν

eiβt 0

)
,

and the transformation of the gauge potential describes the β/2 shift.
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4.4 Summary

We began this chapter by identifying two solutions of the Hitchin equations

required for the Nahm construction of periodic monopoles. This allowed a

study of the spatial symmetries of the corresponding monopole chains via the

symmetries of the inverse Nahm operator. This also allowed us to get a feel for

the effect of the moduli which were missing from the spectral approximation

of chapter 3. Numerical investigations illustrating monopole chains with these

symmetries will be given in the next chapter. We then turned our attention to

the properties of the solutions of the Hitchin equations, and in particular to

the holonomy of the Hitchin fields over the periodic direction of the cylinder.

Finally, an approximate solution to the Hitchin equations allowed us to

derive the asymptotic moduli space metric from the Nahm transformed fields.

This was favourably compared to results obtained from the monopole side of

the transform. Symmetry considerations allowed the identification of geodesic

submanifolds resembling the Atiyah-Hitchin cone and trumpet for monopoles

in R3, although in this case the periodic nature of the solutions allows for the

existence of a closed geodesic describing a chain of rotating monopoles. These

submanifolds were described by the same moduli which appeared in the large

C ‘spectral approximation’, and the metrics were found to agree in this limit.

It would be interesting to consider an effective electromagnetic description

of well separated lumps on the Hitchin cylinder and to use this as physical

motivation of the asymptotic metric by constructing the Lagrangian of this

system, following [Man85] and [ChK02].

Many of the arguments of this section can be applied to the doubly periodic

monopole. In this case one expects the Nahm transform to be self-reciprocal

and the metric of two well separated walls is of ALH form [HKM14]

ds2 = 16π2M(dM2 + dp2 + dq2) +
1

16M
(dω − 8π(qdp− pdq))2 .

Studying the symmetries of this system gives rise to scattering geodesics (for

which the moduli space is asymptotically four cylinders) and closed geodesics

describing scattering in the periodic plane (here the moduli space is topologi-

cally a 2-sphere). However, in contrast to the singly periodic monopole, there

is the possibility of incoming geodesics getting ‘trapped’. More details on dou-

bly periodic monopoles can be found in the references [Lee98, War05, War08,

ChW12, MW14].





5

Scaling Limits

This chapter describes the limiting cases of charge 2 monopole chains for small

and large values of the size to period ratio. When the monopole size C is

small or the period β is large, we expect the monopole chains to behave like

monopoles in R3. In particular, a charge one monopole should be spherically

symmetric and two coincident monopoles should have rotational symmetry in

place of the discrete symmetry of figure 3.3. Meanwhile, the Nahm data should

reduce from Hitchin equations on a cylinder to Nahm equations on a line seg-

ment. At the other end of the range, when the monopole size is much larger

than the period we expect to recover the results of the spectral approximation

(chapter 3). Both of these limits can be implemented by the numerical proce-

dures used in the previous chapters. However, analytical results are delicate

due to the expected changes to the boundary conditions. First of all, in section

5.1, we discuss the limit of small monopole size to period ratio, followed by

the opposite limit of large size to period in section 5.2. Finally, energy den-

sity plots interpolating between these limits are presented in section 5.3. This

chapter is based on the preprint [Malb].

Numerical implementation of the inverse Nahm transform to obtain the

monopole fields used the gradient descent technique employed by Harland &

Ward [HW09] (for details, see section 4.1.4). The energy density was then

calculated using equation 1.7.

5.1 Small C

In the limit of small size to period ratio, monopole chains resemble monopoles

in R3, whose energy density peaks roughly at the location of the zeros of the

85
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Figure 5.1: |W | against C, showing how the value of |W | at which the monopole
Higgs zeros coincide in the ‘zeros apart’ configuration depends on C, both for
W ∈ R and W ∈ iR. For ‘zeros together’, the monopole zeros always coincide
when K = 0.

Figure 5.2: Energy density for a charge 2 monopole chain (taken over one
period) in the ‘zeros together’ (left) and ‘zeros apart’ (right) configurations
with β = 2π, C = 1 and W = i. In the notation of section 4.1.2 these
configurations have symmetry groups D4h and D2d × Z2.

Higgs field. The two scattering processes identified in section 4.1.2 correspond

in this limit to the Atiyah-Hitchin rounded cone (‘zeros together’) and trumpet

(‘zeros apart’), as geodesic submanifolds of the full four dimensional moduli

space (see sections 1.4.1 and 4.3.6). Although it is straightforward to reach

the above conclusions numerically, the limit is nevertheless delicate to provide

analytically in the present formulation. In particular, it is not clear how the

ALG type metric reduces to the usual ALF of monopoles in R3 [ChK02]. In

this limit we also see that the coordinate W goes bad, in the sense that the

value of W at which the monopole Higgs zeros coincide increases as C → 0, as

shown in figure 5.1.

The particularly symmetric case with K = 0 is shown in figure 5.2 for

the ‘zeros together’ and ‘zeros apart’ solutions, displaying the expected spatial

symmetries (section 4.1.2 and [Mal13]). The ‘zeros apart’ geodesic for C = 1
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Figure 5.3: Energy density for a charge 2 monopole chain in the ‘zeros apart’
configuration with C = 1 and W = 2.43 (left) and W = 1 (right). These
configurations show the symmetries D2h and D2h × Z2.

and W > 1 has two monopole chains incoming along the x-axis, whose energy

density is peaked at the Higgs zeros. At W ≈ 2.43 (see figure 5.1) the Higgs

zeros coincide to give a toroidal configuration (figure 5.3 left). Reducing W

further, the ring breaks up along the z-axis, giving two copies of a charge 1

monopole when W = 1 (figure 5.3 right, see also [HW09, Malb]), which move

apart parallel to the x-axis for W < 1. The geodesic with W ∈ iR again

involves a double scattering, although this time the ‘doubled’ charge 1 chain is

not encountered and chains depart at 90◦ to the incoming chains. This process

is illustrated in section 5.3.

5.1.1 Regaining the Nahm Equations

Defining the combinations

Φ = i(T1 + iT2) Ar = T0 At = T3 (5.1)

of the Hitchin fields with Ti = 1
2
ifiσi (no sum implied), we take the limit C = 0,

such that det(Φ) = −K/2 and the Hitchin fields on the cylinder depend only

on r. This reproduces the usual Nahm equations in R3, and although this

approach is only valid in the strict limit C → 0, it is interesting to note how

the different ‘zeros together’ and ‘zeros apart’ solutions can still be seen in this

limit.

In the above notation, the Hitchin equations become Nahm equations, such

that the functions fi satisfy

dfi
dr

=
1

2
εijkfjfk (5.2)
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and the Hitchin fields become

Φ = −1

2

(
0 f1 + f2

f1 − f2 0

)
dψ

dr
= 2f3

where we have chosen a gauge with Ar = 0 and we recall from section 4.1.1

that As̄ = −1
4
∂s̄ψσ3. The spectral curve tells us that

−det(Φ) = 1
4
(f 2

1 − f 2
2 ) = C cosh(βs) +K/2,

and (5.2) immediately requires C = 0. In this form, with α = 0 and K ∈ R,

the Nahm equations can easily be solved in terms of elliptic functions [BPP82,

MS04].

For real fi the Nahm transform provides a clear link between the symme-

tries of (ζ, z) and those of (Φ, T3), as described in section 1.3. It is therefore

expected that there will be different solutions to the Nahm equations corre-

sponding to the relative magnitudes of f 2
1 , f 2

2 , f 2
3 . We note from [BPP82, MS04]

that for large K the monopoles are located on the axis ei corresponding to the

largest of the f 2
i . We will fix ζ = e1 + ie2 and z = e3 (this is a gauge choice on

the Nahm data), with monopoles incoming along e1.

First of all we take f 2
1 ≥ f 2

2 ≥ f 2
3 , and define a function a(K) and the

elliptic modulus k ∈ [0, 1] by

f 2
1 − f 2

2 = 2K f 2
1 − f 2

3 = a2 2K = a2k2

which are solved in terms of Jacobi elliptic functions defined for |ar| < K(k),

where K(k) is the complete elliptic integral (3.20),

f1 = a dck(ar) f2 = ak′nck(ar) f3 = ak′sck(ar). (5.3)

In the limit K → 0 the monopole chains approach one another and

f1 = f2 = a sec(ar) f3 = a tan(ar) ψ = 2 log(2ab sec(ar))

for some constant b. The equality f1 = f2 in this limit describes a monopole

configuration which is axially symmetric about the periodic axis, and leads to

90◦ scattering in the plane when K becomes negative (in other words, when

f 2
2 ≥ f 2

1 ≥ f 2
3 ). Figure 5.4 (left) shows a plot of f1 ± f2 for k = 0.9, illustrat-

ing how both zeros are in the same component of Φ (i.e. the ‘zeros together’
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Figure 5.4: Left: (f1 + f2)/a (solid) and (f1 − f2)/a (dashed) for k = 0.9
plotted against x = ar, for f 2

1 > f 2
2 > f 2

3 . Right: (f1 + f2)/
√

2K (solid) and
(f1 − f2)/

√
2K (dashed) against x =

√
2Kr, for f 2

1 > f 2
3 > f 2

2 ).

solution).

On the other hand, there is the possibility of having f 2
1 ≥ f 2

3 ≥ f 2
2 . This

time,

f 2
1 − f 2

2 = 2K f 2
1 − f 2

3 = a2 2Kk2 = a2

and the solution is 
f1 =

√
2K dck

(√
2Kr

)
,

f2 =
√

2Kk′ sck

(√
2Kr

)
,

f3 =
√

2Kk′ nck

(√
2Kr

)
.

Figure 5.4 (right) shows f1±f2. The zeros of Φ are now in different components

and scattering is consistent with the ‘zeros apart’ solution. This time, when

K = 0 we simply have f1 = f2 = f3 = 0, which is the Nahm data for a single

monopole.

5.1.2 Large Period Limit

A complementary result to that of section 5.1.1 can be obtained via an ap-

proximate solution to the Hitchin equations (4.3), showing how the rank 2

Nahm/Hitchin data becomes Nahm data on a line segment for β → ∞ or

C → 0. The work in this section closely follows unpublished work by Harland,

[Hara], and no claim is made over its originality.
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The idea is to look for non-trivial solutions to

∇2ψ = 2
(
C2| cosh(βs)|2 eψ − e−ψ

)
, (5.4)

where the ‘zeros together’ configuration with K = 0 is chosen as the easiest to

tackle (similar solutions for K 6= 0 can be expressed in terms of the Weierstrass

℘ function). The idea is to look for t-independent solutions to (5.4) under the

assumption that the first term on the right hand side is small. This gives a

one dimensional version of the Liouville equation,

∇2ψ = −2e−ψ ⇒ ψ = 2 log
(
h cos

( r
h

+ c
))

,

where the solution is unique up to real constants c and h. Away from the

central region, the Hitchin gauge field vanishes and (5.4) is solved as in section

4.2 by setting both sides to zero. Together, the above considerations provide

an approximate solution for ψ,

ψ =

{
2 log (h cos(r/h)) |r| < r0,

−βr + log(2/C) |r| > r0,
(5.5)

where r0 is to be determined. Requiring continuity and differentiability at

r = r0 gives the conditions

βr0 = log

(
2

Ch2
sec2

(r0

h

))
β =

2

h
tan
(r0

h

)
,

which can be expanded near r0/h ≈ π/2 (recall that the Nahm data (5.3) is

defined in the domain |ar| < K(k), and that K(0) = π/2) to give

h ≈ 2

πβ
log

(
β2

2C

)
,

which tends to 0 when β →∞ for fixed C.

The Hitchin fields following from (5.5) using (4.2) are

Φ =

(
0 C cosh(βs)h cos(r/h)

sec(r/h)/h 0

)
At = − i

2h
tan
( r
h

)
σ3.

Noting the scaling of h with β, then for small C and large β, the ‘sec’ term is

expected to dominate Φ. Making the identifications (5.1), these approximate
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fields satisfy Nahm equations with

f1 = −f2 = −1

h
sec
( r
h

)
f3 = −1

h
tan
( r
h

)
.

There are two strengths of this method compared to that of section 5.1.1.

In particular, some residual C-scaling is retained (via h). There is also the

possibility of seeing explicitly how the linear growth of ψ at large |r| (equation

5.5) increases in gradient, approaching the singular result for β → ∞ and

illustrating how the Nahm data is defined only on a line segment instead of

along the entire length of the cylinder.

5.2 Large C

In the opposite limit, of large monopole size to period ratio, the structure of

the chains again simplifies. As C is increased, the fields become increasingly

independent of z and the spectral approximation [Mal13] becomes an accurate

description of the monopole. The monopole Higgs field is known explicitly in

this limit and can be read off directly from the spectral curve as described in

chapter 3. For charge 2, we have (3.15),

Φ̂ =
i

β
Re

(
cosh−1

(
2ζ2 −K

2C

))
σ3,

and the energy density is calculated through (1.7),

E =
1

2
∇2‖Φ̂‖2. (5.6)

Geodesic motion with K ∈ R describes the movement of four lumps of energy

density located at ζ = ±
√
K/2± C undergoing a double scattering via a

cross-shaped configuration at K = 0, as shown in figure 3.3.

As was discussed in section 4.3, in the large C limit there is also a sim-

plification in the solutions to the Hitchin system. The C dependence of µ±

in equation 4.3 means a non-trivial solution for ∇2Re(ψ) is only supported at

small C and in the vicinity of the two regions µ± ≈ 0 (see section 4.2). Thus, in

the large C limit, the smooth solution to (4.3) approaches the singular solution

obtained by setting both sides to zero. The singular solutions to the Hitchin

equations in this limit, referred to above, imply that the metric obtained from

this data depends only on det(Φ), and is hence the same for the ‘zeros together’
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and ‘zeros apart’ solutions (see section 4.3.2). This is identical to the metric

found from the spectral approximation to the monopole fields in section 3.3.

5.2.1 Nahm Transform for Large C

The large scale limit allows a demonstration of an example of the Nahm trans-

form for the construction of solutions to the Hitchin equations on R2. The

general theory of Nahm transforms [Jar04] relating solutions of the self-dual

Yang-Mills equations on reciprocal 4-tori suggests that the Nahm transform

on R2 is self-reciprocal, thus mapping the large C limit of the periodic mo-

nopole to Hitchin equations on R2, with a different topology and boundary

conditions. It is not clear how to ‘unwrap’ the Hitchin cylinder in this limit,

or how one might deal with the singular nature of the solutions. However, as

a step towards understanding this instance of the Nahm transform, we show

that in this limit the spectral approximation can also be applied to the forward

Nahm transform, allowing us to construct the initial Nahm data from the ap-

proximate monopole fields. Below we look specifically at the charge 1 periodic

monopole, although the argument can equally be applied to higher charges.

The inverse Nahm operator for the charge 1 periodic monopole [War05] is

(see chapter 2)

∆Ψ =

(
2∂s̄ − z ζ − Φ

ζ̄ − Φ† 2∂s + z

)(
ψ11 ψ12

ψ21 ψ22

)
= 0, (5.7)

where Φ = C cosh(βs). In chapter 3 we studied the large C limit by suppressing

z dependence (setting z = 0 above) and defining new fields

i

∫
R2

sΨ†Ψ dr dt = iφ̂

∫
R2

Ψ†∂jΨ dr dt = âj

where iφ̂ = Φ̂− iÂz and j = x, y. These fields, (3.8), satisfy Hitchin equations

on R2. As discussed in section 3.1, equation 5.7 has an approximate solution

valid at large C, in which the columns of Ψ are Gaussian peaks at s = ±s0,

with s0(ζ) defined through C cosh(βs0) = ζ. In this limit the monopole fields

are φ̂ = s0σ3, â = 0.

The idea is to use these approximate monopole fields to explicitly perform

the forward Nahm transform. In other words, starting from (φ̂, â) we attempt

to obtain Φ and A. The forward Nahm transform requires normalised solutions
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to

∆̃V =


2∂ζ̄ 0 s− s0 0

0 2∂ζ̄ 0 s+ s0

s̄− s̄0 0 2∂ζ 0

0 s̄+ s̄0 0 2∂ζ



v1

v2

v3

v4

 = 0, (5.8)

which should give the charge 1 Nahm/Hitchin data

Φ =

∫
R2

dx dy ζ

4∑
i=1

|vi|2 = C cosh(βs) A =

∫
R2

dx dy
4∑
i=1

v̄i∂jvi = 0.

(5.9)

Solutions to the forward Nahm operator (5.8) are found using the same ideas

as those for the inverse transform. First of all, we note that the equations for

v1 and v3 decouple from those for v2 and v4. Writing ζ0 = C cosh(βs) and

ζ = ζ0 + ε, we have

s− s0 =
1

β
cosh−1

(
ζ0

C

)
− 1

β
cosh−1

(
ζ0 + ε

C

)
= −ζ − ζ0

β
ξ +O(ε2)

where ξ−1 = C sinh(βs). The spinor components v1 and v3 are supported away

from s = 0, and we make the Ansatz v1 ∼ v3 ∼ exp(−c|ζ − ζ0|2), resulting in

c = |ξ|/(2β) and v3 = −ξ−1/2ξ̄1/2v1.

The important point now is that, if we remain on the correct branch of

cosh−1, the quantity (s + s0) will never be close to zero (as in [War05], we

must avoid the points ζ0 = ±C). Thus, v2 and v4 are small and slowly varying

compared to v1 and v3. We thus approximate v2 ∼ v4 ≈ 0, so that normalising

gives

|v1|2 = |v3|2 =
|ξ|

2πβ
e−|ξ||ζ−ζ0|

2/β.

The consistency relation v3 = ±v̄1 arising from (5.8) fixes the phases of v1 and

v3,

v1 = −
(

ξ

2πβ

)1/2

e−|ξ||ζ−ζ0|
2/(2β) v3 =

(
ξ̄

2πβ

)1/2

e−|ξ||ζ−ζ0|
2/(2β),

(5.10)

and (5.9) yields the expected Hitchin fields, Φ = ζ0 = C cosh(βs), A = 0. Note

the solution (5.10) is again exponentially localised, and the scaling with β is

opposite to that of Ψ (see equations 3.4 and 3.5).

It should be cautioned that although these results appear to suggest a self-

dual Nahm transform on R2, much work remains to be done in studying how
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the boundary data is to be adapted in this limit. Although it is possible to

construct solutions to the Hitchin equations explicitly (see, for example, the

papers [Saç84, GMN13, Kam]), there is the additional caveat that Derrick

scaling [MS04] implies that all such solutions have infinite or zero energy. It

would be interesting to see whether the Nahm transform in this limit allows

the construction of the periodic monopole from the Nahm/Hitchin data of its

constituents (this approach has been successfully carried out for the SU(2) pe-

riodic instanton by means of its two monopole constituents [LL98]). However,

from section 3.1.2 it is not clear whether the constituents can genuinely be

considered as particles in their own right.

5.3 Intermediate C

Now that the small and large C limits have been established, our aim is to

understand the intermediate régime. Here we focus on the ‘zeros apart’ case,

which displays a rich z behaviour while remaining consistent with the sym-

metries of section 4.1. The expectation is for solutions to interpolate between

the two extremes of sections 5.1 and 5.2, and in fact this occurs non-trivially

via a chain-like structure. For W = i, the transition from small to large C

involves the resolution of the energy lumps of figure 5.2 into two constituents

each. Curiously, however, the constituents are not aligned with the x and y

axes but with the lines x ± y = 0, such that the chain has been twisted by

different amounts along its length, see figure 5.5 on page 96.

It is instructive to consider these solutions from the point of view of the

geodesics identified in sections 4.1.2 and 4.3 and illustrated in figure 3.3. In

particular, the W = i configuration is the midpoint of scattering via the W ∈
iR geodesic. Two points in this geodesic are shown in figure 5.6, which also

serve to illustrate the transition between the W = i configuration with C = 1

(figure 5.2) and that with C = 4 (figure 5.5).

Similarly, the W = 1 configuration (figure 5.7) is the midpoint of scattering

via the W ∈ R geodesic, for which outgoing chains are simply shifted by β/2

relative to the ingoing chains. Both these configurations also lie on the closed

geodesic with |W | = 1, snapshots of which are displayed in figures 5.5 and 5.7.

These show how the chains oscillate in shape as we move around the waist of

the double Atiyah-Hitchin trumpet of section 4.3.6.

As C is increased, the configuration deforms as shown in figure 5.8. The

energy lumps stretch in the xy plane and fuse along z such that when C is
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large enough, there are tubes of energy density located in a cross shape aligned

with the x and y axes, as expected from the spectral approximation. Although

it appears that within the spectral approximation the constituents cannot be

described as objects in their own right (section 3.1.2), it is not clear whether

this may be possible for intermediate C.

Even for intermediate values of C, one can make a link with the results of

the spectral approximation by integrating the energy density over a z-period

across the xy plane. The resulting quantity, shown in figure 5.9, is found to

resemble the energy density expected from the spectral approximation, insofar

as the peaks are located along the coordinate axes and there is an energy

minimum at x = y = 0.

5.4 Summary

In this chapter we considered the effect of changing the size to period ratio of

monopole chains. The limits of large and small size to period ratio were studied

by various approximations. For small monopoles, this recovered the Nahm

equations on a line segment, while for large monopoles evidence was given

for a self-reciprocal Nahm transform mapping between Hitchin equations on

R2. The transition of the spectral curve between these extremes was studied by

Cherkis [Che07]. Energy density plots were used to illustrate the symmetries of

the one parameter families of solutions and the approach towards the spectral

approximation of chapter 3 when the size is much larger than the period.
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Figure 5.5: Energy density isosurfaces for C = 4, W = i. On the left we see
the constituent structure, and on the right the twisted chain. The symmetry
group can be equivalently described as D2h × Z2 or D2d × Z2. The eight
axes of rotational symmetry are (x = ±y, z = 0), (x = ±y, z = β/2) for D2h

symmetry, and (x = 0, z = ±β/4), (y = 0, z = ±β/4) for D2d symmetry. Note
also the similarity to the Skyrmion chain configurations obtained in [HW08].

Figure 5.6: Two points on the W = iR geodesic with C = 2, displaying
D2h symmetry. Left: W = 2i, right: W = 1.125i. As well as illustrating the
scattering process, these energy density plots show how there is a transition
between the C = 1 case, where the energy is peaked in two regions near the
z-axis, and the C = 4 case, in which the energy is peaked away from the z-axis.
The ‘four pronged’ structures of figure 5.2 can be visualised as splitting the
right hand structure above along z = π.
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Figure 5.7: Scattering for C = 4 on the |W | = 1 geodesic. Left: W = 1 with
symmetry group D2h × Z2; right: W = eiπ/3 with symmetry group D2h. The
W = i configuration is shown in figure 5.5.

Figure 5.8: Left: C = 16, W = i, right: C = 36, W = i. Note how we
approach the z-independent result of the spectral approximation (figure 3.3,
middle panel).
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Figure 5.9: Left: energy density integrated over a period for C = 4, W =
i. Unlike in figure 5.5, the energy peaks here are at the locations expected
from the spectral approximation (right). Note that this comparison requires a
rescaling of the x and y coordinates by a factor of

√
C.
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Higher Charges

In this chapter we apply the methods of chapters 3 and 4 to periodic monopoles

of higher charge, making use of examples of charges k = (3) and k = (4).

Firstly, in section 6.1, we consider the symmetries of the spectral curve, then

in section 6.2 the Nahm transform is used to construct numerical solutions.

Section 6.3 describes ways to construct the Nahm data of higher charge chains

from those of lower charges. Most of this work appeared in the preprint [Mala].

6.1 Spectral Approximation

As was done in section 3.2.3 for charge 2 chains, geodesic submanifolds of

the (2k − 1)-real-dimensional reduced relative moduli space can be identified

by considering the fixed point sets of symmetries of the spectral curve. We

consider two transformations of ζ (corresponding to a rotation by α and a

reflection in the line θ = α/2), and find the necessary maps of the coefficients

bi which recover the original spectral curve. The k = 3 spectral curve is (2.16)

w2 + w(b3ζ
3 + b2ζ

2 + b1ζ + b0) + 1 = 0. (6.1)

We take b3 = 1 for the rest of this section, its magnitude setting a scale and

its phase an orientation. We also fix the centre of mass of the spectral points

at the origin by setting b2 = 0. Then the location of the spectral points is

obtained from the discriminant of the w polynomial (6.1),

b3ζ
3 + b1ζ + b0 = ±2. (6.2)

99
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ζ 7→ ζeiα

To keep the spectral curve invariant we transform w 7→ we−3iα and look for

values of α for which the resulting spectral curve,

w2e−6iα + w
(
ζ3 + b1ζe−2iα + b0e−3iα

)
+ 1 = 0,

is the same as the original one, (6.1), for a certain choice of b1 and b0. There

are three possibilities:

i. α = π/3, b1 7→ e2iπ/3b1, b0 7→ −b0, with fixed set b1 = b0 = 0. This corre-

sponds to the hexagonally symmetric configuration of spectral points.

ii. α = 2π/3, b1 7→ e4iπ/3b1, b0 7→ b0, with fixed set b1 = 0 for all b0.

iii. α = π, b1 7→ b1, b0 7→ −b0, with fixed set b0 = 0 for all b1.

ζ 7→ ζ̄eiα

We also set w 7→ w̄e−3iα, such that

w̄2e−6iα + w̄
(
ζ̄3 + b1ζ̄e−2iα + b0e−3iα

)
+ 1 = 0

⇒ w2e6iα + w
(
ζ3 + b̄1ζe2iα + b̄0e3iα

)
+ 1 = 0.

Then

iv. α = 0, b1 7→ b̄1, b0 7→ b̄0, with fixed set b1 ∈ R and b0 ∈ R.

v. α = π/3, b1 7→ e2iπ/3b̄1, b0 7→ −b̄0, with fixed set b1 = eiπ/3|b1|, b0 ∈ iR.

vi. α = 2π/3, b1 7→ e−2iπ/3b̄1, b0 7→ b̄0, with fixed set b1 = e−iπ/3|b1|, b0 ∈ R.

vii. α = π, b1 7→ b̄1, b0 7→ −b̄0, with fixed set b1 ∈ R and b0 ∈ iR.

The above symmetries of the spectral curve can be combined to give three

distinct scattering processes, described in figures 6.1 and 6.2.

The greater number of moduli in the charge 3 case compared to the charge

2 case allows us to consider ‘phase diagrams’ showing the values of the moduli

for which the monopoles form one, two, or three separate clusters. The number

of clusters is defined as the number of groups of spectral points joined by a

line of zero discriminant. Numerical checks suggest that the corresponding

regions in the moduli space are separated by lines describing configurations for

which two spectral points coincide. This occurs when the discriminant of the
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Figure 6.1: Cross section of energy density for two one-parameter families
with b1 = 0. Left: b0 ∈ R with b0 = −4,−3, . . . , 4. The relevant symmetries
are i, ii, iv and vi in the list of section 6.1. Right: b0 ∈ iR with −ib0 =
−4,−3, . . . , 4, with symmetries i, ii, v and vii. In both cases these define the
dihedral symmetry group D3.

Figure 6.2: Energy density for b1 ∈ R, b0 = 0, with b1 = −4,−3, . . . , 4. Unlike
the symmetries in figure 6.1, this family does not have a charge 2 analogue, and
in fact the Nahm data is only known for the special case b1 = −3, b0 = 0 (top
row, central panel). This configuration is in fact a charge 1 chain with period
β/3 and is described in section 6.3.1. The symmetry group is D2, described
by i, iii, iv and vii in the list above.
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b_1

Figure 6.3: Regions of the moduli space for which a charge 3 monopole contains
a single cluster (light grey), two clusters (dark grey) and three clusters (white).
The lines on which (6.3) holds are shown in black.

polynomial (6.2) vanishes (recall that this in turn was the discriminant of the

polynomial in w (6.1)),

4b3
1 = −27(b0 ± 2)2. (6.3)

The ‘phases’ on the slice of the moduli space with (b0, b1) ∈ R2 are shown in

figure 6.3. It should be noted that even in the asymptotic region of the mod-

uli space there are configurations for which two of the constituent monopoles

remain in a single cluster. A similar observation has been made for monopoles

in R3, [AH88]. In the charge 2 case, the region of the moduli space containing

a single cluster is the line segment K/C ∈ [−2, 2].

6.2 Nahm Transform

A straightforward extension of the charge 2 solutions described in section 4.1

is a modification of ‘Sutcliffe’s ansatz’ [Sut96b, Bra11]. Solutions generated in

this way have bi = 0 for i 6= 0, k in (2.17). We take

Φ =



0 0 · · · 0 f1

f2 0 · · · 0 0

0 f3 · · · 0 0
...

...
. . .

...
...

0 0 · · · fk 0


As̄ =



a1 0 0 . . . 0

0 a2 0 . . . 0

0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ak


. (6.4)

Mimicking the charge 2 procedure, we define fi = µie
ψi/2, with the conditions∑k

i=1 ψi = 0 and
∏k

i=1 µi = (−1)k−1det(Φ) = C cosh(βs) + K/2. The Hitchin



6.2 Nahm Transform 103

equations then read

2 (ai−1 − ai) = ∂s̄ψi

∇2 log |fi|2 = 2|fi|2 − |fi−1|2 − |fi+1|2,

where the index i is periodic, such that f0 = fk. As was the case in section

4.1, the determinant of Φ has exactly two zeros, such that smooth solutions

must have both zeros in the same or different entries µi (then two of the µi are

given by µ± (4.5, 4.6) and all the others we choose to set to 1). We are free

to fix one of the zeros, so µ1 = µ+, say. Then for a given charge k, the ` = 0

configuration has both zeros in µ1, and there are (2k + (−1)k − 1)/4 gauge

inequivalent configurations with ` > 0, where ` is the separation between the

positions of µ± in Φ, and in particular µ1+` = µ−. This is equivalent (up to

changing the sign of z) to placing µ− in the (k + 1− `)th entry.

Given the results of chapter 4, we will assume that the Ansatz (6.4) provides

` geodesic submanifolds of the moduli space away from the spectral limit of

section 6.1. Each of these submanifolds can be fixed by a symmetry and is

parametrised by the complex modulus K or W , as described in chapter 4.

Borrowing notation from [HMM95], we denote these surfaces Σ`
k.

With the above conventions, the Hitchin equations for k = 3, ` = 1 are{
∇2Re(ψ1) = 2|µ+|2eRe(ψ1) − |µ−|2eRe(ψ2) − e−Re(ψ1+ψ2)

∇2Re(ψ2) = 2|µ−|2eRe(ψ2) − |µ+|2eRe(ψ1) − e−Re(ψ1+ψ2)
(6.5)

with µ± as in (4.5) or (4.6).14

Solving the Hitchin equations numerically is now a matter of adapting the

charge 2 procedure used by Harland & Ward [HW09] and in chapter 4 of this

thesis. First of all we note that the equations (6.5) can be obtained by varying

the functional

E[Re(ψi)] =

∫
dr dt

(
1

2

∑
p=r,t

(∂pRe(ψi))
2 + 2|µi|2eRe(ψi)

− ψi|µj|2eRe(ψj) + e−Re(ψi+ψj)

)
(6.6)

with respect to ψi, where i, j ∈ {1, 2|i 6= j} and no sum is implied. Unfor-

tunately there appears to be no simple way of combining the two functionals

14 For k = 3 we have implicitly redefined K 7→ −K so as to have an incoming monopole on
the x-axis. For general k the effect of this transformation is a rotation by π/k.
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generating the separate coupled partial differential equations (6.5) into a single

expression. Instead of minimising a single functional, we alternately minimise

E[Re(ψ1)] and E[Re(ψ2)]. This approach was found to lead to rapidly conver-

gent solutions as long as the boundary conditions were chosen appropriately.

In fact, it is straightforward to write down an asymptotic solution to (6.5)

valid away from the zeros of µ± by making the Ansatz ψi = log(|µ+|ν
+
i |µ−|ν

−
i )

and solving for the ν±i (this solution is singular at the zeros of µ± and is thus

not globally valid). For k = 3 and ` = 1 we find

Re(ψ1) =
2

3
log
|µ−|
|µ+|2

Re(ψ2) =
2

3
log
|µ+|
|µ−|2

Re(ψ3) =
2

3
log (|µ+||µ−|) .

There is some freedom in the choice of imaginary parts of the functions ψi,

which must be chosen so as to make the Nahm data periodic on the cylinder.

We fix Im(ψ1) = −βt, Im(ψ1+`) = βt and Im(ψ3) = 0. A different choice simply

corresponds to a global shift in the z direction, and the resulting moduli spaces

are isomorphic.

One might also be concerned by the fact that (6.6) is not explicitly positive

definite due to the term linear in ψi, which does not appear in the charge 2

case. We again resort to the convergence of the numerical solution to justify

the validity of this approach.

It is easy to see that for k > 2 there are no solutions on the surfaces Σ`
k

with Re(ψ1) = Re(ψ2) = 0 everywhere. This tells us that the charge 1 chain

of period β/3 is not included in this family of solutions, as this requires F = 0

(see also section 6.3.1).

6.2.1 Symmetries

Spatial symmetries of the monopole fields can be studied by the procedure

outlined in section 4.1. First of all we choose a transformation of K (or W )

and s which preserves the spectral curve for a given transformation of ζ. Then

we express the transformed Hitchin fields as a gauge transformation of the

original fields. This allows us to read off the corresponding change in z from

the inverse Nahm operator (2.12), for which the monopole fields are gauge

equivalent to those at the original coordinates.

Note that if we restrict to gauge transformations which change the positions

and phases of the entries of Φ, then the overall ordering of the fi is unchanged

(or reversed in the case of Φ†). This property gives the solutions ` = 0 and



6.2 Nahm Transform 105

` = k/2 (for k even) an additional s 7→ −s symmetry (corresponding to z 7→
−z), which is not observed for general `.

Various scattering processes generalising those in section 4.1 are described

in the following subsections, and we visualise them with reference to chains

of small monopoles (C . 1). In brief, it is found that the geodesics are

characterised by the positions of the zeros among the entries of Φ, at µ1 and

µ1+`. Then for |W | > 1 the monopoles are located on the vertices of a regular

k-gon at z = β`/k (this value of the z position was determined numerically by

consideration of examples with large values of |K|/C). As |W | is reduced they

scatter and split into two clusters of charge ` moving along the positive z-axis

and (k − `) along the negative z-axis. The clusters move at speeds inversely

proportional to their charges, such that for |W | < 1 the outgoing monopoles

emerge at z = 0 on a (possibly rotated) k-gon. Following the discussion of

[MW13] we expect there to be a closed geodesic with |W | = 1, describing

stationary monopoles oscillating in shape. A discussion of the motion of Higgs

zeros is given in section 6.2.2.

Planar Scattering

The conjectured geodesic surface Σ0
k withK ∈ R orK ∈ iR describes scattering

in the xy plane via a D(2k)h-symmetric toroidal configuration. We see this as

follows:

First of all, we have that under the transformation s 7→ −s, µ± (defined

as in equation 4.5) and ψi are invariant, and ai(s) 7→ ai(−s) = −ai(s). The

form of the inverse Nahm operator (2.12) now tells us that the monopole fields

are invariant if we also replace z by −z. Thus, this monopole configuration

has the symmetry (ζ, z) ∼ (ζ,−z), consistent with the k incoming monopoles

being located at z = 0 (the fixed points of this transformation are z = 0 and

z = β/2, the latter occurring if we replace ψ1 7→ ψ1 + 2iβt).

To see the C2k symmetry we perform the transformation (s;K) 7→ (s +

iπ/β;−K), giving µ± 7→ ∓µ± and ψi 7→ ψi. Then Φ′(s;K) = Φ(s+ iπ/β;−K)

is the same as Φ(s;K) but with the sign of f1 reversed. Under a suitably

chosen diagonal gauge transformation g = exp(π.diag(0, 1, . . . , k − 1)/k), we

then have Φ′ = eiπ/kg−1Φg, leaving A unchanged. The entry (1kζ − Φ) in the

inverse Nahm operator (2.12) implies that ζ 7→ ζeiπ/k when we map K to −K.

The monopole fields are symmetric under (ζ, z;K) 7→ (ζeiπ/k, z;−K), and thus

K = 0 describes a configuration of enhanced symmetry.
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Symmetric Splitting

For even k, the geodesic submanifold Σ
k/2
k describes a splitting of k incoming

monopoles into two equal clusters. The Σ1
2 case was given in section 4.1.2. Now

we consider the k = 4 version, with conventions as in (4.6). Using the method

of section 4.1.2, we identify the following symmetries of the Nahm/Hitchin

and monopole fields (recall that these symmetries are defined up to gauge

transformations, so describe symmetries of gauge invariant quantities such as

the energy density):

• (s;W ) 7→ (−s̄;W ) ⇒ (ζ, z) ∼ (ζ̄ , z) for W ∈ R,

• (s;W ) 7→ (iπ/β − s̄;−W ) ⇒ (ζ, z) ∼ (eiπ/4ζ̄ , z) for W ∈ iR.

• (s;W ) 7→ (s̄;W
−1

) ⇒ (ζ, z) 7→ (ζ̄ , β/2 − z) relates the incoming and

outgoing legs of the geodesics W ∈ R and W ∈ iR. Thus, W ∈ R
describes monopoles incoming and outgoing parallel to the x and y axes,

with a half-period shift along z. On the other hand, W ∈ iR has an

additional π/4 rotation about the z-axis. This symmetry also fixes the

closed geodesic |W | = 1.

• (ζ, z) ∼ (iζ, z) is a symmetry for all W , as can be seen by the gauge

transformation g = diag(1, i,−1,−i),

• s 7→ −s ⇒ (ζ, z) ∼ (ζ,−z) for all W .

There are two particularly symmetric cases which will be considered in more

detail in section 6.3:

• W = 1 has (ζ, z) ∼ (ζ, β/2− z) ∼ (ζ, z + β/2), with symmetry D4h×Z2

• W = i has (ζ, z) ∼ (eiπ/4ζ, β/2 − z) ∼ (eiπ/4ζ, z + β/2) with symmetry

group D4d × Z2.

The clusters are located at z = ±β/4.

Generic `

Here we consider the example of Σ1
3. The symmetries are

• (s;W ) 7→ (−s̄;W ) ⇒ (ζ, z) ∼ (ζ̄ , z) for W ∈ R,

• (s;W ) 7→ (iπ/β − s̄;−W ) ⇒ (ζ, z) ∼ (−ζ̄ , z) for W ∈ iR,

• (s;W ) 7→ (s̄;W
−1

) ⇒ (ζ, z) ∼ (ζ̄ , β/3− z) for |W | = 1,

• (ζ, z) ∼ (e2iπ/3ζ, z) is a symmetry for all W .
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Figure 6.4: Energy density of a charge 3 periodic monopole with C = 1 taken
over a single period. Left: approximately tetrahedral configuration with W =
2 +
√

3 (K = 4). Right: when W = i, clusters of charge 1 and 2 are visible.
The symmetry groups are C3v and D3d, respectively.

In this case, there is no symmetry z 7→ −z due to the asymmetric splitting.

There are still configurations with enhanced symmetry:

• W = 1 has (ζ, z) ∼ (ζ, β/3− z), with symmetry group D3h, and

• W = i has (ζ, z) ∼ (−ζ, β/3− z), with symemtry group D3d,

with fixed points at z = β/6 and 2β/3, which are the positions of the charge

2 and charge 1 clusters, respectively.

These symmetries are consistent with the expected scattering process. Mo-

nopoles are incoming on the vertices of an equilateral triangle. They scatter

along z via an approximately tetrahedral configuration to form two clusters

(figure 6.4). A new tetrahedral configuration forms from clusters in adjacent

periods, and outgoing monopoles are shifted by β/3 and are either rotated by

π/3 about the z-axis (for W ∈ iR) or move back along the original directions

(for W ∈ R).

6.2.2 Higgs Zeros

As a further similarity with monopole scattering in R3, we observe the appear-

ance of an additional zero of tr(−1
2
Φ̂2) (termed an ‘antizero’ in [Sut96a, Sut97]

and described by a reversal in the local winding number) during the k = 3,

` = 0 scattering process with W ∈ R. The motion of Higgs zeros can thus be

described as follows: three zeros move radially inwards on the vertices of an

equilateral triangle, falling slightly below the plane z = β/3 as they approach.

At some (C-dependent) value of W , a zero appears on the z-axis, slightly

above β/3 (see figure 6.5 overleaf). Reducing W further, the zero splits into
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1 2 3 4

−1

0

1

2

Figure 6.5: Motion of the zero-antizero pair along the z-axis (with 0 corre-
sponding to z = β/3, and β = 2π) as a function of W for various values of C:
C = 1 in blue (rightmost curve), C = 2 in red (middle) and C = 5 in green
(left). For small C, the value of W at which the lower zero (the antizero)
is centered at z = β/3 appears to coincide with the monopole configuration
closest to tetrahedral symmetry (figure 6.6).

two, moving in the positive and negative z directions, figure 6.6. At some value

of W the downward-going zero (the antizero) meets the three original zeros,

resulting in the toroidal 2-monopole cluster of figure 6.4. However, the precise

value of W at which this occurs is hard to resolve numerically.

6.2.3 Dependence on C

For large C, producing energy density plots such as those of figures 5.5 and

5.7 for the charge 3 case is numerically delicate, with Φ̂ changing rapidly over

small distances. It is nonetheless expected that constituent energy peaks will

develop. In analogy with the charge 2 case of chapter 5, we expect the charge

3 monopole with W = i (figure 6.4) to consist of a chain of upturned and

rotated tetrahedra. For z ∈ [0, β) and m ∈ Z, constituents would be located

at (ζ, z) = (0, 2β/3) and (ζ, z) = (C1/3emiπ/3, β/6). The is described by the

symmetry group D3d.

6.2.4 Different Symmetries

We remark that the Ansatz (6.4) only encodes a subset of all solutions. In

particular, there is evidence [Harb] of the existence of monopole chains with

the symmetry

(ζ, z) ∼ (ζeiπ/k, z +mβ/k) (6.7)
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Figure 6.6: A contour of tr(Φ̂2) for the C = 1, W = 2 +
√

3 (K = 4) charge 3
solution of type ` = 1. This shows the Higgs field is close to zero at the centre
of the tetrahedron, although the energy density is not peaked there (see figure
6.4, but note the change of scale).

where k is the monopole charge and m = 0, . . . , k−1. We denote this symmetry

by D2h × Z(m)
k . Section 6.3 shows that the cases with m = 0 and m = k/2

can be expressed in the form (6.4). In particular, we suggest the following

decompositions:

D2h × Z(0)
k =D(2k)h,

D2h × Z(k/2)
k =Dkd × Z2.

More generally, solutions with the symmetry (6.7) can be given in terms of

quasi-periodic Nahm data. For instance, in the charge 2 case we have µ±

as in (4.6), except this time with Im(ψ) = 0. Numerical solutions of the

inverse Nahm operator must be performed with the condition Ψ|t=1 = −Ψ|t=0.

However, it has proved difficult to get the scheme outlined in section 4.1.4 to

converge with such boundary conditions.

6.3 Multiplying Chains

In this section we investigate how the Nahm data of a monopole chain can be

constructed from that of a lower charge chain. This is possible when a chain

can be described as a lower charge chain with a rescaled size C and period β.
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We will firstly consider a generalisation of the large N limit of the Ercolani-

Sinha solution [ES89] given by Harland & Ward [HW09]. Next, we will look

at how charge 2k Nahm data with ` = k/2 and W = ±1 can be expressed as

charge k Nahm data with ` = 0 and K = 0, and suggest an interpretation.

6.3.1 Rescaling a Charge 1 Chain

Harland & Ward [HW09] considered a rescaling of the Nahm data relevant to

a finite chain of N monopoles in the limit N → ∞. In this limit, the Nahm

matrices become infinite dimensional and operate on a k dimensional vector of

functions. The k×k matrix corresponding to this action is the Nahm data of a

periodic monopole. This procedure allowed the authors to reproduce the Nahm

data of monopole chains of charge 1, and for the special charge 2 configuration

consisting of a charge 1 chain of halved period. The resulting set of Nahm

data is equivalent to that for W = i on the surface Σ1
2. For higher charges, this

procedure does not give a point on the submanifold Σ`
k for any `. For instance,

the charge 3 version, describing a charge 1 monopole taken in groups of three

is

Φ =

 0 e−βr/3 eβ(r/3+it)

eβr/3 0 e−βr/3

e−β(r/3+it) eβr/3 0

 As̄ =
β

6

1 0 0

0 0 0

0 0 −1

 . (6.8)

This solution is of interest as the only currently known explicit charge 3 Nahm

data with spectral curve coefficient b1 6= 0 (see section 6.1). In fact, the

characteristic polynomial of Φ is ζ3 − 3ζ − (w + w−1) = 0. This is simply the

k = 3 version of the spectral curve det(12w−V1(ζ)k) = 0, where the holonomy

of the charge 1 chain, V1(ζ), is taken over k periods and satisfies tr(V1(ζ)) = ζ

and det(V1(ζ)) = 1. Note that F = 0, as expected for a charge 1 monopole

chain (for which the Nahm data is of rank 1).

The symmetries of this solution can be studied in the same way as was

done in section 6.2.1, to identify the symmetry group as D2h × Z3. We find

(ζ, z) ∼ (ζ,−z) ∼ (−ζ, z) ∼ (ζ̄ , z) ∼ (ζ, β/3− z),

confirming that the charge 3 chain in question is simply a charge 1 chain with

a rescaled period. This should be compared with the result of the spectral

approximation, figure 6.2.
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6.3.2 Embedding Nahm Data

Another approach to construct higher charge chains is by embedding lower

charge Nahm data as blocks along the diagonal of a higher rank matrix, with

rescaled periods and a phase shift to ensure the resulting characteristic poly-

nomial of Φ is a valid spectral curve. This construction will in general yield

Nahm data of the wrong periodicity, although it can readily be cast into the

standard form of section 6.2 by a change of gauge.

Charge k from Charge 1

The charge 1 Nahm data is simply Φ(1) = C cosh(βs), A(1) = 0. We form

a traceless rank 2 Hitchin Higgs field by imposing a relative phase of −1, to

obtain the charge 2 Hitchin Higgs field Φ′ = C cosh(βs/2)σ3. We should not

be concerned about the anti-periodicity of Φ′ if we notice that it is periodic

with period 4π/β, while the embedded charge 1 monopole has the dual period,

β/2. Now we perform a non-periodic gauge transformation with

g =
1√
2

(
1 eiβt/2

e−iβt/2 −1

)

resulting in

Φ(2) = g−1Φ′g = C cosh(βs/2)

(
0 eiβt/2

e−iβt/2 0

)

which is (up to a rescaling of C) the appropriate Hitchin Higgs field of a charge

2 chain, as can be obtained using the method of section 6.3.1. The gauge

potential in the usual gauge (4.2) is expected to be A
(2)
s̄ = βσ3/8. Applying

the inverse gauge transformation, we find that A
(2)
s̄ = g−1A′s̄g + g−1∂s̄g with

A′s̄ = A
(2)
s̄ . The structure of the inverse Nahm operator (2.12) relating the

symmetries of ζ and z to those of Φ and A allows us to interpret the embedded

charge 1 Nahm data as describing two monopoles of the same orientation (due

to the rotational symmetry (ζ, z) ∼ (−ζ, z)) but with z positions shifted by

±β/4 from the origin (this is determined from (2.12) as twice the shift in A
(1)
s̄

from A
(1)
s̄ = 0 for the single chain centered at z = 0).
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An analogous procedure can be carried out to construct the charge 3 chain

of section 6.3.1 from charge 1 Nahm data. This time we have

Φ′ = 2 diag

(
cosh

(
βs

3

)
, cosh

(
βs+ 2iπ

3

)
, cosh

(
βs− 2iπ

3

))

A′s̄ =
β

6
diag(1, 0,−1)

which is gauge equivalent to (6.8) by conjugation with

g =
1√
3

 1 eiβt/3 e2iβt/3

e−iβt/3−2iπ/3 1 eiβt/3+2iπ/3

e−2iβt/3−2iπ/3 e−iβt/3+2iπ/3 1

 .

Charge 4 from Charge 2

The same idea can be applied to higher charges. This allows us to take, say, a

charge 2 monopole in pairs to give charge 4 Nahm data where the Higgs field

is block-diagonal,

Φ(4) =

(
Φ(2) 0

0 Φ′(2)

)
.

This has a valid spectral curve as long as both Φ(2) and Φ′(2) have the same

`, with a relative overall phase of eiπ/2 and with K of opposite signs in each

block.

A special case is provided by Φ(2) with ` = 0 and K = 0. The gauge

transformation

g =
1√
2


1 0 eiβt/2 0

0 1 0 eiβt/2

e−iβt/2 0 −1 0

0 ie−iβt/2 0 −i


shows that this is equivalent to the charge 4 case with ` = 2 and W = 1

(see section 6.2). In other words, there are particular charge 4 configurations

which can be understood as charge 2 chains ‘in disguise’ [HW09], a result which

could have been anticipated by comparing the symmetry groups between each

case: here we have gone from D4h to D4h × Z2, while the previous subsection

constructed D2h × Zk-symmetric periodic monopoles from chains with D2h

symmetry.
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The decoupling of the Nahm data into block-diagonal form suggests the

relevant monopoles are ‘maximally separated’ and non-interacting.15 This is

reminiscent of the decoupling of the asymptotic moduli space metric of a charge

2 monopole into a direct product of two 1-monopole metrics for two well sep-

arated monopoles [GM95, Bie08].

6.4 Summary

This chapter concerns the construction of higher charge periodic monopoles.

An Ansatz was constructed for the Hitchin fields, containing precisely the

moduli appearing in the spectral curve, and this was found to provide highly

symmetric configurations. It is hoped that one could work back from these

symmetries to give a more thorough justification of this Ansatz, as was done

in section 4.1.3 for the charge 2 chain. This was followed by a comparison

with higher charge monopoles in R3 and a prescription for constructing certain

higher charge chains from those of lower charge.

15 A similar limiting case emerges for the Nahm data of well separated monopoles in R3.
With conventions as in [MS04], the k → 1 limit of the charge 2 Nahm data becomes
diagonal, (T1, T2, T3) ∝ (0, 0, σ3), although with poles at the endpoints.
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Conclusions and Outlook

We began this thesis by introducing non-Abelian magnetic monopoles as soli-

ton solutions to the Yang-Mills-Higgs system in R3, and discussing how the

techniques used in the construction of these solutions are adapted to the pe-

riodic case of monopoles on R2 × S1. This was followed by the discussion of

an approximation to the resulting monopole fields, which increased in validity

as the monopole size to period ratio became large. This allowed a study of

the symmetries of the monopole chain and of the moduli space in this limit.

The next chapter used the Nahm transform, which allowed a dual description

of the monopole chain via Hitchin equations on a cylinder. This dual system

was seen to describe the motion of lumps on the cylinder, and a study of their

properties allowed us to reproduce the metric on the asymptotic moduli space.

Following this, the results of the large size approximation were compared to

the fields given by a numerical implementation of the Nahm transform. Fi-

nally, we briefly discussed how the preceding observations generalise to higher

charge monopole chains.

There are various open questions, which could provide the basis for further

research. A selection of these is listed below.

• The strength of the ‘spectral approximation’ was that it gave the mono-

pole fields (in a certain limit) in a very simple way: by just studying the

spectral curve, which is a polynomial satisfying certain rules. It would be

interesting to try to apply this method to other soliton systems, thereby

bypassing the Nahm transform, which is generally harder to implement.

• A particular case in which the ‘spectral approximation’ could be useful is

the doubly periodic monopole on a square lattice, or monopole on R×T 2,

which is self-reciprocal under Nahm transform. This system is believed

115
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to be relevant in describing the wall of a magnetic bag, and has already

been considered in some detail [Lee98, War05, War08]. In particular,

spectral curves have been defined [ChW12], and the asymptotic mod-

uli space metric of two such ‘monopole walls’ has been computed from

physical considerations [HKM14]. Recent work [MW14] has allowed the

identification of geodesic submanifolds using symmetry principles akin

to those found throughout this thesis. Open questions include the ap-

plicability of the ‘spectral approximation’, the behaviour of constituents,

and whether the Nahm transform can be used for walls with hexagonal

symmetry.

• As mentioned briefly in chapter 6, it should be possible to use the Nahm

transform to study monopole chains with different symmetries. Exam-

ples of this are chains in which monopoles in adjacent periods are rotated,

and 2-monopole geodesics with θ = π/2 (i.e. two incoming chains of mo-

nopoles ‘maximally offset’ by half a period in the periodic direction).

Monopoles with these symmetries are not encoded by the Ansätze de-

scribed in this thesis, and in particular one would need to modify the

solution (4.2) to have α 6= 0.

• Related to the question of finding monopoles of different symmetries is

the possibility of perturbing known monopole solutions. The ‘zeros apart’

geodesic described in chapter 4 can be thought of as a perturbation of the

1-monopole chain. However, for higher charge monopoles there are no

known geodesics which contain the ‘tripled chain’ (6.8). In other words,

it is not currently known how to perturb the charge 1 monopole chain

by perturbations of period other that 2.

• Following the discussion of section 3.4, it would be interesting to study

periodic monopoles with higher gauge groups in more detail. The ma-

jor stumbling block to applying the Nahm transform numerically is that

the spectral curve predicts the Nahm/Hitchin data contains singulari-

ties. Nevertheless, if this problem could be successfully tackled it would

be extremely interesting to compare the behaviour of SU(3) periodic mo-

nopoles with known results for SU(3) monopoles in R3. Indeed, it was

this topic which initiated the research presented in this thesis and hence

led to the development of the ‘spectral approximation’.
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Symmetries from Hitchin Data

In this appendix we explain in detail the procedure followed in section 4.1.2,

with reference to the example of the K ∈ R geodesic of the ‘zeros together’

solution.

The map (s;K) 7→ (s̄; K̄) transforms (r, t) 7→ (r,−t),

µ+(s;K) = C cosh(βs) +K/2 7→ C cosh(βs̄) + K̄/2 = µ̄+(s;K)

and

µ−(s;K) = 1 7→ µ̄−(s;K).

Equation 4.3 is invariant, so Re(ψ)(s;K) 7→ Re(ψ)(s;K). Recalling that in

this case Im(ψ) = 0 tells us that a transforms as

a(s;K) = −1

8
(∂r + i∂t)ψ 7→ −

1

8
(∂r − i∂t)ψ = ā(s;K).

Combining these results we obtain the transformed Hitchin fields (4.2),

Φ(s;K) =

(
0 µ+eψ/2

µ−e−ψ/2 0

)
(s;K)

7→ Φ′(s′;K ′) =

(
0 µ̄+eψ/2

µ̄−e−ψ/2 0

)
(s;K),

As̄(s;K) = a(s;K)σ3 7→ A′s̄(s
′;K ′) = ā(s;K)σ3 = −As(s;K),

As(s;K) = −ā(s;K)σ3 7→ A′s(s
′;K ′) = −a(s;K)σ3 = −As̄(s;K).
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The Nahm operator ∆ constructed from the new fields is

∆′ =

(
12(2∂s − z)− 2As 12ζ − (Φ′)†

12ζ̄ − Φ′ 12(2∂s̄ + z)− 2As̄

)
.

Noting that Φ′ can be written in terms of Φ as Φ′ = σ1Φ†σ1, the new Nahm

operator ∆′ can be obtained from the original one (4.7) by the combined trans-

formation

∆′ = U−1∆U (ζ, z) 7→ (ζ̄ ,−z)

with U = σ1 ⊗ σ1. Consequently, Ψ transforms as

Ψ± 7→ σ1Ψ∓

such that the new monopole fields evaluated at (ζ̄ ,−z) are the same as the old

ones at (ζ, z). A monopole configuration symmetric under (ζ, z) 7→ (ζ̄ ,−z) is

thus invariant under K 7→ K̄, and leaves us with the one parameter family of

solutions with Im(K) = 0.
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Asymptotic Metric Integrals

In this appendix we perform the integrals of section 4.3.4 to one more order in

k = |K|, using the example of the integral J in equation 4.31.

For complex K = keiϕ,

βs0 = cosh−1(−K/2C) = log(−K/C + C/K +O((k/C)−3)) (B.1)

so

βr0 = log(k/C) +O((k/C)−2), βt0 = ϕ+ π +O((k/C)−2). (B.2)

The integrand can be expanded as

h(r, t0) = (K/2− C)−1/2

∞∑
m=0

(2m)!

(m!)2
(2−K/C)−m cosh2m

(
1
2
β(r + it0)

)
.

In order to integrate, we expand cosh2m as a sum of linear terms [GR94b],

h(r, t0) = (K/2− C)−1/2

(
1+

∞∑
m=1

(2m)!

4m(m!)2
(2−K/C)−m

(
(2m)!

(m!)2
+

+
m−1∑
n=0

2(2m)!

(2m− n)!n!
cosh

(
(m− n)β(r + it0)

)))

where the mth term in the sum has m factors of ‘cosh’ and, as will be seen

below, the series can be truncated, with higher terms contributing smaller
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powers of k/C. Integrating from r = 0 to r = r0,

J = (K/2− C)−1/2

(
r0 +

∞∑
m=1

(2m)!

4m(m!)2
(2−K/C)−m

(
(2m)!

(m!)2
r0 (B.3)

+
1

β

m−1∑
n=0

2(2m)!

(2m− n)!n!

1

(m− n)

(
sinh

(
(m− n)βs0

)
− sinh

(
(m− n)iβt0

))))
.

We now expand the sinh terms in powers of k/C using (B.1) and (B.2),

sinh(mβs0) = 1
2
(−K/C)m +O((k/C)m−2)

sinh(imβt0) = i sin(2πm(η + 1/2)) +O((k/C)−2).

Substituting these into (B.3),

J = (K/2− C)−1/2

(
r0 +

∞∑
m=1

(2m)!

4m(m!)2
(2−K/C)−m

(
(2m)!

(m!)2
r0+

+
1

β

m−1∑
n=0

(2m)!

(2m− n)!n!

(−1)m−n

(m− n)

(
(K/C)m−n +O((k/C)m−n−2)+

−2i sin(2πη(m− n)) +O((k/C)−2)

)))
.

Expanding (2−K/C)−m and r0, the summand becomes

1

β

(2m)!

4m(m!)2

(
1 + 2mC/K +O((k/C)−2)

)
×(

(2m)!

(m!)2
(−K/C)−m log(k/C) +O((k/C)−m−2)+

+
m−1∑
n=0

(2m)!

(2m− n)!n!

(−1)n

(m− n)

(
(K/C)−n +O((k/C)−n−2)+

−2i((K/C)−m sin(2πη(m− n)) +O((k/C)−m−2)

))
.

Now we expand the sum term by term, retaining terms of order (k/C)−1. To

this order we need only consider m = 1, plus the terms highlighted in red above

(which do not involve negative powers of m), so the double sum evaluates to

1

β

(
− (K/C)−1 log(k/C)− i(K/C)−1 sin(2πη) +O((k/C)−2 log(k/C))+

+
∞∑
m=1

(2m)!

m4m(m!)2
− (K/C)−1

(
2
∞∑
m=2

(2m)!

(m− 1)4m(m!)2
− 1

)
+O((k/C)−2)

)
.



Appendix B 121

These sums can in fact be performed (using Mathematica), so putting every-

thing together,

J =
1

β

√
2

K

(
log(k/C) + log(4)−i(C/K) sin(2πη)+

+O((k/C)−2 log(k/C))

)
where there is a nice cancellation killing the (K/C)−1 log(k/C) term, and the

O((k/C)−2 log(k/C)) piece contains contributions from the magenta and cyan

terms.

A similar expansion also gives a factor of 4 in the I integral (here we must

consider the regions |r| > |r0| and |r| < |r0| separately, although the dominant

contribution is from the former). Similarly, the subleading terms in h0 and L

are at O((k/C)−3/2).
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