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Abstract

This thesis discusses periodic one dimensional arrays of BPS monopoles. An
approximation based on the spectral curve is shown to provide an increasingly
accurate description of the monopole fields in the limit of large monopole size to
period ratio. Away from this limit the periodic monopole is studied by means
of the Nahm transform, which leads to a dual system of Hitchin equations
on a cylinder. A combination of analytical and numerical techniques is used
to study the spatial symmetries of the periodic 2-monopole and its moduli
space. In particular, the asymptotic moduli space metric is determined from
the Nahm data, and symmetric one parameter families of monopole scattering
processes are identified through the core of the moduli space. These ideas are

readily applicable to higher charge periodic monopoles.
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INTRODUCTION

1.1 OVERVIEW OF THE THESIS

This chapter sets the scene by reviewing what is known of monopoles in R3,
highlighting in particular the results and techniques used in their study, while
referring to the original papers for full details. Following on from these classical
results, chapter 2 discusses a modification of the mathematical tools to infinite
singly periodic chains of monopoles and discusses previous work in this area.

The first main strand of this thesis, chapter 3, describes an approximation
to the monopole fields in the limit in which the size of each monopole in the
chain is much larger than the spacing between monopoles. The content of
this chapter was published as Periodic monopoles from spectral curves (refer-
ence [Mall3]), and evidence for the validity of the ‘spectral approximation’ is
provided throughout the remaining chapters.

The second topic involves using the Nahm transform to study spatial sym-
metries of the monopole solutions and to describe the low energy interaction
of such monopole chains via the moduli space approximation. This is done in
chapter 4, which contains work published in [Mall3] and in collaboration with
my supervisor in Geometry of periodic monopoles, [MW13].

These chapters are followed by three shorter chapters: chapter 5 describes
the limits of the scaling of the monopole size to period ratio, while chapter
6 generalises the discussion of the preceding chapters to higher charge chains.
These chapters are based on the preprints [Malb] and [Mala], respectively.

Chapter 7 summarises the thesis and outlines ideas for future work.
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Throughout the thesis, mention will be made of the applicability of our
ideas to the doubly periodic monopole on a square lattice, drawing from
[MW14].

1.2 BPS MONOPOLES

The Bogomolny-Prasad-Sommerfield (BPS) monopole in R? is described by

classical solutions to the Bogomolny equations,
F = —xD® with F=dA+ANA (1.1)

where [ is a 2-form field strength, A is a 1-form gauge potential valued in the
Lie algebra of some group G (we will consider G = SU(N), and in particular
G = SU(2) for the remainder of this discussion) and & is a Lie-algebra-valued
scalar, the ‘Higgs field” which is constrained to satisfy tr(®?) = constant at

large distances. The covariant derivative D acts on p-forms w via
Dw =dw+ANw—(-1)PwAA = D*v = FAw—wAF.

The Hodge * acts on 1-forms by *w;dz! = %eijkwidxj A dx® (the summation
convention applies, and we are working with the Euclidean metric throughout).
In components, we then have F' = %Fijd:vi Adz’ and the Bogomolny equations

become

Fy=[Di D] = 0,4, — 0 A; + [As, A
=—€kDp® = —€;j5 (0P + [Ag, D).

As we are dealing with gauge theories, the monopole fields are defined up to
gauge transformations. For su(2)-valued fields, the Bogomolny equations are

invariant under the action of g € SU(2),
A — g tAg+gldg d — g ldg.
We will motivate the Bogomolny equations (1.1) in two ways. Firstly, we

perform a dimensional reduction on the anti-self-duality equations on R*,

1
Fij = —5 Eijlekla (1'2)
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whose solutions describe Yang-Mills instantons. Requiring that all the fields
are independent of one of the coordinate directions, 2%, say, and setting A, =
® returns the Bogomolny equations. Similar dimensional reductions will be
considered in sections 2.2 and 3.5.

The Bogomolny equations are also obtained from the three-dimensional

Yang-Mills-Higgs action,
1
5 = _1/ tr (F A+F + D A+D® + A1 — [0|P)w),  (1.3)
R3

where w is the volume form on R?, the length-squared of ® for G = SU(2) is
|®[|*> = —1tr(®?) and the trace is taken in the Lie algebra. From this per-
spective, the Higgs field is introduced in order to circumvent Derrick’s theorem
and allow solutions which are stable under an isotropic rescaling of the spa-
tial coordinates. Exact solutions to the resulting equations of motion are only
known for A = 0, as long as, in this limit, the boundary condition ||®]|* — 1
is retained (this is known as the ‘BPS limit’). A lower energy bound can be
computed by looking for stationary points of the action (1.3), an argument due

to Bogomolny:

1
S = _Z/ tr ((F 4 «D®) A % (F + *D®) — 2F A D®) .
R3

The first term is positive, such that minimum energy solutions obey (1.1) and

have an energy
1 1
B - __/ tr (+D® A DD) — —-/ dir (P % DP), (1.4)
2 R3 2 R3

where use has been made of the Jacobi identity, which together with (1.1)
implies the Bianchi identity,

€ijk|Di, [Dj, Di]] = 0 DxD® = 0. (1.5)

The total energy can be computed using the divergence theorem,

[ —-/ r (® « D), (1.6)
2 Jors=sz,
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and straightforward manipulations [War81] show that the energy density is
given by

E = —id*dtr (<I>2) = —%VQtr (@2) = %V2||(D||2- (1.7)

Equations 1.6 and 1.7 will be used later in this thesis.

Solutions to (1.1) in R? describe non-Abelian core regions, which allows
them to be smooth and free of singularities (although smooth solutions in the
presence of point-like Dirac monopoles have also been studied [ChDO08]). Away
from the core region, the fields can be seen to approach those of an Abelian
magnetic monopole exponentially fast.

Monopole solutions are characterised by their topological charge. In the

SU(2) case this is computed via

tr(FP)
- ey 18
/sgo pIE] (1:8)

and turns out to be identical to the number of zeros of ® counted with multi-
plicity, [Sut96a].! Then, the asymptotic length of the Higgs field is

k

me:1—§+ow%. (1.9)
Topologically, the charge arises due to the Higgs field breaking the gauge sym-
metry G to a residual symmetry group H. Then &, lies in the gauge orbit of
the coset group G/H, allowing a classification of monopoles by the homotopy
group my(G/H) of maps from the 2-sphere at spatial infinity to G/H. The
number of topological invariants generated in this way depends on the pattern
of symmetry breaking (which is said to be ‘maximal’ if all the eigenvalues of @,
are distinct, or ‘minimal’ if all but one of them are the same). For G = SU(2)
we have H = U(1) and one magnetic charge. In the SU(3) case there are
two possibilities, and we discuss how these apply to the periodic monopole in

chapter 3.
The interpretation of monopoles as possessing magnetic charge equal to
their topological charge arises from consideration of the fields far from the

non-Abelian core. In this region the Abelian field strength and magnetic field

L Although this observation also holds for the periodic monopole, there is evidence that it
is not the case for the doubly periodic monopole, [MW14].
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are defined through

tr(F;;®) 1
fii = =2 bi = 3 €ijfik,
’ 2[| @] 2

such that the magnetic and topological charges are related by

As such, far from the non-Abelian core these solutions behave much like the
Abelian magnetic monopoles studied by Dirac [Dir31], who first realised their
topological nature. The development of non-Abelian gauge theory by Yang and
Mills [YMb4] paved the way towards singularity-free solutions with magnetic
charge.

Solutions to the Bogomolny equations (1.1) have been studied using a range
of methods. The observation that non-Abelian gauge theories support regular
monopole solutions with the action (1.3) was made by 't Hooft and Polyakov
tHo74, Pol74]. The exact solution of charge 1 with A = 0 was given by
Prasad & Sommerfield [PS75], and is spherically symmetric. It has, however,
been shown [WG76] that no spherically symmetric monopoles exist for k& > 1,
although axially symmetric toroidal configurations are always a possibility in
this case. Charge 2 monopoles were studied soon thereafter by a variety of
methods, although formulae for the Higgs field are only known explicitly on
the coordinate axes. The techniques used include Ward’s adaptation of the
twistor construction of instantons [War81] and the approach of Forgacs et
al. in terms of integrable systems and Bécklund transformations [FHP81], while
many of the analytical details were studied by Jaffe & Taubes [JT80]. We will
focus primarily on Nahm’s adaptation of the Atiyah-Drinfeld-Hitchin-Manin
(ADHM) construction of instantons [Nah80, AHDMT75], which is the method
most easily applicable to £ > 2, and a working description of this technique is
given in the following section. Our discussion will draw both from the original
papers and from the exposition of Manton & Sutcliffe [MS04].

Charge k monopoles are characterised by 4k parameters, known as ‘moduli’.
Roughly speaking, for well separated monopoles, they describe the positions
and phases of the monopoles (although this interpretation fails when two mo-
nopoles are in close proximity to one another). The moduli describe solutions
to the Bogomolny equations of equal energy, an observation which provides

a method of determining the low energy dynamics of multimonopoles via the
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‘moduli space approximation’. This procedure will be discussed in section
1.4. The dimension of the moduli space was computed rigorously by Weinberg
[Wei80].

Within mathematical physics, non-Abelian monopoles appear in a variety of
settings. In cosmology, they occur as topological defects created by phase tran-
sitions in the early universe and diluted during inflation [VS94]. They played
an important part in the development of electromagnetic and strong/weak cou-
pling duality [MO77] and their existence has been predicted by string theory
[HW97| (see also section 2.4 of this thesis). M-theory has led to the Basu-
Harvey generalisation of the Nahm equations [BHO05], and there has been some
headway into understanding monopoles in the ‘bulk’ spacetime of the anti-de
Sitter/conformal field theory correspondence [Sutl10]. Although direct exper-
imental evidence of monopoles is lacking, effective monopoles have been de-
tected in condensed matter contexts, most notably in spin ices [MT+09]. A

brief overview of these topics is given in [Rajl12].

1.3 NAHM TRANSFORM AND SPECTRAL CURVES

In this section we discuss two tools which prove useful in the study of mono-
poles: the Nahm transform and spectral curves. The key characteristics of these
methods will be described, paving the way for their subsequent application to
monopoles on R? x S! later in this thesis.

The Nahm transform provides a bijection between solutions to the Bo-
gomolny equations and solutions of the Nahm equations on a line segment
[Nak93]. The transformed set of equations is usually easier to address, both
analytically and numerically, than the Bogomolny equations. However, carry-
ing out the inverse transform to obtain the monopole fields must generally be
performed numerically. The other strength of the Nahm transform is the way
spatial symmetries are encoded, which allows the construction of monopoles
of high symmetry such as those of the Platonic solids, [HS96].

Spectral curves describe monopoles by means of their scattering data, and
are related to the Nahm description by the Lax formalism. Knowledge of the
allowed polynomial form of the spectral curve gives information about both
the monopole and Nahm transformed fields, as well as indicating the spatial

locations of the monopoles.
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1.3.1 NAHM TRANSFORM

The Nahm transform extends the ADHM construction of instantons by re-
placing the linear ADHM operator by a differential operator built from the
monopole fields and twisted by a parameter z € R which is interpreted as a
coordinate on the reciprocal space. For the SU(2) monopole of charge k the
procedure was well described by Corrigan & Goddard [CG84], which we now
summarise.

Given su(2)-valued monopole fields ®(x), A;(x) we construct the differen-
tial operator

A =0;® (120 + 4;) — 1, @ (i + 2)

where we make use of the Pauli matrices with conventions

0 1 0 —i 1 0
o1 = Oy = Oq — .
! 10 2 i0 ’ 0 —1

The idea is to look for k independent spinors v, satisying Av, = 0. These are

arranged into the columns of a 2 X k matrix V normalised to [ VIV &3z = 1.

From V' we construct three anti-Hermitian & x k matrices T;(z) defined in the
11

domain z € (-3, 5),

Ti(z) = —i/ z; VIV dPx.
R3
These are known as ‘Nahm matrices” and satisfy the Nahm equations

dT;
dz

= _Gijk:,Tka (110)

together with the boundary condition that the {7;} have simple poles at z =
:i:% whose residues define a k-dimensional representation of su(2). Solving the
Nahm equations can be a lot simpler than tackling the Bogomolny equations
directly. For example, the charge 1 monopole has T; = x' (where the {z'}
denote the Cartesian coordinates of the location of the monopole), while the
charge 2 case can be solved in terms of elliptic functions (see [BPP82| for
details). In general, the trace of the Nahm matrices gives the monopole centre
of mass, allowing us to consider only their trace free part. For convenience,
we introduce the terminology ‘forward Nahm transform’ to refer to the above
procedure of mapping from monopole fields to Nahm equations.

Given a solution to the Nahm equations, we will use the ‘inverse Nahm

transform’ to construct the monopole fields from the Nahm data. This requires
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us to find the two dimensional kernel ¥ of the operator

A:12k®82— (0i®12xi)T—i(0i®Ti)T

B 1,(0, — 23) +iTy —1 (2t —iz?) +i(T; — iTy) (1.11)
—1; (2" +ix?) + (T +iTy) 1,(0, 4+ %) — iTy '

with ¥ normalised to 12
/ U0 dz = 1,.

1/2
Then the monopole fields satisfying the Bogomolny equations (1.1) are given
by
1/2 1/2
d(x) = i/ 2 U dz Ai(x) = / oW dz.
~1/2 ~1/2
In chapter 2 we will make use of the result of Braam & van Baal [BvB89] that
a generalised Nahm transform maps between solutions of self-duality equations
on reciprocal 4-tori. By rescaling the radii of these tori, and suitably amending
the boundary conditions, this picture has led to a variety of Nahm transforms
on different manifolds, as has been summarised by Jardim [Jar04]. In later
chapters, we will see how the R? monopole Nahm data arises as a limit of the
Nahm data of a periodic monopole.
The Nahm transform also allows the construction of monopoles of higher
gauge group, in which case the Nahm matrices are defined over a sequence of

line segments with certain matching conditions. For an example of this use,
see [HS97].

1.3.2 SPECTRAL CURVES

Hitchin [Hit82] defines the monopole spectral curve as the set of lines v in R?
on which the operator
(D, +i®)v =0 (1.12)

has a normalisable solution. This set of lines describes a complex curve on
TCP*', the tangent space to the Riemann sphere. In complex coordinates (&,7),
where £ is a coordinate on the Riemann sphere and 7 is a suitably normalised
coordinate on the tangent plane at £, the spectral curve of a monopole centered

at ¢ = (21, 2%, 2%) is

n— (2* —iz') + 22°¢ + (2 +iz")E* = 0,
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which is known as the ‘star’ at (z*, 2%, 23). The spectral curve for well separated
higher charge monopoles is closely approximated by the product of stars at each
monopole location.

From the Nahm transform perspective, the same spectral curve is obtained
by expressing the Nahm equations (1.10) in Lax form with £ as a spectral

parameter,

dr

— = [T, T"] where { T = (T +iTy) = 2T3¢ + (Th — iT2)€?

dr T+ = —iT3+ (T — iTy)¢

then the characteristic equation det(1xn+7'(¢)) = 0 is the k-monopole spectral
curve. Conversely, given a spectral curve we can deduce the eigenvalues of the
Nahm matrices.

The fact that the spectral curve is a polynomial in both 1 and &, together
with other data that can be derived relating the coefficients of the various
terms, restricts our attention to a specific form of spectral curve. One can
then impose certain symmetries on the spectral curve to obtain the curve cor-
responding to a monopole with these symmetries, such as the axially symmetric
case [Hit82] or to families of solutions with Platonic symmetry [HS96]. Many
of the features of the spectral curve of monopoles in R3, including the approx-
imate factorisation of the spectral curve and the way symmetries are encoded,
extend to the periodic case, as will be seen in chapters 3 and 6.

It should be noted in this section that the scattering data (1.12) is only
holomorphic if the operator (D, +i®) is compatible with the Bogomolny equa-

tions [Hit82]. For instance, holomorphicity of scattering in the z direction,
[D, +1iD,, D, +i®] = 0, (1.13)

is implied by the Bogomolny equations.

1.4 MODULI SPACE

The force between two 't Hooft-Polyakov monopoles was computed by Man-
ton [Man77], who found that for monopoles of equal charge the scalar at-
traction exactly cancels the electromagnetic repulsion. This allows the exis-
tence of the static multimonopole solutions described in section 1.2. Intro-
ducing a Lorentzian time direction, one can begin to consider the behaviour

of multimonopoles with initial velocities. At large separations, the lack of
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inter-monopole forces implies that the monopoles move with constant velocity.
Studying the detailed behaviour at small separations in principle requires a
solution to the full second-order field equations obtained from the action (1.3)
in Minkowski space. However, a major result in soliton theory is the ‘moduli
space approximation’ due to Manton [Man82] who showed that the dynamics
of slowly-moving monopoles can be approximated by an effective Lagrangian
on the 4k-dimensional moduli space.

The moduli space My, is defined as the space of admissible solutions to the
Bogomolny equations within the topological sector of charge £ modulo gauge
transformations which preserve the boundary data. The zero binding energy
means that all configurations on the moduli space have the same potential
energy, so that no values of the moduli are energetically favoured. Thus, if
the initial motion is at small kinetic energy and tangent to the moduli space
then subsequent motion will remain in the moduli space (so it can be assumed
that the static Bogomolny equations are always satisfied). Rigorous results
describing the régime of validity of the approximation and the effect of radiative
corrections were provided by Stuart [Stu94]. In particular, it is found that the
smaller the initial velocity the longer the moduli space approximation can be
trusted.

Motion on the moduli space is governed by the kinetic energy, resulting in
a Lagrangian which is quadratic in the time derivatives of the moduli. This
provides a metric on the moduli space, which is constructed explicitly by taking
the L? norm of tangent vectors, given by the perturbations (which arise due

to a small change in one of the moduli)
A, — A+ 04; ® — &+
satisfying the Bogomolny equations (linearised in the perturbations)
Di(64;) — Dj(6Ai) = —€ijp (Di(0P) — [P, 04]) - (1.14)

The effect of the gauge freedom on the moduli space is removed by projecting
the perturbations to the component orthogonal to the gauge orbits. Equiva-
lently, we impose that the perturbations satisfy the gauge orthogonality con-
dition

Di(6A;) + [®,69] = 0 (1.15)
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which arises from consideration of the effect of infinitesimal gauge transforma-

tions g = (13 + €), which map

which, considered as perturbations, also satisfy the linearised Bogomolny equa-
tions (1.14). We ensure that perturbations are orthogonal to gauge orbits by
imposing that the kinetic energy

% /R (047 + (69)) d'x

is invariant under the gauge transformation (1.16), leading to the condition
/ tr (5A; Die + 50[®, ) P = 0.
R3

Using the cyclic property of the trace to rearrange the commutators and in-
tegrating the first term by parts leads to the gauge condition (1.15), together
with the requirement that A falls sufficiently fast at large radial distance. A
similar exercise for instantons gives the gauge condition D,(0A4,) = 0, of which
(1.15) is simply a dimensional reduction. Tangent vectors satisfying these re-
quirements are known in the literature as ‘zero modes’. The metric on the

moduli space is then given by
1 3
Jab — 5 tr (5aAi5bAi + 5a@5b<1)) d €T,
R3

where a,b =1,...,4k label perturbations arising from a change in each of the
moduli.
Parameters whose variation leads to non L? normalisable deformations of

the fields should be kept fixed, as such perturbations require an infinite energy.

1.4.1 THE ATivyAH-HITCHIN METRIC

In general, it is hard to compute the metric on the moduli space explicitly. One
of the major successes in the field was Atiyah & Hitchin’s computation of the
metric of the 2-monopole system, [AH85, AH88]. This made use of the facts
that M, is of dimension 8, has a hyper-Kéhler metric and an SO(3) symmetry
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group. Furthermore, the centre of mass can be factored out,
My ~ R x St x MY | Z,,

where the quotient by Zs is due to centering the total phase (for a description
in terms of Donaldson rational maps see [MS04]) and M9 has dimension 4. As
we shall see, for the periodic monopole we have no choice but to factor out the
centre of mass.

The Atiyah-Hitchin metric has two important geodesic submanifolds, which
are known as the Atiyah-Hitchin cone and Atiyah-Hitchin trumpet. The first of
these describes planar scattering, including the celebrated 90° scattering angle
for head-on collisions (in which case there is an intermediate step compris-
ing the axially symmetric 2-monopole discussed in section 1.2). The Atiyah-
Hitchin trumpet allows for full three dimensional motion of the monopoles,
and assigns to them an electric charge due to variation in the phase parameter
(such ‘dyon’ solutions were considered by Julia & Zee [JZ75]). Details of these
geodesics are discussed in the book [AH88], and it will be seen in chapter 4 that
qualitatively similar geodesic submanifolds can be identified for the periodic
monopole.

The asymptotic form of the Atiyah-Hitchin metric simplifies considerably,
and was first computed by Manton [Man85]. The metric is of Taub-NUT type
with negative mass parameter, and can be written in Gibbons-Hawking form
[GHT78], an observation which can equally be made for periodic monopoles. For
a radial coordinate r, spherical angular coordinates # and ¢ and a phase angle

1, the asymptotic (large ) metric is
-1 N2
(¢ + cos(6)9)

ds* = <1 - %) <7'”2 +7r20% + 12 sin2(9)¢2> + (1 - %)
(1.17)

and the corrections to this are exponentially small. Manton’s calculation is
based on using the forces between well separated monopoles to write down an
effective Lagrangian in terms of the relative positions of the monopoles. This
procedure can be employed more generally, and is of use when the complete
details of the fields are unknown: the periodic monopole is a prime example
[ChKO02].

For other cases in which the metric is unknown, one can obtain geodesic

submanifolds as the fixed point of some spatial symmetry group acting on the
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monopole space. This has allowed, for example, the identification of one param-
eter families of a charge 3 monopole scattering process [HS96] with tetrahedral
symmetry. Similar arguments will be made to describe geodesic submanifolds
of the monopole chain in section 4.3.6.

Another example for which the full metric is known is the Lee-Weinberg-Yi
metric [LWY96] for certain SU(3) monopoles. In this case, head-on scattering
leads to a 180° scattering angle. Again, similar results have been found for the
periodic monopole (sections 3.4.3 and 4.3.2).

Finally, we remark that the bijection between the monopole and Nahm
spaces leads to an isometry in their moduli spaces. This allowed Houghton
et al. [HIM99] to explicitly regain the Atiyah-Hitchin metric from the Nahm
data. These findings inspire the approach taken in chapters 3 and 4 to deduce
the moduli space metric of the periodic monopole from the Nahm transformed
fields. The results can then be favourably compared with the asymptotic metric
deduced from the monopole side of the transform [ChK02].

1.5 PERIODIC INSTANTONS

Before commencing our discussion of periodic monopoles, it will be useful
to review the better studied periodic instanton, or ‘caloron’, with which the
periodic monopole shares qualitative features.

This system was motivated by Harrington & Shepard [HS77| by its con-
tribution to the vacuum state of a thermal field theory (with the instanton
corresponding to the zero temperature limit), who also constructed the first
examples, [HS78]. The construction makes use of the JNR family of instan-
tons, [JNR77], in which a charge n instanton gauge potential is given by the
derivative of a sum over (n + 1) weighted double poles in R*. This allows a
construction of calorons by equally spacing the poles along a line (as it stands,
this construction does not work for the doubly periodic instanton as the double
sum required for this case is divergent). The effect of altering the relative size
and period of the instantons in the chain was studied by Gross et al. [GPY81],
where it was shown that taking the small period (infinite temperature) limit
of the caloron recovers the Prasad-Sommerfield monopole [PS75].

Garland & Murray [GMS88] noticed that calorons can be understood as
monopoles whose gauge group is a loop group (an affine extension of a semi-
simple Lie group). In sections 2.4 and 3.5 we will describe the string theoretical

interpretation of this result, as applied to the compactified case (i.e. doubly
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periodic instantons as periodic monopoles whose gauge group is a loop group).
This leads to the interpretation of a caloron as being made up of constituent
monopoles. In fact, an SU(N) caloron may be composed of up to N monopole
constituents, [KvB98a]. In order for a caloron to display the maximal number
of constituent monopoles, the boundary conditions must be sufficiently general.
In particular, the asymptotic holonomy of the gauge potential in the periodic
direction must be non-trivial. A consequence of this is that the Harrington-
Shepard caloron does not split into constituents. Solutions with constituents
were constructed by Kraan & van Baal [KvB98b] using the Nahm transform
(which for the caloron leads to Nahm data on a circle), and by Lee & Lu [LL98],
who suitably glued together the Nahm data of the two constituent monopoles.

Other systems of periodic solitons have also been studied, such as periodic
Skyrmions, periodic sigma models and doubly periodic instantons. Some ex-
amples can be found in the references [FP04, Har08]. In all of these cases there
is a splitting into constituents, and as we shall see, the periodic monopole is

no different.



MONOPOLE CHAINS

The Bogomolny equations on R? x S! were first studied by Cherkis & Ka-
pustin [ChKO01, ChK02, ChK03].? We refer to solutions of these equations
interchangeably as periodic monopoles, or monopole chains when visualised as
an embedding into R3 (there is the interesting question of non-periodic per-
turbations to such a chain, although this lies outside the scope of this thesis).
Approximate analytical and numerical solutions of topological charge 1 and
2 were constructed by Ward and Harland [War05, HW09] using the Nahm
transform, while numerical studies were also carried out by Dunne & Khemani
[DKO05]. The remainder of this chapter describes the setup and introduces the

spectral curve and Nahm transform for monopole chains.

2.1 MONOPOLE DATA

As discussed in chapter 1, BPS monopoles are described by a dimensional
reduction of the anti-self-dual Yang-Mills equations to three Euclidean dimen-
sions. Then the component of the gauge potential in the suppressed direction
becomes a scalar Higgs field & valued in the Lie algebra su(N) and satisfying
the Bogomolny equations (1.1)

F = —«Do. (2.1)

In this thesis, we will be concerned with solutions periodic in one of the

remaining spatial directions, and will use coordinates = + iy = pe'? = ( €

2 From this point on we use the notation "~ to distinguish the monopole fields and physical
space from their Nahm transformed counterparts.

15
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C @ R? and z € R/BZ. The fields at large p are chosen to match those of an
Abelian chain, such that ®., behaves as log(p), and the Bianchi identity (1.5)
requires d to be a harmonic function on R2 x S*. Imposing strict periodicity
in 0 and = then requires # dependence to enter ®.. at O(p~') and z dependence
to contribute at O(p~!/2e"), well within the core non-Abelian region.
Monopoles for gauge group SU(NV) have been discussed by various authors,
[Wei80, War82, LWY96, MS04, Har08, Shn|. In the case of SU(N) periodic
monopoles the boundary data is defined by an N-component vector of integers,
£. Recalling that the monopole fields are valued in su(N) (so are N x N
traceless anti-Hermitian matrices) and noting that we are free to permute the

entries in ® by a choice of gauge, the elements of £ satisfy

We also have real vectors v and b and a complex vector p, whose components
again sum to zero, and obey v; > v;,1 if {; = ¢;1;. These coefficients (as well
as other subleading terms) are the parameters and moduli of a solution. From
now on we make the distinction between parameters, which must be kept fixed
(such as the boundary conditions and the centre of mass) and moduli, which
are allowed to vary. The physical significance of the parameters and moduli of
the periodic monopole will be identified in section 3.1.

At large radial distance p the fields must resemble a chain of Dirac mono-
poles, and are hence Abelian and diagonal, such that (up to a choice of gauge)

the NV diagonal entries are

—ifd. = Llog(p) + v+ Re(u¢™") + O(p?)
iBAw= (€0 +b+TIm(u¢)) dz + O(p~?), (2.3)

and are combined, defining b = v + ib, into
Bos = —1B(® —iA.)s = Llog(()+ 0+ pC " +0(p72).  (24)

Such a monopole can be constructed by a minimal embedding of fundamen-
tal SU(2) monopoles in the (N — 1)-dimensional co-root space with integer

magnetic weights k; arranged into a vector k,

N N-1
€= lieg=> kp;
=1 i=1
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Figure 2.1: Root diagram for SU(3) showing magnetic weights (k1, k2) allowed
by (2.2).

where for convenience the co-root vectors are represented in terms of N-
dimensional vectors 37 = e; — e;;1 and the {e;} are basis vectors for £. The
SU(3) case is illustrated in figure 2.1. It is possible to convert between the

elements of £ and those of k using
J
k?j = Z& and Ez = kz - ki—h (25)
i=1

where it should be understood that ky = ky = 0 and we define K = max{k;}.
Throughout this thesis, a specific class of SU(N) periodic monopole will often
be referred to simply by its (N — 1)-dimensional charge vector k.

As is done for monopoles in R? [War82, MS04, Har(08], fundamental mo-
nopole masses are defined by the pattern of symmetry breaking of the leading

terms in ®. In particular, the i mass is
m; = b; — Ly

where an interpretation as a physical mass requires the specification of a radial
cut-off, due to the logarithmic growth of the Higgs field at large p. If all the
masses are non-zero (in other words, if the leading diagonal entries in d are
distinct), the SU(NN) gauge symmetry is maximally broken by the asymptotic
Higgs field to U(1)N¥ 1. Otherwise, there may be unbroken subgroups according

to whether the corresponding v; are the same or different. This can occur for
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configurations lying on the lines k1 = 2ky and ky = 2k;, and we will see
examples of this in section 3.4.2. On the other hand, if k&1 = ks we are open
to the possibility of an SU(2) monopole ‘trivially embedded’ into SU(3) via a
negative root. This will be discussed further in section 3.4.1.

Motivated by (1.8), we define the total monopole charge

Fd
¢ = — lim / tr(F'2) (2.6)
oo J e A D]

where integration is over the 2-torus at radial infinity, the length of the Higgs
field is defined by [|®[> = —L1tr(®?) and tr(-) denotes the trace in the Lie
algebra. Applying (2.6) to the su(/N)-valued fields (2.3), the total charge, ¢, is

given by the product of fundamental charges and masses,

N

N-1
¢’ o Zéf = z:knnZ (2.7)
i=1 i=1
A similar result holds for SU(N) monopoles in R? [Wei80], although it is note-
worthy that in contrast to the R?® case (1.9) both the charges and masses
are now determined from the leading asymptotic term in o (which explains
why ¢%, not ¢, appears in (2.7)). Consequently, as described in the preceding
paragraph, certain patterns of symmetry breaking can only be achieved by a
particular choice of fundamental charges.

As pointed out in [ChKO01], the total energy is logarithmically divergent,
such that the Bogomolny bound (1.4) is

_ % Z C; (0 10g(R) + v;) (2.8)

and we understand the Bogomolny equations to give a solution which minimises
the energy in a region with R large but finite. The appearance of ¢* in the
leading term of (2.8) supports our identification of the {m;} as the masses of
the constituent monopoles.

As is done for the periodic instanton (section 1.5), it is useful to consider
the holonomy in the periodic direction. Explicitly, we are to solve the matrix
equation

0.V (¢, 2) = 9V((, 2) (2.9)
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with boundary condition V' ((,0) = 1y, for V((, ); in particular this fixes
det(V) = 1. Under a gauge transformation with § = §(¢,z) € SU(N), the

fields and holonomy transform as

where ¢(¢,0) is introduced to ensure the boundary condition on V((,z) is
satisfied. As long as ¢ is strictly periodic, i.e. §((,5) = §(¢,0), then the
characteristic polynomial of V((, ) is gauge invariant. Asymptotically, using
(2.4), the holonomy takes the form

V(¢ B) = diag (¢"e™ (1 + ¢+ O0(p7?),...). (2.10)

The analysis of the Bogomolny equations carried out by Cherkis & Kapustin
[ChKO01] establishes that the characteristic equation of the holonomy is in fact

holomorphic, and is thus a polynomial in (.

2.2 NAHM TRANSFORM

It is shown in [CG84, BvB89] that the Nahm transform provides a bijection
between self-dual Yang-Mills fields on the torus T* and the reciprocal torus 7.
It is believed [Jar04] that other self-dual Yang-Mills systems can be obtained
by suitable rescalings of the tori. In the present case, it is therefore expected
that the Nahm dual to the monopole on R? x S! is a Hitchin system [Hit87]
on the ‘Hitchin cylinder’ R x S where the S! has the dual period 27/3, and
this correspondence was established in [ChK01].3* Following the notation of
[War05, HW09] the cylinder is parametrised by the coordinates r € R and
t € R/(2n/B)Z, which are combined into a complex coordinate s = r +it. The
Hitchin fields are a dimensional reduction of the anti-self-duality equations
(1.2) with A; = Ay + A5, Ao = i(As — A;), A3 = 5(® — @T), Ay = —11(P + D)
valued in u(K) (or su(K) if the monopole centre of mass is fixed at the origin).

3 The fact Hitchin equations are conformally invariant allows us to map solutions to other

manifolds, including R? or S2. We choose the cylinder to keep explicit the link with the
Nahm transform. This gains particular relevance when we make the comparison with
doubly periodic instantons in section 3.5.

This argument also suggests that the doubly periodic monopole, or monopole on R x T2,
is self-reciprocal under the Nahm transform.
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This gives

1
Fis = =3 (@, O] Ds® = 0@ + [A;,®] = 0 (2.11)
with T denoting the complex conjugate transpose.®> We shall often refer to this
system of Hitchin equations on a cylinder as ‘Nahm/Hitchin data’, in order
to emphasize the fact that the Nahm data is given by Hitchin equations. The
monopole fields are recovered, up to a gauge, by finding solutions of the inverse

Nahm operator (motivated by the R? case, equation 1.11),

Av <1K(2a§— 2) + 24, 14— ) _— (212

].KE—(I)]L 1K(283+Z)+2AS

For SU(NNV) periodic monopoles, ¥ is a (2K x N) matrix subject to the nor-

malisation condition

o0 /8
/ dr/ dt (UT) = 1y. (2.13)
—o0  J-n/B

One can then, in principle, construct the monopole fields using

) 0 /B . oo /B
o = i/ dr/ dt (r¥tw), A = / dr/ dt (VTo,0).  (2.14)
—o0 —7/B —o0 —n/B

Gauge transformations ¢ acting on the monopole fields and g and h on the

Nahm fields transform ¥ as
U(s;¢,2) = Uls)"0(s;¢,2) (¢, 2). (2.15)

where U(s) = h® g(s), with h a constant 2 x 2 matrix serving to permute the
entries in A and also those of W. This freedom to rearrange makes it evident
that it is irrelevant whether the derivatives 0, and 0; are introduced in the
same or different entries of A, the two configurations differing only by a choice
of gauge.

Finally, it should be noted that in the § — 0 limit the Nahm transform
is expected to be self-reciprocal, mapping between two Hitchin systems of
different rank and boundary conditions. Evidence for this is provided in section
5.2.

5 In this context ® should more properly be thought of as a 1-form ®ds, [Hit87).



2.3 Spectral Data 21

2.3 SPECTRAL DATA

Following Hitchin [Hit82], we are interested in describing the periodic monopole
by means of a holomorphic curve on the twistor space of R? x S*. The key
observation of [ChKO01, Che07] is that one can restrict to scattering in the
periodic direction and consider the characteristic equation of the z-holonomy;,
det(1yw — V((, B)) = 0, which relates monopole data to Nahm data through
the parameter w = ¢”*. This provides a holomorphic curve S in C x C* known
as the monopole spectral curve, which for an SU(NN) periodic monopole of

charge k is
w4+ P, (Qw™N ™+ 4 Pyoigy, (Qu+ (=D =0 (2.16)

where the P, ,(¢) denote polynomials in ¢ with leading term proportional to
¢*. For SU(2) chains this can be written

b+ b b (b Fw wTh) = 0. (2.17)

The relation (2.16) shows that by performing a coordinate redefinition w
w™! the largest of the k; (if it is unique) can be chosen to lie in the first half
of the entries of k. Referring to the SU(3) case (figure 2.1), this amounts to
identifying the regions on either side of the line ky = ko, and we will choose to
work with the configurations below that line.

In addition to the monopole spectral curve (2.16), Cherkis & Kapustin
[ChKO01, ChKO03] introduce a second, equivalent, spectral curve relating the
coordinate on R? in the monopole space to the characteristic equation of the
Hitchin Higgs field ®,

det(1x¢ —P(s)) =0 = K —tr(@) K 4 4 (—1)Edet(®) = 0,
(2.18)
where the intermediate terms are given by symmetric polynomials in the eigen-
values of ®. By rewriting (2.16) as a polynomial in {, a comparison can be
made with the coefficients of (2.18) to obtain gauge invariants of ®. In par-
ticular, it should be noted that det(®) will have singularities at finite |r| if
K appears more than once in k. Smooth behaviour at large |r| requires the
introduction of singularities, both to the monopole and Hitchin fields.
We remark on the similarity of the definition of the spectral curve of the

periodic monopole to the scattering data used for monopoles in R? (see section
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1.3.2), and in particular to scattering data in the periodic (z) direction. In
section 3.1 we will see that this spectral data is insensitive to half of the mod-
uli (in particular, z separations and relative phases between the monopoles).
The remaining moduli can be introduced to the spectral curve by the use of
parabolic line bundles [Harb|, where additional data is added to the singular
points of the spectral curve, at (w, () = (0,00) and (00, 00).

One can define complementary spectral data from scattering along a general
direction of R? x S1, [Che07]. The resulting spectral curve has not been studied
in detail, but it is reasonable to expect that it would encode the remaining
moduli. Note furthermore that although a similar compatibility condition to
(1.13) can be given in spherical polar coordinates, it is not possible to do
this in cylindrical polars. Consequently the problem cannot be simplified by
restricting to scattering data along lines containing x = y = 0 and orthogonal

to z (as might be tried as a naive extension of the Jarvis rational map approach
[MS04]).

2.4 STRING THEORY SETTING

The relation between periodic monopoles and compactified supersymmetric
gauge theories is explained in detail in [Kap98, ChK01, ChK03]. It provides
a physical context for the root structure presented in section 2.1, as well as
a supersymmetric gauge theoretical interpretation of the spectral curve and
moduli space. The type IIB setup of interest consists of N parallel D5-branes
extended along the 2%-2° directions and separated along z°, with 2% compact-
ified on a circle. Ending on each of the i*" pair of adjacent D5-branes we have
(N — 1) stacks of k; D3-branes extended along the z°-2? directions with finite
extent in 2% From the point of view of the D5-brane system, each of the D3-
branes is seen as a fundamental SU(2) periodic monopole of type i localised
in the x%-2° directions of the D5-brane worldvolume, and translationally in-
variant along 2°-22. Performing a T-duality in the 2% direction returns a ITA

3

system of D4-branes extended along x°-22, 2% ending on N other D4-branes

2 2% 25 The field equations on the (23, 2%)-cylinder are

extended along 2%z
nothing other than the Hitchin equations of section 2.2. The tension between
the D4-branes causes them to deform, such that the 2% direction of the cylinder

becomes of infinite extent.
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01 23 456789
D5 | x X X X
D3 |x x x X
Tgl
0123 456789
D4 | x X X X
D4 | x X X

Introducing ny and n_ semi-infinite D3-branes ending on the first and N'*® D5-
branes is equivalent to the introduction of Dirac singularities to the monopole
system. Compactifying the 2 direction, such that the left and right D3-branes

coincide, is equivalent to adding an N*® root to the Lie algebra su(N). The

3

duality described above then leads to Hitchin equations on the 2-torus (x°,

2%). Such a system of singular monopoles and the relation of the torus to the

Nahm data of the doubly periodic instanton will be discussed in section 3.5.






THE SPECTRAL APPROXIMATION

This chapter considers the limit of large monopole size to period ratio and de-
scribes an approximation which accurately describes the periodic monopole in
this limit. The motivation for this approach is Ward’s approximate analytical
evaluation of the inverse Nahm transform [War05], together with the study of
the spectral curves carried out by Cherkis & Kapustin [ChK01, ChK03]. The
recipe for the spectral approximation for the charge 1 case is given in section
3.1. This is then applied to the charge 2 monopole chain (section 3.2), allowing
us to consider geodesics on the resulting moduli space (section 3.3). A gener-
alisation to higher gauge groups is considered in section 3.4, and the relation
to the doubly periodic instanton is described in section 3.5. A discussion of
the application of the spectral approximation to higher monopole charges is
postponed to chapter 6. Evidence for the validity of the approximation will
be presented throughout the remaining chapters. The work in this chapter
was published in JHEP with the title Periodic monopoles from spectral curves,
[Mall3].

3.1 INTRODUCING THE APPROXIMATION

Due to the difficulty of finding exact solutions to the inverse Nahm operator
(2.12) and motivated by Ward’s approximate k = (1) solution [War05],% we will
consider a construction based on the spectral curves (2.16, 2.18). The following
paragraphs describe the procedure to be followed and in the remainder of this
section we use the results of [War(05] to illustrate the application and régime

of validity of the approximation.

6 Recall that we are using the notation defined on page 17 for the charge vector k.

25
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Given an SU(N) monopole with charge vector k it is straightforward to
write down the spectral curves (2.16) and (2.18), where the polynomials P, 4, (¢)
can be expressed in terms of the data v, u. We will be interested in the spectral
points, those values of ¢ at which two or more of the eigenvalues of V (¢, 3)
coincide. These points are located by finding the zeros of the discriminant
Dy, of the polynomial in w (as a function of ). Our interest in the spec-
tral points stems from the finding in the k = (1) case, discussed in section
3.1.1, that peaks in energy density are always located at the spectral points
(although there can be exceptions when two spectral points coincide). It can
be checked by explicit calculation for small N that the highest power of { in
Dy, is 2 Zf\:ll k;, and we expect there to be this many spectral points (this has
been checked as far as N = 4). We will see from various examples that away
from the central region of the moduli space, the spectral points occur in pairs,
forming Zf\;l k; fundamental monopoles. This observation is reminiscent of
the splitting of periodic instantons into monopole constituents (section 1.5).
However, for the periodic monopole, constituents are always present as the
holonomy is always non-trivial due to the logarithmic growth of the entries
of ¢. From (2.10), a trivial asymptotic holonomy requires ¢; = 0, Vi. Al-
though this condition cannot be achieved for the regular SU(2) monopole, it
is possible to set some of the ¢; = 0 for higher rank gauge group or upon the
addition of Dirac singularities. These cases will be considered in sections 3.4
and 3.5, respectively, and we will see that there is a corresponding pole in the
Nahm/Hitchin data.

The spectral curve (2.16) of the SU(IV) charge k periodic monopole contains
25 N M(k; + 1) real coefficients. We know from [ChK03] that the complex
coefficient of (¥ in each of the polynomials P, (¢) is a parameter determined
by the boundary data v. The centre of mass of the spectral points is factored
out by choosing p such that the term of order (22%~1 in Dy, vanishes, and we
will say that such a monpole is centered.” Overall, this yields 2 Zf\;l ki —2
real relative moduli, precisely half the number expected were we to consider
the full three dimensional picture. This suggests our approach is insensitive
to relative z and phase differences between the fundamental monopoles, such
that its validity is expected to improve as the ratio of the monopole size to its
period becomes large. We will refer to the moduli appearing in the spectral

curve as reduced moduli, and will see in section 4.1 that in the SU(2) charge

" Tt should be noted [ChK02] that the infinite mass of a periodic monopole precludes vari-
ation of the centre of mass coordinates, and that it is thus not physically meaningful to
consider an ‘uncentered’ moduli space.
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k = (2) case they parametrise a geodesic submanifold of the full moduli space

when certain symmetries are imposed.

3.1.1 SU(2) CHARGE 1 - SPECTRAL CURVE

We illustrate the procedure by reviewing the approximate construction of
[War05] for k = (1). In this case the asymptotic monopole field (2.4) and
holonomy (2.10) are

b = %(log(()+n+u(l+...)ag

V(¢,B) = diag (¢e® + pe® + ..., e +..0)

so tr(V) = (¢ + p)e® holds for all ¢ (all subleading terms must cancel if the
monopole fields are to be smooth) and the spectral curve is (note that the
Nahm /Hitchin fields are of rank 1)

w® —2(¢+ p)w/C+1 =0 (—® =0, (3.1)

with spectral points where the roots of the w polynomial coincide, i.e. at { =
—p =+ C such that C' defines the ‘size’ of the monopole and is given in terms of
the boundary data by C' = 2e~°. Then by rearranging (3.1) and centering the
monopole chain by setting 1 = 0, the Hitchin Higgs field is

® = C'cosh(ps)

while the Hitchin gauge potential A, can be set to zero by a gauge transfor-
mation and the Hitchin equations (2.11) are satisfied trivially, for constant A;.

The inverse Nahm transform (2.12) requires a solution of
205 — -
AT = [ z ¢ Y Yo — 0 (3.2)
C—®" 20,+2z) \Yo1 a2
(such that A; is absorbed into z). For ((,e*) € S, (¢ — ®) will vanish at
Bs = +fsy = +cosh™* (¢/0), (3.3)

such that away from the spectral curve,

(—® = £BC(s £ s0)sinh(Bsg) + O(s £5,)* = £B(s % 50)6 + O(s £ 5,)?
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where €2 = (? —C?. As mentioned by [War05], solutions to (3.2) are supported
near the points s = +s9 = £(r¢+ity) on the Hitchin cylinder. The independent

solutions take the form of Gaussian peaks localised at each of +sy, assembled

into
S N( SE- ‘é’&) (3.4)
—l¢|E- EE.
where
log(Ex(s)) = —181¢] (r £ 10)2 + (¢ £ t0)%) — izt (3.5)

and we have chosen a different gauge to [War05], such that the monopole fields
are explicitly independent of z. Such a solution is valid when the peaks on
R x St are well separated, so that there are two independent solutions of (3.2).
Furthermore, the peaks must be narrow compared to the cylinder to ensure the
correct periodicity in z and ¢ (note that away from this limit it is not possible to
extract a phase e ! from W as is done in equation 3.5, while at the same time
preserving the periodicity condition). These conditions are simultaneously
ensured if we stay away from the spectral points ( = £C'. It follows that a
rough estimate for the domain of validity of the spectral approximation is to

require the width of the peaks in EL to be much less than the period 27/f,

| 1 2 S TING
2 e < 7 = ¢F=C% > (3.6)

As long as the peaks are narrow, such that the t-integral of TW can be eval-

1.e.

uated as an infinite Gaussian integral, the normalisation factor A is deter-
mined from (2.13) to be |N]? = B/(27|¢]). After a gauge transformation
g = exp(4log(£/&)o3) the monopole fields are

A ~

d = i7’00’3 Az = —itoa'g (37)

. C el . A
AC = 4—52 e BlEllsol o1 AE — _AL
with r¢ and ¢y defined through (3.3). We choose the branch ¢, € (—7/8,7/5)

and |[so| is to be understood as
so” = inf (53 + (1o + 0/B)?) .

It is important to note that the fact the monopole Higgs field can be read off

directly from the spectral curve (3.1) via sq (3.3) is not simply a restatement of
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the boundary conditions, as use has also been made of the fact the coefficients
in w of the spectral curve are polynomials in (, whose coefficients encode the
moduli in a particular way [ChKO03|. This result will be used in sections 3.2, 3.4
and 3.5 when we discuss the charge 2, SU(3) and singular periodic monopoles.

It is useful to combine the fields (3.7) into ip = ®—iA, and & = Acd¢ —i—flgdf
(see equation 2.4). We note that a approaches zero exponentially fast away
from the spectral points ( = +C', and the fields are Abelian and trivially satisfy
Hitchin equations in this limit, suggesting that they are truly two dimensional.
Noting that |so| has dimensions of 37!, we conjecture that in the limit 3 — 0
(where (3.6) holds for all ¢) a solution is provided by

¢ = 50(Q)os a=0, (3.8)

which satisfies the Bogomolny equations with the correct boundary conditions
(2.4). The fact the fields in (3.7) and (3.8) are not smooth (they are continuous,
but not differentiable on the line z € [—C, C], y = 0) means the approximation
of this section is only expected to be exact as a limiting case. As will be
seen in section 3.3, this approximation also leads to the correct asymptotic
behaviour of the moduli space metric. Futher evidence for the validity of this
approximation is provided by a numerical study of the effect of increasing the
size-to-period parameter C' (see chapter 5). This procedure is equivalent to

reducing 3, together with a rescaling of the z and y coordinates by v/C.

3.1.2 CHARGE 1 - ENERGY

We use the energy density formula (1.7)
[y
& = 1 V7 tr ()]

where the Laplacian is V? = 49,0;. The Higgs field (3.7) is

. . 2
d = éRe (cosh_1 (%)) o3 = %log %—l— (é) — 1| a3, (3.9)

giving an energy density

1 1 1

& = —— = — .
SRR VPt — 2p2C2 cos(20) + C*

(3.10)
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Figure 3.1: An SU(2) periodic monopole. On the left is a contour plot of the

A

energy density (3.10) and on the right of log(disc(®)+0.001). The discriminant
vanishes on a line joining the spectral points, whose locations are indicated by
black dots on the right hand diagram. Note the loss of axial symmetry and the
appearance of constituents, which coincide when the monopole size |C| = 0
(when arg(C') can have no effect).

Contours of & describe Cassini ovals (the locus of points such that the product
of distances to two foci is constant) with foci at the spectral points, where the
energy is peaked, as shown in figure 3.1. The separation of the spectral points
by 2C" allows us to interpret C' as the characteristic size of the monopole. The
relation (3.6) gives an estimate as to when it should be possible to resolve the
monopole constituents. In particular, the spectral approximation is valid at
¢ =01if C > f/m. In other words, the spectral approximation holds at large
C' and/or small 5. The discriminant of ®, defined as the square of the product
of differences between the eigenvalues of @, is disc(®) = 4r2. The profile of
||<i>||2 is qualitatively in agreement with numerical investigations of n equally
spaced monopoles as n is increased, [DKO05].

We next use the divergence theorem to compute the total energy enclosed

in a region with p = R > C

1 A A
V=g ] @ pdpdoas = 2 (ayfu@)) as
p<R p=R

and note that the leading term of the integrand at large p is

A 4 2p
Oy ltr(®)[* ~ Wlog (6) ,

Vi = // Eipdpdldz = 2—7T10g (E> (3.11)
p<R B C

resulting in
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in agreement with (2.8). Finally, we note that the Higgs field (3.9) vanishes
along a line between the spectral points, figure 3.1. This observation survives
for higher charges and gauge groups, where the discriminant of the Higgs field
vanishes along lines joining the constituents in pairs. Unlike in the case of
the periodic instanton (which develops monopole constituents, section 1.5),
this illustrates how the constituents of the periodic monopole are confined.
Separating the constituents by increasing C' changes the boundary data and
leads to non L? normalisable deformations of the fields. This fixes C' as a
parameter rather than a modulus.

As an alternative to using the monopole energy formula (1.7), the energy
density (3.10) can also be obtained from a Bogomolny argument for Hitchin

equations (the U(1) version of which is given in [Sa¢84]),

e = i (B [60]) + (08) (0:0) 812
- (end - 00.) )

The energy is minimised by setting the first two terms to zero, which are the
Hitchin equations and are automatically satisfied by the fields (3.8). Evaluating
the third term recovers (3.10). The total energy can be computed using Green’s
theorem in the plane, giving the energy (3.11) up to a factor of § for the z

integral.

3.2 (CHARGE 2

In this section we apply the spectral approximation to the SU(2) monopole of
charge k = (2), which has two real reduced moduli. Using symmetries of the
spectral curves this can be reduced to two one-parameter families, although
we withhold showing that this two dimensional reduced moduli space is itself
a geodesic submanifold of the full four dimensional moduli space until section
4.1.2.

In the limit of large monopole size to period ratio in which the spectral ap-
proximation becomes exact it is possible to compute a metric on the two dimen-
sional reduced moduli space. Its asymptotic form agrees with the ALG metric
of [ChK02], allowing numerical integration of non-trivial geodesics, which will

be considered both in the monopole space and on the dual cylinder. Finally,
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we will study two solutions of the rank 2 Hitchin system with the same spectral

curve [HW09, Haral|, and briefly compare their scattering properties.

3.2.1 SPECTRAL APPROXIMATION

The general form of the monopole spectral curve (2.16) of the charge k = (2)

periodic monopole is
WP Qw4+l =0 with  Pio(¢) = — (2¢* —2BC( - K) /C (3.13)

with B, K € C. The spectral points are located at the values of { where
(P12(¢))* = 4. Fixing the centre of mass at the origin (B = 0), we expect

energy peaks at the four points

G ==*VEK/2+C (3.14)

(where the + signs are independent).® As in the k = (1) case, C is a parameter
fixed by the boundary conditions, while K is a complex modulus. For |K|/C >
2 the spectral points occur in two pairs which are interpreted as fundamental
monopoles of size |C \/Q/_K | separated by a distance [v/2K|. Tt is noteworthy
that the fundamental monopoles get smaller as they are separated, an effect
of the long range Higgs field.

Motivated by (3.7) we assume the monopole Higgs field is given by =

iRe(sg)os, where sq is obtained by rearranging the spectral curve for s(¢),

P = %Re <cosh1 (QCZ—EK)) o3 (3.15)

and compute the energy in the region |(| < R, with R > v K, using (1.7) to

find A o 2
‘/2 = _ﬂ-log (_) )

again in agreement with (2.8). Applying the divergence theorem to Jx& for
large p,
Ouce o DD, ltx(®)] ~ p~*log(p).

confirms that the total energy is independent of the modulus K.

8 Note that to regain the k = (1) limit we should instead fix K = 0, B # 0 and let C — oo.
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The energy density of a generic SU(2) periodic monopole with spectral
curve
w? + P(Qw+1=0 (3.16)

is obtained from (1.7) via the roots

we(Q) = 5 (~P(Q) + VP 1)
£ = 1V2 ((Re(log w,))” + (Re(log w_))Q) : (3.17)

4
Expanding about a point ¢ = (s + ¢, we have P(¢) = P((y) + eP'({) + O(e?)

and

1

we = 5 (=P(G) = eP(G) + -+ VPG — 4) + 2ePG) P Go) )

The energy density (3.17) is computed at { = (y using polar coordinates € =
pe? centered at (p, and will be finite unless w.. contains terms of order ¢’ with
¢ < 1. The energy is thus finite everywhere except at those points ( = (j for
which P?((y) = 4 (in which case the square root introduces a factor of €'/2).
In particular, the energy density has a simple pole where the discriminant of
(3.16) vanishes. The only exception to this is when P’({y) = 0, in which case
the square root contributes a term of order ¢ and the energy is finite. For
the charge 2 monopole, this has the effect of giving a finite energy where two
spectral points coincide.

The preceding argument is given for its relevance to monopoles in higher
gauge groups: the quadratic spectral curve (3.16) then becomes a cubic or
higher order polynomial. A similar argument can be made regarding the po-
sitions of energy peaks at spectral points. However, as will be seen in section
3.4, it is not necessarily the case that for gauge groups other than SU(2) the

energy density should be finite when two spectral points coincide.

3.2.2 SYMMETRIC CHARGE k
The spectral curve of the dihedral Dog-symmetric charge k = (k) monopole is

%Re (COSh_l <C—g>) 03.

C cosh(Bs) = ¢* = o
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This time we compute the energy density using the general formula

2 .
£ = % \/% where o = %Re (cosh_1 (@)) 03,

from which we again see that the energy density is peaked at the spectral points
unless 9:P(¢) = 0 there. For the case P(¢) = 2¢*/C, the spectral points are

located on a circle of radius p = C'/* and the energy density is

k2 p2k72

& = — ,
SCE Vp* — 2C2p% cos(2k0) + C*

(3.18)

where we note that the energy density at the origin vanishes for all £k > 1. The
total energy obtained from this formula is again in agreement with (2.8), while

the energy per unit charge in the region 0 < p < aC'/* is

7.‘,@219

%(Oﬁpﬁaol/k)ZTSFz (3,1,4:1,3:4") (3.19)
| e (1+0(*) /8 (a<1
| 4G/8 a=1

where 3F; is the generalised hypergeometric function, G' =~ 0.916 is Catalan’s
constant and we have used the following identities for the elliptic integral K(x)

[GR94aq]:

1

x/2
K(x) /O e Ty (k< 1), (3.20)

4ab/ KPPIK(KY) dr = w223 F, (%, %, a;l,a+1; Z2b) . (3.21)
0

Figure 3.2 shows how the total energy in a period cylinder, (3.19), is increas-
ingly located at its edge as k is increased. An expansion of the fields at small

and large p yields

{ _1@ ~ (p*/C)sin(k6)os (oF < O),
—if® —log (2p%/C) o5 ~ (2p/C) 2 cos(2kb)oy  (p* > O).

These results resemble those found for spherical magnetic bags of large charge,
as first studied by [Bol06], and it is interesting to see evidence of a ‘magnetic

cylinder’” with similar properties.
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BV/(4Gk)
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Figure 3.2: Normalised energy per unit charge enclosed in a period cylinder
of radius aC'/* for various values of the charge k. Solid line: k& = 1, dashed:
k =2, dotted: k = 10. The energy density is increasingly located on a shell of
radius p = CV/*.

3.2.3 SYMMETRIES

Geodesic submanifolds of the two dimensional reduced moduli space are ob-
tained by looking at symmetries of the spectral curve (3.13). Fixing the pa-
rameters B = 0 and C' € R, we impose invariance of (3.13) under a reflection
symmetry in the line # = a/2, encoded by the map ¢ +— ¢®C. This requires
that we simultaneously map w + e 2% (t — —t — 2a/3) and K > e¥ oK.
The original spectral curve (3.13) is recovered by complex conjugation as long
as « is chosen to be 0 or m/4. These choices of o correspond to the one pa-
rameter families K € R and K € iR, respectively. In section 4.1 it will be
shown that the reduced moduli provide a geodesic submanifold of the full four
dimensional moduli space, allowing us to consider the above one parameter
families as geodesics. The definition of a metric on the reduced moduli space
will be considered in the following section.

More information about these geodesics can be obtained by considering
the 7/2 rotation symmetry ¢ + i¢, which requires w — —w (t — t + 7/3)
and K — —K. For the one parameter families found above, passing through
K = 0leads to the right angled scattering processes shown in figure 3.3 overleaf.
Particularly interesting points in the moduli space are K/C' = +2, where two
of the spectral points coincide at the origin (although there is no energy peak
associated with them) and K = 0, where the Dy symmetry is enhanced to Dj.
This is nothing but the symmetric configuration considered in section 3.2.2.

Away from the families K € R and K € iR, the symmetry group is the cyclic
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Figure 3.3: Energy density contour plots for charge k = 2 within the spectral
approximation. Left: geodesic with K € R (to be read from left to right
and top to bottom). Right: geodesic with K € iR. The central symmetric
configurations have K = 0, while those with just two energy peaks have K/C =
+2. It is noteworthy that the axial symmetry of the ‘doughnut’ charge 2
monopole in R3 [War81] is replaced by a discrete dihedral (D,) symmetry.
Note how the constituents themselves (indicated by black dots) as well as the
monopoles as a whole undergo 90° scattering. The spacing between snapshots
is taken relative to the metric defined in section 3.3.
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group Cy. For K/C € [—2,2] the fundamental monopoles lose their individual

identities and the discriminant vanishes on a cross shape joining the four peaks.

3.3 METRIC

In this section we compute the asymptotic metric of the monopole fields (3.8)
for a charge 2 periodic monopole within the spectral approximation. The
results are compared to the asymptotic metric obtained by considering the
interaction of well separated monopole chains, [ChK02]. Assuming our metric
is globally accurate when the spectral approximation is valid, we compute new
monopole scattering processes and discuss the dual motion of the zeros of the
Hitchin Higgs field ® on the cylinder.

3.3.1 DEFINITION

We use the general formalism for obtaining the moduli space metric from the

variation of the fields (section 1.4). For z-independent fields the metric is given



3.3 Metric 37

by

1 .o A A PN — —
9= KK [ <5¢5¢T + 0136 — 464:0a, — 45&@&5) pdpdd  (3.22)

where it is understood that the fields satisfy the gauge condition (see section
1.4)

1(Dedlag) + Dedlac)) = 16,651 + 41,59 (3.23)

which arises as a dimensional reduction of the equivalent gauge orthogonality
condition for instantons, D,(dA,) = 0. Here § indicates differentiation with
respect to K, and "is differentiation with respect to an affine time 7.

From (3.8) there is a centered charge 2 solution of the Bogomolny equations

with 0 K
5 = ot (B Yo i

valid sufficiently far from the spectral points, for which the orthogonality con-
dition (3.23) holds trivially and only the first term in (3.22) contributes. As
discussed in section 3.1.1, it will be assumed that this becomes exact in the

limit of z independence. It follows that the metric is given by

1
KK = — dp do. 3.24
/ NS K/z GV e v e S

For given K the integral can be written in terms of products of distances to

the four spectral points, which are located at (;(K) = ++/K/2 + C, defining
the conformal factor Q(K),

1
¢ = Gil]¢ — Gl|¢ — Gl[¢ — Cal

- dodd = QK K.
9= 15 p dpdf

3.3.2 ASYMPTOTICS

The integral in (3.24) can be computed in the limit in which the monopoles
are well separated, |K|/C > 2. Two of the peaks are placed near the origin,
at ( = =e, and the others are centered at some large distance R along the
z-axis (for simplicity we consider K = kel¥ € R). Integrating out to some pg
(with R > py > €),

Q L/p();pdpdﬁ
R Jo ¢ +ell¢— ¢ '
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This integrand is identical to that of (3.18), so

1 2po
We recall from section 3.2.1 that the separation R and size 2¢ of the funda-

mental monopoles in this limit are, respectively, given by
R = (2k)V/? e = C(2k)™Y? = C/R, (3.25)

allowing us to express the metric either in terms of k£ or of the monopole

separation R,
1 : .
g ~ E(log(k) +c)k* ~ (log(R) + ) R?.

The latter agrees, up to prefactors, with the asymptotic metric computed in
[ChKO02], which is an ALG metric of limiting Gibbons-Hawking type [GH7S|.
The constants ¢ and ¢ depend on the upper limit of integration p, and are
related to the redefinition of v performed in [ChK02] when a chain of n mo-
nopoles is studied in the limit of n — co. The same asymptotic form of the

metric will be recovered more carefully in section 4.3.

3.3.3 INTEGRATION

There are three specific values of K at which evaluation of the conformal factor

Q(K) can be performed analytically (see figure 3.3 for the relevant monopole

configurations),
K =0 o= _L (@)
327 32C 4
7r
K +2 Q~ — 1 KFx2 2
20 G o (K 7 201) (3.26)

where, for K = 0, use has been made of (3.21). The integral diverges at
K/C = £2, when two of the spectral points coincide and there is a double
pole in the integrand. We employ these results to ensure a correct numerical
implementation of the integral for general K, and the result is shown in figure
3.4. Further evidence for this metric will be provided in section 4.3.2.

Using polar coordinates K = kel?, the geodesic equations are

20K7¢ + (0,Q) (K¢ — k?) + 200k Gk + 4Qkpk =0
20k + (0,.Q) (k* — K*¢?) + 2(0,0)pk — 20kp* =0 (3.27)
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Figure 3.4: Surface plot of the conformal factor, computed from (3.24), for
the relative reduced moduli space in the limit of large monopole size to period
ratio, with § = 27. The infinite peaks (3.26) are at K/C = £2.

where “denotes differentiation with respect to the parameter time 7. In partic-
ular, there are geodesics with ¢ = 0, for which the geodesic equations become
0,0 = 0 and

20U+ (V2 =0 = /\/ﬁdk = by7 + by, (3.28)

where b; and by are constants of integration. As can be seen from figure 3.4
such geodesics are only possible for ¢ = 0, 7/2, which are precisely the geodesic
submanifolds K € R and K € iR obtained by symmetry arguments in section
3.2.3.

The logarithmic behaviour of € in the vicinity of K/C = 42 (equation
3.26), combined with the implicit expression for k(7) (3.28), is sufficient to
show that geodesics can cross the points K/C' = +£2 in finite parameter time.
The more complete treatment of the Hitchin system carried out in section 4.1
and [MW13], valid outside of the spectral approximation, shows a branching
behaviour at K/C = +2, with some geodesics capable of crossing these points,

while others appear to turn back on themselves.

3.3.4 NEW GEODESICS

In complex coordinates the geodesic equations (3.27) are

QK + (0kQ)K? = 0
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Figure 3.5: Geodesic for initial condition K/C = 5(1+41), K/C = —0.03(1+1)
with step size 0.03. The left hand plot displays the geodesic on the K-plane
(with shaded circles at K/C' = +2). Tick marks every 722 timesteps indicate
the positions of the energy density snapshots displayed to the right.

and its complex conjugate. We write this as a system of coupled partial dif-

ferential equations,
Q0+ (0xkQ)v? = 0 K=

and obtain 0k() by differentiating the integrand of € before performing the

integral (this choice of ordering was found to give greater numerical precision),

o= 5 [(CK/2 (¢ = K27 = )P (@ = B[22 =€) pidpa,

which must again be integrated numerically. Then, by specifying initial val-
ues of K and K, geodesics are integrated using a fourth order Runge-Kutta
procedure. Two such non-trivial geodesics are displayed in figures 3.5 and 3.6,
which are to be compared with those of figure 3.3. It is worth noting that
geodesics crossing the line segment —2 < K/C' < 2 (figure 3.5) scatter by
swapping constituents, otherwise there is glancing scattering and each funda-
mental monopole retains its identity (figure 3.6). As was seen in figure 3.3,
a geodesic meeting K/C = +2 has two coincident spectral points, whose as-
sociated energy density vanishes. Numerical examples suggest that the only

geodesic to cross these points is that with K € R.
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Figure 3.6: Geodesic for initial conditions K/C' = 5+ 2i, K/C = —0.042
with step size 0.03. Tick marks are at every 950 timesteps. In this case the
fundamental monopoles retain their separate identities.

b @ Ba |,

3.3.5 ZEROS ON THE CYLINDER

Rewriting the spectral curve (3.13) as a polynomial in ( and comparing with

(2.18) we find
¢ — (Ccosh(Bs) + K/2) = 0 = —det(®) = Ccosh(fs) + K/2.

Note how setting B = 0 means there is no term of order (, so ® is traceless.
The determinant of the Hitchin Higgs field has two zeros whose locations on
the cylinder depend on K/C. In section 4.1 we will see that these values are
of interest as they provide approximate locations for peaks in the gauge field
F,s on the Hitchin cylinder, defined through equation 2.11. As det(®) is an
even function of s, the zeros are always on opposite sides of the cylinder, at
s = £s9. They are located on the circle r = 0 if —2 < K/C < 2 and coincide
at so = in/B,0 if K/C = 2,—2. This again illustrates, as discussed in section
3.2.3, that K = 0 is a particularly symmetric case, for which the zeros are at
+in /2. The motion of the zeros corresponding to the geodesics with K € R
and K € iR are shown in figures 3.7 and 3.8 overleaf. Other geodesics, such
as those of figures 3.5 and 3.6, lead either to glancing scattering of the zeros
(if K/C passes between —2 and 2, figure 3.5) or to them returning in the same
direction they came in from (if K/C does not cross the line segment [—2, 2],
figure 3.6).
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Figure 3.7: Motion of zeros on the Hitchin cylinder for K € R, where the top
and bottom edges of the diagram are identified and the z period is taken to
be f = 2m. Arrows indicate the direction of K increasing from K/C = —4.5,
with spacing determined by the velocity using the metric (3.24). The black
dots are at K{/C' = £2 (note that in these cases the zeros coincide), while the
grey dots are at K = 0. Zeros at the same K are located at opposite points
on the cylinder, obtained by reversing the signs of  and ¢.
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Figure 3.8: The setup is the same as that of figure 3.7, this time with K € iR.
The arrow indicates the evolution with Im(K) increasing from Im(K) = —4.5.
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3.4 SU(3) PERIODIC MONOPOLES

Monopoles in R? have been considered for higher rank gauge groups by various
authors [Wei80, LWY96, MS04, Shn|. In this section we apply the results of
the spectral approximation to the SU(3) periodic monopole and consider the
basic properties for k = (1,1) and k = (2, 1), which have two and four reduced
relative moduli, respectively.

Following the arguments of section 2.1, the SU(3) periodic monopole has

spectral curve (2.16)
w® + Py, (Qu? + P (Quw —1 = 0 (3.29)

where

P () = aip P+ .o+ @i + aip.

As discussed in sections 2.1 and 2.3, we take k; > ko. The root diagram was
shown in figure 2.1. Our procedure will be to express the coeflicients of P, (¢)
in terms of the boundary data (2.4, 2.10) and hence to determine the positions
of spectral points from the discriminant D, 1,), which we obtain from the

rank (2N — 1) Sylvester matrix,

Py, P, -1 0
1 Py Py, -1

2Py, Pay, 0 0
3 2Py, Po, 0
0 3 2Py, Pop,

D(ku,kg) = det

oSO O w o =

In analogy with sections 3.1.1 and 3.2.1, we are interested in the eigenvalues
of the holonomy V', i.e. the solutions to the cubic equation (3.29) for w(().
This manipulation is performed numerically to give three eigenvalues w; =
exp(B(r; + it;)) from which ® o diag(ry, 7, 73) and the quantities of interest

are?

Eox V2 (ri+r;+r3), discriminant = (r; — r3)%(ry — r3)%(rs — r1)*.

9 Recall that in the SU(2) case (section 3.1 and figure 3.1) a similar calculation gave ® =
irgos, € o< V?r2 and disc. = 4r3.
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3.4.1 TRIVIAL EMBEDDING

For k = (1,1), symmetry breaking is maximal (the entries of £ = (1,0, —1) are
all distinct) and we use the standard form of the holonomy (2.10) to identify
the spectral curve coefficients with the asymptotic data v, p by

(3.30)

k= (1,1 iy = —e arp = —(pme™ +e”)
= ( ’ ) agy = eul+02 asp = (N1+M2)ebl+02 +e_u2-

The discriminant is

Dayy = a;1a3,¢" 42 (ar1a21(a1,1a20 + arpasz,) + 2(a3; —a3)) G+ ..,
(3.31)

such that the spectral points are centered if the coefficient of ¢? vanishes,
(211 + pug)e™ 22 = 302 41,

As noted in section 2.3, the fact K is repeated (i.e. fo = 0) means the Nahm
data will in general have a singularity at finite |r|, namely at s = vy/3. As we
are working with SU(3) the determinant will also have three zeros.

If v = 0 and pe = 0 (such that the centering condition becomes p;e°* = 1)
then the monopole is an SU(2) monopole embedded along the root 85 = — 3] —

B35. This allows the spectral curve to be factorised,
(w—1) (w* = (e"¢C+Nw+1) = 0.

In this limit, three of the spectral points coincide and, as expected, the mono-
pole fields resemble those of an SU(2) monopole with k = (1). In this case the

Nahm data is smooth, as the singularity coincides with one of the zeros.

oD} 7é 0
We deform away from the SU(2) embedding by changing the boundary condi-

tions to allow non-zero v,. The spectral curve again factorises, and centering

identifies

(62"2 + 36_02) )

N | —

a1 = —% (3€n2 + 6_202) Q20 =

with a17 and ag; as in (3.30). The situation is shown in figure 3.9. In the

Nahm picture, the Higgs field has a simple pole at s = vy /5. For us = 0 one of
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=] 6)

Figure 3.9: Deformations of the k = (1, 1) monopole by changing v, away from
zero. Here vy, = 1.2 and pe = 0. On the left is plotted the energy density and
on the right the discriminant of ®. There is no energy density associated with
the coincident spectral points on the right. The discriminant vanishes on a
line joining the spectral points on the left, and on a circle passing through the
double spectral point and surrounding the other two.

the zeros coincides with the pole, giving the two zeros characteristic of SU(2)

solutions.

p2 # 0

In a similar way, we can fix the boundary conditions to vy = 0 and allow

the moduli py and ps to vary in such a way that the spectral points remain

centered. The coefficients in (3.30) become

aj,; = —e’ aro = —(1+4 pie™)

— 0 — v
Q21 = € ! aso = 3—/116 1.

Varying p; separates the three coincident spectral points and introduces a

second fundamental monopole, as shown in figure 3.10 overleaf.

3.4.2 MINIMAL SYMMETRY BREAKING

The k = (2,1) spectral curve has

— _ 01
aj2 = —¢€ ayp = —me
k= (2’ 1) 0140 -0 0140 —v
gy = e £ e agg = (g + p2)e” T — pge™?,

and discriminant

Dy = Cbig (ag,l + 401,2) ¢+ 2a, 3 (al,2a2,1a2,0 + al,la;l + 6a1,1a1,2) .
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Figure 3.10: Deformations of the k = (1, 1) monopole with va = 0. On the left
are contours of energy density for u,e”* = 1. On the right, for pe" = 1.2. For
these examples, the discriminant pairs up the spectral points on the horizontal
axis. The line of zero discriminant joining the other two points is found to
wrap around the left hand spectral point.

Figure 3.11: Ds-symmetric k = (2, 1) periodic monopole with spectral curve
w® — (Pw? 4+ 2¢w — 1 = 0. Energy density on the left and the discriminant of
® on the right.

and the remaining coefficient, a, o, is to be considered a modulus. In this case,
two of the ¢; are repeated (from (2.5) we have that £ = (2, —1,—1)), allowing
minimal symmetry breaking if v = (2b, —v, —v), for which centering implies
that

ajg = —e* aig = —pe® asy = 2e" azo = pue’.

In fact, this condition is equivalent to the coefficient of (° in D5y vanishing,
which was not a possibility for the SU(2) or k = (1,1) cases considered so far.
The coefficient of ¢* also vanishes if we set Py = _%‘P22,17 such that three of
the spectral points are sent to infinity. This leaves p; as a complex modulus,
and a symmetric configuration is obtained by taking p; = 0, such that the

coefficients of (? and ( also vanish, figure 3.11.
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85

Figure 3.12: Deformation of the subleading term. Starting from the shaded
point we deform parallel to 3;.

Figure 3.13: Dg-symmetric k = (2, 1) periodic monopole with spectral curve
w® — (*w? — 1= 0. On the left is plotted the energy density and on the right
the discriminant of ®.

027&03

Following [War82] we deform by adding to v a constant diagonal term ¢35
for some complex § (we can rearrange the entries such that Re(d) > 0), figure
3.12. The total energy (2.8) is unchanged, but there is a different pattern of

symmetry breaking. Explicitly, a; 2 and a;; are unaltered, while
az; = 2€°cosh(9) agp = € (u1e5 + 2419 sinh(é)) )

Such deformations have the effect of moving the three remaining spectral points
in from infinity. A particularly symmetric example, with § = ir/2, is shown in
figure 3.13.
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The k = (2,1) Nahm data is of rank 2, smooth, and has three zeros. For the
spectral curve w? — C?w? + 2aCw — 1 = 0 relevant to both the cases considered
above (figures 3.11 and 3.13), the Hitchin Higgs fields have

tr(®) = 2aw ™ and —det(®) = w— w2

The determinant has zeros at $s = 0, 42ir/3. This is reminiscent of the fact
that the most symmetric k = (2) configurations were found to have zeros

located symmetrically on the Hitchin cylinder (figure 3.7).

3.4.3 SPECULATIVE GEODESIC

In section 4.1.2 it is shown that of the four real relative moduli of the SU(2)
monopole of charge k = (2), there is a two dimensional geodesic submanifold
corresponding to varying the two moduli present in the spectral curve. This
justifies the identification of one dimensional submanifolds in section 3.2.3.
The SU(3) monopole of charge k = (1,1) also has four real relative moduli,
and we will assume that the two which appear in the spectral curve again
provide a geodesic submanifold.

The reduced moduli are constrained by looking for configurations invariant
under a reflection in the z-axis, which we perform by mapping ¢ + ¢ and
w — w. This requires all the coefficients a; ; in (3.30) to be real. A symmetric
choice of boundary conditions is provided by requiring the two fundamental
monopoles to be of the same size, which we do by further imposing invariance
of the spectral curve under ¢ — —¢ and w — w~!. These conditions result in

e”?2 = —1 and

b1 U]

v v
1,1 = —¢€ a1,0 = 1 — pie™ 21 = —¢€ agp = €' — 1,

where ;7 € R provides a one parameter family once we fix the remaining
boundary data v, = 0 (note that this is a different situation to the trivial
embedding of section 3.4.1, where vy = 0). Figure 3.14 illustrates the resulting
scattering process. As mentioned in [MS04], the monopoles scatter back off
each other in a head-on collision, although with a deformed shape. By allowing
different boundary conditions, one can in fact find one parameter families de-
scribing the less symmetric cases in which the monopoles are of different sizes,
or when one of the incoming monopoles is rotated by an angle of 7/2. As

was noted for the SU(2) periodic monopole in sections 3.1.2 and 3.2.3, we find
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u1:8 u1:4 “1:2
p1=05 u1=0 u1:—0.05

Figure 3.14: Sequence arising by varying the real parameter p; with v; = 0 and
vy = im. Plots show the discriminant of ®. In the Nahm transformed picture,
motion of the zeros of det(®) follows a similar pattern to that shown in figure
3.7, although now with the third zero fixed at s = 0 and the singularity at
s = im/B. The zeros are coincident when p; = 4 and two of them reach the
singularity when p; = 0. The energy density is peaked at all the spectral
points except the central point for p; = 0 (see the discussion of section 3.2.1).
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that when the spectral points are well separated, those of each fundamental

monopole are joined by lines of vanishing discriminant.

3.5 SINGULARITIES AND THE DOUBLY PERIODIC
INSTANTON

In the region where z dependence can be ignored, the fields of a configuration

of positive and negative Dirac monopoles at ( = Cii are

ipd = Zlog ¢ = GHP) Zlog C=¢ 1)

= 13 o () S (25
A, =-%"1 ~~-Nlo
¥ 2zog<<—<f Z (¢

allowing us to compute the holonomy and hence write down the spectral curve,

n— n4
(H(c— c;)) w - (H(@— <f>> ~ 0, (3.32)
i=1 1=1

and there are thus no moduli. Cherkis & Kapustin [ChK03] argue that singu-
larities can be introduced to the SU(V) periodic monopole by modifying the

spectral curve (2.16) to

Py (Qw™ + Py, (Qw™ ™ + .. 4 Py_ygy, (Quw+ (1) Py, () = 0

where Py,_(¢) and Py, (¢) are the monic polynomials appearing in (3.32).
The principal use of Dirac singularities is in changing the boundary con-
ditions on the Nahm/Hitchin data. In particular, adding K positive and K
negative singularities to the monopole with k = (K, K, ..., K) renders det(®)
bounded at |r| — oo (which will allow us to identify the ends of the cylinder
to form a torus), albeit with singularities at finite |r| due to K appearing more
than once in k. We illustrate this by means of the SU(2) charge k = (1) mono-
pole with two singularities, where we require the spectral curve to be invariant

1

under w — w~' in order that the monopole fields are valued in su(2). The

relevant spectral curve is

(€ = Go)w® = 2(al + b)w + (=) = 0 (3.33)
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such that the boundary conditions (2.10) translate to
a = cosh(v) b = psinh(v) — (o cosh(v)

and the spectral curve (3.33) can be rearranged to give the Hitchin Higgs field

psinh(v)
cosh(fs) — cosh(v)’

d=(=¢(+ (3.34)

Applying the method of section 3.1, the spectral points are located at

co 9Tl =
1—a

Go—b
14+a’

which are centered if ab + (; = 0, and are coincident if a(y +b = 0. The
monopole Higgs field is

d = %Re cosh™ (cosh(t)) + %?) 3.

In the case where a = 0 and ib = C, this simplifies to

A

o = % Recosh™(C/¢)as

which is related to the fields of sections 3.1.1 and 3.1.2 by a simple inversion
transformation ¢ ~ C2/(, with a corresponding change of boundary condi-
tions.

In analogy with monopoles appearing as constituents of periodic instantons
(see, for example, [KvB98a, KvB98h, LI9g]), it is expected that the doubly
periodic instanton will be related to the periodic monopole [ChK03, FP04].
The Nahm data for the doubly periodic instanton are Hitchin equations on
a 2-torus T?. The charge 1 case is considered in [FP04], where the Hitchin
system is Abelian. This allows the Hitchin gauge potentials to be expressed
as derivatives of a harmonic potential, and the Higgs field is chosen to be

proportional to A, in order to share its singularities,

As = Usp A§ = —0zp ¢ = <0+058890
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where, in our notation, the fundamental solution to Laplace’s equation on the

torus is
0 (258 +5) + 5 + 22, 2) [

2
95 (L (58 —0)+ 5+ 2,1

with §; and (s the periods of the instanton, and ¥3 is the doubly periodic

p = - log

Jacobi theta-function, which can be conveniently expressed as

o0

Ug(w,7) = »  emmiTizimm (3.35)

n=—0oo

The result (3.34) is recovered in the limit 8; = 3, f; — 0, such that only the
n =0 and n = —1 terms contribute to (3.35),

‘1 —eﬂ§+5‘2

L og N b= ¢ af sinh(v)

LA |1 — efs—o)? "2 cosh(fBs) — cosh(v)’

which is precisely of the form (3.34). In [FP04], « is interpreted as a size, which
when set to zero provides axially symmetric fields. In the monopole picture
this corresponds to setting p = 0, in which case a(y + b = 0 and the spectral
points coincide, again leading to axial symmetry.

The need for singularities when making the comparison with the doubly
periodic instanton is reminiscent of the intepretation of periodic instantons
as monopoles whose gauge group is a loop group [GMS88|. In practice, this
amounts to adding a root to the gauge group such that all of the ¢; vanish
and we are at the origin of the root diagram, see figure 2.1 and section 2.4.
From the discussion of sections 2.1 and 3.1, the additional fundamental mono-
pole expected from the extra root fits in with the observation in [FP04] that
the doubly periodic instanton consists of two periodic monopole constituents,

separated in one of the periodic directions.
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3.6 CONCLUDING REMARKS

This chapter developed a technique, motivated by [ChKO01, ChK03, War05,
HWO09], to study the singly periodic BPS monopole. This was checked against
numerical studies of the SU(2) cases of charge 1 and 2. Geodesic motion on
an effective two dimensional moduli space compared favourably with analytic
results for charge 2. In particular, it was found that motion transverse to
the periodic direction provides a geodesic submanifold. Some simple SU(3)
configurations and singular periodic monopoles were also considered in this
context. The Nahm transform relates the periodic monopole to a Hitchin
system on the cylinder, giving rise to lumps whose motion is described, at

large separations, by the motion of zeros of the spectral curve polynomial.






NAHM TRANSFORM

The aim of this chapter is to study the moduli which are not encoded within
the spectral approximation of chapter 3. The approach will be to use the
Nahm transform to study symmetries of the monopole chain for two distinct
solutions of the Nahm /Hitchin data. This is done in section 4.1, and is followed
in section 4.2 by a discussion of numerical solutions to the Hitchin equations.
Finally, in section 4.3 we construct the metric on the moduli space by means of
suitable approximations to the Nahm/Hitchin data at large K. By considering
the symmetries of the system, two geodesic submanifolds are identified, and
these are compared with the Atiyah-Hitchin cone and trumpet. The work in
this section is based on the joint publication Geometry of periodic monopoles

[MW13], and care has been made to indicate my supervisor’s contribution.

4.1 CHARGE 2

The centered SU(2) charge k = (2) periodic monopole has four real moduli,
two of which, as was seen in sections 2.3 and 3.2.1, are encoded in the spectral
curve and describe the relative xy positions of the fundamental monopoles in
R2. The remaining two moduli are expected to describe the relative phase
and z separation. By considering the action of gauge transformations on the
inverse Nahm operator (as defined in section 2.2) we will see that the two
reduced moduli appearing in the spectral curve provide a geodesic submanifold
of the full moduli space. The one parameter families K € R and K € iR are
studied, and we will find that the details of z behaviour depend on our choice

of solution of the Hitchin equations on the Hitchin cylinder. The work in this

%)
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section is motivated by [HW09, Hara|, and it should be noted that the results

are independent of the spectral approximation of chapter 3.

4.1.1 HiTcHIN EQUATIONS ON THE CYLINDER

The Nahm data of interest are u(2)-valued (or su(2)-valued if the monopole is
centered) Hitchin fields (¢, A) (2.11) on the dual cylinder,
1
Fis = =3 (@, &) D;® = 0@ + [A5,®] = 0 (4.1)
with det(®) determined by the spectral curve as described in section 3.3.5. It
is straightforward to show [HWO09] that the Hitchin equations can be solved
(up to U(1) gauge transformations) by

0 ¥/2
b = He® As = aoz+ad A, = —aos—adf
e Y/ 0

(4.2)
where
—det(®) = pyp_ = Ccosh(fs) + K/2

and a, a and 1) are functions of (s, 5) satisfying 4a = —951,
VERe() = 2(1 + 4Jaf?) (PR — e ) (43)
and
e Re)/2 9 (apu, oRe¥)) 1 ReW)/2 9 (G7_eRe®)) = g, (4.4)

with the imaginary part of i) chosen in such a way that ® has the correct t-
period of 27 /3. We remark on the similarity of (4.3) and (4.4) to the Toda and
Ernst equations, respectively [MWO96]. However, the standard methods used
to tackle these systems have not so far been successful in providing analytical
solutions to the present generalisation. Instead, we will resort to studying the
symmetries of the equations and look for numerical solutions.

It is clear that a = 0 allows (4.4) to hold trivially, and in the next subsection
it will be seen that it in fact provides a two dimensional geodesic submanifold of
the relative moduli space. When this is the case, there are two fundamentally
different solutions for ® according to the allocation of the zeros of det(®)

between its two non-vanishing components:
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e Harland’s solution [Hara| places both zeros in the same component,
py = Ccosh(Bs) + K/2 po =1 (4.5)

with Im(¢)) = 0. We call this the ‘zeros together’ solution.

e On the other hand, Harland & Ward [HWO09] place one zero in each

component of P,

/ K 1
[y = g(eﬁs/z _i_Wilefﬁs/Q) where ol W + W (4.6)

this time with Im(¢)) = —ft. This is the ‘zeros apart’ solution.

For a = 0 the Hitchin Higgs fields with ‘zeros together’ and ‘zeros apart’ are
thus of different matrix rank (in particular, for K/C = —2 at s = 0, the
‘zeros apart’ Higgs field is of rank 0, which can never be the case in the ‘zeros
together’ configuration) and there is no smooth gauge transformation between
them. As such, the ‘zeros together’ and ‘zeros apart’ solutions are disconnected
two dimensional submanifolds of the moduli space. It is expected that in the

full four dimensional moduli space one can interpolate between the two cases.

4.1.2 SYMMETRIES

In this section we impose symmetries on the Hitchin equations and use the
Nahm operator (2.12) to determine the resulting symmetry groups of the mo-
nopole fields. This will allow us to identify one parameter families of mono-
poles, which are plotted in chapter 5.

Once the Hitchin equations of section 4.1.1 have been solved, one should
apply the procedure of section 2.2 to extract the monopole fields. This has
been done numerically for the ‘zeros apart’ case [HW09]. Here, we consider
symmetries of the Nahm transform by means of gauge transformations (2.15).
This is achieved by first looking for transformations of the Nahm data (s; K) —
(s'; K') motivated by the symmetries of the spectral curve presented in section
3.2.3. The equations 4.3 and 4.4 are required to hold in the new coordinates,
with the transformed fields

(@, A)(s; K) = (', A)(s"; K)
(A, U)(s;¢" 25 K) = (A, )(s': ¢, 25 KT = (A, ) (s: ¢, 25 K).
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We then search for a gauge transformation U and a transformation (¢, z) —
(¢, Z") of the monopole coordinates which express A’ in terms of A, in such
a way that the resulting monopole fields are gauge equivalent to the original
monopole fields, but evaluated at the new coordinates, ({’, z’). We recall from

equation 2.15 in section 2.2 that U acts as

Al(s; ¢, 2 K)=U"(s)A(s; ¢, 2/ K)U(s)
V(s; ¢, 2 K)=U"(s)¥(s; ¢, 2 K),

and we assume it can be written in block form as U = h ® g, where h is a
constant 2 x 2 matrix which permutes the entries of A. The matrix g € U(2)
acts as a gauge transformation on the Hitchin fields and is required to be
strictly periodic in ¢, such that ® and the t-holonomy of A are well defined.!’
If det(g) = 1 (or can be made so by multiplication by a constant phase), then
the monopole centering is unchanged. On the other hand, if det(g) oc e
then the transformed fields are shifted by $/2 in z, as will be relevant for the
Wi W symmetry discussed below. In all cases, symmetries are up to gauge
equivalence (so they describe symmetries of the energy density isosurfaces).

For completeness, we recall the Nahm operator (2.12) in the k = (2) case,

(4.7)

A — 12(285 - Z) + 2A§ 12C - &
B 126 - (I)T 12(285 + Z) + 2A5 .

A study of the geodesic with « = 0, K € R and the symmetry K — —K was
carried out in [HWO09]. Here we summarise the results and give evidence of
new geodesics.

Symmetries can be classified by the dihedral group in three dimensions (see,
for example, [Ham62, Mil72]): D, describes n-fold rotational symmetry and
reflection in a plane whose normal is parallel to the axis of symmetry, while
D,,q has an axis with n-fold rotational symmetry and 2n-fold rotoreflectional
symmetry (in which rotation is combined with reflection in a plane orthogonal
to the axis). In both cases there are 2n axes'! of 2-fold rotational symmetry
orthogonal to the principal symmetry axis. Both of these groups contain the
two dimensional D, group as a subgroup, and D,q is a subgroup of D(gp)p.

The reader may find it useful to visualise these symmetries with reference to

10Tt may be possible, as part of future research, to investigate new symmetries by weakening
the periodicity condition on g in such a way that certain key quantities such as det(®)
remain periodic.

'Tn R? one has n such axes; the periodicity doubles this number.
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the energy density plots of chapter 5 and the generalisations to higher charges
in chapter 6.
2= z4p

To illustrate the process, we note that the Hitchin fields are unchanged under
the joint action of U = e ¥#'1, and ((,2) — (¢, 2 + ), indicating that the
monopole fields are unchanged by a period shift, as hoped.

a=20

Again keeping s and K unchanged, we take U = 03 ® 15 and ((, 2) — (=, 2).
As long as a = 0 the Hitchin fields become (®, A) — (—®, A), so that ¥, —
+W, and the monopole fields are thus invariant under a rotation by 7 about
the z-axis. This justifies our assumption throughout section 3.2 that o = 0 is
a geodesic submanifold in which the two moduli which do not appear in the
spectral curve are kept fixed.

Symmetries with o # 0 are considered in section 4.1.3, where it is also
shown that ((,z) ~ (—(,—z) is a symmetry for all o. This implies that
configurations other than the symemtric ones considered below have symmetry

group Coyy, consisting of a 180° rotation and a reflection z — —z.

‘ZEROS TOGETHER’

The geodesic submanifolds K € R and K € iR are fixed by the Dy, symmetries
(the symmetry group of a cuboid)

o (5iK) = (5K) = ((,2) ~ ((,—2) for K € R,

o (s;K) > (5+im/B;—K) = (¢,2) ~ (i¢, —=2) for K € iR.
The calculation for the case K € R is given in more detail in appendix A,
which serves to illustrate the procedure for the remaining cases.

Incoming and outgoing points on these geodesics are related by the sym-

metry
hd (S;K) = (8; _K) = (C,Z) = (1(72),

and hence both geodesics describe 90° scattering in the xy plane. The inter-
mediate point of the scattering process, with K = 0, enjoys an enhanced Dy,

symmetry.
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‘ZEROS APART’

In this case we use the coordinate W defined in (4.6) and find symmetries
fixing the geodesic submanifolds W € R and W € iR,

o (s;W)— (W) = (¢,2) ~(—(,—2) for W € R,
o (s;W) = (5+im/B;—W) = (¢,2) ~ (i(, —z) for W € iR.

These families again have Do, symmetry. Opposite points on each of these

geodesics are related by the symmetry
_ -1 =
o (W)= (W ) = ((,2) = (¢, 8/2—2).

Overall then, the geodesic with W &€ R has incoming and outgoing monopoles
aligned with the x-axis but shifted by half a period in the z direction. The
W € iR geodesic, on the other hand, additionally involves a 90° rotation in
the xy plane. Note that in the ‘zeros together’ case a geodesic is allowed to
cross the points K/C = +2, although this is not possible in the ‘zeros apart’
configuration (see also section 3.3.3). The symmetry (s; W) — (5; W_l) fixes
an additional geodesic submanifold with || = 1, for which the monopoles
remain centered at (¢,z) = (0,4£4/4) and oscillate in shape. This geodesic
surface will be discussed in more detail in sections 4.3.6 and 5.3, after the
remaining moduli have been identified.

There are particular values of the modulus W for which solutions have an

enhanced symmetry:

e W =1has (¢,z) ~((,8/2—2) ~ (¢,z+3/2), denoted by Day, X Zs, and
e W =ihas ((,z) ~(i¢,5/2 — z) ~ (i¢, z + B/2), denoted by Doy X Zs,

where the factors of Z, indicate that these configurations have eight axes of
2-fold rotational symmetry in each period, instead of the usual four. The fixed
points of these symmetries, at z = +/3/4, turn out to be the z positions of the
monopoles in these cases, and plots of these configurations are given in chapter
5. The symmetries of the W = +£1 configurations reflect the fact that this is a
charge 1 chain of rescaled period, and consequently Fy; = 0. This observation
is studied in further detail in section 6.2.

It should be noted that the branching behaviour presented in this section
agrees with [MW13, Malal, and supersedes the interpretation found in earlier
work [HW09, Mal13].
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4.1.3 SYMMETRIES WITH «/

In this section we use the method of section 4.1.2 to study the effect of the
moduli encoded by « in equations 4.2, 4.3 and 4.4. We will see that particular
spatial symmetries impose constraints on « such as its phase, or its parity
under a transformation of the coordinate s. In the special case of & = 0 the

symmetries are enhanced, and we recover those of the preceding section.

REFLECTION - ‘ZEROS TOGETHER’

First of all we consider the transformation s — —s. It is easy to check that
the ¢ and a equations still hold for all «, such that, in particular, the function
1 remains unchanged and a — —a. The transformed Hitchin fields can be
expressed as (9, AL) = (@, —ao3 + o/P) = (P, —A;) if & — o = —a (with
fixed point set o = 0). We can also write the transformed fields in a slightly
different way, by a different choice of gauge, as (9, AL) = (—o3Po3, —03A4503),
with o' = a. The two ways of writing the transformed Hitchin fields correspond
to the monopole fields being invariant under (¢, z) — (¢, —z) (only for o = 0)
and ((,z) — (—=(,—2) (true for all @ and K), together with d s —d, arising
from (2.14) due to r — —r. This transformation of & ensures the Bogomolny
equations are preserved. Note, however, that it does not force d=0o0nz= 0,

due to the gauge equivalence between $ and — 9.

REFLECTION - ‘ZEROS APART’

In this case the details of s — —s work out slightly differently: (us — W=z,
Y — —1p —2log |W|, a — a), but we still find two ways of expressing the
transformed fields: o1(®, —A;)o; for a = 0 or o3(—P, —A;)oy for all a.

The above results show that a reversal of all monopole coordinates is always
a symmetry. A special case is provided by a = 0. If the charge 2 periodic
monopole is considered as two parallel chains of small monopoles, then this
suggests that o = 0 describes the situation with zero z offset. It is then
evident that there is an enhanced symmetry in this case. Varying the z offset,
the symmetry (¢, z) — (—(, —z) still holds. Continuing with this picture of
chains of small monopoles, one might expect an enhanced symmetry in the
opposite limiting case, namely when the z separation of each of the chains is
half a period, i.e. (¢,2) ~ (=, z + 3/2), but it is not clear how to implement
this symmetry at the level of the Nahm /Hitchin data.

Next, we look at the symmetries with fixed set K € R and K € iR.
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K eR

For ‘zeros together’ we take (s; K) + (3; K), and for ‘zeros apart’ (s; W)
(5;W). There are then two possibilities for the transformed Hitchin fields:
(@', AL) = o1(®T, Ay)oy = a2(—®T, A )og. In the first case, o — —a, so we
take o € iR, while in the second a@ € R. They correspond, respectively, to
the symmetries (¢,2) ~ ((,—2) and ((,2) ~ (—(, —=2) (again, it is useful to
visualise these in the ‘chain of small monopoles’ picture). It should be noted
that this transformation is compatible with the reflection symmetry which
was shown above to hold for all . Furthermore, the enhanced symmetry

(¢,z) = (¢, —=) is still seen to hold only when o = 0.

KeiR

This time we take (s; K) — (5 +in/3; —K) for ‘zeros together’ and (s; W)
(5+im/B; —W) for ‘zeros apart’. We again find two possibilities for a: Re(a) =
FIm(a), with symmetries (¢, z) ~ (&i(, —z). The corresponding gauge trans-

formations are g+ = i(oy & 09)/v/2 with (¥, AL) = g7' (FidT, Ay)g.

The above considerations suggest a link between the spatial symmetries of the
monopole and the complex behaviour of the function «, as well as the direc-
tion of the gauge transformations in the o1 /09 plane of SU(2). In all the cases
considered above, the symmetry group is Diq (note that Diq = Co, C Doy,
so is contained in the symmetries of section 4.1.2), and the axis of rotational
symmetry in the ¢ plane is parallel to ic. It may be possible to make use
of these observations to identify a one parameter family of ‘maximally offset’
chains, with the Diq symmetry (¢, z) ~ (=, 2z + 8/2) ~ (=, —=2).

4.1.4 NUMERICAL SOLUTIONS

Numerical solutions to (4.3) with @ = 0 were obtained by Harland & Ward
[HW09]. They employed a gradient descent method to minimise the functional

BlRe(u)] = [ (HOR(0) + 2™ 4 2P~ Reve) ) dr
(4.8)

with respect to 1) where the boundary condition satisfies

Re(¢g) — logM as 1 — 00. (4.9)

|M+‘
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This boundary condition comes from the observation that at large |r|, F' =~ 0
and (4.3) is solved by setting both sides to zero (this solution has a singularity
at finite r, so is not globally valid, although it will be considered further in
sections 4.3.2, 5.1.2 and 6.2). This consideration also allows us to place a cutoff
at large |r|.

Minimising (4.8) by use of the Euler-Lagrange equations returns the Hitchin
equation (4.3). For numerical minimisation, 1 is considered as an n dimen-
sional vector, where n is the number of grid points on the cylinder. The
gradient VE of (4.8) is again an n dimensional vector given by the bracketed

term in
O0F = / (—7Re(v) + 2|y [P — 2|u_[Pe” W) 6y dr dt

and acts on d1 (note that this vanishes when (4.3) is satisfied). Deforming
a trial function 1 satisfying the boundary condition (4.9) to ¥ + AVE for
some real parameter \ we search for the value of A which minimises the error
in (4.3). This process is repeated until such an error reaches a predefined
tolerance value.

This procedure was used for section 4.2 and in chapter 5. A generalisation
to higher charges will be used in chapter 6 (see section 6.2). A modification of
this method was also used in [HW09] to perform the inverse Nahm transform
numerically. This uses the numerical solutions of 1 to construct ® and A, and

then minimises the quantity
E = /(A\II)TA\I/ dr dt,

to determine ¥, where A and ¥ are defined in equation 2.12. This numerical

Nahm transform is used in chapters 5 and 6.

4.2 LumpPs ON THE CYLINDER

In this section, we fix the gauge (4.2) and consider the quantity B defined
through
1
Fsg = BO’3 = —g VQRe(w)O'g

with a = 0. Equation 4.3 is solved numerically using the relaxation method of

section 4.1.4 for different values of the parameters and moduli.
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Following the geodesics described in section 4.1.2 results in the motion
of two peaks in F' which (for large C') closely track the zeros of det(®), as
displayed in figures 3.7 and 3.8. This dual dynamics on the Nahm /Hitchin
cylinder suggests a physical interpretation of the moduli, which will be used
in section 4.3 to study the moduli space metric. It also provides an interesting
example of dual dynamics in the Nahm transformed space. This is in contrast
to the Nahm transform for monopoles on R?, where the Nahm data boundary
conditions fix the peaks to the endpoints of the Nahm line segment. It should
also be contrasted with the doubly periodic monopole, in which the Nahm
transform is self-reciprocal and again describes the motion of doubly periodic

monopoles [War05, MW14].

4.2.1 PEAKS IN THE NAHM/HITCHIN GAUGE FIELD

Snapshots of | B| through different scattering processes are given in figure 4.1.
We note in particular that in the ‘zeros apart’ case the lumps annihilate at
K/C = +£2, when py = p—. On the other hand, in the ‘zeros together’
solution the lumps do not vanish, but reach a minimum size at K = 0.
Numerically, a dependence on C' is also observed, with two limiting cases.
For small monopole size C' the lumps widen and lose t-dependence to become
Nahm data on a line segment. However, at large C', which is the case of interest
in chapter 3, the lumps become sharply peaked and (4.3) is solved by setting
both sides to zero (note how the size of the lumps scales inversely to the size
of the monopoles as C' is varied). It is in the latter case that the spectral
approximation improves in accuracy, and that the positions of the lumps are
found to most closely track the zeros of det(®) shown in figures 3.7 and 3.8.
This behaviour is illustrated in figure 4.2, and further details of these limiting

cases will be given in sections 5.1.1 and 5.2.1.

4.2.2 HOLONOMIES

The quantity B is also relevant to the computation of holonomies of A; around

the cylinder. To see this we integrate B over the cylinder,

1
" = Bdrdt = ——/ V2Re(v) dr dt.
RxS?t RxS1
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Figure 4.1: Lumps in |B| for various values of K in the ‘zeros together’ solution
(left) and the ‘zeros apart’ solution (right) for C' = 1 and = 2, using the
same vertical scale throughout. The positions of the lumps should be compared
with the positions of the zeros of det(®), as indicated in figures 3.7 and 3.8. It
should also be noted that the lumps are of different sign in each case.

5 5
4 4
3 3
2 2
1 o
% 05 1 % 05 , 1

Figure 4.2: Profiles through the maxima of | B| in the ¢ and r directions for var-
ious values of C, with K/C = 6 and 5 = 27 in the ‘zeros apart’ configuration.
The height of the C' = 1 peak (red) is used to normalise those for C' = 5 (blue)
and C' = 10 (green). Notice how the peaks get narrower as C'is increased. The
r positions of the maxima (approximately 0.42, 0.33 and 0.30, respectively) ap-
proach the position of the zero of det(®), at r = 3~ cosh™ (K /2C) ~ 0.28.
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Figure 4.3: 2y/m as a function of r for the ‘zeros together’ solution (solid line)
and the ‘zeros apart’ solution (dashed line), in both cases with K/C = 7,
C =200 and g = 27.

Applying the divergence theorem and using A, = A, + Aj gives

1 1
"= —§/8(RXSI)8TR€(¢> "= /G(Rxsl) (Re(a) - gat1m<w)> R

This integral is performed over two circles SL bounding the region of interest
on the cylinder (the two paths contribute with opposite sign). For both the
‘zeros together’ and ‘zeros apart’ solutions (4.5, 4.6), Im(¢)) is independent of r
and linear in ¢, such that the contribution from the final term in (4.10) cancels

between the two integrals, and we are left with

H = Re(a) dt — / Re(a)dt = vy — -,
5% st
where the final equality defines () as the integral of Re(a(r, t)) over a t period.
Note that for the ‘zeros apart’ solution (4.6), a change in the sign of Im(f)
changes vy +— v + /2.
We now compute the holonomy V(r,27/3) of A; around the cylinder,
through

8tV(7“, t) = —AtV(T, t)

with the condition V' (r,0) = 15. Then we have that V(r,27/3) = exp(2ivyos3),
which we relate to H by

%tr (V+Vj1) = cos (2(74 —7-)) -

The volume of the peaks in figure | B| can then be computed from the holono-

mies of A;. A plot of v versus r is given in figure 4.3. It should be noted that
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Figure 4.4: Effective potential for the kinks in figure 4.3 (blue) compared with
the sine-Gordon potential (4.11) of the same energy (red), which fixes A ~ 9.3.

these quantities are not related to the energy of the Hitchin system. Using a
similar expression to the Bogomolny energy (3.12) gives the energy density of

the lumps as
1
&= SVE(SP+1gP).

which diverges when integrated over the cylinder.

It is interesting to attempt a description of the holonomy in figure 4.3
in terms of one dimensional kinks. This is motivated by the classical work
of Atiyah & Manton [AM89], who showed that computing the holonomy of
an instanton gauge potential along some fixed direction in R* provides an
approximate Skyrmion field (in fact, it provides an exact BPS Skyrme field
in which the Skyrme field couples to a tower of vector mesons, [Sutl0]). A
lower dimensional analogue was described in [Sut92], where approximate sine-
Gordon solitons are constructed from CP' lumps, which are in turn dimensional
reductions of the self-duality equations on R??, [MWO96]. In the present case,
if the kinks in ¢ = 2/ (figure 4.3) are considered to be static, then they can
be approximated by solutions to the sine-Gordon equation,

d> d ) 9 . o
2P = o U(p) with U(p) = 2X*sin“(27yp), (4.11)
where each soliton provides an energy E = 2\/m. An effective potential is

obtained numerically using

06) = 3 (o)

and can be approximated with the sine-Gordon potential (4.11) so that the

total energy is the same in both cases. The results are displayed in figure 4.4.
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4.3 THE MODULI SPACE METRIC

In this section we compute the asymptotic moduli space metric from the Nahm
transformed fields. Firstly we implement the gauge orthogonality condition for
Nahm/Hitchin data, which can be done explicitly when C'is large or the lumps
of section 4.2 are well separated (|K|/C > 2). This procedure gives the metric
for « = 0 in both of these cases. Next, we discuss the remaining moduli by
their effect on the Hitchin lumps and compare the resulting asymptotic metric
(valid for large separations) with that computed by Cherkis & Kapustin from
the monopole side of the Nahm transform [ChKO02]. Part of this work was
published in collaboration with Ward [MW13].

4.3.1 GENERAL CONSIDERATIONS

In order to obtain a well defined metric we impose the condition that perturba-
tions to the fields are orthogonal to the gauge orbits. This is implemeted by a
dimensional reduction of the equivalent condition for instantons, D, (64,) =0
(see sections 1.4 and 3.3), with A; = A,+ A5, Ay = i(A,— A;), Az = 3(0— 1),
Ay = —3i(D + @),

4(DLSAL + DAL = [@,6()] + [@1,69] (4.12)

where the primes indicate that this is only true in a particular gauge, and ¢

is a change in the fields due to an increment in the moduli (here denoted K),

e.g.

00 (K;)
K; K; K; D(K; O(K; K; :
D K4+ 0K, = (K;) — (Z)+%:538Kj
Combining the Hitchin equations (4.1) with the gauge fixing condition (4.12),
we find that perturbations to the Hitchin fields must obey

DL(6d") = [®,5AL] (@', 6(D)1] = 4DL(0AL) (4.13)

together with boundary conditions 0® — 0, A — 0 as r — +oo and the
constraint ¢(det(®)) = constant(r, t).
Once this gauge has been found (either analytically or numerically), the

metric on the moduli space is given by a dimensional reduction of the instanton
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metric, g oc [ 0A}0A,

1
9= / tr (60’ (09)" + 46 AL(SAL)T) dr dt. (4.14)
RxS1!

4.3.2 LARGE C

Harland & Ward’s [HW09] solution (4.2) allows a residual local gauge trans-
formation with g = %73 where u is a real function of 7, ¢t and K (see also
section 4.2). This has the effect of mapping ¢ — ¢’ = ¢) — 4iu. We now look
for a function u such that the primed fields satisfy the gauge condition (4.12),
which becomes (with V2 = 49,0)

4 (0s0a — O56a) + 2iV3ou = f6f — fof +gog— gog +4i(|f|* + |g|*)0u. (4.15)

We now use the definitions f = p e¥/?, g = p_e ¥/ and a = —;11 1. Equation
4.15 then becomes

210V = — (ﬁ+8u+eRe(d’) - ﬂ,au,e*Re(w)) + 4i(|f)? + |g*)Ou (4.16)
which we compare with the K derivative of the 1 equation,

OV = 2 ([ Ops e — i_op_e " W) 42 (g ?e" W) 4 |p_[eReW)) 9y

(4.17)
where we simplify notation by using (for the remainder of this section) the
abbreviations @ = dx and d = dg, and noting that dlm(z)) = 0. Comparing

these equations suggests we take
1. -
wK,K) = Zup + v(K). (4.18)
Similarly, imposing the gauge condition for K variations gives
L. -
u(K,K) = —11¢+U(K) (4.19)

for functions v(K) and ©(K) which can be determined up to a constant by
equating (4.18) and (4.19). Together these imply that i/’ = ¢’ = 0 and
consequently 0f' = 0f' = 0¢' = 0§ = 0d’ = 0a’ = 0.
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Having fixed the gauge we use the definition of the fields in terms of f’, ¢’
and @ to obtain the metric gxz = Q(K)dKdK with

1 _ 1
QK) = —/R . 00 (|f’|2+ |g’|2+§|68¢’|2) dr dt. (4.20)

2
A similar computation to that above has been implemented numerically by
Ward (see figure 4.6 at the end of this discussion). Here we ask whether it is
possible to obtain more explicit information in the limit of large C'. The fact
|peopi—| scales as C' suggests solutions to (4.3) are only supported when both
sides vanish, as can also be seen numerically by plotting figure 4.1 for larger
C. This gives the singular solution'?
-]

Re(y)) = log m,

from which (4.18) and (4.19) result in

u = %log (M_M+) = ' = /fg (0 1) . (4.21)

oy 10

In this gauge the metric reduces to

QUK) = 1 / tr (0@'0(®"")) drdt = 1 / tr (00’ (09")") dr dt
2 Jrxst Rx 1
1 [lodet(@)2 1 / 1
= 1) Jaw@) U= %) [Coosns vz T U2

where the second equality follows from the fact ® is holomorphic in K and the

third is a rewriting of (4.20), where the final term vanishes in this limit. The
integral for the conformal factor is straightforward to perform numerically.
The result is shown in figure 4.5 and should be compared with figure 3.4,
obtained from the monopole fields within the spectral approximation. The
equality between the integrals (4.22) and (3.24) can in fact be seen directly by
the coordinate transformation ¢ = /C cosh(8s) + K /2, such that

dr A\dt id Ad5 2ic” dCAdC
r = —dsNds = =
2 B2C?| sinh(fBs)|?

4|C cosh(pBs) + K/2|
52 H?:1 |C - Cz|

dz Ndy

12Tt should be noted that although this solution only depends on K/C, numerical solutions
away from this singular limit (such as those of figure 4.1) depend on both K/C and C.
Furthermore, whenever this solution is valid, then v, and hence ® and F', do not depend
on the moduli encoded in the function a.
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Figure 4.5: Surface plot of the conformal factor. Peaks are at K = £2C".

where the product is over the spectral points (3.14). It is possible to evaluate

the integral (4.22) explicitly when K = 0 in terms of elliptic integrals,

// |006Z1d;3 /:_Oo " /:2”/5 \/Cosh2 (Br) — sin?(Bt) )

1

ﬁ/ 7oosech (Br)K(sech(Sr)) 52/ \/1_7 = 0 ()",

(4.23)

in agreement with (3.26). The gauge condition has been implemented numer-

ically by Ward, with conventions
205, = C CKy = —K. (4.24)

The results presented in figure 4.6 overleaf show that the large C' limit is valid
for C' 2 50. In this limit, we see from (4.21) and (4.22) that the metric is
insensitive to our choice of ‘zeros together’ or ‘zeros apart’ configuration in
section 4.1.1, as was suggested by the spectral approximation of chapter 3.
The independence of the singular solution to (4.3) from the moduli encoded
in a will be explored further in the next section, where we will see that the
resulting contributions are suppressed in this limit. Similar expressions to
(4.16) and (4.17) can be given when « # 0, although in this case there do not

seem to be any helpful cancellations.
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Figure 4.6: gy, 7w (K = 0) against Cf, = C/2 for numerical solutions with
f = 2m, with a straight line fit of gradient 0.0870 (the analytical gradient
expected from (4.23, 4.24) is ¢(0) ~ 0.08708). The ‘large C' limit’ appears to
be a good approximation for C' 2 50. (Note the scaling with C' arises from
combining the conformal factor (4.22) with the rescaled K coordinates.)
[Unpublished figure due to Ward.]

A REMARK ON THE SU(3) METRIC

The integrand in (4.22) can be obtained from the spectral curve (3.13) using
(2.18), which tells us that det(®) = —(C cosh(fs) + K/2). We apply the same
idea to the SU(3) periodic monopole of charge k = (1,1). This monopole was
previously discussed in section 3.4.1 and section 3.4.3, where a symmetric one
parameter family was described within the spectral approximation. This time,

the spectral curve is (equations 3.29 and 3.30; recall that w = €% = 5r+i1)
w® + (a11¢ + CLLO)U}2 + (ag1¢ +azp)w—1 =10

together with the centering condition (3.31)
araaz(a 1020 + aypas1) + 2(ai1 — a%l) = 0. (4.25)

The coefficients a;; and ag; are parameters, and are fixed by the boundary
conditions. Using (4.25) to write as ¢ in terms of a; ¢ leaves us with one complex
modulus a; .

The Hitchin spectral curve (2.18) now tells us that & = ¢. For rank 1
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Nahm/Hitchin data, the gauge condition (4.12) is automatically satisfied. Con-

sidering variations of the modulus a; ¢, the moduli space metric (4.14) is

¢ |? 1
gal,Om = /‘Wlo d?“dt = |a11|2/

(note that this formula also works for the charge 2 SU(2) case (4.22)). The

integral is now divergent, suggesting that a; is not a modulus but must be

a11W — a1

2
dr dt

a11W + ag 1

kept fixed. Thus, although figure 3.14 describes a symmetric one parameter
family of SU(3) monopoles, it does not represent their physical scattering. It
may, in fact, be necessary to keep not just the overall centre of mass fixed,
but also the centre of mass of each species of monopole. If this were the case,
the k = (1,1) monopole would have no reduced moduli, while the k = (2,1)
monopole would have 2 real reduced moduli describing the relative motion of
the monopoles embedded along the root 3.

R3 monopoles embedded via different roots of su(3) are allowed to interact,
in a way described by the Lee-Weinberg-Yi metric [LWY96]. This metric is
globally of Taub-NUT type (equation 1.17 with r replaced by —r).

4.3.3 INCORPORATING THE REMAINING MODULI

The numerical solutions to the Hitchin equations (4.3) studied in section 4.2
show that for |K|/C > 2 the lumps on the cylinder become sharply peaked
at s = sy = = cosh™'(K/2C), as shown in figure 4.2. In order to study the
effect of the remaining moduli we will work with the approximate fields for
[Re(s)] < |Re(so)|

¢ = /Ccosh(Bs) + K/2 o3 a; = %i@ag a, = 0. (4.26)

In the ‘outside’ region, where |Re(s)| > |Re(so)|, the Higgs field ¢ is branched
along the half-lines t = ¢ (for r > ry) and t = —t, (for r < —ry). The Higgs
field changes by a sign across the cut, and is matched by a gauge transformation
in the 0 /09 plane of su(2). This allows an additional contribution to the gauge
potential a;, which is independent of r, valued in o /03, and supported only
along the cut. The gauge field vanishes everywhere except at s = +sg, where
a; is discontinuous, giving rise to delta-function peaks in the field strength f
at these points. To each of the peaks we assign a unit vector fi in the o1/09

plane of su(2).
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Motivated by numerical examples by Ward we define one of the two re-
maining moduli, §, by the holonomy of a; in the central region (see also figure
4.3),

2r/B
Up = Pexp (—/ a+(0,1) dt) 2cos(#) = tr(Up),
0

which we compute through 0;U(t) = —a;(0,t)U(t), with U(0) = 15 and Uy =
U(2m/3). This defines 6 up to a sign, and in particular if we take K = kel¥ then
the sign of 6 changes as ¢ goes from 0 to 27 (here we simplify the discussion by
taking Re(K) > 0). A prescription to fix the sign was given by Ward [MW13].
This is done by defining the sign of 8 as the sign of the real or imaginary part
of the quantity i.tr(Uy¢) evaluated at r = t = 0. The details will not affect our
discussion of the asymptotic metric, where we take Re(K') > 0 (section 4.3.4),
but we will make use of this procedure in section 4.3.6.

The fourth modulus, w, is the relative phase between the peaks at s = +s.
This is computed by parallel propagating f_ along a path v from —sy to s
using 0, f— = —|a,, f_], to obtain f_. Then w is the angle between f, and f_,

2cos(w) = tr(ff-),

and is defined up to a sign, which can again be fixed by comparing with the
sign of ¢(0)."

4.3.4 THE ASYMPTOTIC METRIC

The moduli space metric for well separated periodic monopoles was deduced
by Cherkis & Kapustin [ChK02] from physical considerations by studying the
effective Lagrangian of a system of two monopole chains, following Manton’s
earlier approach for monopoles in R3, [Man85]. One can obtain a metric of the
same ALG form from the Nahm /Hitchin perspective. We do this by identifying
four orthogonal perturbations of the fields, which arise from certain perturba-

tions of the moduli, and then changing coordinates to obtain the metric on

13 This definition of w rests on the fact that the peaks in |f| become delta functions for large
|K|/C, so is only well defined in the asymptotic region of the moduli space. Numerical
studies by Ward suggest that a globally valid modulus can be obtained from the difference
of the asymptotic holonomies (which individually are fixed by the boundary conditions),
2cos(@) = tr(U,UL), with @ — w = 7. In section 4.3.4 we will work with w rather than @
because, as discussed above, (4.26) is only valid in the interior region, |Re(s)| < |Re(so)|-
However, when we come to discuss geodesic surfaces through the centre of the moduli
space in section 4.3.6, our definition of w will be in terms of &.
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the moduli space itself. This scheme was proposed by Ward, while its correct
form of implementation arose from various discussions.

The first step is to define a set of vectors of perturbations to the approxi-
mate fields (4.26) given by V; = (8;¢, 0;as) (we will see below that i = 1,...,4)

with inner product

Vi) = 5 Re [ 6 ((8:0)(650)' +4(5iae)3jas)!) dr .

We observe that if V; = (19, §1a5) is a perturbation satisfying (4.13) then so

are

Vo= (52¢> 52(15) = (151¢7 i(51615)
Vi = (030, d3a;5) = (201 a5, %51¢T)
Vi= (54¢7 54%) = (2i51a37 5151@) (4-27)

for which the inner product is (V;,V;) = p?d;; for some constant p (which is
computed below).

Each of these perturbations V; gives rise to a change in the moduli §; K* =
(0; K, 60; K5, 0,0, 0,w) with K = K, + iK;. The most general perturbation can
then be expressed as the linear combination V' = a;V;, with a corresponding
change in the moduli 0 K* = a;0; K®. The coefficients a; for a given variation

of the moduli are given by
a; = (Q )0 K",

where

K, 0K, 03K, 04K,

Qu = aike = | P 2R 0K 0 (4.28)
010 020 030 040

51&) 52(,«) (53&) 54(,0

and the metric is computed as the inner product of the tangent vectors,

g = (V,V)=(a;Vi, a;Vy)
(Q i@ ") KK (V;, V)

A suitable perturbation to the Hitchin fields (4.26) corresponding to K, —
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K, +¢eis 010 = ieh(r, t)os, d1az = 0, or equivalently 0,1 K, = €, 01 K; = 6,0 =

01w = 0, where we define
h(r,t) = (—detg)™Y2 = (Ccosh(Bs) + K/2)~/2.
The norm-squared of V; is
Vi) = gt = &I = %62/|h(r,t)|2drdt. (4.29)

For V5 we take dy¢ = iieh(r, t), d2as = 0 and 05K = €, 02K, = 0260 = dow = 0.

Continuing with the scheme of (4.27) we get d3¢ = 0 and dzaz = %emag,
and we must compute the effect of this change on the # and w moduli. For
9, we use the approximate solution (4.26) and d3a; = —zieRe(h)os to find

30 = —1eRe(ho), where

2m/B
ho = / h(0,t) dt. (4.30)
0

The perturbation V3 does not affect fi (this has been checked numerically
by Ward), so a variation in w arises only from the change of the gauge potential
a along the path v between —so and sg, i.e. the new f_ is computed by parallel
propagating f_ using 0, f- = —[a,+da, f_]. This results in dzw = —e(Im(J)+
Re(L)), where (recalling the definition K = ke'?),

) to
J:/ h(r to) dr L:/ B(0,8) dt ~ hy L. (4.31)
0 /B

®I6

The variation of w is only path-independent up to winding round the cylinder,
due to the twisted nature of the moduli. The contour used for (4.31) is sketched
in figure 4.7.

Similarly to V3, the perturbation V; has d,¢ = 0, d4a5 = %iﬁm()'?), with
04K, = 04K =0, 640 = —3eIm(ho) and dyw = e(Re(J) — Im(L)).

The components of the metric are
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Figure 4.7: Contour on the Hitchin cylinder used to parallel propagate f_
from s_ (the left dot) to s, on the right. Circling the cylinder in the opposite
direction modifies L to L = ho(m — ) /.

where D = (0300,0 —d3wd460)* and the integrals I, hg, J and L can be evaluated
by an expansion in k = |K|. To first order, we have h =~ 0 for |r| > |r¢| and
h = (2/K)Y? for |r| < |ro|, where Sry ~ log(k/C) and Bty =~ ¢ + 7. Then

T 4k 2 2 4k
~ log [ — Bl (4.32
257k Og(C) o~ g 5 Og( ) 32)

where the subleading coefficients (the factors of 4 in I and J) are found by the

more careful expansion of appendix B.
Putting everything together and replacing K by the dimensionless quantity
Kyw = —K/C together with C' = 2C%, and dK = —2C%,dKy (equations 4.24)

gives the asymptotic metric
7T10g(4|KW|)< 2 |dKw/|” )
ds* = —=>_—"2(CZ + —d92
32 | Kw|

3 2w )?
+mog<4rKW|>( = d‘))’ (4:33)

which is of the expected Gibbons-Hawking form [GHT78], as was found by
Manton [Man85] for the Atiyah-Hitchin metric for monopoles in R?, (1.17).
This metric is therefore Ricci flat and corresponds exactly with the asymptotic
metric of Cherkis & Kapustin [ChK02] computed from the long range monopole
fields:

log(R%e™ren)

4 dt  4x? 2
dst, = ————2 (d2® + dy* + dz* — | —+ —0rad .
Stk = (do® + dy* + z)+log<R2€men) <2 + 5 el z)

Here the coordinates x, y and z denote the relative positions of the monopole
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chains and ¢ is a relative phase. The x and y separations are combined into
T+ iy = Re%. From (3.25) we identify R = 2Cyw+/|Kw| and 6. = /2.
Comparing the remaining moduli and taking into account their respective pe-

riodicities, we relate

e the monopole z separation to the holonomy modulus 6 via z = /7 €
<_B7 6]7 and

e the relative monopole phase ¢ to the Nahm/Hitchin phase w via t =
—w/2 € [-7n/2,7/2).

Our approach also allows us to determine the parameter v,.,, which is defined
in [ChK02] as a renormalised constant arising from the divergent sum defining
the asymptotic Higgs field of an infinite line of Dirac monopoles. In particular,
we find mve, = log(2/C).

Finally, we note that in the limit of 5 — 0 or C' — oo, the |dKy|* term
dominates ds?. Indeed, this is the limit in which the spectral approximation
is expected to be valid. In the strict limit, the conformal factor for the |[dK|?
part of the metric is given by the integral I (equation 4.29), which is now valid
for all values of K/C, including the interior region of the moduli space (see

equation 4.22 and figure 4.5).

SOURCES OF ERROR

It should be noted that in all of the above the knock-on effect of perturbations
has been neglected. For example, the perturbation V5 of the moduli was as-
sumed to affect only ¢ and not as. In fact, a change in K affects the positions
s = *£sq of the delta functions, which in turn alters the path v between them
and hence has an effect on the modulus w. Including this effect in our compu-
tation of the metric gives contributions which decay at large K faster than the
leading terms. We note, however, that including such first order corrections
fills all the off-diagonal terms in Q).

It should also be noted that the asymptotic metric for two monopoles in R?
has exponentially small subleading terms [GMS86]. In view of the off-diagonal
terms in (), (4.28), this exponential proximity to a Taub-NUT-like metric no
longer holds, at least within the crude approximation of the Nahm/Hitchin
data as two delta functions.

Another source of error arises in our computation of §6, and whether we
use its definition as the ¢-holonomy at r = 0 via (4.30), or attempt to read it

off directly from the variations of the fields via (4.26). These approaches agree
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to first order, but differ in their subleading terms, at O((k/C)~3/?). However,
the factors of 4 appearing in (4.32) and computed in appendix B have been
confirmed numerically by Ward for smaller C'

These observations may reduce the relevance of the study of geodesics on
the asymptotic metric, which will nevertheless be discussed briefly in the next

subsection.

4.3.5 GEODESICS ON THE ASYMPTOTIC METRIC

Conserved quantities for motion on the asymptotic metric (4.33) can be iden-
tified either by solving the Killing equations, or by considering the metric as a
Lagrangian and studying the Euler-Lagrange equations of motion, via a simi-
lar argument to that of Gibbons & Manton [GMS6] for two monopoles in R3.
Writing p = z& + yy, the metric is

ds* = f(p)(da® + dy® + dz°) + f(p)~"(dt + h(0)d2)?,

and the Killing equations 0,& + 0p€, = 2£.I', can be solved on Maple if we
impose the condition 0,6 = 0. The most general Killing vector under this

assumption is then
¢ = c1(—y0y + 20, — z0y) + 20, + 30, = 167+ 6P + 587,

for constants ¢y, co, cs3.

The conserved quantities p, and ¢ also follow directly from the Lagrangian
L= f(p)(@® +9°+ 2 + f(p)7 (E+ h(0)2)?,

as the canonical momenta p,, = 0L/0&; conjugate to translations in z and the

phase direction,

q=np =2f(p) (i +h(0)2) p: = 2f(p)z + qh(0),

and these are conserved due to the Euler-Lagrange equations, p,, = 0L/0x;.
The conserved quantity J is a modified angular momentum in the zy plane
plus a ‘Poincaré term’ consisting of a z dependent translation in the phase

direction t. To see this, we combine the momenta p, and p, into

p = 2f(p)p,
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for which the Euler-Lagrange equations give

b= o) (p2 o f) p+

zZ X p.
4 p
The planar angular momentum p X p is not conserved (in particular, p x p
contains a term proportional to p X (2 x p) = pz). We compensate for this by
adding a term —gh'(0)z and making use of the fact that ¢ = h”(6) = 0 to find

J =pxp—qh'(0)z.

We note that the Poincaré term is parallel to the ‘orbital term’; in contrast to
the case of Gibbons & Manton [GMS86], in which the two terms are orthogonal.
Despite the similarities with the R? monopole case, there does not appear to be
a generalisation of a conserved Runge-Lenz vector of the form K = p x J + v
for some suitably chosen vector v (the case of Gibbons & Manton being specific
to the case f = 1 —1/r). Furthermore, we note that the vectors £ and €7 do
not commute.

With the conserved quantities J, p, and ¢ in mind, we can search for
geodesics on the asymptotic moduli space. We again simplify the problem by
looking for geodesics with p = 0, and in this case it is easy to see that no such
geodesics exist.

It is worth reiterating the caveat that unlike the case of the Atiyah-Hitchin
metric, the metric currently under consideration is not exponentially close to
the complete metric on the moduli space of two monopole chains. There is
thus no guarantee that any geodesics on the metric (4.33) provide an accurate

description of two such monopole chains, even when well separated.

4.3.6 GEODESIC SURFACES

As was outlined in sections 4.1.2 and 4.1.3, the symmetries of the Hitchin equa-
tions, spectral curve and Nahm operator fix geodesic submanifolds of the full
moduli space, which are valid even in the interior region of the moduli space.
In particular, it was shown that setting the modulus « to zero provides two
two-dimensional families of solutions (which we referred to as ‘zeros together’
or ‘zeros apart’, according to the allocation of the zeros of det(®) among the
entries of the 2 x 2 matrix ®). We are now in a position to study these surfaces
with reference to the moduli # and w. Recall from section 4.1.3 that there is

a symmetry z +— —z associated with the transformation (¢, A) — (=, A),
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which sets the modulus a appearing in (4.3, 4.4) to a = 0. Furthermore, from
the prescription given in section 4.3.3 to fix the signs of # and w, this symme-
try of the Hitchin fields is associated with the transformations § — —6 and
w — —w. We then have four geodesic surfaces, with 6, w € {0, 7} (recall from
section 4.3.3 that in the central region of the moduli space, w is defined via
the globally valid @ = w + ).

From the discussion of holonomies in section 4.2.2, we see that the ‘zeros
together’ solution has w = 0, and § = 0 or 7 according to the choice of
Im(¢)) = 0 or 2/5t. This gives two disconnected surfaces describing physically
equivalent scattering processes. Geodesics on either of these surfaces describe
monopole scattering in the zy plane, and particularly symmetric examples are
the 90° scattering processes with K € R and K € iR. Each of the surfaces
is analogous to the Atiyah-Hitchin cone, which describes 90° scattering of R?
monopoles in the plane. Energy density plots illustrating this geodesic are
given in chapter 5.

On the other hand, the ‘zeros apart’ configuration has w = 7, and asymp-
totically we have two separate sheets, with # = 0 and # = 7. Unlike in the
previous case, however, the ‘zeros apart’ case contains configurations which are
invariant under a shift by £/2, namely when K/C = 42, which is a charge 1
chain of period /2 (see [HW09] and section 6.3). Thus, in this case the central
region of the moduli space is branched over the line segment —2 < K/C < 2,
and crossing this line segment transfers us from one sheet to the other. This
branching structure explains the use of the coordinate W in section 4.1.2, where
K/C = W + 1/W, ensuring that the correct branch is chosen when crossing
|IW| = 1. This surface is analogous to the Atiyah-Hitchin trumpet, although,
unlike in the case of monopoles in R?, the trumpet has two openings to be-
come a ‘double trumpet’, with a closed geodesic about its waist (see figure 4.8
overleaf).

Referring to figure 4.5, which gives the conformal factor multiplying the
KK part of the metric for large C', we note that in the ‘zeros together’ config-
uration geodesics are allowed to pass over the peaks at K/C = £+2. However,
for ‘zeros apart’, geodesics reaching these points bounce back to give two dis-
tinct scattering processes: a scattering geodesic for K/C > 2 (or K/C < —2)
and a closed geodesic with —2 < K/C' < 2. For ‘zeros together’, Ward has
implemented the gauge condition (4.12) numerically and plotted the conformal
factor for various values of C' (see figure 1 of [MW13]). This illustrates the

smoothing out of the peaks and the approach to the rotational symmetry of
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Figure 4.8: Sketch of the ‘double trumpet’ showing the geodesics with W € R,
W € iR and |W| =1 identified in section 4.1.2.

the R? limit as C' — 0. In this limit, we expect there to be an approximate
symmetry fixing geodesics with W = p?e® for p € R and a given v € R. The
resulting trajectories describe two consecutive 90° scattering processes, with an
overall scattering angle of v and a shift by /2. This can be seen by applying
the method of section 4.1.2. For general C', the asymptotic form of (4.6) for

W| < 1is
fy A ”%653/2 e & \/%W e P2,

then transforming W — e?*W =1 and using a similar approximation for |[1V| >

|C /C
~ o= We P52 A&y =2
7 5 We I 7€

which relates the Higgs fields at large and small |IW| by the gauge transforma-

1 gives

tion

) O eiu
P Vg lO with = | . ,
g Py g <elﬂt 0)

and the transformation of the gauge potential describes the §/2 shift.
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4.4 SUMMARY

We began this chapter by identifying two solutions of the Hitchin equations
required for the Nahm construction of periodic monopoles. This allowed a
study of the spatial symmetries of the corresponding monopole chains via the
symmetries of the inverse Nahm operator. This also allowed us to get a feel for
the effect of the moduli which were missing from the spectral approximation
of chapter 3. Numerical investigations illustrating monopole chains with these
symmetries will be given in the next chapter. We then turned our attention to
the properties of the solutions of the Hitchin equations, and in particular to
the holonomy of the Hitchin fields over the periodic direction of the cylinder.

Finally, an approximate solution to the Hitchin equations allowed us to
derive the asymptotic moduli space metric from the Nahm transformed fields.
This was favourably compared to results obtained from the monopole side of
the transform. Symmetry considerations allowed the identification of geodesic
submanifolds resembling the Atiyah-Hitchin cone and trumpet for monopoles
in R3, although in this case the periodic nature of the solutions allows for the
existence of a closed geodesic describing a chain of rotating monopoles. These
submanifolds were described by the same moduli which appeared in the large
C ‘spectral approximation’, and the metrics were found to agree in this limit.
It would be interesting to consider an effective electromagnetic description
of well separated lumps on the Hitchin cylinder and to use this as physical
motivation of the asymptotic metric by constructing the Lagrangian of this
system, following [Man85] and [ChK02].

Many of the arguments of this section can be applied to the doubly periodic
monopole. In this case one expects the Nahm transform to be self-reciprocal
and the metric of two well separated walls is of ALH form [HKM14]

ds®* = 167° M (dM? + dp® + dq®) + 16LM (dw — 8 (qdp — pdq))* .
Studying the symmetries of this system gives rise to scattering geodesics (for
which the moduli space is asymptotically four cylinders) and closed geodesics
describing scattering in the periodic plane (here the moduli space is topologi-
cally a 2-sphere). However, in contrast to the singly periodic monopole, there
is the possibility of incoming geodesics getting ‘trapped’. More details on dou-
bly periodic monopoles can be found in the references [Lee98, War05, War08,
ChW12, MW14].






SCALING LIMITS

This chapter describes the limiting cases of charge 2 monopole chains for small
and large values of the size to period ratio. When the monopole size C' is
small or the period g is large, we expect the monopole chains to behave like
monopoles in R?. In particular, a charge one monopole should be spherically
symmetric and two coincident monopoles should have rotational symmetry in
place of the discrete symmetry of figure 3.3. Meanwhile, the Nahm data should
reduce from Hitchin equations on a cylinder to Nahm equations on a line seg-
ment. At the other end of the range, when the monopole size is much larger
than the period we expect to recover the results of the spectral approximation
(chapter 3). Both of these limits can be implemented by the numerical proce-
dures used in the previous chapters. However, analytical results are delicate
due to the expected changes to the boundary conditions. First of all, in section
5.1, we discuss the limit of small monopole size to period ratio, followed by
the opposite limit of large size to period in section 5.2. Finally, energy den-
sity plots interpolating between these limits are presented in section 5.3. This
chapter is based on the preprint [Malb].

Numerical implementation of the inverse Nahm transform to obtain the
monopole fields used the gradient descent technique employed by Harland &
Ward [HWO09] (for details, see section 4.1.4). The energy density was then

calculated using equation 1.7.

5.1 SwmALL C

In the limit of small size to period ratio, monopole chains resemble monopoles

in R?, whose energy density peaks roughly at the location of the zeros of the

85
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W
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Figure 5.1: |W| against C', showing how the value of |I¥/| at which the monopole
Higgs zeros coincide in the ‘zeros apart’ configuration depends on C', both for

W e R and W € iR. For ‘zeros together’, the monopole zeros always coincide
when K = 0.

0
2 >\\/2 2 .
0 0 0 2

2 - < 0
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Figure 5.2: Energy density for a charge 2 monopole chain (taken over one
period) in the ‘zeros together’ (left) and ‘zeros apart’ (right) configurations
with § = 27, C = 1 and W = i. In the notation of section 4.1.2 these
configurations have symmetry groups Dy, and Dog X Zs.

Higgs field. The two scattering processes identified in section 4.1.2 correspond
in this limit to the Atiyah-Hitchin rounded cone (‘zeros together’) and trumpet
(‘zeros apart’), as geodesic submanifolds of the full four dimensional moduli
space (see sections 1.4.1 and 4.3.6). Although it is straightforward to reach
the above conclusions numerically, the limit is nevertheless delicate to provide
analytically in the present formulation. In particular, it is not clear how the
ALG type metric reduces to the usual ALF of monopoles in R* [ChK02]. In
this limit we also see that the coordinate W goes bad, in the sense that the
value of W at which the monopole Higgs zeros coincide increases as C' — 0, as
shown in figure 5.1.

The particularly symmetric case with K = 0 is shown in figure 5.2 for
the ‘zeros together’ and ‘zeros apart’ solutions, displaying the expected spatial

symmetries (section 4.1.2 and [Mall3]). The ‘zeros apart’ geodesic for C' = 1
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Figure 5.3: Energy density for a charge 2 monopole chain in the ‘zeros apart’
configuration with C' = 1 and W = 2.43 (left) and W = 1 (right). These
configurations show the symmetries Dg, and Doy, X Zo.

and W > 1 has two monopole chains incoming along the z-axis, whose energy
density is peaked at the Higgs zeros. At W & 2.43 (see figure 5.1) the Higgs
zeros coincide to give a toroidal configuration (figure 5.3 left). Reducing W
further, the ring breaks up along the z-axis, giving two copies of a charge 1
monopole when W =1 (figure 5.3 right, see also [HW09, Malb]), which move
apart parallel to the z-axis for W < 1. The geodesic with W € iR again
involves a double scattering, although this time the ‘doubled’ charge 1 chain is
not encountered and chains depart at 90° to the incoming chains. This process

is illustrated in section 5.3.

5.1.1 REGAINING THE NAHM EQUATIONS

Defining the combinations
O = i(T) +iT7) A, =Ty A = T; (5.1)

of the Hitchin fields with T; = %i fioi (no sum implied), we take the limit C' = 0,
such that det(®) = —K/2 and the Hitchin fields on the cylinder depend only
on r. This reproduces the usual Nahm equations in R?, and although this
approach is only valid in the strict limit C' — 0, it is interesting to note how
the different ‘zeros together’ and ‘zeros apart’ solutions can still be seen in this
limit.

In the above notation, the Hitchin equations become Nahm equations, such
that the functions f; satisfy

df;

1
P §€ijkfjfk (5.2)
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and the Hitchin fields become

10 A+h dy _
q)__5<f1—f2 o) ar =

where we have chosen a gauge with A, = 0 and we recall from section 4.1.1
that A; = —}Lﬁgwag. The spectral curve tells us that

—det(®) = i(ff — f2) = Ccosh(B3s) + K/2,

and (5.2) immediately requires C' = 0. In this form, with « = 0 and K € R,
the Nahm equations can easily be solved in terms of elliptic functions [BPP82,
MS04].

For real f; the Nahm transform provides a clear link between the symme-
tries of (¢, z) and those of (®,T3), as described in section 1.3. It is therefore
expected that there will be different solutions to the Nahm equations corre-
sponding to the relative magnitudes of f2, f2, f7. We note from [BPP82, MS04]
that for large K the monopoles are located on the axis e; corresponding to the
largest of the f?. We will fix ( = e; +iey and z = e3 (this is a gauge choice on
the Nahm data), with monopoles incoming along e;.

First of all we take f2 > f2 > f2 and define a function a(K) and the
elliptic modulus & € [0, 1] by

R-f=oK R f=a 9K =k

which are solved in terms of Jacobi elliptic functions defined for |ar| < K(k),
where K(k) is the complete elliptic integral (3.20),

f1 = adcg(ar) fo = ak'neg(ar) f3 = ak'sci(ar). (5.3)
In the limit K — 0 the monopole chains approach one another and
fi = fo = asec(ar) fs = atan(ar) 1 = 2log(2absec(ar))

for some constant b. The equality f; = fo in this limit describes a monopole
configuration which is axially symmetric about the periodic axis, and leads to
90° scattering in the plane when K becomes negative (in other words, when
f3 > f# > f3). Figure 5.4 (left) shows a plot of f; &+ f, for k = 0.9, illustrat-

ing how both zeros are in the same component of ® (i.e. the ‘zeros together’
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Figure 5.4: Left: (f1 + f2)/a (solid) and (f; — f2)/a (dashed) for £ = 0.9
plotted against z = ar, for f2 > f7 > fi. Right: (f; + f2)/V2K (solid) and
(f1 — f2)/V2K (dashed) against x = V2K, for £ > f2 > f2).

solution).
On the other hand, there is the possibility of having f2 > f2 > f2. This
time,
fi—13 =2K fi—f3=d 2Kk = o

and the solution is

h = \/ﬁd% (\/ﬁr>u
fo = V2KK sc (\/ﬁr>
fs = 2Kk ncy <\/ﬁr> .

Figure 5.4 (right) shows f;+ fo. The zeros of ® are now in different components
and scattering is consistent with the ‘zeros apart’ solution. This time, when
K = 0 we simply have f; = fo = f3 = 0, which is the Nahm data for a single

monopole.

5.1.2 LARGE PERIOD LiMIT

A complementary result to that of section 5.1.1 can be obtained via an ap-
proximate solution to the Hitchin equations (4.3), showing how the rank 2
Nahm /Hitchin data becomes Nahm data on a line segment for 8 — oo or
C — 0. The work in this section closely follows unpublished work by Harland,

[Hara|, and no claim is made over its originality.
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The idea is to look for non-trivial solutions to
V) = 2(C?| cosh(Bs)Pe? —e™?), (5.4)

where the ‘zeros together’ configuration with K = 0 is chosen as the easiest to
tackle (similar solutions for K # 0 can be expressed in terms of the Weierstrass
o function). The idea is to look for ¢-independent solutions to (5.4) under the
assumption that the first term on the right hand side is small. This gives a

one dimensional version of the Liouville equation,
V) = —2eY = v = 2log (h cos <% + c)) ,

where the solution is unique up to real constants ¢ and h. Away from the
central region, the Hitchin gauge field vanishes and (5.4) is solved as in section
4.2 by setting both sides to zero. Together, the above considerations provide

an approximate solution for 1,

o = { 21log (hcos(r/h)) |r| < 7o, (5.5)

~gr+1og2/C) Il >,

where 1y is to be determined. Requiring continuity and differentiability at

r = ro gives the conditions

Bro = log (% sec? (%)) b = %tan (%) ,

which can be expanded near ro/h &~ /2 (recall that the Nahm data (5.3) is
defined in the domain |ar| < K(k), and that K(0) = 7/2) to give

2 52
h ~ —1 —
3 o8 <20 ) 7
which tends to 0 when g — oo for fixed C.
The Hitchin fields following from (5.5) using (4.2) are

B 0 C cosh(Bs)h cos(r/h) _ 1 an () &
> — (Sec(r/h)/h . ) A = t (h) 3.

Noting the scaling of A with 3, then for small C' and large 3, the ‘sec’ term is
expected to dominate . Making the identifications (5.1), these approximate
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fields satisfy Nahm equations with

fi=—fo = —%SGC (%) f3 = —%tan (%)

There are two strengths of this method compared to that of section 5.1.1.
In particular, some residual C-scaling is retained (via h). There is also the
possibility of seeing explicitly how the linear growth of ¢ at large |r| (equation
5.5) increases in gradient, approaching the singular result for § — oo and
illustrating how the Nahm data is defined only on a line segment instead of

along the entire length of the cylinder.

5.2 LARGE C

In the opposite limit, of large monopole size to period ratio, the structure of
the chains again simplifies. As C' is increased, the fields become increasingly
independent of z and the spectral approximation [Mall3] becomes an accurate
description of the monopole. The monopole Higgs field is known explicitly in
this limit and can be read off directly from the spectral curve as described in

chapter 3. For charge 2, we have (3.15),

o _ 1 (KK
q)—ﬁRe(cosh < 50 03,

and the energy density is calculated through (1.7),
|
E = §V | D||°. (5.6)

Geodesic motion with K € R describes the movement of four lumps of energy
density located at ( = £4/K/2+ C undergoing a double scattering via a
cross-shaped configuration at K = 0, as shown in figure 3.3.

As was discussed in section 4.3, in the large C' limit there is also a sim-
plification in the solutions to the Hitchin system. The C' dependence of .
in equation 4.3 means a non-trivial solution for VZRe(v)) is only supported at
small C' and in the vicinity of the two regions p15 ~ 0 (see section 4.2). Thus, in
the large C' limit, the smooth solution to (4.3) approaches the singular solution
obtained by setting both sides to zero. The singular solutions to the Hitchin
equations in this limit, referred to above, imply that the metric obtained from

this data depends only on det(®), and is hence the same for the ‘zeros together’
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and ‘zeros apart’ solutions (see section 4.3.2). This is identical to the metric

found from the spectral approximation to the monopole fields in section 3.3.

5.2.1 NAHM TRANSFORM FOR LARGE C

The large scale limit allows a demonstration of an example of the Nahm trans-
form for the construction of solutions to the Hitchin equations on R2?. The
general theory of Nahm transforms [Jar04] relating solutions of the self-dual
Yang-Mills equations on reciprocal 4-tori suggests that the Nahm transform
on R? is self-reciprocal, thus mapping the large C' limit of the periodic mo-
nopole to Hitchin equations on R?, with a different topology and boundary
conditions. It is not clear how to ‘unwrap’ the Hitchin cylinder in this limit,
or how one might deal with the singular nature of the solutions. However, as
a step towards understanding this instance of the Nahm transform, we show
that in this limit the spectral approximation can also be applied to the forward
Nahm transform, allowing us to construct the initial Nahm data from the ap-
proximate monopole fields. Below we look specifically at the charge 1 periodic
monopole, although the argument can equally be applied to higher charges.

The inverse Nahm operator for the charge 1 periodic monopole [War05] is

AT — 2_35—2 ¢—@ b i) 0 (5.7)
(—®" 20,4+ 2) \War V2o

where ® = C cosh(fs). In chapter 3 we studied the large C' limit by suppressing

(see chapter 2)

z dependence (setting z = 0 above) and defining new fields
i/ sUT W drdt = i¢ / Vo, drdt = a,
R2 R2

where ip = ® —iA, and j = z,y. These fields, (3.8), satisfy Hitchin equations
on R2. As discussed in section 3.1, equation 5.7 has an approximate solution
valid at large C, in which the columns of W are Gaussian peaks at s = +sq,
with s0(¢) defined through C cosh(sg) = ¢. In this limit the monopole fields
are ngS = sg03, @ = 0.

The idea is to use these approximate monopole fields to explicitly perform
the forward Nahm transform. In other words, starting from (g%, a) we attempt

to obtain ® and A. The forward Nahm transform requires normalised solutions



5.2 Large C 93

to
20¢ 0 s — S 0 U1
~ 0 207 0
AV = ¢ SRIRCH I I S (5.8)
S — 8o 0 28¢ 0 U3

0 S+ Sp 0 28( (W
which should give the charge 1 Nahm/Hitchin data

4

4
b = / drdy¢y |v* = Ccosh(Bs) A = / dvdy > w050 = 0.
R2 — R2 —

- - (5.9)
Solutions to the forward Nahm operator (5.8) are found using the same ideas
as those for the inverse transform. First of all, we note that the equations for
vy and vs decouple from those for vy and vy. Writing (y = C cosh(fs) and
¢ = (o + €, we have

_l -1 @ _l 1[G te __C—CO 2
s—so—ﬁcosh (C’) BCOSh <—C’ )— 3 E+0(e)

where 71 = C'sinh(fs). The spinor components v; and v3 are supported away
from s = 0, and we make the Ansatz v; ~ vz ~ exp(—c|¢ — (y|?), resulting in
c=|€]/(2B) and vz = —E1/2E1 /2,

The important point now is that, if we remain on the correct branch of
cosh™, the quantity (s + sg) will never be close to zero (as in [War05], we
must avoid the points (5 = +C'). Thus, vy and vy are small and slowly varying
compared to vy and v3. We thus approximate vy ~ v4 & 0, so that normalising
gives

el —ienc-cor s,
23

The consistency relation v3 = £v; arising from (5.8) fixes the phases of v; and

[o1]* = Jus|* =

V3,

o = (& P i) o = (£ Y elc-aries
273 273 : ’ )
5.10

and (5.9) yields the expected Hitchin fields, ® = {; = C cosh(fs), A = 0. Note
the solution (5.10) is again exponentially localised, and the scaling with g is
opposite to that of W (see equations 3.4 and 3.5).

It should be cautioned that although these results appear to suggest a self-

dual Nahm transform on R?, much work remains to be done in studying how
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the boundary data is to be adapted in this limit. Although it is possible to
construct solutions to the Hitchin equations explicitly (see, for example, the
papers [Sa¢84, GMN13, Kam]|), there is the additional caveat that Derrick
scaling [MS04] implies that all such solutions have infinite or zero energy. It
would be interesting to see whether the Nahm transform in this limit allows
the construction of the periodic monopole from the Nahm/Hitchin data of its
constituents (this approach has been successfully carried out for the SU(2) pe-
riodic instanton by means of its two monopole constituents [L198]). However,
from section 3.1.2 it is not clear whether the constituents can genuinely be

considered as particles in their own right.

5.3 INTERMEDIATE C

Now that the small and large C' limits have been established, our aim is to
understand the intermediate régime. Here we focus on the ‘zeros apart’ case,
which displays a rich z behaviour while remaining consistent with the sym-
metries of section 4.1. The expectation is for solutions to interpolate between
the two extremes of sections 5.1 and 5.2, and in fact this occurs non-trivially
via a chain-like structure. For W = i, the transition from small to large C
involves the resolution of the energy lumps of figure 5.2 into two constituents
each. Curiously, however, the constituents are not aligned with the z and y
axes but with the lines x & y = 0, such that the chain has been twisted by
different amounts along its length, see figure 5.5 on page 96.

It is instructive to consider these solutions from the point of view of the
geodesics identified in sections 4.1.2 and 4.3 and illustrated in figure 3.3. In
particular, the W =i configuration is the midpoint of scattering via the W &
iR geodesic. Two points in this geodesic are shown in figure 5.6, which also
serve to illustrate the transition between the W =i configuration with C' =1
(figure 5.2) and that with C' =4 (figure 5.5).

Similarly, the W = 1 configuration (figure 5.7) is the midpoint of scattering
via the W € R geodesic, for which outgoing chains are simply shifted by 5/2
relative to the ingoing chains. Both these configurations also lie on the closed
geodesic with || = 1, snapshots of which are displayed in figures 5.5 and 5.7.
These show how the chains oscillate in shape as we move around the waist of
the double Atiyah-Hitchin trumpet of section 4.3.6.

As (' is increased, the configuration deforms as shown in figure 5.8. The

energy lumps stretch in the xy plane and fuse along z such that when C' is
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large enough, there are tubes of energy density located in a cross shape aligned
with the z and y axes, as expected from the spectral approximation. Although
it appears that within the spectral approximation the constituents cannot be
described as objects in their own right (section 3.1.2), it is not clear whether
this may be possible for intermediate C'.

Even for intermediate values of C', one can make a link with the results of
the spectral approximation by integrating the energy density over a z-period
across the zry plane. The resulting quantity, shown in figure 5.9, is found to
resemble the energy density expected from the spectral approximation, insofar
as the peaks are located along the coordinate axes and there is an energy

minimum at x =y = 0.

5.4 SUMMARY

In this chapter we considered the effect of changing the size to period ratio of
monopole chains. The limits of large and small size to period ratio were studied
by various approximations. For small monopoles, this recovered the Nahm
equations on a line segment, while for large monopoles evidence was given
for a self-reciprocal Nahm transform mapping between Hitchin equations on
R2. The transition of the spectral curve between these extremes was studied by
Cherkis [Che07]. Energy density plots were used to illustrate the symmetries of
the one parameter families of solutions and the approach towards the spectral

approximation of chapter 3 when the size is much larger than the period.
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Figure 5.5: Energy density isosurfaces for C' = 4, W = 1i. On the left we see
the constituent structure, and on the right the twisted chain. The symmetry
group can be equivalently described as Dgy, X Zo or Dog X Zo. The eight
axes of rotational symmetry are (z = +y, z = 0), (v = ty, z = /2) for Dy,
symmetry, and (x =0, z = £6/4), (y = 0, z = £5/4) for Dyg symmetry. Note
also the similarity to the Skyrmion chain configurations obtained in [HWO0S].

Figure 5.6: Two points on the W = iR geodesic with C' = 2, displaying
Dy, symmetry. Left: W = 2i, right: W = 1.125i. As well as illustrating the
scattering process, these energy density plots show how there is a transition
between the C' = 1 case, where the energy is peaked in two regions near the
z-axis, and the C' = 4 case, in which the energy is peaked away from the z-axis.
The ‘four pronged’ structures of figure 5.2 can be visualised as splitting the
right hand structure above along z = 7.
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Figure 5.7: Scattering for C' = 4 on the |W| = 1 geodesic. Left: W = 1 with
symmetry group D X Zg; right: W = ¢™/3 with symmetry group Da,. The
W =1 configuration is shown in figure 5.5.

Figure 5.8: Left: C' = 16, W = i, right: ' = 36, W = i. Note how we
approach the z-independent result of the spectral approximation (figure 3.3,
middle panel).

/R 0 2 4

Figure 5.9: Left: energy density integrated over a period for C' = 4, W =
i. Unlike in figure 5.5, the energy peaks here are at the locations expected
from the spectral approximation (right). Note that this comparison requires a
rescaling of the = and y coordinates by a factor of v/C.






HiGHER CHARGES

In this chapter we apply the methods of chapters 3 and 4 to periodic monopoles
of higher charge, making use of examples of charges k = (3) and k = (4).
Firstly, in section 6.1, we consider the symmetries of the spectral curve, then
in section 6.2 the Nahm transform is used to construct numerical solutions.
Section 6.3 describes ways to construct the Nahm data of higher charge chains

from those of lower charges. Most of this work appeared in the preprint [Mala].

6.1 SPECTRAL APPROXIMATION

As was done in section 3.2.3 for charge 2 chains, geodesic submanifolds of
the (2k — 1)-real-dimensional reduced relative moduli space can be identified
by considering the fixed point sets of symmetries of the spectral curve. We
consider two transformations of ¢ (corresponding to a rotation by « and a
reflection in the line § = «/2), and find the necessary maps of the coefficients

b; which recover the original spectral curve. The k = 3 spectral curve is (2.16)
w2+w(b3C3+b2C2+b1C+bo)+1 = 0. (61)

We take b3 = 1 for the rest of this section, its magnitude setting a scale and
its phase an orientation. We also fix the centre of mass of the spectral points
at the origin by setting b, = 0. Then the location of the spectral points is

obtained from the discriminant of the w polynomial (6.1),

b3C® + by + by = £2. (6.2)

99
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(> Ceto

To keep the spectral curve invariant we transform w +— we 3% and look for

values of a for which the resulting spectral curve,
w2€—6ia +w (C?) +blce_2ia +boe—3ia) + 1 = O,

is the same as the original one, (6.1), for a certain choice of by and by. There

are three possibilities:
i. a=m/3, by e®/3b, by —by, with fixed set by = by = 0. This corre-
sponds to the hexagonally symmetric configuration of spectral points.
ii. a=2m/3, by — e ™/3by, by > by, with fixed set b; = 0 for all by.

iii. o =, by — by, by — —bg, with fixed set by = 0 for all b;.

C — Eeia

We also set w — we 3%, such that

U—)2€fﬁia W (63 =+ bléefﬁa + boef?)ioz) +1=0
= wQeGia +w (CS + Elge%a T Boe3ia) +1=0.

Then

iv. =0, by — by, by — by, with fixed set b; € R and b, € R.
V. 0t = 7T/3, by — eZiﬂ'/?)Bh by — —50, with fixed set b, = eiﬂ-/3|b1|, by € iR.
vi. o = 27'('/3, b1 — €_2i7r/361, bo — 60, with fixed set b1 = e_i”/3\bll, bo € R.

vil. oo =, by = by, by — —by, with fixed set b; € R and b, € iR.

The above symmetries of the spectral curve can be combined to give three
distinct scattering processes, described in figures 6.1 and 6.2.

The greater number of moduli in the charge 3 case compared to the charge
2 case allows us to consider ‘phase diagrams’ showing the values of the moduli
for which the monopoles form one, two, or three separate clusters. The number
of clusters is defined as the number of groups of spectral points joined by a
line of zero discriminant. Numerical checks suggest that the corresponding
regions in the moduli space are separated by lines describing configurations for

which two spectral points coincide. This occurs when the discriminant of the
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Figure 6.1: Cross section of energy density for two one-parameter families
with by = 0. Left: by € R with by = —4,—3,...,4. The relevant symmetries
are 1, ii, iv and vi in the list of section 6.1. Right: by € iR with —iby =
—4,—3,...,4, with symmetries i, ii, v and vii. In both cases these define the
dihedral symmetry group Dj.
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Figure 6.2: Energy density for b; € R, by = 0, with b; = —4,—3,...,4. Unlike
the symmetries in figure 6.1, this family does not have a charge 2 analogue, and
in fact the Nahm data is only known for the special case by = —3, by = 0 (top
row, central panel). This configuration is in fact a charge 1 chain with period
£/3 and is described in section 6.3.1. The symmetry group is Ds, described
by i, iii, iv and vii in the list above.
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Figure 6.3: Regions of the moduli space for which a charge 3 monopole contains
a single cluster (light grey), two clusters (dark grey) and three clusters (white).
The lines on which (6.3) holds are shown in black.

polynomial (6.2) vanishes (recall that this in turn was the discriminant of the
polynomial in w (6.1)),
403 = —27(by £ 2)%. (6.3)

The ‘phases’ on the slice of the moduli space with (bg,b;) € R? are shown in
figure 6.3. It should be noted that even in the asymptotic region of the mod-
uli space there are configurations for which two of the constituent monopoles
remain in a single cluster. A similar observation has been made for monopoles
in R3, [AHS88]. In the charge 2 case, the region of the moduli space containing
a single cluster is the line segment K/C € [—2,2].

6.2 NAHM TRANSFORM

A straightforward extension of the charge 2 solutions described in section 4.1
is a modification of ‘Sutcliffe’s ansatz’ [Sut96b, Brall]. Solutions generated in
this way have b; = 0 for ¢ # 0,k in (2.17). We take

0 0o --- 0 f1 aq 0 0o ... 0

f2 0o --- 0 0 0 (05} 0o ... 0
=10 f3 -~ 0 0 A;=10 0 a3 ... 0. (6.4)

0 0 - fi O 0 0 0 ... a

Mimicking the charge 2 procedure, we define f; = p;e¥/?, with the conditions
S 4 =0and [[5, i = (=1)*'det(®) = C cosh(Bs) + K/2. The Hitchin
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equations then read
2 (aifl - ai) = Ost;

V2 log |f1|2 = 2|fz’|2 - ‘fifl‘Q - |fi+1|27

where the index ¢ is periodic, such that fy = fi. As was the case in section
4.1, the determinant of ® has exactly two zeros, such that smooth solutions
must have both zeros in the same or different entries y; (then two of the p; are
given by pg (4.5, 4.6) and all the others we choose to set to 1). We are free
to fix one of the zeros, so 1 = u,, say. Then for a given charge k, the ¢/ = 0
configuration has both zeros in p;, and there are (2k + (—1)* — 1)/4 gauge
inequivalent configurations with ¢ > 0, where ¢ is the separation between the
positions of py in ®, and in particular gy, = p—. This is equivalent (up to
changing the sign of 2) to placing p_ in the (k+ 1 — £)™ entry.

Given the results of chapter 4, we will assume that the Ansatz (6.4) provides
¢ geodesic submanifolds of the moduli space away from the spectral limit of
section 6.1. Each of these submanifolds can be fixed by a symmetry and is
parametrised by the complex modulus K or W, as described in chapter 4.
Borrowing notation from [HMM95], we denote these surfaces Yf.

With the above conventions, the Hitchin equations for £ = 3, ¢/ =1 are

(6.5)

VQRe(wl) = 2’M+‘2€Re(wl) _ |/L,’26Re(¢2) o e_Re(w1+w2)
V2Re(1/}2) = QIM_|2QR6(¢2) — |M+’2eRe(1j)1) _ e—Re(w1+¢2)

with g4 as in (4.5) or (4.6).1

Solving the Hitchin equations numerically is now a matter of adapting the
charge 2 procedure used by Harland & Ward [HWO09] and in chapter 4 of this
thesis. First of all we note that the equations (6.5) can be obtained by varying

the functional

E[Re(¢)] = /dr dt (% Z (OpRe(h;))? + 2| g M)

p=nr,t

_ wi|uj|2€Re(¢j) + e—Re(¢i+¢j)> (6.6)

with respect to 1;, where i,7 € {1,2]|i # j} and no sum is implied. Unfor-

tunately there appears to be no simple way of combining the two functionals

4 For k = 3 we have implicitly redefined K ++ —K so as to have an incoming monopole on
the z-axis. For general k the effect of this transformation is a rotation by 7 /k.
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generating the separate coupled partial differential equations (6.5) into a single
expression. Instead of minimising a single functional, we alternately minimise
E[Re(v¢1)] and E[Re(1,)]. This approach was found to lead to rapidly conver-
gent solutions as long as the boundary conditions were chosen appropriately.
In fact, it is straightforward to write down an asymptotic solution to (6.5)
vt o |)
and solving for the I/ii (this solution is singular at the zeros of 4 and is thus
not globally valid). For k = 3 and ¢ = 1 we find

valid away from the zeros of 4 by making the Ansatz ¢; = log(]u4

Re(t) = - log |’[j+,'2 Rofv) = 3 log 5 Re(us) = 3 log el
There is some freedom in the choice of imaginary parts of the functions 1;,
which must be chosen so as to make the Nahm data periodic on the cylinder.
We fix Im(¢1) = —ft, Im(¢14,) = Bt and Im(¢)3) = 0. A different choice simply
corresponds to a global shift in the z direction, and the resulting moduli spaces
are isomorphic.

Omne might also be concerned by the fact that (6.6) is not explicitly positive
definite due to the term linear in 1;, which does not appear in the charge 2
case. We again resort to the convergence of the numerical solution to justify
the validity of this approach.

It is easy to see that for k > 2 there are no solutions on the surfaces 3
with Re(v;) = Re(12) = 0 everywhere. This tells us that the charge 1 chain
of period 3/3 is not included in this family of solutions, as this requires F' = 0

(see also section 6.3.1).

6.2.1 SYMMETRIES

Spatial symmetries of the monopole fields can be studied by the procedure
outlined in section 4.1. First of all we choose a transformation of K (or W)
and s which preserves the spectral curve for a given transformation of (. Then
we express the transformed Hitchin fields as a gauge transformation of the
original fields. This allows us to read off the corresponding change in z from
the inverse Nahm operator (2.12), for which the monopole fields are gauge
equivalent to those at the original coordinates.

Note that if we restrict to gauge transformations which change the positions
and phases of the entries of @, then the overall ordering of the f; is unchanged

(or reversed in the case of ®). This property gives the solutions ¢ = 0 and
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¢ = k/2 (for k even) an additional s — —s symmetry (corresponding to z +—
—z), which is not observed for general /.

Various scattering processes generalising those in section 4.1 are described
in the following subsections, and we visualise them with reference to chains
of small monopoles (C' < 1). In brief, it is found that the geodesics are
characterised by the positions of the zeros among the entries of ®, at p; and
pii+e. Then for [W] > 1 the monopoles are located on the vertices of a regular
k-gon at z = B¢/k (this value of the z position was determined numerically by
consideration of examples with large values of |K|/C). As |W] is reduced they
scatter and split into two clusters of charge ¢ moving along the positive z-axis
and (k — () along the negative z-axis. The clusters move at speeds inversely
proportional to their charges, such that for |[IW| < 1 the outgoing monopoles
emerge at z = 0 on a (possibly rotated) k-gon. Following the discussion of
[MW13] we expect there to be a closed geodesic with |WW| = 1, describing
stationary monopoles oscillating in shape. A discussion of the motion of Higgs

zeros is given in section 6.2.2.

PLANAR SCATTERING

The conjectured geodesic surface X0 with K € Ror K € iR describes scattering
in the xy plane via a D gp),-symmetric toroidal configuration. We see this as
follows:

First of all, we have that under the transformation s — —s, puy (defined
as in equation 4.5) and 1); are invariant, and a;(s) — a;(—s) = —a;(s). The
form of the inverse Nahm operator (2.12) now tells us that the monopole fields
are invariant if we also replace z by —z. Thus, this monopole configuration
has the symmetry (¢, z) ~ ((, —z), consistent with the k incoming monopoles
being located at z = 0 (the fixed points of this transformation are z = 0 and
z = [3/2, the latter occurring if we replace 1 — 1y + 2i5t).

To see the Cy, symmetry we perform the transformation (s; K) — (s +
in/B; —K), giving pig — Fps and ¢; — ;. Then &'(s; K) = O(s+in/5; —K)
is the same as ®(s; K) but with the sign of f; reversed. Under a suitably
chosen diagonal gauge transformation g = exp(w.diag(0,1,...,k — 1)/k), we
then have ® = ¢™/*g~1®g, leaving A unchanged. The entry (1, — ®) in the
inverse Nahm operator (2.12) implies that ¢ — (e™/* when we map K to —K.
The monopole fields are symmetric under (¢, z; K) +— ((e™*, z; —K), and thus

K = 0 describes a configuration of enhanced symmetry.
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SYMMETRIC SPLITTING

For even k, the geodesic submanifold EZ/ ? describes a splitting of k£ incoming
monopoles into two equal clusters. The X} case was given in section 4.1.2. Now
we consider the k = 4 version, with conventions as in (4.6). Using the method
of section 4.1.2, we identify the following symmetries of the Nahm /Hitchin
and monopole fields (recall that these symmetries are defined up to gauge
transformations, so describe symmetries of gauge invariant quantities such as

the energy density):
o (W) (=5 T7) = (¢, ) ~ (,2) for W € R,
o (s;W) s (im/B — 5 —W) = ((,2) ~ (™4, 2) for W € iR.

o (s;W) — (E;Wfl) = (¢, 2) = (¢,/2 — 2) relates the incoming and
outgoing legs of the geodesics W € R and W € iR. Thus, W € R
describes monopoles incoming and outgoing parallel to the x and y axes,
with a half-period shift along z. On the other hand, W € iR has an
additional 7/4 rotation about the z-axis. This symmetry also fixes the

closed geodesic |W| = 1.
e ((,z) ~ (i¢,2) is a symmetry for all W, as can be seen by the gauge

transformation g = diag(1,1, —1, —i),
o s— —s = ((,z) ~ (¢,—z) for all W.
There are two particularly symmetric cases which will be considered in more
detail in section 6.3:
o W =1has ((,2) ~ ((,5/2—2) ~ ((,z+ (/2), with symmetry Dy, X Zs
o W =ihas ((,2) ~ ("4, 3/2 — 2) ~ (™4, z + 3/2) with symmetry
group Dyq X Zs.

The clusters are located at z = £/5/4.

GENERIC /¢

Here we consider the example of X}. The symmetries are

(5;W) = (=5; W) = ((,2) ~ (¢, 2) for W € R,

o (;W) = (im/B—5-W) = ((,2) ~ (—(,2) for W € iR,
(W) = (5T07) = (¢.2) ~ ((,5/3 = 2) for W] = 1,
(¢, 2) ~ (%3¢, 2) is a symmetry for all W.
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Figure 6.4: Energy density of a charge 3 periodic monopole with C' =1 taken
over a single period. Left: approximately tetrahedral configuration with W =
2+ /3 (K = 4). Right: when W = i, clusters of charge 1 and 2 are visible.
The symmetry groups are C3, and Dsq, respectively.

In this case, there is no symmetry z — —z due to the asymmetric splitting.

There are still configurations with enhanced symmetry:

o W =1has (¢,2) ~ (¢,/3 — z), with symmetry group Ds),, and
e W =ihas ((,2) ~ (=, 5/3 — z), with symemtry group Dsq,

with fixed points at z = $/6 and 25/3, which are the positions of the charge
2 and charge 1 clusters, respectively.

These symmetries are consistent with the expected scattering process. Mo-
nopoles are incoming on the vertices of an equilateral triangle. They scatter
along z via an approximately tetrahedral configuration to form two clusters
(figure 6.4). A new tetrahedral configuration forms from clusters in adjacent
periods, and outgoing monopoles are shifted by §/3 and are either rotated by
7/3 about the z-axis (for W € iR) or move back along the original directions
(for W € R).

6.2.2 HIGGS ZEROS

As a further similarity with monopole scattering in R?, we observe the appear-
ance of an additional zero of tr(—%aﬂ) (termed an ‘antizero’ in [Sut96a, Sut97]
and described by a reversal in the local winding number) during the & = 3,
¢ = 0 scattering process with W € R. The motion of Higgs zeros can thus be
described as follows: three zeros move radially inwards on the vertices of an
equilateral triangle, falling slightly below the plane z = [5/3 as they approach.
At some (C-dependent) value of W, a zero appears on the z-axis, slightly
above /3 (see figure 6.5 overleaf). Reducing W further, the zero splits into
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Figure 6.5: Motion of the zero-antizero pair along the z-axis (with 0 corre-
sponding to z = /3, and § = 27) as a function of W for various values of C"
C =1 in blue (rightmost curve), C' = 2 in red (middle) and C' = 5 in green
(left). For small C, the value of W at which the lower zero (the antizero)
is centered at z = [3/3 appears to coincide with the monopole configuration
closest to tetrahedral symmetry (figure 6.6).

two, moving in the positive and negative z directions, figure 6.6. At some value
of W the downward-going zero (the antizero) meets the three original zeros,
resulting in the toroidal 2-monopole cluster of figure 6.4. However, the precise

value of W at which this occurs is hard to resolve numerically.

6.2.3 DEPENDENCE ON C

For large C', producing energy density plots such as those of figures 5.5 and
5.7 for the charge 3 case is numerically delicate, with o changing rapidly over
small distances. It is nonetheless expected that constituent energy peaks will
develop. In analogy with the charge 2 case of chapter 5, we expect the charge
3 monopole with W = i (figure 6.4) to consist of a chain of upturned and
rotated tetrahedra. For z € [0, 8) and m € Z, constituents would be located
at (¢,2) = (0,28/3) and (¢, 2) = (CY3e™™/3 3/6). The is described by the

symmetry group Dsq.

6.2.4 DIFFERENT SYMMETRIES

We remark that the Ansatz (6.4) only encodes a subset of all solutions. In
particular, there is evidence [Harb| of the existence of monopole chains with

the symmetry
(C:2) ~ (Ce™* .z +mp/k) (6.7)
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1,
0 1
0

4

Figure 6.6: A contour of tr(®?) for the C' =1, W = 2+ /3 (K = 4) charge 3
solution of type ¢ = 1. This shows the Higgs field is close to zero at the centre
of the tetrahedron, although the energy density is not peaked there (see figure
6.4, but note the change of scale).

where k is the monopole charge and m = 0, ..., k—1. We denote this symmetry
by Dag, X Z;m). Section 6.3 shows that the cases with m = 0 and m = k/2
can be expressed in the form (6.4). In particular, we suggest the following

decompositions:

Doy x 2 = Dy,
Doy x Z? = Dyg % Zy.

More generally, solutions with the symmetry (6.7) can be given in terms of
quasi-periodic Nahm data. For instance, in the charge 2 case we have .
as in (4.6), except this time with Im(¢)) = 0. Numerical solutions of the
inverse Nahm operator must be performed with the condition ¥|,—; = —W¥|,—.
However, it has proved difficult to get the scheme outlined in section 4.1.4 to

converge with such boundary conditions.

6.3 MULTIPLYING CHAINS

In this section we investigate how the Nahm data of a monopole chain can be
constructed from that of a lower charge chain. This is possible when a chain

can be described as a lower charge chain with a rescaled size C' and period £.
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We will firstly consider a generalisation of the large N limit of the Ercolani-
Sinha solution [ES89] given by Harland & Ward [HWO09]. Next, we will look
at how charge 2k Nahm data with ¢ = k/2 and W = 41 can be expressed as
charge £k Nahm data with £ = 0 and K = 0, and suggest an interpretation.

6.3.1 RESCALING A CHARGE 1 CHAIN

Harland & Ward [HW09] considered a rescaling of the Nahm data relevant to
a finite chain of N monopoles in the limit N — oo. In this limit, the Nahm
matrices become infinite dimensional and operate on a k dimensional vector of
functions. The k x k matrix corresponding to this action is the Nahm data of a
periodic monopole. This procedure allowed the authors to reproduce the Nahm
data of monopole chains of charge 1, and for the special charge 2 configuration
consisting of a charge 1 chain of halved period. The resulting set of Nahm
data is equivalent to that for W =i on the surface 3. For higher charges, this
procedure does not give a point on the submanifold X for any ¢. For instance,
the charge 3 version, describing a charge 1 monopole taken in groups of three

18

0 e—ﬁr/3 eﬁ(r/3+it) 10 0
¢ = ePr/3 0 e Br/3 A; = g 00 0 (6.8)
e—ﬁ(r/3+it) eﬁr/S 0 00 —1

This solution is of interest as the only currently known explicit charge 3 Nahm
data with spectral curve coefficient by # 0 (see section 6.1). In fact, the
characteristic polynomial of ® is ¢* — 3¢ — (w + w™!) = 0. This is simply the
k = 3 version of the spectral curve det(1,w — Vi(¢)¥) = 0, where the holonomy
of the charge 1 chain, V;((), is taken over k periods and satisfies tr(V;(¢)) = ¢
and det(V1(¢)) = 1. Note that F' = 0, as expected for a charge 1 monopole
chain (for which the Nahm data is of rank 1).

The symmetries of this solution can be studied in the same way as was

done in section 6.2.1, to identify the symmetry group as Doy, x Z3. We find

((72) ~ (C? _Z) ~ (_Cv Z) ~ (Ca Z) ~ ((’5/3 - Z)a

confirming that the charge 3 chain in question is simply a charge 1 chain with
a rescaled period. This should be compared with the result of the spectral

approximation, figure 6.2.
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6.3.2 EMBEDDING NAHM DATA

Another approach to construct higher charge chains is by embedding lower
charge Nahm data as blocks along the diagonal of a higher rank matrix, with
rescaled periods and a phase shift to ensure the resulting characteristic poly-
nomial of ® is a valid spectral curve. This construction will in general yield
Nahm data of the wrong periodicity, although it can readily be cast into the

standard form of section 6.2 by a change of gauge.

CHARGE k£ FROM CHARGE 1

The charge 1 Nahm data is simply @) = C'cosh(fs), AY = 0. We form
a traceless rank 2 Hitchin Higgs field by imposing a relative phase of —1, to
obtain the charge 2 Hitchin Higgs field ® = C cosh(/s/2)o3. We should not
be concerned about the anti-periodicity of ®’ if we notice that it is periodic
with period 47/, while the embedded charge 1 monopole has the dual period,

(/2. Now we perform a non-periodic gauge transformation with

1 1 eiﬁt/Q
9= E e Pt/2 _q

resulting in

80 — g — Coosh(gsy2) [ L
- g g - COoS (/88/ ) e*iﬁt/z 0

which is (up to a rescaling of C') the appropriate Hitchin Higgs field of a charge
2 chain, as can be obtained using the method of section 6.3.1. The gauge
potential in the usual gauge (4.2) is expected to be A® = 8o, /8. Applying
the inverse gauge transformation, we find that A?) = g 'ALg + g 1059 with
AL = AP The structure of the inverse Nahm operator (2.12) relating the
symmetries of ¢ and z to those of ® and A allows us to interpret the embedded
charge 1 Nahm data as describing two monopoles of the same orientation (due
to the rotational symmetry (¢, z) ~ (—(, z)) but with z positions shifted by
+//4 from the origin (this is determined from (2.12) as twice the shift in AW

from AS) = 0 for the single chain centered at z = 0).
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An analogous procedure can be carried out to construct the charge 3 chain

of section 6.3.1 from charge 1 Nahm data. This time we have

®' = 2diag <cosh (%) _cosh (ﬁS —; 217T> cosh (ﬁs —3 217r))

Al = g diag(1,0,—1)

which is gauge equivalent to (6.8) by conjugation with

1 1 RETE o2iBt/3
_ —iBt/3—2in/3 i8t/3+2ir/3
9 e 1 e
V3l . .
e 2ift/3—2ir /3 e iBt/342im/3 1

CHARGE 4 FROM CHARGE 2

The same idea can be applied to higher charges. This allows us to take, say, a

charge 2 monopole in pairs to give charge 4 Nahm data where the Higgs field

50 _ d(?) 0
o 0 @)

This has a valid spectral curve as long as both ®® and ®® have the same
im/2

is block-diagonal,

¢, with a relative overall phase of /% and with K of opposite signs in each
block.

A special case is provided by ®® with £ = 0 and K = 0. The gauge

transformation
1 0 elft/2
1 0 1 0 P2
9= V2 | e B2 -1 0
0 ie”18t/2 —i

shows that this is equivalent to the charge 4 case with ¢ = 2 and W =1
(see section 6.2). In other words, there are particular charge 4 configurations
which can be understood as charge 2 chains ‘in disguise’ [HW09], a result which
could have been anticipated by comparing the symmetry groups between each
case: here we have gone from Dy, to Dy, X Zso, while the previous subsection
constructed Dg;, X Zg-symmetric periodic monopoles from chains with Doy,

symmetry.
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The decoupling of the Nahm data into block-diagonal form suggests the
relevant monopoles are ‘maximally separated’ and non-interacting.'> This is
reminiscent of the decoupling of the asymptotic moduli space metric of a charge
2 monopole into a direct product of two 1-monopole metrics for two well sep-
arated monopoles [GM95, Bie08].

6.4 SUMMARY

This chapter concerns the construction of higher charge periodic monopoles.
An Ansatz was constructed for the Hitchin fields, containing precisely the
moduli appearing in the spectral curve, and this was found to provide highly
symmetric configurations. It is hoped that one could work back from these
symmetries to give a more thorough justification of this Ansatz, as was done
in section 4.1.3 for the charge 2 chain. This was followed by a comparison
with higher charge monopoles in R? and a prescription for constructing certain

higher charge chains from those of lower charge.

15 A similar limiting case emerges for the Nahm data of well separated monopoles in R3.
With conventions as in [MS04], the k& — 1 limit of the charge 2 Nahm data becomes
diagonal, (T1,T5,T3) x (0,0, 03), although with poles at the endpoints.






CONCLUSIONS AND OUTLOOK

We began this thesis by introducing non-Abelian magnetic monopoles as soli-
ton solutions to the Yang-Mills-Higgs system in R3, and discussing how the
techniques used in the construction of these solutions are adapted to the pe-
riodic case of monopoles on R? x S*. This was followed by the discussion of
an approximation to the resulting monopole fields, which increased in validity
as the monopole size to period ratio became large. This allowed a study of
the symmetries of the monopole chain and of the moduli space in this limit.
The next chapter used the Nahm transform, which allowed a dual description
of the monopole chain via Hitchin equations on a cylinder. This dual system
was seen to describe the motion of lumps on the cylinder, and a study of their
properties allowed us to reproduce the metric on the asymptotic moduli space.
Following this, the results of the large size approximation were compared to
the fields given by a numerical implementation of the Nahm transform. Fi-
nally, we briefly discussed how the preceding observations generalise to higher
charge monopole chains.

There are various open questions, which could provide the basis for further

research. A selection of these is listed below.

e The strength of the ‘spectral approximation’ was that it gave the mono-
pole fields (in a certain limit) in a very simple way: by just studying the
spectral curve, which is a polynomial satisfying certain rules. It would be
interesting to try to apply this method to other soliton systems, thereby

bypassing the Nahm transform, which is generally harder to implement.

e A particular case in which the ‘spectral approximation’ could be useful is
the doubly periodic monopole on a square lattice, or monopole on R x T2,

which is self-reciprocal under Nahm transform. This system is believed

115



116

7 (CONCLUSIONS AND OUTLOOK

to be relevant in describing the wall of a magnetic bag, and has already
been considered in some detail [Lee98, War05, War08]. In particular,
spectral curves have been defined [ChW12], and the asymptotic mod-
uli space metric of two such ‘monopole walls’ has been computed from
physical considerations [HKM14]. Recent work [MW14] has allowed the
identification of geodesic submanifolds using symmetry principles akin
to those found throughout this thesis. Open questions include the ap-
plicability of the ‘spectral approximation’, the behaviour of constituents,
and whether the Nahm transform can be used for walls with hexagonal

symmetry.

As mentioned briefly in chapter 6, it should be possible to use the Nahm
transform to study monopole chains with different symmetries. Exam-
ples of this are chains in which monopoles in adjacent periods are rotated,
and 2-monopole geodesics with § = 7/2 (i.e. two incoming chains of mo-
nopoles ‘maximally offset’ by half a period in the periodic direction).
Monopoles with these symmetries are not encoded by the Anséitze de-
scribed in this thesis, and in particular one would need to modify the
solution (4.2) to have a # 0.

Related to the question of finding monopoles of different symmetries is
the possibility of perturbing known monopole solutions. The ‘zeros apart’
geodesic described in chapter 4 can be thought of as a perturbation of the
1-monopole chain. However, for higher charge monopoles there are no
known geodesics which contain the ‘tripled chain’ (6.8). In other words,
it is not currently known how to perturb the charge 1 monopole chain

by perturbations of period other that 2.

Following the discussion of section 3.4, it would be interesting to study
periodic monopoles with higher gauge groups in more detail. The ma-
jor stumbling block to applying the Nahm transform numerically is that
the spectral curve predicts the Nahm/Hitchin data contains singulari-
ties. Nevertheless, if this problem could be successfully tackled it would
be extremely interesting to compare the behaviour of SU(3) periodic mo-
nopoles with known results for SU(3) monopoles in R3. Indeed, it was
this topic which initiated the research presented in this thesis and hence

led to the development of the ‘spectral approximation’.



APPENDIX A

SYMMETRIES FROM HITCHIN DATA

In this appendix we explain in detail the procedure followed in section 4.1.2,
with reference to the example of the K € R geodesic of the ‘zeros together’

solution.
The map (s; K) +— (5; K) transforms (r,t) ~ (r, —t),

py(s; K) = Ccosh(Bs) + K/2 — Ccosh(B5) + K/2 = ji,(s; K)

and

p-(s; K) =1 — o_(s; K).
Equation 4.3 is invariant, so Re(y)(s; K) +— Re(v)(s; K). Recalling that in
this case Im(¢)) = 0 tells us that a transforms as

(s K) = —<(0 41000 = 30, — 0 = als; K).

Combining these results we obtain the transformed Hitchin fields (4.2),

O T
(I)<S7K)_ (u_ew/Q O (SvK)

0 fipe’?
1. AN .
= (P(SaK) - (ﬂ_e_w/2 0 (SaK)a

As(s; K) = a(s; K)oz — AL(s; K') = a(s; K)o = —Ay(s; K),

A (s; K) = —a(s; K)oz — Al(s"; K')

—a(s; K)oz = —A;s(s; K).
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The Nahm operator A constructed from the new fields is

A/ o 12(283 - Z) - 2As 12< - (CI)/)T
B 1, — &/ 1,(20; + z) — 24,

Noting that ® can be written in terms of ® as ® = o;®'oy, the new Nahm
operator A’ can be obtained from the original one (4.7) by the combined trans-

formation

A = UIAU (¢ 2) = (¢, —=)

with U = 01 ® 0;. Consequently, ¥ transforms as

such that the new monopole fields evaluated at ({, —z) are the same as the old
ones at (¢,z). A monopole configuration symmetric under (¢, z) — (¢, —z) is
thus invariant under K — K, and leaves us with the one parameter family of
solutions with Im(K') = 0.



APPENDIX B

ASYMPTOTIC METRIC INTEGRALS

In this appendix we perform the integrals of section 4.3.4 to one more order in
k = | K|, using the example of the integral J in equation 4.31.

For complex K = kel?,
Bsy = cosh ™ (=K /2C) = log(—K/C + C/K + O((k/C)™®)) (B.1)
Bro = log(k/C) + O((k/C)7?), Bty = ¢+ 7+ O((k/C)7?). (B.2)

The integrand can be expanded as

o0

h(r,t) = (K/2—C /QZ

m=0

K/C)™™ cosh®™ (3B(r + ity)) .

In order to integrate, we expand cosh®™ as a sum of linear terms [GR94b],

h(r,ty) = (K/2— C)~'/2 (H_Z )' KOy ((2771/)2!4_

4m( m‘)2 (m!)
n Z 2;(_ i cosh ((m —n)B(r + itg))>)

where the m'" term in the sum has m factors of ‘cosh’ and, as will be seen

below, the series can be truncated, with higher terms contributing smaller
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powers of k/C. Integrating from r = 0 to r = ry,

— (K/2—C)V? (m +3° %(2 - K/C’)‘m(((i; ’!L)); ro (B.3)

%’”2: 2m — n) lnl : —n) (Shlh (m = )f350) = sinh ((m = nﬁﬁto)))) |

We now expand the sinh terms in powers of k/C using (B.1) and (B.2),

sinh(mfso) = 5(—K/C)™ + O((k/C)"™?)
sinh(imfty) =isin(2rm(n + 1/2)) + O((k/C)7?).
Substituting these into (B.3),

(2= w( S 2 Koy (2

l Z 2m — n |n' ( 1)m . ((K/C)m—n + O((k/C)m"”"2)+

P> (m—n)

—2isin(2an(m —n)) + O((k/C)‘2)>)) :

Expanding (2 — K/C)~™ and ry, the summand becomes

(1+2mC/K + O((k/C) 7)) x

(@m KJC) ™ log(k/C) + O((k/C) ™)+

7)2

5

em) (=1
“ (2m —n)nl (m — n)

; ((K/0>-" L O((k/C) ")+

n—=

—2i((K/C) ™ sin(2mn(m —n)) + O((k/C)_m_2)>) :

Now we expand the sum term by term, retaining terms of order (k/C)~'. To
this order we need only consider m = 1, plus the terms highlighted in red above

(which do not involve negative powers of m), so the double sum evaluates to

1 ( — (K/C) log(k/C) —i(K/C) ' sin(2mn) + O((k/C) 2 log(k/C))+

B
* Z] miir(nr:') (K/C)” <2 Z (m — 4’” m‘) 1) i O((k/C)2)>

m= =
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These sums can in fact be performed (using Mathematica), so putting every-

thing together,

J = %\/%(10;;(#/(7) + log(4)—i(C/K) sin(27n)+
+O((H/C)*ou(k/C)) )

where there is a nice cancellation killing the (K/C)~'log(k/C) term, and the
O((k/C)~%1og(k/C)) piece contains contributions from the magenta and cyan
terms.

A similar expansion also gives a factor of 4 in the [ integral (here we must
consider the regions |r| > |rg| and |r| < |ro| separately, although the dominant

contribution is from the former). Similarly, the subleading terms in hy and L
are at O((k/C)73/%).
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