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The behavioural ecology of migratory salmonids in the 

River Tweed, UK 

 
Abstract 

This study investigated various life history stages of salmonids within the River Tweed, 
UK with a focus on migratory movements. The River Tweed is a large upland river 
situated on the border between Scotland and England and is home to some of the 
healthiest stocks of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) in the UK. 
The research undertaken as part of this thesis aims to assess how management can be 
improved to aid the migration of salmonids moving within freshwater. This is of 
particular importance due to increased demand for renewable energy including small 
scale hydropower as well as legislation that demands improved fish passage within 
rivers such as the Water Framework Directive. 
 Sea trout smolts were captured and acoustic tagged to assess the roles that in 
river obstructions such as weirs play on their migration between years with varying river 
flow. The two study years varied radically in flow levels due to the incidences of 
hydrological drought in 2010 significant differences were observed in the degree of 
delay smolts experienced at weirs as well as differing responses to flow during years.  
 Sea trout and salmon were acoustic tagged and tracked during their freshwater 
spawning migration. The aim of the study was to examine the interspecific differences in 
spawning migration such as spawning location and movement rate during migration. By 
looking at migration rate of sea trout and salmon it was observed that both species 
decreased their migratory rate the further into the river system they moved. It was also 
observed that sea trout and salmon spawned in different locations, with sea trout using 
tributaries and salmon using lower stretches of the Tweed. 
   The small scale movements of freshwater resident trout was studied. 
Freshwater resident trout tend to have relatively small home ranges and often hold a 
territory within their home range. As a result they also tend to rapidly home back to 
their territory after being displaced from it. As such, the study aimed to assess the 
degree to which brown trout home after being displaced, particularly whether being 
offered a choice of empty territories at their site of displacement would affect their 
homing behaviour. The study found that there was no apparent difference in homing 
behaviour observed between treatment groups offered empty territories at their site of 
displacement compared to controls that were displaced into fully populated sites. 
 

Continued research into the behaviour of salmonid species is important due to 
increasing demand on water resources, future conflict between man and fishes water 
needs is inevitable.
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Preface: The Living North Sea Project  

Sections of the following thesis (Chapters 3 and 4) were completed as part of the Living 

North Sea (LNS) project. The LNS project was a European research project with the 

primary goal of promoting the free migration of diadromous fishes moving between the 

North Sea and the inland waters of countries bordering the North Sea, thus promoting 

free migration from sea to source. The project was a partnership between 15 separate 

research and management bodies from seven countries bordering the North Sea. 

 

Why the North Sea? 

“The North Sea was once a very fish rich sea fed by several large European rivers such 

as; the Rhine, Elbe and Thames, creating rich delta systems around the whole North Sea 

resulting in abundant fish populations. 

As a result of a reduction in the fish spawning and breeding grounds, disruption 

of continuity within rivers and fifty years of intensive fisheries today we are left with a 

poorly populated North Sea. The LNS project was established with a focus on the re-

connection between rivers and deltas and the North Sea so fish can once again reach 

their spawning and breeding grounds leading to healthy fish populations once more.” 

 – Text adapted from http://www.living-north-sea.eu/north-sea/ 

 

Project aims 

“The LNS projects over-arching aim is to promote free fish migration from sea to source 

and addresses three essential aspects about the management of migratory fish: 

 Migration routes 

 Threats such as man-made barriers and fish migration measures 

 Influencing future policy at a regional, national and international level and 

informing the general public 
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 The work on migratory routes focuses on sea trout, eel and salmon, but is 

applicable to many other species. The partnership will analyse and visualise migratory 

routes, populations and consequences of management actions. New communication 

and mapping tools for sharing data between partners will be explored. 

In the North Sea Region some deltas and estuaries are closed to fish and many 

more have barriers such as dams and sluices throughout their system, meaning that 

many fish species like the eel, salmon and sea trout cannot reach their spawning 

grounds. The partnership focuses on the development of better and innovative 

migration measures, such as passages or sluice management and the implementation of 

these in demonstration projects.  

The LNS project will emphasise the promotion and publicity of fish migration 

because the effect of barriers on fish populations is often not considered when dealing 

with flooding, drainage, or renewable power generation. Yet healthy fisheries are critical 

to sustainable development and good ecological status of rivers. Intensive 

communication actions intended to influence regional, national and European policies 

will be carried out. Creating new partnerships, sharing knowledge and achieving greater 

awareness and involvement are key elements in this project.” 

Text adapted from http://www.living-north-sea.eu/
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Chapter 1: The life history and ecology of Atlantic salmon 

(Salmo salar) & brown trout (Salmo trutta) 

1.1 The taxonomy and worldwide distribution of salmonids 

Salmon and trout belong to the order Salmoniformes, an order that has been traced 

back to the Upper Cretaceous (Nelson, 2006). It is strongly suggested by both cladistic 

and genetic analysis that the Salmoniformes have a freshwater origin (Stearley and 

Smith, 1993; Ishiguro et al., 2003; Ramsden et al., 2003).  Salmon and trout belong to 

the family Salmonidae which contains three sub-families: Coregoninae, Thymallinae and 

Salmoninae (Nelson, 2006)(Figure 1.1). Mitochondrial genetic analysis suggests that 

Coregoninae branched earlier from Thymallinae and Salmoninae with Thymallinae and 

Salmoninae existing as sister groups (Yasuike et al., 2010). The sub-family Salmoninae 

includes five genera: Hucho, Brachymystax, Oncorhynchus, Salvelinus and Salmo 

(Nelson, 2006). Hucho contains freshwater and andromous (breed in freshwater but 

most growth occurs at sea) forms of huchen and taimen species which occur throughout 

Northern Asia and the Danube basin in Europe (Phillips et al., 2004). Brachymystax, 

lenok, are freshwater fish that are found in Siberia, Northern China and Korea (Xia et al., 

2006). Oncorhynchus is the genus that comprises Pacific salmon and trouts and occurs 

throughout the North Pacific basin (Esteve and McLennan, 2007). Salvelinus, charr 

species, have a circumpolar distribution in the northern hemisphere and exist in 

freshwater as well as anadromous forms (Phillips et al., 1994). The genus Salmo contains 

salmon and trout species from the North Atlantic basin, species can be purely 

freshwater resident or contain anadromous forms (Stearley and Smith, 1993). Both 

brown trout and Atlantic salmon are members of this particular genus.  
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Figure 1.1: Sub-families and genera of the family Salmonidae as well as their nearest genetic 
neighbour order Esociformes (pike species). *represents extinct species. Reproduced from 
Ramsden et al. (2003). 

1.2 Salmonid species in Europe 

Members of the sub-family Salmoninae are some of the most notable migratory fish, 

especially those from the genus Salmo and Oncoryhynchus with many undergoing mass 

migrations (Lucas and Baras, 2001). The main anadromous salmonids endemic to 

Europe are Salmo salar, Salmo trutta and Salvelinus alpinus each capable of undertaking 

both freshwater and saltwater stages during their life history (Klemetsen et al., 2003). 

European stocks of Atlantic salmon almost exclusively carry out an anadromous life 

cycle, with the juvenile stages occurring in freshwater and the adult stages occurring 

mostly at sea, only returning to freshwater to spawn (Figure 1.2) (Gross et al., 1988). 

However, there are elements that do not carry out this whole life cycle such as 

precocious parr that sexually mature and spawn entirely in freshwater as well as 

relatively rare populations of landlocked salmon (Leyzerovich, 1973; Saunders et al., 

1982; Nilsen et al., 2003). In contrast, brown trout are highly flexible and locally 
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adaptable with regards to their freshwater and anadromous life histories within and 

between stocks (Figure 1.3) (Jonsson, 1989; Hindar et al., 1991). The term ‘sea trout’ is 

commonly used to describe the anadromous form of S. trutta. At Northernmost 

latitudes Salvelinus alpinus are often anadromous, frequently mixing with freshwater 

residents. However, at lower latitudes Arctic charr are exclusively landlocked 

(Klemetsen et al., 2003). For brevity, in the rest of this thesis Salmo salar, freshwater 

resident Salmo trutta and anadromous Salmo trutta will be referred to as Atlantic 

salmon, brown trout and sea trout respectively.  

 

 

Figure 1.2: Diagram of the typical Atlantic salmon life cycle 
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Figure 1.3: Diagram of the brown trout life cycle 

 

1.3 Brown trout life history variation and taxonomic 

controversies 

Brown trout as a species have the capacity to undertake multiple life history strategies 

with lacustrine, fluvial as well as anadromous forms, or ecotypes, being identified. Often 

these forms can cohabit the same river systems but there is some evidence for spatial 

segregation due to barriers limiting river continuity (Kristensen et al., 2011). Therefore, 

in a fisheries management context, there is a need to allow for free flowing river when 

anadromous forms are present in the population (Charles et al., 2004).   

It is noted that the progeny of sea trout can produce freshwater residents and 

vice versa (Northcote, 1978; Guyomard et al., 1984; Wysujack et al., 2009). This is 

supported by genetic evidence showing that there are no genetic differences between 

freshwater and anadromous forms of brown trout from the same population (Charles et 

al., 2005; Charles et al., 2006). However, there is evidence for reproductive segregation 
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between forms found in Scottish lochs and Irish loughs based on genetics, with large 

cannibalistic trout (ferox) being reproductively isolated from other freshwater forms 

(Ferguson, 1989; Duguid et al., 2006; Ferguson, 2006). 

Due to this variation within brown trout their precise taxonomy is still a cause for 

some debate. In the 10th edition of the Systema Naturae, the foundation of modern 

taxonomy, Linnaeus categorised brown trout into three separate species; steam trout 

(Salmo fario), river trout (Salmo trutta) and sea trout (Salmo eriox) (Linnaeus, 1758). It is 

estimated that there are 60 synonyms for brown trout within the scientific literature 

since the publication of the Systema Naturae (reviewed in Jonsson and Jonsson, 2011). 

However, modern taxonomy for the species places all forms under the singular species 

of Salmo trutta, although brown trout’s current position within modern taxonomy is still 

a cause for wide debate (Kottelat and Freyhof, 2007; Webb et al., 2007; McKeown et al., 

2010). Kottelat and Freyhof (2007) estimated that Salmo trutta, across its European 

distribution, actually consisted of 27 discrete trout species. Nelson (2006) on the other 

hand suggests there are three separate trout species within Europe and Webb (2007) 

maintained that there was only one trout species in Europe, Salmo trutta. Due to this 

taxonomic debate brown trout is now widely referred to as the Salmo trutta species 

complex (Bernatchez, 2001; Meraner et al., 2007; Schöffmann et al., 2007; Caputo et al., 

2009). For the purposes of this thesis ecotypic forms of brown trout will be referred to 

as the singular species Salmo trutta.  
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1.4 Salmonid stocks of the Tweed 

The River Tweed is home to a variety of discrete Atlantic salmon and sea trout stocks. 

Work carried out in the past 20 years by the Tweed Foundation has helped to greatly 

elucidate specific stocks.  

1.4.1 Atlantic salmon stocks 

Evidence gathered through scale collection from rod caught Atlantic salmon in various 

areas of the River Tweed suggests that there are considerable differences between the 

salmon stocks of the Tweed. It is observed that spring salmon, early running multi sea 

winter salmon, now relatively rare, are absent from scale records for the area of the 

Tweed above the confluence of the Ettrick Water but are fairly prevalent below the 

confluence, suggesting that spring salmon are endemic to the Ettrick Water and not the 

upper Tweed (Campbell, 2005). A later radio tracking study followed the progress of 

estuary tagged salmon and their migration within the Tweed system. It was observed 

that the greatest proportion of early running fish (fish tagged before the 1st of July) 

made their way up the Ettrick and Whiteadder tributaries, with the stocks of remaining 

tributaries largely being composed of summer and autumn running adults (Smith et al., 

1998; Campbell, 2005). These results are also confirmed by long term catch records for 

the Tweed, with the number of catches for early running fish declining past the mouth 

of the Ettrick Water (Campbell, 2005). 

 

1.4.2 Sea trout stocks 

The sea trout stocks of the Tweed are generally considered to be a polymorphic 

component of a larger brown trout population. However, recent studies of the brown 

trout population within the Tweed have shown that the juvenile populations of some 

tributaries within the Tweed are largely spawned by either resident brown trout or sea 

trout (Briers et al., 2013). The sea trout of the College Burn a tributary of the 

Glen/Bowmont, the main tributary of the River Till contains an interesting sea trout sub-
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population, which can be considered unique to the Tweed. Segregated by size, smaller 

single sea winter sea trout, locally referred to as whitling, are prevalent above a natural 

obstruction, whereas larger sea trout and salmon are only encountered below the 

obstruction (Campbell, 2005). 

 

 

1.5 Smolt migration in river  

The migration of juveniles from rivers to the sea is one of the milestones in the life cycle 

of anadromous Atlantic salmon and sea trout. On attaining a suitable length and energy 

store status, in relation to their developmental stage, the juveniles begin to smoltify and 

depart from their natal channels and descend the river towards the sea (Bohlin et al., 

1996; McCormick et al., 1998). Smolting is a complicated process that is brought on by a 

suite of physiological, morphological and behavioural changes as well as environmental 

stimuli (Riley et al., 2002). 

1.5.1 Smoltification 

During smoltification, juvenile salmonids undergo a variety of morphological, 

physiological and behavioural changes (Folmar and Dickhoff, 1980). Morphological 

changes observed during smoltification include loss of parr markings (dark banding on 

the flanks) due to development of the purines guanine and hypoxanthine resulting in 

the development of layers of silvery pigmentation in the skin and scales (Denton and 

Saunders, 1972; Folmar and Dickhoff, 1980). The change in body colouration is also 

coupled with a change in body shape. The body shapes of sea trout and Atlantic salmon 

smolts change to become more fusiform. Changes include a reduction in body depth, 

shortening of the head and a relative elongation of the caudal peduncle (Debowski et 

al., 1999a; Debowski et al., 1999b). The caudal and dorsal fins of salmon smolts are also 

observed to blacken due to deposition of melanin grains in the melanophores (Mizuno, 

2004). Such changes in body shape and colour are assumed to aid swimming 
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performance in pelagic environments as well as provide cryptic colouration in open 

water (Björnsson et al., 2010). 

 Prior to smolting, juvenile stream dwelling Atlantic salmon and sea trout reside 

in benthic territories and exhibit positive rheotaxis in relation to river flow (Thorpe and 

Morgan, 1978). During the parr-smolt transformation juveniles abandon territoriality 

and aggressive behaviour toward conspecifics. The juveniles then leave the benthic 

habitat and form cohesive pelagic shoals before moving downriver towards the sea 

(McCormick et al., 1998). Other behavioural changes exhibited by smolting juveniles 

include a shift in salinity preference, with smolts exhibiting an increased preference for 

salt water, preparing them for sea entry (Folmar and Dickhoff, 1980; Iwata, 1995). 

 During smoltification, juveniles undergo a variety of physiological changes that 

allow them to increase their hypoosomoregulatory ability thus allowing for successful 

transition from fresh to salt water. Movement from freshwater to saltwater requires 

smolts to change from net ion-influx to net ion-efflux, which is primarily controlled by 

the gills; although, the kidney, gut and urinary bladder also play a role (McCormick and 

Saunders, 1987). Growth hormone (GH) and cortisol are both greatly elevated during 

smoltification and stimulate the development of salt-water type chloride excretory cells 

in the gills as well as altering intestinal osmoregulatory function. These changes allow 

the fish to compensate for osmotic water loss through drinking salt water, with ions 

being excreted by the gills and kidney (McCormick et al., 2000; Björnsson et al., 2010). A 

resulting physiological cue of the formation of salt water chloride cells, understood to 

be an accurate indicator of smolting, is the elevation of gill Na+ K+- stimulated 

adenosinetriphosphatase (ATPase) activity (because salt excretion in these cells is an 

active process, using sodium-potassium pumps). Gill Na+ K+- ATPase activity in juveniles 

undergoing smoltification has been shown to be at levels twice that of parr with the 

activity in smolts entering saltwater being at levels up to seven times those seen in parr 

(Zaugg and Wagner, 1973; McCormick and Saunders, 1987; Ewing, 1998; Lysfjord and 

Staurnes, 1998). 
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1.5.2 Factors influencing smolting 

Over the years various factors governing the onset of smolting have been postulated, 

these include; stream flow rate, water temperature, photoperiod, fish age and fish size 

have (Solomon, 1978b; a; Thorpe and Morgan, 1978; Thorpe et al., 1981; Metcalfe and 

Thorpe, 1990; Hembre et al., 2001; Katzman et al., 2010). It is now understood that it is 

body length and associated energy stores rather than age that determines smolting in 

juvenile salmonids (Økland et al., 1993; Bohlin et al., 1996). The decision to smolt is 

thought to be made in the preceding autumn (Wright et al., 1990). Groups of parr have 

been shown to sort in to two distinct modal groups based on feeding and growth rates 

with the Upper Modal Group (UMG) making the seaward migration the following spring 

whilst the Lower Modal Group (LMG) are retained within the river for a subsequent year 

(Thorpe, 1977; Heggenes and Metcalfe, 1991). It has been observed in juvenile 

populations of sea trout that faster growing juveniles migrate at a smaller size than 

slower growing individuals that migrate years later. This may be due to the metabolic 

demands of increased growth rates requiring juveniles to transition to sea faster where 

feeding opportunities are more plentiful (Heggenes and Metcalfe, 1991). Økland et al. 

(1993) observed that age at smolting in Atlantic salmon and sea trout varied greatly 

between northern and southern Norwegian rivers with smolt size having an effect. 

Northern rivers produced Atlantic salmon and sea trout smolts at ages 3 to 5 and 3 to 6 

years respectively whereas southern rivers produced Atlantic salmon and sea trout 

smolts at ages 2 to 4 and 2 to 3 years respectively. This variation is thought to be due to 

the effect of latitude on growth opportunities, an outcome supported by (L'Abee-Lund 

et al., 1989; Metcalfe and Thorpe, 1990). Differences in age at smolting between sea 

trout and Atlantic salmon were also observed, with Atlantic salmon smolting earlier than 

sea trout, this may be due to Atlantic salmon having greater osmoregulatory ability and 

growth rate in saltwater than sea trout and, therefore, standing to gain more by 

migrating to sea earlier (Økland et al., 1993). 

Increasingly, the consensus is that a combination of photoperiod and temperature 

are the principle factors regulating the timing of smolt migration (Jonsson and Jonsson, 
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2009b).  Photoperiod is now considered the zeitgeber (time bringer or synchroniser) for 

smolt migration, with variations in day length providing indicators of season (Björnsson 

et al., 1995). Experiments involving artificial alteration of photoperiod coupled with the 

intensive feeding of juvenile S. salar have been successful in producing 0+ smolts during 

periods where there is no natural smolt production (Handeland, 2001).  Temperature on 

the other hand affects the rate of development exhibited in smolting juveniles, with 

high temperatures increasing salt-water readiness (Handeland, 2004), while low 

temperatures reduce the response to photoperiod (McCormick et al., 2000). The 

periodicity of smolting has been shown to be affected by temperature with mild winters 

resulting in smolting beginning earlier and taking place over a shorter window 

(Zydlewski et al., 2005; Jonsson and Jonsson, 2009b). 

Variations in water temperature and flow are thought to be the primary factors 

controlling the migration of smolts (Jonsson and Jonsson, 2009b). Results have shown 

that, rather than a specific temperature or a set number of degree days (number of days 

× mean temperature [oC]), smolt movement is stimulated by a mixture of actual 

temperature and increases in temperature (Byrne, 2004; Orell et al., 2007). Water flow 

has also been observed to play a role in smolt movement with increased river flow rate 

playing a role in migration rate and even route selection in salmonid smolts (Carlsen et 

al., 2004; Michel et al., 2013; Steel et al., 2013). 

1.5.3 Migratory behaviour 

The diel pattern of smolt migration in Atlantic salmon and sea trout is now well 

documented with the majority of migration occurring during the night (Thorpe et al., 

1981; Lundqvist and Eriksson, 1985; Greenstreet, 1992; Moore and Potter, 1994; Moore 

et al., 1995; Moore et al., 1998a; Moore et al., 1998b; Aarestrup et al., 1999; Aarestrup 

et al., 2002; Ibbotson et al., 2006). However, there are recorded instances of smolts 

switching to a diurnal migration pattern later on in the migration period (Moore et al., 

1995; McCormick et al., 1998). Davidsen et al. (2005) observed in a Norwegian river, 
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using video recordings, that the majority of smolts undertook diurnal migration early in 

the season with migration becoming increasingly nocturnal later in the season.    

 Solomon (1978b) observed, during the Atlantic salmon smolt run in an English 

chalk stream, that tagged smolts took an average of 121 hours to migrate down a 4 km 

stretch of river, which was considerably slower than the average current speed, 

indicating that smolt migration is an active rather than passive behaviour. A similar 

behaviour was noted in Loch Voil, Scotland where smolts migrated 3.7 times slower 

than the current (Thorpe et al., 1981). Observations from a video array showed the 

majority of smolts facing downstream and actively swimming, with the rest switching 

between tail first and active swimming in a head first orientation (Davidsen et al., 2005). 

These video observations are contrary to the observations made by Solomon (1978b) 

and Thorpe et al. (1981) as the fish would travel faster than the current if they mostly 

actively swim. However, the results observed by Davidsen et al. (2005) relate to only a 

specific site where fish were actively moving presumably migration through the whole 

river would be interspersed with areas where holding behaviours were more 

pronounced. Net ground speeds of migrating smolts have been shown to be highly 

variable with speeds ranging from 1 to 60 km d−1 in the River Lilleaa, Denmark 

(Aarestrup et al., 2002). Mean ground speeds of 35 cm s−1 and 14 cm s−1 (Equivalent: 

30.24 km d-1 and 12 km d-1 respectively) during the ebb and flood tides respectively 

were recorded in the estuary of the River Test, England which indicates active swimming 

during the transition to sea (Moore et al., 1998b). 

The position in the water column that smolts adopt during migration in the river 

has been shown to be the lower half of the column with smolts moving closer to the 

deeper quarter of the water column during periods of increased sunlight as a possible 

method to avoid visual predators (Davidsen et al., 2005). It has also been shown in a 

Danish river that wild and hatchery reared Atlantic salmon and sea trout smolts differ in 

vertical stream positioning, wild migrants adopted a low vertical position in comparison 

to a random vertical position adopted by hatchery smolts (Svendsen et al., 2007). 
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The onset of smolt movement in relation to physiological condition, specifically 

ATPase levels has been explored. The ATPase levels of early migrants has been shown to 

be much lower than later migrants (Strand et al., 2011). An associated delay in saltwater 

entry has been observed in smolts with low ATPase levels resulting in early migrants 

adapting to saltwater in synchony with their later migrating cohorts (Strand et al., 2011). 

The association between the urge to migrate and ATPase levels has also been examined 

in hatchery Atlantic salmon smolts (Spencer et al., 2010). Whilst the increase of 

downstream migratory behaviour and ATPase concentration increased in line with 

expectations there was no clear relationship between the two (Spencer et al., 2010). 

The peak in downstream migratory behaviour occurred after ATPase concentration 

peaked and had subsequently started to decline (Spencer et al., 2010).  

1.5.4 Smolt estuary and coastal movements 

Preference in vertical positioning is thought to switch once smolts leave the lower river 

and enter the estuary. Smolts were also more likely to position themselves higher up in 

the water column and move out to sea during ebb tides resulting in more efficient 

passage out to sea (Moore et al., 1992; Moore et al., 1995; Moore et al., 1998a; Moore 

et al., 1998b). Smolt migration from estuary to sea is largely dependent on tidal currents 

with smolts showing a preference for transitioning during ebb tides and holding position 

during flood tides, showing selective tidal stream transport (Moore et al., 1992; Moore 

et al., 1995). Smolts also show a preference for nocturnal passage through estuaries, 

however the diel pattern of movement tends to be the primary factor controlling sea 

entry (Stasko, 1975; Potter et al., 1992; Lacroix and McCurdy, 1996; Moore et al., 1998a; 

Moore et al., 1998b). During this period the ground speed of smolts has been shown to 

be greater than the speed of the current, showing that smolts undertake active 

swimming during this stage of the migration (Lacroix and McCurdy, 1996). Earlier 

migrant are also shown to spend a greater time in the river before transitioning into the 

sea than later migrants (Moore et al., 1995). Despite this difference between early and 
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later migrants there appears to be no apparent transitioning period in smolts migrating 

from freshwater to saltwater (Moore et al., 1995). 

The transition between freshwater and saltwater is a particularly dangerous 

period of the Atlantic salmon and sea trout life cycle. Upon entry to the sea post-smolts 

are faced with a radically different physical environment and predators. These factors 

coupled with the stresses of adapting to the new osmotic environment can have a 

detrimental effect on post-smolt survival (Hvidsten and Lund, 1988; Jarvi, 1989; 

Handeland et al., 1996; Dieperink et al., 2001; Dieperink et al., 2002). Another problem 

faced by post-smolts after entering the sea is acquiring food sources. In general coastal 

marine environments are more productive than most salmon and trout rivers. However, 

post-smolts must adapt to utilising a broader spectrum of prey items distributed in a 

greater volume of water (Hislop and Shelton, 1993).  

In general, studies on post-smolt ecology are a relatively neglected area of 

salmonid research (Dutil and Coutou, 1988). Several problems exist with studying post-

smolts: the fish are relatively scarce as the number of wild smolts entering the sea is 

relatively low in comparison to resident marine species. Considerable effort is therefore 

required to study the distribution and diet of post-smolts. Quantifying the predation of 

post-smolts is also technically demanding as post-smolts are available to a broad 

spectrum of predators (Hislop and Shelton, 1993). 

Post smolts begin their feeding in the estuary as the majority of their stomach 

contents comprise winged terrestrial invertebrates that are confined to river and 

estuarine reaches (Dutil and Coutou, 1988). However, small fish have been found in 

stomachs of post-smolts in the Firth of Clyde (Morgan et al., 1986; Hislop and Shelton, 

1993). As the post-smolts grow they exploit more crustaceans and fish (Hislop and 

Shelton, 1993). Post-smolts in waters to the west of the UK largely feed on 0+ fish, 

particularly whiting (Merlangius merlangus), sand eels (Ammodytes sp.) and herring 

(Clopea harengus) (Haugland et al., 2006). The adaptation to piscivory is an important 

change in life history as it is accompanied with rapid growth (Thurow, 1968; Hislop and 

Shelton, 1993). 
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 Major predators of post-smolts in estuaries and coastal waters include cod 

(Gadus morhua), saithe (Pollachius virens), pollack (Pollachius pollachius), haddock 

(Melanogrammus aeglefinus), whiting, sea trout, herring gulls (Larus argentatus) and 

cormorants (Phalacrocorax carbo) (Hvidsten and Mokkelgjerd, 1987; Hvidsten and Lund, 

1988; Dieperink et al., 2002; Svenning et al., 2005a). Cod in particular have been shown 

to cause high smolt mortality with smolt predation being as high as 24.8% in the estuary 

of the River Surna, Norway and 20% in the River Orkla, Norway (Hvidsten and 

Mokkelgjerd, 1987; Hvidsten and Lund, 1988). 

1.5.5 Autumnal migration 

In several UK salmonid populations a phenomenon where juvenile Atlantic salmon 

appear to undertake an autumnal downstream migration occurs (Youngson et al., 1983; 

Riley et al., 2002; Pinder et al., 2007; Riley, 2007; Ibbotson et al., 2013). In some rivers 

such as the Frome it is estimated that approximately a quarter of the population may 

migrate downstream during the autumn (Pinder et al., 2007). Physiological metrics 

indicate that autumn migrants have higher plasma thyroxine (T4) levels than resident 

parr, which suggests that they are undertaking a genuine migration (Riley et al., 2008). 

Despite early movement downstream autumnal migrants do not appear capable of 

withstanding saltwater for prolonged periods and subsequently take up residency within 

the lower reaches of the river until spring (Riley et al., 2008). Both autumn and spring 

migrants have been recorded returning as sea run adults in subsequent years (Riley et 

al., 2009). Currently it is not known which strategy is the more successful in terms of 

survival and whether or not survival between the two migratory strategies fluctuates 

annually (Ibbotson et al., 2013). 

1.6 Adult biology at sea 

There was very little information on the oceanic feeding of Atlantic salmon before 

fishermen discovered salmon distributed in vast areas of the North Atlantic. Salmon 

were recorded to the north of Norway and in greater densities north of the Faroe 
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Islands (Hansen, 1993). The exact routes that Atlantic salmon take to the feeding 

grounds is still of some debate with no current migration model being universally 

accepted (Dadswell et al., 2010).  

One model suggests that southern European Atlantic salmon populations 

migrate in a straight line from home rivers to the sea off of west Greenland (Went, 

1973). It has been suggested that northern European populations migrate to the waters 

surrounding the Faroe Islands as well as the Norwegian and Barents seas (Hansen et al., 

1993; Jacobsen, 2001; Rikardsen et al., 2008). North American Atlantic salmon are 

proposed to migrate from natal rivers to the sea off west Greenland and over-winter in 

the Labrador sea (Meister, 1984). Contrary to the above model is a second model that 

suggests that the surface currents of the north Atlantic sub-polar gyre are responsible 

for the movement of Atlantic salmon (Spares et al., 2006; Dadswell et al., 2010). It is 

proposed that North American and European stocks enter the north Atlantic sub-polar 

gyre at their respective areas of the ocean and follow the current in a counter-clockwise 

direction around the North Atlantic, feeding along the way. The fish then leave the 

current once it has taken them near their home waters, this model is called the ‘Merry-

Go-Round Hypothesis’ (Reddin et al., 1984).      

 During the period spent at sea, Atlantic salmon feeding areas cover large 

expanses of ocean, prey items therefore vary based on locality. North of the Faroes 

salmon have been known to feed mainly on small shoaling fishes such as barracudinas 

(Notolepis, Paralepis sp.), lantern fishes (Mytcophidae sp.) and  blue whiting 

(Micromesistius poutassou) as well as crustaceans. In the seas surrounding the British 

Isles, clupeoids and sandeels are important prey items for migrating salmon (Hislop and 

Shelton, 1993). Data collected from long line fishermen suggests that Atlantic salmon 

nocturnally feed near the surface, however, deep water shrimp in stomach contents 

also suggest that they may feed as deep as 300 m (Hansen and Pethon, 2006). Despite 

feeding mainly on smaller fish Atlantic salmon can feed on a wide size range of fish.  

Sea trout, in comparison to Atlantic salmon, tend to spend a shorter time at sea 

with many first time migrants undertaking migrations sea that only last, on average, 6-9 
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months, with subsequent migrations lasting up to 12 months (Jonsson and Jonsson, 

2009a). This period spent out at sea is usually accompanied with rapid growth; growth 

in sea trout in the waters off the Netherlands has been estimated at between 21-26 cm 

for first year migrants (de Leeuw et al., 2007). Unlike salmon that spend the winters at 

feeding grounds many first time migrant sea trout may leave the sea and over-winter in 

freshwater. These individuals migrate back to sea as veteran migrants, returning back to 

freshwater later in life to spawn (Jonsson and Jonsson, 2009a). 

1.7 Adult oceanic homing migration 

Adult Atlantic salmon migrate from the oceanic feeding grounds after spending a period 

of 1 – 4 years in the ocean (Hansen, 1993). The migration back to natal rivers appears to 

be a two stage process, with the primary stage navigating the fish to coastal and 

estuarine waters and a secondary stage, based on olfaction, allowing the fish to migrate 

in to home rivers (Hansen et al., 1993). Until recently it was thought that migrating 

adults either used pheromones or natural stream odours as the basis for olfactory 

homing (Nordeng, 1971; Nordeng, 1977; Stabell, 1984; Døving, 1989).However, there is 

increasing evidence that dissolved free amino acids, which differ from river to river, play 

a key role in the homing migrations of salmonids (Shoji et al., 2003; Ueda, 2011a; 

Yamamoto et al., 2013). 

The process of homing appears to be a mechanism that is learned during the 

seaward migration as smolts and then utilised when returning as spawning adults 

(Stabell, 1984; Dittman and Quinn, 1996). It has been observed that hatchery reared 

smolts migrate later in the season than wild fish when returning as adults (Jonsson et 

al., 1990). The sequential learning hypothesis may explain the delay in return to home 

rivers by hatchery reared fish, as they have not experienced the complete set of 

olfactory cues leading to the spawning areas (Harden Jones, 1968). Hansen et al. (1993) 

also noted that fish tagged as smolts and then released to the oceanic feeding grounds 

failed to return to the rivers of their genetic origin.  
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1.8 In river movements and spawning migration 

Migration in Scottish East coast salmon rivers appears to be a two stage process. In the 

primary stage salmon have been found to undergo a period of sustained upstream 

swimming when first entering a river, with differing flows and time of day not having an 

effect (Webb, 1990). The second stage of movement occurs after the fish first stops; 

subsequent movement appears to be restricted to crepuscular and nocturnal periods 

(Laughton, 1989; Webb, 1989; 1990; Bagliniere et al., 1991).  

Returning grilse (one sea winter fish) and salmon tagged on the River Spey, 

Scotland showed a difference between early and late season migrants, with earlier 

migrants moving further in to the river system than later migrating individuals 

(Laughton, 1989). Later work on the Rivers Tay, Spey and Dee, Scotland corroborates 

this, earlier grilse and salmon migrated further up stream than later migrating grilse 

(Laughton and Smith, 1992; Webb, 1992).  It has also been shown that older sea age 

individuals migrate upstream earlier than younger sea age salmon (Laughton and Smith, 

1992).  

Successful tracking of salmon during the later stages of the spawning migration 

showed that the fish moved rapidly for a two day period post release, then reduced 

their movement rate nearer to the spawning period with fish eventually ceasing to 

move between spawning areas once spawning had commenced (Bagliniere et al., 1990; 

Bagliniere et al., 1991). Once in the spawning area male salmon have been observed 

moving between multiple females and some males showed a greater frequency of 

sexual activity than others (Webb and Hawkins, 1989). After spawning the majority of 

fish do not tend to leave the spawning area and many are found dead in the river or on 

the banks (Bagliniere et al., 1990; Bagliniere et al., 1991; Williams et al., 2010). Low 

numbers (between 1.2-35 %) of kelts, post spawning downstream migrating adults, are 

recaptured alive moving downstream, although this figure varies considerably between 

river systems (Bagliniere et al., 1991; Williams et al., 2010). 

Sea trout undergo a similar spawning migration to that seen in Atlantic salmon 

but they tend to make greater use of small spawning tributaries. Due to the relatively 
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small size of the rivers and streams that sea trout spawn in flow levels have a large 

effect on migration (Svendsen et al., 2004). In small tributaries such as the Kirk Burn, a 

tributary of the River Tweed, Scotland, sea trout rely on a substantial increase in 

discharge in order to migrate (Campbell, 1977).  Aarestrup and Jepsen (1998) found that 

migrating male sea trout spent a greater period in the spawning area than females, 

possibly due to spawning success being reliant on available ripe females. Due to the 

partially iteroparous nature of sea trout, post spawning, many individuals can then 

descend the river and spend a period of 3-5 months at sea before repeating the 

migration to spawn again (Bendall et al., 2005). 

1.9 In-stream structures and their impacts on migrant fishes 

The fragmentation and loss of habitat are major concerns for both terrestrial and 

aquatic biodiversity (Andren, 1994; Larinier, 2001; Brinson and Malvárez, 2002; Fahrig, 

2003). Due to a long history of river modification in many developed countries of the 

world there are estimated to be dams and weirs are present in half of the world’s rivers 

(Dynesius and Nilsson, 1994; Nilsson et al., 2005). As a result of the linear nature of 

rivers, in-stream structures such as dams and weirs can act as barriers, severely limiting 

the transport of nutrients, the downstream flux of water and sediment and the 

movement of aquatic organisms (Dynesius and Nilsson, 1994; Jungwirth, 1998; Poff and 

Hart, 2002; Sheer and Steel, 2006; Fullerton et al., 2010; Kemp and O'Hanley, 2010). In-

stream structures can have major impacts on freshwater organisms by preventing or 

restricting movement to habitats required for essential stages of life history (Branco et 

al.; Lucas and Batley, 1996; Lucas and Baras, 2001; Lucas et al., 2009; Wollebaek et al., 

2011). As such, there have been dramatic reductions in biodiversity for many freshwater 

taxa (Moyle and Leidy, 1992; Dudgeon et al., 2006). The effects of in stream structures 

on fishes depends on factors such as fish species; river hydrology and barrier type, with 

effects varying from short delays to complete blockages (Northcote, 1998; Kemp and 

O'Hanley, 2010).  
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Fish passage is currently covered by several pieces of legislation such as the 

Salmon and Freshwater Fisheries Act 1975 for England and Wales and the Salmon and 

Freshwater Fisheries (Consolidation) (Scotland) Act 2003 in the UK as well as the Water 

Framework Directive (WFD; 2000/60/EC) in Europe. There is a requirement for rivers to 

allow free passage for migratory fish travelling between areas of river essential for their 

life history, such as juvenile emigration from natal areas, and adult spawning migrations. 

Under the Water Framework Directive the failure of member states to comply can result 

in the river being assigned less than “Good ecological status” and may result in 

sanctions. Coupling this with the fact that it is estimated that freshwater organisms 

constitute one third of the world's vertebrates, despite freshwater ecosystems only 

constituting 0.8% of the world's surface, there is a clear biological and political 

imperative to conserve our freshwater ecosystems (Dudgeon et al., 2006; Balian et al., 

2008; Strayer and Dudgeon, 2010). 

1.9.1 Upstream migrants 

There is limited knowledge on the impact of obstructions on the upstream migrations of 

fish and currently little is known about upstream migration in UK rivers despite the 

growing body of work (Hawkins and Smith, 1986; Laughton, 1989; Webb, 1989; Webb 

and Hawkins, 1989; Webb, 1990; Laughton, 1991; Laughton and Smith, 1992; Webb, 

1992; Smith et al., 1994; Aprahamian et al., 1998; Gowans, 1999; Solomon et al., 1999; 

Gowans et al., 2003). Alleviation of passage difficulties has been carried out since the 

20th century, with the installation of fish passes and fish ladders in otherwise impassable 

structures (Clay, 1995). However, even in cases where passage is assisted there are 

other prevalent negative effects such as migratory delay in many fishes (Haro and 

Kynard, 1997; Lucas and Frear, 1997; Moser et al., 2000; Karppinen et al., 2002; Moser 

et al., 2002; Keefer et al., 2004; Zigler et al., 2004; Hasler et al., 2011). Such delays have 

been shown to decrease passage success (Caudill et al., 2007) and even when passage is 

successful there is evidence for an increase in mortality due to dam passage (Roscoe et 

al., 2011). A recent meta-analysis of studies relating to fish passage showed upstream 
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passage efficiency of 41.7% for all fish species across a variety of passage facilities 

(Noonan et al., 2012). When analysed separately, salmonids had a higher success rate 

than non-salmonids (61.7 vs. 21.1%), suggesting that passage interventions are more 

skewed towards the needs of salmonids compared to other fish species (Noonan et al., 

2012). This is supported by studies showing inefficiency of various passage facilities for 

several fish species of low socio-economic value that, in some cases, are still of high 

conservation value (Lucas and Frear, 1997; Moser et al., 2002; Foulds and Lucas, 2013).  

1.9.2 Downstream moving fishes 

The ecological and hydrological effects of large dams in temperate river systems on 

downstream fish passage is generally well known, especially for economically valuable 

species such as salmonids. Downstream passage efficiency through bypass facilities is 

generally high for salmonid species with passage efficiency being estimated at 74.6% 

based on recent meta-analysis (Noonan et al., 2012). However, smolts are still subject to 

mortalities due to both physical damage and predation at major impoundments and 

hydropower facilities (Raymond, 1979; Raymond, 1988; Aarestrup et al., 1999; Muir et 

al., 2001a; Muir et al., 2001b; Williams et al., 2001; Smith et al., 2002; Hockersmith et 

al., 2003; Smith et al., 2006; Keefer et al., 2012). Regulation in river reaches, resulting in 

low flows, also delays smolt emigration and results in increased duration of exposure to 

mortality risks (Aarestrup and Koed, 2003). Such delays can cause a mismatch in 

migration timing and in some areas results in smolts passing dams when lethal water 

temperatures are prevalent below the dam (Marschall et al., 2011). Excessive delays in 

freshwater with seasonally increasing temperature can also result in migrating smolts 

losing their smolt charcteristics, most notably their capability to osmoregulate in 

saltwater (Duston et al., 1991; Handeland, 2004). Therefore attempts to minimise delays 

experienced by smolts is of paramount concern to river managers. 

There is a general assumption that downstream migrants such as wild surface-

oriented fishes including salmonid smolts are relatively unaffected by simple 

overflowing weirs and that they will pass unhindered under reasonably natural flow 
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regimes (Lucas and Baras, 2001). Studies on the passage of hatchery-reared smolts past 

small weirs, in particular that of Aarestrup and Koed (2003), strongly contradict this 

assumption. It was noted that mean delays at weirs ranging from 0 - 9 days for sea trout 

smolts and a mean delay of 7 days for Atlantic salmon smolts at a specific weir 

(Aarestrup and Koed, 2003). High mortality was also observed along with delay, with 

assumed mortality at weirs ranging from 15 to 65% (Aarestrup and Koed, 2003). Further 

down in river systems estuarine barrages are shown to affect smolt behaviour with 

smolts being delayed in the impounded stretch behind the barrage (Russell et al., 1998). 

Smolts only appeared to move past the barrier when the tide overtops the barrage or by 

utilising a ship lock (Russell et al., 1998). The presence of the barrage also disrupts the 

natural tidal cycle within the estuary which is important to smolt migration (Russell et 

al., 1998; Section 1.5.4).  

Increasing demand for renewable energy due to policy aimed at lowering carbon 

emissions has resulted in a rise in demand for hydropower (Paish, 2002; Kosnik, 2010). 

In Europe, due to the lower environmental impact than large scale hydropower, small 

scale hydropower schemes are favoured (Paish, 2002). The adoption of the “fish 

friendly” Archimedean Screw turbine is also responsible for the increase in hydropower 

development (Spah, 2001; Kibel and Coe, 2011). Archimedean Screw turbines are 

durable, low maintenance turbines that operate over a variety of flow regimes and can 

be fitted on pre-existing weirs (Spah, 2001). They are often termed as “fish friendly” 

when compared to conventional designs because of their lower slow rotational speed, 

pressure changes and shear forces compared with conventional turbines during 

operation (Spah, 2001).As a result the number of small scale hydropower schemes in 

Europe is rising rapidly (Paish, 2002). In England and Wales recent estimates suggest 

that there are 2,600 potential sites for small scale hydropower which if implemented 

could generate up to 1% of UK energy demands (Entec, 2010). 

Despite this rise in small scale hydropower development relatively little is known 

on their long term impacts on fish communities, although there is a growing body of 

research on the topic. Prior research on fish passage through turbines suggests that 
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damage depends on numerous critera such as: turbine design and size, fish species, fish 

body size and behaviour, water velocity, roughness of materials, speed and magnitude 

of pressure fluctuations, direction of contact and force of impact with blades or other 

turbine components (Office Of Technology Assessment, 1995; Coutant and Whitney, 

2000; Turnpenny et al., 2000; Cooke et al., 2011a; Bracken and Lucas, 2013). However, 

much of this research was based on older Kaplan turbines (Office Of Technology 

Assessment, 1995; Coutant and Whitney, 2000; Turnpenny et al., 2000), meaning that 

there are few peer reviewed studies on how fish are affected by Archimedean Screws 

(Bracken and Lucas, 2013).Research conducted on the impacts of Archimedean Screw 

turbines suggest that there are low incidences of injury during passage through the 

turbines (Spah, 2001; Kibel and Coe, 2011; Bracken and Lucas, 2013). However the 

effects of sublethal damage cannot be ignored. Descaling in anadromous fish, such as 

salmonid smolts, can reduce osmoregulatory performance when transitioningn into salt 

water environments (Gadomski et al., 1994; Zydlewski et al., 2010). In cases of extreme 

descaling the death of descaled smolts has been recorded after prolonged saltwater 

exposure(Bouck and Smith, 1979).Due to increasing stress on freshwater resources by 

mankind further understanding of the complex life history of salmonids is needed to 

reduce conflicts between the water requirements of humans and fishes. 

 

1.10  Aims of thesis 

The aims of this thesis are to investigate the migratory behaviour and survival of 

salmonids during various life history stages within the River Tweed, UK. Knowledge 

derived from this thesis will greatly aid the management and conservation of salmonid 

populations within the Tweed, specifically during periods of migration. Chapter 3 

explores the role that environmental as well as anthropogenic factors play on the 

behaviour and survival of juvenile salmonids during emigration. The fundamental 

research question being; are sea trout smolts adversely affected by in river obstructions 

and are these effects exacerbated during periods of low flow? The behaviour, migration 
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rate and spawning destination of Atlantic salmon and sea trout were investigated in 

Chapter 4. Differences in how sea trout and Atlantic salmon exploited the Tweed 

catchment for spawning as well as any discrete behavioural differences during migration 

was of primary concern in this chapter. Unlike smolting juveniles and spawning adults 

freshwater resident brown trout do not undergo discrete mass migrations. That being 

said they are still capable of performing comparatively small migrations within 

freshwater. Chapter 5 sought to shed light on these small freshwater migrations by 

displacing territory holding brown trout and assessing whether territory availability at 

the site of displacement had an impact on behaviour and homing. Chapter 6 presents 

the synthesis of the knowledge gained from the thesis. The chapter also discusses the 

management implications of the findings as well as future avenues in research. 
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Chapter 2: Study site, biotelemetry and justification of 

field methods  

2.1 The River Tweed 

The River Tweed is the main river flowing through the Scottish Borders and for much of 

its lower reach forms a natural border between Scotland and England. The Tweed is the 

sixth largest river in mainland Britain and the second largest in Scotland and has some of 

the largest salmon and sea trout populations in the UK (Clayton, 1997; Elliott et al., 

1997; Sheail, 1998). The Tweed rises at Tweed’s Well near the boundary to Lanarkshire, 

close to where both the Clyde and the Annan rise. The mainstem of the Tweed flows for 

156 km and its catchment drains 5000 km2 of land with an estimated 2160 km of the 

main channel and tributaries accessible to fish (Gardiner, 1989; Currie, 1997). The 

Tweed valley floor is a drumlin field, a relic of the flow from a paleo-ice stream during 

the last period of glaciation (Everest et al., 2005). The water quality of the river is very 

high, with there being very little pollution present (Currie, 1997). However, areas of the 

Tweed are subject to fluxes in inorganic nutrients due to intensive agriculture (Uncles et 

al., 2003). The Tweed was designated a Site of Special Scientific Interest (SSSI) in 1976 

by the Nature Conservancy Council and is an EU Special Area of Conservation principally 

for its high quality Atlantic salmon population and high habitat suitability for otters 

(Lutra lutra). It is also noted that the Tweed has high habitat suitability for threatened 

endemic lamprey species; sea lamrey (Petromyzon marinus), brook lamprey (Lampetra 

planeri) and river lamprey (Lampetra fluviatilis). The water temperature of the Tweed 

varies seasonally between lows of -1C in the winter and highs of 20C in the summer 

(Gauld, unpublished data). Given that the upper incipient lethal temperature for brown 

trout and Atlantic salmon is 24.7 and 27.8C respectively the temperatures within the 

Tweed are non-limiting to brown trout and Atlantic salmon abundance  (Garside, 1973; 

Elliott, 1991; Jonsson and Jonsson, 2009b).  
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 The fisheries in the Tweed are of high socio-economic value to the Scottish 

Borders and areas of Northumberland. The most recent socio-economic evaluations 

suggest that salmon and sea trout angling in the Tweed adds £6.75 m to the local 

economy and supports 242 jobs in the area (Radford et al., 2004). The cost of daily 

salmon and sea trout fishing leases can vary widely between individual fishing beats 

within the Tweed catchment and time within the season, with daily leases for Atlantic 

salmon costing as little as £20 off peak and as much as £650 at peak season (Fish Pal, 

2014). Annual catches for Atlantic salmon and sea trout on the River Tweed are some of 

the highest in Scotland with an average of 19,828 Atlantic salmon (years: 2009-2013, 

range: 12,199-31,231) and 6,048 sea trout (years: 2009-2013, range: 3,314-10,039) 

being caught by both netting and rod a line (River Tweed Commission, 2009; 2010; 

2011; 2012; 2013). A total of 14,794 Atlantic salmon and 1,451 sea trout being caught by 

rod and line in 2013 which is higher than catches in other fisheries such as those on the 

Tay (10,241 Atlantic salmon), Scotland’s largest river (River Tweed Commission, 2013; 

Tay District Salmon Fisheries Board, 2013). 

 The Tweed is managed principally by three organisations, The River Tweed 

Commission (RTC), The Tweed Foundation (TF) and The Tweed Forum. Historically the 

Tweed has been managed since 1857 by the River Tweed Commissioners (now the RTC) 

and is subject to the following legislation; Tweed Fisheries Acts 1857, 1859, 1969 and 

The Scotland Act 1998 (River Tweed) Order 2006.  The legislation charges the RTC with 

the general preservation and increase of salmon, sea trout, trout and other freshwater 

fish in the River Tweed and its tributaries, and in particular with the regulation of 

fisheries, the removal of nuisances and obstructions as well as the prevention of illegal 

fishing.  

The Tweed Foundation is the scientific arm of the RTC and carries out much of 

the RTC’s role in the preservation and enhancement of fish stocks. As an organisation 

the Tweed Foundation has been in operation since 1983 and is considered one of the 

oldest rivers trusts in the UK. The Tweed Foundation carries out a broad programme of 

research, fish stock monitoring and habitat enhancement with the aim of maintaining 
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the fish stocks of the Tweed as well as maximising the Tweed’s natural productivity. The 

Tweed Foundation does this in accordance to their robust river management plan 

(Campbell, 2005). 

The Tweed Forum was formed in 1991 with an aim “to promote the sustainable 

use of the whole of the Tweed catchment through holistic and integrated management 

and planning” (The Tweed Forum, 2003). The main responsibilities of the Tweed Forum 

are not directly related to fisheries management and principally pertain to; water 

quality, water resources, habitat and species, river works, flood management as well as 

tourism and recreation (The Tweed Forum, 2003).  

 As such, the River Tweed is a well managed river catchment with several 

organisations and stakeholders beyond governmental regulatory bodies such as; 

Scottish Natural Heritage (SNH), Scottish Environmental Protection Agency (SEPA), 

Natural England and The Environment Agency (EA) safeguarding biodiversity.
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Figure 2.1: Map of the River Tweed catchment including tributaries. Dashed black lines represent the Tweed and Eye Fisheries District boundary, 
grey lines represent sub-catchment boundaries. Large blue text with guide lines denotes catchments and areas of the Tweed of interest in this 
thesis.  
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2.2 Use of telemetry in studying fish behaviour and migration 

The advent of electronic tags has allowed important advances in the study of fish 

behaviour and migration (Priede and Swift, 1992). Electronic tags enable long running 

and long ranged studies of fish behaviour, often with high spatio-temporal resolution 

(Lucas and Baras, 2001).  

There are four commonly used forms of wildlife telemetry used in freshwater 

today: passive integrated transponders (PIT), radio tags, acoustic tags and data storage 

tags. Each form of telemetry has specific advantages and technical limitations (reviewed 

in Lucas and Baras, 2000; 2001; Cooke et al., 2013). However, there are also a number 

of other technologies that are used to study the movements of fish and aquatic 

animals(Table 2.1).  

PIT tags are small in size (as small as 8 mm in length and 1 mm in diameter) and 

comprise of a copper coil and integrated circuit encased in a biocompatible cylinder. The 

tags are interrogated when the fish moves into the range of an inductive field, causing 

the tag to energise and transmit its code to reading equipment. PIT tags do not have an 

internal battery and therefore have a very long tag life. However, due to the reliance on 

an inductive field to energise the tag and transmit data, detection ranges are very short 

(20–100+ cm depending on tag size and antenna material) (Cooke et al., 2013). 

Detection systems usually comprise of a logging unit connected via coaxial cable to a 

tuning box and attached multi-cored copper cable loop antenna (Castro-Santos et al., 

1996). The copper cable loops that generate the inductive field are usually positioned 

within the water channel by running the lower half of the loop along the channel 

substrate with the upper half of the loop above the waters surface (Castro-Santos et al., 

1996; Lucas, 2000). Flatbed antennas can be created as well as conventional loops which 

can aid in tracking in open environments as well as confined areas like fish passes 

(Armstrong et al., 1996; Armstrong et al., 1997; Lucas et al., 1999) Due to the small size 

of PIT tags and their relative low cost PIT telemetry can be used to rapidly assess the 

movements of a wide size range of fishes moving through shallow lotic systems as well 
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as through fish passage facilities (Castro-Santos et al., 1996; Lucas, 2000). There are 

many reasons why PIT tagged fish detection by automatic stations can be lower than 

100%. The inductive field that detects tags relies on the tag coil to enter the field 

roughly at a perpendicular angle (Lucas and Baras, 2001). Therefore any PIT tags that are 

incorrectly aligned during tagging or shift in position during subsequent growth by the 

fish may result in reduced reading efficiency (Pirhonen, 1998; Baras et al., 2000). The 

passage of several tagged fish through the inductive field simultaneously may result in 

some fish not being detected (Lucas and Baras, 2001). Similarly a fish remaining 

stationary within the inductive field may also inhibit the detection of subsequent tagged 

fish moving into the inductive field (Lucas and Baras, 2001). The rapid movement of fish 

through the inductive field, approximately 5-7 m s-1 through a 1 m long field, can result 

in the fish not being detected (Castro-Santos et al., 1996). The physical and technical 

constraints involved in setting up detection loops for PIT tracking limits the width and 

depth of river channels in which PIT can be deployed (Cooke et al., 2013) (Lucas and 

Baras, 2001). Therefore PIT tracking is best deployed in small streams and rivers. 

Disruption to the inductive field is observed when the stream height rises above the 

height of the loop, increasing hydraulic drag on the loop. In mild instances the loop may 

get shifted reducing detection efficiency until repositioned and in extreme instances the 

loop can be completely removed by high flows (personal observations). 

Radio tags transmit VHF (30-300 MHz) radio signals that are received by 

underwater or aerial antennae making tracking of animals possible from boat, land and 

aircraft. The fixed position radio tracking receivers are commonly used to record fish 

movement within a zone of detection along side mobile manual tracking units (Lucas 

and Baras, 2001). Unlike PIT tags, radio tags require a battery, resulting in tags lives 

ranging from days to years, depending on tag type and setting (Lucas and Baras, 2001). 

Older technology radio tags required different frequencies or ‘bleep’ rates to be used, 

however modern radio tags use digital codes which allows multiple tags to be used on 

the same frequency (Cooke et al., 2013; Lotek-Wireless, 2014). Radio tags designs 

usually have a trailing whip antenna but can also use an integrated antenna at the cost 
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of detection range (Lotek-Wireless, 2014). The whip antenna can either be contained 

within the body cavity or be trailed externally by threading the antenna through a small 

puncture in the body wall (Cooke and Bunt, 2001). However, the signal strength of radio 

tags with their antenna contained within the body cavity was lower than tags with their 

antenna trailed externally (Cooke and Bunt, 2001). VHF radio signals attenuate with 

increasing water conductivity and/or water depth (>20 m) resulting in poor transmission 

ranges in brackish waters as well as deeper waters (Lucas and Baras, 2001; Cooke et al., 

2013). Due to these limitations radio telemetry is reliable only in purely freshwater 

environments of limited depth making them ideal for tracking studies in small to large 

rivers centred around purely freshwater movements (Lucas and Baras, 2001; Cooke et 

al., 2013). Stationary radio logging stations are comparatively more expensive than their 

acoustic counterparts (Lucas and Baras, 2001; Cooke et al., 2013). It is also of note that 

stationary radio logging receivers are much more conspicuous than stationary acoustic 

receivers and may attract the attention of vandals (Cooke et al., 2013). 

 Acoustic tags, much like radio tags, transmit signals to a receiver. However, 

acoustic tags transmit ultrasonic acoustic signals (typical range 30-300 kHz). These 

signals are then received by hydrophones inserted in to the water (Lucas and Baras, 

2001). Signals in water can be markedly reduced by suspended solids, high levels of 

entrained air, strong flows (excessive hydraulic noise) and underwater vegetation, and 

signals are substantially weaker when transmitted through air resulting in near zero 

ranges (Lucas and Baras, 2001). Due to these limiting factors acoustic telemetry is best 

deployed in marine, lacustrine and large river environments where their impacts are 

mitigated or lessened (Lucas and Baras, 2001; Cooke et al., 2013). As a result of the near 

zero read range in air there are difficulties attributing causes of tag loss with acoustic 

telemetry, especially when the fish are apparently removed by terrestrial predators. A 

potential way to mitigate this problem is by using sensor tags. An associated rise 

temperature recorded on temperature tags can be indicator of predation by an 

endothermic predator such as a seal (Bendall and Moore, 2008). 
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Acoustic telemetry is used frequently to quantify the movement and spatial 

behaviour of aquatic organisms. Acoustic telemetry has been used in the past to 

successfully study the movements of a variety of organism such as; estuarine crocodiles 

(Crocodylus porosus) (Campbell et al., 2010), arrow squid (Nototodarus gouldi) (Stark et 

al., 2005), sharks (Voegeli et al., 2001), southern bluefin tuna (Thunnus maccoyii) 

(Fujioka et al., 2010) and salmonids (Moore et al., 1998a; Thorstad et al., 2004; Bendall 

et al., 2005; Finstad et al., 2005b; Walker et al., 2005; Davidsen et al., 2008; Davidsen et 

al., 2009). The advantage of acoustic telemetry over PIT telemetry is a detection range 

of hundreds of metres rather than centimetres. Acoustic telemetry also has advantages 

over radio telemetry due to its functionality in areas with high conductivity making 

acoustic telemetry the more favoured telemetry solution for diadromous fishes. 

Importantly, autonomous route-of-travel omnidirectional acoustic loggers may be 

operative for a year on a single battery and cost a fraction of the price of an equivalent 

radio-logger that would normally need battery maintenance every week or two.  
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Table 2.1: Summary of the various technologies used to study the spatial behaviour of 
freshwater fishes with their associated strengths, weaknesses and common applications. 
Reproduced from table in Cooke et al. (2013). 

Technology Summary Strengths Weaknesses Applications 

Acoustic telemetry 
 

Tags produce an 
acoustic signal via a 
transducer and 
tracked using a 
submerged 
hydrophone. 

Deep water (>20m). 
Deployable in high 
conductivity as well as 
low conductivity 
environments. 
 

Hydrophone must 
remain submerged 
to detect acoustic 
signals.  
Interference from 
aquatic plants and 
external noise 
sources. 

Mostly used for 
fish but some uses 
with freshwater 
mammals 

Manual tracking Tracking usually 
carried out by boat 
using a submerged 
hydrophone. 

Can provide detailed 
movement data 
dependent on 
conditions and tracking 
method. 

Ineffective in shallow 
or turbulent water. 

Some applications 
in freshwater, 
extensively used 
in marine 
environment 

Fixed stations Autonomous 
logging stations 
with attached 
hydrophone that 
logs time stamped 
data of animals 
entering field of 
reception 

Can deployed in various 
forms of array for 
extended durations. 
Can provide precise two 
or three dimensional 
tracks of animals 

Generates large 
datasets. Requires 
significant post-
processing and 
analytical effort. 

Widely used in 
freshwater and 
marine settings 

Radio telemetry Emit 
electromagnetic 
energy as VHF band 
radio frequency 
(between 30-300 
MHz; 173 MHz in 
the UK) 

Shallow water (<10m). 
Low-conductivity 
environments (500 

S/cm) 

Deep water (>15 m) Widespread use in 
freshwater 

Manual tracking Signals detected by 
antennas and a 
receiver. Tracking 
can occur on foot, 
by boat or by air.  

Relatively inexpensive. 
Functions in moving 
water and through ice 
as well as on land and 
in air. 

High conductivity 
environments, 
Sensitive to 
interference. 

Fish and other 
freshwater taxa 
such as 
amphibians and 
mammals 

Fixed stations Fixed stations 
detect and log tags 
when they enter 
detection area 
Commonly used in 
riverine studies to 
detect migration 

Suitable for extended 
study durations. 

Antennas often 
visible and can 
attract 
vandals/thieves. Not 
precise enough to 
give 2D positioning 
of tags. 

Mostly used in 
studies relating to 
fish movement. 

PIT telemetry Integrated chip and 
antenna that 
transmit an ID code 
when interrogated 
by a low frequency 
radio signal.   

No integrated battery in 
the tag, therefore tags 
are small and 
inexpensive with a long 
life. 

Usually limited to 
shallow, restricted 
lotic environments 
due to small 
detection ranges (<1 
m). 

Widespread use in 
freshwater 
studies. 
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Table 2.1: Summary of the various technologies used to study the spatial behaviour of 

freshwater fishes with their associated strengths, weaknesses and common 

applications. (Continued) 

Technology Summary Strengths Weaknesses Applications 

Manual tracking Tags detected using a  
handheld, ofted 
backpack mounted 
unit with a wand 
waved over the the 
water’s surface while 
wading. Boat 
mounted units also 
available. 

Small tags allow for a 
greater size range of 
fish tagged compared 
to both radio and 
acoustic tags.  

Detection range is 
dependent on tag 
orientation relative 
to the reader. PIT 
manual tracking 
much more 
laborious than radio 
and acoustic 
telemetry. 

Mostly used in 
studies on small 
fishes, reptiles, 
amphibians and 
invertebrates. 

Fixed stations Antennas deployed in 
systems that log 
detected ID codes 
along with a time 
stamp. A variety of 
antenna designs 
used, mostly in small 
lotic environments 
and fishways  

As above Remote stations 
require power to 
function, either large 
leisure batteries or 
mains power. 
Certain loop designs 
vulnerable to sudden 
rises in water height. 

Mostly used in 
studies on fish 
movement. 

Low frequency 
electromagnetic 
telemetry (NEDAP 
Trail etc.) 

Similar in principle to 
PIT tags but tags have 
attached batteries. 
Greater detection 
range than PIT, in the 
order of tens of 
meters.  

Effective in areas with 
high background noise 
where acoustic and 
radio telemetry may be 
inhibited. 

Site-specific 
detection only. 
Limited tag life. 

Limited use in 
freshwater, few 
examples use fish 
in lowland rivers. 

Combined acoustic 
radio transmitters 
(CART tags) 

Both acoustic and 
radio output modules 
can either work 
simultaneously or 
switch dynamically 
based on 
environmental 
conditions such as 
depth and 
conductivity 

Works in marine and 
freshwater 
environments. Works 
for animals that move 
between depths or 
move into high 
conductivity 
environments. 

Large tags size. More 
expensive than 
either acoustic or 
radio tags.  

Used in early 
studies involving 
large diadromous 
fishes as well as 
marine mammals 
that move 
between marine 
and freshwater 

Archival tags  Biologging tags eg. 
data storage tags, 
time depth recorders, 
archival geolocation 
tags. 

Continuous recording of 
desired parameter 

No transmitting 
capability, therefore 
tag recovery 
required to retrieve 
recorded data 

Some use in 
freshwater 
studies. Mostly 
used for logging 
environmental 
parameters but 
sometimes used 
to record 
biological data 
such as heart rate 
and acceleration. 



55 

 

Table 2.1: Summary of the various technologies used to study the spatial behaviour of 

freshwater fishes with their associated strengths, weaknesses and common 

applications. (Continued) 

Technology Summary Strengths Weaknesses Applications 

Communicating 
histogram acoustic 
transponders  

Hybrid loggers and 
transmitters, data 
first logged and 
stored before being 
transmitted to a 
receiver upon 
interrogation.   

Useful for fish with 
wide ranges and are 
difficult to recapture 
but return to download 
areas.  

Expensive tags that 
are relatively large in 
size. 

Not currently used 
in freshwater 
studies but have 
marine 
applications.  

Smart position 
only tag with real-
time GPS 

Argos satellites 
provide tag locations 
upon the tag 
breaching the waters 
surface. Some have 
archival capabilities.  

Real time positioning. 
Provides broad scale 
movement data, such 
as ocean basin scale. 

Expensive and 
limited to larger 
animals. Tagged 
individuals required 
to breach waters 
surface to transmit 
data 

Mostly marine 
apllications, 
although used on 
large freshwater 
animals that 
frequently 
surface. 

Archival pop up 
satellite 
transmitter tags 

Tags pre-
programmed to 
detach when a 
specific event is 
experienced, at which 
point they float to the 
surface and transmit 
data via satellite.  

Provides broad scale 
movement data, such 
as ocean basin scale. 
Detailed logs of 
environmental 
variables experienced 
also transmitted. 

Most release links 
based on corrosive 
links, switched on via 
applied voltage, 
requiring sea water 
to function. Limited 
to large animals. 
Relatively expensive 

Mostly marine 
with most 
freshwater 
applications being 
based on 
diadromous fishes 
during freshwater 
phase before 
marine entry. 

 

2.2.1 Telemetry: early studies and modern advances 

Early studies using acoustic telemetry on migratory salmonids encountered a suite of 

technical difficulties. Due to the large size of early acoustic tags tagging studies required 

the acoustic transponder to be wired to the dorsal musculature of smolts which resulted 

in fish suffering imbalance during the first weeks after tagging, and it is noted the 

battery life of the tags did not last much longer than this (Solomon, 1978b). Later 

pannier tags (Thorpe et al., 1981) addressed this problem by evenly distributing the 

weight across both sides of the fish whilst wiring the tag to the dorsal fin (Thorpe et al., 

1981). Surgical implantation of tags in to the peritoneal cavity was usually only carried 

out on larger hatchery reared smolts due to the large diameter of tags at the time 

(Lacroix and McCurdy, 1996).  
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 Combined acoustic radio tags (CARTs) were developed by CEFAS in the 1980s as 

way to mitigate the limitations of separate acoustic and radio telemetry systems 

(Solomon and Potter, 1988). Specifically the high power demands and specific 

hydrological requirements of acoustic tags as well as the rapid attenuation of radio 

signals in salt water were addressed by developing CARTs (Solomon and Potter, 1988). 

By limiting the period in which the acoustic component of the tag operated to between 

9-19 days CARTs could operate up to 7 months (Solomon and Potter, 1988). CARTs led 

to studies that tracked fish moving from saltwater into freshwater over longer periods 

than previously possible with acoustic telemetry alone (Potter, 1988; Solomon and 

Potter, 1988; Potter et al., 1992). Due to the hybrid nature of CARTs they are bulkier 

than their purely acoustic or radio counterparts, thus excluding them from use on 

smaller fish (Cooke et al., 2013). 

 Technological progression has led to some key advances in aquatic telemetry. 

Smaller and more efficient electronics has allowed for the production of tags that are 

substantially smaller than their predecessors, which in turn allows for the study of a 

wider ranges of life history stages as well as species via telemetry (Cooke et al., 2013). 

Such miniaturisation has allowed acoustic tags to be surgically implanted in to wild 

smolts, where in the past larger hatchery reared smolts were widely used (Voegeli et al., 

1998). Miniaturisation has also led to the increased functionality of larger tags sizes with 

tag life, effective range and sensor capability improving drastically (Cooke et al., 2013).  

Currently tags are available that are as small as 5 mm in diameter and weigh 0.65g in air 

for acoustic, 10 mm long and 0.25g in air for radio tags and 1.4 mm in diameter and 

0.027g in air for PIT tags. 

 The implementation of coded signals in telemetry tags was another stepping 

stone forward for aquatic telemetry. Prior to the implementation of coded signals 

transmitters were required to transmit on different frequencies and/or vary their signal 

pattern to distinguish individuals (Lucas and Baras, 2001). Such experimental limitations 

resulted in telemetry studies being carried out with limited numbers or within a 

restricted location (Solomon, 1978a; Thorpe et al., 1981; Greenstreet, 1992). With the 
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addition of coded transmissions telemetry studies were able to support a far greater 

number of individuals that were uniquely identifiable (Stuehrenberg et al., 1990). Also, 

with acoustic telemetry the implementation of techniques such as code division 

multiple access (CDMA) technology multiple tags could be tracked at once (Niezgoda et 

al., 2002). 

 Using coded telemetry signals allowed for the more effective use of stationary 

automatic listening stations (ALS), where receivers are situated in a fixed location and 

record any tagged animals that pass within their detection area (Klimley et al., 1998). 

While used in the 1980s for Atlantic salmon (Hawkins and Smith, 1986)), large arrays of 

passive radio ALSs were first deployed to monitor the migration of Pacific salmon (Eiler, 

1995). The first stationary acoustic ALSs were used in the marine environment (Hawkins 

et al., 1974; Voegeli et al., 1998). However, they are now routinely used for a number of 

species in freshwater environments such as large rivers, reservoirs and lakes (Lucas et 

al., 2009; Mathes et al., 2009). Advances in hydrophone design, signal coding and signal 

processing have meant that acoustic receivers can now be deployed in rivers systems 

that would be considered too noisy for previous iterations of acoustic receivers (Voegeli 

et al., 1998; Lacroix and Voegeli, 2000 (in Cooke et al., 2013); Melnychuk et al., 2007). As 

such, ALSs can now be used in a variety of arrays in both saltwater and freshwater 

environments allowing researchers to track fish transitioning between the sea and the 

river (or vice versa) without having to use CARTs, making acoustic telemetry ideal for 

research on diadromous fish movement (Cooke et al., 2013). When this technology is 

combined with archival tags detailed records of both fluvial and marine migration can 

be recorded (Teo et al., 2011). Another advantage of acoustic ALS positions is that they 

can be deployed for extended periods underwater or even under ice and remain 

functional for over a year (dependent on memory capacity and no. of detections) 

(Klimley et al., 1998; Heupel et al., 2006). Recently the use of three of more 

synchronised ALS positions can produce highly accurate 2D positioning for fish by using 

time difference in signal arrival, and when used in conjunction with depth sensor tags 

precise 3D positioning of fish can be recorded (Hanson et al., 2007). Recently such a 
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system was used to differentiate the 3-D spatial niches and behaviour of Arctic charr 

niches in the remote high Arctic without human attendance for more than 11 months 

(Hawley, 2013). 

As well as broadcasting the general position of tagged specimens, acoustic 

telemetry tags can be used to transmit various behavioural, physiological and 

environmental data. In the past external tags were successfully used to monitor the 

heart rate of pike (Esox lucius) by situating electrodes in the vicinity of the heart 

(Armstrong et al., 1989). Similar designs were used for intragastric tags and used on 

Atlantic salmon (Lucas, 1992). Modern telemetry tags can be used to transmit such data 

as; temperature, dissolved oxygen, acceleration, depth, partial pressure and 

electrocardiography. Depth sensing tags have also been successfully used to track the 

behaviour of migrating smolts in relation to day light (Davidsen et al., 2008).  

2.3 Tagging procedures and fish health 

Maintenance of the health of study specimens is a fundamental part of animal research 

and ensuring procedures do not severely affect the behaviour and physiology of the 

animal is paramount. Currently whether fish do or do not feel conscious pain (rather 

than nociception) is still debated; numerous studies show fish returning to normal 

activity and feeding straight after surgery, this poses an important question in regards to 

fish health (reviewed in Rose et al., 2012). Methods of tag implantation into fishes are 

also equally debated, with surgical, materials anaesthesia and surgical practices still 

under scrutiny (Jepsen et al., 2002; Cooke et al., 2003; Cooke et al., 2011b). 

2.3.1 Anaesthesia 

In the presence of harmful stimuli fish exhibit strong neuroendocrine and physiological 

stress responses (reviewed in Rose et al., 2012). Many drugs used for anaesthesia, 

analgesia or sedation in other vertebrates can also reduce stress in fish by decreasing 

handling trauma, minimising movement during procedures and limit physiological 

changes due to nociception (Neiffer and Stamper, 2009). Currently a wide variety of 



59 

 

anaesthetic compounds are used for fish, most commonly; Tricaine Methanesulphonate 

(MS222), Benzocaine, Clove oil, AQUI-S R, Quinaldine and Quinaldine sulphate, 2-

Phenoxyethanol, Metomidate and Etomidate (Ross et al., 2008). Suitable doses of each 

anaesthetic also vary and each anaesthetic has distinct strengths and weaknesses, 

therefore selecting the correct anaesthetic and dose are very important (reviewed in 

Neiffer and Stamper, 2009). One such limitation of the anaesthetic MS222 is that it can 

impair the olfactory capabilities of salmonids (Yamamoto et al., 2008).  

2.3.2 Intragastric tagging 

In the past 50 years the way in which transmitters have been attached to fish has 

changed greatly, the recent miniaturisation of acoustic tags has led to a reduced 

reliance on external and intragastric tagging with intraperitoneal tagging becoming 

much more favoured (Lucas and Baras, 2001). However, intragastric tagging is still used 

with some salmonids. Intragastic implantation is a rapid and relatively non-invasive 

procedure that places the transponder in the stomach of subject (Lucas and Johnstone, 

1990). Early studies on juvenile Atlantic salmon had limited success using intragastric 

implantation with many transmitters being regurgitated, mortality in smaller subjects 

and a noticeable impact on feeding being observed (Armstrong and Rawlings, 1993). 

Work on cod (Gadus morhua) again showed high initial regurgitation but no impact on 

feeding in subjects that retained their transponder (Lucas and Johnstone, 1990; 

Armstrong and Rawlings, 1993). Successful studies using intragastric tagging have been 

carried out on returning adult Atlantic salmon, due to their large size and lack of feeding 

in fresh water (Bagliniere et al., 1990; Bagliniere et al., 1991). However, regurgitation of 

tags is still common with Smith et al (1998) estimating on average 14.8% of tags are 

shed by adult Atlantic salmon via regurgitation.  

2.3.3 Surgical tagging  

Surgical tagging procedures are much more invasive than intragastric implantation 

methods. Intraperitoneal implantation is a technique that has been used in North 

American studies since the 1960’s (Henderson et al., 1966; Lucas, 1989). However, it 
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was not until the passing of the Animals (Scientific Procedures) Act 1986 that the 

procedure could be formally licensed for use in the UK (Lucas, 1989). It has been 

suggested that early tagging methods were carried out with a much more “trial and 

error” approach than current surgical tagging methods (Cooke et al., 2011b). However, 

there are several early studies that used empirical approaches to examine the effects of 

transmitter implantation on various aspects of fish health (Lucas, 1989; Moore et al., 

1990). Although in recent years there has been renewed focus on indentifying 

procedures and techniques to improve the outcome of surgical tagging as well as to 

indentify the impacts of tagging on study animals (Cooke et al., 2011b).  

 The position of incision sites on the body wall as well as the closure of the 

incision via suture can have large effects on the wellbeing of fish post-procedure. 

Wagner and Stevens (2000) found that incision position, either ventral midline or 

ventral off midline, impacted fish behaviour post-procedure, with fish with off midline 

incisions showing higher swimming activity compared to on midline incision fish. Other 

studies showed that radio-tagging procedures performed either ventrally or from lateral 

incision had lower organ puncture risk and were easier to perform when carried out on 

the midline (Schramm JR and Black, 1984).  Incision placement anterior or posterior to 

the pelvic girdle has also been addressed, with neither incision placement having an 

impact on wound healing and transmitter retention (Gosset and Rives, 2004).  

 Closing the incision has been equally researched with various suture types and 

material being examined. Wagner and Stevens (2000) and Cooke et al. (2003) examined 

the effect of suture composition and found no difference between braided silk and 

monofilament sutures. However, it was noted that multifilament sutures were found to 

be easier to work with than monofilament, reducing surgery time (Cooke et al., 2003) 

but it was also noted that incision healing was faster with monofilament (Wagner and 

Stevens, 2000). Walsh et al (2000) compared sutures composed of absorbable materials 

versus non-absorbable materials and found that absorbable sutures were shed faster 

but persisted after wound closure, 50% absorbable sutures being shed at 30 days 

compared to 60 days for non-absorbable. 
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 Sterilisation and antibiotic use during surgery has been relatively poorly 

investigated (Mulcahy, 2003). The use of povidone-iodine solution as a sterilisation 

treatment for incisions sites pre and post-surgery showed no effect on wound histology 

when compared to control groups (Wagner et al., 1999). The use of antibiotics has been 

investigated in a limited capacity, and in hybrid striped bass (Morone chrysops x Morone 

saxatilis) intramuscular injections of 0.5 mg/kg gentamicin sulfate were shown to be 

effective at preventing post-surgical infection (Isely et al., 2002). More recently the use 

of UV light as a surgical sterilising agent was trialled on chinook salmon (Oncorhynchus 

tshawytscha) and it was found that, although UV light did not compromise sutures, 

there was no difference in healing response between control and treatment groups 

(Walker et al., 2013). 

Natural responses of fish post-surgery are vital; affirmation that study fish are 

not adversely affected by the procedure and behave in a naturalistic fashion is 

paramount when inferring results in broader context. Estimations of survival post-

surgery are a principal metric as they allow the researcher to disentangle natural 

mortality from any possible surgical effects. Survival post-surgery, monitored between 

immediate post-surgery mortality and mortality after days, was generally high in 

salmonids (Lucas, 1989; Moore et al., 1990; Gries and Letcher, 2002; Bateman and 

Gresswell, 2006).  

The effects of intraperitoneal tagging on the growth and feeding of fish has been 

extensively assessed (Lucas, 1989; Moore et al., 1990; Martin et al., 1995). Research 

showed no impact on rainbow trout (Oncorynchus mykiss) (Lucas, 1989; Martin et al., 

1995) and Atlantic salmon (Moore et al., 1990) with no apparent effect on feeding 

behaviour and growth of subjects in comparison to controls. However, some studies 

showed differences in growth between treatment groups, with tagged fish growing 

slightly slower, a later repetition then observed no significant difference on growth 

(Welch et al., 2007). It was also observed that dummy tagged individuals (non-functional 

transmitter inserted) initially halted growth before later resuming similar growth rates 
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to sham tagged (surgery performed but no transmitter inserted) controls (Lacroix et al., 

2004). 

It is also important that fish return to natural behaviour patterns post-surgery, as 

behavioural modification can disrupt social status and predator avoidance.  Studies to 

elucidate whether tagged individuals had compromised anti-predatory behaviour found 

that tagging did not increase susceptibility to predators (Adams et al., 1998; Anglea et 

al., 2004; Jepsen et al., 2008). Jepsen et al. (2008) went as far to suggest that predator 

avoidance behaviour should be used as the metric to assess performance impairment in 

future tagging studies. Disruption of social hierarchies in salmonids due to tagging is also 

of concern. Evidence suggests that tagging has a limited effect on social dominance, 

with some fish losing their position (Connors et al., 2002) and in other cases tagged fish 

retained their status (Swanberg and Geist, 1997).  

2.4 Rationale for telemetry techniques used 

Throughout this thesis multiple telemetry methods have been used. The decision to use 

a particular method for each chapter was determined by a combination of; fish species, 

fish life history stage, fish fork length, fish weight, stream width, river conductivity, 

water depth and stream turbulence (noise). 

 Chapter 3 focusses on the migration of juvenile sea trout migrating to sea. Sea 

trout smolts have to pass through freshwater into brackish and saltwater during their 

migration meaning that the selection of the correct telemetry method is vital. PIT 

telemetry can immediately be discarded as the river widths and depths throughout the 

study stretch are outwith the capability of PIT telemetry. The choice between acoustic 

telemetry and radio telemetry hinges on the fact that migrating smolts would be 

migrating into a high conductivity environment and reliable recording of smolts leaving 

the estuary were needed to assess survival. Due to the poor performance of radio 

telemetry in high conductivity it was therefore ruled out. CART tags where both radio 

and acoustic telemetry could be used, radio functioning in the shallow noisy river 

sections and acoustic functioning in the deep high conductivity river sections, was not 
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considered due to the unsuitable tag size for wild sea trout smolts, as well as modern 

acoustic telemetry performing adequately in relatively noisy environments. Acoustic 

telemetry was therefore used as the primary telemetry method during this research.  

 The core focus of Chapter 4 is the spawning movements of adult sea trout and 

Atlantic salmon returning from sea. This chapter has similar requirements as Chapter 3 

except in reverse where the adults are moving from marine to freshwater 

environments. The recording of losses due to experimental fish “dropping out” and 

returning to sea from the river needs to be carried out via logging stations positioned in 

the estuary. As such, radio telemetry would be insufficient to reliably record fish leaving 

the estuary to the sea and just as in Chapter 3 PIT would be wholly unsuitable due to the 

hydromorphology of the proposed study sections in the river. 

 Chapter 5 has different requirements compared to Chapters 3 & 4. The homing 

migration of displaced brown trout in a small river is the Chapter's focus. The small river 

was unsuitable for acoustic telemetry since the stream depth was below one metre on 

average and was predominated by shallow riffles with high amounts of environmental 

noise. Due to environmental conditions, a combination of radio and PIT telemetry was 

deployed. The river in question was both shallow and had a relatively narrow stream 

width making the installation of pass through PIT detection loops possible. Also, the use 

of relatively small PIT tags meant that the size range of experimental fish was 

broadened. Radio was also used in a smaller capacity than PIT telemetry as way of 

quantifying small-scale movement patterns of larger displaced brown trout.    
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salmonid smolt emigration in a river with low-head weirs. Science of the Total 
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Chapter 3: Reduced flow impacts salmonid smolt 

emigration in a river with low-head weirs (direct paper 

duplication) 

3.1 Introduction 

In many developed countries there is a long history of river modification and, as a result, 

in-river structures such as dams and weirs are present in half of the world’s rivers 

(Dynesius and Nilsson, 1994; Nilsson et al., 2005). Such modification has been integral to 

human population growth through processes such as flood defence; power generation 

and farming in floodplains (Poff and Hart, 2002; Nilsson et al., 2005). However, in-river 

barriers such as dams and weirs have a major role in the fragmentation of fluvial 

ecosystems (Dynesius and Nilsson, 1994; Jungwirth, 1998; Fullerton et al., 2010; Kemp 

and O'Hanley, 2010). In-river barriers can have major impacts on fish populations by 

preventing or restricting movement to habitats required for essential stages of fish life 

history (Branco et al.; Lucas and Batley, 1996; Lucas and Baras, 2001; Lucas et al., 2009; 

Wollebaek et al., 2011). In-river barriers not only impact fish populations by restricting 

essential movement, there is also major impacts on fish habitat due to alteration of the 

downstream flux of water and sediment, nutrient movement, and water temperatures 

within rivers (Poff and Hart, 2002). The effects of migration obstacles depend on factors 

such as fish species; river hydrology and barrier type, with effects varying from short 

delays to complete blockage (Northcote, 1998; Kemp and O'Hanley, 2010). In Europe, 

legislation such as the Water Framework Directive (WFD; 2000/60/EC) requires free 

passage for migratory fish travelling between areas of river essential for their life 

history, such as juvenile emigration from natal areas and adult spawning migrations. 
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Failure to comply can result in the river being assigned less than “Good ecological 

status” and may result in sanctions.  

The seaward migration of juvenile anadromous salmonids (smolts) is a crucial 

event in their life history. Smoltification is a period of great morphological, behavioural 

and physiological change when juvenile salmonids develop various adaptations that 

enable them to survive at sea (Denton and Saunders, 1972; Lysfjord and Staurnes, 1998; 

McCormick et al., 1998; Debowski et al., 1999a; Debowski et al., 1999b). The smolt 

migratory period is precisely timed with photoperiod, river discharge and temperature 

playing determinate roles in its commencement (McCormick, 1994; Björnsson et al., 

1995; McCormick et al., 2000; McCormick et al., 2002; McCormick et al., 2007; 

Björnsson et al., 2010). Throughout migration smolts are subject to elevated predation 

risk from mammalian; avian and fish predators (Heggenes and Borgstrom, 1988; Carss et 

al., 1990; Aarestrup et al., 1999; Dieperink et al., 2001; Dieperink et al., 2002; Koed et 

al., 2002; Aarestrup et al., 2003; Steinmetz et al., 2003; Svenning et al., 2005a; Svenning 

et al., 2005b; Harris et al., 2008; Wiese et al., 2008). Delays at river obstructions during 

such a timing-specific and vulnerable life history stage can potentially have large 

impacts on the survival of smolts and the health of salmonid stocks as a whole. 

 The impacts of large dams on the hydrology and ecology of temperate river 

systems, including downstream fish passage,are relatively well known. Particularly so for 

economically important fish such as salmonid species (Noonan et al., 2012).In general 

downstream salmonid passage efficiency past dams through bypass facilities is high 

(74.6%) based on recent quantitative assessment (Noonan et al., 2012). However, high 

smolt mortalities due to both physical damage and predation have been observed at 

major impoundments and hydro-power facilities (Raymond, 1979; Raymond, 1988; 

Aarestrup et al., 1999; Muir et al., 2001a; Muir et al., 2001b; Williams et al., 2001; Smith 

et al., 2002; Hockersmith et al., 2003; Smith et al., 2006; Keefer et al., 2012). Low flows 

due to regulation in river reaches also cause delays in smolt emigration and result in 

increased duration of exposure to mortality risks (Aarestrup and Koed, 2003). However, 

the impacts of low-head structures, such as simple overflow weirs are poorly known for 
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downstream migrants (Lucas and Baras, 2001) with the exception of bottom-orientated 

freshwater eels (Acou et al., 2008). While impacts of small weirs on upstream-migrating 

fish (Lucas and Frear, 1997; Ovidio and Philippart, 2002) have long been mitigated by 

fish ladders designed specifically to assist upstream passage (Clay, 1995), average 

passage efficiencies are relatively low (41.7%) (Noonan et al., 2012) and presence of 

passage fascilities is not always guaranteed to mitigate passage concerns (Roscoe and 

Hinch, 2010). However, it is generally assumed that downstream migration of wild 

surface-oriented fishes such as salmonid smolts is relatively unaffected and that they 

will pass simple overflowing weirs unhindered under reasonably natural flow regimes 

(Lucas and Baras, 2001). Some studies on passage of hatchery-reared smolts past small 

weirs, in particular that of Aarestrup and Koed (2003), strongly contradict this. To test 

this assumption for wild fish, the effects of low-head weirs and the influence of natural 

variations in river flow on the migration behaviour and survival of anadromous brown 

trout (Salmo trutta) smolts were examined in the River Tweed, UK, a catchment with 

very strong wild migratory salmonid stocks. 

3.1.1 Study areas 

The study was carried out on the River Tweed in southern Scotland, which drains west 

to east and empties to the North Sea. The Tweed is the sixth largest river in mainland 

Britain and the second largest in Scotland and has some of the largest Atlantic salmon 

(Salmo salar) and anadromous brown trout populations in the UK (Gardiner, 1989; 

Sheail, 1998). The Tweed catchment covers 5000 km2 with an estimated 2160 

kilometres of the main channel and tributaries accessible to fish (Gardiner, 1989). The 

water quality of the river is very high, with there being very little pollution present 

(Currie, 1997). The River Tweed is a designated Site of Special Scientific Interest (SSSI) 

within the UK and is an EU Special Area of Conservation (SAC) for Atlantic salmon and 

lampreys. Compared to many rivers, there are relatively few anthropogenic impacts and 

the hydrology, although modified, retains high natural variability in discharge. Several 

low-head engineered structures occur within the River Tweed’s main channel, 
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downstream of one of the key spawning tributaries, the Ettrick Water, as well as in the 

Ettrick itself (Figure 3.1). The Ettrick is a regulated river and its main tributary the 

Yarrow Water is also regulated at its outflow from St Marys Loch, 23 km upstream of its 

confluence with the Ettrick. The average annual flow on the Yarrow is 5.58 m3 s-1, while 

on the Ettrick it is 15.1 m3 s-1 and their combined catchment areas come to 501 km2. The 

course of the river under investigation is characterised by multiple low-head structures 

which are remnants of light industry, most of which are now redundant (Figure 3.1, 

Table 3.1). 
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Figure 3.1: Map of the River Tweed showing all the major tributaries as well as the migration route downstream from the Yarrow Water. Grey 
boxes denote the release sites along with white circles denoting the ALS positions and white diamonds for SEPA flow gauging stations (FGS). 
Black bars indicate the sites of in-river structures. 
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Table 3.1: Descriptions of in river structures along the studied smolt migratory route. * Structure 
crosses river at an angle to the flow. 

Name of 

structure 

Structure 

status 

Year 

structure 

built 

Structure 

width (m) 

Structure 

head-loss 

(m) 

Fish pass 

present 

Location (latitude, 

longitude ,°) 

Murray Cauld Intact 1847 65 3 Pool and spill 55.537667, -2.874796 

Melrose Cauld Ruinous 

Not 

known 102 1 None 

55.602007, -2.726349 

Mertoun 

Cauld Cut 

Rebuilt in 

1990s 98 3 Pool and spill 

55.582512,-2.623382 

Rutherford 

Cauld Ruinous 

Not 

known 153 1 None 

55.57769, -2.550825 

Kelso Cauld Cut 

Middle 

ages 300* 2 

Multiple pool 

and spill 

55.599875,-2.439349 

Hendersyde 

Cauld Cut 

Not 

known 230 2 Pool and spill 

55.624852, -2.382158 

The Lees 

Cauld Cut 

Not 

known 100 ca.  1 None 

55.642852, -2.250394 

Coldstream 

bridge apron Cut 1784 96 ca. 1 None 

55.654607, -2.241373 

Milne Graden 

Cauld Ruined 

Not 

known 98 ca. 1 None 

55.691506, -2.195022 

 

3.2 Methods 

3.2.1 Smolt capture and tagging 

Trout smolts were captured in a trap on the Yarrow between the 1st of April and the 1st 

of June in 2010 and 2011. The smolt trap consisted of a meshed box trap placed in the 

outwash of the smolt and debris screen of a fish farm. The smolts were removed from 

the trap and immediately placed in a holding tub filled with highly aerated river water. 

Individual fish likely to be large enough for tagging were placed in an induction tank and 

anaesthetised using Phenoxyethanol (0.3 ml l-1), their fork length (mm) and weight (g) 

were recorded before those sufficiently large for tagging (over 145 mm in fork length) 

were placed on a V-shaped surgical table. An incision (12-14 mm) was made on the 
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ventral side of the fish anterior to the pelvic girdle. A miniature coded acoustic 

transmitter (either Model V7-2x, 7 mm diameter, 18 mm length, 1.4 g weight in air, 

Vemco Ltd, Nova Scotia, Canada or Model LP-7.3, 7.3 mm diameter, 18 mm length, 1.9 g 

weight in air, Thelma Biotel AS, Trondheim, Norway) was then implanted in to the body 

cavity through the incision. Tags were chosen to have code repeat periods of 20-60 

seconds and estimated lives of 100 days. The incision was closed with three 

independent sutures (4-0 Vicryl Rapide, Ethicon Ltd, Livingston, UK). The gills were 

aspirated with a mixture of dilute Phenoxyethanol and river water during the early 

stages of the procedure before switching to 100% river water during the later stages of 

the procedure. All tagging was carried out under UK Home Office License and complied 

with the UK Animals (Scientific Procedures) Act 1986.  

Once the procedures were complete the fish were returned to a recovery tub 

filled with highly aerated water. When recovered the fish were placed in a keep box in 

the intake channel overnight before release into the river; no mortalities occurred 

during these procedures. Details of the fish released in the two seasons are given in 

Table 3.2. There was no significant difference between the lengths of smolts acoustic 

tagged in 2010 and 2011 (Mann-Whitney U; n=103, Z=-0.445, p>0.05). Release was 

always in groups that included untagged fish (since smolts migrate in aggregations), 

within 24 hours of tagging, in to a section of the river 100 m below the point of capture. 

Due to high losses of tagged smolts within the upper study section in 2010, tagged 

smolts were released at two additional release sites, one 2 km below the point of 

capture and another 200 m downstream of the Murray Cauld as a way to test the 

impact of the weir on migration in 2011 (Table 3.2, Figure 3.1). The Murray Cauld is the 

only intact in-river structure on the migration route and so has only a fish pass as an 

alternative to passage over its crest. The lengths of smolts in the three release groups in 

2011 were not significantly different (Kruskall-Wallis; n=60, χ2=1.0892, df=2, p>0.05). 
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Table 3.2: Summary data for smolts acoustic tagged in 2010 and 2011. The release sites are 
shown on Figure 3.1.  

Release site Tagging 

date 

Number 

tagged 

Fork length [mean  SD 

(range), mm]  

Weight [mean  SD 

(range), g] 

Tag/body weight ratio  

[mean (range), %]* 

Release site A 29/04/2010 14 163.2  16.5 (145-190) 45.6  15.2 (30-77) 4.5 (2.5 – 6.3) 

Release site A 07/05/2010 20 161.5  15.5 (140-202) 41.4  13.4 (23-82) 5.0 (2.3 -8.3) 

Release site A 13/05/2010 9 175.8  18.3 (156-200) 54.6  18.6 (29-81) 3.9 (2.3 – 6.6) 

2010 Total 43 165  17 (140-202) 45.5  15.7 (23-82) 4.6 (2.3 – 8.3) 

Release site A 21/04/2011 3 155  8.7 (150-165) 38  9.5 (32-49) 5.2 (3.9 – 5.9) 

Release site A 22/04/2011 6 164.3  19.5 (142-199) 45.7  16.7 (31-77) 4.5 (2.5 – 6.1) 

Release site A 26/04/2011 4 182.2  17 (159-198) 59.3  17.5 (35-76) 3.5 (2.5 – 5.4) 

Release site A 04/05/2011 7 165  33.9 (140-220) 50.4  32.6 (23-97) 5.1 (2.0 – 8.3) 

Release site A Total 20 166.7  24.3 (140-220) 48.9  22.6 (23-97) 4.6 (2.0 – 8.3) 

Release site B 21/04/2011 3 160  15 (145-175) 44  11.5 (31-53) 4.6 (3.6 – 6.1) 

Release site B 22/04/2011 6 161.5  20.3 (147-197) 41.8  12.5 (32-62) 4.8 (3.1 – 5.9) 

Release site B 26/04/2011 4 161.5  7.3 (154-171) 42  7 (33-49) 4.6 (3.9 – 5.8) 

Release site B 04/05/2011 7 170.3  16.9 (154-202) 50.3  17.7 (34-86) 4.1 (2.2 – 5.6) 

Release site B Total 20 164.4  15.9 (145-202) 45.2  13.3 (31-86) 4.5 (2.2 -6.1) 

Release site C 21/04/2011 3 163.3  20.2 (140-175) 43.3  13.9 (28-55) 4.8 (3.5 -6.8) 

Release site C 22/04/2011 6 171.7  8.1 (160-182) 50.5  8.3 (40-62) 3.8 (3.1 – 4.8) 

Release site C 26/04/2011 4 173.8  21.6 (142-190) 58.5  19.7 (31-78) 3.7 (2.4 – 6.1) 

Release site C 04/05/2011 7 167.4  20.7 (145-205) 46.9  20.5 (20-85) 4.8 (2.2 – 9.5) 

Release site C Total 20 169.4  16.8 (142-205) 49.8  16.1 (28-85) 4.3 (2.2 – 9.5) 

2011 Total 60 166.8  19.2 (140-220) 47.9  17.6 (23-97) 4.5 (2.0 – 9.5) 

* Tag to body weight ratio is calculated from masses in air. 

 

3.2.2 Acoustic tracking 

Acoustic tracking was carried out via a combination of fixed  ALS positions and manual 

tracking at 69 KHz to track fish survival to sea. Fixed ALS positions (Models VR2 & VR2W, 

Vemco Ltd, Nova Scotia, Canada) were set approximately 11 km apart along the 

migration route. Sites were chosen to detect fish as they approached cross-river weirs 

or other features of interest, with acoustic loggers located in calm water to give reliable 

recording of tags, based upon field tests. Positioning of loggers at some sites was limited 

by the availability of calm, deep water as well as site access. Logging stations at weirs 

were located 50-100 m upstream of obstructions. In the estuary multiple stations were 

placed in both the inner and outer estuary to give effective coverage. ALS positions were 



72 

 

downloaded on a weekly basis during the study period, these data allowed for the 

locations of each fish to be estimated and help determine areas to target for manual 

tracking. Average detection efficiencies for the ALS positions were 89% in 2010 (100% 

excluding station 5) and 91% in 2011.  

Manual tracking was carried out on foot by wading in shallow stretches and by 

boat in the deeper sections using a Vemco VR100 (Vemco Ltd, Nova Scotia, Canada) 

with a VH110 Directional Hydrophone attached (Vemco Ltd, Nova Scotia, Canada).The 

hydrophone was placed in the calmest water locally available and slowly rotated. Range 

testing was conducted by placing a test tag in a known position and then measuring the 

distance at which the test tag became undetectable on manual tracking equipment, this 

was repeated in several different river sections with varying hydromorphological 

conditions. In field tracking conditions, with the hydrophone kept fully submerged, the 

range varied between 100 m in deep pools to less than 10 m in fast flowing riffles; thus 

repeated scans were made at distances of equating to the effective range. Fish locations 

were recorded by the VR100 inbuilt GPS unit and later stored in a GIS database. Blind 

operator training was also used to ensure manual trackers could detect tags in various 

river sections, enabling maximum confidence that tags were not missed during manual 

tracking. In 2011 additional PIT tracking of smolts was carried out to determine the 

effects of acoustic tagging on migration rate and behaviour in comparison to PIT 

tagging, results suggest acoustic tags pose no higher impact on movement rate of 

smolts than PIT tagging (Appendix I). 

In 2010, 10 tags were deployed in mesh bags in the river to estimate tag failure 

rate. As a further control, 10 tags were deployed loose on the river bed to determine 

whether, and under what circumstances, tags lost by fish, or following predation and 

subsequent tag egestion, were moved passively by flows and what their detectability 

was. 
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3.2.3 Environmental data 

River flow is recorded along the smolt migration route at the Philiphaugh gauging 

station of the Scottish Environment Protection Agency (SEPA) on the lower Yarrow and 

also at their Lindean (Ettrick), Boleside and Sprouston (Both Tweed) and at the Norham 

gauging station of the Environment Agency of England and Wales (EA)(Figure 3.1). 

Historic flow records for these stations were obtained from the Centre for Ecology and 

Hydrology (CEH) National River Flow Archive (NRFA). 

 

3.3 Results 

3.3.1 Inter-annual variations in successful migration out to sea and 

passage efficiencies at weirs 

Through the combined use of stationary ALS positions and manual tracking, survival 

estimates were calculated for the 43 tagged smolts released in 2010 and the 60 released 

in 2011. The approximate distance travelled by each smolt was measured from its last 

known location. For the purpose of the study tags that were either missing after 

repeated manual tracking trips or repeatedly found at the same site, without any 

movement on successive manual tracking trips were assumed to be smolt mortalities. 

However, on top of predation risk there is the possibility that non-detection of tags 

could be the result of tag failure, range limits, or missed detections due to fast 

movement.  

In total, seven fish (16%) in 2010 and three fish in 2011 (5%) were assumed to be 

dead in the river after repeatedly being found in the same location in the river. 

Conversely, 28 tagged fish (65%) in 2010 and 30 tagged fish (50%) in 2011 were 

assumed to have been removed from the system by terrestrial predators after a 

cessation in logged movements and not being detected after several manual tracking 

trips. All of the tags deployed in the river as controls in retrievable mesh bags operated 
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for their expected durations and 90% of the tags deployed loose on the river bed could 

be detected over their study period, none moving more than 1 m. 

In 2010 only 19% of the 43 released smolts were detected leaving the river on 

the outer estuary logger whereas 45% of the 60 released smolts reached there in 2011. 

One notable difference between years was the variation in smolt loss around the 

Murray Cauld; in 2010 a 44% decline in survival was observed there compared to a 9% 

decline in 2011 (Figure 3.2). There was a slight variation in successful migration  out to 

sea for release sites A and B (above the Murray Cauld) and C (below it) in 2011, which 

had relatively normal flow, with 40%; 55% and 40% migratory success being observed 

respectively (Figure 3.2). In 2010 there was a significant difference in smolt length 

between successful migrants and unsuccessful migrants, with successful smolts being 

larger (Mann-Whitney U; n=43, Z=-2.07, p=0.044). This trend may be a result of the low 

number of successful smolts compared to the much larger number of unsuccessful 

smolts. However, in 2011 there was no difference in length between successful and 

unsuccessful migrants (Mann-Whitney U; n=60, Z =-0.647, p>0.05).  

For both years a significant negative relationship between distance travelled 

from release site and cohort migratory success was recorded (2010: linear regression; 

n=23, R2= 0.495, df=21, F= 12.064, p= 0.005; Figure 3.2, 2011: linear regression; n=23, 

R2=0.84, df=21, F=84.731, p<0.001; Figure 3.2). For all three release sites in 2011 there 

were significant negative relationships between the distance travelled from release sites 

and cohort migratory success (release site A: linear regression; n=23, R2=0.52, df=21, 

F=15.263, p=0.002; Figure 3.2, release site B: linear regression; n=19, df=17, R2=0.72, 

F=37.305, p<0.001; Figure 3.2, release site C: linear regression; n=14, R2=0.73, df=12, 

F=25.536, p=0.001; Figure 3.2). Subsequently, two of the smolts tagged in 2011 were 

detected 20 km up the estuary of the River Tees on an ALS array associated with a 

separate study. The Tees estuary is approximately 144 km south of the Tweed estuary, 

along the North Sea coast, and the tags were detected for periods of 4.3 and 60.4 hours, 

after respective periods of 20 and 10 days following escapement from the Tweed 

estuary. These detections fit in with prior Carlin tag data from the Tweed that shows 
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smolts moving down the UK coastline close to shore and in neighbouring estuaries (R. 

Campbell, unpublished data).  

The passage efficiencies at the weirs with ALS positions immediately above them 

differed between years, at Murray Cauld passage efficiency differed markedly between 

years with 46% and 100% passage efficiency being observed in 2010 and 2011 

respectively. Differences in passage efficiency between 2010 and 2011 were also 

observed on both Melrose Cauld and Mertoun Cauld   but were not as pronounced 

(Table 3.3). What is important to note is that weir design differs between all three weirs 

and Murray Cauld is the only fully intact weir. 

 

Figure 3.2: Cumulative survival of acoustically tagged brown trout smolts migrating out to sea in 
2010 and for three separate release groups in 2011. Black vertical bar represent weirs along the 
migration route. * Measured from the furthest upstream release point down to the estuary. 
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3.3.2 The delay of smolts during seaward migration in 2010 and 2011 

and its impact on smolt movement rate 

When comparing the mean ground speeds of migrating smolts in 2010 and 2011, using 

the first detection of each smolt on each ALS position along the migration route and 

factoring in each river section in to the analysis, a significant difference was observed 

(ANOVA; n=213, df=1, F=43.29, p<0.001; Figure 3.4) with smolts in 2011 moving 

significantly faster along the migration route. Ground speed data for 2011 in the river 

sections between release site B and logging station 1 as well as release site C and 

logging station 2 were not included in the analysis due to the stated release sites not 

being used in 2010.  

Records of the migration delays, reflected through residence times experienced by 

smolts at logger localities in both 2010 and 2011 were retrieved from stationary ALS 

positions. Delay was quantified by the duration of time between the first recording and 

the last recording on an ALS for each tagged smolt. Data from station 5 were not 

included, since this logger was inefficient due to noise resulting from its suboptimal 

location. In general, smolts experienced more delay in 2010 than 2011. Smolts were 

more significantly delayed in 2010 compared to 2011 on all freshwater ALS positions; 

station 1 (Mann-Whitney U; n=54, Z=-5.0, p<0.001; Table 3.3),  station 2 (Mann-Whitney 

U; n=47, Z=-2.33, p=0.02; Table 3), station 3 (Mann-Whitney U ; n=32, Z=-2.712, 

p=0.011; Table 3.3), station 4 (Mann-Whitney U; n=19, Z=-2.966, p=0.002; Table 3), 

station 6 (Mann-Whitney U; n=23, Z=-3.244, p=0.001; Table 3.3) and station 7 (Mann-

Whitney U; n=34, Z=-2.315, p=0.02; Table 3.3). However, there was no significant 

difference in delay in the Tweed estuary between 2010 and 2011 (Mann-Whitney U; 

n=33, Z=-0.336, p>0.05; Table 3.3), suggesting that either the factors influencing delay 

within the river were not present or were of less importance within the estuary or that a 

different set of factors govern estuarine movements. Regrouping the ALS delay data into 

two groups; “obstructed” where the ALS positions are within 100 m of an in river 

structure (stations 1; 2; 3) and “unobstructed” where the ALS positions are in a free 

flowing section of river (stations 4; 6; 7) it is observed that delay was significantly higher 
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at obstructed sections compared to unobstructed sections in 2010 (Mann-Whitney U; 

median obstructed= 108.9, median unobstructed=4.7,  n=80, Z=-2.865, p=0.004; Figure 

3.3). Conversely, there was a lack of significant difference in delay duration between 

obstructed and unobstructed river sections in 2011 (Mann-Whitney U; median 

obstructed= 1.49, median unobstructed=0.97, n=129, Z=-1.767, p=0.077; Figure 3.3). 

Table 3.3: Delay and barrier passage efficiencies at ALS positions along the smolt migration 
route through the river and estuary. Station 5 not listed due to insufficient sample size recorded 
there. 

ALS 

Position 

Immediately 

Upstream of 

in-river 

structure 

In-river 

structure 

characteristics 

 2010 Delay 

(median(Q1- Q3), 

minutes) 

2011 Delay 

(median(Q1- Q3), 

minutes) 

2010 

Passage 

efficiency 

(%) 

2011 

Passage 

efficiency 

(%) 

1 Yes Intact 4497.3 (109.9-

25029.4) 

5.8 (2.7-26.4) 46 100 

2 Yes Ruinous 7.1 (1.8-18.8) 2.1 (0.9-4.6) 76 92 

3 Yes Cut 1.11 (0.2- 2.7) 0.1 (0.1-0.5) 90 94 

4 No - 2.5 (1.3-81.6) 0.6 (0.1-0.8) - - 

6 No - 5 (3.1-18.9) 0.9 (0.1-1.1) - - 

7 No - 4.7 (2.7-11.7) 1.7 (0.9-2.7) - - 

8 No - 460 (61.8-1244.8) 314.3 (4.6-1719.9) - - 
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Figure 3.3: Time spent by individual smolts at ALS positions (delay) that were within the 
impoundment zones of in river structures (obstructed) compared with those that were not 
(unobstructed). Data are presented as box plots, showing median, upper and lower quartiles, 
upper and lower 5 percentiles, mild outliers (circles; Q3 +1.5 ×IQR) and extreme outliers 
(asterisks; Q3 + 3 × IQR). In the 2010 panel medians are obscured by other lines. Data do not 
include records from station 5 due to insufficient sample size. 
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Figure 3.4: Box plot displaying the median net ground speeds of tagged trout smolts moving 
through each river section in both 2010 and 2011. Boxes represent upper and lower quartiles 
and T-bars represent the upper and lower 5 percentiles and round dots signify outliers. *Section 
of river between ALS positions, station 5 removed from analysis due to insufficient sample size. 

 

3.3.3 Variation in flow conditions between 2010 and 2011 and its 

influence on smolt ground speed 

Using mean daily flow data retrieved from SEPA and the EA and flow duration curves 

from the CEH NRFA, the flow conditions along the migration route during the typical 

smolt migration period (1 April to 30 June) in 2010 and 2011 were analysed. The Lindean 

SEPA gauging station was used as a proxy for the flow at the Murray Cauld as it is 

approximately 6 km downstream from the weir and there are no large tributaries joining 

the Ettrick in this section of river. The two years’ flows at Lindean, during the key 
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migration period, differed markedly, with mean daily flows declining below the Q95 flow 

for 18 days in 2010 and not at all in 2011. There were several high flow events in 2011 

whereas the only flow increases in 2010 were the results of artificial weekly freshets 

from St Mary’s Loch on the Yarrow system (Figure 3.5). 

Using historical flow records from the CEH NRFA for Lindean extending back to 

1962 the prevalence of daily flows under Q95 was calculated for each year in the 49 

year period. Days where flow was low there during the migration period were not 

uncommon (Figure 3.6). Short periods of flow restriction occurred frequently and 

periods where at least 15 days out of the 90 day period were below Q95 daily flows 

occurred at least once a decade (Figure 3.6). There have therefore been periods of flow 

restriction similar to that experienced in 2010 previously and they are likely to reoccur. 

The influence of flow conditions on smolt migration rate was calculated from the net 

ground speed of individual smolts between two successive ALS positions using the first 

record of each smolt at each ALS as it moved downstream and then matching the  

ground speed to the mean flow conditions during the period of transit using 15-minute 

gauged flows from the nearest SEPA flow gauging stations to the fixed ALS positions. 

This was carried out for all sequential pairs of ALSs. For both years a positive 

relationship between elevated flow (m3s-1) and increased net ground speed (km h-1) was 

observed; 2010 (Regression; n=88, R=0.719, p<0.001; Figure 7), 2011 (Regression; 

n=218, R=0.579, p<0.001; Figure 3.7). However, when the relationships between net 

ground speed and mean flow were compared between years using an ANCOVA there 

was a highly significant difference in slope (n=306, df=1, F=147.73, p<0.001). These 

results suggest that smolts released in 2010 undertook increasingly more active 

swimming within the flows in which they exhibited downstream migration than the 

smolts released in 2011. 
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Figure 3.5: Mean daily flows at the flow gauging station at Lindean on the Ettrick Water, 
reflecting water flow at Murray's Cauld, during the period of study in both 2010 and 2011 as 
well as the Q95 and Q10 flows for the Lindean station. 
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Figure 3.6: Total number of days below Q95 flows for the smolt migration period 1 April to 30 
May between 1962 and 2011 on the lower Yarrow Water at the Philiphaugh flow gauging 
station, lower Ettrick Water at the Lindean flow gauging station and the upper Tweed at the 
Boleside flow gauging station. 
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Figure 3.7: The net ground speed (km h-1) of migrating smolts in relation to the estimated mean 
flow conditions (m3s-1) during the period of transit throughout the migratory route. Flows are 
based upon the nearest 15-minute gauged flow, at the closest gauging station. 

3.4 Discussion 

This study shows, for the first time, that surface-orientated wild fishes, migrating 

downstream, can be markedly impeded by small overflowing weirs, and that the effects 

of this are dramatically increased during low-flow conditions. These delays are 

associated with losses of migrating fishes, again substantially elevated during low-flow 

conditions. While these effects are known for salmonids at large impoundments, 
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al., 1998). These results strongly suggest that small obstructions can have much larger 

than expected impacts on seaward escapement of anadromous brown trout smolts and 

given the observation that low flows dramatically exacerbate these problems, any 

climate scenario (such as UKCIP02 and UKCP09 A1B) that results in increased frequency 

of low river flows during spring and early summer is a very real concern (Arnell, 2004; 

Marsh, 2004; Wilby and Harris, 2006; Christierson et al., 2012). However, it is possible 

that climate change may bring an increase in water availability for the UK in some 

scenarios (IPCC SRES A2 and B2) (Xenopoulos et al., 2005). 

The results from the automated acoustic tracking of the smolts migrating to the 

sea in 2010 and 2011 clearly showed a disparity in the degree to which they were 

delayed in different river sections between the two seasons. These also showed that 

obstructions in river sections, such as weirs, also exacerbate delays during periods of 

reduced river flow. In general very little work has been conducted to link overflowing 

barriers to the passage and behaviour of freshwater fish during downstream movement. 

In Australian studies Murray cod (Maccullochella peelii) and golden perch (Macquaria 

ambigua) displaced above weirs displayed a reluctance to move past low-head weirs 

when attempting to home downstream (O'Connor et al., 2006). Negative impacts of 

weirs were also observed in hatchery reared Atlantic salmon and anadromous brown 

trout smolts released in small Danish rivers where they suffered from increased delay 

and mortality in proximity to small fish farm weirs (Aarestrup and Koed, 2003). The 

estuarine passage of Atlantic salmon smolts in relation to a barrage showed that smolts 

were delayed within the impounded section of water upstream from the barrage  

(Russell et al., 1998). Successful migrants passed the barrage either through a ship lock 

or by passing the barrage when it was submerged during high tides (Russell et al., 1998). 

Low flows spread across the breadth of obstructions such as overflowing weirs spanning 

whole channels, give depths over their crests that are very shallow, which may reduce 

the behavioural stimuli (one or more combinations of velocity, depth, velocity gradient, 

turbulence) needed to get fish to continue past the barrier. Haro et al. (1998) found 

American shad (Alosa sapidissima) to be unwilling to approach the small surface water 
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bypasses that would allow them to move downstream at large barriers, while Enders et 

al. (2009) demonstrated a similar unwillingness for salmonid smolts under experimental 

conditions, showing that hydraulic changes at surface bypasses do not necessarily 

promote effective downstream passage of surface-orientated fishes. 

In the current study it was inferred that acoustic tag loss was very likely due to 

removal of tagged fish from the river by terrestrial predators because; 1) transmitters 

were lost well within the quoted lifetime of the tags; 2) control transmitters deployed in 

the river showed zero failure rate within the quoted life; 3) loose control tags on the 

river bed could be reliably detected by tracking gear and moved little and, 4) predation 

by aquatic predators (in this study area, large brown trout), would have resulted in 

acoustic tags being retained in the aquatic environment and detectable. In 2010 seven 

fish (16%) were repeatedly confirmed as stationary within the river and 28 (65%) were 

assumed as removed from the system due to repeated null detections. Likewise in 2011 

three fish (5%) were repeatedly confirmed as stationary whilst 30 tags (50%) were 

apparently removed from the river system after repeated null detections. The most 

common avian predators on the Tweed are goosander (Mergus merganser) and grey 

heron (Ardea cinerea), the former occurs in large numbers during the smolt migration 

season when they can form large feeding aggregations. Their diet on the Tweed has 

been investigated by Marquiss et al. (1998), who estimated their consumption of smolt-

sized salmonids could be up to 4.79 per goosander per day in March and April and up to 

1.8 per day in May. The survival of smolts during migration was radically different 

between the two seasons studied, that of 2010 (19%) being below half that of 2011 

(45%). These levels can be compared with those of conventionally tagged anadromous 

brown trout smolts in Norway which were estimated to have a survival rate of 24% for 

their first seaward migration (Berg and Berg, 1987) and with the survival of chinook 

salmon (Oncorhynchus tshawytscha) smolts migrating down the Snake and Columbia 

rivers where survival to the sea was estimated to be around 27.5% (Welch et al., 2008). 

However, the Columbia River system is of much greater size and has much larger 

impoundments than the Tweed catchment.  
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The mortality of Atlantic salmon smolts during in-river migration has been 

estimated for several different rivers in previous studies.  Overall mortality, calculated 

on a kilometre by kilometre basis ranged from 0.3 to 5% per kilometre (Moore et al., 

1998b; Dieperink et al., 2002; Koed et al., 2002; Koed et al., 2006; Davidsen et al., 2009; 

Martin et al., 2009; Thorstad et al., 2012a; Thorstad et al., 2012b). In comparison 

anadromous brown trout smolts tracked in the Tweed in 2010 and 2011 suffered 0.88% 

and 0.55% mortality per km respectively, well within the range of mortality observed for 

salmon. It is important to note that these studies only included the lower reaches and 

estuary of their rivers where predation is expected to be more intense while the present 

study examined migration over 100.29 km of river and estuary.  

Mortality at individual weirs during migration varied within and between years, 

with mortality ranging between 2-44% per cohort of fish arriving at each weir with an 

ALS near it (the Murray Cauld, Melrose Cauld and Mertoun Cauld) in 2010 and 5-9% in 

2011. In comparison, stocked brown trout smolt mortality at various fish farm weirs in 

Denmark varied between 15-64%, although it is important to note that piscivorous 

predators such pike (Esox lucius) and zander (Sander lucioperca) are present in Danish 

rivers (Aarestrup and Koed, 2003) but are absent in the studied section of the River 

Tweed. Passage efficiencies at these weirs also varied between 46-90% in 2010 and 92-

100% in 2011. Murrays Cauld was particularly inefficient in 2010 with downstream 

passage efficiency being only 46%, well below the average downstream passage 

efficiency of 68.5% seen in Noonan et al. (2012). This low efficiency during low flow 

periods is most probably the consequence of Murray Cauld being the only fully intact 

weir along the migration route, with other weirs either being in a ruinous state or cut.  

The flow conditions in the period of study were markedly different between years. The 

April to June water levels of 2010 were characterised by low flows that dipped below 

Q95 for a total of 18 days whilst the 2011 flows for the same period exceeded Q10 flows 

for two consecutive days during the largest spate and had other elevated periods. From 

a historical perspective, low flows similar to those that were prevalent in 2010 for the 

study period have been recorded regularly on the Ettrick between 1962 and 2011. The 
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use of Q95 flows as an estimation of low flows is now widely practised in Europe 

(Gustard et al., 1992; Smakhtin, 2001; Laaha and Blöschl, 2007). Studies into the 

migration of chinook salmon on rivers with large barriers have shown a positive 

relationship between increased river flow and increased smolt survival during migration 

(Connor et al., 2003; Smith et al., 2003).While the Tweed is a much smaller river, with 

small barriers, the same pattern is apparent – higher smolt mortality in seasons with low 

flows and vice-versa. 

Smolt net ground speed increased in relation to flow in both years of the study. 

However, smolts in 2010 showed a steeper relationship of ground speed to river 

discharge than smolts in 2011. This may be a consequence of the overall lower flow 

conditions in the river in 2010 compared to 2011 possibly meaning that smolts moving 

downstream in 2010 did so more actively than smolts released in 2011. Conversely, 

smolts in 2011 displayed more active swimming behaviour at lower flow levels than 

smolts in 2010, this is possibly due to smolts in 2011 not suffering the same flow 

restriction as smolts in 2010 and therefore movement may not be as impeded by in river 

structures. Similarly, previous research into anadromous brown trout and Atlantic 

salmon smolt migration has also found a correlation between river discharge and smolt 

net ground speeds (Aarestrup et al., 2002; Martin et al., 2009). Smolt ground speeds 

were low in sections from release to detections upstream of Philiphaugh weir in both 

2010 and 2011, but these low speeds include periods during which smolts may have 

been preparing to emigrate and exhibited holding behaviour. 

The conclusion of this study is that passage of downstream-migrating salmonid 

smolts is not only impacted by the large dams with which river managers are familiar, 

but probably also by much smaller low head weirs that Lucas et al. (2009) report as 

being much more abundant and which impound water and create zones of reduced flow 

rate. Current passage provision for downstream-migrating salmonid smolts is probably 

inadequate at many weirs and periodic low flows during the smolt migratory period 

should be a management concern. Especially so for rivers systems where salmonid 

stocks are a highly prized economic asset. Most fish passage facilities, such as technical 
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fish ladders, are designed for upstream migrants and while downstream fish bypasses 

exist, they have been little used on low-head overflowing weirs and have rarely been 

evaluated for their efficiency (Haro et al., 1998; Scruton et al., 2002; Scruton et al., 

2007). In the face of climate change and uncertain variability in river flows, where low-

head structures are no longer needed, removal should be strongly considered along 

with the construction of bypasses for reducing emigration delays and mortality in 

salmonid smolts (Arnell, 2004; Marsh, 2004; Xenopoulos et al., 2005; Wilby and Harris, 

2006; Garcia de Leaniz, 2008; Kemp and O'Hanley, 2010; Christierson et al., 2012). 

Further to this, river managers should prioritise the removal or modification of 

overflowing weirs situated within tributaries (such as Murray Cauld ) or far into the river 

system. Proximate causes of delay and mortality during the early stages of smolt 

migration should be mitigated or nullified completely if at all possible. The structure of 

the weir should also be taken into account when structures are being prioritised for 

removal or passage provision. Weirs such as Murrays Cauld with completely uniform 

weir faces being prioritised over cut (Mertoun Cauld)and ruinous (Melrose Cauld) weirs 

due to higher delays associated with uniform weir faces. To ultimately test the impact of 

weirs future studies should consider a Before-After Control-Impact (BACI) design, where 

tenable, using multiple years worth of smolt migration data for each treatment. Further 

to this, more detailed information on smolts lost while migrating downstream would 

also be very useful for management purposes: unless definite causes can be assigned for 

losses it is difficult to take measures against them.
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Chapter 4: The migration of spawning sea trout (Salmo 

trutta) and Atlantic salmon (Salmo salar) in the River 

Tweed, Scotland.  

4.1 Introduction 

The occurrence of pronounced spawning migrations, where these occur, is a reflection 

of the restricted spatial and temporal distribution of reproduction for fish populations 

(Lucas and Baras, 2001). Anadromous fishes may migrate varying distances from salt-

water into freshwater to spawn, dependent on the location of habitats for reproduction, 

be it into the lower sections of a river such as for European smelt (Osmerus eperlanus) 

or further up the main channel and tributaries like salmon and trout species (Lyle and 

Maitland, 1997; Finstad et al., 2005a; Östergren et al., 2011). 

Like all anadromous fish, Atlantic salmon spend a considerable portion of their 

life in saltwater and only migrate back to their home rivers to reproduce after spending 

one to four years in the North Atlantic feeding (Hansen, 1993; Sections 1.6-1.8). The 

factors influencing the homeward migration in Atlantic salmon are not currently known, 

although sexual maturation depends on a combination of genetics and growing 

conditions at sea (Hansen and Quinn, 1998). Similarly, sea trout also spend a great deal 

of their life in saltwater but the extent of their migration is much more variable than 

Atlantic salmon (Pratten and Shearer, 1983; Berg and Berg, 1987). Sea trout either 

remain within the coastal area near their home river or undertake migrations that can 

be thousands of kilometres long (Pratten and Shearer, 1983; Berg and Berg, 1987).  

Atlantic salmon are highly variable in the timing of their return run towards 

coastal home waters and rivers with timing varying at an intra-population as well as 

inter-population level (Fleming, 1996; Klemetsen et al., 2003). It is also suggested that 

Atlantic salmon can arrive at coastal and home rivers many months before spawning 

occurs (Fleming, 1996; Klemetsen et al., 2003). The return migration is period involving 

active swimming, with fish often migrating with as well as against oceanic currents 
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(Hansen and Quinn, 1998). During this period Atlantic salmon can move at great speed, 

estimated groundspeeds range between 50-100 km day-1 (Hansen and Quinn, 1998).The 

saltwater migration of salmonids back to the mouth and estuary of home rivers appears 

to be a two part process (Hansen et al., 1993). Fish navigate from oceanic feeding areas 

to coastal waters in the primary stage and then migrate from coastal waters and 

estuaries into their specific home rivers using olfaction in the secondary stage (Hansen 

et al., 1993; Davidsen et al., 2013).  

Atlantic salmon move from coastal waters through the estuary and into 

freshwater rapidly (Thorstad et al., 1998; Solomon and Sambrook, 2004). Once initiated 

river entry only takes hours, suggesting that there is no physiological adaptation period 

required when moving from saltwater to freshwater (Hogasen, 1998; Thorstad et al., 

1998; Solomon and Sambrook, 2004). An important proximate factor influencing river 

entry from coastal waters appears to be Increases in river discharge and is usually 

associated with other factors such as river temperature, tides, light and water 

chemistry(Banks, 1969). However, subsequent up river movement by Atlantic salmon 

and sea trout in the River Tyne, UK was not solely governed by river discharge (Bendall 

et al., 2012). It was noted that increased discharge from fishes' natal tributaries 

provoked upstream movement whereas increased discharge from other tributaries did 

not (Bendall et al., 2012).Annual timing of river entry plays a role in the migration and 

spawning position of Atlantic salmon within a catchment (Laughton and Smith, 1992). 

Atlantic salmon tagged in Scottish East-coast rivers showed distinct differences between 

early and late migrants, as earlier migrants moved further in to the river system than 

later migrating individuals (Laughton, 1989; Laughton and Smith, 1992; Webb, 1992). 

Several factors have been associated with run timing in Atlantic salmon including; 

temperature regime, hydrological conditions, length and difficulty of migration as well 

as sea age at maturation (Laughton and Smith, 1992; Fleming, 1996; Klemetsen et al., 

2003).  

Atlantic salmon and sea trout migration after river entry appears to be formed of 

separate behavioural stages; the migration stage, the searching stage and the holding 
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stage (Hawkins and Smith, 1986; Bagliniere et al., 1990; Økland et al., 2001). The initial 

migration stage is when the majority of the salmon and sea trout migration is 

undertaken and can last between a week to over a month, with the length of the stage 

depending on migration distance (Økland et al., 2001; Finstad et al., 2005a). During this 

stage fish sustain their upstream movement rate, with differing flows and time of day 

not having an effect. Stepwise upstream movements then begin after the fish first stops, 

after which movement appear to be restricted to crepuscular and nocturnal periods 

(Laughton, 1989; Webb, 1989; 1990; Bagliniere et al., 1991). Salmon often stop in river 

for resting periods, the number of these stops tend to increase with migration distance 

(Økland et al., 2001). The length of these resting periods can last months for early 

migrants, with fish leaving holding pools and moving upsteam to spawning areas in the 

autumn (Webb and Hawkins, 1989; Solomon et al., 1999). Despite being a period of 

mainly nocturnal movement it can be noted that salmon actively pass obstructions such 

as fish passes and waterfalls during daylight in the migration stage (Neave, 1943; 

Kennedy et al., 2013). Upstream movements past obstructions can extend to twilight 

and night periods as well (Dunkley and Shearer, 1982). After completing the migratory 

stage salmon can enter a residence period that can last several months until spawning 

(Thorstad et al., 2008). 

The second stage is often called the searching stage, where fish make erratic 

movements often moving above and below their eventual spawning location, or the 

spawning tributary (Økland et al., 2001; Finstad et al., 2005a). The search phase may be 

an important stage where salmon select spawning area, look for mates or look for 

potential holding areas prior to spawning (Thorstad et al., 2011b). The third stage is the 

holding phase (also known as ‘staging’) where sea trout and salmon appear to undergo 

very little movement prior to spawning (Økland et al., 2001; Finstad et al., 2005a). 

Studies tracking Atlantic salmon during the later stages of the spawning migration 

observed that the fish moved rapidly for a two day period post release, and that they 

reduced their movement rate nearer to the spawning period with fish eventually 

ceasing to move between spawning areas once spawning had commenced (Bagliniere et 
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al., 1990; Bagliniere et al., 1991). Once in the spawning area male salmon adopt 

spawning territories and have also been observed moving between multiple females 

and it has been observed that certain males showed a greater frequency of sexual 

activity than other males by moving between more females (Webb and Hawkins, 1989; 

Foote, 1990). After spawning the fish do not tend to leave the spawning area and many 

are found dead (Williams et al., 2010). Some adults do survive as kelts after spawning 

and make their way back to sea to recover (Bendall et al., 2005, section 1.8) 

Sea trout undergo a similar spawning migration to that seen in Atlantic salmon, 

although sea trout make much wider use of smaller tributaries for spawning. However, 

some populations are known to favour the mainstem rather than tributaries for 

spawning (Östergren et al., 2011). Due to the relatively small size of the rivers and 

streams that some populations of sea trout spawn in, flow levels have a large effect on 

migration (Campbell, 1977; Svendsen et al., 2004). Aarrestrup and Jepsen (1998) found 

that male sea trout spent a greater period in the spawning area than females, possibly 

due to spawning success being reliant on available ripe females. Due to the partially 

iteroparous nature of sea trout, post spawning, many individuals can then descend the 

river and spend a period of 3-5 months at sea before repeating the migration to spawn 

again the following year (Bendall et al., 2005). 

 Management of fish populations in a large Scottish river are dependent on in-

depth knowledge of their migratory patterns, especially sub-population specific run 

timing and specific responses to environmental variables. This is especially important 

when salmonid populations within the river are an important commercial and 

recreational commodity, with high socio-economic value to the area. Of specific 

interests is how sea trout and Atlantic salmon differentially utilise the Tweed catchment 

for spawning as well as any variations in migration rate between species. Such 

information can be used to greatly enhance the protection and management of these 

species during an invaluable period of their life history.  
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4.1.1 Study area 

The River Tweed supports some of the highest Atlantic salmon and sea trout 

populations in the UK and is used extensively for sport fishing as well as commercial net 

fisheries (Elliott et al., 1997). Other aspects of the Tweed’s biology are covered in 

Chapter 2. The Tweed’s sea trout and Atlantic salmon populations appear to contain 

several discrete sub-populations. For example, rod catch records show that within the 

Tweed, Spring salmon sustain an early fishery downstream of the confluence with the 

Ettrick Water but are seldom caught upstream, in the Upper Tweed (Campbell, 2005). 

The sea trout stocks of the Tweed are generally considered a polymorphic component of 

the general trout population (Campbell, 2005). However, recent stable isotope analysis 

suggests that differing ecotypes predominate within separate sub-populations of the 

Tweed (Briers et al., 2013). Also, the genetic profile of some sea trout sub-populations, 

such as the College Burn, are distinguishable from other Tweed sea trout sub-

populations (Bekkevold personal communication). 

Scottish East Coast salmon are genetically distinguishable from other regions in 

the UK (Coulson et al., 2013). Genetic variation between the salmon of different zones 

of the Tweed catchment is apparent (Coulson et al., 2013). However, no significant 

difference between individual tributaries has been found so far. The Tweed catchment 

sea trout population is genetically distinguishable from other populations within east 

coast Scotland as well as the major east coast rivers in Northern England such as the 

Tyne, Wear and Yorkshire Esk (Bekkevold personal communication). However, Tweed 

sea trout are genetically similar to the sea trout populations of minor Northumberland 

rivers such as the Aln and the Coquet on the genetic markers used so far(Coulson et al., 

2013). 

Catch data are available for the two remaining fish netting stations on the 

Tweed: Gardo netting station in the Tweed estuary and Paxton netting station close to 

the upper tidal influence limit of the Tweed (netting season May-September). This data 

shows that sea trout and salmon catches peak at different times in the year, with the 

sea trout run peaking in June and salmon catches peaking toward the autumn (Figure 
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4.2, Figure 4.3; data from Marine Scotland, analysed and presented by N. Gauld). 

Tagging totals show that more salmon are floy tagged than sea trout annually (Figure 

4.4; data from the Tweed Foundation, analysed and presented by N. Gauld). From the 

percentage of floy tagged fish recaptured by Tweed anglers it is shown that relatively 

more salmon than sea trout are caught by anglers in the lower river (Figure 4.5), 

suggesting that sea trout are fished for by anglers less in the lower river than salmon, or 

spend considerably less time in the lower river than salmon reducing likelihood of being 

caught by anglers, or are simply less susceptible to angling capture. It is also possible 

that the lower rate of recapture of tagged sea trout is due to significant numbers 

returning to the sea after tagging and so being unavailable to anglers on the River 

Tweed.
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Figure 4.1: Map of the Tweed catchment and sub-catchments. Red circles represent ALS positions, the black squares represent the 
capture/release sites, grey lines represent sub-catchment boundaries, dashed black line represents the Tweed & Eye Fishery District boundary.
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Figure 4.2: Mean monthly catch per unit effort (CPUE) for sea trout, Multi-Sea-Winter (MSW) 
salmon and grilse from Gardo netting station in the estuary of the Tweed in the period between 
1981-2009. Months presented reflect the duration of the net season. Error bars represent the 
standard error. * CPUE calculated as monthly catch per netsman. 
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Figure 4.3: Mean monthly catch per unit effort (CPUE) for sea trout, Multi-Sea-Winter (MSW) 
salmon and grilse from Paxton netting station in the lower Tweed in the period between 1988-
2009. Months presented reflect the duration of the net season. Error bars represent the 
standard error. * CPUE calculated as monthly catch per netsman. 

 

Figure 4.4: Mean numbers of sea trout (2000-2009) and salmon (1997-2009) conventionally 
(external T-bar tags) tagged per month at Gardo and Paxton netting stations. 
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Figure 4.5: Conventionally tagged sea trout (2000-2009) and Atlantic salmon (1997-2009) 
recapture proportions (proportion of tagged fish recaptured) in various reaches of the Tweed. 

4.2 Methods 

In order to fulfil the project goals of monitoring the migration pattern of adult sea trout 

and Atlantic salmon within the River Tweed acoustic tracking was carried out using fish 

tagged in the lower reaches of the river. Full justification of telemetry methods 

employed can be found in Section 2.4. 

4.2.1 Acoustic ALS locations 

Automatic listening stations were positioned along the River Tweed and its estuary. Two 

automatic listening stations were placed in the estuary to cover both the inner estuary 

and outer estuary so that tagged fish dropping out back to sea could be recorded. Main 

stem ALS positions were placed approximately every 11 km along the River Tweed 

upstream from the estuary until the final main stem ALS in the upper Tweed at Fairnilee 
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Water and Ettrick Water (Figure 4.1). Tributary ALSs were placed in the most suitable 

section of river for acoustic loggers (deep and quiet river) and before any branching sub 

tributaries. Most ALS units were deployed in free flowing sections of river, although four 

ALSs were deployed in the impounded water behind weirs (Ettrick ALS, Gala ALS, 

Mainstem ALS 7, Mainstem ALS 6; Figure 4.1). The area of tidal influence within the 

Tweed is relatively short at 12.5 km from the estuary mouth, as such all ALSs apart from 

the estuary ALSs were in freshwater and not tidally influenced.  

ALSs were deployed from the bankside on multi-braided rope tied to strong 

bankside trees or stakes with an attached anchor weight. Bankside deployment was 

favoured as to not disrupt local angling activities. Small floats were attached to the top 

of the ALS units to ensure that the ALSs remained upright during deployment. ALS units 

were attached to the rope in such a manner that they were positioned as close to the 

middle of the water column during average flows with allowances made to ensure 

functionality during lower than average flows. Estuary ALSs were deployed during low 

tide to ensure that ALS hydrophones were fully submerged at all points of the tidal 

cycle. All ALSs were range tested in the same manner as in section 3.2.2. 

4.2.2 Adult fish capture 

Fish were captured at various dates between July and October at Gardo in the estuary in 

2010 (Table 4.1) and Paxton House (Table 4.2) in the tidal zone in 2010 and 2011. 

Netting was usually carried out at approximately the time of the head of the flood tide 

on each date. Fish were netted using the “net and coble” technique where one end of 

the net remains held on the bank while the other is rowed out and round to make a 

semi-circle before being brought in to the bank and both ends being pulled together. As 

soon as the net was brought in, any captured untagged fish were transferred to aerated 

holding tubs. Due to the nature of the capture method a small number fish become 

trapped in the nets resulting in excessive net marking and scale loss. Only fish that 

showed minimal net marking were tagged. Only a small proportion of fish captured 

were telemetry tagged; many others were conventionally tagged, in studies not by the 

author. Netting dates were determined by the availability of the commercial netting 
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teams as the netting time needed to be bought and usable dates were limited. Netting 

dates were, therefore, spread to maximise the range of months in which fish were 

tagged but did not result in fish being tagged across all months due to limited netting 

seasons as well as a moratorium on netting during spring. However, fish were netted in 

October after the commercial netting season ended under scientific license. 

4.2.3 Atlantic salmon intragastric tagging procedure 

Atlantic salmon were anaesthetised by transferring them to a container containing 2-

Phenoxyethanol (0.3 ml L-1) and river water until they became unresponsive to external 

stimuli, lost equilibrium and their ventilation rate reduced. Once a fish was 

anaesthetised it was transferred to a measuring board where the fork length (mm) was 

measured and a scale sample taken. A uniquely numbered floy T-bar anchor tag was 

inserted in to the musculature below the dorsal fin for external identification of the fish. 

The fish was then intragastrically tagged, since this method is regarded as suitable for 

adult salmon, which do not feed, after return to rivers and, for which, regurgitation 

rates are normally low (Smith et al., 1998). An acrylic tube with smoothly rounded end 

was carefully inserted down the oesophagus, an acoustic tag (Models LP-7.3, LP-9, LP-

13, Thelma Biotel AS, Trondheim, Norway) was then placed in the tube and inserted into 

the stomach by carefully pushing it down the oesophagus with a plunger. The plunger 

was slowly removed from the oesophagus and the mouth and oesophagus were 

inspected to confirm tag retention. After the procedure the fish was placed in a 

container filled with highly oxygenated water for recovery. Once the fish displayed 

normal swimming behaviour and reacted to external stimuli it was then released back in 

to the river. The gastric tagging procedure from administration of anaesthetic to re-

release in the river typically took five minutes to complete.  Gastric tagging procedures 

were carried out by R. Campbell under the husbandry and management exclusion clause 

of the Animals (Scientific Procedures) Act 1986. 
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4.2.4 Sea trout intraperitoneal tagging procedure 

Surgical tagging was opted for in sea trout due to high tag regurgitation rates in prior 

studies (Gerlier and Roche, 1998). The same anaesthesia technique used for Atlantic 

salmon was also applied to sea trout. The fork length measurement (mm) was taken on 

a measuring board before the fish was placed on a V-shaped surgical table. A tube was 

then inserted in to their mouth and a dilute concentration of phenoxyethanol (0.15 ml L-

1) was then run over the gills for the first period of the procedure before the supply was 

changed to 100% river water near completion of the procedure. An incision was made 

on the ventral side of the fish anterior to the pelvic girdle before a disinfected 

(immersed in 90% ethanol, then allowed to dry in a sterile environment) acoustic 

transmitter (Models LP-7.3, LP-9, LP-13, Thelma Biotel AS, Trondheim, Norway) was 

inserted in to the body cavity. The incision was then closed with between three to five 

independent absorbable sutures (3-0 Vicryl rapide, Ethicon Ltd, Livingston, UK) 

dependent on incision size. After the procedure was completed the fish was placed in a 

recovery tub filled with highly oxygenated water and the fish was released once it 

demonstrated swimming behaviour and reacted to external stimuli. All procedures were 

carried out by M.C Lucas and N.R Gauld under UK Home Office License.  

 

Table 4.1: Summary of number of Atlantic salmon caught and tagged on each day of netting at 
Gardo during 2010. 

Species Tagging 
date 

Number 
tagged 

Fork Length [mean ± SD 
(range), mm] 

Weight [mean ± SD 
(range), kg]* 

Tag to body weight ratio  
[mean (range), %] 

Atlantic salmon 02/06/2010 2 690 3.2 1.710
-3

 (5.910
-4

 – 2.810
-3

)
 

Atlantic salmon 03/06/2010 4 708.3 ± 17.6 (690–725) 3.5 ± 0.26 (3.2–3.7) 2.610
-3

 (2.410
-3

 – 2.810
-3

) 

Atlantic salmon 08/06/2010 3 793.3 ± 112.5 (680–905) 5.3 ± 2.4 (3.1– 7.8) 1.910
-3

 (1.110
-3

 – 2.910
-3

) 

Atlantic salmon 09/06/2010 2 722.5 ± 31.8 (700–745) 3.7 ± 0.52 (3.3–4.1) 2.510
-3

 (2.210
-3

 – 2.710
-3

) 

Atlantic salmon 10/06/2010 1 800 5.2 1.710
-3

 

Atlantic salmon 11/06/2010 2 682.5 ± 53 (645–720) 3.1 ± 0.7 (2.6–3.6) 2.910
-3

 (2.510
-3

 – 3.410
-3

) 

Atlantic salmon 17/06/2010 1 600 2.2 410
-3

 

Atlantic salmon 25/06/2010 1 685 3.1 2.910
-3

 

Atlantic salmon 29/06/2010 3 655 ± 164.6 (465–755) 3.4 ± 1.2 (1.9 – 4.2) 310
-3

 (2.110
-3

 – 4.710
-3

) 

Atlantic salmon Total 2010 19 708 ± 89.8 (465–905) 3.7 ± 1.3 (1.9–7.8 2.510
-3

 (5.910
-4

 – 4.610
-3

) 

*Weight (lb) estimated from length (cm) using the local Tweed salmonid length to weight 
calculation (y = 0.008x2 - 0.7991x + 24.09, R² = 0.98716) and then converted into kilograms. 
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Table 4.2: Summary of number of fish caught and tagged on each day of netting at Paxton during 
2010 and 2011. 

Species Tagging 
date 

Number 
tagged 

Fork Length [mean ± SD 
(range), mm] 

Weight [mean ± SD 
(range), kg]* 

Tag to body weight ratio  
[mean (range), %] 

Atlantic salmon 12/06/2010 1 695.0 3.2 2.710
-4

 

Atlantic salmon 10/07/2010 3 546.7 ± 47.3 (510–600) 2 ± 0.2 (1.8–2.2) 4.510
-4

 (410
-4

–4.710
-4

) 

Atlantic salmon 24/07/2010 2 602.5 ± 17.7 (590–615) 2.2 ± 0.13 (2.2–2.4) 3.910
-4

 (3.810
-4

–4.110
-4

) 

Atlantic salmon 14/08/2010 4 553.8 ± 44.2 (500–590) 2 ± 0.16 (1.9–2.2) 4.410
-4

 (4.110
-4

–4.810
-4

) 

Atlantic salmon 28/08/2010 10 599.0 ± 101.3 (500–850) 2.6 ± 1.35 (1.9–6.3) 3.910
-4

 (1.410
-4

–4.810
-4

) 

Atlantic salmon 06/09/2010 3 660.0 ± 224.7 (475–910) 4 ± 3.43 (1.9–7.9) 3.310
-4

  (1.110
-4

–4.710
-4

) 

Atlantic salmon 27/09/2010 10 732.0 ± 102.7 (595–940) 4.2 ± 2 (2–8.9) 2.510
-4

  (110
-4

–4.110
-4

) 

Atlantic salmon 28/09/2010 7 705.0 ± 63.7 (605–785) 3.5 ± 0.92 (2.3–4.8) 2.710
-4

 (1.910
-4

–410
-4

) 

Atlantic salmon 29/09/2010 6 863.3 ± 133.4 (625–990) 7.2 ± 3 (2.4–10.6) 1.610
-4

 (810
-5

–3.810
-4

) 

Atlantic salmon 07/10/2010 5 567.0 ± 44.5 (500–610) 2.1 ± 0.18 (1.9–2.3) 4.310
-4

 (3.910
-4

–4.810
-4

) 

Atlantic salmon Total 2010 51 666.6 ± 134.5 (475–990) 3.5 ± 2.24 (1.9–10.6) 3.310
-4

 (810
-5

–4.810
-4

) 

Sea trout 26/06/2010 3 525.0 ± 13.2 (510–535) 1.9 ± 0.02 (1.8–1.9) 4.710
-4

 (4.710
-4

–4.810
-4

) 

Sea trout 10/07/2010 4 536.3 ± 22.5 (510–555) 1.9 ± 0.05 (1.8–1.9) 4.610
-4

 (4.510
-4

–4.810
-4

) 

Sea trout 24/07/2010 6 541.7 ± 24 (510–570) 1.9 ± 0.07 (1.8–2) 4.610
-4

 (4.410
-4 

–4.810
-4

) 

Sea trout 14/08/2010 3 495.0 ± 72.6 (420–565) 2 ± 0.11 (1.8–2.1) 4.510
-4

 (4.310
-4

–4.810
-4

) 

Sea trout 28/08/2010 1 470 1.9 4.710
-4

 

Sea trout 27/09/2010 10 577.0 ± 40 (520–660) 2.1 ± 0.27 (1.8–2.8) 4.210
-4

 (3.210
-4

–4.710
-4

) 

Sea trout 28/09/2010 3 546.7 ± 46.2 (520–600) 2 ± 0.2 (1.8–2.2) 4.510
-4

 (410
-4

–4.810
-4

) 

Sea trout 29/09/2010 3 576.7 ± 25.2 (550–600) 2.1 ± 0.13 (1.9–2.2) 4.310
-4

 (410
-4

–4.610
-4

) 

Sea trout Total 2010 33 547.4 ± 44.4 (420–600) 2 ± 0.18 (1.8–2.8) 04.510
-4

 (3.210
-4

–4.810
-4

) 

Atlantic salmon 15/09/2011 1 540 1.9 4.710
-4

 

Atlantic salmon 16/09/2011 9 663.9 ± 93.7 (490–765) 3.1 ± 0.98 (1.8–4.4) 3.110
-4

 (210
-4

–4.810
-4

) 

Atlantic salmon 26/09/2011 4 527.5 ± 56.2 (455–585) 1.9 ± 0.1 (1.9–2.1) 4.510
-4

 (4.210
-4

–4.710
-4

) 

Atlantic salmon 27/09/2011 10 712.0 ± 110.9 (520–880) 3.9 ± 1.5 (1.9–7.1) 2.810
-4

 (1.310
-4

–4.810
-4

) 

Atlantic salmon 28/09/2011 3 736.7 ± 161.7 (550–830) 4.5 ± 2.24 (1.9–5.8) 2.610
-4

 (1.510
-4

–4.610
-4

) 

Atlantic salmon 29/09/2011 1 500 1.9 4.810
-4

 

Atlantic salmon Total 2011 28 659.1 ± 121.4 (455–880) 3.3 ± 1.48 (1.9–7.1 3.210
-4

 (1.310
-4

–4.810
-4

) 

Sea trout 27/08/2011 1 550 1.9 4.610
-4

 

Sea trout 15/09/2011 6 535.0 ± 33.3 (500–580) 1.9 ± 0.09 (1.9–2.1) 4.610
-4

 (4.310
-4

–4.810
-4

) 

Sea trout 16/09/2011 8 621.3 ± 61.7 (560–760) 2.5 ± 0.75 (2–4.3) 3.710
-4

 (210
-4

–4.510
-4

) 

Sea trout 27/09/2011 8 593.8 ± 60.1 (535–700) 2.3 ± 0.54 (1.9–3.3) 410
-4

 (2.710
-4

–4.710
-4

) 

Sea trout 28/09/2011 3 513.3 ± 41.6 (480–560) 1.9 ± 0.07 (1.9–2) 4.710
-4

 (4.510
-4

–4.810
-4

) 

Sea trout 29/09/2011 6 569.2 ± 97.2 (495–730) 2.3 ± 0.78 (1.9–3.8) 4.110
-4

 (2.410
-4

–4.810
-4

) 

Sea trout Total 2011 32 576.1 ± 69.6 (480–760) 2.3 ± 0.59 (1.9–4.3) 4.210
-4

 (210
-4

–4.810
-4

) 

*Weight (lb) estimated from length (cm) using the local Tweed salmonid length to weight 
calculation (y = 0.008x2 - 0.7991x + 24.09, R² = 0.98716) and then converted into kilograms.  
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Table 4.3: Specifications of the acoustic transmitters used. 

Tag 
Model 

Coding 
map 

Frequency 
(kHz) 

Mass in 
air (g) 

Mass in 
water 
(g) 

Length 
(mm) 

Diameter 
(mm) 

Guaranteed 
tag life (days) 

Estimated tag life 
(days) 

LP-7.3 1206 69 1.9 1.2 18 7.3 100 165 

LP-9 1206 69 4 2.5 23 9 317 528 

LP-13 1206 69 9 5.6 26 13 486 807 

 

4.2.5 Manual tracking 

The section of river between the first river acoustic listening station (Tweed ALS 1; 

Figure 4.1) and the estuary listening station array was tracked by boat (with an outboard 

motor) using a mobile acoustic receiver and directional hydrophone VR100 Acoustic 

tracking receiver and VH110 directional hydrophone; Vemco, Bedford, Nova Scotia, 

Canada) on several occasions per year during the study periods (June to November). The 

boat was launched just below the ALS and driven at low throttle down the river at a 

speed less than 100 m per minute to ensure low acoustic noise and that no acoustic tags 

were missed by moving through their reception zone too fast. The directional 

hydrophone was slowly articulated from the front of the boat allowing the operator to 

sweep across the river, checking for tags. As soon as the first pings from an acoustic tag 

coding sequence were detected the boat’s engine was stopped and the hydrophone was 

manoeuvred until the tag sequence was detected again. Once the full tag sequence was 

detected and logged on the tracking unit the boat engine was restarted and movement 

down river was recommenced. Additional manual tracking by foot was carried out using 

the protocol described in Section 3.2.2. 

4.2.6 ALS data retrieval 

Data retrieval and maintenance was carried out on a weekly basis for loggers in the 

mainstem of the River Tweed. Data retrieval from tributary loggers was carried out on a 

fortnightly basis due to their positions within the tributary where they were expected to 

fill with data less quickly. Maintenance and data retrieval on the four estuary loggers 
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was carried on a monthly basis due to the requirement of a boat and assistance from a 

River Tweed Commission water bailiff.  

4.2.7 External data retrieval  

Data for the volumetric flow of the River Tweed at; Boleside, Sprouston, and Norham as 

well as the Scottish tributaries; Ettrick Water (at Lindean), Gala Water (at Galashiels), 

Leader Water (at Earlston), Teviot Water (at Ormiston Mill) and Whiteadder Water (at 

Hutton Castle) was received from SEPA and flow data for the River Till (at Wooler) was 

provided by the EA. Catch records for the Gardo netting station between 1981-2009 and 

the Paxton netting station between 1988-2009 were provided by Marine Scotland. The 

Tweed Foundation provided external tagging and mark-recapture data for sea trout and 

salmon in the Tweed catchment. 

4.2.8 Statistical analysis 

The net movement rates for migrating adult sea trout and salmon were calculated using 

logged AMR data, whereby time delay and distance between stations were used to 

calculate groundspeed. Groundspeed was calculated as body lengths per second rather 

than kilometres per hour to compensate for variation in fish body length within the 

sample groups. Flow data during migration was calculated for each fish by calculating 

the mean flow during the period between each pair of AMR positions using 15 minutely 

flow records collated by SEPA. General Linear Mixed effects Models (GLMM) were used 

to analyse the variation in groundspeeds. Models included various biological variables 

pertinent to each individual research question. Fish ID was used as a random factor to 

account for any effects of pseudo-replication caused using multiple records of the same 

fish. A base model that included all variables was initially created. Multiple variants of 

the base model were run with individual or multiple variables exluded. The GLMMs 

were calculated in the statistical package R (R Core Team, 2012) using the lme4 R 

package (Bates et al., 2013). Model assumptions were met as there were linear 

relationships between predictors and responses, residuals were normal and displayed 

homoscedasticity.  
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 Model selection was based on the Akaike Information Criterion (AIC), which is an 

estimator of the trade-off between the goodness of fit of a model and the complexity of 

a model (Akaike, 1998). The model with the lowest AIC score was initially selected as the 

candidate model. However, model selection was expanded using the criteria described 

by Richards (2008), whereby all simpler variants of the candidate model with an AIC ∆-

value lower than 6 were also considered. Ultimately the model retained as the final 

model was the model with the fewest variables. The final models were then analysed 

using the pvals.fnc command in the languageR package (Baayen, 2011) to calculate p-

values based on Markov chain Monte Carlo samples. 

4.3 Results 

In total, 79 Atlantic salmon (51 in 2010, 28 in 2011) and 65 sea trout (33 in 2010, 32 in 

2011) were tagged at Paxton and a further 19 Atlantic salmon were tagged at Gardo 

during 2010. During both study seasons there were high rates of fish detection after 

release with 88% and 79% of tagged Atlantic salmon and sea trout respectively being 

detected up to 14 weeks after tagging ceased in 2010. Rates of detection were also high 

in 2011 with 82% of Atlantic salmon and 100% of sea trout being detected after tagging 

and release with detections continuing for up to 16 weeks after tagging ceased. As well 

as pre-spawning sea trout migration, post spawning sea trout kelt migration was also 

recorded in 2010- 2011. One (3%) and seven (21.8%) of the tagged adults were recorded 

moving downstream post-spawning in 2010 and 2011 respectively. This movement 

occurred as early as November 18th 2011 and as late as January 29th 2012. Based on 

sexing during tagging there was a 43:57 male to female sex ratio among sea trout kelts. 

4.3.1 Sea trout and Atlantic salmon migration destinations 2010-2011  

The estimated end point for each migrant was determined through a combination of 

fixed ALS records as well as manual tracking. Any fish that entered the Tweed, but then 

quickly descended the river and left estuary was defined as a 'dropout'. Any fish 

ascending a tributary in late summer-early autumn before rapidly descending it (within a 

week) and moving elsewhere in the catchment was discounted as a stray fish. Locations 
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of acoustically tagged Atlantic salmon were shown to predominate in the lower river in 

both years with a smaller number moving into the middle and upper Tweed as well as 

tributaries (Figure 4.6). Tagged sea trout displayed a different pattern to salmon with 

sea trout moving into and occurring in more tributaries as well moving further up the 

Tweed system (Figure 4.7). Of the Atlantic salmon tagged at Gardo in 2010, 83% were 

recorded as leaving the estuary and entering the sea (dropout) immediately after 

tagging while the remaining fish either halted movements at Ladykirk (6%) or Cornhill 

(11%) (Figure 4.8). 

 

Table 4.4: Table of disambiguating terms used in Figure 4.1 with location names. 

Figure 4.1 location Location name 

Whiteadder Whiteadder 

1 Ladykirk 

Till Till 

2 Cornhill 

3 Sprouston 

4 Sprouston 

Teviot Teviot 

5 Trows 

6 Mertoun 

Leader Leader 

7 Melrose 

Gala Gala 

Ettrick Ettrick 

Upper Tweed Upper Tweed 
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Figure 4.6: Proportion of tagged Atlantic salmon released at Paxton ceasing upstream migration 
at each site in the Tweed (for river section map locations see Table 4.4).  
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Figure 4.7: Proportion of tagged sea trout released at Paxton ceasing migration at each site in 
the Tweed (for river section map locations see Table 4.4). 
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Figure 4.8: Proportion of tagged Atlantic salmon released at Gardo in 2010 ceasing upstream 
migration at each site in the Tweed (for river section map locations see Table 4.4) 

4.3.2 Adult sea trout and salmon migration speed through the lower 
half of the Tweed. 

To assess sea trout and Atlantic salmon migration rates in the lower half of the Tweed 

(usingALS records from Ladykirk to Sprouston) various GLMMs were constructed using 

the following variables: volumetric flow, species, year, river section, release date, the 

interaction between flow and river section, the interaction between flow and species 

and the interaction between release date and species. Using the model selection criteria 

two models were retained (Table 4), model 21 having the lowest AIC score and model 5 

being a simpler variant of model 21 whilst still being within 6 delta values of model 21. 

The selected model (model 5) suggests that there was a relationship between release 
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date and the groundspeed of salmon and sea trout. The groundspeeds of salmon and 

sea trout migrating earlier in the season tended to be lower than the groundspeeds 

observed in later migrants (General Linear Mixed effects Model: n=223, df=5, p<0.0001; 

Figure 4.9). The inclusion of species as a variable in half the retained models (Table 4.5) 

suggests that species may also influence groundspeed. 

 

Table 4.5: Candidate General Linear Mixed Models for the migration speeds of sea trout and 
Atlantic salmon migrating through the lower half of the River Tweed. Table displays all variables 
used in each model as well as summary data for each model, factoral variables that have an 
effect on the model are represented by a “+” symbol. 

Model Intercept Year Flow Release 
date 

River 
Section 

Species Flow : River 
section 

Flow : 
Species 

df AIC Delta 
(∆) 

21 -7.928   0.02719  +   5 723.3 0 

5* -7.219   0.02566     4 728 4.73 

* Selected model. 

 

Figure 4.9: The relationship between release date and the movement rates of adult Atlantic 
salmon and sea trout. 
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4.3.3 Variation in adult sea trout and salmon migration throughout the 
River Tweed catchment. 

The movement rates of salmon and sea trout throughout the Tweed catchment were 

analysed using models that included a combination of the following variables: log 

volumetric flow, species, river section, year, release date, interaction terms for flow and 

species, interaction terms for flow and year, as well as fish ID as a random effect. Four 

models fitted the initial model selection criteria (Table 4.6); model 8 had the lowest AIC 

score but model 3 was the simplest variant. The candidate model showed that river 

section was the most important variable in relation to fish speed. The relationship 

between river section and fish movement rate illustrates that adults migrated at a high 

rate during migration in the main Tweed and migration rate slowed when moving into 

tributaries (General Linear Mixed effects Model: n=345, df= 6, p<0.005; Figure 4.10, 

Table 4.7, Table 4.8). Although not included in the selected model; fish species and 

release date were important variables as they were included in 50% of the initially 

selected models (Table 4.6). 

 Due to the low variability in speed between river sections in the main stem and 

an apparent slowing of fish when entering individual tributaries a separate analysis was 

conducted on a broader spatial scale, with river reach rather than the individual river 

sections used in the models. The main stem was separated into three groups based on 

location within the study area: lower (Release - Tweed 1 and Tweed 1 - Tweed 2), 

middle (Tweed 2 - Tweed 3, Tweed 3 – Tweed 4 and Tweed 4 – Tweed 5) and upper 

(Tweed 5 - Tweed 6 and Tweed 6 - Tweed 7) (Figure 4.1). All the tributaries studied were 

combined in an effort to maximise sample size. The relationship between river reach 

and fish movement rate illustrates that adults migrated at a lower rate the further into 

the main river and tributaries they migrated (General Linear Mixed effects Model: 

n=345, df= 16, p<0.0001; Figure 4.11, Table 4.7, Table 4.9). Based on all four models 

meeting initial selection criteria (Table 4.8) river reach was the most important variable, 

as it was included in 100% of the models. Other variables such as release date and 
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species were also important as they both appeared in 50% of the initially selected 

models. 

 

Table 4.6: Candidate General Linear Mixed Models for the migration speeds of sea trout and 
Atlantic salmon migrating through various river sections of the Tweed and its tributaries. The 
Table displays all variables used in each model as well as summary data for each model, factoral 
variables that have an effect on the model are represented by a “+” symbol. 

Model Intercept Release 

date 

River 

section 

Species Year log flow Species : 

Flow 

Year : 

Flow 

df AIC Delta 

(∆) 

8 -5.858 0.01865 + +     18 1290.5 0 

4 -5.147 0.01713 +      17 1294.1 3.63 

7 -0.8786  + +     17 1294.1 3.63 

3* -0.6341  +      16 1294.8 4.37 

*Model selected. 

 

 

Figure 4.10: The 2010 – 2011 movement rates of adult sea trout and Atlantic salmon combined 
in relation to river section in the study area, as denoted by acoustic receiver pairs. Error bars 
display the standard error of the mean. 
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Table 4.7: The movement rates of sea trout and salmon moving through each individual river 
section in the Tweed catchment in 2010-2011. Table denotes movement rates converted 
between relative speeds (bl s-1) and absolute speeds (m s-1) as well as mean fish size and sample 
sizes of fish moving in each river section. 

River section Net speed (log bl 

s
-1

)  SE 

Net speed (bl 

s
-1

)  SE 

Net speed (m 

s
-1

)  SE 

Mean length 

(mm)  SE 

Sample 

size 

Release - Whiteadder -2.55  0.37 0.09  0.03 0.012  0.003 580  53.1 4 

Release - Tweed 1 -0.34  0.13 1.23  0.09 0.145  0.01 618.6  11.6 104 

Tweed 1 - Till -1.78  0.62 0.33  0.18 0.039  0.018 575  41.2 5 

Tweed 1 - Tweed 2 -0.57  0.15 0.93  0.1 0.117  0.012 610.4  13.1 66 

Tweed 2 - Tweed 3 -0.57  0.17 0.93  0.1 0.121  0.014 593.3  11 53 

Tweed 3 - Tweed 4 -1.02  0.2 0.74  0.1 0.097  0.013 595.7  11.6 51 

Tweed 4 - Teviot -1.37  0.3 0.49  0.11 0.068  0.014 574  13.7 21 

Tweed 4 - Tweed 5 -0.67  0.25 0.9  0.24 0.113  0.027 607.3  20.5 21 

Tweed 5 - Tweed 6 -1.18  0.2 0.48  0.08 0.062  0.011 606.3  18.3 28 

Tweed 6 - Leader -1.72  1.02 0.46  0.38 0.061  0.051 583.3  20.3 3 

Tweed 6 - Tweed 7 -1.05  0.22 0.52  0.08 0.065  0.011 609.3  19.5 22 

Tweed 7 - Gala -1.95  0.14  0.022 500  1 

Tweed 7 - Ettrick -1.65  0.35 0.23  0.08 0.031  0.01 580  4.1 4 

Tweed 7 - Upper Tweed -0.8  0.35 0.69  0.21 0.083  0.025 636.1  39 9 

 

Table 4.8: Candidate General Linear Mixed Models for the migration speeds of sea trout and 
Atlantic salmon migrating through the reaches and tributaries of the Tweed. Table displays all 
variables used in each model as well as summary data for each model, factoral variables that 
have an effect on the model are represented by a “+” symbol. 

Model Intercept River 

reach 

Release 

date 

Species Year Flow Species : 

Flow 

Year : 

Flow  

df AIC delta 

(∆) 

8 -5.555 + 0.01852 +     8 1283.5 0 

4 -5.008 + 0.01737      7 1286.4 2.92 

6 -0.6483 +  +     7 1288 4.53 

2* -0.4518 +       6 1288.3 4.88 

*Candidate model 



  

114 

 

 

Figure 4.11: The 2010-2011 movement rates of adult sea trout and Atlantic salmon combined, in 
relation to position within the River Tweed catchment. Error bars display the standard error of 
the mean. 

Table 4.9: The movement rates of sea trout and salmon moving through each reach of the 
Tweed catchment in 2010-2011. Table denotes movement rates converted between relative 
speeds (bl s-1) and absolute speeds (m s-1) as well as mean fish size and sample sizes of fish 
moving in each river section. 

River reach Net speed (log bl 

s
-1

)  SE 

Net speed (bl 

s
-1

)  SE 

Net speed (m 

s
-1

)  SE 

Mean length 

(mm)  SE 

Sample 

size 

Lower -0.42  0.09 1.11  0.07 0.134  0.007  615.41  8.69 170 

Middle -0.77  0.11 0.84  0.07 0.109  0.009 596.64  7.44 125 

Upper -1.07  0.13 0.45  0.05 0.066  0.007 611.94  12.63 59 

Tributaries -1.62  0.2 0.39  0.07 0.052  0.009 574  10.52 38 

 

4.3.4 The role of river flow on adult migration within tributaries  

General Linear Models (GLM) were used to study the impact of biological and 

environmental variables on the ground speed of sea trout and salmon migrating from 

the mainstem into the tributaries of the Tweed. Model variables included: date of 

release, species, year and volumetric flow. General linear models were used instead of 
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GLMMs since the sample data only included single records for each unique fish and 

therefore pseudo-replication was not an issue. Out of the two selected models model 2 

was selected as the candidate model based on AIC score and model complexity (Table 

4.10). Candidate model results suggest that the groundspeed of adult salmonid migrants 

(adult sea trout and salmon combined) moving from the main Tweed into the spawning 

tributaries was influenced by the flow rate of the tributaries. Adults migrated at higher 

speeds when volumetric flow in the tributaries increased (Linear regression: n=39, df= 3, 

F=5.545, p<0.05; Figure 4.12). However, the null model (a model with no explanatory 

variables) was also included within the initially selected models (Table 4.10) suggesting 

that variation explained by the model is relatively weak. 

 

Table 4.10: Candidate General Linear Models for the migration speeds of sea trout and Atlantic 
salmon migrating through the tributaries of the Tweed. Table displays all variables used in each 
model as well as summary data for each model, factoral variables that have an effect on the 
model are represented by a “+” symbol. 

Model Intercept 

Release 

date Species Year Flow df AICc Delta (∆) 

9* -2.221    0.2977 3 155.8 0 

1† -1.464     2 159 3.18 

*Candidate model, † null model 



  

116 

 

 

 

Figure 4.12: The combined movement rate of migrating sea trout and Atlantic salmon in the 
tributaries of the Tweed.  

4.3.5 Interspecific differences in diel migration timing between Atlantic 
salmon and sea trout. 

To explore the relationship between diel timing of migration, time of day models were 

built relating movements relative to dawn to various biological and environmental 

factors. Time of movement in relation to dawn was chosen as a way to remove any 

temporal autocorrelation caused by decreasing day length in the Autumn and Winter. 

The base model included variables for; river reach, species, year, fish speed, release date 

and flow. Using the model selection criteria 2 models were initially selected (Table 4.11). 

However, the inclusion of the null model (model 1) within the initially selected models 

suggests that evidence provided by the models is weak. Model 3 was selected as the 

candidate model as it was the simplest model (aside from the null model). Model 3 

shows that there is a near-significant difference in migratory timing between sea trout 
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and Atlantic salmon, with sea trout moving during hours of darkness and Atlantic 

salmon moving diffusely around dawn (General Linear Mixed effects Model: n=392, 

df=4, p>0.05; Figure 4.13). However, migratory adults predominantly migrated during 

darkness regardless of species (Pearson’s Chi-squared Goodness of Fit: n= 392, 2=9.8, 

df=1, p<0.005; Figure 4.14). Movements in earlier months in the tagging period up until 

September show a predominance of night-time movement, although from October 

onwards both sea trout and Atlantic salmon seem to move at all hours of the day (Figure 

4.14). 

 

Table 4.11: Table displaying model variables and model attributes for diel timing GLMMs. 

Model Intercept River 
reach 

Release 
date 

Species Year Swimming 
speed (bl s

-1
) 

Flow df AICc Delta (∆) 

5* 0.0931   +     4 2598.1 0 

1† -0.6232       3 2599.4 1.25 

*Selected model, † Null model 

 

 

Figure 4.13: The mean migration timing of Atlantic salmon and sea trout in relation to dawn. 
Error bars display standard error of the mean, the dashed line represents dawn. 
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Figure 4.14: Rose plots of sea trout (green) and Atlantic salmon (black) diel activity on a monthly 
basis during 2010-2011 combined. 
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4.4 Discussion 

This study shows explicit differences in the use of areas of the River Tweed for spawning 

by Atlantic salmon and sea trout (particularly later running sea trout), assuming that the 

track locations at spawning term indicate the spawning locations for tracked fish, an 

assumption made in most tracking studies (Aarestrup and Jepsen, 1998; Finstad et al., 

2005a). The current study found that Atlantic salmon of the runs tagged predominantly 

used the lower to middle sections of the main Tweed with the sea trout widely using 

tributaries and upper sections of the river (Figures 4.6 & 4.7). However, the sample of 

salmon tagged excluded spring running salmon that are expected to spawn further into 

the river system. Also the earlier running salmon tagged at Gardo appeared to drop out 

of the river system, otherwise they would be expected to migrate further into the river 

than their Paxton counterparts that were tagged later in the year (Unpublished data, see 

Campbell (2005)). The high dropout rate of the Gardo fish is of management interest as 

it shows that tagging there for exploitation rate work would be very vulnerable to bias 

due to this. However, it has been shown that fish tend to leave estuaries during periods 

of low flows and high temperature, like those experienced in the summer of 2010 so this 

may also need to be considered (Solomon and Sambrook, 2004). An alternative 

explanation to this may be that the fish netted in Gardo were stray fish of non-Tweed 

origin. It is suggested that as much as 3-6% of mature salmon return to rivers other than 

their natal river(Stabell, 1984; Jonsson et al., 2003). Hence, salmonids entering the 

Tweed estuary of non-Tweed origin may leave the Tweed system to return to their 

home river.  

Migratory fish seemed to be influenced by volumetric flow when migrating 

through tributaries. It was also observed that migration rate through through the lower 

half of the river varied in relation to date of release. As such, earlier migrants for both 

sea trout and salmon tended to migrate through the lower river slower than later 

released fish. Migration rates throughout the entire river system were at their highest in 

the main Tweed with speeds in river sections in the main river being consistently higher 

than in tributaries. When split by river reach instead of river section it was observed that 
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migration speeds for sea trout and salmon combined were fastest in the in the lower 

river with a gradual decline when moving through the middle and upper river with fish 

moving at their slowest when moving between the main river and tributaries. There was 

a near significant difference between species' diel migration patterns, with sea trout 

migrating more during darkness and salmon migrating near to dawn, with both species 

most active in the hours around dawn, suggesting crepuscular migration. However, 

when species was not taken into consideration the overall data indicated fish tended to 

migrate during periods of darkness, although there was some suggestion of a shift from 

nocturnal to all day movement between September and October. While the results 

presented mirror results from past research this study is one of few that investigates the 

migratory behaviour of both Atlantic salmon and sea trout tagged within the same time 

periods in relation to environmental variables as well as their spawning positions within 

a large catchment (Bagliniere et al., 1990; Bagliniere et al., 1991; Aarestrup and Jepsen, 

1998; Svendsen et al., 2004; Finstad et al., 2005a; Östergren et al., 2011).  

 In the current study the spawning position of Atlantic salmon and sea trout 

varied considerably, however Finstad et al (2005a) found that Atlantic salmon and sea 

trout spawned within the same general area. It was also noted that fish tended to only 

migrate between 2-24 km to spawning locations. However, It is noted that the Tweed 

catchment is considerably larger than the River Lærdalselva, and the Tweed is not 

subject to severe winter icing which can restrict early and late runs by sea trout and 

salmon. Since the majority of Atlantic salmon were tagged within the peak salmon run 

during August-September in both years samples for earlier running fish were low. 

Evidence suggests that earlier running salmon migrate further into the river system, 

which may explain why salmon tagged in the current study predominated within the 

lower-mid Tweed (Laughton, 1989; Laughton and Smith, 1992; Webb, 1992). Sea trout in 

the Tweed predominantly spawned within Tributaries or the upper main channel (60-

77%), studies in Swedish rivers found that spawning position varied between rivers with 

fish spawning in the main channel in some rivers whilst high numbers of fish spawned 

within tributaries (70%) in other rivers (Östergren et al., 2011). 



  

121 

 

 In the current study 82-88% of Atlantic and 79-100% of sea trout were 

successfully tracked after being released. With intragastric tagging in Atlantic salmon 

there is an inherent risk of tag regurgitation. Prior research on the Tweed has suggested 

regurgitation rates are on average 14.8% (12.5-16.7%) which may explain a proportion 

of those salmon tagged for which no detections were made in the current study (Smith 

et al. 1998). However, in this study, in 2010 one salmon was recaptured by an angler 

which retained the tag within its stomach, while no salmon were recaptured without a 

transmitter in their stomach, so suspected regurgitation rates in the current study are 

based entirely on fish found repeatedly to be stationary during manual tracking. In 

Section 3.2.2 using the same transmitter series it was found that the transmitters had a 

low failure rate, operating well beyond their specified guaranteed lifetime and when 

transmitters were randomly placed on the bed of a tributary 90% of transmitters were 

detectable. However, this control measure was carried out on a relatively shallow, slow 

flowing tributary so these results may not emulate the main channel of the Tweed 

effectively which may mean that regurgitated tags were possibly not detected as 

effectively. 

Modelling the movement of both sea trout and salmon throughout the Tweed 

catchment showed that migration speed slowed as fish migrated further into the river 

system with fish migrating at their slowest when entering tributaries. These gross 

movements based on detections from the ALS network roughly coincide with movement 

patterns seen in prior studies into sea trout and Atlantic salmon spawning migration 

with associated slowing in speed being due to switching between migration phases 

(Økland et al., 2001; Finstad et al., 2005a). The number of rest stops required by 

migrating fish also increases with migration distance, suggesting that the observed 

slowing of fish as they moved further into the river system is tied to the increasing 

requirement to rest (Økland et al., 2001)The markedly reduced migration rate moving 

into tributaries may also suggest why earlier migrants penetrate further into catchments 

(Östergren et al. 2011).  
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Flow models suggest that salmon and sea trout migration rate is influenced by 

increasing discharge when moving through  into tributaries from the mainstem. In 

general this pattern is in keeping with past research where salmon and sea trout 

movement has been linked with discharge (Smith et al., 1994; Thorstad and Heggberget, 

1998; Svendsen et al., 2004). However, Jonsson and Jonsson (2002) found a negative 

relationship between river discharge and number of sea trout ascending into fish traps, 

with most fish ascending during flows between 7.5-10 m3 s-1, compared to the lower 

Tweed where the range of flows that fish ascended varied between 10-160 m3 s-1. The 

observed increase in migration rate into tributaries from the mainstem in relation to 

rising tributary flow may be explained by an increase in olfactory stimuli for the 

migrating fish. Bendall et al. (2012) observed that migrating adult salmonids only 

migrated past a barrier when the flow from their natal tributary increased, with no 

response being elicited by flow increases in other neighbouring rivers. 

Net catches within the estuary and tidal area of the River Tweed show that sea 

trout and Atlantic salmon enter the river over a large timescale (February-September) 

similarly broad timescales for river entry are observed in other rivers (Jonsson and 

Jonsson, 2002; Bij de Vaate et al., 2003). However, recent river entry data is limited on 

the Tweed due to restrictions in netting during late autumn-spring. The peak migration 

timing of the sea trout is within June and July in the Tweed, this is also observed within 

the Rhine Delta, although migration peaks during August-October in higher latitude 

Norwegian Rivers (Jonsson and Jonsson, 2002; Bij de Vaate et al., 2003). Sea trout 

tagging dates ranged between July-September in 2010 and August to September in 2011 

with the bulk of tagging occurring in September both years meaning that tagged sea 

trout would be predominantly composed of late run fish in each year. The tagged fish 

being later running fish may explain why the River Teviot is the primarily used tributary 

as the River Till has a highly evident early and mid-summer run. Due to this, future 

research in the River Tweed should aim to tag sea trout over a greater time period to 

better represent early and peak running sea trout within samples. 
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Results from diel migration models suggest that diel migration timing was not 

affected by study year, position within catchment (reach), fish movement rate or river 

discharge. Diel timing was not affected by species either but the results were 

approaching significance. However, migration timing on its own appeared to be 

predominately carried out at night by both sea trout and Atlantic salmon. This is 

supported by prior research that suggests that most migration is carried out by night 

and during spates when the water is turbid (Hawkins and Smith, 1986; Laughton, 1991; 

Solomon et al., 1999). It is thought that such nocturnal movement is an anti-predatory 

tactic (Banks, 1969). However, it is noted that the fish were first caught during the day, 

suggesting that river entry and initial river migration was not explicitly nocturnal or 

diurnal, consistent with prior research (Davidsen et al., 2013).  

The conclusion of this study is that the Tweed catchment is utilised differently by 

Atlantic salmon and sea trout for spawning. The current study suggests that the majority 

of the main stem and tributaries are utilised by salmonids for spawning (Figure 4.6, 

Figure 4.7). With the high water quality of the Tweed catchment and 2160 kilometers of 

river accessible to fish, proactive management of water resources is required to 

maintain the already high habitat suitability for salmonids (Gardiner, 1989; Currie, 

1997).The declining migration rate of migrating salmonids as they migrate further into 

the catchment (Figure 4.11) suggests that any modification to the river that is likely 

detrimental to fish passage should be avoided in tributaries and sections of river far into 

the river system. An example would be the construction of run of the river hydropower 

such as Archimedean screws type turbines as tailrace attraction may result in delayed 

migration. The impact of flow on migration rate into the tributaries (Figure 4.12) should 

also highlight the use for careful water management during adult migration. Specifically, 

abstraction of water from tributaries for agriculture use during the summer and autumn 

should be better monitored due to the peak sea trout run happening in summer (Figure 

4.2). As such over abstraction of water during this time period may adversely impact 

tributary flows. To ultimately test the migration of sea trout and salmon within the 

Tweed the period of tagging should be broadened to include the peak sea trout runs in 
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June-July as well as include the summer salmon runs as a way to account for sub-

population specific run timing. 
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Chapter 5: The homing migration of territorial brown 

trout (Salmo trutta) after displacement in the Blackadder 

Water, Scotland.  

5.1 Introduction 

In British rivers two forms of Salmo trutta predominate, resident brown trout that 

complete their lifecycle in freshwater and sea trout that emigrate to sea as juveniles to 

feed before returning to freshwater to spawn. Freshwater resident brown trout usually 

remain within deep pools and are capable of performing migrations in freshwater 

between spawning, nursery and feeding areas (Jonsson, 1989). As such, during their 

residency in freshwater, brown trout are subjected to a restricted use of habitat and 

often adopt restricted home ranges as well as acquiring a territory (Jonsson, 1989). A 

more in depth review of brown trout distribution, evolutionary origins, taxonomy and 

life history is covered in Chapter 1. 

The use of a home range has been recognised in many animals and has been 

succinctly described by Hayne (1949) as “the area over which the animal normally 

travels”(Burt, 1943; Gerking, 1953). A territory, in contrast to a home range, can be 

described as an area acquired and defended by an individual with the express intent of 

excluding other individuals (both intra-specific and inter-specific) from utilising the 

resources within (Maher and Lott, 2000). As such, territory holders potentially 

experience a slew of benefits such as:  lower predation risk, better access to mating 

territories or leks, access to desirable microhabitat and greater foraging opportunities; 

all of which can increase the survival chances and potential reproductive success of the 

territory holder (Brattstrom, 1974; Sargent, 1982; Stamps, 1983; Grant, 1997; Kim et al., 

2011). These advantages are especially pronounced in fish, where growth rates and 

metabolism can be highly variable and fitness is often associated with size (Metcalfe et 

al., 1995; Johnsson et al., 1999; Reid et al., 2012).  
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Territoriality in salmonids is prevalent during freshwater dwelling life stages, 

with territories being adopted early in the life history, often soon after emergence from 

redds (Keenleyside and Yamamoto, 1962; Elliott, 1990). Territorial behaviour in 

salmonids has also been shown to be largely an innate behaviour (Sundström et al., 

2003). In small streams trout can often come into sympatric competition with juvenile 

salmon which share many habitat preferences, although trout are shown to be more 

aggressive than similar sized Atlantic salmon when in competition (Heggenes et al., 

1999; Harwood et al., 2002). Brown trout in streams are subject to varying degrees of 

territorial competition with conspecifics, the outcome of which is usually skewed in 

favour of the territory holder. This is a paradigm in behavioural ecology with the 

territory occupier often winning territorial conflicts (Davies 1978; Krebs 1982; Alcock & 

Bailey 1997). 

Adult brown trout that hold territories in a river tend to retain their territories 

when subject to an increase in population density due to artificial over stocking 

(Heggenes, 1988). The length of time a brown trout holds a territory influences the 

successful outcome of conflicts as well as the length and aggression of the territorial 

conflicts (Johnsson and Forser, 2002). Aggression and success during territorial conflicts 

have also been linked to habitat preferences, with defenders in preferred habitats 

winning more conflicts and showing higher levels of aggression than defenders with less 

preferred habitat (Johnsson et al., 2000). 

Homing refers to the ability of an organism to return to a previously known 

spatially restricted area (Papi, 1992). As a behavioural phenomenon homing has been 

described in a wide array of animal species (Cook, 1969; Madison, 1969; Alyan and 

Jander, 1994; Luschi et al., 1996; Shen et al., 1998; Cannicci et al., 2000; Benhamou et 

al., 2003). Homing can occur over a variety of spatial scales from the relatively short-

range movements of pulmonate limpets (Siphonaria normalis) within intertidal ranges 

(Cook, 1969) toward homing after thousand kilometre foraging trips in white-chinned 

petrels (Procellaria aequinoctialis) (Benhamou et al., 2003).  Homing is employed by 

many fish species in freshwater (Lamothe et al., 2000; Keskinen et al., 2005; Gatz, 2007). 
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However, homing is perhaps most widely recognised and researched in salmonids where 

migration often encompasses many different phases (Miller, 1954; Saunders and Gee, 

1964; Stabell, 1984; Dittman and Quinn, 1996; Ueda, 2011b). Like many salmonids 

brown trout have the ability to return to their home ranges with a high degree of 

accuracy (Stuart, 1957). This has been demonstrated in various studies where brown 

trout have been experimentally relocated and have subsequently returned to the 

original home range, although the proportion of translocated fish homing  is rarely 100% 

(Harcup et al., 1984; Halvorsen and Stabell, 1990; Armstrong and Herbert, 1997; 

Nordeng and Bratland, 2006). However, failure to home cannot, in itself, be seen as an 

outright failure, as in some cases straying can be adaptive mechanism to increase 

fitness, especially in areas where rivers may be open to colonisation (Leider, 1989; 

McDowall, 1996; Ayllon et al., 2006). 

Homing in fish is carried out using a suite of sensory mechanisms such as 

magnetic field reception (Dittman and Quinn 1996; Eder 2012), olfaction (Halvorsen and 

Stabell 1990; Nordeng and Bratland, 2006) as well as visual/spatial mapping (Neville, 

2006; de Perrera, 2008). However, evidence suggests that homing in brown trout is 

largely olfaction based, with experimental fish responding to odorants of their home 

population (Halvorsen and Stabell, 1990) and apparently losing the ability to home after 

becoming anosmic (Nordeng and Bratland, 2006). 

Homing is especially important considering that certain environmental 

conditions can lead to the displacement of fish from their home ranges. Events such as 

severe flooding can transport young fish away from their home range (Ottaway and 

Clarke, 1981; Harvey, 1987). Contrary to this, fish, especially juveniles, in small streams 

may also be subject to displacement due to falling water levels (Huntingford 1999, 

1998). As well as river level fluctuations, fluctuations in dissolved oxygen (DO) can also 

lead to the displacement of fish, with falling DO leading to fish moving away from the 

site, returning when DO levels increase (Gent et al., 1995). Other anthropogenic causes 

for displacement of fish could be directly tied to river management. Stocking of fish 

reared within the river catchment in a hatchery using abstracted river water could 
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potentially artificially increase competition at the site of stocking (Kaspersson et al., 

2013). Fish rescues are a common management practice where works on the river could 

potentially lead to mass fish kills. Usually rescued fish are then displaced to a safe area 

of river. 

Since territories are of high value and brown trout are capable of accurately 

homing; do displaced brown trout home to their previously held territories when 

offered empty territories at their site of displacement? Or is homing a continuum, with 

an active trade off occurring within displaced fish, with fish choosing to abandon 

previously held territories in favour of emigration to novel but resource abundant 

environments with greater growth potential? And, how does this integrate with the 

known life history of the brown trout species complex, where individuals often sacrifice 

territories in favour of life within larger, deeper river or even the sea (Ovidio et al., 1998; 

Crisp, 2008; Wysujack et al., 2009)? 

5.1.1 Study area 

The Blackadder Water is a tributary of the Whiteadder Water in the River Tweed 

catchment. The Blackadder Water rises in headstreams in the Lammermuir Hills and 

runs for 10 km before joining with the Whiteadder Water at Allanton in the Scottish 

Borders. The Blackadder Water has a catchment area of 159 km2 which includes the 

tributaries; Wedderlie, Edgar, Fangrist and Langton Burns (Figure 5.1). 

The geology of the Blackadder catchment is mostly comprised of old red sand 

stone and calciferous sand stone overlain by boulder clay, with 65% of the catchment 

consisting of highly permeable bedrock. Land cover in the catchment is mainly 

comprised of grassland and grazing (49.6%) mainly in the hills, arable and horticultural 

land (28.3%) on lower land; light forestation (10.5%) and heath (10.4%) in higher 

altitude hilly areas (Centre for Ecology and Hydrology, 2013). The hydrology of the 

Blackadder water itself is natural with no in river structures or flow regulation; mean 

flows are 1.86 m3 s-1 at the lower extent of the cathment Q95 are below 0.27 m3 s-1 and 

Q10 flows occurring above 3.76 m3 s-1  (Centre for Ecology and Hydrology, 2013).
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Figure 5.1: Map of the study river section. White circles denote the three release sites, black bars represent pass through PIT 

detection loops and the limits of the survey sections 
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5.2 Methods 

5.2.1 Experimental rationale 

For the purposes of this experiment captured fish were separated into three 

experimental groups of fish: capture, treatment and control, with the latter two groups 

being displaced outside their assumed home range. As such the study river section was 

separated into three release sections; capture section, control section and treatment 

section (Figure 5.1). In the displaced groups the treatment group are released in an area 

that has had its local salmonid population depleted, meaning there should be abundant 

free territories. However, the control group are released into a zone with a natural 

salmonid population, which is presumed to be near to carrying capacity. The capture 

group forms another control as they were not moved from their site of origin.  

 The study section of the Blackadder water was chosen due to its healthy 

population of brown trout along with its relatively narrow and shallow stream size, 

allowing for PIT telemetry to be a viable fish tracking technique. The study section of 

river was approximately 570 m long and its stream dimensions of the study river section 

averaged at 9.3 m (Range: 6 m – 17.6 m) in width and approximate section lengths for 

each experimental release section was 85 m. The intermediate section, the river in 

between the upstream extent of the control section and the downstream extent of the 

capture site was 300 m in length. The treatment section was below the control site, 

reasoning for this being that to prevent control fish moving through a treatment section 

(low salmonid population density) and being exposed to the treatment conditions 

during upstream homing movements. However, any treatment fish moving upstream 

are treated to (presumably) fully populated sections of river throughout their homing 

movement. Ideally the home ranges of individual fishes in the capture, control and 

treatment sections would be studied before the initiation of the displacement study, 

this was not feasible due to time and land access constraints. However, brown trout are 

thought to be relatively stationary when living in streams, although more mobile 

components of populations are known to exist (Solomon and Templeton, 1976; Harcup 
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et al., 1984; Höjesjö et al., 2007). With this in mind, the intermediate section was kept 

relatively short (under 300 m). This allowed for the displaced brown trout to be outwith 

their (presumed) core home range but still within a section of river in which they could 

have developed a spatial map for during excursive/exploratory trips during their 

lifetime.  

 Due to the proposed aims and methodology where the proportion of fish in each 

group returning back to their previously held territory, the degree to which handling 

might disturb normal homing behaviour in brown trout (which could also be modified by 

depletion of fish from the capture zone – something that could not be controlled for) 

and the upstream movement rate and behaviour of displaced homing brown trout were 

recorded. As such, methods required marking of fish and ideally relocating them 

telemetrically. 

The prediction is that, assuming trout can identify and compare habitat 

suitability along competitive encounters from their past experience in home territory, 

control fish should be much more likely to return home than treatment fish. This is by 

virtue of the high competitive encounters and low territory availability for fish released 

in the control zone, compared to those released in treatment zone. 

 

5.2.2 Experimental fish capture 

Experimental fish were captured via electro-fishing from the capture site on the 10th of 

August 2012. Stop nets were placed at either end of the 80 m river section to be fished 

and the section was fished upstream using a pulsed DC bank-side electro-fishing unit 

(Electracatch WFC4, Wolverhampton, England powered by 1KVA Honda generator). As 

well as the anode operator there were two assistants flanking the operator. Upon a 

salmonid fish > 10 cm nearing the anode the assistants used hand nets to capture the 

stunned fish, which was placed in a bucket partially filled with fresh water (to prevent 

fish from jumping out of the bucket). Brown trout smaller than 10 cm were ignored and 

left to safely drift pass the anode after being stunned, as they were too small for PIT 
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tagging. After 10 m of electro-fishing the captured fish were placed in a covered holding 

tub.  Fishing was resumed for another 10 m and the captured fish were emptied into 

another holding tub at 20 m. This was repeated for the full 80-m river section. The river 

section was re-fished once to increase the number of fish captures. Experimental fish 

were split by 10-m section so that experimental fish point of capture could be estimated 

to within 10 m. 

 

5.2.3 Radio and PIT tagging procedure 

Salmonids captured consisted of trout and salmon. Only trout larger than 15 cm were 

selected for tagging, as these were large enough for tagging with 23 mm PIT tags and/or 

radio tags, enabling their remote location. Remaining salmonids from the Capture Zone 

were measured and returned to their site of capture. Captured trout for tagging were 

either tagged solely with an HDX PIT or a combination of PIT and VHF radio (tag type PIP, 

173 MHz, 1996 mm, potted in medical grade silicone, 1.2 g weight in air, with a 12 

cm-long, 0.1 mm diameter whip antenna; Biotrack Ltd., Wareham, UK1) this was 

dependent on fish size with fish over 150 mm being tagged with both radio and PIT tags. 

Fish were retained within the eight separate capture tubs, which were aerated, prior to 

tagging. Fish were removed from the holding tubs and put into a separate induction 

tank for anaesthesia (tricaine methanesulphonate, MS-222 0.1 g L-1). Further procedures 

used for fish anaesthesia prior and during surgery as well as pre-surgical fish processing 

can be found in Chapter 3: Section 3.2.1.  

An incision was made on the ventral surface anterior to the pelvic girdle; incision 

length for PIT tag insertion was 5 mm and 15 mm for radio tag insertion. Tags were then 

placed in to the body cavity. For fish that were radio tagged the whip antenna was 

placed to trail externally from the abdomen, posterior to the pelvic fin insertion, using 

the shielded needle technique (Ross and Kleiner, 1982; Lucas and Baras, 2000). The 

Incision made for radio tag insertion was closed by 3-4 interrupted absorbable sutures 

                                                      

1 Tags re-batteried and re-potted by author 
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(4-0 Vicryl Rapide, Ethicon Ltd, Livingston, UK). The incision for PIT tag placement was 

not sutured as studies indicate this to be unnecessary (Jepsen et al., 2002; Bolland et al., 

2009). Post-procedure the fish were placed into a recovery tub filled with highly aerated 

water. Once the fish responded to external stimuli and were able to retain their 

equilibrium they were removed from the recovery tank and retained within a keep net 

until release. 

 

Table 5.1: Summary data for tagged brown trout released at each site. 

Release 
site 

Tag Number 
tagged 

Fork length [Mean ± SD 
(range), mm] 

Weight [mean ± SD 
(range), g] 

Tag/body weight ratio 
[mean (range), %]* 

Capture Radio + PIT 5 229.6 ± 8.5 (210 - 260) 145.2 ± 13.6 (116 - 197) 1.56 (1.1 - 1.9) 

Control Radio + PIT 5 278 ± 33 (240 - 410) 287.8 ± 96.4 (161 - 668) 1 (0.32 - 1.37) 

Treatment Radio + PIT 5 259.8 ± 34.4 (189 - 370) 204.2 ± 58.9 (80 - 369) 1.59 (0.59 - 2.75) 

Capture PIT 10 199.2 ± 16.1 (135 – 280) 107.1 ± 24.3 (25 - 252) 0.95 (0.23 – 2.4) 

Control PIT 10 195.6 ± 17.2 (134 – 298) 100.1 ± 28.9 (24 – 319) 1.05 (0.18 – 2.5) 

Treatment PIT 10 211 ± 28.6 (142 - 454) 95.5 ± 23.8 (29 - 279) 0.94 (0.22 – 2.07) 

*Tag to body weight ratio calculated from mass in air. 

 

5.2.4 Release sites 

Tagged fish were released into one of three separate release sites at random: capture, 

control or treatment (Figure 5.1, Table 5.1). Fish released at the capture release site 

were placed back into the river section where the fish were initially captured; this was 

to record the baseline movements of fish after a period of disturbance such as 

electrofishing and tagging. The control site was a section of river 300-390 m below the 

capture site where the salmonid populations were not interfered with, this treatment 

was to investigate the baseline movements of fish displaced into a river section with no 

available territories. The treatment site was a release site 390-470 m below the capture 

site, the salmonid population within the treatment site was artificially depleted by two 

passes of electrofishing. Stop nets were placed at either end of the treatment site and 

the river section was extensively electrofished for two passes. The fish removed during 



  

134 

 

the period of depletion were then placed back into the catchment separated from the 

treatment site and connected river by an impassable barrier.  

 The control section and treatment section were different lengths, 95 m and 80 m 

respectively. However, the total surface area of each section was similar (Table 5.2). In 

terms of hydrology the two sections were both predominated by glides broken up by a 

small number of riffles, each section had a limited area of back eddy and pool habitat as 

well. The sections also had similar bank side vegetation, long grass with small patches of 

rushes frequently occurring, with no overhanging shade from trees. The capture section 

on the other hand was a similar length to the control area, however it was generally 

wider and had a larger surface area than both downstream release sites. The increase in 

width meant that there were several shallow riffles as well as deeper glides. The capture 

site was also disrupted by several large islands meaning several small back eddies were 

present as well as deeper pool areas in places. The capture area was somewhat larger, 

out of necessity, to allow for a greater number of brown trout to be electrofished, 

elevating study sample size.   

 

Table 5.2: Stream and habitat characteristics of the sections within the study river section. 

Site Mean 
width 

( SE; 
[m]) 

Water 
surface 
area (m

2
) 

Total 
length 
(m) 

Riffle 
(%) 

Glide 
(%) 

Pool 
(%) 

Eddy 
(%) 

Bankside 
vegetation 

Tree 
cover? 

Treatment 
section 

8.75 ± 
0.14 

678.2 80 29 66 2 3 Grass No 

Control 
section 

7.35 ± 
0.16 

665.05 95 28 65 4 3 Grass No 

Capture 
section 

10 ± 
0.36 

842.425 82.5 23 66 11 0 Grass No 

Intermediate 
section 

9.8 ± 
0.16 

2768.45 280 35 57 7 1 Grass Partial 

5.2.5 Population estimation calculations 

Population estimation calculations for the three release sites were carried out using the 

fish captured by electrofishing on the 10th and 23rd of August. The control section 

fishing was not carried out on 10th August but was carried out on the 23rd August to 

avoid disturbing territory holding fishes unnecessarily. As such, the control section was 



  

135 

 

not a true control as the fish in the section were not exposed to the same fishing 

disturbance as the neighbouring treatment however the author felt that it was more 

important to ensure that on the experiment initiation day the control section was 

undisturbed and therefore was inhabited by brown trout in territories without any prior 

disturbance and hence in best position to defend their territories at time of the 

introduction of displaced fish moved from the capture section. 

The k-pass removal method was used to calculate the number of fish within the 

treatment section in order to determine the degree to which it was experimentally 

depleted of salmonids. In this method, for each electrofishing pass, the number of fish 

captured was recorded, and the captured fish were physically removed from the 

population. The overall population size can then be estimated from the number of fish 

successively removed with each pass. Under the assumptions that the population is 

closed (except for the removal of animals at each pass) and that the probability of 

capture for an animal is constant for all animals and from sample to sample, then the 

likelihood function for the vector of successive catches is computed. Using the Zippin 

(Zippin, 1956) and Carle Strub (Carle and Strub, 1978) methods the population size of 

the three release sites was calculated using the FSA R package (Derek Ogle, Northland 

College, 2013). 

 

5.2.6 Radio tracking 

The radio tagged fish were tracked twice daily, once within 2 h of dawn and once 2 h 

preceding dusk, beginning the morning after release, for a week. Fish were tracked on 

foot by two independent radio-tracking operators using mobile radio receiving units 

(SIKA Radio Tracking Receiver, Biotrack Ltd., Wareham, UK) with attached three element 

Yagi antennas. Operators slowly walked upstream, starting 200 m below the start of the 

study area, with the tracking receiver on a high gain frequency scan with a 4 second 

interval between frequencies. When a radio frequency was detected the frequency 

scanning was halted and the individual frequency was entered on the tracking receiver. 
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The gain was slowly lowered to narrow down the probable location of the radio tagged 

fish, frequent “null testing” was carried out by pointing the Yagi antenna away from the 

river to ensure that the frequency was not being detected out of the water. Once the 

operators were confident that the detected frequency was detected to within 5 m of 

river section a GPS fix of the location was taken (MotionX-GPS, Fullpower Technologies 

Inc., Santa Cruz, USA), the position was marked on a field map and notes were taken. 

Once the frequency was noted the frequency scan and upstream walk were resumed, 

with any further detected frequencies being scanned and recorded in the same manner.  

The upstream walk was concluded when the operators had passed 200 m beyond the 

upstream limit of the study area. Location fixes, field maps and notes were compared 

between operators at the end of the tracking session to ensure accuracy. To test for fish 

that had disappeared after tagging or were otherwise undetectable by radio tracking 

within the area of frequent tracking the tracking area was broadened to 1 km above and 

below the study river section on two separate occasions within the week of tracking. 

5.2.7 PIT detection array set up and maintenance 

The PIT detection array was set up using three separate HDX PIT reader and datalogging 

boxes, each with two PIT readers per box running in a master and slave arrangement 

(described in (Castro-Santos et al., 1996). This arrangement allowed for two PIT loops 

(scanning 8 times per second) per reader box to be set up without the need for 

multiplexing. Two deep cycle 110 Ah leisure batteries run in parallel powered each dual 

loop data logger. 

 The pass through loops were constructed out of 4 mm square high grade oxygen 

free multi-core copper cabling (Twin OFC loudspeaker cable, RS components, Corby, 

UK). Wooden stakes were secured into the bankside on opposing sides of the river and a 

length of 6 mm diameter cord was stretched taught between the two stakes 

approximately one metre above the streambed. The cabling was run along the bed of 

the stream perpendicular to the riverbank and then up the bank to the taught cord, 

along the cord, secured by cable ties, to form a single coil. The bottoms of the loops 
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were secured to the streambed by partially burying the loop under gravel and large 

stones from the streambed. The completed loop was then wired into a PIT tuning box 

(RFID Tuner, Texas Instruments, Dallas, USA), which was then connected to the data-

logging box with shielded coaxial cable. The loops were set up at points in the stream 

with widths varying between 6.6 m and 8.5 m; the height of the loops ranged between 

80 cm and 100 cm. Detection range from the loops was estimated to be 0.54 m from the 

loop. 

After initial set up the loops were then tuned to ensure maximal detection range 

and detection efficiency. Detection range from the loop was calculated by holding the 

tag to the loop and then slowly withdrawing the tag from the loop until detections 

ceased the distance being recorded, this was done multiple times along the width of the 

loop. Areas of non-detection within the loops field were searched for by placing tags 

within the loop and moving the tag between the top to the bottom of the loop and any 

areas where tags were not recorded was noted, this process was repeated along the 

entire width of the loop. Detection efficiency of the loops was tested using two 

methods, one method was to passively drift the test tag through the loop and check for 

detection of the tag as it passed through. The other method was “dart” testing, where 

the tag was thrust through the loop at high velocity by the operator in a manner 

imitating a darting fish with the presence/absence of detections being noted.  

The loops were distributed in the study river section in a manner where the 

downstream extent of the study river section was covered by two loops (Figure 5.1), 

allowing for an increased ability to detect fish leaving the study area in a downstream 

direction. The second pair of loops, in an upstream direction, were deployed ~100 m 

apart from one another, with the downstream loop forming the upstream limit of the 

treatment river section and the downstream limit of the control section. The upstream 

loop then formed the upstream limit of the control section (Figure 5.1).  The third pair of 

loops delimited the downstream extent of the capture site and the upstream extent of 

the capture site.   
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Data from the readers were collected every 3 days and the batteries were 

changed to reduce the chance of data loss as well as to prevent brown outs on the PIT 

detection array due to battery drain. 

5.2.8 Electrofishing recaptures 

Two weeks after the fish were released the entire study section, including a section 

from the downstream treatment limit to 200 m below the study section were sampled 

using double pass electro-fishing using the same methods as during fish capture, except 

no stop nets were deployed. During this period fish caught in each of the release 

sections was measured and returned into the river section.  

The original capture site was fished first to determine how many of the displaced 

fish had homed back, followed by the intermediate stretch of river between the capture 

site and control site. The control and treatment site were subsequently sampled. The 

200 m section of river immediately below the was study river section was also sampled 

due to the presence of several radio tagged fish occurring within it during the radio 

tracking period. When a tagged fish was recaptured (evident from post-surgical wound 

healing on ventral surface) it was scanned with a mobile PIT scanner to determine its ID 

and its location was noted by GPS and field notes, the fish was then immediately placed 

in a bucket full of fresh river water until the river section was completely electro-fished 

before being returned.  

5.2.9 Environmental data 

Water temperature, conductivity and pH for the study site were recorded daily on hand 

held multi-probes (pHep 4 & HI 9033, Hanna Instruments, Leighton Buzzard, UK). Due to 

the low population density, low farming intensity and high degree of air entrainment; it 

was assumed that oxygen levels were close to 100% saturation throughout the study 

period. River flow data for the Blackadder Water was provided by SEPA from the 

Mouthbridge flow gauging station 20 km below the study river section. The 

Mouthbridge flow record was deemed to be representative of the study section as only 
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one small burn flows into the Blackadder Water in the river length between the gauging 

station and the study area.  

 

5.3 Results 

5.3.1 Environmental conditions 

During the study period the water temperature, pH and conductivity of the study site 

varied between 14-14.3 C, pH 8.8-9 and 325-378 μS cm-1 respectively. The flow 

during the early period of study remained relatively constant but two large spates 

occurred during the middle-end of the study period (Figure 5.2). 

 

 

Figure 5.2: River flow rate for August 2012 in the Blackadder water, at Mouthbridge. The dashed 
vertical lines represent the start and end of the study period. 

5.3.2 Release site population densities 

Length frequency distribution of salmon parr and brown trout within the three release 

sites showed that the populations varied between the three sites. The capture site was 

dominated by larger brown trout with a relatively small Atlantic salmon population 

(Figure 5.3). Conversely, the control site (Error! Reference source not found.) and 
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treatment site (Error! Reference source not found.) were dominated by salmon parr, 

with a smaller trout trout population composed of parr as well as small adults. 

When compared by average length it was observed that there was little variation 

in the size of the salmon within the three release sites (Kruskal-Wallis: χ2 = 0.1055, df = 

2, p>0.05; Figure 5.4). However, when comparing the length of brown trout it was 

observed that brown trout within the capture site were significantly larger (Kruskal-

Wallis: χ2 = 25.5423, df = 2, p<0.0001; Figure 5.5). 

Using Zippin’s removal method for population estimates it was estimated that 

there were 184 (±74) salmonids > 10 cm within the treatment zone. Separated by 

species it was estimated that 85 (±50) brown trout and 87 (±37) Atlantic salmon were 

resident in the treatment zone. Based on the number of fish removed from the 

depletion zone it is estimated that between 0-145 salmonids remained within the 

depletion zone of which, 0-135 were brown trout and 0-64 were Atlantic salmon. It is 

estimated that 51-61% of the brown trout and 58-65% of the Atlantic salmon were 

removed. In comparison it was estimated that the post-study population density of the 

control site was 181 (±19) salmonids; 114 (±10) salmon and 168 (± 203) trout. This 

appears to be a similar proportion of salmon to trout as in the pre-study treatment 

zone, although overall salmonid population densities appear to be slightly lower in the 

treatment zone than the capture zone. The capture zone was similar in salmonid 

population density to both displacement release sites with an estimated 191 (±78) 

salmonids in the capture area, although the population of trout (107 ±62) was larger 

than salmon (73 ±31). Further detail on population calculations can be found in 

Appendix II. 
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Figure 5.3: The length frequency distribution of salmon and trout captured in the study section. 
Panels display the length frequency of Atlantic salmon (a) and brown trout (b) caught in the 
capture section, Atlantic salmon (c) and brown trout (d) caught in the control section and 
Atlantic salmon (e) and brown trout (f) caught in the treatment section. 
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Figure 5.4: The length of Atlantic salmon caught in the three release sites. Black lines represent 
the median, white boxes represent the upper and lower quartiles, error bars represent the data 
range excluding outliers and white dots represent outliers (Q3+1.5×IQR). 

 

Figure 5.5: The length of brown trout caught in the three release sites. Black lines represent the 
median, white boxes represent the upper and lower quartiles, error bars represent the data 
range excluding outliers and white dots represent outliers (Q3+1.5×IQR). 

5.3.3 Post-displacement PIT tagged trout movements 

The post displacement movements of brown trout were interpreted from recorded data 

on the fixed PIT array and movements of PIT tagged trout (solely PIT tagged fish as well 

as PIT & radio tagged fish) were related to flow on the Blackadder Water from the SEPA 
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Mouthbridge gauging station. However, between the 16th and 19th of August a series 

of large spates (Figure 5.2) disrupted the PIT loops resulting in reduced detection 

efficiency, and in some cases complete removal of the loop from the study section 

halting PIT records past the 16th. 

 The movement of fish from each of the three release groups within their 

respective release section was recorded on the PIT loops bounding their release section. 

The data from the PIT loops suggests that there were relatively high number of 

movements, both upstream and downstream, at the start of the study which is 

suggestive of exploratory behaviour post release (Figure 5.6). Capture site fish then 

displayed no further movement on the capture zone PIT loops after day two. The 

displaced fish groups however showed a limited number of upstream movements within 

their zones after a period of 4-5 days, suggestive of limited homing behaviour. 

Unfortunately due to the partial failure of the PIT loops after day 6 of the study any 

further movements of fish were not reliably recorded.   

Fish movement rates were calculated as travel speeds converted to body lengths 

per second from detections at one loop to another. The movements of treatment and 

control fish were combined as a way to increase sample size as only 18 records of 

movement were recorded for control fish. Movements did not vary in relation to flow as 

both downstream (Linear regression: n= 21, R2=0.031, df=19, F=0.6202, p>0.05; Figure 

5.7) and upstream (Linear regression: n= 50, R2=0.002, df=48, F=0.1001, p>0.05; Figure 

5.7) did not show significant relationships to flow. However, the interaction between 

movement direction and flow showed significant variation (ANCOVA: n= 84, df=67, 

F=5.09, p<0.05), with upstream movements rates responding negatively with increased 

flow and downstream movement rates increasing with flow. Fish in the capture zone 

also did not show any relationship between upstream movement rate (Linear 

regression: n= 8, R2=0.35, df=6, F=3.35, p>0.05) and downstream movement rate (Linear 

regression: n= 6, R2=0.47, df=4, F=3.58, p>0.05) in relation to flow. 

 Both upstream and downstream movements of all groups of PIT tagged fish 

occurred predominantly at night (χ2 test: n=94, χ2=15.73, p<0.0001; Figure 5.8). 
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However, when split by release site it was shown that upstream and downstream 

movements for both capture (χ2 test: n=18, χ2=2.92, p>0.05) and treatment groups (χ2 

test: n=44, χ2=2.77, p>0.05) were not significantly affected by time of day (Figure 5.9). 

On the other hand the control group movements were significantly related to time of 

day (χ2 test: n=34, χ2=16.86, p<0.0001), with most movements occurring at night. 

The upstream movements of brown trout released in the three release groups 

were significantly different with fish from the treatment group moving the fastest of all 

the groups (Kruskal-Wallis: n=58, χ2 = 10.9328, df = 2, p<0.05; Figure 5.10). 
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Figure 5.6: The proportion of upstream movement, downstream movement and no movement 
recorded daily on PIT loggers bounding the three release sites a) Treatment, b) Control and c) 
Capture. Upstream movement is represented by black hatches, downstream movement is 
represented by white and no movement is represented by grey. 
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Figure 5.7: The speeds of brown trout moving upstream and downstream in relation to flow 
conditions.   

 

Figure 5.8: Diel timing of brown trout upstream and downstream movements from all three 
release groups combined based on detections from the PIT array. Dawn and Dusk are donated 
by the dotted vertical lines. 
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Figure 5.9: The diel movements of fish from the treatment (top), control (middle) and capture 
(bottom) recorded on all PIT loops. Black dashed lines represent dawn and dusk. 
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Figure 5.10: The upstream PIT movement rates (body lengths per second) of fish released in the 
three separate release sites based on PIT loop detections measured over the period of study. 
Black lines represent the median, white boxes represent the upper and lower quartiles, error 
bars represent the data range and white dots represent outliers (Q3+1.5×IQR).  

 

5.3.4 Post-displacement movements of radio tagged brown trout 

The post displacement movements of doubly tagged brown trout were recorded using a 

combination of PIT and radio telemetry. The PIT data was retrieved from a stationary PIT 

array and the radio tracking locations were collected from twice daily radio tracking. The 

movements of the treatment brown trout showed that four out of five tagged fish 

showed apparent directed movement upstream and quickly homed to the capture site 

within a day of release (Figure 5.11). The remaining fish rapidly dropped out of the study 

area and was repeatedly found within deep pools 200 m below the treatment release 

site. Patterns of movement exhibited by the control release group were much more 

variable than the treatment group (Figure 5.12). Four out of the five tracked fish showed 

an apparent rapid dropping out from the study area, two of which were never recorded 

within the study river section again, whereas the remaining two commenced upstream 
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movement after 3-4 days. One fish did eventually return to the capture site 4 days post-

release. 

 Like the other two release groups the capture group’s movements were highly 

variable among individuals (Figure 5.13). Certain individuals within the capture release 

group showed a similar tendency to drop out of the study area as for both the control 

and treatment individuals, with two of the capture release group being detected in the 

same pool habitat being used by the control and treatment dropouts. Out of these two, 

one did eventually home back to the capture site by the end of the radio tracking study. 

The remaining three individuals did not appear to leave the capture site but they 

apparently moved close to the capture site boundaries. 
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Figure 5.11: Distances moved from the treatment release site by doubly tagged brown trout 
based on combined PIT and radio tracking records. Distances moved upstream of the release 
point are positive and distances moved downstream are negative. Dashed lines represent the 
boundaries of the site where the brown trout were captured. 

  

 



  

151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Distances moved from the control release site by doubly tagged brown trout based 
on combined PIT and radio tracking records. Distances moved upstream of the release point are 
positive and distances moved downstream are negative. Dashed lines represent the boundaries 
of the site where the brown trout were captured. 
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Figure 5.13: Distances moved from the capture release site by doubly tagged brown trout based 
on combined PIT and radio tracking records. Distances moved upstream of the release point are 
positive and distances moved downstream are negative. Dashed lines represent the boundaries 
of the site where the brown trout were captured. 
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5.3.5 Electro-fishing recaptures 

The study river section was extensively electro-fished one week after the conclusion of 

the radio-tracking project to sample the locations of fish within the study. During the 

electro-fishing recaptures 17 (34%) tagged fish were recaptured, 14 (82%) of which were 

within the original capture area. The highest proportion of fish caught within the original 

capture area was from the control release group (42.8%), followed by the capture 

release group (35.7%) and lastly the treatment group (21.4%; Figure 5.14). The 

remaining recaptured fish were caught in the intermediately section (1 fish) and in a 

large area of pool habitat 100 m downstream from the study river section (2 fish). No 

fish were recaptured from within either the control or treatment sections of river.  

 The majority of recaptures were also within 100 m of their last recorded position 

showing that fish movements were fairly stable 1-2 weeks after displacement (Table 

5.3). However, one fish did move 667 m downstream in the week interval between the 

end of PIT and radio tracking and the recapture event.   

 

Figure 5.14: The percentage of each treatment group within the recaptured sample from the 
capture site.  
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Table 5.3: Brown trout recaptures locations and position from last recorded location  

Fish PIT ID Release site Distance from last recorded location (m) Capture location 

427 Capture 677.6 Out of study area 

430 Capture 8.3 Capture section 

441 Capture 2.7 Capture section 

442 Capture 2.6 Capture section 

443 Capture 7.1 Capture section 

444 Capture 26 Capture section 

450 Control 5 Capture section 

453 Control 5.7 Capture section 

454 Control 2.9 Out of study area 

455 Control 14.8 Capture section 

457 Control 37.2 Capture section 

460 Control 24 Capture section 

462 Control 100 Intermediate 

468 Control 53.7 Capture section 

467 Treatment 344.9 Capture section 

456 Treatment 41 Capture section 

446 Treatment 3.2 Capture section 

 

5.4 Discussion 

The results of this study show a lack of variation in homing migration in groups of fish 

displaced from their core home range into sections of river with variable population 

densities. Through a combination of radio and PIT telemetry a great deal of variation in 

homing migration occurred, with the opposite pattern of movement to the original 

hypothesis being observed. Treatment fish released into a section of river with 

abundant free territories were more likely to rapidly home than control fish released 

into a fully populated section of river. In fact the control fish were observed to drop out 

of the study section of river. As a control to assess handling/tagging effects, a cohort of 

trout were released back into the capture section after radio tagging and the same high 

variability in post-release movement behaviour was observed. In general this suggests 

that the process of electrofishing and surgically radio tagging the fish strongly altered 

the behaviour of the experimental fish in the period immediately after release. Seeking 

an alternative, less invasive method of radio tag attachment for such short-term studies 

is desirable. For short term highly localised tracking studies gastric insertion of tags has 
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been successful, with the short study period meaning few tags were lost due to tag 

regurgitation (Armstrong and Herbert, 1997). Another attachment possibility would be 

external attachment on the dorsal musculature, which has been successfully used on 

sea trout (Aarestrup and Jepsen, 1998). 

 During radio tracking, a high proportion of fish from all three release groups 

made their way to a deep section of river 100-200 m below the study river section and 

appeared to remain relatively stationary within this pool area for periods of days. 

Movement to this section outside the study river section appeared to be highly directed 

downstream movement, which in itself suggests that the fish had prior experience of 

this section of river. The fish within the pool possibly used the comparatively deeper 

pool as a post-handling refuge site. 

 This is reinforced by data from the PIT tracking, as it was shown that in all three 

release groups there were an initial high number of both upstream and downstream 

movements being recorded within each release zone. However, initial high movement 

after release in the two displacement release sites could be interpreted as exploratory 

movements. Movements were of a similar pattern to displaced rockfish (Sebastes sp.) 

which moved both upstream and downstream in the water current after release in 

searching behaviour and resumed faster directed movements once in familiar areas 

(Mitamura et al., 2012). However, fish released straight back into the capture site 

showed the same high degree of initial upstream and downstream movement 

suggesting that handling may play a larger role in initial movement behaviour.  

After a short period of no detection there were limited numbers of upstream 

movements 3-5 days post release from the two displacement sites, which suggests some 

homing-directed behaviour occurred. This suggests that the immediacy of homing in 

some individuals might have been curtailed by initial disturbance. In accordance with 

there results, tagging and release procedures will need to be streamlined in future 

experiments to reduce handling and disturbance, hopefully leading to a higher number 

of fish exhibiting naturalistic behaviour immediately post-release.  
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In general PIT movements appeared to be nocturnal/crepuscular in nature with 

the majority of movements occurring at night or within dawn hours. However, Control 

fish were the only group to move mainly at night whereas Capture and Treatment fish 

appeared to move mainly at dawn with limited diurnal movements. Upstream and 

downstream movements of fish displaced downstream were also not affected by flow, 

with no apparent relationship being observed. 

The recapture rate of experimental fish was quite low, however the majority of 

recaptures were within the initial capture zone, with one other fish being caught in the 

section of river between the Control and Capture zones and two being caught outwith 

the study river section. Surprisingly no fish were caught within the two displacement 

release sites, suggesting that the propensity to home or to leave the study area 

completely was higher than staying in the site of displacement, low density or not. Out 

of the fish re-caught within the Capture section, surprisingly the majority were from the 

control group, which is contrary to the data recorded in the initial radio tracking. Since 

there was a week's gap between the end of the radio tracking and the electrofishing 

recapture event, one would assume that upstream fish movements continued in the 

intervening week when telemetry equipment was removed due to flood damage.   

Out of all 45 experimental fish, 14 were recaptured in the initial capture area, 

and out of those 14, nine were displaced fish (3 Treatment, 6 Control) suggesting that 

there was a 30% homing success rate after displacement for both displacement groups 

combined together. However, the recapture rate of fish returned to the capture site was 

only slightly higher (33%) than the displacement groups (30%), suggesting that either 

recapture efficiency was low or fish from all sites had left the study area. The recorded 

homing success is substantially lower than the homing success in other studies. Home 

success has previously been recorded as 85% in radio tracked fish displaced 

downstream (75% success) and upstream (100% success) of the capture point 

(Armstrong and Herbert, 1997), however this study used gastric implanted radio tags 

(less invasive) and the radio tags remained functional for 20+ days. More direct homing 

comparisons can be made with other electrofishing mark recapture studies due to the 
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failure of telemetric data during the course of the study. In fish displaced 200 m 

upstream and downstream of the capture point there was a recorded 40% return rate, 

compared to 30% in the current study (Halvorsen and Stabell, 1990).  

For fish caught and then returned to the point of capture only five (33%) were 

re-caught in the capture zone, suggesting that either fish returned to the point of 

capture moved out of the capture area or there was low recapture efficiency. A further 

fish was also recaptured 677 m downstream from its last known position within the 

capture zone. These apparent high movements away from the capture zone are 

inconsistent with prior studies into the movements and home ranges of brown trout. In 

fish caught and marked and then returned into the river at point of capture, 85-89% of 

brown trout were recaptured, most trout moved less than 150 m post release 

(Hesthagen, 1988). Again, long movement distances were not apparent in marked 

brown trout, although there was an apparent split between stationary population 

members and more mobile population members (Harcup et al., 1984). These results 

suggest that either the initial disturbance at the start of the current study altered the 

behaviour of the trout, creating a highly mobile population component within the river 

or that the trout within the Blackadder Water are highly mobile naturally. As such a 

form of pre-trial control could be used to assess the home ranges and general 

population structure within the study section of river. By using a less invasive marking 

technique such as visible elastomer tagging (VIE) the population within the study river 

section as well as fish above and below the section (nominally 200 m) could be 

electrofished, marked and then returned to the river at the point of capture. The fish 

would then be allowed to settle for a period of weeks (1-2 weeks) before beginning the 

main trial. By doing this the movements and home range attachment of fish after 

disturbance can be quantified during the electrofishing for experimental fish and stock 

depletion electrofishing. In the past it has been shown that out of fish that are exposed 

to displacement it is the fish with greater site attachment that are more likely to return 

(Huntingford et al., 1998). The initial VIE marking would also allow for the response to 

large scale reductions in population within the treatment site to be measured and any 
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movements into the treatment section by other non-telemetry tagged (solely VIE 

tagged) population members to be quantified.  

The capture, treatment and control sections used in the study differed with each 

section varying in average width, water surface area and total length. However, stream 

habitat types were broadly similar across the three sections with all three sites being 

mostly riffle and glide habitat although there was a moderately more pool habitat in the 

capture site. The study generated only one replicate out of a series of three replicates 

that were to be conducted in the Blackadder Water, which were discontinued due to a 

combination of equipment failure and poor site access. Due to the field basis for the 

study experimental zones were difficult to set up with entirely matching habitat 

parameters. As such, the use of artificial streams may be of use in further research but 

are usually limited by stream length, width and depth. 

The results of the study were compounded by a series of technical faults. Firstly 

the failure rate of radio tags was high with 7 tags (47%) failing within a day of release. 

Due to budgetary constraints radio tags were reconditioned in house by the author, 

which included re-batterying the tags with 1.5 V silver oxide button batteries and then 

re-potting the tags in biocompatible silicone. Tags were extensively tested in water 

before deployment and their precise radio frequency was noted down to kHz changes in 

frequency. However, due to a technical oversight the original whip antennae, which 

appeared to be in good condition, were not replaced, as is common practice in tag 

reconditioning. When radio tagged fish were recaught at the end of the study it was 

noted that a large number of radio tagged fish had lost their whip antennas, which were 

left visibly trailing after tagging. It is suggested that antenna loss was the main cause of 

tag failure. If such a study were to be repeated in future professional tag reconditioning 

or purchase of entirely new radio tags would be advisable, if project budget allows for it. 

  During day seven of the study (17th of August 2012) the Blackadder water was 

subject to a series of large spates, well above the ambient flow experienced during the 

earlier period of the study. The PIT loops were adversely affected by large increases in 

river height. Originally PIT loops were deployed with a loop height of ~1 m, this was 
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usually 0.5-0.7 m above ambient river level for August. Some variation in river height 

was to be expected, however, the spates experienced in the period between the 17th -

19th of August were between 19-20 m3 s-1, well above the 3.76 m3 s-1 Q10 flows of the 

Blackadder Water. 

The conclusion of this research is that there was no clear effect of 

population density at site of displacement on the homing of displaced brown trout. All 

three treatment groups responded similarly after tagging suggesting that disturbance 

may have interfered with behaviour. Suggestions for future research include using a less 

invasive tagging procedure, using non-invasive marking techniques examine and 

compare general population movements of the three treatment groups over a longer 

time scale and to include multiple replicates in different sites within the Blackaddder 

Water as an attempt to counter habitat variability.
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Chapter 6: General discussion 

6.1 Summary 

The broad aim of this thesis was to investigate the migratory behaviour and survival of 

salmonids during various life history stages. This comprised two chapters exploring the 

anadromous stages of salmonid life history, particularly juvenile sea trout emigration 

(Chapter 3) and the reproductive migration of adult sea trout and Atlantic salmon 

(Chapter 4). The purely freshwater movement of brown trout homing after 

displacement was conducted (Chapter 5). When combined, these approaches can 

provide insight into various environmental and anthropological impacts on salmonids 

during freshwater migration and thus aid their conservation and management. 

The seaward migration of salmonid smolts is a crucial event in their life history 

that is precisely timed (McCormick et al., 1998) and subject to elevated predation risk 

(Heggenes and Borgstrom, 1988; Carss et al., 1990; Aarestrup et al., 1999; Dieperink et 

al., 2001; Dieperink et al., 2002; Koed et al., 2002; Aarestrup et al., 2003; Steinmetz et 

al., 2003; Svenning et al., 2005a; Svenning et al., 2005b; Harris et al., 2008; Wiese et al., 

2008). As such any form of delay during this life history stage can have potentially 

damaging consequences to the health of salmonid populations. Little work had been 

done on the effect of small barriers such as weirs on smolt migration before (Russell et 

al., 1998; Aarestrup and Koed, 2003) with most research being directed towards larger 

barriers such as dams (reviewed in Noonan et al., 2012) despite small obstructions being 

much more common place (Lucas et al., 2009). Due to this gap in the knowledge base an 

assessment of the effects of small barriers on smolt emigration was conducted (Chapter 

3, Gauld et al., 2013). Weirs negatively affected the downstream migration of sea trout 

smolts during a spring emigration period with predominantly low flows, by increasing 

residence time at the weirs, whereas they had no apparent effect on residence time in 

years with normal flow conditions. It was also noted that weirs with intact crests 
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delayed smolts for longer than ruined weirs or weirs with cuts in their weir face. The 

application of these results are considered in section 6.3. 

The migration of adults returning from the seas and oceans to spawn is another 

important life history stage for salmonids and imposes its own set of challenges. The 

spawning migration of Atlantic salmon and, to a degree, sea trout is a highly researched 

phenomenon with various anthropological (Russell et al., 1998; Thorstad and 

Heggberget, 1998; Gowans, 1999; Gowans et al., 2003; Thorstad et al., 2007), 

environmental (Smith and Smith, 1997; Orell et al., 2007; Bendall et al., 2012; Moore et 

al., 2012) and behavioural (Bagliniere et al., 1990; Bagliniere et al., 1991; Östergren et 

al., 2011) effects being noted. Despite prior research broadly illuminating the migration 

of sea trout and Atlantic salmon detailed local knowledge of salmonid populations is still 

desirable for management purposes. This is especially true when salmonids are subject 

to exploitation from commercial as well as sport fisheries. Chapter 4 sought to elucidate 

the spawning migration of salmon and sea trout within the River Tweed, as monitoring 

of species exploitation had highlighted differences in exploitation rate across the Tweed 

catchment. Results from acoustic tracking suggest that movement rates vary within the 

river system with salmonids moving at a slower rate the further into the river system 

they travel, moving fastest in the lower reaches and slowest when moving into 

tributaries. Results also suggest that initial movement speed within the river is related 

to release date, with earlier migrant moving slower than later migrants. Salmon and sea 

trout also utilised different areas of the river system, with salmon mostly using the 

lower half of the main channel and sea trout using the upper reaches of the Tweed as 

well as tributaries more.  

Unlike their anadromous counterparts, freshwater resident brown trout do not 

have as pronounced migratory periods. Instead, they more likely adopt stepwise 

downstream movement from natal river sections to deeper more food rich river 

sections (Crisp, 2008). Despite this lack of pronounced migration brown trout are 

capable of homing migration when removed from their home range (Harcup et al., 

1984; Halvorsen and Stabell, 1990; Armstrong and Herbert, 1997; Nordeng and 
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Bratland, 2006). However, the prior examples did not offer their displaced trout an 

alternative to homing, such as an empty territory to exploit, as such it could be assumed 

that trout home to a prior held territory since they may be competitively excluded from 

territories at the site of displacement by resident territory holders. Considering this, 

Chapter 5 aimed to assess the motivations to home by offering displaced trout an area 

of river with multiple empty territories open to exploitation. The results from the 

chapter showed that there is apparently no difference in homing behaviour between 

fish placed in areas of river with free territories compared to control groups either 

displaced into fully populated sections of river or fish placed back into the area of 

capture. 

6.2 Justification of methodology and possible limitations 

Different experimental approaches were utilised to study the migration patterns of 

salmonids in relation to the thesis aims (Chapter 1: section 1.10). In all data chapters the 

use of telemetry was essential as a non-disruptive (beyond initial tagging and release) 

and long-range method for quantifying the migratory movements of experimental fish, 

as more traditional marking techniques such as Carlin tagging do not allow for the high 

spatial resolution and “recapture” frequency that telemetry affords (Lucas and Baras, 

2001; Cooke et al., 2013). The rationale for the telemetry method employed in each 

data chapter can be found in Chapter 2: section 2.4. 

 In Chapter 3 the migration of wild smolts was studied. Prior investigation into 

the role obstructions such as weirs play on smolt migration had previously only been 

studied with hatchery reared smolts (Aarestrup and Koed, 2003). The use of hatchery 

reared smolts in research was a necessity in many cases due to the bulky size of older 

tag models; much too large to implant in most wild smolts without compromising fish 

health leaving only larger hatchery reared smolts viable candidates. The use of wild 

rather than hatchery reared smolts is desirable since hatchery smolts have been shown 

to have lower swimming performance than wild smolts (Pedersen et al., 2008) and are 

noted to have low survivorship during seaward emigration (Thorstad et al., 2011a). 



  

163 

 

However, recent advances in telemetry technology has resulted in tag miniaturisation 

which allows for the tagging of wild smolts (Cooke et al., 2013). Modern tags can now 

come in diameters as small as 5 mm (6 mm at the time of study) but these small tags 

come with the drawback that they operate on a higher frequency (180 kHz) compared 

to their larger counterparts (69 kHz) meaning that 69kHz stationary ALS units (Models 

VR2 & VR2W – 69 kHz, Vemco Ltd, Nova Scotia, Canada) cannot detect the 180 kHz tags. 

They also have reduced range and life compared to 7 mm diameter, 69kHz tags. An 

option here would have been to buy 180 kHz ALS units (VR2W – 180 kHz, Vemco Ltd, 

Nova Scotia, Canada), although this would be prohibitively costly since the ALS array 

was intended to suit both adult and juvenile tracking. As a compromise comparatively 

larger 69 kHz tag models were used, either 7 mm (Model V7-2x, Vemco Ltd, Nova Scotia, 

Canada) or 7.3 mm (Model LP-7.3, Thelma Biotel AS, Trondheim, Norway) tags.  

 The disadvantage to using larger tags on smolts was that it limited that size 

range which  could be tagged, with the 7-7.3 mm mm tags only smolts of140 mm and 

upwards were tagged. This size limit was introduced to try and conserve naturalistic 

behaviour post tagging as over burdening experimental fish with tags can alter 

swimming behaviour (Jepsen et al., 2002; Cooke et al., 2011b). However, the tag to body 

weight ratio of the experimental smolts in Chapter 3 varied between 2 - 9.5 percent of 

bodyweight in the two years of study, well above the “2% rule” often adhered to in 

tagging studies (Winter, 1996; Peake et al., 1997). Although the 2% rule can be 

contested, with some studies showing no impact on swimming behaviour in fish with 

tag burdens as high as 12% of body weight (Brown et al., 1999) high tag burdens (4.5-

15.7%) have been shown to adversely affect growth and survival in small (80-109 mm) 

Chinook salmon (Oncorynchus tshawyscha) smolts (Brown et al., 2010). In Chapter 3 fish 

appeared to behave normally despite high tag burdens, with all recorded fish resuming 

downstream movement after release. In 2011 acoustic tagged fish movement rates 

were not any lower than PIT tagged fish during initial migration in the Yarrow Water, 

suggesting that tag burden and surgery procedure did not adversely impact initial 

migration rate (Appendix I). Of course future research should consider adopting smaller, 
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lighter tags even if this does require updating ALS equipment to 180 kHz compatible 

units as a measure to minimise any effects of tag burden as well as to broaden the 

hypothetical size range of experimental fish. 

 Chapter 4 focused on the migratory behaviour of adult sea trout and salmon 

returning to spawn. The method used to capture fish was the net and cobble technique. 

This method was favoured as it allowed the capture of experimental fish in larger 

quantities than rod caught fish, despite evidence suggesting that netting has a greater 

adverse affect on post-release behaviour than rod capture (Mäkinen et al., 2000). By 

using pre-existing commercial netting stations the net was handled by skilled netsmen 

and also allowed comparison of yearly catches at each netting station. With the two 

netting stations being located within the estuary and the area of tidal influence, this 

allowed capture fish that had recently entered the river. However, in 2010 high 

numbers of fish caught at Gardo in the estuary dropped out the river system, leaving the 

estuary and never returning. It is noted that this happened during a warm summer 

when river levels were low, which prior research has shown increases the likelihood of 

fish leaving the estuary and returning to the sea (Solomon and Sambrook, 2004). There 

is also the possibility that the Tweed estuary is subject to high numbers of visits from 

straying fish, with the Eye Water, River Aln, River Coquet and even the River Tyne within 

relatively short distances from the Tweed estuary. Whatever the cause of the high 

number of dropouts in the Tweed estuary it merits further investigation. 

 The capture timing of the experimental fish in Chapter 4 was restricted by 

several factors. Firstly, the netting season in the Tweed has been restricted to between 

June and September as a measure to conserve spring salmon stocks. This means that 

there was no way to capture early running fish in the season. Secondly, the netting 

rights for a day were bought off the netting team, this was done as a way of 

compensating the commercial netsmen for a day's lost revenue and paying them for 

their labour. As a result,days when the netting had to be bought speculatively for when 

the highest number of running fish were expected, as means to reduce project costs. 

Lastly, the netting stations are within the estuary and area of tidal influence meaning 
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that environmental variables such as river height, tide and tidal height are important 

factors to consider. Netting usually took place during flood tide, when most fish were 

expected to enter the estuary and river.However adverse conditions such as high river 

flows meant that netting would be cancelled.  

 The way in which adults were tagged was limited by a number of factors. The 

number of fish caught in each shot of the net meant that large numbers of taggable fish 

were brought in at frequent intervals. Although fish were kept in aerated tanks prior to 

tagging the length of time the fish were kept in the tanks was limited to lower stress on 

the fish, opting for fish to be tagged and released back into the river as quickly as 

possible. To this extent, fish needed to be processed and tagged rapidly and with only 

one UK Home Office Licensed tagging team available during netting meant that only sea 

trout were surgically tagged. Salmon were instead intragastrically tagged under the 

Animals (Scientific Procedures) Act 1986 husbandry and management exclusion clause 

by Tweed Foundation staff. Therefore, there was a variation in tagging procedure 

between species, with sea trout subject to a more invasive procedure than salmon, 

although this does not appear to have impacted results in Chapter 4 since most 

statistical models did not find a difference in migration rate between species. The 

intragastric tagging introduced the possibility of tags being regurgitated, which has the 

possibility to undermine results if regurgitated tags are not detected. On average there 

is a 14.8% likelihood that an intragastrically tagged salmon will regurgitate their tags in 

the Tweed (Smith et al., 1998). In future for full parity between species as well as 

eliminating the possibility of tag regurgitation all fish should be surgically tagged.   

 There were several technical challenges and difficulties during fieldwork for 

Chapter 5. The main technical challenge was executing a telemetry based project on a 

small budget. The initial way round performing radio telemetry on a small budget was 

re-conditioning radio tags that had been used in previous research. This involved the 

researcher reconditioning the tags with new batteries and recoating the tags. The main 

issue with this as addressed in Chapter 5 itself was the high tag failure rate due to 

degraded antennas. Higher tag failure was likely with in-house reconditioned tags, 
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considering this future research should have tags reconditioned professionally but this is 

entirely budget dependant as professionally reconditioned tags can cost as much as 80% 

of the cost of new tags.  

 Initially Chapter 5 was proposed to be one of three replicates within the 

Blackadder Water however technical difficulties cause the other two replicates to be 

cancelled. The replication was initially meant to be a measure to counteract discrete 

differences between capture, control and treatment sites used in the study as well as 

provide a large sample size, therefore the results in Chapter 5 are of a much lower 

sample size than originally intended.       

6.3 Implications and management applications 

The outcomes of this research highlight several implications for management that 

cannot be ignored. The principle outcome from Chapter 3 suggests that small in-stream 

structures such as weirs have detrimental effects on smolt emigration during years with 

low flows. The largest detrimental effects observed were increased delay and decreased 

migratory success, with both effects being intrinsically linked. The increased delay can 

be associated with desmoltification(Stefansson et al., 1998) and increased susceptibility 

to terrestrial predators (Harris et al., 2008), both of which can reduce overall migratory 

success. Historically weirs have been indentified as a problem for upstream migrants, 

which has often been alleviated by installing fish passes (Clay, 1995). However, smolt 

migration is often disregarded at low-head structures with physical screening, angled 

bar racks and surface bypasses being reserved for dams (Larinier, 2001). Compounding 

this, the research agenda on upstream and downstream weir and dam passage tends to 

be skewed towards salmonids (Noonan et al., 2012) with non-salmonids being relatively 

neglected (Lucas and Batley, 1996; Lucas and Frear, 1997; Lucas et al., 2009; Foulds and 

Lucas, 2013). 

 In many cases weir removal is a viable option and should be actively considered 

(Garcia de Leaniz, 2008; Kemp and O'Hanley, 2010). Bearing in mind that weirs disrupt 

juvenile fish movement, sediment and nutrient transport, downstream water flux and 
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natural river temperature, issues that cannot simply be resolved by installing fish 

passage facilities (Poff and Hart, 2002). This option should be highly considered within 

tributaries since delays in migration at barriers (such as Murrays Cauld) within 

tributaries can massively impact migratory success a short distance into migration. At 

the very least river managers and regulatory bodies should provide downstream bypass 

facilities as part of any future river engineering project as a measure to reduce potential 

delay at weirs. 

In contrast, there are reasons to keep weirs in place such as the rising need for 

renewable energy, including small-scale hydropower (Paish, 2002; Kosnik, 2010). 

Despite modern Archimedean screw turbines being classified as “fish friendly” future 

implementation of hydropower on weirs should be carefully considered with necessary 

bypass facilities in place (Larinier, 2008) and the impact on non-salmonid species 

monitored (Bracken and Lucas, 2013). As Bracken and Lucas (2013) noted, despite sub-

lethal damage being observed at Archimedean screws there is a very real possibility of 

cumulative damage as fish pass multiple hydropower schemes. This is particularly 

important with salmonid smolts where descaling injury (potentially from blade strikes) 

can reduce osmotic performance in saline environments (Zydlewski et al., 2010). As such 

river managers should restrict the number of hydropower schemes fish can potentially 

encounter along a migratory corridor.  

 The differences in migratory destination between salmon and sea trout in 

Chapter 4 show that late running sea trout and salmon use different sections of the 

river. The sea trout tracking highlighted that the majority of sea trout in each year were 

derived from the Teviot Water, with other large sea trout populations such as the River 

Till being relatively under represented. This may be due to the Till sea trout run mainly 

occurring during the mid summer and therefore under represented in catches from the 

late summer and autumn (R Campbell personal communication). What this ultimately 

suggests is that any excessive fishing effort and over-exploitation in June-July could 

negatively impair certain Tweed sea trout sub-populations. Considering this, further 

research into the annual variation of sub-populations run timing would be of great use. 
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The restriction of salmon to the lower Tweed is possibly a result of the date of tagging 

being late Summer to Autumn, with prior research suggesting earlier running salmon 

move further into river catchments (Laughton, 1989; Laughton and Smith, 1992; Webb, 

1992). Therefore managers should consider tagging salmon caught in the river at a much 

wider range of dates. Hopefully this way a much broader use of river catchment by 

salmon will be recorded. 

The migration rate of adult salmonids moving from the mainstem into tributaries 

was positively related to flow within tributaries. Prior research shows that migrating 

adult salmonids respond positively to increased flows from their natal rivers, possibly 

due to increased olfactory response (Bendall et al., 2012). Hence, any artificial 

manipulation in flow from tributaries could either impair or enhance migration into 

tributaries. Areas further down the Tweed catchment such as the Whiteadder and the 

Till are less dominated by upland areas and much more readily used for agriculture. As a 

result there is potential pressure put on those tributaries by water abstraction for 

agriculture. Managers should attempt to quantify and assess abstraction within 

important tributaries for salmonids given that increased tributary flow is important for 

migrants. Contrary to this, freshet releases by water companies within the catchment 

should be analysed and modified freshet programmes where more water is released in 

spring for smolts and autumn for adults could be assessed. 

6.4 Future research 

Further to expanding management applications of research continued further research 

is also desirable. Salmonid migration is generally a widely researched field, however 

there is still great scope for future research. Chapter 3 (Gauld et al., 2013) largely 

covered the migration of smolts and the impacts of low flows in the presence of 

barriers. As the research base stands this is only one of three peer reviewed papers that 

investigate the passage problems that low head structures such as weirs impose on 

emigrating smolts (Russell et al., 1998; Aarestrup and Koed, 2003; Gauld et al., 2013). By 

utilising a before-after control-impact (BACI) style methodology the effects of weirs on 
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smolt emigration could be better and more robustly elucidated. Using multiple years 

with the weir in place and multiple years with the weir removed the passage efficiency 

and survival of smolts could be quantified with a weir both present and absent. There is 

also the potential for future research to compare the patterns of migration of fish from 

different tributaries. In this thesis the smolt migration from one tributary was studied. 

Broadening the research to include smolt runs from multiple tributaries within the same 

river system may highlight specific issues experienced by certain sub-populations in a 

catchment. Combining this with research into earlier autumn juvenile movements would 

be beneficial, as there is growing evidence that a portion of juvenile populations move 

downstream to lower river reaches during autumn as pre-smolts despite being 

physiologically incapable of entering salt water during this time of year (Youngson et al., 

1983; Riley et al., 2002; Pinder et al., 2007; Riley, 2007; Ibbotson et al., 2013). This 

apparent life history trade off suggests that pre-smolts minimise spring migration 

distance at the cost of greater predator susceptibility (Ibbotson et al., 2013). 

Undertaking these further approaches would greatly benefit the management of rivers 

by expanding the knowledge base on juvenile river requirements, helping to improve 

the health of fish stocks within a catchment. 

 The study of adult migration within large catchments such as the Tweed could be 

augmented by utilising several complimentary techniques. Microchemistry can be used 

to extract stable isotope information from fish scales and used to assign fish to a home 

river or even a tributary within a river system with high accuracy (Wells et al., 2003; 

Adey et al., 2009; Torniainen et al., 2014). Future research could use this technique in 

combination with telemetry as a way to account for and quantify straying and possibly 

even to work out the prior spatial history of the fish at sea. Genetic analysis is another 

important tool that can greatly enhance the study of migratory fish. Current tools allow 

researchers to discriminate stocks of salmonids within mixed stock rivers (Ackerman et 

al., 2011; Hess et al., 2011) and investigate the genetic structure of populations within a 

catchment (Ellis et al., 2011). Genetic analysis also allows the river of origin for straying 

fish recolonizing a river with an extirpated salmonid population to be determined (Ellis 
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et al., 2011).This is especially important in the management of rivers recovering from 

industrialisation and past pollution. Such tools are already being applied to the Tweed 

catchment and early results suggest that populations within major tributaries are 

genetically distinguishable from each other (Coulson et al., 2013). Coupling future 

telemetry studies with river of origin analysis could potentially inform river managers of 

the degree of mixing that occurs amongst catchment subpopulations as well as pin point 

any discreet run timing differences amongst sub-populations. 

One of the limitations in Chapter 4 was that it only included two years worth of 

tracking over relatively short periods of the year. Future research would greatly benefit 

from taking a multi year approach to telemetry studies with a large sample size of fish 

tagged within each month when fish capture is viable. This would allow researchers to 

identify stable trends in intra and inter-specific run timing and migratory behaviour, as 

the current data set was too small to find inter-specific as well as inter-annual 

differences in migratory behaviour. 

 Future research into the behaviour of displaced brown trout could be improved 

by utilising artificial streams to assess the short scale homing movements of displaced 

territory holders. The controlled environment would mean that multiple replicates could 

be performed using the same stream section with different fish. Future research could 

also incorporate individual variation such as behavioural syndromes to assess whether 

bold or shy individuals perform better post-displacement (Sih et al., 2004; Höjesjö et al., 

2007; Adriaenssens and Johnsson, 2010; Adriaenssens and Johnsson, 2011; Höjesjö et 

al., 2011). However, there is also scope for future field studies of displaced trout. 

Chapter 5 focused on very small scale displacements with brown trout being displaced 

under 1 km from their previously held territory, increasing the spatial scale of 

displacement could be a potential avenue for research. Brown trout leaving their 

territories in small streams, such as the Blackadder Water, and moving to deeper 

channels in the main river is a relatively common behaviour (Crisp, 2008). By varying the 

spatial scale of displacement over a variety of distances could potentially highlight a 
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threshold limit where the motivation for brown trout to home becomes less prevalent 

than the adoption of a new territory.  
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Appendix I: Chapter 3 supplementary material 

 

PIT tracking sea trout and salmon in the Yarrow Water 

 

I.I Methods 

In 2011 cohorts of trout and salmon smolts were tagged with PIT tags for a smaller scale 

migration study within the Yarrow Water using PIT telemetry. The rationale for this was 

to help assess whether initial mortality of acoustic tagged smolts in 2010 was a by-

product of the tagging procedure, therefore utilising a less invasive tagging procedure 

was desirable as a control. The anaesthesia and pre-tagging procedure used for the 

acoustic tagged smolts in Chapter 3: section 3.2.1was also used for the PIT tagged fish. 

Salmon and trout smolts sufficiently large for PIT tagging (over 120 mm in fork length) 

were placed on a V-shaped surgical table; an incision (4-5 mm) was made on the ventral 

side of the fish anterior to the pelvic girdle. A 23 mm HDX PIT tag was then implanted in 

to the body cavity through the incision. PIT tagged smolts were released at the same 

release sites as the acoustic tagged smolts in Chapter 3: section 3.2.1, except smolts 

were not released at site C due to the inability to install a PIT loop in that section of 

river. The length of PIT tagged trout did not differ between release sites A and B (Mann-

Whitney U test: n=17, W=31, p>0.05; Table I.I). However, the length of PIT tagged trout 

was significantly smaller than acoustic tagged trout (Mann-Whitney U Test: n=40, 

W=185, p<0.001), which is likely a consequence of higher length requirements to 

acoustically tag trout compared to PIT tags. The number of trout smolts tagged was so 

low due to priority being given to acoustic tagging trout smolts rather than PIT tagging. 

PIT tagged salmon also did not differ in length between release sites (Mann-Whitney U 

Test: n=101, W=1441, p>0.05; Table I.I). 
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Table I.I: Summary data for smolts PIT tagged in 2011. The release sites are shown on 
Figure 3.1.  

Release site Species Tagging date Number 
tagged 

Length [mean ± SD 
(range), mm] 

Weight [Mean ± SD 
(range), g] 

Tag/body 
weight ratio  
[mean (range), 
%]* 

Release site A - Total release 
site A 

56 132.1 ± 9.1 (120 -155) 22.8 ± 4.8 (16 – 38) 2.7 (1.6 – 3.8) 

Release site A salmon Total salmon 49 131.3 ± 9 (120 -155) 22.5 ± 4.8 ( 16-38) 2.8 (1.6 – 3.8) 

Release site A salmon 22/04/2011 16 132.8 ± 9.3 (120 -155) 22.9 ± 5.2 (17 – 38) 2.7 (1.6 – 3.5) 

Release site A salmon 24/04/2011 9 134.9 ± 6.1 (125 -146) 24.3 ± 2.3 (21 – 28) 2.5 (2.1 – 2.9) 

Release site A salmon 25/04/2011 9 125.1 ± 6.6 (120 -140) 19.9 ± 3.4 (17 – 28) 3.1 (2.1 – 3.5) 

Release site A salmon 26/04/2011 11 131.6 ± 10.8 (120 -154) 23.0 ± 6.5 (16-37) 2.8 (1.6 – 3.8) 

Release site A salmon 27/04/2011 4 129.8 ± 8.7 (123 -142) 20.8 ± 3.8 (18-26) 3.0 (2.3 – 3.3) 

Release site A Trout Total trout 7 137.7 ± 8.5 (125 -150) 25.3 ± 4.4 (21 – 33) 2.4 (1.8 – 2.9) 

Release site A Trout 22/04/2011 2 137.5 ± 17.7 (125 -150) 27.5 ± 7.8 (22 – 33) 2.3 (1.8 – 2.7) 

Release site A Trout 04/05/2011 5 137.8 ± 5.4 (132 -146) 24.4 ± 3.2 (21 – 29) 2.5 (2.1 – 2.9) 

Release site B - Total release 
site B 

62 131.0 ± 9.4 (120 -166) 22.4 ± 5.2 (13 – 47) 2.8 (1.3 – 4.6) 

Release site B salmon Total salmon 52 129.1 ± 7.5 (120 -149) 21.4 ± 3.9 (13 – 31) 2.9 (1.9 – 4.6) 

Release site B salmon 22/04/2011 18 127.2 ± 7.9 (120 -145) 19.9 ± 2.7 (16 – 25) 3.1 (2.4 – 3.8) 

Release site B salmon 24/04/2011 8 128.3 ± 6 (120 -137) 21.5 ± 3.6 (18 – 28) 2.9 (2.1 – 3.3) 

Release site B salmon 25/04/2011 8 130.3 ± 5.5 (120 -138) 23.3 ± 3.2 (18 – 29) 2.6 (2.1 – 3.3) 

Release site B salmon 26/04/2011 14 131.1 ± 7.4 (120 – 145) 22.9 ± 3.8 (17 – 31) 2.7 (1.9 – 3.5) 

Release site B salmon 27/04/2011 4 129.5 ± 13.1 (121-149) 18.3 ± 7.5 (13 – 29) 3.7 (2.1 – 4.6) 

Release site B trout Total trout 10 141.3 ± 11.6 (127-166) 27.7 ± 7.8 (20 – 47) 2.3 (1.3 – 3) 

Release site B trout 24/04/2011 1 135 27 2.2  

Release site B trout 25/04/2011 1 127 20 3.0 

Release site B trout 26/04/2011 1 131 23 2.6 

Release site B trout 27/04/2011 1 140 21 2.9 

Release site B trout 04/05/2011 6 146.7 ± 11.7 (135-166) 31 ± 8.4 (24 – 47) 2.0 (1.3 – 2.5) 

* Tag to body weight ratio is calculated from masses in air. 
 

The PIT detection loop set up and testing was the similar to the described setup in 

section 5.2.7. Unlike in section 5.2.7 the loops were constructed in a figure of eight 

arrangement to boost the inductive field range. The loops were placed at two sites, 

Foulshiels 1.39 km below release site B and Philiphaugh 4.65 km below release site B. 

The two sites differed in loop width with Philliphaugh being 22.6 m wide and Foulshiels 

20.6 m wide, the loop heights were similar with both loops being approximately 0.9 m 

high at their highest point. Both sites varied in depth across the stream width with 
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Philiphaugh being 0.62 m at its deepest point during base flow and Foulshiels being 0.56 

m at its deepest point during base flow. Data from the readers were collected every 2 

days and the batteries were changed to reduce the chance of data loss as well as to 

prevent brown outs on the PIT detection array due to battery drain. A further two 

acoustic ALS positions were placed in the Yarrow Water within 100 m of the PIT two 

detection loops in an effort to provide as close a match as possible when comparing 

emigration speeds of acoustic and PIT tagged smolts within the Yarrow Water.    

 

I.II Results 

The emigration speeds of smolts tagged with acoustic tags versus smolts tagged with PIT 

tags was compared using data from the PIT loops and the Yarrow ALS positions. There 

was no apparent difference in emigration rate (Mann-Whitney U Test: n=40 W = 146, 

p>0.05; Figure I.I), although this may be a consequence of low sample sizes of PIT tagged 

trout. When the downstream movement rate of salmon (PIT only) and trout (Acoustic 

and PIT records) was compared there was a significant difference, with trout emigrating 

at a much higher rate than salmon (Mann-Whitney U Test: n=87, W=557, p< 0.001). It is 

however important to note that these results were compounded by the disruption of 

the PIT detection loops caused by spates during 5th - 10th of May and 21st -25th of 

May, meaning that the data has several gaps.  
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Figure I.I: Box plot of the movement rates (body lengths per second) of sea trout moving 
in the Yarrow Water between release and the Philiphaugh PIT loops/ALS position. Data 
are presented as box plots, showing median, upper and lower quartiles, whiskers 
represent the data range. 
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Figure I.II: Box plot of the movement rates (body lengths per second) of sea trout and 
salmon moving in the Yarrow Water between release and the Philiphaugh PIT loops/ALS 
position. Data are presented as box plots, showing median, upper and lower quartiles, 
whiskers represent the data range. 

 

I.III Discussion 

The emigration rate of sea trout smolts tagged with either acoustic transmitters 

or PIT tags in the Yarrow Water was not significantly different suggesting that the tag 

implantation procedure was not detrimental to the initial swimming ability and 

behaviour of acoustic tagged smolts. Previous research on North American salmonid 

species has found that acoustic tagging has no apparent impact the swimming speed of 

fish passing through surface bypass channels (Steig et al., 2005). However, it has been 

noted in hatchery reared chinook salmon smolts that migration speed and survival was 

lower in radio tagged smolts compared to PIT tagged smolts (Hockersmith et al., 2003). 

Trout appear to migrate at a much higher rate than salmon this might be a consequence 

of trout being generally larger than salmon, although this should have been accounted 

for by using relative rates rather than absolute speeds.  
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The current study was hampered by interference from high river flows which 

resulted in the PIT loops being partially displaced numerous times, reducing detection 

efficiency drastically. Therefore the possibility of PIT tagged fish moving past the PIT 

loops without being detected existed, meaning that any comparison of initial survival 

between PIT and acoustic tagged smolts was not possible.           
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Reduced flow 

impacts salmonid smolt emigration in a river with low-head weirs 
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Appendix II: Chapter 5 supplementary material. 

 

Table III.I: Population estimates for each site using Zippin and Carle Strub population 
estimation calculations. 

Species Estimated 
population 
size 

95% Lower 
confidence 
interval 

95% Upper 
confidence 
interval 

Standard 
error 

Estimation 
method 

River 
section 

Atlantic salmon 73 11.95 134.048 31.14 Zippin Capture 

Brown trout 107 -15.16 229.16 62.331 Zippin Capture 

Total 191 38.036 343.963 78.044 Zippin Capture 

Atlantic salmon 66 22.158 109.841 22.368 Carle Strub Capture 

Brown trout 90 16.53 163.464 37 Carle Strub Capture 

Total 171 60.491 281.508 56.38 Carle Strub Capture 

Atlantic salmon 114 93.81 134.189 10.301 Zippin Control 

Brown trout 168 -230.366 566.366 203.252 Zippin Control 

Total 181 143.991 218.008 18.882 Zippin Control 

Atlantic salmon 113 93.724 132.275 9.834 Carle Strub Control 

Brown trout 107 -17.816 231.816 63.68 Carle Strub Control 

Total 180 143.887 216.112 18.425 Carle Strub Control 

Atlantic salmon 87 15.13 158.86 36.66 Zippin Treatment 

Brown trout 85 -13.07 183.07 50.04 Zippin Treatment 

Total 184 39.76 328.23 73.59 Zippin Treatment 

Atlantic salmon 78 27.46 128.53 25.78 Carle Strub Treatment 

Brown trout 71 14.06 127.93 29.05 Carle Strub Treatment 

Total 166 59.66 272.33 54.255 Carle Strub Treatment 
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